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About This Manual

This user's manual defines the functionality of the PowerPC® 750GX and 750GL RISC microprocessors. It
describes features of the 750G X and 750GL that are not defined by the architecture. This book is intended as
a companion to the PowerPC Microprocessor Family: The Programming Environments (referred to as The
Programming Environments Manual).

Note: Soft copies of the latest version of this manual and documents referred to in this manual that are pro-
duced by IBM can be accessed on the world wide web as follows: http://www-3.ibm.com/chips/techlib.

Note: All information contained in this document referring to the PowerPC 750G X RISC Microprocessor also
pertains to the IBM PowerPC 750GL RISC Microprocessor.

Who Should Read This Manual

This manual is intended for system software developers, hardware developers, and applications program-
mers designing products for the 750GX. Readers should understand operating systems, microprocessor
system design, basic principles of RISC processing, and details of the PowerPC Architecture™.

Related Publications

PowerPC Architecture

* May, Cathy, et. al., eds. The PowerPC Architecture: A Specification for a New Family of RISC Proces-
sors, Second Edition. San Francisco, CA: Morgan-Kaufmann, 1994,

« McClanahan, Kip. PowerPC Programming for Intel Programmers. Foster City, CA: Hungry Minds, 1995.
« Shanley, Tom. PowerPC System Architecture, Second Edition. Richardson, TX: Addison-Wesley, 1995.

PowerPC Microprocessor Documentation

The latest version of this manual, errata, and other IBM documents referred to in this manual can be found at:
http://www.ibm.com/chips/techlib.

« PowerPC 750GX RISC Microprocessor Datasheet. Provides data about bus timing, signal behavior, elec-
trical and thermal characteristics, and other design considerations for each PowerPC implementation.

» PowerPC Microprocessor Family: The Programming Environments Manual (G522-0290-01). Provides
information about resources defined by the PowerPC Architecture that are common to PowerPC proces-
Sors.

« Implementation Variances Relative to Rev. 1 of The Programming Environments Manual.

» PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide (SA14-2093-00). This
foldout card provides an overview of the PowerPC registers, instructions, and exceptions for 32-bit imple-
mentations.

» PowerPC Microprocessor Family: The Programmer’s Reference Guide (MPRPPCPRG-01). Includes the
register summary, memory control model, exception vectors, and the PowerPC instruction set.

« Application notes. These short documents contain information about specific design issues useful to pro-
grammers and engineers working with PowerPC processors.
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Conventions Used in This Manual

Notational Conventions

mnemonics

italics

0x0

0b0

crfD

rA, rB

rD

frA, frB, frC
frD
REG[FIELD]

0000
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Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters. For example: bccetrx. Book titles in text are
set in italics.

Prefix to denote a hexadecimal number.

Prefix to denote a binary number.

Instruction syntax used to identify a destination Condition Register (CR) field.
Instruction syntax used to identify a source General Purpose Register (GPR).
Instruction syntax used to identify a destination GPR.

Instruction syntax used to identify a source Floating Point Register (FPR).
Instruction syntax used to identify a destination FPR.

Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, fields,
or ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode
enable bit in the Machine State Register.

In certain contexts, such as a signal encoding, this indicates a don't care.
Used to express an undefined numerical value.

NOT logical operator.

AND logical operator.
OR logical operator.

Indicates reserved bits or bit fields in a register. Although these bits can be written to as
either ones or zeros, they are always read as zeros.
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The following table describes terminology conventions used in this manual and the equivalent terminology

used in the PowerPC Architecture specification.

PowerPC Architecture Specification
Data-storage interrupt (DSI)
Extended mnemonics
Fixed-point unit (FXU)
Instruction storage interrupt (I1SI)
Interrupt
Privileged mode (or privileged state)
Problem mode (or problem state)
Real address
Relocation
Storage (locations)
Storage (the act of)

Store in

Store through

Instruction Field Conventions

750GX User’s Manual
DSl exception

Simplified mnemonics
Integer unit (1U)

ISI exception
Exception
Supervisor-level privilege
User-level privilege
Physical address
Translation
Memory
Access
Write back
Write through

The following table describes instruction field conventions used in this manual and the equivalent conventions

from the PowerPC Architecture specification.

PowerPC Architecture Specification
BA, BB, BT
BF, BFA
D
DS
FLM
FRA, FRB, FRC, FRT, FRS
FXM
RA, RB, RT, RS
Sl
U
Ul
1,00
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crbA, crbB, crbD (respectively)
crfD, crfS (respectively)
d
ds
FM
frA, frB, frC, frD, frS (respectively)
CRM
rA, rB, rD, rS (respectively)
SIMM
IMM
uiMM
0...0 (shaded)
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Using This Manual with the Programming Environments Manual

Because the PowerPC Architecture is designed to be flexible to support a broad range of processors, the
PowerPC Microprocessor Family: The Programming Environments Manual provides a general description of
features that are common to PowerPC processors and indicates those features that are optional or that might
be implemented differently in the design of each processor.

This document and The Programming Environments Manual describe three levels, or programming environ-
ments, of the PowerPC Architecture:

« PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level software should conform. The UISA defines the base user-level instruction set, user-
level registers, data types, memory conventions, and the memory and programming models seen by
application programmers.

« PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the
PowerPC Architecture, defines additional user-level functionality that falls outside typical user-level soft-
ware requirements. The VEA describes the memory model for an environment in which multiple proces-
sors or other devices can access external memory and defines aspects of the cache model and cache-
control instructions from a user-level perspective. The resources defined by the VEA are particularly use-
ful for optimizing memory accesses and for managing resources in an environment in which other proces-
sors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also conform to the PowerPC UISA, but might not
necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system. The OEA defines the PowerPC memory-management model,
supervisor-level registers, and the exception model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Some resources are defined more generally at one level in the architecture and more specifically at another.
For example, conditions that cause a floating-point exception are defined by the UISA, while the exception
mechanism itself is defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to ensure compatibility
across multiple platforms, those distinctions are shown clearly throughout this book.

For ease in reference, the arrangement of topics in this book follows that of The Programming Environments
Manual. Topics build upon one another, beginning with a description and complete summary of 750GX-
specific registers and instructions and progressing to more specialized topics such as 750G X-specific details
regarding the cache, exception, and memory-management models. Therefore, chapters can include informa-
tion from multiple levels of the architecture. (For example, the discussion of the cache model uses information
from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines the architecture
from the perspective of the three programming environments and remains the defining document for the
PowerPC Architecture. For information about PowerPC documentation, see Related Publications on
page 19.
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1. PowerPC 750GX Overview

The IBM PowerPC 750GX reduced instruction set computer (RISC) Microprocessor is an implementation of
the PowerPC Architecture™ with enhancements based on the IBM PowerPC 750™, 750CXe, and 750FX
RISC microprocessor designs. This chapter provides an overview of the PowerPC 750G X microprocessor
features, including a block diagram that shows the major functional components. It also describes how the
750GX implementation complies with the PowerPC Architecture definition.

Note: In this document, the IBM PowerPC 750GX RISC Microprocessor is abbreviated as 750G X or 750GX
RISC Microprocessor.

1.1 750GX Microprocessor Overview

The 750GX is a 32-bit implementation of the PowerPC Architecture in a 0.13 micron CMOS technology with
six levels of copper interconnect. The 750GX is designed for high performance and low power consumption.
It provides a superset of functionality to the PowerPC 750 processor, including a complete 60x bus interface,
and enhancements such as an integrated 1-MB L2 cache.

750GX implements the 32-bit portion of the PowerPC Architecture, which provides 32-bit effective addresses,
integer data types of 8, 16, and 32 bits, and floating-point data types of single and double-precision. 750GX is
a superscalar processor that can complete two instructions simultaneously.

It incorporates the following six execution units:
* Floating-point unit (FPU)
« Branch processing unit (BPU)
» System register unit (SRU)
» Load/store unit (LSU)

» Two integer units (IUs): IU1 executes all integer instructions. IU2 executes all integer instructions except
multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions with rapid execution
times yield high efficiency and throughput for 750G X-based systems. Most integer instructions execute in one
clock cycle. The FPU is pipelined; it breaks the tasks it performs into subtasks, and then executes in three
successive stages. Typically, a floating-point instruction can occupy only one of the three stages at a time,
freeing the previous stage to work on the next floating-point instruction. Thus, three single-precision floating-
point instructions can be in the FPU execute stage at a time. Double-precision add instructions have a 3-cycle
latency; double-precision multiply and multiply/add instructions have a 4-cycle latency.

Figure 1-1, 750GX Microprocessor Block Diagram, on page 25 shows the parallel organization of the execu-
tion units (shaded in the diagram). The instruction unit fetches, dispatches, and predicts branch instructions.
Note that this is a conceptual model that shows basic features rather than attempting to show how features
are implemented physically.

750GX has independent on-chip, 32-KB, 8-way set-associative, physically addressed caches for instructions
and data, and independent instruction and data memory management units (MMUs). Each memory manage-
ment unit has a 128-entry, 2-way set-associative translation lookaside buffer (DTLB and ITLB) that saves
recently used page-address translations. Block-address translation is done through the 8-entry instruction
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and data block-address-translation (IBAT and DBAT) arrays, defined by the PowerPC Architecture. During
block translation, effective addresses are compared simultaneously with all eight block-address-translation
(BAT) entries.

For information about the L1 cache, see Chapter 3, Instruction-Cache and Data-Cache Operation, on

page 121. The L2 cache is implemented with an on-chip, 4-way set-associative tag memory, and an on-chip
1-MB SRAM with error correction code (ECC) protection for data storage. For more information on the L2
Cache, see Chapter 9 on page 323.

The 750GX has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for system resources
through a central external arbiter. The 750GX'’s 3-state cache-coherency protocol (MEI) supports the modi-
fied, exclusive, and invalid states, a compatible subset of the MESI (modified/exclusive/shared/invalid)
4-state protocol, and it operates coherently in systems with 4-state caches. The 750GX supports single-beat
and burst data transfers for external memory accesses and memory-mapped I/O operations. The system
interface is described in Chapter 7, Signal Descriptions, on page 249 and Chapter 8, Bus Interface Opera-
tion, on page 279.

The 750GX has four software-controllable power-saving modes. The three static modes; doze, nap, and
sleep; progressively reduce power dissipation. When functional units are idle, a dynamic power management
mode causes those units to enter a low-power mode automatically without affecting operational performance,
software execution, or external hardware. The 750GX also provides a thermal assist unit (TAU) and a way to
reduce the instruction fetch rate to limit power dissipation. Power management is described in Chapter 10,
Power and Thermal Management, on page 335.

PowerPC 750GX Overview gx_01.fm.(1.2)
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Figure 1-1. 750G X Microprocessor Block Diagram
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1.2 750GX Microprocessor Features

This section lists features of the 750GX. The interrelationship of these features is shown in Figure 1-1 on
page 25.

Major features of 750GX are:

» High-performance, superscalar microprocessor.

As many as four instructions can be fetched from the instruction cache per clock cycle.
As many as two instructions can be dispatched and completed per clock.

As many as six instructions can execute per clock (including two integer instructions).
Single-clock-cycle execution for most instructions.

« Six independent execution units and two register files.

— BPU featuring both static and dynamic branch prediction.
* 64-entry (16-set, 4-way set-associative) branch target instruction cache (BTIC), a cache of
branch instructions that have been encountered in branch/loop code sequences. If a target
instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can be
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made available from the instruction cache. Typically, if a fetch access hits the BTIC, it provides
the first two instructions in the target stream effectively yielding a zero-cycle branch.

» 512-entry branch history table (BHT) with two bits per entry for four levels of prediction—not-
taken, strongly not-taken, taken, strongly taken.

« Removal of Branch instructions that do not update the Count Register (CTR) or Link Register
(LR) from the instruction stream.

— Two integer units (IUs) that share 32 general purpose registers (GPRs) for integer operands.

» |U1 can execute any integer instruction.

» |U2 can execute all integer instructions except multiply and divide instructions (multiply, divide,
shift, rotate, arithmetic, and logical instructions). Most instructions that execute in the IU2 take
one cycle to execute. The U2 has a single-entry reservation station.

— 3-stage floating-point unit (FPU).

« FPU fully compliant with IEEE® 754-1985 for both single-precision and double-precision opera-
tions.

» Support for non-IEEE mode for time-critical operations.

« Hardware support for denormalized numbers.

« Hardware support for divide.

* 2-entry reservation station.

* Thirty-two 64-bit Floating Point Registers (FPRs) for single and double-precision operations.

— 2-stage load/store unit (LSU).

e 2-entry reservation station.

e 4-entry load queue.

 Single-cycle, pipelined cache access.

» Dedicated adder performs effective address (EA) calculations.

« Performs alignment and precision conversion for floating-point data.
« Performs alignment and sign extension for integer data.

¢ 3-entry store queue.

» Supports both big-endian and little-endian modes.

System register unit (SRU) handles miscellaneous instructions.

» Executes Condition Register (CR) logical and Move-to/Move-from SPR instructions (mtspr and
mfspr).
 Single-entry reservation station.

* Rename buffers.

Six GPR rename buffers.
Six FPR rename buffers.
Condition Register buffering supports two CR writes per clock.

e Completion unit.

The completion unit retires an instruction from the 6-entry reorder buffer (completion queue) when all
instructions ahead of it have been completed, the instruction has finished execution, and no excep-
tions are pending.

Guarantees a sequential programming model and a precise-exception model.
Monitors all dispatched instructions and retires them in order.

Tracks unresolved branches and flushes instructions from the mispredicted branch path.

PowerPC 750GX Overview gx_01.fm.(1.2)
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Retires as many as two instructions per clock.

» Separate on-chip L1 instruction and data caches (Harvard architecture).

32-KB, 8-way set-associative instruction and data caches.

Pseudo least-recently-used (PLRU) replacement algorithm.

32-byte (8-word) cache block.

Physically indexed/physical tags.

Note: The PowerPC Architecture refers to physical address space as real address space.

Cache write-back or write-through operation programmable on a virtual-page or BAT-block basis.
Instruction cache can provide four instructions per clock; data cache can provide two words per clock
Caches can be disabled in software.

Caches can be locked in software.

Data-cache coherency (MEI) maintained in hardware.

The critical double word is made available to the requesting unit when it is read into the line-fill buffer.
The cache is nonblocking, so it can be accessed during block reload.

Nonblocking instruction cache (one outstanding miss).
Nonblocking data cache (four outstanding misses).
No snooping of instruction cache.

Parity for L1 tags and caches.

 Integrated L2 cache.

1-MB on-chip ECC SRAMs.
On-chip 4-way set-associative tag memory.

ECC error correction for most single-bit errors; detection of remaining single-bit errors and all double-
bit errors.

Copy-back or write-through data cache on a page basis, or for entire L2.

64-byte line size, two sectors per line.

L2 frequency at core speed.

On-board ECC; parity for L2 tags.

Supports up to four outstanding misses (three data and one instruction or four data).

Cache locking by way.

« Separate memory management units (MMUSs) for instructions and data.

52-bit virtual address; 32-bit physical address.
Address translation for virtual pages or variable-sized BAT blocks.

Memory programmable as write-back or write-through, cacheable or noncacheable, and coherency
enforced or coherency not enforced on a virtual-page or BAT block basis.

Separate IBAT and DBAT arrays (eight each) for instructions and data, respectively.
Separate virtual instruction and data translation lookaside buffers (TLBSs).

« Both TLBs are 128-entry, 2-way set associative, and use an LRU replacement algorithm.
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« TLBs are hardware-reloadable (the page table search is performed by hardware).
» Bus interface features:

— Enhanced 60x bus that pipelines back-to-back reads to a depth of four. A dedicated snoop queue that
allows snoop copybacks to also pipeline with up to the four maximum reads. Enveloped write trans-
actions supported with the assertion of DBWO.

— Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5X, 7X,
7.5x, 8X, 8.5x, 9x, 9.5x%, 10x, 11x, 12x, 13X, 14x, 15x, 16x, 17x, 18x, 19x, and 20x supported (2x, 2.5X,
3x, and 3.5x not supported with bus pipelining enabled).

— A 64-bit, split-transaction external data bus with burst transfers.

— Support for address pipelining and limited out-of-order bus transactions.
— 8-word reload buffer for the L1 data cache.

— Single-entry instruction fetch queue.

— 2-entry L2 cache castout queue.

— No-DRTRY mode eliminates the DRTRY signal from the qualified bus grant. This allows the forward-
ing of data during load operations to the internal core one bus cycle sooner than if the use of DRTRY
is enabled.

— Selectable I/O interface voltages of 1.8 V, 2.5V, or 3.3V
» Multiprocessing support features:
— Hardware-enforced, 3-state cache-coherency protocol (MEI) for data cache.

— Load/store with reservation instruction pair for atomic memory references, semaphores, and other
multiprocessor operations.

« Power and thermal management:
— Three static modes, doze, nap, and sleep, progressively reduce power dissipation:

» Doze—All the functional units are disabled except for the Time Base/Decrementer Registers and
the bus snooping logic.

* Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving only
the Time Base Register and the PLL in a powered state.

» Sleep—All internal functional units are disabled, after which external system logic can disable the
PLL and SYSCLK.

— Software-controllable thermal management. Thermal management is performed through the use of
three supervisor-level registers and a 750G X-specific thermal-management exception.

— Software-controlled frequency switching (dual PLL mode) to allow toggling between minimum and
maximum frequencies to manage power consumption based on computational load.

— Instruction-cache throttling provides control to slow instruction fetching to limit power consumption.

« Hardware-assist features for fault-tolerant systems including L2 ECC correction, parity checking on inter-
nal arrays, and dual-processor lockstep operation.

« Performance monitor can be used to help debug system designs and improve software efficiency.

* In-system testability and debugging features through Joint Test Action Group (JTAG) boundary-scan
capability.
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1.2.1 Instruction Flow

As shown in Figure 1-1, 750G X Microprocessor Block Diagram, on page 25, the 750GX instruction control
unit provides centralized control of instruction flow to the execution units. The instruction unit contains a
sequential instruction fetch (Ifetch), 6-entry instruction queue (1Q), dispatch unit, and BPU. It determines the
address of the next instruction to be fetched based on information from the sequential instruction fetcher and
from the BPU. See Chapter 6, Instruction Timing, on page 209 for more information.

The sequential instruction fetcher loads instructions from the instruction cache into the instruction queue. The
BPU extracts branch instructions from the sequential instruction fetcher. Branch instructions that cannot be
resolved immediately are predicted using either 750GX-specific dynamic branch prediction or the architec-
ture-defined static branch prediction.

Branch instructions that do not update the LR or CTR are removed from (folded out of) the instruction stream.
Instruction fetching continues along the predicted path of the branch instruction.

Instructions issued to execution units beyond a predicted branch can be executed but are not retired until the
branch is resolved. If branch prediction is incorrect, the completion unit flushes all instructions fetched on the
predicted path, and instruction fetching resumes along the correct path.

1.2.1.1 Instruction Queue and Dispatch Unit

The instruction queue (1Q), shown in Figure 1-1 on page 25, holds as many as six instructions and loads up to
four instructions from the instruction cache during a single-processor clock cycle. The instruction fetcher
continuously attempts to load as many instructions as there were vacancies created in the 1Q in the previous
clock cycle. All instructions except branches are dispatched to their respective execution units from the
bottom two positions in the instruction queue (IQ0 and 1Q1) at a maximum rate of two instructions per cycle.
Reservation stations are provided for the 1U1, IU2, FPU, LSU, and SRU for dispatched instructions. The
dispatch unit checks for source and destination register dependencies, allocates rename buffers, determines
whether a position is available in the completion queue, and inhibits subsequent instruction dispatching if
these resources are not available.

Branch instructions can be detected, decoded, and predicted from anywhere in the instruction queue. For a
more detailed discussion of instruction dispatch, see Section 6.6.1, Branch, Dispatch, and Completion-Unit
Resource Requirements, on page 237.

1.2.1.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the sequential instruction fetcher and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-cycle branch in many
cases.

Unconditional branch instructions and conditional branch instructions in which the condition is known can be
resolved immediately. For unresolved conditional branch instructions, the branch path is predicted using
either the architecture-defined static branch prediction or 750GX-specific dynamic branch prediction.
Dynamic branch prediction is enabled if the BHT bit in Hardware-Implementation-Dependent Register 0 is set
(HIDO[BHT] = 1).

When a prediction is made, instruction fetching, dispatching, and execution continue along the predicted
path, but instructions cannot be retired and write results back to architected registers until the prediction is
determined to be correct (resolved). When a prediction is incorrect, the instructions from the incorrect path
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are flushed from the processor, and instruction fetching resumes along the correct path. The 750GX allows a
second branch instruction to be predicted; instructions from the second predicted branch instruction stream
can be fetched but cannot be dispatched. These instructions are held in the instruction queue.

Dynamic prediction is implemented using a 512-entry BHT. The BHT is a cache that provides two bits per
entry that together indicate four levels of prediction for a branch instruction—not-taken, strongly not-taken,
taken, strongly taken. When dynamic branch prediction is disabled, the BPU uses a bit in the instruction
encoding to predict the direction of the conditional branch. Therefore, when an unresolved conditional branch
instruction is encountered, the 750GX executes instructions from the predicted path although the results are
not committed to architected registers until the conditional branch is resolved. This execution can continue
until a second unresolved branch instruction is encountered.

When a branch is taken (or predicted as taken), the instructions from the untaken path must be flushed, and
the target instruction stream must be fetched into the 1Q. The BTIC is a 64-entry cache that contains the most
recently used branch target instructions, typically in pairs. When an instruction fetch hits in the BTIC, the
instructions arrive in the instruction queue in the next clock cycle, a clock cycle sooner than they would arrive
from the instruction cache. Additional instructions arrive from the instruction cache in the next clock cycle.
The BTIC reduces the number of missed opportunities to dispatch instructions and gives the processor a
1-cycle head start on processing the target stream. With the use of the BTIC, the 750GX achieves a zero-
cycle delay for branches taken. Coherency of the BTIC table is maintained by table reset on an instruction-
cache flash invalidate, Instruction Cache Block Invalidate (ichi) or Return from Interrupt (rfi) instruction
execution, or when an exception is taken.

The BPU contains an adder to compute branch target addresses and three user-control registers—the Link
Register (LR), the Count Register (CTR), and the CR. The BPU calculates the return pointer for subroutine
calls and saves it into the LR for certain types of branch instructions. The LR also contains the branch target
address for the Branch Conditional to Link Register (bclrx) instruction. The CTR contains the branch target
address for the Branch Conditional to Count Register (bcctrx) instruction. Because the LR and CTR are
special purpose registers (SPRs), their contents can be copied to or from any GPR. Since the BPU uses dedi-
cated registers rather than GPRs or FPRs, execution of branch instructions is largely independent from
execution of fixed-point and floating-point instructions.

1.2.1.3 Completion Unit

The completion unit operates closely with the dispatch unit. Instructions are fetched and dispatched in
program order. At the point of dispatch, the program order is maintained by assigning each dispatched
instruction a successive entry in the 6-entry completion queue. The completion unit tracks instructions from
dispatch through execution and retires them in program order from the two bottom entries in the completion
gqueue (CQO and CQ1).

Instructions cannot be dispatched to an execution unit unless there is a vacancy in the completion queue and
rename buffers are available. Branch instructions that do not update the CTR or LR are removed from the
instruction stream and do not occupy a space in the completion queue. Instructions that update the CTR and
LR follow the same dispatch and completion procedures as nonbranch instructions, except that they are not
issued to an execution unit.

An instruction is retired when it is removed from the completion queue and its results are written to archi-
tected registers (GPRs, FPRs, LR, and CTR) from the rename buffers. In-order completion ensures program
integrity and the correct architectural state when the 750GX must recover from a mispredicted branch or any
exception. Also, the rename buffers assigned to it by the dispatch unit are returned to the available rename
buffer pool. These rename buffers are reused by the dispatch unit as subsequent instructions are dispatched.
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For a more detailed discussion of instruction completion, see Section 6.6.1, Branch, Dispatch, and Comple-
tion-Unit Resource Requirements, on page 237.

1.2.2 Independent Execution Units

In addition to the BPU, the 750GX has the following five execution units:

e Two integer units (IUs)

* Floating-point unit (FPU)

« Load/store unit (LSU)

» System register unit (SRU)

1.2.2.1 Integer Units (IUs)

The integer units, IU1 and 1U2, are shown in Figure 1-1 on page 25. IU1 can execute any integer instruction;
IU2 can execute any integer instruction except multiplication and division instructions. Each U has a single-
entry reservation station that can receive instructions from the dispatch unit and operands from the GPRs or
the rename buffers. The output of the IU is latched in the rename buffer assigned to the instruction by the
dispatch unit.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for logical operations,
and a subunit for performing rotates, shifts, and count-leading-zero operations. These subunits handle all
1-cycle arithmetic and logical integer instructions; only one subunit can execute an instruction at a time.

The IU1 has a 32-bit integer multiplier/divider, as well as the adder, shift, and logical units of the IU2. The
multiplier supports early exit for operations that do not require full 32 x 32-bit multiplication. Multiply and
divide instructions spend several cycles in the execution stage before the results are written to the output
rename buffer.

1.2.2.2 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1 on page 25, is designed as a 3-stage pipelined processing unit, where the first
stage is for multiply, the second stage is for add, and the third stage is for normalize. A single-precision
multiply/add operation is processed with 1-cycle throughput and 3-cycle latency. (A single-precision instruc-
tion spends one cycle in each stage of the FPU). A double-precision multiply requires two cycles in the
multiply stage and one cycle in each additional stage. A double-precision multiply/add has a 2-cycle
throughput and a 4-cycle latency. As instructions are dispatched to the FPU reservation station, source
operand data can be accessed from the FPRs or from the FPR rename buffers. Results, in turn, are written to
the rename buffers and are made available to subsequent instructions. Instructions pass through the reserva-
tion station and the pipeline stages in program order. Stalls due to contention for FPRs are minimized by
automatic allocation of the six floating-point rename buffers. The completion unit writes the contents of the
rename buffer to the appropriate FPR when floating-point instructions are retired.

The 750GX supports all IEEE 754-1985 floating-point data types (normalized, denormalized, not a number
(NaN), zero, and infinity) in hardware, eliminating the latency incurred by software exception routines. (Note
that “exception” is also referred to as “interrupt” in the architecture specification.)
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1.2.2.3 Load/Store Unit (LSU)

The LSU executes all load-and-store instructions and provides the data-transfer interface between the GPRs,
FPRs, and the data-cache/memory subsystem. The LSU functions as a 2-stage pipelined unit, which calcu-
lates effective addresses in the first stage. In the second stage, the address is translated, the cache is
accessed, and the data is aligned if necessary. Unless extensive data alignment is required (for example, to
cross a double-word boundary), the instructions complete in two cycles with a 1-cycle throughput. The LSU
also provides sequencing for load/store string and multiple register transfer instructions.

Load-and-store instructions are translated and issued in program order. However, some memory accesses
can occur out of order. Synchronizing instructions can be used to enforce strict ordering if necessary. When
there are no data dependencies and the guard bit for the page or block is cleared, a maximum of one out-of-
order cacheable load operation can execute per cycle, with a 2-cycle total latency on a cache hit. Data
returned from the cache is held in a rename buffer until the completion logic commits the value to a GPR or
FPR. Stores cannot be executed out of order and are held in the store queue until the completion logic
signals that the store operation is to be completed to memory. The 750GX executes store instructions with a
maximum throughput of one per cycle and a 3-cycle latency to the data cache. The time required to perform
the actual load or store operation depends on the processor/bus clock ratio and whether the operation
involves the L1 cache, the L2 cache, system memory, or an I/O device.

The L/S unit has two reservation stations, EibO and Eibl. For loads, there is also a hold queue and a miss
gueue. A load that misses in the dcache advances from EibO to the miss queue, where only necessary state
for instruction completion like the instruction ID and register rename ID are stored. If another load misses
under an outstanding miss, then it is held in the hold queue and EibO is free. Two more load instructions may
now be dispatched to EibO and Eibl. The Miss-under-Miss feature allows the hold, Eib0O, and Eib1 load
requests to proceed out to the bus, even though there is an outstanding miss that would normally stall the
pending loads.

1.2.2.4 System Register Unit (SRU)

The SRU executes various system-level instructions, as well as Condition Register logical operations and
Move-to/Move-from Special-Purpose Register instructions. To maintain system state, most instructions
executed by the SRU are execution-serialized with other instructions; that is, the instruction is held for execu-
tion in the SRU until all previously issued instructions have been retired. Results from execution-serialized
instructions executed by the SRU are not available or forwarded for subsequent instructions until the instruc-
tion completes.

1.2.3 Memory Management Units (MMUSs)

The 750GX’s MMUs support up to 4 petabytes (252) of virtual memory and 4 gigabytes (232) of physical
memory for instructions and data. The MMUs also control access privileges for these spaces on block and
page granularities. Referenced and changed status is maintained by the processor for each page to support
demand-paged virtual memory systems.

The LSU, with the aid of the MMU, translates effective addresses for data loads and stores. The effective
address is calculated on the first cycle, and the MMU translates it to a physical address at the same time it is
accessing the L1 cache on the second cycle. The MMU also provides the necessary control and protection
information to complete the access. By the end of the second cycle, the data and control information is avail-
able if no miss conditions for translate and cache access were encountered. This yields a 1-cycle throughput
and a 2-cycle latency.
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The 750GX supports the following types of memory translation:

Real-addressing mode In this mode, translation is disabled (control bit MSR(IR) = O for instructions and
control bit MSR(DR) = 0 for data). The effective address is used as the physical
address to access memory.

Virtual-page-address Translates from an effective address to a physical address by using the Segment
translation Registers and the TLB and access data from a 4-KB virtual page. This page is
either in physical memory or on disk. If the latter, a page-fault exception occurs.

Block-address Translates the effective address into a physical address by using the BAT Regis-
translation ters and accesses a block (128 KB to 256 MB) in memory.

If translation is enabled, the appropriate MMU translates the higher-order bits of the effective address into
physical address bits by using either BATs or the page translation method. The lower-order address bits,
which are untranslated and therefore, considered both logical and physical, are directed to the L1 caches
where they form the index into the 8-way set-associative tag and data arrays. After translating the address,
the MMU passes the higher-order physical address bits to the cache, and the cache lookup completes. For
caching-inhibited accesses or accesses that miss in the cache, the untranslated lower-order address bits are
concatenated with the translated higher-order address bits. The resulting 32-bit physical address is used and
accesses the L2 cache or system memory via the 60x bus.

If the BAT Registers are enabled and the address translates via this method, the page translation is canceled
and the high-order physical address bits from the BAT Register are forward to the cache/memory access
system. There are eight 8-byte BAT Registers, which function like an associative memory. These registers
provide cache-control and protection information as well as address translation. Only one of the eight BAT
entries should translate a given effective address.

If address relocation is enabled and the effective address does not translate via the BAT method, the virtual-
page method is used. The four high-order bits of the effective address are used to access the 16-entry
Segment Register array. From this array, a 24-bit Segment Register is accessed and used to form the high-
order bits of a 52-bit virtual address. The low-order 28 bits of the effective address are used to form the low-
order bits of the virtual address. This 52-bit virtual address is translated into a physical address by doing a
lookup in the TLB. If the lookup is successful, a physical address is formed by using 16 low-order bits from the
virtual address and 16 high-order bits from the TLB. The TLB also provides cache-control and protection
information to be used by the cache/memory system.

TLBs are 128-entry, 2-way, set-associative caches that contain information about recently translated virtual
addresses. When an address translation is not in a TLB, the 750GX automatically generates a page table
search in memory to update the TLB. This search could find the desired entry in the L1 or L2 cache or in the
page table in memory. The time to reload a TLB entry depends on where it is found; it could be completed in
just a few cycles. If memory is searched, a maximum of 16 bus cycles would be needed before a page-fault
exception is signaled.

1.2.4 On-Chip Level 1 Instruction and Data Caches

The 750GX implements separate instruction and data caches. Each cache is 32-KB and 8-way set-associa-
tive. The caches are physically indexed. Each cache block contains eight contiguous words from memory that
are loaded from an 8-word boundary (bits EA[27-31] are zeros); thus, a cache block never crosses a page
boundary. A miss in the L1 cache causes a block reload from either the L2 cache, if the block is in the L2
cache, or from main memory. The critical double word is accessed first, forwarded to the load/store unit, and
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written into an 8-word buffer. Subsequent double words are fetched from either the L2 cache or the system
memory and written into the buffer. Once the total block is in the buffer, the line is written into the L1 cache in
a single cycle. This minimizes write cycles into the L1 cache, leaving more read/write cycles available to the
LSU. The L1 is nonblocking and supports hits under misses during this block reload sequence. Misaligned
accesses across a block or page boundary can incur a performance penalty. The 750GX L1 data cache
supports miss-under-miss access, meaning that with one miss outstanding, the cache can continue to be
accessed for up to three more misses. The 750GX L1 data cache also allows the additional misses to initiate
a transaction in the bus interface unit, while the first miss is pending.

The 750GX L1 cache organization is shown in Figure 1-2, L1 Cache Organization.

Figure 1-2. L1 Cache Organization
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The data cache provides double-word accesses to the LSU each cycle. Like the instruction cache, the data
cache can be invalidated all at once or on a per-cache-block basis. The data cache can be disabled and
invalidated by clearing the data-cache enable bit (HIDO[DCE]) and setting the data-cache flash invalidate bit
(HIDO[DCEFI]). The data cache can be locked by setting HIDO[DLOCK]. To ensure cache coherency, the data
cache supports the 3-state MEI protocol. The data-cache tags are single-ported, so a simultaneous load or
store and a snoop access represent a resource collision, and an LSU access is delayed for one cycle. If a
snoop hit occurs and a castout is required, the LSU is blocked internally for one cycle to allow the 8-word
block of data to be copied to the write-back buffer.

The instruction cache provides up to four instructions to the instruction queue in a single cycle. Like the data
cache, the instruction cache can be invalidated all at once or on a cache-block basis. The instruction cache
can be disabled and invalidated by clearing the instruction-cache enable bit (HIDO[ICE]) and setting the
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instruction-cache flash invalidate bit (HIDO[ICFI]). The instruction cache can be locked by setting
HIDO[ILOCK]. The instruction cache supports only the valid and invalid states, and requires software to main-
tain coherency if the underlying program changes.

The 750GX also implements a 64-entry (16-set, 4-way set-associative) branch target instruction cache
(BTIC). The BTIC is a cache of branch instructions that have been encountered in branch/loop code
sequences. If the target instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it
can be made available from the instruction cache. Typically, the BTIC contains the first two instructions in the
target stream. The BTIC can be disabled and invalidated through software.

Coherency of the BTIC is transparent to the running software and is coupled with various functions in the
750GX processor. When the BTIC is enabled and loaded with instruction pairs to support zero-cycle delay on
branches taken, the table must be invalidated if the underlying program changes. (This is also true for the
instruction cache.) The BTIC is invalidated on an instruction-cache flash invalidate, an icbi or rfi instruction,
and any exception.

For more information and timing examples showing cache hit and cache miss latencies, see Section 6.3.2,
Instruction Fetch Timing, on page 216.

1.2.5 On-Chip Level 2 Cache Implementation

The L2 cache is a unified cache that receives memory requests from both the L1 instruction and data caches
independently. The L2 cache is implemented with an L2 Cache Control Register (L2CR), an on-chip, 4-way,
set-associative tag array, and with a 1-MB, integrated SRAM for data storage. The L2 cache normally oper-
ates in write-back mode and supports cache coherency through snooping. The access interface to the L2 is
64 bits for writes and requires four cycles to write a single cache block. The access interface to the L2 is 256
bits for reads and requires one cycle to read a single cache block. The L2 uses ECC on a double word,
corrects most single-bit errors, and detects the remaining single-bit errors and all double-bit errors. See
Figure 9-1, L2 Cache, on page 327.

The L2 cache is organized with 64-byte lines, which in turn are subdivided into 32-byte blocks, the unit at
which cache coherency is maintained. This reduces the size of the tag array, and one tag supports two cache
blocks. Each 32-byte cache block has its own valid and modified status bits. When a cache line is removed,
the contents of both blocks and the tag are removed from the L2 cache. The cache block is only written to
system memory if the modified bit is set.

Requests from the L1 cache generally result from instruction misses, data load or store misses, write-through
operations, or cache-management instructions. Misses from the L1 cache are looked up in the L2 tags and
serviced by the L2 cache if they hit; they are forwarded to the 60x bus interface if they miss.

The L2 cache can accept multiple, simultaneous accesses. However, they are serialized and processed one
per cycle. The L1 instruction cache can request an instruction at the same time that the L1 data cache
requests one load and two store operations. The L2 cache also services snoop requests from the bus. If there
are multiple pending requests to the L2 cache, snoop requests have highest priority. Load-and-store requests
from the L1 data cache have the next highest priority. The last priority consists of instruction fetch requests
from the L1 instruction cache.

1.2.6 System Interface/Bus Interface Unit (BIU)

The PowerPC 750GX uses a reduced system signal set, which eliminates some optional 60x bus protocol
pins. The system designer needs to make note of these differences.
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The address and data buses operate independently. Address and data tenures of a memory access are
decoupled to provide more flexible control of bus traffic. The primary activity of the system interface is trans-
ferring data and instructions between the processor and system memory. There are two types of memory
accesses:

Single-beat transfers Allow transfer sizes of 8, 16, 24, 32, or 64 bits in one bus clock cycle. Single-beat
transactions are caused by uncacheable read and write operations that access
memory directly when caches are disabled, for cache-inhibited accesses, and for
stores in write-through mode. The two latter accesses are defined by control bits
provided by the MMU during address translation.

4-beat burst (32-byte) Burst transactions, which always transfer an entire cache block (32 bytes), are initi-

data transfers ated when an entire cache block is transferred. If the caches on the 750GX are
enabled and using write-back mode, burst-read operations are the most common
memory accesses, followed by burst-write memory operations.

The 750GX also supports address-only operations, which are variants of the burst and single-beat operations
(for example, atomic memory operations and global memory operations that are snooped), and address retry
activity (for example, when a snooped read access hits a modified block in the cache). The broadcast of
some address-only operations is controlled through the address broadcast enable bit (HIDO[ABE]). /O
accesses use the same protocol as memory accesses.

Access to the system interface is granted through an external arbitration mechanism that allows devices to
compete for bus mastership. This arbitration mechanism is flexible, allowing the 750GX to be integrated into
systems that implement various fairness and bus-parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including load/store string and
multiple instructions, do not necessarily complete in the order they begin. This maximizes the efficiency of the
bus without sacrificing data coherency. The 750GX allows read operations to go ahead of store operations
except when a dependency exists, or when a noncacheable access is performed. It also allows a write oper-
ation to go ahead of a previously queued read data tenure (for example, letting a snoop push be enveloped
between address and data tenures of a read operation). Because the 750GX can dynamically optimize run-
time ordering of load/store traffic, overall performance is improved.

The system interface is specific for each PowerPC microprocessor implementation.

The 750GX signals are grouped as shown in Figure 1-3, System Interface. Test and control signals provide
diagnostics for selected internal circuits.
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Figure 1-3. System Interface
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The system interface supports address pipelining, which allows the address tenure of one transaction to
overlap the data tenure of another. The 750GX can support up to five outstanding transactions on the bus,
including up to one snoop copyback, up to four loads, and up to four stores. The extent of the pipelining
depends on external arbitration and control circuitry. Similarly, the 750GX supports split-bus transactions for
systems with multiple potential bus masters—one device can be master of the address bus while another is
master of the data bus. Allowing multiple bus transactions to occur simultaneously increases the available
bus bandwidth for other activity.

The 750GX’s clocking structure supports a wide range of processor-to-bus clock ratios.

1.2.7 Signals

The 750GX’s signals are grouped as follows:

Address arbitration The 750GX uses these signals to arbitrate for address-bus mastership.

Address start This signal indicates that a bus master has begun a transaction on the address
bus.

Address transfer These signals include the address bus and are used to transfer the address.

Transfer attribute These signals provide information about the type of transfer, such as the transfer

size and whether the transaction is burst, write-through, or caching-inhibited.

Address termination These signals are used to acknowledge the end of the address phase of the trans-
action. They also indicate whether a condition exists that requires the address
phase to be repeated.

Data arbitration The 750GX uses these signals to arbitrate for data-bus mastership.
Data transfer These signals include the data bus and are used to transfer the data.
Data termination These signals are required after each data beat in a data transfer. In a single-beat

transaction, a data termination signal also indicates the end of the tenure. In burst
accesses, data termination signals apply to individual beats and indicate the end of
the tenure only after the final data beat.
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Interrupt These signals include the interrupt signal, checkstop signals, and both soft reset
and hard reset signals. These signals are used to generate interrupt exceptions
and, under various conditions, to reset the processor.

Processor status/control These signals are used to indicate miscellaneous bus functions.

Clocks These signals determine the system clock frequency. These signals can also be
used to synchronize multiprocessor systems.

Test and control The common on-chip processor (COP) unit provides a serial interface to the
system for performing board-level boundary scan interconnect tests.

Note: A bar over a signal name indicates that the signal is active low—for example, ARTRY (address retry)
and TS (transfer start). Active-low signals are referred to as asserted (active) when they are low and as
negated when they are high. Signals that are not active low, such as A[0-31] (address-bus signals) and
TT[0-4] (transfer type signals) are referred to as asserted when they are high and as negated when they are
low.

1.2.8 Signal Configuration

Figure 1-4 shows the 750GX’s logical pin configuration. The signals are grouped by function.
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Figure 1-4. 750GX Microprocessor Signal Groups
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Signal functionality is described in detail in Chapter 7, Signal Descriptions, on page 249 and Chapter 8, Bus
Interface Operation, on page 279.

Note: See the PowerPC 750GX Datasheet for a complete list of signal pins.
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1.2.9 Clocking

The 750GX requires a single system clock input, SYSCLK, that represents the bus interface frequency. Inter-
nally, the processor uses a phase-locked loop (PLL) circuit to generate a master core clock that is frequency-
multiplied and phase-locked to the SYSCLK input. This core frequency is used to operate the internal
circuitry.

The PLL is configured by the PLL_CFGJ0:4] signals, which select the multiplier that the PLL uses to multiply
the SYSCLK frequency up to the internal core frequency. In addition, the 750GX has two PLL_RNG bits that
set the proper operation frequency range. The feedback in the PLL guarantees that the processor clock is
phase locked to the bus clock, regardless of process variations, temperature changes, or parasitic capaci-
tances.

The PLL also ensures a 50% duty cycle for the processor clock.

The 750GX supports various processor-to-bus clock frequency ratios, although not all ratios are available for
all frequencies. Configuration of the processor/bus clock ratios is displayed through a 750GX-specific
register, HID1. For information about supported clock frequencies, see the PowerPC 750GX Datasheet.

1.3 750GX Microprocessor Implementation

The PowerPC Architecture is derived from the Performance Optimized with Enhanced RISC (POWER™)
architecture. The PowerPC Architecture shares the benefits of the POWER architecture optimized for single-
chip implementations. The PowerPC Architecture design facilitates parallel instruction execution, and is scal-
able to take advantage of future technological gains.

The remainder of this chapter describes the PowerPC Architecture in general, and specific details about the
implementation of 750GX as a low-power, 32-bit member of the PowerPC processor family. The structure of
the remainder of this chapter reflects the organization of the user’s manual; each section provides an over-
view of the corresponding chapter. The following sections summarize the features of the 750GX, distin-
guishing those that are defined by the architecture from those that are unique to the 750GX implementation.

Registers and Section 1.4, PowerPC Registers and Programming Model, on page 42 describes

programming model the registers for the operating environment architecture common among PowerPC
processors and describes the programming model. It also describes the registers
that are unique to the 750GX. The information in this section is described more fully
in Chapter 2, Programming Model, on page 57.

Instruction set and Section 1.5, Instruction Set, on page 45 describes the PowerPC instruction set and

addressing modes addressing modes for the PowerPC operating environment architecture, defines
the PowerPC instructions implemented in the 750GX, and describes new instruc-
tion set extensions to improve the performance of single-precision floating-point
operations and the capability of data transfer. The information in this section is
described more fully in Section 2.3, Instruction Set Summary, on page 86.

Cache implementation  Section 1.6, On-Chip Cache Implementation, on page 47 describes the cache
model that is defined generally for PowerPC processors by the virtual environment
architecture. It also provides specific details about the 750GX L2 cache implemen-
tation. The information in this section is described more fully in Chapter 3, Instruc-
tion-Cache and Data-Cache Operation, on page 121.
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Section 1.7, Exception Model, on page 48 describes the exception model of the
PowerPC operating environment architecture and the differences in the 750GX
exception model. The information in this section is described more fully in
Chapter 4, Exceptions, on page 151.

Section 1.8, Memory Management, on page 51 describes in general terms the
conventions for memory management among the PowerPC processors. This
section also describes the 750GX’s implementation of the 32-bit PowerPC
memory-management specification. The information in this section is described
more fully in Chapter 5, Memory Management, on page 179.

Section 1.9, Instruction Timing, on page 52 provides a general description of the
instruction timing provided by the superscalar, parallel execution supported by the
PowerPC Architecture and the 750GX. The information in this section is described
in more detail in Chapter 6, Instruction Timing, on page 209.

Section 1.10, Power Management, on page 54 describes how power management
can be used to reduce power consumption when the processor, or portions of it,
are idle. The information in this section is described more fully in Chapter 10,
Power and Thermal Management, on page 335.

Section 1.11, Thermal Management, on page 55 describes how the thermal-
management unit and its associated registers (THRM1-THRM4) and exception
processing can be used to manage system activity in a way that prevents
exceeding system and junction temperature thresholds. This is particularly useful in
high-performance portable systems, which cannot use the same cooling mecha-
nisms (such as fans) that control overheating in desktop systems. The information
in this section is described more fully in Chapter 10, Power and Thermal Manage-
ment, on page 335.

Section 1.12, Performance Monitor, on page 56 describes the performance-
monitor facility, which system designers can use to help bring up, debug, and opti-
mize software performance. The information in this section is described more fully
in Chapter 11, Performance Monitor and System Related Features, on page 349.

The PowerPC Architecture consists of the following layers, and adherence to the PowerPC Architecture can
be described in terms of which of the following levels of the architecture is implemented.

PowerPC user instruction Defines the base user-level instruction set, user-level registers, data types,

set architecture (UISA)

floating-point exception model, memory models for a uniprocessor environment,
and programming model for a uniprocessor environment.

PowerPC virtual environ- Describes the memory model for a multiprocessor environment, defines cache-
ment architecture (VEA) control instructions, and describes other aspects of virtual environments. Imple-

PowerPC operating

mentations that conform to the VEA also adhere to the UISA, but might not neces-
sarily adhere to the OEA.

Defines the memory-management model, supervisor-level registers, synchroniza-

environment architecture tion requirements, and the exception model. Implementations that conform to the

(OEA)
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1.4 PowerPC Registers and Programming Model

The PowerPC Architecture defines register-to-register operations for most computational instructions. Source
operands for these instructions are accessed from the registers or are provided as immediate values
embedded in the instruction itself. The 3-register instruction format allows specification of a target register
distinct from the two source operands. Only load-and-store instructions transfer data between registers and
memory.

PowerPC processors have two levels of privilege: supervisor mode and user mode.The supervisor mode of
operation is typically used by the operating system. The user mode of operation, also called the problem
state, is typically used by the application software. The programming models incorporate 32 GPRs, 32 FPRs,
Special-Purpose Registers (SPRs), and several miscellaneous registers. Each PowerPC microprocessor
also has its own unique set of Hardware-Implementation-Dependent (HID) Registers.

While running in supervisor mode, the operating system is able to execute all instructions and access all
registers defined in the PowerPC Architecture. In this mode, the operating system establishes all address
translations and protection mechanisms, loads all Processor State Registers, and sets up all other control
mechanisms defined in the PowerPC 750G X processor. While running in user mode (problem state), many of
these registers and facilities are not accessible, and any attempt to read or write these register results in a
program exception.

Figure 2-1, PowerPC 750GX Microprocessor Programming Model—Registers, on page 58 shows all the
750GX registers available at the user and supervisor levels. The numbers to the right of the SPRs indicate
the number that is used in the syntax of the instruction operands to access the register. For more information,
see Chapter 2, Programming Model, on page 57.

The following tables summarize the PowerPC registers implemented in 750GX, and describe registers
(excluding SPRs) defined by the architecture.

Table 1-1. Architecture-Defined Registers (Excluding SPRs)

Register Level Function

The Condition Register (CR) consists of eight 4-bit fields that reflect the results of certain opera-
CR User tions, such as move, integer and floating-point compare, arithmetic, and logical instructions. The
register provides a mechanism for testing and branching.

The 32 Floating Point Registers (FPRs) serve as the data source or destination for floating-point
FPRs User instructions. These 64-bit registers can hold single-precision or double-precision floating-point val-
ues.

The Floating-Point Status and Control Register (FPSCR) contains the floating-point exception sig-
FPSCR User nal bits, exception summary bits, exception enable bits, and rounding control bits needed for com-
pliance with the IEEE 754-1985 standard.

The 32 GPRs contain the address and data arguments addressed from source or destination fields
GPRs User in integer instructions. Also, floating-point load-and-store instructions use GPRs to address mem-
ory.

The Machine State Register (MSR) defines the processor state. Its contents are saved when an
exception is taken and restored when exception handling completes. The 750G X implements

MSR Supervisor MSR[POW], defined by the architecture as optional, which is used to enable the power manage-
ment feature. The 750GX-specific MSR[PM] bit is used to mark a process for the performance
monitor.

The sixteen 32-bit Segment Registers (SRs) define the 4-GB space as sixteen 256-MB seg-
ments.The 750G X implements Segment Registers as two arrays—a main array for data accesses

SRO-SR15 Supervisor and a shadow array for instruction accesses (see Figure 1-1 on page 25). Loading a segment entry
with the Move-to Segment Register (mtsr) instruction loads both arrays. The mfsr instruction
reads the master register, shown as part of the data MMU in Figure 1-1 on page 25.
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The OEA defines numerous Special-Purpose Registers that serve a variety of functions, such as providing
controls, indicating status, configuring the processor, and performing special operations. During normal
execution, a program can access the registers shown in Figure 2-1 on page 58, depending on the program’s
access privilege (supervisor or user, determined by the privilege-level (PR) bit in the MSR). GPRs and FPRs
are accessed through operands that are defined in the instructions. Access to registers can be explicit (that
is, through the use of specific instructions for that purpose such as Move-to Special-Purpose Register
(mtspr) and Move-from Special-Purpose Register (mfspr) instructions) or implicit, as the part of the execu-
tion of an instruction. Some registers can be accessed both explicitly and implicitly.

In the 750GX, all SPRs are 32 bits wide. Table 1-2 describes the architecture-defined SPRs implemented by
the 750GX. In the PowerPC Microprocessor Family: The Programming Environments Manual, these registers
are described in detail, including bit descriptions. Section 2.1.1, Register Set, on page 57 describes how
these registers are implemented in the 750GX. In particular, that section describes those features defined as
optional in the PowerPC Architecture that are implemented on the 750GX.

Table 1-2. Architecture-Defined SPRs Implemented (Page 1 of 2)

Register Level Function

The Link Register (LR) can be used to provide the branch target address and to hold

LR User the return address after branch and link instructions.
The architecture defines eight Block Address Translation Registers (BATs), each imple-
BATs Supervisor mented as a pair of 32-bit SPRs. In the 750GX, the BAT facility has been extended to
P include 16 BATSs (32 total SPRs), eight for instruction translation and eight for data
translation. BATs are used to define and configure blocks of memory.
CTR User ;Ii'gr?SCount Register (CTR) is decremented and tested by branch-and-count instruc-
DABR Supenvisor The optl_onal D_gta Address Breakpoint Register (DABR) supports the data address
breakpoint facility.
The Data Address Register (DAR) holds the address of an access after an alignment or
DAR User . ;
data-storage interrupt (DSI) exception.
. The Decrementer Register (DEC) is a 32-bit decrementing counter that provides a way
DEC Supervisor to schedule time-delayed exceptions.
DSISR User The Data Storage Interrupt Status Register (DSISR) defines the cause of data access

and alignment exceptions.

The External Access Register (EAR) controls access to the external access facility
EAR Supervisor through the External Control In Word Indexed (eciwx) and External Control Out Word
Indexed (ecowx) instructions.

The Processor Version Register (PVR) is a read-only register that identifies the proces-

PVR Supervisor sor version and revision level.
SDR1 Supervisor _Storage Descrlpt'lon Register 1 (SDR1) spe_cmes the page table address and size used
in virtual-to-physical page-address translation.
The Machine Status Save/Restore Register 0 (SRRO0) saves the address used for
SRRO Supervisor restarting an interrupted program when an rfi instruction executes (also known as
exceptions).
SRR1 Supervisor The Machine Status Save/Restore Register 1 (SRR1) is used to save machine status
P on exceptions and to restore machine status when an rfi instruction is executed.
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Table 1-2. Architecture-Defined SPRs Implemented (Page 2 of 2)

Register

SPRGO-SPRG3

B

XER

Level

Supervisor

User: read
Supervisor:
read/write

User

Function
The general-purpose SPRs (SPRG0-SPRG3) are provided for operating system use.

The Time Base Register (TB) is a 64-bit register that maintains the time and date vari-
able. The TB consists of two 32-bit fields—time-base upper (TBU) and time-base lower
(TBL).

The Integer Exception Register (XER) contains the summary overflow bit, integer carry
bit, overflow bit, and a field specifying the number of bytes to be transferred by a Load
String Word Indexed (Iswx) or Store String Word Indexed (stswx) instruction.

Table 1-3 describes the SPRs in 750GX that are not defined by the PowerPC Architecture. Section 2.1.2,
PowerPC 750GX-Specific Registers, on page 64 gives detailed descriptions of these registers, including bit

descriptions.

Table 1-3. Implementation-Specific Registers

Register
HIDO
HID1

HID2

IABR

ICTC

L2CR

MMCRO-MMCR1

PMC1-PMC4

SIA

THRM1, THRM2
THRM3
THRM4

UMMCRO-UMMCR1

UPMC1-UPMC4

USIA
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Level
Supervisor
Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

User

User

User

Function

The Hardware-Implementation-Dependent Register 0 (HIDO) provides checkstop
enables and other functions.

The Hardware-Implementation-Dependent Register 1 (HID1) controls the dual PLLs.

The Hardware-Implementation-Dependent Register 2 (HID2) provides control and sta-
tus of special cache-related parity functions.

The Instruction Address Breakpoint Register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the 1Q. An address match causes an instruction address breakpoint exception.

The Instruction Cache-Throttling Control Register (ICTC) has bits for controlling the
interval at which instructions are fetched into the instruction buffer in the instruction
unit. This helps control the 750GX’s overall junction temperature.

The L2 Cache Control Register (L2CR) is used to configure and operate the L2 cache.

The Monitor Mode Control Registers (MMCRO-MMCRL1) are used to enable various
performance monitoring interrupt functions. UMMCRO-UMMCRL1 provide user-level
read access to MMCRO-MMCR1.

The Performance-Monitor Counter Registers (PMC1-PMC4) are used to count speci-
fied events. UPMC1-UPMC4 provide user-level read access to these registers.

The Sampled Instruction Address Register (SIA) holds the EA of an instruction execut-
ing at or around the time the processor signals the performance-monitor interrupt con-
dition. The USIA register provides user-level read access to the SIA.

THRM1 and THRM2 provide a way to compare the junction temperature against two
user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or
THRM2.

THRM3 is used to enable the TAU and to control the output sample time.

THRMA4 provides the temperature offset to junction temperature for accurate operation
of the thermal assist unit.

The User Monitor Mode Control Registers (UMMCRO-UMMCR1) provide user-level
read access to MMCRO-MMCR1.

The User Performance-Monitor Counter Registers (UPMC1-UPMC4) provide user-
level read access to PMC1-PMC4.

The User Sampled Instruction Address Register (USIA) provides user-level read
access to the SIA register.
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1.5 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent
among all instruction types (the primary operation code is always 6 bits, register operands are always speci-
fied in the same bit fields in the instruction), permitting efficient decoding to occur in parallel with operand
accesses. This fixed instruction length and consistent format greatly simplify instruction pipelining.

For more information, see Chapter 2, Programming Model, on page 57.

1.5.1 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories.

 Integer instructions—These include computational and logical instructions.

Integer arithmetic instructions
Integer compare instructions
Integer logical instructions

Integer rotate and shift instructions

* Floating-point instructions—These include floating-point computational instructions, as well as instruc-
tions that affect the FPSCR.

Floating-point arithmetic instructions

Floating-point multiply/add instructions
Floating-point rounding and conversion instructions
Floating-point compare instructions

Floating-point status and control instructions

« Load/store instructions—These include integer and floating-point load-and-store instructions.

Integer load-and-store instructions

Integer load-and-store multiple instructions

Floating-point load and store

Primitives used to construct atomic memory operations (Load Word and Reserve Indexed [lwarx]
and Store Word Conditional Indexed [stwcx.] instructions)

« Flow-control instructions—These include branching instructions, Condition Register logical instructions,
trap instructions, and other instructions that affect the instruction flow.

— Branch and trap instructions
— Condition Register logical instructions (sets conditions for branches)
— System call

« Processor control instructions—These instructions are used to synchronize memory accesses and to
manage caches, TLBs, and the Segment Registers.

— Move-to/Move-from SPR instructions
Move-to/Move-from MSR

Synchronize (processor and memory system)
Instruction synchronize

Order loads and stores

* Memory control instructions—To provide control of caches, TLBs, and SRs.

— Supervisor-level cache-management instructions
— User-level cache instructions
— Segment Register manipulation instructions
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— Translation-lookaside-buffer management instructions

These categories do not indicate the execution unit that executes a particular instruction or group of instruc-
tions.

Integer instructions operate on byte, half-word, and word operands. Floating-point instructions operate on
single-precision (one word) and double-precision (two words) floating-point operands. The PowerPC Archi-
tecture uses instructions that are four bytes long and word-aligned. It provides for integer byte, half-word, and
word operand loads and stores between memory and a set of 32 GPRs. It also provides for single and
double-precision loads and stores between memory and a set of 32 Floating Point Registers (FPRs).

Computational instructions do not access memory. To use a memory operand in a computation and then
modify the same or another memory location, the memory contents must be loaded into a register, modified,
and then written back to the target location using three or more instructions.

PowerPC processors follow the program flow when they are in the normal execution state; however, the flow
of instructions can be interrupted directly by the execution of an instruction or by an asynchronous event.
Either type of exception will cause the associated exception handler to be invoked.

