

HARmonica

Software Manual

June 2002

 www.elmomc.com

Important Notice
This guide is delivered subject to the following conditions and restrictions:

� This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such
information is supplied solely for the purpose of assisting users of the HARmonica servo
amplifier.

� The text and graphics included in this manual are for the purpose of illustration and reference
only. The specifications on which they are based are subject to change without notice.

� Information in this document is subject to change without notice. Corporate and individual
names and data used in examples herein are fictitious unless otherwise noted.

Doc. no. HARSFEN0602

Copyright  2002
Elmo Motion Control Ltd.

All rights reserved.

The Elmo Motion Control warranty for this product covers only the elimination of problems due to manufacturing defects that result in
impaired function. Specifically excluded from this warranty is the elimination of problems caused by abuse, damage, neglect, overloading,
wrongful operation and unauthorized manipulations of the product. This product warranty is for a period of 12 months from the time of
operational startup but no longer than 18 months from shipment from the manufacturing plant. Damage claims that exceed the warranty
obligation – including consequential damages – will be rejected in all cases. If any term or condition in this warranty is at variance or
inconsistent with any provision or condition (whether general or special) contained in or referred to in the Terms of Conditions of Sale
outlined at the back of Elmo’s Standard Acknowledgement form, then the latter shall prevail and be effective.

Elmo Motion Control Ltd.
64 Gisin St., P.O. Box 463
Petach Tikva
49103
Israel

Tel: +972 3 929-2300
Fax: +972 3 929-2322

Elmo Motion Control Inc.
900(H) River St.
Kennedy Industrial Park
Windsor, CT 06095
USA

Tel: +1 860 683-0095
Fax: +1 860 683-0036

Elmo Motion Control GmbH
Steinbeisstrasse 41
D-78056
Villingen-Schwenningen
Germany

Tel: +49 07720 8577-60
Fax: +49 07720 8577-70

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

1

Table of Contents:

1 ABOUT THIS MANUAL ... 10

1.1 Scope ... 10

1.2 Relevant documentation .. 10
1.2.1 Glossary... 10

2 THE HARMONICA ... 11

2.1 Introduction.. 11

2.2 Software Organization... 11
2.2.1 The Boot software ... 11
2.2.2 The Firmware .. 11
2.2.3 The Personality.. 11

2.3 Related Software .. 12

2.4 Units .. 12
2.4.1 Position units ... 12
2.4.2 Speed and acceleration units ... 13
2.4.3 Current and torque... 13

2.5 Internal Units and Conversions .. 13
2.5.1 Current and torque:.. 13
2.5.2 Speed:.. 14
2.5.3 Electrical angle:... 14
2.5.4 Power DC voltage ... 14

2.6 Peripherals.. 14
2.6.1 Position decoders... 14

2.7 A/D converter ... 15

2.8 Digital inputs .. 15

2.9 Digital output.. 15

3 COMMUNICATION WITH THE HOST... 16

3.1 General.. 16

3.2 RS232 Communications .. 16
3.2.1 RS232 Basics .. 16
3.2.2 The Echo ... 17
3.2.3 Background Transmission... 17
3.2.4 Errors and exceptions in RS232 .. 17

3.3 CANopen Communication .. 17

4 THE INTERPRETER LANGUAGE .. 18

4.1 The command line.. 19

4.2 Expressions And Operators .. 19
4.2.1 Numbers .. 19

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

2

4.2.2 Mathematical And Logical Operators..19
4.2.3 General rules for operators ..20
4.2.4 Operator details..20
4.2.5 Mathematical functions ...24
4.2.6 Expressions..25

4.3 Comments ...27

5 THE HARMONICA USER PROGRAMMING LANGUAGE ...28

5.1 User Program Organization ..28

5.2 Common ..29
5.2.1 Line and Expression Termination..29
5.2.2 Line Continuation ..29
5.2.3 Limitations...30

5.3 Expressions And Operators...30
5.3.1 Numbers ..30
5.3.2 Mathematical and Logical Operators...30
5.3.3 General rules for operators ..30
5.3.4 Operator details..31
5.3.5 Mathematical functions ...31
5.3.6 Expressions..31

5.4 Comments ...33

5.5 Program Flow Commands...34
5.5.1 Labels (Entry points) ...35
5.5.2 For iteration ...35
5.5.3 While iteration ...36
5.5.4 Until iteration...37
5.5.5 Wait iteration ...38
5.5.6 IF condition ...38
5.5.7 Switch selection...39
5.5.8 Break..40

5.6 Functions ...40
5.6.1 Function definition ..40
5.6.2 Dummy variables...42
5.6.3 Count of output variables...42
5.6.4 Automatic variables ...43
5.6.5 Global variables...44
5.6.6 Jumps...44
5.6.7 Functions and The Call Stack ..45
5.6.8 Killing The Call Stack ...47
5.6.9 Automatic subroutines ...47

6 PROGRAM DEVELOPMENT AND EXECUTION..51

6.1 Editing a Program..51

6.2 Compilation...51
6.2.1 Compilation Error List...51

6.3 Downloading and Uploading a Program..59
6.3.1 Binary data...60
6.3.2 The Assisting Commands For Down/Upload ..60
6.3.3 Downloading a Program..61
6.3.4 Uploading a Program...62

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

3

6.4 The program execution.. 62
6.4.1 Initiating a Program... 63
6.4.2 Halting and resuming a program ... 63
6.4.3 Automatic program running with power up .. 64
6.4.4 Save to Flash ... 64

6.5 Debugging ... 64
6.5.1 Running, breaking, and resuming.. 64
6.5.2 DB command .. 64
6.5.3 Machine status... 65
6.5.4 Program status ... 65
6.5.5 Setting and clearing break points .. 66
6.5.6 Continuation of the program ... 66
6.5.7 Single step ... 66
6.5.8 Getting stack entries .. 68
6.5.9 Setting stack .. 68
6.5.10 Getting call stack .. 68
6.5.11 View of global variables... 69
6.5.12 View of local variables ... 69

7 THE VIRTUAL MACHINES.. 71
7.1.1 Introduction Alla please complete where necessary.. 71

7.2 Virtual Machine registers.. 71

7.3 Call Stack During Function Call .. 71

7.4 Data types ... 72

7.5 Op code structure and addressing modes .. 73

7.6 Short reference ... 73

7.7 Alphabetic reference .. 75
7.7.1 ADD - ADDITION ... 75
7.7.2 AND – Bitwise AND Operator ... 75
7.7.3 CMP – Compare.. 76
7.7.4 DIV – Divide... 76
7.7.5 EOL – End Of Line ... 77
7.7.6 FORITR – FOR Loop Iteration ... 77
7.7.7 FREE_VAC - Free Virtual Machine .. 78
7.7.8 F_OR – Bitwise OR Operator ... 78
7.7.9 GETINDEX... 78
7.7.10 GET_COMM – Get Command .. 79
7.7.11 JMP – Jump .. 79
7.7.12 JMP_EOL – Jump .. 80
7.7.13 JMP_LABEL – Jump to the label... 80
7.7.14 JNZ – Jump Not Zero ... 81
7.7.15 JNZ_EOL – Jump Not Zero ... 81
7.7.16 JZ – Jump If Zero ... 82
7.7.17 JZ_EOL – Jump If Zero.. 82
7.7.18 LINK .. 82
7.7.19 MLT – Multiply.. 83
7.7.20 MOV – Assignment Operator (=)... 83
7.7.21 NOT – Bitwise NOT Operator ... 84
7.7.22 REM – Reminder.. 84
7.7.23 RSLTA – Relational Operator (>) .. 85
7.7.24 RSLTAE – Relational Operator (>=) ... 85
7.7.25 RSLTAND – Logical AND Operator (&&) ... 86
7.7.26 RSLTB – Relational Operator (<) .. 86
7.7.27 RSLTBE – Relational Operator (<=).. 86

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

4

7.7.28 RSLTE – Relational Operator (==)...87
7.7.29 RSLTNE – Relational Operator (!=)...87
7.7.30 RSLTOR – Logical OR Operator (||) ..88
7.7.31 SET_COMM – Set Command ..88
7.7.32 SETINDEX...89
7.7.33 SHR – Shift Right ...89
7.7.34 SHL – Shift Left ...89
7.7.35 SPADD ...90
7.7.36 SUB - SUBTRACT ..90
7.7.37 SYSSUBJ – Jump To System Subroutine...91
7.7.38 UNARY_NOT - Logical NOT Operator (!) ...91
7.7.39 USRSUBJ – jump To User Subroutine...92
7.7.40 USRSUBRT – Return from user subroutine ...92
7.7.41 XOR – Bitwise XOR Operator ...93

8 THE RECORDER ...94

8.1 Recorder sequencing: Programming, launching, and uploading data. ...94

8.2 Signal mapping ...95

8.3 Defining the set of recorded signals ..96

8.4 Programming the length and the resolution ..96

8.5 Trigger events and timing..97

8.6 Launching the recorder ...100

8.7 Uploading recorded data ...100

9 COMMUTATION...103

9.1 General ..103
9.1.1 Brush DC motors ...103
9.1.2 The Stepper Commutation Policy..103
9.1.3 The BLDC commutation policy ..104

9.2 Mechanical and electrical motion Figures are missing ...104

9.3 Commutation sensors...105
9.3.1 Rotor Magnetic field sensors ...105
9.3.2 Shaft Angle Sensors...106
9.3.3 Combination of direct magnetic field sensors and shaft angle sensor ...106
9.3.4 Parameterization of the commutation and the commutation sensors...107

9.4 Commutation search ..109
9.4.1 General ..109
9.4.2 Selecting the parameters ..109
9.4.3 Method limitation ..110
9.4.4 Protections ...110
9.4.5 Parameters related to starting the motor with no digital Hall sensors..111

9.5 Continuous Vs. Six-Steps commutation..111
9.5.1 Six-step commutation ..112
9.5.2 Continuous commutation...112

9.6 Winding shapes...113
9.6.1 Loading the commutation table ...114

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

5

10 THE CURRENT CONTROLLER.. 115
10.1.1 Current limiting .. 116
10.1.2 The torque command filter ... 118
10.1.3 The PI current controller... 120

10.2 Current amplifier protections ... 121

11 UNIT MODES ... 123

11.1 Torque control: Unit mode 1... 123

11.2 Speed mode: Unit mode 2 .. 124
11.2.1 The software speed command .. 124
11.2.2 The auxiliary speed command.. 126
11.2.3 Stop management ... 127

11.3 The stepper mode: Unit mode 3.. 128

11.4 The Dual feedback mode: UM=4.. 129

11.5 The single feedback mode: UM=5 .. 131

12 THE POSITION REFERENCE GENERATOR... 132

12.1 The software reference generator... 132
12.1.1 Switching Between Motion Modes .. 132
12.1.2 Comparison of the PT and the PVT interpolated modes .. 133
12.1.3 The Idle Mode and Motion Status .. 133
12.1.4 Point-To-Point (PTP).. 134
12.1.5 Jogging ... 138
12.1.6 PVT: Position-Velocity-Time interpolated motion ... 140
12.1.7 PT Motion... 153

12.2 The External Position Reference Generator.. 159
12.2.1 ECAM .. 162
12.2.2 Dividing ECAM table into several logical portions ... 165
12.2.3 On the fly ECAM programming using CAN.. 166
12.2.4 Initializing the external reference parameters... 167

12.3 The Stop management ... 168
12.3.1 General description... 168
12.3.2 Stop Manager Internals... 169

13 SENSORS, I/O, AND EVENTS.. 172

13.1 Modulo counting .. 172
13.1.1 Modulo Counting.. 172

13.2 Digital Inputs .. 173

13.3 Digital Outputs ... 173

13.4 Events, and response methods .. 174
13.4.1 Manual inquiry ... 174
13.4.2 Periodical Inquiry ... 174
13.4.3 Automatic routines ... 175
13.4.4 Real time – Motion management, Homing, Capture, and Flag .. 175

13.5 Homing and Capture ... 175
13.5.1 What Is Homing?.. 175

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

6

13.5.2 Homing Programming ..176
13.5.3 Homing the auxiliary encoder...176
13.5.4 On the fly position counter updates ..177
13.5.5 A homing with home switch and index example ..177
13.5.6 Capturing ..180

14 LIMITS, PROTECTIONS, FAULTS, AND DIAGNOSIS...181

14.1 Current limiting..182

14.2 Speed Protection ...183

14.3 Position Protection ...184

14.4 Enable switch ..185

14.5 Limit switches ...186

14.6 Connecting an external brake ...186

14.7 When the motor fails to start...187

14.8 Motion faults...187

14.9 Diagnosis ...189
14.9.1 Monitoring motion faults ..189
14.9.2 Inconsistent setup data ..189
14.9.3 Device failures, and the CPU dump..190

14.10 Sensor faults..190
14.10.1 The motor cannot move ..190

14.11 Commutation is lost..191
14.11.1 General..191
14.11.2 Reasons and effect of incorrect commutation ...191
14.11.3 Detection of Commutation Feedback Fault ..192

15 THE CONTROLLER...193

15.1 General ..193

15.2 Speed Control ...194
15.2.1 Block diagram...194
15.2.2 The Parameters of the Speed Controller ...195

15.3 The Position Controller..196
15.3.1 Block Diagram..196
15.3.2 The Parameters of the Position Controller ..197

15.4 The High Order Filter..198
15.4.1 Block Types ..198
15.4.2 User Interface..200

15.5 The Gain-Scheduling Algorithm ...201

15.6 Automatic Controller Gain-Scheduling..202

16 APPENDIX A: THE HARMONICA FLASH MEMORY ORGANIZATION..204

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

7

16.1 Main partitions... 204

16.2 The firmware partition.. 204
16.2.1 Table of Contents (TOC).. 204
16.2.2 Contents of Text1 ... 205
16.2.3 Contents of Text2 ... 205
16.2.4 Contents of Text3 ... 205
16.2.5 Contents of Text4-Text7... 206
16.2.6 Contents of Text8 ... 207
16.2.7 Contents of Text9 ... 207
16.2.8 Contents of Text10 ... 209
16.2.9 Contents of Binary1.. 209
16.2.10 Contents of Binary2.. 209
16.2.11 Contents of Binary3.. 209

16.3 Parameters Partition.. 209

16.4 Factory Code Partition .. 209

16.5 User Code partition.. 209
16.5.1 The TOC... 210
16.5.2 The Compilation Done Flag ... 210
16.5.3 The Virtual Machine Code Segment .. 211
16.5.4 The Text Backup & Compiler data segment .. 211
16.5.5 The Function Symbol Table ... 211
16.5.6 The Variable Symbol Table.. 212
16.5.7 The Automatic Routines Table... 212

17 APPENDIX B: HARMONICA INTERNALS ... 213

17.1 Software Structure... 213
17.1.1 The Initialization block... 213
17.1.2 The periodic Interrupt... 213
17.1.3 The Idle Loop ... 214

18 APPENDIX C: CONVERTING CLARINET/SAXOPHONE PROGRAMS TO THE HARMONICA
LANGUAGE.. 216

18.1 The Converter .. 216

18.2 The Converter Call .. 216

18.3 The Algorithm .. 216

18.4 The Conversion Process... 216

18.5 Examples... 217

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

8

List of Tables:

Table 2-1: Analog sampled signals ...15
Table 3-1 – RS232 Rx Item Description ...16
Table 3-2 – RS232 Tx Item Description ...17
Table 4-1 – Mathematical and Logical Operators ...20
Table 5-1 – Automatic subroutines and their priority ...49
Table 7-1 – Harmonica op codes ...75
Table 8-1: Commands relevant to the recorder ...94
Table 8-2: Default mapping of recorded signals ...95
Table 8-3: Some additional recorded signals...96
Table 8-4: RR command options...100
Table 8-5: RR reports ..100
Table 8-6: SR recorder status reports ..100
Table 8-7:Parameters for uploading recorded data..100
Table 8-8: BH – record structure...102
Table 9-1: Hall sensor values ..105
Table 9-2: Six-Steps commutation ..112
Table 10-1: Bandwidth selections for bus voltage filter..121
Table 12-1: Software motion mode commands...132
Table 12-2 – Tabulated Motion Difference...133
Table 12-3 – Tabulated Feature Preference...133
Table 12-4: Motion status indications ...134
Table 12-5 – Parameter of PTP Motion...135
Table 12-6 – PVT Table ..144
Table 12-7 – PVT Motion Parameters...145
Table 12-8 – PVT Related Parameters ..151
Table 12-9 – PVT CAN Emergency Messages ...152
Table 12-10 – PT Motion Parameters..155
Table 12-11 – PT Related Parameters ...159
Table 12-12 – PT CAN Emergency Messages..159
Table 12-13 – ECAM Related Command ...162
Table 13-1: Commands relevant to modulo counting ...172
Table 14-1: Commands relevant to limits, protection, and diagnosis ...182
Table 14-2: Cases where feedback limits do not apply ...184
Table 14-3 - CD Reported Elements ...190
Table 15-1 – Unit Mode Values and Definitions...193
Table 15-2 – List of all control parameters ...194
Table 15-3: Programming sets of controller parameters for gain schedulilng ..202
Table 15-4 – Automatic Gain Scheduling Process ..203
Table 15-5 – Gain scheduling automatic indexing parameter ...203

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

9

List of Figures:
Figure 1 - Slope and window trigger types ... 98
Figure 2 – Pre trigger delay... 99
Figure 3: Two phased linear motor ... 104
Figure 4: Three phased linear motor ... 104
Figure 5: Three phase rotary motor... 104
Figure 6: Digital Hall sensors readout... 106
Figure 7: Loss of torque due to commutation miss... 112
Figure 8: Winding shape function for a Trapeze motor ... 113
Figure 9: Winding shape function for sinusoidal motor.. 114
Figure 10: Current controller structure.. 115
Figure 11: Peak/Continuous current limit selection.. 117
Figure 12: Time constant selection (Small signal) for the torque input filter ... 119
Figure 13: Rate limiting for the torque input filter.. 120
Figure 14: Current PI controller .. 120
Figure 15: Unit mode 1 (Torque) structure ... 123
Figure 16: Unit mode 2 (Speed) structure... 124
Figure 17 – Speed Profiling using JV, AC and DC .. 125
Figure 18 – Speed command for different smooth Factor... 126
Figure 19: Auxiliary speed command generation ... 127
Figure 20: Speed mode Stop Manager .. 127
Figure 21: Stepper mode (UM=3)... 129
Figure 22: Dual feedback mode (UM=4).. 130
Figure 23: Dual feedback mode (UM=5).. 131
Figure 24 – PTP Decisions Flow Chart... 137
Figure 25 – Jog Decisions Flow Chart .. 138
Figure 26 – PVT Decisions Flow Chart .. 146
Figure 27 – PVT Auto Increment Mode Flow Chart .. 149
Figure 28 – PT Decisions Flow Chart... 155
Figure 29 – PT Auto Increment Mode Flow Chart ... 157
Figure 30: External position reference generator .. 160
Figure 31: Print On A Moving Box Application... 168
Figure 32: Stop Manager Block Manager ... 169
Figure 33: Position output of the stop manager .. 171
Figure 34: Speed output of the Stop Manager... 171
Figure 35 – Switches location ... 178
Figure 36: Speed command and feedback limits .. 184
Figure 37: Position command and feedback limits ... 185
Figure 38: Brake output connection.. 186
Figure 39: Normal Brake Activation Timing.. 187
Figure 40 – A Block Diagram of the Speed Controller... 195
Figure 41 – Block Diagram of The Dual Loop Controller.. 197
Figure 42: Idle loop... 215

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

10

1 About This Manual

1.1 Scope

This specification presents relevant data for understanding and using the Harmonica
software.
The Software Specification complements the Command Reference Manual. The Command
Reference Manual lists each single command with all its options. The Software
Specification Manual is designed to give wider view of the Harmonica system. The topics
are covered functionally, with reference to many commands.

1.2 Relevant documentation

Document Comments
The Harmonica Command Reference
Manual

A complementary document. The Command
Reference Manual lists the system variables
and interpreter commands of the Harmonica.

The Harmonica CAN Manual A Complementary document. The CAN
Manual explains the CAN communication
objects of the Harmonica, and their usage.

The Harmonica User Manual A Complementary document. This document
describes how to select the right Harmonica
model, how to install it, and how to perform
initial setup

The Composer Manual This manual explains the Composer IDE and
how to best use it with the Harmonica.

1.2.1 Glossary

The following abbreviations and terms are used in this document:
ALU Arithmetic Logic Unit, the part of the CPU that makes math and address

calculations.
ICD Interface control document. A definition for the external world relations of a

product. For software, the ICD defines external I/O relations.
CSCI Computer Software Configuration Item. A stand alone program that as long as it

conforms its ICD, may be freely maintained.
CSU Computer Software Unit. A functional block in the software.
DSP Digital Signal Processor.
EDS The list of CAN object supported by a device, in a standard form suitable for

standard configuration software.
ID Direct current. The current component that generate magnetic field in parallel to the

fixed magnet of the rotor
IDE Integrated development environment
IQ Quadrature current. The current component that generate magnetic field

perpendicular to the fixed magnet of the rotor
PDO Process Data Object. A CAN message type. A PDO avoids the need to allocate data

payload for object addressing by a pre-agreement (called PDO mapping) about the
message contents.

PPR Pulse Per Revolution

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

11

2 The Harmonica

2.1 Introduction

The Harmonica a sophisticated and capable network-oriented single-axis amplifier, with:
- State of the art control algorithms, including high order filters and gain

scheduling
- State of the art reference generation algorithm, including absolute timed

interpolated motion, auxiliary signal following, and ECAM.
- Synchronization capability for network operation
- Conformance to CANopen standards
- User friendly programming
- Advanced analyzing tool for setup behavior
- Built in auto-tuning facilities
- Built in database maintenance tools.
- Built in firmware maintenance tools.

All these are implemented in the extremely small environment of the DSP.

2.2 Software Organization

The DSP software is divided into three parts.
The first part is the boot software. The boot software is permanently burnt into the code
flash internal to the DSP, and cannot be upgraded during product life. The boot software
includes some data that helps the firmware identify the exact amplifier model it is operating.
The data includes the maximal motor phase current, the nominal bus voltage, the hardware
of the communication sensors and I/O interface, and the grade of the amplifier (basic or with
extended capabilities).
The second part is the operational software (firmware). The firmware may be updated at
the user site if some upgrading or modifications are required.
The third part is a supportive database that must be loaded to the serial flash. This
supportive part provides a file system for personality description, storage of application
database, and factory or user provided programs.

2.2.1 The Boot software

The Boot software has the following functions:
- Initialize some of the registers of the DSP
- Test code validity automatically. If code validation fails, pass automatically to

the "Download Firmware" mode.
- Degenerated RS232 communication handling and interpreter, only in the level

required for firmware downloading functions.
- Support firmware downloads into the on-chip flash memory.
- Pass control to start of firmware.

2.2.2 The Firmware

The firmware implements all the other software functions, as described in this manual and in
the Command Reference manual.
The firmware will pass control to the boot software when a DF command initiates a
firmware version upgrade. At the end of the firmware downloading process, the Harmonica
reboots.

2.2.3 The Personality

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

12

The personality data is loaded to the serial flash memory. The personality data includes a
file allocation table and several files. The personality files include data about the Harmonica.
A partial list is:
List of supported command
List of error code
CAN EDS
All these data items enable an IDE to deal with the Harmonica. The File Allocation table
reserves place for storage of application parameters and of user programs. The personality
data is burnt into the serial flash using the firmware software.
The firmware can boot without personality data, but it will not become fully functional
before the personality data is programmed in place.
Full explanations of the personality data are given in the chapter “Appendix A: The
Harmonica Flash Memory Organization”.

2.3 Related Software

The Harmonica requires supporting software for setup, tuning, programming, and
performance assessment. The support software is called “Composer”. It runs on a PC
computer, under Windows.
The Composer includes the following functions (among many others):
• Terminal for direct user interface by RS232 or by CAN
• A recorder with advanced scope controls. You can observe up to 8 signals

simultaneously, triggered by a selection of events.
• Setup and tuning tools:

• Menus for entering basic application data and limits
• Tools for associating functions to I/O connector pins
• Automatic tuning of current controller
• Automatic tuning for commutation
• Manual and automatic Speed controller tuning
• Manual and automatic Position controller tuning

• Application database maintenance
• Save and load application database
• Edit application parameters, with help

• Advanced IDE for user program development:
• Editor
• Compiler
• Downloading and uploading of user programs
• Debugger, with:

• Various break point and stepping options
• Watches for local and global variables
• Call stack watch

The Composer software reads the personality data from the Harmonica, and can therefore
adapt to the specific amplifier model you bought.

2.4 Units

This section describes how the Harmonica measures time, position, speed, voltage, and
current.

2.4.1 Position units

The Harmonica refers to position by sensor counts. The sensor counts may be related to
physical units using the following commands:
Command Description
CA[18] For rotary motors, CA[18] is the number of sensor counts per one full

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

13

mechanical revolution.
CA[23] For linear motors, CA[23] stores the number of counts per user unit (Meter, or

any other unit the user may select). CA[23] is stored only for convenience – the
Harmonica software does not use this number for any internal calculation.
For rotary motors, set CA[23]=0.

YA[1],YA[3] YA[1] is the auxiliary feedback resolution, counts/physical unit. YA[3] sets
what a physical unit is: Revolution, Meter, or other.
YA[1] and YA[3] are stored only for convenience – the Harmonica software
does not use these numbers for any internal calculation.

2.4.2 Speed and acceleration units

The speed units are counts/sec, and the acceleration units are counts/sec2. The speed units
may be related to physical units by converting the counts to revolutions, Meters, etc, as
explained in the section "Position units" above.

2.4.3 Current and torque

Currents are measured in Amperes. That is not so simple as it sounds, since there is no
single accepted method to specify the current of three-phased motors.
For sinusoidal motors, RMS phase current normally specifies the motor current. The RMS is
taken over a mechanical revolution; so that the phase currents are the "Motor current" only if
the motor revolves with constant speed.
For trapeze-wound motors, the conventional six-steps drive leaves one motor phase open
circuited, and only one current flows through the two driven motor phases. This driven
phases current specifies the "Motor current". For trapeze-wound motor running six-step
commutation continuously at 1Amp, the RMS current is 0.92Amp.
The Harmonica has one motor current definition, although it can run equally well sinusoidal,
Trapezoidal, or free form motor windings.
We defined the motor current as the maximum winding current in a mechanical revolution.
This definition is consistent with the traditional current definition for six-step motors and it
readily extend to other winding forms.
The user of sinusoidal motors must multiply the motor current reported by the Harmonica by
the factor of 0.71 to obtain the RMS phase current.

2.5 Internal Units and Conversions

In order to optimize the use of its CPU, the Harmonica works inside with local units for
time, for current, for DC bus voltage, and for electrical angle.

• The user normally thinks of time in terms of seconds. Most of the control algorithms view time
by counting controller sampling-times.

• The user thinks of currents in terms of Amperes. The Harmonica thinks internally in the terms of
A/D bits.

• The user may think of electrical angles in terms of degrees or radians. The Harmonica divides
the electrical cycle to 1024.

Normally the internal representation of time and currents is transparent to the user. For
example, the user demands motor current in Amperes, and accepts motor current reports in
Amperes as well. The Harmonica does the translation. The following situations, however,
require the user to consider the internal data representation.

• Uploading data from the real time recorder - Refer "The Recorder" Chapter.
• Interpreting CAN mapped synchronous PDO's
• Specifying motions in the micro stepping mode.

Some user interface commands retrieve the conversion factors for user convenience.

2.5.1 Current and torque:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

14

The internal representation of phase currents is by A/D bits.
Torque commands, and the active and the reactive parts of the current have another
representation, since the coordinate transformations from phase current to torque introduce
scaling.
The relation between internal phase currents, internal torque, and Amperes is given by the
following commands:
Command Description
MC The full current range of the amplifier.

The amplifier represents MC Amperes by 14000 bits internally.
(The maximum A/D reading is 16384 and some spare is left for overshoots and
over-current detection)

WS[22] Torque command multiplier.
Internal torque command = WS[22]×DV[1].

WS[5] Phase current multiplier
Internal phase current = WS[5]×Phase Current[Amp]

2.5.2 Speed:

Speeds are represented internally by the units of counts/(216 speed controller sampling
times).
For example, if the sampling time of the speed controller is 200usec (5000Hz sampling

frequency), then 1000 counts/sec will be represented internally as 13107
Hz5000

21000 16

=

⋅

.

The relation between speeds and internal commands is given by the following commands
Command Description
TS Sampling time of the current controller. The sampling time of the sped

controller is 4×TS.
WS[53] Conversion from internal units to counts/sec

Speed (counts/sec) = WS[53]×Speed (Internal representation)

2.5.3 Electrical angle:

The electrical angle is measured by 1024 counts per electrical revolution.
Think of a motor with 3 pole pairs. To rotate this motor a full mechanical revolution in the
stepper mode (UM=3) you have to specify the movement of (3×1024)=3072 position counts.

2.5.4 Power DC voltage

Power DC voltage is represented internally in A/D units.
The relation between the internal representation and the bus voltage is given by:
Command Description
WS[54] Conversion from internal units to Volts.

Power DC voltage = WS[54]×Power DC voltage (Internal representation)

2.6 Peripherals

This section summarizes the set of Harmonica peripherals.

2.6.1 Position decoders

There are two position decoders, termed main and auxiliary. The main and the auxiliary
decoders are similar. Both decoders are timed (through the timer sets A and B) for accurate
speed information.
A position decoder measures quadrature or Pulse/Direction. The maximum counting rate of

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

15

a decoder is 20mHz, without input filter.
If input filter is applied, the maximum pulse rate is reduced, as explained at the EF[N]
command in the Command Reference Manual.
The encoder input is not protected. There is no hardware to identify illegal transitions.
Exceeding the maximal pulse rate will cause loss of counts that cannot be detected.

2.7 A/D converter

The A/D samples the following:
Signal Description
Ia,Ib,Ic The three phase currents, sampled simultaneously
Ain,ref The analog input and the reference voltage are sampled simultaneously to

form a differential measurement
Bus voltage The bus voltage is sampled to correct the current loop gain.

Table 2-1: Analog sampled signals

The resolution of all the measurements is 12bit, and in practice the last bit is noisy.
The motor currents are measured offset-free, because of a special measurement mechanism.
The analog inputs cannot avoid an offset, due to electronic inaccuracies in the Harmonica
circuits. This offset can be corrected using the AS[1] parameter, to the resolution of about
5mv.
The ability to correct offsets by AS[1] is limited to the resolution of 5mv, and about 10mv in
practice. This means that, for example, if AG[2]=10000, the offset correction quality to
speed analog reference will be limited to about 100count/sec.

2.8 Digital inputs

The Harmonica has six digital input connector pins. All the input pins are routed to a digital
input port. In addition two pins (5 and 6) are routed to high speed capturing input for main
and auxiliary homing. You can associate special functions to digital input pins, like Enable,
Stop, RLS, and FLS – refer the IL command in the Command Reference Manual.
The digital input response time is limited by the speed of the optical couplers, and also by
the input filters.
The encoder index and home input are filtered similarly to the position decoders. The timing
of the position decoder filters is explained in the EF[N] documentation in the command
reference.
The other digital inputs are filtered in software only. The timing of software filtering is
explained in the IF[N] documentation in the command reference.
The use of the digital inputs is detailed in the chapter on Sensors, I/O, and Events.

2.9 Digital output

The Harmonica has two digital output connector pins.
These two pins can be used for non-committed digital outputs, or programmed by the OL
command for special functions, like activating external brakes.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

16

3 Communication With the Host

3.1 General

3.2 RS232 Communications

The Harmonica can communicate by RS232 with baud rates up to 115200baud/sec.
The maximum baud rate depends in the sampling time. The baud rate of 115200baud/sec
works only when TS equals or is less than 70. The communication rate of 57600 baud/sec
works with all sampling time options.
Please refer to PP[] command in the Command Reference Manual.

3.2.1 RS232 Basics

The RS232 method can only serve to communicate a host to a single amplifier. The RS232 lines are full
duplex – they can carry bidirectional communications. This means that the host can transmit to the amplifier
whenever it finds it right, without considering the state of the amplifier.
The RS232 communication consists of ASCII printable characters only, with some exceptions:

• The characters 0xD (carriage return).
• Some non-printable characters that are used as error codes. Please refer to EC command in the

Command Reference.
The basic syntax for RS232 commands may be an assignment,
<Command mnemonic>{[<index>]}{<Equal sign><Value>}<Terminator>
Or a free evaluation:
<Value><Terminator>
Where

Item Description
Command mnemonic Two letters (case insensitive) assigned to a command. Please see the

Command Reference manual for a complete list of command
mnemonics.

Index The index, if the mnemonic refers to a vector parameter or command.
Equal sign The ‘=’ character (Optional, if the command assigns a value to a

parameter)
Value Parameter value (Optional, if the command assigns a value to a

parameter)
The parameter value may be any legitimate arithmetic or functional
expression, as explained later in this section.

Terminator <CR>1 or ‘;’.

Table 3-1 – RS232 Rx Item Description

An assignment evaluates an expression and stores the result in a variable.
A free evaluation evaluates an expression and sends the result to the terminal.
Typical examples are:

MO<CR>
Asks the amplifier to report the value of the variable MO.

MO=1<CR>

1 <CR> is a carriage return, which is the character 0xd (13 decimal).

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

17

Sets the value of 1 to the MO variable.
CA[2]=1;
Sets the value of the CA[2] variable. CA[N] denotes a vector of parameters that can be accessed by their
index.

The free evaluation
(5+sin(PX))*sqrt(abs(VX))
Returns a numerical value to the terminal.
More detail about text interpreting is given in the chapter "The Interpreter Language".

The amplifier responds to the host communicated commands. It never initiates an unasked-for message to
the host.
The syntax of the amplifier answers is
{<Value>}{<Error code>}<Terminator>
Where

Item Description
Value Parameter value (Optional, if the command asks to report parameter)
Error code A binary number that may be interpreted according to the error code tables –

please refer the EC Command in the Command Reference Manual.
Terminator ‘;’ if the host command has been successfully executed, else ‘;?’

Table 3-2 – RS232 Tx Item Description

3.2.2 The Echo

When using RS232 each character that is received by the amplifier is echoed back to the host. The echo is
immediate, per each received character.

3.2.3 Background Transmission

When the host enters the BH=n command to the amplifier, the amplifier uploads the recorder data to the
host. The uploading process may take few seconds. At the time the amplifier uploads records to its host, it is
still listening to the host for new commands.
Consider the command sequence
BH=1;MO=0<CR>
The amplifier will start to transmit the recorder data immediately. Few milliseconds later, while the recorder
data is still transmitting, the amplifier will execute the MO=0 command. The amplifier will store the
response message to the MO=0 command, in order to transmit it later, immediately after the records upload
terminates.
Note:
If the host does not know the communication parameters, it may transmit a series of terminators and try
several baud rates, until it can receive a matching sequence of echoes.

3.2.4 Errors and exceptions in RS232

If an error is intercepted (Overrun, noise, parity, framing), then the entire message including this
error is discarded, and answered by the “communication error” code response.
Although the communication is defined as 8 bits per character, only the byte values 0-127 are used.
The characters 127-255 are treated as UART errors.
Empty strings with terminators are echoed back, but otherwise ignored.

3.3 CANopen Communication

A detailed description of CANopen communications is out of the scope of this manual.
Please refer the CANopen Manual.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

18

4 The Interpreter Language

The amplifier has a language that enables the user to communicate with the Amplifier. Using this language,
the user can
• Setup the Amplifier
• Command the Amplifier what to do
• Inquire the Amplifier status

There are two methods for communicating with the Amplifier.
The first of them is to use the communication interfaces, either the RS232 or the CANopen
interface, to pass commands to the Amplifier, and accept the Amplifier immediate response.
This method requires on line communication and close cooperation between the Amplifier
and its host.

The other method is to write a program in the Amplifier language and to store it in the
Amplifier. The Amplifier can run the program with minimal or no host assistance.

The physics and the standards of the RS232, and CANopen communication methods imply
differences in the command syntax used by each method.
This section describes the Amplifier language in the basic “RS232” or CAN “OS” syntax.

The CANopen communication method can access simple numeric interpreter get and set
commands very efficiently. The CAN binary interpreter uses PDO objects to issue
interpreter commands and to collect the response.
This is the most economical way minimizes both the communication load and the Amplifier
CPU load.
The CAN OS (command prompt) method can be used to access the entire set of interpreter
services, including those inaccessible by the binary CAN interpreter, using a text format.
The CANopen communication method is a broad topic and is beyond the scope of this
manual. Please refer the CANopen Communication Manual.

Programs use the interpreter syntax, with extension that are necessary to support program
flow instructions and in line documentation.

The full set of the Amplifier commands is documented in the Amplifier Command
Reference Manual.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

19

4.1 The command line

The Interpreter evaluates input strings, called “expressions”. An expression is a sequence of
characters, terminated by a semicolon ‘;’, a line feed, or a carriage return.
A command line may include the “Comment marker” – two consecutive asterisks. All the text from
the comment marker to the next line feed or carriage return is ignored.
The maximal expression length is 512 symbols.

The comment marker feature enables the preparation of documented batch files, to be later sent
directly to the amplifier.

Example:
a = 3 ; b = 2 ; c = a + b ** Ignore this text

This line consists of three expressions separated with semicolon. The comment “Ignore this text” is
ignored.

4.2 Expressions And Operators

The Amplifier language supports operators, which specify a mathematical, logical or
conditional operation/relation between two operands or more. Operands (actually
parameters) and operators may be combined in almost any way to create an expression. The
following paragraphs present the operators and the expression syntax rules.

4.2.1 Numbers

The Amplifier has two number types: 32 bit integers and 32 bit floating point numbers. As
text inputs, numbers that contain a decimal point or an exponent notation are interpreted as
floats. Other numbers are interpreted as integers.

The range for integers is [-2.1475e+009,+ 2.1475e+009].
Positive integers may be written as decimal or as hexadecimal.
The hexadecimal notation 0x10 is equivalent to the decimal number 16.

A 32-bit floating-point number has 24 significant mantissa bits and 8 bits of exponent.
The range for floating point numbers is [-1e20, 1e20].
A floating-point number may be written with or without an exponent.
2.5e4 is equivalent to 25000.0. It is not equivalent to 25000, since the latter number is
interpreted as integer.

If an integer number overflows integer range, it is interpreted as an error.
If a floating-point number overflows floating-point range, it is interpreted as an error.

Logical operators yield 0 or 1 as a result. The results of logical operators are integers.

4.2.2 Mathematical And Logical Operators

The following table lists the mathematical and logical operators of the language. The table
also specifies the operator precedence, which is discussed in the next paragraphs. The larger
number has the higher precedence.

Operator Description Precedence

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

20

+ Add two operands. 9
- Subtract the right operand from the left one. 9
* Multiply two operands. 10
/ Divide the left operand by the right one. 10
% Remainder after division two integers 10
^ XOR 1
~ Bitwise NOT of an operand. 11
& Bitwise AND between two operands. 5
| Bitwise OR between two operands. 4
<< Bitwise Shift left 8
>> Bitwise Shift right 8
== Logical equality 6
!= Logic not equal 6
< Logic smaller than 7
<= Logic smaller or equal 7
> Logic greater than 7
>= Logic greater or equal 7
&& Logical AND 3
|| Logical OR 2
! Logical negation 11
- Unary minus 11
= Assignment
() Parentheses, for expression nesting and function calls
[] Square parenthesis, for array indices and multiple value function

returns

Table 4-1 – Mathematical and Logical Operators

4.2.3 General rules for operators

4.2.3.1 Promotion to float and truncation to integer
Most the arithmetic operators work on both integers and floats. An arithmetic operation between integers
will yield integers, an operation between floating point numbers, or between an integer and a floating-point
number, will yield a floating-point result. For example, all the expressions below are legitimate:
1+2 (The result is 3, integer)
1+0x10 (The result is 17, integer) Note that 0x10 is treated as a standard integer.
1+2.0 (The result is 3.0, float)
2.1+3.4 (The result is 5.5, float)
The operation of division between two integers may yield a floating-point result in a case of division with
remainder. For example:
8/2 (The result is 4, integer)
9/2 (The result is 4.5, float)
If a result of multiplication between two integers overflows integer range
[-2.1475e+009,+2.1475e+009], this result will be converted into floating point, but won’t be truncated. For
example:
100000 * 100000 (The result is 10000000000, float)
Bit operators require an integer input. Floating-point inputs to bit operators are truncated to integers.
7.9 & 3.4 is equivalent to 7 & 3, since before applying the operator & (Bitwise AND) the floating point
number 7.9 is truncated to the integer 7, and 3.4 is truncated to the integer 3..

4.2.4 Operator details

The following paragraphs describe the operators in detail.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

21

4.2.4.1 Addition
Notation +
Description Arithmetic addition
Number of
arguments

2

Output type According to the section Promotion to float and truncation to integer
Example 4+5=9

3.45+2.78=6.23

4.2.4.2 Subtraction
Notation -
Description Arithmetic subtraction
Number of
arguments

2

Output type According to the section Promotion to float and truncation to integer
Example 4-5=-1

3.45-2.78=0.67

4.2.4.3 Multiplication
Notation *
Description Arithmetic multiplication
Number of
arguments

2

Output type According to the section Promotion to float and truncation to integer
Example PA=PA*2 doubles PA

5*4=20
1.5*2=3.0

4.2.4.4 Division
Notation /
Description Arithmetic division
Number of
arguments

2

Output type According to the section Promotion to float and truncation to integer
Example 20/4=5

3/1.5=2.0

4.2.4.5 Remainder
Notation %
Description Remainder after division two integers
Number of
arguments

2

Output type According to the section Promotion to float and truncation to integer
Example 20%4=0

5%2=1

4.2.4.6 XOR
Notation ^
Description Exclusive or, bitwise.
Number of
arguments

2

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

22

Output type 32 bit long integer.
Example if x=1 as x^3=2

4.2.4.7 Bitwise NOT
Notation ~
Description Bitwise NOT
Number of
arguments

1

Output type 32 bit long integer.
Example ~3 is 0xfffffffc, which is actually –4

~3.2 is the same as !3

4.2.4.8 Bitwise OR

Notation |
Description Bitwise OR
Number of
arguments

2

Output type 32 bit long integer.
Example PA = 0x2 | 0x5 is equivalent to PA = 7

PA = 0x2 | 5.1 is the same

4.2.4.9 Bitwise AND
Notation &
Description Bitwise AND
Number of
arguments

2

Output type 32 bit long integer.
Example PA = 0x7 & 0x3 is equivalent to PA = 3

PA = 0x7 & 3.1 is the same

4.2.4.10 Logical Equality
Notation ==
Description Logical equality
Number of
arguments

2

Output type 0 or 1 (0 equals to false, 1 equals to true)
Example if x=3 and y=3 as x==y yields 1

if x=3 and y=5 as x==y yields 0

4.2.4.11 Logical Inequality
Notation !=
Description Logical inequality
Number of
arguments

2

Output type 0 or 1 (0 equals to false, 1 equals to true)
Example if x=3 and y=3 as x!=y yields 0

if x=3 and y=5 as x!=y yields 1

4.2.4.12 Logical Greater than

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

23

Notation >
Description Logical greater than
Number of
arguments

2

Output type 0 or 1 (0 equals to false, 1 equals to true)
Example if x=3 and y=3 as x>y yields 0

if x=3 and y=2 as x>y yields 1
if x=1 and y=2 as x>y yields 0

4.2.4.13 Logical Greater than or equal
Notation >=
Description Logical greater than or equal
Number of
arguments

2

Output type 0 or 1 (0 equals to false, 1 equals to true)
Example if x=3 and y=3 as x>=y yields 1

if x=3 and y=2 as x>=y yields 1
if x=1 and y=2 as x>=y yields 0

4.2.4.14 Logical Less than
Notation <
Description Logical less than
Number of
arguments

2

Output type 0 or 1 (0 equals to false, 1 equals to true)
Example if x=3 and y=3 as x<y yields 0

if x=3 and y=2 as x<y yields 0
if x=1 and y=2 as x<y yields 1

4.2.4.15 Logical Greater than or equal
Notation <=
Description Logical greater than or equal
Number of
arguments

2

Output type 0 or 1 (0 equals to false, 1 equals to true)
Example if x=3 and y=3 as x<=y yields 1

if x=3 and y=2 as x<=y yields 0
if x=1 and y=2 as x<=y yields 1

4.2.4.16 Logical AND
Notation &&
Description Logical AND. The result is 1 if both arguments are nonzero, 0 if any is zero.

The arguments are not truncated to integers before evaluations
Number of
arguments

2

Output type 0 or 1
Example 1 && 5 yields 1

0.21 && 2 yields 1
0 && 2 yields 0

4.2.4.17 Logical OR

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

24

Notation ||
Description Logical OR. The result is 1 if any of the arguments is nonzero, 0 if both are zero.

The arguments are not truncated to integers before evaluations
Number of
arguments

2

Output type 0 or 1
Example 1 || 0 yield 1

0 || 0 is 0.

