
Compaq AlphaServer SC RMS
Reference Manual

Quadrics Supercomputers World Ltd. Document Version 7 - June 22nd 2001 - AA-RLAZB-TE

The information supplied in this document is believed to be correct at the time of publica-
tion, but no liability is assumed for its use or for the infringements of the rights of others
resulting from its use. No license or other rights are granted in respect of any rights
owned by any of the organizations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent
of Quadrics Supercomputers World Ltd.

Copyright 1998,1999,2000,2001 Quadrics Supercomputers World Ltd.

The specifications listed in this document are subject to change without notice.

Compaq, the Compaq logo, Alpha, AlphaServer, and Tru64 are trademarks of Compaq
Information Technologies Group, L.P. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the U.S. and other countries.

TotalView and Etnus are registered trademarks of Etnus LLC.

All other product names mentioned herein may be trademarks of their respective compa-
nies.

The Quadrics Supercomputers World Ltd. (Quadrics) web site can be found at:

http://www.quadrics.com/

Quadrics’ address is:

One Bridewell Street
Bristol
BS1 2AA
UK

Tel: +44-(0)117-9075375
Fax: +44-(0)117-9075395

Circulation Control: None

Document Revision History
Revision Date Author Remarks

1 January 1999 HRA Initial Draft
2 Feb 2000 DR Updated Draft
3 Apr 2000 DR Draft changes for Product Release
4 Jun 2000 RMC Corrections for Product Release
5 Jan 2001 HRA Updates for Version 2
6 June 2001 DR Further Version 2 changes
7 June 2001 DR AlphaServer SC V2 Product Release

Contents

1 Introduction 1-1

1.1 Scope of Manual . 1-1

1.2 Audience . 1-1

1.3 Using this Manual . 1-1

1.4 Related Information . 1-3

1.5 Location of Online Documentation 1-3

1.6 Reader’s Comments . 1-3

1.7 Conventions . 1-3

2 Overview of RMS 2-1

2.1 Introduction . 2-1

2.2 The System Architecture . 2-1

2.2.1 Nodes . 2-1

2.3 The Role of the RMS . 2-3

2.3.1 The Structure of the RMS . 2-4

2.3.2 The RMS Daemons . 2-4

2.3.3 The RMS Commands . 2-5

2.3.4 The RMS Database . 2-6

2.4 RMS Management Functions . 2-7

2.4.1 Allocating Resources . 2-7

2.4.2 Scheduling . 2-8

2.4.3 Access Control and Accounting 2-9

Contents i

2.4.4 RMS Configuration . 2-10

3 Parallel Programs Under RMS 3-1

3.1 Introduction . 3-1

3.2 Resource Requests . 3-2

3.3 Loading and Running Programs . 3-3

4 RMS Daemons 4-1

4.1 Introduction . 4-1

4.1.1 Startup . 4-2

4.1.2 Log Files . 4-2

4.1.3 Daemon Status . 4-2

4.2 The Database Manager . 4-2

4.3 The Machine Manager . 4-3

4.3.1 Interaction with the Database 4-3

4.4 The Partition Manager . 4-3

4.4.1 Partition Startup . 4-4

4.4.2 Interaction with the Database 4-4

4.5 The Switch Network Manager . 4-5

4.5.1 Interaction with the Database 4-5

4.6 The Transaction Log Manager . 4-5

4.6.1 Interaction with the Database 4-6

4.7 The Event Manager . 4-6

4.7.1 Interaction with the Database 4-6

4.8 The Process Manager . 4-7

4.8.1 Interaction with the Database 4-7

4.9 The RMS Daemon . 4-7

4.9.1 Interaction with the Database 4-8

5 RMS Commands 5-1

5.1 Introduction . 5-1

allocate(1) . 5-3

ii Contents

nodestatus(1) . 5-8

msqladmin(1) . 5-9

prun(1) . 5-11

rcontrol(1) . 5-20

rinfo(1) . 5-32

rmsbuild(1) . 5-35

rmsctl(1) . 5-37

rmsexec(1) . 5-39

rmshost(1) . 5-41

rmsquery(1) . 5-42

rmstbladm(1) . 5-44

6 Access Control, Usage Limits and Accounting 6-1

6.1 Introduction . 6-1

6.2 Users and Projects . 6-1

6.3 Access Controls . 6-2

6.3.1 Access Controls Example . 6-3

6.4 How Access Controls are Applied . 6-4

6.4.1 Memory Limit Rules . 6-4

6.4.2 Priority Rules . 6-5

6.4.3 CPU Usage Limit Rules . 6-5

6.5 Accounting . 6-6

7 RMS Scheduling 7-1

7.1 Introduction . 7-1

7.2 Scheduling Policies . 7-1

7.3 Scheduling Constraints . 7-2

7.4 What Happens When a Request is Received 7-3

7.4.1 Memory Limits . 7-5

7.4.2 Swap Space . 7-5

7.4.3 Time Slicing . 7-6

7.4.4 Suspend and Resume . 7-6

Contents iii

7.4.5 Idle Time . 7-6

8 Event Handling 8-1

8.1 Introduction . 8-1

8.1.1 Posting Events . 8-2

8.1.2 Waiting on Events . 8-2

8.2 Event Handling . 8-3

8.3 List of Events Generated . 8-4

8.3.1 Extending the RMS Event Handling Mechanism 8-6

9 Setting up RMS 9-1

9.1 Introduction . 9-1

9.2 Installation Planning . 9-1

9.2.1 Node Names . 9-2

9.3 Setting up RMS . 9-2

9.3.1 Starting RMS . 9-2

9.3.2 Initial Setup with One Partition 9-3

9.3.3 Simple Day/Night Setup . 9-4

9.4 Day-to-Day Operation . 9-5

9.4.1 Periodic Shift Changes . 9-5

9.4.2 Backing Up the Database . 9-5

9.4.3 Summarizing Accounting Data 9-6

9.4.4 Archiving Data . 9-6

9.4.5 Database Maintenance . 9-7

9.4.6 Configuring Nodes Out . 9-9

9.5 Local Customization of RMS . 9-10

9.5.1 Partition Startup . 9-10

9.5.2 Core File Handling . 9-10

9.5.3 Event Handling . 9-11

9.5.4 Switch Manager Configuration 9-11

9.6 Log Files . 9-12

iv Contents

10 The RMS Database 10-1

10.1 Introduction . 10-1

10.1.1 General Information about the Tables 10-1

10.1.2 Access to the Database . 10-2

10.1.3 Categories of Table . 10-2

10.2 Listing of Tables . 10-4

10.2.1 The Access Controls Table . 10-4

10.2.2 The Accounting Statistics Table 10-4

10.2.3 The Attributes Table . 10-6

10.2.4 The Elans Table . 10-8

10.2.5 The Elites Table . 10-9

10.2.6 The Events Table . 10-9

10.2.7 The Event Handlers Table . 10-10

10.2.8 The Fields Table . 10-11

10.2.9 The Installed Components Table 10-12

10.2.10 The Jobs Table . 10-12

10.2.11 The Link Errors Table . 10-13

10.2.12 The Modules Table . 10-14

10.2.13 The Module Types Table . 10-15

10.2.14 The Nodes Table . 10-15

10.2.15 The Node Statistics Table . 10-16

10.2.16 The Partitions Table . 10-17

10.2.17 The Projects Table . 10-19

10.2.18 The Resources Table . 10-19

10.2.19 The Servers Table . 10-20

10.2.20 The Services Table . 10-21

10.2.21 The Software Products Table . 10-22

10.2.22 The Switch Boards Table . 10-23

10.2.23 The Transactions Table . 10-23

10.2.24 The Users Table . 10-24

Contents v

A Compaq AlphaServer SC Interconnect Terms A-1

A.1 Introduction . A-1

A.2 Link States . A-4

A.3 Link Errors . A-4

B RMS Status Values B-1

B.1 Overview . B-1

B.2 Generic Status Values . B-2

B.3 Job Status Values . B-2

B.4 Link Status Values . B-3

B.5 Module Status Values . B-3

B.6 Node Status Values . B-4

B.7 Partition Status Values . B-5

B.8 Resource Status Values . B-5

B.9 Transaction Status Values . B-6

C RMS Kernel Module C-1

C.1 Introduction . C-1

C.2 Capabilities . C-1

C.3 System Call Interface . C-2

rms_setcorepath(3) . C-3

rms_getcorepath(3) . C-3

rms_prgcreate(3) . C-4

rms_prgdestroy(3) . C-4

rms_prgids(3) . C-6

rms_prginfo(3) . C-6

rms_getprgid(3) . C-6

rms_prgsuspend(3) . C-8

rms_prgresume(3) . C-8

rms_prgsignal(3) . C-8

rms_prgaddcap(3) . C-10

rms_setcap(3) . C-10

vi Contents

rms_ncaps(3) . C-12

rms_getcap(3) . C-12

rms_prggetstats(3) . C-13

D RMS Application Interface D-1

D.1 Introduction . D-1

rms_allocateResource(3) . D-2

rms_deallocateResource(3) . D-2

rms_run(3) . D-4

rms_suspendResource(3) . D-6

rms_resumeResource(3) . D-6

rms_killResource(3) . D-6

rms_defaultPartition(3) . D-7

rms_numCpus(3) . D-7

rms_numNodes(3) . D-7

rms_freeCpus(3) . D-7

E Accounting Summary Script E-1

E.1 Introduction . E-1

E.2 Command Line Interface . E-1

E.3 Example Output . E-2

E.4 Listing of the Script . E-3

Glossary Glossary-1

Index Index-1

Contents vii

List of Figures

2.1 A Network of Nodes . 2-2

2.2 High Availability RMS Configuration . 2-3

2.3 The Database . 2-6

2.4 Partitioning a System . 2-7

2.5 Distribution of Processes . 2-8

2.6 Preemption of Low Priority Jobs . 2-9

2.7 Two Configurations . 2-10

3.1 Distribution of Parallel Processes . 3-2

3.2 Loading and Running a Parallel Program 3-3

A.1 A 2-Stage, 16-Node, Switch Network . A-2

A.2 A 3-Stage, 64-Node, Switch Network . A-2

A.3 A 3-Stage, 128-Node, Switch Network A-3

List of Figures i

List of Tables

10.1 Access Controls Table . 10-4

10.2 Accounting Statistics Table . 10-5

10.3 Machine Attributes . 10-6

10.4 Performance Statistics Attributes . 10-7

10.5 Server Attributes . 10-7

10.6 Scheduling Attributes . 10-8

10.7 Elans Table . 10-8

10.8 Elites Table . 10-9

10.9 Events Table . 10-9

10.10 Example of Status Changes . 10-10

10.11 Event Handlers Table . 10-10

10.12 Fields Table . 10-11

10.13 Type Values . 10-11

10.14 Installed Components Table . 10-12

10.15 Jobs Table . 10-12

10.16 Link Errors Table . 10-13

10.17 Modules Table . 10-14

10.18 Module Types Table . 10-15

10.19 Valid Module Types . 10-15

10.20 Nodes Table . 10-16

10.21 Node Statistics Table . 10-17

List of Tables i

10.22 Partitions Table . 10-18

10.23 Projects Table . 10-19

10.24 Resources Tables . 10-19

10.25 Servers Table . 10-20

10.26 Services Table . 10-21

10.27 Entries in the Services Table . 10-22

10.28 Software Products Table . 10-22

10.29 Component Attribute Values . 10-22

10.30 Switch Boards Table . 10-23

10.31 Transaction Log Table . 10-23

10.32 Entry in the Transactions Table . 10-24

10.33 Users Table . 10-24

A.1 Switch Network Parameters . A-3

B.1 Job Status Values . B-2

B.2 Link Status Values . B-3

B.3 Module Status Values . B-3

B.4 Node Status Values . B-4

B.5 Run Level Status Values . B-5

B.6 Partition Status Values . B-5

B.7 Resource Status Values . B-6

B.8 Transaction Status Values . B-6

ii List of Tables

1

Introduction

1.1 Scope of Manual

This manual describes the Resource Management System (RMS). The manual’s purpose
is to provide a technical overview of the RMS system, its functionality and
programmable interfaces. It covers the RMS daemons, client applications, the RMS
database, the system call interface to the RMS kernel module and the application
program interface to the RMS database.

1.2 Audience

This manual is intended for system administrators and developers. It provides a
detailed technical description of the operation and features of RMS and describes the
programming interface between RMS and third-party systems.

The manual assumes that the reader is familiar with the following:

• UNIX R© operating system including shell scripts

• C programming language

1.3 Using this Manual

This manual contains ten chapters and five appendices. The contents of these are as
follows:

1-1

Related Information

Chapter 1 (Introduction)

explains the layout of the manual and the conventions used to present
information

Chapter 2 (Overview of RMS)

overviews the functions of the RMS and introduces its components

Chapter 3 (Parallel Programs Under RMS)

shows how parallel programs are executed under RMS

Chapter 4 (RMS Daemons)

describes the functionality of the RMS daemons

Chapter 5 (RMS Commands)

describes the RMS commands

Chapter 6 (Access Control, Usage Limits and Accounting)

explains RMS access controls, usage limits and accounting

Chapter 7 (RMS Scheduling)

describes how RMS schedules parallel jobs

Chapter 8 (Event Handling)

describes RMS event handling

Chapter 9 (Setting up RMS)

explains how to set up RMS

Chapter 10 (The RMS Database)

presents the structure of tables in the RMS database

Appendix A (Compaq AlphaServer SC Interconnect Terms)

defines terms relating to support for QsNet in RMS

Appendix B (RMS Status Values)

lists the status values of RMS objects

Appendix C (RMS Kernel Module)

describes the RMS kernel module and its system call interface

Appendix D (RMS Application Interface)

describes the RMS application interface

Appendix E (Accounting Summary Script)

contains an example of producing accounting information

1-2 Introduction

Conventions

1.4 Related Information

The following manuals provide additional information about the RMS from the point of
view of either the system administrator or the user:

• Compaq AlphaServer SC User Guide

• Compaq AlphaServer SC System Administration Guide

1.5 Location of Online Documentation

Online documentation in HTML format is installed in the directory
/usr/opt/rms/docs/html and can be accessed from a browser at
http://rmshost:8081/html/index.html. PostScript and PDF versions of the
documents are in /usr/opt/rms/docs. Please consult your system administrator if
you have difficulty accessing the documentation. On-line documentation can also be
found on the AlphaServer SC System Software CD-ROM.

New versions of this and other Quadrics documentation can be found on the Quadrics
web site http://www.quadrics.com.

Further information on AlphaServer SC can be found on the Compaq website
http://www.compaq.com/hpc.

1.6 Reader’s Comments

If you would like to make any comments on this or any other AlphaServer SC manual
please contact your local Compaq support centre.

1.7 Conventions

The following typographical conventions have been used in this document:

monospace type

Monospace type denotes literal text. This is used for command
descriptions, file names and examples of output.

bold monospace type

Bold monospace type indicates text that the user enters when
contrasted with on-screen computer output.

Introduction 1-3

http://www.quadrics.com
http://www.compaq.com/hpc

Conventions

italic monospace type

Italic (slanted) monospace type denotes some meta text. This is used
most often in command or parameter descriptions to show where a
textual value is to be substituted.

italic type Italic (slanted) proportional type is used in the text to introduce new
terms. It is also used when referring to labels on graphical elements
such as buttons.

Ctrl/x This symbol indicates that you hold down the Ctrl key while you
press another key or mouse button (shown here by x).

TLA Small capital letters indicate an abbreviation (see Glossary).

ls(1) A cross-reference to a reference page includes the appropriate section
number in parentheses.

A number sign represents the superuser prompt.

%, $ A percent sign represents the C shell system prompt. A dollar sign
represents the system prompt for the Bourne, Korn, and POSIX
shells.

1-4 Introduction

2

Overview of RMS

2.1 Introduction

This chapter describes the role of the Resource Management System (RMS). The RMS
provides tools for the management and use of a Compaq AlphaServer SC system. To put
into context the functions that RMS performs, a brief overview of the system architecture
is given first in Section 2.2. Section 2.3 outlines the main functions of the RMS and
introduces the major components of the RMS: a set of UNIX daemons, a suite of
command line utilities and a SQL database. Finally, Section 2.4 describes the resource
management facilities from the system administrator’s point of view.

2.2 The System Architecture

An RMS system looks like a standard UNIX system: it has the familiar command shells,
editors, compilers, linkers and libraries; it runs the same applications. The RMS system
differs from the conventional UNIX one in that it can run parallel applications as well as
sequential ones. The processes that execute on the system, particularly the parallel
programs, are controlled by the RMS.

2.2.1 Nodes

An RMS system comprises a network of computers (referred to as nodes) as shown in
Figure 2.1. Each node may have single or multiple processors (such as a SMP server);
each node runs a single copy of UNIX. Nodes used interactively to login to the RMS

Overview of RMS 2-1

The System Architecture

system are also connected to an external LAN. The application nodes, used for running
parallel programs, are accessed through the RMS.

Figure 2.1: A Network of Nodes

Management Network

Switch Network

Switch Network Control

Terminal
Concentrator

Interactive Nodes
with LAN/FDDI
Interface Application Nodes

...

QM-S16
Switch

All of the nodes are connected to a management network (normally, a 100 BaseT
Ethernet). They may also be connected to a Compaq AlphaServer SC Interconnect, to
provide high-performance user-space communications between application processes.

The RMS processes that manage the system reside either on an interactive node or on a
separate management server. This node, known as rmshost, holds the RMS database,
which stores all state for the RMS system.

For high-availability installations, the rmshost node should be an interactive node
rather than a management server. This will allow you to configure the system for
failover, as shown in Figure 2.2 (see Chapter 15 of the System Administration Guide for
details).

2-2 Overview of RMS

The Role of the RMS

Figure 2.2: High Availability RMS Configuration

RMS Database

RMS Host Backup RMS Host

The RMS processes run on the node with the name rmshost, which migrates to the
backup on fail-over. The database is held on a shared disk, accessible to both the
primary and backup node.

2.3 The Role of the RMS

The RMS provides a single point interface to the system for resource management. This
interface enables a system administrator to manage the system resources (CPUs,
memory, disks, and so on) effectively and easily. The RMS includes facilities for the
following administrative functions:

Monitoring controlling and monitoring the nodes in the network to ensure the
correct operation of the hardware

Fault diagnosis diagnosing faults and isolating errors; instigating fault recovery
and escalation procedures

Data collection recording statistics on system performance

Allocating CPUs allocating system resources to applications

Access control controlling user access to resources

Accounting single point for collecting accounting data

Parallel jobs providing the system support required to run parallel programs

Overview of RMS 2-3

The Role of the RMS

Scheduling deciding when and where to run parallel jobs

Audit maintaining an audit trail of system state changes

From the user’s point of view, RMS provides tools for:

Information querying the resources of the system

Execution loading and running parallel programs on a given set of resources

Monitoring monitoring the execution of parallel programs

2.3.1 The Structure of the RMS

RMS is implemented as a set of UNIX commands and daemons, programmed in C and
C++, using sockets for communications. All of the details of the system (its
configuration, its current state, usage statistics) are maintained in a SQL database, as
shown in Figure 2.3. See Section 2.3.4 for an overview and
Chapter 10 (The RMS Database) for details of the database.

2.3.2 The RMS Daemons

A set of daemons provide the services required for managing the resources of the system.
To do this, the daemons both query and update the database (see Section 2.3.4).

• The Database Manager, msqld, provides SQL database services.

• The Machine Manager, mmanager, monitors the status of nodes in an RMS system.

• The Partition Manager, pmanager, controls the allocation of resources to users and
the scheduling of parallel programs.

• The Switch Network Manager, swmgr, supervises the operation of the Compaq
AlphaServer SC Interconnect, monitoring it for errors and collecting performance
data.

• The Event Manager, eventmgr, runs handlers in response to system incidents and
notifies clients who have registered an interest in them.

• The Transaction Log Manager, tlogmgr, instigates database transactions that have
been requested in the Transaction Log. All client transactions are made through this
mechanism. This ensures that changes to the database are serialized and an audit
trail is kept.

• The Process Manager, rmsmhd, runs on each node in the system. It starts the other
RMS daemons.

2-4 Overview of RMS

The Role of the RMS

• The RMS Daemon, rmsd, runs on each node in the system. It loads and runs user
processes and monitors resource usage and system performance.

The RMS daemons are described in more detail in Chapter 4 (RMS Daemons).

2.3.3 The RMS Commands

RMS commands call on the RMS daemons to get information about the system, to
distribute work across the system, to monitor the state of programs and, in the case of
administrators, to configure the system and back it up. A suite of these RMS client
applications is supplied. There are commands for users and commands for system
administrators.

The user commands for gaining access to the system and running parallel programs are
as follows:

• allocate reserves resources for a user.

• prun loads and runs parallel programs.

• rinfo gets information about the resources in the system.

• rmsexec performs load balancing for the efficient execution of sequential programs.

• rmsquery queries the database. Administrators can also use rmsquery to update
the database.

The system administration commands for managing the system are as follows:

• nodestatus gets and sets node status information.

• rcontrol starts, stops and reconfigures services.

• rmsbuild populates the RMS database with information on a given system.

• rmsctl starts and stops RMS and shows the system status.

• rmshost reports the name of the node hosting the RMS database.

• rmstbladm builds and maintains the database.

• msqladmin performs database server administration.

The services available to the different types of user (application programmer, operator,
system administrator) are subject to access control. Access control restrictions are
embedded in the SQL database, based on standard UNIX group IDs (see

Overview of RMS 2-5

RMS Management Functions

Section 10.2.20). Users have read access to all tables but no write access. Operator and
administrative applications are granted limited write access. Password-protected
administrative applications and RMS itself have full read/write access.

The RMS commands are described in more detail in Chapter 5 (RMS Commands).

2.3.4 The RMS Database

The database provides a platform-independent interface to the RMS system. Users and
administrators can interact with the database using standard SQL queries. For example,
the following query displays details about the nodes in the machine. It selects fields
from the table called nodes (see Section 10.2.14). The query is submitted through the
RMS client rmsquery.

$ rmsquery "select name,status from nodes"
atlasms running
atlas0 running
atlas1 running
atlas2 running
atlas3 running

Figure 2.3: The Database

Node Configuration

Access Control

Accounting

System State

Network Configuration

Internal Support

Auditing

Usage Statistics

Resource Quotas

RMS uses the mSQL database engine from Hughes Technologies (for details see
http://www.Hughes.com.au). Client applications may use C, C++, Java, HTML or
UNIX script interfaces to generate SQL queries. See the Quadrics support page
http://www.quadrics.com/web/support for details of the SQL language.

2-6 Overview of RMS

http://www.Hughes.com.au
http://www.quadrics.com/web/support

RMS Management Functions

2.4 RMS Management Functions

The RMS gives the system administrator control over how the resources of a system are
assigned to the tasks it must perform. This includes the allocation of resources
(Section 2.4.1), scheduling policies (Section 2.4.2), access controls and accounting
(Section 2.4.3) and system configuration (Section 2.4.4).

2.4.1 Allocating Resources

The nodes in an RMS system can be configured into mutually exclusive sets known as
partitions as shown in Figure 2.4. The administrator can create partitions with different
mixes of resources to support a range of uses. For example, a system may have to cater
for a variety of processing loads, including the following:

• Interactive login sessions for conventional UNIX processes

• Parallel program development

• Production execution of parallel programs

• Distributed system services, such as database or file system servers, used by
conventional UNIX processes

• Sequential batch streams

Figure 2.4: Partitioning a System

Login

Sequential
batch

Parallel

The system administrator can allocate a partition with appropriate resources for each of
these tasks. Furthermore, the administrator can control who accesses the partitions (by
user or by project) and how much of the resource they can consume. This ensures that
resources intended for a particular purpose, for example, running production parallel
codes, are not diverted to other uses, for example, running user shells.

Overview of RMS 2-7

RMS Management Functions

A further partition, the root partition, is always present. It includes all nodes. It does
not have a scheduler. The root partition can only be used by administrative users (root
and rms by default).

2.4.2 Scheduling

Partitions enable different scheduling policies to be put into action. On each partition,
one or more of three scheduling policies can be deployed to suit the intended usage:

1. Gang scheduling of parallel programs, where all processes in a program are
scheduled and de-scheduled together. This is the default scheduling policy for parallel
partitions.

2. Regular UNIX scheduling with the addition of load balancing, whereby the user can
run a sequential program on a lightly loaded node. The load may be judged in terms
of free CPU time, free memory or number of users.

3. Batch scheduling, where the use of resources is controlled by a batch system.

Scheduling parameters such as time limits, time slice interval and minimum request
size are applied on an individual partition basis. Default priorities, memory limits and
CPU usage limits can be applied to users or projects to tune the partition’s workload. For
details see Chapter 6 (Access Control, Usage Limits and Accounting) and
Chapter 7 (RMS Scheduling).

The partition shown in Figure 2.5 has its CPUs allocated to five parallel jobs. The jobs
have been allocated CPUs in two different ways: jobs 1 and 2 use all of the CPUs on each
node; jobs 3, 4 and 5 are running with only one or two CPUs per node. RMS allows the
user to specify how their job will be laid out, trading off the competing benefits of
increased locality on the one hand against increased total memory size on the other.
With this allocation of resources, all five parallel programs can run concurrently on the
partition.

Figure 2.5: Distribution of Processes

3

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

3

2

1

0

7

6

5

4

0

0

1

1

2

2

3

3

1

0

4

4

3

2

5

5

5

4

6

6

7

6

7

7

16 Nodes

4 CPUs

Job 1 Job 2

Job 3

Job 4

Job 5

2-8 Overview of RMS

RMS Management Functions

The RMS scheduler allocates contiguous ranges of nodes with a given number of CPUs
per node 1. Where possible each resource request is met by allocating a single range of
nodes. If this is not possible, an unconstrained request (those that only specify the
number of CPUs required) may be satisfied by allocating CPUs on disjoint nodes. This
ensures that an unconstrained resource request can utilize all of the available CPUs.

The scheduler attempts to find free CPUs for each request. If this is not possible, the
request blocks until CPUs are available. RMS preempts programs when a higher priority
job is submitted, as shown in Figure 2.6. Initially, CPUs have been allocated for resource
requests 1 and 2. When the higher priority resource request 3 is submitted, 1 and 2 are
suspended; 3 runs to completion after which 1 and 2 are restarted.

Figure 2.6: Preemption of Low Priority Jobs

2 310 4 5 6 7

10 1198 12 13 14 15

Resource 3

3 4 5

0 1 2 0 2 4 6

1 3 5 7

Resource 1 Resource 2

3 4 5

0 1 2 0 2 4 6

1 3 5 7

Resource 1 Resource 2start jobs

suspend jobs

start job

job ends

resume jobs

2.4.3 Access Control and Accounting

Users are allocated resources on a per-partition basis. Resources in this context include
both CPUs and memory. The system administrator can control access to resources both
at the individual user level and at the project level (where a project is a list of users).
This means that default access controls can be set up at the project level and overridden
on an individual user basis as required. The access controls mechanism is described in

1The scheduler allocates contiguous ranges of nodes so that processes may take advantage of the Compaq
AlphaServer SC Interconnect hardware support for broadcast and barrier operations which operate over a
contiguous range of network addresses.

Overview of RMS 2-9

RMS Management Functions

detail in Chapter 6 (Access Control, Usage Limits and Accounting).

Each partition, except the root partition, is managed by a Partition Manager (see
Section 4.4), which mediates user requests, checking access permissions and usage
limits before scheduling CPUs and starting user jobs.

An accounting record is created as CPUs are allocated to each request. It is updated
periodically until the resources are freed. The accounting record itemizes CPU and
memory usage, indexed by job, by user and by project.

2.4.4 RMS Configuration

The set of partitions active at any time is known as a configuration. A system will
normally have a number of configurations, each appropriate to a particular operating
pattern. For example, there may be one configuration for normal working hours and
another for night time and weekend operation.

The CPUs allocated to a partition may vary between configurations. For example, a login
partition (nodes allocated for interactive use) may have more nodes allocated during
working hours than at night – it may even be absent from the night time configuration.
A pair of configurations are shown in Figure 2.7.

Figure 2.7: Two Configurations

Login Development Parallel

Parallel

Night

Day

16 nodes, 4 CPUs per node

RMS supports automated reconfiguration at shift changes as well as dynamic
reconfiguration in response to a request from an operator or administrator. The RMS
client rcontrol (Page 5-20) manages the switch-over from one configuration to another.
For automatic reconfiguration, rcontrol can be invoked from a cron job.

2-10 Overview of RMS

3

Parallel Programs Under RMS

3.1 Introduction

RMS provides users with tools for running parallel programs and monitoring their
execution, as described in Chapter 5 (RMS Commands). Users can determine what
resources are available to them and request allocation of the CPUs and memory required
to run their programs. This chapter describes the structure of parallel programs under
RMS and how they are run.

A parallel program consists of a controlling process, prun, and a number of application
processes distributed over one or more nodes. Each process may have multiple threads
running on one or more CPUs. prun can run on any node in the system but it normally
runs in a login partition or on an interactive node.

In a system with SMP nodes, RMS can allocate CPUs so as to use all of the CPUs on the
minimum number of nodes (a block distribution); alternatively, it can allocate a specified
number of CPUs on each node (a cyclic distribution). This flexibility allows users to
choose between the competing benefits of increased CPU count and memory size on each
node (generally good for multithreaded applications) and increased numbers of nodes
(generally best for applications requiring increased total memory size, memory
bandwidth and I/O bandwidth).