Effective address computations for both data and instruction accesses use 32-bit signed two’s complement
binary arithmetic. A carry from bit 0 and overflow are ignored.

PowerPC 750GX Overview gx_01.fm.(1.2)
Page 46 of 377 March 27,2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

1.5.2 750GX Microprocessor Instruction Set

750GX instruction set is defined as follows.
e 750GX provides hardware support for all PowerPC instructions.
« 750GX implements the following instructions, which are optional in the PowerPC Architecture.

— External Control In Word Indexed (eciwx).

— External Control Out Word Indexed (ecowx).

— Floating Select (fsel).

— Floating Reciprocal Estimate Single-Precision (fres).
— Floating Reciprocal Square Root Estimate (frsqrte).
— Store Floating-Point as Integer Word (stfiw).

Note: The fres and frsgrte instructions are implemented in the 750GX with 12-bit precision (better than one
part in 4000), which significantly exceeds the minimum precision required by the architecture.

1.6 On-Chip Cache Implementation

The following subsections describe the PowerPC Architecture’s treatment of cache in general, and the
750GX-specific implementation. A detailed description of the 750GX L1 cache implementation is provided in
Chapter 3, Instruction-Cache and Data-Cache Operation, on page 121. A detailed description of the L2 cache
is provided in Chapter 9, L2 Cache, on page 323.

1.6.1 PowerPC Cache Model

The PowerPC Architecture does not define hardware aspects of cache implementations. For example,
PowerPC processors can have unified caches, separate instruction and data caches (Harvard architecture),
or no cache at all. PowerPC microprocessors control the following memory-access modes on a virtual-page
or block (BAT) basis

» Write-back/write-through mode
« Caching-inhibited mode
* Memory coherency

The caches are physically addressed, and the data cache can operate in either write-back or write-through
mode, as specified by the PowerPC Architecture.

The PowerPC Architecture defines the term ‘cache block’ as the cacheable unit. The VEA and OEA define
cache-management instructions that a programmer can use to affect cache contents.
1.6.2 750GX Microprocessor Cache Implementation

750GX cache implementation is described in Section 1.2.4, On-Chip Level 1 Instruction and Data Caches, on
page 33 and Section 1.2.5, On-Chip Level 2 Cache Implementation, on page 35.

The BPU also contains a cache, the 64-entry BTIC, that provides immediate access to an instruction pair for
taken branches. For more information, see Section 1.2.1.2, Branch Processing Unit (BPU), on page 29.
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1.7 Exception Model

The following sections describe the PowerPC exception model and the 750GX implementation. A detailed
description of the 750GX exception model is provided in Chapter 4, Exceptions, on page 151 in this manual.

1.7.1 PowerPC Exception Model

The PowerPC exception model allows the processor to interrupt the instruction flow to handle certain situa-
tions caused by external signals, errors, or unusual conditions arising from the instruction execution. When
exceptions occur, information about the state of the processor is saved to certain registers, and the processor
begins execution at an address (exception vector) predetermined for each exception. System software must
complete the saving of the processor state prior to servicing the exception. Exception processing proceeds in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific condition can be
determined by examining a register associated with the exception. For example, the MSR, DSISR, and
FPSCR contain status bits that further identify the exception condition. Additionally, some exception condi-
tions can be explicitly enabled or disabled by software.

The PowerPC Architecture requires that exceptions be handled in specific priority and program order. There-
fore, although a particular implementation might recognize exception conditions out of order, they are
handled in program order. When an instruction-caused exception is recognized, any unexecuted instructions
that appear earlier in the instruction stream, including any that are not dispatched, must complete before the
exception is taken. Any exceptions those instructions cause must also be handled first. Likewise, asynchro-
nous, precise exceptions are recognized when they occur. However, they are not handled until the instruc-
tions currently in the completion queue successfully retire or generate an exception, and the completion
gueue is emptied.

Unless a catastrophic condition causes a system reset or machine-check exception, only one exception is
handled at a time. For example, if one instruction encounters multiple exception conditions, those conditions
are handled sequentially in priority order. After the exception handler completes, the instruction processing
continues until the next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees system integrity.

When an exception is taken, information about the processor state before the exception was taken is saved in
SRRO and SRR1. Exception handlers must save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset and machine-check exception or due to an instruc-
tion-caused exception in the exception handler, and before re-enabling external interrupts. The exception
handler must also save and restore any GPR registers used by the handler.
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The PowerPC Architecture supports four types of exceptions:

Synchronous, These are caused by instructions. All instruction-caused exceptions are handled

precise precisely. That is, the machine state at the time the exception occurs is known and
can be completely restored. This means that (excluding the trap and system call
exceptions) the address of the faulting instruction is provided to the exception
handler and that neither the faulting instruction nor subsequent instructions in the
code stream will complete execution before the exception is taken. Once the
exception is processed, execution resumes at the address of the faulting instruc-
tion (or at an alternate address provided by the exception handler). When an
exception is taken due to a trap or system call instruction, execution resumes at an
address provided by the handler.

Synchronous, The PowerPC Architecture defines two imprecise floating-point exception modes,

imprecise recoverable and nonrecoverable. Even though the 750GX provides a means to
enable the imprecise modes, it implements these modes identically to the precise
mode (that is, enabled floating-point exceptions are always precise).

Asynchronous, The PowerPC Architecture defines external and decrementer interrupts as

maskable maskable, asynchronous exceptions. When these exceptions occur, their handling
is postponed until the next instruction, and any exceptions associated with that
instruction completes execution. If no instructions are in the execution units, the
exception is taken immediately upon determination of the correct restart address
(for loading SRRO0). As shown in the Table 1-4, 750GX Microprocessor Exception
Classifications, the 750G X implements additional asynchronous, maskable excep-

tions.
Asynchronous, There are two nonmaskable asynchronous exceptions: system reset and the
nonmaskable machine-check exception. These exceptions might not be recoverable, or might

provide a limited degree of recoverability. Exceptions report recoverability through
the MSR[RI] bit.

1.7.2 750GX Microprocessor Exception Implementation

The 750GX exception classes described above are shown in the Table 1-4. Although exceptions have other
characteristics, such as priority and recoverability, Table 1-4 describes the precise or imprecise characteris-
tics of exceptions the 750GX uniquely handles. Table 1-4 includes no synchronous imprecise exceptions;
although the PowerPC Architecture supports imprecise handling of floating-point exceptions, the 750GX
implements these exception modes precisely.

Table 1-4. 750GX Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type
Asynchronous, nonmaskable Imprecise Machine check, system reset
Asynchronous, maskable Precise External, decrementer, system-management, performance-monitor,

and thermal-management interrupts

Synchronous Precise Instruction-caused exceptions

Table 1-5 on page 50 lists the 750GX exceptions and conditions that cause them. Exceptions specific to the
750GX are indicated.
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Table 1-5. Exceptions and Conditions

Exception Type
Reserved
System reset

Machine check

Data storage interrupt

Instruction storage inter-
rupt (1SI)

External interrupt

Alignment

Program

Floating-point unavailable
Decrementer

Reserved

System call

Trace

Reserved
Reserved

Performance monitor?

Instruction address
breakpoint®

System management
exception
Reserved

Thermal-management
interrupt!

Reserved

1. 750GX-specific
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Vector Offset
(hex)

00000
00100

00200

00300
00400

00500

00600

00700
00800

00900

00AO00-00BFF
00C00

00D00

00EOO0
OOE10-00EFF

00FO00

01300

01400
01500-016FF
01700

01800-02FFF

Causing Conditions

Assertion of either HRESET or SRESET or a power-on reset.

Assertion of the transfer error acknowledge (TEA) during a data-bus transaction, asser-
tion of a machine-check interrupt (MCP), an address, data or L2 double-bit error.
MSR[ME] must be set.

As defined in the PowerPC Architecture (for example, a page fault occurs).
As defined by the PowerPC Architecture (for example, a page fault occurs).

MSR[EE] = 1 and interrupt (ﬁ) is asserted.

» A floating-point load/store, Store Multiple Word (stmw), Store Word Conditional
Indexed (stwcx.), Load Multiple Word (Imw), Load Word and Reserved Indexed
(Iwarx), eciwx, or ecowx instruction operand is not word-aligned.

» A multiple/string load/store operation is attempted in little-endian mode.

* The operand of Data Cache Block Zero (dcbz) is in memory that is write-through-
required or caching-inhibited, or the cache is disabled.

As defined by the PowerPC Architecture.
As defined by the PowerPC Architecture.

As defined by the PowerPC Architecture, when the most significant bit of the DEC reg-
ister changes from 0 to 1 and MSR[EE] = 1.

Execution of the System Call (sc) instruction.

MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the architec-
ture definition, Instruction Synchronization (isync) does not cause a trace exception

The 750GX does not generate an exception to this vector. Other PowerPC processors
might use this vector for floating-point assist exceptions.

The limit specified in a Performance-Monitor Control (PMC) register is reached and
MMCRO[ENINT] = 1.

IABR[0—29] matches EA[0-29] of the next instruction to complete,
IABR[TE] matches MSR[IR], and
IABR[BE] = 1.

A system management exception is enabled if MSR[EE] = 1 and is signaled to the
750GX by the assertion of an input signal pin (SMI).

Thermal management is enabled, the junction temperature exceeds the threshold
specified in THRM1 or THRM2, and MSR[EE] = 1.
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1.8 Memory Management

The following subsections describe the memory-management features of the PowerPC Architecture, and the
750GX implementation. A detailed description of the 750GX MMU implementation is provided in Chapter 5,
Memory Management, on page 179.

1.8.1 PowerPC Memory-Management Model

The primary functions of the MMU are to translate logical (effective) addresses to physical addresses for
memory accesses and to provide access protection on blocks and pages of memory. There are two types of
accesses generated by the 750GX that require address translation—instruction fetches, and data accesses
to memory generated by load, store, and cache-control instructions.

The PowerPC Architecture defines different resources for 32-bit and 64-bit processors. The 750GX imple-
ments the 32-bit memory-management model. The memory management unit provides two types of memory-
access models: block-address translate (BAT) model and a virtual address model. The BAT block sizes
range from 128 KB to 256 MB, are selectable from high-order effective address bits, and have priority over
the virtual model. The virtual model employs a 52-bit virtual address space made up of a 24-bit segment
address space and a 28-bit effective address space. The virtual model uses a demand paging method with a
4-KB page size. In both models, address translation is done completely by hardware, in parallel with cache
accesses, with no additional cycles incurred.

The 750GX MMU provides independent 8-entry BAT arrays for instructions and data that maintain address
translations for blocks of memory. These entries define blocks that can vary from 128 KB to 256 MB. The
BAT arrays are maintained by system software. Instructions and data share the same virtual address model,
but could operate in separate segment spaces.

The PowerPC 750GX MMU and exception model support demand-paged virtual memory. Virtual memory
management permits execution of programs larger than the size of physical memory. Demand-paged implies
that individual pages for data and instructions are loaded into physical memory from the system disk only
when they are required by an executing program. Infrequently used pages in memory are returned to disk or
discarded if they have not been modified.

The hashed page table is a fixed-sized data structure! that contains 8-byte page table entries (PTEs), which
define the mapping between virtual pages and physical pages. The page table size is a power of two and is
boundary aligned in memory based on the size of the table. The page table contains a number of page-table-
entry groups (PTEGS). Since a PTEG contains eight PTEs of eight bytes each, each PTEG is 64 bytes long.
PTEG addresses are entry points for table-search operations. A given page translation can be found in one of
two possible PTEGs. The size and location in memory of the page table is defined in the SDR1 register.

Setting MSR[IR] enables instruction address translations and setting MSR[DR] enables data address transla-
tions. If the bit is cleared, the respective effective address is used as the physical address.

1. Size should be determined by the amount of physical memory available to the system.
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1.8.2 750GX Microprocessor Memory-Management Implementation

The 750GX implements separate MMUSs for instructions and data. It implements a copy of the Segment
Registers in the instruction MMU. However, read and write accesses (Move-from Segment Register [mfsr]
and Move-to Segment Register [mtsr]) are handled through the Segment Registers implemented as part of
the data MMU. The 750GX MMU is described in Section 1.2.3, Memory Management Units (MMUS), on
page 32.

The R (referenced) bit is set in the PTE in memory during a page table search due to a TLB miss. Updates to
the changed (C) bit are treated like TLB misses. The page table is searched again to find the correct PTE to
update when the C bit changes from 0 to 1.

1.9 Instruction Timing

The 750GX is a pipelined, superscalar processor. A pipelined processor is one in which instruction
processing is divided into discrete stages, allowing work to be done on multiple instructions in each stage. For
example, after an instruction completes one stage, it can pass on to the next stage leaving the previous stage
available to a subsequent instruction. This improves overall instruction throughput.

A superscalar processor is one that issues multiple independent instructions to separate execution units in a
single cycle, allowing multiple instructions to execute in parallel. The 750GX has six independent execution
units, two for integer instructions, and one each for floating-point instructions, branch instructions, load-and-
store instructions, and system-register instructions. Having separate GPRs and FPRs allows integer, floating-
point calculations, and load-and-store operations to occur simultaneously without interference. Additionally,
rename buffers are provided to allow operations to post completed results for use by subsequent instructions
without committing them to the architected FPR and GPR register files.

As shown in Figure 1-5 on page 53, the common pipeline of the 750GX has four stages through which all
instructions must pass—fetch, decode/dispatch, execute, and complete/write back. Instructions flow sequen-
tially through each stage. However, at dispatch, a position is made available in the completion queue at the
same time it enters the execution stage. This simplifies the completion operation when instructions are retired
in program order. Both the load/store and floating-point units have multiple stages to execute their instruc-
tions. An instruction occupies only one stage at a time in all execution units. At each stage, an instruction
might proceed without delay or might stall. Stalls are caused by the requirement for additional processing or
other events. For example, divide instructions require multiple cycles to complete the operation; load-and-
store instructions might stall waiting for address translation (during TLB reload or page fault, for example).
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Figure 1-5. Pipeline Diagram
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Note: Figure 1-5 does not show features such as reservation stations and rename buffers that reduce stalls
and improve instruction throughput.

The instruction pipeline in the 750GX has four major pipeline stages. They are fetch, dispatch, execute, and
complete:

» The fetch pipeline stage primarily involves fetching instructions from the memory system and keeping the
instruction queue full. The BPU decodes branches after they are fetched and removes (folds out) those
that do not update the CTR or LR from the instruction stream. If the branch is taken or predicted as taken,
the fetch unit is informed of the new address and fetching resumes along the taken path. For branches
not taken or predicted as not taken, sequential fetching continues.

» The dispatch unit is responsible for taking instructions from the bottom two locations of the instruction
gueue and delivering them to an execution unit for further processing. Dispatch is responsible for decod-
ing the instructions and determining which instructions can be dispatched. To qualify for dispatch, a reser-
vation station, a rename buffer, and a position in the completion queue all must be available. A branch
instruction could be processed by the BPU on the same clock cycle for a maximum of three instructions
dispatched per cycle.

The dispatch stage accesses operands, assigns a rename buffer for operands that update architected
registers, which include the GPRs, FPRs, and CR, and delivers the instruction to the reservation registers
of the respective execution units. If a source operand is not available because a previous instruction is
updating the item in a rename buffer, dispatch provides a tag that indicates which rename buffer will sup-
ply the operand when it becomes available. At the end of the dispatch stage, the instructions are removed
from the instruction queue, latched into reservation stations at the appropriate execution unit, and
assigned positions in the completion buffers in sequential program order.
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« The execution units process instructions from their reservation stations using the operands provided from
dispatch, and notifies the completion stage when the instruction has finished execution. With the excep-
tion of multiply and divide, integer instructions complete execution in a single cycle.

The FPU has three stages (multiply, add, and normalize) for processing floating-point arithmetic. All sin-
gle-precision arithmetic (add, subtract, multiply, and multiply/add) instructions are processed without
stalls at each stage. They have a 1-cycle throughput and a 3-cycle latency. Three different arithmetic
instructions can be in the execution unit at one time, with one instruction completing execution each
cycle. Double-precision arithmetic multiply requires two cycles in the multiply stage, one cycle in the add
stage, and one cycle in the normalize stage, which yields a 2-cycle throughput and a 4-cycle latency. All
divide instructions require multiple cycles in the first stage for processing.

The load/store unit has two reservation registers and two pipeline stages. The first stage is for effective
address calculation and the second stage is for MMU translation and accessing the L1 data cache. Load
instructions have a 1-cycle throughput and a 2-cycle latency.

In the case of an internal exception, the execution unit reports the exception to the completion pipeline
stage and (except for the FPU) discontinues instruction execution until the exception is handled. The
exception is not signaled until it is determined that all previous instructions have completed to a point
where they will not signal an exception.

« The completion unit retires instructions from the bottom two positions of the completion queue in program
order. This maintains the correct architectural machine state and transfers execution results from the
rename buffers to the GPRs and FPRs (and CTR and LR, for some instructions) as instructions are
retired. If the completion logic detects an instruction causing an exception, all subsequent instructions are
cancelled, their execution results in rename buffers are discarded, and instructions are fetched from the
appropriate exception vector.

Because the PowerPC Architecture can be applied to such a wide variety of implementations, instruction
timing varies among PowerPC processors. For a detailed discussion of instruction timing with examples and
a table of latencies for each execution unit, see Chapter 6, Instruction Timing, on page 209.

1.10 Power Management

The 750GX provides the following four power modes, selectable by setting the appropriate control bits in the
MSR and HIDO registers:

Full-power This is the default power state of the 750GX. The 750GX is fully powered, and the
internal functional units are operating at the full processor clock speed. If the
dynamic power management mode is enabled, functional units that are idle will
automatically enter a low-power state without affecting performance, software
execution, or external hardware.

Doze All the functional units of the 750GX are disabled except for the Time Base/Decre-
menter Registers and the bus snooping logic. When the processor is in doze mode,
an external asynchronous interrupt, a system management interrupt, a decre-
menter exception, a hard or soft reset, or a machine check brings the 750GX into
the full-power state. The 750GX in doze mode maintains the PLL in a fully powered
state and locked to the system external clock input (SYSCLK) so a transition to the
full-power state takes only a few processor clock cycles.
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Nap The nap mode further reduces power consumption by disabling bus snooping,
leaving only the Time Base Register and the PLL in a powered state. The 750GX
returns to the full-power state upon receipt of an external asynchronous interrupt, a
system management interrupt, a decrementer exception, a hard or soft reset, or a
machine-check interrupt (MCP). A return to full-power state from nap state takes
only a few processor clock cycles. When the processor is in nap mode, if QACK is
negated, the processor is put in doze mode to support snooping.

Sleep Sleep mode minimizes power consumption by disabling all internal functional units,
after which external system logic can disable the PLL and SYSCLK. Returning the
750GX to the full-power state requires enabling the PLL and SYSCLK, followed by
the assertion of an external asynchronous interrupt, a system management inter-
rupt, a hard or soft reset, or a machine-check interrupt (MCP) signal after the time
required to relock the PLL.

In addition, the 750GX allows software-controlled toggling between two operating frequencies. During periods
of processor inactivity or for applications requiring reduced computing performance, the processor may be
toggled to a lower frequency to conserve power.

Chapter 10, Power and Thermal Management, on page 335 provides information about power-saving and
thermal-management modes for the 750GX.

1.11 Thermal Management

The 750GX’s thermal assist unit (TAU) provides a way to control heat dissipation. This ability is particularly
useful in portable computers, which, due to power consumption and size limitations, cannot use desktop
cooling solutions such as fans. Therefore, better heat sink designs coupled with intelligent thermal manage-
ment is of critical importance for high-performance portable systems.

Primarily, the thermal-management system monitors and regulates the system’s operating temperature. For
example, if the temperature is about to exceed a set limit, the system can be made to slow down or even
suspend operations temporarily in order to lower the temperature.

The thermal-management facility also ensures that the processor’s junction temperature does not exceed the
operating specification. To avoid the inaccuracies that arise from measuring junction temperature with an
external thermal sensor, the 750G X’s on-chip thermal sensor and logic tightly couple the thermal-manage-
ment implementation.

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control logic, and the dedi-
cated SPRs described in Section 1.4, PowerPC Registers and Programming Model, on page 42. The TAU
does the following.

« Compares the junction temperature against user-programmable thresholds.
» Generates a thermal-management interrupt if the temperature crosses the threshold.

« Enables the user to estimate the junction temperature by using a software successive approximation rou-
tine.
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The TAU is controlled through the privileged mtspr and mfspr instructions to the four SPRs provided for
configuring and controlling the sensor control logic. The SPRs function as follows.

* THRM1 and THRM2 provide the ability to compare the junction temperature against two user-provided
thresholds. Having dual thresholds gives the thermal-management software finer control of the junction
temperature. In single-threshold mode, the thermal sensor output is compared to only one threshold in
either THRM1 or THRMZ2.

* THRM3 is used to enable the TAU and to control the comparator output sample time. The thermal-man-
agement logic manages the thermal-management interrupt generation and time multiplexed comparisons
in the dual-threshold mode, as well as other control functions.

« THRM4 is used to improve accuracy in determining the actual junction temperature.

Instruction-cache throttling provides control of the 750GX’s overall junction temperature by determining the
interval at which instructions are fetched. This feature is accessed through the ICTC register. Chapter 10,
Power and Thermal Management, on page 335 provides information about power-saving and thermal-
management modes for the 750GX.

1.12 Performance Monitor

The 750GX incorporates a performance-monitor facility that system designers can use to help bring up,
debug, and optimize software performance. The performance monitor counts events during execution of
code, which relate to dispatch, execution, completion, and memory accesses.

The performance monitor incorporates several registers that can be read and written to by supervisor-level
software. User-level versions of these registers provide read-only access for user-level applications. These
registers are described in Section 1.4, PowerPC Registers and Programming Model, on page 42. Perfor-
mance-Monitor Control Registers, MMCRO or MMCR1, can be used to specify which events are to be
counted and the conditions for which a performance-monitoring interrupt is taken. Additionally, the Sampled
Instruction Address Register, SIA (USIA), holds the address of the first instruction to complete after the
counter overflowed.

Attempting to write to a user-read-only Performance-Monitor Register causes a program exception, regard-
less of the MSR[PR] setting. When a performance-monitoring interrupt occurs, program execution continues
from vector offset 0OXO0F0O.

Chapter 11, Performance Monitor and System Related Features, on page 349 describes the operation of the
performance-monitor diagnostic tool incorporated in the 750GX.

PowerPC 750GX Overview gx_01.fm.(1.2)
Page 56 of 377 March 27,2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

2. Programming Model

This chapter describes the 750GX programming model, emphasizing those features specific to the 750GX
processor and summarizing those that are common to PowerPC processors. It consists of three major
sections, which describe the following topics.

» Registers implemented in the 750GX
» Operand conventions
e 750GX instruction set

For detailed information about architecture-defined features, see the PowerPC Microprocessor Family: The
Programming Environments Manual.

2.1 PowerPC 750GX Processor Register Set

This section describes the registers implemented in the 750GX. It includes an overview of registers defined
by the PowerPC Architecture, highlighting differences in how these registers are implemented in the 750GX,
and a detailed description of 750G X-specific registers. Full descriptions of the architecture-defined register
set are provided in Chapter 2, “PowerPC Register Set” in the PowerPC Microprocessor Family: The Program-
ming Environments Manual.

Registers are defined at all three levels of the PowerPC Architecture—user instruction set architecture
(UISA), virtual environment architecture (VEA), and operating environment architecture (OEA). The PowerPC
Architecture defines register-to-register operations for all computational instructions. Source data for these
instructions are accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The 3-register instruction format allows specification of a target register distinct from the two source
registers, thus preserving the original data for use by other instructions and reducing the number of instruc-
tions required for certain operations. Data is transferred between memory and registers with explicit load-and-
store instructions only.

2.1.1 Register Set

The registers implemented on the 750GX are shown in Figure 2-1 on page 58. The number to the right of the
special-purpose registers (SPRs) indicates the number that is used in the syntax of the instruction operands
to access the register (for example, the number used to access the Integer Exception Register (XER) is
SPR 1). These registers can be accessed using the Move-to Special Purpose Register (mtspr) and Move-
from Special Purpose Register (mfspr) instructions.
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Figure 2-1. PowerPC 750GX Microprocessor Programming Model—Registers
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The PowerPC UISA registers are user-level. General Purpose Registers (GPRs) and Floating Point Registers
(FPRs) are accessed through instruction operands. Access to registers can be explicit (by using instructions
for that purpose such as mtspr and mfspr instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

Implementation Note: The 750GX fully decodes the SPR field of the instruction. If the SPR specified is
undefined, an illegal instruction program exception occurs.

Descriptions of the PowerPC user-level registers follow:

« User-level registers (UISA)—The user-level registers can be accessed by all software with either user
or supervisor privileges. They include the following registers:

General Purpose Registers (GPRs). The 32 GPRs (GPR0O-GPR31) serve as data source or destina-
tion registers for integer instructions and provide data for generating addresses. See “General Pur-
pose Registers (GPRs)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor
Family: The Programming Environments Manual for more information.

Floating Point Registers (FPRs). The 32 FPRs (FPRO-FPR31) serve as the data source or destina-
tion for all floating-point instructions. See “Floating Point Registers (FPRs)” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments Manual.

Condition Register (CR). The 32-bit CR consists of eight 4-bit fields, CRO—CR?7, that reflect results of
certain arithmetic operations and provide a mechanism for testing and branching. See “Condition
Register (CR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The
Programming Environments Manual.

Floating-Point Status and Control Register (FPSCR). The FPSCR contains all floating-point excep-
tion signal bits, exception summary bits, exception enable bits, and rounding control bits needed for
compliance with the IEEE 754-1985 standard. See “Floating-Point Status and Control Register
(FPSCR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Pro-
gramming Environments Manual.

The remaining user-level registers are SPRs. Note that the PowerPC Architecture provides a separate
mechanism for accessing SPRs (the mtspr and mfspr instructions). These instructions are commonly
used to explicitly access certain registers, while other SPRs are more typically accessed as the side
effect of executing other instructions.

— Integer Exception Register (XER). The XER indicates overflow and carries for integer operations.

See “XER Register (XER)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor
Family: The Programming Environments Manual for more information.

Implementation Note: To allow emulation of the Load String and Compare Byte Indexed (Iscbx)
instruction defined by the POWER architecture, XER[16—23] is implemented so that it can be read
with mfspr and written with Move-to Fixed-Point Exception Register (mtxer) instructions.

Link Register (LR). The LR provides the branch target address for the Branch Conditional to Link
Register (bclrx) instruction, and can be used to hold the logical address of the instruction that follows
a branch and link instruction, typically used for linking to subroutines. See “Link Register (LR)” in
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Envi-
ronments Manual.

Count Register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR can also provide the branch target address for the
Branch Conditional to Count Register (bcctrx) instruction. See “Count Register (CTR)” in Chapter 2,
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“PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Environments
Manual.

» User-level registers (VEA)—The PowerPC VEA defines the time-base facility (TB), which consists of
two 32-bit registers—Time Base Upper (TBU) and Time Base Lower (TBL). The Time Base Registers can
be written to only by supervisor-level instructions, but can be read by both user-level and supervisor-level
software. For more information, see “PowerPC VEA Register Set—Time Base” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments Manual.

» Supervisor-level registers (OEA)—The OEA defines the registers an operating system uses for mem-
ory management, configuration, exception handling, and other operating system functions. The OEA
defines the following supervisor-level registers for 32-bit implementations:

— Configuration registers

* Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the Move-to Machine State Register (mtmsr), System Call (sc), and Return from
Exception (rfi) instructions. It can be read by the Move-from Machine State Register (mfmsr)
instruction. When an exception is taken, the contents of the MSR are saved to the Machine Sta-
tus Save/Restore Register 1 (SRR1), which is described below. See “Machine State Register
(MSR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Pro-
gramming Environments Manual for more information.

Implementation Note: Table 2-1 describes MSR bits the 750GX implements that are not
required by the PowerPC Architecture.

Table 2-1. Additional MSR Bits

Bit Name | Description

Power management enable. Optional in the PowerPC Architecture.

0 Power management is disabled.
1 Power management is enabled.
13 pow | The processor can enter a power-saving mode when additional conditions are present. The mode

chosen is determined by the DOZE, NAP, and SLEEP bits in the Hardware-Implementation-
Dependent Register 0 (HIDO), described in Section 2.1.2.2 on page 65.

To set the POW bit, see Table 10-2, HIDO Power Saving Mode Bit Settings, on page 337. The
750GX will clear the POW bit when it leaves a power saving mode.

Performance-monitor marked mode. This bit is specific to the 750G X, and is defined as reserved by
the PowerPC Architecture. See Chapter 10, Power and Thermal Management, on page 335.
0 Process is not a marked process.

29 PM 1 Process is a marked process.

The MSR[PM] bit is used by the Performance-Monitor to help determine when it should count
events. For a description of the Performance-Monitor, see Chapter 11, Performance Monitor and
System Related Features, on page 349.

Note: Setting MSR[EE] masks not only the architecture-defined external interrupt and decre-
menter exceptions, but also the 750G X-specific system management, performance-monitor, and
thermal-management exceptions.

» Processor Version Register (PVR). This register is a read-only register that identifies the version
(model) and revision level of the PowerPC processor. For more information, see “Processor Ver-
sion Register (PVR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor
Family: The Programming Environments Manual.

Note: The Processor Version Number is x’7002’ for the 750GX. The processor revision level will
start at x’0100’ and will be incremented for each revision of the chip.
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— Memory-management registers

» Block-Address Translation (BAT) Registers. The PowerPC OEA includes an array of Block

Address Translation Registers that can be used to specify eight blocks of instruction space and
eight blocks of data space. The BAT registers are implemented in pairs—eight pairs of instruction
BATs (IBATOU—-IBAT7U and IBATOL-IBAT7L) and eight pairs of data BATs (DBATOU-DBAT7U
and DBATOL-DBATT7L). Figure 2-1, PowerPC 750GX Microprocessor Programming Model—
Registers lists the SPR numbers for the BAT registers. For more information, see “BAT Regis-
ters” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Pro-
gramming Environments Manual. Because BAT upper and lower words are loaded separately,
software must ensure that BAT translations are correct during the time that both BAT entries are
being loaded.

The 750GX implements the G bit in the IBAT registers. However, attempting to execute code
from an IBAT area with G = 1 causes an instruction storage interrupt (ISI) exception. This com-
plies with the revision of the architecture described in the PowerPC Microprocessor Family: The
Programming Environments Manual.

SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical
address translation. See “SDR1” in Chapter 2, “PowerPC Register Set” of the PowerPC Micro-
processor Family: The Programming Environments Manual.”

Segment Registers (SR). The PowerPC OEA defines sixteen 32-bit Segment Registers (SR0—
SR15). Note that the SRs are implemented on 32-bit implementations only. The fields in the Seg-
ment Register are interpreted differently depending on the value of bit 0. See “Segment Regis-
ters” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The
Programming Environments Manual for more information.

Note: The 750GX implements separate memory management units (MMUS) for instruction and
data. It associates the architecture-defined SRs with the data MMU (DMMU). It reflects the val-
ues of the SRs in separate, so-called ‘shadow’ Segment Registers in the instruction MMU
(IMMU).

— Exception-handling registers

» Data Address Register (DAR). After a data-storage interrupt (DSI) exception or an alignment
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exception, DAR is set to the effective address (EA) generated by the instruction at fault. See
“Data Address Register (DAR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Micropro-
cessor Family: The Programming Environments Manual for more information.

SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating system use. See
“SPRGO-SPRG3” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family:
The Programming Environments Manual for more information.

DSISR. The Data Storage Interrupt Status Register (DSISR) defines the cause of DSI and align-
ment exceptions. See “DSISR” in Chapter 2, “PowerPC Register Set” of the PowerPC Micropro-
cessor Family: The Programming Environments Manual for more information.

Machine Status Save/Restore Register 0 (SRR0). The SRRO register is used to save the address
of the instruction at which execution continues when an rfi executes at the end of an exception
handler routine. See “Machine Status Save/Restore Register 0 (SRR0)” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments Manual
for more information.

Machine Status Save/Restore Register 1 (SRR1). The SRR1 is used to save machine status on
exceptions and to restore machine status when rfi executes. See “Machine Status Save/Restore
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Register 1 (SRR1)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Fam-
ily: The Programming Environments Manual for more information.

Note: When a machine-check exception occurs, the 750G X sets one or more error bits in SRR1.
Table 2-2 describes SRR1 bits 750GX implements that are not required by the PowerPC Archi-
tecture.

Table 2-2. Additional SRR1 Bits

Bit Name Description

4 CP Internal cache parity error.

11 L2DBERR | Set by a double-bit error checking and correction (ECC) error in the L2.
12 MCpin Set by the assertion of the machine-check interrupt (W).

13 TEA Set by a transfer error acknowledge (ﬁ) assertion on the 60x bus.
14 DP Set by a data-parity error on the 60x bus.

15 AP Set by an address-parity error on the 60x bus.

— Miscellaneous registers

e Time Base (TB). The TB is a 64-bit structure provided for maintaining the time of day and operat-
ing interval timers. The TB consists of two 32-bit registers—Time Base Upper (TBU) and Time
Base Lower (TBL). The Time Base Registers can be written to only by supervisor-level software,
but can be read by both user- and supervisor-level software. See “Time Base Facility (TB)—
OEA” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Pro-
gramming Environments Manual for more information.

» Decrementer Register (DEC). This register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay; the frequency is a
subdivision of the processor clock. See “Decrementer Register (DEC)” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments Manual
for more information.

Note: Inthe 750GX, the Decrementer Register is decremented and the time base is incre-
mented at a speed that is one-fourth the speed of the bus clock.

» Data Address Breakpoint Register (DABR)—This optional register is used to cause a breakpoint
exception if a specified data address is encountered. See “Data Address Breakpoint Register
(DABR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Pro-
gramming Environments Manual.

» External Access Register (EAR). This optional register is used in conjunction with the External
Control In Word Indexed (eciwx) and External Control Out Word Indexed (ecowx) instructions.
Note that the EAR and the eciwx and ecowx instructions are optional in the PowerPC Architec-
ture and might not be supported in all PowerPC processors that implement the OEA. See “Exter-
nal Access Register (EAR)” in Chapter 2, “PowerPC Register Set” of the PowerPC
Microprocessor Family: The Programming Environments Manual for more information.

» 750GX-specific registers—The PowerPC Architecture allows implementation-specific SPRs. Those
described below are incorporated in the 750GX. Note that, in the 750GX, these registers are all supervi-
sor-level registers.

— Instruction Address Breakpoint Register (IABR)—This register can be used to cause a breakpoint
exception if a specified instruction address is encountered.
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Hardware-Implementation-Dependent Register 0 (HIDO)—This register controls various functions,
such as enabling checkstop conditions, and locking, enabling, and invalidating the instruction and
data caches, power modes, miss-under-miss, and others.

Hardware-Implementation-Dependent Register 1 (HID1)—This register reflects the state of
PLL_CFG[0:4] clock signals, and phase-locked loop (PLL) selection and range bits.

Hardware-Implementation-Dependent Register 2 (HID2)—This register controls parity enablement.
L2 Cache Control Register (L2ZCR)—This register is used to configure and operate the L2 cache.

Performance-monitor registers. The following registers are used to define and count events for use
by the performance monitor:

* The Performance-Monitor Counter Registers (PMC1-PMC4) are used to record the number of
times a certain event has occurred. UPMC1-UPMC4 provide user-level read access to these
registers.

e The Monitor Mode Control Registers (MMCRO-MMCR1) are used to enable various perfor-
mance-monitor interrupt functions. UMMCRO-UMMCRL1 provide user-level read access to these
registers.

« The Sampled Instruction Address Register (SIA) contains the effective address of an instruction
executing at or around the time that the processor signals the performance-monitor interrupt con-
dition. USIA provides user-level read access to the SIA.

« The 750GX does not implement the Sampled Data Address Register (SDA) or the user-level,
read-only USDA registers. However, for compatibility with processors that do, those registers can
be written to by boot code without causing an exception. SDA is SPR 959; USDA is SPR 943.

Instruction Cache Throttling Control Register (ICTC)—This register has bits for enabling the instruc-
tion-cache throttling feature and for controlling the interval at which instructions are forwarded to the
instruction buffer in the fetch unit. This provides control over the processor’s overall junction temper-
ature.

Thermal-Management Registers (THRM1, THRM2, THRM3, and THRM4)—Used to enable and set
thresholds for the thermal-management facility.

e« THRM1 and THRM2 provide the ability to compare the junction temperature against two user-
provided thresholds. The dual thresholds allow the thermal-management software differing
degrees of action in lowering the junction temperature. The TAU can be also operated in a single-
threshold mode in which the thermal sensor output is compared to only one threshold in either
THRML1 or THRM2.

 THRMS3 is used to enable the thermal-management assist unit (TAU) and to control the compara-
tor output sample time.

* THRMA4 is a read-only register containing a temperature offset (determined at the factory) applied
to junction temperature measurements for improved accuracy.

Note: While it is not guaranteed that the implementation of 750G X-specific registers is consistent among
PowerPC processors, other processors may implement similar or identical registers.
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2.1.2 PowerPC 750GX-Specific Registers

This section describes registers that are defined for the 750G X but are not included in the PowerPC Architec-
ture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The Instruction Address Breakpoint Register (IABR) supports the instruction address breakpoint exception.
When this exception is enabled, instruction fetch addresses are compared with an effective address stored in
the IABR. If the word specified in the IABR is fetched, the instruction breakpoint handler is invoked. The
instruction that triggers the breakpoint does not execute before the handler is invoked. For more information,
see Section 4.5.14, Instruction Address Breakpoint Exception (0x01300), on page 173. The IABR can be
accessed with mtspr and mfspr using the SPR 1010.

Address BE TE
v vyl

‘0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29‘30]31‘

Bits Field Name Description

0:29 Address Word address to be compared.

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSRJ[IR].
Programming Model gx_02.fm.(1.2)
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2.1.2.2 Hardware-Implementation-Dependent Register 0 (HIDO)

The Hardware-Implementation-Dependent Register 0 (HIDO) controls the state of several functions within
750GX. HIDO can be accessed with mtspr and mfspr using SPR 1008.

ko] ° o -

o g x o e

?)'n_qzo Q:LIHD_HJJ§§§§IILULU58—EQ§UJEU§LU|—u;,’%

o < 2 T o O S US) w O E O

T B0 B Reseved § 3 FEzg 3202832302355z 3383b&23F¢°2

R TR
(o]1]2]3]4 5 6|7]|8]|9]10[11]12]13]|14|15]16]17[18]19 20|21 ]22]23]24]25 2627 |28]29[30[31|

Bits Field Name Description

Enable MCP. The primary purpose of this bit is to mask out further machine-check excep-

tions caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 EMCP 0 Masks MCP. Asserting MCP does not generate a machine-check exception or a
checkstop.

1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine-check excep-
tion if ME = 1.

Disable 60x bus address-parity and data-parity generation.

0 Parity generation is enabled.

1 Disable parity generation. If the system does not use address or data parity and

1 DBP the respective parity checking is disabled (HIDO[EBA] or HIDO[EBD] = 0), input
receivers for those signals are disabled, require no pull-up resistors, and thus
should be left unconnected. If all parity generation is disabled, all parity checking
should also be disabled and parity signals need not be connected.

Enable/disable 60x bus address-parity checking
0 Prevents address-parity checking.

2 EBAL 1 Allows an address-parity error to cause a checkstop if MSR[ME] = 0 or a
machine-check exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not gener-
ate parity.

Enable 60x bus data-parity checking

0 Parity checking is disabled.

3 EBD! 1 Allows a data-parity error to cause a checkstop if MSR[ME] = 0 or a machine-
check exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not gener-
ate parity.

4 — Reserved. Must set to 0.

5 — Not used. Defined as EICE on some earlier processors.

6 — Reserved. Must set to 0.

Disable precharge of ARTRY.
0 Precharge of ARTRY enabled.

7 PAR 1 Alters bus protocol slightly by preventing the processor from driving ARTRY to
high (negated) state. If this is done, the system must restore the signals to the
high state.

Doze mode enable. Operates in conjunction with MSR[POW].
) 0 Doze mode disabled.
8 DOZE 1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit

is set. In doze mode, the phase-locked loop (PLL), time base, and snooping
remain active.

1. For additional information, see Section 11.9, Checkstops, on page 361.
2. For additional information about power-saving modes, see Table 10-2, HIDO Power Saving Mode Bit Settings, on page 337.
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Bits

10

11

12
13

14

15

16

17

Field Name

NAP?2

SLEEP?

DPM

RISEG

MUM

NHR

ICE

DCE

Description

Nap mode enable. Operates in conjunction with MSR[POW].
0 Nap mode disabled.

1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is
set. In nap mode, the PLL and the time base remain active.

Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit
is set. QREQ is asserted to indicate that the processor is ready to enter sleep
mode. If the system logic determines that the processor can enter sleep mode,
the quiesce acknowledge signal, QACK, is asserted back to the processor. Once
QACK assertion is detected, the processor enters sleep mode after several pro-
cessor clocks. At this point, the system logic can turn off the PLL by first configur-
ing PLL_CFGJ0:4] to PLL bypass mode, then disabling SYSCLK.

Dynamic power management enable.
0 Dynamic power management is disabled.

1 Functional units enter a low-power mode automatically if the unit is idle. This
does not affect operational performance and is transparent to software or any
external hardware.

Read Instruction Segment Register (for test only).
Reserved.

Miss-under-Miss enable.
0 Function disabled.
1 Function enabled.

Not a hard reset (software-use only). Helps software distinguish a hard reset from a soft
reset.

0 A hard reset has occurred if software previously set this bit.

1 A hard reset has not occurred. If software sets this bit after a hard reset, when a
reset occurs and this bit remains set, software can tell it was a soft reset.

Instruction-cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed
as if they were marked cache-inhibited (WIM = X1X). Potential cache accesses
from the bus (snoop and cache operations) are ignored. In the disabled state for
the L1 caches, the cache tag state bits are ignored and all accesses are propa-
gated to the L2 cache or bus as single-beat transactions. For those transactions,
however, Cache Inhibit (ClI) reflects the original state determined by address
translation regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

Data-cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if
they were marked cache-inhibited (WIM = X1X). Potential cache accesses from
the bus (snoop and cache operations) are ignored. In the disabled state for the
L1 caches, the cache tag state bits are ignored and all accesses are propagated
to the L2 cache or bus as single-beat transactions. For those transactions, how-
ever, Cl reflects the original state determined by address translation regardless
of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

1. For additional information, see Section 11.9, Checkstops, on page 361.
2. For additional information about power-saving modes, see Table 10-2, HIDO Power Saving Mode Bit Settings, on page 337.
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Bits Field Name Description

Instruction-cache lock

0 Normal operation.

1 Instruction cache is locked. A locked cache supplies data normally on a hit, but is
treated as a cache-inhibited transaction on a miss. On a miss, the transaction to

18 ILOCK the bus or the L2 cache is single-beat. However, Cl still reflects the original state

as determined by address translation independent of cache locked or disabled
status.

To prevent locking during a cache access, an Instruction Synchronization (isync) instruc-

tion must precede the setting of ILOCK.

Data-cache lock.
0 Normal operation.

1 Data cache is locked. A locked cache supplies data normally on a hit, but is
treated as a cache-inhibited transaction on a miss. On a miss, the transaction to
the bus or the L2 cache is single-beat. However, ClI still reflects the original state

19 DLOCK as determined by address translation independent of cache locked or disabled
status. A snoop hit to a locked L1 data cache performs as if the cache were not
locked. A cache block invalidated by a snoop remains invalid until the cache is
unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of
DLOCK.

Instruction-cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation
operation begins (usually the next cycle after the write operation to the register).
The instruction cache must be enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction-cache
block as invalid without writing back modified cache blocks to memory. Cache
access is blocked during this time. Bus accesses to the cache are signaled as
misses during invalidate-all operations. Setting ICFI clears all the valid bits of the

20 ICFI blocks and the pseudo least-recently used (PLRU) bits to point to way LO of each
set. Once the L1 flash invalidate bits are set through an mtspr operation, hard-
ware automatically resets these bits in the next cycle (provided the correspond-
ing cache enable bits are set in HIDO).

Note: In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI

and DCFI bits was to set them and clear them in two consecutive mtspr operations. Soft-

ware that already has this sequence of operations does not need to be changed to run on
the 750GX.

Data-cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation opera-
tion begins (usually the next cycle after the write operation to the register). The
data cache must be enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each data-cache block
as invalid without writing back modified cache blocks to memory. Cache access
is blocked during this time. Bus accesses to the cache are signaled as a miss
during invalidate-all operations. Setting DCFI clears all the valid bits of the blocks
and the PLRU bits to point to way LO of each set. Once the L1 flash invalidate

21 DCFI bits are set through an mtspr operation, hardware automatically resets these bits
in the next cycle (provided that the corresponding cache enable bits are set in
HIDO).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way LO of

each set.

Note: In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI
and DCFI bits was to set them and clear them in two consecutive mtspr operations. Soft-
ware that already has this sequence of operations does not need to be changed to run on
the 750GX.

1. For additional information, see Section 11.9, Checkstops, on page 361.
2. For additional information about power-saving modes, see Table 10-2, HIDO Power Saving Mode Bit Settings, on page 337.
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Bits

22

23

24

25

26

27

28

Field Name

SPD

IFEM

SGE

DCFA

BTIC

ABE

Description
Speculative cache access disable
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction
and data caches are enabled.
1 Speculative bus accesses to nonguarded space in both caches are disabled.

Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus.
1 Instruction fetches reflect the M bit from the WIM settings.

Store gathering enable
0 Store gathering is disabled.

1 Integer store gathering is performed for write-through to nonguarded space or for
cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The
load store unit (LSU) combines stores to form a double word that is sent out on
the 60x bus as a single-beat operation. Stores are gathered only if successive,
eligible stores are queued and pending. Store gathering is performed regardless
of address order or endian mode. The store-gathering feature is enabled by set-
ting the HIDO[SGE] bit (bit 24).

Data-cache flush assist. (Force data cache to ignore invalid sets on miss replacement
selection.)

0 The data-cache flush assist facility is disabled.

1 The miss replacement algorithm ignores invalid entries and follows the replace-
ment sequence defined by the PLRU bits. This reduces the series of uniquely
addressed load or Data Cache Block Zero (dchz) instructions to eight per set.
The bit should be set just before beginning a cache flush routine, and should be
cleared when the series of instructions completes.

Branch target instruction-cache enable—used to enable use of the 64-entry branch
instruction cache.

0 The BTIC is disabled, the contents are invalidated, and the BTIC behaves as if it
were empty. New entries cannot be added until the BTIC is enabled.
1 The BTIC is enabled, and new entries can be added.

Not used. Defined as FBIOB on earlier 603-type processors.

Address broadcast enable—controls whether certain address-only operations (such as
cache operations, Enforce In-Order Execution of I/O [eieio], and Synchronization [sync])
are broadcast on the 60x bus.

0 Address-only operations affect only local L1 and L2 caches and are not broad-
cast.
1 Address-only operations are broadcast on the 60x bus. Affected instructions are

eieio, sync, Data Cache Block Invalidate (dcbi), Data Cache Block Flush (dcbf),

and Data Cache Block Store (dcbst). A sync instruction completes only after a

successful broadcast. Execution of eieio causes a broadcast that can be used to

prevent any external devices, such as a bus bridge chip, from store gathering.
Note: A Data Cache Block Set to Zero (dcbz) instruction (with M = 1, coherency
required) always broadcasts on the 60x bus regardless of the setting of this bit. An
Instruction Cache Block Invalidate (icbi) is never broadcast. No cache operations, except
dcbz, are snooped by the 750GX regardless of whether the ABE is set. Bus activity
caused by these instructions results directly from performing the operation on the 750GX
cache.

1. For additional information, see Section 11.9, Checkstops, on page 361.
2. For additional information about power-saving modes, see Table 10-2, HIDO Power Saving Mode Bit Settings, on page 337.
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29

30

31

Field Name

BHT

Reserved

NOOPTI
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Description

Branch history table enable

0 BHT disabled. The 750GX uses static branch prediction as defined by the
PowerPC User Instruction Set Architecture (UISA) for those branch instructions
the BHT would have otherwise used to predict (that is, those that use the CR as
the only mechanism to determine direction). For more information on static
branch prediction, see “Conditional Branch Control,” in Chapter 4 of the Pow-
erPC Microprocessor Family: The Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.
Reserved.

No-op the data-cache touch instructions.

0 The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store
(dcbtst) instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

1. For additional information, see Section 11.9, Checkstops, on page 361.
2. For additional information about power-saving modes, see Table 10-2, HIDO Power Saving Mode Bit Settings, on page 337.
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2.1.2.3 Hardware-Implementation-Dependent Register 1 (HID1)

The Hardware-Implementation-Dependent Register 1 (HID1) reflects the state of the PLL_CFGJ0:4] signals.
HID1 can be accessed with mtspr and mfspr using SPR 1009.

o k5 k5 k5
2 v s 2 e
b g 2 o b b
PCE PRE £ § Reseved & F PS PCO PRO & PC1 PR1 §
v R EER VYL Vi
(0 1 2 3 4[5 6[7|8|9 10 11[12 13|14|15]16 17 18 19 20|21 22[23[24 25 26 27 28[29 30|31
Bits Field Name Description
0:4 PCE PLL external configuration bits (read-only).
5:6 PRE PLL external range bits (read-only).
PLL status. Specifies the PLL clocking the processor:
7 PSTAT1 0 PLLO is the processor clock source
1 PLL1 is the processor clock source.
8 ECLK Set to 1 to enable the CLKOUT pin.

Select the internal clock to be output on the CLKOUT pin with the following decode:
000 Factory use only

001 PLLO core clock (freq/2)

010 Factory use only

011 PLL1 core clock (freq/2)

9:11 Reserved
100 Factory use only
101 Core clock (freq/2)
Other Reserved
Note: These clock configuration bits reflect the state of the PLL_CFG[0:4] pins. Clock
options should only be used for design debug and characterization.
12:13 Reserved Reserved.
PLL 0 internal configuration select.
14 PIO 0 Select external configuration and range bits to control PLL 0.
1 Select internal fields in HID1 to control PLLO.
PLL select.
15 PS 0 Select PLL 0 as the source for the processor clock.
1 Select PLL 1 as the source for the processor clock.
16:20 PCO PLL 0 configuration bits.
21:22 PRO PLL 0 range select bits.
23 Reserved Reserved.
24:28 PC1 PLL 1 configuration bits.
29:30 PR1 PLL 1 range bits.
31 Reserved Reserved.
Programming Model gx_02.fm.(1.2)
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2.1.2.4 Hardware-Implementation-Dependent Register 2 (HID2)

The Hardware-Implementation-Dependent Register 2 (HID2) enables parity. The status bits (25:27) are set
when a parity error is detected and cleared by writing '0' to each bit. See the IBM PowerPC 750GX RISC
Microprocessor Datasheet for details.

HID2 can be accessed with mtspr and mfspr using SPR 1016.

S . E
2 2B B0, 00 5 W
Reserved | Reserved O E o o E & Q % é & Q %
R REEEEEEREEEEE
(0 1 2[3]4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19|20|21[22]23[24[25|2627|28]29[30[31|
Bits Field Name Description Notes
0:2 Reserved Reserved 1
3 STMUMD r?1ii222|§f?(t)?';ethoist?)_lcj)?\?r_miss processing (changes the allowed outstanding store
4:19 Reserved Reserved 1
20 FICBP Force instruction-cache bad parity.
21 FITBP Force instruction-tag bad parity.
22 FDCBP Force data-cache bad parity.
23 FDTBP Force data-tag bad parity.
24 FL2TBP Force L2-tag bad parity.
25 ICPS L1 instruction-cache/instruction-tag parity error status/mask.
26 DCPS L1 data-cache/data-tag parity error status/mask.
27 L2PS L2 tag parity error status/mask.
28 Reserved Reserved. 1
29 ICPE Enable L1 instruction-cache/instruction-tag parity checking.
30 DCPE Enable L1 data-cache/data-tag parity checking.
31 L2PE Enable L2 tag parity checking.
1. Reserved. Used as factory test bits. Do not change from their power-up state unless indicated to do so.
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2.1.2.5 Performance-Monitor Registers

This section describes the registers used by the performance monitor, which is described in Chapter 11,
Performance Monitor and System Related Features, on page 349.

Monitor Mode Control Register 0 (MMCRO)

The Monitor Mode Control Register 0 (MMCRO) is a 32-bit SPR provided to specify events to be counted and
recorded. The MMCRO can be accessed only in supervisor mode. User-level software can read the contents
of MMCRO by issuing an mfspr instruction to UMMCRO, described in the following section.

This register must be cleared at power up. Reading this register does not change its contents. MMCRO can
be accessed with mtspr and mfspr using SPR 952.
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Bits Field Name Description
Disables counting unconditionally.
0 DIS 0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.
Disables counting while in supervisor mode.
1 DP 0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.
Disables counting while in user mode.
2 DU 0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not
changed by hardware.
Disables counting while MSR[PM] is set.
3 DMS 0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.
Disables counting while MSR[PM] is zero.
4 DMR 0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.
Enables performance-monitor interrupt signaling.
0 Interrupt signaling is disabled.
5 ENINT 1 Interrupt signaling is enabled.
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78

10:15

16

17

18

19:25
26:31

Field Name

DISCOUNT

RTCSELECT

INTONBITTRANS

THRESHOLD

PMC1INTCONTROL

PMCINTCONTROL

PMCTRIGGER

PMCI1SELECT
PMC2SELECT
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Description

Disables counting of PMCn when a performance-monitor interrupt is signaled (that is,
((PMCnINTCONTROL ='1") & (PMCn[0] ='1") & (ENINT = '1")) or when an enabled time-
base transition occurs with (INTONBITTRANS ='1") & (ENINT ="'1").

0 Signaling a performance-monitor interrupt does not affect the counting status of
PMCn.
1 Signaling a performance-monitor interrupt prevents changing of the PMC1

counter. The PMCn counter does not change if PMC2COUNTCTL = '0'.

Because a time-base signal could have occurred along with an enabled counter overflow
condition, software should always reset INTONBITTRANS to zero, if the value in INTON-
BITTRANS was a one.

64-bit time base, bit selection enable.

00 Pick bit 63 to count.

01 Pick bit 55 to count.

10 Pick bit 51 to count.

11 Pick bit 47 to count.

Cause interrupt signaling when the bit identified in RTCSELECT transitions from off to on.
0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

Threshold value. The 750GX supports all six bits, allowing threshold values from 0-63.
The intent of the THRESHOLD support is to characterize L1 data-cache misses.

Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMCL1 interrupt signaling due to PMCL1 counter overflow.
1 Enable PMCL1 interrupt signaling due to PMC1 counter overflow.

Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the set-
ting of DISCOUNT.

0 Disable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.
1 Enable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.

Can be used to trigger counting of PMC2-PMC4 after PMC1 has overflowed or after a
performance-monitor interrupt is signaled.

0 Enable PMC2-PMC4 counting.

1 Disable PMC2-PMC4 counting until either PMC1[0] = 1 or a performance-moni-
tor interrupt is signaled.

PMCL1 input selector; 128 events selectable.

PMC2 input selector; 64 events selectable.

User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level software. MMCRO can
be accessed with mfspr using SPR 936.
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Monitor Mode Control Register 1 (MMCR1)

The Monitor Mode Control Register 1 (MMCRL1) functions as an event selector for Performance-Monitor
Counter Registers 3 and 4 (PMC3 and PMC4). Corresponding events to the MMCRL1 bits are described in
Performance-Monitor Counter Registers (PMCn).

MMCRL1 can be accessed with mtspr and mfspr using SPR 956. User-level software can read the contents
of MMCR1 by issuing an mfspr instruction to UMMCRZ1, described in the following section.

PMC3SELECT PMC4SELECT Reserved
v v oy v oy v
‘01234]56789‘10111213141516171819202122232425262728293031‘
Bits Field Name Description
0:4 PMC3SELECT PMC3 input selector. Thirty-two events selectable. See Performance-Monitor Counter

Registers (PMCn) on page 74 for defined selections.

PMC4 input selector. Thirty-two events selectable. See Performance-Monitor Counter

59 PMCASELECT Registers (PMCn) on page 74 for defined selections.

10:31 Reserved Reserved.

User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCRL1 are reflected to UMMCRZ1, which can be read by user-level software. MMCR1 can
be accessed with mfspr using SPR 940.

Performance-Monitor Counter Registers (PMCn)

PMC1-PMC4 are 32-bit counters that can be programmed to generate interrupt signals when they overflow.
Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that is, they reach the
value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless both PMCn[INTCONTROL]
and MMCRO[ENINT] are also set.

Note: The interrupts can be masked by clearing MSR[EE]; the interrupt signal condition can occur with
MSRIEE] cleared, but the exception is not taken until EE is set. Setting MMCRO[DISCOUNT] forces counters
to stop counting when a counter interrupt occurs.

Software is expected to use mtspr to set PMC explicitly to nonoverflow values. If software sets an overflow
value, an erroneous exception might occur. For example, if both PMCn[INTCONTROL] and MMCRO[ENINT]
are set and mtspr loads an overflow value, an interrupt signal will be generated without any event counting
having taken place.

The event to be monitored by PMC1 can be chosen by setting MMCRO0[19:25]. The event to be monitored by
PMC2 can be chosen by setting MMCRO[26:31]. The event to be monitored by PMC3 can be chosen by
setting MMCR1[0:4]. The event to be monitored by PMC4 can be chosen by setting MMCR1[5:9]. The
selected events are counted beginning when MMCRO is set until either MMCRO is reset or a performance-
monitor interrupt is generated.
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The following tables list the selectable events and their encodings:

* Table 11-2, PMC1 Events—MMCRO0[19:25] Select Encodings, on page 352.
* Table 11-3, PMC2 Events—MMCRO0[26:31] Select Encodings, on page 352.
e Table 11-4, PMC3 Events—MMCR1[0:4] Select Encodings, on page 353.
e Table 11-5, PMC4 Events—MMCR1[5:9] Select Encodings, on page 354.

The PMC registers can be accessed with mtspr and mfspr using following SPR numbers:

*+ PMC1lis SPR 953
*+ PMC2is SPR 954
*+ PMCS3is SPR 957
* PMC4 is SPR 958

oV Counter Value
I v
‘0‘12345678910111213141516171819202122232425262728293031‘
Bits Field Name Description
0 oV Overflow. When this bit is set it indicates that this counter has reached its maximum
value.
1:31 Counter Value Indicates the number of occurrences of the specified event.