4.2.4.18 Logical NOT
Notation !
Description Logical NOT. The result is 1 if the argument is zero, and 0 else

The arguments are not truncated to integers before evaluations
Number of
arguments

1

Output type 0 or 1
Example !4 yields 0

!0 yields 1
!0.0004 yields 1

4.2.4.19 Unary Minus
Notation -
Description Unary MINUS. The result is negative if the argument is positive, and vise

versa.
The arguments are not truncated to integers before evaluations

Number of
arguments

1

Output type The same as argument
Example -4.5 yields –4.5

-4 yields –4
(-4) yields 4
-5+5 yields 0

4.2.4.20 Bitwise Left Shift and Right Shift operators
Notation << or >>
Description The bitwise shift operators shift their first operand left (<<) or right (>>) by the

number of positions the second operand specifies.
The arguments are truncated to integers before evaluations.

Number of
arguments

2

Output type 32 bit long integer.
Example 8>>2 yields 2

8<<2 yields 32

4.2.5 Mathematical functions

The following table presents the mathematical built-in functions of the language.
Function names are case sensitive.
Operator Description Returns

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

25

sin Sine Floating point

cos Cosine Floating point

abs Absolute value Same type as input argument

sqrt Square root, or zero if argument is
negative

Floating point

fix Truncate to integer.
fix(3.8) is 3
fix(-3.8) is -3

Integer

rnd Truncate to nearest integer.
rnd(3.8) is 4
rnd(-3.8) is –4

Integer

tdif Time difference
x=TM
tdif(x) returns the time in msec since
x=TM has been sampled.

Floating point

4.2.6 Expressions

An expression is a combination of operands (parameters) and operators that is evaluated in a
single value. Expressions work with immediate numbers, Amplifier commands, Amplifier
and global user-program variables.
There are different types of expressions, as described below.

4.2.6.1 Simple Expressions
A simple expression is evaluated in a single value. Any parameter and mathematical/logical
operator may be used to create a simple expression. Normally, simple expressions may be
used as a part of other types of expressions.
Simple expressions are evaluated according to the priority of the operators, as specified in
Table 4-1 – Mathematical and Logical Operators. In case of equal priority, the expression is
evaluated from left to right.
The use of parentheses is allowed to 16 nesting levels.

Example:

AC=100000
SP*2/5+AC
SP= SP*2/5+AC
IP|5
(SP+SP)*IA[1+AC*0]
IA[1]|5&2
2+3
1400000

4.2.6.2 Assignment Expressions
Assignment expressions are used to assign a value to variable or command. The syntax of an assignment
expression is:

<Parameter or command name>=<simple expression>

Example:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

26

sp=sp*2/5+ac
op=ip|5

If the variable or the command is a vector, the assignment is allowable only for its single member. The
syntax of the vector member assignment is:
<Parameter or command name>[index]=<simple expression>

The index is an index of the relevant member vector. Indices are enumerated from zero.

Example:
ca[1] = 1

4.2.6.3 User variables
User variables are defined within a user program. The description and syntax rules of the variable definition
see at User variables of User Programming Language
User program variables may be used within the command line only if a program was compiled successfully
and downloaded to the Amplifier.
Through the Interpreter a user may inquire user variable value or change it.
A user has to pay special attention to the scope of a variable. A variable may be defined at the global or local
scope. The local variables are available only within the function where they are defined, while the global
variables are available within any function and outside a function.
A user variable may be inquired or changed when the program is in the running or halt status.

For example, suppose that a compiled program includes the following lines at the global scope:
int ZEBRA,GIRAFA[3];
float GNU;
Then the expression
GNU=ZEBRA*GIRAFA[1]+2*sin(GIRAFA[2]);
is valid. User program variables are case sensitive.

4.2.6.4 Built-in Function Calls
The built-in function call may be used in a single expression. For a list of built-in-functions refer
Mathematical Functions
The built-in function call may be a part of a single expression.

Example:
sin(3.14/2)
AC=abs(DC)
SP=SP+sin(3.14/2)

4.2.6.5 Time functions
Use the TM command to read the system 32 bit microsecond counter.
The time difference from the present time to an older sampling of TM can be taken in two methods:
Example
QP[1] = TM ; ** QP[1] is used just as storage
…. ** Do something
QP[2] = QP[1]-TM ; ** QP[2] is time difference in microseconds.

Example
QP[1] = TM ; ** QP[1] is used just as storage
…. ** Do something
QP[2] = tdif(QP[1]) ; ** QP[2] is time difference in milliseconds.

Time differences cannot be taken longer then 31 minutes.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

27

4.2.6.6 User Function Calls
The XQ command enables a user function call. See Running of a User Program
A user function cannot be called from the command line without the XQ command.

4.3 Comments

Comments are texts that are written into the code to enhance its readability.

A double asterisk marks comments. The comment starts in a double asterisk comment marker, and
terminates at the next end of line.
The Amplifier ignores the comments when evaluating an expression.

Example:

mo=1; **motor on

This example demonstrates that a comment may start anywhere in the program line. The MO=1 instruction
preceding the comment marker shall be executed.

Remark: Comments in the command line differ from comments in a user program. User Program Language
has three methods to write comments, while the Interpreter Language has the only one.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

28

5 The Harmonica User Programming Language

This chapter describes the Harmonica user language in detail.
This chapter is somewhat out of place, since the user program language is not really a feature of the
Harmonica.
The Harmonica can only understand virtual assembly commands – see commands at the chapter The Virtual
Machines: Short reference.
The Compiler translates user language into virtual assembly commands. It reads user program and
transforms it to the sequence of simple virtual assembly commands. The compilation process runs off-line in
the PC, not inside the Harmonica. Before the Harmonica executes a user program, it must be preliminarily
compiled and the compiled code must be downloaded to the serial flash of the Harmonica. A little more
about the Compiler see at the section Compilation
An Amplifier program is a list of commands in certain order. A user program can be anything from a simple
list of commands to a very complicated machine management algorithm.
The section below describes how to write, maintain, and run user programs for the Amplifier.

5.1 User Program Organization

A user program is organized as follows:
• Integer and floating point variable declarations
• Program text, including expressions, commands, labels, and comments
• An exit directive may be used to terminate the program.

Most of the interpreter commands can be used in the program text. In order to learn if a
given interpreter command can be used in a program, please refer the scope attribute of that
command in the Command Reference Manual.
The Interpreter commands that cannot be used in a program are:

• Commands that upload or download data between the Amplifier and its host.
• Commands that store data in the flash memory, or that retrieve data from the flash memory.
• Commands concerning the execution of the user program.

In addition to the interpreter commands, a program may include program flow statements
that manage how the program runs.

• Iterations.
• Subroutine execution commands.
• Conditions.

In the program text, semicolons, commas, line feeds or carriage returns separate the
commands.
A single program line is executed as a one unit, preventing intervention from the interpreter
or a CAN command.
For example in the sequence
UM=5;
MO=1;
It is possible that an interpreter command shall be executed between the execution of the
two program statements. If the interpreter statement was UM=2, then MO=1 is specified for
a wrong unit mode. The sequence
MO=0;UM=5;MO=1;BG
Guarantees that MO=1 is executed with the correct unit mode.

Example 1:

int x,k; Variable declarations
##Foo Label definition

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

29

X=0; Initialize
for k=0:10 Iterate
X = x + 1 ; Do something
end End of iteration
exit End of program directive
##Moo
... More code

The program defines two variables named x and k.

##Foo is an entry point.

After compilation, it is possible to run this piece of code by commanding XQ ##Foo to the interpreter.

When the program starts at ##Foo, it clears the user variable x. It then iterates 11 times, incrementing x with
every iteration. Finally, x = 11.

The exit command terminates program execution.
Another code section can be executed by commanding XQ ##Moo.

Example 2:

switch (IP & 3) Select according to the two low input bits
case 1
PR=1000; If value is one...
case 2
PR=500; If value is two ...
otherwise
PR=100; Otherwise...(Last two bits are 0 or 3)
end
BG Begin motion

This example moves an axis with a step that depends in the state of the digital inputs.

5.2 Common

A user program contains lines of text code. This text must have defined syntax for the Compiler to recognize
it. This section contains some common description of a program text.

5.2.1 Line and Expression Termination

A line has the following terminators: carriage return, line feeds or their combination.
A line can contain a single expression or sequence of expressions. Sequence of expressions in the same line
can be separated with semicolon or comma (not inside round or square parentheses).

Example:
a = 3 , b = 2 , c = a + b , ** This line consists of three expressions separated with comma
a = 3 ; b = 2 ; c = a + b ; ** This line consists of three expressions separated with semicolon
a = 3 , b = 2 ; c = a + b ** This line consists of three expressions separated with comma, semicolon and
terminated with line feed
[a,b] = foo (23, c, 3.14) ** In this expression comma is not expressions separator, because it is inside
parentheses

5.2.2 Line Continuation

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

30

A user program may contain too long line and its representation at the screen may be not convenient,
because not all symbols are shown at the screen. In order to improve readability of the program, a user may
continue this expression at the next line. Three points at the end of line indicates that this line will be
continued.

Example:
Assume that a user program contains the next expression
c = 12 * a + sqrt(2) – sin(3.14 / 2) + 7 ^ 3 * …
 (6 + b) * 34
Three points at the end of the first line shows that this expression is not finished and is continued at the next
line.

5.2.3 Limitations

Every line of a user program text may contain 128 characters as maximal length (for better readability at the
screen). For too long text line (more than 128 symbols) the Compiler sets an error.
Expressions also have limitation: the maximal admissible length of expression is 512 symbols, not including
comments. If a program contains complex expression that takes some lines and the summary length of
expression without comments and three points exceeds 512 symbols, then the Compiler sets an error.

There are some limitations of a user program text depending on the specified Harmonica device. The list of
setup parameters of the Harmonica, which are limiting a user program, is represented below.

• Maximal length of user program text
• Maximal number of routines, including functions, labels and auto routines
• Maximal number of variables, including as global as local
• Maximal length of the data segment – space for storage of global variables
• Maximal length of the code segment – space for compiled code
• Maximal depth of the stack – working space of the program

The IDE enables a user to see these parameters (not implemented yet). Ask Ilia and Nicolay

5.3 Expressions And Operators

5.3.1 Numbers

The number syntax is the similar to the Interpreter Language (see Number of the Interpreter Language), but
there are some differences in evaluation of immediate numbers. User program is compiled at the PC in off-
line mode, so it has more resources, than the Interpreter.
The range for floating point numbers is [-1e38,+1e38], it is more than the Interpreter language numbers
have.
If an integer number overflows integer range, it is converted to float (the Interpreter interprets it as an error).
If a floating-point number overflows floating-point range, it is interpreted as an error.

5.3.2 Mathematical and Logical Operators

The description and syntax is the same as in the Interpreter Language. See Operators of the Interpreter
Language

5.3.3 General rules for operators

The description and syntax is the same as in the Interpreter Language. See General rules of the Interpreter
Language

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

31

5.3.4 Operator details

The description and syntax is the same as in the Interpreter Language. See Operator details of the Interpreter
Language

5.3.5 Mathematical functions

The description and syntax is the same as in the Interpreter Language. See Mathematical functions of the
Interpreter Language

5.3.6 Expressions

5.3.6.1 Simple Expressions
The description and syntax is the same as in the Interpreter Language. See Simple Expressions of the
Interpreter Language

5.3.6.2 Assignment Expressions
The description and syntax is the same as in the Interpreter Language. See Assignment Expressions of the
Interpreter Language
User programming language allows multiple assignment to multiple output of the function. Syntax and
descrition see at the section

5.3.6.3 User variables
User variables are defined within program, using the int or the float declarations.
The keywords for variable types are ‘int’ and ‘float’.
Syntax:
int int_var1, int_var2[12], …, int_varN;
float flt_var1[13], flt_var2, flt_varN;
int a;
float b;

Variable must be declared before its use (in the expression or assignment).
The definition line of variables consists of type name (int or float) and variable names.
Variables at the definition line must be separated with comma or every variable may be declared at the
separate line. Variables may be scalar, or vector. If a variable is a vector, it must be declared its dimension in
square brackets after its name.
Only global variable may be one-dimensional array. Neither local variable nor input/output argument of a
function can be a vector.
Dimension of the vector must be positive constant number. If dimension is defined as floating-point number,
it will be truncated to integer. The dimension that is less than one is illegal.
For example,
int arr[12.5] ;
The floating-point number that defines dimension will be truncated to 12.
int arr[-2] ;
This variable definition is illegal, because dimension is negative.

Local variables must be defined at the beginning of function bodies. Any local or global variable definition
after some executable code of the function is illegal.
For example,
function foo (int a) ** Function definition
int b ; ** Local variable definition
b = a ; ** Executable code
float c ; ** Local variable definition

Definition of the variable ‘c’ is illegal, because it is after some executable code.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

32

The names of variables may include ASCII letters, digits (not leading) and underscores (not leading) only.
It’s case sensitive. The maximal variable name length is 12 characters.
A variable name cannot be a keyword.
The list of the keywords is as follows:
 “int”,

“float“,
 "if",
 "else",
 "elseif",
 "for",
 "while",
 "switch",
 "case",
 "otherwise",
 "break",
 “end”,
 “return”,
 “function”,
 “global”,
 "keyboard",
 "exit",
 "virtual",
 "all",
 "reset",
 "wait",
 "until",
 "goto",
 “nargout”,
 “halt”
The all keywords are case sensitive.
Variable name must be distinct from some function or label name.
After a program is compiled, all the program variables may be used within the command line.
For example, assume that a compiled program includes the following lines:
int ZEBRA,GIRAFA[3];
float GNU;
Then the expression
GNU=ZEBRA*GIRAFA[1]+2*sin(GIRAFA[2]);
is valid. Variables are case sensitive.
More about global and local variables see at the sections Automatic Variables and Global Variables

5.3.6.4 System Commands
The Harmonica system commands are described at the Command Reference.
System commands description in this section is designed only to explain their use in user program.

System command has two-letter mnemonic notation (only English letters, case not sensitive).
For example,
ac = 100000
AC = 100000
Both these expressions have the same meaning, in spite of different notation.

Every command has the 16-bit flag, every bit of which defines any feature.
For example, the fourth bit (PostProcess flag) defines whether this command can be used to set value or not.

List of commands depends on the specified Harmonica.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

33

Consider some examples using system commands.

Example Explanation
a = AC This expression assigns value of the system command AC to the variable ‘a’.

This expression is valid if the AC command is allowed to ‘get value’, i.e. it has PreProcess flag
AC = a This expression assigns value of the variable ‘a’ to the system command AC.

This expression is valid if the AC command is allowed to ‘set value’, i.e. it has PostProcess flag
BG This is executable command. It cannot be assigned, i.e. it has neither PreProcess nor PostProcess

nor Assign flags
For example, the following expressions
BG = 1
or
a = BG
are not legal

LS This expression is not legal, because it uses command that has NotProgram flag. The
‘NotProgram’ commands are not allowed in user program, while they are available for the
Interpreter language.

5.3.6.5 Built-in Function Calls
The description and syntax is the same as in the Interpreter Language. See Built-in function call of the
Interpreter Language

5.3.6.6 User Function Calls

Functions perform a pre-written and compiled code. Functions get a list of arguments from their caller, and
return a list of return values.
Functions get their list of input argument by value – they do not directly modify them.
The general syntax of a function call is
[OUT1,OUT2,…OUTN]=FUNC(IN1,IN2,…IN_N)

If only one value is returned, the square parentheses are not required and the syntax is following:
OUT=FUNC(IN_1,…,IN_N)

Not all the output variables need be assigned.
For example, if the function FUNC returns two values,
[IA[1],IA[2]]=FUNC()
assigns the two returned values to IA[1] and IA[2].
IA[1]=FUNC()
Returns the first return value to IA[1], and the other returned values remain unused.
If the returned value has another type than variable that receives it, the result shall be type cast to the type of
the variable.
Numbers of input arguments during function call are strict according to its definition.

If function call is a part of expression, then multiple output of the function is illegal.
For example,
[a, b] = 5 + foo(c)
or
[a, b] = foo(c) + 5
Both these expressions are not legal: function call is a part of expression and must be evaluated in a single
value.

5.4 Comments

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

34

Comments are texts that are written into the code to enhance its readability. There are three methods to write
comments.
A double asterisk marks comments. The comment starts in a double asterisk comment marker, and
terminates at the next end of line.
The Amplifier ignores the comments when running a program or evaluating an expression.

Example:

**my first program
PX=1
**um=5
mo=1; **motor on

In the above example program, the first line is a comment used to enhance program readability. The
comment terminates at the next end of line, so the next PX=1 instruction shall be compiled and executed.
In the third line, the comment mark tells the Amplifier to ignore the UM=5 command. This technique is
useful for temporarily masking program lines in the process of debugging.
The last line demonstrates that a comment may start anywhere in the program line. The MO=1 instruction
preceding the comment marker shall be compiled and executed.
A percent sign (the MATLAB style) marks comments in the same way as a double asterisk. The comment
starts in a percent sign comment marker, and terminates at the next end of line.
Example:

%my first program
PX=1
%um=5
mo=1; %motor on
In this example a percent sign marker just changes a double asterisk marker from the previous example to
show that both of them have the same use.

Another commenting method is the C style. A C style comment starts with the start comment mark /* and
terminates with the end comment mark */. The C style enables closing a text in the middle of an expression,
or closing several text lines.
Example:
/*
This is a multiple line comment.
All this text is ignored.
*/
if (1 /* x == 1 */)
 y = 1;
end

The expression y = 1 will be always executed. The x==1 condition enclosed by the comment markers is
ignored.

5.5 Program Flow Commands

The Amplifier has a set of commands that manage the flow of the user program.
With the aid of these commands, the user program can make decisions iterate, or respond automatically to
some events.
The program flow commands enable user programs to do much more complicated things then just running a
set of commands sequentially.
The program flow commands are:
while – end : Iterate as long as a condition is satisfied.
until : Iterate (suspend the execution of the program) until a condition is satisfied.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

35

wait : Iterate (suspend the execution of the program) until a specified time is elapsed.
for - end : Iterate counted times
break : Break an iteration or a switch expression (for, while, switch)
if – else – elseif – end: Conditional expression.
switch-case-otherwise-end: Case selection
goto – Go to some point in the program
reset – Kill the state of the executing program and jump to some point in the program.
function-return – Declare a function and its return point
##: Declare a label or an auto routine
#@: Declare a label or an auto routine
#@ - return: Declare an auto routine and its return point
exit – Terminate program execution.

5.5.1 Labels (Entry points)

Labels denote that program execution can start from that place, or that program execution can be branched to
that place.
Label definition has the following syntax:
##<LABEL_NAME>
or
#@<LABEL_NAME>
A maximum of 12 characters (letter and/or digit (not leading) and underscore (not leading) only) may be
used for label. A name of label must be distinct.
Labels can reside inside or outside function bodies, but not within a program flow structure, such as a for
iteration.
Labels inside function bodies regard as local of the function and serve as targets for goto instructions within
the same function.
Labels in the global text scope serve as possible execution starting points, and also as targets for reset and
global scope goto.
The XQ and the XC program launching commands use labels to specify where to start program execution
and were to terminate. For example, if user wants to start execution at ##LOOP2, he can do it by sending the
command
 XQ ##LOOP2

Example:

##START; The program start
##LOOP1; A label
…. The body code A
goto##LOOP1;
##LOOP2;
….. The body code B
##LOOP3;
…

According to above example, if the program runs from label ##START, the body code A will be performed
forever. The ##LOOP2 will never be reached.

5.5.2 For iteration

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

36

Perform an indexed iteration in a program.
Syntax:
for k=N1:N2:N3
…
end
or
for k=N1:N2
…
end
where N1, N2, and N3 are numbers or simple expressions.

The syntax:
for k=N1:N2:N3
…
end
iterates k from N1 to N3 with a step of N2.

The syntax:
for k=N1:N2
…
end
iterates k from N1 to N2 with a step of 1.

Notes:

1. If the iteration step is zero, the program is aborted with the error code
INFINITE_LOOP.

2. If N1, or N2, or N3 are variables, they are evaluated once before the iteration
begins. If the variable changes within the "for" loop, the iteration process will not be
affected.

3. Iteration variable k must be declared as a variable.

Example:

…. Start user program or function
float ra[20]; Float array declaration
int ia[20]; Integer array declaration
int k; Variable declaration
…
for k=1:10 Start of iteration loop
ia[k]=100; Update the first ten elements of the integer

array
ra[k]=55.55; Update the first ten elements of the real array
…
end End of iteration loop
….

5.5.3 While iteration

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

37

Syntax:
while(expression)
…
statement
…
end

The while keyword executes statement repeatedly until expression becomes 0.
The expression can be logical or/and numerical.
Note: expression may be within round parentheses or without ones.

Example:

OB[1]=0 Digital output 1 is OFF
while(IB[1])
OB[1]=1 While the digital input 1 is ON, the digital

output 1 is ON
end
OB[1]=0; Digital output 1 is OFF
….
…
While (IB[2])
end
MO=1; This command will be performed only after

digital input 2 is OFF.

5.5.4 Until iteration

Syntax:
until (expression) ;

The until keyword suspends the execution of the program until expression becomes true (nonzero).
The expression can be logical or/and numerical.

Example:
Assume that user wants to suspend the program until the variable PX exceeds 20000 and digital input 1 is
ON.
The code below has the same functionality

…
until ((PX==2000)&IB[1]) ;
…

The until expression may be useful to synchronize threads for amplifiers that support multithread programs.
For example, we have two threads. Assume that the second thread must start after the first thread finishes
some work. We define a global variable, which shows whether the first thread finished or not. The second
thread is suspended by until expression.
We first define a variable:

int IsFirstFinished ; **The global variable definition

The variable is initially set to zero.
The code of the first thread shall be:

…

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

38

… Do some work …
IsFirstFinished = 1 ; **Signal that some work is completed

The code of the second thread will include
… Prior to suspension code
until (IsFirstFinished) ; **The second thread suspended until

**signal
… Continue program.

If we want to suspend thread without terminating it, we can use until with a false expression.

5.5.5 Wait iteration

Syntax:
wait (expression) ;

The wait keyword suspends the execution of the program until the specified time is elapsed.
The expression may be within round parentheses or without ones.
The expression specifies the waiting time in milliseconds. It can be numerical expression only,
which is evaluated in a single value.

Example:

PA=10000
BG
until (MS == 0)
wait (20) ; Wait 20 milliseconds

The above program instructs a PVT motion. The until (MS == 0) waits until the position command is
stabilized at the new position. The wait (20) allows additional 20 milliseconds for final stabilization.

5.5.6 IF condition

Syntax:
if(expression1)
…
statement1
…
elseif (expression2)
…
statement2
…
else
…
statement3
…
end

The if keyword executes statement1 if expression1 is true (nonzero); if ifelse is present and expression2 is
true (nonzero), it executes statement2. The ifelse keyword may repeat scores of times during to if condition.
The statement3 will be executed only if all expression1, expression2, … expressionN
are false(or zero).

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

39

Example:

if (IB[4])
PR=1000; PR=1000 only if digital input 4 is ON
elseif(IB[3])
PR=5000; PR=5000 only if digital input 3 is ON
elseif(IB[2])
PR=3000; PR=3000 only if digital input 2 is ON
else
PR=500; PR=500 only if digital input 2,3 and 4 are

OFF
end

5.5.7 Switch selection

Syntax:
switch(expression)
case (case_expression1)
statement1
case (case_expression2)
statement2
……
otherwise
statement
end

The switch statement causes an unconditional jump to one of the statements that is the “switch body,” or to
the last statement, depending on the value of the controlling expression, the values of the case labels, and the
presence or absence of an otherwise label.
 The switch body is normally a compound statement (although this is not a syntactic requirement). Usually,
some of the statements in the switch body are labeled with case labels or with the otherwise label. Labeled
statements are not syntactic requirements, but the switch statement is meaningless without them. The
otherwise label can appear only once. Before the otherwise label must be at least one case label.
In contrast to the case label, the otherwise label cannot be followed by any expression for evaluation.

The switch and case expression may be any logical or/and numerical expression.
The case-expression in the case label is compared for equality with the switch-expression.
If the switch expression and the case expression are equal, then this case is selected and the statements
between the matching case expression and the next case or otherwise label are executed. After the execution
of the statements may appear the keyword ‘break’. But it is not necessary to finish the statements of a single
case with break, because after the execution of the statements an unconditional jump to the end of the
switch is performed automatically.

If there are some case expressions that match to the switch expression, then the first matching case is
selected.

Example:

The following example selects the size of a point-to-point motion according to the value of the variable k.

 int k The variable declaration
…

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

40

switch (k) For example, k=2
case 1
PA=1000;
case 2
PA=2000; This statement will be performed
otherwise
PA=500; If k doesn’t equal to 1 or 2 , pa=500
end

5.5.8 Break

Syntax:
break

The break statement terminates the execution of the nearest enclosing for, switch or while statement
in which it appears. Control passes to the statement that follows the terminated statement. The break
statement is outside of for, switch or while statements is illegal.

Example:

…
while (IB[2]) Loop until digital input2 is ON
if (!IB[1])
break; Break the loop when digital input 1 is OFF
end
MO=1; This command will be performed only after

digital inputs 1 or 2 are OFF.
…

5.6 Functions

5.6.1 Function definition

Functions are program sections that can be parameterized and called from anywhere in the program.
Function declaration consists of the following parts:

1. Reserved keyword function
2. List of output arguments with their types in square brackets– optional
3. Assignment sign – only if there is some output argument
4. Function name
5. List of input arguments with their types in round brackets. List of input arguments may be empty.

For example,
1 function [int y1, int y2] = func1 (float x1, int x2) This function is named func1, it gets two input

arguments x1 and x2 and returns two output arguments

List of output argument may be empty. In this case 2 and 3items are absent or it can be empty square
brackets. If there is the only output argument it can be without square brackets.
Maximal admissible number of input and output arguments is 16.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

41

For example,
2 function func2 (struct float x1) This function is named func2, it gets the only input

argument of float type and doesn’t return any output.
3 [int y1] = func3 (int x1)

This function declaration is illegal, because keyword
function is absent

4 function y1 = func5 This function prototype is illegal, because type of the
output variable is absent.

The valid function name observes the same rules as the variable name. It must be distinct from any variable,
function or label name.
Definition of dimensions of the output and input arguments at the function declaration is illegal.

For example,
5 function [int x[100]] = func3 () This function declaration is illegal, because

dimension of output argument is defined.

Function may have prototype before its declaration. The prototype has the same syntax with function
declaration, but it must end with semicolon.

For example,
6 function [float y1] = func4 () ;

This is prototype of function func4 that doesn’t
has any input argument and returns the only
output argument

7 function float y1 = func4 ; It’s the same as the previous example 6.
8 function float = func4 ;

This function prototype is the same as example
6 and 7. Name of input or output argument of
the function prototype may be absent, while
during definition of the function it’s error.

9 function [int, int] = func1 (float, int) ; This is prototype of the function from the
example 1. It’s the same as
function [int y1, int y2] = func1 (float x1, int
x2) ;

It is allowed to write the prototype of the same function several times (multiple prototype), but all these
prototypes must be identical. The names of the input/output arguments in the function prototype may be
omitted, or may be different from the name of the corresponding argument names in the function declaration.

For example,
10 function [int y1, int y2] = func

(float x1, int x2) ;
function [float y1, int y2] = func
(float x1, int x2)

The first expression is the function prototype and
the second is the function definition.
It’s not legal, because types of the first output
argument in the prototype and declaration do not
match.

11 function [int y1, int y2] = func
(float x1, int x2) ;
function [int a, int b] = func (float
x1, int x2) ;
function [int y1, int y2] = func
(float x1, int x2)

The first two expressions are the function
prototype and the third is the function definition.
It is legal

Body of a function resides below the declaration and must end with the keyword return. If the keyword
return is inside some control block within the function body, it is not the end of the function body.

For example,
12 function [int y1, int y2] = func

(float x1, int x2)
** Function definition.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

42

 y1 = x1; ** Function body
 y2 = x2;
 if x2 > 0 ** If block
 return ** return inside block is not the end of the

function
 end ** End of if block
 y2 = y1 + y2 ; ** Some executable code
 return ** Function end

Before function call, it must be declared. It may be either function prototype or function definition.

For example,
13 function [int y1, int y2] = func

(float x1, int x2) ;
** Function prototype.

 …
 function main() ** Function main definition
 int a, b; ** Local variable definition
 [a,b] = func(2.3, -9.0); ** Function call
 return ** Function main end
 …
 function [int y1, int y2] = func

(float x1, int x2)
** Function definition

 … ** Function body
 return ** Function end

If any function declared without body, its call is illegal.

For example,
14 function [int y1, int y2] = func

(float x1, int x2) ;
** Function prototype.

 …
 function main() ** Function main definition
 int a, b; ** Local variable definition
 [a,b] = func(2.3, -9.0); ** Function call
 return ** Function main end
 …
In this example function func has prototype, but has no body, so its call is illegal.

5.6.2 Dummy variables

The input arguments and the output arguments of a function are called dummy variables. A
true variable is substituted for the dummy variable when a function is called.

Example: In the example of the statistic function from the next chapter, variables mean and std are the
dummy variables.

5.6.3 Count of output variables

A function may return multiple values. In some cases, not all the outputs need be computed. A function can
use the nargout keyword –to know how much of its results it actually needs to evaluate.
Number of outputs is the number of items in the left hand side expression during the function call. If its
number exceeds the number of maximal defined output arguments of this function or the maximal
admissible number of output arguments, it’s an error.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

43

If some function does not return any output by its definition, then zero value as output will be inserted to the
stack actually. Assume that the function foo is declared with no output arguments. So the following
expression:
foo () + 3 is legal, because foo returns zero by default.

Example:

float vec[11], RA[100]; Declare the global variables
float value; Declare the global variable
function [float mean, float std]=statistic(); Prototype of the function
...
[RA[1],RA[2]]=statistic() Calling the STATISTIC function. After

executing RA[1] will be equal to variable
MEAN and RA[2] will be equal to variable
STD

[value]= statistic() In this case, after executing the STATISTIC
function VALUE will be equal to variable
MEAN

…
function [float mean, float std]=statistic() Declaration of a function that calculates mean

and standard deviation of the global vector
vec.

int k; Declare k as automatic variable
global vec[11]; Redeclaration for vec variable (vec is the

global variable that is declared before)
mean=0;
for k = 1:10
mean = mean + vec[k];
end
mean = mean/10; Calculate mean of vec[]
if (nargout > 1) Only if the standard deviation is asked...
std = 0 ;
for k =1:10
std = std + vec[k] * vec[k] ;
end
st = (1/10)* sqrt(std – 10 * sum)
end
return End of the function body
…

Count of input arguments
The number of input arguments during function call must be the same as it is declared during function
definition.

5.6.4 Automatic variables

A variable declared within a function is automatic. It is generated when the function is
called, and it ceases to exist when the function exits.
At the time of function call, all its automatic variables are set to zero. When the function

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

44

exits, the value of the automatic variables is not saved.
Automatic variable cannot be a vector.

Example: In the example of the STATISTIC function, variable k is the automatic variable

5.6.5 Global variables

A function can refer a persistent variable. In this case the referred persistent variable must be
declared global inside function and must be defined above function definition. The global
keyword is obligatory; otherwise the variable will be referred as an automatic variable of the
function.
The dimension of a persistent variable is defined once a program during its definition and
the same for this global variable in all functions where it is used. The legal way to declare
the dimension of a persistent variable inside function is empty square brackets after its name
or absence any brackets.
Example: In the example of the STATISTIC function, variable vec[11] is the global
variable. It is defined above the function definition and inside the function body it is
redeclared as global.

float temp; Declare the global vector variable
int vec[10] ; Declare the global vector variable
…
function [float a]=func(int b) Declaration of a function func
float temp ; Declare temp as an automatic variable,

because the global keyword is absent.
… Function body
return The end of the function
…
function [float a]=func1(float temp) Declaration of a function func1. In this case

temp is not global variable, but an input
argument.

…
return The end of the function
…
function [float a]=func2(float b) Declaration of a function fun2.
global float temp ; Redeclaration of the global variable temp. In

this function temp is the global variable.
global int vec[] ; Redeclaration of the global variable vec.

Notice that its dimension is omitted during
redeclaration and its actual dimension is 10 as
it is defined above.

5.6.6 Jumps

Syntax:
goto ##LABEL1

The jump (goto) command instructs the program to continue its execution at the label
specified by the jump command.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

45

The goto command may be specified only for destinations within the present function scope.
It is not possible to jump to labels that are inside another function.
The jump to the global label from within some function is illegal.

Example:

… **Working code
if (PX>1000) **Condition for jump
goto##LABEL1; **Go to LABEL1 if the condition is true
else **Return axis to origin
goto##LABEL2; **Go to LABEL2 if the condition is false
end
… **Working code
##LABEL1; LABEL1 declaration
…. **Working code
##LABEL2; LABEL2 declaration
… **Working code

5.6.7 Functions and The Call Stack

A function is a piece of code that may be called from anywhere in the program. After the
function is executed, the program resumes from the line just after the function call.

Example:

function JustSo ; **function prototype
…
JV=1000
JustSo() **function call
BG
…
function JustSo **function definition
IA[0]=1; **function body
return **function end

The above code will execute the sequence
JV=1000;IA[0]=1;BG;
After executing JV=1000, the program jumps to the subroutine JustSo. Before doing so, it stores its return
address. The return address is the place in the code where execution is to resume after the routine is done. In
this example, the return address is the line number of the instruction BG, which is just after the subroutine
call.

The return command instructs the program to resume from the stored return address. After the execution is
resumed at the return address, the return address is no longer required, and it is not stored any more.

Functions may call each other – in fact, they may even call themselves. The return addresses for nested
function calls are stored in a call stack, as shown in the example below.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

46

Example:

function factorial() ; **Function prototype
…
IA[1]=3
IA[2]=1
factorial() **Function call
BG
…
function factorial() **Function for factorial
global int IA[] ; **Definition of array as global inside function
IA[2]=IA[2]*IA[1] **Recursive algorithm
IA[1]=IA[1]-1
if (IA[1] > 1) factorial() ; end **Recursive call
return **Function end

The factorial function of the example calculates the factorial of 3 in IA[2]. The variable IA[1] counts how
many times the function factorial is executed.
The program executes as follows:

Code IA[1] IA[2] Call stack
IA[1]=3 3 Undefined Empty
IA[2]=1 Unchanged 1 Empty
factorial Unchanged Unchanged →BG
IA[2]=IA[2]*IA[1] Unchanged 3 Unchanged
IA[1]=IA[1]-1 2 Unchanged Unchanged
if (IA[1] > 1) factorial() ; end Unchanged Unchanged →RT

→BG
IA[2]=IA[2]*IA[1] Unchanged 6 Unchanged
IA[1]=IA[1]-1 1 Unchanged Unchanged
if (IA[1] > 1) factorial() ; end Unchanged Unchanged Unchanged (condition is

false)
return Unchanged Unchanged →BG (Program jumps to

the return which was on
top the call stack)

return Unchanged Unchanged Empty (Program jumps to
the BG which was on top
the call stack)

BG Unchanged Unchanged Unchanged

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

47

5.6.8 Killing The Call Stack

In some rare situations, it is desirable to exit a function without returning to its return
address. The reset instruction solves this problem by emptying the call stack before making
a jump.

Syntax:
reset <JUMP_NAME>

The valid jump after the ‘reset’ keyword is one of the following:

1. label
2. auto routine
3. user function with no defined input arguments

All other expression or absence of expression after the keyword ‘reset’ is illegal.
Remark: Label in reset instruction must be global. Local label is illegal, because the stack will be
emptied and all local variables and return address of the function to whose the local label belongs
will be erased.

Example:

Assume that an Amplifier (an axis) runs a programmed routine.
An inspection station may assert a “Product defective” digital signal.
The “Product defective” signal is coupled to the digital in#1 input.
An automatic routine is coupled to the digital in#1 input, to stop the part assembly and get ready for the
assembly of the next part.

##START_NEW **Label for starting a new part
… **Working code

… **Last line of working code
#@AUTO_I1 **Subroutine label
PA=0;BG **Return axis to origin
reset START_NEW **Clear the stack and go to the beginning

The reset in the #@AUTO_I1 routine is required since we do not know if any function calls are
executing when Digital In #1 is asserted. If a function was executing, the reset prevents junk
gathering in the call stack. Otherwise, the call stack was empty and the reset does no harm. Note that
after the reset control does not return to the function which was executing before Digital In# is
occurred. Stack was cleared and the return address to the interrupted function was removed from the
stack.

Note
The #@AUTO_I1 routine is executed after the work code is done for every assembled part.
The program proceeds from the last line of the working code to PA=0;BG, which resets the
machine for another part assembly. The next instruction is a reset to the START_NEW
label.

5.6.9 Automatic subroutines

5.6.9.1 List Of Automatic Routines

A special kind of routine is the auto routine. These routines are executed automatically

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

48

according to system events. These routines will be executed only when their invocation
condition is satisfied. These automatic routines doesn’t have output and input arguments.

Syntax:
There are two options to define an auto routine: either as a function or as a label.
If it’s defined as a function, then all syntax rules for function definition are relevant (see the
chapter Function definition).
An auto routine may be defined as a label: its name follows the sequence of characters ## or
#@ in the definition line. The body of the auto routine is between the definition line and the
keyword ‘return’ unless this return is inside some flow control block.
Note:
The keyword ‘return’ instructs after execution of an auto routine to return to the next line in
the code, where execution was halted by interrupt event.
 After call such routine and performing its body, the program will return to the next line in
the code, where execution was halted by interrupt event.

There are no default handlers for auto routines. If a user does not define automatic routine,
then any handling will not be activated when an automatic event is asserted.

Routine name Priority Activated by Mask (MI)

AUTOEXEC

0
An autoexec code is executed automatically
upon power on. An autoexec function can be
called later any time.

 1

AUTO_ER
1

A motor fault event, in which MO=0 is set
automatically.

2

AUTO_STOP
2

Called when a digital input configured to the
“Hard-Stop” function is activated. Refer the IL
command.

4

AUTO_BG
3

Called when a digital input configured to the
“Begin” function is activated. Refer the IL
command.

8

AUTO_RLS
4

Called when a digital input configured to the
“RLS” function is activated. Refer the IL
command.

16

AUTO_FLS
5

Called when a digital input configured to the
“FLS” function is activated. Refer the IL
command.

32

AUTO_ENA
6

Called when a digital input configured to the
“Enable” function is activated. Refer the IL
command.

64

AUTO_I1

7
Called when a digital input #1 configured to the
“GPI (General purpose Input)” function is
activated. Refer the IL command.

128

AUTO_I2 8
Called when a digital input #2 configured to the
“GPI (General purpose Input)” function is
activated. Refer the IL command.

256

AUTO_I3 9

Called when a digital input #3 configured to the
“GPI (General purpose Input)” function is
activated. Refer the IL command.

512

AUTO_I4
10

Called when a digital input #4 configured to the
“GPI (General purpose Input)” function is
activated. Refer the IL command.

1024

AUTO_ I5

11
Called when a digital input #5 configured to the
“GPI (General purpose Input)” function is
activated. Refer the IL command.

2048

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

49

AUTO_ I6 12
Called when a digital input #6 configured to the
“GPI (General purpose Input)” function is
activated. Refer the IL command.

4096

Table 5-1 – Automatic subroutines and their priority

All the automatic routines, except AUTOEXEC, are activated only if a program is running.

Example:

Consider the program

##LOOP
gotoLOOP

**A go forever loop

#@AUTO_I3 **Subroutine definition
… **Subroutine body
 return **Subroutine end

 The forever loop in the first two lines of the routine is intended to make the program run forever, so that the
automatic routine will be able to handle the digital input #3 event.
The #@AUTO_I3 routine will be called if digital input #3 is sensed and not masked.
The digital input #4 will not invoke any automatic action in the user program, since no #@AUTO_I4 routine
is defined to handle digital input #3 event. A user has an option for explicit call of an automatic routine, if it
is desired. The syntax for an auto routine call is the same as for a user function.

5.6.9.2 Automatic Routines Arbitration
Priority and pending automatic routines
Each automatic subroutine has its assigned priority, according to Table 5-1 above.
When the conditions to the activation of two implemented automatic subroutines arise simultaneously the
automatic subroutine with the higher priority will be called.
The other automatic subroutine will be marked as pending. It will execute at the first time it has the
permission to execute – even if the reason for its call does not exist any more.

5.6.9.3 The Automatic Subroutine Mask
Automatic subroutines may be masked, i.e. set inactive. For example, it may be desired to limit the
automatic response to a certain digital input will be limited to certain situations.
This is done using the MI command.

Example:

An amplifier is commanded by a PLC. The Amplifier has an autoexec routine, which activates its program
upon boot. The PLC sends instructions to the Amplifier using RS232 communication for task parameters and
a digital input to start an action immediately. The Amplifier sets output according to the state of the program.
For safety, the Amplifier is not allowed to perform any task before digital input 2 is set:

function autoexec () **Declare the autoexec function
mi=8; **Inhibit the routine #@AUTO_I1
op=1; **Set output to indicate start.
….
while (!IB[2]) ** Wait for setting the digital input 2
end
goto #@TEST_PARS; **Jump to subroutine
##LOOP **Label LOOP
… **Label LOOP body

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

50

goto ##LOOP; **Endless loop

#@TEST_PARS **Subroutine
op=2; **Set output 2
wait 2000; **Wait 2 seconds for testing the part
mi=0; **Enable automatic handling of digital in #1
goto ##LOOP;
return **End of the autoexec function

#@AUTO_I1 **Automatic handler for digital input #1
op=3; **Set output 3 to indicate din 1 sensed.
 **Subroutine body.
 return **Subroutine end
…
exit **Exit from the program

The mask may also be used for preventing that switch bouncing will generate spurious routine calls

Example:

A machine performs a periodic task.
Digital input #1 is connected to a sensor to which the Amplifier should react.
The code below limits the automatic response to digital input #1during to executing the #@AUTO_I1
routine code, even though the digital input #1 may bounce.

##LOOP; **Repetitive task
…
MI=0; **Re-enable automatic routine
…
goto ##LOOP;

#@AUTO_I1 **Automatic handler for digital input #1
MI=MI|8; **Prevent nested calls to #@AUTO_I1
… **Subroutine body
 return **Subroutine end

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

51

6 Program Development and Execution

The process of program development includes the following steps:
• Program editing – Writing\editing the program.
• Compilation – Let the Compiler process the program and find errors
• Program loading – Load the program to the Amplifier Flash memory.
• Debugging – Observe the program behavior, and correct where necessary
• Running the program
• Save to flash – Make the program reside permanently in the Amplifier.

6.1 Editing a Program

The Amplifier program is a simple text. Any text editor can be used to write the Amplifier program.
The Composer program has a development environment for Amplifier programs, which includes a program
editor. We recommend using the development environment of the Composer, since it provides several
services like downloading the program to the Amplifier, compiling the program and running it.

6.2 Compilation

Each user program after editing must be compiled.

The Compiler is described here, although id does not reside in the DSP software. The compiler is external
stand-alone software that may be called, for example by the Composer software. User can write and compile
program in the off-line mode (without communication establishing with Amplifier)
The Compiler compiles a program in order to produce address maps and run-time code. If in the course of
the compilation it finds syntax errors, it stops the compilation and informs the user about errors and presents
them in convenient form.
The compiler accepts the user program as text file and several files with Target Harmonica Information. This
information is required to assure that the produced compiled code can run on the Harmonica.
The Compiler outputs are two files: CompileStat.txt and CompileCode.img.
 The CompileStat.txt file tells the compilation status. It reports success or failure and if the compilation failed
it tells what were the errors.
The CompileCode.img exists only if compilation succeeded. It contains the compiled image file, to be
downloaded directly to the Harmonica. The description of the contents image file see at User Partition of the
Flash

The compiler catches syntax errors. It cannot catch:
• Out of range command arguments
• Bad command contexts like an attempt to begin a motion while the motor is off.

Such errors must be corrected in the debugging stage.

6.2.1 Compilation Error List

The list of the compilation errors is represented below:
Error
code

Error string Meaning and example

0 No errors Successful compilation without errors
1 Bad format This is general error for bad syntax at right or left hand expression.

For example,
for k = 1::10
There is double colon symbol between ‘1’ and ‘10’
b = a + ()

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

52

There is empty expression inside round brackets
k = 1:2:20
Colon expression is used out of ‘for’ statement

2 Empty expression Expected right hand expression is absent
For example,
a = ;
After assignment symbol the right hand expression is absent

3 Stack is full Stack overflows its depth
4 Bad index expression This error appears if an index expression of a variable is not evaluated in a

single value.
For example,
a(2,3)
The result of evaluation of the expression in round brackets is two values, not
a single value.
One more example,
a()
The index expression is empty

5 Bad variable type The expected variable type is neither ‘float’ nor ‘int’. This error may appear
either after the keyword ‘global’ or input/output arguments at the function
definition.
For example,
global floa a;
After the keyword ‘global’ the variable type is expected. The type ‘floa’ is
unknown.
function foo (long a)
In round parentheses the type of the input argument is expected. The type
‘long’ is unknown.

6 Parentheses mismatch The number of opening parentheses does not match to the number of closing
parentheses. It regards to as round as square parentheses.
For example,
b = a(1))
There is unnecessary closing parenthesis.

7 Value is expected This error appears if right or left hand expression is not evaluated in a single
value or it failed during evaluation of a bad syntax expression For example,
b = ^ a ;
Before operator ‘^’ a value is expected.