Parallel programs can be written so that they will run with varying numbers of CPUs
and varying numbers of CPUs per node. They can, for example, query the number of
processors allocated and determine their data distributions and communications
patterns accordingly (see Appendix C (RMS Kernel Module) for details).

Parallel Programs Under RMS 3-1

Resource Requests

3.2 Resource Requests

Having logged into the system, a user makes a request for the resources needed to run a
parallel program by using the RMS commands prun (see Page 5-11) or allocate (see
Page 5-3). When using the prun command, the request can specify details such as the
following:

• The partition on which to run the program (the -p option)

• The number of processes to run (the -n option)

• The number of nodes required (the -N option)

• The number of CPUs required per process (the -c option)

• The memory required per process (the RMS_MEMLIMIT environment variable)

• The distribution of processes over the nodes (the -m, -B and -R options)

• How standard input, output and error streams should be handled (the -i, -o and -e

options)

• The project to which the program belongs for accounting and scheduling purposes
(the -P option)

Two variants of a program with eight processes are shown in Figure 3.1: first, with one
process per node; and then, with two processes per node.

Figure 3.1: Distribution of Parallel Processes

1 Process Per Node

2 Processes Per Node

0 1 2 3 4 5 6 7

0 1

4 5

2 3

6 7

3-2 Parallel Programs Under RMS

Loading and Running Programs

The resource request is sent to the Partition Manager, pmanager (described in
Section 4.4). The Partition Manager performs access checks (described in
Chapter 6 (Access Control, Usage Limits and Accounting)) and then allocates CPUs
according to the policies established for the partition (see Chapter 7 (RMS Scheduling)).

RMS makes a distinction between allocating resources and starting jobs on them. Before
the Partition Manager schedules a parallel program, it will ensure that the required
CPUs and memory are allocated. Note that this may cause requests to block for longer
than you might expect – especially when the job has not specified how much memory it
requires. Once CPUs have been allocated, jobs can be started on them immediately.

3.3 Loading and Running Programs

A simple parallel program is shown in Figure 3.2. It has eight application processes,
distributed over four nodes, two processes per node.

Figure 3.2: Loading and Running a Parallel Program

0 4 1 5 2 6 3 7

rmsloader

rmsd

prun
stdio

Four Nodes in a Parallel Partition

Partition Manager

RMS Node

Once the CPUs have been allocated, prun asks the pmanager to start the application
processes on the allocated CPUs. The pmanager does this by instructing the daemons
running on each of the allocated nodes to start the loader process rmsloader on the
user’s behalf.

The rmsloader process starts the application processes executing, forwarding their
stdout and stderr streams to prun (unless otherwise directed). Meanwhile, prun
supplies information on the application processes as requested by rmsloader and
forwards stdout and stderr to the controlling terminal or output files.

prun forwards stdin and certain signals (QUIT, USR1, USR2, WINCH) to the application
processes. If prun is killed, RMS cleans up the parallel program, killing the application

Parallel Programs Under RMS 3-3

Loading and Running Programs

processes, removing any core files if requested (see Page 5-11) and then deallocating the
CPUs.

The application processes are run from the user’s current working directory with the
current limits and group rights. The data and stack size limits may be reduced if RMS
has applied a memory limit to the program.

During execution, the processes may be suspended at any time by the scheduler to allow
a program with higher priority to run. All of the processes in a parallel program are
suspended together under the gang-scheduling policy used by RMS for parallel programs
(see Chapter 7 (RMS Scheduling) for details). They are restarted together when the
higher priority program has completed.

A parallel program exits when all of its processes have exited. When this happens, the
rmsloader processes reduce the exit status back to the controlling process by
performing a global OR of the exit status of each of the processes. If prun is run with
verbose reporting enabled, a non-zero exit status is accompanied by a message, as shown
in the following example:

$ prun -v myprog
...
myprog: process 0 exited with status 1

If the level of reporting is increased with the -vv option, prun provides a commentary
on the resource request. With the -vvv option, rmsloader also outputs information
identifying the activity on each node running the program, as shown in the following
example.

$ prun -vvv myprog
prun: running /home/duncan/myprog
prun: requesting 2 CPUs
prun: starting 2 processes on 2 cpus default memlimit no timelimit
prun: stdio server running
prun: loader 1 starting on atlas1 (10.128.0.7)
prun: loader 0 starting on atlas0 (10.128.0.8)
loader[atlas1]: program description complete
loader[atlas1]: nodes 2 contexts 1 capability type 0xffff8002 entries 2
loader[atlas1]: run process 1 node=5 cntx=244
prun: process 1 is pid 1265674 on atlas1
loader[atlas0]: program description complete
loader[atlas0]: nodes 2 contexts 1 capability type 0xffff8002 entries 2
loader[atlas0]: run process 0 node=4 cntx=244
prun: process 0 is pid 525636 on atlas0
...

When the program has exited, the CPUs are deallocated and the scheduler is called to
service the queue of waiting jobs.

3-4 Parallel Programs Under RMS

Loading and Running Programs

Sometimes, it is desirable for a user to be granted more control over the use of a
resource. For instance, the user may want to run several jobs concurrently or use the
same nodes for a sequence of jobs. This functionality is supported by the command
allocate (see Page 5-3) which allows a user to allocate CPUs in a parallel partition to a
UNIX shell. These CPUs are used for subsequent parallel jobs started from this shell.
The CPUs remain allocated until the shell exits or a time limit expires (see Section 7.3
and Section 7.4.5).

Parallel Programs Under RMS 3-5

4

RMS Daemons

4.1 Introduction

This chapter describes the role of the RMS daemons. There are daemons that run on the
rmshost node providing services for the system as a whole:

msqld Manages the database (see Section 4.2).

mmanager Monitors the health of the machine as a whole (see Section 4.3).

pmanager Controls the use of resources (see Section 4.4).

swmgr Monitors the health of the Compaq AlphaServer SC Interconnect (see
Section 4.5).

tlogmgr Carries out transactions on behalf of RMS servers (see Section 4.6).

eventmgr Provides a system-wide event-handling service (see Section 4.7).

There are daemons that run on each node, providing support for RMS functionality on
that node:

rmsmhd Acts as the Process Manager, starting all of the other RMS daemons
(see Section 4.8).

rmsd Carries out instructions from pmanager to run users’ programs (see
Section 4.9).

RMS Daemons 4-1

The Machine Manager

4.1.1 Startup

RMS is started as each node executes the initialization script /sbin/init.d/rms with
the start argument on startup. This starts the rmsmhd daemon which, in turn, starts
the other daemons on that node.

The daemons can also be started, stopped and reloaded individually by rcontrol once
RMS is running. See Page 5-20 for details.

4.1.2 Log Files

Output from the management daemons is logged to the directory /var/rms/adm/log.
The log files are called daemon.log, where daemon gives the name of the RMS daemon,
such as swmgr. The Partition Managers are distinguished by suffixing pmanager with a
hyphen and then the name of the partition. For example, the Partition Manager for the
partition par1 is known is pmanager-par1.

Errors are logged to /var/rms/adm/log/error.log.

Output from rmsmhd and rmsd is logged to /tmp/rms.log on each node.

4.1.3 Daemon Status

The servers table contains information on the status of each daemon: the time it was
started, its process ID and the name of its host node (see Section 10.2.19 for details of
the table structure).

Note that the status field in the servers table is set to error if an error occurs when
starting an RMS daemon. The corresponding entry in the events table describes what
went wrong (see Chapter 8 (Event Handling) for details).

The command rinfo can be used to get reports on the status of each daemon. See
Page 5-32 for details.

4.2 The Database Manager

The Database Manager, msqld, manages the RMS database, providing an SQL interface
for its clients. Client applications may use C, C++, Java or UNIX scripts to generate SQL
queries for msqld.

The database holds all state information for RMS. This information is initially created
by the RMS client application rmsbuild (see Page 5-35). The information is updated by
the other RMS daemons as RMS operates. The information can be backed up, restored
and generally maintained using the database administration program, rmstbladm (see
Page 5-44).

4-2 RMS Daemons

The Partition Manager

4.3 The Machine Manager

The Machine Manager, mmanager, is responsible for detecting and reporting changes in
the state of each node in the system. It records the current state of each node and any
changes in state in the database.

When a node is functioning correctly, rmsd, a daemon which runs on each node,
periodically updates the database. However, if the node crashes, or IP traffic to and from
the node stops, then these updates stop. RMS uses the external monitor, mmanager, to
check periodically the service level of each node. It monitors whether IP is functioning
and whether the RMS daemons on each node are operating.

4.3.1 Interaction with the Database

The Machine Manager records the current status of nodes in the nodes table (see
Section 10.2.14) while changes to node status are entered in the events table (see
Section 10.2.6).

The interval at which the Machine Manager performs status checks is set in the
attributes table (see Section 10.2.3) with the node-status-poll-interval
attribute. If this attribute is not present, the general attribute rms-poll-interval is
used instead.

4.4 The Partition Manager

The nodes in the RMS machine are configured into mutually exclusive sets known as
partitions (see Section 2.4). By restricting access to partitions, the system administrator
can reserve particular partitions for specific types of tasks or users. In this way, the
system administrator can ensure that resources are used most effectively; for example,
that resources intended for running parallel programs are not consumed running user
shells. The access restrictions are set up in the access_controls table (see
Section 10.2.1) of the RMS database.

Each partition is controlled by a Partition Manager, pmanager. The Partition Manager
mediates each user’s requests for resources (CPUs and memory) to run jobs in the
partition. It checks the user’s access permissions and resource limits before adding the
request to its scheduling queue. The request blocks until the resources are allocated for
the job.

When the resources requested by the user become available, the Partition Manager
instructs rmsd, a daemon that runs on each node in the partition (see Section 4.9), to
create a communications context for the user’s job. Finally, the Partition Manager
replies to the user’s request and the user’s job starts.

RMS Daemons 4-3

The Partition Manager

The Partition Manager makes new scheduling decisions periodically and in response to
incoming resource requests (see Chapter 7 (RMS Scheduling) for details). These
decisions may result in jobs being suspended or resumed. Such scheduling operations,
together with those performed as jobs are killed, are performed by the Partition
Manager sending scheduling or signal delivery requests to the rmsds.

The Partition Manager is connected to its rmsds by a tree of sockets. Commands are
routed down this tree; they complete when an acknowledgement is returned. For
example, jobs are only marked as finished when the Partition Manager has confirmed
that all of their processes have exited.

If the tree of sockets is broken by a node crash, the Partition Manager marks the node’s
partition as blocked and generates an event. The node can then be rebooted or
configured out of the machine. If the node is rebooted, the rmsds reconnect and the
Partition Manager continues as before. If the node cannot be rebooted then the partition
must be halted, the node configured out and the partition restarted. Jobs that spanned
the failing node are cleaned up at this point. The other jobs run on unless explicitly
killed. Scheduling and signal delivery operations are suspended while the partition is
blocked.

4.4.1 Partition Startup

The Partition Manager is started by the rmsmhd daemon, running on the rmshost node,
on instruction from rcontrol (see Page 5-20). Once the partition is running, a startup
script /opt/rms/etc/pstartup is executed. This script performs site-specific and
OS-specific actions depending upon the partition type.

4.4.2 Interaction with the Database

The Partition Manager makes updates to the partitions table (see Section 10.2.16)
when it starts and as CPUs are allocated and freed.

The Partition Manager creates an entry in the resources table (see Section 10.2.18)
each time a user makes a request for resources to run a job. This entry is updated each
time CPUs are allocated or deallocated. The Partition Manager adds an entry to the
jobs table (see Section 10.2.10) as each job starts, updating it if the job is suspended or
resumed and when the job completes.

The Partition Manager creates an entry in the accounting statistics (acctstats) table
(see Section 10.2.2) when CPUs are allocated. The entry is updated periodically until the
request completes.

The Partition Manager consults the users table (see Section 10.2.24), the projects
table (see Section 10.2.17) and the access_controls table (see Section 10.2.1) to verify
users’ access permissions and usage limits.

4-4 RMS Daemons

The Transaction Log Manager

Configuration information about each partition is held in the partitions table (see
Section 10.2.16). The information is indexed by the name of the partition together with
the name of the active configuration.

4.5 The Switch Network Manager

The Switch Network Manager, swmgr, controls and monitors the Compaq AlphaServer
SC Interconnect (see Appendix A (Compaq AlphaServer SC Interconnect Terms)). It does
this using the switch network control interface connected to the parallel port of the
primary management node. If swmgr detects an error in the switch network, it updates
the status of the switch concerned and generates an event.

swmgr collects fan, power supply and temperature data from the Compaq AlphaServer
SC Interconnect modules, updating status information and generating events if
components fail or temperatures exceed their operating limits. See Section 9.5.4 for
site-specific details of configuring the swmgr.

4.5.1 Interaction with the Database

The Switch Network Manager creates and maintains the entries in the elites table
(see Section 10.2.5) and the switch_boards table (see Section 10.2.22). It maintains
entries in the elans table (see Section 10.2.4). In the event of errors, it creates entries
in the link_errors table (see Section 10.2.11).

4.6 The Transaction Log Manager

The Transaction Log Manager, tlogmgr, executes change of state requests that have
been entered in the transactions table (see Section 10.2.23) by RMS administrative
clients. This mechanism is employed to serialize changes to the database and to provide
an audit trail of such changes.

The entry in the transactions table records who requested the change, and names the
service required together with any arguments to pass to the process on startup. A
transaction handle (a unique ID) is generated for the entry and passed to both the client
and the RMS daemon that provides the service.

The RMS daemon uses the transaction handle to label any results it produces, such as an
entry in the transaction_outputs table (see Section 10.1.3). The client uses the
handle to select the result from the relevant table. Output from the service is appended
to an output log. The name of this log is entered in the transactions table together
with the status of the transaction.

The services that are available are listed in the services table (see Section 10.2.20).

RMS Daemons 4-5

The Process Manager

Each entry in the services table specifies which command to run, who can run it and
on which host.

4.6.1 Interaction with the Database

The Transaction Log Manager maintains the transactions table (see Section 10.2.23).
It consults the services table (see Section 10.2.20) in order to execute transactions on
behalf of its clients.

4.7 The Event Manager

When an RMS daemon detects an anomaly (such as a node crash or a high temperature
reading), it writes an event description to the events table (see Section 10.2.6). It is the
job of the Event Manager, eventmgr, to execute recovery scripts that either correct the
fault or report it to the operators if manual intervention is required.

On receiving an event notification, the Event Manager looks for a matching entry in the
event_handlers table (see Section 10.2.7), executing the handler script if it finds a
match (see Section 8.2 for details). If no match is found, it runs the default event
handler script; this script is site-specific, but it would typically run a command to
escalate the event through SNMP or email.

The Event Manager also implements the event-waiting mechanism that enables client
applications both to generate and to wait efficiently on a specified event. Typical events
include the following:

• Nodes changing state

• Partitions starting

• Transaction log entries being executed

The details that describe the event are held in the events table (see Section 10.2.6).
The Event Manager’s job is to notify interested clients that the event has occurred. This
frees the clients from having to poll for the information. For more information on RMS
event handling, see Chapter 8 (Event Handling).

4.7.1 Interaction with the Database

The Event Manager consults the events table (see Section 10.2.6) and the
event_handlers table (see Section 10.2.7).

4-6 RMS Daemons

The RMS Daemon

4.8 The Process Manager

The Process Manager, rmsmhd, is responsible for starting and stopping the other RMS
daemons. It runs on each node and is responsible for managing the other daemons that
run on its node. It starts them as the node boots, stops them as the node halts and starts
or stops them in response to requests from the RMS client application rcontrol (see
Page 5-20).

4.8.1 Interaction with the Database

RMS stores information regarding which daemons run on which nodes; this information
is stored centrally in the RMS database, rather than in node-specific configuration files.
On startup, the Process Manager checks the servers table (see Section 10.2.19) for
entries matching its node. This information is used to start the other daemons. If its
child processes (the other daemons) are killed, it checks the table to see whether they
should be restarted. The Process Manager creates its own entry in the servers table.

4.9 The RMS Daemon

The RMS daemon rmsd runs on each node in the machine. Its purpose is as follows:

• To start application processes

• To implement scheduling decisions made by the Partition Manager

• To clean up after parallel programs when they have finished

• To execute RMS remote procedure calls on behalf of clients elsewhere in the network

• To collect accounting data and performance statistics

rmsd carries out the following tasks on behalf of the Partition Manager to run a user’s
parallel program:

• Creating and destroying communication contexts (see Section C.2)

• Starting the application loader, rmsloader.

• Delivering signals

• Suspending and resuming processes

• Collecting accounting data from the kernel

RMS Daemons 4-7

The RMS Daemon

The rmsds communicate with each other and with the Partition Manager that controls
their node over a balanced tree of sockets. Requests (for example, to deliver a signal to
all processes in a parallel program) are passed down this tree to the appropriate range of
nodes. The results of each request are combined as they pass back up the tree.

rmsd is started by the RMS daemon rmsmhd and restarted when it exits – this happens
when a partition is shut down.

4.9.1 Interaction with the Database

rmsd records configuration information about each node (number of CPUs, amount of
memory and so on) in the nodes table (see Section 10.2.14) as it starts. It periodically
records usage statistics in the node statistics (node_stats) table (see Section 10.2.15).
The interval at which these statistics are sampled is set in the attributes table with
the cpu-stats-poll-interval attribute.

rmsd records details of the node’s Compaq AlphaServer SC Interconnect configuration in
the elans table as it starts (see Section 10.2.4 and
Appendix A (Compaq AlphaServer SC Interconnect Terms)).

4-8 RMS Daemons

5

RMS Commands

5.1 Introduction

This chapter describes the RMS commands. RMS includes utilities that enable system
administrators to configure and manage the system, in addition to those that enable
users to run their programs.

RMS includes the following commands intended for use by system administrators:

rcontrol The rcontrol command is used to control the system resources.

rmsbuild The rmsbuild command creates and populates an RMS database for
a given machine.

rmsctl The rmsctl script is used to stop and start the RMS system and to
report its status.

rmsquery The rmsquery command is used to select data from the database and,
in the case of system administrators, to update it.

rmstbladm The table administration rmstbladm program is used to create a
database, to back it up and to restore it.

The following utilities are used internally by RMS and may also be used by system
administrators:

nodestatus The nodestatus command is used to get or set the status or run
level of a node.

RMS Commands 5-1

Introduction

rmshost The rmshost command reports the name of the node running the
RMS management daemons.

msqladmin The msqladmin command is used for creating and deleting databases
and stopping the mSQL server.

RMS includes the following commands for all users of the system:

allocate The allocate command is used to reserve access to a set of CPUs
either for running multiple tasks in parallel or for running a sequence
of commands on the same CPUs.

prun The prun command is used to run a parallel program or to run
multiple copies of a sequential program.

rinfo The rinfo command is used to determine what resources are
available and which jobs are running.

rmsexec The rmsexec command is used to run a sequential program on a
lightly loaded node.

The following sections describe the commands in more detail, listing them in
alphabetical order.

5-2 RMS Commands

allocate(1)

NAME

allocate – Reserves access to CPUs

SYNOPSIS

allocate [-hIv] [-B base] [-C CPUs] [-N nodes | all] [-n CPUs]
[-p partition] [-P project] [-R request]

[script [args ...]]

OPTIONS

-B base Specifies the number of the base node (the first node to use) in the
partition. Numbering within the partition starts at 0. By default, the
base node is unassigned, leaving the scheduler free to select nodes
that are not in use.

-C CPUs Specifies the number of CPUs required per node (default 1).

-h Display the list of options.

-I Allocate CPUs immediately or fail. By default, allocate blocks until
resources become available.

-N nodes | all

Specifies the number of nodes to allocate (default 1). To allocate one
CPU on each node in the partition, use the argument all as follows:
allocate -N all. Either the -C option or the -n option can be
combined with -N but not both.

-n CPUs Specifies the total number of CPUs required.

-P project Specifies the name of the project with which the job should be
associated for scheduling and accounting purposes.

-p partition Specifies the target partition from which the resources are to be
allocated.

-R request Requests a particular configuration of resources. The types of
request currently supported are as follows:

RMS Commands 5-3

allocate(1)

immediate=0 | 1

With a value of 1, this specifies that the request
should fail if it cannot be met immediately (this is
the same as the -I option).

hwbcast=0 | 1 With a value of 1, this specifies a contiguous range
of nodes and constrains the scheduler to queue the
request until a contiguous range becomes available.

rails=n In a multirail system, this specifies the number of
rails required, where 1 ≤ n ≤ 32.

Multiple requests can be entered as a comma-separated list, for
example, -R hwbcast=1,immediate=1.

-v Specifies verbose operation.

DESCRIPTION

The allocate program allocates resources for subsequent use by the prun(1)
command. allocate is intended for use where a user wants to run a sequence of
commands or several programs concurrently on the same set of CPUs.

The -p, -N, -C, -B and -n options control which CPUs are allocated. The -N option
specifies how many nodes are to be allocated. When this option is specified the user is
allocated a constant number of CPUs per node (default 1). The -C option specifies the
number of CPUs required per node. The alternative -n option specifies the total number
of CPUs to allocate. This option does not force the allocation of a constant number of
CPUs per node.

The -B option specifies the base of a contiguous range of nodes relative to the start of the
partition. The -N option specifies its extent. So for example -B0-N4 specifies the first
four nodes in the partition. Note that nodes that have been configured out are excluded.
The -B option should be used to gain access to a specific file system or device that is not
available on all nodes. If the -B option is used, the scheduler allocates a contiguous
range of nodes and the same number of CPUs on each node. Using this option causes a
request to block until the base node and any additional nodes required to run the
program are free.

The -p option specifies the partition from which CPUs can be allocated. CPUs cannot be
allocated from the root partition.

The Partition Manager, pmanager, allocates processing resources to users as and when
the resources are requested and become available. (See Section 4.4). By default, a
contiguous range of nodes is allocated to the request where possible. This enables
programs to take advantage of the system’s hardware broadcast facilities. The -R option

5-4 RMS Commands

allocate(1)

can be used with hwbcast set to 1 to ensure that the range of nodes allocated is
contiguous.

Before allocating resources, the Partition Manager checks the resource limits imposed
on the current project. The project can be specified explicitly with the -P option. This
overrides the value of the environment variable RMS_PROJECT or any default setting in
the users table. (See Section 10.2.24).

The script argument (with optional arguments) can be used in two different ways, as
follows:

1. script is not specified, in which case an interactive command shell is spawned with
the resources allocated to it. The user can confirm that resources have been allocated
to an interactive shell by using the rinfo command. (See Page 5-32).

The resources are reserved until the shell exits or until a time limit defined by the
system administrator expires, whichever happens first. (See Section 10.2.16).

Parallel programs, executed from this interactive shell, all run on the shell’s
resources (concurrently, if sufficient resources are available).

2. script specifies a shell script, in which case the resources are allocated to the named
subshell and freed when execution of the script completes.

ENVIRONMENT VARIABLES

The following environment variables may be used to identify resource requirements and
modes of operation to allocate. They are used where no equivalent command line
options are given.

RMS_IMMEDIATE Controls whether to exit (value 1) rather than block (value 0) if
resources are not immediately available. The -I option overrides the
value of this environment variable. By default, allocate blocks until
resources become available. Root resource requests are always met.

RMS_MEMLIMIT Specifies the maximum amount of memory required. This must be
less than or equal to the limit set by the system administrator.

RMS_PARTITION Specifies the name of a partition. The -p option overrides the value of
this environment variable.

RMS_PROJECT Specifies the name of the project with which the request should be
associated for accounting purposes. The -P option overrides the value
of this environment variable.

RMS Commands 5-5

allocate(1)

RMS_TIMELIMIT Specifies the execution time limit in seconds. The program will be
signaled either after this time has elapsed or after any time limit
imposed by the system has elapsed. The shorter of the two time limits
is used.

RMS_DEBUG Specifies whether to execute in verbose mode and display diagnostic
messages. Setting a value of 1 or more will generate additional
information that may be useful in diagnosing problems. (See
Section 9.6). If this environment variable is not set the -v option
enables reporting of resource request debug information.

allocate passes all existing environment variables through to the shell that it
executes. In addition, it sets the following environment variable:

RMS_RESOURCEID The identifier of the allocated resource.

EXAMPLES

To run a sequence of jobs on the same CPUs:

$ allocate -N 16 jobscript

where jobscript is a shell script such as the following:

#!/bin/sh
simple job script
prun -n 16 program1
prun -n 16 program2

If the script was run directly then each resource request would block until resources
became available and there would be no guarantee of both requests using the same
CPUs. By running the script under allocate, there is only one resource request and
both jobs are run on the same CPUs.

To run two programs on the same CPUs at the same time:

$ allocate -N 16 -C 2 << EOF
prun program1 &
prun program2 &
rinfo
wait
EOF

WARNINGS

In earlier versions, the -i option specified immediate mode. This functionality has been
moved to the -I option. Use of -i is now deprecated. If -i is specified without an

5-6 RMS Commands

allocate(1)

argument, it is interpreted as -I and the user is warned that this feature should not be
used anymore.

SEE ALSO

prun, rinfo

RMS Commands 5-7

nodestatus(1)

NAME

nodestatus – Gets or sets the status or run level of each node

SYNOPSIS

nodestatus [-bhr] [status]

OPTIONS

-b Operate in the background.

-h Display the list of options.

-r Get/set run level.

DESCRIPTION

The nodestatus command is used to update status information in the RMS database as
nodes are booted or halted. When run without arguments, nodestatus gets the status
of the node on which it is running from the Machine Manager. When run with the -r
flag, nodestatus gets the current run level.

When nodestatus is run with the status argument, it updates the node’s status or,
if the -r flag is set, it updates the node’s run level. The change is reflected in the
nodes table for the node on which the command is running. (See Section 10.2.14). This
mechanism is used to track the progress of booting a node. Administrative privileges are
required to update the status or run level of a node.

The status can be one of these values: not responding, active or running.

Status updates may be delayed if the node running the database server is down. If
background operation is specified with the -b option, nodestatus runs in the
background and keeps trying until the database server is up and running.

5-8 RMS Commands

msqladmin(1)

NAME

msqladmin – Perform administrative operations on the mSQL database server

SYNOPSIS

msqladmin [-q] [-f confFile] [-h host] command

OPTIONS

-f confFile Specify a non-default configuration file to be loaded. The default
action is to load the standard configuration file located in
/var/rms/msql.conf.

-h host Specify a remote hostname or IP address on which the mSQL server
(msql2d) is running. The default is to connect to a server on the
localhost using a UNIX domain socket rather than TCP/IP (which
gives better performance).

-q Put msqladmin into quiet mode. If this flag is specified, msqladmin
will not prompt the user to verify dangerous actions (such as dropping
a database).

DESCRIPTION

msqladmin is used to perform administrative operations on an mSQL database server.
Such tasks include the creation of databases, performing server shutdowns and so on.
The available commands for msqladmin are:

create db_name

Creates a new database called db_name.

drop db_name Removes the database called db_name from the server. This will also
delete all data contained in the database specified.

shutdown Terminates the mSQL server.

reload Forces the server to reload ACL information.

version Displays version and configuration information about the currently
running server.

RMS Commands 5-9

msqladmin(1)

stats Displays server statistics.

Most administrative functions can only be executed by the user specified in the run-time
configuration as the admin user (rms). They can also only be executed from the host on
which the server process is running (for example you cannot shut down a remote server
process).

EXAMPLES

msqladmin version

Version Details :-

msqladmin version 2.0.11
mSQL server version 2.0.11
mSQL protocol version 23
mSQL connection Localhost via UNIX socket
Target platform OSF1-V5.0-alpha

Configuration Details :-

Default config file /var/rms/msql.conf
TCP socket 1114
UNIX socket /var/rms/adm/msql/msql2.sock
mSQL user rms
Admin user rms
Install directory /var/rms
PID file location /var/rms/adm/msql/msql2.pid
Memory Sync Timer 120
Hostname Lookup True

5-10 RMS Commands

prun(1)

NAME

prun – Runs a parallel program

SYNOPSIS

prun [-hIOrstv] [-B base] [-c cpus] [-e mode] [-i mode] [-o mode]

[-N nodes | all] [-n procs] [-m block | cyclic] [-P project]
[-p partition] [-R request] program [args ...]

OPTIONS

-B base Specifies the number of the base node (the first node to use) in the
partition. Numbering within the partition starts at 0. By default, the
base node is unassigned, leaving the scheduler free to select nodes
that are not in use.

-c cpus Specifies the number of CPUs required per process (default 1).

-h Display the list of options.

-I Allocate CPUs immediately or fail. By default, prun blocks until
resources become available.

-e mode Specifies how standard error output is redirected. Valid values for
mode and their meanings are described below.

-i mode Specifies how standard input is redirected. Valid values for mode and
their meanings are described below.

-o mode Specifies how standard output is redirected. Valid values for mode
and their meanings are described below.

-m block | cyclic

Specifies whether to use block (the default) or cyclic distribution of
processes over nodes.

-N nodes | all

Specifies the number of nodes required. To use all nodes in a partition
select the all argument as follows: prun -N all. If the number of
nodes is not specified then the RMS scheduler will allocate one CPU
per process.

RMS Commands 5-11

prun(1)

-n procs Specifies the number of processes required. The -n and -N options
can be combined to control how processes are distributed over nodes.
If neither is specified, prun starts one process.

-O Allows resources to be over-committed. Set this flag to run more than
one process per CPU.

-P project Specifies the name of the project with which the job should be
associated for scheduling and accounting purposes.

-p partition Specifies the partition on which to run the program. By default, the
partition specified in the attributes table is used. The default is
parallel. (See Section 10.2.3).