User Performance-Monitor Counter Registers (UPMCn)

The contents of the PMC1-PMC4 are reflected to UPMC1-UPMC4, which can be read by user-level soft-
ware. The UPMC registers can be read with mfspr using the following SPR numbers:

+ UPMC1is SPR 937
+ UPMC2is SPR 938
+ UPMC3is SPR 941
* UPMC4 is SPR 942

Sampled Instruction Address Register (SIA)

The Sampled Instruction Address Register (SIA) is a supervisor-level register that contains the effective
address of an instruction executing at or around the time that the processor signals the performance-monitor
interrupt condition.

If the performance-monitor interrupt is triggered by a threshold event, the SIA contains the exact instruction
(called the sampled instruction) that caused the counter to overflow.

If the performance-monitor interrupt was caused by something besides a threshold event, the SIA contains
the address of the last instruction completed during that cycle. SIA can be accessed with the mtspr and
mfspr instructions using SPR 955.

Instruction Address

v
‘0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031‘
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User Sampled Instruction Address Register (USIA)

The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be accessed

with the mfspr instructions using SPR 939.

Sampled Data Address Register (SDA) and User Sampled Data Address Register (USDA)

The 750GX does not implement the Sampled Data Address Register (SDA) or the user-level, read-only
USDA registers. However, for compatibility with processors that do, those registers can be written to by boot

code without causing an exception. SDA is SPR 959; USDA is SPR 943.
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2.1.3 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the complexity and over-
head of dynamic clock control. System software can control instruction forwarding by writing a nonzero value
to the supervisor-level ICTC register. The overall junction temperature reduction comes from the dynamic
power management of each functional unit when the 750GX is idle in between instruction fetches. PLL
(phase-locked loop) and DLL (delay-locked loop) configurations are unchanged.

Instruction-cache throttling is enabled by setting ICTC[E] and writing the instruction forwarding interval into
ICTCI[FI]. Enabling, disabling, and changing the instruction forwarding interval immediately affect instruction
forwarding.

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

Reserved Fl

E
v AR A
‘0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22’23 24 25 26 27 28 29 30’31‘

Bits Field Name Description

Reserved for future use. The system software should always write zeros to these bits

0:22 Reserved when writing to the THRM SPRs.
Instruction forwarding interval expressed in processor clocks.
0x00 O clock cycles

23:30 Fl 0x01 1 clock cycle
OxFF 255 clock cycles
Cache throttling enable

31 E 0 Disable instruction-cache throttling.
1 Enable instruction-cache throttling.
gx_02.fm.(1.2) Programming Model
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2.1.4 Thermal-Management Registers (THRMn)

The on-chip thermal-management assist unit provides the following functions:

« Compares the junction temperature against user programmed thresholds
» Generates a thermal-management interrupt if the temperature crosses the threshold
» Provides a way for a successive approximation routine to estimate junction temperature

Control and access to the thermal-management assist unit is through the privileged mtspr and mfspr instruc-
tions to the four THRM registers.

2.1.4.1 Thermal-Management Registers 1-2 (THRM1-THRM2)

THRM1 and THRM2 provide the ability to compare the junction temperature against two user-provided
thresholds. Having dual thresholds allows thermal-management software differing degrees of action in
reducing junction temperature. Thermal management can use a single-threshold mode in which the thermal
sensor output is compared to only one threshold in either THRM1 or THRM2.

If an mtspr affects a THRM register that contains operating parameters for an ongoing comparison during
operation of the thermal assist unit, the respective TIV bits are cleared and the comparison is restarted.
Changing THRM3 forces the TIV bits of both THRM1 and THRM?2 to 0, and restarts the comparison if

THRM3JE] is set (see Section 2.1.4.2 on page 79).

Examples of valid THRM1/THRM2 bit settings are shown in Table 2-3 on page 79.
=z THRESHOLD Reserved

1

v v vl
2 3 4 5 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28]29[30]31]

\%

TID
«— TIE

o|<«— TIN

Bits Field Name Description

Thermal-management interrupt bit. Read only. This bit is set if the thermal sensor output
0 TIN crosses the threshold specified in the SPR. The state of this bit is valid only if TIV is set.
The interpretation of the TIN bit is controlled by the TID bit. See Table 2-3.

Thermal-management interrupt valid. Read only. This bit is set by the thermal assist logic

L v to indicate that the thermal-management interrupt (TIN) state is valid. See Table 2-3.

Threshold that the thermal sensor output is compared to. The range is 0°~127°C in incre-

28 THRESHOLD ments of 1°C. Note that this is not the resolution of the thermal sensor.

9:28 Reserved Reserved. System software should clear these bits when writing to the THRMn SPRs.

Thermal-management interrupt direction bit. Selects the result of the temperature com-
parison to set TIN and to assert a thermal-management interrupt if TIE is set. If TID is

29 TID cleared, TIN is set and an interrupt occurs if the junction temperature exceeds the thresh-
old. If TID is set, TIN is set and an interrupt is indicated if the junction temperature is
below the threshold. See Table 2-3.

Thermal-management interrupt enable. Enables assertion of the thermal-management
interrupt signal. The thermal-management interrupt is maskable by the MSR[EE] bit. If
TIE is cleared and THRMn is valid, the TIN bit records the status of the junction tempera-
ture versus threshold comparison without causing an exception. This feature allows sys-
tem software to make a successive approximation to estimate the junction temperature.
See Table 2-3 on page 79.

30 TIE

SPR valid bit. Setting this bit indicates that the SPR contains a valid threshold, TID, and
31 \% TIE control bit. Setting THRM1/2[V] and THRM3J[E] to 1 enables operation of the thermal
sensor. See Table 2-3 on page 79.
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Table 2-3. Valid THRM1/THRM2 Bit Settings

TINY Tiv? TID TIE v Description
X X X X 0 Invalid entry. The threshold in the SPR is not used for comparison.
X X X 0 1 Disable thermal-management interrupt assertion.

Set TIN and assert thermal-management interrupt if TIE = 1 and the junction temper-
X X 0 X 1 ature exceeds the threshold. If TIE = 0, then no interrupt will be taken when the
threshold is achieved.

Set TIN and assert thermal-management interrupt if TIE = 1 and the junction temper-

X X ! X ! ature is less than the threshold.
X 0 X X 1 The state of the TIN bit is not valid.

The junction temperature is less than the threshold and as a result the thermal-man-
0 1 0 X 1 ) - N

agement interrupt is not generated for TIE = 1.

The junction temperature is greater than the threshold and as a result the thermal-
1 1 0 X 1 : ] . -

management interrupt is generated if TIE = 1.

The junction temperature is greater than the threshold and as a result the thermal-
0 1 1 X 1 : ) =

management interrupt is not generated for TIE = 1.
1 1 1 N 1 The junction temperature is less than the threshold and as a result the thermal-man-

agement interrupt is generated if TIE=1

1. TIN and TIV are read-only status bits.

2.1.4.2 Thermal-Management Register 3 (THRM3)

The THRM3 register is used to enable the thermal assist unit and to control the timing of the output sample
comparison. The thermal assist logic manages the thermal-management interrupt generation and time-multi-
plexed comparisons in dual-threshold mode, as well as other control functions.

The THRM registers can be accessed with the mtspr and mfspr instructions using the following SPR
numbers:

+ THRM1 is SPR 1020
* THRM2 is SPR 1021
* THRM3 is SPR 1022

Reserved SITV E

vy vl

‘0 1 2 3 4 5 6 7 8 9 10 11 12 13 14’15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30’31‘
Bits Field Name Description

0:14 Reserved Reserved for future use. System software should clear these bits when writing to THRM3.

Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature versus threshold comparison result is sampled to set the TIN bit and gener-
ate an interrupt. This is necessary due to the thermal sensor, the digital-to-analog con-

15:30 STV verter (DAC), and because the analog comparator settling time is greater than the
processor cycle time. The value should be configured to allow a sampling interval of 20
microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.
gx_02.fm.(1.2) Programming Model
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2.1.4.3 Thermal-Management Register 4 (THRM4)

Due to process and thermal sensor variations, a temperature offset is provided that can be read via an mfspr
instruction to THRM4. The TOFFSET field is an 8-bit signed integer that represents the temperature offset
measured,; it is burned into the THRM4 Register at the factory to allow for enhanced accuracy. When in TAU
single-threshold or dual-threshold mode, TOFFSET should be subtracted from the desired temperature
before setting the THRMn(THRESHOLD) field. In junction-temperature-determination mode, TOFFSET must
be added to the final threshold number to determine the temperature. The temperature, in °C, equals:

THRMn[THRESHOLD] + sign-extended [TOFFSET)]

The THRMA4 register can be accessed with the mfspr instruction using SPR 920.

Reserved TOFFSET
v v oy v
‘0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23‘24 25 26 27 28 29 30 31‘
Bits Field Name Description
0:23 Reserved Reserved for future use. Always read as zeros.

Thermal calibration offset field set during factory test.

24:31 TOFFSET
The °C offset value is in an 8-bit, signed, two’s complement format.
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2.1.5 L2 Cache Control Register (L2CR)

The L2 Cache Control Register is a supervisor-level, implementation-specific SPR used to configure and
operate the L2 cache. It is cleared by a hard reset or power-on reset.

The L2 cache interface is described in Chapter 9, L2 Cache, on page 323. The L2CR register can be
accessed with the mtspr and mfspr instructions using SPR 1017.

o o — o
g J I x g
S ¥ ¥ w S
TR o 7 B Q O IiJ % I
N & Reserved B o & =P Reserved 9 9 5 5 LOCK o & o
v BB EERE BB REER Vb
(0/1]2 3 4 5 6 7 8|9[10[11]12]13|14 15 16 17 18 19|20|21[22[23[24 25 26 27|28[29 30|31
Bits Field Name Description
0 L2E L2 enable. Enables and disables the operation of the L2 cache, starting with the next
transaction.
1 CE L2 double-bit error checkstop enable. L2 cache double-bit errors can result in a checkstop
condition.
2:8 Reserved Reserved.
L2 data-only. Setting this bit inhibits the caching of instructions in the L2 cache. All
9 DO accesses from the L1 instruction cache are treated as cache-inhibited by the L2 cache
(bypass L2 cache, no L2 tag look-up performed).
10 Gl L2 global invalidate. Setting Gl invalidates the L2 cache globally by clearing the L2 status
bits.
11 Reserved Reserved.
12 WT L2 write-through. Setting WT selects write-through mode (rather than the default copy-
back mode) so all writes to the L2 cache also write through to the 60x bus.
L2 test support. Setting TS causes cache-block pushes from the L1 data cache that result
from dcbf and dcbst instructions to be written only into the L2 cache and marked valid,
13 TS rather than being written only to the 60x bus and marked invalid in the L2 cache in case of
a hit. If TS is set, it causes single-beat store operations that miss in the L2 cache to be
discarded.
14:19 Reserved Reserved.
20 LOCKLO Lock lower half of the L2 cache (ways 0 and 1). This provides a form of backward compat-
ibility for L2 locking. New applications should use bits 24:25.
21 LOCKHI Lock upper half of the L2 cache (ways 2 and 3). This provides a form of backward com-
patibility for L2 locking. New applications should use bits 26:27.
Snoop hit in locked line error enable. Enables a snoop hit in a locked line to raise a
22 SHEE "
machine check.
Snoop hit in locked line error. Set by a snoop hit to a locked line. Once set, this sticky bit
23 SHERR ! :
remains set until cleared by a mtspr to the L2CR.
2427 LOCK Cache Iogk control. Setting one or more of bits 24, 25, 26, and 27 locks ways 0, 1, 2, and
3 respectively
L2 instruction-only. Setting this bit inhibits the caching of data in the L2 cache. All
28 10 accesses from the L1 data cache are treated as cache-inhibited by the L2 cache (bypass
L2 cache, no L2 tag look-up performed).
29:30 Reserved Reserved.
31 P L2 global invalidate in progress (read only). This read-only bit indicates whether an L2
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2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the PowerPC Archi-
tecture—UISA and VEA. Detailed descriptions of conventions used for storing values in registers and
memory, accessing PowerPC registers, and representing data in these registers can be found in Chapter 3,
“Operand Conventions” in the PowerPC Microprocessor Family: The Programming Environments Manual.

2.2.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Memory operands can be bytes, half words, words, or double words, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (the lowest-numbered byte). Operand length is implicit for each instruction.

2.2.2 Alignment and Misaligned Accesses

The operand of a single-register memory-access instruction has an alignment boundary equal to its length.
An operand’s address is misaligned if it is not a multiple of its width. Operands for single-register memory-
access instructions have the characteristics shown in Table 2-4. Although not permitted as memory oper-
ands, quadwords are shown because quadword alignment is desirable for certain memory operands.

Table 2-4. Memory Operands

Operand Length Addr[28-31] If Aligned
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quadword 16 bytes 0000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data item
is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have a certain alignment. In addition, alignment can
affect performance. For single-register memory-access instructions, the best performance is obtained when
memory operands are aligned. Instructions are 32 bits (one word) long and must be word-aligned.

The 750GX does not provide hardware support for floating-point memory that is not word-aligned. If a
floating-point operand is not aligned, the 750GX invokes an alignment exception, and it is left up to software
to break up the offending storage access operation appropriately. In addition, some non-double-word—aligned
memory accesses suffer performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned, and floating-point double-word
accesses should always be double-word-aligned. Frequent use of misaligned accesses is discouraged since
they can degrade overall performance.
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2.2.3 Floating-Point Operand and Execution Models—UISA

The IEEE 754-1985 standard defines conventions for 64-bit and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits double-precision
arithmetic instructions to have either (or both) single-precision or double-precision operands, but states that
single-precision arithmetic instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

» Double-precision arithmetic instructions can have single-precision operands but always produce double-
precision results.

« Single-precision arithmetic instructions require all operands to be single-precision and always produce
single-precision results.

For arithmetic instructions, conversion from double to single-precision must be done explicitly by software,
while conversion from single to double-precision is done implicitly by the processor. For the 750GX, single-
precision multiply type instructions usually operate faster than their double-precision equivalents. For details
on instruction timings, see Chapter 6, Instruction Timing, on page 209.

All PowerPC implementations provide the equivalent of the execution models described in Chapter 3.3 of the
PowerPC Microprocessor Family: The Programming Environments Manual to ensure that identical results are
obtained. The definition of the arithmetic instructions for infinities, denormalized numbers, and not a numbers
(NaNs) follow the conventions described in that section.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two additional
bit positions to avoid potential transient overflow conditions. An extra bit is required when denormalized
double-precision numbers are prenormalized. A second bit is required to permit computation of the adjusted
exponent value in the following examples when the corresponding exception enable bit is one:

« Underflow during multiplication using a denormalized operand
« Overflow during division using a denormalized divisor

The 750GX provides hardware support for all single and double-precision floating-point operations for most
value representations and all rounding modes. This architecture provides for hardware to implement a
floating-point system as defined in ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating Point
Arithmetic. Detailed information about the floating-point execution model can be found in Chapter 3,
“Operand Conventions” in the PowerPC Microprocessor Family: The Programming Environments Manual.

2.2.3.1 Denormalized Number Support

The 750GX supports denormalized numbers in hardware. When loading or storing a single-precision denor-
malized number, the load/store unit converts between the internal double-precision format and the external
single-precision format.

2.2.3.2 Non-IEEE Mode (Nondenormalized Mode)

The 750GX supports a nondenormalized mode of operation. In this mode, when a denormalized result is
produced, a default result of zero is generated. The generated zero will have the same sign as the denormal-
ized number. This mode is not strictly IEEE compliant. The 750GX is in this mode when the Floating-Point
non-IEEE Enable (NI) bit of the Floating-Point Status and Control Register (FPSCR) is set.
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2.2.3.3 Time-Critical Floating-Point Operation

For time-critical applications where deterministic floating-point performance is required, the FPSCR bits must
be set with: the non-IEEE mode enabled, the floating-point exception masked, and all sticky bits set to one.
With these settings, the 750G X will not cause exceptions nor generate denormalized numbers, either of
which slows performance.

2.2.3.4 Floating-Point Storage Access Alignment

The 750GX does not provide hardware support for floating-point storage that is not word aligned. In these
cases, the 750GX invokes an alignment exception, and it is left up to software to break up the offending
storage access operation appropriately. In addition, some non-double-word-aligned storage accesses will
suffer a performance degradation as compared to an aligned access of the same type.

In general, floating-point single-word accesses should always be word aligned and floating-point double-word
accesses should always be double-word aligned. The frequent use of misaligned accesses is discouraged
since they can compromise the overall performance of the processor.

2.2.3.5 Optional Floating-Point Graphics Instructions

The 750GX implements the graphics instructions Store Floating-Point as Integer Word Indexed (stfiwx),
Floating Select fsel(.), fres(.), and frsqrte(.). For Floating Reciprocal Estimate Single A-Form (fres), the esti-
mate is 12 bits of precision. For Floating Reciprocal Square-root Estimate A-Form (frsqgrte), the estimate is
12 bits of precision with the remaining bits zero.

Table 2-5. Floating-Point Operand Data-Type Behavior (Page 1 of 2)

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode

Data Type

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Normalized or zero

Single quiet not-a-number

(QNaN)

Single signaling not-a-
number (SNaN)
Double QNaN
Double SNaN

Data Type

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Normalized or zero

Single denormalized
Double denormalized

Normalized or zero

Don’t care

Data Type

Single denormalized
Double denormalized

Normalized or zero

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Normalized or zero

Single denormalized
Double denormalized

Don't care

(NI=0)

Normalize all three
Normalize A and B
Normalize B and C
Normalize A and C
Normalize A
Normalize B

Normalize C

QNaN?

(NI=1)

Zero all three
Zero A and B
ZeroBand C
ZeroAand C
Zero A
Zero B

Zero C

QNaN?

1. Prioritize according to Chapter 3, “Operand Conventions,” in the PowerPC Microprocessor Family: The Programming Environ-

ments Manual.
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Table 2-5. Floating-Point Operand Data-Type Behavior (Page 2 of 2)

Operand A
Data Type

Don't care

Don't care

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

User's Manual

IBM PowerPC 750GX and 750GL RISC Microprocessor

Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type (NI'=0) (NI'=1)
Single QNaN
Single SNaN ) 1 1
Double QNaN Don't care QNaN QNaN
Double SNaN
Single QNaN
s Single SNaN 1 1
Don't care Double QNaN QNaN QNaN
Double SNaN
Single normalized Single normalized
Single infinity Single infinity
Single zero Single zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Do the operation

Do the operation

1. Prioritize according to Chapter 3, “Operand Conventions,” in the PowerPC Microprocessor Family: The Programming Environ-

ments Manual.

Table 2-6 summarizes the mode behavior for results.

Table 2-6. Floating-Point Result Data-Type Behavior

Precision Data Type
Single  Denormalized
Single Normalized, infinity,

zero
Single | QNaN, SNaN
Single |Integer
Double  Denormalized
Double | Normalized, infinity,
zero
Double | QNaN, SNaN
Double |INT

gx_02.fm.(1.2)
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IEEE Mode (NI = 0)

Return single-precision denormalized number with trail-
ing zeros.

Return the result.

Return QNaN.

Place integer into low word of FPR.

Return double-precision denormalized number.
Return the result.

Return QNaN.
Not supported by the 750G X

Non-IEEE Mode (NI = 1)

Return zero.

Return the result.

Return QNaN.

If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].

Return zero.
Return the result.

Return QNaN.
Not supported by the 750GX
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2.3 Instruction Set Summary

This section describes instructions and addressing modes defined for the 750GX. These instructions are
divided into the following functional categories:

Integer These include arithmetic and logical instructions. For more information, see
Section 2.3.4.1 on page 92.

Floating-point These include floating-point arithmetic instructions (single-precision and double-
precision), as well as instructions that affect the Floating-Point Status and Control
Register (FPSCR). For more information, see Section 2.3.4.2 on page 95.

Load and store These include integer and floating-point (including quantized) load-and-store
instructions. For more information, see Section 2.3.4.3 on page 98.

Flow control These include branching instructions, Condition Register logical instructions, trap
instructions, and other instructions that affect the instruction flow. For more infor-
mation, see Section 2.3.4.4 on page 106.

Processor control These instructions are used for synchronizing memory accesses and managing
caches, translation lookaside buffers (TLBs), and Segment Registers. For more
information, see Section 2.3.4.6 on page 108, Section 2.3.5.1 on page 113, and
Section 2.3.6.2 on page 118.

Memory synchronization These instructions are used for memory synchronizing. For more information, see
Section 2.3.4.7 on page 113 and Section 2.3.5.2 on page 114.

Memory control These instructions provide control of caches, TLBs, and Segment Registers. For
more information, see Section 2.3.5.3 on page 115 and Section 2.3.6.3 on
page 119.

External control These include instructions for use with special input/output devices. For more infor-

mation, see Section 2.3.5.4 on page 117.

Note: This grouping of instructions does not necessarily indicate the execution unit that processes a particu-
lar instruction or group of instructions. That information, which is useful for scheduling instructions most effec-
tively, is provided in Chapter 6, Instruction Timing, on page 209.

Integer instructions operate on word operands. Floating-point instructions operate on single-precision and
double-precision floating-point operands. The PowerPC Architecture uses instructions that are 4 bytes long
and word-aligned. It provides for byte, half-word, and word operand loads and stores between memory and a
set of 32 General Purpose Registers (GPRs). It provides for word and double-word operand loads and stores
between memory and a set of 32 Floating Point Registers (FPRSs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in
a computation and then modify the same or another memory location, the memory contents must be loaded
into a register, modified, and then written to the target location using load-and-store instructions.

The description of each instruction beginning on page 92 includes the mnemonic and a formatted list of oper-
ands. To simplify assembly language programming, a set of simplified mnemonics and symbols is provided

for some of the frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in the PowerPC Micro-
processor Family: The Programming Environments Manual for a complete list of simplified mnemonics. Note
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that the architecture specification refers to simplified mnemonics as extended mnemonics. Programs written
to be portable across the various assemblers for the PowerPC Architecture should not assume the existence
of mnemonics not described in that document.

2.3.1 Classes of Instructions

The 750GX instructions belong to one of the following three classes.

» Defined
* lllegal
* Reserved

Note that while the definitions of these terms are consistent among the PowerPC processors, the assignment
of these classifications is not. For example, PowerPC instructions defined for 64-bit implementations are
treated as illegal by 32-bit implementations such as the 750GX.

The class is determined by examining the primary opcode and the extended opcode, if any. If the opcode, or
combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruction,
the instruction is illegal.

Instruction encodings that are now illegal might be assigned to instructions in the architecture or might be
reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on execution can be said to
be boundedly undefined. If a user-level program executes the incorrectly coded instruction, the resulting
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and the
level of privilege exercised by the program in relation to memory access and other system resources cannot
be exceeded. Boundedly-undefined results for a given instruction might vary between implementations, and
between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations, except as stated in the
instruction descriptions in Chapter 8, “Instruction Set,” of the the PowerPC Microprocessor Family: The
Programming Environments Manual. The 750GX provides hardware support for all instructions defined for
32-bit implementations.

It does not support the optional Floating Square Root (Double-Precision) (fsqrt), Floating Square Root
(Single-Precision) (fsqrts), and Translation Lookaside Buffer Invalidate All (tlbia) instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program exception) when the
unimplemented PowerPC instructions are encountered so they can be emulated in software, as required.
Note that the architecture specification refers to exceptions as interrupts.

A defined instruction can have invalid forms. The 750GX provides limited support for instructions represented
in an invalid form.
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2.3.1.3 lllegal Instruction Class

lllegal instructions can be grouped into the following categories:

« Instructions not defined in the PowerPC Architecture.The following primary opcodes are defined as ille-
gal, but might be defined to perform new functions in future extensions to the architecture:
1,4,5,6,9, 22, 56, 60, 61

« Instructions defined in the PowerPC Architecture but not implemented in a specific PowerPC implemen-
tation. For example, instructions that can be executed on 64-bit PowerPC processors are considered ille-
gal by 32-bit processors such as the 750GX.

The following primary opcodes are defined for 64-bit implementations only and are illegal on the 750GX:
2,30, 58, 62

« All unused extended opcodes are illegal. The unused extended opcodes can be determined from infor-
mation in Section 2.3.1.4. Notice that extended opcodes for instructions defined only for 64-bit implemen-
tations are illegal in 32-bit implementations, and vice versa.

The following primary opcodes have unused extended opcodes: 17, 19, 31, 59, 63 (primary opcodes 30
and 62 are illegal for all 32-bit implementations, but as 64-bit opcodes they have some unused extended
opcodes.)

« An instruction consisting of only zeros is guaranteed to be an illegal instruction. This increases the proba-
bility that an attempt to execute data or uninitialized memory invokes the system illegal instruction error
handler (a program exception). Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction, as described in Section 2.3.1.4.

The 750GX invokes the system illegal instruction error handler (a program exception) when it detects any
instruction from this class or any instructions defined only for 64-bit implementations.

See Section 4.5.7 on page 170 for additional information about illegal and invalid instruction exceptions.
Except for an instruction consisting of binary zeros, illegal instructions are available for additions to the
PowerPC Architecture.
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2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC Architecture. Attempting to execute an unimplemented reserved instruction invokes the illegal
instruction error handler (a program exception). See Section 4.5.7 on page 170 for information about illegal
and invalid instruction exceptions.

The PowerPC Architecture defines four types of reserved instructions:

* Instructions in the POWER architecture not part of the PowerPC UISA. For details on POWER architec-
ture incompatibilities and how they are handled by PowerPC processors, see Appendix B, “POWER
Architecture Cross Reference” in the PowerPC Microprocessor Family: The Programming Environments
Manual.

* Implementation-specific instructions required for the processor to conform to the PowerPC Architecture
(none of these are implemented in the 750GX)

« All other implementation-specific instructions

« Architecturally-allowed extended opcodes

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for calculating effective
addresses as defined by the PowerPC Architecture for 32-bit implementations. For more detailed information,
see “Conventions” in Chapter 4, “Addressing Modes and Instruction Set Summary” of the PowerPC Micropro-
cessor Family: The Programming Environments Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a memory-access or branch instruction or when it fetches the next sequential instruction. Bytes in
memory are numbered consecutively starting with zero. Each number is the address of the corresponding
byte.

2.3.2.2 Memory Operands

Memory operands can be bytes, half words, words, or double words, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction. The
PowerPC Architecture supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian. See “Byte Ordering” in Chapter 3, “Operand Conventions” of the PowerPC Micropro-
cessor Family: The Programming Environments Manual for more information about big and little-endian byte
ordering.

The operand of a single-register memory-access instruction has a natural alignment boundary equal to the
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise, it is
misaligned.

For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions” of the PowerPC
Microprocessor Family: The Programming Environments Manual.
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2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a memory-access or
branch instruction or when fetching the next sequential instruction. For a memory-access instruction, if the
sum of the effective address and the operand length exceeds the maximum effective address, the memory
operand is considered to wrap around from the maximum effective address through effective address 0, as
described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit signed two’s complement
binary arithmetic. A carry from bit 0 and overflow are ignored.
Load-and-store operations have the following modes of effective address generation:

« EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)

e EA = (rA|0) + rB (register indirect with index)

See Integer Load-and-Store Address Generation on page 99 for a detailed description of effective address
generation for load-and-store operations.

Branch instructions have three categories of effective address generation;

e Immediate
« Link register indirect
« Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is performing the
synchronization.

Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context synchronization by allowing
previously issued instructions to complete before performing a change in context. Execution of one of these
instructions ensures the following:

* No higher-priority exception exists (sc).

 All previous instructions have completed to a point where they can no longer cause an exception. If a
prior memory-access instruction causes direct-store error exceptions, the results are guaranteed to be
determined before this instruction is executed.

» Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

» The instructions following the sc or rfi instruction execute in the context established by these instructions.

Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to have completed
before the instruction is initiated, or in the case of sync and isync, before the instruction completes. For
example, the Move-to Machine State Register (mtmsr) instruction is execution synchronizing. It ensures that
all preceding instructions have completed execution and cannot cause an exception before the instruction
executes, but does not ensure that subsequent instructions execute in the newly established environment.
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For example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction,
a privileged instruction could be executed or privileged access could be performed without causing an excep-
tion even though the MSR[PR] bit indicates user mode.

Instruction-Related Exceptions

There are two kinds of exceptions in the 750GX—those caused directly by the execution of an instruction and
those caused by an asynchronous event (or interrupts). Either can cause components of the system software
to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

< An attempt to execute an illegal instruction causes the illegal instruction (program exception) handler to
be invoked. An attempt by a user-level program to execute the supervisor-level instructions listed below
causes the privileged instruction (program exception) handler to be invoked:

— Data Cache Block Invalidate (dcbi)

— Move-from Machine State Register (mfmsr)
— Move-from Special Purpose Register (mfspr)
— Move-from Segment Register (mfsr)

— Move-from Segment Register Indirect (mfsrin)
— Move-to Machine State Register (mtmsr)

— Move-to Special Purpose Register (mtspr)

— Move-to Segment Register (mtsr)

— Move-to Segment Register Indirect (mtsrin)
— Return from Exception (rfi)

— TLB Invalidate Entry (tlbie)

— TLB Synchronize (tlbsync)

Note that the privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

* Any mtspr, mfspr, or Move-from Time Base (mftb) instruction with an invalid SPR (or Time Base Regis-
ter [TBR]) field causes an illegal type program exception. Likewise, a program exception is taken if user-
level software tries to access a supervisor-level SPR. An mtspr instruction executing in supervisor mode
(MSR[PR] = 0) with the SPR field specifying HID1 or PVR (read-only registers) executes as a no-op.

< An attempt to access memory that is not available (page fault) causes the ISI or DSI exception handler to
be invoked.

« The execution of an sc instruction invokes the system-call exception handler that permits a program to
request the system to perform a service.

« The execution of a trap instruction invokes the program exception trap handler.
« The execution of an instruction that causes a floating-point exception while exceptions are enabled in the
MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, Exceptions, on page 151.

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the 750GX and highlights
any special information about how the 750GX implements a particular instruction. Note that the categories
used in this section correspond to those used in Chapter 4, “Addressing Modes and Instruction Set
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Summary” in the PowerPC Microprocessor Family: The Programming Environments Manual. These categori-
zations are somewhat arbitrary and are provided for the convenience of the programmer and do not neces-
sarily reflect the PowerPC Architecture specification.

Note that some instructions have the following optional features:

* CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.

» Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level cache-control,
synchronization, and time-base instructions), user-level registers, programming model, data types, and
addressing modes. This section discusses the instructions defined in the UISA.

2.3.4.1 Integer Instructions

This section describes the integer instructions, which consist of:

* Integer arithmetic instructions
* Integer compare instructions

« Integer logical instructions

« Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs, into the
Integer Exception Register (XER), and into Condition Register (CR) fields.

Integer Arithmetic Instructions

Table 2-7 lists the integer arithmetic instructions for PowerPC processors.

Table 2-7. Integer Arithmetic Instructions (Page 1 of 2)

Name
Add Immediate
Add Immediate Shifted
Add
Subtract From
Add Immediate Carrying
Add Immediate Carrying and Record
Subtract from Immediate Carrying
Add Carrying
Subtract from Carrying
Add Extended
Subtract from Extended
Add to Minus One Extended

Subtract from Minus One Extended
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Mnemonic

addi

addis

add (add. addo addo.)

subf (subf.

subfo subfo.)

addic

addic.

subfic

addc (addc.
subfc (subfc.
adde (adde.
subfe (subfe.

addme (addme.

subfme (subfme.

addco addco.)
subfco subfco.)
addeo addeo.)
subfeo subfeo.)
addmeo addmeo.)

subfmeo subfmeo.)

Syntax
rD,rA,SIMM
rD,rA,SIMM

rD,rA,rB
rD,rA,rB
rD,rA,SIMM
rD,rA,SIMM
rD,rA,SIMM
rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA,rB
rD,rA
rD,rA
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Table 2-7. Integer Arithmetic Instructions (Page 2 of 2)

Name Mnemonic Syntax
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw  (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw  (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an addi instruction
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The subf
instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are provided
in which the third operand is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,”
in the PowerPC Microprocessor Family: The Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the overflow enable bit (OE) or the
carry bit (CA) can either execute these instructions slowly or prevent execution of the subsequent instruction
until the operation completes. Chapter 6, Instruction Timing, on page 209 describes how the 750GX handles
CR dependencies. The summary overflow bit (SO) and overflow bit (OV) in the Integer Exception Register
are set to reflect an overflow condition of a 32-bit result. This can happen only when OE = 1.

Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register rA with either the
zero-extended value of the unsigned immediate value (UIMM) operand, the sign-extended value of the
signed immediate value (SIMM) operand, or the contents of register rB. The comparison is signed for the
cmpi and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-8 summarizes the
integer compare instructions. For more information, see the PowerPC Microprocessor Family: The Program-
ming Environments Manual.

Table 2-8. Integer Compare Instructions

Name Mnemonic Syntaxl
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rArB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

1. See Conventions Used in This Manual on page 20.

The crfD operand can be omitted if the result of the comparison is to be placed in CRO. Otherwise, the target
CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix F, “Simplified
Mnemonics,” in the PowerPC Microprocessor Family: The Programming Environments Manual.
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Integer Logical Instructions

The logical instructions shown in Table 2-9 on page 94 perform bit-parallel operations on the specified oper-
ands. Logical instructions with CR updating enabled (uses dot suffix) and the AND Immediate (andi.) and
AND Immediate Shifted (andis.) instructions set the CR[CRO] field to characterize the result of the logical
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming Envi-
ronments Manual for simplified mnemonic examples for integer logical operations.

Table 2-9. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes
AND Immediate andi. rA,rS,UuiMM —
AND Immediate Shifted andis. rA,rS,uiMm —
The PowerPC Architecture defines ori r0,r0,0 as the pre-
OR mmedae Acsuw e fom for he oo nstucton, Te dspacher i
breakpoint exceptions).
OR Immediate Shifted oris rA,rS,uiMm —
XOR Immediate xori rA,rS,UuiMM —
XOR Immediate Shifted Xoris rA,rS,uiMm —
AND and (and.) rA,rS,rB —
OR or (or.) rA,rS,rB —
XOR xor (xor.) rA,rS,rB —
NAND nand (nand.) rA,rS,rB —
NOR nor (nor.) rA,rS,rB —
Equivalent eqv (eqv.) rA,rS,rB —
AND with Complement andc (andc.) rA,rS,rB —
OR with Complement orc (orc.) rA,rS,rB —
Extend Sign Byte extsb (extsb.) rArS —
Extend Sign Half Word extsh (extsh.) rArS —
Count Leading Zeros Word cntlzw (cntlzw.) rArS —

Integer Rotate Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned to
a GPR. See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming
Environments Manual for a complete list of simplified mnemonics that allows simpler coding of often-used
functions such as clearing the leftmost or rightmost bits of a register, left justifying or right justifying an arbi-
trary field, and simple rotates and shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into the
target register under control of a mask (if a mask bit is 1, the associated bit of the rotated data is placed into
the target register, and if the mask bit is 0, the associated bit in the target register is unchanged), or ANDed

with a mask before being placed into the target register.
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The integer rotate instructions are summarized in Table 2-10. For more information, see the PowerPC Micro-
processor Family: The Programming Environments Manual.

Table 2-10. Integer Rotate Instructions

Name Mnemonic Syntax
Rotate Left Word Immediate then AND with Mask riwinm (rlwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift operations
are obtained by specifying masks and shift values for certain rotate instructions. Simplified mnemonics
(shown in Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming
Environments Manual) are provided to make coding of such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts,” in the
PowerPC Microprocessor Family: The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-11.

Table 2-11. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw  (slw.) rA,rS,rB
Shift Right Word srw  (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rArS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

* Floating-point arithmetic instructions

* Floating-point multiply/add instructions
 Floating-point rounding and conversion instructions
 Floating-point compare instructions

 Floating-point status and control register instructions
* Floating-point move instructions

See Section 2.3.4.3 on page 98 for information about floating-point loads and stores.

The PowerPC Architecture supports a floating-point system as defined in the IEEE 754-1985 standard, but
requires software support to conform with that standard. All floating-point operations conform to the IEEE
754-1985 standard, except if software sets FPSCR[NI] to the non-IEEE mode.

Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 2-12.
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Table 2-12. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul  (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Reciprocal Estimate Singlel fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate? frsqrte (frsqrte.) frD,frB
Floating Select! fsel (fsel.) frD,frA,frC,frB

1. The fres, frsqrte, and fsel instructions are optional in the PowerPC Architecture.

Double-precision arithmetic instructions, except those involving multiplication (fmul, fmadd, fmsub, fnmadd,
fnmsub) execute with the same latency as their single-precision equivalents. For additional details on
floating-point performance, see Chapter 6, Instruction Timing, on page 209.

Floating-Point Multiply/Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
floating-point multiply/add instructions are summarized in Table 2-13.

Table 2-13. Floating-Point Multiply/Add Instructions

Name Mnemonic Syntax
Floating Multiply/Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply/Add Single fmadds (fmadds.) frD,frA,frC,frB
Floating Multiply/Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply/Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply/Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply/Add Single fnmadds (fnmadds.) frD,frA,frC,frB
;Igs)tmg Negative Multiply/Subtract (Double-Preci- famsub (fnmsub.) frD frAfrC.frB
Floating Negative Multiply/Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision number
to a 32-bit single-precision floating-point number. The floating-point convert instructions convert a 64-bit
double-precision floating-point number to a 32-bit signed integer number.
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Examples of uses of these instructions to perform various conversions can be found in Appendix D, “Floating-
Point Models,” in the PowerPC Microprocessor Family: The Programming Environments Manual.

Table 2-14. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw  (fctiw.) frD,frB

Floating Convert to Integer Word with Round

toward Zero fctiwz (fctiwz.) frD,frB

Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two Floating Point Registers. The comparison
ignores the sign of zero (that is, +0 = -0).

The floating-point compare instructions are summarized in Table 2-15.

Table 2-15. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fcmpu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB

The PowerPC Architecture allows an fcmpu or fcmpo instruction with the record bit (Rc) set to produce a
boundedly-undefined result, which might include an illegal instruction program exception. In the 750GX, crfD
should be treated as undefined

Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by a
given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initi-
ated by the given processor appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR instruc-
tion has completed.

The FPSCR instructions are summarized in Table 2-16. For more information, see the PowerPC Micropro-
cessor Family: The Programming Environments Manual.

Table 2-16. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move-from FPSCR mffs (mffs.) frD
Move-to Condition Register from FPSCR mcrfs crfD,crfS
Move-to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move-to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move-to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move-to FPSCR Bit 1 mtfsbl (mtfsbl.) crbD
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Note: The PowerPC Architecture states that, in some implementations, the move-to FPSCR fields (mtfsf)
instruction might perform more slowly when only some of the fields are updated as opposed to all of the
fields. In the 750GX, there is no degradation of performance.

Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point move instructions do
not modify the FPSCR. The CR update option in these instructions controls the placing of result status into
CRL1. Table 2-17 summarizes the floating-point move instructions.

Table 2-17. Floating-Point Move Instructions

Name Mnemonic Syntax
Floating Move Register fmr  (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load-and-Store Instructions

Load-and-store instructions are issued and translated in program order; however, the accesses can occur out
of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the load-
and-store instructions, which consist of the following:

* Integer load instructions

« Integer store instructions

« Integer load-and-store with byte-reverse instructions

* Integer load-and-store multiple instructions

* Floating-point load instructions, including quantized loads
 Floating-point store instructions, including quantized stores
« Memory synchronization instructions

The 750GX provides hardware support for misaligned memory accesses. It performs those accesses within a
single cycle if the operand lies within a double-word boundary. Misaligned memory accesses that cross a
double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register values to reduce the number of
discrete accesses. Combining stores enhances performance if store gathering is enabled and the accesses
meet the criteria described in Section 6.4.7, Integer Store Gathering, on page 234. Note that the PowerPC
Architecture requires load/store multiple instruction accesses to be aligned. At a minimum, additional cache
access cycles are required.

Although many unaligned memory accesses are supported in hardware, the frequent use of them is discour-
aged since they can compromise the overall performance of the processor.

Accesses that cross a translation boundary might be restarted. That is, a misaligned access that crosses a
page boundary is completely restarted if the second portion of the access causes a page fault. This might
cause the first access to be repeated. On some processors, such as the PowerPC 603, a TLB reload would
cause an instruction restart. On the 750G X, TLB reloads are done transparently, and only a page fault causes
a restart.
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Little Endian Misaligned Accesses

The 750G X supports misaligned single register load-and-store accesses in little-endian mode without causing
an alignment exception. However, execution of a load/store multiple or string instruction causes an alignment
exception.

Self-Modifying Code

When a processor modifies a memory location that might be contained in the instruction cache, software
must ensure that memory updates are visible to the instruction-fetching mechanism. This can be achieved by
the following instruction sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
isync # remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since instruction fetching
bypasses the data cache, changes to items in the data cache cannot be reflected in memory until the fetch
operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified secondary
caches, and designers should carefully follow the guidelines for maintaining cache coherency that are
provided in the VEA, and discussed in Chapter 5, “Cache Model and Memory Coherency,” in the PowerPC
Microprocessor Family: The Programming Environments Manual. Because the 750G X does not broadcast
the M bit for instruction fetches, external caches are subject to coherency paradoxes.

Integer Load-and-Store Address Generation

Integer load-and-store operations generate effective addresses using register indirect with immediate index
mode, register indirect with index mode, or register indirect mode. See Section 2.3.2.3 on page 90 for infor-
mation about calculating effective addresses. Note that in some implementations, operations that are not
naturally aligned might suffer performance degradation. See Section 4.5.6 on page 170 for additional infor-
mation about load-and-store address alignment exceptions.

Integer Load Instructions

For integer load instructions, the byte, half word, or word addressed by the EA is loaded into rD. Many integer
load instructions have an update form, in which rA is updated with the generated effective address. For these
forms, if rA # 0 and rA = rD (otherwise invalid), the EA is placed into rA and the memory element (byte, half
word, or word) addressed by the EA is loaded into rD. Note that the PowerPC Architecture defines load with
update instructions with operand rA = 0 or rA = rD as invalid forms.

Table 2-18 summarizes the integer load instructions.

Table 2-18. Integer Load Instructions (Page 1 of 2)

Name Mnemonic Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
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Table 2-18. Integer Load Instructions (Page 2 of 2)

Name Mnemonic Syntax
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed Ihzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed Ilhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed Ihaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

Implementation Notes—The following notes describe the 750GX implementation of integer load instruc-
tions:

« The PowerPC Architecture cautions programmers that some implementations of the architecture might
execute the load half algebraic (Iha, Ihax) instructions and the load word with update (Ibzu, Ibzux, Ihzu,

Ihzux, Ihau, Ihaux, lwu, lwux) instructions with greater latency than other types of load instructions. Th
is not the case for the 750GX. These instructions operate with the same latency as other load instruc-
tions.

is

« The PowerPC Architecture cautions programmers that some implementations of the architecture might
run the load/store byte-reverse (Ihbrx, Ibrx, sthbrx, stwbrx) instructions with greater latency than other

types of load/store instructions. This is not the case for the 750GX. These instructions operate with the
same latency as the other load/store instructions.

e The PowerPC Architecture describes some preferred instruction forms for load-and-store multiple instruc-
tions and integer move assist instructions that might perform better than other forms in some implementa-

tions. None of these preferred forms affect instruction performance on the 750GX.

« The PowerPC Architecture defines the load word and reserve indexed (Iwarx) and the store word condi-

tional indexed (stwcx.) instructions as a way to update memory atomically. In the 750GX, reservations
are made on behalf of aligned 32-byte sections of the memory address space. Executing Iwarx and

stwcx. to a page marked write-through does not cause a DSI exception if the write-through (W) bit is set.
However, as with other memory accesses, DSI exceptions can result for other reasons such as protection

violations or page faults.

« In general, because stwcx. always causes an external bus transaction, it has slightly worse performance

characteristics than normal store operations.
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Integer Store Instructions

For integer store instructions, the contents of the source register (rS) are stored into the byte, half word, or
word in memory addressed by the EA. Many store instructions have an update form, in which rA is updated
with the EA. For these forms, the following rules apply:

« IfrA #0, the effective address is placed into rA.
« IfrS =rA, the contents of register rS are copied to the target memory element, and then the generated
EA is placed into rA (rS).

The PowerPC Architecture defines store with update instructions with rA = 0 as an invalid form. In addition, it
defines integer store instructions with the CR update option enabled (Rc field, bit 31, in the instruction
encoding = 1) to be an invalid form.

Table 2-19 summarizes the integer store instructions.

Table 2-19. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed Sstwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

Integer Store Gathering

The 750GX performs store gathering for write-through accesses to nonguarded space or to cache-inhibited
stores to nonguarded space if the stores are 4 bytes and they are word-aligned. These stores are combined
in the load/store unit (LSU) to form a double word that is sent out on the 60x bus as a single-beat operation.
Stores are gathered only if successive, eligible stores are queued and pending. Store gathering takes place
regardless of address order or endian mode. The store-gathering feature is enabled by setting the HIDO[SGE]
bit (bit 24).

Store gathering is not done for:

» Cacheable stores

» Stores to guarded cache-inhibited or write-through space

» Byte-reverse store

« Store Word Conditional Indexed (stwcx.) and External Control Out Word Indexed (ecowx) accesses
 Floating-point stores
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If store gathering is enabled and the stores do not fall under the above categories, then an Enforce In-Order
Execution of 1/O (eieio) or Synchronize (sync) instruction must be used to prevent two stores from being
gathered.

Store gathering is also not done when the MMU is busy doing a hardware table walk.

Integer Load-and-Store with Byte-Reverse Instructions

Table 2-20 describes integer load-and-store with byte-reverse instructions. When used in a PowerPC system
operating with the default big-endian byte order, these instructions have the effect of loading and storing data
in little-endian order. Likewise, when used in a PowerPC system operating with little-endian byte order, these
instructions have the effect of loading and storing data in big-endian order. For more information about big-
endian and little-endian byte ordering, see “Byte Ordering” in Chapter 3, “Operand Conventions” in the
PowerPC Microprocessor Family: The Programming Environments Manual.

Table 2-20. Integer Load-and-Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Integer Load-and-Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load multiple
and store multiple instructions can have operands that require memory accesses that cross a 4-KB page
boundary. As a result, these instructions might be interrupted by a DSI exception associated with the address
translation of the second page.

Implementation Notes: The following describes the 750G X implementation of the load/store multiple instruc-
tion.

» For load/store string operations, the hardware does not combine register values to reduce the number of
discrete accesses. However, if store gathering is enabled and the accesses fall under the criteria for store
gathering, the stores can be combined to enhance performance. At a minimum, additional cache access
cycles are required.

e The 750GX supports misaligned, single-register load-and-store accesses in little-endian mode without
causing an alignment exception. However, execution of misaligned load/store multiple/string operations
causes an alignment exception.

The PowerPC Architecture defines the Load Multiple Word (Imw) instruction with rA in the range of registers
to be loaded as an invalid form.

Table 2-21. Integer Load-and-Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)
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Integer Load-and-Store String Instructions

The integer load-and-store string instructions allow movement of data from memory to registers, or from
registers to memory, without concern for alignment. These instructions can be used for a short move between
arbitrary memory locations or to initiate a long move between misaligned memory fields. However, in some
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual load or store instructions that produce the same results.

Table 2-20 summarizes the integer load-and-store string instructions. In other PowerPC implementations
operating with little-endian byte order, execution of a load or string instruction invokes the alignment error
handler. See “Byte Ordering” in the PowerPC Microprocessor Family: The Programming Environments Man-

ual for more information.

Table 2-22. Integer Load-and-Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate Iswi rD,rANB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions might involve operands that are not word-aligned.

As described in Section 4.5.6 on page 170, a misaligned string operation suffers a performance penalty
compared to an aligned operation of the same type.

A non-word-aligned string operation that crosses a 4-KB boundary, or a word-aligned string operation that
crosses a 256-MB boundary, always causes an alignment exception. A non-word-aligned string operation
that crosses a double-word boundary is also slower than a word-aligned string operation.

Implementation Notes: The following describes the 750G X implementation of load/store string instructions:

» For load/store string operations, the hardware does not combine register values to reduce the number of
discrete accesses. However, if store gathering is enabled and the accesses fall under the criteria for store
gathering, the stores can be combined to enhance performance. At a minimum, additional cache access
cycles are required.

» The 750GX supports misaligned, single-register load-and-store accesses in little-endian mode without
causing an alignment exception. However, execution of misaligned load/store multiple/string operations
causes an alignment exception.

Floating-Point Load-and-Store Address Generation

Floating-point load-and-store operations generate effective addresses using the register indirect with imme-
diate index addressing mode and register indirect with index addressing mode. Floating-point loads and
stores are not supported for direct-store accesses. The use of floating-point loads and stores for direct-store
access results in an alignment exception.

Implementation Notes: The 750GX treats exceptions as follows:

e The FPU can be run in two different modes—ignore-exceptions mode (MSR[FEO] = MSR[FE1] = 0) and
precise-exception mode (any other settings for MSR[FEO,FEL1]). For the 750GX, ignore-exceptions mode
allows floating-point instructions to complete earlier and, thus, might provide better performance than pre-

cise mode.
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For software compatibility, the other two mode encodings, imprecise-nonrecoverable mode and impre-
cise-recoverable mode, default to the precise mode.

Note: For the 750GX, the ignore-exceptions mode allows floating-point instructions to complete earlier
and, thus, might provide better performance than the precise-exception mode.

» The floating-point load-and-store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux, stfdx,
stfdux) are invalid when the Rc bit is one. In the 750GX, executing one of these invalid instruction forms
causes CRO to be set to an undefined value.

Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-precision. The
behavior of double-precision floating-point load instructions, and the behavior of single-precision floating-
point load instructions are described here. Single-precision floating-point load instructions convert single-
precision data to double-precision format before loading an operand into an FPR.

The PowerPC Architecture defines a load with update instruction with rA = 0 as an invalid form.

Table 2-23 summarizes the single-precision and double-precision floating-point load instructions.

Table 2-23. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the store instruction—
single-precision, double-precision, and integer. The integer form is supported by the optional stfiwx instruc-
tion. The behavior of double-precision floating-point store instructions, and the behavior of single-precision
floating-point store instructions are described here. Single-precision floating-point store instructions convert
double-precision data to single-precision format before storing the operands.

Programming Note: After power-on-reset, never store data from the Floating Point Register file because the
file contains unset data and might have invalid formatted floating-point data. Always initialize the Floating
Point Register file with valid floating-point data before continuing after a power-on-reset,.
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Table 2-24 summarizes the single-precision and double-precision floating-point store and stfiwx instructions.

Table 2-24. Floating-Point Store Instructions

Name
Store Floating-Point Single
Store Floating-Point Single Indexed
Store Floating-Point Single with Update
Store Floating-Point Single with Update Indexed
Store Floating-Point Double
Store Floating-Point Double Indexed
Store Floating-Point Double with Update
Store Floating-Point Double with Update Indexed

Store Floating-Point as Integer Word Indexed 1

1. The stfiwx instruction is optional in the PowerPC Architecture.

Mnemonic Syntax
stfs frS,d(rA)
stfsx frS,rB
stfsu frS,d(rA)
stfsux frS,rB
stfd frS,d(rA)
stfdx frS,rB
stfdu frS,d(rA)
stfdux frS,rB
stfiwx frS,rB

Some floating-point store instructions require conversions in the LSU. Table 2-25 shows conversions the LSU
makes when executing a Store Floating-Point Single instruction.

Table 2-25. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store

If (exp 0 < 896)
Double Normalized then Denormalize and Store
else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store

Note: The FPRs are not initialized by HRESET, and they must be initialized with some valid value after POR

HRESET and before being stored.

Table 2-26 shows the conversions made when performing a Store Floating-Point Double instruction. Most
entries in the table indicate that the floating-point value is simply stored. Only in a few cases are any other

actions taken.

Table 2-26. Store Floating-Point Double Behavior (Page 1 of 2)

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
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Table 2-26. Store Floating-Point Double Behavior (Page 2 of 2)

FPR Precision Data Type Action
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturally, all single-precision and double-precision floating-point numbers are represented in double-
precision format within the 750GX. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double to single-precision format. If the exponent is not greater than 896,
this conversion requires denormalization. The 750GX supports this denormalization by shifting the mantissa
one bit at a time. Anywhere from 1 to 23 clock cycles are required to complete the denormalization,
depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 750GX, there is also a case when execution
of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can require internal shifting of the
mantissa. This case occurs when the operand of a store floating-point double instruction is a denormalized
single-precision value. The value could be the result of a load floating-point single instruction, a single-preci-
sion arithmetic instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These cycles are incurred
during the store.

2.3.4.4 Branch and Flow-Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the CR.
When the processor encounters one of these instructions, it scans the execution pipelines to determine
whether an instruction in progress can affect the particular CR bit. If no interlock is found, the branch can be
resolved immediately by checking the bit in the CR and taking the action defined for the branch instruction.

Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits of the generated branch
target address. Branch instructions compute the EA of the next instruction address using the following
addressing modes:

* Branch relative

» Branch conditional to relative address
» Branch to absolute address

« Branch conditional to absolute address
« Branch conditional to link register

« Branch conditional to count register

Note: Inthe 750GX, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, belr, belrl, becetr, beetrl) and
condition register logical instructions (crand, cror, crxor, crnand, crnor, crandc, creqv, crorc, and mcrf)
are executed by the branch processing unit (BPU). Some of these instructions can redirect instruction execu-
tion conditionally based on the value of bits in the CR. Whenever the CR bits resolve, the branch direction is
either marked as correct or mispredicted. Correcting a mispredicted branch requires that the 750GX flush
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speculatively executed instructions and restore the machine state to immediately after the branch. This cor-
rection can be done immediately upon resolution of the Condition Registers bits.

Branch Instructions

Table 2-27 lists the branch instructions provided by the PowerPC processors. To simplify assembly language
programming, a set of simplified mnemonics and symbols is provided for the most frequently used forms of
branch conditional, compare, trap, rotate and shift, and certain other instructions. See Appendix F, “Simplified
Mnemonics” in the PowerPC Microprocessor Family: The Programming Environments Manual for a list of
simplified mnemonic examples.

Table 2-27. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr  (bcelrl) BO,BI
Branch Conditional to Count Register beccetr (bectrl) BO,BI

Condition Register Logical Instructions

Condition Register logical instructions and the Move Condition Register Field (mcrf) instruction are also
defined as flow-control instructions. Table 2-28 shows these instructions.

Table 2-28. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA,crbB
Condition Register AND with Complement crandc crbD,crbA,crbB
Condition Register OR with Complement crorc crbD,crbA,crbB
Move Condition Register Field mcrf crfD,crfS

Note: If the LR update option is enabled for any of these instructions, the PowerPC Architecture defines
these forms of the instructions as invalid.
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Trap Instructions

The trap instructions shown in Table 2-29 are provided to test for a specified set of conditions. If any of the
conditions tested by a trap instruction are met, the system trap type of program exception is taken. For more
information, see Section 4.5.7 on page 170. If the tested conditions are not met, instruction execution
continues normally.

Table 2-29. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics” in the PowerPC Microprocessor Family: The Programming Environ-
ments Manual for a complete set of simplified mnemonics.
2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a service; see
Table 2-30. See also Section 2.3.6.1 on page 118 for additional information.

Table 2-30. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —
Executing this instruction causes the system-call exception handler to be evoked. For more information, see
Section 4.5.10 on page 171.

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the Condition Register (CR), Machine State
Register (MSR), and Special-Purpose Registers (SPRs).

See Section 2.3.5.1 on page 113 for the mftb instruction and Section 2.3.6.2 on page 118 for information
about the instructions used for reading from and writing to the MSR and SPRs.

Move-to/Move-from Condition Register Instructions

Table 2-31 summarizes the instructions for reading from or writing to the Condition Register.

Table 2-31. Move-to/Move-from Condition Register Instructions

Name Mnemonic Syntax
Move-to Condition Register Fields mtcrf CRM,rS
Move-to Condition Register from XER mcrxr crfD
Move-from Condition Register mfcr rD
Programming Model gx_02.fm.(1.2)
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Implementation Note: The PowerPC Architecture indicates that in some implementations the Move-to
Condition Register Fields (mtcrf) instruction might perform more slowly when only a portion of the fields are
updated as opposed to all of the fields. The Condition Register access latency for the 750GX is the same in
both cases.

Move-to/Move-from Special-Purpose Register Instructions (UISA)

Table 2-32 lists the mtspr and mfspr instructions.

Table 2-32. Move-to/Move-from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax
Move-to Special-Purpose Register mtspr SPR,rS
Move-from Special-Purpose Register mfspr rD,SPR

Table 2-33 lists the SPR numbers for both user-level and supervisor-level accesses.

Table 2-33. PowerPC Encodings (Page 1 of 3)

SPRl
Register Name Access mfspr/mtspr
Decimal SPR[5-9] SPR[0-4]

CTR 9 00000 01001 User (UISA) Both

DABR 1013 11111 10101 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both
DBATOL 537 10000 11001 Supervisor (OEA) Both
DBATOU 536 10000 11000 Supervisor (OEA) Both
DBATI1L 539 10000 11011 Supervisor (OEA) Both
DBAT1U 538 10000 11010 Supervisor (OEA) Both
DBAT2L 541 11110 11101 Supervisor (OEA) Both
DBAT2U 540 11110 11100 Supervisor (OEA) Both
DBAT3L 543 11110 11111 Supervisor (OEA) Both
DBAT3U 542 11110 11110 Supervisor (OEA) Both
DBATA4L 569 10001 11001 Supervisor (OEA) Both
DBAT4U 568 10001 11000 Supervisor (OEA) Both
DBATSL 571 10001 11011 Supervisor (OEA) Both
DBAT5U 570 10001 11010 Supervisor (OEA) Both
DBAT6L 573 10001 11101 Supervisor (OEA) Both
DBAT6U 572 10001 11100 Supervisor (OEA) Both

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and mfspr
instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the instruction.
The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits appearing in bits
16-20 of the instruction and the low-order five bits in bits 11-15.