8 Operator is expected This error appears during right hand expression evaluation, if after successful
value evaluation there is neither operator nor terminator of a simple
expression.
For example,
b = a c ;
After successful evaluation of ‘a’ an operator or expression terminator is
expected, but ‘c’ is not recognized neither as an operator nor as a terminator.

9 Out of memory in the
data segment

This error appears during memory allocation for global variable: there is no
enough place at the data segment.

10 Bad colon expression Error during evaluation of colon expression. The colon expression may
appear only in ‘for’ statement.
Bad syntax of colon expression may cause to this error: more than three
values or less than two values in the colon expression.
For example,
for k = 10:-1:5:9
The colon expression contains more than tree values.
This error also appears if expected colon expression is absent at the ‘for’
statement.
for k = a
After the symbol ‘=’ colon expression is expected

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

53

11 Name is too long Variable or function name exceeds 12 characters.
For example,
int iuyuafdsf_876234 ;

12 No such variable Left hand side error: left value is recognized neither as variable nor as system
command.
For example,
de = sin(0.5)
de is neither variable nor function.

13 Too many dimensions Dimension of array exceeds maximal admissible number of dimensions
(syntax allows only one dimensional arrays).
For example,
int arr[12][2];
It is attempt to define two dimensional array

14 Bad number of input
arguments

The number of input arguments during function call does not match to the
number of input arguments at the function definition.
For example,
function foo(float a); ** Function prototype
… ** Some code
foo(a,2); ** Function call
The number of input argument during function call is two, while the function
‘foo’ is defined with the only input argument.

15 Bad number of output
arguments

Bad syntax of left hand expression: multiple output without square brackets,
or multiple output exceeds maximal admissible number of outputs (it is
allowed maximal 16 outputs).
For example,
a, b = foo(1,2) ;
Multiple output must be within square brackets.

16 Out of memory Out of memory during compilation. This error may occur if user program is
too large or too complex and there is no enough space in the Code Segment
or Symbol Table.

17 Too many arguments The number of input or output arguments exceeds maximal admissible
number of input or output arguments (16).
For example,
function foo (int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8, int a9,
int a10, int a11, int a12, int a13, int a14, int a15, int a16, int a17, int a18, int
a19, int a20)
The number of input arguments exceeds 16.

18 Bad context It appears if the compiler finds any error that disorders a context of program.
For example, it may be mismatched parenthesis or improperly closed flow
control statement

19 Write file error Some error occurred during writing to a file.
20 Read file error Some error occurred during reading from a file
21 Internal compiler error:

bad database
It is internal compiler error because of corrupted database.
In a case of internal compiler error, please e-mail for technical support,
asusid@elmo.co.il.
Please attach the Composer date and version (In the help menu in the toolbar)
and the program you tried to compile.

22 Function definition is
inside another function
or flow control block

Illegal function definition: inside another function or inside flow control
block.
For example,
if a < 0
 a = 0 ;
 function foo (int a);
end
Attempt to define function inside ‘if’ block.

23 Too many functions User program contains too many functions and there no enough space for

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

54

them in the database
24 Name is keyword Variable or function name is the same as some keyword. This error may

appear if variable name is identical to some auto routine name.
For example,
int switch;
‘switch’ is keyword, so its use as variable name is illegal.

25 Name is not distinct This error occurs if some variable or function name is not distinct.
For example,
int foo ;
function foo (int a)
Function and variable have the same name ‘foo’,
One more example,
function foo (int a) ** Function definition
int a ; ** Local variable definition
Definition of the local variable ‘a’ is illegal, because this function is already
contains local variable ‘a’ as input argument.

26 Variable name is
invalid

This error occur in the following cases:
1. Variable or function name starts from digit or underscore, but not

from letter
2. Variable or function name is empty
3. At the variable definition line there is a comma as a separator

between variables, but variable name after a comma is absent.
For example,
int _abc ;
function (int a)
int a, b,
In the first example variable name has leading underscore.
In the second example variable name is absent after a comma.
In the third example function name is absent after the keyword ‘function’.

27 Bad separator between
variables

The only legal separator between variables at the variable definition line is
comma. After variable name either variable separator (comma) or expression
terminator is expected. Any other symbol causes to this error.
For example,
int a b;
A command as variable separator is absent between ‘a’ and ‘b’.

28 Illegal global variable
definition

Global variable must be declared inside function with the keyword ‘global’
and must be defined before this function. This error appears only if the
keyword ‘global’ was used in the bad context:

1. The keyword ’global’ was used outside function.
2. Variable that is declared as global inside function is not defined

before.
3. Type of the variable at the definition outside the function differ from

the type of the declaration inside function
For example,
int a1 ; ** Global variable definition
function foo (int a) ** Function definition
global float a1; ** Declaration of the global variable inside function
Type of variable a1 at its definition is ‘int’, while inside function is declared
as ‘float’.

29 Bad variable definition All local variables must be defined at the beginning of the function. Any
variable definition after some executable code in the function is illegal.
For example,
function foo (int a) ** Function definition
int b ;
global int a1;
b = a ; ** Executable code

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

55

float c, d;
The definition of float variables ‘c’ and ‘d’ is illegal, because it occurs after
executable code ‘b = a’

30 Variable is undefined This error appears if iteration variable at ‘for’ statement is not defined before
it.
For example,
function foo (int a) ** Function definition
for k = 1 : 10 ** Start ‘for’ loop
 a = k ;
end ** End ‘for’ loop
return ; ** Function end
The iteration variable ‘k’ is not defined before its use.

31 Bad separator between
dimensions

Bad separator between dimensions (not comma). This error is unused,
because currently it is allowed only one-dimensional arrays and no needs in
separator between dimensions.

32 Bad variable dimension Legal variable dimension must be a positive number inside square brackets. If
the expression inside square brackets is not evaluated into a number or this
number is less then one (zero or negative), it’s illegal.
For example,
int arr[-12];
Variable dimension is negative.

33 Bad function format This error appears at the function definition in the following cases:
1. Illegal function name – not distinct or empty, etc
2. Function definition does not match to its prototype

For example,
function foo (int a) ; ** Function prototype
function foo (float a) ** Function definition
Type of input arguments at the function definition and its prototype does not
match.

34 Illegal minus Minus is illegal in the following cases:
1. Minus before function call with multiple output arguments
2. Minus before round parentheses with multiple expressions inside it.

For example,
[a,b] = -foo(c) ;
-(2+3, c/5);
The first example has illegal minus before function call with multiple
outputs.
The second example has illegal minus before multiple expressions within
round parentheses.

35 Empty program User program is empty
36 Program is too long User program exceeds maximal admissible length
37 Bad function call The following reasons cause this error:

1. Attempt to jump at the ‘goto’ statement to the function with non zero
number of input or output arguments

2. Consider example:
[a,b,c] = foo(x,y) + 5;
This sentence is illegal.
The Compiler checks if there is an expression terminator straight after
function call with multiple outputs. Otherwise it sets this error.

38 Expression is expected This error appears when expected expression is absent. It may occur at ‘wait’,
‘until, ‘while’, ‘if’, ‘elseif’, ‘switch’ and ‘case’ statements.
For example,
if
 a = 0
end
An expected expression after ‘if’ is absent.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

56

39 Code is too complex User program contains very complex code that includes too many nested
levels (actually this expression contains more than 100 nested levels). Nested
expression means one flow control block inside other, e.g. ‘if’ block inside
‘while’ loop.

40 Line compilation is
failed

General error during attempt to compile expression.

41 Case must follow
switch

After ‘switch’ statement the only legal statement is ‘case’, otherwise this
error occurs.
For example,
switch a
b = 0 ;
case 1,
b =1 ;
end
The expression ‘b = 0’ is illegal, because ‘switch’ must be followed by
‘case’.

42 Illegal case after
otherwise

‘otherwise’ statement must be the last statement of ‘switch’ block. Any ‘case’
after ‘otherwise’ is illegal.
For example,
switch a
case 1,
b =1 ;
otherwise
b = 0 ;
case 2,
b = 1 ;
end
The statement ‘case 2’ is illegal, because ‘otherwise’ must be the last
statement of ‘switch’.

43 Bad nesting This error treats flow control block contradictions: ‘else’ without ‘if’,
mismatched ‘end’, some flow control without ‘end’ etc.

44 Code is not expected This error occurs if there is some unexpected code for evaluation: after
‘otherwise’ or after ‘end’ or after ‘else’ etc.

45 Bad flow control
expression

This error occurs in ‘for’ statement if there is no a sign '=' after the iteration
variable name.
For example,
For k
 a = 0 ;
end
After ‘k’ sign ‘=’ is absent.

46 Too many errors This error appears when buffer with compilation error is full.
47 Expression is out of

function
Some executable code must be inside either function or label, otherwise this
error occurs.
For example,
int a1; ** Global variable definition
a1 = 0 ; ** Executable code
function foo (int a) ** Function definition
Executable code is illegal, because it is out of function.

48 Otherwise without any
case

This error occurs if straight after ‘switch’ statement ‘otherwise’ appears.
For example,
switch a
otherwise
b = 0 ;
end
After ‘switch’ statement ‘case’ is expected, not ‘otherwise’.

49 Misplaced break ‘break’ is legal only inside ‘switch’, ‘for’ or ‘while’ block, otherwise, this

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

57

error occurs.
For example,
if a < 0
 break ;
end
‘break’ from ‘if’ statement is illegal.

50 Too many outputs This error appears when number actual output arguments during function call
exceeds the number of output arguments during function definition.
For example,
function [int b] = foo (int a) ** Function definition
… ** Function body
return ; ** Function end
…
[c,d] = foo(a) ; ** Function call
Function call is illegal, because number of outputs is two, while this function
is defined with a single output argument.

51 Line is too long This error occurs if user program contains too long line (more than 128
characters).

52 Clause is too long This error occurs if user program contains too long expression to evaluate
(more than 512 characters). This expression may take several lines of user
program text.

53 Cannot find end of
sentance

End of sentence not found within range

54 Open file failure Attempt to open non-existing file: file name or its path may be not correct.
55 Bad file name The full path file name is too long.
56 No such function After ‘goto’ and ‘reset’ statement must be auto routine, user function or label

name, otherwise this error appears.
57 Variable is array This error occurs during attempt to assign the entire array variable, not its

single member.
For example,
int arr[10] ; ** Global variable definition
##START ** Label definition
arr[1] = 0 ;
arr = 0;
The last expression is not legal: attempt to assign the whole array.

58 Variable is not array Attempt to assign a scalar variable according to an index, as an array
For example,
int a1 ; ** Global variable definition (scalar)
##START ** Label definition
a1[1] = 0 ;
The last expression is not legal: attempt to assign a scalar variable according
to an index.

59 Mismatch between left
and right hand side
expressions

This error appears if the number of left values does not match to the number
of values in right hand side expression.
For example,
[a,b] = 12 + c ;
The number of left values is two, while the number of values after evaluation
of right hand expression is one.

60 Illegal local array Syntax does not allow to define local array. Array must be global.
For example,
function foo (int a) ** Function definition
int arr[10] ;
… ** Function body
return ; ** Function end
Local array is illegal

61 Function already has This error occurs if function has more than one body.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

58

body For example,
function foo (int a)
wait 2000
return ;
…
function foo (int a)
until a
end
This text is illegal, because the function ‘foo’ has multiple bodies.

62 Opcode is not
supported by the
Harmonica

This error occurs if the specified version of the Harmonica does not support
some virtual command.

63 Internal compiler error In a case of internal compiler error, please e-mail for technical support,
asusid@elmo.co.il.
Please attach the Composer date and version (In the help menu in the toolbar)
and the program you tried to compile.

64 Expression is not
finished

User program contains unfinished sentence: user may use three points to
show that this expression will be continued at the next line. If this
continuation is absent, this error appears.
For example, assume that the last line of user text is:
a = b + 8 / 12 / (8^2*sqrt(2) – sin (3.14/2)) …
After three points the next line supposed to appear, but it is absent.

65 Compiled code is too
long

The compiled code exceeds maximal allowable space for the Code Segment
in the serial flash of the Harmonica

66 Corrupted the
Harmonica setup files

Ant file with the Harmonica’s setup parameters does not have defined format.

67 Too many variables User program contains too many functions and there no enough space for
them in the database

68 Variable name length
mismatch to the
Harmonica setup

The allowed variable name length is not equal to the defined length of the
Compiler

69 Auto routine has
argument

Auto routine cannot has any input or output argument, otherwise this error
appears.
For example,
function AUTOEXEC (int a)
Definition of auto routine with input argument is illegal.

70 Label definition is
inside flow control
block

Definition of label inside flow control block is illegal otherwise this error
appears.

71 Function without return Function has not finished with the keyword ‘return’
72 Block comments is not

finished
Comment block has no end.
For example, assume that it is the last line of user program text:
/* Stam comment
Comment block is not closed.

73 Bad function after reset In ‘reset’ statement must be either auto routine or global label or user
function without input arguments, otherwise this error appears.
For example,
reset foo(12)
After ‘reset’ keyword there is user function with input argument.

74 Bad jump to label This error appears in following cases:
1. Attempt to jump to global label from within some function or attempt

to jump to local label from within some global space
2. Attempt to jump to global label from within some function or attempt

to jump to local label from within some global space at ‘goto’
statement

3. Attempt to jump not to label at ‘goto’ label

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

59

4. Attempt to jump to local label at ‘reset’ statement
For example,
function foo () ** Function definition
… ** Function body
return ** Function end
…
goto ##foo
The last expression is illegal: foo is not label.

75 Illegal nargout The keyword ‘nargout’ is used outside function
For example,
##START ** Label
if nargout > 2
Use the keyword ‘nargout’ outside function

76 Function without body Attempt to call function which is defined but does not have body
77 Bad goto statement After the keyword ‘goto’ must be ## or #@ before the name of a label,

otherwise this error appears.
For example,
goto START
Between ‘goto’ and label name ## oe #@ is absent.

78 Auto routine is local Auto routine is defined as local label.
For example,
function start (int a) ** Function definition
… ** Some code
#@AUTOEXEC
…
return ** Function end
The auto routine AUTOEXEC is defined inside function as local label.

79 Command has 'not
program' flag

Program refers to command that has ‘not program’ falg, i.e. it cannot be used
inside user program.
For example,
LS
Attempt to use in a program the LS command that has ‘not program’ flag.

80 Image file is too long This error occurs if image file length exceeds user code partition size
81 System function tdif is

not supported by the
Harmonica

During evaluation of the wait flow control, the tdif system function is must
be defined inside the Harmonica, otherwise this error appears.

82 Unknown error Unknown error

6.3 Downloading and Uploading a Program

Note: In this step of the program development the communication between Composer and Harmonica must
be established.

After successful compilation the CompileCode.img may be downloaded to Harmonica.
Composer’s development environment supports the downloading process. Before each download, Composer
automatically clears the memory Flash sector, which is used for saving the user program.

This section describes how the serial flash down/up loads.
The flash is interfaced using two commands:
DL and LS.
Both commands use the assisting command LP.
LP is a vector integer command.
The user flash area may be cleared by the command CP.
The user flash area may be checksum-verified, and program ready flag set, by the CC command.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

60

6.3.1 Binary data

The Flash is interfaced with binary data. Sending binary data on the RS232 lines is a problem, since they
complex the differentiation between data and delimiters.

The characters that are problematic to send on the RS232 lines are:
- All the high numbers, 128 to 255.
- All possible terminators: 0, <CR>, <LF>, ‘;’, ’,’
- Equating sign ‘=’
- Backspace
- Escape: <ESC>

In order to prevent this problem we use hex binary format during up/down load of data, even so it increases
amount of data to be transmitted.
Every byte in the hexadecimal form consists of two numbers (e.g. 0x12). The hex binary format consider
every of these two numbers as a character, e.g. the 8-bit number 0x12 in the hex binary format is the
sequence of two characters ‘1’,’2’.

Representation of numbers in the DSP Flash is different from its representation inside a personal computer.
A 8-bit number is represented in the same way as inside a personal computer.
Consider a 16-bit number. For example, the hexadecimal 16-bit number is equal to 0x1234. It is represented
in the DSP memory in the following two bytes:
Order number of the bytes Value of the byte in the hexadecimal form
1 0x12
2 0x34

Now consider 32-bit number. For example, the hexadecimal 32-bit number is equal to 0x12345678. It is
represented in the DSP memory in the following four bytes:
Order number of the bytes Value of the byte in the hexadecimal form
1 0x56
2 0x78
3 0x12
4 0x34

Binary data to be loaded to the serial flash is represented in the described above format.

Examples:
Number in the hexadecimal form
inside a personal computer

Sequence of characters in the hex binary form to be
transmitted

0x12 12
0x1234 1234
0x12345678 56781234

6.3.2 The Assisting Commands For Down/Upload

6.3.2.1 The LP[N] command
LP[1] defines the byte in which the next action is to start (out of 128k bytes of the flash)
LP[2] defines how many bytes to send (LS command).
The LP command is used together with the LS and the DL commands. Please refer the DL and the LS
explanations below.
In addition,
LP[3] specifies the start address (bytes) of the user program partition in the flash.
LP[4] specifies the size (bytes) of the user program partition in the flash

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

61

6.3.2.2 The CP command
The CP command clears the entire user area in the serial flash. It may take a significant time.
In special, CP sets the Program Valid flag to –1.
Possible Execution Failures:

1) Motor is on.
2) Program is running.

6.3.2.3 The CC command
The command CC=xxxx does as follows:
Read the actual length of the user partition from the TOC.
Calculate 32-bit checksum for the entire actual user partition.
The checksum shall be calculated by summing all the consecutive 2-bytes sequences (short int numbers) that
form the user program space and the checksum number itself. The total summing result must be zero to pass.
If the resulting checksum matches xxxx then:

• Set the program ready flag.
• Copy functions and variables symbol tables from the user partition to internal dsp flash memory

Else an error code is return.
CC returns 1 if the program ready flag in the serial flash is set
Otherwise it returns zero.
Possible Execution Failures:

1) Actual length in the TOC is less then 2 flash pages, or is beyond user program address limit.
2) Calculated checksum doesn’t match to xxxx.

6.3.3 Downloading a Program

6.3.3.1 The DL command
The Dl command executes downloading a program.
Downloading to a non-protected area in the Flash goes as follows:
LP[1]=start;
DL##xxxxxxxxx<ESC>CS;
where above xxxxxxxxx denotes the escape-sequenced data payload.
Start denotes the byte address in the user program flash.
CS denotes the 16 bits checksum for the message, including the DL##.
DL takes time, since it has to burn & verify.

Possible Execution Failures:

1) Attempt to write to protected area in the flash. It may happen that DL will start to write
legally to the Flash, but its last bytes will attempt an illegal (protected) write. In any case DL
command will be rejected, and the contents of the serial flash is unpredictable.

2) DL is used when motor is on.
3) DL is used when program is running.
4) Faulty checksum – DL will be rejected but creates no harm.
5) Verify error – If DL attempts to write to a previously written area in the flash, probably the

writing will fail by verify error. In that case the contents of the Flash is unpredictable and the
Flash has to be cleared and completely re-written.

6) DL string is too long. The maximum length of a DL string is 500 bytes, due to internal Dama
limits.

7) Program Valid flag is not –1. In that case DL command will not be executed (CP must be issued
before DL).

6.3.3.2 Program downloading process

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

62

In order to download a program image to the Dama, follow the steps below.
- Read the location (loc) and the length (len) of the user code partition from the

main TOC. For this, use the LP[3] and the LP[4] commands.
- Verify that your image block will fit inside the allocated space.
- Clear the program flash, using CP
- Download your image file by the sequence

• LP[1]=loc;
• DL##…100 bytes of payload
• LP[1]=(loc+100)
• DL##…next 100 bytes of payload
• .. Until the end of the image

- Use the CC=checksum command to declare end of loading and to verify entire
download process.

In order to upload a program image from the Dama, follow the steps below.

- Read the location (loc) and the length (len) of the user code partition from the
main TOC. For this, use the LP[3] and the LP[4] commands.

- Upload your image file by the sequence
• LP[1]=loc;
• LP[2]=100
• Use LS to get next 100 bytes of payload
• LP[1]=(loc+100);
• Use LS to get next 100 bytes of payload
• .. Until the end of the image

6.3.4 Uploading a Program

6.3.4.1 The LS command
A program that resides in the Amplifier Flash can be uploaded for backup or for further editing. This option
is disable when program is running. After program uploading, user can correct it and returns to the
compilation step.

The LS command executes uploading a program.
Uploading from a non-protected area in the Flash goes as follows:
LP[1]=start;
LP[2]=payload net length
xxxxxxxxx<ESC>CS;
where above xxxxxxxxx denotes the escape-sequenced data payload.
Start denotes the byte address in the user program flash.
CS denotes the 16 bits checksum for the message.
Possible Execution Failures:
1) LS sequence (including <ESC>’s) exceeds 200 characters. The LS output will be terminated

with proper checksum and terminator. The data transmitted in the payload is good and meaningful,
only not to the expected length.

The 200 bytes limit is due to internal Dama buffer management.

6.4 The program execution

Note: In this step of Harmonica’s development we disable possibility to run more than one task, the virtual
machine, simultaneously. But in the future, this feature will be possible.

The following paragraphs describe how to run a program.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

63

6.4.1 Initiating a Program

A program is initiated by the XQ command. The XQ command states at which label the
execution shall start.
The XQ command resets all the program variables. In particular, it clears the call stack (refer
the chapter the Functions and the Call Stack), it kills any pending automatic routines, and it
clears the interrupt mask.
The description and syntax of the XQ command see at the chapter Debugging: running,
breaking and resuming

6.4.2 Halting and resuming a program

A program may be halted using the HP Interpreter command.
The HP command stops the execution of the user program and the automatic routines. The HP command
freezes the status of the program, and does not reset it.

A later XC command will resume the program from the instruction where the program was halted. Pending
interrupts will remain pending.
The command XC restarts execution from the point where the program has been halted.

Example:

Consider the program

MO=1; **Start motor
JV=2000; **Set jog speed
##LOOP; **Repetitive task
BG;
wait(1000) **Wait & switch direction
JV=-JV;
goto##LOOP; **Repeat

This program makes the motor travel at 2000 counts/sec for one second, then reverses the direction for one
second, continuing to travel back and forth forever.
Suppose the HP command is applied when the program waits (executing the wait(1000) instruction). The
motor will continue to travel at the same direction, for unlimited time.
An XC command shall reverse the direction immediately, since the waiting time already elapsed.

Example:

A servo axis in a machine has two different tasks to do, in two different machine modes.
The following routine implements the two tasks.

##TASK1;
##LOOP; **Repetitive task 1
… **Task 1 body
goto##LOOP; **Repeat task 1
##TASK2;
##REP; **Repetitive task 2
… **Task 2 body
goto##REP; **Repeat task 2

The first task is invoked by
XQ##TASK1
In order to switch to the second task, the first task has to be killed before:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

64

HP;
XQ##TASK2;

6.4.3 Automatic program running with power up

If the user program includes the autoexec function, the next program line after function declaration will be
performed with powering up.

6.4.4 Save to Flash

Since a program is downloaded to a non-volatile memory, it is always saved. Information isn’t lost in cases
of power down.

6.4.4.1 Clear user program from Flash

The CP command clears the entire user area in the serial flash. The running program must be killed (not
halted) before.
This procedure may take a significant time.

6.5 Debugging

This method allows a debug the user program that is downloaded to the Harmonica’s flash. This may be
useful during development the user program and examination the program flow.

6.5.1 Running, breaking, and resuming

The XQ command starts program execution from a label, or executes a function.
XQ##MYFUNCTION(a,b,c) runs the function MYFUNCTION(a,b,c).
XQ cannot return values from a function.
XQ##LABEL runs from ##LABEL
XQ## runs from the starting of the user program code.
The XQ command without a parameter is illegal.
XQ does not return value.
Note: XQ## without label or function name is designed for running the program written in the
Saxophone/Clarinet style, i.e. without function definitions, local variables, etc. The virtual machine executes
virtual assembly commands according to their order in the compiled code. If the program contains function
definition, it enters inside function and executes function body. It is problematic, so we try to prevent it. If
the program starts from a function definition, the XQ command without label or function name causes to the
error: NO_SUCH_FUNCTION. If the function starts from label, the dummy start label will be inserted to the
function symbol table and running will be from the start of the program.

KL=0 kills all the virtual machines, if it is running.
KL stops the motor.

HP halts all the virtual machines. They can be continued later by the XC command.
If HP halts inside a wait statement, the wait time stops to run while the program is halted.
XC continues all the virtual machines.

6.5.2 DB command

The DB command is designed to help analyze the user program. It allows the following functionalities:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

65

• set and remove break points
• get information about existing VAC machines
• get running status of the program
• ask for or change a value of local variables
• get call stack of the program

The DB command is designed for the IDE Manager use. The syntax of this command is strict, namely the
spaces and white characters are not allowed to simplify the treatment of the command and all values must be
numbers, expressions are illegal.

6.5.3 Machine status

The command DB##MS returns status about all existing VAC machines.

Syntax:
DB##MS

The command DB##MS return a string in hex binary format containing 16-bit number. Every 4 bits
characterizes the status of the VAC machine, so the command can give a status of four VAC machines as
maximum. The returned status may get the following values:
0: Halted
1: Running
2: Idle/Not running
3: Aborted/Fault
4: Not existing

6.5.4 Program status

The command DB##PS returns the status of user program.

Syntax:
DB##PS[N]
where N is a handle of a specified VAC Machine.

The command DB##PS returns a string containing hex binary data with the following information:

 Name Meaning Type of data Size in

bytes
1 Status Running status. See 6.4. signed short 2
2 Error

code
The last error code or 0 for no error signed short 2

3 Program
counter
(PC)

The program counter of the present executing
line

unsigned short

2

4 Base
pointer
(BP)

The current base pointer. The base pointer is
the saved stack pointer, which marks function
entry point.
BP is used to refer local variables of a
function.

unsigned short 2

5 Stack
pointer
(SP)

The current stack pointer unsigned short 2

The non-zero error code indicates that any error occurred.
How to define which of VAC machine caused to an error?

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

66

When any error occurs inside a specified VAC machine, it returns with error to the main loop that manages
the running of the entire set of VAC machines. This manager stops all other VAC machines with the error
ABORTED_BY_OTHER_THREAD. In order to define in which VAC machine the error occurred, find the
error code different from ABORTED_BY_OTHER_THREAD.

The DB##PS command returns information an analysis of which allows various debug functionality
described below.

6.5.5 Setting and clearing break points

Dama supports up to 6 breakpoints simultaneously. A user can set 5 breakpoints and one for inner use of the
IDE.
Breakpoints can be set anytime, anywhere, regardless if the program is running or not.
The syntax is
DB##BP=xxx
Sets a breakpoint at program counter xxx.
DB##BP=xxx,n
Sets a breakpoint at line program counter, activated only after n repetitions.
DB##BC=xxx
Removes a breakpoint at program counter
DB##BC
Removes all the breakpoints.
xxx is unsigned long – 4 bytes, n is signed short – 2 bytes.

6.5.6 Continuation of the program

When the program reaches the break point, it stops running of the entire set of existing virtual machines. To
cause the program to continue the running, the command DB##GO is used.

Syntax:
DB##GO
and
DB##GO[N]
where N is a handle of a specified VAC machine.

It continues the program running from the current program counter.
The DB##GO command continue running of all the VAC machines.
The DB##GO[N] command continue running of a specified VAC machine.

How to define a handle of a specified VAC machine, which was halted at the break point?
It must be found out the existing VAC machine whose program counter is equal to the program counter of
the break point. First the DB##MS command must be sent to define which VAC machines exist. After that
for all existing VAC machines we have to send the DB##PS command to get the program counter for
comparison with the break point program counter. It may occur the situation when several VAC machines
have the same program counter that is equal to the break point program counter. Every of them may be
chosen as a specified.

6.5.7 Single step

When a program reaches a break point, a user may desire to continue running in the single step mode.

6.5.7.1 Run to Cursor

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

67

The treatment of Run to Cursor is very easy: the IDE sets at the relevant line fake break point with the
number of repetitions as one. When a break point is reached, it has to be removed from the break point list.
There is no need to define special debug command.

6.5.7.2 Step Over

The DB##SO command executes the treatment of Step Over. It runs up to the nearest end of line.

Syntax:
DB##SO[N]
where N is a handle of a specified VAC machine.

This command is implemented inside the Harmonica. The algorithm is following:

• Save the current base pointer
• Start the loop
• Run to the nearest end of line
• Compare the current base pointer with the saved base pointer
• If both of them are the same, the step is over - jump to the end the loop, otherwise go to

the start of the loop.
• End of the loop

When the nearest end of line is reached, the VAC machine enters to the halted state. In case of jump or
infinite loop or other reason inside line execution, the program may not reach end of line, then it just runs
and does not enter halted state.

6.5.7.3 Step In

The DB##SI command executes the treatment of Step In. It enters inside function body and runs up to the
nearest end of line.

Syntax:
DB##SI[N]
where N is a handle of a specified VAC machine.

This command is implemented inside the Harmonica. The algorithm is following:

• Start of the loop
• Run to the nearest end of line
• End of the loop

When the nearest end of line is reached, the VAC machine enters to the halted state.

6.5.7.4 Step Out
The DB##SU command executes the treatment of Step Out. It returns from function body and runs up to the
nearest end of line.

Syntax:
DB##SU[N]
where N is a handle of a specified VAC machine.

This command is implemented inside the Harmonica. The algorithm is following:

• Save the current base pointer
• Start of the loop
• Run to the nearest end of line
• Compare the current base pointer with the saved base pointer

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

68

• If the current base pointer is less than the saved base pointer, the step is out - jump to the
end the loop, otherwise go to the start of the loop.

• End of the loop
When the nearest end of line is reached and the current base pointer is less than the saved
base pointer, then the VAC machine enters to the halted state. Otherwise it just runs and
does not enter halted state.

6.5.8 Getting stack entries

The DB##GS command returns relevant entries of the stack.
Syntax:
DB##GS[N]=N1,N2
where N is a handle of a specified VAC machine whose stack is inquired,
N1 is an index of the first stack entry and
N2 is an index of the last stack entry (not including).
The command returns a string containing hex binary data with sequence of stack entries from N1 to N2.
If we are interested in the only stack entry, then N2 = N1 + 1.
The command returns a string in the hex binary format.
Every stack entry is a structure contains the next fields:
 Name Meaning Type Size in

bytes
1 value Stack entry value float or long

depending on type
4

2 type Type of the stack entry: 0 for long,
1 for float

signed short 2

3 unused Offset for alignment signed short 2

This command is very useful during debugging.

6.5.9 Setting stack

The command DB##ST sets stack entry. This entry must be local variable or input/output argument of the
function.
Syntax:
DB##ST[N]=N1,N2
where N is a handle of a specified VAC machine (signed short –2 bytes),
N1 is stack pointer (signed short – 2 bytes) and
N2 is new variable value (long or float – 4 bytes)
A user may want to change a value of the local variable. The command DB##SS sets new value to the
relevant stack entry for a specified VAC machine.
The type of the stack entry will be set according to the type of the sent value.

6.5.10 Getting call stack

There is no direct command to get call stack. In order to reduce complexity of the
Dama, the IDE Manager will execute the all debug analysis.
Consider stack during function call (for more details see 8.2).
Stack pointer
relatively to the
base pointer

Meaning Remark

BP-5 Saved previous BP For the first called
function BP is 0

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

69

BP-4 Return address Program counter of the
next program line after
the function call

BP-3 Index of the current function in the Function
Symbol Table

See 3.5.5

BP-2 Number of input arguments
BP-1 Number of actual output arguments Number of left hand side

values during function
call

Let’s try to understand how this information can help us to restore call stack.
When the first function is called, its BP is zero. Every next function during its call saves the previous base
pointer in the stack at BP-5, so it can restore BP during return from the function. When we want to get the
entire call stack, we have to roll back the previous base pointer in the loop until BP becomes zero.
The algorithm to restore call stack is in the table below:

• DB##PS[N] ; ** Get current status
• Check the current status: if it not halted, return error.
• BP_last = BP ; ** Get current BP from the data returned by DB##PS
• N1 = 0 ; ** An index of the bottom of the stack
• N2 = SP ; ** An index of the top of the stack
• DB##GS=N1,N2; ** Get the entire stack
• do **Start do-while loop until BP_last is not 0
• funcIndex = BP_last – 3 ; ** Get called function index in the Symbol Table **and insert

it to the call stack
• if (BP_last == 0) break ; ** It is the first called function
• BP_last = BP_last – 5 ; ** Update BP_last
• while (1) ** End of do-while loop

6.5.11 View of global variables

The global variable may be accessed through the Interpreter. There is no need in the special debug
command.

6.5.12 View of local variables

Local variable cannot be accessed through the Interpreter. We don’t define special debug command to access
a local variable in order to prevent excessive complexity of the Dama. The IDE Manager can access a local
variable by using of existing debug commands and an analysis of their results as during getting call stack.
The algorithm is as follows:

• DB##PS[N] ; ** Get current status
• Check the current status: if it is not halted, return error.
• DB##GS[N]=BP-3,BP-2; **Get an index of the function in the Function Symbol Table.

It is located in the stack at (BP – 3).
• Search in the Variable Symbol Table for all local variables of this function. Variables in

the Symbol Table are sorted first according to an index of the function to whose they
belong and after that according to a variable name (case sensitive). The Symbol Table
contains full information about type and location of the variable (see 3.5.6).

• To view a specified local variable use the DB##GS command.
• To set new value of a specified local variable use the DB##ST command.
Note:
The allocation of place for local variables is executed by the command LINK. It inserts N entries to the
top of the stack and zeros them, where N is the number of local variables. Usually LINK is the first op
code of the function. It may occur that access to a local variable takes place before the op code LINK is
executed. In this case the relevant stack entries contains garbage.
The behavior of the debugger may be developed according to two scenarios:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

70

1. Don’t analyze current state of the stack and just access to the relevant stack entries and get
garbage.

Try to analyze current program counter to find out whether the LINK was executed. If access to local
variable occurred before LINK, then return error (something like VARIABLE_NOT_INITIALIZED).

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

71

7 The Virtual Machines

7.1.1 Introduction Alla please complete where necessary

The Harmonica can run a user program, as explained in the Chapter "The Harmonica User Programming
Language". Although the user program runs syntactically the same statements as the interpreter, the
processing mechanism is totally different.
The interpreter analyses text on line. The user program does not – it runs a compiled code. The most
important advantage is that all the text analysis can be spared in real-time, boosting the user program
performance. Another advantage is that future user syntax improvements are possible without upgrading the
amplifier software.
An external tool, called "The Harmonica Compiler" compiles the user text. The compiler outputs a file of
short and simple binary commands.
Take for example the user text
DC=AC+1000;
This code is translated to
.... Alla please fill.
The texts of the compiled version above are in a mnemonic form. Each mnemonic represents an opcode of
fixed structure, as described below. In hexadecimal form, the example piece of code is
.... Alla please fill.
The compiled code looks much like an assembly language. The "CPU" that runs this assembly language is
written in DSP software. This software that implements the "User Program CPU" is called a "Virtual
Machine".
A virtual machine behaves much like a CPU – it has a stack, a code segment with program counter, and a
data memory segment.
The Harmonica is designed with multiple virtual machines, so that several user programs may be run in
parallel.
The machines are not completely similar. Only one machine, called the Main machine, is interrupted by
automatic routines. The other machines are not interrupted by automatic routines. If one desires to interrupt
another machine, he may write a software interrupt to that machine from the automatic routine handler of the
main machine.

The first release allows the user to activate only one (the Main) virtual machine.

7.2 Virtual Machine registers

A virtual machine has the following registers:
Register Description Comment
SP Stack pointer Points to top of stack.
BP Base pointer Freezes the value of the stack pointer

when a function is entered. BP is
used to refer local variables of a
function.

PC Program counter Points to the code position now
executing.

7.3 Call Stack During Function Call

Consider a call stack during a function call (the opcode is USRSUBJ).
Assume that a user defines a function :
function [float x, float y, float z] = f (int a, int b, int c, ind d) ; % Prototype
Assume that a function call is:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

72

[x,y] = f (a,b,c,d) ;
Assume that BP before function call is 12 and SP is 15 (just number not better and not worse than every
other).
Before the opcode USRSUBJ is executed the stack contains:

2. n entries for actual output arguments (according to the function call, not prototype)
3. n entries for input arguments (a number of input arguments during function call must be the

same as in the prototype)
In our example the stack pointer before USRSUBJ is equal to 21:
is was 15 + 2 of actual output arguments + 4 of input arguments.
Now the opcode USRSUBJ is executing. During USRSUBJ execution stack is increased by 5 service entries
(from SP = 21 to SP = 25) and number of maximal output arguments according to the function definition.
The meaning of these service entries is described in the table below. The number of maximal possible output
arguments in our example is 3: x, y and z, from SP = 26 to SP = 28).
When 5 service entries has set to the stack a new value of BP is assigned (in our example 26), while the
previous value (12) is saved for later restoration.

This table below shows the contents of the stack for our example
SP Meaning Value Remark
12 BP before function call
…
15 Place for actual output argument y Junk SP before function call
16 Place for actual output argument x Junk
17 Input argument Value of a
18 Input argument Value of b
19 Input argument Value of c
20 Input argument Value of d
21 Save BP current 12 USRSUBJ start
22 Return address Value of return

address
One of operands of
USRSUBJ

23 Index of the function in the Function
Symbol Table

Function index One of operands of
USRSUBJ

24 Number of input arguments 4 Data from the Function
Symbol Table

25 Number of actual output arguments 2 One of operands of
USRSUBJ

26 Place for output argument x Junk New value of BP
27 Place for output argument y Junk
28 Place for output argument z Junk
29 USRSUBJ end.
…
After the opcode USRSUBJ ends SP is 29 and BP is 26.
During USRSUBJ the jump to the beginning of the function is executed (PC is assigned to the relevant
location in the Code Segment). Further filling of the stack is fulfilled according to the executable code of the
function.
Every function must end with return (the opcode USRSUBRT).
During USRSUBRT the stack returns to the initial state before function call, but not exactly.
USRSUBRT copies the actual output arguments to preliminary allocated place in the inverted order. In our
example z finally won’t be assigned, x will be copied from SP = 26 to SP = 16 and y will be copied from SP
= 27 to SP = 15.
BP is restored to the previous value (12). Service entries, input and output arguments are removed and
finally SP is 17.

7.4 Data types

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

73

The virtual machine supports the following data types:

- INTEGER: 32 BIT SIGNED INTEGER
- Float: 32 bit IEEE floating point number (24 bit mantissa, 8 bit sign)

Logical operators yield Boolean results – True or False.
True is equivalent to the integer 1.
False is equivalent to the integer 0.

7.5 Op code structure and addressing modes

Op code it’s a bit filed (16 bits) which give us information about the VAC (Virtual Assembly Code) and it’s
operands, more details in table below.
Each operand has an addressing mode indicates the location of the operand (stack, data segment, immediate).

Op code bit field:
Bits Description Meaning
0 ChangeStack Flag shows whether SP should change (increase/decrease) after

an execution of a VAC. This flag is ignored by some of the
commands. 1 – change stack, 0 – don’t change.

1-7 CodeIndex Index of VAC in table
8 OperType1 Data type of first operand . 1 – Float, 0 – Integer
9 OperType2 Data type of second operand
10-12 AddrMode1 Addressing mode of first operand (destination)
12-15 AddrMode2 Addressing mode of second operand (source)

Addressing Modes:
Addressing Mode

MEANING
ABSENT Lack operand after command code. Usually Operand is at

the top of stack.
IMMEDIATE1 Operand is char integer and stated immediately after

command code
IMMEDIATE2 Operand is short integer and stated immediately after

command code
IMMEDIATE4 Operand is long integer or float and stated immediately

after command code
MEM_DIRECT Operand is at the memory address (ram) which stated after

command code.
STACK_IMMEDIATELY Operand stated at stack member which placed after

command
BP_RELATIVE Operand is placed in the stack relatively to the base

pointer. Exact location in the stack is base pointer +
operand stated after command code.

7.6 Short reference

A concise reference is given in the table below.
OP code Meaning
MLT Multiply the top of stack with the number below.
SUB Subtract the top of stack from the number below.
ADD Add the top of stack to the number below.
DIV Divide the number below top of stack by the top of stack.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

74

REM Reminder from division of the number below top of stack by the top
of stack.

RSLTAND Check if number at top of stack and number below are non zero than
condition is true otherwise condition is false

RSLTOR Check if number at top of stack or number below are non zero than
condition is true otherwise condition is false

XOR Bitwise XOR operator – between the number at top of stack and the
number below

NOT Bitwise NOT operator – on the number at the top of stack
SHR Logical right shift the number at the top of stack by the number below

top of stack
SHL Logical left shift the number at the top of stack by the number below

top of stack
AND Bitwise AND operator – between the number at top of stack and the

number below
F_OR Bitwise OR operator – between the number at top of stack and the

number below
UNARY_NOT Check if number at top of stack is non zero than condition is false

otherwise condition is true

RSLTE Compare the number at top of stack with the number below, if they
are equal condition is true

RSLTA Compare the number at top of stack with the number below, if
the first number is bigger condition is true

RSLTAE Compare the number at top of stack with the number below, if
the first number is bigger or they are equal condition is true

RSLTB Compare the number at top of stack with the number below, if
the first number is smaller condition is true

RSLTBE Compare the number at top of stack with the number below, if
the first number is smaller or equal condition is true

RSLTNE Compare the number at top of stack with the number below, if
they are not equal condition is true

MOV Assignment operator (=) between global/local variables, assign value
can also be constant

CMP Compare two values (they can be global/local variables, constants or
from stack), if they are equal condition is true

JMP Jump to different location in program
JMP_EOL Jump to different location in program, and force end of line (stop

execution of current program line until next cycle).
JMP_LABEL Jump to a label
JNZ Jump if value is not zero (tested value can be local/global variable or

constant)
JNZ_EOL Jump if value is not zero (tested value can be local/global variable or

constant) and force end of line (stop execution of current program line
until next cycle).

JZ Jump if value is zero (tested value can be local/global variable,
constant or from stack)

JZ_EOL Jump if value is zero (tested value can be local/global variable,
constant or from stack) and force end of line (stop execution of
current program line until next cycle).

SPADD Increase or decrease stack pointer with the value given as an argument
GETINDX Get value from array variable defined in data segment (array member

index is at top of stack)
SETINDX Set value to array variable defined in data segment (array member

index is at top of stack)
SET_COMM Call to function service of a ‘set’ command whose index in the

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

75

function table is given as an argument
GET_COMM Call to function service of a ‘get’ command whose index in the

function table is given as an argument
SYSSUBJ Call to system function whose index in function table is given as

an argument
USRSUBJ Call to user subroutine whose index in the symbol function table is

given as an argument (push relevant function data to stack)
USRSUBRT Return from user subroutine – restore stack to its state before function

call, save output arguments in stack and jump to return address
FORITR Handle FOR loop – check condition, if true iterate and execute loop

body. Otherwise, break loop and continue program
EOL Indicate this is end of line
FREEVAC Stop program execution
LINK Increase stack pointer with the value given as an argument and zeroes

the new entries to stack
JMP_LABEL Unconditional jump to the label (entry point)

Table 7-1 – Harmonica op codes

7.7 Alphabetic reference

This section details the Harmonica virtual assembly commands.

7.7.1 ADD - ADDITION

Purpose:
Addition of two numbers (top two entries at the stack) .
Algorithm:
(SP-1) + (SP) → (SP-1)
SP → SP-1
Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion Int + Float

Executes as
(float) Int + Float

Output type Int + int → int
Int + Float → Float
Float + Float → Float

Imposes end of line No

7.7.2 AND – Bitwise AND Operator

Purpose:
Bitwise AND operator – top two entries at the stack.
Algorithm:
(SP-1) & (SP) → (SP-1)
SP → SP - 1

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

76

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int & Int → Int
Imposes end of line No

7.7.3 CMP – Compare

Purpose:
Compare two values (they can be global/local variables, constants or from stack), if they are equal condition
is true otherwise it is false.
Algorithm:
(Op1 == Op2) → (SP)
SP → SP + 1
Attributes:
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Int or Float If argument is from stack,

type is set according to stack
member flag

Argument type2 Int or Float
Addressing mode1 Absent , Immediate, Mem_Direct ,

Stack Immediate, BP_Relative

Addressing mode2 Absent , Immediate, Mem_Direct ,
Stack Immediate, BP_Relative

Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

7.7.4 DIV – Divide

Purpose:
Division of two numbers (top two entries at the stack).
Algorithm:
(SP-1) / (SP) → (SP-1)
SP → SP-1
Attributes:
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

77

flags
Addressing modes Absent
Promotion Int / Float

Executes as
(float) Int / Float

Output type Int / Int → Int
Int / Float → Float
Float / Float → Float

Imposes end of line No

7.7.5 EOL – End Of Line

Purpose:
Indicate this is end of line to the Harmonica environment.
Algorithm:
Zeroes line execution flag.
Attributes:
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A.
Addressing modes N.A.
Promotion N.A.
Output type N.A.
Imposes end of line No

7.7.6 FORITR – FOR Loop Iteration

Purpose:
Handle FOR loop – check condition, if true update iterator and execute loop body otherwise break loop and
continue program.
Algorithm:
itr – (iterator)
(SP-2) → itr (set iterator with start value)
(SP-1) → step
(SP) → target (final value, to which itr is tested)
if (step > 0)
 if (itr > target) free top three entries at the stack and jump end of loop
else if (step < 0)
 if (itr < target) free top three entries at the stack and jump end of loop
else
 error (step = 0 , meaning infinite loop)
(SP-2) + step → (SP-2) (increment iterator by step)
(PC is incremented and loop body is executed)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument Type1 Signed short integer
Argument Type2 Signed short integer
Addressing mode1 Immediate2 Jump address to the end of

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

78

loop
Addressing mode2 Mem_Direct , BP_Relative Iterator variable address,

depend on the addressing
mode.

Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out

of the present executing line.

7.7.7 FREE_VAC - Free Virtual Machine

Purpose:
 Stop program execution.
Algorithm:
Zeroes program execution flag.
Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A.
Addressing modes N.A.
Promotion N.A.
Output type N.A.
Imposes end of line No

7.7.8 F_OR – Bitwise OR Operator

Purpose:
Bitwise OR operator – top two entries at the stack.
Algorithm:
(SP-1) | (SP) → (SP-1)
SP → SP-1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int | Int → Int
Imposes end of line No

7.7.9 GETINDEX

Purpose:
Get value from array variable defined in data segment.
Algorithm:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

79

DataSeg + Op1 → Arr (array address)
(SP) → Ind (array index)
Arr[Ind]→ (SP) (return value)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Signed short integer
Addressing modes Mem_Direct Location of variable (index)

in the variable symbol table.
Address of array variable is
taken from the table.
Array index is at top of stack.

Promotion N.A.
Output type Argument Type1 Value from array is pushed at

the top of stack instead of
array index

Imposes end of line No

7.7.10 GET_COMM – Get Command

Purpose:
Call to function service of a ‘get’ command.
Algorithm:
FuncTable → (list of functions handlers)
FuncTable[Op1]() → (SP) (put return value at top of stack)
SP → SP +1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument types Unsigned char integer
Addressing modes Immediate1 Index of service function in

function table.
If system parameter is an
array , array index is at top of
stack .

Promotion N.A.
Output type N.A. Output argument is at top of

stack.
Type set according to service
function .

Imposes end of line No

7.7.11 JMP – Jump

Purpose:
Jump to another location in the program.
Algorithm:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

80

PC→ Immediate value

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Signed short integer Jump Address
Addressing modes Immediate2
Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out

of the present executing line.

7.7.12 JMP_EOL – Jump

Purpose:
Jump to another location in the program and force end of line . This is used in cases when we want to set
breakpoints at specific address but we cant because its not at new line.
Algorithm:
PC→ Immediate value

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Signed short integer Jump Address
Addressing modes Immediate2
Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out

of the present executing line.

7.7.13 JMP_LABEL – Jump to the label

Purpose:
Jump to another location in the program.
Algorithm:
PC→ Immediate value
Remarks:
The JMP_LABEL is similar to the opcode JMP. The only difference between them is in the argument. The
argument of JMP_LABEL contains the absolute jump address in the Code Segment, while the argument of
JMP is relative regards to the current location of the command pointer.

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Unsigned short integer Label Address in the Code

Segment
Addressing modes Immediate2

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

81

Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out of

the present executing line.

7.7.14 JNZ – Jump Not Zero

Purpose:
Jump to if value is not zero (change PC to different location in program).
Algorithm:

PC → IMMEDIATE VALUE

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Unsigned short integer Jump Address
Argument type2 Int or Float Tested value
Addressing mode1 Immediate2
Addressing mode2 Absent , Immediate,

Stack_Immediate,Mem_Direct,
BP_Relative

(tested value can be
local/global variable or
constant)

Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out of

the present executing line.

7.7.15 JNZ_EOL – Jump Not Zero

Purpose:
Jump to if value is not zero (change PC to different location in program) and force end of line to allow
breakpoints in after jump instruction.
Algorithm:

PC → IMMEDIATE VALUE

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Unsigned short integer Jump Address
Argument type2 Int or Float Tested value
Addressing mode1 Immediate2
Addressing mode2 Absent , Immediate,

Stack_Immediate,Mem_Direct,
BP_Relative

(tested value can be
local/global variable or
constant)

Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out of

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

82

the present executing line.

7.7.16 JZ – Jump If Zero

Purpose:
Jump to if value is zero (change PC to different location in program).
Algorithm:

PC → IMMEDIATE VALUE

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Unsigned short integer Jump Address
Argument type2 Int or Float Tested value
Addressing mode1 Immediate2
Addressing mode2 Absent, Immediate,

Stack_Immediate,Mem_Direct,
BP_Relative

(tested value can be
local/global variable or
constant)

Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out of

the present executing line.

7.7.17 JZ_EOL – Jump If Zero

Purpose:
Jump to if value is zero (change PC to different location in program) and force end of line to allow
breakpoints in after jump instruction.
Algorithm:

PC → IMMEDIATE VALUE

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Unsigned short integer Jump Address
Argument type2 Int or Float Tested value
Addressing mode1 Immediate2
Addressing mode2 Absent, Immediate,

Stack_Immediate,Mem_Direct,
BP_Relative

(tested value can be
local/global variable or
constant)

Promotion N.A.
Output type N.A.
Imposes end of line Only if jump address is out of

the present executing line.

7.7.18 LINK

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

83

Purpose:
Increase stack pointer with the value given as an argument and zeroes the new entries to stack.

Algorithm:

SP → SP + OP1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Unsigned char integer
Addressing modes Immediate1 Number of new entries to

stack
Promotion N.A.
Output type N.A.
Imposes end of line No

7.7.19 MLT – Multiply

Purpose:
Multiply two numbers (top two entries at the stack).
 Algorithm:
(SP) * (SP-1) → (SP-1)
SP → SP-1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion Int * Float

Executes as
(float) Int * Float

Output type Int * int → int
Int * Float → Float
Float * Float → Float

Imposes end of line No

7.7.20 MOV – Assignment Operator (=)

Purpose:
Assignment operator (=) between global/local variables, assign value can also be constant or value from
stack.
Algorithm:

OP1 → OP2

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

84

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Int or Float If argument is from stack,

type is set according to stack
member flag

Argument type2 Int or Float
Addressing mode1 Absent, Immediate, Mem_Direct ,

Stack_Immediate, BP_Relative
Assigned value (source)

Addressing mode2 Absent, Mem_Direct ,
Stack_Immediate , BP_Relative

Variable or stack member
(Destination)

Promotion N.A.
Output type N.A.
Imposes end of line No

7.7.21 NOT – Bitwise NOT Operator

Purpose:
Bitwise NOT operator – number is at top of stack .
Algorithm:
~(SP) → (SP)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Argument type must be

integer (set according to
stack member flag)

Addressing modes Absent
Promotion N.A.
Output type ~Int → Int
Imposes end of line No

7.7.22 REM – Reminder

Purpose:
Reminder from division of two numbers (top two entries at the stack) .
Algorithm:
(SP-1) % (SP) → (SP-1)
SP → SP-1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

85

stack members flags)
Addressing modes Absent
Promotion N.A.
Output type Int % Int → Int
Imposes end of line No

7.7.23 RSLTA – Relational Operator (>)

Purpose:
Compare two numbers, if the first number is bigger condition is true otherwise it’s false (numbers are at top
two entries of the stack) .
Algorithm:
((SP-1) > (SP)) → (SP)
SP → SP - 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

7.7.24 RSLTAE – Relational Operator (>=)

Purpose:
Compare two numbers, if first number is bigger or they are equal condition is true otherwise it’s false
(numbers are at top two entries of the stack) .
Algorithm:
((SP-1) >= (SP)) → (SP)
SP → SP - 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

86

7.7.25 RSLTAND – Logical AND Operator (&&)

Purpose:
If both numbers are non-zero condition is true. Otherwise it is false (numbers are at top two entries of the
stack).
Algorithm:
(SP-1) && (SP) → (SP-1)
SP → SP – 1
Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int && Int → Int
Imposes end of line No

7.7.26 RSLTB – Relational Operator (<)

Purpose:
Compare two numbers, if the first number is smaller condition is true otherwise it’s false (numbers are at top
two entries of the stack) .
Algorithm:
((SP-1) < (SP)) → (SP)
SP → SP - 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

7.7.27 RSLTBE – Relational Operator (<=)

Purpose:
Compare two numbers, if the first number is smaller or they are equal condition is true otherwise it’s false
(numbers are at top two entries of the stack) .
Algorithm:
((SP-1) <= (SP)) → (SP)
SP → SP - 1

Attributes

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

87

Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

7.7.28 RSLTE – Relational Operator (==)

Purpose:
Compare two numbers, if they are equal condition is true otherwise its false (numbers are at top two entries
of the stack) .
Algorithm:
((SP-1) = = (SP)) → (SP)
SP → SP - 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Addressing modes Absent
Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

7.7.29 RSLTNE – Relational Operator (!=)

Purpose:
Compare two numbers, if they are not equal condition is true otherwise its false (numbers are at top two
entries of the stack) .
Algorithm:
((SP-1) != (SP)) → (SP)
SP → SP - 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

88

Addressing modes Absent
Promotion N.A.
Output type Int Compare result is always

integer
Imposes end of line No

7.7.30 RSLTOR – Logical OR Operator (||)

Purpose:
If one of the numbers or both are non-zero condition is true otherwise it’s false (numbers are at top two
entries of the stack).
Algorithm:
(SP-1) || (SP) → (SP-1)
SP → SP – 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int || Int → Int
Imposes end of line No

7.7.31 SET_COMM – Set Command

Purpose:
Call to function service of a ‘set’ command.
Algorithm:
FuncTable → (list of functions handlers)
(SP) → ArrayIndex

(SP-1) → VAL
FuncTable[Op1](val , ArrayIndex) (call to ‘set’ command)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument types Unsigned char integer
Addressing modes Immediate1 Index of service function in

function table.
Array index is at top of stack
.
Set value is at one entry
below top of stack.

Promotion N.A.
Output type N.A.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

89

Imposes end of line No

7.7.32 SETINDEX

Purpose:
Set value to array variable defined in data segment.
Algorithm:
DataSeg + Op1 →Arr (array address)
(SP) → Ind (array index)
(SP –1) → Val (assign value)
Arr[Ind] = val ; (enter value to array)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Signed short integer
Addressing modes Mem_Direct Address of array in data

segment (ram) .
Array index is at top of stack
.
Set value is at one entry
below top of stack .

Promotion N.A.
Output type N.A. Type of assign value from

stack
Imposes end of line No

7.7.33 SHR – Shift Right

Purpose:
Shift right the number below top of stack by the number at the top of stack.
Algorithm:
(SP-1) >> (SP) → (SP-1)
SP → SP – 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int >> Int → Int
Imposes end of line No

7.7.34 SHL – Shift Left

Purpose:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

90

Shift left the number below top of stack by the number at the top of stack.
Algorithm:
(SP-1) << (SP) → (SP-1)
SP → SP – 1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int << Int → Int
Imposes end of line No

7.7.35 SPADD

Purpose:
Increase or decrease stack pointer with the value given as an argument.
Algorithm:

SP → SP + OP1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument type Signed char integer
Addressing modes Immediate1
Promotion N.A.
Output type N.A.
Imposes end of line No

7.7.36 SUB - SUBTRACT

Purpose:
Subtraction of two numbers (top two entries at the stack) .
Algorithm:
(SP-1) - (SP) → (SP-1)
SP → SP-1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types are set

according to stack members
flags

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

91

Addressing modes Absent
Promotion Int - Float

Executes as
(float) Int - Float

Output type Int - int → int
Int - Float → Float
Float - Float → Float

Imposes end of line No

7.7.37 SYSSUBJ – Jump To System Subroutine

Purpose:
Call to system function.
Algorithm:
FuncTable → (list of functions handlers)
FuncTable[Op1]() → (SP) (put return value at top of stack)
SP → SP +1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 1
Argument types Unsigned char integer
Addressing modes Immediate1 Index of system function in

function table
Promotion N.A.
Output type N.A. Output argument is at top of

stack.
Type set according to service
function .

Imposes end of line No

7.7.38 UNARY_NOT - Logical NOT Operator (!)

Purpose:
If number is non-zero condition is false otherwise condition is true.
Algorithm:
! (SP) → (SP)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Argument type must be

integer (set according to
stack member flag)

Addressing modes Absent
Promotion N.A.
Output type !Int → Int
Imposes end of line No

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

92

7.7.39 USRSUBJ – jump To User Subroutine

Purpose:
Call to user subroutine (push relevant function data to stack).

SEE 8.2
Algorithm:
BP → (SP) (save base pointer)
SP → SP + 1
OP2 → (SP) (save return address)
SP → SP + 1
FuncIndex → (SP) (save function index)
SP → SP + 1
NArgIn → (SP) (save number of input arguments)

7.7.39.1.1.1.1.1 SP → SP + 1

NActArgOut → (SP) (save number of actual output arguments)
SP → SP + 1
SP → BP (update base pointer)
PC → FuncAddr (jump to user subroutine)

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments 2
Argument type1 Unsigned short integer Lower 8 bits :

Actual ouput arguments
Upper 8 bits :
Subroutine Index

Argument type1 Unsigned short integer Return Address
Addressing mode1 Immediate2
Addressing mode1 Immediate2
Promotion N.A.
Output type N.A.
Imposes end of line Yes jump address is out of the

present executing line.

7.7.40 USRSUBRT – Return from user subroutine

Purpose:
Return from user subroutine - restore stack to its state before function call, save output arguments in stack
and jump to return address.
See 8.2
Algorithm:

7.7.40.1.1.1.1.1 (SP-1) → nActArgOut (number of actual output arguments)

(SP-2) → nArgIn (num of input arguments)
(SP-4) → RtAddr (return address)
SP → BP – 5 - nArgIn
(save output arguments from subroutine)
(SP-5) → BP (base pointer)
PC → RtAddr (return from user subroutine)

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

93

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A.
Addressing modes N.A.
Promotion N.A.
Output type N.A.
Imposes end of line Yes Jump address is out of the

present executing line.

7.7.41 XOR – Bitwise XOR Operator

Purpose:
Bitwise XOR operator – top two entries at the stack.
Algorithm:
(SP-1) ^ (SP) → (SP-1)
SP → SP-1

Attributes
Attribute Value Comment
Op code May change in future

versions
Number of arguments None
Argument types N.A. Both arguments types must

be integer (set according to
stack members flags)

Addressing modes Absent
Promotion N.A.
Output type Int ^ Int → Int
Imposes end of line No

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

94

8 The Recorder

The recorder mechanism enables the user to record various signals that exist in the
Harmonica, up to 8 signals simultaneously. The recorded signals can be uploaded to the host
by communication, for the purpose of presentation and analysis.
The following section details how to define the recorder parameters to the Harmonica, how
to launch and trigger the recorder, and how to fetch the recorded data.
The average user does not have to know all this detail, since the Composer program
normally operate the recorder with a user-friendly interface.
The list of record-able signals supported by a Harmonica is stored internally and can be
retrieved by the host. Please refer to LS and LP commands in the Software Manual.

The following commands are relevant for the recording process.
Command Description
BG,BT,
IL[N]

Begin motion by software or hardware command. Motion beginning may be used to
trigger the recorder.

BH Upload recorder results.
LS Load a record from the serial flash.

Use in order to retrieve the list of recorder signals
RC Defines which of the mapped signals shall be recorded.
RG Recorder gap. Specify the sampling rate of the recorder.
RL Recorder length.
RP[N] Recorder parameters.

This command defines what event will trigger the recorder, and the trigger position.
It also defines:

- The basic time quantum for the recorder is TS or four times TS.
- The data to be uploaded to the host by the next BH command.

RR Launch the recorder, and read back its status
RV Signal mapping.

This command maps the ID's of the record able signals to logical ID's that the recorder
can refer.

SR Status register – tells the status of the recorder – idle, armed, triggered and recording,
or ready with data.

TS Sampling time the basic resolution of the recorder.
WI[21] The actual amount of recorded data.

Table 8-1: Commands relevant to the recorder

8.1 Recorder sequencing: Programming, launching, and uploading data.

In order to activate the recorder, it must be programmed. Programming the recorder means
telling the recorder what signals to record, at what resolution, and what shall be the trigger
event.
Few limitations apply:

- The recorder cannot be programmed while it is armed, or recording. It has to be
killed first (RR=-1).

- Changing the recorder programming invalidates any previously recorded data.
Be sure to upload all the data you need before programming the recorder.

After programming, the recorder can be launched by:
- RR=1 will arm the recorder to trigger at the next motion begin (obsolete, please

use RR=3)
- RR=2 will start recording immediately.
- RR=3 will arm the recorder to start recording at the next trigger event.

The status of the recorder may be polled using the RR and SR commands.
After the recorder data is ready, use the BH command to upload the data.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

95

8.2 Signal mapping

The recorder can record many different signals.
The first 16 signals that may be recorded are compatible with older amplifiers. They are
listed is in the table below.
Signal
ID

Signal Name (Command) Length –
Type

Description

1 Main Speed (VX) Long –
Float

Speed of main feedback sensor in counts/sec

2 Main Position (PX) Long –
Integer

Position accumulation of the main feedback sensor
in counts

3 Position Command (DV[3]) Long –
Integer

Position reference in counts. When external
reference mode is set (RM=1) this signals includes
also the analog reference command.

4 Digital input pins status Short
integer

The IP variable (refer IP in the command reference)

5 Position Error (PE) Long -
Integer

Position tracking error the difference between the
main Position Reference and the main Position
Feedback in counts.

6 Current Command (DV[1]) Short –
Float

The Current reference to the current controller in
amperes.

7 DC Bus Voltage Short –
Integer

Bus voltage in volts.

8 Auxiliary Position (PY) Long –
Integer

Position accumulation of the auxiliary feedback
sensor in counts

9 Auxiliary Speed (VY) Long –
Float

Speed of auxiliary feedback sensor in counts/sec

10 Active current command
(IQ)

Short –
Float

The active part of the vectored current reference in
amperes.

11 Reactive current command
(ID)

Short –
Float

The reactive part of the vectored current reference
in amperes.

12 Analog Input 1 (AN[1]) Short –
Float

Analog input 1 after offset compensation of AS[1]
in volts.

13 Reserved
14 Motor current phase A

(AN[3])
Short –
Float

Phase A current in amperes.

15 Motor current phase B
(AN[4])

Short –
Float

Phase B current in amperes.

16 Speed Command (DV[2]) Long –
Float

Speed reference to the speed controller in
counts/sec.

Table 8-2: Default mapping of recorded signals

After power-on, the recorder can access the first 16 signals tabulated above. In order to
access other signals, the recorder must make them available in a process called "mapping".
In the mapping process, the ID's of the desired signals is mapped to the recorder "cells". On
power-on, the signals of Table 8-2 are mapped to the recorder "cells"2.
The table below lists some more signals available to the recorder. The full list of recorded
signals may differ for Harmonica grades and releases. It can be retrieved from the
personality partition of the serial flash memory.
Signal
ID

Signal Name (Command) Length –
Type

Description

17 Field angle Short Stator field angle, 1024 counts per electrical
revolution

18 Commutation sensor Long – The position counter, counted modulo a mechanical

2 The word "cell" is used for a logical ID that can be directly referred by the recorder.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

96

Integer revolution, with origin at the electrical angle of
zero.

21 Filtered torque command Short The command to the Q current controller, at the
output of the command filter.

45 Motor DC supply voltage Short Sample Motor DC supply voltage.
64 External position reference Long -

Integer
The part of the position reference generated by
external inputs.

Table 8-3: Some additional recorded signals

Before recording a signal from Table 8-3, this signal must be "mapped to the recorder". In
the mapping process, the signal is given a logical ID that can be referred directly by the
recorder.
Up to sixteen signals may be mapped to the recorder at any time. Up to 8 signals can be
recorded at the same time.
The command RV[N]=x maps a signal with the ID of x to the logical ID of N, N=1..16.
RC is a bit field parameter (bit 0 to 15) that signals the recorder the actual required signal. In
our case the bit N-1 of RC points to signal x.
 For example, RV[2]=1 maps the signal with the ID of 1 (the main encoder speed) to the
logical ID of 2. It means that in order to record the main encoder speed bit 1 of RC should
be set (RC=2).
The default mapping, restored at boot, maps the signals of ID's 1 to 16 to the corresponding
logical ID's 1..16. Thus the signals with the ID's 1..16 can be recorded by using the logical
ID's 1..16 respectively, without further programming.
If the user desires to record only signals with ID's in the range 1..16, he need not be aware to
the difference between signal ID's and logical ID's, and he need not program any mapping.

8.3 Defining the set of recorded signals

The command RC defines which of the mapped signals to record.
The RC command is a 16bit bit field. Each bit of RC specifies a logical signal ID to record.
For example, consider RC=5. The value 5 has the 16bit binary value of 0000000000000101.
The first and the third bits in the binary value of 5 are on, and the rest of the bits are zero.
RC=5 thus specifies that the signals with the logical ID's one and three shall be recorded,
and all the other signals will not.
Example:
The commands
RV[1]=5;RV[2]=1;RC=3;
defines that when the recorder will be launched, it will record the main speed and the
position error.
RC may define 8-recorded signals at most. In another words, the binary representation of
RC may not include more than eight one's.

8.4 Programming the length and the resolution

The length and the resolution of the recorded signals is programmed by the RP[0],RL, and
RG command.
RP[0] defines what is the basic time quantum of the recorder.
RP[0]=0 Synchronize the recorder to the speed or position control cycles. The time

quantum of the recorder will be TS4 ⋅
RP[0]=1 Synchronize the recorder to the torque cycles. The time quantum of the

recorder will be TS.
RP[0] is set automatically by the UM (Unit mode) command.
The torque mode UM=1 sets RP[0] to 0.
All the other unit modes set RP[0] to 1.

RG defines the sampling rate of the recorder, in terms of the time quantum.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

97

RG=1 means that a new sample shall be taken once per time quantum. If TS=60, and
RP[0]=0, the recorder will sample once per 240usec.
RG=2 means that a new sample shall be taken once per two time quanta. If TS=60, and
RP[0]=1, the recorder will sample once per 120usec.
Similarly, RG=N means that a new sample shall be taken once per N time quanta.
Note that RG specifies only the recorder sampling-rate, not the trigger sampling-rate. A
trigger event will cause the recorder to start within one time quantum.
RL defines the number of maximal data items to collect.
For example, if RL=11, TS=60,RG=1, RP[0]=0, then the 11 samples at the rate of 240usec
shall be taken, lasting secu240)111(×− = 2400usec.
The recorder has a limited memory – total of 8kb. When more signals are recorded, less
memory is available for each recorded signal.
If)signalsofnumber/()memoryrecorder(RL > , the recorder will fail to record the
specified RL samples – instead it will record to fill its data volume.
The actual amount of recorded data can be polled using WI[21].

8.5 Trigger events and timing

The recorder is started by a trigger event.
The trigger event may be one of the following:
• Immediate: The recorder starts immediately after the recording request has been

issued.
• Motion begin: The recorder is triggered by the execution of a software BG

command, or by timed BG command, or by a hardware commanded hardware
begin.

• Triggered by an analog signal: The recorder starts upon the following event:
o Positive slope – The signal crosses a prescribed level with positive

slope
o Negative slope – The signal crosses a prescribed level with negative

slope
o Window – The signals exits a window of two prescribed signal

levels.

The picture below depicts the positive slope, negative slope, and window trigger types.

1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Trigger signal (not necessarily
recorded)

Level 1

The trigger
will occur here if set
for negative slope

The trigger
will occur here if set
for positive slope

Level 2

The trigger
will occur here if set
for window

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

98

Figure 1 - Slope and window trigger types

- Triggered by a digital signal: The Harmonica will support this only in the future, TBD.
Trigger delay

The trigger defines when the recorder is to start. The recorder can be told to start before the
trigger event, so that the trigger event can be caught in “the middle of the picture”. This is
possible since the recorder starts to record at the instance it is launched by the RR command,
so that when the trigger event occurs, the pre-trigger information is already recorded.
The following picture examples this. The recorded signal is the speed. The trigger is set on
BG. After launching the recorder with RR=3, the command sequence JV=5000;BG is
entered. The results are shown in the picture below.

Note that in the above example, the recorder works for 10sec. Therefore, a pre-trigger delay of
20% requires 2 seconds to acquire the pre-trigger data. A BG command that is set less than 2
seconds after the RR=3 will be missed.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

99

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Speed Command

Time

Triggered on BG with
0% pre-trigger delay

Triggered on BG with
20% pre-trigger delay

Figure 2 – Pre trigger delay

The trigger parameters are listed in the table below. .

RP[N] Definition

RP[0]: Recorder time quanta 0: The recorder time quantum is the speed controller
sampling time (TS4 ⋅ usec)
1: The recorder time quantum is the torque controller
sampling time TS usec.

RP[1]: Trigger variable Defined similarly to RC, but only 1 bit may be non-
zero.
The trigger variable does not need to be one of the
recorded variables.
For example, RV[1]=17, RP[1]=1 defines that the
trigger will be made on signal #17 (the stator's field
angle).

RP[2]: Pre trigger storage in
percents.

0 to 100 (percent)

0 for immediate
1 for a BG
2 for positive slope
3 for negative slope
4 for window

RP[3]: Trigger type

5 reserved for future digital input trigger option.
RP[4]: Level 1 Level for positive slope trigger, or high side for

window trigger
RP[5]: Level 2 Level for negative slope trigger, or low side for window

trigger

The trigger levels RP[4] and RP[5] can be entered either as integer or floating point

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

100

numbers.

8.6 Launching the recorder

The recorder is launched (or killed) using the RR command. RR also reports the recorder
status.

The RR command has the following options:

RR Value Meaning

-1 Kill the recorder if active, and invalidate any recorded data.

0 Kill the recorder (Do nothing if the recorder is not active)
1 Launch the recorder, triggered on the next BG.
2 Launch the recorder with immediate trigger.
3 Launch the recorder with the trigger defined by the RP parameters.

Table 8-4: RR command options

Note that the actions of RR=1 and RR=2 can be obtained with RR=3 and the appropriate
RP[N] definitions. The commands RR=1 and RR=2 are simply meant to allow easy interface
to the most common recorder actions.

As a status report, RR may return the following values:

RR Report Meaning

-1 No valid data in the recorder.
0 The recorder action is complete, and it is loaded with valid data.
1,2,3 Waiting for the completion of RR=1, RR=2, or RR=3 respectively.

The report value of 1,2, and 3 does not tell if the recorder is already
recording or is just waiting for a trigger. If this differentiation is
required, use the SR command.

Table 8-5: RR reports

The SR (Status Register) command details the status of the recorder. SR returns a bit field.
Bits 16 and 17 of SR may have the following values:
Bit 16 Bit 17 Recorder status
0 0 Recorder inactive, no valid recorded data
0 1 Recorder armed, waiting for a trigger event
1 0 Recorder finished; valid data is ready for use.
1 1 Recording now.

Table 8-6: SR recorder status reports

8.7 Uploading recorded data

This section summarizes how to upload recorded data from the amplifier to a host.
The relevant commands for recorder data uploading are:

Parameter Description

RR If zero, tells that the recorder is ready for data upload.
WI[21] Tell how much data is actually recorded.
RR[8],RR[9] Define the part of the signal to be next uploaded
BH Upload recorded data command.

Table 8-7:Parameters for uploading recorded data

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

101

The BH command is used to upload the values recorder by the recorder to a host. The BH
command is designed to optimize the data transfer from the Harmonica to the host, assuming
that the host has the computing power to analyze the Harmonica message.

The basic condition for executing a BH command is that valid data is stored in the recorder
for uploading. In that case the fields of the RC variable define the variables that had been
recorded.
The command BH=n will upload the recorded variable defined by RC&n , where & is the
bit-wise AND operator. For example, if RC=7, the command BH=2 will bring the variable
that would be recorded by setting RC=2, since 7&2=2. BH=3 is illegal, since the binary
representation of BH includes more than one ‘1’ and the uploaded variable is not uniquely
defined. BH=16 will return an error since BH&RC=0.
It is convenient to use hexadecimal notation for the BH command.
BH=0x4000 may look more understandable then BH=32768.

The BH command may load an entire recorded signal, or a part thereof. If RP[8]=0 and
RP[9]=0, then BH=n will upload an entire uploaded signal.
Otherwise, BH will upload the recorded signal starting at the index RP[8], and until the
index of RP[9]. RP[9] must always equal or be less than the length of the recorded signal.

The data is uploaded in hexadecimal form. This is done in order to minimize the
transmission time (relative to ASCII formatted text), while adhering to the ASCII nature of
the transmissions.

 Each data byte is parted to two nibbles, and the ASCII code of the nibbles is sent from the
controller to the Host. For example, the short integer number 43794 has the hexadecimal
representation AB12. It will be transmitted as ‘A’,’B’,’1’,’2’, with the most significant
nibble first and the least significant nibble last. The long integer number 1 will be sent as ‘0’
‘0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘1’.

In order to analyze the BH record, one have to understand that the internal representation of
quantities inside the controller is not in user units. For example, the user desires the recorded
motor current in Amperes, but the controller represents currents internally by the bits of the
A/D that measures the current. The BH record uploads recorded currents (and other
variables as well) in their internal representation units-and it also provides the scaling
multiplier to bring it into user units.
That way, no multiplication inaccuracies are introduced to the BH records, and CPU load is
minimized.

The record transmitted by the controller in response to a BH=n command is described
below. The record includes 20 bytes of overhead, and numerical records data.
The values in the table are translated to ASCII as explained above.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

102

Byte Number Value Type

0-1:
Variable type for user.
This field does not have any practical
significance.

0 for integer
1 for real

Byte

2-3:
Data width – number of hex character of a
single transmitted data item.

4 for short integer,
8 for long integer.

Byte

4-7:
Data length –
The actual number of transmitted data
items.

 Word

8-11:
Variable time multiplier.
This is the number in which TS must be
multiplied to obtain the basic period of the
recorder.

Depends in the RP[0] value.

Word

12-19:
Floating number factor.
Multiply every uploaded data item by this
number in order to convert it to user units,
such as Amperes, or Count/sec.

 32 bit Float
number in the
IEEE format.

20 – 20 +
(Data Length)*(Data width) –1 :
Data items.
The oldest record is transmitted first, and
the most recent record is transmitted last.

 Words or long
integers,
according to
the Data
Width

Table 8-8: BH – record structure

The transmission of a BH record can be quite long. A record of 2000 long numbers is about
8000 bytes, which take at least 4 seconds to transmit in RS232 in the baud rate of 19200. In
this time,
The user program continues to run normally.
CAN commands are accepted and processed normally.
RS232 commands are accepted and executed normally, but the transmission of the response
to them is deferred until the BH upload completion.

Example
A BH command may return the string
0008000100013f80000000010000
This string is decomposed to field as follows:
00 (int) 08 (8 bytes per data item in the message)
0001 (Only one data item in message, after the 20 bytes overhead)
0001 (Record taken every TS)
3f800000 (To scale, multiply result by 1.0. The floating point IEEE representation of 1.0 is
0x3f800000)
00010000 (1st Data item: 0x10000 = 65536)

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

103

9 Commutation

9.1 General

The harmonica drives fixed magnet motors.
The principle of all the fixed magnet motors is the same:
A winding creates a magnetic field. If the magnet is directed along the field lines of the
winding, the magnet is in its steady state, and the winding exerts no power on the magnet.
If the magnet is not along the winding field lines, the magnet will try to align with the field
lines.
Mathematically,

)cos(IKT e θ⋅=

θ Angle between the magnet and the field of the winding

eK A parameter, proportional to the strength of the magnet

T Motor winding torque
I Motor current
If the magnet is allowed to move, it will rotate until aligned with the winding field, and
remain stationary there.
A motor is composed of a fixed magnet and several windings. The windings are arranged so
that each winding generates a field of different direction.
By powering the windings alternately, the direction of the windings field move, and so does
the direction to which the rotor is attracted.
The process of alternating the powered winding is called commutation.
Brush DC motors are equipped with a mechanical arrangement that select which winding to
power. In brushless motors, the windings to power are selected electronically.
The winding powering policy, or the commutation policy, has two major variants.
These variants are called Stepper and BLDC (Brushless DC).

The setting of the commutation parameters is normally done using the Composer
interface routine. If you want to tune commutation manually, read the CA[]
documentation in the Command Reference Manual thoroughly.

9.1.1 Brush DC motors

The Harmonica has three motor output connections. A DC motor has only two wires. In
order to drive a DC motor by the amplifier, connect the motor to the B and C motor phase
outputs, and leave the phase A connection open.
We next have to set the following parameters:
CA[28] Set to 1 for a DC motor
CA[18] Set encoder resolution just for reference. The value of CA[18] will not affect

anything in later activities
CA[16] Encoder direction: Set 0 or 1 so that the encoder will count forward in the desired

movement direction.
CA[25] Motor direction: Set 0 or 1 so that the motor will rotate to the desired direction for

positive torque commands.
The values of CA[16] and CA[25] MUST be correlated, otherwise the feedback direction is
wrong - the encoder will count negative displacement for positive torques.
If the feedback direction is wrong, the motor will "run away" immediately upon attempting
speed or position control.
If you intend to use the Harmonica with DC motor, you may skip the rest of this
chapter.

9.1.2 The Stepper Commutation Policy

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

104

In the stepper commutation policy, the windings field is set to point at the desired rotor
position. The commutating device doesn't have to know where the rotor is – it just assumes
that the rotor will come to rest at the field position.
The stepper commutation has the advantages of simplicity and reliability. The main

drawback is that normally o90<<θ , thus to generate a given torque large currents are

required.
At the steady state, the motor torque is zero, and indifferent to the motor current. The
sensitivity of the motor torque to deviation of the rotor angle is maximal.
The large sensitivity of the torque to the rotor angle generates a fast, but oscillatory position
feedback.

9.1.3 The BLDC commutation policy

In the stepper commutation policy, the windings field is set to point o90 away from the rotor
position. The commutating device has to know where the rotor is in order to keep the field

direction o90 away.
The BLDC commutation has the advantage of maximum torque per given motor current,
and of smooth, controllable torque. The BLDC policy involves much real time calculation
and it requires a rotor position sensor. The commutation dependence in the sensor decreases
motor reliability.
The torque is not sensitive to the rotor angle.
The BLDC commutation is ideal for servo applications.

9.2 Mechanical and electrical motion Figures are missing

Most of the brushless motors has two or three phases (windings). The figure below shows a
two phased linear motor and a three phased linear motor.

Figure 3: Two phased linear motor

Figure 4: Three phased linear motor

The Harmonica suits only three phased motors.
When the rotor travels, the coils of the 3-phased motor are powered in the sequence A-B-C-
A-B-C... and so on. Although the moving part (rotor) travels continuously, it sees the
windings in a repetitive, cyclical pattern. When the rotor passes from a location over the A
coil to the next A coil, it covers an electrical cycle.

"Rolling" the linear motor of Figure 4 so that its right hand C phase rolls towards the left
hand A phase makes a rotary three-phase motor.

Figure 5: Three phase rotary motor

The motor of Figure 5 has two coil sets (and also two magnetic pole pairs in the rotor). The
rotor follows two electrical cycles in each mechanical revolution.
For rotary motors, normally the number of coil sets equals the number of magnet pole pairs,
so the term "number of pole pairs" is commonly used as substitute to "number of electrical
cycles in a shaft revolution".

You can read the electrical and the mechanical angle of the motor using the following
commands:
Command Description

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

105

WS[20] Stator field angle, in 1024 counts/rev units.
Stator field angle (deg) = WS[20]× (360/1024)

WS[21] Commutation counter. WS[21] counts the main high-resolution position
sensor, modulo CA[18].

9.3 Commutation sensors

For BLDC commutation, rotor position sensors are required.
The commutation sensors divide into two main groups.
- Direct field sensors that sense the magnetic field of the motor.
- Shaft position sensors.

9.3.1 Rotor Magnetic field sensors

The first group consists mainly of digital Hall sensors. (Analog Hall sensors are less
common and the Harmonica doesn't know to use them). Digital Hall sensors may be used for
commutation with minimum calculation, since they reflect the direction of the rotor with
respect to the windings directly. The digital Hall sensors yield, however, only crude
information. Standard digital Hall sensors divide the electrical period of motor to six – see
Figure 6.
The reading of the digital Hall sensors is according to Table 9-1.
The BLDC field angle is the field angle that produces maximum torque for this Hall sensor
reading.

Hall A Hall B Hall C Electrical rotor

position (deg)
BLDC Field
angle (deg)

0 0 0 Illegal
1 0 0 330-30 90
1 1 0 30-90 150
0 1 0 90-150 210
0 1 1 150-210 270
0 0 1 210-270 330
1 0 1 270-330 30
1 1 1 Illegal

Table 9-1: Hall sensor values

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

106

Hall A

Hall B

HallC

270
deg

330
deg

30
deg

90
deg

150
deg

210
deg

270
deg

Figure 6: Digital Hall sensors readout

The crude division to six draws rough torque from the motor, and requires hard switching of
the motor winding currents.
The digital Hall sensors are used, in many applications, together with higher resolution
position sensors. Combined with high-resolution sensors, the Hall sensors serve to initialize
the field direction, and add redundant position sensing for increased reliability.

9.3.2 Shaft Angle Sensors

The second group consists of shaft angle sensors like encoders of all types (Incremental
digital and analog, absolute digital and analog), resolvers, capacitive sensors, and more.
The Harmonica can interface directly only digital and analog incremental encoders.
The shaft angle sensors normally have good resolution, but they need to be homed
(referenced absolutely) with respect to the rotor electrical angle.
From the above discussion it is clear that for the sake of commutation, it is important to
know how many bits the shaft sensor counts per one electrical cycle.
The number of counts per electrical may be not an integer number. If the number of counts
per electrical cycle is not an integer, then after enough movement the calculated
commutation angle may accumulate numerical errors and the motor shall lose torque.
The numerical commutation error is not a big issue with linear motors, since the limited
travel limits also the commutation calculation error.
With rotary motors, we observe that each mechanical shaft rotation involves an integer
number of encoder counts, per an integer number of electrical cycles. This means that the
commutation can be kept accurate as
p1 = mod(encoder, counts per shafts revolution)
and
Electrical rotor angle =

⋅⋅

revolutionshaftpercounts

pairspoleofnumber
360o mod(p1,

pairspoleofnumber

revolutionshaftpercounts
)

9.3.3 Combination of direct magnetic field sensors and shaft angle sensor

9.3.3.1 Initializing encoder based commutation
When starting a motor, a rough estimate of the electrical angle can be taken from the digital
Hall sensors. At most of the time, the digital Hall sensors read the electrical angle to +/-30
electrical degrees. The exception is the instance at which the Hall sensor reading switches.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

107

At that very instance the Hall sensors read the electrical angle accurately.
After the first Hall sensor switch, the commutation is kept accurate by updating the
commutation counter incrementally using the shaft position sensor.

9.3.3.2 Detecting commutation errors (loss of feedback)
After commutation by the encoder starts, there exist two sources for the electrical angle
measurement. There is the high-resolution measurement by the encoder, and also the low
resolution, but reliable digital Hall sensor readout.
The digital Hall sensor readout defines a range in which the high resolution calculated angle
should reside. Deviating from this range by more than few degrees results in declaring a
commutation error and automatic motor shut down.
The allowed deviation is increased in higher speeds, since there the sensor and the
calculation delays contribute a significant matching error.
The most common causes for commutation loss are:
- A slit in the encoder disk is clogged with dirt. When this happens, an encoder of 4000

counts/rev may count for example 3999 counts/rev. After enough revolutions, the
cumulative error is large.

- Speed to fast relative to the defined encoder filer, and encoder pulses are lost.
- An interpolator derives the encoder A/B pulses. Some interpolators send, from time to

time, pulse batches of much higher frequency then the motor speed. Avoid using the
encoder filter with interpolators even if you think that the motor speed shall be slow
enough.

9.3.4 Parameterization of the commutation and the commutation sensors

9.3.4.1 Winding order
The Harmonica has three motor connection pins, named A, B, and C.
The pin names are not rigidly tied to their actual role. The harmonica can define internally
which motor phase is connected to which output pin. The parameter CA[25] controls the
connection:
CA[25] Phase A connected

to pin
Phase B connected
to pin

Phase C connected
to pin

0 A B C
1 A C B
As seen in the table, changing CA[25] switches the B and C phases.
Actually, changing CA[25] will reverse the direction to which the motor moves for a given
torque command.

9.3.4.2 Hall sensors parameterization
Figure 6 presents an idealized picture of the digital Hall sensor reading. All the waveforms
are in their precise phase and precise polarity.
In practice, the results of the figure may not equal what we see immediately after connecting
the motor and its sensors to the Harmonica.

- The Hall sensors must be matched to the motor coils. Possibly the order of
connecting the Hall sensors to their respective connector pins is incorrect, or the
motor phase connections has been switched as describe above to modify the
motor direction.

- The Hall sensors may be active high or active low. For some Hall sensor

arrangements (known as o30 arrangements) two sensors may be active high, and
the other one is active low, or vice versa.

In addition, the switching lines in the figure are set in 30,90,150,210,270, and 330 degrees.

The even spacing of o60 is true for most motors, but many motors exhibit a significant
origin deviation: for example, with 10 degrees deviation, the digital Hall sensor switching
points may be at 40,100,160,220,280,and 340 degrees respectively. This error, although

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

108

hardly noticeable in low speed, significantly looses motor torque at high speed.

If Hall sensors are not present, and if the commutation is performed using an incremental
encoder, then upon motor start the Harmonica must first find the electrical direction of the
motor.
If digital Hall sensors are not present (CA[20]=0), then at motor on, a commutation search is
made. The commutation search is described in the section "Commutation search".

The following seven parameters describe the Hall sensors:

CA[1] The polarity of the A digital Hall sensor. 1 for active high, 0 for active low.
CA[2] The polarity of the B digital Hall sensor. 1 for active high, 0 for active low.
CA[3] The polarity of the C digital Hall sensor. 1 for active high, 0 for active low.
CA[4] The actual Hall sensor connected to the A Hall connector pin 1 for A, 2 for B and 3

for C
CA[5] The actual Hall sensor connected to the B Hall connector pin 1 for A, 2 for B, and 3

for C
CA[6] The actual Hall sensor connected to the C Hall connector pin 1 for A, 2 for B, and 3

for C
CA[7] The offset of the digital Hall Sensors in encoder units. The range for this parameter

is [0..CA[18]-1]. This parameter compensate for deviations in the hall sensor
switching point.
If no encoder is present, set this parameter to zero.

CA[20] Digital Hall sensors present.
0: No digital Hall sensors are connected
1: Digital Hall sensors are connected.

9.3.4.3 Encoder parameterization
Accurate commutation requires high a resolution sensor. Many types of high-resolution
sensors exist. The selections available for Harmonica are:
CA[17] Commutation sensor type.

1: Main Encoder
CA[21] Position sensor present

0: No high-resolution commutation sensor. Commutation will be done based on the
digital Hall sensors only.
1: The main position sensor shall be used for commutation

The encoder is normally used both for motion feedback and for commutation. As a motion
feedback counter, it must count up when the motor go forward in the application sense. As a
commutation counter, it must count up when the commutation angle increases.
The above two requirements are not necessarily same, so we need the following two
parameters:
CA[16] Encoder direction: Set 0 or 1 so that the encoder will count forward in the desired

movement direction.
CA[25] Motor direction: Set 0 or 1 so that with positive torque, the motor will rotate in the

direction for which the encoder counts up.

The encoder measures the shaft angle. In order to commutate, we must know the encoder
count per an electrical revolution. Normally, the number of encoder counts per motor
revolution is an integer (If not, we may not be able to commutate correctly with an
encoder...). The number of pole pairs per revolution is always integer. By knowing the
encoder counts per mechanical revolution, and by knowing how many pole pairs are within
a revolution, the commutation counter can infinitely update without accumulating errors.
For linear motors, it is best to set the number of pole pairs CA[19] as the largest number of

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

109

full electrical cycles possible for that motor. Enter the "encoder counts in revolution"
CA[18] parameter as the number of encoder counts for CA[19] electrical cycles.

The encoder parameters are listed in the following table.
CA[18] Encoder bits per revolution, after resolution multiplication by 4, in the range

[24..10,000,000]. For an incremental encoder with 1000 lines, CA[18] will be 4000
CA[19] Number of motor pole pairs [1..50].
CA[23] Counts per meter (any positive integer)

0: Rotary motor
1: Counts per meter in a linear motor.
This parameter is not used directly by the amplifier – it is just stored there for the
convenience of a host

9.4 Commutation search

9.4.1 General

When starting the motor, the rotor can be anywhere.
The torque of a brushless DC motor is given by the equation

)sin(IKT T θ⋅⋅= (1)

rs θ−θ=θ (2)

where
T Motor torque

TK Motor constant

I Motor current
θ The electrical angle between the rotor and the field at the stator

sθ The electrical angle of the stator field

rθ The electrical angle of the rotor

The angle sθ is known, since the amplifier controls it directly.

The angle rθ is unknown.

If we rotate sθ , i.e. tf2s ⋅π−θ where f is some frequency and t is the time, we get the sinusoidal torque

)tf2sin(IKT rT θ−⋅π⋅⋅= (3)

For that torque, the motor shaft will move according to
))f(tf2sin(IK)f(A)t(P rT φ−θ−⋅π⋅⋅⋅= , where

P(t) Motor shaft position
)f(je)f(A φ Transfer function of the motor and its load at the frequency f.