-R request Requests a particular configuration of resources. The types of
request currently supported are as follows:

immediate=0 | 1

With a value of 1, this specifies that the request
should fail if it cannot be met immediately (the
same as the -I option).

hwbcast=0 | 1 With a value of 1, this specifies a contiguous range
of nodes and constrains the scheduler to queue the
request until a contiguous range of nodes becomes
available.

rails=n In a multirail system, this specifies the number of
rails required, where 1 ≤ n ≤ 32.

Multiple requests can be entered as a comma-separated list, for
example, -R hwbcast=1,immediate=1.

-r Run processes using rsh. Used for administrative operations such as
starting and stopping RMS.

-s Print statistics as the job exits.

-t Prefix output with the process number.

-v Specifies verbose operation. Multiple vs increase the level of output:
-vv shows each stage in running a program and -vvv enables debug
output from the rmsloader processes on each node.

5-12 RMS Commands

prun(1)

DESCRIPTION

The prun program executes multiple copies of the specified program on a partition.
prun automatically requests resources for the program unless it is executed from a shell
that already has resources allocated to it. (See Page 5-3).

The way in which processes are allocated to CPUs is controlled by the -c, -n, -p, -B and
-N options. The -n option specifies the total number of processes to run. The -c option
specifies the number of CPUs required per process, this defaults to 1. The -N option
specifies how many nodes are to be used.

If the -N option is not used then the scheduler selects CPUs for the program from any of
the available nodes. Where possible RMS will allocate a contiguous range of nodes, but
will only be constrained to do so if the -B or -R hwbcast=1 options are set. If the -N is
used, the scheduler allocates the specified number of nodes (allocating a contiguous
range of nodes if possible) and the same number of CPUs on each node. By default, a
contiguous range of nodes is allocated to the request where possible. This enables
programs to take advantage of the system’s hardware broadcast facilities. The -R option
can be used with hwbcast set to 1 to ensure that the range of nodes allocated is
contiguous.

The -B option specifies the base of a contiguous range of nodes relative to the start of the
partition. The -N option specifies its extent. So for example -B0 -N4 specifies the first
four nodes in the partition. Note that nodes that have been configured out are excluded.
The -B option should be used to gain access to a specific file system or device that is not
available on all nodes. If the -B option is used, the scheduler allocates a contiguous
range of nodes and the same number of CPUs on each node. Using this option causes a
request to block until the base node and any additional nodes required to run the
program are free.

The -I option specifies that resource requests should fail if they cannot be met
immediately. The default is to block until CPUs are available.

The -m option specifies how processes are to be distributed over nodes. The choice is
between block (the default) and cyclic. If a program has n processes with identifiers
0,1,...n-1 distributed over N nodes then, in a block distribution, the first n/N
processes are allocated to the first node and so on. If the distribution is cyclic, process 0
runs on the first node, process 1 on the second and so on until process N-1 is placed on
the last node, at which stage the distribution wraps around, with process N running on
the first node and so on.

The -p option specifies the partition to use. If no partition is specified then the default
partition is used. The default partition is stored in the attributes table. (See
Section 10.2.3). Note that use of the root partition (all nodes in the machine) is
restricted to administrative users.

RMS Commands 5-13

prun(1)

Before allocating resources, prun checks the resource limits imposed on the current
project. The project can be specified explicitly with the -P option. This overrides the
value of the environment variable RMS_PROJECT or any default setting in the users
table. (See Section 10.2.24).

By default, when running a parallel program, prun forwards standard input to the
process with an identifier of 0. The -i option requests a different mode of operation.
Valid values for mode and their meanings are as follows:

rank Forward standard input to the process that is identified by rank
where 0 ≤ rank ≤ n-1 and n is the number of processes in the
program.

all Broadcast standard input to all of the processes.

none Do not forward standard input.

file prun opens the named file and associates it with the standard input
stream so that each process reads standard input from the file. If the
file does not exist, a read returns EOF.

file.% prun expands the % character to generate and open a separate file
name for each process: process 0 reads standard input from file.0,
process 1 reads standard input from file.1 and so on. If the file does
not exist, a read returns EOF.

If the mode is rank or all, prun polls its standard input and forwards the data to the
rmsloader of the application process (or processes if the mode is all). rmsloader
writes the data to the standard input pipe for the process. This write may fail if the pipe
is full, the application has not read the data. If this happens, rmsloader will
periodically attempt to resend the data to the pipe. prun will not poll for further
standard input until it has received an acknowledgement from the process (or all
processes in the case of broadcast input) to say that this operation has completed.

The -o and -e options control the redirection and filtering of standard output and
standard error respectively. Valid values for mode and their meanings for these options
are as follows:

rank Redirect to prun standard output (or standard error) from the process
identified by rank where 0 ≤ rank ≤ n-1 and n is the number of
processes in the program.

all Redirect standard output (or standard error) from all processes to
prun. This is the default.

5-14 RMS Commands

prun(1)

none Do not redirect standard output (or standard error) from any process.

file prun opens the named file for output and associates it with the
standard output (standard error) stream so that each process writes
standard output (standard error) to the file.

file.% prun expands the % character to generate and open for output a
separate file name for each process: process 0 writes standard output
(standard error) to file.0, process 1 writes to file.1 and so on.

Standard output from a parallel program is line-buffered and redirected to prun when a
newline character is received. Output that does not end in a newline is buffered by
rmsloader.

Standard error is unbuffered and forwarded to prun as soon as it is received by
rmsloader.

There is no global synchronization of output from a parallel program. If multiple
processes output data, the order in which the data is output will not necessarily be the
same each time the program is run.

prun exits when all of the processes in the parallel program have exited or when one
process has been killed. If all processes exit cleanly then the exit status of prun is the
global OR of their individual exit status values. If one of the processes is killed, prun will
exit with a status value of 128 plus the signal number. prun can also exit with the
following codes:

125 One or more processes were still running when the exit timeout expired.

126 prun was run with the -I option and resources were not available.

127 prun was run with invalid arguments.

If an application process started by prun is killed, RMS will run a post mortem core
analysis script that generates a backtrace if it can find a core file for the process.

The attribute rms-keep-core in the attributes table determines whether core files
are saved. (See Section 10.2.3). The environment variable RMS_KEEP_CORE can be set to
override the value in the attributes table.

Core files are saved in the directory local-corepath/resource-id. The value of
local-corepath is defined in the attributes table. The resource-id can be listed
by rinfo. (See Page 5-32). prun also sets the environment variable RMS_RESOURCE_ID
to the value of the resource identifier.

RMS Commands 5-15

prun(1)

ENVIRONMENT VARIABLES

The following environment variables may be used to identify resource requirements and
modes of operation to prun. These environment variables are used where no equivalent
command line options are given:

RMS_IMMEDIATE Controls whether to exit rather than block if resources are not
immediately available. The -I option overrides the value of this
environment variable. By default, prun blocks until resources become
available. Root resource requests are always met.

RMS_KEEP_CORE Controls whether core files are saved. Overrides the default
behaviour set by the system administrator.

RMS_MEMLIMIT The maximum amount of memory required per process in megabytes.
This must be less than or equal to the limit set by the system
administrator.

RMS_PARTITION Specifies the name of a partition. The -p option overrides the value of
this environment variable.

RMS_PROJECT The name of the project with which the job should be associated for
scheduling and accounting purposes. The -P option overrides the
value of this environment variable.

RMS_TIMELIMIT Specifies the execution time limit in seconds. The program will be
signaled either after this time has elapsed or after any time limit
imposed by the system has elapsed. The shorter of the two time limits
is used.

RMS_DEBUG Whether to execute in verbose mode and display diagnostic messages.
Setting a value of 1 or more generates additional information that
may be useful in diagnosing problems. (See Section 9.6).

RMS_EXITTIMEOUT

Specifies the time allowed in seconds between the first process exit
and the last. This option can be useful in parallel programs where one
process can exit leaving the others blocked in interprocess
communication. It should be used in conjunction with an exit barrier
at the end of correct execution of the program.

RMS_STDINMODE Specifies the mode for forwarding standard input to a parallel
program. The -i option overrides the value of this environment
variable. Values for mode are the same as those used with the -i
option.

5-16 RMS Commands

prun(1)

RMS_STDOUTMODE

Specifies the mode for redirecting standard output from a parallel
program. The -o option overrides the value of this environment
variable. Values for mode are the same as those used with the -o
option.

RMS_STDERRMODE

Specifies the mode for redirecting standard error from a parallel
program. The -e option overrides the value of this environment
variable. Values for mode are the same as those used with the -e
option.

prun passes all existing environment variables through to the processes that it
executes. In addition, it sets the following environment variables:

RMS_JOBID The identifier for the job.

RMS_NNODES The number of nodes used by the application.

RMS_NODEID The logical identifier of the node within the set allocated to the
application.

RMS_NPROCS The total number of processes in the application.

RMS_RANK The rank of the process in the application. The rank ranges from 0

to n-1, where n is the number of processes in the program.

RMS_RESOURCEID The identifier of the allocated resource.

EXAMPLES

In the following example, prun is used to run a four-process program with no
specification of where the processes should run.

$ prun -n 4 hostname
atlas0.quadrics.com
atlas0.quadrics.com
atlas0.quadrics.com
atlas0.quadrics.com

The machine atlas has four CPUs per node and so, by default, the scheduler allocates
all four CPUs on one node to run the program. Add the -N option, as follows, to control
how the processes are distributed over nodes.

RMS Commands 5-17

prun(1)

$ prun -n 4 -N 2 hostname
atlas0.quadrics.com
atlas0.quadrics.com
atlas1.quadrics.com
atlas1.quadrics.com
$ prun -n 4 -N 4 hostname
atlas1.quadrics.com
atlas3.quadrics.com
atlas0.quadrics.com
atlas2.quadrics.com

The -m option controls how processes are distributed over nodes. It is used in the
following example in conjunction with the -t option which tags each line of output with
the identifier of the process that wrote it.

$ prun -t -n 4 -N 2 -m block hostname
0 atlas0.quadrics.com
1 atlas0.quadrics.com
2 atlas1.quadrics.com
3 atlas1.quadrics.com
$ prun -t -n 4 -N 2 -m cyclic hostname
0 atlas0.quadrics.com
2 atlas0.quadrics.com
1 atlas1.quadrics.com
3 atlas1.quadrics.com

The examples so far have used simple UNIX utilities to illustrate where processes are
run. Parallel programs are run in just the same way. The following example measures
DMA performance between a pair of processes on different nodes.

$ prun -N 2 dping 0 1k
0: 0 bytes 2.33 uSec 0.00 MB/s
0: 1 bytes 3.58 uSec 0.28 MB/s
0: 2 bytes 3.61 uSec 0.55 MB/s
0: 4 bytes 2.44 uSec 1.64 MB/s
0: 8 bytes 2.47 uSec 3.24 MB/s
0: 16 bytes 2.55 uSec 6.27 MB/s
0: 32 bytes 2.57 uSec 12.45 MB/s
0: 64 bytes 3.48 uSec 18.41 MB/s
0: 128 bytes 4.23 uSec 30.25 MB/s
0: 256 bytes 4.99 uSec 51.32 MB/s
0: 512 bytes 6.39 uSec 80.08 MB/s
0: 1024 bytes 9.26 uSec 110.55 MB/s

The -s option instructs prun to print a summary of the resources used by the job when
it finishes.

$ prun -s -N 2 dping 0 32
0: 0 bytes 2.35 uSec 0.00 MB/s

5-18 RMS Commands

prun(1)

0: 1 bytes 3.60 uSec 0.28 MB/s
0: 2 bytes 3.53 uSec 0.57 MB/s
0: 4 bytes 2.44 uSec 1.64 MB/s
0: 8 bytes 2.47 uSec 3.23 MB/s
0: 16 bytes 2.54 uSec 6.29 MB/s
0: 32 bytes 2.57 uSec 12.46 MB/s

Elapsed time 1.00 secs Allocated time 1.99 secs
User time 0.93 secs System time 0.13 secs
Cpus used 2

Note that the allocated time (in CPU seconds) is twice the elapsed time (in seconds)
because two CPUs were allocated.

WARNINGS

In earlier versions, the -i option specified immediate mode. This functionality has been
moved to the -I option. Use of -i is now deprecated. If -i is specified without an
argument, it is interpreted as -I and the user is warned that this feature should not be
used anymore.

SEE ALSO

allocate, rinfo

RMS Commands 5-19

rcontrol(1)

NAME

rcontrol – Controls use of system resources

SYNOPSIS

rcontrol command [args ...] [-ehs] [-r level] [command args ...]

OPTIONS

-e Exit on the first error.

-h Display the list of options.

-r level Set reporting level.

-s Stop and print warning on error.

command is specified as follows:

create object [=] name [configuration=val] [partition=val] [attr=val]

object may be one of: access_control, attribute,
configuration, node, partition, project, user. If an
access_control is specified, a partition must also be named to
identify the object uniquely. Similarly, if a partition is specified, a
configuration must also be named together with a list of nodes.

remove object [=] name [configuration=val] [partition=val]

object may be one of: access_control, attribute,
configuration, node, partition, project, user. If an
access_control is specified, a partition must also be named to
identify the object uniquely. If a partition is specified, a
configuration must also be named to identify the object uniquely.

configure in nodes[=] list

list specifies a quoted list of nodes, such as ’atlas[1-3,6,8]’.

configure out nodes[=] list

list specifies a quoted list of nodes, such as ’atlas[1-3,6,8]’.

5-20 RMS Commands

rcontrol(1)

start object [=] name

object may be one of: configuration, partition, server.

stop object [=] name [option [=] kill | wait]

object may be one of: configuration, partition, server. If
server is specified as the object, no option should be given.

reload object [=] name [debug [=] value]

object may be one of: partition, server.

suspend job [=] name [name ...]

job may be one of: resource, batchid.

suspend attribute [=] value [attribute [=] value ...]

Attributes of the same name are ORed together. Attributes with
different names are ANDed together. The result of the logical
expression identifies a resource or set of resources as the target of the
command.

resume job [=] name [name ...]

job may be one of: resource, batchid.

resume attribute [=] value [attribute [=] value ...]

Attributes of the same name are ORed together. Attributes with
different names are ANDed together. The result of the logical
expression identifies a resource or set of resources as the target of the
command.

kill job [=] name [name ...] [signal [=] sig]

job may be one of: resource, batchid.

kill attribute [=] value [attribute [=] value ...] [signal [=] sig]

Attributes of the same name are ORed together. Attributes with
different names are ANDed together. The result of the logical
expression identifies a resource or set of resources as the target of the
command.

set job [=] name priority [=] value

job may be one of: resource, batchid.

set object [=] name attribute [=] value [attribute [=] value ...]

object may be one of: access_control, configuration, node,
partition, project, user.

RMS Commands 5-21

rcontrol(1)

set attribute [=] name val [=] value

exit

help [all | command]

show object [=] name

object may be one of: nodes, configuration, partition.

DESCRIPTION

rcontrol is used to manage the following: nodes, partitions and configurations; servers;
users and their resource requests, projects and access controls; system attributes.

rcontrol can create, start, stop and remove a configuration or partition. It can create,
remove and set the attributes of nodes and configure them in and out of the machine.
Operations on nodes may specify a single host name, such as atlas4, or a list of host
names, such as ’atlas[4-7]’. Lists of host names must always be quoted.

rcontrol can start or stop an RMS server. It can also instruct a running server to
reload access control information or change its reporting level.

rcontrol can be used to suspend or resume the allocation of CPUs to a resource request,
alter its scheduling priority or send a signal to its jobs. Operations on resource requests
may specify a request by name or by using the batch system identifier. Alternatively,
requests can be identified by attributes such as user name, partition, project or status.

rcontrol can be used to create or remove or to set the attributes of users, projects and
access controls. Details of which attributes can be modified in this way are specified in
the fields table in the RMS database. System attributes can also be created, removed
or have their value set.

The help command prints information on all of the commands and their arguments.
When used with the name of a command as an argument, it prints more information on
the specified command.

When used without arguments, rcontrol runs interactively. A sequence of commands
can be entered. Use the exit command or Ctrl/d to exit.

Most rcontrol commands are restricted to administrative users (root and rms users,
by default). The job control commands (suspend, resume, kill and set priority)
may also be issued by the user running the job in question.

In all of the rcontrol commands, the use of the equals sign is optional. The following
two examples – using rcontrol to configure into the system three nodes named
atlas1, atlas2 and atlas3 – are equivalent.

5-22 RMS Commands

rcontrol(1)

rcontrol configure in nodes = ’atlas[1-3]’
rcontrol configure in nodes ’atlas[1-3]’

Creating and Removing Nodes

To create a new node description, use rcontrol with the create command and the
argument node followed by the hostname of the node. Additional attribute-value pairs
specify properties of the node, such as its type and position. The attributes rack and
unit specify the position of the node in the system.

rcontrol create node = atlas1 type = ES40 rack = 0 unit = 3

To remove a node description from the RMS database, use rcontrol with the remove
command and the argument node followed by the name of the node.

rcontrol remove node = atlas1

Creating and Removing Partitions

RMS scheduling policy and access controls are based on partitions. Partitions are
non-overlapping sets of nodes. The set of partitions in operation at any time is called the
active configuration. RMS provides for several operational configurations and includes
mechanisms for switching between them with rcontrol.

To create a new partition description, use rcontrol with the create command and the
argument partition followed by the name of the partition. In addition, you must
specify the configuration to which the partition belongs. Additional attribute-value pairs
specify properties of the partition: a list of its nodes, its scheduling type, time limit, time
slice interval, memory limit or minimum number of CPUs that may be allocated. The
nodes attribute must be specified. Default values will be selected for the other
attributes if none are given.

rcontrol create partition = p1 configuration = day nodes = ’atlas[1-4]’ type = parallel

The scheduling type attribute of the partition may be one of the following:

parallel The partition is for the exclusive use of gang-scheduled parallel
programs.

login The partition runs interactive user logins and load-balanced
sequential jobs.

general The partition runs all classes of job. This is the default partition type.

batch The partition is for the exclusive use of a batch system.

RMS Commands 5-23

rcontrol(1)

The timelimit attribute specifies the maximum time in seconds for which CPUs can be
allocated on the partition. On expiry of the time limit, jobs will be sent the signal
SIGXCPU. If they have not exited within a grace period, they will be killed. The grace
period for a site is defined in the attributes table (attribute name grace-period).
Its default value is 60 seconds.

The timeslice attribute specifies the period in seconds for which jobs are allocated
CPUs before the CPUs may be reallocated to another job of equal priority. The default
value for timeslice is NULL, disabling time-slicing.

The memlimit attribute defines the default memory limit per CPU for applications
running on this partition. It can be overridden on a per-user or per-project basis. The
default value of memlimit is NULL, disabling memory limits unless they are set for
specific users or projects.

The mincpus attribute controls the minimum number of CPUs that may be allocated to
a job running on this partition. The default value of mincpus is 0. The maximum
number of CPUs that can be allocated is controlled on a per-user or per-project basis.

To remove a partition description from the RMS database, use rcontrol with the
remove command and the argument partition followed by the name of the partition.
You must also specify the name of the configuration since the same partition name may
appear in a number of configurations. To remove an entire configuration from the RMS
database, use rcontrol with the remove command and the argument configuration
followed by the name of the configuration.

rcontrol remove partition = par1 configuration = night
rcontrol remove configuration = night

Note that partitions cannot be removed while they are in use. Similarly, the nodes and
type of a partition cannot be changed while the partition is running. If the other
attributes of a partition are changed while the partition is running, the Partition
Manager is reloaded automatically so that it uses the new information for subsequent
jobs. Jobs that are already running are not affected.

Starting and Stopping Partitions

To start a partition in the active configuration, use rcontrol with the start command
and the partition argument followed by the name of the partition. To start all of the
partitions in a configuration, use rcontrol with the start command and the
configuration argument followed by the name of the configuration. A configuration is
made active by starting it in this way.

rcontrol start partition = par1
rcontrol start configuration = day

5-24 RMS Commands

rcontrol(1)

To stop a partition in the active configuration, use rcontrol with the stop command
and the partition argument followed by the name of the partition. To stop all of the
partitions in the active configuration, use rcontrol with the stop command and the
configuration argument followed by the name of the configuration.

When stopping partitions you can optionally specify what should happen to the running
jobs. The options are to leave them running, to wait for them to exit or to kill them. The
default is to leave them running.

rcontrol stop partition = par1 option = kill
rcontrol stop configuration = day option = wait

Configuring Nodes In or Out

To configure a node in or out, use rcontrol with the configure in or configure
out commands. Use the nodes argument to specify the list of nodes being configured in
or out.

rcontrol configure in nodes = ’atlas[2-4]’
rcontrol configure out nodes = ’atlas[2,5-7]’

Note that partitions must be stopped before nodes can be configured in or out. Jobs may
be left running but any jobs running on a node while it is being configured out will be
killed. When stopping a partition, it is advisable to wait until jobs have exited (or kill
them).

Reloading Database Information

To instruct a Partition Manager to reload its access_controls, users, and projects

tables, use rcontrol with the reload command and the partition argument
followed by the name of the partition.

rcontrol reload partition = par1

To instruct a Partition Manager to change its reporting level, use rcontrol with the
reload command and the partition argument followed by the name of the partition.
In addition, you should specify the attribute debug and a value. The Partition Manager
writes its reports to a log file in the directory /var/rms/adm/log. See Section 4.1.2 and
Section 9.6.

rcontrol reload partition = par1 debug = 1

Managing Servers

To stop an RMS server, use rcontrol with the stop command and the server
argument followed by the name of the server. To start it again, use rcontrol with the

RMS Commands 5-25

rcontrol(1)

start command, the server argument and the name of the server. The command
rinfo (with the -s flag) can be used to show the status of the RMS servers.

To instruct an RMS server to change its reporting level, use the reload command and
the server argument with the name of the server. In addition, you should specify the
attribute debug and a value. RMS servers write their log files to the directory
/var/rms/adm/log on the rmshost. See Section 9.6.

rcontrol stop server = mmanager
rcontrol start server = mmanager
rcontrol reload server = mmanager debug = 1

Managing Resources

To instruct the scheduler to suspend the allocation of CPUs to a resource request, use
rcontrol with the suspend command followed by either the name of the resource or
the batch system’s identifier for the request. This suspends jobs running on the allocated
CPUs and decrements the user’s CPU usage count.

rcontrol suspend resource = 2234
rcontrol suspend batchid = 14

Note that a resource request that has been suspended by an administrative user cannot
be resumed by its owner.

To instruct the scheduler to resume the allocation of CPUs to a resource request, use
rcontrol with the resume command followed by either the name of the resource or the
batch system’s identifier for the request. This reschedules jobs that were running on the
allocated CPUs, unless doing so would cause the user’s CPU usage limit to be exceeded.

rcontrol resume resource = 2267
rcontrol resume batchid = 384

To instruct RMS to send a signal to the jobs running on an allocated resource request,
use rcontrol with the kill command followed by either the name of the resource or
the batch system’s identifier for the request. This kills the jobs running on the allocated
CPUs (by sending the signal SIGKILL to each process). The optional attribute signal
can be used to send a specific signal. For example, to send the signal SIGTERM:

rcontrol kill resource = 9835 signal = 15
rcontrol kill batchid = 396 signal = 15

To instruct the scheduler to change the priority of a resource request, use rcontrol
with the set command and the resource argument followed by either the name of the
resource or the batch system’s identifier for the request. In addition, you should specify
the attribute priority and the new value. Priority values range from 0 to 100 (default
50).

5-26 RMS Commands

rcontrol(1)

rcontrol set resource = 32 priority = 25
rcontrol set batchid = 48 priority = 40

rcontrol can also be used to suspend, kill or resume jobs identified by their attributes.
The attributes that can be specified are: partition, project, status and user.
Attributes of the same name are ORed together, attributes with different names are
ANDed.

For example, to kill a job run by a user called tom on the partition par1 whether its
status is blocked or queued:

rcontrol kill user = tom status = blocked status = queued partition = par1

To suspend all of the jobs belonging to the project called science:

rcontrol suspend project = science

Managing Users, Projects and Access Controls

In addition to managing partitions and nodes, rcontrol can be used to create, remove
and set the attributes of users, projects and access controls. The fields table contains
details of which objects and attributes may be modified. See Section 10.2.8.

The table has seven fields: the tablename field specifies the table that will be modified;
the name field specifies which entry in the named table will be modified; the type field
determines the range of valid values; the min field gives the minimum for values of type
integer while the max field gives the maximum; the textattr field either gives a
comma-separated list of valid values or a table-name.table-field pair. In the case
of the table-name.table-field pair, the value in the name field of the fields table
must also be present in the table named table-name in the field called table-field.
The access field specifies whether this field can be updated by the system
administrator.

To create a user, use the rcontrol create command to specify the object type (in this
case, user) and the object name (for example, frank).

rcontrol create user = frank

To update an existing user record, use the rcontrol set command. For example, to
change the projects to which a user belongs, use rcontrol set followed by the object
type (in this case, user), the object name (in this example, frank), the attribute to be
changed (projects), and its new value (in this example, parallax); the new value
must already have been defined as a project.

rcontrol set user = frank projects = parallax

RMS Commands 5-27

rcontrol(1)

Note that a user can be in more than one project in which case the value would be a
comma-separated list:

rcontrol set user = frank projects = parallax,science

To create an access control called, for example, science, in the par1 partition, use
rcontrol with the create command followed by the type of the object, its name and
the name of the partition. Additional attribute-value pairs specify attributes of the
access control, for example, its class.

rcontrol create access_control = science partition = par1 class = project

Just as partitions require a configuration name to identify them uniquely, access
controls require a partition name.

To set the attributes of an object, use rcontrol with the set command followed by the
name of the object. Specify the name of the attribute and the required value. An
attribute’s value can be set to null by entering NULL, Null or null as the value.

rcontrol set access_control = std partition = par1 priority=75 memlimit=NULL

To remove an object, use rcontrol with the remove command and the name of the
object.

rcontrol remove user = frank
rcontrol remove access_control = science partition = par1

After changing user, project or access control information, the Partition Managers must
be reloaded so that they use the new information.

rcontrol reload partition = par1

Jobs that were already running will not be affected by any change to resource limits
except that they may be suspended if the new CPU usage limits are lower than before.

Setting System Attributes

System attributes can be created, removed or set using rcontrol create, remove and
set.

rcontrol create attribute = name val=value
rcontrol remove attribute = name
rcontrol set attribute = name val=value

Any system attributes can be modified in this way but there are some, mentioned below,
whose values are checked if they are created or set. (See Section 10.2.3).

5-28 RMS Commands

rcontrol(1)

The attribute pmanager-queuedepth limits the number of resource requests that a
Partition Manager will handle at any time. If the attribute is undefined or set to NULL or
0, no limit is imposed. By default, it is set to 0.

If a limit is set and reached, subsequent resource requests by prun will block or, if the
immediate option to prun is set, fail. The blocked requests will not appear in the RMS
database.

To set the pmanager-queuedepth attribute, use rcontrol with the set command.
Specify attribute, give the attribute name and set the val argument to the required
value.

rcontrol set attribute = pmanager-queuedepth val = 20

If you set a limit while the partition is running, you should also reload the partition to
make the limit take effect.

rcontrol reload partition = par1

The attribute pmanager-idletimeout limits the amount of time an allocated resource
may remain idle. If a resource request exceeds this limit, it will time out with an exit
status of 125 and allocate will exit with the following message:

allocate: Error: idle timeout expired for resource allocation

If the attribute is undefined or set to NULL, no limit is imposed. By default, it is not set.
To set a limit, use rcontrol with the set argument. Specify attribute, give the
attribute name and set the val argument to the required timeout value in seconds.

rcontrol set attribute = pmanager-idletimeout val = 5

If you set a time limit while the partition is running, you should also reload the partition
to make the limit take effect.

rcontrol reload partition = par1

The attribute default-priority determines the default priority given to resource
requests. Priorities may range from 0 to 100. The default is 50.

To set the default-priority attribute, use rcontrol with the set command. Specify
attribute, give the attribute name and set the val argument to the required value.

rcontrol set attribute = default-priority val = 75

The attribute grace-period specifies the amount of time in seconds that jobs are given
to exit after they have exceeded their time limit and received a signal to quit. It may be
set to any value between 0 and 3600, the default being 60.

RMS Commands 5-29

rcontrol(1)

The attribute cpu-poll-stats-interval specifies the interval between successive
polls for gathering node statistics. The interval is specified in seconds and must be in
the range 0 to 86400 (1 day).

The attribute rms-keep-core determines whether core files are deleted or saved. By
default, it is set to 1 so that core files are saved. Change this to 0 to delete core files. The
attribute local-corepath specifies the directory in which core files are saved. By
default, it is set to /local/core/rms.