2. The TB Registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode
and the TBR numbers here. The TB Registers can be read in user mode using either the mftb or mfspr instruction and specifying
TBR 268 for TBL and SPR 269 for TBU.
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Table 2-33. PowerPC Encodings (Page 2 of 3)

SPRl
Register Name Access mfspr/mtspr
Decimal SPR[5-9] SPR[0-4]
DBAT7L 575 10001 11111 Supervisor (OEA) Both
DBAT7U 574 10001 11110 Supervisor (OEA) Both
DEC 22 00000 10110 Supervisor (OEA) Both
DSISR 18 00000 10010 Supervisor (OEA) Both
EAR 282 01000 11010 Supervisor (OEA) Both
IBATOL 529 10000 10001 Supervisor (OEA) Both
IBATOU 528 10000 10000 Supervisor (OEA) Both
IBAT1L 531 10000 10011 Supervisor (OEA) Both
IBAT1U 530 10000 10010 Supervisor (OEA) Both
IBAT2L 533 10000 10101 Supervisor (OEA) Both
IBAT2U 532 10000 10100 Supervisor (OEA) Both
IBAT3L 535 10000 10111 Supervisor (OEA) Both
IBAT3U 534 10000 10110 Supervisor (OEA) Both
IBAT4L 561 10001 10001 Supervisor (OEA) Both
IBAT4U 560 10001 10000 Supervisor (OEA) Both
IBAT5L 563 10001 10011 Supervisor (OEA) Both
IBAT5U 562 10001 10010 Supervisor (OEA) Both
IBAT6L 565 10001 10101 Supervisor (OEA) Both
IBAT6U 564 10001 10100 Supervisor (OEA) Both
IBAT7L 567 10001 10111 Supervisor (OEA) Both
IBAT7U 566 10001 10110 Supervisor (OEA) Both
LR 8 00000 01000 User (UISA) Both
PVR 287 01000 11111 Supervisor (OEA) mfspr
SDR1 25 00000 11001 Supervisor (OEA) Both
SPRGO 272 01000 10000 Supervisor (OEA) Both
SPRG1 273 01000 10001 Supervisor (OEA) Both
SPRG2 274 01000 10010 Supervisor (OEA) Both
SPRG3 275 01000 10011 Supervisor (OEA) Both
SRRO 26 00000 11010 Supervisor (OEA) Both
SRR1 27 00000 11011 Supervisor (OEA) Both

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and mfspr
instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the instruction.
The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits appearing in bits
16-20 of the instruction and the low-order five bits in bits 11-15.

2. The TB Registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode
and the TBR numbers here. The TB Registers can be read in user mode using either the mftb or mfspr instruction and specifying
TBR 268 for TBL and SPR 269 for TBU.
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Register Name

Decimal
TBL? 208
284
269
TBU?
285
XER 1

Note:

1
SPR

SPR[5-9]

01000
01000
01000
01000
00000

User's Manual
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SPR[0-4]
01100
11100
01101
11101
00001

Access

User (VEA)
Supervisor (OEA)
User (VEA)
Supervisor (OEA)
User (UISA)

mfspr/mtspr

mfspr
mtspr
mfspr
mtspr

Both

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and mfspr
instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the instruction.
The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits appearing in bits

16-20 of the instruction and the low-order five bits in bits 11-15.

2. The TB Registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode
and the TBR numbers here. The TB Registers can be read in user mode using either the mftb or mfspr instruction and specifying

TBR 268 for TBL and SPR 269 for TBU.
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Encodings for the 750G X-specific SPRs are listed in Table 2-34.

Table 2-34. SPR Encodings for 750G X-Defined Registers (mfspr)

Register Name

DABR
HIDO
HID1
HID2
IABR
ICTC
L2CR
MMCRO
MMCR1
PMC1
PMC2
PMC3
PMC4
Reserved?
SIA
THRM1
THRM2
THRM3
THRM4
UMMCRO
UMMCR1
UPMC1
UPMC2
UPMC3
UPMC4
USIA

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.

Decimal
1013
1008
1009
1016
1010
1019
1017
952
956
953
954
957
958
921-924
955
1020
1021
1022
920
936
940
937
938
941
942
939

SPR'
SPR[5-9]
11111
11111
11111
11111
11111
11111
11111
11101
11101
11101
11101
11101
11101

11101
11111
11111
11111
11100
11101
11101
11101
11101
11101
11101
11101

SPR[0-4]
10101
10000
10001
11000
10010
11011
11001
11000
11100
11001
11010
11101
11110

11011
11100
11101
11110
11000
01000
01100
01001
01010
01101
01110
01011

Access

User
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor

User

User

User

User

User

User

User

mfspr/mtspr

Both
Both
Both
Both
Both
Both
Both
Both
Both
Both
Both
Both
Both

Both
Both
Both
Both
mfspr
mfspr
mfspr
mfspr
mfspr
mfspr
mfspr

mfspr

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary num-
ber in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits

appearing in bits 16-20 of the instruction and the low-order 5 bits in bits 11-15.

2. These registers are reserved for future use and the contents should not be changed or reset.
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2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory-access mechanisms. See Chapter 3, Instruction-Cache and Data-Cache Operation, on page 121 for
additional information about these instructions and about related aspects of memory synchronization. See
Table 2-35 for a summary.

Table 2-35. Memory Synchronization Instructions—UISA

Name Mnemonic Syntax Implementation Notes
Load Word and Programmers can use lwarx with stwcx. to emulate common semaphore operations such
Reserve Iwarx rD,rA,rB |as test and set, compare and swap, exchange memory, and fetch and add. Both instructions
Indexed must use the same EA. Reservation granularity is implementation-dependent. The 750GX

makes reservations on behalf of aligned 32-byte sections of the memory address space. If
the W bit is set, executing Iwarx and stwcx. to a page marked write-through does not cause
a DSI exception, but DSI exceptions can result for other reasons. If the location is not word-

Store Word aligned, an alignment exception occurs.
Conditional stwex. rS,rAB | The stwcex. instruction is the only load/store instruction with a valid form if Rc is set. If Rc is
Indexed zero, executing stwcx. sets CRO to an undefined value. In general, stwcx. always causes a

transaction on the external bus and thus operates with slightly worse performance character-
istics than normal store operations.

Because it delays subsequent instructions until all previous instructions complete to where
they cannot cause an exception, sync is a barrier against store gathering. Additionally, all
load/store cache/bus activities initiated by prior instructions are completed. Touch load oper-

Synchronize sync — ations (dcbt, dcbtst) must complete address translation, but need not complete on the bus.
If HIDO[ABE] = '1', the sync instruction completes after a successful broadcast.

The latency of sync depends on the processor state when it is dispatched and on various
system-level situations. Therefore, frequent use of sync might degrade performance.

System designs with an L2 cache should take special care to recognize the hardware signaling caused by a
sync bus operation and perform the appropriate actions to guarantee that memory references that can be
gueued internally to the L2 cache have been performed globally.

See Section 2.3.5.2, Memory Synchronization Instructions—VEA, on page 114 for details about additional
memory synchronization (eieio and isync) instructions.

In the PowerPC Architecture, the Rc bit must be zero for most load-and-store instructions. If Rc is set, the
instruction form is invalid for sync and lwarx instructions. If the 750G X encounters one of these invalid
instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can
be assumed by software processes, and includes descriptions of the cache model, cache-control instructions,
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA,
but might not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the Move-to Condition Register instructions (specified by the UISA), the VEA defines the mftb
instruction (user-level instruction) for reading the contents of the Time Base Register. See Chapter 3, Instruc-
tion-Cache and Data-Cache Operation, on page 121 for more information.
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Table 2-36 shows the mftb instruction.

Table 2-36. Move-from Time Base Instruction

Name Mnemonic Syntax

Move-from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the TBR name as part of
the mnemonic rather than requiring it to be coded as an operand. See Appendix F, “Simplified Mnemonics” in
the PowerPC Microprocessor Family: The Programming Environments Manual for simplified mnemonic
examples and for simplified mnemonics for Move-from Time Base (mftb) and Move-from Time Base Upper
(mftbu), which are variants of the mftb instruction rather than of mfspr. The mftb instruction serves as both
a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic
form, and an mftb mnemonic with one operand as the simplified form. Note that the 750GX ignores the
extended opcode differences between mftb and mfspr by ignoring bit 25 and treating both instructions iden-
tically.

Implementation Notes: The following information relates to using the time-base implementation in the
750GX:

e The 750GX allows user-mode read access to the time-base counter through the use of the Move-from
Time Base (mftb) and the Move-from Time Base Upper (mftbu) instructions. As a 32-bit PowerPC imple-
mentation, the 750GX can access TBU and TBL only separately, whereas 64-bit implementations can
access the entire TB Register at once.

» The time-base counter is clocked at a frequency that is one-fourth that of the bus clock.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory-access mechanisms. See Chapter 3, Instruction-Cache and Data-Cache Operation, on page 121 for
more information about these instructions and about related aspects of memory synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order Execution of I/O
(eieio) and Instruction Synchronize (isync) instructions. The number of cycles required to complete an eieio
instruction depends on system parameters and on the processor's state when the instruction is issued. As a
result, frequent use of this instruction might degrade performance slightly.

Table 2-37 describes the memory synchronization instructions defined by the VEA.
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Table 2-37. Memory Synchronization Instructions—VEA

Name Mnemonic Syntax Implementation Notes

The eieio instruction is dispatched to the LSU and executes after all previous cache-
inhibited or write-through accesses are performed. All subsequent instructions that gen-
erate such accesses execute after eieio. If HIDO[ABE] = 1, an EIEIO operation is broad-
cast on the external bus to enforce ordering in the external memory system. The eieio

Enforce In-Order - operation bypasses the L2 cache and is forwarded to the bus unit. If HIDO[ABE] = 0, the
Execution of I/O eielo - operation is not broadcast.

Because the 750GX does not reorder noncacheable accesses, eieio is not needed to
force ordering. However, if store gathering is enabled and an eieio is detected in a store
queue, stores are not gathered. If HIDO[ABE] = 1, broadcasting eieio prevents external
devices, such as a bus bridge chip, from gathering stores.

The isync instruction is refetch serializing. That is, it causes the 750GX to purge its
instruction queue and wait for all prior instructions to complete before refetching the next
Instruction . instruction, which is not executed until all previous instructions complete to the point
Synchronize Isync - where they cannot cause an exception. The isync instruction does not wait for all pend-
ing stores in the store queue to complete. Any instruction after an isync sees all effects
of prior instructions.

2.3.5.3 Memory Control Instructions—VEA

Memory control instructions can be classified as follows:

« Cache-management instructions (user-level and supervisor-level)
« Segment Register manipulation instructions (OEA)
» Translation-lookaside-buffer management instructions (OEA)

This section describes the user-level cache-management instructions defined by the VEA. See
Section 2.3.6.3 on page 119 for information about supervisor-level cache, Segment Register manipulation,
and translation lookaside buffer management instructions.

User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip caches if they are
implemented. See Chapter 3, Instruction-Cache and Data-Cache Operation, on page 121 for more informa-
tion about cache topics. The following sections describe how these operations are treated with respect to the
750GX’s cache.

As with other memory-related instructions, the effects of cache-management instructions on memory are
weakly-ordered. If the programmer must ensure that cache or other instructions have been performed with
respect to all other processors and system mechanisms, a sync instruction must be placed after those
instructions.

Note that the 750GX interprets cache-control instructions (icbi, dcbi, dcbf, dcbz, and dcbst) as if they
pertain only to the local L1 and L2 cache. A dcbz (with M set) is always broadcast on the 60x bus. The dcbi,
dcbf, and dcbst operations are broadcast if HIDO[ABE] is set.

The 750GX never broadcasts an icbi. Of the broadcast cache operations, the 750GX snoops only dcbz,
regardless of the HIDO[ABE] setting. Any bus activity caused by other cache instructions results directly from
performing the operation on the 750GX cache. All cache-control instructions to a direct-store segment
(SR[T] = 1 space) are no-ops. For information on how cache-control instructions affect the L2, see Chapter 9,
L2 Cache, on page 323.

gx_02.fm.(1.2) Programming Model
March 27, 2006 Page 115 of 377



User's Manual

IBM PowerPC 750GX and 750GL RISC Microprocessor

Table 2-38 summarizes the cache instructions defined by the VEA. Note that these instructions are acces-
sible to user-level programs.

Table 2-38. User-Level Cache Instructions (Page 1 of 2)

Name

Data Cache Block
Touch?!

Data Cache Block
Touch for Storel

Data Cache Block Set

to Zero

Mnemonic

dcbt

dcbtst

dcbz

Syntax

rA,rB

rA,rB

rA,rB

Implementation Notes

The VEA defines this instruction to allow for potential system performance
enhancements through the use of software-initiated prefetch hints. Implementa-
tions are not required to take any action based on execution of this instruction,
but they may prefetch the cache block corresponding to the EA into their cache.
When dcbt executes, the 750GX checks for protection violations (as for a load
instruction). This instruction is treated as a no-op for the following cases:

» Avalid translation is not found either in BAT or TLB.

* The access causes a protection violation.

* The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.

» The cache is locked or disabled.

* HIDO[NOOPTI] = 1.

Otherwise, if no data is in the cache location, the 750GX requests a cache-line
fill (with intent to modify). Data brought into the cache is validated as if it were a
load instruction. The memory reference of a dcbt sets the reference bit.

This instruction behaves like dcbt.

The EA is computed, translated, and checked for protection violations. For
cache hits, four beats of zeros are written to the cache block, and the tag is
marked M. For cache misses with the replacement block marked exclusive
unmodified (E), the zero line fill is performed, and the cache block is marked M.
However, if the replacement block is marked M, the contents are written back to
memory first. The instruction executes regardless of whether the cache is
locked. If the cache is disabled, an alignment exception occurs. If M = 1 (coher-
ency enforced), the address is broadcast to the bus before the zero line fill.

The exception priorities (from highest to lowest) are as follows:

1 Cache disabled—Alignment exception

2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception

4 TLB protection violation—DSI exception

dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = 0. This
is done to maintain coherency with other cache devices in the system.

1. A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve performance, HIDO[NOOPTI]
can be set, which causes dcbt and dcbtst to be no-oped at the cache. These instructions do not cause bus activity and cause only
a 1-clock execution latency. The default state of this bit is zero, which enables the use of these instructions.
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Table 2-38. User-Level Cache Instructions (Page 2 of 2)

Name Mnemonic Syntax Implementation Notes

The EA is computed, translated, and checked for protection violations.

» For cache hits with the tag marked exclusive unmodified (E), no further
action is taken.

» For cache hits with the tag marked M, the cache block is written back to
memory and marked exclusive unmodified (E).

Data Cache Block Store dcbst rArB | A dcbst is not broadcast unless HIDO[ABE] = 1 regardless of WIMG settings.
The instruction acts like a load with respect to address translation and memory
protection. It executes regardless of whether the cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:
1 BAT protection violation—-DSI exception
2 TLB protection violation—-DSI exception.

The EA is computed, translated, and checked for protection violations.

» For cache hits with the tag marked exclusive modified (M), the cache block
is written back to memory and the cache entry is invalidated.

» For cache hits with the tag marked exclusive unmodified (E), the entry is
invalidated.

¢ For cache misses, no further action is taken.

A dcbf is not broadcast unless HIDO[ABE] = 1 regardless of WIMG settings.
The instruction acts like a load with respect to address translation and memory
protection. It executes regardless of whether the cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbf are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception.

Data Cache Block Flush dcbf rA,rB

This instruction performs a virtual lookup into the instruction cache (index only).
Instruction Cache Block ichi A B The address is not translated, so it cannot cause an exception. All ways of a
Invalidate 1cbt ' selected set are invalidated regardless of whether the cache is disabled or
locked. The 750GX never broadcasts icbi onto the 60x bus.

1. A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve performance, HIDO[NOOPTI]
can be set, which causes dcbt and dcbtst to be no-oped at the cache. These instructions do not cause bus activity and cause only
a 1-clock execution latency. The default state of this bit is zero, which enables the use of these instructions.

2.3.5.4 Optional External Control Instructions

The PowerPC Architecture defines an optional external control feature that, if implemented, is supported by
the two external control instructions, eciwx and ecowx. These instructions allow a user-level program to
communicate with a special-purpose device. The instructions provided are summarized in Table 2-39.

Table 2-39. External Control Instructions

Name Mnemonic Syntax Implementation Notes

External Control In eciwx 'DrATB A transfer size of 4 bytes is implied. The TBST and TSIZ[0-2] signals are rede-

Word Indexed ©7 T Hfined to specify the Resource ID (RID), copied from bits EAR[28-31]. For these
operations, TBST carries the EAR[28] data. Misaligned operands for these
instructions cause an alignment exception. Addressing a location where

External Control Out CCOWX 'STATB SR[T] = 1 causes a DSl exception. If MSR[DR] = 0, a programming error

Word Indexed "7~ loccurs and the physical address on the bus is undefined.

Note: These instructions are optional in the PowerPC Architecture.

The eciwx and ecowx instructions let a system designer map special devices in an alternative way. The

MMU translation of the EA is not used to select the special device, as it is used in most instructions such as
loads and stores. Rather, it is used as an address operand that is passed to the device over the address bus.
Four other signals (the burst and size signals on the 60x bus) are used to select the device; these four signals
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output the 4-bit resource ID (RID) field located in the EAR. The eciwx instruction also loads a word from the
data bus that is output by the special device. For more information about the relationship between these
instructions and the system interface, see Chapter 7, Signal Descriptions, on page 249.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory-management
model, supervisor-level registers, and the exception model. Implementations that conform to the OEA also
adhere to the UISA and the VEA. This section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-40). The user-level sc instruction lets a
user program call on the system to perform a service and causes the processor to take a system-call excep-
tion. The supervisor-level rfi instruction is used for returning from an exception handler.

Table 2-40. System Linkage Instructions—OEA

Name Mnemonic Syntax Implementation Notes
System Call sc — The sc instruction is context-synchronizing.

The rfi instruction is privileged and context-synchronizing. For the 750GX, this
rfi — means the rfi instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

Return from
Interrupt

2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions used to access the MSR and the SPRs. Table 2-41
lists instructions for accessing the MSR.

Table 2-41. Move-to/Move-from Machine State Register Instructions

Name Mnemonic Syntax
Move-to Machine State Register mtmsr rs
Move-from Machine State Register mfmsr rD

The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level registers. The instruc-
tions are listed in Table 2-42.

Table 2-42. Move-to/Move-from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move-to Special-Purpose Register mtspr SPR,rS
Move-from Special-Purpose Register mfspr rD,SPR

Encodings for the architecture-defined SPRs are listed in Table 2-33 on page 109. Encodings for 750G X-
specific, supervisor-level SPRs are listed in Table 2-34 on page 112. Simplified mnemonics are provided for
mtspr and mfspr in Appendix F, “Simplified Mnemonics” in the PowerPC Microprocessor Family: The
Programming Environments Manual. For a discussion of context synchronization requirements when altering
certain SPRs, see Appendix E, “Synchronization Programming Examples” in the PowerPC Microprocessor
Family: The Programming Environments Manual.
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2.3.6.3 Memory Control Instructions—OEA

Memory control instructions include the following.

« Cache-management instructions (supervisor-level and user-level).
* Segment register manipulation instructions.
« Translation-lookaside-buffer management instructions.

This section describes supervisor-level memory control instructions. Section 2.3.5.3, Memory Control Instruc-
tions—VEA, on page 115 describes user-level memory control instructions.

Supervisor-Level Cache-Management Instruction—(OEA)

Table 2-43 lists the only supervisor-level cache-management instruction.

Table 2-43. Supervisor-Level Cache-Management Instruction

Name Mnemonic | Syntax Implementation Notes

The EA is computed, translated, and checked for protection violations. For cache hits, the
cache block is marked invalid (I) regardless of whether it was marked exclusive unmodified
(E) or exclusive modified (M). A dcbi is not broadcast unless HIDO[ABE] = 1, regardless of

Data Cache Block ) WIMG settings. The instruction acts like a store with respect to address translation and
Invalidate dcbi rA,rB ' memory protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbi are as follows:
1 BAT protection violation—DSI exception.
2 TLB protection violation—DSI exception.

See User-Level Cache Instructions—VEA on page 115 for cache instructions that provide user-level
programs the ability to manage the on-chip caches. If the effective address references a direct-store
segment, then the instruction is treated as a no-op.

Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-44 provide access to the Segment Registers for 32-bit implementations.
These instructions operate completely independently of the MSR[IR] and MSR[DR] bit settings. See
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments Manual for serializa-
tion requirements and other recommended precautions to observe when manipulating the Segment Regis-
ters. Be sure to execute an isync after execution of an mtsr instruction.

Table 2-44. Segment Register Manipulation Instructions

Name Mnemonic Syntax Implementation Notes
Move-to Segment Register mtsr SR,rS | Execute isync after mtsr.
Move-to Segment Register Indirect mtsrin rS,rB | Execute isync after mtsrin.

The shadow SRs in the instruction MMU can be read by setting

Move-from Segment Register mfsr rD,SR HIDO[RISEG] before executing mfsr.
Move-from Segment Register Indirect mfsrin rD,B | —
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Translation Lookaside Buffer Management Instructions—(OEA)

The address-translation mechanism is defined in terms of the segment descriptors and page table entries
(PTEs) PowerPC processors use to locate the logical-to-physical address mapping for a particular access.
These segment descriptors and PTEs reside in Segment Registers and page tables in memory, respectively.

See Chapter 7, Signal Descriptions, on page 249 for more information about TLB operations. Table 2-45
summarizes the operation of the TLB instructions in the 750GX.

Table 2-45. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

Invalidates both ways in both instruction and data TLB entries at the index provided
TLB Invalidate tlbie B by EA[14-19]. It executes regardless of the MSR[DR] and MSR[IR] settings. To
Entry invalidate all entries in both TLBs, the programmer should issue 64 tlbie instruc-
tions; each should successively increment this field.

On the 750GX, the only function tibsync serves is to wait for the TLB Invalidate

TLB Synchronize tlbsync - Synchronize (TLBISYNC) signal to go inactive.

Implementation Note: The tlbia instruction is optional for an implementation if its effects can be achieved
through some other mechanism. Therefore, it is not implemented on the 750GX. As described above, tlbie
can be used to invalidate a particular index of the TLB based on EA[14-19]—a sequence of 64 tlbie instruc-
tions followed by a tlbsync instruction invalidates all the TLB structures (for EA[14-19] =0, 1, 2,..., 63).
Attempting to execute tlbia causes an illegal instruction program exception.

The presence and exact semantics of the TLB management instructions are implementation-dependent. To
minimize compatibility problems, system software should incorporate uses of these instructions into subrou-
tines.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some frequently used
operations (such as no-op, load immediate, load address, move register, and complement register).
Programs written to be portable across the various assemblers for the PowerPC Architecture should not
assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics” in the PowerPC Micro-
processor Family: The Programming Environments Manual.
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3. Instruction-Cache and Data-Cache Operation

The 750GX microprocessor contains separate 32-KB, 8-way set-associative instruction and data caches to
allow the execution units and registers rapid access to instructions and data. This chapter describes the orga-
nization of the on-chip instruction and data caches, the modified, exclusive, invalid (MEI) cache-coherency
protocol, cache-control instructions, various cache operations, and the interaction between the caches, the
load/store unit (LSU), the instruction unit, and the bus interface unit (BIU).

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining cache coherency.
These multiprocessor devices could be actual processors or other devices that can access system memory,
maintain their own caches, and function as bus masters requiring cache coherency. If the L2 cache is
enabled, read Chapter 9, L2 Cache, on page 323 before reading this chapter.

The 750GX L1 cache implementation has the following characteristics.
« There are two separate 32-KB instruction and data caches (Harvard architecture).
« Both instruction and data caches are 8-way set-associative.
« The caches implement a pseudo least-recently-used (PLRU) replacement algorithm within each set.

« The cache directories are physically addressed. The physical (real) address tag is stored in the cache
directory.

« Both the instruction and data caches have 32-byte cache blocks. A cache block is the block of memory
that a coherency state describes, also referred to as a cache line.

« Two coherency state bits for each data-cache block allow encoding for three states:

— Exclusive Modified (M)
— Exclusive Unmaodified (E)
— Invalid (1)

» A single coherency state bit for each instruction-cache block allows encoding for two possible states:

— Invalid (INV)
— Valid (VAL)

« Each cache can be invalidated or locked by setting the appropriate bits in the Hardware-Implementation-
Dependent Register 0 (HIDO), a Special-Purpose Register (SPR) specific to the 750GX.

The 750GX supports a fully-coherent 4-GB physical memory address space. Bus snooping is used to drive
the MEI 3-state cache-coherency protocol that ensures the coherency of global memory with respect to the
processor’s data cache. The MEI protocol is described in Section 3.3.2 on page 126.

On a cache miss, the 750GX’s cache blocks are filled in four beats of 64 bits each. The burst fill is performed
as a critical-double-word-first operation. The critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to cache fill latency. The data-cache line is first
loaded into a 32-byte reload buffer, and, when it is full, it is written into the data cache in one cycle. This mini-
mizes the contention between the load-store unit and the line reload function. See Figure 9-1 on page 327.

The instruction and data caches are integrated into the 750GX as shown in Figure 3-1.
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Figure 3-1. Cache Integration
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Both caches are tightly coupled into the 750GX’s bus interface unit (BIU) to allow efficient access to the
system memory controller and other bus masters. The bus interface unit receives requests for bus operations
from the instruction and data caches, and executes the operations per the 60x bus protocol. The BIU
provides address queues, prioritizing logic, and bus control logic. The BIU captures snoop addresses for data
cache, address queue, and memory reservation (lwarx and stwcx. instruction) operations. In the 750GX, an
L1 cache miss first accesses the L2 cache to find the desired cache block before accessing the BIU.

The data cache provides buffers for load-and-store bus operations. All the data for the corresponding address
gueues (load-and-store data queues) is located in the data cache. The data queues are considered tempo-
rary storage for the cache and not part of the BIU. The data cache also provides storage for the cache tags
required for memory coherency and performs the cache-block-replacement PLRU function. The data cache is
supported by two cache-block reload/write-back buffers. This allows a cache block to be loaded or unloaded
from the cache in a single cycle. See Figure 9-1 on page 327.

The data cache supplies data to the General Purpose Registers (GPRs) and Floating Point Registers (FPRSs)
by means of the load/store unit (LSU). The 750GX’s LSU is directly coupled to the data cache to allow effi-
cient movement of data to and from the GPRs and FPRs. The LSU provides all logic required to calculate
effective addresses, handles data alignment to and from the data cache, and provides sequencing for load-
and-store string and multiple operations. Write operations to the data cache can be performed on a byte, half-
word, word, or double-word basis.

The instruction cache provides a 128-bit interface to the instruction unit, so four instructions can be made
available to the instruction unit in a single clock cycle. The instruction unit accesses the instruction cache
frequently in order to sustain the high throughput provided by the 6-entry instruction queue.
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3.1 Data-Cache Organization

The data cache is organized as 128 sets of eight ways as shown in Figure 3-2. Each way consists of 32
bytes, two state bits, and an address tag. Note that in the PowerPC Architecture, the term ‘cache block,’ or
simply ‘block,” when used in the context of cache implementations, refers to the unit of memory at which
coherency is maintained. For the 750GX, this is the 8-word (32-byte) cache line. This value might be different
for other PowerPC implementations.

Each cache block contains eight contiguous words from memory that are loaded from an 8-word boundary
(that is, bits A[27-31] of the logical (effective) addresses are zero). As a result, cache blocks are aligned with
page boundaries. Note that address bits A[20—26] provide the index to select a cache set. Bits A[27-31]
select a byte within a block. The two state bits implement a 3-state MEI protocol, a coherent subset of the
standard 4-state modified/exclusive/shared/invalid (MESI) protocol. The MEI protocol is described in
Section 3.3.2 on page 126.

The tags consist of physical address bits PA[0-19]. Address translation occurs in parallel with set selection
(from A[20-26]), and the higher-order address bits (the tag bits in the cache) are physical.

The 750GX’s on-chip data-cache tags are single-ported, and load or store operations must be arbitrated with
snoop accesses to the data-cache tags. Load or store operations can be performed to the cache on the clock
cycle immediately following a snoop access if the snoop misses; snoop hits might block the data cache for
two or more cycles, depending on whether a copy-back to main memory is required.

Figure 3-2. Data-Cache Organization
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3.2 Instruction-Cache Organization

The instruction cache also consists of 128 sets of eight ways, as shown in Figure 3-3 on page 125. Each way
consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each instruction-cache
block contains eight contiguous words from memory that are loaded from an 8-word boundary (that is, bits
A[27-31] of the logical [effective] addresses are zero). As a result, cache blocks are aligned with page bound-
aries. Also, address bits A[20-26] provide the index to select a set, and bits A[27—-29] select a word within a
block.

The tags consist of bits PA[0—19]. Address translation occurs in parallel with set selection (from A[20-26]),
and the higher order address bits (the tag bits in the cache) are physical.

The instruction cache differs from the data cache in that it does not implement MEI cache-coherency protocol,
and a single state bit is implemented that indicates only whether a cache block is valid or invalid. The instruc-
tion cache is not snooped, so if a processor modifies a memory location that might be contained in the
instruction cache, software must ensure that such memory updates are visible to the instruction-fetching
mechanism. This can be achieved with the following instruction sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache

sync # wait for the Instruction Cache Block Invalidate (ICBI) operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the processor does not maintain instruction memory coherent with
data memory. Software is responsible for enforcing coherency of instruction caches and data memory.

Since instruction fetching might bypass the data cache, changes made to items in the data cache might not
be reflected in memory until after the instruction fetch completes.
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Figure 3-3. Instruction-Cache Organization
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3.3 Memory and Cache Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all devices
using the system. Coherency allows synchronization and cooperative use of shared resources. Otherwise,
multiple copies of a memory location, some containing stale values, could exist in a system resulting in errors
when the stale values are used. Each potential bus master must follow rules for managing the state of its
cache. This section describes the coherency mechanisms of the PowerPC Architecture and the 3-state
cache-coherency protocol of the 750GX’s data cache.

Note that unless specifically noted, the discussion of coherency in this section applies to the 750GX’s data
cache only. The instruction cache is not snooped. Instruction-cache coherency must be maintained by soft-
ware. However, the 750G X does support a fast instruction-cache invalidate capability as described in
Section 3.4.1.4 on page 133.

3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either a block or page basis by using the WIMG bits in the block-
address-translation (BAT) registers or page table entry (PTE), respectively. The WIMG attributes control the
following functionality:

* Write-through (W bit)

« Caching-inhibited (I bit)

« Memory coherency (M bit)
» Guarded memory (G bit)
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These bits allow both uniprocessor and multiprocessor system designs to exploit numerous system-level
performance optimizations.

The WIMG attributes are programmed by the operating system for each page and block. The write-through
(W) and caching-inhibited (I) attributes control how the processor performing an access uses its own cache.
The memory coherency (M) attribute ensures that coherency is maintained for all copies of the addressed
memory location. The guarded memory (G) attribute prevents out-of-order loading and prefetching from the
addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block-address translation and in the PTEs for
page-address translation. The WIMG bits are programmed as follows.

« The operating system uses the Move-to Special Purpose Register (mtspr) instruction to program the
WIMG bits in the BAT registers for block-address translation. The instruction BAT (IBAT) register pairs do
not have a G bit, and all accesses that use the IBAT register pairs are considered not guarded.

« The operating system writes the WIMG bits for each page into the PTEs in system memory as it sets up
the page tables.

When an access requires coherency, the processor performing the access must inform the coherency mech-
anisms throughout the system that the access requires memory coherency. The M attribute determines the
kind of access performed on the bus (global or local).

Software must exercise care with respect to the use of these bits if coherent memory support is desired.
Careless specification of these bits might create situations that present coherency paradoxes to the
processor. In particular, this can happen when the state of these bits is changed without appropriate precau-
tions (such as flushing the pages that correspond to the changed bits from the caches of all processors in the
system) or when the address translations of aliased real addresses specify different values for any of the
WIMG bits. These coherency paradoxes can occur within a single processor or across several processors. It
is important to note that in the presence of a paradox, the operating system software is responsible for
correctness.

For data accesses in real-addressing mode (MSR[DR] = 0), the WIMG bits default to '0011' (write back,
caching enabled, memory coherent, guarded). For instruction accesses in real-addressing mode
(MSRJIR] = 0), the WIMG bits default to '0001' (write back, caching enabled, memory not coherent, guarded).

3.3.2 MEI Protocol

The 750GX data-cache-coherency protocol is a coherent subset of the standard MESI 4-state cache protocol
that omits the shared state. The 750GX’s data cache characterizes each 32-byte block it contains as being in
one of three MEI states. Addresses presented to the cache are indexed into the cache directory with bits
A[20-26], and the upper-order 20 bits from the physical address translation (PA[0-19]) are compared against
the indexed cache directory tags. If neither of the indexed tags matches, the result is a cache miss. If a tag
matches, a cache hit occurred, and the directory indicates the state of the cache block through two state bits
kept with the tag. The three possible states for a cache block in the cache are the modified state (M), the
exclusive state (E), and the invalid state (I). The three MEI states are defined in Table 3-1 on page 127.
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Table 3-1. MEI State Definitions

MEI State Definition

The addressed cache block is present in the cache, and is modified with respect to system memory. That is, the
Modified (M) modified data in the cache block has not been written back to memory. The cache block might be present in
750GX’s L2 cache, but it is not present in any other coherent cache.

The addressed cache block is present in the cache, and this cache has exclusive ownership of the addressed
Exclusive (E) block. The addressed block might be present in 750GX’s L2 cache, but it is not present in any other processor’s
cache. The data in this cache block is consistent with system memory.

This state indicates that the address block does not contain valid data, or that the addressed cache block is not res-

Invalid (1) ident in the cache.

The 750GX provides dedicated hardware to provide memory coherency by snooping bus transactions.
Figure 3-4 on page 128 shows the MEI cache-coherency protocol, as enforced by the 750GX. The informa-
tion in this figure assumes that the WIM bits for the page or block are set to 001; that is, write-back, caching-
not-inhibited, and memory coherency enforced.

Since data cannot be shared, the 750GX signals all cache block fills as if they were write misses (read-with-
intent-to-modify), which flushes the corresponding copies of the data in all caches external to the 750GX prior
to the cache-block-fill operation. Following the cache-block load, the 750GX is the exclusive owner of the data
and can write to it without a bus broadcast transaction.

To maintain the 3-state coherency, all global reads observed on the bus by the 750G X are snooped as if they
were writes, causing the 750GX to flush the cache block (write the cache block back to memory and invali-
date the cache block if it is modified, or simply invalidate the cache block if it is unmodified). The exception to
this rule occurs when a snooped transaction is a caching-inhibited read?, in which case the 750GX does not
invalidate the snooped cache block. If the cache block is modified, the block is written back to memory, and
the cache block is marked exclusive. If the cache block is marked exclusive, no bus action is taken, and the
cache block remains in the exclusive state.

This treatment of caching-inhibited reads decreases the possibility of data thrashing by allowing noncaching
devices to read data without invalidating the entry from the 750GX’s data cache.

1. Either burst or single-beat, where the transfer type (TT[0-4]) = X1010. See Table 7-1 on page 256 for clarification.
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Figure 3-4. MEI Cache-Coherency Protocol—State Diagram (WIM = 001)
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Section 3.7, MEI State Transactions, on page 147 provides a detailed list of MEI transitions for various oper-
ations and WIM bit settings.

3.3.2.1 MEI Hardware Considerations

While the 750GX provides the hardware required to monitor bus traffic for coherency, the 750GX’s data-
cache tags are single-ported, and a simultaneous load/store and snoop access represent a resource conflict.
In general, the snoop access has the highest priority and is given first access to the tags. The load or store
access will then occur on the clock following the snoop. The snoop is not given priority into the tags when the
snoop coincides with a tag write (for example, validation after a cache-block load). In these situations, the
snoop is retried and must rearbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if the cache is busy
with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process of being written
to the copy-back buffer for replacement purposes. If this happens, the 750GX retries the snoop, and raises
the priority of the castout operation to allow it to go to the bus before the cache-block fill.
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Another consideration is page table aliasing. If a store hits to a modified cache block but the page table entry
is marked write-through (WIMG = 1xxx), then the page has probably been aliased through another page table
entry which is marked write-back (WIMG = 0xxx). If this occurs, the 750GX ignores the modified bit in the
cache tag. The cache block is updated during the write-through operation, and the block remains in the modi-
fied state.

The global (@) signal, asserted as part of the address attribute field during a bus transaction, enables the
snooping hardware of the 750GX. Address-bus masters assert GBL to indicate that the current transaction is
a global access (that is, an access to memory shared by more than one device). If GBL is not asserted for the
transaction, that transaction is not snooped by the 750GX. Note that the GBL signal is not asserted for
instruction fetches, and that GBL is asserted for all data read or write operations when using real-addressing
mode (that is, address translation is disabled).

Normally, GBL reflects the M-bit value specified for the memory reference in the corresponding translation
descriptors. Care should be taken to minimize the number of pages marked as global, because the retry
protocol enforces coherency and can use considerable bus bandwidth if much data is shared. Therefore,
available bus bandwidth decreases as more memory is marked as global.

The 750GX snoops a transaction if the transfer start (ﬁ) and GBL signals are asserted together in the same
bus clock (this is a qualified snooping condition). No snoop update to the 750GX cache occurs if the snooped
transaction is not marked global. Also, because cache-block castouts and snoop pushes do not require
snooping, the GBL signal is not asserted for these operations.

When the 750GX detects a qualified snoop condition, the address associated with the TS signal is compared
with the cache tags. Snooping finishes if no hit is detected. If, however, the address hits in the cache, the
750GX reacts according to the MEI protocol shown in Figure 3-4 on page 128.

3.3.3 Coherency Precautions in Single-Processor Systems

The following coherency paradoxes can be encountered within a single-processor system.

» Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.
The 750GX ignores any hits to a cache block in a memory space marked caching-inhibited (WIMG =
x1xx). The access is performed on the external bus as if there were no hit. The data in the cache is not
pushed, and the cache block is not invalidated.

« Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs to a modified cache block.
The 750GX ignores the modified bit in the cache tag. The cache block is updated during the write-through
operation, but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that the cache contents
reflect the new WIM bit settings. For example, if a block or page that had allowed caching becomes caching-
inhibited, software should ensure that the appropriate cache blocks are flushed to memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems

The 750GX’s 3-state coherency protocol permits no data sharing between the 750GX and other caches. All
burst reads initiated by the 750GX are performed as read with intent to modify. Burst snoops are interpreted
as read with intent to modify or read with no intent to cache. This effectively places all caches in the system
into a 3-state coherency scheme. The 4-state caches can share data amongst themselves but not with the
750GX.
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3.3.5 PowerPC 750GX-Initiated Load/Store Operations

Load-and-store operations are assumed to be weakly ordered on the 750G X. The load/store unit (LSU) can
perform load operations that occur later in the program ahead of store operations, even when the data cache
is disabled (see Section 3.3.5.2). However, strongly ordered load-and-store operations can be enforced by
setting the invalid (1) bit (of the page WIMG bits) when address translation is enabled. Note that when address
translation is disabled (real-addressing mode), the default WIMG bits cause the | bit to be cleared (accesses
are assumed to be cacheable), and thus the accesses are weakly ordered. See Section 5.2 on page 195 for
a description of the WIMG bits when address translation is disabled.

The 750GX does not provide support for direct-store segments. Operations attempting to access a direct-
store segment will invoke a data-storage interrupt (DSI) exception. For additional information about DSI
exceptions, see Section 4.5.3, DSI Exception (0x00300), on page 169.

3.3.5.1 Performed Loads and Stores

The PowerPC Architecture defines a performed load operation as one that has the addressed memory loca-
tion bound to the target register of the load instruction. The architecture defines a performed store operation
as one where the stored value is the value that any other processor will receive when executing a load oper-
ation (that is of course, until it is changed again). With respect to the 750GX, caching-enabled (WIMG = x0xx)
loads and caching-enabled, write-back (WIMG = 00xx) stores are performed when they have arbitrated to
address the cache block. Note that in the event of a cache miss, these storage operations might place a
memory request into the processor’'s memory queue, but such operations are considered an extension to the
state of the cache with respect to snooping bus operations. Caching-inhibited (WIMG = x1xx) loads, caching-
inhibited (WIMG = x1xx) stores, and write-through (WIMG = 1xxx) stores are performed when they have been
successfully presented to the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses

The PowerPC Architecture requires that all memory operations executed by a single processor be sequen-
tially consistent with respect to that processor. This means that all memory accesses appear to be executed
in program order with respect to exceptions and data dependencies.

The 750GX achieves sequential consistency by operating a single pipeline to the cache/MMU. All memory
accesses are presented to the MMU in exact program order. Therefore, exceptions are determined in order.
Loads are allowed to bypass stores once exception checking has been performed for the store, but data
dependency checking is handled in the load/store unit so that a load will not bypass a store with an address
match. Note that, although memory accesses that miss in the cache are forwarded to the memory queue for
future arbitration for the external bus, all potential synchronous exceptions have been resolved before the
cache. In addition, although subsequent memory accesses can address the cache, full coherency checking
between the cache and the memory queue is provided to avoid dependency conflicts.

3.3.5.3 Atomic Memory References

The PowerPC Architecture defines the Load Word and Reserve Indexed (Iwarx) and the Store Word Condi-
tional Indexed (stwcx.) instructions to provide an atomic update function for a single, aligned word of
memory. These instructions can be used to develop a rich set of multiprocessor synchronization primitives.

Note: Atomic memory references constructed using Iwarx and stwcx. instructions depend on the presence
of a coherent memory system for correct operation. These instructions should not be expected to provide
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atomic access to noncoherent memory. For detailed information on these instructions, see Chapter 2, Pro-
gramming Model, on page 57.

The lwarx instruction performs a load word from memory operation and creates a reservation for the 32-byte
section of memory that contains the accessed word. The reservation granularity is 32 bytes. The lwarx
instruction makes a nonspecific reservation with respect to the executing processor and a specific reservation
with respect to other masters. This means that any subsequent stwcx. executed by the same processor,
regardless of address, will cancel the reservation. Also, any bus write or invalidate operation from another
processor to an address that matches the reservation address will cancel the reservation.

The stwcx. instruction does not check the reservation for a matching address. The stwcx. instruction is only
required to determine whether a reservation exists. The stwcx. instruction performs a store word operation
only if the reservation exists. If the reservation has been cancelled for any reason, then the stwcx. instruction
fails and clears the CRO[EQ)] bit in the Condition Register. The architectural intent is to follow the lwarx and
stwcx. instruction pair with a conditional branch, which checks to see whether the stwcx. instruction failed.

If the page table entry is marked caching-enabled (WIMG = x0xx), and an Iwarx access misses in the cache,
then the 750GX performs a cache-block fill. If the page is marked caching-inhibited (WIMG = x1xx) or the
cache is locked, and the access misses, then the lwarx instruction appears on the bus as a single-beat load.
All bus operations that are a direct result of either an Iwarx instruction or an stwcx. instruction are placed on
the bus with a special encoding. Note that this does not force all Iwarx instructions to generate bus transac-
tions, but rather provides a means for identifying when an Iwarx instruction does generate a bus transaction.
If an implementation requires that all lwarx instructions generate bus transactions, then the associated pages
should be marked as caching-inhibited.

The 750GX’s data cache treats all stwcx. operations as write-through independent of the WIMG settings.
However, if the stwcx. operation hits in the 750GX’s L2 cache, then the operation completes with the reser-
vation intact in the L2 cache. See Chapter 9, L2 Cache, on page 323 for more information. Otherwise, the
stwcx. operation continues to the bus interface unit for completion. When the write-through operation
completes successfully, either in the L2 cache or on the 60x bus, then the data-cache entry is updated
(assuming it hits), and CRO[EQ)] is modified to reflect the success of the operation. If the reservation is not
intact, the stwcx. completes in the bus interface unit without performing a bus transaction, and without modi-
fying either of the caches.

3.4 Cache Control

The 750GX’s L1 caches are controlled by programming specific bits in the HIDO Special-Purpose Register
and by issuing dedicated cache-control instructions. Section 3.4.1 describes the HIDO cache-control bits, and
Section 3.4.2 on page 133 describes the cache-control instructions.

3.4.1 Cache-Control Parameters in HIDO

The HIDO Special-Purpose Register contains several bits that invalidate, disable, and lock the instruction and
data caches. The following sections describe these facilities.
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3.4.1.1 Data-Cache Flash Invalidation

The data cache is automatically invalidated when the 750G X is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the data cache. Software must use the HIDO data-
cache flash invalidate bit (HIDO[DCFI]) if data cache invalidation is desired after a soft reset. Once
HIDO[DCFI] is set through an mtspr operation, the 750G X automatically clears this bit in the next clock cycle
(provided that the data cache is enabled in the HIDO Register).

Note that some PowerPC microprocessors accomplish data-cache flash invalidation by setting and clearing
HIDO[DCFI] with two consecutive mtspr instructions (that is, the bit is not automatically cleared by the micro-
processor). Software that has this sequence of operations does not need to be changed to run on the 750GX.

3.4.1.2 Enabling and Disabling the Data Cache

The data cache can be enabled or disabled by using the data-cache enable bit, HIDO[DCE]. HIDO[DCE] is
cleared on power-up, disabling the data cache.

When the data cache is in the disabled state (HIDO[DCE] = 0), the cache tag state bits are ignored, and all
accesses are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the CI (cache
inhibit) signal always reflects the state of the caching-inhibited memory/cache access attribute (the | bit) inde-
pendent of the state of HIDO[DCE]. Also note that disabling the data cache does not affect the translation
logic; translation for data accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded by a synchronization (sync) instruction to prevent the cache
from being enabled or disabled in the middle of a data access. In addition, the cache must be globally flushed
before it is disabled to prevent coherency problems when it is re-enabled.

Snooping is not performed when the data cache is disabled.

The Data Cache Block Set to Zero (dcbz) instruction will cause an alignment exception when the data cache
is disabled. The touch load (Data Cache Block Touch [dcbt] and Data Cache Block Touch for Store [dcbtst]
instructions are no-ops when the data cache is disabled. Other cache operations (caused by the Data Cache
Block Flush (dcbf), Data Cache Block Store [dcbst], and Data Cache Block Invalidate [dcbi] instructions) are
not affected by disabling the cache. This can potentially cause coherency errors. For example, a dcbf instruc-
tion that hits a modified cache block in the disabled cache will cause a copyback to memory of potentially
stale data.

3.4.1.3 Locking the Data Cache

The contents of the data cache can be locked by setting the data-cache lock bit, HIDO[DLOCK]. A data
access that hits in a locked data cache is serviced by the cache. However, all accesses that miss in the
locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the CI signal
always reflects the state of the caching-inhibited memory/cache access attribute (the | bit) independent of the
state of HIDO[DLOCK].

The 750GX treats snoop hits to a locked data cache the same as snoop hits to an unlocked data cache.
However, any cache block invalidated by a snoop hit remains invalid until the cache is unlocked.

The setting of the DLOCK bit must be preceded by a sync instruction to prevent the data cache from being
locked during a data access.
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3.4.1.4 Instruction-Cache Flash Invalidation

The instruction cache is automatically invalidated when the 750GX is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the instruction cache. Software must use the HIDO
instruction-cache flash invalidate bit (HIDO[ICFI]) if instruction-cache invalidation is desired after a soft reset.
Once HIDO[ICFI] is set through an mtspr operation, the 750GX automatically clears this bit in the next clock
cycle (provided that the instruction cache is enabled in the HIDO Register).

Note: Some PowerPC microprocessors accomplish instruction-cache flash invalidation by setting and clear-
ing HIDO[ICFI] with two consecutive mtspr instructions (that is, the bit is not automatically cleared by the
microprocessor). Software that has this sequence of operations does not need to be changed to run on the
750GX.

3.4.1.5 Enabling and Disabling the Instruction Cache

The instruction cache can be enabled or disabled through the use of the instruction-cache enable bit,
HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache.

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag state bits are ignored, and all
instruction fetches are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the CI
signal always reflects the state of the caching-inhibited memory/cache access attribute (the | bit) independent
of the state of HIDO[ICE]. Also note that disabling the instruction cache does not affect the translation logic;
translation for instruction accesses is controlled by MSR][IR].

The setting of the ICE bit must be preceded by an instruction sync (isync) instruction to prevent the cache
from being enabled or disabled in the middle of an instruction fetch. In addition, the cache must be globally
flushed before it is disabled to prevent coherency problems when it is re-enabled. The Instruction Cache
Block Invalidate (icbi) instruction is not affected by disabling the instruction cache.

3.4.1.6 Locking the Instruction Cache

The contents of the instruction cache can be locked by setting the instruction-cache lock bit, HIDO[ILOCK]. An
instruction fetch that hits in a locked instruction cache is serviced by the cache. However, all accesses that
miss in the locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the
Cl signal always reflects the state of the caching-inhibited memory/cache access attribute (the I bit) indepen-
dent of the state of HIDO[ILOCK].

The setting of the ILOCK bit must be preceded by an isync instruction to prevent the instruction cache from
being locked during an instruction fetch.

3.4.2 Cache-Control Instructions

The PowerPC Architecture defines instructions for controlling both the instruction and data caches (when
they exist). The cache-control instructions, dcbt, dcbtst, dcbz, dcbst, dcbf, dcbi, and icbi, are intended for
the management of the local L1 and L2 caches. The 750GX interprets the cache-control instructions as if they
pertain only to its own L1 or L2 caches. These instructions are not intended for managing other caches in the
system (except to the extent necessary to maintain coherency).

The 750GX does not snoop cache-control instruction broadcasts, except for Data Cache Block Zero (dcbz)
when M = 1. The dcbz instruction is the only cache-control instruction that causes a broadcast on the 60x bus
(when M = 1) to maintain coherency. All other data cache-control instructions (dcbi, dcbf, dcbst, and dcbz)
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are not broadcast, unless broadcast is enabled through the HIDO[ABE] configuration bit. Note that dcbi, dcbf,
dcbst, and dcbz do broadcast to the 750GX’s L2 cache, regardless of HIDO[ABE]. The icbi instruction is
never broadcast.

3.4.2.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)

The dcbt and dcbtst instructions provide potential system performance improvement through the use of soft-
ware-initiated prefetch hints. The 750GX treats these instructions identically (that is, a dcbtst instruction
behaves exactly the same as a dcbt instruction on the 750GX). Note that PowerPC implementations are not
required to take any action based on the execution of these instructions, but they might choose to prefetch
the cache block corresponding to the effective address into their cache.

The 750GX loads the data into the cache when the address hits in the translation lookaside buffer (TLB) or
the BAT, is permitted load access from the addressed page, is not directed to a direct-store segment, and is
directed at a cacheable page. Otherwise, the 750GX treats these instructions as no-ops. The data brought
into the cache as a result of this instruction is validated in the same manner that a load instruction would be
(that is, it is marked as exclusive). The memory reference of a dcbt (or dcbtst) instruction causes the refer-
ence hit to be set. Note also that the successful execution of the dcbt (or dchtst) instruction affects the state
of the TLB and cache LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. The dcbz instruction is treated as a store to the addressed byte with respect to
address translation and protection.

If the block containing the byte addressed by the EA is in the data cache, all bytes are cleared, and the tag is
marked as modified (M). If the block containing the byte addressed by the EA is not in the data cache and the
corresponding page is caching-enabled, the block is established in the data cache without fetching the block
from main memory, and all bytes of the block are cleared, and the tag is marked as modified (M).

If the contents of the cache block are from a page marked memory coherence required (M=1), an address-
only bus transaction is run prior to clearing the cache block. The dcbz instruction is the only cache-control
instruction that causes a broadcast on the 60x bus (when M = 1) to maintain coherency. The other cache-
control instructions are not broadcast unless broadcasting is specifically enabled through the HIDO[ABE]
configuration bit. The dcbz instruction executes regardless of whether the cache is locked, but if the cache is
disabled, an alignment exception is generated. If the page containing the byte addressed by the EA is
caching-inhibited or write-through, then the system alignment exception handler is invoked. BAT and TLB
protection violations generate DSI exceptions.

Note: If the target address of a dcbz instruction hits in the L1 cache, the 750GX requires four internal clock
cycles to rewrite the cache block to zeros. On the first clock, the block is remarked as valid-unmodified, and
on the last clock the block is marked as valid-modified. If a snoop request to that address is received during
the middle two clocks of the dcbz operation, the 750GX does not properly react to the snoop operation or
generate an address retry (by an ARTRY assertion) to the other master. The other bus master continues
reading the data from system memory, and both the 750G X and the other bus master end up with different
copies of the data. In addition, if the other bus master has a cache, the cache block is marked valid in both
caches, which is not allowed in the 750GX’s 3-state cache environment.

Instruction-Cache and Data-Cache Operation gx_03.fm.(1.2)
Page 134 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

For this reason, avoid using dcbz for data that is shared in real time and that is not protected during writing
through higher-level software synchronization protocols (such as semaphores). Use of dcbz must be avoided
for managing semaphores themselves. An alternative solution could be to prevent dcbz from hitting in the L1
cache by performing a dcbf to that address beforehand.

3.4.2.3 Data Cache Block Store (dchst)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. This instruction is treated as a load with respect to address translation and memory
protection.

If the address hits in the cache and the cache block is in the exclusive (E) state, no action is taken. If the
address hits in the cache and the cache block is in the modified (M) state, the modified block is written back to
memory and the cache block is placed in the exclusive (E) state.

The execution of a dcbst instruction does not broadcast on the 60x bus unless broadcast is enabled through
the HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the block
containing the effective address. The dcbst instruction executes regardless of whether the cache is disabled
or locked; however, a BAT or TLB protection violation generates a DSI exception.

3.4.2.4 Data Cache Block Flush (dcbf)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. This instruction is treated as a load with respect to address translation and memory
protection.

If the address hits in the cache, and the block is in the modified (M) state, the modified block is written back to
memory and the cache block is placed in the invalid (I) state. If the address hits in the cache, and the cache
block is in the exclusive (E) state, the cache block is placed in the invalid (I) state. If the address misses in the
cache, no action is taken.

The execution of dcbf does not broadcast on the 60x bus unless broadcast is enabled through the
HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the block containing
the effective address. The dcbf instruction executes regardless of whether the cache is disabled or locked.
However, a BAT or TLB protection violation generates a DSI exception.

3.4.2.5 Data Cache Block Invalidate (dchbi)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. This instruction is treated as a store with respect to address translation and memory
protection.

If the address hits in the cache, the cache block is placed in the invalid (l) state, regardless of whether the
data is modified. Because this instruction can effectively destroy modified data, it is privileged (that is, dcbi is
available to programs at the supervisor privilege level, MSR[PR] = 0). The execution of dcbi does not broad-
cast on the 60x bus unless broadcast is enabled through the HIDO[ABE] bit. The function of this instruction is
independent of the WIMG bit settings of the block containing the effective address. The dcbi instruction
executes regardless of whether the cache is disabled or locked. However, a BAT or TLB protection violation
generates a DSI exception.
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3.4.2.6 Instruction Cache Block Invalidate (icbi)

For the ichi instruction, the effective address is not computed or translated, so it cannot generate a protection
violation or exception. This instruction performs a virtual lookup into the instruction cache (index only). All
ways of the selected instruction cache set are invalidated.

The ichi instruction is not broadcast on the 60x bus. The icbi instruction invalidates the cache blocks inde-
pendent of whether the cache is disabled or locked.

3.5 Cache Operations

This section describes the 750GX’s cache operations.

3.5.1 Cache-Block-Replacement/Castout Operations

Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement algorithm when a
new block needs to be placed in the cache. When the data to be replaced is in the modified (M) state, that
data is written into a castout buffer while the missed data is being accessed on the bus. When the load
completes, the 750GX then pushes the replaced cache block from the castout buffer to the L2 cache (if L2 is
enabled) or to main memory (if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the set and chooses the lowest-
order, invalid block (L[0-7]) as the replacement target. If all eight blocks in the set are valid, the PLRU algo-
rithm is used to determine which block should be replaced. The PLRU algorithm is shown in Figure 3-5 on
page 137.

Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each block in the cache,
L[0-7]. When all eight blocks in the set are valid, the PLRU algorithm is used to select the replacement target.
There are seven PLRU bits, B[0—6] for each set in the cache. For every hit in the cache, the PLRU bits are
updated using the rules specified in Table 3-2 on page 138.
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Figure 3-5. PLRU Replacement Algorithm
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Table 3-2. PLRU Bit Update Rules

If the current
access is to:

Then the PLRU bits are changed to:?

BO B1 B2 B3 B4
LO 1 1 X 1 X
L1 1 1 X 0 X
L2 1 0 X X 1
L3 1 0 X X 0
L4 0 X 1 X X
L5 0 X 1 X X
L6 0 X 0 X X
L7 0 X 0 X X

1. x = Does not change

w
x>

x

If all eight blocks are valid, then a block is selected for replacement according to the PLRU bit encodings

shown in Table 3-3.

Table 3-3. PLRU Replacement Block Selection

If the PLRU bits are:

0 0 0
B3
0 0 1
Bl
0 1 0
B4
0 1 1
BO
1 0 0
B5
1 0 1
B2
1 1 0
B6
1 1 1

Then the block
selected for
replacement is:

LO
L1
L2
L3
L4
L5
L6
L7

During power-up or hard reset, all the valid bits of the blocks are cleared, and the PLRU bits cleared to point
to block LO of each set. Note that this is also the state of the data or instruction cache after setting their

respective flash invalidate bit, HIDO[DCFI] or HIDO[ICFI].

3.5.2 Cache Flush Operations

The instruction cache can be invalidated by executing a series of icbi instructions or by setting HIDO[ICFI].
The data cache can be invalidated by executing a series of dcbi instructions or by setting HIDO[DCFI].

Any modified entries in the data cache can be copied back to memory (flushed) by using the dcbf instruction
or by executing a series of 12 uniquely addressed load or dcbz instructions to each of the 128 sets. The
address space should not be shared with any other process to prevent snoop hit invalidations during the
flushing routine. Exceptions should be disabled during this time so that the PLRU algorithm is not disturbed.
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The data-cache flush assist bit, HIDO[DCFA], simplifies the software flushing process. When set,
HIDO[DCFA] forces the PLRU replacement algorithm to ignore the invalid entries and follow the replacement
sequence defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz instructions
to eight per set. HIDO[DCFA] should be set just prior to the beginning of the cache flush routine and cleared
after the series of instructions is complete.