By applying the torque of (3) and measuring the position, we can identify both A(f) and rθ .

9.4.2 Selecting the parameters

The parameters I and f can be selected from the range specified below:
I The torque is selected by the parameter CA[26].

CA[26] defines I as a percentage of the continuous current rating CL[1].
For example, if CA[26]=50, then I=0.5 CL[1].

f CA[15] controls the frequency of the sinusoidal motor torque .
The basic frequency (with CA[15]=0) is so that a cycle is completed in 128 * TS
microseconds. For a Harmonica with TS=50, this will be a cycle of 6400

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

110

microseconds, which is about 160Hz.

The frequency is frequency basic2]15[CA
⋅ for CA[15] in the range [-4..4].

For example, with CA[15]=2 the frequency is about 40 Hz, whereas with CA[15]=-2
the frequency is about 640Hz

The selection rules for the parameters I and f are few and simple.

• The torque I must be as large as possible, so as to reduce the relative effect of disturbance
torques (like cogging and friction) on the resulting waveform. Normally I is taken about 50% of
the continuous motor current.

• The frequency f must be selected so that the amplitude of the position sine (See figure 1) will be
6 to 8 bits. The motor position can be analyzed accurately enough when the position sine
amplitude is 4 encoder bits or more. Slightly higher amplitude is set to prevent minor load
changes from disturbing the analysis. Larger position amplitudes will work, but the shaft
oscillation at the motor starting process will be unnecessarily large.

• The frequency f must be so that in that frequency the load behaves inertially. This means that in
that frequency the phase angle)f(φ is in the range of –140 to –220 degrees, and also that in this
frequency the amplitude function A(f) foes not have the high gradient of near resonance regions.
The algorithm will not function near to a resonant frequency, or in a low frequency where a
large viscous friction is present.

• Specifying very high oscillation frequency (CA[15] equals –3 or –4) is not recommended, since
then not enough position samples are available for each sine cycle.

The composer program normally selects the parameters I and f at the “Establishing commutation” stage.

9.4.3 Method limitation

The algorithm presented in this paper is quite robust, and it is expected to work at most of the motor systems,
including systems with moderate backlash. The users of the algorithm must, however, be aware of its
limitations, which are as follows:

• The encoder must have sufficient resolution – at least 256 counts per pole pair. For example, if a
motor has 3 pole pairs, a 256 lines (1000 counts/rev) will suffice, an encoder with 128 lines will
not.

• The algorithm will not work with highly unbalanced systems. It is essential that the motor will
not accelerate significantly if no current is applied.

• The algorithm will work only if the motor is not free to oscillate to both directions
• The algorithm will not work too well if the motor static load is changed significantly. If the

static load is subject to significant changes, tune the algorithm with the highest possible load.
Namely, the inertia of the load must be no less than 40% from its value while the parameters of
the algorithm were tuned, and no more than 40% more than its value while the parameters of the
algorithm were tuned.
If the load inertia is to high, the preset torque level will not suffice to oscillate the motor shaft.
The algorithm will fail and the motor won’t start.
This has the consequence that the algorithm must be tuned with the load present

• The algorithm assumes that in the in the excitation frequency, the motor and the load behaves
like an inertia. This assumption fails in one of the following cases:
The excitation frequency is a resonant frequency of the system
There is a large viscous (speed dependent) friction and the excitation frequency is so low, that
the phase of the transfer function between the torque and the acceleration is not in the range [-30
… 30] degrees.
If the found phase is out of range, the algorithm fails and the motor won’t start.

9.4.4 Protections

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

111

The method described here can work in reliably many practical situations, although it does not fit every
application. If the parameters of the method are not tuned properly, or the method is not good for the
application, the motor starting process will fail.
After setting MO=1, the algorithm will try to oscillate the motor and find the commutation angle. If the
results are not reliable, since the oscillation amplitude is too small or since the load behavior is not inertial,
then MO will reset automatically to zero and the motor won’t start.

9.4.5 Parameters related to starting the motor with no digital Hall sensors

The following parameters are relevant:
Parameter Comment
CA[18],CA[19] The encoder resolution and the number of motor pole pairs.

CA[18] must be greater than CA[19]*256.
CA[20] Must be set to 0 to indicate that Hall sensors are not present
CA[21] Must be set to 1 to indicate that an encoder is present.
CA[15] Set the frequency of the oscillation, as explained above.
CA[24] Set the minimum acceptable oscillation amplitude – set to 4
CA[26] Set the excitation amplitude, as a percentage of the continuous current.
MO MO=1 sets the motor on.

If the motor starting fails, MO resets to 0
WS[15] Reads the actual oscillation amplitude.
WS[16] Flag if a non-inertial behavior has been observed.

9.5 Continuous Vs. Six-Steps commutation

The basic commutation equation for a sinusoidal motor (repeated here for convenience) is
)sin(IKT rFT θ−θ⋅⋅= (1)

Above, rF ,θθ are the field electrical angle and the rotor electrical angle, respectively.

For optimizing the torque, we have to keep o90rF ≈θ−θ .
Let us define the commutation error

()rF90 θ−θ−=ε
θ

o , Ideally .0=ε
θ

The torque production is not very sensitive to
θ
ε . Writing equation (1) as

)cos(IKT T θ
ε⋅⋅= we see that for a miss of o5 , we lose about 0.4% of the torque. With a

miss of o30 , we lose 13.4% of the torque – see figure below.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

112

-100 -50 0 50 100
0

20

40

60

80

100

Commutation miss angle, degrees

Lost torque, %

Figure 7: Loss of torque due to commutation miss

Two principal methods are used to keep
θ
ε near zero. The first is called "Six-Steps"

commutation, and the other is the continuous commutation.

9.5.1 Six-step commutation

With Six-Steps commutation, only two motor terminals are energized at each time instance.
The third motor phase is open-circuited.
Six field angles are possible:
Current flows: Field direction, degrees
C→A, B open 30
C→B, A open 90
A→B, C open 150
A→C, B open 210
B→C, A open 270
B→A, C open 330

Table 9-2: Six-Steps commutation

The digital Hall sensors have evolved to support Six-Steps commutation.
The crude Six-Steps produces about 13% ripple torque when used with sinusoidal motors,
and much less ripple torque when used with trapezoidal motors – see the section "Winding
shapes" below. The main drawback of the Six-Step commutation is the need to abruptly
switch the phase currents. This need imposes an extreme bandwidth demand for the current
controller. If the bandwidth of the current controller is less than satisfactory, there will be
noticeable "knocks" at commutation switching points.
The Harmonica uses six-step commutation if no commutation encoder is present
(CA[21]=0).
In that case, the Hall effect sensors will be also used for speed and position control as the
position sensors.
The Harmonica also uses six-step commutation immediately after motor on, and before a
first Hall sensor transition is encountered. When the first Hall transition is encountered, the
high-resolution commutation sensor (encoder) can be homed and commutation may proceed
in the continuous mode.

9.5.2 Continuous commutation

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

113

With continuous commutation all the three motor coils are powered simultaneously to yield
a magnetic field exactly at the direction of the rotor. This brings

θ
ε near zero continuously,

with minimal torque losses and ripple torques.
The continuous commutation mode is native for the Harmonica and is used most of the time.
The continuous commutation is much more complex to implement then six-steps
commutation. In fact it requires two independent current controllers to control both the
amplitude and the direction of the windings magnetic field.
Continuous commutation reduces the dynamic demands from the current controller, since
current demands are almost never switched abruptly.

9.6 Winding shapes

The implementation of continuous commutation implies that we know how to direct the
magnetic field of the windings.
For a general motor, we have

))240(hI)120(hI)(hI(KT bba
oo

−θ+−θ+θ⋅=

With
T Torque
K Constant
h Windings shape function.

cba I,I,I The A,B, and C phase currents respectively.

For optimal efficiency, it is easy to show that the phase currents must be

)240(hII),120(hII),(hII 0c0b0a
oo

−θ=−θ=θ= for some value 0I . (1)

In another words, the phase currents must be proportional to the corresponding commutation
function values. If (1) is satisfied, the magnetic field produced by the winding currents is
perpendicular to the rotor magnet.
Most motor are wound to sinusoidal or Trapeze winding forms, but no motor can be exactly
sinusoidal or trapeze. Trapeze motors are normally chosen for six-step commutation,

whereas sinusoidal motors are normally chosen for continuous commutation.

Figure 8: Winding shape function for a Trapeze motor

0 50 100 150 200 250 300 350 400
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Theta (degrees)

h
(t

h
e

ta
)

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

114

Figure 9: Winding shape function for sinusoidal motor

In order to optimize the Harmonica to as many motors as possible, the Harmonica can be
programmed to any winding shape function. The Harmonica comes from the factory
programmed by default for sinusoidal motors, but using a tool in the Composer program the
motor waveform may be changed.

9.6.1 Loading the commutation table

The commutation table can be programmed using the HV command.
The syntax of the HV command is not standard. For a detailed description of commutation
table loading, refer HV in the Command Reference Manual.

0 50 100 150 200 250 300 350 400
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

h
(t

h
e

ta
)

Theta (degrees)

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

115

10 The current controller

This section describes the current controller and its parameterization. In addition, it
describes the current limiting process and the amplifier protections.
The commands relevant to the current controller are:

Command Description
TS Current controller sampling time
KP[1] Proportional gain of current controller (nominal voltage)
KI[1] Integral gain of the current controller (nominal voltage)
XP[4] Time constant for DC power bus filter
XP[5] Step limiter for torque command filter
XP[6] Time constant for torque command filter
MC Largest available amplifier current
PL[1] Application peak current limit
PL[2] Duration for the peak current limit
CL[1] Continuous application current limit

Please read about the above instruction in the Command Reference Manual to complement
the material of this chapter.

The Harmonica energizes all the 3 motor terminals simultaneously. This means it has to
control two current components simultaneously. It must control only two current
components, not three, since the phase currents are linearly dependent – the sum of all the
phase currents is identically zero. The Harmonica has a vector current controller. This means
that the two directly controlled current components are:

• IQ: The current component that produce magnetic field in the desired direction
(normally perpendicular to the rotor fixed magnet field)

• ID: The current components that produce magnetic field orthogonal to the desired
direction (normally parallel to the rotor fixed magnet field)

The structure of the current controller is as follows:

Pre-filter
Torque

command
Q

P+I controller
Output

Coordinate
transform

D
P+I controller

Power bridge
& motor

Input
Coordinate
transform

Va

Vb

Vc

Ia

Ib

Ic

PW M output

Current sensors

-

Σ

IQ

ID

Σ

-

0 Commutation
angle

θ

VQ

VD

Peak/Continuous limit
saturation

Figure 10: Current controller structure

The input coordinate transform retrieves the IQ and ID (Active and Reactive) components of
the motor currents.

This Chapter deals with currents in Amperes. The definition we use for an "Ampere" of
three-phased motor current is explained in the section 2.3: "Related Software
The Harmonica requires supporting software for setup, tuning, programming, and

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

116

)240(hI)120(hI)(hIIQ cba
oo

+θ++θ+θ=

and

)330(hI)210(hI)90(hIID cba
ooo

+θ++θ++θ=

Above, θ is the commutation angle and)(h θ is the input winding function.

The output coordinate transform predicts the variation of the phase voltages during the
motor rotation:

)90(gV)(gVVA DQ
o

+θ+θ=

)210(gV)120(gVVB DQ
oo

+θ++θ=

)330(gV)240(gVVC DQ
oo

+θ++θ=

Above,)(g θ is the output winding function.

For sinusoidal motors, we have)cos()(h θ≡θ and also)cos()(g θ≡θ .

The harmonica tabulates both)(h θ and)(g θ . The tables for these commutation functions
can be programmed using the HV command.

10.1.1 Current limiting

10.2 The maximum phase current of the Harmonica is given by the parameter
MC. The parameter MC describes the hardware of the power stage and
cannot be changed. The peak current limit for a given application is
programmed to the parameter PL[1] Amperes. Please refer the definition of
motor Amperage at Section 2.3: "Related Software

The Harmonica requires supporting software for setup, tuning, programming, and
performance assessment. The support software is called “Composer”. It runs on a PC
computer, under Windows.
The Composer includes the following functions (among many others):
• Terminal for direct user interface by RS232 or by CAN
• A recorder with advanced scope controls. You can observe up to 8 signals

simultaneously, triggered by a selection of events.
• Setup and tuning tools:

• Menus for entering basic application data and limits
• Tools for associating functions to I/O connector pins
• Automatic tuning of current controller
• Automatic tuning for commutation
• Manual and automatic Speed controller tuning
• Manual and automatic Position controller tuning

• Application database maintenance
• Save and load application database
• Edit application parameters, with help

• Advanced IDE for user program development:
• Editor
• Compiler
• Downloading and uploading of user programs
• Debugger, with:

• Various break point and stepping options
• Watches for local and global variables
• Call stack watch

The Composer software reads the personality data from the Harmonica, and can therefore

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

117

adapt to the specific amplifier model you bought.
Units".
Program PL[1] smaller then MC if you don't want to utilize the full power of the amplifier –
because the amplifier is oversized with respect to the application, or because the line voltage

is not enough to drive MC amperes into the motor. Do not specify
M

B
R

V]1[PL > , where

BV is the DC motor supply voltage and where MR is the motor resistance. We advise to
choose PL[1] small enough so that at peak current there is enough voltage to drive current
changes. Otherwise, at large currents the amplifier speed of response will be limited by
voltage saturation.
The continuous current limit for your application is programmed by CL[1]. The parameter
CL[1] cannot exceed MC/2, since greater continuous currents will risk amplifier
overheating.
You may set CL[1] < MC/2 to avoid motor overheating.
We advice to select PL[1] and CL[1] as large as the amplifier and the application permit.
This will extend the linear range of the amplifier to maximum and will thus optimize the
servo performance.

The decision if to limit the motor current demand to CL[1] or to PL[1] is made by the
amplifier in real-time. The LC flag reports the current limiting status. The decision
mechanism is depicted below.

-

Ic

Ib

Ia

RMS

2
c

2
b

2
a III ++

If RMS > THOLD, then
LIMIT=CL[1]
THOLD=0.9CL[1]
LC=1

else
LIMIT=PL[1]
THOLD=CL[1]
LC=0

THOLD

LIMIT (CL[1] or PL[1])

RMS

Low Pass filter

Filtered RMS current

LC

Figure 11: Peak/Continuous current limit selection

When the current limit switches, the comparison threshold (named THOLD in the figure
above) is slightly changed. This hysteresis prevents to frequent switching of the current
limit.
Slower time constants in the low pass filter will permit a peak current demand for longer
times, but will also take more time to recover from a limiting to CL[1]. The time constant
τ of the low pass filter is selected by PL[2] as follows:

The parameters PL[1] and CL[1] specify limits for the current demand. At transients, the
motor current may exceed PL[1] and CL[1] due to overshooting.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

118







−

−
=

MC

CL

PL

]1[
1log

]2[
τ

With this selection, when PL[2] is set to MC, and after the current demand has been zero for a
long time, the amplifier will permit a maximum of PL[2] seconds of peak current, and then
switch to continuous current limiting.
For other settings of PL[1], the maximum time, for which the peak current can be maintained,

after the current demand has been zero for a long time, is - τ⋅







−

]1[

]1[
1log

PL

CL
 seconds.

The programming range for PL[2] is very limited. In most applications we recommend to
leave PL[2] in its 3 seconds factory default.

Example:
The graph below shows the signals concerned with the current command limiting process
for MC=6, PL[1]=6, PL[2]=3, and CL[1]=3.
The motor current demand is increases from zero to 6Amp at the time of 0, and is then
decreased to 0 at the time of 5sec.
The state of the low-pass filter increases until it reaches the continuous current limit of 3 at
the time of 3 sec. At that time, the LC flag is raised, and the motor current command is
decreased to CL[1]=3Amp.
After the motor current command is set to zero, the state of the filter begins to drop. When
the state of the filter drops to 2.7Amp = 90% of 3Amp, the LC flag is reset and the torque
command limiting is again to 6Amp.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Application current demand

motor current
command

Filter state

LC current limit
Indication

10.2.1 The torque command filter

The torque command filter prevents that abrupt torque commands shall generate large
current overshoots.
The filter is very simple, having a single time constant and a rate limiter.
The parameter XP[6] defines the time constant:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

119

Torque command filter bandwidth =
32768

]6[XP
log

TS2

106

⋅π

−

Hz where TS is the sampling time

in usec.
The output of the filter cannot change in steps greater than XP[5]. The units of XP[5] are
internal torque command units, not Amperes. The ratio between the internal torque
commands and Amperes is given by WS[22]. The role of XP[6] for small torque commands
is plotted in the figure below.

0 2 4 6 8 10 12
0

50

100

150

200

250

300

Current Controller Sampling Times

A
m

p

Torque Cmd Vs. Torque Controller Input

XP[6]=16384

XP[6]=8196

XP[6]=4096

Figure 12: Time constant selection (Small signal) for the torque input filter

The automatic current tuner of the Composer program optimizes the gains of the current
controller for XP[6]=16000.
The parameter XP[6] is set to larger values for very high inductance motors, for which the
current cannot rise rapidly, or if additional low-passing is required.

The role of XP[5] is shown in the figure below. In the example, the torque command is 5000
internal units (5000/WS[22] Amperes). XP[6] is set to its default of 16000.
XP[5] is factory-set to 1000.
Use lower values of XP[5] for very high inductance motors, for which the current cannot
rise rapidly.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

120

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Current Controller Sampling Times

A
m

p

Torque Cmd Vs. Torque Controller Input

XP[5]=400

XP[5]=1000

XP[5]=5000

Figure 13: Rate limiting for the torque input filter

We recommend not to change the factory setting of XP[5] and XP[6] in standard
applications.

10.2.2 The PI current controller

The controllers for the IQ and the ID components are similar. Their block diagram is given
below.

Kp[1]/VB

KI[1]/VB

-

Σ

Feedback

Command

∑ ε

k
k

ε

Integrator

Proportional gain

Integral gain

Saturation

Σ

Anti wind up

Output

Bus voltage
VB

Bus Voltage Filter

Figure 14: Current PI controller

For the IQ and the ID controllers, the Inputs/Outputs have the following roles:
Parameter Q controller D controller
Bus voltage Measured & filtered motor power DC voltage
Command Torque command 0

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

121

Feedback IQ ID
Output VQ VD

The saturation is given by 0.5TS/ 31025 −

⋅ , where TS is the current controller sampling time

in usec and 31025 −

⋅ is the period of the 40mHz PWM generator clock in usec.
The division of the proportional and the integral gains by the DC voltage is since the output
of the current controller is PWM duty cycle.

The PWM duty cycle sets the corresponding motor terminal voltage to
Motor terminal voltage = (PWM duty cycle)× (DC power voltage)
It is seen from the equation above that the uncertainty in the DC power voltage acts as a gain
uncertainty for the current controller.
The DC power voltage varies a lot – it goes down in high current because of the power
supply output impedance. It increases when upon braking the motor acts as a generator.
The division in the bus voltage makes the output of the controller proportional to the
physical motor voltage, eliminating the uncertainty.
The bus voltage is filtered, to avoid too rapid changes of the current loop PI parameters. The

bus voltage filter is a simple low-pass, with a bandwidth of
32768

]4[XP
log

TS8

106

⋅π

−

Hz.

The relation between XP[4] and the time constant of the filter is calculated in the table
below for several values of XP[4], and TS=50.
XP[4] Bus voltage filter bandwidth, Hz
31750 25Hz (High impedance supply)
30720 (factory set) 50Hz
28900 100Hz (Low impedance high ripple supply)

Table 10-1: Bandwidth selections for bus voltage filter

XP[4] is factory set to 30720.
Set higher XP[4] if the output impedance of your power supply is too high, causing interplay
between the filter gains and the DC motor voltage.
Set lower XP[4] if you have very low impedance power supply, but high ripple voltage.
In normal applications, we recommend not to change the factory setting of XP[4].

10.3 Current amplifier protections

The current amplifier and the power stage have several protections, detailed in this section.
When one of the protections is activated, the amplifier shuts immediately. If brake action is
defined (Refer the OL[] and BP[] commands), the brake is immediately activated. In the
next 10msec the amplifier will not set the motor on, even if instructed to do so.
You can know that an amplifier has been shut down by a protection by:

• Observing the Motor-On and the Fault bit in the SR report, or in the CAN special
status object.

• Mapping the Motor Fault event to an event-driven CAN PDO.
• Polling the MO variable (drops to 0 on exception)
• Polling the MF variable (Reports a non zero value after an exception has been

trapped).
• Mapping a digital output to AOK – refer the OL[] command.

You may install in your user program an AUTO_ERR routine to automatically respond an
exception shutdown.

The protections are:
Protection MF reports Reason
Over voltage 0x5000 The voltage of the power supply is too high, or the servo

drive did not succeed in absorbing the kinetic energy while
breaking a load. A shunt resistor may be required.
The over voltage threshold differs with the power stage

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

122

model – please refer product user manual.
Under Voltage 0x3000 The power supply is shut down, or it has too high output

impedance.
The under voltage threshold differs with the power stage
model – please refer product user manual.

Short circuit 0xb000 A large, fast current pulse has been detected.
The motor or its wiring may be defective, or a faulty
amplifier.

Over-
Temperature

0xd000 The power stage of the amplifier is too hot. Additional heat
sink or forced cooling is required.

Over current 0x8 Unexpected large current – MC15.1 ⋅ has been exceeded.
The current loop or the winding shape function HV[] may
need better tuning.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

123

11 Unit Modes

The feedback structure of the amplifier can be arranged in several options. Those options are
called "unit modes" and programmed by the parameter UM. Switching the unit mode is
possible only with the motor off, since the feedback structure need be re-arranged.
The following unit modes are available:
Value Description (Related commands)
1 Torque control mode.
2 Speed control mode.
3 Micro Stepper mode.
4 Dual feedback position control.
5 Single feedback position control.

11.1 Torque control: Unit mode 1

In this mode the amplifier controls the motor torque only.
In this mode the amplifier may serve as a torque driver, controlled by an external controller.
Commutation is performed to get the maximum torque for the commanded motor current.
If position sensors are connected, the position and the speed are evaluated, and the amplifier will
abort upon over-speed, as specified by the parameters LL[2] and HL[2]
The torque command may be set either by a software command, an analog input, or a
combination thereof, according to the figure below:

TC

Analog input 1
(-10 to 10 Volts)

AG[1]
Amp/Volt Σ

Enable if

RM==1

Torque command
(DV[1], Amp)

Σ

AS[1]

`

-

Stop
Manager

Figure 15: Unit mode 1 (Torque) structure

The AS[1] parameter compensates for possible offsets in the driving equipment and
internally in the Harmonica.
If you are not using the analog input for torque command, set AG[1] =0 or RM=0, to avoid
that noises and offset will affect the amplifiers torque command.
The combined (software and analog input) current demand is reported by DV[1].
The Stop Manager does as follows:

• If hard-stop is active, the torque command is set to zero
• If RLS is active, negative torque commands are clipped to zero
• If FLS is active, positive torque commands are clipped to zero.

The Stop-Manager does not affect the reference generator, and when the relevant switch is
released, the torque command restores to the value set by the reference generator.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

124

11.2 Speed mode: Unit mode 2

In this mode the amplifier controls the motor speed by feedback. The speed controller demands
torque from the current controller.
The reference to the speed controller is summed from a software commands, and an auxiliary
speed command. The auxiliary speed command is derived using the analog input, the auxiliary
encoder input, and the ECAM table – details are given below.
The Stop digital input and the limit switches (RLS,FLS) can be used to stop or to limit the
direction of the motor – see the paragraph on stop management below.
The amplifier will abort upon over-speed, as specified by the parameters LL[2] and HL[2].
The speed control scheme is depicted below:

Software speed
command

Σ

Enable if

RM==1

Speed command
(DV[2], cnt/sec)

Σ

Software speed
feedback

-

Torquecommand
(DV[1], Amp)

Auxiliary speed
command

Stop
manager

Stop and lim it
switches

Smoother

Speed
controller

Figure 16: Unit mode 2 (Speed) structure

If you are not using the analog input for torque command, set RM=0, to avoid that noises
and offset will affect the amplifiers speed command.
The DV[2] command reports the combined (software and analog input) speed demand.

11.2.1 The software speed command

The software speed command generator generates speed commands, subject to acceleration,
deceleration, and to speed limits. The following commands are relevant to the generation of
the software speed command:

Command Description
AC Profiler acceleration limit. Units counts/sec2.
BG Begin command
DC Profiler deceleration limit. Units counts/sec2.
EM EM[1]=1 use ECAM table, EM[1]=0 do not use
JV Profiler final speed command. Units counts/sec.
PM Set PM=0 to remove the acceleration limits from the software speed command.

PM=0 is used by the Composer program in the process of tuning the speed
controller, but in normal operation we advise not to program PM.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

125

Command Description
SF Smooth Factor: The time in milliseconds required to develop the full acceleration

of AC and deceleration of DC.
ST Stop command, activate profiler stop mode with Deceleration=SD
VH[2] Maximum speed command. Units counts/sec.
VL[2] Minimum speed command (bound on speed command from below, negative

value). Units counts/sec.
IL[] Map functions to digital inputs: Digital inputs may function as hardware ST or BG

instructions.

The algorithm of the acceleration-limited software speed command is listed below:

1. Any new BG command accepted by software or by hardware? If yes, update the
speed target to the value to JV, and also update the permitted acceleration and
deceleration to the values of AC and DC.

2. If the speed target and the speed command are positive, and the speed target is
greater than the speed command, select AC for the acceleration limit. If the speed
target and the speed command are negative, and the speed target is less than the
speed command, select also AC. Otherwise select DC for the acceleration limit.

3. Advance the speed command towards the speed target as much as the selected
acceleration/deceleration permits. In the trivial case where the speed command
already equals the speed target, do nothing.

The acceleration limited software speed command is fed to a smoothing filter.
The smoothing filter limits the rate of developing the full acceleration or deceleration.

Example:
This example demonstrates the concepts of target speed and speed command. It also demonstrates
the AC and DC acceleration limits.
Let MO=1; JV=4000; AC=100000; DC=200000; SD=106; PM=1; RM=0; SF=0; BG;
The figure below depicts how the speed command to the controller tracks the target speed specified
by changing the JV parameter, followed by a BG.

0 0.02 0.04 0.06 0.08 0.1
-1000

-500

0

500

1000
Target speed

Un-smoothed
speed command

Accelerat
e to JV=1000

Decelerate
to JV=200

Accelerat
e to JV=-400

On the
fly change of
JV

Time (sec)

Figure 17 – Speed Profiling using JV, AC and DC

Note: The speed reference to the controller may be changed any time, regardless of the state of the
profiler. In Figure 17 the required speed was changed at time=0.075 from –1000 to +300 before
reaching the speed output 1000.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

126

Example:
This example demonstrates the smoothing filter and the smoothing factor SF.
Let us MO=1; JV=4000; AC=100000; DC=100000; SD=106; PM=1; RM=0; BG; with three
different values of SF.

1. The SF=0 graph displays sharp corners, since smoothing is ignored, therefore non-continuity
of acceleration is allowed.

2. The SF=10 graph takes 10 milliseconds more to stabilize the speed software command,
however the speed reference profile is much smoother.

3. For the SF=50 graph, the smoothing is so strong with respect to the total acceleration time
that the AC acceleration is never reached.

0 0.02 0.04 0.06 0.08 0.1
0

500

1000

1500

2000

2500

3000

3500

4000

SF=0
SF=10

SF=50

Time (sec)

Speed reference
(count/sec)

Figure 18 – Speed command for different smooth Factor

Note: The profiler smoothes the motion and decreases (may also prevent) overshoots, while
introducing a delay in the controller response.

11.2.2 The auxiliary speed command

The auxiliary speed reference is generated according to the block diagram below. The
parameters relevant to the auxiliary speed command generation are:

Command Description
AG[2] Analog input gain, counts/sec/Volt.
AS[1] Analog offset
FR[2] Follower gain
RM Reference mode – 1 to use the auxiliary speed command, 0 to null the auxiliary

speed command.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

127

Auxiliary input

Analog input 1
(-10 to 10 Volts)

AG[2]
Count/sec/

Volt
Σ

Auxiliary speed command

Σ

AS[1]

`

-

Speed
estimator

FR[2]

Figure 19: Auxiliary speed command generation

The analog input is most useful when the Harmonica serves as an inner controller,
embedded in an external control loop.
The auxiliary encoder speed input enables to issue speed commands relative to a conveyor
or other moving object.

11.2.3 Stop management

The stop manager does the following functions:
- Bring the motor to stop upon software or hardware ST command.
- Bring the motor to stop when the speed demand is positive and FLS (Forward

Limit Switch) is active.
- Bring the motor to stop when the speed demand is negative and RLS (Reverse

Limit Switch) is active.
- Prevent acceleration or deceleration beyond the motor torque limits.

The parameters relevant to the stop manager are:

Command Description
SD Maximum motor acceleration/deceleration, counts/sec2
LV[2],HV[2] Speed command limit
IL[] Input logic – define digital inputs as hard-stop, or as directional limit switches

(RLS,FLS).

A block diagram of the stop manager is given below.

Reference generator
output (software +

auxiliary)

SD
Acceleration/Deceleration

Limiter
LV[2],HV[2] speed lim iter

Command to
Speed Controller

-

Stop condition
 (Stop, RLS, FLS)

0

Figure 20: Speed mode Stop Manager

The Stop-Manager prevents the speed-controller command from changing abruptly by

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

128

limiting the rate of reference change to SD counts/sec2.
When the Stop Manager stops the motor due to a switch action, the reference generator is
replaced by a zero command at the input to the Stop Manager. The Stop Manager uses the
SD parameter to decelerate the motor command from the output of the reference generator
to a complete stop.
When the switch action terminates (for example a "Stop" switch is released) the Stop-
Manager uses the SD acceleration to recover the speed command to the output of the
reference generator.
Note the following:

1. The Stop-Manager must limit the speed command to the range [LV[2]..HV[2]].
Although both the software speed command and the external speed command are
each limited to the legal range, their sum may be out of range.

2. When the stop manager stops the command to the speed controller, it does not affect
the reference generator. The reference generator continues to behave normally.
When the switch action is over, the Stop-Manager will try to recover the speed
controller command to the output of the reference generator.

3. The Stop-Manager limits the decelerations and the accelerations due to abrupt
changes of the auxiliary reference. The SD parameter is the only acceleration limiter
for the auxiliary input. The AC and the DC parameters are only relevant to software
commands.

4. When AC and DC are greater than SD, they become irrelevant, since SD will limit
the acceleration lower.

5. The IL[N] command can program a variety of "Stop" options to an input pin. A
pulse at the pin can be directed to the stop manager as in the example below, stop
the software reference generator, or both.

Example:
Let, SD=100000,MO=1,AC=10000,DC=10000,JV=5000,BG;
At the time of 0.2sec, a switch programmed as hard-stop is activated, and released at the time of
0.4 sec.
The following waveforms result:

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Command generator
output

Command to the speed
controller

Stop switch
active

When the stop switch is applied, the speed command is brought to complete stop, decelerating
with 100000 counts/sec2. When the switch is released, the acceleration of 100000 counts/sec2 is
used to recover the output of the reference generator.

11.3 The stepper mode: Unit mode 3

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

129

The stepper unit mode enables the rotation of a motor without feedback control. The motor field is
rotated to the desired direction, and the rotor magnet is believed to follow. The user must not rotate the
field too abruptly in order that the rotor will be able to track its desired direction. If the rotor misses a
full electrical revolution, it will be attracted to a wrong electrical equilibrium, with no feedback to
correct that.
Moreover, if the field rotation is stopped abruptly, the motor will not properly brake. If the rotor misses
half an electrical revolution, it will start accelerating – and the net braking torque sum over an electrical
revolution is zero.
Specifying higher motor current enables larger accelerations and decelerations, but also lose more power
at the steady state.
In the stepper mode, most of the time the stator field and the rotor magnet are near equal, and the motor
efficiency is very low.
The Harmonica uses the stepper mode mainly for safe testing and controller tuning before any feedback
control is tuned. The Harmonica can serve as an advanced micro-stepper driver, with 1024 micro-steps
per electrical revolution. The main limitation is that the Harmonica is a 3-phase driver, while most the
stepper motors in the market are two-phased.
The block diagram of the micro-stepper mode UM=3 is depicted below:

Software
position

command

Σ

Enable if

RM==1

Stepper angle
 command

W S[20]

Torquecommand
(DV[1], Amp)

Auxiliary position
command

Stop
manager

Stop and lim it
switches

Smoother

Torque
command

Current
controller

1024 count
per electrical rev.

Figure 21: Stepper mode (UM=3)

The stepper angle command is generated by:
• The position software command generator
• The position auxiliary command generator
• The position Stop Manager

The generation of the stepper angle command is similar to the position command generation
in UM=5, and will be described in "Stop management" below.
The torque command is simply given by the command TC.

11.4 The Dual feedback mode: UM=4

The dual feedback mode is used when different sensors are used for speed/commutation and
for position. This is a common situation if the motor drives the load through a reduction
gear. The controlled position is that of the load. The load position, however, may not be
good for commutation or speed feedback, since:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

130

• The commutation accuracy will be limited by backlash and gear compliance
• The motor speed can be measured with better resolution and less delay because the

motor rotates much faster than the load. In addition, the speed sensor is not subject
to dead zones caused by backlash.

 The block diagram of the dual feedback mode UM=4 is depicted below:

Software
position

command

Σ

Enable if

RM==1

Auxiliary position
command

Stop
manager

Stop and lim it
switches

Smoother

d/dt

Position
 Controller

FF[2]

ΣΣ

Auxiliary
feedback
encoder

main feedback
encoder

Speed
Estimator

- -

Σ

DV[3]
DV[2]

Speed
 Error

d/dt

Acceleration
 feed forward

FF[1]

Position
correction

Figure 22: Dual feedback mode (UM=4)

The position and the speed commands are generated by:
• The position software command generator
• The position auxiliary command generator
• The position Stop Manager

The generation of the position and speed commands is similar to the position and speed
commands generation in UM=4, and will be described later the chapter on "The position
reference generator".
The speed command, multiplied by the gain FF[2], is fed as reference to the speed controller
in addition to the position correction. When FF[2] is set exactly to the gear ratio between the
position sensor and the speed sensor, there will be no steady state constant-speed tracking
error.
The acceleration of the position command, multiplied by FF[1], can be injected directly as
torque command. By default, FF[1]=0.
The reference values to the position, speed, and torque controllers can be inquired by
DV[3],DV[2], and DV[1] respectively.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

131

The details of the speed and the position controllers are given in the chapter "Error!
Reference source not found.".

11.5 The single feedback mode: UM=5

The single feedback mode is used when the same sensor is used for speed, commutation and
for position. This is a common situation where only one position sensor is installed in the
system.

 The block diagram of the single feedback mode UM=5 is depicted below:

Software
position

command

Σ

Enable if

RM==1

Auxiliary position
command

Stop
manager

Stop and limit
switches

Smoother

d/dt

Position
 Controller

FF[2]

ΣΣ

main feedback
encoder

Speed
Estimator

- -

Σ

DV[3]
DV[2]

Speed
 Error, for the

speed controller

d/dt

Acceleration
 feed forward

FF[1]

Position
correction

Figure 23: Dual feedback mode (UM=5)

The position and the speed commands are generated by:
• The position software command generator
• The position auxiliary command generator
• The position Stop Manager

The generation of the position and speed commands is described in the chapter on "The
position reference generator".
The speed command, multiplied by the gain FF[2], is fed as reference to the speed controller
in addition to the position correction. When FF[2] is set exactly to unity, there will be no
steady state constant-speed tracking error.
The acceleration of the position command, multiplied by FF[1], can be injected directly as
torque command. By default, FF[1]=0.
The reference values to the position, speed, and torque controllers can be inquired by
DV[3],DV[2], and DV[1] respectively.
The details of the speed and the position controllers are given in the chapter "Error!
Reference source not found.".

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

132

12 The position reference generator

The position reference signal is generated by the following components:
• Software command generator
• Auxiliary command generator
• Stop manager.

This section describes the components of the position reference generator in detail.

12.1 The software reference generator

The Harmonica supports five modes of software references.
The reference modes are:

• Idle – The motor just stands at place. This is the default mode after setting motor on,
and after an interpolated motion is complete.

• PTP – Point to Point: The user specifies the position in which the motor is to stand,
and the limits subject to which the trajectory to the target is to be designed. The
Harmonica designs automatically a minimum-time trajectory and executes it.

• Jogging: The user specifies the speed in which the motor should steadily move, and
the acceleration limits towards that speed. The Harmonica designs automatically a
minimum-time trajectory and executes it.

• PT – Position/Time: The user specifies a set of point to be visited with fixed time
differences. The Harmonica interpolates a 3rd order polynomial between the user's
points. The speeds at the user points are selected to form a smooth motion
trajectory. Using the PT, complex motions are easily designed. PT data may be
transferred to the amplifier on-line using an efficient CAN PDO protocol, so that
infinite PT motions are possible.

• PVT – Position/Velocity/Time: The user specifies a set of motion points. Each point
includes a position, and the speed and the time at which the position is to be visited.
The user points are interpolated using third order polynomials. The PVT mode
allows absolute time specification, thus several amplifiers may compose a fully
synchronized motion using the PVT mode. PVT data may be transferred to the
amplifier on-line using an efficient CAN PDO protocol, so that infinite PVT
motions are possible.

In order to initiate a software motion, you must initialize its parameters and issue a mode
command. The next BG (software, hardware, or timed) will start the motion.
The mode command are listed in the following table:
Command Mode
ST Idle. ST stops any motion.
PA PTP. PA=n specifies a PTP motion, to the absolute position n counts
JV Jogging. JV=n specifies a Jog motion, with the speed n counts/sec
PT PT. PT=n specifies a PT motion, beginning from the n’th item in the PT

data table
PV PVT. PV=n specifies a PVT motion, beginning from the n’th item in the

PVT data tables

 Table 12-1: Software motion mode commands

12.1.1 Switching Between Motion Modes

Stopping by the ST command is available anytime. The amplifier will decelerate the
position reference until a complete stop.
PTP and jog motions can be commanded to anywhere, any time. The Amplifier will
calculate the path to be followed so that the desired speed or position is reached, subject to
the acceleration limits. PTP and jog motions can even be initiated while PT or PVT motion

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

133

is on. Care must be taken if the smooth factor (SF) is nonzero. Upon switching from
interpolated motion to PTP or jogging, the PTP or the Jogging will start un-smoothed.
Smoothing will gradually build up. After SF milliseconds, the motion shall be fully
smoothed.

Care is required, however, when switching to the tabulated (PT and PVT) motion modes.
The PV and the PT modes should be started only when the motor is in complete stop (MS=0
or MS=1), at the exact position specified as the first point for the PT or for the PVT. If the
motor is not in complete stop at the correct starting position, the software reference shall
jump. The command to the position controller will try to catch up with the PT or the PVT
motion, using the SD acceleration – refer the section on "Stop management".

12.1.2 Comparison of the PT and the PVT interpolated modes

The following tables compare the PT and the PVT motion modes.

Feature PT PVT
Motion buffer length 1024 64
Position points in one CAN
message

2 1

Speed command calculation Automatic, by 3rd order
interpolation

Specified by user

Acceleration command Automatic, by 3rd order
interpolation

Automatic, by 3rd order
interpolation

Time between user data points A fixed multiple of the 1 to 255
sampling times of the controller.
Cannot be changed on the fly.

Specified by the user
independently for each motion
interval, in msec. In the range
[1,255] msec.

Cyclical motion support Yes Yes
On the fly motion
programming with hand-
shaking host protocol

Yes Yes

Table 12-2 – Tabulated Motion Difference

Feature Preferred
Long pre-programmed motions PT
Ease of use PT
Variable command sampling time PVT
Motion design independent of controller sampling
time

PVT

Synchronized, multiple axis motions PVT

Table 12-3 – Tabulated Feature Preference

12.1.3 The Idle Mode and Motion Status

After motor on, the position profiler is Idle. This means that the software position command
is fixed. The idle mode is revisited whenever a mode terminates (A PTP or a tabulated
motion is completed), or by a stop (ST) command.
The Idle mode is the only mode in which it is possible to change the parameters of the
external reference generator.
The Idle mode of the position reference generator may be identified by the MS (Motion
Status) variable. The reading of the MS variable are summarized in the following table:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

134

MS
Value

Description

0 The position reference generator is idle. Moreover, the Motor position stabilized
within the target radius for long enough time.

1 The position reference generator is idle, or the motor is off (MO=0).
2 The position reference generator is active in one of the optional motion profilers –

PTP, Jog, PT, or PVT.

Table 12-4: Motion status indications

 When MS is 1 or less, it is possible to switch the parameters of the external reference
generator.
 The condition MS=0 is stronger – it implies that the motor position is indeed stabilized.

 The motor position is considered stable if the motor position is within the target radius, for
the target time at least. The target radius is given by TR[1] counts, and the target time is TR[2]
msec.
Example

The target time and the target radius concepts are demonstrated in the drawing below.

0.011
9

0.012
4

0.046
2

0.050
6

0.074
4

0

200

400

600

800

1000

1200

1400

Target
radius

Time
(sec)

In this drawing we see an overshooting settling of the motor position on a target at 1000
counts. The target radius is 20. The motor position is within target radius is the range of
[980-1020] counts.
For the dynamics of the example, it is reasonable to select the target time TR[2]=30. If
TR[2] is selected too low, false "On Target" decisions may result. For example, if the target
time is set as 3msec, a final stabilization will be concluded at the time of 0.049 sec, since
during the time interval [0.046, 0.049] the motor was within the allowed position error [980-
1020] counts.

12.1.4 Point-To-Point (PTP)

12.1.4.1 Basic Point-To-Point
In this motion mode the motor will move from its present position to a final point. The final
point is arrived in zero speed and the motor stays there.
The trajectory to the final point is calculated based on the speed, acceleration, and
deceleration limits, as set by the AC, DC, and SP parameters respectively.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

135

The largest PTP motion available is XM/2 (or 302 if XM=0). This is since with modulo
calculations, the PTP motion will always go the short way. For example, if XM=1000, the
present position reference is 490, and the command PA=-490;BG is entered, then the
position reference will increase and go through 499 to –500 and then to –490. The total
length of the movement shall be 20 counts.

The parameters of PTP motion are summarized in the table below.

Parameter Action
AC Acceleration in counts/ 2sec
DC Deceleration in counts/ 2sec
SP Maximum speed in counts/sec
SF Smooth factor, in milliseconds
PR Relative position in counts
PA Specifies that the next motion shall be a PTP, and the absolute target position.

Table 12-5 – Parameter of PTP Motion

The PA command has more than one role. PA=n specifies that the next BG will start a PTP
motion. In addition, it specifies the target of the next PTP move.
When in the PTP mode, a BG command performs the following algorithm:

• PA=PA+PR
• Go to PA

PA is the absolute position target.
PR is the relative position target. The PR parameter enables the specification of an
incremental move, or a series of incremental moves. PR is reset to zero by the PA=n
command. Therefore, PA=n; BG initiates a motion towards n.
The value of PA is incremented automatically with PR every time a new motion is initiated.
For example, the sequence
PA=0;BG;while(MS==0);PR=1000;BG; while(MS==0);BG; while(MS==0);BG
Initiates four consecutive PTP motions, targeted to 0,1000,2000,and 3000 counts
respectively.

12.1.4.2 Example
The simplest point-to-point motion is from a stationary position to another stationary position.
The acceleration and the final speed limits are AC=100000,DC=200000,SP=2000.
We begin from PX=0 and command PA=70;BG
The speed graph shows the acceleration, constant speed, and deceleration state in the trajectory to the target.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

136

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1000

2000

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

Speed

Acceleration
(AC)

Constant speed
(SP)

Deceleration
(DC)

Position

With shorter movement, the deceleration begins before the limit speed is reached, so that the SP speed limit
is not effective. This situation is depicted in the figure below:

0 0.01 0.02 0.03 0.04 0.05 0.06
-500

0

500

1000

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

AC

DC

Time (sec)

Time (sec)

Speed

Position

12.1.4.3 More Complicated PTP Motions
PTP motions may be initiated any time, using the PA command, not necessarily from a stationary state.
The PTP decisions, made every position control cycle, are given in the flow chart below.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

137

S ta r t

W ill s tea dy
de c e ler a t ion a t
D C s to p m o tio n
be fo r e ta rg e t?

S pe ed > S P ?

S pe ed = S P ?

Y es

N o

Y es

A pp ly A C

M a inta in S P

A pp ly D C

A pp ly D C

Figure 24 – PTP Decisions Flow Chart

All the parameters of the above flow chart, including AC,DC, SP, and the position target are updated by a
BG command, or by its hardware activated equivalent.