EXAMPLES

The following command line creates a partition called par1 with eight nodes called
atlas1, atlas2 and so on in the configuration called day.

rcontrol create partition=par1 configuration=day nodes=’atlas[1-8]’

The partition is started and stopped as follows:

rcontrol start partition = par1
rcontrol stop partition = par1

Stopping the partition in this way will leave the jobs running. Alternatives are to wait
for them to exit or to kill them.

rcontrol stop partition = par1 option = wait
rcontrol stop partition = par1 option = kill

If the system has several operating configurations, for example, one for the prime shift
(called day) and another for evening and weekends (called night) then the set of
partitions making up a configuration can be started and stopped together:

rcontrol stop configuration = day
rcontrol start configuration = night

To suspend or resume the jobs running on a specified resource:

rcontrol suspend resource = 2212
rcontrol resume resource = 2212

To set the priority of a resource:

rcontrol set resource = 2212 priority = 4

To kill the jobs running on some specified resources:

5-30 RMS Commands

rcontrol(1)

rcontrol kill resource = 2212 2213
rcontrol kill batchid = 44 45

To instruct a Partition Manager to reread the user, projects and access_controls

tables:

rcontrol reload partition = par1

To enable debug reporting from the RMS scheduler for the partition called par1:

rcontrol reload partition = par1 debug = 41

RMS Commands 5-31

rinfo(1)

NAME

rinfo – Displays resource usage and availability information for parallel jobs

SYNOPSIS

rinfo [-chjlmnpqr] [-L [partition] [statistic]] [-s daemon

[hostname] | all] [-t node | name]

OPTIONS

-c List the configuration names.

-h Display the list of options.

-j List current jobs.

-l Give more detailed information.

-m Show the machine name.

-n Show the status of each node. This can be combined with -l.

-p Identify each active partition by name and indicate the number of
CPUs in each partition.

-q Print information on the user’s quotas and projects.

-r Show the allocated resources.

-L [partition] [statistic]

Print the hostname of a lightly loaded node in the machine or the
specified partition. RMS provides a load-balancing service,
accessible through rmsexec, that enables users to run their processes
on lightly loaded nodes, where loading is evaluated according to a
given statistic. (See Page 5-39).

-s daemon [hostname] | all

Show the status of the daemon. Used with the argument all, rinfo
shows the status of all daemons running on the rmshost node. For
daemons that run on multiple nodes, such as rmsd, the optional
hostname argument specifies the hostname of the node on which the
daemon is running.

5-32 RMS Commands

rinfo(1)

-t node | name

Where node is the network identifier of a node, rinfo translates it
into the hostname; where name is a hostname, rinfo translates it
into the network identifier. See Section A.1 for more information on
network identifiers.

DESCRIPTION

The rinfo program displays information about resource usage and availability. Its
default output is in four parts that identify: the machine, the active configuration,
resource requests and the current jobs. Note that the latter sections are only displayed if
jobs are active.

$ rinfo
MACHINE CONFIGURATION
atlas day

PARTITION CPUS STATUS TIME TIMELIMIT NODES
root 6 atlas[0-2]
parallel 2/4 running 01:02:29 atlas[0-1]

RESOURCE CPUS STATUS TIME USERNAME NODES
parallel.996 2 allocated 00:05 user atlas0

JOB CPUS STATUS TIME USERNAME NODES
parallel.1115 2 running 00:04 user atlas0

The machine section gives the name of the machine and the active configuration.

For each partition in the active configuration, rinfo shows the number of CPUs in use,
the total number of CPUs, the partition status, the time since the partition was started,
any CPU time limits imposed on jobs, and the node names. This information is extracted
from the partitions table. See Section 10.2.16. The description of the root partition
shows the resources of the whole machine.

The resource section identifies the resource allocated to the user, the number of CPUs
that the resource includes, the user name, the node names and the status of the
resource. The time field specifies how long the resource has been held in hours, minutes
and seconds.

The job section gives the job identifier, the user name, the number of CPUs the job is
using, on which nodes and the status of the job. The time field specifies how long the job
has been running in hours, minutes and seconds.

RMS Commands 5-33

rinfo(1)

EXAMPLES

When used with the -q flag, rinfo prints information on the user’s projects, CPU usage
limits, memory limits and priorities.

$ rinfo -q
PARTITION CLASS NAME CPUS MEMLIMIT PRIORITY
parallel project default 0/8 100 0
parallel project divisionA 16/64 none 1

In this example, the access controls allow any user to run jobs on up to 8 CPUs with a
memory limit of 100MB. Jobs submitted for the divisionA project run at priority 1,
have no memory limit and can use up to 64 CPUs. 16 of these 64 CPUs are in use.

When used with the -s option, rinfo prints information on the status of the RMS
servers.

$ rinfo -l -s all
SERVER HOSTNAME STATUS PID
tlogmgr rmshost running 239241
eventmgr rmshost running 239246
mmanager rmshost running 239260
swmgr rmshost running 239252
pmanager-parallel rmshost running 239175

$ rinfo -l -s rmsd
SERVER HOSTNAME STATUS PID
rmsd atlas0 running 740600
rmsd atlas1 running 1054968
rmsd atlas2 running 1580438
rmsd atlas3 running 2143669
rmsd atlasms running 239212

In the above example, the system is functioning correctly. In the following example, one
of the nodes has crashed.

$ rinfo -l -s rmsd
SERVER HOSTNAME STATUS PID
rmsd atlas0 running 740600
rmsd atlas1 running 1054968
rmsd atlas2 not responding
rmsd atlas3 running 2143669
rmsd atlasms running 239212

SEE ALSO

allocate, prun

5-34 RMS Commands

rmsbuild(1)

NAME

rmsbuild – Creates and populates an RMS database

SYNOPSIS

rmsbuild [-dhv] [-I list] [-m machine] [-n nodes | -N list]
[-p ports] [-t type]

OPTIONS

-d Create a demonstration database.

-h Display the list of options.

-I list Specifies the names of any interactive nodes.

-m machine Specifies a name for the machine.

-n nodes Specifies the number of nodes in the machine.

-N list Specifies the nodes in the machine by name.

-p ports Specifies the number of ports on a terminal server (default 32).

-t type Specifies the node type.

-v Specifies verbose operation.

Nodes can be specified by number (-n) or by name (-N) but not both. Lists of node names
should be quoted, for example ’atlas[0-15]’

DESCRIPTION

rmsbuild creates a database for a machine of a given size, adding default entries to the
nodes table and modules table. For detailed information on these tables see
Section 10.2.14 and Section 10.2.12 respectively.

rmsbuild is used during the initial installation of a machine. It should be run on the
rmshost node. rmsbuild runs rmstbladm to create a new database or update an
existing one. (See Page 5-44).

RMS Commands 5-35

rmsbuild(1)

Detailed information about each node (number of CPUs, amount of memory and so on) is
added later by rmsd as it starts on each node.

The machine name is specified with the -m option. Machines should be given a short
name that does not end a digit. Node names are generated by appending a number to
the machine name.

Database entries for the nodes are generated by the -n or -N options. Use -n with a
number to generate entries for nodes 0 through n-1. Use -N to generate entries for a
named list of nodes such as atlas[4-8].

Some systems include a management server. You should use the -I option to specify the
management server name and create a description of the management server in the
RMS database. To devise the management server name, append the letters ms to the
machine name; for example, atlasms.

rmsbuild is run after the system is installed, creating database entries for all installed
nodes. Additional entries can be added later if further nodes are installed.

If the demonstration mode is selected with the -d option, rmsbuild constructs the
entries for a demonstration database; that is to say, a database that does not necessarily
correspond to the physical resources of the system. Attributes of the nodes that would
normally be set by rmsd are set to representative values and a default partition is
created. The -d option is primarily for testing purposes but can be useful when
demonstrating RMS. When creating such a database, you should take care to give it a
different name from that of your system.

EXAMPLES

To create a description of a 64-node system called atlas with one management server,
use rmsbuild as follows:

rmsbuild -m atlas -I ’atlasms’ -N ’atlas[0-63]’

To create a machine description for a 128-node system called demo, use rmsbuild as
follows:

rmsbuild -d -m demo -n 128

SEE ALSO

rmstbladm, msqladmin

5-36 RMS Commands

rmsctl(1)

NAME

rmsctl – Stops, starts or shows the status of the RMS system.

SYNOPSIS

rmsctl [-aehv] [start | stop | restart | show]

OPTIONS

-a Show all servers, when used with the show command.

-e Only show errors, when used with the show command.

-h Display the list of options.

-v Verbose operation

DESCRIPTION

The rmsctl script is used to start, stop or restart the RMS system on all nodes in a
machine, and to show status information.

rmsctl starts and stops RMS by executing the /sbin/init.d/rms script on each node.
Note that rsh must be enabled for root users in order for this to function correctly.

rmsctl start starts all of the partitions in the active configuration and sets their
autostart fields in the servers table to 1. rmsctl stop stops all of the partitions and
sets the autostart fields to 0. (See Section 10.2.19).

This contrasts with the behavior of the /sbin/init.d/rms script, run from the
rmshost node, which preserves the current state of the active configuration over a
stop/start cycle. (See Section 9.3.1).

When used with the command show, rmsctl shows the current status of the system.

EXAMPLES

To stop the RMS system, use rmsctl as follows:

rmsctl stop
RMS service stopped on atlas1

RMS Commands 5-37

rmsctl(1)

RMS service stopped on atlas0
RMS service stopped on atlas3
RMS service stopped on atlas2
RMS service stopped on atlasms

To start the RMS system, use rmsctl as follows:

rmsctl stop
RMS service started on atlas0
RMS service started on atlas1
RMS service started on atlasms
RMS service started on atlas2
RMS service started on atlas3
pmanager-parallel: cpus=16 (4 per node) maxfree=4096MB swap=5171MB no memory limits
pstartup.OSF1: general partition parallel starting
pstartup.OSF1: enabling login on partition parallel
Enabling login on node atlas1.quadrics.com
Enabling login on node atlas3.quadrics.com
Enabling login on node atlas0.quadrics.com
Enabling login on node atlas2.quadrics.com

To show the status of the RMS system, use rmsctl as follows:

rmsctl show
SERVER HOSTNAME STATUS PID
tlogmgr rmshost running 778
eventmgr rmshost running 780
mmanager rmshost running 789
swmgr rmshost running 799
pmanager-parallel rmshost running 33357

STATUS NODES
running atlas[0-3] atlasms

CPUS NODES
4 atlas[0-3] atlasms

MEMORY NODES
4096 atlas[0-3]
1024 atlasms

SWAP SPACE NODES
5171 atlas0[0-3] atlasms

TMP SPACE NODES
6032 atlas[0-3]
5703 atlasms

SEE ALSO

rcontrol

5-38 RMS Commands

rmsexec(1)

NAME

rmsexec – Runs a sequential program on a lightly loaded node

SYNOPSIS

rmsexec [-hv] [-p partition] [-s stat] [hostname] program [args ...]

OPTIONS

-h Display the list of options.

-v Specifies verbose operation.

-p partition Specifies the target partition. The request will fail if load-balancing is
not enabled on the partition. (See Section 10.2.16).

-s stat Specifies the statistic on which to base the load-balancing calculation
(see below).

DESCRIPTION

The rmsexec program provides a mechanism for running sequential programs on
lightly loaded nodes – nodes, for example, with free memory or low CPU usage. It locates
a suitable node and then runs the program on it.

The user can select a node from a specific partition (of type login or general) with the
-p option. Without the -p option, rmsexec uses the default load-balancing partition
(specified with the lbal-partition attribute in the attributes table). In addition,
the hostname of the node can be specified explicitly. The request will fail if this node is
not available to the user. System administrators may select any node.

The -s option can be used to specify a statistic on which to base the loading calculation.
Available statistics are:

usercpu Percentage of CPU time spent in the user state.

syscpu Percentage of CPU time spent in the system state - a measure of the
I/O load on a node.

idlecpu Percentage of CPU time spent in the idle state.

RMS Commands 5-39

rmsexec(1)

freemem Free memory in megabytes.

users Lowest number of users.

By default, usercpu is used as the statistic. Statistics can be used on their own, in
which case a node is chosen that is lightly loaded according to this statistic, or you can
specify a threshold using statistic < value or statistic > value

EXAMPLES

Some examples follow:

$ rmsexec -s usercpu myprog
$ rmsexec -s "usercpu < 50" myprog
$ rmsexec -s "freemem > 256" myprog

SEE ALSO

rinfo

5-40 RMS Commands

rmshost(1)

NAME

rmshost – Prints the name of the node running the RMS management daemons

SYNOPSIS

rmshost [-hl]

OPTIONS

-h Display the list of options.

-l Prints the fully qualified domain name.

DESCRIPTION

The rmshost command prints the name of the node that is running (or should run) the
RMS management daemons. It is used by the RMS system.

RMS Commands 5-41

rmsquery(1)

NAME

rmsquery – Submits SQL queries to the RMS database

SYNOPSIS

rmsquery [-huv] [-d name] [-m machine] [SQLquery]

OPTIONS

-d name Select database by name.

-h Display the list of options.

-m machine Select database by machine name.

-u Print dates as seconds since January 1st 1970. The default is to print
dates as a string created with localtime(3).

-v Verbosely prints field names above each column of output.

DESCRIPTION

rmsquery is used to submit SQL queries to the RMS database. Users are restricted to
using the select statement to extract information from the database. System
administrators may also submit SQL statements that update the database: create,
delete, drop, insert and update. Note that queries modifying the database are
logged.

When used without arguments, rmsquery operates interactively and a sequence of
commands can be issued.

When used interactively, rmsquery supports GNU readline and history mechanisms.
Type history to see recent commands, use Ctrl/p and Ctrl/n to step back and
forward through them. The tables command lists the tables in the selected database.
The command fields followed by the name of a table lists the fields in a table. The
command verbose toggles printing of field names. To quit interactive mode, type
Ctrl/d or exit or quit.

rmsquery is distributed under the terms of the GNU General Public License. See
http://www.gnu.org for details and more information on GNU readline and history.

5-42 RMS Commands

http://www.gnu.org

rmsquery(1)

The source is provided in /usr/opt/rms/src. Details of the SQL language can be
found on the Quadrics support page http://www.quadrics.com/web/support.

EXAMPLES

An example follows of a select statement that results in a list of the names of all of the
nodes in the machine. Note that the query must be quoted. This is because rmsquery
expects a single argument.

$ rmsquery "select name from nodes"
atlas0
atlas1
atlas2
atlas3

In the following example, rmsquery is used to print information on all jobs run by a
user:

$ rmsquery "select name,status,hostnames,cpus,startTime,endTime from \
resources where username=’user’"

7 finished atlas[0-3] 4 12/21/99 11:16:44 12/21/99 11:16:46
8 finished atlas0 2 12/21/99 11:54:23 12/21/99 11:54:29
9 finished atlas[0-3] 4 12/21/99 11:54:35 12/21/99 11:54:39

The -v option prints field names. In the following example, rmsquery is used to print
resource usage statistics:

$ rmsquery -v "select * from acctstats"
name uid project started etime atime utime stime ...

7 1507 1 12/21/99 11:16:44 2.00 8.00 0.10 0.22 ...
8 1507 1 12/21/99 11:54:23 6.65 13.30 10.62 0.10 ...
9 1507 1 12/21/99 11:54:35 4.27 16.63 12.28 0.44 ...

When used without arguments, rmsquery operates interactively and a sequence of
commands can be issued.

$ rmsquery -v
sql> select name, status from partitions
name status

login running
parallel running
sql>

RMS Commands 5-43

http://www.quadrics.com/web/support

rmstbladm(1)

NAME

rmstbladm – Database administration

SYNOPSIS

rmstbladm [-BcdDfhmuv] [-r file] [-t table] [machine]

OPTIONS

-B Dump the first five rows of each table to stdout as a sequence of SQL
statements. A specific table can be dumped if the -t option is used.

-c Clean out old entries from the node statistics (node_stats) table, the
resources table, the events table and the jobs table. (See
Chapter 10 (The RMS Database). rmstbladm uses the
data-lifetime and stats-lifetime attributes, specified in the
attributes table, to determine how many entries are to be removed.
The default is to keep statistics for 24 hours and job descriptions for
48 hours.

-d Dump the contents of the database to stdout as a sequence of SQL
statements. A specific table can be dumped if the -t option is used.

-D Dump the contents of the database to stdout as plain text. A specific
table can be dumped if the -t option is used.

-f Recreate the database from scratch. A specific table can be recreated
if the -t option is used.

-h Displays the list of options.

-m Displays the names of machines in the RMS databases managed by
the msqld server.

-u By default, rmstbladm checks the consistency of the database. If the
-u flag is specified, the database is updated to the current revision
level. A specific table can be updated if the -t option is used.

-v Specifies verbose operation.

-r file Restore database tables from the named file.

-t table Specifies a single table to be worked on.

5-44 RMS Commands

rmstbladm(1)

DESCRIPTION

The command rmstbladm is used to administer the RMS database. It creates the tables
and their default entries. It can be used to back up individual tables (or the whole
database) to a text file, to restore tables from file or to force the recreation of tables.
Unless a specific machine is specified, rmstbladm operates on the database of the host
machine.

When installing or upgrading a system, rmstbladm is used to check the consistency of
the database, to change the structure of the tables and to add default entries. Once the
system is installed and working correctly, the database should be backed up using
rmstbladm with the -d option. The backup should be kept safely so that the database
can be restored later should this prove necessary.

Certain tables in the RMS database (the resources, jobs, events, acctstats and
node_stats tables in particular) grow over time and as each job is run. To remove old
entries from the database, use rmstbladm with the -c option. Note that this does not
remove entries from the accounting statistics table. These should be removed once the
accounting data has been processed. (See Section 9.4.5).

Access to rmstbladm options that update the database is restricted to administrative
users.

EXAMPLES

To backup the contents of the RMS database or a selected table to a text file as a
sequence of SQL statements:

$ rmstbladm -d > backup_full.sql
$ rmstbladm -d -t nodes > backup_nodes.sql

To update the database on installing a new version of RMS:

$ rmstbladm -u

RMS Commands 5-45

6

Access Control, Usage Limits and
Accounting

6.1 Introduction

RMS access controls and usage limits operate on a per-user or per-project basis (a project
is a list of named users). Each partition may have its own controls. This mechanism
allows system administrators to control the way in which the resources of a machine are
allocated amongst the user community.

RMS accounts for resource usage by user and by project. As each request is allocated
CPUs, an accounting record is created, containing the uid of the user, the project name,
the resource identifier and information on resource usage (see Section 6.5). This record
is updated periodically while the CPUs remain allocated.

6.2 Users and Projects

When a system is first installed, there is only one project, called the default project. All
users are members of this project and anyone who has logged into the system can
request all of the CPUs. This simple setup is intended for a single class of cooperating
users.

To account for resource usage by user or by project, the administrator must create
additional user and project records in the RMS database. To control the resource usage
of individuals or groups of users, the administrator must, in addition, create access

Access Control, Usage Limits and Accounting 6-1

Access Controls

control records.

When submitting requests for CPUs, users can select any project of which they are a
member (by setting the RMS_PROJECT environment variable or by using the -P flag
when executing prun or allocate). RMS rejects requests to use projects that do not
exist or requests to use projects of which the user is not a member. Users without an
RMS user record are subject to the constraints on the default project.

In general, each user is a member of several projects, while projects may have many
users. Membership of a project is specified in the users table with the projects field
(see Section 10.2.24). The value of projects may be either a single name or list of
project names, separated by commas or space. The wildcard character, *, may be entered
as a project name, denoting that the user is a member of all projects. The ordering of the
names in the list is significant: the first project specified becomes the user’s default
project.

User and project records are created by the system administrator and stored in the
users and projects tables (see Section 10.2.24 and Section 10.2.17).

6.3 Access Controls

Access control records specify the maximum resource usage of a user or project on a
given partition. They are created by the system administrator using rcontrol or
rmsquery and stored in the access_controls table (see Section 10.2.1).

Each entry specifies the following attributes:

name The name of the user or project.

class Whether the entry refers to a user or a project.

partition The partition to which the access control applies.

priority The default priority of requests submitted by this user or project.
Priorities range from 0, the lowest priority, to 100. The default is 50.

maxcpus The total number of CPUs that this user or project can have allocated
at any time.

memlimit The maximum amount of memory in megabytes per CPU that can be
allocated.

A suspended request does not count against a user’s or project’s maximum number of
CPUs. However, when the request is resumed, a usage check is performed and the
request is blocked if starting it would take the user or project over their usage limit.

6-2 Access Control, Usage Limits and Accounting

Access Controls

The access controls for individual users must set lower limits than those of the projects
of which they are a member. That is to say, they must have a lower priority, smaller
number of CPUs, smaller memory limit and so on than the access control record for the
project. Where a memory limit exists for a user or project, it takes precedence over any
default limit set on the partition (see Section 10.2.16).

When the system is installed, there are no access control records. If there is no default
access control record in the database when a Partition Manager starts, it creates one
using information from the partition. The memory limit is set to that of the partition,
the priority is 0 and the CPU usage limit is equal to the number of CPUs in the partition.
If the partition has no memory limit then all jobs run with memory limits disabled until
access control records are created.

6.3.1 Access Controls Example

To illustrate how the RMS access controls mechanism works, we consider an example in
which a system is primarily intended for use by Jim, Mary and John, members of the
project called design. When they are not using the system, anyone else can submit small
jobs.

First, create a project record for design:

rcontrol create project = design description = "System Design Team"

name id description
design 1 System Design Team

Now create user records for Jim, Mary and John:

rcontrol create user = jim project = design
rcontrol create user = mary project = design
rcontrol create user = john project = design

name projects
jim design
mary design

john design

Now create access controls for the design project and for the default project (all other
users):

rcontrol create access_control = design class = project partition = \

Access Control, Usage Limits and Accounting 6-3

How Access Controls are Applied

parallel priority = 5
rcontrol create access_control = default class = project partition = \

parallel priority = 0 memlimit = 256

name class partition priority maxcpus memlimit
design project parallel 5 Null Null

default project parallel 0 Null 256

Requests submitted by Jim, Mary and John run at priority 5, causing other users’ jobs to
be suspended if running. These requests are not subject to CPU or memory limits.

Requests submitted by other users run at priority 0 and are subject to a memory limit of
256MB per CPU. Note that on a system with 4 CPUs and 4GB of memory per node, it
would be necessary for each node to have at least 5GB of swap space to ensure that jobs
submitted by the design group were not blocked by other users (see Section 7.4.2 for
details).

In this example, we have not set the maxcpus limit as we do not mind how many CPUs
the users allocate. This limit could be set if there were two groups of users of equal
priority and you wanted to bound the number of CPUs that each could allocate.

6.4 How Access Controls are Applied

The rules governing memory limits, priority values and CPU usage limits are described
in more detail in the following sections.

6.4.1 Memory Limit Rules

Memory limits for a resource request are derived by applying the following rules in
sequence until an access control record with a memory limit is found.

1. The root user has no memory limits.

2. If the user has an access control record for the partition, the memory limit in the
access control record applies.

3. The access control record for the user’s current project determines the memory limit.

4. The access control record for the default project determines the memory limit.

Having selected an access control record, the memory limit for the program is set by the
value of its memlimit field. A null value disables memory limits. Other values are
interpreted as the memory limit in megabytes for each CPU. A process with one CPU

6-4 Access Control, Usage Limits and Accounting

How Access Controls are Applied

allocated has its memory limits set to this value. A process with more than one CPU
allocated has proportionately higher memory limits.

The RMS_MEMLIMIT environment variable can be used to reduce the memory limit set by
the system, but not to raise it.

By default, the memory limit is capped by the minimum value for any node in the
partition of the smaller of these two amounts:

1. The amount of memory on the node.

2. The amount of swap space.

If lazy swap allocation is enabled (see Section 7.4.2), the memory limit is capped by the
minimum value for any node in the partition of the amount of memory per node.

6.4.2 Priority Rules

The priority of a resource request is derived by applying the following rules in sequence
until an access control record with a priority is found.

1. The root user has priority over all other users.

2. If the user has an access control record for the partition then this record determines
the priority.

3. The access control record for the user’s current project determines the priority.

4. The access control record for the default project determines the priority.

Having selected an access control record, the priority of the resource request is set by
the value of its priority field. A null value sets the priority to 50, the default. Higher
priority jobs are scheduled first. The user can instruct rcontrol to lower the initial
priority but not to raise it. An administrator can raise or lower priorities.

6.4.3 CPU Usage Limit Rules

RMS keeps track of the number of CPUs in use by each user and each project. A request
to allocate additional CPUs is blocked if it would cause the usage limit for the user or the
usage limit for the user’s current project to be exceeded. The request remains blocked
until the user or other users in the user’s current project free enough CPUs to allow the
request to be granted. The CPUs can be freed either because the resources are
deallocated or because the user suspends the resource using rcontrol.

The CPU usage limit is derived by applying the following rules in sequence until an
access control record with a CPU usage limit is found.

Access Control, Usage Limits and Accounting 6-5

Accounting

1. No CPU usage limits are set on jobs run by the root user.

2. If the user has an access control record for the partition, the CPU usage limit is
determined by the maxcpus field in this record.

3. The access control record for the user’s current project determines the CPU usage
limit.

4. The access control record for the default project determines the CPU usage limit.

CPU usage limits can be set to a higher value than the actual number of CPUs available
in the partition. This is useful if gang scheduling and time slicing are in operation on
the partition. For example, if a partition has 16 CPUs and the usage limit for a given
user is 32 then RMS will allow two 16 CPU jobs to run (see Section 7.4.3 for details).

6.5 Accounting

As each request is allocated CPUs, an entry is added to the accounting statistics
(acctstats) table (see Section 10.2.2) specifying the following details about the job:

name Resource name (see Section 10.2.18).

uid Identifier of the user.

project Name of the user’s current project.

started Time at which resources were allocated (UTC).

etime Elapsed time (in seconds) since CPUs were allocated.

atime Time (in CPU seconds) for which CPUs have been allocated. Note that
atime stops ticking while a request is suspended.

utime Time (in seconds) for which processes were executing in user state.

stime Time (in seconds) for which processes were executing in system state.

cpus Number of CPUs allocated.

mem Maximum memory extent of the program in megabytes.

pageflts Number of page faults requiring I/O summed over processes.

memint Memory integral for the program in megabyte hours.

running Set to show that the CPUs are in use.

6-6 Access Control, Usage Limits and Accounting

Accounting

Accounting records are updated periodically until the CPUs are deallocated. The
running flag is set to 0 at this point.

The atime statistic is summed over all CPUs allocated to the resource request. The
utime and stime statistics are accumulated over all processes in all jobs running on the
allocated CPUs.

Note

The memint statistics are not implemented in the current release. All values
for this fields are 0.

Access Control, Usage Limits and Accounting 6-7

7

RMS Scheduling

7.1 Introduction

The Partition Manager (see Section 4.4) is responsible for scheduling resource requests
and enforcing usage limits. This chapter describes the RMS scheduling policies and
explains how the Partition Manager responds to resource requests.

7.2 Scheduling Policies

The scheduling policy in use on a partition is controlled by the type attribute of the
partition. The type attribute can take one of four values:

login Normal UNIX time-sharing applies. This scheduling policy is used for
partitions that do not run parallel programs, such as interactive login
partitions.

In addition, RMS supports load-balanced sequential processing,
whereby users can request to have sequential programs executed on a
lightly loaded node. Load balancing is enabled on a per-partition basis
by an entry in the partitions table (see Section 10.2.16). rmsexec
(see Page 5-39) can be used to run a program with load balancing.

parallel A gang scheduling policy is used. This is for partitions intended for
production runs of parallel programs. With gang scheduling, the
scheduling decisions apply to all processes in a parallel program

RMS Scheduling 7-1

Scheduling Constraints

together. That is to say, all of the processes in a program are either
running or suspended at the same time.

Gang scheduling is required for tightly coupled parallel programs
which communicate frequently. It becomes increasingly important as
the rate of interprocess communication increases. For example, if a
program is executing a barrier synchronization, all processes must be
scheduled before the barrier completes.

Effective scheduling of parallel programs requires that user access
through commands such as rsh, rlogin and telnet is disabled.
This is carried out by the partition startup script (see Section 4.4).

general The scheduling policy supports UNIX time-sharing with load
balancing and gang scheduling. It is appropriate for a login partition
that is used for developing and debugging parallel programs.

batch The scheduling policy is determined by a batch system. It is
appropriate for partitions that are for the exclusive use of a batch
system. The batch system may run sequential or parallel programs as
it wishes but interactive use is prohibited.

7.3 Scheduling Constraints

The scheduling decisions made while gang scheduling are controlled by a number of
parameters. These parameters can be specified for individual users and for projects
(groups of users) in the access_controls table (see Section 10.2.1). Restrictions on the
partition itself are specified in the partitions table (see Section 10.2.16). The
parameters are as follows:

Priority

Each resource request is assigned a priority taken from the priority field of the
access_controls table. The Partition Manager schedules resource requests in order
of priority. Where a number of requests are queued with the same priority, they are
scheduled by order of submission time. The submission into the queue of a high priority
request may cause existing low priority jobs to be suspended. Changing the priority of a
request requires administrator privileges.

Maximum Number of CPUs

An upper limit can be set on the number of CPUs that may be allocated to a user or
project at any point in time. Requests that take the usage count for the user or project
above this limit are blocked. Requests for more CPUs than the limit on a user or project
are rejected.

7-2 RMS Scheduling

What Happens When a Request is Received

Time Limit

Jobs are normally run to completion or until they are preempted by a higher priority
request. Each partition may have a time limit associated with it which restricts the
amount of time the Partition Manager may allow for a parallel job. On expiry of this
time limit, the job is sent a SIGXCPU signal. A period of grace is allowed following this
signal for the job to clean up and exit. After this period, the job is killed and the resource
deallocated. The duration of the grace period is specified in the attributes table (see
Section 10.2.3) and can be set using rcontrol.

Memory Size

The Partition Manager can enforce memory limits that restrict the size of a job. The
default memory limits are designed to prevent memory starvation (a node having free
CPUs but no memory) and to control whether parallel jobs page or not.