The L2 flush mechanism is similar to the L1 data-cache flush mechanism. The L2 flush requires that the
entire data cache be flushed prior to flushing the L2 cache. Also, exceptions must be disabled during the L2
flush so that the LR and PLRU algorithms are not disturbed. The L2 cache can be flushed by executing
uniquely addressed load instructions to each of the 32-byte blocks of the L2 cache. This can be done by
loading a contiguous 1-MB block of memory. The loads must not hit in the L1 cache in order to effect a flush
of the L2 cache.

3.5.3 Data-Cache Block-Fill Operations

The 750GX’s data-cache blocks are filled in four beats of 64 bits each, with the critical double word loaded
first. The data cache is not blocked to internal accesses while the load (caused by a cache miss) completes.
This functionality is sometimes referred to as ‘hits under misses,’ because the cache can service a hit while a
cache miss fill is waiting to complete. The critical-double-word read from memory is simultaneously written to
the data cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill latency.

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs in the cache. The
cache block that corresponds to the missed address is updated by a burst transfer of the data from the L2 or
system memory. Note that if a read miss occurs in a system with multiple bus masters, and the data is modi-
fied in another cache, the modified data is first written to external memory before the cache fill occurs.

3.5.4 Instruction-Cache Block-Fill Operations

The 750GX’s instruction-cache blocks are loaded in four beats of 64 bits each, with the critical double word
loaded first. The instruction cache is not blocked to internal accesses while the fetch (caused by a cache
miss) completes. On a cache miss, the critical and following double words read from memory are simulta-
neously written to the instruction cache and forwarded to the instruction queue, thus minimizing stalls due to
cache fill latency. There is no snooping of the instruction cache.

3.5.5 Data-Cache Block-Push Operations

When a cache block in the 750GX is snooped and hit by another bus master and the data is modified, the
cache block must be written to memory and made available to the snooping device. The cache block is said
to be pushed out onto the 60x bus.

3.6 L1 Caches and 60x Bus Transactions

The 750GX transfers data to and from the cache in single-beat transactions of two words, or in 4-beat trans-
actions of eight words which fill a cache block. Single-beat bus transactions can transfer from one to eight
bytes to or from the 750GX, and can be misaligned. Single-beat transactions can be caused by cache write-
through accesses, caching-inhibited accesses (WIMG = x1xx), accesses when the cache is disabled
(HIDO[DCE] bit is cleared), or accesses when the cache is locked (HIDO[DLOCK] bit is cleared).
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Burst transactions on the 750G X always transfer eight words of data at a time, and are aligned to a double-
word boundary. The 750GX transfer burst (TBST) output signal indicates to the system whether the current
transaction is a single-beat transaction or 4-beat burst transfer. Burst transactions have an assumed address
order. For cacheable read operations, instruction fetches, or cacheable, non-write-through write operations
that miss the cache, the 750GX presents the double-word-aligned address associated with the load/store
instruction or instruction fetch that initiated the transaction.

As shown in Figure 3-6, the first quadword contains the address of the load/store or instruction fetch that
missed the cache. This minimizes latency by allowing the critical code or data to be forwarded to the
processor before the rest of the block is filled. For all other burst operations, however, the entire block is
transferred in order. Critical-double-word-first fetching on a cache miss applies to both the data and instruc-
tion cache.

Figure 3-6. 750GX Cache Addresses

750GX Cache Address

Bits (27... 28)
00 01 10 11
A B C D

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and the four data
beats are ordered in the following manner:

Beat
0 1 2 3

A B C D

If the address requested is in double-word C, the address placed on the bus will be that of double-word C, and the four
data beats are ordered in the following manner:

Beat

3.6.1 Read Operations and the MEI Protocol

The MEI coherency protocol affects how the 750GX data cache performs read operations on the 60x bus. All
reads (except for caching-inhibited reads) are encoded on the bus as read-with-intent-to-modify (RWITM) to
force flushing of the addressed cache block from other caches in the system.

The MEI coherency protocol also affects how the 750GX snoops read operations on the 60x bus. All reads
snooped from the 60x bus (except for caching-inhibited reads) are interpreted as RWITM to cause flushing
from the 750GX'’s cache. Single-beat reads (TBST negated) are interpreted by the 750GX as caching inhib-
ited.

These actions for read operations allow the 750G X to operate successfully (coherently) on the bus with other
bus masters that implement either the 3-state MEI or a 4-state MESI cache-coherency protocol.
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3.6.2 Bus Operations Caused by Cache-Control Instructions

The cache-control, TLB management, and synchronization instructions supported by the 750GX can affect or
be affected by the operation of the 60x bus. The operation of the instructions can also indirectly cause bus
transactions to be performed, or their completion can be linked to the bus.

The dcbz instruction is the only cache-control instruction that causes an address-only broadcast on the 60x
bus. All other data cache-control instructions (dcbi, dcbf, dcbst, and dcbz) are not broadcast unless specifi-
cally enabled through the HIDO[ABE] configuration bit. Note that dcbi, dcbf, dcbst, and dcbz do broadcast to
the 750GX’s L2 cache, regardless of HIDO[ABE]. HIDO[ABE] also controls the broadcast of the sync and
Enforce In-Order Execution of I/O (eieio) instructions.

The icbi instruction is never broadcast. No broadcasts by other masters are snooped by the 750GX (except
for dcbz kill block transactions). For detailed information on the cache-control instructions, see Chapter 2,
Programming Model, on page 57.

Table 3-4 provides an overview of the bus operations initiated by cache-control instructions. Note that the
information in this table assumes that the WIM bits are set to 001; that is, the cache is operating in write-back
mode, caching is enabled and coherency is enforced.

Table 3-4. Bus Operations Caused by Cache-Control Instructions (WIM = 001)

Instruction Current Cache State| Next Cache State Bus Operation Comment
, sync Waits for memory queues to complete bus
sync Don't care No change (i enabled in HIDO[ABE])  activity.
tibie — — None TLB invalidate entry.
TLB synchronization. Waits for the nega-
tlbsync — — None tion of the TLBSYNC input signal to com-
plete.
. , eieio :
eieio Don't care No change (if enabled in HIDO[ABE]) Address-only bus operation.
icbi Don't care | None —
. , Kill block :
dchbi Don't care | (if enabled in HIDO[ABE]) Address-only bus operation.
Flush block :
dcbf I, E | (if enabled in HIDO[ABE]) Address-only bus operation.
dcbf M | Write with kill Block is pushed.
Clean block .
dcbst I, E No change (if enabled in HIDO[ABE]) Address-only bus operation.
dcbst M E Write with kill Block is pushed.
dcbz | M Write with kill —
dcbz E, M M Kill block Writes over modified data.
dcbt | E Read-with-intent-to-modify |Fetched cache block is stored in the cache.
dcbt E,M No change None —
dcbtst | E Read-with-intent-to-modify | Fetched cache block is stored in the cache.
dcbtst E.M No change None —

For additional details about the specific bus operations performed by the 750GX, see Chapter 8, Bus Inter-
face Operation, on page 279 in this manual.
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3.6.3 Snooping

The 750GX maintains data-cache coherency in hardware by coordinating activity between the data cache,
the bus interface logic, the L2 cache, and the memory system. The 750GX has a copy-back cache which
relies on bus snooping to maintain cache coherency with other caches in the system. For the 750GX, the
coherency size of the bus is the size of a cache block, 32 bytes. This means that any bus transactions that
cross an aligned 32-byte boundary must present a new address onto the bus at that boundary for proper
snoop operation by the 750GX, or they must operate noncoherently with respect to the 750GX.

As bus operations are performed on the bus by other bus masters, the 750GX’s bus snooping logic monitors
the addresses and transfer attributes that are referenced. The 750G X snoops the bus transactions during the
cycle that TS is asserted for any of the following qualified snoop conditions:

» The global signal (GBL) is asserted indicating that coherency enforcement is required.

« Areservation is currently active in the 750GX as the result of an Iwarx instruction, and the transfer type
attributes (TT[0—4]) indicate a write or kill operation. These transactions are snooped regardless of
whether GBL is asserted to support reservations in the MEI cache protocol.

All transactions snooped by the 750G X are checked for correct address-bus parity. Every assertion of TS
detected by the 750G X (whether snooped or not) must be followed by an accompanying assertion of address
acknowledge (AACK).

Once a qualified snoop condition is detected on the bus, the snooped address associated with TSis
compared against the data-cache tags, memory queues, and/or other storage elements as appropriate. The
L1 data-cache tags and L2 cache tags are snooped for standard data-cache-coherency support. No snooping
is done in the instruction cache for coherency.

The memory queues are snooped for pipeline collisions and memory coherency collisions. A pipeline collision
is detected when another bus master addresses any portion of a line that this 750GX’s data cache is currently
in the process of loading (L1 loading from L2, or L1/L2 loading from memory). A memory coherency collision
occurs when another bus master addresses any portion of a line that the 750GX has currently queued to write
to memory from the data cache (castout or copy-back), but has not yet been granted bus access to perform.

If a snooped transaction results in a cache hit or pipeline collision or memory queue collision, the 750GX
asserts ARTRY on the 60x bus. The current bus master, detecting the assertion of the ARTRY signal, should
cancel the transaction and retry it at a later time, so that the 750GX can first perform a write operation back to
memory from its cache or memory queues. The 750GX might also retry a bus transaction if it is unable to
snoop the transaction on that cycle due to internal resource conflicts. Additional snoop action might be
forwarded to the cache as a result of a snoop hit in some cases (a cache push of modified data, or a cache-
block invalidation). There is no immediate way for another CPU bus agent to determine the cause of the
750GX ARTRY.

Implementation Note: Snooping of the memory queues for pipeline collisions, as described above, is
performed for burst read operations in progress only. In this case, the read address has completed on the
bus; however, the data tenure might be either in-progress or not yet started by the processor. During this time
the 750GX will retry any other global access to that line by another bus master until all data has been
received in its L1 cache. Pipeline collisions, however, do not apply for burst write operations in progress. If the
750GX has completed an address tenure for a burst write, and is currently waiting for a data-bus grant or is
currently transferring data to memory, it will not generate an address retry to another bus master that
addresses the line. It is the responsibility of the memory system to handle this collision (usually by keeping
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the data transactions to memory in order). Note also that all burst writes by the 750GX are performed as
nonglobal, and hence do not normally enable snooping, even for address collision purposes. (Snooping might
still occur for reservation cancelling purposes.)

3.6.4 Snoop Response to 60x Bus Transactions

There are several bus transaction types defined for the 60x bus. The transactions in Table 3-5 correspond to
the transfer type signals TT[0—4], which are described in Section 7.2.4.1, Transfer Type (TT[0-4]), on

page 256.

The 750GX never retries a transaction in which GBL is not asserted, even if the tags are busy or there is a tag
hit. Reservations are snooped regardless of the state of GBL.

Table 3-5. Response to Snooped Bus Transactions (Page 1 of 3)

Snooped Transaction
Clean block
Flush block
SYNC

Kill block

EIEIO

External control word write
TLB invalidate

External control word read
Iwarx reservation set
Reserved

TLBSYNC

ICBI

Reserved

Write-with-flush

gx_03.fm.(1.2)
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TT[0-4]
00000
00100
01000

01100

10000
10100
11000
11100
00001
00101
01001
01101
1XX01

00010

750GX Response
No action is taken.
No action is taken.
No action is taken.

The kill block operation is an address-only bus transaction initiated when a dcbz or
dcbi instruction is executed.

» If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (I) state.

» If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the invalid (I) state.

 If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

No action is taken.
No action is taken.
No action is taken.
No action is taken.

No action is taken.

No action is taken.

No action is taken.

A write-with-flush operation is a single-beat or burst transaction initiated when a
caching-inhibited or write-through store instruction is executed.

» If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (I) state.

» If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache, and the
cache block is placed in the invalid (I) state.

 If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.
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Table 3-5. Response to Snooped Bus Transactions (Page 2 of 3)

Snooped Transaction

Write-with-kill

Read

Read-with-intent-to-modify
(RWITM)

Write-with-flush-atomic

Reserved
Read-atomic

Read-with-intent-to-modify-
atomic
Reserved

Reserved
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TT[0-4]

00110

01010

01110

10010

10110

11010

11110

00011
00111

750GX Response

A write-with-kill operation is a burst transaction initiated due to a castout, caching-
enabled push, or snoop copy-back.

» If the address hits in the cache, the cache block is placed in the invalid (l) state
(killing modified data that might have been in the block).

 If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

A read operation is used by most single-beat and burst load transactions on the bus.
For single-beat, caching-inhibited read transaction:

» If the addressed cache block is in the exclusive (E) state, the cache block
remains in the exclusive (E) state.

» If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache, and the
cache block is placed in the exclusive (E) state.

» |If the address misses in the cache, no action is taken.

For burst read transactions:

» If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.

» If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache, and the
cache block is placed in the invalid (1) state.

» If the address misses in the cache, no action is taken.

A RWITM operation is issued to acquire exclusive use of a memory location for the
purpose of modifying it.
» If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.
» If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache, and the
cache block is placed in the invalid (I) state.

¢ If the address misses in the cache, no action is taken.

Write-with-flush-atomic operations occur after the processor issues an stwcx.
instruction.

» If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.

» If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache, and the
cache block is placed in the invalid () state.

» If the address misses in the cache, no action is taken.
Any reservation is canceled, regardless of the address.

Read atomic operations appear on the bus in response to lwarx instructions and
generate the same snooping responses as read operations.

The RWITM atomic operations appear on the bus in response to stwcx. instructions
and generate the same snooping responses as RWITM operations.
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Table 3-5. Response to Snooped Bus Transactions (Page 3 of 3)

Snooped Transaction TT[0-4] 750GX Response

A RWNITC operation is issued to acquire exclusive use of a memory location with
no intention of modifying the location.
» If the addressed cache block is in the exclusive (E) state, the cache block
Read-with-no-intent-to-cache 01011 remains in the exclusive (E) state.
(RWNITC) + If the addressed cache block is in the modified (M) state, the 750GX asserts
ARTRY and initiates a push of the modified block out of the cache, and the
cache block is placed in the exclusive (E) state.

» If the address misses in the cache, no action is taken.

Reserved 01111 —
Reserved 1XX11 —

3.6.5 Transfer Attributes

In addition to the address and transfer type signals, the 750GX supports the transfer attribute signals: TBST,
TSIZ[0-2], WT, CI, and GBL. The TBST and TSIZ[0-2] signals indicate the data-transfer size for the bus
transaction.

The WT signal reflects the write-through status (the complement of the W bit) for the transaction as deter-
mined by the MMU address translation during write operations. WT is asserted for burst writes due to dcbf
(flush) and dcbst (clean) instructions, and for snoop pushes; WT is negated for External Control Out Word
Indexed (ecowx) transactions. Since the write-through status is not meaningful for reads, the 750GX uses
the WT signal during read transactions to indicate that the transaction is an instruction fetch (WT negated), or
not an instruction fetch (WT asserted).

The CI signal reflects the caching-inhibited/enabled status (the complement of the | bit) of the transaction as
determined by the MMU address translation even if the L1 caches are disabled or locked. Cl is always
asserted for External Control In Word Indexed (eciwx) and ecowx bus transactions independent of the
address translation.

The GBL signal reflects the memory coherency requirements (the complement of the M bit) of the transaction
as determined by the MMU address translation. Castout and snoop copy-back operations (TT[0-4] = 00110)
are generally marked as nonglobal (GBL negated) and are not snooped (except for reservation monitoring).
Other masters, however, might perform direct memory access (DMA) write operations with this encoding but
marked global (GBL asserted); thus, the operation must be snooped.

Table 3-6 summarizes the address and transfer attribute information presented on the bus by the 750GX for
various master or snoop-related transactions.
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Table 3-6. Address/Transfer Attribute Summary

Bus Transaction
Instruction fetch operations:

Burst (caching-enabled)

Single-beat read (caching-inhibited or

cache disabled)

Single-beat read (caching-inhibited or

cache disabled, 32-bit bus)
Data-cache operations:

Cache-block fill (due to load or store
miss)

Castout
(normal replacement)

Push (cache-block push due to dcbf or

dcbst)
Snoop copyback

Data-cache bypass operations:

Single-beat read (caching-inhibited or

cache disabled)

Single-beat write (caching-inhibited,
write-through, or cache disabled)

Special instructions:

dcbz (address-only)

dcbi (if HIDO[ABE] = 1, address-only)
dcbf (if HIDO[ABE] = 1, address-only)
dcbst (if HIDO[ABE] = 1, address-only)
sync (if HIDO[ABE] = 1, address-only)
eieio (if HIDO[ABE] = 1, address-only)

stwcx. (always single-beat write)
eciwx
ecowx

Note:

PA = Physical address, CA = Cache address.
W,I,M = WIM state from address translation; = = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM].

A = Atomic; high if Iwarx, low otherwise
S = Transfer size

Special instructions listed might not generate bus transactions depending on cache state.
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A[0-31]

PA[0-28] || 0b000

PA[0-28] || 0b000

PA(0:29) || 00

PA[0-28] || 0b000

CA[0-26] || 0000000

PA[0-26] || 0b00000

CA[0-26] || 0000000

PA[0-31]

PA[0-31]

PA[0-28] || 0b00O
PA[0—26] || 0b00000
PA[0-26] || 0b00000
PA[0—26] || 0b00000

0x0000_0000
0x0000_0000

PA[0-29] || Ob0O

PA[0-29] || Ob0O

PA[0-29] || Ob0O

TT[0-4]

01110

01010

01010

A1110

00110

00110

00110

A1010

00010

01100
01100
00100
00000
01000
10000
10010
11100
10100

TBST | TSIZ[0-2]
0 010
1 000
1 100
0 010
0 010
0 010
0 010
1 Sss
1 Sss
0 010
0 010
0 010
0 010
0 010
0 010
1 100

EAR[28-31]
EAR[28-31]

GBL

WT Cl
1 1*
1 =1
1 =
0 1*
1 1*
0 1*
0 1*
0 =

=W =
0 1*
0 1*
0 1*
0 1*
0 0
0 0

W =
0 0
1 0
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Table 3-7 shows MEI state transitions for various operations. Bus operations are described in Table 3-4 on

page 141.

Table 3-7. MEI State Transitions (Page 1 of 3)

Cache BUS Current Next
Operation . WIM Cache | Cache Cache Actions Bus Operation
Operation Sync
State State
Cast out of modified block (as Write-with-Kil
Load (T = 0) Read No X0X I Same | required).
Pass 4-beat read to memory queue. |Read
Load (T =0) Read No X0x E.M Same |Read data from cache. —
Load (T = 0) Read No X1x | Same Pass single-beat read to memory Read
queue.
Load (T = 0) Read No Ylx E Same Pass single-beat read to memory Read
queue.
Load (T = 0) Read No Ylx M Same Pass single-beat read to memory Read
queue.
lwarx Read Acts like other reads but bus operation uses special encoding.
Cast out of modified block (if neces- Write-with-kil
Store (T = 0) Write No 00x I Same  San)-
Pass RWITM to memory queue. RWITM
Store (T = 0) Write No 00x E.M M Write data to cache. —
Store | stwcx. i - i
! Write No 10x | Same Pass single-beat write to memory Write-with-flush
(T=0) queue.
s . Write data to cache. —
tore | stwcx. .
Write No 10x E Same ; ;
T=0 Pass single-beat write to memory L
( ) queue. Write-with-flush
Store | stwcx. . . . s
(T=0) Write No 10x M Same | Push block to write queue. Write-with-Kkill
Store (T =0) Write No Y1x | Same Pass single-beat write to memory Write-with-flush
or stwcx. queue.
Store (T =0) Write No 1x E Same Pass single-beat write to memory Write-with-flush
or stwcx. queue.
Pass single-beat write to memory . .
- Write-with-flush
Store (T = 0) Write No x1x M Same | dueve.
or stwcx.
Push block to write queue Write-with-kill
stwex Conditional | If the reserved bit is set, this operation is like other writes except the bus operation uses a special
' write encoding.
Data-cache- LE Same |Pass flush. Flush
dcbf block flush No XXX
ock Tlus Same | State change only. —
Data-cache- . . s
dcbf block flush No XXX M | Push block to write queue. Write-with-kill

Note: Single-beat writes are not snooped in the write queue.
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Table 3-7. MEI State Transitions (Page 2 of 3)

Operation

dcbst

dcbst

dcbz

dcbz

dcbz

dcbz

dcbt

dcbt

dcbt

dcbt

Single-beat read

4-beat read (dou-
ble-word-aligned)

4-beat write (dou-
ble-word-aligned)

E—I

M—>I

Push
M—>

Push
M—E

Cache
Operation

Data-cache-
block store

Data-cache-
block store

Data-cache-
block set to
zero

Data-cache-
block set to
zero

Data-cache-
block set to
zero

Data-cache-
block set to
zero

Data-cache-
block touch

Data-cache-
block touch

Data-cache-
block touch

Data-cache-
block touch

Reload dump 1

Reload dump

Reload dump

Snoop
write or Kill

Snoop
kill
Snoop
flush

Snoop
clean

Bus
Sync

No

No

No

Yes

No

No

No

No

No

No

WIM

XXX

XXX

x1x

10x

00x

00x

x1x

x1x

x0x

x0x

XXX

XXX

XXX

XXX

XXX

XXX

XXX

Current
Cache

State

LE

Same

M

Same

EM

EM

Note: Single-beat writes are not snooped in the write queue.
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Next

Cache

State

Same

Same

E

Same

Same

Same

Same

Same

Cache Actions

dcbst.
Pass clean.

No action.

Push block to write queue.

Alignment trap.

Alignment trap.

Cast out of modified block.
Pass Kkill.
Clear block.

Clear block.

Pass single-beat read to memory
queue.

Push block to write queue.

Cast out of modified block (as
required).

Pass 4-beat read to memory queue.

No action.
Forward data_in.

Write data_in to cache.

Write data_in to cache.

State change only (committed).

State change only (committed).

Conditionally push.

Conditionally push.

Bus Operation

Clean

Write-with-kill

Write-with-kill
Kill

Read

Write-with-Kill

Write-with-Kill

Read

Write-with-kill

Write-with-kill
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Table 3-7. MEI State Transitions (Page 3 of 3)

. Cache Bus
Operation Operation Sync WiM
tlbie TLB invalidate No XXX

Synchroniza-

. N XXX
tion 0

sync

Current
Cache
State

Note: Single-beat writes are not snooped in the write queue.
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Next
Cache
State

Pass TLBI.

No action.

Pass sync.

No action.

Cache Actions Bus Operation
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4. Exceptions

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions can be defined at other levels of the architecture. For example, the user instruction
set architecture (UISA) defines conditions that can cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of unusual
conditions arising in the execution of instructions and from external signals, bus errors, or various internal
conditions. When exceptions occur, information about the state of the processor is saved to certain registers,
and the processor begins execution at an address (exception vector) predetermined for each exception.
Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific condition
can be determined by examining a register associated with the exception—for example, the Data Storage
Interrupt Status Register (DSISR) and the Floating-Point Status and Control Register (FPSCR). The high-
order bits of the Machine State Register (MSR) are also set for some exceptions. Software can explicitly
enable or disable some exception conditions.

The PowerPC Architecture requires that exceptions be taken in program order. Therefore, although a partic-
ular implementation might recognize exception conditions out of order, they are handled strictly in order with
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled based on the priority of the exception.
Likewise, exceptions that are asynchronous and precise are recognized when they occur, but are not handled
until all instructions currently in the execute stage successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the Machine
Status Save/Restore Registers, SRRO and SRR1, soon after the exception is taken to prevent this informa-
tion from being lost due to another exception being taken. Because exceptions can occur while an exception
handler routine is executing, multiple exceptions can become nested. It is up to the exception handler to save
the necessary state information if control is to return to the excepting program.

In many cases, after the exception handler returns, there is an attempt to execute the instruction that caused
the exception (for example, a page fault). Instruction execution continues until the next exception condition is
encountered. Recognizing and handling exception conditions sequentially guarantees that the machine state
is recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing.

Recognition Exception recognition occurs when the condition that can cause an exception is identified by
the processor.

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler. That is, the context is saved, the instruction at the appropriate vector offset is
fetched, and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset.
Exception handling is begun in supervisor mode (referred to as privileged state in the archi-
tecture specification).

gx_04.fm.(1.2) Exceptions
March 27, 2006 Page 151 of 377



User’'s Manual
IBM PowerPC 750GX and GL RISC Microprocessor

Note: The PowerPC Architecture documentation refers to exceptions as interrupts. In this book, the term
“interrupt” is reserved to refer to asynchronous exceptions and sometimes to the event that causes the
exception. The PowerPC Architecture also uses the word “exception” to refer to IEEE-defined floating-point
exception conditions that can cause a program exception to be taken (see Section 4.5.7, Program Exception
(0x00700), on page 170). The occurrence of these IEEE exceptions might not cause an exception to be
taken. IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point exceptions.

4.1 PowerPC 750GX Microprocessor Exceptions

As specified by the PowerPC Architecture, exceptions can be either precise or imprecise and either synchro-
nous or asynchronous. Asynchronous exceptions are caused by events external to the processor’s execu-
tion; synchronous exceptions are caused by instructions. The types of exceptions are shown in Table 4-1.

Note: All exceptions except for the system management interrupt, thermal management, and performance-
monitor exception are defined, at least to some extent, by the PowerPC Architecture.

Table 4-1. PowerPC 750GX Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types
Asynchronous, nonmaskable Imprecise Machine check, system reset
Asynchronous, maskable Precise External interrupt, decrementer, system management interrupt,

performance-monitor interrupt, thermal-management interrupt

Synchronous Precise Instruction-caused exceptions

These classifications are discussed in greater detail in Section 4.2, Exception Recognition and Priorities, on
page 153. For a better understanding of how the 750GX implements precise exceptions, see Chapter 6,
“Exceptions” of the PowerPC Microprocessor Family: The Programming Environments Manual. Exceptions
implemented in 750GX, and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions (Page 1 of 2)

Vector Offset

Exception Type Causing Conditions

(hex)

Reserved 00000 —

System reset 00100 Assertion of either hard reset (HRESET) or soft reset (SRESET) at power-on reset.
Assertion of transfer error_acknowledge (ﬁ) during a data-bus transaction; assertion of

Machine check 00200 machine-check interrupt (MCP); an address, data or L2 double-bit error. MSR[ME] must
be set.

DSl 00300 As specified in the PowerPC Architecture, if a page fault occurs.

ISI 00400 As defined by the PowerPC Architecture, if a page fault occurs.

External interrupt 00500 MSR[EE] = 1, and interrupt (ﬁ) is asserted.

* A floating-point load/store, Store Multiple Word (stmw), Store Word Conditional
Indexed (stwcx.), Load Multiple Word (Imw), Load String Word Indexed (lwarx),
External Control In Word Indexed (eciwx), or External Control Out Word Indexed
00600 (ecowx) instruction operand is not word-aligned.

Alignment
« A multiple/string load/store operation is attempted in little-endian mode.
* An operand of a Data Cache Block Set to Zero (dcbz) instruction is on a page that is
write-through or cache-inhibited for a virtual mode access.
« An attempt to execute a dcbz instruction occurs when the cache is disabled.
Exceptions gx_04.fm.(1.2)
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Table 4-2. Exceptions and Conditions (Page 2 of 2)

Exception Type

Program

Floating-point unavail-
able

Decrementer

Reserved

System call

Trace

Reserved

Reserved
Performance monitor

Instruction address
breakpoint

System management
exception

Reserved

Thermal-management
interrupt

Reserved

Vector Offset
(hex)

00700

00800

00900
00AO0—-00OBFF

00CO00

00DO00

0OEOO

OOE10-00EFF
00FO00

01300

01400
01500-016FF
01700

01800-02FFF

Causing Conditions

As defined by the PowerPC Architecture (for example, an instruction opcode error).

As defined by the PowerPC Architecture. MSR[FP] = 0, and a floating-point instruction is
executed.

As defined by the PowerPC Architecture, when the most-significant bit of the Decre-
menter Register (DEC) changes from 0 to 1, and MSR[EE] = 1.

Execution of the System Call (sc) instruction.

MSR[SE] =1, or a branch instruction is completing and MSR[BE] = 1. The 750GX differs
from the OEA by not taking this exception on an Instruction Synchronize (isync) instruc-
tion.

The 750GX does not generate an exception to this vector. Other PowerPC processors
might use this vector for floating-point assist exceptions.

The limit specified in PMCn is met and MMCRO[ENINT] = 1 (750G X-specific).

IABR[0-29] matches EA[0-29] of the next instruction to complete, IABR[TE] matches
MSRJIR], and IABR[BE] = 1 (750G X-specific).

A system management exception is enabled if MSR[EE] = 1, and is signaled to the
750GX by the assertion of an input signal pin, the system management interrupt (SMI).

Thermal management is enabled, junction temperature exceeds the threshold specified in
THRM1 or THRM2, and MSR[EE] = 1 (750G X-specific).

4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows.

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions. These are system reset
and machine-check exceptions (although the machine-check exception condition can be disabled so the
condition causes the processor to go directly into the checkstop state). These exceptions cannot be
delayed and do not wait for completion of any precise-exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused by instructions, and
they are delayed until higher-priority exceptions are taken. Note that the 750GX does not implement an
exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, thermal-management, system-management,
performance-monitor, and interrupt exceptions) are delayed if higher-priority exceptions are taken.

The following list of exception categories describes how the 750GX handles exceptions up to the point of
signaling the appropriate interrupt to occur. Note that a recoverable state is reached if the completed store
queue is empty (drained, not cancelled), and the instruction that is next in program order has been signaled to
complete and has completed. If MSR[RI] = 0, the 750GX is in a nonrecoverable state. Also, instruction
completion is defined as updating all architectural registers associated with that instruction, and then
removing that instruction from the completion buffer.
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« Exceptions caused by asynchronous events (interrupts). These exceptions are further distinguished by
whether they are maskable and recoverable.

Asynchronous, nonmaskable, nonrecoverable
System reset for assertion of HRESET—Has highest priority and is taken immediately regardless of
other pending exceptions or recoverability (includes power-on reset).

Asynchronous, maskable, nonrecoverable
Machine-check exception—Has priority over any other pending exception except system reset for
assertion of HRESET. Taken immediately regardless of recoverability.

Asynchronous, nonmaskable, recoverable

System reset for assertion of SRESET—Has priority over any other pending exception except sys-
tem reset for HRESET (or power-on reset), or machine check. Taken immediately when a recover-
able state is reached.

Asynchronous, maskable, recoverable

System management, performance monitor, thermal-management, external, and decrementer inter-
rupts—Before handling this type of exception, the next instruction in program order must complete. If
that instruction causes another type of exception, that exception is taken and the asynchronous,
maskable recoverable exception remains pending, until the instruction completes. Further instruction
completion is halted. The asynchronous, maskable recoverable exception is taken when a recover-
able state is reached.

« Instruction-related exceptions. These exceptions are further organized based on the point in instruction
processing at which they generate an exception.

Instruction fetch

Instruction storage interrupt (ISI) exceptions—Once this type of exception is detected, dispatching
stops, and the current instruction stream is allowed to drain out of the machine. If completing any of
the instructions in this stream causes an exception, that exception is taken and the instruction fetch
exception is discarded (but might be encountered again when instruction processing resumes). Oth-
erwise, once all pending instructions have executed and a recoverable state is reached, the ISI
exception is taken.

Instruction dispatch/execution

Program, data-storage interrupt (DSI), alignment, floating-point unavailable, system call, and instruc-
tion address breakpoint—This type of exception is determined during dispatch or execution of an
instruction. The exception remains pending until all instructions before the exception-causing instruc-
tion in program order complete. The exception is then taken without completing the exception-caus-
ing instruction. If completing these previous instructions causes an exception, that exception takes
priority over the pending instruction dispatch/execution exception, which is then discarded (but might
be encountered again when instruction processing resumes).

Post-instruction execution

Trace—Trace exceptions are generated following execution and completion of an instruction while
trace mode is enabled. If executing the instruction produces conditions for another type of exception,
that exception is taken and the post-instruction exception is forgotten for that instruction.

Note: These exception classifications correspond to how exceptions are prioritized, as described in Table
4-3, Exception Priorities, on page 155.
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Table 4-3. Exception Priorities

Priority Exception Cause
Asynchronous Exceptions (Interrupts)
0 System Reset HRESET, POR

TEA, 60x address-parity error, 60x data-parity error, L2 ECC double-bit error, MCP, L2-tag
1 Machine Check | parity error, data-tag parity error, instruction-ta? parity error, instruction-cache parity error,
data-cache parity error, or locked L2 snoop hit

2 System Reset | SRESET

3 SMI SMI (system management exception)
4 El INT (External Exception)

5 PFM Performance-monitor exception

6 DEC Decrementer exception

7 T™I Thermal-management exception

Instruction Fetch Exceptions

0 ISI Instruction storage exception
Instruction Dispatch/Execution Exceptions

0 IABR Instruction address breakpoint exception

Program exception due to:
1. lllegal instruction

1 Pl
2. Privileged instruction
3. Trap
2 SC System call
3 FPA Floating-point unavailable exception
4 Pl Program exception due to floating-point enabled exception
5 DSI Data-storage exception due to eciwx, ecowx with the enable bit of the External Access Reg-
ister cleared (EAR[E] = 0) (bit 11 of DSISR)
Alignment exception due to:
» Floating point not word aligned
. * Imw, stmw, lwarx, or stwcx not word-aligned
6 Alignment . . .
» Either eciwx or ecowx not word-aligned
* Multiple or string access with the little-endian bit set.
» dcbz to write-through or cache-inhibited page or cache is disabled.
7 DSl Data-storage exception due to a block-address-translation (BAT) page-protection violation
Data-storage exception due to:
8 DS * Any access except cache operations to a segment where SR[T] = 1
* An access that crosses from an SR[T] = 0 segment to an SR[T} = 1 segment
These exceptions are indicated by DSISR[5] = 1.
9 DSl Data-storage exception due to a translation lookaside buffer (TLB) page-protection violation
10 DSl Data-storage exception due to a Data Address Breakpoint Register (DABR) address match

Post Instruction Execution Exceptions

Trace exception due to:

11 T
race MSR[SE] = 1 or (MSR[BE] = 1 for branches

1. Even though DSISR(5) and DSISR(11) are set by different priority exceptions, both bits can be set at the same time.
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System reset and machine-check exceptions can occur at any time and are not delayed even if an exception
is being handled. As a result, state information for an interrupted exception might be lost. Therefore, these
exceptions are typically nonrecoverable. An exception might not be taken immediately when it is recognized.

4.3 Exception Processing

When an exception is taken, the processor uses Machine Status Save/Restore Register 0 (SRRO0) to deter-
mine where instruction processing should resume, and uses Machine Status Save/Restore Register 1
(SRR1) to save the contents of the Machine State Register (MSR) for the current context.

4.3.1 Machine Status Save/Restore Register 0 (SRRO0)

When an exception occurs, the address saved in SRRO determines where instruction processing should
resume when the exception handler returns control to the interrupted process. Depending on the exception,
this might be the address in SRRO or the next address in the program flow. All instructions in the program flow
preceding this one will have completed execution, and no subsequent instruction will have begun execution.
This might be the address of the instruction that caused the exception or the next one (as in the case of a
system call, trace, or trap exception).

SRRO

v ¥
‘0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031‘

Exceptions gx_04.fm.(1.2)
Page 156 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and GL RISC Microprocessor

4.3.2 Machine Status Save/Restore Register 1 (SRR1)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on excep-
tions and to restore those values when a Return from Interrupt (rfi) instruction is executed.

When the 750GX takes a machine-check exception, it will set one or more error bits in SRR1, in Hardware-
Implementation-Dependent Register 2 (HID2), or in the L2 Cache Control Register (L2CR). A parity error in
either the internal L2 tag array or instruction-cache or data-cache tag arrays is indicated by the CP bit. A data-
parity error on the 60x bus is indicated by the DP bit. The MCpin bit indicates that the machine-check pin was
activated. The transfer error acknowledge (TEA) bit indicates the machine check was caused by a TEA
response on the 60x bus. An address-parity error on the 60x bus will set the AP bit.

% c
285
Reserved CP Reserved N S F DPAP Reserved
v Vol REREEER }
(0 1 2 3[4[5 6 7 8 9 10[11[12]13]14[15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31|
Bits Field Name Description
0:3 Reserved
4 CP Set when an internal cache parity error is detected.
5:10 Reserved
11 L2DBERR Set when an L2 data-cache ECC double-bit error is detected.
12 MCpin Set when the machine-check pin is asserted.
13 TEA Set when a transfer error acknowledge (ﬁ) error is detected.
14 DP Set when a data-bus parity error is detected.
15 AP Set when an address-bus parity error is detected.
16:31 Reserved
gx_04.fm.(1.2) Exceptions
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4.3.3 Machine State Register (MSR)

Reserved

°© °© ©
[} [} [}
2 2 2
z 2 o - 7 ?
© L eeepPRFPME ¥ seBE X & IP IRDR & PM RI LE
EEREEEEEEEEEE v
(01 2 3 4 5 6 7 8 9 10 11 12]13|14|15]16[17[18]19|2021]22]23]24]25 2627 |28]29[30[31 |
Bits Field Name Description
Reserved?!
Bits Description
0 Full function
0:12 Reserved 1:4 Partial function
5:9 Full function
10:12  Partial function
Power management enable
0 Power management disabled (normal operation mode).
13 POW 1 Power management enabled (reduced power mode).
14 Reserved
15 ILE
16 EE
17 PR
18 FP
19 ME
20 FEO
21 SE

Power management functions are implementation-dependent. See Chapter 10, Power
and Thermal Management, on page 335.

Reserved. Implementation-specific

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE]
to select the endian mode for the context established by the exception.

External interrupt enable

0 The processor delays recognition of external interrupts and decrementer excep-
tion conditions.

1 The processor is enabled to take an external interrupt or the decrementer excep-
tion.

Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-
point loads, stores, and moves.
1 The processor can execute floating-point instructions and can take floating-point

enabled program exceptions.

Machine check enable

0 Machine-check exceptions are disabled. If one occurs, the system enters a
checkstop.
1 Machine-check exceptions are enabled.

IEEE floating-point exception mode O (see Table 4-4 on page 160).

Single-step trace enable
0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful exe-
cution of every instruction except rfi, isync, and sc. Successful execution means
that the instruction caused no other exception.

1. Full function reserved bits are saved in SRR1 when an exception occurs; they are saved in the same bit locations in SRR1 that
they occupy in MSR. Partial function reserved bits are not saved.
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BE

FE1

Reserved

DR

Reserved

PM
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LE
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Description
Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch-type trace exception when a branch instruc-

tion executes successfully.
IEEE floating-point exception mode 1 (see Table 4-4 on page 160).
Reserved.

Exception prefix. The setting of this bit specifies whether an exception vector offset is
prefaced with Fs or 0s. In the following description, nnnnn is the offset of the exception.

0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address OxFFFn_nnnn.

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information, see Chapter 5, Memory Management, on page 179.

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information, see Chapter 5, Memory Management, on page 179.

Reserved. Full function?

Performance-monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

750G X-specific; defined as reserved by the PowerPC Architecture. For more information

about the performance monitor, see Section 4.5.13, Performance-Monitor Interrupt
(Ox00F00), on page 172.

Indicates whether a system reset or machine-check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.

The RI bit indicates whether, from the perspective of the processor, it is safe to continue
(that is, the processor state data such as that saved to SRRO is valid), but it does not
guarantee that the interrupted process is recoverable. Exception handlers must look at bit
30 in SRR1 to determine if the interrupted process is recoverable.

Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

1. Full function reserved bits are saved in SRR1 when an exception occurs; they are saved in the same bit locations in SRR1 that
they occupy in MSR. Partial function reserved bits are not saved.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether floating-point exceptions
are handled precisely, imprecisely, or whether they are taken at all. As shown in Table 4-4, if either FEO or
FE1 is set, the 750GX treats exceptions as precise. MSR bits are guaranteed to be written to SRR1 when the
first instruction of the exception handler is encountered. For further details, see Chapter 6, “Exceptions” of the
PowerPC Microprocessor Family: The Programming Environments Manual.
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Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO FE1 |Mode
0 0 Floating-point exceptions disabled.
0 1 Imprecise nonrecoverable. For this setting, the 750GX operates in floating-point precise mode.
1 0 Imprecise recoverable. For this setting, the 750GX operates in floating-point precise mode.
1 1 Floating-point precise mode.

4.3.4 Enabling and Disabling Exceptions

When a condition exists that might cause an exception to be generated, it must be determined whether the
exception is enabled for that condition.

 |EEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FEO]

and MSR[FEL1] are cleared. If either bit is set, all IEEE enabled floating-point exceptions are taken and
cause a program exception.

Asynchronous, maskable exceptions (such as the external and decrementer interrupts) are enabled by
setting MSR[EE]. When MSR[EE] = 0, recognition of these exception conditions is delayed. MSR[EE] is
cleared automatically when an exception is taken, to delay recognition of conditions causing those excep-
tions.

A machine-check exception can occur only if the machine-check enable bit, MSR[ME], is set. If MSR[ME]
is cleared, the processor goes directly into checkstop state when a machine-check exception condition
occurs. Individual machine-check exceptions can be enabled and disabled through bits in the HIDO Reg-
ister, which is described in Table 4-8 on page 167.

System reset exceptions cannot be masked.

4.3.5 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled
for the exception condition), the processor does the following:

1.

SRRO is loaded with an instruction address that depends on the type of exception. Normally, this is the
instruction that would have completed next had the exception not been taken. See the individual excep-
tion description for details about how this register is used for specific exceptions.

2. SRR1[1:4, 10:15] are loaded with information specific to the exception type.

. SRR1[5:9, 16:31] are loaded with a copy of the corresponding MSR bits. Depending on the implementa-

tion, reserved bits might not be copied.

. The MSR is set as described in Section 4.3.6. The new values take effect as the first instruction of the

exception-handler routine is fetched.

. Note that MSR[IR] and MSR[DR] are cleared for all exception types. Therefore, address translation is dis-

abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine.

. Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception

type. The location is determined by adding the exception's vector (see Table 4-2 on page 152) to the
base address determined by MSR][IP]. If IP is cleared, exceptions are vectored to the physical address
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0x000n_nnnn. If IP is set, exceptions are vectored to the physical address OxFFFn_nnnn. For a machine-
check exception that occurs when MSR[ME] = 0 (machine-check exceptions are disabled), the checkstop
state is entered (the machine stops executing instructions).

4.3.6 Setting MSR[RI]

The RI bit in the MSR was designed to indicate to the exception handler whether the exception is recover-
able. When an exception occurs, the Rl bit is copied from the MSR to SRR1 and cleared in the MSR. All inter-
rupts are disabled except machine checks. If a machine-check exception occurs while MSR[RI] is clear, a
zero value is found in SRR1[RI] to indicate that the machine state is definitely not recoverable. When this bit
is a one, the exception is recoverable as far as the current state of the machine and all programs are
concerned including noncritical machine checks. An operating system might handle MSR[RI] as follows:

« In all exceptions, if SRR1[RI] is cleared, the machine state is not recoverable. If it is set, the exception is
recoverable with respect to the processor and all programs.

» Use the general-purpose SPRs (SPRGO0-SPRG3) registers to aid in saving the machine state. The follow-
ing procedure is suggested:

— Point SPRGO to a stack-saved area in memory
— Save three GPRs in SPRG1-SPRG3.

— Move SPRGO into one of the GRPs that was saved. This GPR now points to the save area in mem-
ory.

— Move the GPRs, SRRO, SRR1, SPRG1-3 and other registers to be used by the exception routine into
the stack-saved area.

— Update SPGRO to point to a new save area.

— Set MSR[RI] to indicate that machine state has been saved. Also set MSR[EE] if you want to re-
enable external interrupts.

« When exception processing is complete, clear MSR[EE] and MSR[RI]. Adjust SPRGO to point to the
stack-saved area, restore the GPRs, SRRO and SRR1, and any other register that you might have saved.
Execute rfi. This returns the processor to the interrupted program.

4.3.7 Returning from an Exception Handler
The rfi instruction performs context synchronization by allowing previously-issued instructions to complete
before returning to the interrupted process. In general, execution of the rfi instruction ensures the following:

« All previous instructions have completed to a point where they can no longer cause an exception. If a pre-
vious instruction causes a direct-store interface error exception, the results must be determined before
this instruction is executed.

» Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

e The rfi instruction copies SRR1 bits back into the MSR.
« Instructions fetched after this instruction execute in the context established by this instruction.
« Program execution resumes at the instruction indicated by SRRO

For a complete description of context synchronization, see Chapter 6, “Exceptions,” of the PowerPC Micro-
processor Family: The Programming Environments Manual.
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4.4 Process Switching

The following instructions are useful for restoring proper context during process switching:

« The Synchronization (sync) instruction orders the effects of instruction execution. All instructions previ-
ously initiated appear to have completed before the sync instruction completes, and no subsequent
instructions appear to be initiated until the sync instruction completes. For an example using sync, see
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Environ-
ments Manual.

e The Instruction Synchronization (isync) instruction waits for all previous instructions to complete and
then discards any fetched instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context (privilege, translation, and protection) established by the previous
instructions.

« The stwcx. instruction clears any outstanding reservations, ensuring that an lwarx instruction in an old
process is not paired with an stwcx. instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.6, Setting MSR[RI],.

4.5 Exception Definitions

Table 4-5 shows all the types of exceptions that can occur with the 750GX and MSR settings when the
processor goes into supervisor mode due to an exception. Depending on the exception, certain of these bits
are stored in SRR1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception (Page 1 of 2)

MSR Bit?
Exception Type

POW ILE | EE PR FP ME FEO | SE BE | FE1 | IP [ IR | DR | PM | Rl | LE

System reset 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE
Machine check 0 — 0 0 0 0 0 0 0 0 — 0 0 0 0 | ILE
DSI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE
ISI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE
External interrupt 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 | ILE
Alignment 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 ILE
Program 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE
Floating-point unavailable 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 | ILE
Decrementer interrupt 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 | ILE
System call 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 ILE
Trace exception 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 | ILE
Note:

1. A zero indicates that the bit is cleared.

2. The ILE bit is copied from the MSRJ[ILE].

3. Adash indicates that the bit is not altered.

4. Reserved bits are read as if written as 0.
Exceptions gx_04.fm.(1.2)
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Table 4-5. MSR Setting Due to Exception (Page 2 of 2)

MSR Bit?
Exception Type
POW ILE | EE PR FP ME FEO | SE BE | FE1 | IP | IR | DR | PM | RI LE

System management 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 | ILE
Performance monitor 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 | ILE
Thermal management 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 0 | ILE
Note:

1. A zero indicates that the bit is cleared.

2. The ILE bit is copied from the MSRJ[ILE].
3. A dash indicates that the bit is not altered.
4. Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the bit is cleared,
exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn is the vector offset). If IP is set,
exceptions are vectored to physical address OxFFFn_nnnn. Table 4-2 on page 152 shows the exception
vector offset of the first instruction of the exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 750GX implements the system reset exception as defined in the PowerPC Architecture (OEA). The
system reset exception is a nonmaskable, asynchronous exception signaled to the processor through the
assertion of system-defined signals. In the 750GX, the exception is signaled by the assertion of either the soft
reset (SRESET) or hard reset (HRESET) inputs, described more fully in Chapter 7, Signal Descriptions, on
page 249

The 750GX implements HIDO[NHR], which helps software distinguish a hard reset from a soft reset. Because
this bit is cleared by a hard reset, but not by a soft reset, software can set this bit after a hard reset and tell
whether a subsequent reset is a hard or soft reset by examining whether this bit is still set.

The first bus operation following the negation of HRESET or the assertion of SRESET will be a single-beat
instruction fetch (caching will be inhibited) to x00100.

Table 4-6 lists register settings when a system reset exception is taken.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

Set to the effective address of the instruction that the processor would have attempted to execute next if no exception

SRRO o
conditions were present.

0 Loaded with equivalent MSR bits
1:4 Cleared
5:9 Loaded with equivalent MSR bits
SRR1 10:15 Cleared
16:31 Loaded with equivalent MSR bits
Note: If the processor state is corrupted to the extent that execution cannot resume reliably, MSR[RI] (SRR1[30]) is

cleared.
POW 0 FP 0 BE 0 DR 0
ILE  — ME = — FEL 0 PM 0
MSR
EE 0 FEO 0 P _ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE
gx_04.fm.(1.2) Exceptions
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4.5.1.1 Soft Reset

If SRESET is asserted, the processor is first put in a recoverable state. To do this, the 750GX allows any
instruction at the point of completion to either complete or take an exception, blocks completion of any subse-
guent instructions, and allows the completion queue to drain. The state before the exception occurred is then
saved as specified in the PowerPC Architecture, and instruction fetching begins at the system reset interrupt
vector offset, 0x00100. The vector address on a soft reset depends on the setting of MSR][IP] (either
0x0000_0100 or OXxFFFO_0100). Soft resets are third in priority, after hard resets and machine checks. This
exception is recoverable provided attaining a recoverable state does not generate a machine check.

SRESET is an effectively edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width specified in the PowerPC 750GX RISC Microprocessor Datasheet is met.
Asserting SRESET causes the 750GX to take a system reset exception. This exception modifies the MSR,
SRRO0, and SRR1, as described in the PowerPC Microprocessor Family: The Programming Environments
Manual. Unlike a hard reset, a soft reset does not directly affect the states of output signals. Attempts to use
SRESET during a hard reset sequence or while the Joint Test Action Group (JTAG) logic is non-idle cause
unpredictable results (see Section 7.2.10.2, Soft Reset (SRESET)—Input, on page 272 for more information).

SRESET can be asserted during HRESET assertion (see Figure 4-1). In all three cases shown in Table 4-1,
the SRESET assertion and deassertion have no effect on the operation or state of the machine. SRESET
asserted coincident to, or after the assertion of, HRESET will also have no effect on the operation or state of
the machine.

Figure 4-1. SRESET Asserted During HRESET

HRESET oK
SRESET

HRESET 2 ___ . oK
SRESET

HRESET . oK
SRESET 7

4.5.1.2 Hard Reset

A hard reset is initiated by asserting HRESET. A hard reset is used primarily for power-on reset (POR) (in
which case test reset (TRST) must also be asserted), but it can also be used to restart a running processor.
The HRESET signal must be asserted during power up and must remain asserted for a period that allows the
phase-locked loop (PLL) to achieve lock and the internal logic to be reset. This period is specified in the
PowerPC 750GX RISC Microprocessor Datasheet. The 750GX tristates all /0 drivers within five clocks of
HRESET assertion. If HRESET is asserted for less than this amount of time, the results are not predictable.

The 750GX’s internal state after the hard reset interval is defined in Table 4-7. If HRESET is asserted during
normal operation, all operations cease, and the machine state is lost (see Section 7.2.10.1, Hard Reset
(HRESET)—Input, on page 272 for more information on a hard reset).
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The hard reset exception is a nonrecoverable, nonmaskable, asynchronous exception. When HRESET is
asserted or at power-on reset (POR), the 750G X immediately branches to OxFFFO_0100 without attempting
to reach a recoverable state. A hard reset has the highest priority of any exception. It is always nonrecover-
able.

Table 4-7 on page 166 shows the state of the machine just before it fetches the first instruction of the system
reset handler after a hard reset. In Table 4-7, the term “Unknown” means that the content might have been
disordered. In particular, the Floating Point Registers (FPRs), BATs, and TLBs might have been disordered.
These facilities must be properly initialized before use. To initialize the BATS, first set them all to zero, then to
the correct values before any address translation occurs. FPR registers should also be initialized before
processing continues.
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Table 4-7. Settings Caused by Hard Reset

Register Setting
: - MMCRn 00000000
Register Setting
MSR 00000040 (only IP set)
BATs Unknown
: : PMCn Unknown
Cache, instruction All blocks are unchanged from before
cache, and data Toecaes 9 PVR See the PowerPC 750GX Datasheet
cache HRESET.
Reservation Unknown (reservation flag
CR All zeros Address -cleared)
CTR 00000000 SDR1 00000000
Breakpoint is disabled. SPRGs 00000000
DABR .
Address is unknown.
SRRO 00000000
DAR 00000000
SRR1 00000000
DEC FFFFFFFF
SRs Unknown
DSISR 00000000

Tag directory,
FPRs Unknown instruction cache,
and data cache

All entries are marked invalid, all LRU bits
are set to zero, and caches are disabled.

FPSCR 00000000
TBL 00000000

GPRs Unknown
TBU 00000000

HIDO 00000000
THRMn 00000000

HID1 00000000
o TLBs Unknown

IABR All zeros (break point disabled)

UMMCRnN 00000000

ICTC 00000000
UPMCn 00000000

L2CR 00000000
USIA 00000000

LR 00000000
XER 00000000
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The following is also true after a hard reset operation;

« External checkstops are enabled.

» The on-chip test interface has given control of the 1/0s to the rest of the chip for functional use.

» Since the reset exception has data and instruction translation disabled (MSR[DR] and MSR[IR] both
cleared), the chip operates in direct address-translation mode (referred to as the real-addressing mode in

the architecture specification).

+ Time from HRESET deassertion until the 750GX asserts the first transfer start (ﬁ) (bus parked on the
750GX) or BG is 8 to 12 bus clocks (SYSCLK).

4.5.2 Machine-Check Exception (0x00200)

The 750GX implements the machine-check exception as defined in the PowerPC Architecture (OEA). It
conditionally initiates a machine-check exception after an address or data-parity error occurred on the bus or
in either the L1 or L2 cache, after receiving a qualified transfer error acknowledge (TEA) indication on the
750GX bus, or after the machine-check interrupt (MCP) signal had been asserted. As defined in the OEA, the
exception is not taken if MSR[ME] is cleared, in which case the processor enters the checkstop state.

Certain machine-check conditions can be enabled and disabled using HIDO bits, as described in Table 4-8.

Table 4-8. HIDO Machine-Check Enable Bits

Bits Field Name
0 EMCP
1 DBP
2 EBA
3 EBD
15 NHR

gx_04.fm.(1.2)
March 27, 2006

Description

Enable MCP. The primary purpose of this bit is to mask out further machine-check excep-
tions caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine-check exception or a
checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine-check excep-

tion if MSR[ME] = 1.

Disable 60x bus address-parity and data-parity generation.
0 Parity generation is enabled.

1 Disable parity generation. If the system does not use address or data parity and
the respective parity checking is disabled (HIDO[EBA] or HIDO[EBD] = 0), input
receivers for those signals are disabled, do not require pull-up resistors, and
therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

Enable/disable 60x bus address-parity checking.
0 Prevents address-parity checking.

1 Allows an address-parity error to cause a checkstop if MSR[ME] =0 or a
machine-check exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not gener-
ate parity.

Enable 60x bus data-parity checking.

0 Parity checking is disabled.

1 Allows a data-parity error to cause a checkstop if MSR[ME] = 0 or a machine-
check exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not gener-
ate parity.

Not hard reset (software use only)

0 A hard reset occurred if software previously set this bit

1 A hard reset has not occurred.
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@ indication on the bus can result from any load or store operation initiated by the processor. In general,
TEA is expected to be used by a memory controller to indicate that a memory parity error or an uncorrectable
memory ECC error has occurred. Note that the resulting machine-check exception is imprecise and unor-
dered with respect to the instruction that originated the bus operation.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and handled; otherwise, the
processor generates an internal checkstop condition. When the exception is recognized, all incomplete stores
are discarded. The bus protocol operates normally.

A machine-check exception might result from referencing a nonexistent physical address, either directly (with
MSR[DR] = 0) or through an invalid translation. If a dcbz instruction introduces a block into the cache associ-
ated with a nonexistent physical address, a machine-check exception can be delayed until an attempt is
made to store that block to main memory. Not all PowerPC processors provide the same level of error
checking. Checkstop sources are implementation-dependent.

Machine-check exceptions are enabled when MSR[ME] = 1; this is described in the next section. If MSR[ME]
=0 and a machine check occurs, the processor enters the checkstop state. The checkstop state is described
in Section 4.5.2.2, Checkstop State (MSR[ME] = 0), on page 169.

4.5.2.1 Machine-Check Exception Enabled (MSR[ME] = 1)

Machine-check exceptions are enabled when MSR[ME] = 1. When a machine-check exception is taken,
registers are updated as shown in Table 4-9.

Table 4-9. Machine-Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis, the 750GX can set this to an EA of some instruction that was executing or about to be exe-
cuting when the machine-check condition occurred.
0:10 Cleared.
11 Set when an L2 data-cache ECC double-bit error is detected; otherwise, zero.
12 Set when an MCP signal is asserted; otherwise, zero.

SRR1 13 Set when a TEA signal is asserted; otherwise, zero.
14 Set when a data-bus parity error is detected; otherwise, zero.
15 Set when an address-bus parity error is detected; otherwise, zero.
16:31 MSR[16-31].
POW 0 FP 0 BE 0 DR 0
ILE — ME 0 FE1 0 PM 0

MSR
EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

Note: To handle another machine-check exception, the exception handler should set MSR[ME] as soon as it is practical after a
machine-check exception is taken. Otherwise, subsequent machine-check exceptions cause the processor to enter the checkstop state.

The machine-check exception is usually unrecoverable in the sense that execution cannot resume in the
context that existed before the exception (see Section 4.3.6, Setting MSR[RI],). If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to allow the processor to
continue execution at the machine-check exception vector address and prevent the processor from entering
checkstop state if another machine check occurs. Typically, earlier processes cannot resume. However,
operating systems can use the machine-check exception handler to try to identify and log the cause of the
machine-check condition.
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When a machine-check exception is taken, instruction fetching resumes at offset 0x00200 from the physical
base address indicated by MSR[IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)

If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. The 750GX
processor can also be forced into the checkstop state by the assertion of checkstop input (CKSTP_IN), the
primary input signal.

When a processor is in checkstop state, instruction processing is suspended and generally cannot resume
without the processor being reset. The contents of all latches are frozen within two cycles upon entering
checkstop state.

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher-priority exception exists and an error condition related to a data
memory access occurs. The DSI exception is implemented as it is defined in the PowerPC Architecture
(OEA). In case of a TLB miss for a load, store, or cache operation, a DSI exception is taken if the resulting
hardware table search causes a page fault.

On the 750GX, a DSI exception is taken when a load or store is attempted to a direct-store segment
(SR[T] = 1). In the 750GX, a floating-point load or store to a direct-store segment causes a DSI exception
rather than an alignment exception, as specified by the PowerPC Architecture.