Example – On-The-Fly Change of The Position Target

The acceleration and the final speed are AC=100000,DC=200000,SP=20000.
We begin from PX=0 and set the target position by PA=100;BG.
The position reference has not yet stabilized to the position target, when the target position switched by the
command
PR=-400;BG;
To the position target of (PA+PR)=-300.
The Amplifier calculates the position reference to reach the new target.
 Note that in this example the position reference overshoots the original target position of 100. This is since
at the time the target position was changed, the Amplifier was approaching the target using DC. When a new
target is set, the Amplifier exits the state of final approach. It therefore uses the AC acceleration, which in
this example is smaller, than DC. With the reduced acceleration, it cannot avoid the overshoot.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

138

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-10000

-5000

0

5000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-400

-200

0

200

Counts/sec

Counts

Time (Sec)

Time(sec)

Position reference

Target position

AC DC

DC

AC

12.1.5 Jogging

In a jogging motion, the motor is commanded to move in a fixed speed. The acceleration (or deceleration) to
the desired speed are the AC and the DC parameters.
Jog motions may be initiated any time by using the JV command, not necessarily from a stationary state.
The Jog mode decisions, made every position control cycle, are given in the flow chart below.

Start

JV > 0 and
Speed > JV?

Yes Apply DC

Speed = JV? Yes

Apply AC

Maintain JV

JV< 0 and
Speed < JV?

Yes Apply DC

Figure 25 – Jog Decisions Flow Chart

All the parameters of the above flow chart, including AC,DC, JV, and the position target are updated by a
BG command, or by its hardware equivalent (refer the IL[N] command).

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

139

Jog motions can continue forever. The position reference jumps when it arrives the modulo boundary (+/-230
for XM=0 or +/- XM/2) but the speed is kept constant
The parameters of Jog motion are summarized in the table below.

Parameter Action
AC Acceleration in counts/ 2sec
DC Deceleration in counts/ 2sec
SF Smooth factor, in milliseconds
JV Jog velocity

The JV command has double role. It specifies that the next motion will be a Jogging, and also to what speed
the jog will target.

12.1.5.1 Example – Simple jogging
The example is started by the command sequence JV=3000;BG
The position reference starts to accelerate until the jog speed of 3000 is reached.
Later the command sequence JV=1500;BG changes the speed of the position reference to 1500 counts/sec.

0 0.02 0.04 0.06 0.08
0

1000

2000

3000

0 0.02 0.04 0.06 0.08
0

50

100

150

Time (sec)

Position reference

Counts/sec AC
DC

JV=1500

JV=3000

Time (sec)

12.1.5.2 Example – On the fly mode switching
The example below is started by the command sequence
AC=100000;DC=200000;PA=100;BG;
A PTP motion starts, in which the Amplifier brings the reference position to the position target.
At the time of 0.055 sec, where in the picture below the plot of the position target terminates, the command
JV=-2000;BG; is entered. The Amplifier uses the AC acceleration to arrive at the desired speed.
If, at the time of the BG, the speed of the position reference were more negative than –2000, the Amplifier
would use the DC parameter instead of AC.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

140

0 0.1 0.2 0.3 0.4
-2000

0

2000

4000

0 0.05 0.1 0.15 0.2 0.25

-200

-100

0

100

Time (sec)

Time (sec)

Position reference

Position Target

Counts/sec

Counts

12.1.6 PVT: Position-Velocity-Time interpolated motion

12.1.6.1 What is PVT?
PVT stands for Position Velocity Time.
In a PVT motion, the user provides the desired position and speed at certain time instances. Between the
times specified by the user, the motion controller interpolates to obtain smooth motion.
The position and speed specifications are absolute. The time specification is relative.
A PVT motion can be referred to absolute time by requiring the PVT motion to start at a specified start time.
Use the BT (Begin on Time) command to start a PVT motion exactly at a given time, with microsecond
resolution.
The ability to refer PVT motions to absolute time makes them ideal for multiply axis tightly synchronized
motions.
For an explanation how to synchronize the absolute time counters of several amplifiers to the precision of
few microseconds, refer the CAN manual.
Example

Suppose we want the system to be at the position of 1000 and the speed of 100000 count/sec at a given time,
and to be at the position of 1620 and the speed of 110000 count/sec, 6 msec later.
Then the first point is specified by
Position = 1000,
Speed = 100000,
Time = (Not relevant to the described motion, but to the previous motion segment)
The second point is specified by
Position = 1620,
Speed = 110000,
Time = 6msec

The time is defined with msec units, not in amplifier sampling times. The Amplifier interpolates the motion
specification to calculate the desired position and speed at the sampling instances, when it needs the
information.

PVT implements a 3rd order interpolation between the position-speed data provided by the user.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

141

The user provides, for each motion interval, the boundary positions and speeds. Mathematically, the user
provides the following data:

• The starting position and speed, denoted by P0 and V0, respectively
• The end position and speed, denoted by PT and VT, respectively.

Let 0t denote the starting time, and let T denote the length of the time interval.

The position for]Tt,t[t 00 +∈ is given by the 3rd order interpolating polynomial:

 d)tt(c)tt(b)tt(a)t(P 0
2

0
3

0 +−+−+−=

The speed is given by:

c)tt(b2)tt(a3)t(V 0
2

0 +−+−=

The four parameters a, b, c, and d are unknown. They can be solved using the four linear equations
0P)t(P 0 = , Namely 0Pd = .

0V)t(V 0 = , Namely 0Vc =

PT)Tt(P 0 =+ , Namely dcTbTaTPT 23
+++=

VT)Tt(V 0 =+ , Namely cbT2aT3VT 2
++=

Example

In this example, we demonstrate how very few points can accurately describe a smooth and long motion
path.
Consider two Amplifiers, driven synchronously do draw an ellipse. One Amplifier drives the x-axis, and the
other drives the y-axis.
The long axis of the ellipse is 100000 counts long, and the short axis of the ellipse is 50000 counts long. The
entire ellipse is to be traveled within 2.2 seconds.
We planned a PVT motion with a fixed inter-point time of 100millisec. 23 points are enough for the entire
ellipse, as seen in the figures below. The motion is planned so that the tangential speed is accelerated to a
constant rate, and then decelerated back to zero speed at the end of the ellipse. Near the starting point of the
ellipse, the speed is slow – and therefore the PVT points, which are equally spaced in time, are more
spatially dense there. The continuous line in the figure below depicts the true ellipse and also the ellipse
generated by the Amplifier by interpolating the PVT points.
The original ellipse and the Amplifier interpolation of the PVT points are so close, that they can't be resolved
on the plot.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

142

-4 -2 0 2 4

x 10
4

-4

-3

-2

-1

0

1

2

3

4
x 10

4

Nominal ellipse

Ellipse PVT points

Motion starts and teminates here

The next figure takes a closer look at the error between the true ellipse and the Amplifier interpolated path.

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

Difference
(counts)

msec

We observe that with 23 PVT points only, the interpolated path never differs from the original ellipse by
more than 8 counts (remember that the ellipse axes are 100000 and 50000 counts respectively)!
At the PVT points, the interpolation error is zero.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

143

The next figure displays the interpolated trajectories generated by the Amplifiers for the x-axis and for the y-
axis.

0 500 1000 1500 2000 2500
-6

-4

-2

0

2

4

6
x 10

4

msec

Counts

X axis trajectory

Y axis trajectory

Example

The Amplifier normally produces maximally smooth interpolating trajectories. For this reason, the ellipse of
the previous example could be interpolated using so few points.
Accurate corners require, however, non-smooth interpolation. Specifying zero speed for the corner points
generates hard corners. The graph below shows a 2-axes synchronized PVT trajectory of an accurate
rectangle.

-3 -2 -1 0 1 2 3

x 10
4

-2

-1

0

1

2
x 10

4

0 5 10 15 20 25
-2

-1

0

1

2
x 10

5

x speed
y speed

Counts/sec

PVT points

Rectangle

Counts

Counts

For the corner points, both the x and the y speeds are specified to zero.
The interpolation error for the entire rectangle is zero.

Example

Consider the following PVT interpolation interval:
Parameter Value
Starting position 1000cnt

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

144

Starting speed 100000cnt/sec
End position 1200cnt
End speed 190000cnt/sec
Time 6msec

The interpolated path for the data of the table is depicted in the figure below, for a controller with a sampling
time of 160 µsec.
The + symbols show the points at integer multiples of the controller sampling time. At these points, the
Amplifier evaluates the interpolated motion path.

0 1 2 3 4 5 6
1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

Position

Time

The end point does not necessarily fall on a controller sampling time.
Weird looking position commands may result if the speed choice is not coherent with the position and time
definitions. The position distance and the time between the points imply an average speed of (1200-
1000)/0.006 = 33000 count/sec. This average conflicts with the boundary point speed specifications of
100000cnt/sec and 190000cnt/sec respectively.

12.1.6.2 The PVT Table
A three-column table defines the PVT motion.
Each row of the table defines the position and the speed at a single time instant.
The table looks as follows:

#Index P (32 bits) V (24 bits) T (8 bits)
1 QP[1] QV[1] QT[1]
2 QP[2] QV[2] QT[2]
… QP… QV… QT…
64 QP[64] QV[64] QT[64]

Table 12-6 – PVT Table

The table has 64 rows, and can thus specify up to 63 consecutive PVT motion segments3.
The cells of the PVT table may be accessed using the QP, QV, and QT commands.
The QP[N] command sets/reads the n'th row of the P column.
The QV[N] command sets/reads the n'th row of the V column.
The QT[N] command sets/reads the n'th row of the T column.

The positions in the table are limited to range of the position feedback, which is +/- 302 counts at most.

3 64 segment if the table is used cyclically.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

145

The speeds in the table are limited to +/- 232 counts/second.
The times in the table are in the range [1,255] msec.
If the position feedback sensor counts modulo, the PVT data must be so that the range of the interpolated
data is [-XM...XM-1] (Set YM instead of XM here and in the next sentences if UM=4). Interpolated results
in the ranges [-XM...-XM/2-1] or [XM/2...XM-1] will be folded modulo XM to the sensor range of [-
XM/2...XM/2-1]. Interpolated points out of the range [-XM...XM-1] will be clipped by the Stop-Manager,
refer the section on the "Stop management".

12.1.6.3 Motion Management
In the PVT mode, the Amplifier manages a “read pointer” for the PVT table.
When the read pointer is N, the present motion segment starts at the coordinates written at the Nth row of the
table, and ends at the coordinates of the (N+1) row4.
When the time period specified by QT[N] elapses, the N segment is done, the Amplifier increments the read
pointer to N+1, and reads the N+2 PVT table row to calculate the parameters of the next motion segment.

The user does not have to use the entire PVT table for a given motion.
The use of the PVT table is defined by the following parameters:

Parameter Use
MP[1] The lowest valid row of the PVT table
MP[2] The highest valid row of the PVT table
MP[3] A bit field.

Bit 0 is:
0: Motion is to stop if the read pointer reaches MP[2]
1: Motion is to continue when the read pointer reaches MP[2]. The next
row of the table is MP[1].
Bit 1 is:
0: PVT motion not expected to terminate. Issue an exception if PVT
motion terminates.
1: PVT motion expected to terminate. When all the data in the PVT table
has been used, exit the PVT mode to the Idle mode without issuing an
Emergency object.

Table 12-7 – PVT Motion Parameters

The flow chart of the basic PVT mode is depicted below. The flow chart assumes that the commands
PV=N;BG; were entered, with 64N1 ≤≤ .

4 The PVT mode may be cyclical, according to MP[3] – please refer the explanations below. In that case N+1 must be
interpreted in the modulo sense.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

146

Motion
segment

completed
?

N >= MP[2]-1

Increment
read pointer

Read the N+1 row of the PVT
table and calculate the

parameters of the next motion
segment

Initial
conditions:
PVT read

pointer equals
N

Interpolate
position

command

Go to
position

controller

MP[3]==1

Exit PVT mode:
Set Stop motion,

using the SD
deceleration

Set the read
pointer to

MP[1]

Yes No

Yes

Yes

No

Figure 26 – PVT Decisions Flow Chart

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

147

A PVT motion is initiated by stating
PV=N with 64N1 ≤≤ , and BG.
The command PV=N sets the read pointer of the table to N and specifies that the next BG will start a PVT
motion. BG starts the motion.
The PVT table may be written on-line while PVT motion is on. An infinite-time non-periodic motion can be
generated in the cyclical mode (MP[3]=1), by programming the PVT table on the fly.

The host must know how much free place there is in the PVT table, in order to keep programming an
executing PVT motion. The best way is to keep tracking the table read and write pointers. The host knows
the write table, since it control the writing to the table. If the host is in doubt, it can inquire MP[6]. To
inquire the read pointer use the command PV.
The read pointer and the write pointer can be mapped to a synchronous PDO, so a CAN master can
efficiently and continuously get informed about the status of many amplifiers running PVT in parallel in a
network.
If the host doesn't want to poll the status of the PVT motion continuously, it can use the queue underflow
CAN emergency object as a request to refill the PVT table – see details in the sequel.

The unused part of the PVT table may be programmed for the next motion while the present motion is
executing.
An attempt to modify the data of an executing motion segment is an error.

12.1.6.4 Mode Termination
The PVT motion terminates upon one of the following cases:

• The motor is shut down, either by programming MO=0 or by an exception
• Another mode of motion is set active, e.g. by programming PA=xxx;BG. In this case, the new

motion command executes immediately, without having to explicitly terminate the PVT mode.
• The PVT motion manager runs out of data. This happens when the read pointer reaches MP[2] and

MP[3] is zero. This may also occur in the auto increment mode (CAN communications only, see
below) if the read pointer reaches the write pointer. In that case, the PVT motion is stopped
immediately, using the SD deceleration. Note that if the last programmed PVT speed is zero, then
the PVT motion terminates neatly, and the stopping at the end of the motion does nothing.

12.1.6.5 PVT Motion Using CAN
The PVT table allows the performance of pre-designed motion plans, as well as the on-line design of motion
plan. For on-line motion design, you can write new entries to the PVT table while PVT motion is executing.
The on-line motion design ability is limited by the speed of the communication interface.
Consider an RS-232 ASCII communication interface.
Programming of a single PVT table row has the format
QP[xx]=xxxxxxxxx;QV[xx]=xxxxxxx;QT[xx]=xxx;
Up to 40 characters may be required to program a single PVT table row.
At the communication rate of 19200 baud, this may take 20msec. At the communication rate of 115200baud,
this may take 4msec.

The CAN communication option allows much faster PVT table programming, by packing an entire PVT
table row into one PDO communication packet. For easy synchronization with the host, the Amplifier may
be programmed to send the PVT read and write pointers continuously to the host as a synchronous PDO, or
to send an emergency object whenever the number of yet unexecuted motion segments falls below a given
threshold.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

148

12.1.6.5.1 The PVT Motion Programming Message
An entire row of the PVT table may be programmed by a single PDO.
The PDO used is 0x300+ID where ID is the node ID of the Amplifier.
Note that before using PDO 0x300+ID it must be mapped to the object 0x2001.
The mapping of this PDO for the PVT mode is listed in the table below.

Object Dictionary Index 0x2001
Type RECORD, 3 elements
Access Write only
Structure: Signed32 Position

Signed24 Speed
Unsigned8 Time

PDO mapping Yes
Value limits No
Default value Not Applicable

The PDO does not specify the PVT table row to be programmed.
The row to be programmed is specified by a “write pointer”.
The parameter MP[6] initially sets the write pointer. A new PVT CANopen message (Object 0x2001) writes
the data to the table row indicated by MP[6], and then automatically increments MP[6].
The CANopen auto increment mode has the following flow diagram:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

149

Motion
segment

completed
?

N >= MP[2]-1

Increment
read pointer

Read the read pointer row of
the PVT table and calculate
the parameters of the next

motion segment

Initial
conditions:
PVT read

pointer equals
N

Interpolate
position

command

Go to
position

controller

Exit PVT mode:
Set Stop motion,

using the SD
deceleration

Set the read
pointer to

MP[1]

Yes

No

No

EMERGENCY:
QUEUE

UNDERFLOW

MP[4]>0 and
(Write pointer ==

N+1 or
left time < MP[4])

EMERGENCY:
QUEUE LOW

Yes

No

Read pointer ==
Write pointer

Yes

Yes

Figure 27 – PVT Auto Increment Mode Flow Chart

The above flow diagram differs from the basic mode in the following:

• Motion queue underflow is diagnosed by the read pointer reaching the write pointer
• Emergency objects are issued for the queue low and for the queue underflow events.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

150

12.1.6.5.2 Programming Sequence for The Auto Increment PVT Mode
PVT motion must start with initial programming of the PVT arrays.
Set
MP[1] = First valid line in the PVT table
MP[2] = Last valid array in the PVT table
MP[3] = 1 for cyclical mode.
MP[4] = Not relevant for PVT (PT only)
MP[5] = Number of left programmed motion rows to issue a “PVT queue low” Emergency object. Set to
zero if no “PVT queue low” warning is desired.
MP[6]=the write pointer. This is the next position in the PVT table to be written by the CANopen object
0x2001.

Set the QP[N], QV[N], and QT[N] array elements for at least the first used two rows of the PVT table. This
is since PVT requires at least two time points to interpolate the motion trajectory.

Set (if not already set) UM=4 or UM=5, and MO=1
Set PV=N, assuming QP[N] ,QV[N] ,QT[N] and QP[N+1] ,QV[N+1] ,QT[N+1] are all programmed to valid
values.
Start the motion by a BG.
Use the CAN PVT/Auto increment command for the rest of the PVT motion.

Keep informed how the PVT motion advances, either by receiving the read and the write PVT table pointers
continuously, mapped to a synchronous PDO, or by using the queue low emergency signal to signal the need
for more data. The queue low emergency message includes the present location of the read pointer and the
write pointer.

It is safe to send more PVT data PDOs until the write pointer is one location before the read-pointer
specified by the queue low emergency message. The host is well aware to the location of the write pointer,
since it can count its own messages. A data message may be, however, rejected since the queue is full, or
since a message is lost. In that case, the Amplifier will issue an emergency object to the host. After receiving
the emergency object the true location of the write pointer may be unclear. The host may then set MP[6] to
the possibly rejected table row and continue the writing from there.

Do not set MP[5] (Number of rows left for queue low emergency) too high. For example, consider a slow-
responding host managing a 64 rows long PVT queue in the Amplifier. Suppose that the PVT row times are
10 msec each, and that MP[5]=55. The host gets a queue low emergency object telling that there are 64-55+1
= 8 free to program rows in the PVT table. Suppose that the host takes 50msec to respond, and 5 msec to
program each row. Thus, the 8 rows have been programmed in 90 msec. In the meantime, 9 additional PVT
table rows have been executed, and there are only 54 valid rows in the PVT table. As 54 is lower than
MP[5], there will be no more queue-low emergency messages until the PVT table is exhausted, and the PVT
mode is terminated. This situation may be remedied if the host asks the Amplifier for PV (location of read
pointer) after the PVT table writes are complete. If PV<MP[5], the programming process took too much
time, and the writing must be continued.

Accurate timing with respect to the host is the essence of multiple-axis synchronized motion. Accurate
timing may be achieved by using the CAN SYNC signal, and the CAN synchronized BG service, as
described in the CAN Manual.

12.1.6.6 The Parameters of The PVT Motion Mode
The following parameters apply to PVT motion

What How Comment
Unit Mode (UM) Unit modes 3, 4 and 5 select

the position modes.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

151

Stop Deceleration (SD) The rate of deceleration in the
case where motion is killed by
queue underflow or by an
exception.
The rate off acceleration to
catch up if PVT is started with
bad initial conditions.

Position/Velocity/Time
(PV)

Set a PVT motion command

PVT table entries: QP[N],
QV[N], QT[N]

Set values to the PVT table The PVT table elements can
also be set using PDOs as
described above.

MP[1] = First valid row in
PVT table
MP[2] = Last valid row in
PVT table
MP[3]:
Bit0 = Cyclical motion (0
non-cyclical, 1 cyclical)
Bit1 = Expected stop (0 –
Issue Emergency on stop, 1 –
Expect stop)
MP[5] = Number of yet
unexecuted table rows for
queue low alarm.

Motion Parameters (MP)

MP[6] = Initial value for the
write pointer

Configure a PT or PVT
motion.
MP[6] and MP[5] are for the
CANopen auto increment
mode only.

Table 12-8 – PVT Related Parameters

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

152

The following CAN emergencies are supported, all as manufacturer specific:

Error
code
(Hex)

Error
code
(Dec)

Reason Data field

0x56 86 The queue is low: The number of yet
unexecuted PVT table rows dropped below
the value stated in MP[4]

Field 1: Write pointer
Field 2: Read pointer

0x5b 91 The write pointer is out of the physical
[1,64] range of the PVT table. The reason
may be a bad setting of MP[6].

The value of MP[6]

0x5c 92 The PDO 0x3xx is not mapped
0x34 52 Ann attempt has been made to program

more PVT points then there is place in the
queue.

Field 1:
The index of the PVT table
entry that could not be
programmed.

0x7 7 Cannot initialize motion due to bad setup
data. Reasons:
- The write pointer is outside the range
specified by the start pointer and the end
pointer.

0x8 8 Mode terminated, and the motor has been
automatically stopped (In MO=1).

Data field 1:
Write pointer
Data field 2:
1 for End of trajectory in non
cyclic mode
2 for A zero or negative time
specified for a motion interval
3 for Read pointer reached
write pointer

0x9 9 A CAN message has been lost. .

Table 12-9 – PVT CAN Emergency Messages

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

153

12.1.7 PT Motion

12.1.7.1 What Is PT
PT stands for Position-Time.
In a PT motion, the user specifies a sequence of absolute positions to be visited by the Amplifier with equal
time spaces. The time space must be an integer multiple of the Amplifier sampling time. Between the user
specified positions, the Amplifier interpolates smooth motion.
The position specifications are absolute.

Interpolation Mathematics
PT implements a 3rd order interpolation between the position data points provided by the user.
Let sTmT ⋅=

Where:

sT is the sampling time of the position controller. The parameter WS[29] reads sT .

T is the sampling time of the PT trajectory
m (The system parameter MP[4]) is the integer parameter relating sT and T.

For the case 1m = , no interpolation is required.
For 1m > , there are sampling instances of the position controller for which the path command must be
interpolated. We use a 3rd order polynomial interpolation.

The user provides the position points N...1k),k(P = .

The Amplifier calculates the speeds N...1k),k(V = for the points N...1k),k(P = as follows:

If k is an ordinary point inside the path:
T2

)1k(P)1k(P
)k(V

−−+
=

If k is the first programmed point in the path:
T

)k(P)1k(P
)k(V

−+
=

If k is the last programmed point in the path:
T

)1k(P)k(P
)k(V

−−
=

For each motion interval, we have four requirements to satisfy:

• Start position.
• End position.
• Start speed.
• End speed.

These four requirements exactly suffice to solve the interpolating 3rd order interpolating polynomial.

12.1.7.2 Example
Consider the position controller reference signal)t102sin()t(P ⋅π= where t is the time in seconds.
The controller has a position sampling time of 200 microseconds.
The path is programmed with a data point once per MP[4]=50 controller sampling-times (10msec).
The set of PT reference points are below depicted in circles.
The path interpolated by the Amplifier is shown as a solid line.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

154

0 0.02 0.04 0.06 0.08 0.1
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Interpolated path
PvtPlan output

Time (seconds)

Motion path in counts

12.1.7.3 PT Motion Programming – The Basic Mode

12.1.7.3.1 The PT Table
The vector QP[N] defines the position points for PT motion.
Each element of the vector defines the position at a given time.
The QP vector has 1024 elements, and can thus specify up to 1023 consecutive PT motion segments, or 1024
PT motion segments in the cyclical mode.
The positions in the QP vectors are limited by the modulo-count of the controlled axis. At the maximum
(XM=0 for UM=5 or YM=0 for UM=4) the QP[N] elements are limited to +/- 302 counts.

If the position feedback sensor counts modulo, the PT data must be so that the range of the interpolated data
is [-XM...XM-1] (Set YM instead of XM here and in the next sentences if UM=4). Interpolated results in
the ranges [-XM...-XM/2-1] or [XM/2...XM-1] will be folded modulo XM to the sensor range of [-
XM/2...XM/2-1]. Interpolated results out of the range [-XM...XM-1] will be clipped by the Stop-Manager,
refer the section on the "Stop management".

12.1.7.4 Motion Management
In the PT mode, the Amplifier manages a “read pointer” for the QP[] vector.

When the read pointer is N, the present motion segment starts at the position of QP[N], and ends at
QP(N+1)5. After MP[4] control sampling times, the Amplifier increments the read pointer to N+1, and reads
the QP[N+2] to calculate the parameters of the next motion segment.

The user does not have to use the entire PT table for a given motion.

The parameters of a PT motion are summarized in the following table:

Parameter Use Comment
MP[1] The lowest valid element of the QP vector
MP[2] The highest valid element of the QP

vector

5 The PT mode may be cyclical, according to MP[3] – please refer the explanations below. In that case N+1 must be
interpreted in the modulo sense.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

155

0: Motion is to stop if the read pointer
reaches MP[2]

MP[3]

1: Motion is to continue when the read
pointer reaches MP[2]. The next row of
the table is MP[1].

Cyclical behavior definition.

MP[4] The number of controller sampling times
in each PT motion segment.

Table 12-10 – PT Motion Parameters

The flow chart of the basic PT mode is depicted below.

Motion
segment

completed
?

N >= MP[2]-1

Increment
read pointer

Read the N+1 element of the
PQ vector and calculate the

parameters of the next motion
segment

Initial
conditions:
PT read

pointer equals
N

Interpolate
position

command

Go to
position

controller

MP[3]==1

Exit PT mode:
Set Stop motion,

using the SD
deceleration

Set the read
pointer to

MP[1]

Yes No

Yes

Yes

No

Figure 28 – PT Decisions Flow Chart

A PT motion starts by stating
PT=N with 1024N1 ≤≤ , and BG.
The command PT=N sets the read pointer of the QP vector to N.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

156

BG starts the motion.
The QP vector may be written on-line while a PT motion is on, as long as you don't program presently
executing PT elements.

12.1.7.5 Mode Termination
The PT motion terminates upon one of the following cases:

• The motor is shut down, either by programming MO=0 or by an exception.
• Another mode of motion is set active, e.g. by programming PA=xxx;BG. In this case the new motion

command executes immediately, without having to explicitly terminate the PT mode.
• The PT motion manager runs out of data. This happens when the read pointer reaches MP[2] and

MP[3] is zero. This may also happen in the auto increment mode (CAN communications only, see
below) if the read pointer reaches the write pointer. Then the PT motion is stopped immediately,
using the SD deceleration. Note that if the last programmed PT speed is zero, then the PT motion
terminates neatly.

12.1.7.6 PT Motion Using CAN
The PT table allows the performance of pre-designed motion plans, as well as the on-line design of motion
plans by writing the QP vector while PT motion is executing.
The on-line motion design ability is limited by the speed of communication interface.
Consider an RS-232 ASCII communication interface.
Programming of a single QP vector element has the format
QP[xx]=xxxxxxxxx;
Up to 18 characters may be required to program a single position point.
At the communication rate of 19200 baud, this may take 9msec, and 1.8msec at the baud rate of 115200.

The CAN communication option allows much faster PT programming, by packing two position points into
one PDO communication packet. For easy synchronization with the host, the Amplifier may be programmed
to send the PT read and write pointers continuously to the host as a synchronous PDO, or to send an
emergency object whenever the number of yet unexecuted motion segments falls below a given threshold.

12.1.7.7 The PT Motion Programming Message
Two positions for the QP vector can be programmed in the eight bytes of a single PDO.
The PDO used is 0x300+ID where ID is the node ID of the Amplifier. Note that before using PDO
0x300+ID for PT, its PDO mapping must be first set correctly.
The mapping of this PDO for the PT mode is listed in the table below.

Object Dictionary Index 0x2002

Type RECORD, 2 elements
Access Write only
Structure: Signed32 Position1

Signed32 Position2
PDO mapping Yes
Value limits No
Default value Not Applicable

Note that the PDO does not specify the QP vector elements to be programmed.
The elements to be programmed are specified by a “write pointer”.
The value of the write pointer may be set by the parameter MP[6].
The value of the write pointer may be set once for the entire motion. The write pointer is incremented
automatically by two each time the amplifier receives a new PT motion-programming message.
The CAN auto increment mode has the following flow diagram:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

157

Motion
segment

completed
?

N >= MP[2]-1

Increment
read pointer

Read the read pointer to the
QP vector and calculate the

parameters of the next motion
segment

Initial
conditions:
PT read

pointer equals
N

Interpolate
position

command

Go to
position

controller

Exit PT mode:
Set Stop motion,

using the SD
deceleration

Set the read
pointer to

MP[1]

Yes

No

No

EMERGENCY:
QUEUE

UNDERFLOW

MP[4]>0 and
(Write pointer ==

N+1 or
left time < MP[4])

EMERGENCY:
QUEUE LOW

Yes

No

Read pointer ==
Write pointer

Yes

Yes

Figure 29 – PT Auto Increment Mode Flow Chart

The above flow diagram differs from the flow diagram of the basic mode in the following:
• The read pointer reaching the write pointer identifies motion queue underflow.
• Emergency objects are issued for the queue low and for the queue underflow events.

12.1.7.8 Programming Sequence for The Auto Increment PT Mode

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

158

PT motion must start with initial programming of the PT arrays.
First set
MP[1] = First valid line in the PT table
MP[2] = Last valid array in the PT table
MP[3] = 1 for cyclical mode.
MP[4] = the ration between the length of the PT time interval and the sampling time of the position
controller
MP[5] = Number of yet unused QP[N] elements when a “PT queue low” emergency object is sent. Set to
zero if no “PT queue low” warning is desired.
MP[6]=the write pointer. This is the next position in the QP[N] vector to be written by the CANopen object
0x2002.

Set the QP[N] for at least the first two points in the PT motion. This is since the PT algorithm requires at
least two time points to interpolate a motion trajectory. Set at least 3 points if the speed at the second point is
to be continuous.

Set (if not already set) UM=4 or UM=5, and MO=1

Set PT=N, where QP[N] and QP[N+1] and preferably QP[N+2] are all programmed to valid values.

Then use the CAN PT/Auto increment command for the rest of the PT motion.
Keep informed how the PT motion advances, either by receiving the read and the write PT table pointers
continuously, mapped to a synchronous PDO, or by using the queue low emergency signal to signal the need
for more data. The queue low emergency message includes the present location of the read pointer and the
write pointer. It is safe to send more PT data PDOs until the write pointer is one location before the read-
pointer specified by the queue low emergency message.

The host is well aware to the location of the write pointer, since it can count its own messages. A data
message may be, however, rejected since the queue is full, or since a message is lost. In that case, the
Amplifier will issue an emergency object to the host. After receiving the emergency object the true location
of the write pointer may be unclear. The host may then set MP[6] to the possibly rejected table row and
continue the writing from there.

12.1.7.9 The Parameters of The PT Motion Mode
The following parameters apply to PT motion

What How Comment
Unit Mode (UM) Unit modes 3,4 or 5 select a

position mode.

Stop Deceleration (SD) The rate of deceleration in
the case where motion is
killed by queue underflow or
by an exception.
SD is also the acceleration to
catch up with a PT motion
started with bad initial
conditions.

Position/ Time (PT) Set a PT motion command Special features are available for
PT using CAN communication

PT table entries: QP[N] Set values to the PT table
MP[1] = First valid row in
PVT table
MP[2] = Last valid row in
PVT table

Motion Parameters (MP)

MP[3] = Cyclical motion (0
non-cyclical, 1 cyclical)

Configure a PT or PVT motion.
MP[6] and MP[5] are for the CAN
auto increment mode only.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

159

MP[4] = Ratio between the
command sampling time and
the position controller
sampling time
MP[5] = Time for queue low
alarm

MP[6] = Initial value for
write pointer

WS[29] Sampling time, in
microseconds, of the position
controller.

A read only parameter. WS[29] is
an integer multiple of the basic
sampling time as set by TS.

Table 12-11 – PT Related Parameters

The following CAN emergencies are supported, all as manufacturer specific:

Error
code
(Hex)

Error
code
(Dec)

Reason Data field 1

0x56 86 The time for the entire left valid PT
program has dropped below the
value stated in MP[4]

Time msec left with valid motion
program

0x5b 91 Write pointer out of the physical
[1,1024] range of the QP vector.
The reason may be a bad setting of
MP[6].

The value of MP[6]

0x5c 92 The PDO 0x3xx is not mapped
0x34 52 Ann attempt has been made to

program more PT points then
supported by the queue.

The index of the PT table entry that
could not be programmed.

0x7 7 Cannot initialize motion due to bad
setup data. Reasons:
- The write pointer is outside the
range specified by the start pointer
and the end pointer.

0x8 8 Mode terminated, and the motor
has been automatically stopped (In
MO=1). Reasons are:
End of trajectory in non cyclic
mode (MP[3]=0) [Additional code
1]
A zero or negative time specified
for a motion interval [Additional
code 2]
Read pointer reached write pointer
[Additional code 3]

Read pointer

Table 12-12 – PT CAN Emergency Messages

12.2 The External Position Reference Generator

This section summarizes how the Amplifier generates the external motion command for the
position controller.
The external position reference is useful for:

• Positioning a manipulator on a moving object. The desired position of the manipulator
with respect to the object on the conveyer can be programmed as a software motion, like

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

160

PTP or PVT. The position of the conveyer is not known in advance, and it must be
measured on line, for example by using the auxiliary encoder input. The reading of the
auxiliary input is scaled by the follower ratio (FR[3]) parameter, and added to the
software command.

• Driving the amplifier as a slave in a larger arrangement. For example, when the
amplifier moves a valve in a pressure control system, its position command may be
an analog output of a pressure controller.

• Synchronizing several amplifiers. Several amplifiers may be driven by an auxiliary
encoder signal. Each of the amplifiers uses its ECAM table to derive its own motion
path from the auxiliary signal.

The external position reference is generated by the following scheme:

Auxiliary encoder
input

Analog input 1
(-10 to 10 Volts)

AG[3]
Count/Volt Σ

Auxiliary position
command

Σ

AS[1]

`

-

FR[3]

ECAM table
Use ECAM

if EM[1]==1

Figure 30: External position reference generator

The following parameters determine how the position reference is composed:

Parameter Action
AG[3] Scale the analog input. The units of AG[3] are counts/Volt.
AS[1] Offset the analog input. The units of AS[1] are Volts.
FR[3] Scale the auxiliary encoder input. FR[3] is applicable only if the auxiliary encoder is

not used for position feedback.
EM[1] Define if the ECAM table transforms the external reference or not.

EM[1]=0: Do not use ECAM table
EM[1]=1: Use ECAM table for transforming the external command.

RM Define if an external reference is used at all
RM=0: Don’t use external reference
RM=1: Use external reference

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

161

Example:
This example illustrates working on a moving object. Consider the application depicted
below:

X axis

Y
 a

xi
s

Moving conveyer

Cake

Circle to
draw

10000

In this application, an x-y stage draws a chocolate picture on a cake while the cake travels
on a conveyer.
The drawing has to be accurate with respect to the cake.
In order to draw a circle of radius 10000 encoder counts on the cake in one second, the x-
axis motor must follow the trajectory

)t(c)t2cos(10000)t(x +π⋅=
Where c(t) is the position of the conveyer. If the conveyer has an encoder, we can use the
conveyer encoder to compensate its motion. Suppose that the resolution of the conveyer
encoder is similar to the resolution of the x-axis encoder.
For drawing an exact circle on the moving cake, we program the motion)t2cos(10000 π⋅

as PVT, and set RM=1, FR[3]=1.

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

x 10
4

x motion
relative to cake

Conveyer position, as measured
by the auxiliary encoder input

x motor motion command

Time (sec)

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

162

12.2.1 ECAM

ECAM is an acronym for “Electronic Cam”. It means that the position reference to the
Amplifier is not directly proportional to the summed external inputs, but is a function of
them.
The ECAM related commands are as follows:

EM[1] Asserts whether the ECAM function is active.
1 for active ECAM.
0 for direct external referencing.
Set EM[1] to 1 whenever a change is needed in EM parameters

EM[2] The last valid index of the ECAM table.
The maximum for EM[2] is 1024.

EM[3] Starting position – the value of the input to the ECAM function for
which the output of the ECAM function will be ET[EM[5]] (ET of
EM[5])

EM[4] Table difference.
When the input to the ECAM table will be EM[3]+EM[4], the ECAM
function will output ET[2].When the input to the ECAM table will be
EM[3]+2*EM[4], the ECAM function will output ET[3], etc.

EM[5] The first valid index of the ECAM table.

Table 12-13 – ECAM Related Command

The input to the ECAM Table (IET) is composed from:
IET = ((AG[3] * (Analog input 1 – AS[1])) + (FR[3] * Auxiliary Encoder)).

As a result to IET the response may be:

- If IET < EM[3], the external position command (output of the ECAM table) will be

ET[EM[5]].

- If IET > (EM[3]+(EM[2]-1)*EM[4]), the external position command will be ET[EM[2]].

- If EM[3]< IET < (EM[3]+(EM[2]-1)*EM[4]), the external position command will be
derived by linear interpolation of the ECAM table.

Example:
The parameters of the ECAM table are illustrated graphically in the figure below, for the case
EM[5]=1 and EM[2]=4.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

163

E
C

A
M

 t
a

b
le

 o
u

tp
u

t

ECAM table input

EM[3]

EM[4]

ET[3]

EM[4]ET[1]

ET[2]

ET[4]

EM[4]

EM[3]+3 EM[4]

Example:
Suppose that we want the following functional relationship between the voltage of the
analog input and the motor position:

1 1 .5 2 2 .5 3 3 .5 4
1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

1 4 0 0

1 5 0 0

1 6 0 0

1 7 0 0

1 8 0 0

1 9 0 0

2 0 0 0

A na lo g vo lta g e (V o lts)

P o s i ti o n c o un ts

We set:

AG[3]=1000 Set 1000 counts at the input of the ECAM function for 1v of input
FR[3]=0 Don't use the auxiliary encoder.
EM[2]=4 Last ECAM points has the index 4.
EM[3]=1000 The first point is at 1v, which by AG[3] is equivalent to 1000

counts
EM[4]=1000 Each two position break points are separated by 1v that by AG[3]

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

164

is equivalent to 1000 counts
EM[5]=1 First index of the table
ET[1]=1000
ET[2]=2000
ET[3]=1000
ET[4]=2000

ECAM table values

EM[1]=1 Activate ECAM.

- For every input voltage less than 1v, the external position command will be 1000.
- For input voltage of 1.5v the external position command will be 1500.
- For input voltage of 2.75v the external position command will be 1250.
- For every input voltage greater than 4v, the external position command will be 2000.

Example:
Consider an application, in which a two-axis x-y servo system is used to plot chocolate
teddy bears on birthday cakes.

Head contour

Eyes

Cake

moves

The cakes come from the oven on a conveyer. An incremental encoder measures the place of
the conveyer. Each time a new cake arrives, it operates an optical switch, which sets the
RLS input of the amplifier. In response to the RLS, the x-y axes begin to contour the head of
the teddy bear, drawing it with chocolate. Then the chocolate flow is stopped for a while,
while the x-y axis travel toward starting the eyes of the teddy bear. After drawing eyes to the
bear, the x-y stage returns to initial position, to be ready for another cake.
Both the Amplifiers that manage the x and the y-axes work in the ECAM mode. They get
their position reference as a function of the location of the conveyor, via the auxiliary
encoder input. The ECAM motion starts when a cake arrives at the plotting station. It
continues until the conveyor had traveled 4000 counts.
One of the Amplifiers controls, by a digital output, the flow of the chocolate out of the
drawing nozzle.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

165

The initial programming of the Amplifier includes:

EM[1]=1 Enable ECAM
EM[2]=200 Length of the ECAM vector
EM[3]=0 Starting position
EM[4]=100 Conveyer encoder counts between two consecutive

ECAM table entries
ET[1]=…;ET[2]=…;ET[100]=
…;

Program the numeric data of the ECAM table

UM=5 Set single sensor position mode
RM=1 Enable external referencing
AG[3]=0;FR[3]=0; Kill the external input
MO=1 Start motor
PA=1000;BG Go to waiting position
HY[2]=0;HY[3]=5;HY[1]=1 Null the auxiliary encoder count upon cake arrival (RLS

high)

Each Amplifier has the following AUTO_RLS routine:

function AUTO_RLS
/*
The RLS has operated an already programmed auxiliary homing process to synchronize
the follower input
*/
OB[1]=1;FR[3]=1; **Activate chocolate nozzle
 ** Enable the auxiliary encoder input with the

follower ratio of 1.
until (PY >= 2000) **Wait until end of the head contour
OB[1]=0; **Stop the chocolate
until (PY>=3000) **Go to start of eyes
OB[1]=1; **Restart the chocolate
until (PY>=4000) **Draw the eyes
OB[1]=0 **Stop the chocolate
FR[3]=0;PA=1000;BG; **Return to starting point
HY[1]=1 **Program the auxiliary encoder to reset again at the

next cake
return **End of auto subroutine

12.2.2 Dividing ECAM table into several logical portions

The ECAM table can store several distinct movements. A portion of the ECAM table is used
for each movement. That way a future movement can be programmed into the amplifier
while the present movement is executing.
Example
In the previous "Chocolate Teddy Bear" application example, we assumed that the Teddy
Bear could be programmed once.
In many food applications, the products to be worked on (the cake in the example) are not
placed exactly on the conveyer, or their shape may not be regular. A camera images the next
coming product, and the image is analyzed to form the next motion path.
The motion path for the analyzed image is communicated to the amplifier while the
amplifier works a previously programmed path – see figure below.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

166

Cake

Drawing x-y manipulator
station

Next cake

Camera station

CAN

Camera

Assume that the amplifiers at the x-y manipulator station runs the ECAM table entries
ET[1]...ET[100]. In the meantime, the system controller programs the next shape to run into
ET[101] ...ET[200]. The preferred way to do that is by using the fast CAN ECAM points
protocol. When the x-y manipulator will work on the ECAM table entries
ET[101]...ET[200], the system controller will program again ET[1]...ET[100] and so on.
The AUTO_RLS program of the previous example is now slightly modified to

function AUTO_RLS
/*
The RLS has operated an already programmed auxiliary homing process to synchronize
the follower input
*/
if(ET[201]==1)EM[5]=1;EM[2]=100;else,EM[5]=101;EM[2]=200;end;EM[1]=1;...
OB[1]=1;FR[3]=1;
 /* The host uses ET[201] to signal which part of the

table to use next. Select the ECAM table portion to
use by ET[201], and the set EM[1]=1 to activate the
new used portion, activate follower gain and the
chocolate nozzle*/

until (PY >= 2000) **Wait until end of the head contour
...
return

** Continue as in the previous example.

12.2.3 On the fly ECAM programming using CAN

ECAM table points can be programmed via fast, auto increment PDO service.
Two positions of the ET table can be programmed in the eight bytes of a single PDO.
The PDO used is 0x300+ID where ID is the node ID of the Amplifier. Note that before using PDO
0x300+ID for PT, its PDO mapping must be first set correctly.
The mapping of this PDO for the PT mode is listed in the table below.

Object Dictionary Index 0x2003

Type RECORD, 2 elements
Access Write only
Structure: Signed32 Position1

Signed32 Position2
PDO mapping Yes
Value limits No
Default value Not Applicable

Note that the PDO does not specify the QP vector elements to be programmed.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

167

The elements to be programmed are specified by a “write pointer”.
The value of the write pointer may be set by the parameter MP[6].

12.2.4 Initializing the external reference parameters.

This section details what happens when the external reference generator is initialized.
The external reference generator is initialized at MO=1, and each time a relevant parameter
(FR[3], AG[3], EM[1]) is changed. Note that changing EM[2],EM[3],EM[4],and EM[5]
does nothing immediately. Setting EM[1] activates the entire set of ECAM parameters.

12.2.4.1 Jump-Free Motor Starting Policy
Upon starting a motor by the MO=1 command, the motor should never jump.
The first and most important reason is safety. The other reason is to avoid an excessive
position error fault immediately after the motor is started.
In order that the motor will not jump, the initial software reference is automatically set to the
present position of the motor, and the software command remains stationary until a motion
instruction is accepted. After setting MO=1, the motion mode is Idle, so that commanding
BG without the prior specification of another motion mode will not launch any motion.

Example:
Suppose that MO=0, RM=0, and PX=1000 (Motor is off, no external reference, present position is
1000 counts). Entering MO=1 will automatically set the software position reference to 1000 counts,
in the Idle mode. The command sequence PA=0;BG will launch a PTP motion from the position of
1000 counts to the zero position.

Example:
Suppose that MO=0, RM=1, FR[3]=1, AG[3]=0, PY=3000, and PX=1000 (Motor is off, external
reference is generated by the auxiliary encoder input only with a unit follower ratio, the auxiliary
position is 3000 and the present position is 1000 counts). Entering MO=1 will automatically set the
software position reference so that the total position reference will equal PX. Therefore the initial,
automatic, software command will be PX – FR[3]*PY= 1000 - 1*3000 = -2000.
If the auxiliary encoder input is stable, the command sequence PA=0;BG will launch a PTP motion
from the position of 1000 counts to the position of 3000.

12.2.4.2 Switching the parameters of the external reference on the fly
The parameters of the external reference generator can be changed on the fly only if the software
reference generator is idle. This can be verified by the motion status – MS should return 0 or 1.
When the parameters of the external reference generator are changed, the software reference is set so
that the motor will not jump at the instance the new parameters are set. The setting of the software
reference is similar to the setting described in the section "Jump-Free Motor Starting Policy" above.