7.4 What Happens When a Request is Received

A user’s request for resources, made through the RMS commands prun or allocate,
specifies the following parameters:

cpus The total number of CPUs to be allocated.

nodes The number of nodes across which the CPUs are to be allocated. This
parameter is optional.

base node The identifier of the first node to be allocated. This parameter is
optional.

hwbcast A contiguous range of nodes. This parameter is optional. When a
contiguous range of nodes is allocated to a job, messages can be
broadcast in hardware. This offers advantages of speed over a
software implementation if the job makes use of broadcast operations.

memory The amount of memory required per CPU. This parameter is optional
(set through the environment variable RMS_MEMLIMIT) but jobs with
low memory requirements may be scheduled sooner if they make
these requirements explicit.

time limit The length of time for which the CPUs are required. This parameter is
optional (set through the environment variable RMS_TIMELIMIT).

samecpus The same set of CPUs on each node. This parameter is optional.

RMS Scheduling 7-3

What Happens When a Request is Received

immediate The request should fail rather than block if resources are not
available immediately.

Note
The RMS scheduler attempts to allocate CPUs on a contiguous range of nodes. If
a contiguous range of nodes is not available then requests that explicitly specify
a contiguous range with the hwbcast parameter will block if the requested
CPUs cannot be allocated.

When the Partition Manager receives a request, it first checks to see if the partition has
sufficient resources. If the resources are available, the next check is on the resource
limits applied to the user and the project. If these checks fail, the request is rejected.

If the checks succeed, the scheduler attempts to allocate CPUs from those that are
currently free. If sufficient CPUs are free but allocating them would exceed the user’s
CPU usage limit, the request is marked as blocked (or, if the immediate parameter is
set, the request fails). If CPUs can be allocated, the resource request is marked as
allocated and job(s) may use the CPUs. If the request cannot be met, it is added to the
list of active requests and marked as queued. The scheduler than re-evaluates the
allocation of CPUs to all of the requests in the list.

The list of resource requests is sorted in priority order. Requests of the same priority are
sorted by submission time. When evaluating the list, the scheduler works down the
requests trying to allocate CPUs to them. The highest priority request is allocated CPUs
first except when doing so would cause the system to run out of swap space (see
Section 7.4.2).

In considering each request, the scheduler first looks at whether it has already been
allocated CPUs (a bound request). CPUs remain allocated to a request unless they are
preempted by a higher priority request, in which case the request of lower priority is
suspended together with any jobs that were running on it. If the request is not yet
bound then CPUs are allocated, if sufficient are free.

The list of requests is re-evaluated when free CPUs cannot be found for a new request,
when an existing request completes or on the expiry of the time-slice period (see
Section 7.4.3).

Consider what happens when a high priority request is submitted to a partition that is
already running jobs. If there are sufficient CPUs free (matching the constraints of the
request) then the job(s) start. If there are not enough free CPUs, the list of requests is
re-evaluated. CPUs are allocated to the high priority request and its job(s) are allowed to
start. The jobs of the lower priority requests, whose CPUs were taken for the high
priority request, are suspended. Any of the low priority jobs for which CPUs are
available continue.

7-4 RMS Scheduling

What Happens When a Request is Received

7.4.1 Memory Limits

If memory limits are enabled (by setting the memlimit attribute of a partition or access
control) then a request is only allocated CPUs on nodes that have sufficient memory
available. RMS enforces memory limits by setting the data and stack size limits on a
process. If the process exceeds the allowed size, it is killed (and the parallel program
terminated).

Users, whose programs consume a known amount of memory each time they run, can set
their own memory limit with the environment variable RMS_MEMLIMIT. Setting this
variable (especially if the new value is much smaller than their default memory limit)
may cause their jobs to be scheduled sooner than would otherwise be the case. Users
cannot raise their memory limits above the level set by the system administrator. They
can only lower them.

The default memory limit is calculated by dividing the memory available by the number
of CPUs per node. For example, if a node has 4GB of memory and 4 CPUs then each CPU
that is allocated comes with 1GB of memory. Larger memory limits can be set but this
risks having CPUs idle through memory starvation, unless there is a plentiful supply of
jobs requesting small amounts of memory.

If memory limits are enabled, the RMS scheduler keeps track of the maximum memory
usage per node. The ratio of memory limit to memory size determines how many
requests can be present (allocated or suspended) before jobs start to page.

7.4.2 Swap Space

By default, the operating system reserves swap space as a program allocates memory.
Hence, a process requiring 1GB of memory must also have 1GB of swap space. If
memory limits are enabled, RMS does not allocate CPUs to new requests if the addition
of their maximum memory usage to that already allocated would cause the total for the
node to exceed the swap space available.

Each node normally has significantly more swap space than memory. The ratio of
memory limit to swap space determines how many requests (allocated or suspended) can
be present on each node.

Tru64 UNIX supports a lazy swap allocation policy in which swap space is only
allocated when required. If this policy is enabled then RMS uses the total memory
available on the node to limit the size and number of jobs run. This enables large
memory jobs to run on nodes with relatively little swap space.

Warning

If lazy swap allocation is enabled, there must be sufficient swap space for the
UNIX daemons and any other processes running on such nodes. Without this,

RMS Scheduling 7-5

What Happens When a Request is Received

processes (including those belonging to the system) will be killed if the system
runs out of swap space.

7.4.3 Time Slicing

Time slicing is enabled on a partition by setting its timeslice attribute; values of
15–120 seconds are recommended. If a timeslice is set, the Partition Manager
evaluates the list of requests periodically. The list of requests is still sorted by priority
but requests of the same priority are sorted on the number of time slices since they were
last scheduled (rather than the submission time). When the system has requests for
more CPUs than are available, the scheduler suspends requests at the end of each time
slice so that others can use the CPUs.

When setting up a system for time slicing, it is important to set memory limits that
ensure that all jobs remain resident in memory. System performance will be poor if time
slicing between large jobs causes paging. The ratio of memory limit to memory size
controls how many requests can progress concurrently. For example, on a node with 4
CPUs and 4GB of memory, setting a memory limit of 512MB will allow two jobs to be
time sliced without paging.

The scheduler processes resource requests as it receives them. It tries to fit new
requests to free CPUs. If no CPUs are available the request blocks, at least until the next
time slice.

7.4.4 Suspend and Resume

The allocation of CPUs to a request can be suspended using rcontrol. Doing this
reduces the CPU usage counts for the user and project, enabling other jobs to start.
Either the user or administrator can resume the allocation at a later time. To resume
the jobs, the CPUs are reallocated unless doing so would exceed a CPU usage limit. In
this case, the request is marked as blocked and CPUs will only be allocated and the
jobs restarted when sufficient CPUs become available. Note that requests that are
suspended by the administrator cannot be resumed by their owner.

7.4.5 Idle Time

The amount of time that the resources allocated to a request can remain idle can be
constrained by using rcontrol to set an idle timer (see also Section 10.2.3). By default,
no timer is set. If an idle timer is set, it starts timing as soon as the resource has been
allocated. It is stopped if the request is suspended and restarted when the request is
resumed. If the idle timeout expires the CPUs are deallocated.

7-6 RMS Scheduling

8

Event Handling

8.1 Introduction

RMS includes a general mechanism for posting, waiting on and handling events. This
functionality is provided by the Event Manager, eventmgr (see Section 4.7).

Events are specified by RMS class, name, type and description.

class The class of object generating the event

name The instance of the object

type The event type

description A text description of the event

Generally, the description is either a single word that an event handler script can act on
or a full description of some problem.

Events have a string representation as follows:

class:name:type:description

For example, the following event signifies that the new status of the node atlas0 is
running.

node:atlas0:status:running

The Event Manager writes events to the events table in the RMS database. The
following query prints the contents of the events table in time order:

Event Handling 8-1

Introduction

$ rmsquery -v "select * from events order by ctime"
id name class type ctime handled description

20 atlas0 node status 05/04/01 15:53:02 1 running
21 atlas0 node status 05/05/01 11:27:29 1 not responding

8.1.1 Posting Events

Events are normally posted by RMS servers but they can also be generated by the
command line utility rmspost. This is useful for testing the response of the system to
rare events. It can be run with a single argument as follows:

rmspost "class:name:type:description"

Alternatively, it can be run with 4 arguments as follows:

rmspost class name type "long description"

Note that the multiple word description, given as the fourth argument, must be quoted.

8.1.2 Waiting on Events

The command line utility rmswait waits on events. It can be run with a single
argument as follows:

rmswait "class:name:type"
rmswait ":name:"

Alternatively, flags can be used to specify the class, name and type. The following
example specifies the class with the -c option and the name with the -n option. The -t
flag is used to specify the type of the event.

$ rmswait -c node -n atlas0

rmswait completes when a matching event is posted, after printing the event details on
stdout.

Two events match if their class, name and type are same. They also match if one or more
of the class, name and type is null. For example:

node:atlas0:status matches node:atlas0:status

node::status matches node:atlas0:status

node:: matches node:atlas0:status

8-2 Event Handling

Event Handling

::: matches node:atlas0:status

Note that the class, name, type and description must all be specified when posting
events but one or more of the class, name and type can be null when waiting on events.

8.2 Event Handling

Event handler scripts are specified in the event_handlers table. The default handlers
installed by RMS are as follows:

rmsquery -v "select * from event_handlers"
name class type timeout handler

node status 600 /usr/opt/rms/etc/rmsevent_node
temphigh 300 /usr/opt/rms/etc/rmsevent_env
tempwarn 300 /usr/opt/rms/etc/rmsevent_env
fan 300 /usr/opt/rms/etc/rmsevent_env
psu 300 /usr/opt/rms/etc/rmsevent_env

event escalation -1 /usr/opt/rms/etc/rmsevent_escalate
partition status 600 /usr/opt/srasysman/bin/rmsevent_partition

The script rmsevent_node is run for all node status events. rmsevent_env is run for
all environment events (temperature warnings, fan failures and PSU failures).

A timeout can be associated with each event handler. If the timeout is exceeded, the
handler is killed and an event escalation event posted. rmsevent_escalate is run
when one of the other handlers does not complete in the time allowed.

The eventmgr daemon runs on the rmshost node.

The handler scripts can send mail to users warning them of events. To enable this, set
the users-to-mail attribute in the machine attributes table.

By default, event handler scripts are filed in /usr/opt/rms/etc. Local scripts should
be filed in /usr/local/rms as the contents of the bin directory may change when a
new release is installed.

Each of the scripts tests for the existence of both site-specific and OS-specific handler
scripts before performing the default action.

Event handler scripts are called with five arguments: the event identifier, the class,
name and type of the event and the event description. For example:

#!/bin/sh
#
default OSF1 handler for node status events
#
args: id class name type description
#

Event Handling 8-3

List of Events Generated

program=‘basename $0‘
id=$1
class=$2
name=$3
type=$4
description=$5

#
format event description message
#
message()
{

echo "‘date ’+%h %e %X’‘ OSF1 event $id $type $class $name $description"
}

#
log the event
#
message >> /var/rms/adm/log/event.log

#
execute OSF1 specific handler
#
/usr/opt/srasysman/bin/checkout.exp -I -R -i $id -c $class -n $name -t $type -d $description

8.3 List of Events Generated

The following events are generated by RMS:

class = node type = status

The name field contains the name of the node. The description
contains one of the following:

unknown node status cannot be determined
not responding node does not respond to ping
active node is booted but RMS is not running
running RMS is running

class = module type = temperature

The name field contains the name of the module. The description
contains one of the following:

8-4 Event Handling

List of Events Generated

ambient=value DS20, ES40,
QM-S16, QM-S128

class = module type = temphigh

If the temperature exceeds the threshold value, the event type is
temphigh and the description contains the above report and, in
addition, the words threshold exceeded.

In the event of multiple failures, the reports are concatenated.

class = module type = psu

The name field contains the name of the module. The description field
contains one of the following where value is a bitmap that identifies
the PSUs:

psu value failure QM-S128

In the event of multiple failures, the reports are concatenated.

class = module type = fan

The name field contains the name of the module. The description field
contains one of the following where value is a bitmap that identifies
the component (fan or PSU).

enc fan value failure DS20, ES40, QM-S128

In the event of multiple failures, the reports are concatenated.

class = partition type = status

The name field contains the name of the partition. The description
contains one of the following:

running partition is running
blocked partition is blocked
closing partition is closing down
down partition has been shut down

class = transaction type = status

The name contains the unique identifier for the transaction (the
transaction handle) and the description contains one of the following:

Event Handling 8-5

List of Events Generated

submitted transaction submitted
started transaction being executed
complete transaction completed successfully
failed transaction failed to execute
error transaction completed but there were errors

In the case of a transaction completing with errors (a link error test or
boundary scan, for example), details of the failures are added to the
transaction outputs table.

class = event type = escalation

The name contains the name of the event being escalated and the
description contains did not complete. If a handler is registered,
it is called with a description of the event that was not handled. The
handler should pass the event to an external management agent.

class = server type = status

The description contains information on errors that occurred when
starting the server.

8.3.1 Extending the RMS Event Handling Mechanism

The RMS event handling mechanism is open and extensible. New event types and
handlers for them can be added on a site-by-site basis. For example, you might run a
periodic file system status check on each node, execute a local cleanup script and post a
file system event to RMS if the free space in the file system dropped below a prescribed
level. The handler script could perform partition-wide or machine-wide cleanup and post
a notification of the problem via email or an SNMP message.

8-6 Event Handling

9

Setting up RMS

9.1 Introduction

This chapter describes how to set up RMS and carry out routine operations. The
information is organized as follows:

• Planning the installation (see Section 9.2).

• Starting RMS and configuring the system (see Section 9.3).

• Carrying out day-to-day operations and establishing backup and archive procedures
(see Section 9.4).

• Customizing RMS (see Section 9.5).

• Dealing with log files (see Section 9.6).

9.2 Installation Planning

Before you install RMS, think about how the resources of the system will be used and
who is going to use them. Ask yourself the following questions:

• Will the system be open to anyone to use or is it for a specific group of users?

• Will the machine run a constant workload or do you expect cyclical patterns in usage,
for example, a prime shift versus evenings and weekends?

Setting up RMS 9-1

Setting up RMS

• Is the machine primarily for running parallel jobs or do you expect a significant
workload from sequential jobs?

• Will some of your users have jobs that consume all of the resources of the system for
extended periods of time? If so, are you happy for other users to wait until the
machine is available or do they need access to resources of their own?

• How do you wish to process the accounting data?

The answers to these questions should help you to determine how to configure the
system. It may be that you cannot answer these questions, in which case you should
start with one of the basic configurations described below.

9.2.1 Node Names

While planning the machine installation give some thought to its name and the names
of its nodes. We recommend selection of a short name for the machine (for example
atlas). Node names should use the name of the machine as a base and their network
port number as a suffix (for example atlas0, atlas1, ..., atlas63). RMS will
compress such lists of hostnames (for example atlas[0-63]).

Some machines have a management server node that is connected to the management
network but is not connected to the Compaq AlphaServer SC Interconnect. By
convention, this node is given the suffix ms (for example atlasms).

9.3 Setting up RMS

RMS should be installed according to the instructions in the Compaq AlphaServer SC
Installation Guide.

For the purposes of this section, we assume a machine with 64 nodes, where each node
has 4 CPUs, 4GB of memory and an 18GB disk. You should make adjustments for the
actual number of nodes in your system. If RMS is already running on the machine, skip
to Section 9.3.2.

9.3.1 Starting RMS

The RMS initialization script, /sbin/init.d/rms, is run on each node with the
argument start as the node boots. Conversely, when the node halts, the script is run
with the stop argument.

To start or stop RMS manually on all of the nodes at once, run rmsctl on the rmshost
node with the appropriate argument (start or stop). This command runs
/sbin/init.d/rms on each of the nodes in turn. rsh must be enabled for root users

9-2 Setting up RMS

Setting up RMS

for this command to work correctly. This should have been enabled as part of the
installation.

rmsctl start

Configure all of the nodes into the machine using rcontrol.

rcontrol configure in ’atlas[0-63]’

Use rinfo with the -n option to check the status of the nodes. The output should show
that all of the nodes are running.

rinfo -n
running atlas[0-63], atlasms

If any of the nodes show a status other than running, restart them by running
/sbin/init.d/rms on the nodes in question. For example, to restart RMS on atlas3,
enter the following:

/sbin/init.d/rms stop
/sbin/init.d/rms start

If necessary, configure out any nodes that fail:

rcontrol configure out atlas3

Restarting RMS

RMS daemons such as the Machine Manager and the Partition Manager can be stopped
and started by executing the /sbin/init.d/rms script on the rmshost node. When
run on the rmshost node, the init script checks the status of each of the partitions in the
active configuration. If a partition is in the running state or blocked state, the
partition is stopped and its autostart field in the servers table is set to 1, otherwise
the field is set to 0. When the node boots, only those partitions that have their
autostart field set to 1, are restarted. This means that the state of the configuration is
preserved.

By contrast, if rmsctl is used to start and stop the machine, all of the partitions in the
active configuration are started: when rmsctl stops RMS, it sets all of the autostart
fields to 0; when it starts RMS, it sets them to 1.

9.3.2 Initial Setup with One Partition

This example describes the simplest possible setup. All nodes are in a single partition
and there are no memory limits, time limits or access controls. Any user can run a job
using all of the CPUs.

Setting up RMS 9-3

Setting up RMS

Once RMS is running on all of the nodes, you set up a single partition as follows:

rcontrol create partition=parallel configuration=day nodes=’atlas[0-63]’
rcontrol start partition=parallel

You should now be able to run a parallel program across all 64 nodes, for example:

prun -N64 hostname
...
prun -N64 dping 0 32
...

9.3.3 Simple Day/Night Setup

In this example, the system is set up with two operating configurations: one called day

and the other called night. During the day, the resources are split into two partitions: a
login partition (called login) for program development and a parallel partition (called
parallel) for execution of short parallel programs. At night, all of the nodes are
assigned to a single partition (again called parallel) with a longer time limit for
running parallel jobs.

Use the following commands to create this pair of configurations:

rcontrol create partition=login configuration=day type=login nodes=’atlas[0-7]’
rcontrol create partition=parallel configuration=day type=parallel \

timelimit=600 nodes=’atlas[8-63]’
rcontrol create partition=parallel configuration=night type=parallel \

timelimit=3600 nodes=’atlas[0-63]’

To start the day configuration, enter the following:

rcontrol start configuration=day
...

To switch to the night configuration, use this command:

rcontrol start configuration=night
...

Note that, after the switch, any jobs running on the parallel partition will continue to
run as the parallel partition in the configuration night has more nodes. However,
when changing back from night to day, you must decide what to do with any jobs that
are running on nodes ’atlas[0-7]’. The options are to wait for them to finish or to kill
them. To wait for them to finish, stop the partition with the wait option.

rcontrol stop partition=parallel option=wait
rcontrol start configuration=day
...

9-4 Setting up RMS

Day-to-Day Operation

Note
In the current release, any requests that are suspended when a partition is
stopped must be resumed manually if the partition is restarted.

9.4 Day-to-Day Operation

Once the system is up and running, give some thought to automating some routine or
day-to-day operations:

• Periodic shift changes

• Backing up the database

• Summarizing accounting data

• Archiving data

• Database maintenance

You may also want to configure nodes out of the system in the event of failures.

9.4.1 Periodic Shift Changes

The commands for switching between configurations are described in Section 9.3.3.
When you are satisfied with the shift changes, install a cron job to perform them
automatically.

9.4.2 Backing Up the Database

As soon as the RMS installation is stable, back up the database to a text file so that it
can be recovered in the event of failure. Do this as follows, using rmstbladm, the table
administration program (see Page 5-44).

$ rmstbladm -d > database_backup.txt

The backup file contains the sequence of SQL statements required to recover the current
state of the database.

The RMS database is stored in /var/rms/msqldb on the rmshost node. The database
server will exit if this file system fills up. RMS will not operate until sufficient space has
been created in this file system. Ensure that there is at least 100MB free to allow for
updates. The database server can be restarted using the script /sbin/init.d/msqld.

Setting up RMS 9-5

Day-to-Day Operation

9.4.3 Summarizing Accounting Data

Accounting records accumulate in the RMS database as each job is run. By default, they
are not processed as each site has its own requirements in this respect. A simple
example script to produce a summary of resource usage is included in the release in
/usr/opt/rms/examples/scripts/accounting_summary. See
Appendix E (Accounting Summary Script) for a listing. The script produces the following
output.

Accounting Summary of Machine atlas at 16:01 Wed 21 Feb 2001
Usage by Project/User For Previous Day

Project User CPU User Sys Number
Name Name Secs Secs Secs Sessions

default addy 596 533 6 8

duncan 58 37 2 6
johnt 540 227 51 15
root 29272 2 8 37
stephen 286 87 134 56

Total default 30751 885 201 122

Grand Total 30751 885 201 122

When the accounts have been processed, the script can optionally delete the accounting
records for resource requests that have completed.

This script (or one based on it) can be run nightly with a cron job, as shown in the
following example.

0 0 * * * /usr/opt/rms/examples/accounting_summary

9.4.4 Archiving Data

To keep the database to a reasonable size, old entries should be removed on a regular
basis as described in Section 9.4.5. Before clearing old entries from the database,
archive any data you want to preserve. Generally, this is data from the following tables:

resources Descriptions of each request to allocate resources

jobs Descriptions of each job

node_stats Utilization statistics for each node

acctstats Accounting statistics logged by RMS

9-6 Setting up RMS

Day-to-Day Operation

The data can be archived as a sequence of SQL statements using rmstbladm. The
following example archives data from the node statistics (node_stats) table (see
Section 10.2.15):

$ rmstbladm -d -t node_stats > nodestats.sql

Alternatively, you can execute a SQL query to extract the data, as follows:

$ rmsquery -v -u "select * from node_stats"
name ctime usercpu syscpu freemem ubc wired freeswap pages interrupts ...
--
atlas0 973162911 0 1 295 483 162 5103 4 1 ...
atlas3 973162917 0 0 117 35 61 5103 4 1 ...
atlas2 973162922 0 0 124 29 62 5108 5 0 ...
atlasms 973162907 22 54 61 301 90 137 10 531 ...
atlasms 973163027 23 59 62 301 89 138 4 566 ...

Use the ctime field to select old data. For example, select data that was collected 2 days
ago or more as follows:

now=‘rmsgettime‘
old=‘expr $now - 172800‘
rmsquery -v "select * from node_stats where ctime <= $old \

order by ctime" > node_stats.sql

The following queries return data from the jobs, resources and accounting statistics
tables. Accounting statistics can also be managed using the script described in
Section 9.4.3.

rmsquery -v "select * from jobs where endTime <> 0 and \
endTime < $old order by startTime" > jobs.dat

rmsquery -v "select * from resources where endTime <> 0 and \
endTime < $old order by startTime" > resources.dat

rmsquery -v "select * from acctstats where running = 0 and \
started < $old order by started" > acctstats.dat

After executing these queries, run rmstbladm to clean up the database as described in
Section 9.4.5.

9.4.5 Database Maintenance

Certain tables in the RMS database grow over time or as jobs are submitted, in
particular, the node statistics (node_stats) table, the resources table, the events
table and the jobs table. These tables can be kept to a reasonable size by periodically

Setting up RMS 9-7

Day-to-Day Operation

instructing the table administration program, rmstbladm, to remove old entries. Before
running rmstbladm, archive any data you want to keep as described in Section 9.4.4.
Remove old entries as follows:

rmstbladm -c

rmstbladm clears out all entries that are older than a specified lifetime. The lifetime for
job data and the lifetime for statistical data are specified in the attributes table (see
Section 10.2.3).

Failure to clear old entries can cause problems as described at the end of this section.
See Section 9.4.3 for details about the accounting statistics table which also grows over
time.

A cron job can be set up to clear out the tables. In the following example, this task is
performed at 2 a.m. each weekday morning.

0 2 * * 1-5 /usr/bin/rmstbladm -c

Troubleshooting

If the tables are not cleared out on a regular basis, the database continues to grow until
the performance of RMS is affected. Indications that this is happening include the
following:

• The database server, msqld, uses more memory.

• The table join operations performed by rinfo take longer.

• Queries acting on large tables may exceed normal user memory limits.

• rmstbladm takes a long time to clear out old entries or may fail, although insert
operations succeed and the tables continue to grow.

The point at which memory limits are exceeded varies with the number of nodes in the
machine and the amount of memory on the rmshost node. To check that the size of the
database is within operating limits, enter the following query:

$ rmsquery; "select * from node_stats" > /tmp/stats.sql

If this fails, follow these steps to recover from the problem:

1. Log in to the rmshost node as root and stop the database server, as follows:

/sbin/init.d/msqld stop
MSQL: service stopped

9-8 Setting up RMS

Day-to-Day Operation

2. Change to the directory that contains the database, for example:

cd /var/rms/msqldb/rms_atlas

Delete the following files: node_stats.dat, node_stats.def, node_stats.idx
and node_stats.ofl.

rm node_stats.*

3. Restart the database server, as follows:

/sbin/init.d/msqld start
MSQL: daemon started

4. Create a new node statistics table, as follows:

rmstbladm -u

After this, rmstbladm should succeed in cleaning out old entries.

9.4.6 Configuring Nodes Out

If a node fails and cannot be rebooted, it must be configured out while it is being
repaired. The procedure for this is as follows:

1. Stop the partition containing the failed node. Any jobs that are running on the failed
node when the partition is stopped will be killed. Other jobs will continue to run.

rcontrol stop partition=parallel

2. Configure out the node (atlas2 in this case). Note that RMS reports an error if you
try to configure a node in or out while the partition is running.

rcontrol configure out node=atlas2

3. Restart the partition:

rcontrol start partition=parallel

After this procedure, the partition runs without the node. This reduces temporarily the
maximum size of job that can run.

When the node has been repaired, stop the partition again and configure the node back
in as follows:

1. Stop the partition containing the failed node:

rcontrol stop partition=parallel

2. Configure in the repaired node (atlas2 in this case):

Setting up RMS 9-9

Local Customization of RMS

rcontrol configure in node=atlas2

3. Restart the partition:

rcontrol start partition=parallel

This brings the partition back up to its full complement of nodes.

9.5 Local Customization of RMS

RMS can be customized to suit local operating patterns in a variety of ways.
Customization is done through site-specific scripts in /usr/local/rms/etc. The
following site-specific customizations are supported:

• Core file analysis

• Partition startup

• Event handling

• Switch manager configuration

If site-specific scripts exist then they override the defaults supplied with RMS.

9.5.1 Partition Startup

The default partition startup script enables or disables logging in to a node according to
the partition type. Site-specific variants might check whether users are logged in to the
node and warn them of changes. They might also check on the availability of space in
local temporary file systems.

To create a site-specific partition startup script, copy the default script
/opt/rms/etc/pstartup to /usr/local/rms/etc and modify it as required.

9.5.2 Core File Handling

By default, RMS instructs the operating system to dump core files to local temporary file
space under /local/core/rms. Change the attribute local-corepath in the
attributes table to select an alternative default directory for core files. Subdirectories
are created in local_corepath/resource-id for each resource request. Change the
attribute rms-keep-core to disable the dumping of core files.

If dumping is disabled, a core file analysis script is run on at least one node before the
core files are deleted. The default script prints a backtrace showing why the program

9-10 Setting up RMS

Log Files

crashed. A site-specific variant might copy core files from the local temporary directory
to a global file system for subsequent analysis.

To create a site-specific core file analysis script, copy the default script
/opt/rms/etc/core_analysis to /usr/local/rms/etc and modify it as required.

9.5.3 Event Handling

The default event handlers check for the existence of a site-specific handler of the same
name in /usr/local/rms/etc. If such a script exists, it will be executed in preference
to the default handler. To make site-specific changes, copy the default scripts to this
directory and amend them to your needs. Use rmspost to test their correct operation.

9.5.4 Switch Manager Configuration

The switch network manager (swmgr) must be run on the node to which the switch
network control cable is connected. By default, this is the rmshost node. Depending on
the configuration of your system, you may need to change this default.

The swmgr process consumes CPU time while sampling the network for errors.
Therefore, it should ideally be run on a lightly loaded node that is not used to run
parallel jobs; for example, a management server. Use rcontrol to stop the running
swmgr, and run rmsquery to set the node that should run the swmgr, as follows:

rcontrol stop server=swmgr
rmsquery "update servers set hostname=’atlasms’ where name = ’swmgr’"
rmsquery "select name,hostname from servers where name = ’swmgr’"
swmgr atlasms
rcontrol start server=swmgr

If your system does not have a suitable management server, you should run the swmgr
on the rmshost node. If rmshost is an alias for one node of a resilient pair, the swmgr
should run on the primary node. Under these circumstances, you should set the rate at
which the swmgr polls so as to reduce the impact on other processes, by changing the
polling interval from the default value (30 seconds) to 15 minutes. Use rcontrol to do
this, as follows:

rcontrol create attribute name=swmgr-poll-intervalval=900

The change in polling frequency will take effect next time the swmgr is started. To force
the change to occur immediately, use rcontrol to stop and start the server, as described
above.

Setting up RMS 9-11

Log Files

9.6 Log Files

The RMS daemons output reports to log files in the directory /var/rms/adm/log. The
amount of detail is controlled for each daemon by setting a reporting level. By default,
the reporting level is set to 0.

The reporting level is a bitmap that turns on different reports. Values for the reports are
as follows:

Symbolic Name Value Description
INIT_DEBUGGING 1 Server initialization and shutdown messages
REQ_DEBUGGING 2 Requests made to servers
JOB_DEBUGGING 8 Job startup and change of state
RESOURCE_DEBUGGING 32 Resource allocation and change of state
EDIT_DEBUGGING 64 SQL queries
MALLOC_DEBUGGING 256 Monitor server memory allocation

The level of reporting can be controlled in three ways.