The 750GX also implements the data address breakpoint facility, which is defined as optional in the PowerPC
Architecture and is supported by the optional Data Address Breakpoint Register (DABR). Although the archi-
tecture does not strictly prescribe how this facility must be implemented, the 750GX follows the recommenda-
tions provided by the architecture and described in the Chapter 2, “Programming Model” and Chapter 6,
“Exceptions” in the PowerPC Microprocessor Family: The Programming Environments Manual.

4.5.4 1S| Exception (0x00400)

An ISI exception occurs when no higher-priority exception exists and an attempt to fetch the next instruction
fails. This exception is implemented as it is defined by the PowerPC Architecture (OEA), and is taken for the
following conditions:

» The effective address cannot be translated.

The fetch access is to a no-execute segment (SR[N] = 1).
The fetch access is to guarded storage and MSR[IR] = 1.
The fetch access is to a segment for which SR[T] is set.
The fetch access violates memory protection.

When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from the physical base
address indicated by MSR][IP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt signal (WT_).The
INT signal is expected to remain asserted until the 750GX takes the external interrupt exception. If INT is
negated early, recognition of the interrupt request is not guaranteed. After the 750GX begins execution of the
external interrupt handler, the system can safely negate the INT. When the 750GX detects assertion of INT, it
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stops dispatching and waits for all pending instructions to complete. This allows any instructions in progress
that need to take an exception to do so before the external interrupt is taken. After all instructions have
vacated the completion buffer, the 750GX takes the external interrupt exception as defined in the PowerPC
Architecture (OEA).

An external interrupt might be delayed by other higher-priority exceptions or if MSR[EE] is cleared when the
exception occurs. Register settings for this exception are described in Chapter 6, “Exceptions” in the
PowerPC Microprocessor Family: The Programming Environments Manual.

When an external interrupt exception is taken, instruction fetching resumes at offset 0x00500 from the phys-
ical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)

The 750GX implements the alignment exception as defined by the PowerPC Architecture (OEA). An align-
ment exception is initiated when any of the following occurs:

* The operand of a floating-point load or store is not word-aligned.

e The operand of Imw, stmw, lwarx, or stwcx. is not word-aligned.

e The operand of dchz is in a page which is write-through or caching-inhibited.
* An attempt is made to execute dcbz when the data cache is disabled.

* An eciwx or ecowx is not word-aligned.

« A multiple or string access is attempted with MSR[LE] set.

Note: In the 750GX, a floating-point load or store to a direct-store segment causes a DSI exception rather
than an alignment exception, as specified by the PowerPC Architecture. For more information, see
Section 4.5.3, DSI Exception (0x00300), on page 169.

4.5.7 Program Exception (0x00700)

The 750GX implements the program exception as it is defined by the PowerPC Architecture (OEA). A
program exception occurs when no higher-priority exception exists and one or more of the exception condi-
tions defined in the OEA occur.

The 750GX invokes the system illegal instruction program exception when it detects any instruction from the
illegal instruction class. The 750GX fully decodes the Special Purpose Register (SPR) field of the instruction.
If an undefined SPR is specified, a program exception is taken.

The UISA defines mtspr and mfspr with the record bit (Rc) set as causing a program exception or giving a
boundedly-undefined result (see Section 2.3.1.1, Definition of Boundedly Undefined, on page 87 for more
information). In the 750GX, the appropriate Condition Register (CR) should be treated as undefined. Like-
wise, the PowerPC Architecture states that the Floating Compared Unordered (fcmpu) or Floating Compared
Ordered (fcmpo) instruction with the record bit set can either cause a program exception or provide a
boundedly-undefined result. In the 750GX, the condition register field destination (the BF field) in an instruc-
tion encoding for these cases is considered undefined.

The 750GX does not support either of the two floating-point imprecise modes defined by the PowerPC Archi-
tecture. Unless exceptions are disabled (MSR[FEO] = MSR[FE1] = 0), all floating-point exceptions are treated
as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700 from the physical base
address indicated by MSR][IP]. Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The
Programming Environments Manual describes register settings for this exception.
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4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC Architecture. A floating-
point unavailable exception occurs when no higher-priority exception exists, an attempt is made to execute a
floating-point instruction (including floating-point load, store, or move instructions), and the floating-point
available bit in the MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction fetching resumes at offset 0x00800 from the
physical base address indicated by MSR][IP].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the 750GX as it is defined by the PowerPC Architecture. The
decrementer exception occurs when no higher-priority exception exists, a decrementer exception condition
occurs (for example, the Decrementer Register has completed decrementing), and MSR[EE] = 1. In the
750GX, the Decrementer Register is decremented at one fourth the bus clock rate. Register settings for this
exception are described in Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The Program-
ming Environments Manual.

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900 from the physical
base address indicated by MSR[IP].
4.5.10 System Call Exception (0x00CO00)

A system-call exception occurs when a System Call (sc) instruction is executed. In the 750GX, the system
call exception is implemented as it is defined in the PowerPC Architecture. Register settings for this exception
are described in Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The Programming Environ-
ments Manual.

When a system call exception is taken, instruction fetching resumes at offset 0x0O0CO0O0 from the physical base
address indicated by MSR]IP].
4.5.11 Trace Exception (0x00D00)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently completing instruction is a
branch. Each instruction considered during trace mode completes before a trace exception is taken.

Implementation Note: The 750GX processor diverges from the PowerPC Architecture in that it does not
take trace exceptions on the isync instruction.

When a trace exception is taken, instruction fetching resumes at offset 0x00D0O0 from the base address indi-
cated by MSR[IP].
4.5.12 Floating-Point Assist Exception (OxO0EQO)

The optional floating-point assist exception defined by the PowerPC Architecture is not implemented in the
750GX.
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4.5.13 Performance-Monitor Interrupt (OxO0F00)

The 750GX microprocessor provides a performance-monitor facility to monitor and count predefined events
such as processor clocks, misses in either the instruction cache or the data cache, instructions dispatched to
a particular execution unit, mispredicted branches, and other occurrences. The count of such events can be
used to trigger the performance-monitor exception. The performance-monitor facility is not defined by the
PowerPC Architecture.

The performance monitor can be used for the following situations:

« To increase system performance with efficient software, especially in a multiprocessing system. Memory
hierarchy behavior must be monitored and studied to develop algorithms that schedule tasks (and per-
haps partition them) and that structure and distribute data optimally.

» To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs.

» The Performance-Monitor Counter Registers (PMC1-PMC4) are used to record the number of times a
certain event has occurred. UPMC1-UPMC4 provide user-level read access to these registers.

e The Monitor Mode Control Registers (MMCRO-MMCR1) are used to enable various performance-moni-
tor interrupt functions. UMMCRO-UMMCR1 provide user-level read access to these registers.

e The Sampled Instruction Address Register (SIA) contains the effective address of an instruction execut-
ing at or around the time that the processor signals the performance-monitor interrupt condition. The
USIA register provides user-level read access to the SIA.

Table 4-10 lists register settings when a performance-monitor interrupt exception is taken.

Table 4-10. Performance-Monitor Interrupt Exception—Register Settings

Register Setting Description

Set to the effective address of the instruction that the processor would have attempted to execute next if no exception

SRRO o
conditions were present.

0 Loaded with equivalent MSR bits.
1:4 Cleared.

SRR1 5:9 Loaded with equivalent MSR bits.
10:15 Cleared.
16:31 Loaded with equivalent MSR bits.

POW 0 FP 0 BE

0 DR 0
ILE — ME — FE1 0 PM 0
MSR
EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

As with other PowerPC exceptions, the performance-monitor interrupt follows the normal PowerPC exception
model with a defined exception vector offset (0xOOF00). The priority of the performance-monitor interrupt lies
between the external interrupt and the decrementer interrupt (see Table 4-3 on page 155). The contents of
the SIA are described in Sampled Instruction Address Register (SIA) on page 75. The performance monitor is
described in Chapter 11, Performance Monitor and System Related Features, on page 349.
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4.5.14 Instruction Address Breakpoint Exception (0x01300)

An instruction address breakpoint interrupt occurs when the following conditions are met:

« The instruction breakpoint address IABR[0:29] matches EA[0:29] of the next instruction to complete in
program order. The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked.

» The translation enable bit (IABR[TE]) matches MSR[IR].

* The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to the JTAG/common on-
chip processor (COP) block, which can subsequently generate a soft or hard reset. The instruction
tagged with the match does not complete before the breakpoint exception is taken.

See Section 2.1.2.1, Instruction Address Breakpoint Register (IABR), on page 64 for the format of the IABR.

Table 4-11 lists register settings when an instruction address breakpoint exception is taken.

Table 4-11. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present.
0 Loaded with equivalent MSR bits.
1:4 Cleared.
SRR1 5:9 Loaded with equivalent MSR bits.

10:15 Cleared.
16:31 Loaded with equivalent MSR bits.

POW 0 FP 0 BE

0 DR 0
ILE — ME — FE1 0 PM 0
MSR
EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

The 750GX requires that an mtspr to the IABR be followed by a context-synchronizing instruction. The
750GX cannot generate a breakpoint response for that context-synchronizing instruction if the breakpoint is
enabled by the mtspr instruction to the IABR immediately preceding it. The 750GX also cannot block a
breakpoint response on the context-synchronizing instruction if the breakpoint was disabled by the mtspr
instruction to the IABR immediately preceding it.

When an instruction address breakpoint exception is taken, instruction fetching resumes at offset 0x01300
from the base address indicated by MSR[IP].
4.5.15 System Management Interrupt (0x01400)

The 750GX implements a system management interrupt exception, which is not defined by the PowerPC
Architecture. The system management exception is very similar to the external interrupt exception and is
particularly useful in implementing the nap mode. It has priority over an external interrupt (see Table 4-3 on
page 155), and it uses a different vector in the exception table (offset 0x01400).

Table 4-12 lists register settings when a system management interrupt exception is taken.
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Table 4-12. System Management Interrupt Exception—Register Settings

Register Setting Description

Set to the effective address of the instruction that the processor would have attempted to execute next if no exception

SRRO o
conditions were present.

0 Loaded with equivalent MSR bits.
1:4 Cleared.

SRR1 5:9 Loaded with equivalent MSR bits.
10:15 Cleared.
16:31 Loaded with equivalent MSR bits.

POW O FP 0 BE 0 DR 0
ILe  — ME = — FEL 0 PM 0
MSR
EE 0 FEO 0 P _ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

Like the external interrupt, a system management interrupt is signaled to the 750GX by the assertion of an
input signal. The system management interrupt signal (SMI) is expected to remain asserted until the interrupt
is taken. If SMI is negated early, recognition of the interrupt request is not guaranteed. After the 750GX
begins execution of the system management interrupt handler, the system can safely negate SMI. After the
assertion of SMI is detected, the 750GX stops dispatching instructions and waits for all pending instructions
to complete. This allows any instructions in progress that need to take an exception to do so before the
system management interrupt is taken.

When a system management interrupt exception is taken, instruction fetching resumes at offset 0x01400
from the base address indicated by MSR[IP].

4.5.16 Thermal-Management Interrupt Exception (0x01700)

A thermal-management interrupt is generated when the junction temperature crosses a threshold
programmed in either THRM1 or THRM2. The exception is enabled by the thermal-management interrupt
enable (TIE) bit of either THRM1 or THRM2, and can be masked by setting MSR[EE].

Table 4-13 lists register settings when a thermal-management interrupt exception is taken.

Table 4-13. Thermal-Management Interrupt Exception—Register Settings

Register Setting Description

Set to the effective address of the instruction that the processor would have attempted to execute next if no exception

SRRO o
conditions were present.

0 Loaded with equivalent MSR bits
1:4 Cleared

SRR1 5:9 Loaded with equivalent MSR bits
10:15 Cleared
16:31 Loaded with equivalent MSR bits

POW 0 FP 0 BE 0 DR 0
ILE  — ME = — FEL 0 PM 0
MSR
EE 0 FEO O P _ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE
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The thermal-management interrupt is similar to the system management and external interrupt. The 750G X
requires the next instruction in program order to complete or take an exception, blocks completion of any
following instructions, and allows the completed store queue to drain. Any exceptions encountered in this
process are taken first, and the thermal-management interrupt exception is delayed until a recoverable halt is
achieved, at which point the 750GX saves the machine state, as shown in Table 4-13. When a thermal-
management interrupt exception is taken, instruction fetching resumes at offset 0x01700 from the base
address indicated by MSR][IP].

Chapter 10, Power and Thermal Management, on page 335 gives the details about thermal management.

4.5.17 Data Address Breakpoint Exception

The Data Address Breakpoint Register (DABR) is a Special Purpose Register that can cause a data-storage
exception (DSI). When enabled, data addresses are compared with an effective address that is stored in the
DABR (bits 0:28). The granularity of these compares is a double-word. Bit 29 is the translation enable bit and
is compared with the MSR[DR] bit. Bit 30 is a store enable. Bit 31 is a load enable. The DABR is enabled by
setting either the data store enable (DW) or data read enabled (DR) bit. The format of the DABR register is
shown in Section 4.5.17.1 on page 175.

4.5.17.1 Data Address Breakpoint Register (DABR)

For a full description of this register, see the PowerPC Microprocessor Family: The Programming Environ-
ments Manual.

DAB BT DW DR

vl

(001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28[29[30[31]

Bits Field Name Description
0:28 DAB Double-word address to be compared.

29 BT Translation enabled.

30 DW Data store enabled.

31 DR Data read enabled.

4.5.18 Soft Stops

Both trace and breakpoint exception conditions will generate a soft stop instead of an exception if soft stop
has been enabled by the JTAG/COP logic. If trace and instruction breakpoint conditions occur simulta-
neously, instruction breakpoint takes priority over trace in both the exception and soft stop enabled cases.

A soft stop can also be generated with a request from the COP. This request is treated like an external excep-
tion, except that it is nonmaskable and generates a soft stop instead of an exception.

If soft stop is enabled, only one soft stop will be generated before completion of an instruction with an IABR
match. This holds true if a soft stop is generated before that instruction for any other reason, such as trace
mode on for the preceding instruction or a COP soft stop request.
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4.5.19 Exception Latencies

Latencies for taking various exceptions are variable based on the state of the machine when conditions to
produce an exception occur. The shortest latency possible is one cycle. In this case, an exception is signaled
in the cycle following the appearance of the conditions that generated that exception. In most cases, a hard
reset or machine check has a single-cycle latency to exception. The only situation that can prevent this is
when a speculative instruction is the next to complete. This case, which produces an extra 2-cycle minimum,
3-cycle maximum delay, only occurs if the branch guess that forced this instruction to be speculative was
resolved to be incorrect.

Another latency variable is introduced for a soft reset exception—recoverability. The time to reach a recover-
able state can depend on the time needed to complete or to cause an exception to an instruction at the point
of completion, the time needed to drain the completed store queue, or the time waiting for a correct empty
state so that a valid exception prefix (IP) can be saved. For other externally-generated exceptions, a further
delay might be incurred waiting for another exception, generated while reaching a recoverable state, to be
serviced.

Further delays are possible for other types of exceptions depending on the number and type of instructions
that must be completed before that exception can be serviced. See Section 4.5.20, Summary of Front-End
Exception Handling, to determine possible maximum latencies for different exceptions.

4.5.20 Summary of Front-End Exception Handling

Table 4-14 describes how the 750G X handles exceptions up to the point of signaling the appropriate excep-
tion to occur. Note that a recoverable state is reached in the 750GX if the completed store queue is empty
(drained, not canceled), and the instruction that is next in the program order has been signaled to complete
and has completed. If MSR[RI] = 0, the 750GX is in a nonrecoverable state by default. Also, completion of an
instruction is defined as performing all architectural register writes associated with that instruction, and then
removing that instruction from the completion buffer queue.

Table 4-14. Front-End Exception Handling Summary (Page 1 of 2)

Exception Type Specific Exception Description

Has highest priority and is taken immediately regardless of
System Reset for HRESET other pending exceptions or recoverability. A honspeculative
address is guaranteed.

Asynchronous Nonmaskable
Nonrecoverable

Takes priority over any other pending exception except system
Machine Check reset for HRESET or POR. Taken immediately, regardless of
recoverability. A nonspeculative address is guaranteed.

Asynchronous Maskable
Nonrecoverable

Takes priority over any other pending exception except system
System Reset for SRESET reset for HRESET or POR or machine check. Taken immedi-
ately when a recoverable state is reached.

Asynchronous Nonmaskable
Recoverable

Before handling this type of exception, the next instruction in
program order must complete or cause an exception. If this
action causes another type of exception, that exception is
taken and the asynchronous maskable recoverable (AMR)
exception remains pending. Once an instruction is able to com-
plete without causing an exception, while the AMR exception is
enabled, further instruction completion is halted. The AMR
exception is then taken once a recoverable state is reached.

Asynchronous Maskable

Recoverable SMI, El, DEC
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Table 4-14. Front-End Exception Handling Summary (Page 2 of 2)

Exception Type Specific Exception Description

Once this type of exception is detected, dispatch is halted and
the current instruction stream is allowed to drain out of the
machine. If completing any of the instructions in this stream

Instruction Fetch ISI causes an exception, that exception is taken and the instruc-
tion fetch exception is forgotten. Otherwise, once the machine
is empty and a recoverable state is reached, the instruction
fetch exception is taken.

This type of exception is determined at dispatch or execution of
an instruction. The exception remains pending until all instruc-
tions in program order before the exception-causing instruction
Program, DSI, Alignment, FPA, |are completed. The exception is then taken without completing
SC, IABR, DABR the exception-causing instruction. If any other exception condi-
tion is created in completing these previous instructions in the
machine, that exception takes priority over the pending Instruc-
tion Dispatch/Execution exception, which is then forgotten.

Instruction Dispatch/Execution

This type of exception is generated following execution and
completion of an instruction while a trace mode is enabled. If
Post Instruction Execution Trace executing the instruction produces conditions for another type
of exception, that exception is taken and the Post Instruction
Execution exception is forgotten for that instruction.

4.5.21 Timer Facilities

At power-on reset (POR), the 750GX initializes the Time Base and Decrementer Registers to the following
values:

« Time Base Upper Register (TBU) = 0x00000000
« Time Base Lower Register (TBL) = 0x00000000
» Decrementer Register (DEC) = OXFFFFFFFF

4.5.22 External Access Instructions

The 750GX implements the eciwx and ecowx instructions. Executing these instructions while MSR[DR] = 0
is considered a programming error, and the physical address on the bus is undefined. Executing these
instructions to a direct-store (T = 1) segment causes a data-storage exception (DSI).

The 750GX implements the External Access Register (EAR) to support the external access instructions. Bit 0
implements the Enable bit. Bits 1 to 25 are reserved. Bits 26 and 27 are not implemented and are reserved.
Bits 28 to 31 are the implemented bits of the Resource ID (RID).
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5. Memory Management

This chapter describes the 750GX microprocessor’s implementation of the memory management unit (MMU)
specifications provided by the operating environment architecture (OEA) for PowerPC processors. The
primary function of the MMU in a PowerPC processor is the translation of logical (effective) addresses to
physical addresses (referred to as real addresses in the architecture specification) for memory accesses and
I/O accesses (I/O accesses are assumed to be memory-mapped). In addition, the MMU provides access
protection on a segment, block, or page basis. This chapter describes the specific hardware used to imple-
ment the MMU model of the OEA in the 750GX. See Chapter 7, “Memory Management,” in the PowerPC
Microprocessor Family: The Programming Environments Manual for a complete description of the conceptual
model. Note that the 750G X does not implement the optional direct-store facility, and it is not likely to be
supported in future devices.

Two general types of memory accesses generated by PowerPC processors require address translation—
instruction accesses and data accesses generated by load-and-store instructions. Generally, the address-
translation mechanism is defined in terms of the segment descriptors and page tables that PowerPC proces-
sors use to locate the effective-to-physical address mapping for memory accesses. The segment information
translates the effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-chip segment
registers on 32-bit implementations (such as the 750GX). In addition, two translation lookaside buffers (TLBs)
are implemented on the 750GX to keep recently-used page-address translations on-chip. Although the
PowerPC OEA describes one MMU (conceptually), the 750GX hardware maintains separate TLBs and table-
search resources for instruction and data accesses that can be performed independently (and simulta-
neously). Therefore, the 750GX is described as having two MMUSs, one for instruction accesses (IMMU) and
one for data accesses (DMMU).

The block-address translation (BAT) mechanism is a software-controlled array that stores the available block-
address translations on-chip. BAT array entries are implemented as pairs of BAT registers that are accessible
as supervisor special-purpose registers (SPRs). There are separate instruction and data BAT mechanisms,.

In the 750GX, they reside in the instruction and data MMUs, respectively.

The MMUSs, together with the exception processing mechanism, provide the necessary support for the oper-
ating system to implement a virtual memory environment and for enforcing protection of designated memory
areas.

Exception processing is described in Chapter 4, Exceptions, on page 151. Specifically, Section 4.3, Excep-
tion Processing, on page 156 describes the Machine State Register (MSR), which controls some of the crit-
ical functionality of the MMUSs.

5.1 MMU Overview

The 750GX implements the memory-management specification of the PowerPC OEA for 32-bit implementa-
tions. Thus, it provides four gigabytes of effective address space accessible to supervisor and user programs,
with a 4-KB page size and 256-MB segment size. In addition, the MMUs of 32-bit PowerPC processors use
an interim virtual address (52 bits) and hashed page tables in the generation of 32-bit physical addresses.
PowerPC processors also have a BAT mechanism for mapping large blocks of memory. Block sizes range
from 128 KB to 256 MB and are software-programmable.
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Basic features of the 750GX MMU implementation defined by the OEA are as follows:

« Support for real-addressing mode—Effective-to-physical address translation can be disabled separately

for data and instruction accesses.

Block-address translation—Each of the BAT array entries (eight IBAT entries and eight DBAT entries)
provides a mechanism for translating blocks as large as 256 MB from the 32-bit effective address space
into the physical memory space. This can be used for translating large address ranges whose mappings
do not change frequently.

Segmented address translation—The 32-bit effective address is extended to a 52-bit virtual address by
substituting 24 bits of upper address bits from the segment register, for the 4 upper bits of the effective
address (EA), which are used as an index into the segment register file. This 52-bit virtual address space
is divided into 4-KB pages, each of which can be mapped to a physical page.

The 750GX also provides the following features that are not required by the PowerPC Architecture:

« Separate translation lookaside buffers (TLBs)—The 128-entry, 2-way set-associative instruction TLBs
(ITLBs) and data TLBs (DTLBSs) keep recently-used page-address translations on-chip.

Table-search operations performed in hardware—The 52-bit virtual address is formed and the MMU
attempts to fetch the page table entry (PTE), which contains the physical address, from the appropriate
TLB on-chip. If the translation is not found in a TLB (that is, a TLB miss occurs), the hardware performs a
table-search operation (using a hashing function) to search for the PTE.

TLB invalidation— The 750GX implements the optional TLB Invalidate Entry (tlbie) and TLB Synchronize
(tlbsync) instructions, which can be used to invalidate TLB entries. For more information on the tIbie and

tlbsync instructions, see Section 5.4.3.2, TLB Invalidation, on page 201.

Figure 5-1 summarizes the 750GX MMU features, including those defined by the PowerPC Architecture
(OEA) for 32-hit processors and those specific to the 750GX.

Table 5-1. MMU Feature Summary (Page 1 of 2)

Architecturally Defined/

Feature Category 750G X-Specific

Feature

2%2 pytes of effective address
Address ranges Architecturally defined 252 bytes of virtual address
232 pytes of physical address
Page size Architecturally defined 4 KB
Segment size Architecturally defined 256 MB
Range of 128 KB-256 MB sizes
Block-address translation Architecturally defined
Implemented with IBAT and DBAT registers in BAT array
Segments selectable as no-execute
Memory protection Architecturally defined Pages selectable as user/supervisor and read-only or guarded
Blocks selectable as user/supervisor and read-only or guarded
Page history Architecturally defined Referenced and changed bits defined and maintained
Translations stored as PTEs in hashed page tables in memory
Page-address translation Architecturally defined
Page table size determined by mask in SDR1 register
Memory Management gx_05.fm.(1.2)
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Table 5-1. MMU Feature Summary (Page 2 of 2)

Architecturally Defined/

750GX-Specific Feature

Feature Category

Architecturally defined Instructions for maintaining TLBs (tlbie and tilbsync instructions in the

750GX)
TLBs 128-entry, 2-way set-associative ITLB
750GX-specific 128-entry, 2-way set-associative DTLB
Least recently used (LRU) replacement algorithm
Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies maintained)
Page table-search support | 750GX-specific The 750GX performs the table-search operation in hardware.

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next instruction. The effective
address is translated to a physical address according to the procedures described in Chapter 7, “Memory
Management” in the PowerPC Microprocessor Family: The Programming Environments Manual, augmented
with information in this section. The memory subsystem uses the physical address for the access.

For a discussion of effective address calculation, see Section 2.3.2.3 on page 90.

5.1.2 MMU Organization

Figure 5-1, MMU Conceptual Block Diagram, on page 183 shows the conceptual organization of a PowerPC
MMU in a 32-bit implementation. However, it does not describe the specific hardware used to implement the
memory-management function for a particular processor. Processors might optionally implement on-chip
TLBs, hardware support for the automatic search of the page tables for PTEs, and other hardware features
(invisible to the system software) that are not shown.

The 750GX maintains two on-chip TLBs with the following characteristics:

» 128 entries, 2-way set associative (64 x 2), LRU replacement

» Data TLB supports the DMMU; instruction TLB supports the IMMU

e Hardware TLB update

« Hardware update of referenced (R) and changed (C) bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of a translation table-
search operation.

Figure 5-2, PowerPC 750GX Microprocessor IMMU Block Diagram, on page 184 and Figure 5-3, 750G X
Microprocessor DMMU Block Diagram, on page 185 show the conceptual organization of the 750GX’s
instruction and data MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by the
processor for sequential instruction fetches and addresses that correspond to a change of program flow. The
data addresses shown in Figure 5-3 are generated by load, store, and cache instructions.

As shown in the figures, after an address is generated, the high-order bits of the effective address, EA[0-19]
(or a smaller set of address bits, EA[0—n], in the cases of blocks), are translated into physical address bits

PA[0-19]. The low-order address bits, A[20-31], are untranslated and are therefore identical for both effective
and physical addresses. After translating the address, the MMUs pass the resulting 32-bit physical address to
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the memory subsystem. The MMUSs record whether the translation is for an instruction or data access,
whether the processor is in user or supervisor mode, and for data accesses, whether the access is a load or
a store operation.

The MMUSs use this information to appropriately direct the address translation and to enforce the protection
hierarchy programmed by the operating system. (Section 4.3, Exception Processing, on page 156 describes
the MSR, which controls some of the critical functionality of the MMUSs.)

The figures show how address bits A[20—26] index into the on-chip instruction and data caches to select a
cache set. The remaining physical address bits are then compared with the tag fields (comprised of bits
PA[0-19]) of the eight selected cache blocks to determine if a cache hit has occurred. In the case of a cache
miss on the 750GX, the instruction or data access is then forwarded to the L2 tags to check for an L2 cache
hit. In case of a miss, the access is forwarded to the bus interface unit, which initiates an external memory
access.
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Figure 5-1. MMU Conceptual Block Diagram
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Figure 5-2. PowerPC 750GX Microprocessor IMMU Block Diagram
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Figure 5-3. 750GX Microprocessor DMMU Block Diagram
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5.1.3 Address-Translation Mechanisms

PowerPC processors support the following three types of address translation:

Page address Translates the page frame address for a 4-KB page size.

Block address Translates the block number for blocks that range in size from 128 KB to 256 MB.
Real-addressing When address translation is disabled, the physical address is identical to the effec-
mode address tive address.

Figure 5-4, Address-Translation Types shows the three address-translation mechanisms provided by the
MMUSs. The segment descriptors shown in the figure control the page-address-translation mechanism. When
an access uses page-address translation, the appropriate segment descriptor is required. In 32-bit implemen-
tations, the appropriate segment descriptor is selected from the 16 on-chip segment registers by the 4
highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to memory (memory-
mapped) or to the direct-store interface space. Note that the direct-store interface was present in the architec-
ture only for compatibility with existing 1/0O devices that use this interface. However, it is being removed from
the architecture, and the 750G X does not support it. When an access is determined to be to the direct-store
interface space, the 750GX takes a data-storage interrupt (DSI) exception if it is a data access (see

Section 4.5.3, DSI Exception (0x00300), on page 169), and takes an instruction storage interrupt (ISI) excep-
tion if it is an instruction access (see Section 4.5.4, ISI Exception (0x00400), on page 169).

For memory accesses translated by a segment descriptor, the interim virtual address is generated using the
information in the segment descriptor. Page-address translation corresponds to the conversion of this virtual
address into the 32-bit physical address used by the memory subsystem. In most cases, the physical address
for the page resides in an on-chip TLB and is available for quick access. However, if the page-address trans-
lation misses in the on-chip TLB, the MMU causes a search of the page tables in memory (using the virtual
address information and a hashing function) to locate the required physical address.

Because blocks are larger than pages, there are fewer upper-order effective address bits to be translated into
physical address bits (more low-order address bits (at least 17) are untranslated to form the offset into a
block) for block-address translation. Also, instead of segment descriptors and a TLB, block-address transla-
tions use the on-chip BAT registers as a BAT array. If an effective address matches the corresponding field of
a BAT register, the information in the BAT register is used to generate the physical address. In this case, the
results of the page translation (occurring in parallel) are ignored.
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Figure 5-4. Address-Translation Types
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When the processor generates an access, and the corresponding address-translation-enable bit in the MSR
is cleared, the resulting physical address is identical to the effective address, and all other translation mecha-
nisms are ignored. Instruction address translation and data address translation are enabled by setting
MSRJ[IR] and MSR[DR], respectively.

5.1.4 Memory-Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs provide access protec-
tion of supervisor areas from user access and can designate areas of memory as read-only, as well as no-
execute or guarded. Table 5-2 on page 188 shows the protection options supported by the MMUs for pages.
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Table 5-2. Access Protection Options for Pages

User Read Supervisor Read
Option User Write Supervisor Write

I-Fetch Data I-Fetch Data
Supervisor-only \% \% \% A
Supervisor-only-no-execute \% \% \% \% A A
Supervisor-write-only A A \% A A A
Supervisor-write-only-no-execute \% A \% \% A A
Both (user/supervisor) A A A A A A
Both (user-/supervisor) no-execute \% A A \% A A
Both (user-/supervisor) read-only A A \% A A \%
Both (user/supervisor) read-only-no-execute \ A \% \% A \%

A Access permitted
V  Protection violation

The no-execute option provided in the segment register lets the operating system program determine
whether instructions can be fetched from an area of memory. The remaining options are enforced based on a
combination of information in the segment descriptor and the page table entry. Thus, the supervisor-only
option allows only read and write operations generated while the processor is operating in supervisor mode
(MSR[PR] = 0) to access the page. User accesses that map into a supervisor-only page cause an exception.

Finally, a facility in the virtual environment architecture (VEA) and the operating environment architecture
(OEA) allows pages or blocks to be designated as guarded, preventing out-of-order accesses that might
cause undesired side effects. For example, areas of the memory map used to control I/O devices can be
marked as guarded so accesses do not occur unless they are explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in Chapter 7, “Memory
Management,” in the PowerPC Microprocessor Family: The Programming Environments Manual.

5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the page-address-
translation mechanism that can be used as history information relevant to the page. The operating system
can use these bits to determine which areas of memory to write back to disk when new pages must be allo-
cated in main memory. While these bits are initially programmed by the operating system into the page table,
the architecture specifies that they can be maintained either by the processor hardware (automatically) or by
some software-assist mechanism.

Implementation Note: When loading the TLB, the 750GX checks the state of the changed and referenced
bits for the matched PTE. If the referenced bit is not set and the table-search operation is initially caused by a
load operation or by an instruction fetch, then the 750GX automatically sets the referenced bit in the transla-
tion table. Similarly, if the table-search operation is caused by a store operation and either the referenced bit
or the changed bit is not set, then the hardware automatically sets both bits in the translation table. In addi-
tion, when the address translation of a store operation hits in the DTLB, the 750GX checks the state of the
changed bit. If the bit is not already set, the hardware automatically updates the DTLB and the translation
table in memory to set the changed bit. For more information, see Section 5.4.1, Page History Recording, on
page 196.
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5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses.

5.1.6.1 Real-Addressing Mode and Block-Address-Translation Selection

When an instruction or data access is generated and the corresponding instruction or data translation is
disabled (MSR[IR] = 0 or MSR[DR] = 0), then the real-addressing mode is used (physical address equals
effective address), and the access continues to the memory subsystem as described in Section 5.2, Real-
Addressing Mode, on page 195.

Figure 5-5 shows the flow the MMUs use in determining whether to select real-addressing mode, block-
address translation, or the segment descriptor to select page-address translation.

Figure 5-5. General Flow of Address Translation (Real-Addressing Mode and Block)

Effective Address
Generated

Instruction Access Data Access
Instruction/o\/lnstruction Data>\ Data
Translation Disabled Translation Enabled Translation Enabled Translation Disabled

(MSR[DR] = 0)

(MSR[IR] = 0) (MSRIIR] = 1) \T/ (MSR[DR] = 1)

Perform Real
Addressing Mode
Translation

Perform Real
Addressing Mode
Translation

Compare Address with
Instruction or Data BAT
Array (As Appropriate)

BAT BAT (See The Programming
Array Array Environments Manual)
Miss Hit

Perform Address
Translation with
Segment Descriptor

Access
Permitted

Access
(See Figure 5-6 on Protected

page 191) \’
Translate Address
( Access Faulted )

Continue Access
to Memory
Subsystem

Note: If the BAT array search results in a hit, then the access is qualified with the appropriate protection bits.
If the access violates the protection mechanism, then an exception (either ISI or DSI) is generated.
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5.1.6.2 Page-Address-Translation Selection

If address translation is enabled and the effective address information does not match a BAT array entry,
then the segment descriptor must be located. When the segment descriptor is located, the T bit in the
segment descriptor selects whether the translation is to a page or to a direct-store segment as shown in
Figure 5-6, General Flow of Page and Direct-Store Interface Address Translation, on page 191.

For 32-bit implementations, the segment descriptor for an access is contained in one of the 16 on-chip
Segment Registers. Effective address bits EA[0-3] select one of the 16 Segment Registers.

Note: The 750GX does not implement the direct-store interface, and accesses to these segments cause a
DSI or ISI exception. In addition, Figure 5-6 shows how the no-execute protection is enforced. If the no-exe-
cute (N) bit in the segment descriptor is set and the access is an instruction fetch, the access is faulted as
described in Chapter 7, “Memory Management,” in the PowerPC Microprocessor Family: The Programming
Environments Manual. Figure 5-6 shows the flow for these cases as described by the PowerPC OEA, and so
the TLB references are shown as optional. Because the 750G X implements TLBs, these branches are valid
and are described in more detail throughout this section.
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Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation
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If the T bit in the Segment Register is cleared (SR[T] = 0), then page-address translation is selected. The
information in the segment descriptor is then used to generate the 52-bit virtual address. The virtual address
is used to identify the page-address-translation information (stored as page table entries [PTES] in a page
table in memory). For increased performance, the 750G X has two on-chip TLBs to cache recently-used trans-
lations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical address bits are
forwarded to the memory subsystem. If the required translation is not resident, the MMU performs a search of
the page table. If the required PTE is found, a TLB entry is allocated and the page translation is attempted
again. This time, the TLB is guaranteed to hit. When the translation is located, the access is qualified with the
appropriate protection bits. If the access causes a protection violation, either an ISI or DSI exception is gener-
ated.

If the PTE is not found by the table-search operation, a page-fault condition exists, and an ISI or DSI excep-
tion occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be translated to a physical address. As speci-
fied by the architecture, an MMU exception condition occurs if this translation fails for one of the following
reasons:

« Page fault. There is no valid entry in the page table for the page specified by the effective address (and
segment descriptor), and there is no valid BAT translation.

< An address translation is found, but the access is not allowed by the memory-protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause either the I1SI or the
DSI exception to be taken as shown in Table 5-3.

Table 5-3. Translation Exception Conditions (Page 1 of 2)

Condition Description Exception

| access: IS| exception

No matching PTE found in page tables (and no matching SRR1[1] =1

Page fault (no PTE found) BAT array entry)

D access: DSI exception
DSISR[1] =1

| access: IS| exception

Conditions described for blocks in “Block Memory Pro- SRR1[4] = 1

tection” in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming
Environments Manual.”

Block protection violation
D access: DSI exception

DSISR[4] =1

| access: IS| exception

Conditions described for pages in “Page Memory Protec- SRR14] = 1

tion” in Chapter 7, “Memory Management,” in the Pow-
erPC Microprocessor Family: The Programming
Environments Manual.

Page-protection violation
D access: DSI exception

DSISR[4] =1
No-execute protection violation Attempt to fetch instruction when SR[N] = 1 IS| excepst;;)gl[a] -1
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Table 5-3. Translation Exception Conditions (Page 2 of 2)

Condition Description Exception

ISI exception
SRR1[3] =1

Instruction fetch from direct-store seg-

ment Attempt to fetch instruction when SR[T] =1

Data access to direct-store segment Attempt to perform load or store (including floating-point | DSI exception
(including floating-point accesses) (FP) load or store) when SR[T] =1 DSISR[5] =1

Attempt to fetch instruction when MSRJIR] = 1 and either ||g, exception

Instruction fetch from guarded memory 'matching xBAT[G] = 1, or no matching BAT entry and
PTE[G] = 1 SRR1[3] =1

The state saved by the processor for each of these exceptions contains information that identifies the address
of the failing instruction. See Chapter 4, Exceptions, on page 151 for a more detailed description of exception
processing.

In addition to the translation exceptions, there are other MMU-related conditions (some of them defined as
implementation-specific, and therefore not required by the architecture) that can cause an exception to occur.

These exception conditions map to processor exceptions as shown in Table 5-4. The only MMU exception
conditions that occur when MSR[DR] = 0 are those that cause an alignment exception for data accesses. For
more detailed information about the conditions that cause an alignment exception (in particular for
string/multiple instructions), see Section 4.5.6, Alignment Exception (0x00600), on page 170.

Notes:

* Some exception conditions depend upon whether the memory area is set up as write-though (W = 1) or
caching-inhibited (I = 1).

« These bhits are described fully in “Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and
Memory Coherency,” of the PowerPC Microprocessor Family: The Programming Environments Manual.

» Also see Chapter 4, Exceptions, on page 151 and Chapter 6, “Exceptions,” in the PowerPC Microproces-
sor Family: The Programming Environments Manual for a complete description of the SRR1 and DSISR
bit settings for these exceptions.

Table 5-4. Other MMU Exception Conditions for the 750GX Processor (Page 1 of 2)

Condition Description Exception

Data Cache Block Set to Zero (dcbz) with | dcbz instruction to write-through or cache- | Alignment exception (not required by archi-
W=1lorl=1 inhibited segment or block tecture for this condition)

Load Word and Reserve Indexed (Ilwarx),
Store Word Conditional Indexed (stwcx).,
External Control In Word Indexed (eciwx),
or External Control Out Word Indexed
(ecowx) instruction to direct-store segment

Reservation instruction or external control  DSI exception
instruction when SR[T] =1 DSISR[5] = 1

Floating-point load or store to direct-store | Floating-point memory access when SR[T] | See data access to direct-store segment in
segment =1 Table 5-3 on page 192.

A DSI exception is taken when a load or DS exception
Load or store that results in a direct-store store is attempted to a direct-store segment For additional information, see

error (SR[T] = 1) Section 4.5.3, DSI Exception (0x00300), on
page 169.
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Table 5-4. Other MMU Exception Conditions for the 750G X Processor (Page 2 of 2)

Condition Description Exception

eciwx or ecowx attempted when external . . _ . | DSl exception
control facility disabled eciwx or ecowx attempted with EAR[E] = 0 DSISR[11] = 1

Load Multiple Word (Imw), Store Multiple

Word (stmw), Iswi, Load String Word

Immediate (Iswx), Store String Word Imme- | Imw, stmw, Iswi, Iswx, stswi, or stswx
diate (stswi), or Store String Word Indexed |instruction attempted while MSR[LE] = 1
x-form (stswx) instruction attempted in little-

endian mode

Alignment exception

Translation enabled and a floating-point

Overand misalignment load/store, stmw, stwcx., Imw, Iwarx, Alignment exception (some of these cases
P 9 eciwx, or ecowx instruction operand is not |are implementation-specific)
word-aligned

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block-address-translation areas
and the page tables in memory.

Notes:

» Because the implementation of TLBs is optional, the instructions that refer to these structures are also
optional. However, as these structures serve as caches of the page table, the architecture specifies a
software protocol for maintaining coherency between these caches and the tables in memory whenever
the tables in memory are modified. When the tables in memory are changed, the operating system
purges these caches of the corresponding entries, allowing the translation caching mechanism to refetch
from the tables when the corresponding entries are required.

« Also note that the 750GX implements all TLB-related instructions except TLB Invalidate All (tIbia), which
is treated as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the software
that uses these instructions and registers be encapsulated into subroutines to minimize the impact of
migrating across the family of implementations.

Table 5-5 summarizes the 750GX’s instructions that specifically control the MMU. For more detailed informa-
tion about the instructions, see Chapter 2, Programming Model, on page 57 and Chapter 8, “Instruction Set,”
in the PowerPC Microprocessor Family: The Programming Environments Manual.

Table 5-5. 750G X Microprocessor Instruction Summary—Control MMUs (Page 1 of 2)

Instruction Description
mtsr SR.rS hsﬂs\[/se'—?tz]ig:;ent Register
mtsrin rS.rB ’\SA;\[I,,:ES_S;]?]Q(E?Z Register Indirect
mfsr rD,SR rhf30£—;rlg[1;§:]gment Register
mfsrin rD.rB :\f)ovee-;r;[?Bs[oegg]]]ent Register Indirect
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Table 5-5. 750G X Microprocessor Instruction Summary—Control MMUs (Page 2 of 2)

Instruction Description

TLB Invalidate Entry
For effective address specified by rB, TLB[V]¢—0

) 1 The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the instruction
tibie rB and data TLBs simultaneously invalidating four TLB entries. The index corresponds to bits 14—-19 of the
EA.

Software must ensure that instruction fetches or memory references to the virtual pages specified by the
tibie instruction have been completed prior to executing the tlbie instruction.

TLB Synchronize

Synchronizes the execution of all other tlbie instructions in the system. In the 750G X, when the TLB Inval-

tibsync? idate Synchronize (TLBISYNC) signal is negated, instruction execution can continue or resume after the
completion of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops
after the completion of a tibsync instruction.

1. These instructions are defined by the PowerPC Architecture, but are optional.

Figure 5-6 summarizes the registers that the operating system uses to program the 750GX’s MMUs. These
registers are accessible to supervisor-level software only.

These registers are described in Chapter 2, Programming Model, on page 57.
Table 5-6. 750GX Microprocessor MMU Registers

Register Description

The sixteen 32-bit Segment Registers are present only in 32-bit implementations of the PowerPC
Architecture. The fields in the Segment Register are interpreted differently depending on the value
(SRO-SR15) of bit 0. The Segment Registers are accessed by the mtsr, mtsrin, mfsr, and mfsrin instructions.

Segment registers

BAT registers There are 32 BAT registers, organized as eight pairs of instruction BAT registers (IBATOU-IBAT7U
(IBATOU—IBAT7U paired with IBATOL-IBAT7L) and eight pairs of data BAT registers (DBATOU-DBAT7U paired with

' DBATOL-DBAT7L). The BAT registers are defined as 32-bit registers in 32-bit implementations.
IBATOL-IBAT7L, DBATOU- These are Special-Purpose Registers that are accessed by the Move-to Special Purpose Register
DBAT7U, and DBATOL-DBAT7L) (mtspr) and Move-from Special Purpose Register (mfspr) instructions.

The SDR1 register specifies the variables used in accessing the page tables in memory. SDR1 is
SDR1 defined as a 32-bit register for 32-bit implementations. This Special-Purpose Register is accessed
by the mtspr and mfspr instructions.

5.2 Real-Addressing Mode

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access, the effective address
is treated as the physical address and is passed directly to the memory subsystem as described in Chapter 7,
“Memory Management,” in the PowerPC Microprocessor Family: The Programming Environments Manual.

Note that the default WIMG bits (Ob0011) cause data accesses to be considered cacheable (I = 0), and thus
load-and-store accesses are weakly ordered. This is the case even if the data cache is disabled in the HIDO
register (as it is after a hard reset). If I/O devices require load-and-store accesses to occur in strict program
order (strongly ordered), translation must be enabled so that the corresponding | bit can be set. Note also,
that the G bit must be set to ensure that the accesses are strongly ordered. For instruction accesses, the
default memory-access mode bits (WIMG) are also ObO001. That is, instruction accesses are considered
cacheable (I = 0), and the memory is guarded. Again, instruction accesses are considered cacheable even if
the instruction cache is disabled in the HIDO register (after a hard reset). The W and M bits have no effect on
the instruction cache.
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For information on the synchronization requirements for changes to MSR[IR] and MSR[DR], see

Section 2.3.2.4, Synchronization, on page 90 in this manual and “Synchronization Requirements for Special
Registers and for Lookaside Buffers” in Chapter 2 of the PowerPC Microprocessor Family: The Programming
Environments Manual.

5.3 Block-Address Translation

The block-address-translation (BAT) mechanism in the OEA provides a way to map ranges of effective
addresses larger than a single page into contiguous areas of physical memory. Such areas can be used for
data that is not subject to normal virtual memory handling (paging), such as a memory-mapped display buffer
or an extremely large array of numerical data.

Block-address translation in the 750GX is described in Chapter 7, “Memory Management,” in the PowerPC
Microprocessor Family: The Programming Environments Manual for 32-bit implementations.

Implementation Note: The 750GX’s BAT registers are not initialized by the hardware after the power-up or
reset sequence. Consequently, all valid bits in both instruction and data BATs must be cleared before setting
any BAT for the first time. This is true regardless of whether address translation is enabled. Also, software
must avoid overlapping blocks while updating a BAT or areas. Even if translation is disabled, multiple BAT
hits are treated as programming errors and can corrupt the BAT registers and produce unpredictable results.
Always reset to zero during the reset Interrupt Service Routine (ISR). After zeroing all BATS, set them (in
order) to the desired values. A hard reset (HRESET) disorders the BATSs. A soft reset (SRESET) does not.

5.4 Memory Segment Model

The 750GX adheres to the memory segment model as defined in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-MB segments. This segmented memory model provides a
way to map 4-KB pages of effective addresses to 4-KB pages in physical memory (page-address translation),
while providing the programming flexibility afforded by a large virtual address space (52 bits).

The segment/page-address-translation mechanism might be superseded by the block-address-translation
(BAT) mechanism described in Section 5.3, Block-Address Translation, on page 196. If not, the translation
proceeds in the following two steps:

1. From effective address to the virtual address (which never exists as a specific entity but can be consid-
ered to be the concatenation of the virtual page number and the byte offset within a page), and

2. From virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that are specific to the
750GX.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits in each PTE keep history information about the page. They are main-
tained by a combination of the 750GX’s table-search hardware and the system software. The operating
system uses this information to determine which areas of memory to write back to disk when new pages must
be allocated in main memory. Referenced and changed recording is performed only for accesses made with
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page-address translation and not for translations made with the BAT mechanism or for accesses that corre-
spond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only for accesses made
while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).
In the 750GX, the referenced and changed bits are updated as follows.
« For TLB hits, the C bit is updated according to Table 5-7.
« For TLB misses, when a table-search operation is in progress to locate a PTE, the R and C bits are
updated (set, if required) to reflect the status of the page based on this access.

Table 5-7. Table-Search Operations to Update History Bits—TLB Hit Case

R and C bits in TLB Entry Processor Action
00 Combination does not occur
01 Combination does not occur

Read: No special action

10
Write: The 750GX initiates a table-search operation to update the C bit.

11 No special action for read or write

Table 5-7 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is what causes the
processor to update the C bit in the PTE (the R bit is assumed to be set in the page tables if there is a TLB
hit). Therefore, when software clears the R and C bits in the page tables in memory, it must invalidate the TLB
entries associated with the pages whose referenced and changed bits were cleared.

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) instructions can execute
if there is a TLB or BAT hit or if the processor is in real-addressing mode. In the case of a TLB or BAT miss,
these instructions are treated as no-ops. They do not initiate a table-search operation, and they do not set
either the R or C bits.

As defined by the PowerPC Architecture, the referenced and changed bits are updated as if address transla-
tion were disabled (real-addressing mode). If these update accesses hit in the data cache, they are not seen
on the external bus. If they miss in the data cache, they are performed as typical cache-line-fill accesses on
the bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page is referenced (with
a read or write access) and the R bit is zero, the 750GX sets the R bit in the page table. The OEA specifies
that the referenced bit can be set immediately, or the setting can be delayed until the memory access is
determined to be successful. Because the reference to a page is what causes a PTE to be loaded into the
TLB, the referenced bit in all TLB entries is effectively always set. The processor never automatically clears
the referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At times, the referenced
bit might be set although the access was not logically required by the program or even if the access was
prevented by memory protection. Examples of this in PowerPC systems include the following:

» Fetching of instructions not subsequently executed.

« A memory reference caused by a speculatively executed instruction that is mispredicted.

» Accesses generated by an Iswx or stswx instruction with a zero length.

» Accesses generated by an stwcx. instruction when no store is performed because a reservation does not
exist.
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» Accesses that cause exceptions and are not completed.

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the PTE loaded into
the TLB (if a TLB is implemented, as in the 750GX). Whenever a data store instruction is executed success-
fully, if the TLB search (for page-address translation) results in a hit, then the changed bit in the matching TLB
entry is checked. If it is already set, it is not updated. If the TLB changed bit is 0, the 750GX initiates the table-
search operation to set the C bit in the corresponding PTE in the page table. The 750GX then reloads the
TLB (with the C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store operation is
allowed by the page memory-protection mechanism and the store is guaranteed to be in the execution path
(unless an exception, other than those caused by the sc, rfi, or trap instructions, occurs). Furthermore, the
following conditions can cause the C bit to be set:

e The execution of an stwcx. instruction is allowed by the memory-protection mechanism but a store oper-
ation is not performed.

» The execution of an stswx instruction is allowed by the memory-protection mechanism but a store opera-
tion is not performed because the specified length is zero.

« The store operation is not performed because an exception occurs before the store is performed.

Again, note that although the execution of the dcbt and dcbtst instructions might cause the R bit to be set,
they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by PowerPC processors for
maintaining the referenced and changed bits. In some scenarios, the bits are guaranteed to be set by the
processor; in some scenarios, the architecture allows the bits to be set (not absolutely required); and in some
scenarios, the bits are guaranteed to not be set. Note that when the 750GX updates the R and C bits in
memory, the accesses are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable opera-
tions in which coherency is required).

Table 5-8 on page 198 defines a prioritized list of the R and C bit settings for all scenarios. The entries in the
table are prioritized from top to bottom, so that a scenario near the top of the table takes precedence over a
scenario near the bottom of the table. For example, if an stwcx. instruction causes a page-protection violation
and there is no reservation, the C bit is not altered. Note that in the table, load operations include those
generated by load instructions, by the eciwx instruction, and by the cache-management instructions that are
treated as a load with respect to address translation. Similarly, store operations include those operations
generated by store instructions, by the ecowx instruction, and by the cache-management instructions that
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings (Page 1 of 2)

Causes Setting of R Bit Causes Setting of C Bit
Priority Scenario
OEA 750GX OEA 750GX
1 No-execute protection violation No No No No
2 Page-protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
Memory Management gx_05.fm.(1.2)
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Table 5-8. Model for Guaranteed R and C Bit Settings (Page 2 of 2)

Causes Setting of R Bit Causes Setting of C Bit
Priority Scenario
OEA 750GX OEA 750GX

Out-of-order store operation. Required by the sequential

execution model in the absence of system-caused or
4 imprecise exceptions, or of floating-point assist exception Maybe1 No No No

for instructions that would cause no other kind of precise

exception.
5 All other out-of-order store operations Maybe1 No Maybel No
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybel No Maybel No
8 Store conditional (stwcx.) that does not store Malybe1 Yes Maybel Yes
9 In-order instruction fetch Yes Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx, or dcbz instruction Yes Yes Yes Yes
12 _Instruct_lon Cache Block Invalidate (icbi), dcbt, or dcbtst Maybe No No No

instruction

Data Cache Block Store (dcbst) or Data Cache Block
13 'Flush (dcbf) instruction Maybe ves No No
14 Data Cache Block Invalidate (dcbi) instruction Maybe1 Yes Maybel Yes

Note:

Lifcisset, Ris guaranteed to be set also.

For more information, see “Page History Recording” in Chapter 7, “Memory Management,” of the PowerPC
Microprocessor Family: The Programming Environments Manual.

5.4.2 Page Memory Protection

The 750GX implements page memory protection as it is defined in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming Environments Manual.

5.4.3 TLB Description

The 750G X implements separate 128-entry data and instruction TLBs to maximize performance. This section
describes the hardware resources provided in the 750GX to facilitate page-address translation. Note that the
architecture does not specify the hardware implementation of the MMU, and while this description applies to
the 750GX, it does not necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization

Because the 750GX has two MMUs (IMMU and DMMU) that operate in parallel, some of the MMU resources
are shared, and some are actually duplicated (shadowed) in each MMU to maximize performance. For
example, although the architecture defines a single set of Segment Registers for the MMU, the 750GX main-
tains two identical sets of Segment Registers, one for the IMMU and one for the DMMU. When an instruction
that updates the Segment Register executes, the 750GX automatically updates both sets.
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Each TLB contains 128 entries organized as a 2-way set-associative array with 64 sets as shown in

Figure 5-7 for the DTLB (the ITLB organization is the same). When an address is being translated, a set of
two TLB entries is indexed in parallel with the access to a Segment Register. If the address in one of the two
TLB entries is valid and matches the 40-bit virtual page number, that TLB entry contains the translation. If no
match is found, a TLB miss occurs.

Figure 5-7. Segment Register and DTLB Organization

EA[0-31] Segment Registers
0 78 31
o|T
EA[0-3] . . . VSID
15( T VSID
EA[4-13]
DTLB
[vl |
0|V o
Line 1
» Compare
Line O
> Compare
EA[14-19] Select * * *

Linel/Line O Hit

63

RPN

MUX

A

> PA[0-19]

Unless the access is the result of an out-of-order access, a hardware table-search operation begins if there is
a TLB miss. If the access is out of order, the table-search operation is postponed until the access is required,
at which point the access is no longer out of order. When the matching PTE is found in memory, it is loaded
into the TLB entry selected by the LRU replacement algorithm, and the translation process begins again, this
time with a TLB hit.
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To uniquely identify a TLB entry as the required PTE, each TLB entry contains, in addition to the PTE, an
additional 4-bit field called the Extended Page Index (EPI). The EPI contains bits 10—13 of the EA. Software
cannot access the TLB arrays directly, except to invalidate an entry with the tlbie instruction.

Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any time either entry is
used, even if the access is speculative. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of Segment Registers and TLBs can be
accessed in the same clock), only one exception condition can be reported at a time. ITLB miss exception
conditions are reported when there are no more instructions to be dispatched or retired (the pipeline is
empty), and DTLB miss exception conditions are reported when the load or store instruction is ready to be
retired. See Chapter 6, Instruction Timing, on page 209 for more detailed information about the internal pipe-
lines and the reporting of exceptions.

When an instruction or data access occurs, the effective address is routed to the appropriate MMU. EAO-EA3
select one of the 16 Segment Registers and the remaining effective address bits, and the virtual segment ID
(VSID) field from the Segment Register is passed to the TLB. EA[14-19] then select two entries in the TLB.
The valid bits are checked and the 40-bit virtual page number (24-bit VSID and EA[4—-19]) must match the
VSID, EPI, and API fields of the TLB entries. If one of the entries hits, the page-protection (PP) bits are
checked for a protection violation. If these bits do not cause an exception, the C bit is checked and a table-
search operation is initiated if C must be updated. If C does not require updating, the real page number (RPN)
value is passed to the memory subsystem and the WIMG bits are then used as attributes for the access.

Although address translation is disabled on a reset condition, the valid bits of TLB entries are not automati-
cally cleared. Thus, TLB entries must be explicitly cleared by the system software (with the tlbie instruction)
before the valid entries are loaded and address translation is enabled. Also, note that the Segment Registers
do not have a valid bit, and so they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation

The 750GX implements the optional tibie and tibsync instructions, which are used to invalidate TLB entries.
The execution of the tlbie instruction always invalidates four entries—both the ITLB and DTLB entries
indexed by EA[14-19].

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in hardware so that
other processors also invalidate their resident copies of the matching PTE. The 750GX does not signal the
TLB invalidation to other processors, nor does it perform any action when a TLB invalidation is performed by
another processor.

The tibsync instruction causes instruction execution to stop if the TLBISYNC signal is asserted. If TLBISYNC
is negated, instruction execution might continue or resume after the completion of a tilbsync instruction.
Section 8.7.2, TLBISYNC Input, on page 319 describes the TLB synchronization mechanism in further detail.

The tlbia instruction is not implemented on the 750GX, and when its opcode is encountered, an illegal
instruction program exception is generated. To invalidate all entries of both TLBs, 64 tlbie instructions must
be executed, incrementing the value in EA14—EA19 by one each time. (See Chapter 8, “Instruction Set” in the
the PowerPC Microprocessor Family: The Programming Environments Manual for detailed information about
this instruction.) Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tlbie have been completed prior to executing the tlbie instruction.
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Other than the possible TLB miss on the next instruction prefetch, the tlbie instruction does not affect the
instruction fetch operation—that is, the prefetch buffer is not purged and does not cause these instructions to
be refetched.

5.4.4 Page-Address-Translation Summary

Figure 5-8 on page 203 provides the detailed flow for the page-address-translation mechanism. The figure
includes the checking of the N bit in the segment descriptor and then expands on the ‘TLB Hit’ branch of
Figure 5-6 on page 191.

The detailed flow for the ‘TLB Miss’ branch of Figure 5-6 on page 191 is described in Section 5.4.5, Page
Table-Search Operation, on page 204.

Note: As in the case of block-address translation, if an attempt is made to execute a dcbz instruction to a
page marked either write-through or caching-inhibited (W =1 or | = 1), an alignment exception is generated.
The checking of memory-protection violation conditions is described in Chapter 7, “Memory Management” in
the PowerPC Microprocessor Family: The Programming Environments Manual.
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Figure 5-8. Page-Address-Translation Flow—TLB Hit
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5.4.5 Page Table-Search Operation

If the translation is not found in the TLBs (a TLB miss), the 750GX initiates a table-search operation, which is
described in this section. Formats for the PTE are given in “PTE Format for 32-Bit Implementations,” in
Chapter 7, “Memory Management” of the PowerPC Microprocessor Family: The Programming Environments
Manual.