The external reference parameters that can be changed on the fly are:
Parameter Description
AG[N] Analog gain
FR[N] Follower ratio
EM[N] Ecam parameters
AS[1] Offset for analog input
HY[N] Reading of auxiliary encoder

Example:

 Consider a manipulator that works a conveyer. Whenever a box arrives, the roller prints a label on
the box. When a new box arrives, it first homes the auxiliary encoder to read zero. The auxiliary encoder
references the roller in the follower mode, with FR[3]=CA[18]/(Conveyer encoder counts/mm*2*п*r(mm)).

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

168

The software command to the roller is set as point to point, to correct the roller position for the next arriving
box.
That way the printing is synchronized to the box.

Figure 31: Print On A Moving Box Application

At the time of auxiliary homing (when a new box arrives at the sensor), the external reference jumps by
PY*FR[3]. The software command to the roller jumps in parallel by –PY*FR[3], so that the roller continues
to move normally.
Programming the ##AUTO_HM routine as

function AUTO_HM()
PA=0;BG;
return

Will position the roller phased correctly with respect to the next coming box.

12.3 The Stop management

12.3.1 General description

The "Stop Manager" block has the following functions:
• Stop the motion upon sensing a "Stop" switch, or upon sensing a limit switch (RLS

or FLS).
• Protect against discontinuity it the controller's command. A discontinuity can occur

due to:
o A switch stops the motion abruptly.
o An application error (An absolute motion mode like PVT is started with bad

initial conditions, or PVT generates position command out of the modulo
range of the feedback sensor)

• Limit the magnitude of the controller's command to the maximum allowed range.
This is necessary since even if the software command is generated within the
permitted limits, and the external command is within the permitted limits also, their
some may be out of the permitted limits.

The Stop Manager prevents the position reference generator from driving the motor to
undesired places. The stop manager does not affect the reference generator.
While this feature enable

Next box box

Conveyer speed encoder

Painting roller

Amplifier

Auxiliary
 encoder

input

Feedback encoder input

Motor

Sensor

Auxiliary
 home

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

169

The commands relevant to the stop manager are:
Command Description
SD The maximum rate that the motor can accelerate/decelerate.
IL[N] Input logic – define the functions associated to digital inputs.
VH[N],VL[N] The maximum allowed controller command
XM,YM Modulo count for the main and the auxiliary sensors

12.3.2 Stop Manager Internals

The Stop Manager is depicted in the block diagram below:

Position
command

(Software and
External)

Clip Position command
to range

Select zero

if hard-stop

Prevent backwards motion

Select

direction lim it

if RLS

Select

direction lim it

if RLS

Prevent Forward Motion

Rate &
Acceleration

lim iter

Position command to
motion controller

1

2

3

4

5

Figure 32: Stop Manager Block Manager

In the next paragraphs, we shall explain the blocks in Figure 32.

Position command clipping (Marked as 1 in the Figure)
The position command is clipped to the following values:

• VH[3] above and VL[3] below, if the position feedback sensor counts linearly.
• XM/2-1 above, and -XM/2 below in UM=4, if PX is counted modulo.
• YM/2-1 above, and -YM/2 below in UM=5, if PY is counted modulo.

The clipping is necessary since, in some circumstances explained above, the sum of the
software command and the external command, or even the software command alone, may
exceed the command limits.

Hard Stop (Marked as 2 in the Figure)

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

170

This block stops the desired position reference to its present position if a hard-stop switch is
sensed.

Right Limit Switch (Marked as 3 in the Figure)
This block stops the desired position reference to its present position if an RLS switch is
sensed, and if the output of the position reference generator is less than the controller's
position command.

Forward Limit Switch (Marked as 4 in the Figure)
This block stops the desired position reference to its present position if an FLS switch is
sensed, and if the output of the position reference generator is greater than the controller's
position command.

Rate and Acceleration (Marked as 5 in the Figure)
This block limits the speed and the acceleration of the controller's position command. The
block limits both the acceleration and the deceleration to the parameter SD, and the speed
command (the derivative of the position command) is limited to VL[2] from below, and
VL[3] from above.
The rate and acceleration limiter block intervenes in the following situations:

• The position command to the controller experiences an abrupt change – for example
when a hard-stop switch is sensed, or when a hard-stop switch is released

• The reference generator tries to command the motor in the permitted position range,
but with too great speed.

• The position command moves towards its permitted boundary (VL[3] or VH[3])
with speed greater then can be braked until the boundary with SD acceleration. For
example, near VH[3], the upper speed limit may be much smaller then VH[2].
When the position command equals VH[3], the maximum allowed speed command
is zero.

Example
In this example, the software reference generator generates a sine, using PVT.
The low position limit is VL[3]=-5000. The input to the Stop Manager and its output (the
position command to the controller) are depicted in Figure 33 below. The input of the Stop
Manager (The output of the position reference generator) is in red, and the output of the Stop
manager is in dashed green. In At the time of 0, the PVT starts at the position of 17000. The
Stop-Manager catches up with the sinusoidal command, with the acceleration limit of SD.
At the time of 1sec, a hard-stop switch becomes active, and remains active until the time of
1.2 sec. The Stop manager decelerates the position command to zero speed, using the
deceleration SD. At the time of 1.2sec, the Stop Manager begins to catch up again with the
PVT reference, with the SD acceleration.
At the time of approximately 1.7sec, the PVT reference nears the limit of VL[3]=-5000.
Before the reference waveform actually reaches –5000, the Stop Manager finds that speed is
too large for stopping at VL[3] with the deceleration of SD. It therefore reduces the speed,
coming to a complete stop at VL[3] with very small or no overshoot.
At 2.75sec, approximately, the Stop Manager finds that although the position reference is
not yet in range, it will in short time be in. The Stop-Manager begins to accelerate the motor
into the permitted range, so that catching up when the reference returns to range will be
immediate, without the delay of acceleration.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

171

0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Sec

C
o

u
n

ts

Figure 33: Position output of the stop manager

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

7

Sec

C
o

u
n

ts
/s

e
c

Figure 34: Speed output of the Stop Manager

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

172

13 Sensors, I/O, and Events

The Harmonica has two encoder inputs for feedback, commutation, and auxiliary reference generation.

In addition, it has an analog input, Hall sensor inputs, and digital I/O.

The digital inputs and the encoder index signals can generate events that may register the motor
position, or reload the position counters, or flag a digital output, or call a special user program.

The digital outputs responds also to software events, like affirmation of the conditions to start the
motor, or brakes activation upon starting or shutting the motor.

13.1 Modulo counting

13.1.1 Modulo Counting

The variable PX counts the main position sensor. The PX variable cannot increase
indefinitely. In fact, PX is limited to the range [-230...230].
For limited motions, that may be good enough.
Some applications, however, require that the motor position be counted cyclically. When a
certain top position is arrived, the position counter "rolls off" and counting continues from
the bottom position.
The most common examples for modulo counting are rotary pointing equipment like radar
pedestals, camera pointers, or rotary robot axes. In this type of equipment, the position is
normally counted modulo the mechanical rotation of the load. When the load points to a
given direction, the encoder readout will be always the same, no matter how many full
rotations have been made.
The Harmonica can handle modulo counting: It can run all the types of software motions
with modulo position counting. Point-to-Point position motions in modulo systems are
ambiguous, since any point can be reached from both directions. The Harmonica will always
go the short way.
The commands relevant to modulo counting are:
Command Description
XM Modulo value for the main position counter.

When XM is nonzero, the main position sensor counts cyclically in the
range [-XM/2...XM/2-1].
When XM=0, the main position sensor count linearly, limited to the range
[-230...230].

YM Modulo value for the auxiliary position counter. When YM=0, the auxiliary
When YM is nonzero, the auxiliary position sensor counts cyclically in the
range [-YM/2...YM/2-1].
position sensor count linearly, limited to the range [-230...230].

RM Reference mode.
Must be 0 (Do not use the auxiliary reference generator) if modulo
counting is used.
For further details refer the chapter "The position reference generator"

Table 13-1: Commands relevant to modulo counting

If XM is nonzero with UM=5, or if YM is nonzero with UM=4, the controlled motor position
will count cyclically.
When the position feedback counts cyclically:

• You cant use external position referencing (RM=1).
• The RLS and the FLS (Reverse and Forward limit switches) cannot behave

directionally, since any position can be approached from both directions.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

173

RLS and FLS can be read by the user program and activate their
corresponding automatic routines, but they do not affect the motion
immediately.

• The position referencing limits VH[3] and VL[3] become ineffective.

! If the modulo value is selected low, and the sensor speed is high, more than one full
revolution of the position counter may elapse within a single sampling time.

This will cause the position counter to behave in an unpredictable way.

Example:

Consider a motor rotating in the constant speed of 4000 counts/sec, with XM=2000. The PX variable will
behave as depicted below.

0 0.5 1 1.5
-1000

-500

0

500

1000

Time (sec)

Main
Position (PX)

The PX variable changes in the range [-XM/2 … XM/2-1], which is in this example [-1000..999].

The largest possible modulo is 312 . With this modulo setting, PX varies in the range [12..2 3030
−−].

The variable PY counts the distance traveled by the auxiliary encoder. The PY variable is counted modulo
YM, similarly to the way PX counts modulo XM.

13.2 Digital Inputs

The Harmonica has 6 digital input pins. The digital input pins must be associated to
functions before being used. All the digital input pins can be associated to the Enable, Stop,
RLS, FLS, and Begin functions. Two of the digital inputs are connected to high-speed
hardware counters. These inputs can also associate to the Home function.
The association of input pins to functions is described in detail in the Command Reference
Manual, the IL[] command.

13.3 Digital Outputs

The harmonica has two digital output pins. The digital output pins must be associated to a
function before being used. The functions may be general purpose output, Amplifier Ready

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

174

(AOK) indication, or brakes output.
The association of output pins to functions is described in detail in the Command Reference
Manual, the OL[] command.

13.4 Events, and response methods

The Harmonica identifies the following events6:
• Change of a GPI (General Purpose digital Input)
• Change of a limit switch
• Change of a "Home" switch
• Change of an "Enable" switch
• Change of a "Stop" switch
• Change of a "Begin" switch
• Encoder Index pulse.

In order to identify an event, the event needs to be defined. From the above list, only the Index is
defined permanently. All the other events are programmable. The Harmonica has 6 digital input
connector pins. The connector pins can be routed, with direct or inverted polarity, to functions
like general-purpose digital input or RLS. To learn how to route connector pins to functions,
refer the IL[] command in the Command Reference Manual.
Events can be handled in three speed levels.

• Manual inquiry
• Periodical inquiry
• Automatic routines
• Real time (Motion management, Homing, Capture, and Flag)

13.4.1 Manual inquiry

The manual inquiry is the simplest method. By using the IP/IB[] commands, one can inquire the
state of the input pins. The user program logics, or a host, can consider the inquiry results.
The table below summarizes some of the properties off manual inquiry.
Topic Comment
Capture probability: Low. Even if a digital input is continuously polled (with great

communication or user program loading), an input pulse may
slip away unnoticed between consecutive polls.

Deterministic delay: No. Depends in the non-deterministic delays of the interpreter
or the user program management.

Use: Non time-critical inquiries.
Simple operations.

13.4.2 Periodical Inquiry

The periodical inquiry is possible only in CAN networks. The user can map the digital input
word to a synchronous PDO. The host can collect the inputs state of many slaves as a response
to single Sync.
The table below summarizes some of the properties off periodical inquiry.
Topic Comment
Capture probability: Low. An input pulse may slip away unnoticed between

consecutive Syncs.
Deterministic delay: Yes, 0.5msec maximum + CAN network time.
Use: CAN networks only.

6 The Harmonica also identifies emergency events such as over-voltage, short-circuit, or over-current. The emergency
events are treated in the chapter on "Limits, Protections, Faults, and Diagnosis"

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

175

Host logics only.

13.4.3 Automatic routines

Many events can be tied to automatic handler routines in the user program. To learn more about
automatic user program routines, refer the section "Automatic subroutines".
The table below summarizes some of the properties off automatic routines.
Topic Comment
Capture probability: High. An input pulse may slip away unnoticed only if the user

program is not running, the input is masked, or the pulse is so
short it does not pass the input filters.

Deterministic delay: No, although in most cases the automatic routine will start
within 2msec.

Use: User program logic.

13.4.4 Real time – Motion management, Homing, Capture, and Flag

Events can do several things in real-time response.
These are:

• Stopping the motor, or prevention move in one direction (refer the section on "The Stop
management" and the chapter "Unit Modes")

• Begin a new motion (refer the BG command in the Command Reference Manual and the
chapter on "Unit Modes")

• Disable the power amplifier
• Log the position counters
• Modify the value of a position counter, and optionally stop.
• Flag to an output connector pin.

The table below summarizes some of the properties off automatic routines.
Topic Comment
Capture probability: High. An input pulse may slip away unnoticed only if the user

program is not running, the input is masked, or the pulse is so
short it does not pass the input filters.

Deterministic delay: Yes. Position logging and value setting are made immediately
and yield accurate results regardless of the speed.
Position flagging is made within 100usec.
Motion management functions are responded at the next
controller sampling time.

Use: Homing (Setting an absolute origin to the incremental position
sensors)
Motion management.
High speed signaling.

13.5 Homing and Capture

13.5.1 What Is Homing?

The Amplifier uses incremental position sensors. Therefore, the Amplifier can only tell the
distance the motor traveled since power on, but not where the position counting started.
The process of teaching the Amplifier its absolute position is called “Homing”.

Homing of the main position counter (PX) typically serves for:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

176

• Absolute position control in the single-feedback position-control mode.
• Relative work in the single-feedback position-control mode. For example, an axis in a machine

may be homed by a sensor of the edge of the product the machine works on. The position
referencing of the axis becomes relative to the product.

Homing of the main position counter (PY) typically serves for:

• Absolute position control in the dual-feedback position-control mode.
• Relative work in the dual-feedback position-control mode.
• In the single-feedback position-control mode: Fixing the origin for the external position

command-see Section 12.2.1.

In the homing process, a trap is set for the event of reaching a desired position. The motor
travels until an expected event occurs. The event marks that the motor is now in a known
absolute position. This known position, if set to the position counter at the time of the event,
makes the position reading of the Amplifier absolute.
The looked-for event may be one of the limit switches (RLS or FLS), the home switch, the
encoder index or the digital inputs. The capture accuracy depends, however, much in the
homing event selection. If a HOME or an INDEX signal is selected as the captured event,
then the captured position will not miss. If another digital input is selected, the sensing delay
for the switch is d=(0.004*TS+IF[N]) msec, and VX*d/1000 counts may be missed.
Example
Suppose:
Parameter Symbol Value
Torque controller sampling time,
usec

TS 50

Input filter width for digital input
#1, msec

IF[1] 2

Motor main speed, count/sec VX 20000
When homing on Digital Input #1, we expect to miss

() ()
count44

1000

250004.020000

1000

]1[IFTS004.0VX
miss =

+⋅⋅
=

+⋅⋅
=

To capture an event, the event must be first defined by a proper IL[N] setting. For
example, if no digital input is associated to the FLS function, a homing process on the
FLS will never terminate. Moreover, it is legal to un-define the FLS function while a
home search on the FLS is on. The home search will not succeed until FLS is re-
defined.

13.5.2 Homing Programming

The HM[] parameters control The main encoder homing process.
• HM[3] defines the trigger event – immediately, or the change of some digital input.
• HM[4] is what to do after the event, in addition to position registration. You can

command the amplifier to stop immediately, or to flag a digital output.
• HM[5] defines if and how to update the main encoder counter – do nothing, set a

new value, or shift by a known amount.
• HM[1]=1 arms the homing process (sets the trap for the homing event).

Refer the HM[] command in the Command Reference Manual for details.

13.5.3 Homing the auxiliary encoder

The HY homing function gives an additional homing and capturing function.
 HY is very similar to HM, except that HY refers the auxiliary Home switch and
Index signals instead of the main Home switch and Index, and that HY can update the value

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

177

of PY, not PX.

13.5.4 On the fly position counter updates

The updating of a position sensor during homing process has no effect in UM=1,2,3 since
these modes do not use position feedback.
The implications of position sensor (PY in UM=4, PX in UM=5) update by a homing
process depend in the mode.

• In PTP motions, the remaining motion to target becomes longer or shorter – refer
example below. If the home correction is made in a constant speed region of the
PTP motion, the redesign of the motion path may be hardly visible. This mechanism
enables registration and final motion corrections on the fly.

• In Jog motions, the position command is jumped according to the position feedback,
so that the motion is unaffected by the position counter update.

• If the software position reference generator is stopping or stopped, the software
position command is corrected according to the position feedback. The motion is
unaffected by the position counter update.

• In PVT or PT motions, an on-the-fly position counter update may lead to immediate
high position error, and the motor may abort with an excessive position tracking
error exception.

If with UM=5 the auxiliary encoder counter is modified, and the following is true:

• The motor tracks the auxiliary encoder with no ECAM table (RM=1, FR[3]
nonzero, EM[1]=0).

• The software position generator is Idle, Jogging, or running PTP
The software position reference is modified so that the motion shall not be affected. In the
PTP mode, the parameter PA will change automatically to reflect the modification.

Example:
A PTP motion starts with PA=PX=0. We set PA=1000;BG;, and expect an 1000 counts long
motion. If, at PX=500, the position has been reset to zero by homing, then immediately after
the homing we still have 1000 counts to go. The total length of the motion becomes 1500.

13.5.5 A homing with home switch and index example

Consider the very common switch arrangement of Figure 35.
A homing algorithm may be:
Start the motor
Jog back until RLS.
Jog forward speed until home.
Look for the next index and set the position there to 0.

The position setting is taken by the index, since in many applications the index is much
more accurate then the home switch. The home switch is needed to resolve index ambiguity-
many index pulses may occur along the travel.

In normal operation time, the FLS and the RLS serve as emergency indicators, and the
motor is not supposed to reach there.
RLS is visited in the homing process, since then we don't know initially in which direction
to look for the home switch.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

178

Figure 35 – Switches location

The following user program does the algorithm:

Note that the function above uses MI to prevent RLS from activating the AUTO_RLS routine. Another
possible approach would be to use IL[] to change the functionality of the switch to GPI7, and then home
on the GPI. With the latter approach, however, the routine programmer need to know which connector
pin is programmed as RLS.
The algorithm used the following helper functions:

7 General Purpose Input

function [int status] = homing1(int TimeOut)
/*
Homing routine.
Input:
TimeOut: Timeout for failure
Output:
status=1 if o.k., otherwise a negative error code
Assumptions:
RLS,FLS,HOME already programmed by IL[1],IL[2],IL[3] commands
*/
int OldMi;
/* Go reverse until limit switch */
OldMi=MI;MI=MI|0x16; /* Prevent operational AUTO_RLS routine while in homing process*/
/* Arm homing for ↑RLS, stop after homing, don't initialize counter*/
HM[3]=7;HM[4]=0;HM[5]=2;HM[1]=1;
/* Go to the reverse */
JV=-10000;BG;WaitArrive(2000);if(status<=0)goto LastLine; end
/* Go until home switch*/
HM[3]=1;HM[4]=2;HM[5]=2;HM[1]=1;
JV=-JV;BG;WaitHome(2000);if(status<=0)goto LastLine; end
/* Finallyset position by index */
HM[3]=3;HM[4]=0;HM[5]=0;HM[1]=1;
WaitHome(2000);if(status<=0)goto LastLine; end
status=1;/*Success return */
##LastLine
MI=OldMI; ** Restore AUTO_RLS routine status
return

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

179

13.5.5.1 Example: Double homing corrects backlash offsets

This example demonstrates homing on the home switch without using the index.
In many gear systems, the index signal cannot be used for homing. The reason may be:

• Motor or gear repairs should not require the tuning of the index position or the Amplifier.
• Backlash and gear compliance prevent accurate mapping of the motor position to the load.

In order to prevent compliance and timing errors, the position of the home switch is captured two times, with
alternating movement directions.
The two captured results are averaged to cancel the error sources.
Suppose that in the middle of the home switch we should have PX=10000.
Then the homing formula is PX=PX+10000-0.5·(PX at right home edge + PX at left home edge)
The user program routine that does that is listed below. The routine uses the helper functions of the previous
example.

function [int status]=WaitArrive(int TimeOut)
/*
Wait until MS=0, or until too much time elapses
*/
int StartTime ;
status = -1;
StartTime = TM;
while (MS)
 if (tdif(handle) >= TimeOut) return ; end
end
status = 1 ;
return

function [int status]=WaitHome(int TimeOut)
/*
Wait until HM=0, or until too much time elapses
*/
int StartTime ;
status = -1;
StartTime = TM;
while (HM)
 if (tdif(handle) >= TimeOut) return ; end
end
status = 1 ;
return

##ErrorOut
/* Error handler – just exit*/
return

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

180

Program Example 1 - Double Sided Homing.

13.5.6 Capturing

Capturing is a special case of homing, in which we program that the event will only register the counters
value, but not affect motion and not update the position counters.
Capturing is efficient in synchronizing the motion origin to objects in the working space.
The Amplifier can capture two event defined by the HX and the HY commands, and register up to 4
consecutive occurrences of PX and PY of each event.
The capture function captures both the main and the auxiliary position counters simultaneously. This is
useful for synchronizing the main and the auxiliary positions.

function [int status] = homing1(int TimeOut)
/*
Homing routine.
Input:
TimeOut: Timeout for failure
Output:
status=1 if o.k., otherwise a negative error code
Assumptions:
RLS,FLS,HOME already programmed by IL[1],IL[2],IL[3] commands
*/
int OldMi,Pos1;
/* Go reverse until limit switch */
OldMi=MI;MI=MI|0x16; /* Prevent operational AUTO_RLS routine while in homing process*/
/* Arm homing for ↑RLS, stop after homing, don't initialize counter*/
HM[3]=7;HM[4]=0;HM[5]=2;HM[1]=1;
/* Go to the reverse */
JV=-10000;BG;WaitArrive(2000);if(status<=0)goto LastLine; end
/* Go until falling home switch, stop, and capture position*/
HM[3]=2;HM[4]=0;HM[5]=2;HM[1]=1;
JV=-JV;BG;WaitHome(2000);if(status<=0)goto LastLine; end
Pos1=HM(7)
/* Sample home switch from other side */
HM[1]=1; JV=-JV;BG;WaitHome(2000);if(status<=0)goto LastLine; end
/* Final calculation – set immediate difference correction to PX*/
HM[2]=10000-(HM[7]+Pos1)/2;HM[3]=0;HM[4]=2;HM[5]=1;HM[1]=1;
status=1;/*Success return */
##LastLine
MI=OldMI; ** Restore AUTO_RLS routine status
return

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

181

14 Limits, Protections, Faults, and Diagnosis

This chapter discusses the limits and the protections implemented by the Harmonica.
Limits are software restrictions that prevent the Harmonica from running into dangerous
situations. Examples for limits are:

• Limiting the torque command prevents the burning of the motor or the Harmonica
itself

• Reaction to limit switches stops the motor before it accidentally hits something out
of its expected motion range.

Protections prevent motor starting, or shut an active motor, because of abnormal situations.
Examples for protections are:

• Bad or inconsistent setup data prevents motor starting.
• An unexpectedly high motor current endangers the Harmonica and the motor. This

high current is not normal, since the command to the current (torque) amplifier is
limited. The suspect that the current controller does not function well implies
immediate amplifier shut down.

• The amplifier is too hot.

When the amplifier shuts down by a protection, the motor will continue to run by its own
inertia unless brakes are used (refer the section Connecting an external brake).
In order to avoid spurious motor shut downs, always:

- Leave enough space between the limits and the protection. For example, HL[2] specifies the
over-speed limit. A protection is activated when VX > HL[2]. VH[2] specifies the maximum
legal command to the speed controller. Speed commands over VH[2] are clipped to VH[2].
The protection HL[2] must be bigger then the limit VL[2]. Moreover, the distance HL[2]-
VL[2] must leave enough space for the expected speed overshooting.

- When safety is concern, always use brakes. The Harmonica can program one of its digital
outputs to activate a brake immediately upon motor shutdown.

If an exception stops the motor, or prevents motor starting, the Harmonica will in most cases be
able to tell the user exactly what happened.

If a real-time exception reaction is desired, you can add an AUTO_ER routine in the user
program – refer "Automatic Routines" in this manual.

The commands relevant to limits and protections are:
Command Description
BP[N] Brake parameters.
CD Tell the health of the Harmonica, and report database inconsistencies.
CL[N] Continuous current limit, and motor not moving protection.
EC Error code – find why a previous command returned with error.
ER[N] Tracking error exception limits for speed and position.
HL[N] Protection high limits for position and speed
IL[N] Input logic. Defines digital inputs as stop and limit switches.
LL[N] Protection low limits for position and speed
MF State the reason for a motor fault
OL[N] Output logic – programs digital outputs as brake activation, or as

amplifier ready indication.
PL[N] Peak current limit
PS Program status. If a program aborted, tell why.
SR Status register. Tells if motor is shut by an exception, or if the user

program is running.
VH[N] Command high limits for position and speed

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

182

VL[N] Command low limits for position and speed

Table 14-1: Commands relevant to limits, protection, and diagnosis

CAN users have an added protection level. The Harmonica issues Emergency objects in the
case of errors or applied protections – refer the CAN manual.

14.1 Current limiting

The Amplifier protects the motor from over current.
The current protection is applied in two stages:
The motor maximum peak current (Given by PL[1]) is available for the peak duration time
(specified by PL[2]). For long time periods, the current is limited to its continuous limit
CL[1].

The current limiting process is dynamic. If the current has been close to its continuous limit,
then the time allowed for the peak current reduces.

The next paragraphs detail the mathematics of the current limiting process.

The absolute value of the measured motor current (in vector servo drives this is 22
DQ II +) is

applied to a first order low-pass filter. The state of the filter is compared to two thresholds.
When the state of the filter is above the upper threshold, the continuous limit is activated.
When the state of the filter is below the lower threshold, the peak limit is activated.

The time constant of the low-pass filter is







−

−
=

MC

CL

PL

]1[
1log

]2[
τ , where MC is the maximum

servo drive current.
The maximum time, for which the peak current can be maintained, after the current demand

has been zero for a long time, is - τ⋅







−

]1[

]1[
1log

PL

CL
 seconds. If PL[1]=MC, then the

maximum time allowed for peak current is PL[2]. Otherwise, the servo drive can provide the
peak current for a longer time.

More generally, if a current demand of PL[1] has been placed after the current command is
stable at I1 < CL[1] for a long time, then the peak current PL[1] will be available for

τ⋅






 −
−−

]1[

1]1[
1log

PL

ICL
 seconds.

The resolution of PL[1] is about MC/1000, and the resolution of PL[2] is about 0.1 second

Example:

The graph below shows the signals concerned with the current command limiting process for MC=6,
PL[1]=6, PL[2]=3, and CL[1]=3.
The application motor current command is increases from zero to 6Amp at the time of 0, and is then
decreased to 0 at the time of 5sec.
The state of the filter increases until it reaches the continuous current limit of 3 at the time of 3 sec. At that
time, the LC flag is raised, and the motor current command is decreased to CL[1]=3Amp.
After the motor current command is set to zero, the state of the filter begins to drop. When the state of the
filter drops to 2.7Amp = 90% of 3Amp, the LC flag is reset and the torque command limiting is again to
6Amp.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

183

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Application current demand

motor current
command

Filter state

LC current limit
Indication

14.2 Speed Protection

The reference to the speed controller is limited to be in the range [VL[2]...VH[2]].
The limiting (applied on the sum of the software reference and the external reference) is
made by the Stop-Manager.

In addition to the speed limiting, the Harmonica provides two forms of speed protections.

- Over error protection.
- Over speed protection.

The first protection detects a too big speed error.
The parameter ER[2] specifies the limit for the position error.
If the absolute value of the speed tracking error VE exceeds ER[2], The Harmonica issues
the exception MF=0x80 and the power amplifier is shut down.

The second protection detects over speeding. If VX is greater than HL[3], or less than
LL[3], The Harmonica issues the exception MF=0x200000 and the power amplifier is shut
down.

The over-speed protection is active in all unit modes.
The speed for the over-speed detection is always derived from the main position sensor.
This means that in UM=4, the motor speed is over-speed protected, not the load speed.

The speed command and feedback limits are illustrated in the figure below. The amplifier
normally operates in the area marked "Within command and feedback limits". It may,
however, visit instantaneously the areas marked "Overshoot area" due to overshoot, and this
is Ok. If the speed feedback reaches the "Abort area", that amplifier will issue an over-speed
exception and automatically shutdown.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

184

0

W ith in speed com m and and
feedback lim its

VL[2] VH[2]

LL[2] HL[2]

W ith in speed feedback lim its, out of
com m and lim its. Abort

Area

Abort
Area

O ver-
shoot
Area

O ver-
shoot
Area

Figure 36: Speed command and feedback limits

! Remember that when the amplifier shuts down by exception, the motor will continue to
run by its own inertia unless brakes are used (refer the section Connecting an external
brake).
In order to avoid spurious motor shut downs, always:

- Specify the largest ER[2] you can tolerate
- Leave enough space between VH[2] and HL[2], to allow speed overshoots
- Leave enough space between VL[2] and LL[2], to allow speed overshoots.

14.3 Position Protection

The Harmonica provides two forms of position protections.
- Over error protection.
- Out of position range protection.

The first protection detects a too big position error.
The parameter ER[3] specifies the limit for the position error.
If the absolute value of the tracking error PE exceeds ER[3], The Harmonica issues the
exception MF=0x100 and the power amplifier is shut down.

The second protection detects that the motor position is out of range. If the position
feedback (PX in UM=4, PY in UM=5) is greater than HL[3], or less than LL[3], The
Harmonica issues the exception MF=0x400000 and the power amplifier is shut down.

The position reference and feedback limits are inactive if the position counter counts
modulo, since then the relations "Greater Than" and "Smaller Than" are not well defined.
The table below details the particular cases:
Case Description
UM=1, nonzero XM Torque control, limits taken by the main modulo feedback
UM=2, nonzero XM Speed control by main modulo sensor.
UM=3 No feedback limits since there is no feedback
UM=4, nonzero YM Position control by an auxiliary modulo sensor.
UM=5, nonzero XM Position control by an main modulo sensor.

Table 14-2: Cases where feedback limits do not apply

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

185

The position command and feedback limits are illustrated in the figure below. The amplifier
normally operates in the area marked "Within command and feedback limits". It may,
however, visit instantaneously the areas marked "Overshoot area" due to an overshoot, and
this is Ok. If the position feedback reaches the "Abort area", that amplifier will issue an out-
of-position-range exception and automatically shutdown.

0

W ith in position com m and and
feedback lim its

VL[3] VH[3]

LL[3] HL[3]

Position w ith in feedback lim its, out of
com m and lim its Abort

Area

Abort
Area

O ver-
shoot
Area

O ver-
shoot
Area

Figure 37: Position command and feedback limits

! Remember that when the amplifier shuts down by exception, the motor will continue to
run by its own inertia unless brakes are used (refer the section Connecting an external
brake).
In order to avoid spurious motor shut downs, always:

- Specify the largest ER[3] you can tolerate
- Leave enough space between VH[3] and HL[3], to allow positioning overshoots
- Leave enough space between VL[3] and LL[3], to allow positioning overshoots.

! If you want the motor to run infinitely in the current or in the speed (UM=1 or UM=2)
modes, either set XM to nonzero value, or set LL[3]<-230 and HL[3]>230.

14.4 Enable switch

You may program one of the digital inputs as an "Inhibit" or "Inhibit with Automatic
Restart".
Digital input programming is detailed in the Command Reference Manual, the IL command.
When an Inhibit input is active:

• If the motor is off, MO=1 will not start the motor
• If the motor is on, MO=0 is set immediately. If the motor is rotating with high

speed, the inhibit function may be unsafe, as the motor continues to run uncontrolled
by its own inertia.

When an Inhibit input is inactive:
• If the motor is off, MO=1 will start the motor

When an Inhibit input with automatic restart is active, it acts similar to Inhibit.
When an Inhibit input with automatic restart is inactive:

• If the motor is off, and RM=1, the Harmonica shall try to set MO=1. No restart

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

186

attempts are made 10msec after the last motor shutdown, or 10msec after the last
failure of MO=1.

For safety reasons, we recommend to program the Inhibit function as "active low".
That prevents incidental motor starts when the input pin is disconnected, or its driving
source is powered-down.

14.5 Limit switches

The Harmonica has 6 digital input pins. Each of the pins may be associated to a different
function. A pin may function as a general-purpose input, or it can function as a motion
limiter.
As a motion limiter, a digital input can stop the motion via the Stop-Manager, stop the
Reference Generator, or limit the motion to a single direction.
In addition to stopping the motion, the digital input can activate an automatic routine in the
user program.
Refer IL[N] in the Command Reference Manual to learn about function association to input
pins.

14.6 Connecting an external brake

Connecting an electrical brake to a motor helps safety where:
• The load is unbalanced, and moves by its own weight when the motor is off.
• Motor freewheeling can't be tolerated in malfunction cases.
• Extreme motor deceleration is required in response to emergency event.

The brake activation must be synchronized to the motor-on/motor-off process.
• If the brake is engaged too much time after MO=0, the motor may "run away".
• If the brake is released only after the motor is on, then if a position error existed, the

position controller integrated it. When the brake completely releases, the motor may
jump.

The Harmonica can program a digital output as a "brake" output – refer the OL[N]
command.
The brake output must be connected as follows:

DC

Harmonica
Output

 opto-coupler

Brake relay - Normally
Engaged

Connector
pins

Figure 38: Brake output connection

• The brake must be engaged when there is no current in the brake coil.
• The brake relay coil must be equipped with a freewheeling diode.
• For the current and voltage rating of the Harmonica connector pins, please consult

the Harmonica Manual.
The normal waveforms for brake activation are depicted in Figure 39.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

187

MO

Brake

1

Released
BP[2] BP[1]

Time (msec)

Motor
 controlled

to stop

Motor
 controlled

to stop
Motion

Commands

N.A.
According tomotion

programming
N.A.

Figure 39: Normal Brake Activation Timing

At the brake activation times (BP[2] msec to disengage, BP[1] msec to engage) the motor is
controlled to complete stop.
If MO=0 is set automatically by an exception, the brake is activated immediately, without
any delay.

14.7 When the motor fails to start

The main reasons for failure to start the motor are:
• The physical conditions are not right
• The database is not consistent (refer the section "Inconsistent setup data" below)

The following physical conditions are tested before applying voltage to the motor

• Power supply under voltage
• Power supply over voltage
• Amplifier temperature too high
• Motor not connected to the servo drive
• An active limit switch is programmed to shut the servo drive down.

The motor shall not start if the voltage of the power supply is not within range, or if the servo drive
temperature is too high, or an active switch prevents motor on. The MO command will return the error codes
65 or 66. The failure reason may be read through the status (SR) report.
If the voltage is in range, and the temperature is not excessive, the Amplifier will try to start the motor.
For more details, refer the section "Current amplifier protections".

14.8 Motion faults

Error conditions may cause the Amplifier to shut the motor automatically.
When the motor is shut down automatically,
The MO variable is set to zero
The variable MF is set to reflect the shut down reason.
A flag in the status register (SR) indicates that the motion has been aborted.

The variable MF may reveal why the motor has been shut even if the reason no longer exists. For example, if
the power supply has too large impedance, then in full load its voltage may drop and the servo drive will be
automatically shut down due to under voltage. When the motor is shut, the under voltage disappears.
Another example is that an over voltage is generated due to an insufficient shunt. Again, the over voltage
will disappear when the motor is shut down.
The over or the under voltage conditions that caused the fault are recorded in the MF variable.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

188

When the amplifier shuts down by exception, the motor will continue to run by its own inertia unless
brakes are used (refer the section Connecting an external brake).
We recommend the use of automatic brake activation upon motor shut down (refer the OL
command) for all safety critical application.

An amplifier exception shut down can be captured and reacted by placing an AUTO_ER routine in
the user program.

For a full list of the exceptions that can cause automatic shutdown, refer the MF command in the Command
Reference Manual.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

189

14.9 Diagnosis

14.9.1 Monitoring motion faults

You can monitor motion faults by:
• Continuously polling the amplifier status
• Observing an "AOK" digital outputs.
• Trapping CAN Emergency objects. The CAN Emergency objects are covered in the

CAN manual.

14.9.1.1 Polling the amplifier status
The amplifier can be polled using the SR command. The SR command reports a bit-field
that draws an entire picture of the amplifier activity. One of the bits of SR (refer the
Command Reference Manual) reports the existence of motion fault.
Another bit of SR reports the existence of a user program fault.
When a motor fault is detected, the MF command will report the exact reason for that fault –
refer the Command Reference Manual.
When a program fault is detected, the PS command will report the fault reason.

14.9.1.2 Observing AOK
One of the digital outputs may be programmed to reflect that the amplifier is ready – no
physical reason such as over-temperature, over voltage, or under voltage prevents the
amplifier from working. The AOK output reports that physical operation conditions exist,
but it tells nothing about the motion status.

14.9.2 Inconsistent setup data

The setup data is checked when loading the setup from the parameters non-volatile flash storage, and
before starting the motor.
When the setup parameters are retrieved from flash storage (At power-on, or by an LD command),
they are thoroughly checked for legality and consistency. If the parameters are found illegal or
inconsistent, the amplifiers resets to its factory defaults. What was wrong can be found using the CD
command (see below), and the contents of the flash storage can be corrected using the application
editor.
Loading the setup parameters from the flash will rarely fail, since the parameters are checked before
allowing non-volatile storage. The almost only failure reason is a major firmware revision upgrade.

Before enabling the motor, the Amplifier tests that all of its parameters make sense.
For example, the variables CA[4], CA[5], and CA[6] define how the Hall sensors are ordered. If CA[4]
equals CA[5], then two Hall sensors are assigned to the same position, which is an absurd (refer the chapter
"Commutation").
With CA[4]=CA[5], the command MO=1 will fail and return the error code of 54, meaning “Bad database”.
In order to find the reason for the “bad database” failure, use the CD command. The CD command will
return
Null Address=0
Failure address=0
Called Handler=none
Database Status:
CA[4], error code=37
The first lines establish that the CPU detected no exception (refer "Device failures, and the CPU dump"
below).
The last line states that the parameter CA[4] yielded the error code 37, meaning "Two Hall sensors are
defined to the same place" – please refer the EC command in the Command Reference Manual.
Other exceptions that may be caught at motor on are:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

190

• RM=1 with a modulo-counting position feedback.

14.9.3 Device failures, and the CPU dump

Humans have programmed the Amplifier. The programmers, however hard they try, cannot completely
avoid bugs in their code. Programming bugs may lead to CPU exceptions, like an attempt to divide in zero,
or an attempt to access a variable that does not exist.
Programming errors may also lead to CPU overloading. In that case the CPU will not be able to complete its
control tasks on time, and the internal CPU stack shall overflow.

For this reason, the Amplifier has traps for CPU exceptions and for stack overflow.
When the Amplifier traps an exception (hope it never does), it does the following:
Shut off all the controller activity. Any motion is aborted to freewheeling.
It writes down the exact trap that was activated, and the address in the firmware that caused the exception.
After the exception, communication is still enabled, so the Amplifier can be asked what had happened. Them
motor, however, cannot be set again to work until the Amplifier is rebooted.
A CPU exception is detected using the CD and the SR command.
The SR command only indicates that an exception occurred.
The CD (CPU dump) command gives the details.
The CD command reports as follows:

Null Address The code address in the firmware when the exception occurred (0 if o.k.)
Failure address The code address in the firmware when the stack overflow has been detected (0

if o.k.)
Called Handler A string describing the type of exception. This may be:

A divide by zero attempt
An attempt to access a non existing variable
Many other possible exceptions.
This string is “none” if no exception was trapped.

Table 14-3 - CD Reported Elements
The CPU dump also returns the database status, as described above.

14.10 Sensor faults

14.10.1 The motor cannot move

When the motor is commanded to move to somewhere, and it for some reason it cannot do it, the reasons
may be:

• The motion sensor is faulty – the motor moves but motion is not detected. In this case AC motors
will be generally stop, since the stator field will remain stationary.

• The motor is faulty, or there is other mechanical failure that prevents the motor from moving.
• The controller filter is poorly tuned. In this case the motor torque may wildly oscillate in high

frequency, but the motor will hardly move at all.
These situations are identified by:

• The motor average torque is high
• The motor is stationary, or the movement is very slow.

The facts that the motor is commanded to high torque but is not moving are not always an error indication.
In some applications, as thread fastening, it is perfectly legitimate for the motor to reach a mechanical
motion limit.
The Amplifier user is asked to define whether a high torque stopped motor is a fault or not. If the parameter
CL[2] is less than 2, a high torque that does not lead to motion is not considered a fault. If the parameter
CL[2] is 2 or more, then a high torque stopped motor, detected for at least 3 continuous seconds, is
considered a fault. The motor is set to off (MO=0) and MF=0x200000. The time constant of 3 seconds is

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

191

taken since almost every motion system applies high torques for short acceleration periods while the speed is
slow.

CL[2] defines the tested torque level as a percentage of the continuous current limit CL[1].
CL[3] states the absolute threshold main sensor speed under which the motor is considered not
moving.
Do not set CL[3] to a very small number. When a motor is stuck, a vibration may develop that will
induce a speed-reading. When an encoder wire is damaged, the motor will run-away with the
encoder readout vibrating +/- bit. This also creates speed-reading.

Example
If CL[2]=50 and CL[3]=500, the Amplifier will abort (reset to MO=0) if the a torque level is kept at
least 50% of the continuous current, while the shaft speed do not exceed 500 counts/sec for
continuous 3 seconds.

14.11 Commutation is lost

14.11.1 General

The Amplifier uses the feedback (encoder\resolver\tacho) counts to calculate the electric angle of the rotor.
This is used to set the currents at the stator so that the magnetic field of the stator will point 90 degrees away
from the rotor (90+/-30 degrees at the Clarinet).
The angle between the magnetic field in the stator and the rotor is called the “commutation angle”
The motor torque is

)sin(IKe2
3T rs θ−θ⋅⋅=

Where T is the torque, Ke is the motor constant, I is the motor current, sθ is the stator field angle, and rθ is

the rotor angle.
The difference rs θ−θ=θ is called the commutation angle. Obviously, θ must be kept near 90 degrees for

the motor to function properly.
If the commutation angle is incorrectly set, the motor loses torque. For a given torque command (given
either directly in UM=1 or by external control loops in other modes)
The motor current remains the same (heating…)
The torque falls, since the proportion between the current and the torque is)cos(θ∆ where θ∆ is the
commutation angle error.

Note than in extreme cases, where o90)(abs >θ∆ , the motor torque becomes reversed with respect to what
is expected by the commanded current.

14.11.2 Reasons and effect of incorrect commutation

Commutation errors may be disastrous to drive operation.
The most common incorrect commutation behaviors are:

The commutation error is static (i.e. θ∆ Does not change in time):
Static commutation error occur because of bad setup data, or by exceptional load in automatic alignment (at
MO=1, when the only sensor available is an incremental encoder)
A Static commutation error leads to motor torque reduction, reduced efficiency, degraded dynamic response,
and possible speed or position loop instability.

The commutation is static (i.e. sθ does not change as a function of the motor position):

Static commutation occurs in encoder systems when an encoder wire is broken.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

192

In this situation, the direction of the stator field is constant, and if torque is commanded, the rotor seeks
equilibrium, aligned to the magnetic field.
If the motor is driven by an external speed or position controller, it will be commanded to full-torque, and
dissipate the corresponding heat, without generating any motion.

The commutation is drifting (i.e. θ∆ Changes in time):
Drifting in θ∆ occur in two forms:
Slow drift:
The following reasons:

• Excessive noise on the encoder lines
• Damaged or dirty encoder
• Wrong encoder resolution setting

 Usually drifts θ∆ slowly. When the motor is stopped, θ∆ does not drift at all.
Slow drifting will cause the motor to lose torque gradually until fully stopped at the static

setting of o90±=θ∆ . At this point, the current in the motor will not produce any torque.
The motor shall overheat, but not move.
Fast drift:
Faulty resolver wires cause the resolver to digital converter to elude motion in its full
supported speed. The motor behavior becomes bizarre, normally producing oscillations
without much average torque.

14.11.3 Detection of Commutation Feedback Fault

The detection of commutation faults is according to the sensors present.
Three categories are dealt:

• Double sensor systems
• Resolver system

Double sensor systems
The situation is the easiest if there are two sensor systems, as happens in encoder + digital
hall systems. In this case, there is a rough commutation estimate available by the digital Hall
sensors, that measure the electrical angle of the motor directly.
Bad correlation between the encoder-accumulated commutation angle and the Hall sensors
angle is a sign of faulty commutation.
If the accumulated commutation angle differs by more than 15 electrical degrees than its
closest value that fits the Hall sensor reading, an error is to be declared. The motor is shut
(MO=0) and MF is set to 0x4. This way an error is decided when the commutation is 15 to
45 degrees wrong.

After the detection of a commutation fault, the motor must be shut down and a proper MF
code set active.
There is no point in trying to stop the motor under control, since we don’t know the
correlation between the motor currents and the resulting torque.
At the next motor starting attempt, the motor will seek commutation again.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

193

15 The Controller

15.1 General

This Section details the speed and position control algorithms. For many applications, the details of
this document are of no concern. People do not have to understand the internals of a motion
controller in order to tune it with the Composer program. This chapter is aimed for the advanced
user who wants to tune the servo drive manually, or to understand thoroughly what goes on when the
Composer tunes the servo drive. Familiarity with the basic ideas of Digital Control Theory is
mandatory. This section does not cover the digital current loop.