1. On an individual user basis, by setting the environment variable RMS_DEBUG.

2. Using rcontrol to reload the daemon with a specified debug value. For example, the
following command reloads the Machine Manager with a reporting level of 1:

rcontrol reload server=mmanager debug=1

The following example reloads the Partition Manager for the par1 partition with a
reporting level of 41 (initialisation, job and resource information)

rcontrol reload partition=par1 debug=41

3. Using rmsquery to set the args field of the daemon’s entry in the servers table (see
Section 10.2.19) to -r value, where value is the required reporting level.

The following example gives the Partition Manager for the par1 partition a reporting
level of 33.

rmsquery "update servers set args=’-r 33’ where name=’pmanager-par1’"

Then restart the Partition Manager. This change remains in place each time the
partition is restarted. The output files in /var/rms/adm/log can grow in size
rapidly when debug options are enabled. Take care not to fill the file system.

9-12 Setting up RMS

10

The RMS Database

10.1 Introduction

This chapter describes the tables which make up the RMS database. Each machine has
its own database, called rms_ machine, where machine is the name of the machine.
This allows a single database server to support multiple machines.

The database contains tables storing information on the following:

• The configuration of the machine: its nodes and the Compaq AlphaServer SC
Interconnect

• The users of the machine: the access controls and resource quotas applied to them;
their requests to run jobs; the accounting records for these jobs

• The operation of the machine, including its current state and performance statistics

10.1.1 General Information about the Tables

• All of the field names in the database are case sensitive.

• Fields are of these types:

char(length) This denotes a character string of the specified length.

int This denotes an integer value.

% This denotes a percentage value stored in an integer field.

UTC This denotes a UTC time value stored in an integer field.

The RMS Database 10-1

Introduction

x-y This denotes a range of possible integer values.

text This denotes a character string of arbitrary length.

• Fields of type text can be selected by the field name but the text entry cannot be
matched.

If the text is a list of items, for example, a list of node names, the items in the list
may be separated by white space. A list of names, all of which share a common base,
for example, atlas0 atlas1 atlas2, may also be represented by a glob-like
expression, in this example, atlas[0-2]. The normal glob(7) expression syntax is
relaxed to include multiple digit numbers. For example, atlas[0-10,14]
represents the nodes numbered from atlas0 to atlas10 inclusive plus atlas14.

• Information on time is stored as UTC time in integer fields. Client programs should
convert time to local time and output the result as a string.

10.1.2 Access to the Database

There are three levels of access to the database:

1. Users can extract information from all of the tables but cannot update them.

2. Operators and administrators can extract information from all of the tables and, in
addition, update a limited selection of fields in some tables.

3. RMS itself can extract and update information in all fields of all tables. The
description of the tables in Section 10.2 includes information about which RMS
programs create and update each field.

10.1.3 Categories of Table

This chapter describes the tables in the database, listing them in alphabetical order.
This section groups the tables by category.

Configuration of Nodes

The following tables contain information about the individual nodes and about the
machine as a whole.

nodes describes the attributes of each node
node statistics contains performance statistics for each node
partitions defines each partition and its scheduling parameters
modules physical location and environmental data for each module
module types describes the characteristics of each supported module

10-2 The RMS Database

Introduction

Operational State

The following tables hold details of the current state of the machine.

events records changes to the state of the machine
event handlers lists the handlers used to act on events
attributes holds site-specific attribute-value pairs
fields specifies how objects and attributes may be modified
servers holds details on each daemon (hostname, port number, pid)
transactions records requests to change the machine configuration
software products describes the components of each software product
installed components describes the components installed on each node

User Details

The following tables contain information about the users of the RMS: their privileges
and priorities and their usage of the system.

users lists the projects to which users belong
projects lists the projects
access controls describes limits on user access to resources
resources describes the allocation of resources to users
jobs describes the users’ jobs
accounting statistics contains an accounting record for each resource

Configuration of the Network

The following tables describe the network components. Definitions of terms used in
describing the Compaq AlphaServer SC Interconnect can be found in
Appendix A (Compaq AlphaServer SC Interconnect Terms).

elans records the position and state of the Elan network adapters
elites records the position and state of the Elite switches
switch boards records the position and state of each switch board
link errors logs network errors

Internal Tables

The RMS database includes a number of tables that are mainly used internally. These
are noted in this chapter as being of internal use but are not described in any detail.

The RMS Database 10-3

Listing of Tables

transaction outputs contains output from requests posted to the transaction log
request types describes output formats in the transaction outputs table
statistics lists the performance statistics available in the current release
services describes the services available and who can use them

10.2 Listing of Tables

This section lists the tables in alphabetical order.

10.2.1 The Access Controls Table

The access_controls table shown in Table 10.1, contains access control and usage
limit descriptions for users and projects.

Table 10.1: Access Controls Table

Field Type Description
name char(16) name of the user or project
class char(8) class of control: user or project
partition char(16) partition to which access controls apply
priority int default scheduling priority
maxcpus int maximum number of CPUs
memlimit int maximum memory per CPU in megabytes

An entry for the reserved partition name default specifies the priority, maxcpus
and maxmem that should apply for any partition names not explicitly specified.

The priority field stores the default scheduling priority of jobs submitted by a user or
project. The higher the value, the more likely the job is to run. Priority values range
from 0 to 100, the default being 50.

The maxcpus field stores the maximum number of CPUs that a user or project may have
allocated at once. Requests for more than this number of CPUs fail. Once this number of
CPUs is allocated, additional requests block until some CPUs are freed.

The memlimit field stores the default memory limit per CPU for jobs submitted by the
named user or project.

10.2.2 The Accounting Statistics Table

Each time CPUs are allocated to a request, a record is created in the accounting
statistics (acctstats) table shown in Table 10.2. Records are updated periodically and

10-4 The RMS Database

Listing of Tables

at the end of each job by the Partition Manager, pmanager (see Section 4.4).

Table 10.2: Accounting Statistics Table

Field Type Description
name char(16) name of the allocated resource
uid int user ID
project char(16) project name
started UTC time when CPUs were allocated
etime int elapsed time in seconds
atime int CPU seconds allocated
utime int user time in seconds
stime int system time in seconds
cpus int number of CPUs allocated
mem int maximum memory extent in megabytes
pageflts int number of page faults requiring I/O
memint int memory integral in megabyte hours
running 0 | 1 CPUs allocated and running jobs

The etime field stores the elapsed time (in seconds) since CPUs were first allocated to
the resource, including any time during which the resource was suspended.

If a partition is stopped, while a job is running, and the partition is restarted before the
job completes, the etime field will correctly show the total elapsed time of the running
job including the time when the partition was down. If a partition is stopped, while a job
is running, and the job completes before the partition is restarted, the acctstats table
entry will reflect only the time when the partition was running. Any additional time
that the job was running while the partition was down is not included in the acctstats
table entry. If a job is terminated because it exceeds its timelimit or a job is terminated
with rcontrol, the etime field reflects the time for which CPUs were allocated.

The atime field stores the total elapsed time (in seconds) that CPUs have been allocated
– this excludes time during which the resource was suspended, but includes any time
when the partition was down while jobs were running. The value stored is the total for
all CPUs used by the resource.

The utime and stime fields are summed over all processes in the program.

The running field is set to 1 while CPUs are allocated. It is set to 0 when the CPUs are
deallocated, at which point no further updates take place.

The pageflts field shows the number of page faults requiring I/O summed over all of
the processes in the parallel program. It is normally 0. A non-zero and growing value
indicates that the program is paging on some or all nodes.

The RMS Database 10-5

Listing of Tables

The memint field is set to 0 in AlphaServer SC Version 2.0.

The number of entries in the accounting statistics table can grow rapidly. The table
should be cleared periodically of old entries as described in Section 9.4.3.

10.2.3 The Attributes Table

The attributes table shown in Table 10.3, stores information specific to the site or the
release. This information is stored as attribute-value pairs. The table is created by the
table administration program, rmstbladm (see Page 5-44), which adds a minimal set of
default entries. Further attributes are added by RMS daemons. The values can be
modified by the administrator.

The entries in the attributes table can be grouped into four sections:

1. Machine attributes

2. Performance statistics attributes

3. Server attributes

4. Parallel processing attributes

The machine attributes in the following table are supported:

Table 10.3: Machine Attributes

Attribute Default Description
network-type QM-S16 data network type (QM-S16 or QM-S128)
network-levels 2 number of levels of switch network
network-layers 1 number of layers (rails) of switch network
racks 4 number of 19" racks in the machine
units-per-rack 40 height of a 19" rack in units
rmshost node running the RMS daemons

The performance statistics attributes shown in Table 10.4 control the collection and
lifetime of performance statistics. The statistics are collected by rmsd at the intervals
given in this table. In the current release, only CPU statistics are gathered.

The number of entries in the jobs table, the resources table, the accounting statistics
table, the events table and the node statistics table can grow rapidly, especially on a
large busy machine or if the value of cpu-stats-poll-interval is very small. The
lifetime entries in Table 10.4 assign a finite life to this data. Once this lifetime has
been reached, the RMS table administration program, rmstbladm, will clean out old

10-6 The RMS Database

Listing of Tables

entries, if called with the -c option (see Page 5-44). Note that the accounting statistics
table is not cleared out (see Section 10.2.2).

Table 10.4: Performance Statistics Attributes

Attribute Default Description
node-statistics cpu statistics collected per node
cpu-stats-poll-

interval

120 time in seconds between CPU samples

data-lifetime 48 time in hours to keep job data
stats-lifetime 24 time in hours to keep statistical data

The server attributes in Table 10.5 control the behavior of the RMS daemons. All of the
modification times are in UTC. Client applications should convert this to local time and
print it as a string.

If the attribute node-status-poll-interval is not set or set to zero, the value of
rms-poll-interval is used instead.

Table 10.5: Server Attributes

Attribute Default Description
rms-poll-interval 60 polling interval for RMS daemons
node-status-poll-
interval

0 time between monitoring node status

status-modify-time last time the status changed
resource-modify-

time

last time a resource was modified

version RMS version number
altzone 0 shift in seconds to apply to UTC time to

get local time on rmshost

The attributes in Table 10.6 control the scheduling of parallel programs. If the number
of resource requests reaches pmanager-queuedepth, subsequent requests either block
or fail immediately (if the immediate option to prun has been selected). The blocked
requests do not appear in the database. If the pmanager-idletimeout is exceeded, the
resource times out with an exit status of 125.

The RMS Database 10-7

Listing of Tables

Table 10.6: Scheduling Attributes

Attribute Default Description
default-partition parallel the partition used by default for parallel

programs
default-priority 50 the default scheduling priority
grace-period 60 the time allowed in seconds for a parallel

program to exit after a CPU time signal
lbal-partition login the default partition for load balancing

requests
exit-timeout default exit timeout (absent by default)
pmanager-queuedepth 0 maximum number of queued requests
pmanager-

idletimeout

0 number of seconds an allocated resource
may remain idle

rms-keep-core 1 keep (1) or remove (0) core files
local-corepath /local/core/rms directory path for core files

10.2.4 The Elans Table

The elans table shown in Table 10.7, contains one entry for each Elan network adapter
connected to the Compaq AlphaServer SC Interconnect. Entries are created and
maintained by the rmsd running on the node containing the Elan.

Table 10.7: Elans Table

Field Type Description
name char(8) unique identifier for the adapter
hostname char(16) name of node containing the adapter
layer 0–31 layer (or rail) number
netid int network address within the layer
revision int chip revision level
ecount int error count for the last sample
ecount10 int error count for the last 10 samples
status char(8) Elan status (ok, unknown, error)
linkstate char(2) state of the link
linkerrors text description of errors in the last 10 samples

Entries in the linkerrors field give the ID of the link and then, in brackets, a vector of
error counts (see Appendix A (Compaq AlphaServer SC Interconnect Terms)).

10-8 The RMS Database

Listing of Tables

10.2.5 The Elites Table

The elites table shown in Table 10.8, contains one entry for each switch in the
network. Its entries are created and maintained by the Switch Network Manager,
swmgr (see Section 4.5).

Table 10.8: Elites Table

Field Type Description
name char(8) Elite name, a unique ID for each switch
layer 0–31 layer (or rail) number
level 0–3 level number
netid 0–255 network address within the layer
plane 0–63 plane number
board char(8) name of the board containing the switch
chip 0–7 chip number on the board
revision int chip revision number
ecount int error count at the last sample
ecount10 int error count for the last 10 samples
status char(8) Elite status (ok, unknown, error)
linkstate char(8) state of each link
linkerrors text description of errors in the last 10 samples

The linkstate field contains a character for each of the 8 links. Each link can be in one
of the states shown in Table B.2.

Entries in the linkerrors field give the ID of the link and then, in brackets, a vector of
counts for each of the supported error types (for more details on Compaq AlphaServer
SC Interconnect terms see Appendix A (Compaq AlphaServer SC Interconnect Terms)).

10.2.6 The Events Table

Entries are added to the events table shown in Table 10.9, each time an object
managed by the RMS changes state, for example, when a node status changes, a
partition starts or a component fails.

Table 10.9: Events Table

Field Type Description
id int unique identifier for each event
name char(16) name of object that has changed state

(continued on next page)

The RMS Database 10-9

Listing of Tables

Table 10.9: Events Table (cont.)

Field Type Description
class char(16) class of the object, such as node or partition
type char(16) type of event
ctime UTC time at which the event occurred
handled 0 | 1 whether the event has been handled or not
description text description of the event

Table 10.10 shows three typical events. The first shows a node status change as RMS
starts on node cfs1, the second shows a temperature change on module mod2 and the
third shows the partition parallel starting.

Table 10.10: Example of Status Changes

name class ctime type description
cfs1 node 893427468 status running

mod2 module 894991521 temperature ambient=15

parallel partition 894991490 status running

The events table can grow rapidly. Running the table administration program,
rmstbladm, with the -c option removes old entries. This should be done periodically
using a cron script. See Page 5-44 for details. The data-lifetime attribute in the
attributes table (see Section 10.2.3) determines how old the entries must be before
they are removed.

Events are discussed in detail in Chapter 8 (Event Handling).

10.2.7 The Event Handlers Table

The event_handlers shown in Table 10.11, defines the handler scripts that are run in
response to events. Event handling is discussed in detail in Chapter 8 (Event Handling).

Table 10.11: Event Handlers Table

Field Type Description
name char(16) name of object that has changed state
class char(16) class of the object, such as node or partition
type char(16) type of event
timeout int time limit in seconds for the handler to complete

(continued on next page)

10-10 The RMS Database

Listing of Tables

Table 10.11: Event Handlers Table (cont.)

Field Type Description
handler char(32) handler script to run

10.2.8 The Fields Table

The fields table shown in Table 10.12, defines which RMS objects and attributes can be
created and modified using rcontrol (see Page 5-20), identifying them by a table name
and field name within that table.

Table 10.12: Fields Table

Field Type Description
name char(16) name of the field
tablename char(16) name of the table
access char(8) currently unused; always set to admin
type char(16) defines the type of value
rangemin int minimum value
rangemax int maximum value
textattr text specifies how values are validated

The value of the type field determines how rcontrol checks the validity of values
entered by an administrator. The type field may hold one of the values shown in
Table 10.13.

Table 10.13: Type Values

Value Description
null no checking
selectedtext textattr gives a comma-separated list of valid values
integer entry must be in range bounded by min and max

relation textattr gives a tablename.fieldname pair; entry must
be a value of fieldname in tablename

Values in the attributes table are not checked using this method; the valid values for
attributes are built into rcontrol.

The RMS Database 10-11

Listing of Tables

10.2.9 The Installed Components Table

The installed_components shown in Table 10.14, contains information about
software components installed on each node.

Table 10.14: Installed Components Table

Field Type Description
hostname char(16) hostname of the node on which the component is in-

stalled
product char(16) name of the software product to which the component

belongs
prodversion char(16) version of the software product to which the compo-

nent belongs
component char(16) name of the component
compversion char(32) version of the component
ctime UTC time the component was installed

10.2.10 The Jobs Table

The jobs table shown in Table 10.15, contains one entry for each parallel job. The
entries are maintained by the Partition Manager, pmanager (see Section 4.4).

The jobs table can grow rapidly. Running the table administration program,
rmstbladm, with the -c option removes old entries. This should be done periodically
using a cron script. See Page 5-44 for details. The data-lifetime attribute in the
attributes table (see Section 10.2.3) determines how old the entries must be before
they are removed.

Table 10.15: Jobs Table

Field Type Description
name char(16) unique identifier for each job
resource char(16) the name of the resource on which the job is running
status char(16) status of the job
cpus text list of CPUs allocated to this job
nodes text list of nodes allocated to this job
hostnames text list of hostnames allocated to this job
startTime UTC time the job started
endTime UTC time the job completed
contexts char(16) range of Elan contexts allocated to the job

(continued on next page)

10-12 The RMS Database

Listing of Tables

Table 10.15: Jobs Table (cont.)

Field Type Description
exitStatus int exit status of the job
session int UNIX session ID of the allocating process
cmd text command being executed

Job names are sequence numbers generated automatically. The status field holds one
of the values shown in Table B.1.

While the job is running, endTime is set to the time by which the job must end,
assuming there is a timelimit on the partition. If there is no time limit, the endTime
is set to 0. Finally, endTime is updated to show the time the job completed.

The nodes and cpus fields contain lists of node and CPU numbers in use by a job. Each
pair of values defines a cpus x nodes box allocated to the job. The total number of
CPUs allocated is the sum of the area of these boxes. See also Section 2.4.2.

A command name, cmd, passed to prun, may be up to MAXPATHLEN in length. In the
jobs table, the command name is truncated to 32 characters, including three dots (...)
appended to the name to show that it has been truncated.

10.2.11 The Link Errors Table

The link_errors shown in Table 10.16, contains one entry for each link error detected
by the Switch Network Manager, swmgr (see Section 4.5).

Table 10.16: Link Errors Table

Field Type Description
id int unique identifier for each error
name char(16) name of the chip detecting the fault
class char(16) type of chip detecting the fault (elan, elite)
ctime UTC time at which the error was detected
description text description of the error

Entries in this table are updated by the swmgr. High error counts in the description field
indicate that an error is persistent. Increasing counts indicate that it is current.

Entries in the description field give the ID of the link and then, in brackets, a vector
of counts for each of the supported error types. Compaq AlphaServer SC Interconnect
link errors are described in Appendix A (Compaq AlphaServer SC Interconnect Terms).

The RMS Database 10-13

Listing of Tables

10.2.12 The Modules Table

The modules table shown in Table 10.17, contains descriptions of each hardware
module in a machine. The modules may be nodes, network components or storage
devices. It is created by rmsbuild. Entries are added and removed by rcontrol and
updated by rmsd and the Switch Network Manager, swmgr.

Table 10.17: Modules Table

Field Type Description
name char(16) name of the module
type char(16) type of the module, from the module types table
class char(16) class of module (node, network)
rack int ID of the rack that contains the module
unit int location of the module in the rack
psus int bitmap of the functioning power supply units
fans int bitmap of the functioning fans
estatus char(16) environmental status of the module
environment text description of the environmental status

Valid values for the type field are listed in the modules type table (see Section 10.2.13).

The psus and fans fields are bitmaps; their width is controlled by the corresponding
values in the module types table (see Section 10.2.13).

rmsd collects environmental data from the kernel on each node. The operational status
of the cooling fans and power supplies is logged along with the temperature status of
vital system components. This is used to generate an environment status, estatus, and
an environment string, environment. The environment status can take one of the
values shown in Table B.3.

If the environment status is recorded as ok, the environment string contains
temperature readings from the CPU, power supply unit and enclosure. If a node has
more than one instance of each type of temperature sensor, the maximum of their values
is recorded.

Temperature information is recorded as a list of attribute-value pairs, for example:

ambient=15 cpu=40 psu=20

If an error occurs, the environment string contains details of what has failed, for
example, the following string indicates that the CPU fan number 1 has failed on the
node.

cpu fan 1 failure

10-14 The RMS Database

Listing of Tables

10.2.13 The Module Types Table

The module_types table shown in Table 10.18, contains descriptions of each of the
module types supported in a given release of the RMS. It is updated by the table
administration program, rmstbladm (see Page 5-44), when a new release is installed.

Table 10.18: Module Types Table

Field Type Description
name char(16) name of the module type
class char(16) class of module (node, network, storage)
units int height of the module in units
cpus int number of CPUs in the module
psus int number of PSUs in the module
fans int number of fans in the module
thermistors int number of thermistors in the module
description text description of the module

The module types supported in the current release are shown in Table 10.19.

Table 10.19: Valid Module Types

Name Class Units CPUs PSUs Fans Therm Description
DS20 node 12 2 1 1 1 AlphaServer

DS20
ES40 node 8 4 3 6 7 AlphaServer

ES40
QM-S16 network 4 0 1 0 1 QM-S16 switch

network

QM-S128 network 16 0 3 6 24 QM-S128
switch net-

work

See Appendix A (Compaq AlphaServer SC Interconnect Terms) for more details of the
network modules.

10.2.14 The Nodes Table

The nodes table shown in Table 10.20, contains configuration information on each node
in a machine. The entries are created by the RMS clients rmsbuild and rcontrol.
Fields are updated by rmsd when the node is booted or RMS is restarted and by the

The RMS Database 10-15

Listing of Tables

Machine Manager, mmanager, when the node’s status or run level changes.

Table 10.20: Nodes Table

Field Type Description
name char(16) the name of the node
type char(8) node type, such as ES40
maxmem int maximum memory available in megabytes
maxfree int maximum free memory available in megabytes
maxswap int maximum swap space available in megabytes
maxtmp int temporary file system space in megabytes
cpus 1–32 number of CPUs
cpus_reserved 0–32 number of CPUs reserved for OS services
elans int mask of Elan devices present
netid 0–255 physical network ID (if applicable)
configured 0 | 1 whether node is configured in or out
status char(16) current node status
runlevel char(16) UNIX run level
boot_time UTC time when node was last booted
swap_eager 0 | 1 swap allocation is lazy(0) or eager(1)
console char(32) command line to connect to console

The type field takes a value from the module types table (see Section 10.2.13).

The cpus_reserved field specifies the number of CPUs that are not available for
running parallel programs. These CPUs are reserved for running system services.

The configured field indicates whether a node is active (1) or configured out for repair
or upgrade (0).

The status field indicates the service level being provided by a node. Valid values are
shown in Table B.4. State changes are logged in the events table (see Section 10.2.6);
entries are keyed by class=node.

The runlevel may have one of the values shown in Table B.5.

The elans field is a mask of the Elan devices present in the node. It has one bit set for
each device. In previous releases, only device 0 was supported.

10.2.15 The Node Statistics Table

The node statistics (node_stats) table shown in Table 10.21, contains performance
statistics collected periodically by the rmsd daemon running on each node.

To enable the collection of these statistics, the node-statistics field in the

10-16 The RMS Database

Listing of Tables

attributes table (see Section 10.2.3) must be set to cpu. This is the default setting.
The interval at which the nodes are sampled for CPU statistics is controlled by the
attribute cpu-stats-poll-interval in the attributes table; the default is to
sample every 2 minutes.

The node statistics (node_stats) table can grow rapidly, especially on a large machine.
Running the table administration program, rmstbladm, with the -c option removes old
entries. This should be done periodically using a cron script. See Page 5-44 for details.
The stats-lifetime attribute in the attributes table (see Section 10.2.3)
determines how old the entries must be before they are removed.

Table 10.21: Node Statistics Table

Name Type Description
name char(16) name of the node
ctime UTC time at which sample was collected
usercpu % user CPU time since last sample
syscpu % system CPU time since last sample
freemem int free memory in megabytes
ubc int size of the unified buffer cache in megabytes
wired int wired memory in megabytes
freeswap int free swap space in megabytes
pages int page fault rate
interrupts int interrupts rate (except clock)
syscalls int system call rate
users int number of users logged in
freetmp int free temporary file space in megabytes

The usercpu and syscpu statistics are percentages calculated over the period since the
last sample.

The interrupts, pages and syscalls statistics are rates averaged over the interval
since the last sample.

10.2.16 The Partitions Table

The nodes in a machine are grouped into partitions according to their function. For
example, there may be an administrative partition, a login partition and a parallel
programming partition. A set of partitions spanning the machine is called a
configuration. Different configurations may be appropriate to different times of the day
or week. For example, one for daytime running and another for nights and weekends.
Only one configuration, the active configuration, can be running at a time.

The RMS Database 10-17

Listing of Tables

The partitions table shown in Table 10.22, describes how nodes are allocated to
partitions in each of the configurations. It also contains scheduling parameters (see also
Section 7.3) for each partition.

The entries in the partitions table are created by rcontrol. The information is
updated by the Partition Manager, pmanager, as it starts.

Table 10.22: Partitions Table

Field Type Description
name char(16) name of the partition, such as par
configuration char(16) name of the configuration, such as day
nodes text list of nodes in the partition
configured_nodes text list of nodes configured into the partition
cpus int number of CPUs configured in
freecpus int number of free CPUs
active 0 | 1 whether partition is active (1) or not (0)
startTime UTC time partition was last started
status char(16) status of the partition
timelimit int time limit in seconds for a parallel job
type char(16) partition type (parallel, login, general,

batch)
timeslice int time slice interval in seconds
mincpus int minimum number of CPUs that can be allo-

cated
memlimit int default memory limit in megabytes

Partition names do not have to be unique but the combination of a partition and a
configuration name must be unique. For example, there may be a partition named
login in two different configurations, each with a different set of values in the
partitions table.

Valid values for the status of the partition are shown in Table B.6.

The type field controls how jobs are scheduled on the partition (see also Section 7.2). If
the partition type is parallel then it is exclusively for gang-scheduled parallel
programs. Partitions of type login support interactive logins and load-balanced
sequential program execution. Partitions of type general support login shells,
load-balanced sequential program execution and parallel programs. Partitions of type
batch are under the exclusive control of a batch system. The batch system can use them
for sequential or parallel jobs but interactive use is prohibited.

The freecpus field stores the count of the number of CPUs available in the partition. It
is updated by the pmanager each time CPUs are allocated or freed.

10-18 The RMS Database

Listing of Tables

The configured_nodes field stores the subset of nodes that were configured in when
the partition was started.

The timeslice field stores the interval in seconds between periodic rescheduling of
parallel jobs. Time slicing is disabled when this field is null, the default.

The timelimit field stores the maximum interval in seconds for which CPUs in a
partition may remain allocated. Time limits are disabled when this field is null, the
default.

The memlimit field stores the default memory limit in megabytes per CPU for jobs
running on this partition.

10.2.17 The Projects Table

The projects table shown in Table 10.23, lists all of the projects that have been
defined. A project is a list of users. Membership of the project is specified in the
projects field of the users table (see Section 10.2.24). All accounting records include
the project to which a user’s job is being billed (see Table 10.2).

Table 10.23: Projects Table

Field Type Description
name char(16) project name
description text label describing the project

10.2.18 The Resources Table

The resources table shown in Table 10.24, contains one entry for each current resource
request. The entries in this table are maintained by the Partition Manager, pmanager
(see Section 4.4).

The resources table can grow rapidly. Running the table administration program,
rmstbladm, with the -c option removes old entries. This should be done periodically
using a cron script. See Page 5-44 for details. The data-lifetime attribute in the
attributes table (see Section 10.2.3) determines how old the entries must be before
they are removed.

Table 10.24: Resources Tables

Field Type Description
name char(16) resource name
partition char(16) partition name

(continued on next page)

The RMS Database 10-19

Listing of Tables

Table 10.24: Resources Tables (cont.)

Field Type Description
username char(16) name of the user
hostnames text list of hostnames allocated
status char(16) status of the resource
cpus text list of CPUs allocated
nodes text list of nodes allocated
startTime UTC time resources were allocated
endTime UTC time resources were deallocated
priority int current priority of the request
flags int scheduler flags for the resource
ncpus int number of cpus allocated
batchId int batch system identifier for the request
memlimit int memory allocated per CPU in megabytes
project char(16) name of the project associated with the resource
pid int pid of the allocating process (prun or allocate).

Resource names are sequence numbers generated automatically.

The hostnames field lists the names of the nodes allocated to this request.

Valid values for the status field are given in Table B.7.

The cpus and nodes fields contain lists of CPU and node numbers in use by a job. Each
pair of values defines a cpus x nodes box allocated to the job. The total number of
CPUs allocated is the sum of the area of these boxes.

The batchid field contains the batch system identifier for this request. If the request
was made by LSF then the field contains LSB_JOBID. If the request was made by DPCS
then this field contains PSUB_JOBID.

10.2.19 The Servers Table

The servers table shown in Table 10.25, contains one entry for each RMS daemon. The
table administration program, rmstbladm (see Page 5-44), creates the entries in the
table. The daemons update their entries when they start up.

Table 10.25: Servers Table

Field Type Description
name char(16) server (daemon) name

(continued on next page)

10-20 The RMS Database

Listing of Tables

Table 10.25: Servers Table (cont.)

Field Type Description
hostname char(16) host on which the daemon is running
port int IP port number to bind to for this server
pid int process ID of the server
rms 0 | 1 where daemon is an RMS server (1) or not (0)
startTime int time at which the daemon was started
autostart 0 | 1 where daemon starts automatically (1) or not (0)
status char(8) server status
args char(32) site-specific arguments for the server

The hostname field contains the name of the node on which the daemon should run, or
rmshost if it should run on the rmshost node.

The rms field specifies whether the server is an RMS daemon or a conventional UNIX
daemon. This controls the method used to determine whether or not the process is
running.

The autostart field determines whether a daemon should be restarted automatically if
it exits or is killed by a signal.

10.2.20 The Services Table

The services table shown in Table 10.26, is an internal table used by RMS to define the
command to execute for each service, the names of the hosts that support the command
and which users have permission to use the service. It contains one entry for each of the
RMS clients that provides a configuration management service (for example, rmsquery
and rcontrol). The entries are created by the table admininstration program,
rmstbladm. See Chapter 5 (RMS Commands) for details of these services.

Table 10.26: Services Table

Field Type Description
name char(16) name of the service
hostname char(16) host on which the service runs, such as rmshost
group char(8) group(s) with access to the service
sequential 0 | 1 commands must wait for this command to finish
cmd int command to execute

The hostname field contains the name of the host on which the service should run.

The group field holds the name of the UNIX group which is allowed to run this service.

The RMS Database 10-21

Listing of Tables

Currently, only rms is valid.

Some services, such as rcontrol, must have exclusive access to the database, requiring
that other transactions wait until they complete. The sequential field should be set to
1 for these services. Others such as swctrl may run for long periods of time and should
not block the execution of other transactions. sequential should be set to 0 for these
services.

Sample records from the services table are shown in Table 10.27.

Table 10.27: Entries in the Services Table

name hostname group sequential command
rcontrol rmshost rms 1 /usr/opt/rms/bin/rcontrol

sql rmshost rms 1 /usr/opt/rms/bin/rmsquery

10.2.21 The Software Products Table

The software_products shown in Table 10.28, contains information about the
components that make up a software product.

Table 10.28: Software Products Table

Field Type Description
name char(16) name of the product
version char(16) version of the product
component char(16) name of the component
comptype char(16) type of component
compversion char(32) version of the component
compattr text component attributes

The only valid value for the comptype field is subset.

The compattr field currently contains one value which dictates where a software
component will be installed. The possible values are shown in Table 10.29.

Table 10.29: Component Attribute Values

Value Description
opt Component should only be installed on rmshost

root Component should be installed on rmshost and the
cluster root node(s)

10-22 The RMS Database

Listing of Tables

10.2.22 The Switch Boards Table

The switch_boards shown in Table 10.30, contains one entry for each switch board in
the Compaq AlphaServer SC Interconnect. It is created and maintained by the Switch
Network Manager, swmgr (see Section 4.5).

Table 10.30: Switch Boards Table

Field Type Description
name char(8) board name
module char(16) name of module containing the board
layer 0–31 layer (or rail) number
slot 0–31 slot number in the module
type char(16) board type, such as QM401 or QM402
status char(8) board status (ok, absent, unknown, error)
environment char(32) temperature data from thermistors on the board

10.2.23 The Transactions Table

Changes to the state of the machine are made through a request entered in the
transactions table shown in Table 10.31. This table records who made each change,
when it was made and whether or not the operation was successful.

The Transaction Log Manager, tlogmgr (see Section 4.6), actions requests in the
transactions table, running commands on the user’s behalf (in practice, the user here
is a system administrator). This mechanism provides an audit trail, and sequential
ordering of changes in state.

Table 10.31: Transaction Log Table

Field Type Description
name char(16) name of the service
status char(16) transaction status
ctime UTC creation time
mtime UTC last modification time
handle int unique identifier for the transaction
logfile char(32) stdout or stderr log for the transaction
username char(16) user issuing the command
args text arguments for the command

Valid values for the transaction status field are given in Table B.8.

The RMS Database 10-23

Listing of Tables

An example of the transaction to add a partition is shown below in Table 10.32.

The handle is a unique number, generated automatically, which is passed to both the
service and the client. The service uses the handle to label any output resulting from the
transaction; the client uses the handle to select the resulting entries.

If the service fails, the output log (conventionally in the directory /var/rms/adm/log)
may contain useful diagnostics. Client applications wait for the transaction to complete
and then cat the logfile.

Table 10.32: Entry in the Transactions Table

name status handle logfile
rcontrol complete 44 /var/rms/adm/log/tr44.log

username args
rms create partition=login nodes=’n[0-3]’

10.2.24 The Users Table

The users table shown in Table 10.33, contains information on each user’s projects.

Table 10.33: Users Table

Field Type Description
name char(16) login name
projects text list of the user’s projects

The projects field may contain a single project name or a comma-separated list of
project names. The wildcard, *, may be specified as a project name denoting that the
user is a member of all projects.

The ordering of the names in the list is significant: the first project specified is the user’s
default project. For purposes of accounting, access control and scheduling, the default
project is assumed unless the user explicitly specifies another project. A project can be
specified explicitly by using the environment variable RMS_PROJECT or by using the -P
option to prun or allocate.

10-24 The RMS Database

A

Compaq AlphaServer SC Interconnect
Terms

A.1 Introduction

RMS includes support for programs that use Compaq AlphaServer SC Interconnect. This
appendix provides an introduction to Compaq AlphaServer SC Interconnect, defining
terms used elsewhere in this manual.

Before an application process can use Compaq AlphaServer SC Interconnect, it must be
given an Elan capability (see Section C.2), describing the nodes and communications
contexts that it is allowed to use. In general, processes present this capability to the
kernel as they start.

Having granted a request for CPUs, RMS generates an appropriate capability and pushes
it into the RMS kernel module on each of the allocated nodes. The capabilities together
with information on the processes that make up the program can then be accessed
through the librmscall system call library (see Section C.3 for details).

Compaq AlphaServer SC Interconnect is a multistage switch network, also known as a
fat tree network. It is built from 8-way crosspoint switches, known as Elites. Each node is
connected to the network by a network adapter, the Elan. The connection of a 2-stage
(16-node) switch network is shown in Figure A.1.

Compaq AlphaServer SC Interconnect Terms A-1

Introduction

Figure A.1: A 2-Stage, 16-Node, Switch Network

Plane 0

Plane 3

Top Switches

Level 1

Level 2

Level 0

Uplinks

Network Adapters

Net id 0 Net id 15

The level is the index of the stage, starting with 0 at the top. Note that in a 2-stage
switch network the Elans are at level 2. Each component has a network ID that
describes how to reach it from the top of the network. The plane is the index of switches
that have the same switch network ID. The interconnection of a 3-stage (64-node) switch
network is shown in Figure A.2.

Figure A.2: A 3-Stage, 64-Node, Switch Network
Plane 15

Plane 0

Top Switches

Uplinks

Plane 0

Plane 0

Plane 0Plane 0Plane 0

Plane 3 Plane 3 Plane 3 Plane 3

Net id 0Net id 48Net id 63 Net id 16Net id 32

Level 0

Level 1

Level 2

Level 3

The 3-stage switch network is composed from four 2-stage networks. Each 2-stage
network connects sixteen nodes and has sixteen free uplinks. These uplinks connect the
four 2-stage networks to an additional level of switches to form a 3-stage network,
connecting up to 64 nodes.

A-2 Compaq AlphaServer SC Interconnect Terms

Introduction

Four such 64-node networks and an additional stage of switches can be used to construct
a 256-way network. Alternatively, the unused uplinks can be used to double the number
of nodes a switch can connect. This avoids the need to add an additional switch stage but
the resulting network cannot be expanded further. This technique is used in the
128-node network, shown in Figure A.3.

Figure A.3: A 3-Stage, 128-Node, Switch Network

There are switch network modules that connect up to 16 or 128 nodes. The 16-node
network is a rack-mountable module containing a single network board. The 128-node
network is a rack-mountable chassis containing up to 24 network boards: 8 at the front
connecting the nodes to the lower stages; and 16 at the rear providing the upper stages
of the network. A central backplane joins the stages. These switch modules may be
partially populated for networks containing fewer than 128 nodes.

The number of nodes and switches in these networks is shown in Table A.1. The number
of switches refers to the total number of Elite ASICs required to construct the network.
The number of hops refers to the maximum number of links traversed for nodes that
have to communicate through a top switch. The bidirectional nature of the links means
that traffic can be localized to a subtree large enough to span both nodes.

Table A.1: Switch Network Parameters

Name Levels Nodes Switches Hops
QM-S16 2 16 8 4
QM-S128 3 128 80 6

The Elan performs automatic routing and broadcast communications. Using the switch

Compaq AlphaServer SC Interconnect Terms A-3

Link Errors

network, data can be broadcast directly to a contiguous range of processors: data is
routed up to a node in the tree from which all processors can be reached; then the data is
routed down to all switch outputs in the broadcast range on the way down. Data can be
recombined as it travels through the network to support global reduction operations and
barrier synchronization.

Multiple Elan network adapters may be installed per node, each connected to a different
switch network. This replication can increase fault tolerance and bisectional bandwidth,
assuming each Elan is attached to a separate PCI bus. Each separate Elan/Elite network
attached to a node is known as a layer (or a rail).

The switch network is described by three tables in the database. The switch_boards
table (see Section 10.2.22) gives details of each board, its status and its position in the
machine. The elans table (see Section 10.2.4) and the elites table (see Section 10.2.5)
describe the position in the switch network of each component, its attributes and its
current link state and errors.

RMS includes the control and monitoring daemon, swmgr (see Section 4.5), for managing
the switch network. swmgr probes the switch network control interface for switch boards
to determine the size of the network. It then creates or updates the entries in the elans
table and the elites table. Having done this, the swmgr uses the switch network
control interface to extract error and performance data. This interface is also used for
link continuity (boundary scan) testing.

A.2 Link States

The state of each link in the switch network is recorded in the linkerrors field in the
elites table (see Section 10.2.5). Valid values for the states are shown in Section B.4.

Links are normally in the connected state (C). Unconnected links will be in the reset
state (R). Links will be in the unknown state (U) if the swmgr has not run or if the control
cable is not attached to the switch. The states acking (A) and nacking (N) are set by the
switch control software.

A.3 Link Errors

The swmgr logs network errors to the link_errors table (see Section 10.2.11). The
description contains information that should be used in reporting a problem with the
switch network.

A-4 Compaq AlphaServer SC Interconnect Terms

B

RMS Status Values

B.1 Overview

This appendix lists the various states that RMS objects can enter. State information is
stored in the status field of the RMS table for the object in question. For example, the
current state of a partition is held in the partitions table (see Section 10.2.16). and
the current state of a node is entered in the nodes table (see Section 10.2.14).

Status changes are recorded in the events table (see Section 10.2.6). Entries in the
events table are identified by class=X and name=N where X is the class of object and N

is its name. For most tables, the name field forms the primary key. In the case of a
partition, both the name and the configuration fields are required to define a unique
entry. In the case of an access control, both the name and partition fields are required.

Status values are shown for the following objects:

• Jobs (see Section B.3)

• Links (see Section B.4)

• Modules (see Section B.5)

• Nodes (see Section B.6)

• Partitions (see Section B.7)

• Resources (see Section B.8)

• Transaction (see Section B.9)

RMS Status Values B-1

Link Status Values

B.2 Generic Status Values

There are three generic status values:

ok This state means that an object is functioning correctly as far as the
relevant RMS daemon can tell.

error This state means that one or more errors have been detected. A
description of the problem will be found in the event record.

unknown This state means that the RMS daemon responsible for an object
either has not run or is unable to determine the state of the object.

Where an object, such as a switch board, has many component status values, the ok
state means that all component values are ok. If one or more of the components are in
error then the status will be error.

B.3 Job Status Values

The status of each job is stored in the status field of the jobs table. It is updated by
the partition manager when the job is started, suspended, resumed or completed. Valid
job status strings are shown in Table B.1.

Table B.1: Job Status Values

Status Description
running Processes are scheduled
suspended All processes are suspended
finished All processes have exited
hung One or more nodes is not responding
aborted User aborted job
failed Job failed
killed Job was killed by a signal
expired Time limit expired
syskill Job was killed by an administrative user
unknown Partition is blocked or down

If a job is killed because one of the nodes it was running on has crashed or was
configured out then its final status value will be failed.

B-2 RMS Status Values

Module Status Values

B.4 Link Status Values

Each switch (see Appendix A (Compaq AlphaServer SC Interconnect Terms)) has an
entry in the elites table. Each switch has eight links and the state of each of these
links is recorded in the linkstate field of the elites table. The field holds eight
characters, one for each link. Valid values for the characters are as shown in Table B.2.
See also Section A.2.

Table B.2: Link Status Values

State Character Description
Connected C Normal working state
Reset R Link is in reset
Acking A Link generates an ACK for all transactions
Nacking N Link generates an NACK for all transactions
Not connected _ Link is not connected
Unknown U swmgr cannot determine link state.

B.5 Module Status Values

Module status information for nodes and the switch network is held in the modules
table. The estatus field stores the node’s operating environment; specifically, it shows
whether the cooling fans and power supply units (PSUs) are working correctly and
whether any of the other components are overheating.

Changes in environment status are recorded in the events table; entries are keyed by
class=module type=X where X is temperature, temphigh, psu, or fan. The valid
strings and their meaning are shown in Table B.3.

Table B.3: Module Status Values

Status Description
ok Fans, PSUs and temperature ok
fan failure A fan has failed
psu failure A power supply unit has failed
node hot The enclosure is too hot
cpu hot A CPU is too hot
psu hot A power supply unit is too hot

If the environment status, estatus, is recorded as ok, the environment field of the
modules table contains temperature readings from the CPU, PSU and enclosure. If a

RMS Status Values B-3

Node Status Values

node has more than one instance of each type of temperature sensor, the maximum of
their values is recorded.

Temperature information is recorded as a list of attribute-value pairs, for example:

ambient=15 cpu=40 psu=20

Note that not all node types support all types of thermistor reading. The environment
field may contain only a subset of this information.

If an error occurs, the environment string contains details of what has failed. For
example, the following string indicates that the CPU fan number 1 has failed on the
node.

cpu fan 1 failure

B.6 Node Status Values

The current state of a node is found in the status and runlevel fields of the nodes
table. State changes are logged in the events table; entries in the events table are
identified by class=node and name=N , where N is the name of the node as entered in
the name field of the nodes table.

Provided a node is configured in (configured field set to 1), the status field contains
one of the values shown in Table B.4.

Table B.4: Node Status Values

Status Description
not responding Machine Manager cannot get response from node
active Node responds to IP requests but RMS is not running
running RMS is active on this node

RMS does not monitor the state of a node while it is configured out (configured=0). It
determines the status again when the node is configured back in.

As a node boots, its status progresses from not responding to active and on to
running. A long delay in reaching the running state indicates a problem with booting
that should be investigated further. If a node changes from the running state to the
active state and stays there then there is a problem with RMS on that node. If a node
changes from the running state to the not responding state then either the node has
crashed or IP communications to the node are failing. In this case, RMS runs the
rmsevent_node event handler script. This script attempts to determine what went
wrong.

B-4 RMS Status Values

Resource Status Values

The current UNIX run level of a node is held in the nodes table in the runlevel field.
This field is updated by the nodestatus program as the run level changes. The valid
strings are shown together with their meaning in Table B.5.

Table B.5: Run Level Status Values

Status Description
run level S Single user mode
run level 1 UNIX run level 1
run level 2 UNIX run level 2
run level 3 UNIX run level 3

The run level of a node that is configured out will continue to be updated as the node is
booted or halted. RMS is started at run level 3.

B.7 Partition Status Values

The current state of a partition is entered in the status field of the partitions table.
Changes to a partition’s state are logged in the events table. Entries in the events
table are identified by class=partition and name=P, where P is the name of the
partition as entered in the name field of the partitions table. All such events refer to
partitions in the active configuration.

The partition’s status can take one of the values shown in Table B.6.

Table B.6: Partition Status Values

Status Description
running The partition is operational
blocked One or more of the rmsds in the partition is not responding
closing The partition is in the process of closing down
down The partition has been shut down successfully

Note that the active field in the partitions table denotes whether or not the
partition is part of the active configuration. The database may contain a number of
different configurations but only one is active at any time.

B.8 Resource Status Values

The status of each resource request is stored in the status field of the resources
table. It is updated by the pmanager when CPUs are allocated and deallocated, and as

RMS Status Values B-5

Transaction Status Values

jobs using the CPUs complete. While CPUs are allocated, the valid resource status
strings are as shown in Table B.7.

Table B.7: Resource Status Values

Status Description
blocked CPUs cannot be allocated because of a usage limit
queued insufficient CPUs free for the request
allocated CPUs are allocated
suspended CPUs are temporarily deallocated
finished CPUs have been deallocated
aborted CPUs were deallocated when prun was killed (for example by Ctrl/C)
killed CPUs were deallocated when resource request was killed
failed CPUs were deallocated because node has crashed or was configured out

The final status of a resource is that of the last job to exit (see Table B.1).

B.9 Transaction Status Values

Requests to change the state of the machine are entered in the transactions table.
The Transaction Log Manager, tlogmgr, actions the requests on the users’ behalf. This
mechanism provides an audit trail of state changes.

Each request has a status field associated with it. Valid values for this field are shown
in Table B.8.

Table B.8: Transaction Status Values

Status Description
submitted Client application has submitted transaction
started tlogmgr has started to execute the transaction
complete Transaction completed successfully without errors
error Transaction completed with errors
failed Transaction failed

B-6 RMS Status Values

C

RMS Kernel Module

C.1 Introduction

The RMS kernel module supports the operation of RMS on each node in a system. It
provides functions that bind together the set of processes that make up a program on
each node, allowing RMS to apply scheduling, signal delivery and statistics gathering
operations to them collectively. For example, the RMS kernel module allows the rmsd
daemon or an administrator process to send a signal to all processes in a parallel
program at the same time.

The RMS kernel module stores the Elan capabilities assigned to a program, making
them available to the processes of that program and their children. The capablilities are
only accessible to processes that belong to this one parallel program, they are not
available to other processes. The RMS kernel module keeps track of processes through
handlers called whenever a process belonging to a parallel program forks or exits.

Note that a parallel program under RMS may consist of one or more UNIX process
groups or sessions. It is the ability of a UNIX process to call setpgrp or setsid at any
time that makes the program structure provided by the RMS kernel module necessary;
without it, suspend, resume, signal delivery and program cleanup operations on
changing sets of processes are unreliable.

C.2 Capabilities

An Elan capability describes a parallel program’s rights to use one rail of Compaq
AlphaServer SC Interconnect. It specifies the range of nodes that have been allocated

RMS Kernel Module C-1

System Call Interface

and the Elan hardware context numbers to be used.

typedef struct elan_capability
{

ELAN_USERKEY UserKey; /* User defined protection */
int Version; /* Version number */
short Type; /* Type */
short Generation; /* Generation number */
int LowContext; /* low context number in block */
int HighContext; /* high context number in block */
int MyContext; /* my context number */
int LowNode; /* low elan id of group */
int HighNode; /* high elan id of group */
int Entries; /* number of processes */
int RouteTable; /* route table name to use */
unsigned int RailMask; /* rails this capability is valid for */
bitmap_t Bitmap[ELAN_BITMAPSIZE]; /* Bitmap of process to node translation */

} ELAN_CAPABILITY;

Elan capabilities are created on each node allocated to a parallel program and passed to
its processes through the RMS kernel module.

C.3 System Call Interface

The RMS kernel module is accessed through its system call interface. This interface
allows processes with administrator privileges to create program descriptions, add Elan
capabilities to them, collect resource utilization statistics from them and destroy them
when their processes have exited. It also allows them to suspend or resume the
processes and deliver signals to them.

The RMS system call interface allows user processes to determine how many nodes,
CPUs, rails and contexts they have been allocated. This information is primarily (but not
exclusively) for use by parallel programming libraries.

C-2 RMS Kernel Module

rms_setcorepath(3)

NAME

rms_setcorepath, rms_getcorepath – Set, get the path for application core files

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]
#include <rms/rmscall.h>

int rms_setcorepath(caddr_t path);
int rms_getcorepath(pid_t pid, caddr_t path, int maxlen);

PARAMETERS

path Array containing the path name.

maxlen Size of the array pointed to by path.

pid Process identifier.

DESCRIPTION

The function rms_setcorepath() sets the core file path for the current process. The
core file path is set by rmsd as it starts a new parallel program and inherited by any
child processes. Administrator privileges are required to set a core path.

The function rms_getcorepath() returns the core file path of a process. If pid is
negative, it returns the core file path of the current process.

RETURN VALUES

Upon successful completion, rms_setcorepath() and rms_getcorepath() return 0.
Otherwise, they return -1 and set errno to indicate the error.

EACCESS Caller is not permitted to perform this operation.

ENOMEM Insufficient memory to perform this operation.

ESRCH Process does not exist.

EEXIST The core path has not been set.

RMS Kernel Module C-3

rms_prgcreate(3)

NAME

rms_prgcreate, rms_prgdestroy – Create, destroy program descriptions

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]
#include <rms/rmscall.h>

int rms_prgcreate(int id, uid_t uid, int cpus);
int rms_prgdestroy(int id);

PARAMETERS

id Program identifier.

uid Owner of the program.

cpus Number of CPUs allocated.

DESCRIPTION

rms_prgcreate() creates a new program description with the current process as its
root process. Any children of this process will belong to this program.
rms_prgdestroy() destroys an existing program description. Calls to
rms_prgdestroy() will fail if processes belonging to this program are still running.
Creating or destroying program descriptions requires administrator privileges. The
rmsd creates a new program description for each parallel program. The program
identifier is the unique identifier for the parallel job, that is to say, it is common across
nodes.

RETURN VALUES

Upon successful completion, rms_prgcreate() and rms_prgdestroy() return 0.
Otherwise, they return -1 and set errno to indicate the error.

EACCESS Caller is not permitted to perform this operation.

ENOMEM Insufficient memory to perform this operation.

C-4 RMS Kernel Module

rms_prgcreate(3)

EINVAL Program identifier is in use or the number of CPUs is invalid.

ECHILD Processes belonging to this program are still running.

EEXIST Program identifier does not exist.

SEE ALSO

rms_getprgid(3)

RMS Kernel Module C-5

rms_prgids(3)

NAME

rms_prgids, rms_prginfo, rms_getprgid – Get information on a program or programs

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]
#include <rms/rmscall.h>

int rms_prgids(int maxids, int *ids, int *nids);
int rms_prginfo(int id, int maxids, pid_t *pids, int nids);

int rms_getprgid(int pid, int *id);

PARAMETERS

id Program identifier.

pid Process identifier.

maxids Maximum number of identifiers to be returned.

ids Array of program identifiers.

pids Array of process identifiers.

nids Number of program or process identifiers returned.

DESCRIPTION

rms_prgids() returns the identifiers of each active program. rms_prginfo() returns
the identifiers for each process belonging to a particular parallel program – the current
program if id is negative. rms_getprgid() returns the program identifier (if any) for a
particular process – the current process if pid is negative.

RETURN VALUES

Upon successful completion, rms_prgids(), rms_prginfo() and rms_getprgid()
return 0. Otherwise, they return -1 and set errno to indicate the error.

EACCESS Caller is not permitted to perform this operation.

C-6 RMS Kernel Module

rms_prgids(3)

EINVAL Count of number of array elements is invalid.

EFAULT Array address is invalid.

ENOMEM Insufficient kernel memory to perform this operation.

ESRCH Process or program does not exist.

SEE ALSO

rms_prgcreate(3)

RMS Kernel Module C-7

rms_prgsuspend(3)

NAME

rms_prgsuspend, rms_prgresume, rms_prgsignal – Suspend or resume the
processes in a program, deliver a signal to all processes in a program

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]

#include <rms/rmscall.h>

int rms_prgsuspend(int id);

int rms_prgresume(int id);

int rms_prgsignal(int id, int signo);

PARAMETERS

id Program identifier.

signo Signal number.

DESCRIPTION

rms_prgsuspend() suspends all of the processes in a program. The RMS suspends a
parallel program by calling rms_prgsuspend() on each node that it is using.
rms_prgsuspend() requires administrator privileges. rms_prgresume() resumes all
of the processes in a program. The RMS resumes a parallel program by calling
rms_prgresume() on each node that it is using. rms_prgresume() requires
administrator privileges.

rms_prgsignal() sends a signal to all of the processes in a program. The RMS delivers
signals to a parallel program by calling rms_prgsignal() on each node that it is using.
The function is also used to confirm that all processes belonging to a program have
exited. rms_prgsignal() can be called by the owner of the program or a process with
administrator privileges.

RETURN VALUES

Upon successful completion, rms_prgsuspend(), rms_prgresume() and
rms_prgsignal() return 0. Otherwise, they return -1 and set errno to indicate the
error.

C-8 RMS Kernel Module

rms_prgsuspend(3)

EACCESS Caller is not permitted to perform this operation.

ESRCH No such program identifier.

EINVAL Invalid signal number.

SEE ALSO

rms_prgcreate(3)

RMS Kernel Module C-9

rms_prgaddcap(3)

NAME

rms_prgaddcap, rms_setcap – Associate Elan capabilities with a program or process

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]
#include <rms/rmscall.h>

int rms_prgaddcap(int id, int index, ELAN_CAPABILITY *cap);

int rms_setcap(int index, int context);

PARAMETERS

id Program identifier.

index Index of the capability for this program.

cap Pointer to a capability.

context Context number for this process.

DESCRIPTION

rms_prgaddcap() and rms_setcap() associate Elan capabilities with a program and
its processes. The function rms_prgaddcap() adds a new capability to a program. It is
called once for each rail in use by the program. Each capability defines the range of node
numbers and Elan hardware contexts available to a parallel program. Capabilities are
indexed from 0 to ncaps-1 where ncaps is the number of capabilities allocated.

rms_prgaddcap() requires administrator privileges. It is called by rmsd as it creates a
parallel program.

The function rms_setcap() assigns Elan hardware context numbers to the current
process. It is called by the RMS application loader, rmsloader, as it creates each new
application process. The contexts assigned must lie within a previously assigned
capability for the program.

RETURN VALUES

Upon successful completion, rms_prgaddcap() and rms_setcap() return 0.
Otherwise, they return -1 and set errno to indicate the error.

C-10 RMS Kernel Module

rms_prgaddcap(3)

EACCESS Caller is not permitted to perform this operation.

ENOMEM There was insufficient memory to perform this operation.

ESRCH Program does not exist.

EFAULT Capability has invalid address.

EINVAL Invalid context number (rms_setcap() only).

SEE ALSO

rms_ncaps(3)

RMS Kernel Module C-11

rms_ncaps(3)

NAME

rms_ncaps, rms_getcap – Return information on the Elan capabilities allocated to a
process in a parallel program

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]
#include <rms/rmscall.h>

int rms_ncaps(int *ncaps);
int rms_getcap(int index, ELAN_CAPABILITY *cap);

PARAMETERS

ncaps Number of capabilities allocated.

index Index of a capability to be returned.

cap Pointer to a capability.

DESCRIPTION

rms_ncaps() returns the number of Elan capabilities allocated to a program.
rms_getcap() returns a specified Elan capability. Capabilities are indexed from 0 to
ncaps-1.

RETURN VALUES

Upon successful completion, rms_ncaps() and rms_getcap() return 0. Otherwise,
they return -1 and set errno to indicate the error.

EFAULT Invalid address.

EINVAL Invalid capability identifier.

EEXIST Calling process is not part of a parallel program.

SEE ALSO

rms_prgaddcap(3)

C-12 RMS Kernel Module

rms_prggetstats(3)

NAME

rms_prggetstats – Return resource usage information for a program

SYNOPSIS

cc [flag ...] file ... -lrmscall [library ...]
#include <rms/rmscall.h>

int rms_prggetstats(int id, prgstats_t *stats);

PARAMETERS

id Program identifier.

stats Pointer to a program statistics structure.

DESCRIPTION

rms_prggetstats() returns resource usage information for the processes of a parallel
program on the calling node. The RMS kernel module sums resource usage over the
processes in a program. The statistics returned by rms_prggetstats() are the sum
over all processes belonging to program id on this node, including those that have
already exited.

Setting id to -1 instructs the RMS kernel module to return values for the caller’s
program. Resource utilization statistics are available to the owner of the program and to
any process with administrator privileges.

/*
* program statistics
*/

typedef struct {
uint64_t etime; /* elapsed cpu time (millisecs) */
uint64_t atime; /* allocated cpu time (millisecs) */
uint64_t utime; /* user cpu time (millisecs) */
uint64_t stime; /* system cpu time (millisecs) */
int ncpus; /* number of cpus allocated */
int flags; /* program status flags */
int mem; /* max memory size in megabytes */
int pageflts /* number of page faults */
uint64_t memint; /* memory integral */

} prgstats_t;

RMS Kernel Module C-13

rms_prggetstats(3)

The elapsed time statistic etime is the time in millisecs since the program was created.
The allocated time statistic atime is the time in millisecs for which CPUs have been
allocated multiplied by the number of CPUs allocated. The utime and etime statistics
are summed over the processes that make up the program (on this node).

If one or more processes belonging to the program is still running, the flags field will
contain the value PRG_RUNNING. This will be replaced by PRG_ZOMBIE when the last
process has exited. The program description should be destroyed when this value is seen.

The Partition Manager periodically sums these statistics over the nodes used to run a
parallel program, updating its entry in the accounting statistics (acctstats) table.

RETURN VALUES

Upon successful completion, rms_prggetstats() returns 0. Otherwise, it returns -1
and sets errno to indicate the error.

EACCESS Caller is not permitted to perform this operation.

EFAULT Invalid address for statistics array.

ESRCH No such program.

SEE ALSO

rms_prginfo(3)

C-14 RMS Kernel Module

D

RMS Application Interface

D.1 Introduction

The RMS application interface is provided so that external scheduling modules can make
inquiries about the availability of resources, allocate and deallocate CPUs and perform
job control operations.