The type of the controller used depends on the Harmonica usage mode- refer the chapter on “Unit
Modes”.

Unit mode Control algorithm
1 Open loop
2 Speed control
3 Micro Stepper
4 Position, dual feedback source.

One sensor serves for commutation and speed control, the other sensor serves
for load position control.

5 Position, single feedback source

Table 15-1 – Unit Mode Values and Definitions

In the basic level of the speed controller, the control algorithm is the traditional PI (Proportional-
Integral). In the basic level of the position controller, the control algorithm is an internal PI speed
loop and an external position loop using a simple gain for the controller, this structure is known as
cascaded loop.

Few hours of playing will suffice for a technician to percept how the modification of the P,I and gain
controller parameters affect the performance of the motor speed loop and position loop.

Life with the above control structures becomes hard as the control requirements become tough.
For this reason, the algorithms are extended to include

1. An high-order filter operating in series with the PI controller, with blocks of the following
types:

� Notch filters for notching resonance.
� Low pass filters for attenuating very high frequency resonance and decreasing

sensor’s noise.
� Lead-lag element, an extra element that helps tradeoff margins versus bandwidth.

2. A continuous scheduling algorithm, which modifies the PI algorithm and some of the
advanced filter parameters as a function of the closed loop operating point.

An advanced user may tune the various filter blocks, but this is not as simple as tuning the PI and the
simple gain. The gain scheduling is programmed by the auto-tuner, although an extremely advanced
user may program it manually.

The following table lists the parameters of the algorithms in this section. Please refer the Command
Reference Manual for the details.

UM Unit Mode. This parameter determines the type of control algorithm to use –

speed, dual-position, or open loop
KP[N] N=2: Inner speed loop proportional gain.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

194

N=3: Outer loop gain (UM=4 and UM=5)
KI[N] N=2: Inner speed loop Integral gain, I.
KV[N] Coefficients for the high-order filter.

The parameter KV[0] asserts if these filters are used at all – if KV[0] is zero, then
the advanced filter is not used.

GS[N] Gain scheduling parameters. More details see chapter “Error! Reference source
not found.”

MC Maximal motor phase current
WS[28] Sampling time of the controller in microseconds.

Table 15-2 – List of all control parameters

Notation: We use standard math notation. The time derivative is denoted by the letter s.

The expression sx is equivalent to dtdx , and the expression sx / is equivalent to ∫ xdt ,

where t is the time and x(t) is any signal. The operator z denotes a time advance of a single
sampling time. For a digital system with the sampling time of sT we have

])1[()(ss TkxkTzx += or simply)1()(+= kxkzx .

15.2 Speed Control

15.2.1 Block diagram

This is the most basic closed loop control form. The basic control block of the speed
controller is the PI. The optional blocks are the high order filter (composed of a series of
blocks of the types explained above) and the gain scheduler. A block diagram of the speed
controller is given in Figure 40.
The gain scheduler can be used, or the gains of the controller may be fixed.
The high order filter can be used, or not.
To fix the controller gains, set GS[2]=0.
To avoid the use of the high order filter, set KV[0]=0.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

195

DV[2]

ΣSpeed command

-

Torquecommand
(DV[1], Amp)Speed

controller:
KP,KI

High order
filter Σ

FF[1] d/dt

Automatic
Controller
Selector

0

Fixed if

GS[2]=0

Position sensor
Speed

Estimator

Encoder pulse
timer

Speed feedback

Figure 40 – A Block Diagram of the Speed Controller

15.2.2 The Parameters of the Speed Controller

The basic continuous time PI controller is

s

sKK PI + ,

where:

IK is the integral parameter, and

PK is the proportional parameter
When using the scheduler, KP and KI are functions of time. When not using the gain scheduler, they are
fixed.
The input to the PI element is the speed error,)(teSPEED [Internal speed units]

)()()(tackSpeedFeedbtndSpeedCommateSPEED −=

The output is the current command)(tI in Ampere units:











⋅⋅+⋅= ∫)()()()(

0

tpteKdeKKtI SPEEDP

t

SPEEDISpeed ττ

SpeedK is the conversion factor from D/A scale to current in [Amp]

BITSVALUEMC

MC
K Speed __

= , 14000__ =BITSVALUEMC

otherwise

countGSdteandsamplesGSforcountsencodernoif
tp SPEED]14[

32768

1
]0[

1

0
)(

<





= ∫

For the non-scheduled case

]2[

]2[

KIK

KPK

I

P

=

=

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

196

The scheduled case is explained in the section on “Gain Scheduling”.

The parameter GS[0] helps stabilizing the motion in very slow speeds. It cuts the proportional gain of the
speed controller after enough controller sampling times elapsed without a change in the encoder readout.
Consider for example a 200-count/sec, speed reference. A new encoder count is available once per 5 msec –
which are about 25 sampling times of the speed controller. If a new encoder pulse comes only once per 5
msec, then the speed readout is delayed by at least 2.5msec, which in turn may have fatal effect on the
control stability. Setting GS[0]=12, the proportional gain of the controller is applied only for about half of
the time, leading to a practical reduction of the proportional gain to half at that speed. The reduced gain
implies reduced bandwidth and increased stability. The price is a slow acceleration from a complete rest. To
avoid the cutting of the speed proportional gain, set GS[0] to its maximum value – refer the GS command in
the Command Reference Manual.

The parameters of the non-scheduled speed controller are:
Parameter Description
KP[2] Proportional gain
KI[2] Integral gain
GS[0] Proportional gain duration
GS[2] Controller gain selection
GS[14] Speed reference integral threshold
FF[1] Torque feed forward
CL[1] Continuous torque limit
PL[1] Peak torque limit
KV[N] High order filter parameters

15.3 The Position Controller

15.3.1 Block Diagram

The position controller is made of a proportional gain, cascaded over the speed controller. The block
diagram of the position controller is given in Figure 41. The reference to the speed controller is composed of
the derivative of the position command (speed) and of the output of the auxiliary position controller. The
derivative of the position command is multiplied by the FF[2] factor, in order to eliminate the tracking errors
when the speed is steady.

The gain scheduler can be used, or the gains of the controller may be fixed.
The high order filter can be used, or not.
To fix the controller gains, set GS[2]=0.
To avoid the use of the high order filter, set KV[0]=0.

The same controller is used for the single feedback mode (UM=4) and for the dual feedback mode
(UM=5). Use the single feedback mode when there is only one sensor in the system, for
commutation, speed, and position sensing. Use the dual feedback mode when the load is driven
through a gear, where a separate load sensor enables precise load positioning in spite of some
backlash and gear compliance.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

197

DV[3]

Σ
Position

command

-

Speed command
(DV[2], Amp)Position

Controller
KP[3],GS[9]

Σ

FF[2] d/dt

Automatic
Controller
Selector

0

Fixed if

GS[2]=0

Main Position
sensor

Auxiliary Position
Sensor

Position feedback

UM=4UM=5

CommandPiePos

Figure 41 – Block Diagram of The Dual Loop Controller

15.3.2 The Parameters of the Position Controller

The position controller is implemented as a cascaded loop, the inner loop is a speed controller and the outer
loop is a simple gain: The simple gain operates on the position error,)(tePOS :

)()()(tkPosFeedbactPosCommandtePOS −= [counts]

 to give [Internal speed units, see “Units” section]

)()(teKtCommandPI POS
Out
P ⋅= .

However when the position error,)(tePOS , is too large the gain is modified to avoid instability, Out
PK is

replaced by

))(()))((2)),((min(tesignteabsteabsK POSPOSPOS
Out
P ⋅⋅⋅⋅ α .

 where

]9[2 GS=⋅α
The above formula assures that the speed controller will not be demanded to decelerate beyond α count/sec2.
GS[9] must be calculated with α as the 80% of the highest deceleration the motor can produce with the
current of PL[1].

The inner loop is a speed controller, described previously in this chapter.

The parameters of the non-scheduled position controller are:
Parameter Description
KP[3] Proportional gain , Out

PK

GS[2] Controller gain selector
GS[9] Acceleration limit
VL[2],VH[2] Maximum speed command
FF[2] Speed Feed-forward
UM For UM=4 the position feedback is taken from the auxiliary encoder

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

198

For UM=5 the position feedback is taken from the main encoder.
… All the parameters of the speed controller

15.4 The High Order Filter

15.4.1 Block Types

Several blocks chained in series make the high order filter. The block types are listed in the table below.

Block type Block structure Number of

parameters
Comment

12 Double lead-lag
block

2

14 1-st order block,
lead-lag or a pole

2

15 2-nd order, notch or
complex pole

4

15.4.1.1 Double lead block (Block type=12):
The basic continuous time double lead-lag element is

2










+

+
⋅

bs

as

a

b
.

The frequency)2/(πa [Hz] is the lead corner frequency. The frequency)2/(πb [Hz] is the lag corner
frequency.
The discrete equivalent form is

2

-z

)-z(1
G)-(1 G 
















+

β

β

Order Parameter Description Comment
1 1-β 0<β <1 Float, represented by

2 long values
2 G 0<G<1 Float, represented by

2 long values

The DC gain of this block is unity.

β is selected as bTe−=β .

G is selected by
β−β−

β
=−

G

G
e aT

1
.

15.4.1.2 Fist order block (Block type=14)
The basic continuous time single lead-lag element is

bs

as

a

b

+

+
⋅ .

The discrete equivalent form is










−

−
⋅









−

−

β

α

α

β

z

z

1

1

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

199

where
α−

α−β
=

1
p , β−=1q , i.e. q−= 1β ,

p1

q
1

−

−=α .

Order Parameter Description Comment
1 p Float, represented by

2 long values
2 q Float, represented by

2 long values

15.4.1.3 Second order block (Block Type=15)
The basic continuous time second order element is filter

DCsEs

BAsEs

B

D
2

2

++

++
⋅

Note that it can be used as a notch filter or as a low pass complex pole filter.
The equivalent discrete form is

22210
2

21
2

0

)1(azabbbz

bzbzb

+−−+++

++

Order Parameter Description Comment
1

1k 210 bbb ++ Float, represented by
2 long values

2
2k)(21 bb +− Float, represented by

2 long values
3

3k 2b− Float, represented by
2 long values

4
4k 2a Float, represented by

2 long values

210 kkb += , 231 kkb −= , 32 kb −= , 42 ka = .

15.4.1.4 Scheduled Double lead block (Block type=22):
The basic continuous time double lead-lag element is

2

)k(bs

)k(as

)k(a

)k(b









+

+
⋅ .

The index k is the gain scheduler selector: it selects one set of (a,b) from the 63 possible selections
(a(1),b(1)) , (a(2),b(2))....(a(63),b(63)).
The frequency)2/()k(a π [Hz] is the lead corner frequency. The frequency)2/()k(b π [Hz] is the lag corner
frequency.
The discrete equivalent form is

2

)k(-z

))k(-z(1
G(k))-(1 G(k) 

















β
β

+

Order Parameter Description Comment
1 β (k) 0<)k(β <1 Floating point

2 G(k) 0<G(k)<1 Floating point

The DC gain of this block is unity.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

200

For more details about gain scheduling, refer the section " The Gain-Scheduling Algorithm".

15.4.2 User Interface

The parameters defined by an array of long integer values set by the KV command.
If KV[0]=0, high order filter is not used and the vector is ignored.
If KV[0] is not zero, the KV[2]..KV[n] defines the filter structure, where KV[1]=n, is the last index used.
Anyway n <= 100.
The filter consists of a number of blocks. It is possible to configure a filter flexible by user interface
command KV, i.e. to define the list of blocks of given types.
KV[0]=100
KV[1]=Filter_Length (last index of KV used)
Filter_structure
{
 Block1{
 KV[2] =Block_type
 KV[3]… =Block_parameter_list
 }
 Block2{
 }
 …
 Block_Last
 {
 KV[n]=Block_type=0
 }
}
KV[last-2]=0 (reserved)
KV[last-1]=0 (reserved)
KV[last]=-1 – terminator of list

Each block is represented as a list of parameters. The first parameter in each block is the block type,
represented by one KV array element; the block type defines the length of the block parameter list and the
meaning of every parameter.
Other parameters of a block are float values. Every float value x is represented by a pair of KV elements
(Man, Exp) so that
 X = Man*exp(Exp),
 -2^31 <= Man <= 2^31-1,
 -1000 <= Exp <= 32
The following formulae give the appropriate values:
If X=0 the Exp =-1000
If X>0 then
 Exp = floor(log2(X))-30;
If X <0
 Exp = ceil(log2(-X))-31;

Man = floor(X / 2^Exp)

15.4.2.1 An Example
Consisted a filter made of one 2nd-order block and one 1st-order block.
The second order block is a notch filter with 300Hz notch frequency and damping of 0.14. The sample time
is
400 us. The discrete equivalent of the filter is parameterized by k1 = 0.4038, k2=0.3447, k3= -0.7414, k4=
0.4900
The second block is simple pole with frequency 400 Hz. It may be represented by
p=0.3659, q = 1-p =0.6341

The KV parameters vector is be programmed as follow:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

201

KV [0] 100
KV[1] 19 Last index used
KV[2] 15 1st block, 2-order
KV[3] 1734476372 Parameter 1 (k1), man
KV[4] -32 Parameter 1 (k1), exp
KV[5] 1480626866 Parameter 2 (k2), man
KV[6] -32 Parameter 2 (k2), exp
KV[7] -1592218865 Parameter 3 (k3), man
KV[8] -31 Parameter 3 (k3), exp
KV[9] 2104573671 Parameter 4 (k4), man
KV[10] -32 Parameter 4 (k4), exp
KV[11] 14 2nd block, 1-order
KV[12] 1571662995 Parameter 1 (p), man
KV[13] -32 Parameter 1 (p), exp
KV[14] 1361652150 Parameter 2 (q), man
KV[15] -31 Parameter 2 (q), exp
KV[16] 0 End of the filter blocks
KV[17] 0 Reserved
KV[18] 0 Reserved
KV[19] -1 End of filters

The value of KV[N] parameters for N>19 is not important.

15.5 The Gain-Scheduling Algorithm

The gain scheduling (GS) is implemented for speed and position controllers. This means, that the controller
parameters (Speed controller KI, KP, Position controller gain, and some links of the high order filter) are
changed automatically with the working point of the servo drive.
Gain scheduling solves the following problems:
Low Resolution Position Sensor: When the position sensor has low resolution, the speed is derived from
the position data with large time delay, typically half of the time between consecutinve encoder pulses. The
speed measurement delay risks the controller stability. In order to maintain stability in low speeds, the
controller gains are reduced. For high speed, the controller achieves its full possible bandwidth.
The Harmonica can schedule of the controller gains automatically, as a function of the command to the
speed controller. In the speed unit mode, the command to the speed controller is a function of the reference
generator only. For the position control modes (UM=4,UM=5) the reference to the speed controller is the
sum of the position command derivative, and the output of the position controller.

Load and Posture Variations When controlling an articulated manipulator, the inertia that some of the
manipulator motors see varies much with the posture of the manipulator. Resonance frequency may also
vary considerably with varying posture or load conditions. By gain scheduling, one can switch the active
controller parameters, as a function of posture and load.

The following table describes the programming of 63 controller parameters sets:
Parameters Name Description
KG[1]...KG[63] SpeedKiTable SpeedKiTable[k] is the speed KI gain for the k'th

controller
KG[64]...KG[126] SpeedKpTable

SpeedKpTable[k] is the speed KP gain for the k'th
controller

KG[127]...KG[189] PositionKpTable PositionKpTable[k] is the position KP gain for the
k'th controller

KG[190]...KG[252] DoubleLeadBeta DoubleLeadBeta[k] is the β parameter for the
double lead element of the k'th controller

KG[253]...KG[315] DoubleLeadG DoubleLeadG[k] is the G parameter for the double
lead element of the k'th controller

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

202

Table 15-3: Programming sets of controller parameters for gain schedulilng

Only a subset of the controller parameters can be schedualed.
The KG[] parameters can program sets of KP,KI gains, as well as one scheduled double-lead
block at the high order filter.
The other elements of the high order filter cannot be gain scheduled.

The scheduling is automatic for GS[2]=64.
GS[2]=0 selects the controller parameters of KP[2],KI[2],and KP[3].
For other values of GS[2], the value of GS[2] selects directly which of the available sets of controller
parameters is used.
Example:
If GS[2]=1, the proportional gain of the speed loop will be SpeedKpTable[1].By Table 15-3,
SpeedKpTable[1]=KG[64].

15.6 Automatic Controller Gain-Scheduling

The speed reference controls the controller gain scheduling. The goal of the algorithm is to decrease the
gains when the speed is low, since when speed is low, large delay is added to the encoder measurement,
forcing low bandwidth.

The gains are scheduled according to the reference speed. If the desired speed is high, then the encoder data
is updated at high rate, so that the speed sensing delay will be low. If the desired speed is low, then encoder
pulses shall be slow. For example, suppose that a speed of 200 count/sec is required. Then we have a new
encoder count once per 5 msec. The calculated speed will have an average of 2.5msec delay that may kill the
stability of the control algorithm. For that reason, if the speed is low, the controller bandwidth must be
narrowed, so that the extra sensing delay becomes tolerable.

The speed command is filtered, and the filtered value of the speed command serves to fetch the relevant
controller scheduled parameters, KP and KI and some of the advanced filter parameters, from a table.

The filtering is required to avoid abrupt changes of controller parameters, since abrupt changes can spoil the
guaranteed stability of the gain-scheduled controller (Assuming that each of the selection sets of speed
controller parameters is stable controller for its goal speed)

The speed range where the scheduling is effective is about 0..20000 count/sec.

The tabulated gains are not tabulated linearly by the commanded speed, since the dependence of the
parameters in the speed is very nonlinear. The controller parameters are very sensitive to the command speed
about the zero speed (At zero speed the feedback delay approaches infinity). Close to the upper end of the
table, at about 20000 count/sec, the controller parameters become insensitive to the speed. For this reason,
the speed command does not index the gains table directly. Instead, the parameter tables are indexed by a
nonlinear, monotone, function of the commanded speed. This indexing function is tabulated in the vector
SpeedIndexTable(0:63).

The actual parameter indexing process goes as follows:

Saturate speed command)count/sec 20000,reference speedmax(=X

Filter commanded speed.
Note that the filter does not
respond symmetrically to rising
and falling speed commands.
High-speed commands are
responded immediately, for swift
response, where as low speed

XmYmY)1()()1(ββ −+⋅=+
where





<

≥
=

)(,

)(,

mYXifGainGsFilterDn

mYXifGainGsFilterUp
β

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

203

commands are accepted slowly to
guarantee stability.
Limit the schedulink below Y = max (Y , MinSpeed)
Get the index to the gains table by
interpolating the indexing
function

]15[GS/])15[GSmod16/Y(q

]4096/Y[n

=

=

qnTableSpeedIndexnTableSpeedIndex

nTableSpeedIndexk

⋅−+

+=

])[]1[(

][

Get the gains][kleSpeedKpTabKP =

][kleSpeedKiTabKI =
Kpos = PositionKpTable[k] (UM=4 and UM=5 only)

)k(β =DoubleLeadBeta[k]
G(k)=DoubleLeadG[k] (if a block of type #22 used in
high order filter)

Table 15-4 – Automatic Gain Scheduling Process

GS[N] and KG[N] programs the parameters of the automatic gain scheduling process, as follows:
Parameter Description

Range

GS[1] MinSpeed:
minimal speed command for speed
and dual gains scheduling [cnt/sec]

0.. 16*62*GS[15] internal speed
units
(1 Speed unit = Cnt/Ts / 2^16)

GS[2] Use automatically speed-scheduled
gains:
 64 – yes

0,64

GS[4] GsFilterUpGain* 32768
Upwards gain of the gain scheduling
filter

0.. 32767

GS[5] GsFilterDnGain* 32768
Downwards gain of the gain
scheduling filter

0.. 32767

Table 15-5 – Gain scheduling automatic indexing parameter

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

204

16 Appendix A: The Harmonica Flash Memory Organization

This Appendix describes the internal partitioning of the internal serial Flash memory of the Harmonica.
For normal use of the Harmonica, you don’t need to read this appendix, since the Composer IDE will deal
with it for you.
To learn how to upload and download flash data, refer the DL,LS, and LP commands in the Command
Reference Manual.

16.1 Main partitions

The flash has four main partitions at the following order.
• The firmware partition
• The parameters partition
• The factory code partition
• The user code partition

The firmware partition always starts at address zero of the serial flash.
The location of the other partitions is defined in the table of contents of the firmware partition.

16.2 The firmware partition

The firmware partition includes identity information for the driver.
It includes the following:

• Table of contents
• Text1 - description of the contents of the parameters 1 segment
• Text2 - unused memory space for possible later use
• Text3 - unused memory space for possible later use
• Text4:7 – description of the commands supported by the Harmonica
• Text8 – description of the available recorded signals
• Text9 – system limits
• Text10 – error codes descriptions
• Binary1 – record of default values for parameters1 segment
• Binary2 – unused memory space for possible later use
• Binary3 – unused memory space for possible later use

The firmware partition can be accessed by DL command only when we make download firmware when
running from boot memory.
The firmware partition can be read by the LS command at any time.

16.2.1 Table of Contents (TOC)

This table of contents gives the starting address and the length for each of the text files, relative to the start of
the firmware partition. Each text file starts in a page boundary. The table below specifies how the TOC is
built.
This TOC is located at physical address 0 in the serial flash.
For example, the third line of the table is:
Length of Text1 unsigned short 2

It means that the parameter “Length of Text1” can be read as
Length_of_Text1 = * ((unsigned short *)(Firmware_Partition+2))

Name Size Byte location in the

firmware partition
Comment

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

205

Start of Text1 unsigned short 0
Length of Text1 unsigned short 2
Start of Text2 unsigned short 4
Length of Text2 unsigned short 6
Start of Text3 unsigned short 8
Length of Text3 unsigned short 10
Start of Text4 unsigned short 12
Length of Text4 unsigned short 14
Start of Text5 unsigned short 16
Length of Text5 unsigned short 18
Start of Text6 unsigned short 20
Length of Text6 unsigned short 22
Start of Text7 unsigned short 24
Length of Text7 unsigned short 26
Start of Text8 unsigned short 28
Length of Text8 unsigned short 30
Start of Text9 unsigned short 32
Length of Text9 unsigned short 34
Start of Text10 unsigned short 36
Length of Text10 unsigned short 38
Start of Binary1 unsigned short 40
Length of Binary1 unsigned short 42
Start of Binary2 unsigned short 44
Length of Binary2 unsigned short 46
Start of Binary3 unsigned short 48
Length of Binary3 unsigned short 50

Start of factory code
partition

unsigned long 80 Length of factory code partition
is constant: 5 kwords or 10
kbytes

Start of parameters
partition

unsigned long 84 Length of parameters partition
is constant: 5 kwords or 10
kbytes

Start of user program
partition

unsigned long 88 Length of user code partition is
calculated based on flash size.

All the unused page entries are set to zero.

16.2.2 Contents of Text1

This text duplicates the definitions of CUserParameters of commonvars.h

16.2.3 Contents of Text2

Unused memory space for possible later use

16.2.4 Contents of Text3

Unused memory space for possible later use

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

206

16.2.5 Contents of Text4-Text7

This text specifies which op-codes a specific the Harmonica supports, and also the limitations: Size of
available flash space (may vary with Harmonica grades), size of data segment in RAM, maximal number of
variables, maximum number of functions, and Maximum stack depth.
The text4 file specifies the supported mnemonics. By “mnemonic” we mean a case insensitive combination
of two letters, which refer to a system service. It contains comma-delimited list of 6768 numbers. Each
number corresponds to a combination of two English letters. Each letter is given a value – A is 0, B is 1, C is
2, and so on until Z=25.
The first of the 676 numbers corresponds to the two letters combination with the value of 0 – that is AA =
0*26 + 0. The second number corresponds to value of 1 which matches the combination AB = 0*26+1 until
the last number 675 which matches the combination ZZ=26*25+25.
Each number of the list specifies the index of the service function for a specific mnemonic. The number –1
specifies that the mnemonic is not connected to any service function.
The list –1,34,67,-1,-1,... specifies that from the mnemonics AA,AB,AC,AD, and AE, only AB and AC are
meaningful – AB is connected to the service function of index 34 and AC is connected to the service
function of index 67.

The text5 file describes the virtual assembly commands that the Harmonica can service, and specify the
index of their service functions. Text5 contains a list with the following format:
MLT , 0
SUB , 1
ADD , 2
DIV , 3
REM , 4
RSLTAND , 5
RSLTOR , 6
...
From the first line of the list we understand that there is a virtual assembly command named MLT. MLT is
implemented by the service function of index 0. The next lines are interpreted similarly.
The list of HARMONICA op codes is given in Section Error! Reference source not found.:

The text6 file lists all the system functions. It has the format
rnd , 34 , 1 , 1
sqrt , 35 , 1 , 1
...
The first line specifies that the rnd (round to nearest integer) function is serviced by the service function of
index 34, and that it has 1 input argument and 1 output argument.
Next lines are interpreted similarly.

The text7 file specifies the type of service given by each of the service functions. It has the format
34562
8232

Each number is a bit field which its composed according to the table below.
Each number describes the nature of a specific command, system function or virtual assembly code.

Bit Description Meaning
0x1 FLAG_Float System parameter type is float
0x2 FLAG_Long System parameter type is long
0x4 FLAG_PreProcess Return an answer based on internal data processing
0x8 FLAG_PostProcess Process the data for internal use
0x10 FLAG_BitField System parameter is a bit field

8 There are 676 possible combinations of two English letters. There are 26 letters and 676 = 26 * 26.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

207

0x20 Not used
0x40 FLAG_Assign System parameter can be assigned a value
0x80 Not used
0x100 FLAG_Operator Virtual Assemby Code or operator
0x200 FLAG_SysFunc System function
0x400 FLAG_Mnemonic System command - Mnemonic
0x800 FLAG_String Indicate this is a string command
0x1000 FLAG_Array Command is not executed automatically upon reset
0x2000 FLAG_ResetIgnore Indicate this is a string command
0x4000 FLAG_NotProgram Command can’t be used from a user program
0x8000 FLAG_NotPdo CAN binary interpreter can’t use command.

Example:
The value of 4100 is interpreted as 0x1000+0x4. It means that the related command is a report that returns a
long integer.
The value of 4164 is interpreted as 0x1000+0x40+0x4. It means that the related command refers to a
parameter that can be either set or reported.

16.2.6 Contents of Text8

This text duplicates the definitions of the struct RecVarType within the file “ComVars.h”. The first line of
the file is:
Recorded Signals = xxxx
Where xxxx is the number of recorded signals.
Next come xxxx text lines with the format
{ RV index, Float_Flag , Length , Text name}
RV index specifies the signal index for use with the Harmonica RV command.
Float_Flag = 1 for floating point quantity, 0 for integer
Length = 4 for short, 8 for long
Text name is a delimited text signal name like "Main Speed"
Last comes
End Recorded Signals

16.2.7 Contents of Text9

This file specifies the setup of the Harmonica.
It has the .ini format:

[Program Limits]
TextSpace=xxx
CodeSpace=xxx
MaxUserFuncs=xxx
MaxUserVars=xxx
NameLength=xxx
StackDepth=xxx
DataSpace=xxx
UserPartMaxSize=xxx

[Automatic Functions]
AUTO_ERR=1
AUTO_DIN1=2
...

The [Program Limits] entries are:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

208

Entry Meaning Remarks
TextSpace The space (in characters) to store user program

backup. This numbers specifies the entire space –
including overhead, such as text-opcode matching
data. The net text length is smaller that this
number.

CodeSpace The space (in characters) to store compiled op-
code.

NameLength The maximum length (in characters) of a symbolic
function or variable name.

StackDepth The maximum depth of the stack of a specified
VAC machine

DataSpace The space for global user variables, in words.
MaxUserFuncs The maximum number of user functions and

labels.

MaxUserVars The maximum number of user variable names
(either local or global)

UserPartMaxSize The maximal size of user code partition in the flash
in bytes

This parameter is
absent at the flash
firmware
partition

The parameter “UserPartMaxSize” is calculated according to the formulae:
UserPartMaxSize = TotalFlashSize – UserPartStart,
where TotalFlashSize is a maximal physical memory space of the flash and UserPartStart is a start address of
the user code partition (see TOC at the address 88).

The [Automatic Functions] entries detail which events can be responded by dedicated automatic routines,
and what are the priorities. The list of events and priorities is hard coded into the Harmonica.
The list of Harmonica automatic routines is:
Entry Meaning
AUTOEXEC Priority for AUTOEXEC – the routine that executes automatically

upon power-up
AUTO_ER Priority for AUTO_ER – the routine that executes automatically

upon motor fault event
AUTO_STOP
AUTO_BG
AUTO_RLS Priority for AUTO_RLS – the routine that executes automatically

upon change on Logic Level of RLS (Reverse Limit Switch)
AUTO_FLS Priority for AUTO_FLS – the routine that executes automatically

upon change on Logic Level of FLS (Forward Limit Switch)
AUTO_ENA
AUTO_I1 Priority for AUTO_I1 – the routine that executes automatically

when Digital Input #1 goes high
AUTO_I2 Priority for AUTO_I2 – the routine that executes automatically

when Digital Input #2 goes high
AUTO_I3 Priority for AUTO_I3 – the routine that executes automatically

when Digital Input #3 goes high
AUTO_I4 Priority for AUTO_I4 – the routine that executes automatically

when Digital Input #4 goes high
AUTO_I5 Priority for AUTO_I5– the routine that executes automatically when

Digital Input #5 goes high
AUTO_I6 Priority for AUTO_I6 – the routine that executes automatically

when Digital Input #6 goes high

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

209

If the priority is –1 if the Harmonica can’t service this function.

16.2.8 Contents of Text10

This file lists all the possible run-time errors of a specific Harmonica, including their codes. Text10 has the
following format:
1 , motor must be off
2 , out of range

In each line the number is the error code and the string follow it is the meaning of the error. For example if
error code is 1 we know that motor is on and it must be shut down.
Another usage of text10 presence in the serial flash is by having the ability to display the error description
for the user instead of just showing him the error code.

16.2.9 Contents of Binary1

To be read by the reset procedure to UserPars

16.2.10 Contents of Binary2

Unused memory space for possible later use

16.2.11 Contents of Binary3

Unused memory space for possible later use

16.3 Parameters Partition

The parameters partition includes the UserPars parameters.
The parameters are saved to flash by SV command and loaded to ram by LD command.
The parameters are saved in the serial flash due to space limitation in the flash of the DSP56F800 processor.
The parameters partition occupies the fixed 10kbyte space of the flash.

16.4 Factory Code Partition

The factory code partition includes factory programs. Factory programs are:
- Routines used for the auto-tuning process
- Functions given for various other purposes.

The firmware partition can be accessed by DL command only in download firmware.
The firmware partition can be accessed by LS command.
The factory code partition is defined only for future compatibility.
The Factory Code partition shall be loaded as a part of the firmware downloading process. The Factory Code
shall be later accessible for running as any other user program compiled code.
The parameters partition occupies the fixed 10kbyte space of the flash.

16.5 User Code partition

The user code partition carries the information concerning the user program.
The user code partition can be accessed by DL command.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

210

The user code partition can be read by the LS command.
The data in this partition is:

• A TOC (Table of Contents)
• A "Compilation done" flag
• A virtual machine code segment
• A text backup segment. The text backup includes virtual code counter references.
• A function symbol table
• A variable symbol table
• An automatic function table

Each partition starts at a page (264 bytes) boundary.

16.5.1 The TOC

The table of contents is located at the starting address of user code partition.
Each of the items below is relative to the start of the user code partition.
The length of the TOC is one flash page (264 byte).
The TOC includes:
Item Address Size Comment
Compilation done 0 unsigned

long
Points to the fixed address 264

Virtual machine code
segment start address

4 unsigned
long

Points to the fixed address 2*264.
The length of this segment is less
then 63k.

Virtual machine code
segment length

8 unsigned
long

Text backup segment
start address

12 unsigned
long

Text backup segment
length

16 unsigned
long

Function symbol table
start address

20 unsigned
long

Function symbol table
length

24 unsigned
long

Variable symbol table
start address

28 unsigned
long

Variable symbol table
length

32 unsigned
long

Automatic function table
start address

36 unsigned
long

Automatic function table
length

40 unsigned
long

Last used address 44 unsigned
long

The checksum for the user code
partition is checked from Address 0
in the serial flash to that address.
Must be in the range
[2*264,100000]

All unused TOC items are set to zero.

16.5.2 The Compilation Done Flag

The Compilation Done Flag tells the Harmonica if a program is ready to run. This means that a program
image has been successfully downloaded to the Harmonica and its checksum verified, and also that the
symbol tables has been copied to the local data flash of the Harmonica.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

211

If the compilation flag is zero, program is ready.
Other values indicate not ready program.
The command CP sets the compilation flag to –1.
The Compilation Flag is checked when:

• DL command – If the flag is zero, DL will not execute (CP must be issued before DL).
• XQ command – If the flag is nonzero, the command returns with PROGRAM_NOT_READY

error
• CC inquiry – Returns 1 if the flag is zero, otherwise 0.

The compilation flag is set to zero at a CC=xxxx command, if xxxx matches the 32 bit program checksum,
to the length stated at the TOC.

16.5.3 The Virtual Machine Code Segment

The virtual code segment holds consecutively the virtual machine code as compiled.

16.5.4 The Text Backup & Compiler data segment

The text backup segment holds the program text and the compiler data.
The first 80 characters are dedicated to the compiler version.
Characters [81.. End of segment] include the program text and line number information.
The compiler version is a zero terminated string, including:

- Compiler Version.sub.subsub, something like 15.2.1
- Op-codes version: same method as compiler version.
- Data of release, something like 17-Dec-2002
- Target: Release/Eng/Special
- Any general comment.

In each program line, the corresponding program counter value is the first word (unsigned short). If the first
word is 0xFFFF, the text line contains no executable code. For example, the code
mo=1;
** This is a comment
mo=0;um=5;
will be written as
0x0246mo=1;<CR>0xFFFF**This is a comment<CR>024Cmo=0;um=5;<CR>....
supposing the VAC code for mo=1 is at PC=0246 and for mo=0 is at PC=0x24C, when PC is an address in
the serial flash relatively to the start of the code segment of the user code partition.

16.5.5 The Function Symbol Table

The function symbol table states what functions and labels are accessible through the user program. The
symbol table does not include any information on system functions. The first 34 bytes of the function symbol
table is devoted to statistics:

- Number of functions in the table (signed short)
For each function, the following data 34 bytes record is set:

• Name (24 bytes long, every character takes two bytes - signed short, unused tail filled
with zeros)

• Address in the Code Segment (2 bytes – unsigned short)
• Type (2 bytes, signed short – 0 for label, 1 for auto routine, 2 for user function)
• Number of input arguments (2 bytes, signed short, for functions only)
• Number of output arguments (2 bytes, signed short, for functions only)
• LabelProcRef (2 bytes, signed short). If this member is local label, this field contains

index of the function inside which this label resides. For global label this field is equal
to –1. For user function this field is not relevant and equal to -1.

The byte length of the function symbol table is 34 * (number of functions+1).

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

212

16.5.6 The Variable Symbol Table

The variable symbol table states what variables are accessible through the user program. Its first 34 bytes of
the variables symbol table is devoted to statistics:

- Number of variables in the table (signed short)
For each variable, the following data 34 bytes record is set:

• Name (24 bytes long, every character takes two bytes - signed short, unused tail filled with
zeros)

• Context: -1 for global variables, otherwise the index in the function symbol table defined above,
to which this variable is local. (2 bytes, signed short)

• Number of array elements (1 for non-arrays) (2 bytes, signed short)
• Data address (2 bytes, signed short). This number specifies data segment relative address for

global variables and base pointer relative address for local variables.
• Type (2 bytes, signed short – 0 for signed long integer, 1 for float)
• Spare (2 bytes, always zero)

The byte length of the variables symbol table is 34 * (number of variables+1).

16.5.7 The Automatic Routines Table

This table has 17 entries, one word long each.
The first entry is a bit field. It specifies for which priority levels a user defined a handler.
The next words specify the indices of auto routine handlers in the Function Symbol Table.

For example, if a user did not define a handler for priority 0, AUTO_ERR is specified for priority 1, and
AUTO_DIN1 is specified for priority 2, then the bit field of value 0x2 specifies that the only implemented
automatic routine is AUTO_ERR. The next words will be –1,12,-1,-1,... assuming 12 is an index of
AUTO_ERR in the Function Symbol Table.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

213

17 Appendix B: Harmonica Internals

This chapter summarises some of the Harmonica internals.
The chapter to give some deeper insights. It is not required for the standard Harmonica user.

17.1 Software Structure

The firmware is built from an initialisation block and from a run time block.
The run-time block is built by (event) interrupt handlers and by an idle loop.
Most of the motion control routines are performed by a periodic interrupt. The interrupt
period is programmable.
The idle loop consumes all the remaining CPU time, polling if there is anything to do (like
interpreting host commands or running a user program) and executing whatever found to do.

17.1.1 The Initialization block

The initialization block is called immediately after power-on.
The initialization is a linear set of routine, doing the following:

- Complete DSP register programming
- Initializing all the volatile data
- Attempt to read database from a serial flash, or reset data base to factory default

if database reading failed
- Initialize the communication.
- Reset all CAN database – PDO mappings etc. and set CAN status to pre-

operational.
- If there is an autoexec program defined, launch it (with thread 0).

17.1.2 The periodic Interrupt

This interrupt has the cycle time of 50-100usec programmable by the parameter TS. The
increased TS are used for high inductance – high user program CPU demand combinations,
or High loss motors, or large power applications.
This interrupt does, every cycle, as follows:
- Commutation
- Hazard handling
- Motor current control
- RS232 transmission and receiving
- Data recorder (may be activated only every fourth cycle)

After completing the “every cycle” jobs, the periodic interrupt forks to periodic jobs of
lesser frequency. The following jobs are made once per four periods:
- Calculate speed
- Calculate motion reference
- Closed loop speed or position control
- Controller gains scheduling.
- Read digital input, with software de-bouncing
- Manage Homing post-processing (Catching the home event itself is done by hardware)
- Handle high priority CAN actions:

o React to time stamps
o React to SYNC message by logging time and sending synchronous PDO's
o React to NMT
o React to high-priority motion messages like PT and PVT.
o Route lower priority CAN messages to handling by the idle loop.

The following jobs are made once per 32 sampling periods:

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

214

- Decide if to use the peak current limit or the continuous current limit.
- Match digital hall readout to encoder data, to detect loss of commutation
- Detect "Motor stuck" condition

17.1.3 The Idle Loop

The term "Idle loop" describes the repetitive task performed filling the entire time when the
processor is free from interrupt handling.
Idle loop processing starts immediately after the initialization sequence is complete.
The Idle loop does:
- Run user programs

o Run one line of user program for one virtual machine
o Respond to events –interrupt routines, break points and single step debug mode.

- Interpret terminal commands
- Interpret CAN low priority messages:

o CAN interpreter commands
o SDO
o Node guarding

- Calculate status and cleanup after motion fault exceptions.
- Route to the RS232 transmitter either data from the recorder or the output of the

interpreter.

The sampling time parameter TS controls how much CPU power is reserved for idle-loop
processing. Lower TS will deliver ultimate motion control performance, but will consume
more CPU time for motion control algorithms. The CPU power remaining for idle loop
processing decreases.

The following block diagram describes the idle loop.

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

215

Read any
additional chars

from RS232 buffer

Message
completed?

Route message to
interpreterr

Long Record in
transmission?

Present buffer
done?

Last data
loaded?

Reload buffer
Route transmittter

to interpreter
output

Auto routine
waiting for
execution?

Set program
counter of thread
0 to auto routine

User program
running?

Run next
instruction of user

program

Motion
Exception?

Shut motor & set
exception flag

Node guarding

Yes

Yes Yes

No
Yes

Yes

Break point?Yes No

Yes

Figure 42: Idle loop

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

216

18 Appendix C: Converting Clarinet/Saxophone programs to
the Harmonica language

18.1 The Converter

The user program syntax for the Saxophone or Clarinet is different from the Harmonica’s syntax. The
converter program provides an easy method to convert Saxophone/Clarinet style programs to the Harmonica
syntax.
The converter program requires that the source Sax/Cla program is a simple text file.
If the Sax/Cla has been produced by the Composer program in .pgm (actually reach edit) format, be
sure to convert it first to text.

18.2 The Converter Call

The converter is a console application. It gets their arguments from the command line. The arguments are the
following:
1. The first argument is the name of the input file with a user program. The default is the file named
“OldFormat.txt” from the current directory. If such file does not exist, the program exits doing nothing.
2. The second argument is the name of the output file that contains new text of the user program. The default
is the file named “NewFormat.txt” in the current directory.
This file will be created (if it does not exist) or updated (if it exists) only if the conversion is successful.
3. The third argument is the name of the output file that contains errors of compilation. The default is the file
named “Errs.txt” in the current directory.
This file will be created (if it does not exist) or updated (if it exists) only if the conversion or compilation is
failed.
4. The fourth argument is SaveOldTextflag. A user may desire to save an old program text inside comment
block for comparison with the text after conversion. The default is 0, i.e. an old text is not saved. If this
command line argument is ‘1’ – the format before conversion is saved inside C-style comment block (/* …
*/).

Example:
ConvSyn MySax.prg NewHar.txt 1
Converts the old program MySax.prg to the new program NewHar.txt, preserving the old
Sax-style code, commented.

18.3 The Algorithm

The converter program does the following:
1. Load program text input file.
2. Try to compile old format text in order to verify that initial text is valid according to the

Saxophone/Clarinet syntax. If the compilation failed - it writes error to the error output file and exits.
3. If SaveOldTextflag (the fourth command line argument) is ‘1’, save it inside comment block as it is.
4. Convert to the new format.
5. Writes new program text to the output file.

18.4 The Conversion Process

Most the program flows instructions of the Sax/Cla need to be converted for an Harmonica application.
The table below presents a list of the changes with the brief explanation.

N Description Saxophone/Clarinet Harmonica
1 AF command

The keyword ‘until’ is used instead the
AF,cond until cond

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

217

command AF
2 WT command

The keyword ‘wait is used instead the
command WT

WT=xxx wait xxx

3 JP command without condition
The keyword ‘goto’ is used for jump to
the label

JP##LABEL goto##LABEL

4 JP command with condition
The ‘if’ statement is used for condition

JP##LABEL,cond if cond
 goto##LABEL
end

5 JS command without condition
The subroutine call is used

JS##LABEL LABEL

6 JS command with condition
The ‘if’ statement is used for condition

JS##LABEL,cond if cond
 LABEL
end

7 JZ command without condition
The keyword ‘reset’ is used for killing
stack and jump to the subroutine

JZ##LABEL reset LABEL

8 JZ command with condition
The ‘if’ statement is used for condition

JZ##LABEL,cond if cond
 reset LABEL
end

9 EN command
The keyword ‘exit’ is used instead the
command EN

EN exit

10 RT command
The keyword ‘return’ is used instead the
command RT

RT return

11 The ‘is equal’ symbol inside the condition = ==
12 The ‘not equal’ symbol inside the

condition
<> !=

13 Hexadecimal number representation 1234H 0x1234
14 Separation of expressions

A single line may contain several
expressions to evaluate separated with
semicolon. In the Harmonica all
expressions of the same line must be
executed without return control to the
Interpreter. It does not relevant for the
Saxophone/Clarinet, so every expression
will be set to the separate line.

UM=5;MO=1;BG UM=5;
MO=1;
BG

15 IA[N], RA[N] commands
The global variables IA and RA are
defined in the beginning of every
program. They are vectors of the length
100.

 int IA[100];
float RA[100];

18.5 Examples

Here are some examples of the conversion:

Clarinet/Saxophone format The Harmonica’s format
 int IA[100];

float RA[100];
##START ##START

Elmo HARmonica Software Manual P R E L I M I N A R Y D R A F T

HARSFEN0602

218

PX=0;UM=2;AC=60000000; PX=0;
UM=2;
AC=60000000;

IA[1]=2000;IA[2]=-2000 ; IA[1]=2000;
IA[2]=-2000 ;

MO=1;**Motor On MO=1;**Motor On
BG;**Begin BG;**Begin
##LOOP1 ##LOOP1
JP##LOOP1,PX<IA[1] ; if PX<IA[1]

 goto##LOOP1
end ;

##LOOP2 ##LOOP2
JZ##LOOP2,PX>IA[2]; if PX>IA[2]

 reset LOOP2
end

#@AUTOEXEC #@AUTOEXEC
WT=200 wait 200
##LOOP ##LOOP
JP##LOOP goto##LOOP
RT return

#@AUTO_I1 #@AUTO_I1
**THE BLOCKING MODE **THE BLOCKING MODE
MO=0;UM=2;RM=0;MO=1;JV=0;BG MO=0;

UM=2;
RM=0;
MO=1;
JV=0;
BG

AF,IB[1]=0 until IB==0
MO=0;UM=1;RM=1;MO=1 MO=0;

UM=1;
RM=1;
MO=1

SM=2AH SM=0x2A
RT return
EN exit