The application interface is provided as a dynamic library librmsapi.so. Function
prototypes are defined in the header file <rms/rmsapi.h>.

RMS Application Interface D-1

rms_allocateResource(3)

NAME

rms_allocateResource, rms_deallocateResource – Allocate or deallocate a resource

SYNOPSIS

cc [flag ...] file ... -lrmsapi -lrms [library ...]

#include <rms/rmsapi.h>

int rms_allocateResource(char *partition, int cpus, int baseNode,
int nodes, uid_t uid, char *project,

char *requestFlags);

int rms_deallocateResource(int rid);

PARAMETERS

partition Partition containing the resources.

cpus Total number of CPUs to allocate.

baseNode ID of the first node to allocate.

nodes Number of nodes to allocate.

uid User on whose behalf the resource should be allocated.

project User’s project name.

requestFlags The request flags currently supported are as follows:

immediate=0 | 1

With a value of 1, this specifies that the request
should fail if resources are not available
immediately.

hwbcast=0 | 1 With a value of 1, this specifies a contiguous range
of nodes and constrains the scheduler to queue the
request until a contiguous range becomes available.

rails=n In a multirail system, this specifies the number of
rails required, where 1 ≤ n ≤ 32.

Multiple request flags can be given as a comma-separated list;
immediate=1,hwbcast=1, for example.

D-2 RMS Application Interface

rms_allocateResource(3)

rid ID of the resource to deallocate.

DESCRIPTION

rms_allocateResource() allocates CPUs from a named partition. If partition is
NULL, the default partition is used, otherwise the named partition must exist. You can
optionally specify the base node and the number of nodes (as with the allocate and
prun commands). Alternatively, this can be left to the scheduler by passing the value
RMS_UNASSIGNED. If the requested CPUs are not available, the request will block unless
the immediate flag has been entered, in which case it will fail.

If the caller belongs to the rms group then rms_allocateResource() can be used to
allocate CPUs on behalf of another user identified by uid. In this case, the CPUs will be
available to this user only. If project is not null, the request is subject to the usage
restrictions of, and is accounted to, the specified project, which must exist. If project is
null, the user’s default project applies.

To run a program on the specified resource, the environment variable RMS_RESOURCEID
must be set to the value partition.rid (where partition is the name of the partition
and rid is the resource id returned by rms_allocateResource) before executing
prun.

rms_deallocateResource() deallocates a resource that is no longer in use.

RETURN VALUES

Upon successful completion, rms_allocateResource() returns the ID of the resource
allocated. This value should be passed to subsequent calls. A negative integer is
returned on error. The supported error codes are as follows:

-1 Request cannot be met.
-2 Request cannot be met now and immediate was not set to zero.

rms_deallocateResource() returns 0 on success and -1 on error.

SEE ALSO

rms_suspendResource(3), rms_defaultPartition(3)

RMS Application Interface D-3

rms_run(3)

NAME

rms_run – Run a program on an allocated resource

SYNOPSIS

cc [flag ...] file ... -lrmsapi -lrms [library ...]

#include <rms/rmsapi.h>

int rms_run(int rid, char *cmd, char **args, char *jobFlags);

PARAMETERS

rid Resource id.

cmd Command to execute.

args Arguments for the command.

jobFlags The job flags currently supported are as follows:

tag=0 | 1 With a value of 1, this specifies that output from
each process should be tagged by the process id.

verbose=n Set the level of verbose output from the program.
Supported values are 0 quiet, 1 minimal output,
and 2 full output.

Multiple request flags can be given as a comma-separated list;
tag=1,verbose=1, for example.

DESCRIPTION

rms_run() starts a parallel program on a previously allocated resource. Any stdio to
and from the program is forwarded while one or more processes is running.

The call returns when the program completes.

RETURN VALUES

Upon successful completion, rms_run() returns the global OR of the exit status values
of the processes in the parallel program.

D-4 RMS Application Interface

rms_run(3)

SEE ALSO

rms_allocateResource(3),

RMS Application Interface D-5

rms_suspendResource(3)

NAME

rms_suspendResource, rms_resumeResource, rms_killResource – Job control
operations on allocated resources

SYNOPSIS

cc [flag ...] file ... -lrmsapi -lrms [library ...]

#include <rms/rmsapi.h>

int rms_suspendResource(int rid);

int rms_resumeResource(int rid);
int rms_killResource(int rid, int signo);

PARAMETERS

rid ID of the resource.

signo Signal to send.

DESCRIPTION

rms_suspendResource() and rms_resumeResource() suspend and resume a
resource specified by rid. The caller must be either the owner of the resource or a
member of the rms group.

rms_killResource() sends a signal to all of the processes in all of the jobs running on
a specified resource. The caller must be either the owner of the resource or a member of
the rms group.

RETURN VALUES

Upon successful completion, rms_suspendResource(), rms_resumeResource() and
rms_killResource() return 0. On error they return a negative integer.

SEE ALSO

rms_allocateResource(3)

D-6 RMS Application Interface

rms_defaultPartition(3)

NAME

rms_defaultPartition, rms_numCpus, rms_numNodes, rms_freeCpus – Provide
information on RMS partitions

SYNOPSIS

cc [flag ...] file ... -lrmsapi -lrms [library ...]

#include <rms/rmsapi.h>

char *rms_defaultPartition();

int rms_numCpus(char *partition);
int rms_numNodes(char *partition);

int rms_freeCpus(char *partition);

PARAMETERS

partition Name of an active partition.

DESCRIPTION

rms_defaultPartition() assigns the name of the default partition, if one exists, to
partition. rms_numCpus() returns the total number of CPUs in the named partition.
rms_numNodes() returns the total number of nodes in the named partition.
rms_freeCpus() returns the number of free CPUs in the named partition.

The calling process must run on a node in the Compaq AlphaServer SC system.

RETURN VALUES

rms_defaultPartition() returns NULL on error. Other functions return 0 or greater
on success or -1 on error.

SEE ALSO

rms_allocateResource(3)

RMS Application Interface D-7

E

Accounting Summary Script

E.1 Introduction

This appendix describes the example accounting summary script included in
/usr/opt/rms/examples/scripts/accounting_summary and referred to in
Section 9.4.3.

• Section E.2 describes the command line interface.

• Section E.3 shows a sample of output from the script.

• Section E.4 is a listing of the script.

E.2 Command Line Interface

The script has the following command line interface:

accounting_summary [-hd [-u | -p] [-M | -H]] [days]

The options are as follows:

-h Display help on the options.

-d Delete the accounting records of all resource requests that have
completed after outputting the accounting summary.

-u Sort the records by user name and then by project name.

Accounting Summary Script E-1

Listing of the Script

-p Sort the records by project name and then by user name. This is the
default.

-M Show time in minutes rather than seconds.

-H Show time in hours rather than seconds.

days Show statistics for the specified number of days. By default, statistics
are shown for the previous day only.

The script processes the arguments passed to it on the command line and generates a
SQL query which it passes to rmsquery. The query acts on two tables in the RMS
database: the accounting statistics (acctstats) table, and the resources table. The
information returned by the query is formatted to produce output as shown in
Section E.3.

If the -d option is specified on the command line, after printing the accounting
summary, the script generates another SQL query to delete all accounting records that
have their running field set to 0, denoting that the resource request has completed.

If a query fails, the script outputs an error message.

E.3 Example Output

An example of using the script, together with the output produced, follows. After
running the script, all of the accounting records for resource requests that have finished
are deleted.

accounting_summary -d

Accounting Summary of Machine atlas at 16:01 Wed 21 Feb 2001
Usage by Project/User For Previous Day

Project User CPU User Sys Number
Name Name Secs Secs Secs Sessions

default addy 596 533 6 8

duncan 58 37 2 6
johnt 540 227 51 15
root 29272 2 8 37
stephen 286 87 134 56

Total default 30751 885 201 122

Grand Total 30751 885 201 122

E-2 Accounting Summary Script

Listing of the Script

E.4 Listing of the Script

#!/bin/sh
###
#
accounting_summary
#
###

usage() {
echo "Usage : $sname [-u -p -d [-M | -H]] [days]"

}

help() {
usage
echo "\t-h\tThis help message"
echo "\t-p\t’Project’ is primary sort field (default)"
echo "\t-u\t’User’ is primary sort field"
echo "\t-M\tShow time in minutes rather than seconds"
echo "\t-H\tShow time in hours rather than seconds"
echo "\t-d\tDelete all ’not running’ accounting records after producing summary"
exit 0

}

#
main
#
sname="accounting_summary"
OS=‘uname‘
if ["$OS" = "Linux"]; then

RMSPATH="/usr/bin"
else

if ["$OS" = "OSF1"]; then
RMSPATH="/usr/opt/rms/bin"

else
RMSPATH="/opt/rms/bin"

fi
fi
RMSGETTIME=${RMSPATH}/rmsgettime
RMSQUERY=${RMSPATH}/rmsquery
tmpfile="/tmp/accounting_summary_$$"
if [-x /bin/gawk]; then

AWK="/bin/gawk"
else

AWK="/usr/local/bin/gawk"
fi
primary="project"
delete=""
hours=""
minutes=""

Accounting Summary Script E-3

Listing of the Script

#
parse the options
#

while [$# -gt 0]; do
option=‘echo $1 | sed "s/ˆ-//"‘
if ["$option" = "$1"]; then

break
fi
if ["$option" = "p"]; then
primary="project"
elif ["$option" = "u"]; then
primary="user"
elif ["$option" = "d"]; then
delete="1"
elif ["$option" = "M"]; then

if ["$hours" = "1"]; then
echo "$sname: ERROR : -M and -H are mutually exclusive"
exit 1

fi
minutes="1"
elif ["$option" = "H"]; then

if ["$minutes" = "1"]; then
echo "$sname: ERROR : -M and -H are mutually exclusive"
exit 1

fi
hours="1"
elif ["$option" = "h"]; then
help
else

echo "$sname: ERROR : invalid option $1"
usage
exit 1

fi
shift

done

if [$# -gt 0]; then
days=$1
shift

else
days=1

fi

if [$# -gt 0]; then
usage
exit 1

fi

now=‘$RMSGETTIME‘
secsperday=‘expr 60 * 60 * 24‘
daysecs=‘expr $secsperday * $days‘

E-4 Accounting Summary Script

Listing of the Script

starttime=‘expr $now - $daysecs‘

if ["$primary" = "project"]; then
primarytitle="Project"
secondarytitle="User"
querystr="select \
acctstats.project,resources.username, \
acctstats.atime,acctstats.utime, acctstats.stime \
from resources,acctstats \
where acctstats.started > $starttime and resources.name=acctstats.name \
order by acctstats.project,resources.username"

else
primarytitle="User"
secondarytitle="Project"
querystr="select \
resources.username,acctstats.project, \
acctstats.atime,acctstats.utime,acctstats.stime \
from resources,acctstats \
where acctstats.started > $starttime and resources.name=acctstats.name \
order by resources.username,acctstats.project"

fi

machine=‘rinfo -m‘

/bin/rm -f $tmpfile
$RMSQUERY $querystr > $tmpfile
if [$? -ne 0]; then

echo "$sname : ERROR : $RMSQUERY $querystr FAILED"
exit 1

fi

cat $tmpfile | \
$AWK ’BEGIN {

primary = ""
secondary = ""
nvalues = 3
for (i=1; i<=nvalues; i++) {

values[i] = 0
primvalues[i] = 0
grandvalues[i] = 0

}
recs = 0
primrecs = 0
grandrecs = 0
printprim = 1

}

function printsortfields() {
if (printprim == 1) {
printf ("%-10.10s %-8.8s ", primary, secondary)
printprim = 0
} else {

Accounting Summary Script E-5

Listing of the Script

printf ("\t %-8.8s ", secondary)
}

}
function printdashes() {

printf
("---\

----\n")
}

function printvals(vals, i) {
for (i=1; i<=nvalues; i++) {

if (hours == 1 || minutes == 1) {
printf (" %13.2f", vals[i])

} else {
printf (" %13.0f", vals[i])

}
}

}
NF > 0 {

if ($1 != primary) {
if (primary != "") {

printsortfields()
printvals(values)
printf (" %6d\n", recs)
printdashes()
printf ("Total %-10.10s ", primary)
printvals(primvalues)
printf (" %6d\n", primrecs)
printdashes()

} else {
datestr = strftime("%H:%M %a %d %b %Y")
titlestr = sprintf ("Accounting Summary of Machine %s at %s", \

machine, datestr)
print titlestr
if (days > 1) {

daystr = sprintf ("%d Days",days)
} else {

daystr = "Day"
}

printf ("Usage by %s/%s For Previous %s\n", primtitle, sectitle, daystr)
printf ("\n")
printf ("%-10.10s %-8.8s CPU User Sys Number\n", \

primtitle, sectitle)
if (hours == 1) {

printf ("Name Name Hours Hours Hours Sessions\n")
} else {

if (minutes == 1) {
printf ("Name Name Mins Mins Mins Sessions\n")

} else {

E-6 Accounting Summary Script

Listing of the Script

printf ("Name Name Secs Secs Secs Sessions\n")
}

}
printdashes()

}
primary = $1
secondary = $2
for (i=1; i<=nvalues; i++) {

values[i] = 0
primvalues[i] = 0

}
recs = 0
primrecs = 0
printprim = 1
} else {

if ($2 != secondary) {
printsortfields()
printvals(values)
printf (" %6d\n", recs)
secondary = $2
for (i=1; i<=nvalues; i++) {
values[i] = 0

}
recs = 0

}
}
for (i=1; i<nvalues; i++) {

if (hours == 1) {
val = $(i+2) / 3600

} else {
if (minutes == 1) {

val = $(i+2) / 60
} else {

val = $(i+2)
}

}
values[i] = values[i] + val
primvalues[i] = primvalues[i] + val
grandvalues[i] = grandvalues[i] + val

}
recs++
primrecs++
grandrecs++

}
END {

printsortfields()
printvals(values)
printf (" %6d\n", recs)
printdashes()
printf ("Total %-10.10s ", primary)
printvals(primvalues)

Accounting Summary Script E-7

Listing of the Script

printf (" %6d\n", primrecs)
printdashes()
printf ("Grand Total ")
printvals(grandvalues)
printf (" %6d\n", grandrecs)
printdashes()

}’ primtitle="$primarytitle" sectitle="$secondarytitle" machine=$machine \
days=$days hours=$hours minutes=$minutes

/bin/rm $tmpfile

if ["$delete"]; then
echo "$sname : Deleting accounting statistics records"
querystr="delete from acctstats where running=0"
$RMSQUERY $querystr
if [$? -ne 0]; then

echo "$sname : ERROR : $RMSQUERY $querystr FAILED"
exit 1

else
echo "$sname : Accounting statistics records deleted"

fi
fi

exit 0

E-8 Accounting Summary Script

Glossary

Abbreviations

API Application Program Interface — specification of interface to software
package (library).

CFS Cluster File System — the file system for Tru64 UNIX clusters.

CGI Common Gateway Interface — a standard method for generating
HTML pages dynamically from an application so that a Web server
and a Web browser can exchange information. A CGI script can be
written in any language and can access various types of data, for
example, a SQL database.

CPU Central Processing Unit — the part of the computer that executes the
machine instructions that make up the various user and system
programs.

CRC Cyclic Redundancy Check — a method of error detection.

CVS Concurrent Versions System — a revision control utility for managing
software releases and controlling the concurrent editing of files by
multiple software developers.

DIMM Dual In-Line Memory Module.

DMA Direct Memory Access — high performance I/O technique where
peripherals read/write memory directly and not through a CPU.

GNU GNU’s Not UNIX — A UNIX-like development effort of the Free
Software Foundation, headed by Richard Stallman.

Glossary-1

HTML HyperText Markup Language — a generic markup language,
comprising a set of tags, that enables structured documents to be
delivered over the World Wide Web and viewed by a browser.

HTTP HyperText Transfer Protocol — a communications protocol commonly
used between a Web server and a Web browser together with a URL
(Uniform Resource Locator).

LED Light-Emitting Diode.

MIMD Multiple Instruction, Multiple Data — parallel processing computer
architecture characterized as having multiple processors each
(potentially) executing a different instruction sequence on different
data.

MMU Memory Management Unit — part of CPU that provides protection
between user processes and support for virtual memory.

MPI Message Passing Interface — parallel processing API.

MPP Massively Parallel Processing — processing that involves the use of a
large number of processors in a coordinated fashion.

PCI Peripheral Component Interconnect — the Elan is connected to a
node through this interface.

PDF Portable Document Format — the page description language used by
Adobe Acrobat, derived from PostScript, for displaying pages on the
screen.

PTE Page Table Entry — an entry in the page table which maps the base
address of a page to physical memory.

RISC Reduced Instruction Set Computer — a computer whose machine
instructions represent relatively simple operations that can be
executed very quickly.

RMS Resource Management System — Quadrics software for managing
clusters of UNIX nodes.

SDRAM Synchronous Dynamic Random Access Memory — high performance
computer memory architecture.

Glossary-2

Shmem A one-sided (put/get) inter-process communication interface used on
high-performance parallel systems.

SMP Symmetric MultiProcessor — a computer whose main memory is
shared by more than one processor.

SNMP Simple Network Management Protocol — a protocol used to monitor
and control devices on the Internet.

SQL Structured Query Language — a database language.

TLB Translation Lookaside Buffer — part of the MMU that caches the
result of virtual to physical address translations to minimize
translation times in subsequent accesses to the same page.

URL Uniform Resource Locator — a standard protocol for addressing
information on the World Wide Web.

UTC Coordinated Universal Time1 — on UNIX systems it is represented as
the time elapsed in seconds since January 1st, 1970 at 00:00:00.

Terms

barrier A synchronization point in a parallel computation that all of the
processes must reach before they are allowed to continue.

bisectional bandwidth

The worst case bandwidth across the diameter of the network.

block A thread that blocks without relinquishing the processor until a
specified event occurs.

critical section A section of program statements that can yield incorrect results if
more than one thread tries to execute the section at the same time.

Elan memory The SDRAM on the Elan card.

event A parallel-processing synchronization primitive implemented by the
Elan card.

1Used to be called GMT.

Glossary-3

Flit A communications cycle unit of information.

HTTP cookies Cookies provide a general mechanism that HTTP server-side
connections use to store and to retrieve information on the client side
of the connection.

main memory The memory normally associated with the main processor, that is to
say, memory on the CPU’s high speed memory bus.

main processor The main CPU (or CPUs for a multi-processor) of a node, typically an
Alpha 21264.

management network

A private network used by the RMS daemons for control and
diagnostics.

multirail system

A system that has more than one Elan card connected to each node,
each Elan card being connected to a different switch network.

multi-threaded program

A multi-threaded program is one that is constructed such that, during
its execution, multiple sequences of instructions are executed
concurrently (possibly by different CPUs). Each thread of execution
has a separate stack but otherwise they all share the same address
space.

node A system with memory, one or more CPUs and one or more Elan cards
running an instance of the operating system.

poll Loop and check on each loop whether a specified event has occurred.

rank An integer value that identifies a single process from a set of parallel
processes.

reduce Combine the results of a parallel computation into a single value.

remote memory The memory (Elan card or main) of a node when accessed by another
node over the network.

resource A set of CPUs allocated to a user to run one or more parallel jobs.

Glossary-4

slice A local copy of a global object.

switch network The network constructed from the Elan cards and Elite cards.

thread An independent sequence of execution. Every host process has at
least one thread.

virtual memory A feature provided by the operating system, in conjunction with the
MMU, that provides each process with a private address space that
may be larger than the amount of physical memory accessible to the
CPU.

virtual process A (possibly multi-threaded) component of a parallel program
executing on a node.

word A 64-bit value.

Glossary-5

Index

A

access controls
CPU usage, 6-5, 7-2
memory limits, 6-4, 7-3, 7-5
priority, 6-5, 7-2
records, 6-2
system services, 2-5
table, 10-4

accounting
record, 2-10, 6-1, 6-6
statistics, 10-4

allocate, 5-3
application node, 2-1
attributes

cpu-poll-stats-interval, 5-29
default-priority, 5-29
grace-period, 5-29
node-status-poll-interval, 4-3
pmanager-idletimeout, 5-29
pmanager-queuedepth, 5-28
rms-keep-core, 5-30
rms-poll-interval, 4-3
tables, 10-6
users-to-mail, 8-3

B

block distribution, 3-1

C

capability, A-1, C-1
commands, 2-5, 5-1

allocate, 5-3
msqladmin, 5-9
nodestatus, 5-8
prun, 5-11
rcontrol, 5-20
rinfo, 5-32
rmsbuild, 5-35
rmsctl, 5-37
rmsexec, 5-39
rmshost, 5-41
rmspost, 8-2
rmsquery, 5-42
rmstbladm, 5-44
rmswait, 8-2

configurations, 2-10, 10-17
cyclic distribution, 3-1

D

daemons, 2-4
Database Manager (msqld), 4-2
Event Manager (eventmgr), 4-6
in database, 10-20
Machine Manager (mmanager), 4-3
Partition Manager (pmanager), 4-3
Process Manager (rmsmhd), 4-7
rmsd, 4-7

Index-1

rmsloader, 3-3
Switch Network Manager (swmgr),

4-5
Transaction Log Manager

(tlogmgr), 4-5
database, 2-2, 2-6

administration, 5-44
building, 5-35
field names, 10-1
name, 10-1
SQL interface, 2-6
SQL queries, 5-42
tables, 10-2

Database Manager, 4-2
documentation

feedback, 1-3
online, 1-3

E

Elan, A-1
Elite, A-1
Event Manager, 4-6
eventmgr, 4-6
events, 8-1

handlers, 8-3
mail alerts, 8-3
posting, 8-2
string, 8-1
table, 10-9
waiting, 8-2

G

gang scheduling, 7-1

I

installed components, 10-12
interactive node, 2-1

J

jobs, 10-12

L

load balancing, 5-39
log files, 10-24

M

Machine Manager, 4-3
machine name, 5-36
management functions, 2-3

access control, 2-9
accounting, 2-9, 6-6, 10-4
resource allocation, 2-7
scheduling, 2-8, 7-1

management server, 2-2
mmanager, 4-3
modules, A-3
msqladmin, 5-9
msqld, 4-2

N

network
external, 2-1
management, 2-2
nodes, 2-1, 10-15
switch, 2-2, 4-5

nodes
application, 2-1
interactive, 2-1
naming, 5-36
statistics, 10-16
status, 4-3
table, 10-15

nodestatus, 5-8

Index-2

P

Partition Manager, 4-3
partitions, 2-7, 4-3, 10-17

root, 2-7
scheduling, 2-8

pmanager, 4-3
priority, 7-2
Process Manager, 4-7
project, 2-9, 6-1

default, 6-1
membership, 6-2
specifying, 10-24
table, 10-19

prun, 5-11

R

rcontrol, 5-20
resources, 10-19

allocation, 2-7, 5-3
rinfo, 5-32
rms_allocateResource, D-2
rms_deallocateResource, D-2
rms_defaultPartition, D-7
rms_freeCpus, D-7
rms_getcap, C-12
rms_getcorepath, C-3
rms_getprgid, C-6
rms_killResource, D-6
rms_ncaps, C-12
rms_numCpus, D-7
rms_numNodes, D-7
rms_prgaddcap, C-10
rms_prgcreate, C-4
rms_prgdestroy, C-4
rms_prggetstats, C-13
rms_prgids, C-6
rms_prginfo, C-6
rms_prgresume, C-8
rms_prgsignal, C-8

rms_prgsuspend, C-8
rms_resumeResource, D-6
rms_run, D-4
rms_setcap, C-10
rms_setcorepath, C-3
rms_suspendResource, D-6
rmsbuild, 5-35
rmsctl, 5-37
rmsd, 4-7
rmsexec, 5-39
rmshost, 2-2, 5-41
rmsloader, 3-3, 4-7
rmsmhd, 4-7
rmspost, 8-2
rmsquery, 5-42
rmstbladm, 5-44
rmswait, 8-2

S

scheduling
algorithm, 2-9
batch, 7-2
constraints, 7-2
CPU usage, 7-2
gang, 7-1
idle time, 7-6
memory limits, 7-3, 7-5
parameters, 2-8
policies, 2-8, 7-1
preemptive, 2-9
priority, 7-2
queue, 7-4
suspending jobs, 7-6
time limit, 7-3
time sharing, 7-1
time slicing, 7-6

services, 10-21
software products, 10-22
swap space, 7-5
switch network

Index-3

adapters, A-4
barrier synchronization, A-3
boards, 10-23
control interface, 4-5, 10-9
crosspoint switch, A-1
Elan, A-1
Elans, 10-8
Elite, A-1
Elites, 10-9
fat tree network, A-1
layer, A-4
level, A-1
links, A-3
multistage network, A-1
plane, A-1
rail, A-4
reduction, A-3
top switch, A-3
uplinks, A-2

Switch Network Manager, 4-5
swmgr, 4-5
system architecture, 2-1

T

tlogmgr, 4-5
Transaction Log Manager, 4-5
transactions, 10-23

U

user commands, 2-5
users, 10-24

Index-4

	Title Page
	Contents
	List of Figures
	List of Tables
	Introduction
	Scope of Manual
	Audience
	Using this Manual
	Related Information
	Location of Online Documentation
	Reader's Comments
	Conventions

	Overview of RMS
	Introduction
	The System Architecture
	Nodes

	The Role of the RMS
	The Structure of the RMS
	The RMS Daemons
	The RMS Commands
	The RMS Database

	RMS Management Functions
	Allocating Resources
	Scheduling
	Access Control and Accounting
	RMS Configuration

	Parallel Programs Under RMS
	Introduction
	Resource Requests
	Loading and Running Programs

	RMS Daemons
	Introduction
	Startup
	Log Files
	Daemon Status

	The Database Manager
	The Machine Manager
	Interaction with the Database

	The Partition Manager
	Partition Startup
	Interaction with the Database

	The Switch Network Manager
	Interaction with the Database

	The Transaction Log Manager
	Interaction with the Database

	The Event Manager
	Interaction with the Database

	The Process Manager
	Interaction with the Database

	The RMS Daemon
	Interaction with the Database

	RMS Commands
	Introduction
	allocate(1)
	nodestatus(1)
	msqladmin(1)
	prun(1)
	rcontrol(1)
	rinfo(1)
	rmsbuild(1)
	rmsctl(1)
	rmsexec(1)
	rmshost(1)
	rmsquery(1)
	rmstbladm(1)

	Access Control, Usage Limits and Accounting
	Introduction
	Users and Projects
	Access Controls
	Access Controls Example

	How Access Controls are Applied
	Memory Limit Rules
	Priority Rules
	CPU Usage Limit Rules

	Accounting

	RMS Scheduling
	Introduction
	Scheduling Policies
	Scheduling Constraints
	What Happens When a Request is Received
	Memory Limits
	Swap Space
	Time Slicing
	Suspend and Resume
	Idle Time

	Event Handling
	Introduction
	Posting Events
	Waiting on Events

	Event Handling
	List of Events Generated
	Extending the RMS Event Handling Mechanism

	Setting up RMS
	Introduction
	Installation Planning
	Node Names

	Setting up RMS
	Starting RMS
	Initial Setup with One Partition
	Simple Day/Night Setup

	Day-to-Day Operation
	Periodic Shift Changes
	Backing Up the Database
	Summarizing Accounting Data
	Archiving Data
	Database Maintenance
	Configuring Nodes Out

	Local Customization of RMS
	Partition Startup
	Core File Handling
	Event Handling
	Switch Manager Configuration

	Log Files

	The RMS Database
	Introduction
	General Information about the Tables
	Access to the Database
	Categories of Table

	Listing of Tables
	The Access Controls Table
	The Accounting Statistics Table
	The Attributes Table
	The Elans Table
	The Elites Table
	The Events Table
	The Event Handlers Table
	The Fields Table
	The Installed Components Table
	The Jobs Table
	The Link Errors Table
	The Modules Table
	The Module Types Table
	The Nodes Table
	The Node Statistics Table
	The Partitions Table
	The Projects Table
	The Resources Table
	The Servers Table
	The Services Table
	The Software Products Table
	The Switch Boards Table
	The Transactions Table
	The Users Table

	Compaq AlphaServer SC Interconnect Terms
	Introduction
	Link States
	Link Errors

	RMS Status Values
	Overview
	Generic Status Values
	Job Status Values
	Link Status Values
	Module Status Values
	Node Status Values
	Partition Status Values
	Resource Status Values
	Transaction Status Values

	RMS Kernel Module
	Introduction
	Capabilities
	System Call Interface
	rms_setcorepath(3)
	rms_getcorepath(3)
	rms_prgcreate(3)
	rms_prgdestroy(3)
	rms_prgids(3)
	rms_prginfo(3)
	rms_getprgid(3)
	rms_prgsuspend(3)
	rms_prgresume(3)
	rms_prgsignal(3)
	rms_prgaddcap(3)
	rms_setcap(3)
	rms_ncaps(3)
	rms_getcap(3)
	rms_prggetstats(3)

	RMS Application Interface
	Introduction
	rms_allocateResource(3)
	rms_deallocateResource(3)
	rms_run(3)
	rms_suspendResource(3)
	rms_resumeResource(3)
	rms_killResource(3)
	rms_defaultPartition(3)
	rms_numCpus(3)
	rms_numNodes(3)
	rms_freeCpus(3)

	Accounting Summary Script
	Introduction
	Command Line Interface
	Example Output
	Listing of the Script

	Glossary
	Index