The following is a summary of the page-table-search process performed by the 750GX.

1. The 32-bit physical address of the primary page-table-entry group (PTEG) is generated as described in
“Page Table Addresses” in Chapter 7, “Memory Management” of the PowerPC Microprocessor Family:
The Programming Environments Manual.

2. The first PTE (PTEDO) in the primary PTEG is read from memory if cache is enabled. PTE reads occur with
an implied WIM memory/cache mode control bit setting of 0b001. Therefore, they are considered cache-
able, read (burst) from memory, and placed in the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number (VPN) of the access.
The VPN is the VSID concatenated with the page index field of the virtual address. For a match to occur,
the following must be true:

PTE[H] =0

PTE[V]=1

PTE[VSID] = VA[0-23]

PTE[API] = VA[24-29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the primary PTEG. If a

match is found, the table-search process continues as described in step 8. If a match is not found within
the eight PTEs of the primary PTEG, the address of the secondary PTEG is generated.

5. The first PTE (PTEO) in the secondary PTEG is read from memory if cache is enabled. Again, because
PTE reads have a WIM bit combination of 0b001, an entire cache line is read into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page number (VPN) of the
access. For a match to occur, the following must be true:

PTE[H] = 1

PTE[V] =1

PTE[VSID] = VA[0-23]

PTE[API] = VA[24-29]

7. If amatch is not found, step 6 is repeated for each of the other seven PTEs in the secondary PTEG. If it is
never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated in the PTE in memory
(if necessary). If there is no memory-protection violation, the C bit is also updated in memory (if the
access is a write operation), and the table search is complete.

9. If a match is not found within the eight PTEs of the secondary PTEG, the search fails, and a page-fault
exception condition occurs (either an ISI exception or a DSI exception).

Figure 5-9 on page 205 and Figure 5-10 on page 206 show how the conceptual model for the primary and
secondary page table-search operations, described in the PowerPC Microprocessor Family: The Program-
ming Environments Manual, are realized in the 750GX.

Figure 5-9 shows the case of a dcbz instruction that is executed with W =1 or | = 1, and that the R bit can be
updated in memory (if required) before the operation is performed or the alignment exception occurs. The R
bit can also be updated if memory protection is violated.
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Figure 5-10. Secondary Page-Table-Search Flow
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The load store unit (LSU) initiates out-of-order accesses without knowing whether it is legal to do so. There-
fore, the MMU does not perform a hardware table search due to TLB misses until the request is required by
the program flow. In these out-of-order cases, the MMU does detect protection violations and whether a dchz
instruction specifies a page marked as write-through or cache-inhibited. The MMU also detects alignment
exceptions caused by the dcbz instruction and prevents the changed bit in the PTE from being updated erro-
neously in these cases.

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU stalls for one
translation cycle to perform that operation. The sequencer serializes instructions to ensure the data correct-
ness. To update the IBATs and SRs, the sequencer classifies those operations as fetch serializing. After such
an instruction is dispatched, the instruction buffer is flushed, and the fetch stalls until the instruction
completes. However, to read from the IBATS, the operation is classified as execution serializing. As long as
the LSU ensures that all previous instructions can be executed, subsequent instructions can be fetched and
dispatched.
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5.4.6 Page Table Updates

When TLBs are implemented (as in the 750G X), they are defined as noncoherent caches of the page tables.
TLB entries must be flushed explicitly with the TLB invalidate entry instruction (tIbie) whenever the corre-
sponding PTE is modified. As the 750GX is intended primarily for uniprocessor environments, it does not
provide coherency of TLBs between multiple processors. If the 750GX is used in a multiprocessor environ-
ment where TLB coherency is required, all synchronization must be implemented in software.

Processors can write referenced and changed bits with unsynchronized, atomic byte store operations. Note
that the valid (V), R, and C bits each reside in a distinct byte of a PTE. Therefore, extreme care must be taken
to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering PTESs, or certain system
registers, can have the side effect of changing the effective or physical addresses from which the current
instruction stream is being fetched. This kind of side effect is defined as an implicit branch. Implicit branches
are not supported, and an attempt to perform one causes boundedly-undefined results. Therefore, PTEs
must not be changed in a manner that causes an implicit branch.

Chapter 2, “PowerPC Register Set” in the PowerPC Microprocessor Family: The Programming Environments
Manual lists the possible implicit branch conditions that can occur when system registers and MSR bits are
changed.

5.4.7 Segment Register Updates

Synchronization requirements for using the Move-to Segment Register instructions are described in
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2, “PowerPC
Register Set” in the PowerPC Microprocessor Family: The Programming Environments Manual.
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6. Instruction Timing

This chapter describes how the PowerPC 750GX microprocessor fetches, dispatches, and executes instruc-
tions and how it reports the results of instruction execution. It gives detailed descriptions of how the 750GX’s
execution units work, and how those units interact with other parts of the processor, such as the instruction-
fetching mechanism, register files, and caches. It gives examples of instruction sequences, showing potential
bottlenecks and how to minimize their effects. Finally, it includes tables that identify the unit that executes
each instruction implemented on the 750GX, the latency for each instruction, and other information that is
useful for the assembly language programmer.

6.1 Terminology and Conventions

This section provides an alphabetical glossary of terms used in this chapter. These definitions are provided
as a review of commonly used terms and to point out specific ways these terms are used in this chapter.

Branch prediction The process of guessing whether a branch will or will not be taken. Such predic-
tions can be correct or incorrect. The term ‘predicted’ as it is used here does not
imply that the prediction is correct (successful). Instructions along the predicted
path are fetched and dispatched to their respective execution units conditionally
and can reach the completion unit. However, these instructions must first be vali-
dated by the branch-resolution process before they can be retired.

The PowerPC Architecture defines a means for static branch prediction as part of
the instruction encoding. The 750GX processor implements two types of dynamic
branch prediction. See Section 6.4.1.2, Branch Instructions and Completion, on
page 227.

Branch resolution The determination of the path that a branch instruction must take. If a branch
prediction and branch resolution occur on the same cycle, the processor simply
fetches instructions on the correct path as determined by the branch instruction.
For predicted branches, branch resolution must determine if the prediction was
correct. If the prediction was correct, all speculatively fetched instructions that have
been passed to their execution units are validated. If the prediction was wrong, the
speculatively fetched instructions must be invalidated (flushed), and instruction
fetching must resume along the other path for the branch instruction.

Completion Completion occurs when an instruction has finished executing, and its results are
stored in a Rename Register allocated to it by the dispatch unit. These results are
available to subsequent instructions or to previously predicted branches.

Dispatch The process of moving an instruction from the instruction queue to an execution
unit. In the 750GX processor, the dispatch unit can process up to three instruction
in a single cycle if one of the three is a branch. For the non-branch-type instruc-
tions, the dispatch must do a partial decode to determine the type of instruction in
order to pass it to the respective execution unit. Also, a Rename Register and a
place in the completion queue must be reserved; otherwise, a stall occurs. If a
branch updates either the Link Register (LR) or Count Register (CTR), it must also
be allocated to a completion queue entry.

Fall-through A not-taken branch.
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Fetch

Folding (branch folding)

Finish

Latency

Pipeline

Program order

Rename register

Reservation station

Retirement
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The process of bringing instructions from the system memory (such as a cache or
the main memory) into the instruction queue.

On the 750GX, a branch is expunged from (folded out of) the instruction queue via
the dispatch mechanism, without being either passed to an execution unit or given
a position in the completion queue. Subsequent instructions are fetched from
sequential addresses for branches-not-taken and from target addresses for
branches-taken.

Finishing occurs in the last cycle of execution. (This could also be the first cycle of
execution for instructions that only require one cycle for execution.) In this cycle,
the output Rename Register and the completion queue entry are updated to indi-
cate that the instruction has finished executing.

The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

In the context of instruction timing, the term ‘pipeline’ refers to the interconnection
of the stages. The events necessary to process an instruction are broken into
several cycle-length tasks to allow work to be performed on several instructions
simultaneously—analogous to an assembly line. As an instruction is processed, it
passes from one stage to the next. When it completes one stage, that stage
becomes available for the next instruction.

Although an individual instruction can take many cycles to complete (the number of
cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

The order of instructions in an executing program. More specifically, this term is
used to refer to the original order in which program instructions are fetched into the
instruction queue from the system memory.

Temporary buffers used to hold either source or destination values for instructions
that are in a stage of execution. This simplifies the passing of data outside of the
General Purpose Register (GPR) file between instructions during execution.

A buffer between the dispatch and execution units where instructions await execu-
tion.

Removal of a completed instruction from the completion queue. At this time, any
output from the completed instruction is written to the appropriate architected desti-
nation register. This might be a GPR, a Floating Point Register (FPR), or a Condi-
tion Register (CR) field.
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Stage The processing of instructions in the 750GX is done in stages. They are: fetch,
decode/dispatch, execute, complete, and retirement. The fetch unit brings instruc-
tions from the memory system into the instruction queue. Once in the instruction
queue, the dispatch unit must do a partial decode on the instruction to determine its
type. If the instruction is an integer, it is passed to the integer execution unit. If it is
a floating-point type, it is passed to the floating-point execution unit. If it is a branch,
it is processed immediately by branch folding and branch prediction functions.
Instructions spend one or more cycles in each stage as they are being processed
by the 750GX processor.

Stall An occurrence when an instruction cannot proceed to the next stage. An instruction
can spend multiple cycles in one stage. An integer multiply, for example, takes
multiple cycles in the execute stage. When this occurs, subsequent instructions
might stall.

Superscalar A superscalar processor is one that has multiple execution units. The 750GX
processor has one floating-point unit, two integer units, one load/store unit, and a
system unit for miscellaneous instructions. PowerPC instructions are processed in
parallel by these execution units.

Throughput A measure of the total number of instructions that are processed by all execution
units per unit of time.

Write-back Write-back, in the context of instruction handling, occurs when a result is written
into the architectural registers (typically the GPRs and FPRs). Results are written
back at retirement time from the Rename Registers for most instructions. The
instruction is also removed from the completion queue at this time.

6.2 Instruction Timing Overview

The 750GX design minimizes average instruction execution latency, the number of clock cycles it takes to
fetch, decode, dispatch, and execute instructions and make the results available for a subsequent instruction.
Some instructions, such as loads and stores, access memory and require additional clock cycles between the
execute phase and the write-back phase. These latencies vary depending on whether the access is to cache-
able or noncacheable memory, whether it hits in the L1 or L2 cache, whether the cache access generates a
write-back to memory, whether the access causes a snoop hit from another device that generates additional
activity, and other conditions that affect memory accesses.

The 750GX implements many features to improve throughput, such as pipelining, issuing superscalar instruc-
tions, branch folding, 2-level speculative branch handling, two types of branch prediction, and multiple execu-
tion units that operate independently and in parallel.

As an instruction passes from stage to stage in a pipelined system, multiple instruction are in various stages
of execution at any given time. Also, with multiple execution units operating in parallel, more then one instruc-
tion can be completed in a single cycle.

The 750GX contains the following execution units that operate independently and in parallel:

« Branch processing unit (BPU)
 Integer unit 1 (IU1)—executes all integer instructions
 Integer unit 2 (IU2)—executes all integer instructions except multiplies and divides
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» 64-bit floating-point unit (FPU)
» Load/store unit (LSU)
» System register unit (SRU)

Figure 6-1 represents a generic pipelined execution unit.

Figure 6-1. Pipelined Execution Unit
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The 750GX can retire two instructions in every clock cycle. In general, the 750GX processes instructions in
four stages—fetch, decode/dispatch, execute, and complete as shown in Figure 6-2. Note that the example of

a pipelined execution unit in Figure 6-1 is similar to the 3-stage FPU pipeline in Figure 6-2.

Figure 6-2. Superscalar/Pipeline Diagram
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The instruction pipeline stages are described as follows:

« The instruction fetch stage includes the clock cycles necessary to request instructions from the memory
system and the time the memory system takes to respond to the request. Instruction fetch timing
depends on many variables, such as whether the instruction is in the branch target instruction cache, the
L1 instruction cache, or the L2 cache. If instructions must be fetched from system memory, other factors
affect instruction fetch timing including the processor-to-bus clock ratio, the amount of bus traffic, and
whether any cache-coherency operations are required.

Because there are so many variables, unless otherwise specified, the instruction timing examples below
assume optimal performance and assume instructions are available in the instruction queue in the same
clock cycle that they are requested. The fetch stage ends when instructions are loaded into the instruc-
tion queue.

« The decode/dispatch stage consists of the time it takes to decode the instruction and dispatch it from the
instruction queue to the appropriate execution unit. Instruction dispatch requires the following:

— Instructions can be dispatched only from the two lowest instruction queue entries, 1Q0 and 1Q1.

— A maximum of two instructions can be dispatched per clock cycle, and one additional branch instruc-
tion can be handled by the BPU.

— Only one instruction can be dispatched to each execution unit per clock cycle.
— There must be a vacancy in the specified execution-unit reservation station.
— A Rename Register must be available for each destination operand specified by the instruction.

— For an instruction to dispatch, the appropriate execution-unit reservation station must be available,
and there must be an open position in the completion queue. If no entry is available, the instruction
remains in the instruction queue (1Q).

« The execute stage consists of the time between dispatch to the execution unit (or reservation station) and
the point at which the instruction vacates the execution unit.

Most integer instructions have a 1-cycle latency; results of these instructions can be used in the clock
cycle after an instruction enters the execution unit. However, integer multiply and divide instructions take
multiple clock cycles to complete. IU1 can process all integer instructions; IU2 can process all integer
instructions except multiply and divide instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2 on page 212).

* The complete (complete/write-back) pipeline stage maintains the correct architectural machine state and
commits the rename register values to the architectural registers at the proper time. If the completion
logic detects an instruction containing an exception status, all subsequent instructions are cancelled; their
execution results in the Rename Registers are discarded; and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be retired per cycle.
Instructions are retired only from the two lowest completion queue entries, CQ0 and CQ1.
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The notation conventions used in the instruction timing examples are as follows:

Table 6-1. Notation Conventions for Instruction Timing

Symbol

| i

Description

Fetch. The fetch stage includes the time between when an instruction is requested and when it is brought into
the instruction queue. This latency can vary, depending upon whether the instruction is in the branch target
instruction cache (BTIC), the L1 instruction cache, the L2 cache, or system memory (in which case latency
can be affected by bus speed and traffic on the system bus, and address-translation issues). Therefore, in the
examples in this chapter, the fetch stage is usually idealized. That is, an instruction is usually shown to be in
the fetch stage when it is a valid instruction in the instruction queue. The instruction queue has six entries,

1Q0-IQ5.

In dispatch entry (IQ0/IQ1). Instructions can be dispatched from IQ0 and 1Q1. Because dispatch is instanta-
neous, it is perhaps more useful to describe it as an event that marks the point in time between the last cycle
in the fetch stage and the first cycle in the execute stage.

Execute. The operations specified by an instruction are being performed by the appropriate execution unit.
The black stripe is a reminder that the instruction occupies an entry in the completion queue, described in
Figure 6-3.

Complete. The instruction is in the completion queue. In the final stage, the results of the executed instruction
are written back, and the instruction is retired. The completion queue has six entries, CQ0-CQ5.

In retirement entry. Completed instructions can be retired from CQO and CQL1. Like dispatch, retirement is an
event that, in this case, occurs at the end of the final cycle of the complete stage.

Figure 6-3 shows the stages of the 750GX’s execution units.

Figure 6-3. PowerPC 750GX Microprocessor Pipeline Stages
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1. Several integer instructions, such as multiply and divide instructions, require multiple cycles in the execute stage.

2. Only those branch instructions that update the LR or CTR take an entry in the completion queue.

Instruction Timing
Page 214 of 377

gx_06.fm.(1.2)
March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

6.3 Timing Considerations

The 750GX is a superscalar processor; as many as three instructions can be issued to the execution units
(one branch instruction to the branch processing unit, and two instructions issued from the dispatch queue to
the other execution units) during each clock cycle. Only one instruction can be dispatched to each execution
unit.

Although instructions appear to the programmer to execute in program order, the 750GX improves perfor-
mance by executing multiple instructions at a time, using hardware to manage dependencies. When an
instruction is dispatched, the register file or a Rename Register from a previous instruction provides the
source data to the execution unit. The register files and Rename Register have sufficient bandwidth to allow
dispatch of two instructions per clock under most conditions.

The 750GX’s BPU decodes and executes branches immediately after they are fetched. When a conditional
branch cannot be resolved due to a CR data (or any) dependency, the branch direction is predicted and
execution continues on the predicted path. If the prediction is incorrect, the following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions behind (in program order) the predicted branch in the completion queue are allowed to
complete.

3. Instructions fetched on the mispredicted path of the branch are purged.

4. Fetching resumes along the correct (other) path.

After an execution unit finishes executing an instruction, it places resulting data into the appropriate GPR or
FPR Rename Register. The results are then stored into the correct GPR or FPR during the write-back stage
(retirement). If a subsequent instruction needs the result as a source operand, it is made available simulta-
neously to the appropriate execution unit, which allows a data-dependent instruction to be decoded and
dispatched without waiting to read the data from the register file. Branch instructions that update either the LR
or CTR write back their results in a similar fashion.

Section 6.3.1 describes this process in greater detail.

6.3.1 General Instruction Flow

As many as four instructions can be fetched into the instruction queue (IQ) in a single clock cycle. Instructions
enter the 1Q and are issued to the various execution units from the dispatch queue. The 750GX tries to keep
the 1Q full at all times, unless instruction-cache throttling is operating.

The number of instructions requested in a clock cycle is determined by the number of vacant spaces in the 1Q
during the previous clock cycle. This is shown in the examples in this section. Although the instruction queue
can accept as many as four new instructions in a single clock cycle, if only one 1Q entry is vacant, only one
instruction is fetched. Typically, instructions are fetched from the L1 instruction cache, but they might also be
fetched from the branch target instruction cache (BTIC) if a branch is taken. If the branch taken instruction
request hits in the BTIC, it can usually present the first two instructions of the new instruction stream in the
next clock cycle, giving enough time for the next pair of instructions to be fetched from the instruction L1
cache. This results in no idle cycles in the instruction stream (also known as a zero-cycle branch). If instruc-
tions are not in the BTIC or the L1 instruction cache, they are fetched from the L2 cache or from system
memory.
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The 750GX’s instruction-cache throttling feature, managed through the Instruction Cache Throttling Control
(ICTC) register, can lower the processor’s overall junction temperature by slowing the instruction fetch rate.
See Chapter 10, Power and Thermal Management, on page 335 for more information.

Branch instructions are identified by the fetcher, and forwarded to the BPU directly, bypassing the dispatch
queue. If the branch is unconditional or if the specified conditions are already known, the branch can be
resolved immediately. That is, the branch direction is known and instruction fetching can continue along the
correct path. Otherwise, the branch direction must be predicted. The 750GX offers several resources to aid in
the quick resolution of branch instructions and to improve the accuracy of branch predictions. These include:

Branch target The 64-entry (4-way-associative) branch target instruction cache (BTIC) holds

instruction cache branch target instructions so when a branch is encountered in a repeated loop,
usually the first two instructions in the target stream can be fetched into the instruc-
tion queue on the next clock cycle. The BTIC can be disabled and invalidated
through bits in Hardware-Implementation-Dependent Register 0 (HIDO). Coher-
ency of the BTIC table is maintained by table reset on an instruction-cache flash
invalidate, Instruction Cache Block Invalidate (icbi) or Return from Interrupt (rfi)
instruction execution, or when an exception is taken.

Dynamic branch The 512-entry branch history table (BHT) is implemented with two bits per entry for

prediction four degrees of prediction—not-taken, strongly not-taken, taken, strongly taken.
Whether a branch instruction is taken or not-taken can change the strength of the
next prediction. This dynamic branch prediction is not defined by the PowerPC
Architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic
branch prediction is enabled by setting HIDO[BHT]; otherwise, static branch predic-
tion is used.

Static branch prediction Static branch prediction is defined by the PowerPC Architecture and is encoded in
the branch instructions. See Static Branch Prediction on page 229.

Branch instructions that do not update the LR or CTR are removed from the instruction stream by branch
folding, as described in Section 6.4.1.1, Branch Folding, on page 226. Branch instructions that update the LR
or CTR are treated as if they require dispatch (even through they are not issued to an execution unit in the
process). They are assigned a position in the completion queue to ensure that the CTR and LR are updated
in the correct program order.

All other instructions are issued from the 1Q0 and 1Q1. The dispatch rate depends upon the availability of
resources such as the execution units, Rename Registers, and completion queue entries, and upon the seri-
alizing behavior of some instructions. Instructions are dispatched in program order; an instruction in 1Q1
cannot be dispatched ahead of one in 1QO0.

6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hits the BTIC, the L1 instruction cache, or the L2
cache. If no cache hit occurs, a memory transaction is required in which case fetch latency is affected by bus
traffic, bus clock speed, and memory translation. These issues are discussed further in the following sections.
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6.3.2.1 Cache Arbitration

When the instruction fetcher requests instructions from the instruction cache, two things might happen. If the
instruction cache is idle and the requested instructions are present, they are provided on the next clock cycle.
However, if the instruction cache is busy due to a cache-line-reload operation, instructions cannot be fetched
until that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only one clock cycle after the request for as many as
four instructions to enter the instruction queue. Note that the cache is not blocked to internal accesses while a
cache reload completes (hits under misses). The critical double word is written simultaneously to the cache
and forwarded to the requesting unit, minimizing stalls due to load delays.

Figure 6-4 on page 218 shows the paths taken by instructions.
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Figure 6-4. Instruction Flow Diagram
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Figure 6-5 on page 220 shows a simple example of instruction fetching that hits in the L1 cache. This
example uses a series of integer add and double-precision floating-point add instructions to show how the
number of instructions to be fetched is determined, how program order is maintained by the instruction and
completion queues, how instructions are dispatched and retired in pairs (maximum), and how the FPU, U1,
and 1U2 pipelines function. The following instruction sequence is examined.

0 add
1 fadd
2 add
3 fadd
4b6
5 fsub
6 fadd
7 fadd
8 add
9 add
10 add
11 add
12 fadd
13 add
14 fadd
15 o
16 e
17 o
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Figure 6-5. Instruction Timing—Cache Hit
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The instruction timing for this example is described cycle-by-cycle as follows:

1.

In cycle 0, instructions 0-3 are fetched from the instruction cache. Instructions 0 and 1 are placed in the
two entries in the instruction queue from which they can be dispatched on the next clock cycle.

In cycle 1, instructions 0 and 1 are dispatched to the IU2 and FPU, respectively. Notice that, for instruc-
tions to be dispatched, they must be assigned positions in the completion queue. In this case, since the
completion queue was empty, instructions 0 and 1 take the two lowest entries in the completion queue.
Instructions 2 and 3 drop into the two dispatch positions in the instruction queue. Because there were two
positions available in the instruction queue in clock cycle 0, two instructions (4 and 5) are fetched into the
instruction queue. Instruction 4 is a branch unconditional instruction, which resolves immediately as
taken. Because the branch is taken, it can therefore be folded from the instruction queue.

In cycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched into the instruction
gqueue, replacing the folded b instruction (4) and instruction 5. Instruction 0 completes, writes back its
results, and vacates the completion queue by the end of the clock cycle. Instruction 1 enters the second
FPU execute stage; instruction 2 is dispatched to the IU2; and instruction 3 is dispatched into the first
FPU execute stage. Because the taken branch instruction (4) does not update either CTR or LR, it does
not require a position in the completion queue and can be folded.

In cycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in IQ0 and 1Q1. This
replacement on taken branches is called branch folding. Instruction 1 proceeds through the last of the
three FPU execute stages. Instruction 2 has executed, but must remain in the completion queue until
instruction 1 completes. Instruction 3 replaces instruction 1 in the second stage of the FPU, and instruc-
tion 6 replaces instruction 3 in the first stage.

Because there were four vacancies in the instruction queue in the previous clock cycle, instructions 8-11
are fetched in this clock cycle.

. Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructions 3 and 6 continue

through the FPU pipeline. Because there were two openings in the completion queue in the previous
cycle, instructions 7 and 8 are dispatched to the FPU and IU2, respectively, filling the completion queue.
Similarly, because there was one opening in the instruction queue in clock cycle 3, one instruction is
fetched.

. In cycle 5, instruction 3 completes, and instructions 13 and 14 are fetched. Instructions 6 and 7 continue

through the FPU pipeline. No instructions are dispatched in this clock cycle because there were no
vacant CQ entries in cycle 4.

. In cycle 6, instruction 6 completes, instruction 7 is in stage 3 of the FPU execute stage, and although

instruction 8 has executed, it must wait for instruction 7 to complete. The two integer instructions, 9 and
10, are dispatched to the 1U2 and 1U1, respectively. No instructions are fetched because the instruction
gqueue was full on the previous cycle.

. In cycle 7, instruction 7 completes, allowing instruction 8 to complete as well. Instructions 9 and 10

remain in the completion stage, since at most two instructions can complete in a cycle. Because there
was one opening in the completion queue in cycle 6, instruction 11 is dispatched to the 1U2. Two more
instructions, 15 and 16 (which are shown only in the instruction queue), are fetched.

. In cycle 8, instructions 9-11 are through executing. Instructions 9 and 10 complete, write back, and

vacate the completion queue. Instruction 11 must wait to complete in the following cycle. Because the
completion queue had one opening in the previous cycle, instruction 12 can be dispatched to the FPU.
Similarly, the instruction queue had one opening in the previous cycle, so one additional instruction, 17,
can be fetched.
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10. In cycle 9, instruction 11 completes, instruction 12 continues through the FPU pipeline, and instructions
13 and 14 are dispatched. One new instruction, 18, can be fetched on this cycle because the instruction
gueue had one opening on the previous clock cycle.

6.3.2.3 Cache Miss

Figure 6-6 on page 223 shows an instruction fetch that misses both the L1 cache and L2 cache. A
processor/bus clock ratio of 1:2 is used. The same instruction sequence is used as in Section 6.3.2.2, Cache
Hit. However, in this example, the branch target instruction is not in either the L1 or L2 cache.

A cache miss extends the latency of the fetch stage, so, in this example, the fetch stage shown represents
not only the time the instruction spends in the 1Q, but the time required for the instruction to be loaded from
system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for the b instruction is not in the BTIC, the instruction cache, or the
L2 cache; therefore, a memory access must occur. During clock cycle 5, the address of the block of instruc-
tions is sent to the system bus. During clock cycle 7, two instructions (64 bits) are returned from memory on
the first beat and are forwarded both to the cache and the instruction fetcher.
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* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency.
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6.3.2.4 L2 Cache Access Timing Considerations

If an instruction fetch misses both the BTIC and the L1 instruction cache, the 750GX next looks in the L2
cache. If the requested instructions are there, they are burst into the 750GX in much the same way as shown
in Figure 6-6 on page 223.

An instruction fetch from the L2 cache has a latency of five cycles.

6.3.2.5 Instruction Dispatch and Completion Considerations

Several factors affect the 750GX’s ability to dispatch instructions at a peak rate of two per cycle—the avail-
ability of the execution unit, destination Rename Registers, and completion queue, as well as the handling of
completion-serialized instructions. Several of these limiting factors are illustrated in the previous instruction
timing examples.

To reduce dispatch-unit stalls due to instruction data dependencies, the 750GX provides a single-entry reser-
vation station for the FPU, SRU, and each IU, and a 2-entry reservation station for the LSU. If a data depen-
dency keeps an instruction from starting execution, that instruction is dispatched to the reservation station
associated with its execution unit (and the Rename Registers are assigned), thereby freeing the positions in
the instruction queue so instructions can be dispatched to other execution units. Execution begins during the
same clock cycle that the rename buffer is updated with the data the instruction is dependent on.

If both instructions in IQ0 and 1Q1 require the same execution unit, they must be executed sequentially where
1Q1 follows 1QO0 through the execution unit. If these instructions require different execution units, they can be
dispatched on the same cycle, execute in parallel on separate execution units, and could complete together
and be retired together on the same cycle.

The completion unit maintains program order after instructions are dispatched from the instruction queue,
guaranteeing in-order completion and a precise-exception model. Completing an instruction implies commit-
ting execution results to the architected destination registers. In-order completion ensures the correct archi-
tectural state when the 750GX must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in the 6-entry, first-in/first-out completion
gqueue. A completion queue entry is allocated for each instruction when it is dispatched to an execution unit. If
no entry is available, the dispatch-unit stalls. A maximum of two instructions per cycle can be completed and
retired from the completion queue, and the flow of instructions can stall when a longer-latency instruction
reaches the last position in the completion queue. Subsequent instructions cannot be completed and retired
until that longer-latency instruction completes and retires. Examples of this are shown in Section 6.3.2.2,
Cache Hit and Section 6.3.2.3, Cache Miss.

The 750GX can execute instructions out-of-order, but in-order completion by the completion unit ensures a
precise-exception mechanism. Program-related exceptions are signaled when the instruction causing the
exception reaches the last position in the completion queue. By this time, previous instructions are retired.

6.3.2.6 Rename Register Operation

To avoid contention for a given register file location in the course of out-of-order execution, the 750GX
provides Rename Registers for holding instruction results before the completion commits them to the archi-
tected register. There are six GPR Rename Registers, six FPR Rename Registers, and one each for the CR,
LR, and CTR.
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When the dispatch unit dispatches an instruction to its execution unit, it allocates a Rename Register (or
registers) for the results of that instruction. If an instruction is dispatched to a reservation station associated
with an execution unit due to a data dependency, the dispatcher also provides a tag to the execution unit
identifying the Rename Register that forwards the required data at completion. When the source data
reaches the rename register, execution can begin.

Instruction results are transferred from the Rename Registers to the architected registers by the completion
unit when an instruction is retired from the completion queue, provided no exceptions precede it and any
predicted branch conditions have been resolved correctly. If a branch prediction was incorrect, the instruc-
tions fetched along the predicted path are flushed from the completion queue, and any results of those
instructions are flushed from the Rename Registers.

6.3.2.7 Instruction Serialization

Although the 750GX can dispatch and complete two instructions per cycle, so-called serializing instructions
limit dispatch and completion to one instruction per cycle. There are three types of instruction serialization:

Execution Execution-serialized instructions are dispatched, held in the functional unit, and do
not execute until all prior instructions have completed. A functional unit holding an
execution-serialized instruction will not accept further instructions from the
dispatcher. For example, execution serialization is used for instructions that
modify nonrenamed resources. Results from these instructions are generally not
available or forwarded to subsequent instructions until the instruction completes
(using a Move-to Special Purpose Register [mtspr] instruction to write to an LR or
CTR does provide forwarding to branch instructions).

Completion (also referred Completion-serialized instructions inhibit dispatching of subsequent instructions
to as post-dispatch or tail until the serialized instruction completes. Completion serialization is used for
serialization) instructions that bypass the normal rename mechanism.

Refetch (flush) Refetch-serialized instructions inhibit dispatch of subsequent instructions and
force refetching of subsequent instructions after completion.

6.4 Execution-Unit Timings

The following sections describe instruction timing considerations within each of the respective execution units
in the 750GX.

6.4.1 Branch Processing Unit Execution Timing

Flow-control operations (conditional branches, unconditional branches, and traps) are typically expensive to
execute in most machines because they disrupt normal flow in the instruction stream. When a change in
program flow occurs, the 1Q must be reloaded with the target instruction stream. Previously issued instruc-
tions will continue to execute while the new instruction stream makes its way into the 1Q. However, depending
on whether the target instruction is in the BTIC, instruction L1 cache, L2 cache, or in system memory, some
opportunities might be missed to execute instructions. The example in Section 6.3.2.3, Cache Miss, on
page 222 illustrates this situation.
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Performance features such as branch folding, BTIC, dynamic branch prediction (implemented in the BHT),
2-level branch prediction, and the implementation of nonblocking caches minimize the penalties associated
with flow-control operations on the 750GX. The timing for branch instruction execution is determined by many
factors including:

» Whether the branch is taken

« Whether instructions in the target stream, typically the first two instructions in the target stream, are in the
branch target instruction cache (BTIC)

* Whether the target instruction stream is in the L1 cache
* Whether the branch is predicted

* Whether the prediction is correct

6.4.1.1 Branch Folding

When a branch instruction is encountered by the fetcher, the BPU immediately begins to decode it and tries
to resolve it. Branch folding is the removal of branches from the instruction stream. This is independent of

whether the branch is taken or not taken. However, if the branch instruction updates either the LR or CTR it
cannot be removed and must be allocated a position in the completion queue. If a branch cannot be resolved
immediately, it is predicted and instruction fetching resumes along the predicted path. Those instructions are
conditionally fed into the instruction queue. Later, if the prediction is finally correctly resolved, the fetched

instructions are validated and allowed to complete and be retired. If the prediction is resolved incorrectly, then
the instructions fetched are invalidated, and instruction fetching resumes along the other path of the branch.

Figure 6-7 on page 227 shows branch folding. Here a b instruction is encountered in a series of add instruc-
tions. The branch is resolved as taken. What happens on the next clock cycle depends on whether the target
instruction stream is in the BTIC, the instruction L1 cache, or if it must be fetched from the L2 cache or from

system memory.

Figure 6-7 shows cases where there is a BTIC hit, and where there is a BTIC miss (and instruction-cache hit).
If there is a BTIC hit on the next clock cycle, the bx instruction is replaced by the target instruction, and1,
which was found in the BTIC. The second and instruction is also fetched from the BTIC. On the next clock
cycle, the next four and instructions from the target stream are fetched from the instruction cache.

If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attempts to fetch the first four
instructions from the instruction cache (on the next clock cycle). In the example in Figure 6-7, the first four
target instruction are fetched on the next clock.

If the target instruction misses in the BTIC or L1 caches, an L2 cache or memory access is required. The
latency of this access is dependent on several factors, such as processor/bus clock ratios. In most cases,
new instructions arrive in the IQ before the execution units become idle.
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Figure 6-7. Branch Taken

Branch Folding Branch Folding
(Taken Branch/BTIC Hit) (Taken Branch/BTIC Miss)
Clock 0 Clock 1 Clock 2 Clock 0 Clock 1 Clock 2

1Q5 | add5 IQ5 | add5

1Q4 | add4 1Q4 | add4

1Q3 | add3 and6 1Q3 | add3 and4
1Q2 b and5 1Q2 b and3
1Q1 | add2 and2 and4 Q1 | add2 and2
1Q0 | add1l andl and3 1Q0 | addl andl

Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a branch is not taken or
is predicted as not taken.

Figure 6-8. Removal of Fall-Through Branch Instruction

Branch Fall-Through
(Not-Taken Branch)

Clock 0 Clock 1 Clock 2

IQ5 | add5 add8 etc.

Q4 | add4 add7 add9
IQ3 | add3 add6 add8
1Q2 b add5 add7
IQ1 | add2 add4 add6
IQ0 | addl add3 add5

When a branch instruction is detected before it reaches a dispatch position, and if the branch is correctly
predicted as taken, folding the branch instruction (and any instructions from the incorrect path) reduces the
latency required for flow control to zero. Instruction execution proceeds as though the branch was never
there.

The advantage of removing the fall-through branch instructions at dispatch is only marginally less than that of
branch folding. Because the branch is not taken, only the branch instruction needs to be discarded. The only
cost of expelling the branch instruction from one of the dispatch entries rather than folding it is missing a
chance to dispatch an executable instruction from that position.

6.4.1.2 Branch Instructions and Completion

As described in the previous section, instructions that do not update either the LR or CTR are removed from
the instruction stream before they reach the completion queue, either for branch taken or by removing fall-
through branch instructions at dispatch. However, branch instructions that update the architected LR and
CTR must do so in program order. Therefore, they must perform write-back in the completion stage, like the
instructions that update the FPRs and GPRs.

Branch instructions that update the CTR or LR pass through the instruction queue like nonbranch instruc-
tions. At the point of dispatch, however, they are not sent to an execution unit, but rather are assigned a slot
in the completion queue, as shown in Figure 6-9 on page 228.
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Figure 6-9. Branch Completion

Branch Completion
(LR/CTR Write-Back)

Clock 0 Clock 1 Clock 2 Clock 3

1Q5 | add5

1Q4 | add4

1Q3 | add3 add5 add7 add9
1Q2 bc add4 add6 add8
1Q1 | add2 add3 add5 add7
1Q0 | addl bc add4 add6
CQ5

CQ4

CQ3

CQ2

CQ1 add2 add3 add5
CQo addl bc add4

In this example, the Branch Conditional (bc) instruction is encoded to decrement the CTR. It is predicted as
not-taken in clock cycle 0. In clock cycle 2, bc and add3 are both dispatched. In clock cycle 3, the architected
CTR is updated, and the bc instruction is retired from the completion queue.

6.4.1.3 Branch Prediction and Resolution

The 750GX supports the following two types of branch prediction:

« Static branch prediction—This is defined by the PowerPC Architecture as part of the encoding of branch
instructions.

» Dynamic branch prediction—This is a processor-specific mechanism implemented in hardware (in partic-
ular the branch history table, or BHT) that monitors branch instruction behavior and maintains a record
from which the next occurrence of the branch instruction is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU predicts whether it will
be taken, and instruction fetching proceeds down the predicted path. If the branch prediction resolves as

incorrect, the instruction queue and all subsequently executed instructions are purged, instructions executed
prior to the predicted branch are allowed to complete, and instruction fetching resumes down the correct path.

The 750GX executes through two levels of prediction. Instructions from the first unresolved branch can
execute, but they cannot be retired until the branch is resolved. If a second branch instruction is encountered
in the predicted instruction stream, it can be predicted and instructions can be fetched, but not executed, from
the second branch. No action can be taken for a third branch instruction until at least one of the two previous
branch instructions is resolved.

The number of instructions that can be executed after the issue of a predicted branch instruction is limited by
the fact that no instruction executed after a predicted branch can actually update (be retired) the register files
or memory until the branch is resolved. That is, instructions can be issued and executed, but cannot be
retired from the completion unit. When an instruction following a predicted branch completes execution, it
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does not write back its results to the architected registers. Instead, it stalls in the completion queue. Of
course, when the completion queue is full, no additional instructions can be dispatched, even if an execution
unit is idle.

In the case of a misprediction, the 750GX can easily redirect the instruction stream because the programming
model has not been updated. When a branch is mispredicted, all instructions that were dispatched after the
predicted branch instruction are flushed from the completion queue, and any results are flushed from the
Rename Registers.

The BTIC is a cache of two recently used instructions at the target (branch-to address) of branch instructions.
If a taken-branch hits in the BTIC, two instructions are fed into the instruction queue on the next cycle. If a
taken-branch misses in the BTIC, instruction fetching is done from the L1 instruction cache. Coherency of the
BTIC table is maintained by table reset on an instruction-cache flash invalidate, icbi or rfi instruction execu-
tion, or when an exception is taken.

In some situations, an instruction sequence creates dependencies that keep a branch instruction from being
predicted because the address for the target of the branch is not available. This delays execution of the
subsequent instruction stream. The instruction sequences and the resulting action of the branch instruction
are as follows:

* An mtspr(LR) followed by a Branch Conditional to Link Register (bclr)—Fetching stops, and the branch
waits for the mtspr to execute.

« An mtspr(CTR) followed by a Branch Conditional to Count Register (bcctr)—Fetching stops, and the
branch waits for the mtspr to execute.

* An mtspr(CTR) followed by a bc (CTR decrement)—Fetching stops, and the branch waits for the mtspr
to execute.

» Athird bc (based on CR) is encountered while there are two unresolved bc (based on CR) instructions.
The third bc (based on CR) is not executed, and fetching stops until one of the previous bc (based on
CR) instructions is resolved. (Note that branch conditions can be a function of the CTR and the CR; if the
CTR condition is sufficient to resolve the branch, then a CR-dependency is ignored.)

Static Branch Prediction

The PowerPC Architecture provides a field in branch instructions (the BO field) to allow software to speculate
(hint) whether a branch is likely to be taken. Rather than delaying instruction processing until the condition is
known, the 750GX uses the instruction encoding to predict whether the branch is likely to be taken and
begins fetching and executing along that path. When the branch condition is known, the prediction is evalu-
ated. If the prediction was correct, program flow continues along that path. Otherwise, the processor flushes
any instructions and their results from the mispredicted path, and program flow resumes along the correct
path.

Static branch prediction is used when HIDO[BHT] is cleared. That is, the branch history table, which is used
for dynamic branch prediction, is disabled.

For information about static branch prediction, see “Conditional Branch Control,” in Chapter 4, “Addressing
Modes and Instruction Set Summary” in the PowerPC Microprocessor Family: The Programming Environ-
ments Manual.
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Predicted Branch Timing Examples

Figure 6-10 on page 231 shows cases where branch instructions are predicted. It shows how both taken and
not-taken branches are handled, and how the 750G X handles both correct and incorrect predictions. The

example shows the timing for the following instruction sequence:

0 add

1 add

2 bc

3 mulhw
4 bcTO
5 fadd
6 and

7 or

8 sub

TO add
T1 add
T2 add
T3 add
T4 and
T5 or
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| | | |
| I I ‘ T3 add
[ [ [ [
: : : T4 and
: : : T5 or
[ [ [ [ [
[ [ [ [ [
| | | | | |
[ [ [ [ [
[ [ [ [ [ [
| | | | | |
Instruction | I I I I |
Queue I I I I I |
| | | | | |
[ [ [ [ [ [
\ 3 [ 5 [ I T5 |[I| T5 |I
| | | | | |
112 (bc) | 4 \ T4 | T4
1 3 11 T3 T3
0 2 TO T2 T2
Completion
Queue
3 Tl
2 TO Tl
1 3 TO
0 0 2 3

®) ®) ®)
@) ) @)
6 6 6 6
5 5 5 5

* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency.

1. During clock cycle 0, instructions 0 and 1 are dispatched to their respective execution units. Instruction 2
is a branch instruction that updates the CTR. It is predicted as not taken in clock cycle 0. Instruction 3 is a
Multiply High Word (mulhw) instruction on which instruction 4 depends.
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2. In clock cycle 1, instructions 2 and 3 enter the dispatch entries in the 1Q. Instruction 4 (a second bc
instruction) and 5 are fetched. The second bc instruction is predicted as taken. It can be folded, but it
cannot be resolved until instruction 3 writes back.

3. In clock cycle 2, instruction 4 has been folded and instruction 5 has been flushed from the I1Q. The two
target instructions, TO and T1, are both in the BTIC, so they are fetched in this cycle. Note that, even
though the first bc instruction might not have resolved by this point (we can assume it has), the 750GX
allows fetching from a second predicted branch stream. However, these instructions could not be dis-
patched until the previous branch has resolved.

4. In clock cycle 3, target instructions T2—T5 are fetched as TO and T1 are dispatched.

5. In clock cycle 4, instruction 3, on which the second branch instruction depended, writes back, and the
branch prediction is proven incorrect. Even though TO is in CQ1, from which it could be written back, it is
not written back because the branch prediction was incorrect. All target instructions are flushed from their
positions in the pipeline at the end of this clock cycle, as are any results in the Rename Registers.

After one clock cycle required to refetch the original instruction stream, instruction 5, the same instruction that
was fetched in clock cycle 1, is brought back into the IQ from the instruction cache, along with three others
(not all of which are shown).

6.4.2 Integer Unit Execution Timing

The 750GX has two integer units. The IU1 can execute all integer instructions; the IU2 can execute all integer
instructions except multiply and divide instructions. As shown in Figure 6-2 on page 212, each integer unit
has one execute pipeline stage. Thus, when a multicycle (for example, divide) integer instruction is being
executed, no additional integer instruction can begin to execute in that unit. However, the other unit IU2 can
continue to execute integer instructions. Table 6-7 on page 240 lists integer instruction latencies. Most
integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing

The floating-point unit on the 750GX executes all floating-point instructions. Execution of most floating-point
instructions is pipelined within the FPU, allowing up to three instructions to execute in the FPU concurrently.
While most floating-point instructions execute with 3-cycle or 4-cycle latency, and 1-cycle or 2-cycle
throughput, two instructions, fdivs and fdiv, execute with latencies of 11 to 33 cycles. The following instruc-
tions block the floating-point unit pipeline until they complete execution:

» Floating Divide Single (fdivs)

* Floating Divide (fdiv)

* Move-to Floating-Point Status and Control Register [FPSCR] Bit 0 (mtfsb0)
e Move-to FPSCR Bit 1(mtfsh1)

* Move-to FPSCR Field Immediate (mtfsfi)

* Move-from FPSCR (mffs)

* Move-to FPSCR Fields (mtfsf)

Thus, they inhibit the dispatch of additional floating-point instructions. See Table 6-8 on page 242 for floating-
point instruction execution timing.

6.4.4 Effect of Floating-Point Exceptions on Performance

For the fastest and most predictable floating-point performance, all exceptions should be disabled in the

FPSCR and Machine State Register (MSR).
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6.4.5 Load/Store Unit Execution Timing

The execution of most load-and-store instructions is pipelined. The LSU has two pipeline stages. The first is
for effective address calculation and MMU translation, and the second is for accessing data in the cache.
Load-and-store instructions have a 2-cycle latency and 1-cycle throughput. For instructions that store FPR
values (Store Floating-Point Double [stfd], Store Floating-Point Single [stfs], and their variations), the data to
be stored is prefetched from the source register during the first pipeline stage. In cases where this register is
updated that same cycle, the instruction will stall to get the correct data, resulting in one additional cycle of
latency.

If operands are misaligned, additional latency might be required either for an alignment exception to be taken
or for additional bus accesses. Load instructions that miss in the cache block require subsequent cache
accesses during the cache-line refill. Table 6-9 on page 244 gives load-and-store instruction execution laten-
cies.

6.4.6 Effect of Operand Placement on Performance

The PowerPC virtual environment architecture (VEA) states that the placement (location and alignment) of
operands in memory might affect the relative performance of memory accesses, and in some cases affect it
significantly. The effects memory operand placement has on performance are shown in Table 6-2.

The best performance is guaranteed if memory operands are aligned on natural boundaries. For the best
performance across the widest range of implementations, the programmer should assume the performance
model described in Chapter 3, “Operand Conventions” in the PowerPC Microprocessor Family: The Program-
ming Environments Manual.

The effect of misalignment on memory-access latency is the same for big and little-endian addressing modes
except for multiple and string operations that cause an alignment exception in little-endian mode.

Table 6-2. Performance Effects of Memory Operand Placement (Page 1 of 2)

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection
Boundary
Integer
4 Optimalt — — —
4 byte
<4 Optimal Good? Good Good
2 Optimal — — —
2 byte
<2 Optimal Good Good Good
1 byte 1 Optimal — — —
Load Multiple Word (Imw), 4 Good Good Good Good
Store Multiple Word (stmw)3 <4 Poor? Poor Poor Poor
String® — Good Good Good Good
Note:
1. Optimal means one EA calculation occurs.
2. Good means multiple EA calculations occur that might cause additional bus activities with multiple bus transfers.
3. Not supported in little-endian mode; causes an alignment exception.
4. Poor means that an alignment exception occurs.
gx_06.fm.(1.2) Instruction Timing
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Table 6-2. Performance Effects of Memory Operand Placement (Page 2 of 2)

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection
Boundary
Floating-Point
8 Optimal — — —
8 byte 4 — Good Good Good
<4 — Poor Poor Poor
4 Optimal — — —
4 byte
<4 Poor Poor Poor Poor

Note:

1. Optimal means one EA calculation occurs.

. Good means multiple EA calculations occur that might cause additional bus activities with multiple bus transfers.
Not supported in little-endian mode; causes an alignment exception.

Poor means that an alignment exception occurs.

ENEREN

6.4.7 Integer Store Gathering

The 750GX performs store gathering for write-through operations to nonguarded space. It performs cache-
inhibited stores to nonguarded space for 4-byte, word-aligned stores. These stores are combined in the LSU
to form a double word and are sent out on the 60x bus as a single-beat operation. However, stores are gath-
ered only if the successive stores meet the criteria and are queued and pending. Store gathering occurs
regardless of the address order of the stores. Store gathering is enabled by setting HIDO[SGE]. Stores can be
gathered in both endian modes.

Store gathering is not done for:

» Cacheable store operations

« Stores to guarded cache-inhibited or write-through space
« Byte-reverse store operations

« Store Word Conditional Indexed (stwcx.) instructions

« External Control Out Word Indexed (ecowx) instructions
« A store that occurs during a table-search operation
 Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an Enforce In-Order
Execution of 1/O (eieio) or Synchronize (sync) instruction must be used to prevent two stores from being
gathered.

6.4.8 System Register Unit Execution Timing

Most instructions executed by the SRU either directly access renamed registers or access or modify
nonrenamed registers. They generally execute in a serial manner. Results from these instructions are not
available to subsequent instructions until the instruction completes and is retired. See Section 6.3.2.7,
Instruction Serialization for more information on serializing instructions executed by the SRU, and see
Table 6-5 on page 238 and Table 6-6 on page 240 for SRU instruction execution timings.
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6.5 Memory Performance Considerations

Because the 750GX can have a maximum instruction throughput of three instructions per clock cycle, lack of
memory bandwidth can affect performance. For the 750G X to maximize performance, it must be able to read
and write data efficiently. If a system has multiple bus devices, one of them might experience long memory
latencies while another bus master (for example, a direct memory-access controller) is using the external
bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC Architecture defines WIM bits that are used to
configure memory regions as caching enforced or caching inhibited. Accesses to such memory locations
never update the L1 cache. If a cache-inhibited access hits the L1 cache, the cache block is invalidated. If the
cache block is marked modified, it is copied back to memory before being invalidated. Where caching is
permitted, memory is configured as either write-back or write-through, which are described as follows:

Write-back Configuring a memory region as write-back lets a processor modify data in the
cache without updating system memory. For such locations, memory updates
occur only on modified cache-block replacements, cache flushes, or when one
processor needs data that is modified in another’s cache. Therefore, configuring
memory as write-back can help when bus traffic could cause bottlenecks, espe-
cially for multiprocessor systems and for regions in which data, such as local vari-
ables, is used often and is coupled closely to a processor.

If multiple devices use data in a memory region marked write-through, snooping
must be enabled to allow the copy-back and cache invalidation operations neces-
sary to ensure cache coherency. The 750GX’s snooping hardware keeps other
devices from accessing invalid data. For example, when snooping is enabled, the
750G X monitors transactions of other bus devices. If another device needs data
that is modified on the 750GX’s cache, the access is delayed so the 750GX can
copy the modified data to memory.

Write-through Store operations to memory marked write-through always update both system
memory and the L1 cache on cache hits. Because valid cache contents always
match system memory marked write-through, cache hits from other devices do not
cause modified data to be copied back as they do for locations marked write-back.
However, all write operations are passed to the bus, which can limit performance.
Load operations that miss the L1 cache must wait for the external store operation.

Write-through configuration is useful when cached data must agree with external
memory (for example, video memory), when shared (global) data might be needed
often, or when it is undesirable to allocate a cache block on a cache miss.

Chapter 3, Instruction-Cache and Data-Cache Operation, on page 121 describes the caches, memory config-
uration, and snooping in detail.
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6.5.2 Effect of TLB Miss

If a page-address translation is not in a translation lookaside buffer (TLB), the 750GX hardware searches the
page tables and updates the TLB when a translation is found. Table 6-3 shows the estimated latency for the
hardware TLB load for different cache configurations and conditions.

Table 6-3. TLB Miss Latencies

L1 (_Zondition L2 Condition Processor/Systgm Bus Estimated Latency
(Instruction and Data) Clock Ratio (Cycles)
100% cache hit — — 7
100% cache miss 100% cache hit — 13
100% cache miss 100% cache miss 2.5:1 (6:3:3:3 memory) 62
100% cache miss 100% cache miss 4:1 (5:2:2:2 memory) 77

The page table entry (PTE) table search assumes a hit in the first entry of the primary page-table-entry group
(PTEG).

6.6 Instruction Scheduling Guidelines

The performance of the 750GX can be improved by avoiding resource conflicts and scheduling instructions to
take fullest advantage of the parallel execution units. Instruction scheduling on the 750GX can be improved
by observing the following guidelines:

» To reduce mispredictions, separate the instruction that sets CR bits from the branch instruction that eval-
uates them. Because there can be no more than 12 instructions in the processor (with the instruction that
sets CR in CQO and the dependent branch instruction in 1Q5), there is no advantage to having more than
10 instructions between them.

 Likewise, when branching to a location specified by the CTR or LR, separate the mtspr instruction that
initializes the CTR or LR from the dependent branch instruction. This ensures the register values are
available sooner to the branch instruction.

» Schedule instructions so that two can be dispatched at a time.
» Schedule instructions to minimize stalls due to execution units being busy.

» Avoid scheduling high-latency instructions close together. Interspersing single-cycle latency integer
instructions between longer-latency instructions minimizes the effect that instructions such as integer and
floating-point divide and multiply can have on throughput.

« Avoid using serializing instructions.
» Schedule instructions to avoid dispatch stalls.

— Six instructions can be tracked in the completion queue. Therefore, only six instructions can be in the
execute stages at any one time.

— There are six GPR Rename Registers. Therefore, only six GPRs can be specified as destination
operands at any time. If no Rename Registers are available, instructions cannot enter the execute
stage and remain in the reservation station or instruction queue until they become available.

Note: Load with update address instructions use two Rename Registers.

— Similarly, there are six FPR Rename Registers, so only six FPR destination operands can be in the
execute and complete stages at any time.
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6.6.1 Branch, Dispatch, and Completion-Unit Resource Requirements

This section describes the specific resources required to avoid stalls during branch resolution, instruction
dispatching, and instruction completion.

6.6.1.1 Branch-Resolution Resource Requirements
The following branch instructions and resources are required to avoid stalling the fetch unit in the course of
branch resolution:

* The bclr instruction requires LR availability.

* The bcctr instruction requires CTR availability.

« Branch and link instructions require shadow LR availability.

« The “branch conditional on counter decrement and the CR” condition requires CTR availability or the CR
condition must be false, and the 750G X cannot execute instructions after an unresolved predicted branch
when the BPU encounters a branch.

« A branch conditional on CR condition cannot be executed following an unresolved predicted branch
instruction.

6.6.1.2 Dispatch-Unit Resource Requirements

The following resources are required to avoid stalls in the dispatch unit. IQ0 and 1Q1 are the two dispatch
entries in the instruction queue:

» Requirements for dispatching from 1QO are:

Needed execution unit available.

Needed GPR Rename Registers available.

Needed FPR Rename Registers available.

Completion queue is not full.

A completion-serialized instruction is not being executed.

« Requirements for dispatching from 1Q1 are:

— Instruction in IQ0 must dispatch.

— Instruction dispatched by 1QO0 is not completion- or refetch-serialized.
— Needed execution unit is available after dispatch from 1QO.

— Needed GPR Rename Registers are available after dispatch from 1QO.
— Needed FPR Rename Register is available after dispatch from 1QO0.

— Completion queue is not full after dispatch from 1QO.

6.6.1.3 Completion-Unit Resource Requirements

The following is a list of resources required to avoid stalls in the completion unit. Note that the two completion
entries are described as CQO0 and CQ1, where CQO is the completion queue located at the end of the
completion queue (see Figure 6-4 on page 218).

» Requirements for completing an instruction from CQO:

— Instruction in CQO0 must be finished.
— Instruction in CQO must not follow an unresolved predicted branch.
— Instruction in CQO must not cause an exception.
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» Requirements for completing an instruction from CQ1:

— Instruction in CQO must complete in same cycle.

— Instruction in CQ1 must be finished.

— Instruction in CQ1 must not follow an unresolved predicted branch.

— Instruction in CQ1 must not cause an exception.

— Instruction in CQ1 must be an integer or load instruction.

— Number of CR updates from both CQO and CQ1 must not exceed two.
— Number of GPR updates from both CQ0 and CQ1 must not exceed two.
— Number of FPR updates from both CQO0 and CQ1 must not exceed two.

6.7 Instruction Latency Summary

Table 6-4 through Table 6-9 list the latencies associated with instructions executed by each execution unit.

Table 6-4 describes branch instruction latencies.

Table 6-4. Branch Instructions

. . Primary Extended
Instruction Mnemonic Opcode Opcode
Branch b[l][a] 18 —
Branch Conditional bell][a] 16 —
Branch Conditional to
Count Register beetr(] 19 528
Branch Conditional to belr[l] 19 16

Link Register

Table 6-5 lists system-register instruction latencies.

Table 6-5. System-Register Instructions (Page 1 of 2)

. . Primary Extended
Instruction Mnemonic Opcode Opcode
Enforce In-Order -
Execution of I/O eleio sl 854
Instruction Synchronize isync 19 150
Move-from Machine mfmsr 31 83

State Register

Latency

Unless these instructions update either the CTR or the LR,
branch operations are folded if they are either taken or pre-
dicted as taken. They fall through if they are not taken or pre-
dicted as not taken.

Unit Cycles Serialization
SRU 1 —

SRU 2 Completion, refetch
SRU 1 —

1. This 3-cycle operation assumes no pending stores in the store queue. If there are pending stores, the sync completes after the
stores complete to memory. If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.

2. tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is dispatched. Upon
retirement, it waits for an external TLB Invalidate Synchronize (TLBISYNC) signal to be asserted. In most systems, TLBISYNC is

always asserted so the instruction is a no-op.
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Table 6-5. System-Register Instructions (Page 2 of 2)

. . Primary Extended . e
Instruction Mnemonic Opcode Opcode Unit Cycles Serialization
mfspr (data
block-address 31 339 SRU 3 Execution
translations
[DBATS])
Move-from Special . mfspr_
Purpose Register (instruction
block-address 31 339 SRU 3 —
translations
[IBATSs])
mfspr (not )
I/DBATS) 31 339 SRU 1 Execution
Move-from Segment mfsr 31 595 SRU 3 —
Register
Move-from Segment . .
Register Indirect mfsrin 31 659 SRU 3 Execution
Move-from Time Base mftb 31 371 SRU 1 —
Move-to Machine State mtmsr 31 146 SRU 1 Execution
Register
mtspr .
(DBATS) 31 467 SRU 2 Execution
Move-to Special mtspr .
Purpose Register (IBATSs) 31 467 SRU 2 Execution
mtspr (not )
I/DBATS) 31 467 SRU 2 Execution
Move-to Segment .
Register mtsr 31 210 SRU 2 Execution
Move-to Segment . .
Register Indirect mtsrin 31 242 SRU 2 Execution
Move-to Time Base mttb 31 467 SRU 1 Execution
Register
Return from Interrupt rfi 19 50 SRU 2 Completion, refetch
System Call sc 17 --1 SRU 2 Completion, refetch
Synchronize sync 31 598 SRU 3! —
TLB Synchronize tibsync? 31 566 — —

1. This 3-cycle operation assumes no pending stores in the store queue. If there are pending stores, the sync completes after the
stores complete to memory. If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.

2. tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is dispatched. Upon
retirement, it waits for an external TLB Invalidate Synchronize (TLBISYNC) signal to be asserted. In most systems, TLBISYNC is
always asserted so the instruction is a no-op.
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Table 6-6 lists condition register logical instruction latencies.

Table 6-6. Condition Register Logical Instructions

. . Primary
Instruction Mnemonic Opcode
Condition Register AND crand 19
Cond_ltlon Register AND crande 19
with Complement
Condition Register
Equivalent creqv 19
Condition Register
NAND crnand 19
Condition Register NOR crnor 19
Condition Register OR cror 19
Conqmon Register OR crore 19
with Complement
Condition Register XOR crxor 19
Move Condition
Register Field merf 19
Move to Condition
Register from XER merxr 31
Move From_ Condition mfer 31
Register
Move To Condition mtcrf 31

Register Fields

Extended
Opcode

257

129

289

225

33
449

417

193

512

19

144

Unit

SRU

SRU

SRU

SRU

SRU
SRU

SRU

SRU

SRU

SRU

SRU

SRU

Cycles

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Serialization

Table 6-7 shows integer instruction latencies. Note that the U1 executes all integer arithmetic instructions—
multiply, divide, shift, rotate, add, subtract, and compare. The U2 executes all integer instructions except
multiply and divide (shift, rotate, add, subtract, and compare).

Table 6-7. Integer Instructions (Page 1 of 3)

Instruction Mnemonic gg?:d"g

Add Carrying addc[o][.] 31

Add Extended adde[o][.] 31

Add Immediate addi 14

Add Immediate Carrying addic 12

Add Immediate Carrying addic. 13
and Record

Add Immediate Shifted addis 15

Addto Minus One - agdmefo](J 31

Add to Zero Extended | addze[o][.] 31

Add add[o][.] 31

AND with Complement andcl.] 31

AND Immediate andi. 28

Instruction Timing
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Extended
Opcode

10
138

234

202
266
60

Unit

IU1/1u2
u11u2
1u11u2
IU1/1U2

1u11u2

Iu1/1u2

1u11u2

IU1/1u2
1u11u2
IU1/1u2
1u1/1u2

Cycles

PRk e

PR R e

Execution

Execution

Execution

Serialization
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Table 6-7. Integer Instructions (Page 2 of 3)

Instruction Mnemonic gg?:d"g Eé(:]ecr:)(éid Unit Cycles Serialization
AND Immediate Shifted andis. 29 — Iu1/1U2 1 —
AND and[.] 31 28 1U1/1U2 1 —
Compare cmp 31 0 IU11U2 1 —
Compare Immediate cmpi 11 — Iu1/1U2 1 —
Compare Logical cmpl 31 32 1U1/1U2 1 —
Conpr%f diLac;gica' cmpli 10 — 1U1/1U2 1 —
Count L\‘,’\"/"grigg 28105 | Chtizw[] 31 26 ULIU2 1 —
Divide Word Unsigned | divwu[o][.] 31 459 U1 19 —
Divide Word divw[o][.] 31 491 U1 19 —
Equivalent eqv[.] 31 284 Iu11u2 1 —
Extend Sign Byte extsbl.] 31 954 1U1/1U2 1 —
Extend Sign Halfword extsh[.] 31 922 Iu11u2 1 —
Multiply High Word ik 31 11 U1 2,3,4,56 —

Unsigned
Multiply High Word mulhwl.] 31 75 U1 2,3,45 | —
Multiply Low Immediate mulli 7 — U1 2,3 —
Multiply Low Word mullw([o][.] 31 235 U1 2,3,4,5 —
NAND nand[.] 31 476 1U1/1U2 1 —
Negate neg[o][.] 31 104 1U1/1U2 1 —
NOR nor[.] 31 124 1U1/1U2 1 —
OR with Complement orcl[.] 31 412 Iu1/1U2 1 —
OR Immediate ori 24 — IU1/1U2 1 —
OR Immediate Shifted oris 25 — IU1/1U2 1 —
OR or[.] 31 444 1U1/1U2 1 —
Rotate Left Word

Immediate then riwimil.] 20 — IU1/1U2 1 —

Mask Insert

Rotate Left Word
Immediate then riwinm{.] 21 — Iu1/1U2 1 —
AND with Mask

Rotate Left Word then

PN rlwnm[] 23 — IUL/1U2 1 -
Shift Left Word slw[] 31 24 U1/1U2 1 —
Sr\‘/'\‘;gf(;gl:i rﬁ'egdei;’tr:'c srawi[] 31 824 UL1U2 1 —
Shift R'%‘gﬁgebra'c sraw[] 31 792 IUL/1U2 1 -
Shift Right Word srwl[.] 31 536 1U1/1U2 1 —
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Table 6-7. Integer Instructions (Page 3 of 3)

Primary Extended

Instruction Mnemonic Opcode Opcode Unit Cycles Serialization
Subtract From Carrying | subfc[o][.] 31 8 IU1/1U2 1 —
Subtract From )
Extended subfe[o][.] 31 136 1U1/1U2 1 Execution
Subtract From .
Immediate Carrying subfic 8 — 1U1/1U2 1 —
Subtract From Minus )
One Extended subfme[o][.] 31 232 1U1/1U2 1 Execution
Subtract From Zero .
Extended subfze[o][.] 31 200 Iu1/1u2 1 Execution
Subtract From subf[.] 31 40 Iu1/1U2 1 —
Trap Word tw 31 4 IU1/1U2 2 —
Trap Word Immediate twi 3 — 1U1/1U2 2 —
XOR Immediate xori 26 — Iu1/1U2 1 —
XOR Immediate Shifted Xoris 27 — Iu1/1U2 1 —
XOR xor[.] 31 316 IU1/1U2 1 —

Table 6-8 shows latencies for floating-point instructions. Pipelined floating-point instructions are shown with
the number of clocks in each pipeline stage separated by dashes. Floating-point instructions with a single
entry in the cycles column are not pipelined. When the FPU executes these nonpipelined instructions, it
remains busy for the full duration of the instruction execution and is not available for subsequent instructions.

Table 6-8. Floating-Point Instructions (Page 1 of 2)

Instruction Mnemonic Primary Extended Unit Cycles Serialization
Opcode Opcode

Floating Absolute Value fabs[.] 63 264 FPU 1-1-1 —

Floating Add Single faddsJ.] 59 21 FPU 1-1-1 —

Floating Add fadd[.] 63 21 FPU 1-1-1 —
Floating Compare

Ordered fcmpo 63 32 FPU 1-1-1 —

Floating Compare fempu 63 0 EPU 111 .

Unordered

Floating Convert To
Integer Word with fctiwzl[.] 63 15 FPU 1-1-1 —
Round toward Zero

Floating Convert To

Integer Word fctiwl.] 63 14 FPU 1-1-1 —
Floating Divide Single fdivs[.] 59 18 FPU 17 —
Floating Divide fdiv[.] 63 18 FPU 31 —
Floating Multiply-Add ¢, 4451 59 29 FPU 111 —
Single
Floating Multiply-Add fmadd[.] 63 29 FPU 2-1-1 —
Floating Move Register fmr[.] 63 72 FPU 1-1-1 —
Instruction Timing gx_06.fm.(1.2)
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Table 6-8. Floating-Point Instructions (Page 2 of 2)

. . Primary Extended . e
Instruction Mnemonic Opcode Opcode Unit Cycles Serialization
Floating Multiply- e .
Subtract Single fmsubs|.] 59 28 FPU 1-1-1
Floating Multiply-
Subtract fmsubl[.] 63 28 FPU 2-1-1 —
Floating Multiply Single fmulsl[.] 59 25 FPU 1-1-1 —
Floating Multiply fmull.] 63 25 FPU 2-1-1 —
Floating Negative
Absolute Value fnabsl.] 63 136 FPU 1-1-1 —
Floating Negate fnegl[.] 63 40 FPU 1-1-1 —
Floating Negative
Multiply-Add Single fnmadds|.] 59 31 FPU 1-1-1 —
Floating Negative
Multiply-Add fnmaddl[.] 63 31 FPU 2-1-1 —
Floating Negative
Multiply-Subtract Single fnmsubs(] 59 30 FPU 111 -
Floating Negative
Multiply-Subtract fnmsubl[.] 63 30 FPU 2-1-1 —
Floating Reciprocal
Estimate Single fres[.] 59 24 FPU 2-1-1 —
Floating Round to
Single-Precision frsp[] 63 12 FPU 1-1-1 —
Floating Reciprocal
Square Root Estimate frsqrte[.] 63 26 FPU 2-1-1 —
Floating Select fsell.] 63 23 FPU 1-1-1 —
Floating Subtract Single fsubsl.] 59 20 FPU 1-1-1 —
Floating Subtract fsubl[.] 63 20 FPU 1-1-1 —
Move to Condition .
Register from FPSCR mcrfs 63 64 FPU 1-1-1 Execution
Move From FPSCR mffs[.] 63 583 FPU 1-1-1 Execution
Move To FPSCR Bit 0 mtfsbO[.] 63 70 FPU 3 —
Move To FPSCR Bit 1 mtfsb1[.] 63 38 FPU 3 —
Move To FPSCR Field .
Immediate mtfsfi[.] 63 134 FPU 3 —
Move To FPSCR Fields mtfsf[.] 63 711 FPU 3 —
gx_06.fm.(1.2) Instruction Timing

March 27, 2006 Page 243 of 377



User's Manual

IBM PowerPC 750GX and 750GL RISC Microprocessor

Table 6-9 shows load-and-store instruction latencies. Pipelined load/store instructions are shown with cycles
of total latency and throughput cycles separated by a colon.

Table 6-9. Load-and-Store Instructions (Page 1 of 4)

Instruction

Data Cache Block Flush

Data Cache Block
Invalidate

Data Cache Block Store

Data Cache Block
Touch

Data Cache Block
Touch for Store

Data Cache Block set to
Zero

External Control In
Word Indexed

External Control Out
Word Indexed

Instruction Cache Block
Invalidate

Load Byte and Zero

Load Byte and Zero with
Update

Load Byte and Zero with
Update Indexed

Load Byte and Zero
Indexed

Load Floating-Point
Double

Load Floating-Point
Double with Update

Load Floating-Point
Double with Update
Indexed

Load Floating-Point
Double Indexed

Load Floating-Point
Single

Load Floating-Point

Single with Update

Load Floating-Point
Single with Update
Indexed

Mnemonic

dcbf

dcbi

dcbst

dcbt

dcbtst

dcbz

eciwx

ecowx

icbi

Ibz

Ibzu

Ibzux

Ibzx

Ifd

Ifdu

Ifdux

Ifdx

Ifs

Ifsu

Ifsux

Primary
Opcode

31
31
31

31

31

31

31

31

31
34

35

31

31

50

51

31

31

48

49

31

Extended
Opcode

86
470
54

278

246

1014

310

438

982

119

87

631

599

567

Unit

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

2:1

3:612

2:1

2:1

341
2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

2:1

Serialization

Execution

Execution

Execution

Execution

Execution

1. For cache operations, the first number indicates the latency in finishing a single instruction; the second indicates the throughput for
back-to-back cache operations. Throughput might be larger than the initial latency, as more cycles might be needed to complete
the instruction to the cache, which stays busy keeping subsequent cache operations from executing.

2. The throughput number of six cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address space,
throughput is at least 11 cycles.

3. Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of cycles, where n
is the number of words accessed by the instruction.
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Table 6-9. Load-and-Store Instructions (Page 2 of 4)

. . Primary Extended . e
Instruction Mnemonic Opcode Opcode Unit Cycles Serialization
Load Floating-Point .
Single Indexed Ifsx 31 535 LSU 2:1 —
Load Halfword .
Algebraic lha 42 — LSU 2:1 —
Load Halfword .
Algebraic with Update Ihau 43 - Lsu 21 -
Load Halfword
Algebraic with Update Ihaux 31 375 LSU 2:1 —
Indexed
Load Halfword .
Algebraic Indexed Ihax 81 343 LSu 21 -
Load Halfword Byte- Ihbrx 31 790 LSU 21 -
Reverse Indexed
Load Halfword and Zero lhz 40 — LSU 2:1 —
Load Halfword and Zero .
with Update lhzu 41 — LSU 2:1 —
Load Halfword and Zero .
with Update Indexed Ihzux sl sll LSU 21 -
Load Halfword and Zero .
Indexed lhzx 31 279 LSU 2:1 —
Load Multiple Word Imw 46 — LSU 2+n8 Completion, execution
Load Strlng Word Iswi 31 597 LSU 2+n3 Completion, execution
Immediate
Load String Word Iswx 31 533 LSU 2+n3 Completion, execution
Indexed
Load Word And lwarx 31 20 LSuU 31 Execution
Reserve Indexed
Load Word Byte- Iwbrx 31 534 LSU 211 —
Reverse Indexed
Load Word and Zero lwz 32 — LSU 2:1 —
Load Word and Zero .
with Update lwzu 33 — LSU 2:1 —
Load Word and Zero .
with Update Indexed lwzux sl 55 LSU 21 -
Load Word and Zero .
Indexed lwzx 31 23 LSU 2:1 —
Store Byte stb 38 — LSU 2:1 —
Store Byte with Update stbu 39 — LSU 2:1 —
Store Byte with Update stbux 31 247 LSU 21—
Store Byte Indexed stbx 31 215 LSU 2:1 —

1. For cache operations, the first number indicates the latency in finishing a single instruction; the second indicates the throughput for
back-to-back cache operations. Throughput might be larger than the initial latency, as more cycles might be needed to complete
the instruction to the cache, which stays busy keeping subsequent cache operations from executing.

2. The throughput number of six cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address space,
throughput is at least 11 cycles.

3. Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of cycles, where n
is the number of words accessed by the instruction.
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Table 6-9. Load-and-Store Instructions (Page 3 of 4)

. . Primary Extended . e
Instruction Mnemonic Opcode Opcode Unit Cycles Serialization
Store Floating-Point .
Double stfd 54 — LSU 2:1 —
Store Floating-Point .
Double with Update stfdu 55 - LSU 21 -
Store Floating-Point
Double with Update stfdux 31 759 LSU 2:1 —
Indexed
Store Floating-Point .
Double Indexed stfdx 31 727 LSU 2:1 —
Store Floating-Point as . .
Integer Word Indexed stfiwx 31 983 LSu 21 o
Store FIc_)atlng-Pomt stfs 52 . LsU 21 .
Single
Store Floating-Point .
Single with Update stfsu 53 o LSu 21 o
Store Floating-Point
Single with Update stfsux 31 695 LSU 2:1 —
Indexed
Store Floating-Point .
Single Indexed stfsx 31 663 LSU 2:1 —
Store Halfword sth 44 — LSU 2:1 —
Store Halfword Byte- sthbrx 31 918 LSU 21 —
Reverse Indexed
Store Halfword with sthu 45 . LsuU 21 .
Update
Store Halfword with X
Update Indexed sthux 31 439 LSU 2:1 —
Store Halfword Indexed sthx 31 407 LSU 2:1 —
Store Multiple Word stmw 47 — LSU 2+n3 Execution
Store String Word Stswi 31 725 LSU 2+n%  Execution
Immediate
Store String Word stswx 31 661 LSU 2+n%  Execution
Indexed
Store Word stw 36 — LSU 2:1 —
Store Word Byte- .
Reverse Indexed stwbrx 31 662 LSU 2:1 —
Store Word Conditional . .
Indexed stwcx. 31 150 LSU 8:8 Execution
Store Word with Update stwu 37 — LSU 2:1 —

1. For cache operations, the first number indicates the latency in finishing a single instruction; the second indicates the throughput for
back-to-back cache operations. Throughput might be larger than the initial latency, as more cycles might be needed to complete
the instruction to the cache, which stays busy keeping subsequent cache operations from executing.

2. The throughput number of six cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address space,
throughput is at least 11 cycles.

3. Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of cycles, where n
is the number of words accessed by the instruction.
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Table 6-9. Load-and-Store Instructions (Page 4 of 4)

. . Primary
Instruction Mnemonic Opcode
Store Word with Update
Indexed stwux 31
Store Word Indexed stwx 31
TLB Invalidate Entry tibie 31
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Extended
Opcode

183

151
306

Unit Cycles Serialization
LSU 2:1 —

LSU 2:1 —

LSU 3:41 Execution

1. For cache operations, the first number indicates the latency in finishing a single instruction; the second indicates the throughput for
back-to-back cache operations. Throughput might be larger than the initial latency, as more cycles might be needed to complete
the instruction to the cache, which stays busy keeping subsequent cache operations from executing.

2. The throughput number of six cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address space,

throughput is at least 11 cycles.

3. Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of cycles, where n

is the number of words accessed by the instruction.
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7. Signal Descriptions

This chapter describes the 750GX microprocessor’s external signals. It contains a concise description of indi-
vidual signals, showing behavior when the signal is asserted and negated and when the signal is an input and
an output.

Note: A bar over a signal name indicates that the signal is active low—for example, ARTRY (address retry)
and TS (transfer start). Active-low signals are referred to as asserted (active) when they are low and negated

when they are high. Signals that are not active low, such as A[0-31] (address-bus signals) and TT[0-4]
(transfer type signals) are referred to as asserted when they are high and negated when they are low.

The 750GX’s signals are grouped as follows:

Address arbitration
Address transfer start
Address transfer

Transfer attribute

Address transfer
termination

Data arbitration
Data transfer

Data-transfer
termination

Interrupts/resets

Processor status and
control

Clock control

Test interface

gx_07.fm.(1.2)
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The 750GX uses these signals to arbitrate for address-bus mastership.
Indicate that a bus master has begun a transaction on the address bus.
These signals include the address bus. They are used to transfer the address.

Provide information about the type of transfer, such as the transfer size and
whether the transaction is burst, write-through, or cache-inhibited.

Acknowledge the end of the address phase of the transaction. They also indicate
whether a condition exists that requires the address phase to be repeated.

The 750GX uses these signals to arbitrate for data-bus mastership.
These signals, which consist of the data bus, are used to transfer the data.

Data termination signals are required after each data beat in a data transfer. In a
single-beat transaction, the data termination signals also indicate the end of the
tenure; while in burst accesses, the data termination signals apply to individual
beats and indicate the end of the tenure only after the final data beat. They also
indicate whether a condition exists that requires the data phase to be repeated.

These signals include the external interrupt signal, checkstop signals, and both soft
reset and hard reset signals. They are used to interrupt and, under various condi-
tions, to reset the processor.

These signals are used to set the reservation coherency bit, enable the time base,
and for other functions. They are also used in conjunction with such resources as
secondary caches and the time-base facility.

Determine the system clock frequency. These signals can also be used to synchro-
nize multiprocessor systems.

The Joint Test Action Group (JTAG) (IEEE 1149.1a-1993) interface and the
common on-chip processor (COP) unit provide a serial interface to the system for
performing board-level boundary-scan interconnect tests.

Signal Descriptions
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7.1 Signal Configuration

Figure 7-1 illustrates the 750GX’s signal configuration, showing how the signals are grouped. A pinout

showing pin numbers is included in the PowerPC 750G X RISC Microprocessor Datasheet.

Figure 7-1. 750GX Signal Groups
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7.2 Signal Descriptions

This section summarizes the functions of individual signals on the 750GX, grouped according to Figure 7-1.
Chapter 8, Bus Interface Operation, on page 279 describes many of these signals in greater detail, both with
respect to how individual signals function and to how the groups of signals interact. The information in the
remainder of this chapter applies to the basic transfer protocol of the 60x bus. This is the normal transfer
protocol used by 60x devices. The extended transfer protocol (also referred to as ETP or PLL 0 internal
configuration [P10] protocol) is not supported by the 750GX.

Note: In the following tables, “cycle” or “clock” refers to a single bus clock period, which corresponds to one
or more internal processor clocks depending on the clock mode programmed for the 750GX.

Note: In phase-locked loop (PLL)-bypass mode, the SYSCLK input signal clocks the internal processor
directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for fac-
tory use only.

7.2.1 Address-Bus Arbitration Signals

The address arbitration signals are the input and output signals the 750GX uses to request the address bus,
recognize when the request is granted, and indicate to other devices when mastership is granted.

For a detailed description of how these signals interact, see Section 8.3.1, Address-Bus Arbitration, on
page 290.

7.2.1.1 Bus Request (BR)—Output

State Asserted Indicates that the 750G X has a bus transaction to perform, and that it is
waiting for a qualified bus grant (BG) to begin the address tenure. BR might
be asserted even if all four (five with snoop) possible address tenures have
already been granted.

Negated Indicates that the 750G X does not have a bus transaction to perform, or, if
parked, that it is potentially ready to start a bus transaction on the next clock
(with proper qualification, see BG).

Timing Assertion Occurs on any cycle. Will not occur if the 750GX is parked and the address
bus is idle (BG asserted and address bus busy [ABB] input negated).

Negation Occurs during the cycle TS is asserted even if another transaction is
pending. Also occurs the cycle after any qualified ARTRY on the bus unless
this chip asserted the ARTRY and requires it to perform a snoop copyback.
Will also occur if the bus request is internally cancelled before receiving a
qualified BG.

High Occurs during a hard reset or checkstop condition.
Impedance

gx_07.fm.(1.2) Signal Descriptions
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7.2.1.2 Bus Grant (BG)—Input

State

Timing

Asserted

Negated

Assertion

Negation

Indicates that the 750G X may, with proper qualification, assume mastership
of the address bus. A qualified bus grant occurs when BG is asserted and
ABB and ARTRY are not asserted on the bus cycled following the assertion
of AACK.

Note that the assertion of BR is not required for a qualified bus grant (to allow
bus parking).

Indicates that the 750GX is not granted next address-bus ownership.

May occur on any cycle. Once the 750GX has assumed address-bus owner-
ship, it will not begin checking for BG again until the cycle after AACK.

Must occur whenever the 750GX must be prevented from starting a bus
transaction. The 750GX will still assume address-bus ownership on the cycle
BG is negated if BG was asserted in the previous cycle with other bus grant
qualifications.

7.2.1.3 Address Bus Busy (ABB)

The address bus busy (ABB) signal is both an input and an output signal.

Address Bus Busy (ABB)—Output

State

Timing

Signal Descriptions
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Asserted

Negated

Assertion

Negation

Indicates that the 750GX is the current address-bus owner. The 750GX will
not assume address-bus ownership if the bus request is internally cancelled
by the cycle a qualified BG would have been recognized.

Indicates that the 750GX is not the current address-bus owner.

Occurs the cycle after a qualified BGis accepted by the 750G X, and remains
asserted for the duration of the address tenure.

Negates for a fraction of a bus cycle (one-half minimum, depends on clock
mode) starting the cycle following the assertion of AACK. Then releases to
the high impedance state.

gx_07.fm.(1.2)
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Address Bus Busy (ABB)—Input

State Asserted
Negated

Timing Assertion
Negation
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Indicates that another master is the current address-bus owner.
Indicates that the address bus might be available for use by the 750GX (see
BG).

The 750GX will also track the state of ABB on the bus from the TS and
AACK inputs. (See Section 8.3.1, Address-Bus Arbitration, on page 290.)

Must occur whenever the 750G X must be prevented from using the address
bus.

May occur whenever the 750GX can use the address bus.

7.2.2 Address Transfer Start Signals

Address transfer start signals are input and output signals that indicate that an address-bus transfer has
begun. The transfer start (TS) signal identifies the operation as a memory transaction.

For detailed information about how TS interacts with other signals, see Section 8.3.2, Address Transfer, on

page 292.

7.2.2.1 Transfer Start (E)

The TS signal is both an input and an output signal on the 750GX.

Transfer Start (TS)—Output

State Asserted

Negated
Timing Assertion
Negation

High
Impedance

Transfer Start (TS)—Input

State Asserted
Negated

Timing Assertion/
Negation

gx_07.fm.(1.2)
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Indicates that the 750GX has begun a memory bus transaction, and that the
address-bus and transfer attribute signals are valid. When asserted with the
appropriate TT[0-4] signals, it is also an implied data-bus request for a
memory transaction (unless it is an address-only operation).

Indicates that a bus transaction is not being started.
Occurs on the first cycle of ABB assertion.
Occurs one bus clock cycle after TS is asserted.

Occurs the bus cycle following AACK (same cycle as ABB negation).

Indicates that another master has begun a bus transaction, and that the
address-bus and transfer attribute signals are valid for snooping (see
Section 7.2.4.6, Global (GBL), on page 261.

Indicates that a bus cycle is not being started.

Must be asserted for one cycle only, and then immediately negated. Asser-
tion may occur at any time during the assertion of ABB.

Signal Descriptions
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7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor parity for the
address transfer. For a detailed description of how these signals interact, see Section 8.3.2, Address

Transfer, on page 292.

7.2.3.1 Address Bus (A[0-31])

The address bus (A[0-31]) consists of 32 signals that are both input and output signals.

Address Bus (A[0—31])—Output

State

Timing

Address Bus (A[0—31])—Input

State

Timing

Signal Descriptions
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Impedance

Represents the physical address (real address in the architecture specifica-
tion) of the data to be transferred. On burst transfers, the address bus
presents the double-word-aligned address containing the critical code/data
that missed the cache on a read operation, or the first double word of the
cache line on a write operation. Note that the address output during burst
operations is not incremented. See Section 8.3.2, Address Transfer, on
page 292.

Occurs on the bus clock cycle after a qualified bus grant (coincides with
assertion of TS). Remains driven/valid for the duration of the address tenure.

Occurs one bus clock cycle following the assertion of AACK; no precharge
action is performed on release.

Represents the physical address of a snoop operation.

Must occur on the same bus clock cycle as the assertion of TS;is sampled by
the 750GX only on this cycle.
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7.2.3.2 Address-Bus Parity (AP[0-3])

The address-bus parity (AP[0-3]) signals are both input and output signals reflecting 1 bit of odd-byte parity
for each of the 4 bytes of address when a valid address is on the bus.

Address-Bus Parity (AP[0-3])—Output

State Asserted/ Represents odd parity for each of the 4 bytes of the physical address for a
Negated transaction. Odd parity means that an odd number of bits, including the
parity bit, are driven high. Address parity is generated by the 750GX as
address-bus master (unless disabled through Hardware-Implementation-
Dependent Register 0 [HIDQ]). The signal assignments correspond to the

following:
AP0  A[0-7]
APl  A[8-15]

AP2  A[16-23]
AP3  A[24-31]

Timing Assertion/ The same as A[0-31].
Negation/
High
Impedance

Address-Bus Parity (AP[0-3])—Input

State Asserted/ Represents odd parity for each of the 4 bytes of the physical address for
Negated snooping operations. Detected even parity causes the processor to take a
machine check exception or enter the checkstop state if address-parity
checking is enabled in the HIDO register. See Section 2.1.2.2, Hardware-
Implementation-Dependent Register 0 (HIDO), on page 65.

Timing Assertion/ The same as A[0-31].
Negation

7.2.4 Address Transfer Attribute Signals

The transfer attribute signals are a set of signals that further characterize the transfer—such as the size of the
transfer, whether it is a read or write operation, and whether it is a burst or single-beat transfer. For a detailed
description of how these signals interact, see Section 8.3.2, Address Transfer, on page 292.

Note: Some signal functions vary depending on whether the transaction is a memory access or an I/O
access.
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7.2.4.1 Transfer Type (TT[0-4])
The transfer type (TT[0—4]) signals consist of five input/output signals on the 750GX. For a complete descrip-

tion of TT[0—4] signals and for transfer type encodings, see Table 7-1.

Transfer Type (TT[0-4])—Output

State Asserted/ Indicates the type of transfer in progress.
Negated

Timing Assertion/ The same as A[0-31].
Negation/
High
Impedance

Transfer Type (TT[0-4])—Input

State Asserted/ Indicates the type of transfer in progress (see Table 7-1).
Negated

Timing Assertion/ The same as A[0-31].
Negation

Table 7-1 describes the transfer encodings for the 750GX bus master.

Table 7-1. Transfer Type Encodings for PowerPC 750GX Bus Master (Page 1 of 2)

750GX Bus 60x Bus Specification

Master Transaction Transaction Source TTO TT1 TT2 TT3 TT4 Command Transaction
Address onlyl (I?jactgs(i)ache Block Store 0 0 0 0 0 Clean block Address only
Address onIyl (I?jactgfgjache Block Flush 0 0 1 0 0 Flush block Address only
Address only* Synchronize (sync) 0 1 0 0 0 |sync Address only

Data Cache Block Set .
Address only to Zero (dcbz) 0 1 1 0 0 Kill block Address only

Address onIyl BZEZ zjaz:cbhi()e Block Inval- 0 1 1 0 0 Kill block Address only

1 Enforce In-Order Exe- -
Address only cution of /0 (eieio) 1 0 0 0 0 |eieio Address only

Single-beat write | External Control Out

(nonGBL) Word Indexed (ecowx) 1 0 1 0 0 External control word write Single-beat write

Translation Lookaside Buffer

N/A N/A 1 1 0 0 O (TLB) invalidate

Address only

Single-beat read  External Control In

(nonGBL) Word Indexed (eciwx) 1 1 1 0 0 External control word read Single-beat read

1. Address-only transaction occurs if enabled by setting the HIDO[ABE] bit to 1.
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Table 7-1. Transfer Type Encodings for PowerPC 750GX Bus Master (Page 2 of 2)

750GX Bus

Master Transaction

N/A
N/A
N/A
N/A
N/A

Single-beat write
Burst (nonﬁ)
Single-beat read
Burst

Single-beat write
N/A

Single-beat read

Burst

N/A
N/A

N/A

N/A
N/A

1. Address-only transaction occurs if enabled by setting the HIDO[ABE] bit to 1.

Transaction Source TTO
N/A 0
N/A 0
N/A 0
N/A 0
N/A 1
Caching-inhibited or 0
write-through store
Castout, or snoop copy-

0
back
Caching-inhibited load 0
or instruction fetch
Load miss, store miss, 0
or instruction fetch
Store Word Conditional 1
Indexed (stwcx.)
N/A 1
lwarx (caching-inhib- 1
ited load)
lwarx 1
(load miss)
N/A 0
N/A 0
N/A 0
N/A 0
N/A 1

TT1

1
X

TT2

1
X

TT3

1
1

60x Bus Specification

Command

Load Word And Reserve
Indexed (Iwarx)
reservation set

Reserved

TLB Synchronize (tlbsync)
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Transaction

Address only

Address only

Instruction Cache Block Inval-

idate (icbi)

Reserved

Write-with-flush

Write-with-Kkill

Read

Read-with-intent-to-modify

Write-with-flush-atomic

Reserved

Read-atomic

Read-with-intent-to-modify-

atomic
Reserved

Reserved

Read-with-no-intent-to-cache

Reserved

Reserved

Address only

Single-beat write
or burst

Burst

Single-beat read
or burst

Burst

Single-beat write

N/A

Single-beat read
or burst

Burst

Single-beat read
or burst

Table 7-2 describes the 60x bus specification transfer encodings and the 750G X bus snoop response on an

address hit.

Table 7-2. PowerPC 750G X Snoop Hit Response (Page 1 of 2)

60x Bus Specification Command

Clean block
Flush block

sync

Kill block
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Address only
Address only
Address only

Address only

Transaction

TTO

TT2 TT3 TT4

0 0 0
1 0 0
0 0 0
1 0 0

PowerPC 750GX Bus
Snooper;
Action on Hit

N/A
N/A
N/A

Flush, cancel reserva-
tion
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Table 7-2. PowerPC 750G X Snoop Hit Response (Page 2 of 2)

60x Bus Specification Command

eieio

External control word write
TLB Invalidate

External control word read

lwarx
reservation set

Reserved
tlbsync
icbi
Reserved

Write-with-flush

Write-with-kill
Read

Read-with-intent-to-modify
Write-with-flush-atomic

Reserved

Read-atomic

Read-with-intent-to modify-atomic
Reserved

Reserved
Read-with-no-intent-to-cache
Reserved

Reserved

Transaction

Address only
Single-beat write
Address only

Single-beat read

Address only

Address only
Address only

Single-beat write or burst

Single-beat write or burst
Single-beat read or burst

Burst
Single-beat write

N/A
Single-beat read or burst

Burst

Single-beat read or burst

7.2.4.2 Transfer Size (TSIZ[0-2])—Output

State Asserted/
Negated

Signal Descriptions
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TTO
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TT2

o = O | O

X | B Ok

X B O|pkr O r ol

TT3

o o o o o

o o o o

N R S =

TT4

= o o o o

R R Rk e

B Rk PP R O O O

PowerPC 750GX Bus
Snooper;
Action on Hit

N/A
N/A
N/A
N/A

N/A

N/A
N/A
N/A
N/A

Flush, cancel reserva-
tion

Kill, cancel reservation
Clean or flush
Flush

Flush, cancel reserva-
tion

N/A

Clean or flush
Flush

N/A

N/A

Clean

N/A

N/A

For memory accesses, these signals, along with the transfer burst (TBST)
signal, indicate the data-transfer size for the current bus operation, as shown
in Table 7-3 on page 259. Table 8-4 on page 296 shows how the transfer
size signals are used with the address signals for aligned transfers.

Table 8-5 on page 298 shows how the transfer size signals are used with the
address signals for misaligned transfers.

For external control instructions (eciwx and ecowx), TSIZ[0-2] are used to
output bits 29-31 of the External Access Register (EAR), which are used to

form the resource ID (TBST||TSIZ0-TSIZ2).
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Timing Assertion/ The same as A[0-31].
Negation/
High
Impedance

Table 7-3. Data-Transfer Size

TBST TSIZ[0-2] Transfer Size
Asserted 010 Burst (32 bytes)
Negated 000 8 bytes
Negated 001 1 byte
Negated 010 2 bytes
Negated 011 3 bytes
Negated 100 4 bytes
Negated 101 5 bytes?
Negated 110 6 bytes?
Negated 111 7 bytes?

1. Not generated by the 750GX.

7.2.4.3 Transfer Burst (TBST)

The transfer burst (TBST) signal is an input/output signal on the 750GX.

Transfer Burst (TBST)—Output

State Asserted Indicates that a burst transfer is in progress.
Negated Indicates that a burst transfer is not in progress.

For external control instructions (eciwx and ecowx), TBST is used to output
bit 28 of the EAR, which is used to form the resource ID (TBST||TSIZ0-

TSIZ2).
Timing Assertion/ The same as A[0-31].
Negation/
High
Impedance
Transfer Burst (TBST)—Input
State Asserted/ Used when snooping for single-beat reads (read with no intent to cache).
Negated
Timing Assertion/ The same as A[0-31].
Negation
gx_07.fm.(1.2) Signal Descriptions
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7.2.4.4 Cache Inhibit (Cl)—Output

The cache inhibit (a) signal is an output signal on the 750GX.

State Asserted Indicates that a single-beat transfer will not be cached, reflecting the setting
of the | bit for the block or page that contains the address of the current
transaction.

Negated Indicates that a burst transfer will allocate the 750GX data-cache block.
Timing Assertion/ The same as A[0-31].

Negation/

High

Impedance

7.2.4.5 Write-Through (m)—Output

The write-through (ﬁ) signal is an output signal on the 750GX.

State Asserted Indicates that a single-beat write transaction is write-through, reflecting the
value of the W bit for the block or page that contains the address of the
current transaction. Assertion during a read operation indicates a data load.

Negated Indicates that a write transaction is not write-through. During a read opera-
tion, negation indicates an instruction load.
Timing Assertion/ The same as A[0-31].
Negation/
High
Impedance
Signal Descriptions gx_07.fm.(1.2)
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The global (GBL) signal is an input/output signal on the 750GX.

Global (GBL)—Output

State Asserted

Negated

Timing Assertion/
Negation/
High
Impedance

Global (GBL)—Input

State Asserted
Negated

Timing Assertion/
Negation

gx_07.fm.(1.2)
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Indicates that the transaction is global and should be snooped by other
masters. GBL reflects the M bit (WIMG bits) from the memory management
unit (MMU) except during certain transactions. Copybacks are always
nonglobal. Instruction accesses do not reflect the M bit when the HIDO[IFEM]
bit (HIDO bit 23) is '0" and the instruction address translation bit (bit 26) in the
Machine State Register is '1' (MSR[IR] = '1"); or if HIDO[IFEM] is '1' and
MSRJ[IR] is '0". In either of these cases, the M bit is ignored and the access is
nonglobal.

Indicates that the transaction is not global and should not be snooped by
other masters.

The same as A[0-31].

Indicates that a transaction must be snooped by the 750GX.

Indicates that a transaction should not be snooped by the 750GX. (In addi-
tion, certain nonglobal transactions are snooped for reservation coherency.
See Table 7-1 on page 256.)

The same as A[0-31].

Signal Descriptions
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7.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase of the transaction
has completed successfully or must be repeated, and when it should be terminated. For detailed information
about how these signals interact, see Chapter 8, Bus Interface Operation, on page 279.

7.2.5.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signal is an input-only signal on the 750GX.

State

Timing

Signal Descriptions
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Asserted

Negated

Assertion/
Negation

Indicates that the address tenure of a transaction should be terminated. On
the following cycle, the 750GX, as address-bus master, will release the
address and attribute signals to high impedance, and sample ARTRY to
determine a qualified ARTRY condition. Note that the address tenure will not
be terminated until the assertion of AACK, even if the associated data tenure
has completed. As snooper, the 750GX requires an assertion of AACK for
every assertion of TS that it detects.

During ABB, indicates that the address tenure must remain active, and that
the address and attribute signals remain driven.

May occur as early as the bus clock cycle after TS is asserted. Assertion can
be delayed to allow adequate address access time for slow devices. For
example, if an implementation supports slow snooping devices, an external
arbiter can postpone the assertion of AACK.

Note: If configured for 1x or 1.5x clock modes, the 750GX requires AACK to
be asserted no sooner than the second cycle following the assertion of TS
(one address wait state) in order to generate a snoop response (via ARTRY).

gx_07.fm.(1.2)
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7.2.5.2 Address Retry (ARTRY)

The address retry (ARTRY) signal is both an input and output signal on the 750GX.

Address Retry (ARTRY)—Output

State

Timing

gx_07.fm.(1.2)
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Asserted

Negated/
High
Impedance

Assertion

Negation

The 750GX as snooper indicates that the 750G X requires the snooped trans-
action to be rerun. The 750GX might require a snooped transaction to rerun
to perform a snoop copyback first, because it is currently performing a cache
reload for that line (pipeline collision on bus), or because it was unable to
service the snooped address at that time.

Indicates that the 750GX does not need the snooped address tenure to be
retried.

Driven and asserted the second cycle following the assertion of TSifa retry
is required. Remains asserted until the cycle following the assertion of
AACK.

Occurs the second bus cycle after the assertion of AACK. Since this signal
might be simultaneously driven by multiple devices, it negates in a unique
fashion. First the buffer goes to high impedance for a minimum of one-half
processor cycle (dependent on the clock mode), and then it is driven negated
for one-half bus cycle before returning to high impedance. This special
method of negation can be disabled by setting precharge disable in
HIDO[PAR].

Signal Descriptions
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Address Retry (ARTRY)—Input

State

Timing

Asserted

Negated/
High
Impedance

Assertion

Negation/
High
Impedance

If the 750GX is the address-bus master, ARTRY indicates that the 750GX
must retry the preceding address tenure and immediately negate BR (if
asserted). If the associated data tenure has already started, the 750GX also
cancels the data tenure immediately, even if the burst data has been
received. If the 750GX is not the address-bus master, this input indicates
that the 750GX should immediately negate BR to allow an opportunity for a
copy-back operation to main memory after a snooping bus master asserts
ARTRY. Note that the subsequent address presented on the address bus
might not be the same one associated with the assertion of the ARTRY
signal.

Indicates that the 750GX does not need to retry the last address tenure.

May occur as early as the second cycle following the assertion of TS, and
must occur by the bus clock cycle immediately following the assertion of
AACK if an address retry is required.

Must occur the second cycle following the assertion of AACK (if ARTRY was
asserted).

Note: During the second cycle following the assertion of AACK, ARTRY is first set to the
high impedance state by the asserting masters, and might be sampled in an indeterminate

state.

7.2.6 Data-Bus Arbitration Signals

Like the address-bus arbitration signals, data-bus arbitration signals maintain an orderly process for deter-
mining data-bus mastership. Note that there is no data-bus arbitration signal equivalent to the address-bus
arbitration signal BR (bus request), because, except for address-only transactions, TS implies data-bus
requests. For a detailed description of how these signals interact, see Section 8.4.1, Data-Bus Arbitration, on

page 301.

One special signal, DBWO, allows the 750GX to be configured dynamically to write data out of order with
respect to read data. For detailed information about using the DBWO, see Section 8.9, Using Data-Bus Write-
Only, on page 320.

7.2.6.1 Data-Bus Grant (DBG)—Input

The data-bus grant (DBG) signal is an input-only signal on the 750GX.

State

Signal Descriptions
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Asserted

Indicates that the 750G X may, with proper qualification, assume mastership
of the data bus. A qualified bus grant occurs when DBG is asserted and
DBB, DRTRY, and ARTRY are not asserted. ARTRY is only for the address-
bus tenure associated with the data-bus tenure about to be granted (that is,
not from another address tenure due to address pipelining).
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Negation
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Indicates that the 750GX is not granted next data-bus ownership.

Might occur on any cycle; not recognized until the cycle TS is asserted, or
later.

Might occur on any cycle to indicate the 750GX cannot assume data-bus
ownership.

7.2.6.2 Data-Bus Write-Only (DBWO)

The data-bus write-only (DBWO) signal is an input-only signal on the 750GX.

State Asserted
Negated

Timing Assertion/
Negation
Start-Up

7.2.6.3 Data Bus Busy (DBB)

If two or more data tenure requests are pending for the 750GX due to
address pipelining, indicates that the 750G X should run the data-bus tenure
for the next pipelined write transaction even if a read address tenure was
pipelined on the bus before the write address tenure. DBWO allows write
data tenures to be run ahead of read data tenures. However, it does not
allow write data tenures to be run ahead of other write data tenures. If no
write requests are pending, the 750GX will ignore DBWO and assume data-
bus ownership for the next pending read request.

Indicates that the 750G X must run its read and write data-bus tenures in the
same order as their address tenures.

Sampled by the 750G X only on the clock that a qualified DBG is recognized.

See Table 7-6, Summary of Mode Select Signals, on page 274 for a descrip-
tion of the start-up function.

The data bus busy (DBB) signal is both an input and output signal on the 750GX.

Data Bus Busy (DBB)—Output

State Asserted

Negated

gx_07.fm.(1.2)
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Indicates that the 750GX is the current data-bus owner. The 750GX will
always assume data-bus ownership if it needs the data bus and determines
a qualified data-bus grant (see DBG).

Indicates that the 750GX is not the current data-bus owner, unless the data
retry (DRTRY) signal has extended the data tenure for the last or only data
beat.
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Timing Assertion

Negation

Data Bus Busy (DBB)—Input

State Asserted
Negated

Timing Assertion
Negation

7.2.7 Data-Transfer Signals

Occurs the cycle following a qualified DBG. Remains asserted for the dura-
tion of the data tenure.

Negates for a fraction of a bus cycle (one-half minimum, depends on clock
mode) starting the cycle following the final assertion of the transfer
acknowledge (TA) signal, or following the transfer error acknowledge (TEA)
signal or certain ARTRY cases. Then releases to the high impedance state.

Indicates that another master is the current data-bus owner.

Indicates that the data bus might be available for use by the 750GX (see
DBG).

May occur when the 750GX must be prevented from using the data bus.

May occur whenever the 750GX can use the data bus.

Like the address transfer signals, the data-transfer signals are used to transmit data and to generate and
monitor parity for the data transfer. For a detailed description of how the data-transfer signals interact, see
Section 8.4.3, Data Transfer, on page 303. Data parity is optional on the 750GX.

7.2.7.1 Data Bus (DH[0-31], DL[0-31])

The data bus (DH[0-31] and DL[0—-31]) consists of 64 signals that are both inputs and outputs on the 750GX.

State The data bus has two halves—data bus high (DH) and data bus low (DL). See Table 7-4 on
page 266 for the data-bus lane assignments.

Timing The data bus is driven once for noncached transactions and four times for cache transac-

tions (bursts).

Table 7-4. Data-Bus Lane Assignments

Data-Bus Signals
DH[0-7]
DH[8-15]
DH[16-23]
DH[24-31]
DL[0-7]
DL[8-15]
DL[16-23]
DL[24-31]

Signal Descriptions
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Data Bus (DH[0-31], DL[0-31])—Output

State Asserted/
Negated

Timing Assertion/
Negation
High
Impedance

Represents the state of data during a data write. For single-beat (cache
inhibited or write through) writes, byte lanes not selected for data transfer will
not supply valid data (no data mirroring).

First or only beat begins on the cycle of DBB assertion and, for bursts, tran-
sitions on the cycle following each initially qualified assertion of TA.

Occurs on the bus clock cycle after the final assertion of TA, following the
assertion of TEA, or in certain ARTRY cases.

Data Bus (DH[0-31], DL[0-31])—Input

State Asserted/
Negated

Timing Assertion/
Negation

Represents the state of data during a data read transaction.

Data must be valid on the same bus clock cycle that TA is asserted, even if
during the last assertion cycle of DRTRY.

7.2.7.2 Data-Bus Parity (DP[0-7])

The eight data-bus parity (DP[0-7]) signals are both input and output signals.

Data-Bus Parity (DP[0-7])—Output

State Asserted/
Negated

Timing Assertion/
Negation/
High
Impedance

Represents odd parity for each of the 8 bytes of data write transactions. Odd
parity means that an odd number of bits, including the parity bit, are driven
high. The generation of parity is enabled through HIDO. The signal assign-
ments are listed in Table 7-5.

The same as DL[0-31].

Table 7-5. DP[0-7] Signal Assignments

Signal Name
DPO
DP1
DP2
DP3
DP4
DP5
DP6
DP7
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Signal Assignments
DH[0-7]
DH[8-15]
DH[16-23]
DH[24-31]
DL[0-7]
DL[8-15]
DL[16-23]
DL[24-31]
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Data-Bus Parity (DP[0—7])—Input

State

Timing

Asserted/
Negated

Assertion/
Negation

Represents odd parity for each byte of read data. Parity is checked on all
data byte lanes, regardless of the size of the transfer. Detected even parity
causes a checkstop if data-parity errors are enabled in the HIDO register.

The same as DL[0-31].

7.2.7.3 Data Bus Disable (DBDIS)—Input

State

Timing

Asserted

Negated

Assertion/
Negation

Start-Up

Indicates (for a write transaction) that the 750GX must release the data bus
and data-bus parity to high impedance during the following cycle. The data
tenure will remain active, DBB will remain driven, and the transfer termina-

tion signals will still be monitored by the 750GX.

Indicates the data bus should remain driven if it otherwise would have been.
DBDIS is ignored during read transactions.

May be asserted on any clock; will not otherwise affect the operation of the
bus if the 750G X is not running a bus transaction or if the 750GX is running a
read transaction.

See Table 7-6, Summary of Mode Select Signals, on page 274 for a descrip-
tion of the start-up function.

7.2.8 Data-Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a single-beat trans-
action, the data termination signals also indicate the end of the tenure, while in burst accesses, the data
termination signals apply to individual beats and indicate the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, Data-Transfer Termination, on

page 303.

7.2.8.1 Transfer Acknowledge (ﬁ)—lnput

State

Signal Descriptions
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Asserted

Negated

Indicates that data on the data bus has been provided or accepted by the
system. On the following cycle, the 750G X will terminate the data beat
(unless DRTRY extends a read data beat), and if a burst, advance to the
next data beat. If itis the last or only data beat, the 750GX will also terminate
the data tenure (unless DRTRY extends a read data beat). TA must always
be asserted on the same cycle as valid data on the data bus, even if during
the final assertion cycle of DRTRY for that beat.

Indicates that the 750G X must extend the current data beat (by inserting
wait states) until data can be provided or accepted by the system. TA might
also be negated anytime during a DRTRY assertion except on the last cycle
of the DRTRY assertion.
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Might occur on any cycle during the normal or extended data-bus tenure for
the 750GX (see DBB and DRTRY). Must not occur two cycles or more
before ARTRY assertion if ARTRY cancellation is to be used.

For a burst, must occur the cycle after the assertion of TA unless another
assertion of TA is immediately required for the next data beat.

Note: Itis the responsibility of the system to ensure that TAis negated by the start of the
next data-bus tenure.

Warning: If configured for 1x clock mode and performing a data (not instruction) burst read,
the 750GX requires one wait state between the assertion of TS and the first assertion of TA.
If No-DRTRY mode is also selected, the 750G X requires two wait states for 1x clock mode,
or one wait state for 1.5x clock mode.

7.2.8.2 Data Retry (DRTRY)—Input

State Asserted
Negated
Timing Assertion
Negation
Start-Up

During a read transaction, indicates that the 750GX must cancel data
received on the previous cycle with a valid TA, and extend that data beat
until new valid data with a new TA is provided. While asserted, DRTRY also
extends the data-bus tenure of the current transaction if the last or only data
beat was retried and DBB has already negated.

Indicates that read data presented with TA on the previous bus cycle is valid.
DRTRY is ignored as a data termination control during write transactions.

Must occur the cycle following the assertion of ﬁia data retry is required.
Once asserted must remain asserted until a valid TA and data are provided.

Must occur the cycle following the presentation of valid data and a TA to the
750GX. This might occur several cycles after the negation of DBB.

Sampled at the negation of the hard reset (HRESET) signal to select
DRTRY-enabled mode if negated, or No-DRTRY mode if asserted. See
Table 7-6, Summary of Mode Select Signals, on page 274 for a description
of the start-up function.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input

State Asserted

Negated
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Indicates that a data-bus error has occurred. On the following cycle, the
750G X must terminate the data tenure. Internally, the 750G X will also take a
machine-check interrupt or enter the checkstop state (see Chapter 10,
Power and Thermal Management, on page 335). For reads, a TEA will not
invalidate data entering the General Purpose Registers (GPRs) or the
caches.

Indicates that no bus error was detected.
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Timing Assertion/
Negation

7.2.9 System Status Signals

Assertion might occur on any cycle during the normal or extended data-bus
tenure for the 750GX (during DBB, and the cycle after TA during reads).
Assertion should occur for one cycle only.

It is the responsibility of the system to ensure that TEA is negated by the
start of the next data-bus tenure.

Most system status signals are input signals that indicate when exceptions are received, when checkstop
conditions have occurred, and when the 750G X must be reset. The 750GX generates the output signal,
CKSTP_OUT, when it detects a checkstop condition.

7.2.9.1 Interrupt (ﬁ)— Input

State Asserted
Negated

Timing Assertion
Negation

The 750GX initiates an interrupt if MSR[EE] is set. Otherwise, the 750G X
ignores the interrupt. To guarantee that the 750GX will take the external
interrupt, INT must be held active until the 750GX takes the interrupt. Other-
wise, whether the 750G X takes an external interrupt depends on whether
the MSR[EE] bit was set while the INT signal was held active.

Indicates that normal operation should proceed.

May occur at any time and may be asserted asynchronously to the input
clocks. The INT input is level-sensitive.

Should not occur until an interrupt is taken.

7.2.9.2 System Management Interrupt (m)—lnput

State Asserted
Negated

Timing Assertion
Negation

Signal Descriptions
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The 750GX initiates a system management interrupt operation if the
MSR[EE] is set. Otherwise, the 750GX ignores the exception condition. The
system must hold SMI active until the exception is taken.

Indicates that normal operation should proceed.

May occur at any time and may be asserted asynchronously to the input
clocks. The SMI input is level-sensitive.

Should not occur until an interrupt is taken.
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7.2.9.3 Machine-Check Interrupt (MCP)—Input

State

Timing

Asserted

Negated

Assertion

Negation

The 750GX initiates a machine-check interrupt operation if MSR[ME] and
HIDO[EMCP] are set. If MSR[ME] is cleared and HIDO[EMCP] is set, the
750G X must terminate operation by internally gating off all clocks, and
releasing all outputs (except CKSTP_OUT) to the high-impedance state. If
HIDO[EMCP] is cleared, the 750GX ignores the interrupt condition. The MCP
signal must be held asserted for two bus clock cycles.

Indicates that normal operation should proceed.

May occur at any time and may be asserted asynchronously to the input
clocks. The MCP input is negative edge-sensitive.

May be negated two bus cycles after assertion.

7.2.9.4 Checkstop Input (CKSTP_IN)—Input

State

Timing

Asserted

Negated

Assertion

Negation

Indicates that the 750GX must enter the checkstop state and terminate oper-
ation. The 750GX will internally gate off all clocks and remain in this state
while CKSTP_IN is asserted. The 750GX will also release all outputs (except

CKSTP_OUT) to the high-impedance state. CKSTP_IN is not maskable.

Once CKSTP_IN has been asserted it must remain asserted until the system
has been reset.

Indicates that normal operation should proceed.

May occur at any time and may be asserted asynchronously to the input
clocks.

May occur any time after the CKSTP_IN output has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output

Note that the CKSTP_OUT signal is an open-drain type output, and requires an external pull-up resistor (for
example, 10 kQ to Vpp) to assure proper deassertion of the CKSTP_OUT signal.

State

Timing
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Asserted

Negated
Assertion

High
Impedance

Indicates that a checkstop condition has been detected, and the processor
has ceased operation.

Indicates that the processor is operating normally.
Might occur at any time and can be asserted asynchronously to input clocks.

Requires HRESET.

Note: CKSTP_OUT operates as an open-drain output. It will either be in the asserted or
high-impedance state.

Signal Descriptions
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7.2.10 Reset Signals

There are two reset signals on the 750G X—hard reset (HRESET) and soft reset (SRESET). Descriptions of
the reset signals follows.

7.2.10.1 Hard Reset (HRESET)—Input

The hard reset (HRESET) signal must be used at power-on in conjunction with the test reset (TRST) signal to
properly reset the processor.
State Asserted Initiates a complete hard reset operation when this input transitions from
asserted to negated. Causes a reset exception as described in

Section 4.5.1, System Reset Exception (0x00100), on page 163 Output
drivers are released to high impedance within five clocks after the assertion
of HRESET.

Negated Indicates that normal operation should proceed.

Assertion May occur at any time and may be asserted asynchronously to the 750GX
input clock. Must be held asserted for a minimum of 255 clock cycles after
the PLL lock time has been met. See the 750G X hardware specifications for

further timing comments. Falling-edge activated.

Timing

Negation May occur any time after the minimum reset pulse width has been met.

7.2.10.2 Soft Reset (SRESET)—Input

The soft reset input provides warm reset capability. This input can be used to avoid forcing the 750GX to
complete the cold start sequence.

State Asserted Initiates processing for a reset exception as described in Section 4.5.1,
System Reset Exception (0x00100), on page 163.
Negated Indicates that normal operation should proceed.
Timing Assertion May occur at any time and may be asserted asynchronously to the 750GX
input clock. The SRESET input is negative edge-sensitive.
Negation May be negated two bus cycles after assertion.
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7.2.11 Processor Status Signals

Processor status signals indicate the state of the processor. They include the memory reservation signal,
machine quiesce control signals, time-base enable signal, and TLB Invalidate Synchronize (TLBISYNC)
signal.

7.2.11.1 Quiescent Request (QREQ)—Output

State Asserted Indicates that the 750GX is requesting all bus activity normally required to be
snooped to terminate or to pause so the 750GX can enter a quiescent (low
power) state. When the 750GX has entered a quiescent state, it no longer
snoops bus activity. See Chapter 10, Power and Thermal Management, on

page 335.
Negated Indicates that the 750G X is not making a request to enter the quiescent
state.
Timing Assertion/ Might occur on any cycle. QREQ will remain asserted for the duration of the
Negation quiescent state.

7.2.11.2 Quiescent Acknowledge (QACK)—Input

State Asserted Indicates that all bus activity has terminated or paused, and that the 750GX
might enter nap or sleep mode.

Negated Indicates that the 750G X cannot enter nap or sleep mode, or that it must
return to doze mode from nap mode in order to snoop.

Timing Assertion/ May occur on any cycle following the assertion of QREQ. Must be negated
Negation for at least eight bus cycles prior to performing any snoop cycles to ensure
that the 750GX has returned to doze mode from nap mode.

Start-Up See Table 7-6, Summary of Mode Select Signals, on page 274 for a descrip-
tion of the start-up function.

7.2.11.3 Reservation (RSRV)—Output

State Asserted/ Represents the state of the internal reservation coherency bit used by the
Negated Iwarx and stwcx. instructions. See Section 8.7.1, Support for the Iwarx and
stwex. Instruction Pair, on page 319.

Timing Assertion/ Might occur on any cycle. Will occur immediately following a transition of the
Negation reservation coherency bit.
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7.2.11.4 Time Base Enable (TBEN)—Input

State Asserted
Negated

Timing Assertion/
Negation

Indicates that the time base and decrementer should continue clocking. This
signal is essentially a “count enable” control for the time base and decre-
menter counter.

Indicates that the time base and decrementer should stop clocking.

May occur on any cycle. The sampling of this signal is synchronous with
SYSCLK.

7.2.11.5 TLB Invalidate Synchronize (TLBISYNC)—Input

The TLB Invalidate Synchronize (TLBISYNC) signal is an input-only signal.

State Asserted
Negated

Timing Assertion/
Negation
Start-Up

Prevents execution of a tibsync instruction from completing.
Enables execution of a tlbsync to complete.

Might occur on any cycle.

See Table 7-6, Summary of Mode Select Signals, on page 274 for a descrip-
tion of the start-up function.

7.2.12 Processor Mode Selection Signals

Table 7-6 summarizes the processor mode select signals of the 750GX. The mode select signals establish
the operating modes of the processor after reset (for example, 32-bit or 64-bit data mode or DRTRY mode).
Mode select signals are sampled at the rising transition of HRESET.

Table 7-6. Summary of Mode Select Signals

Pin state at HRESET transition

Pin Description
0 'L
DRTRY Selects DRTRY mode. No-DRTRY mode DRTRY mode
QACK S?Xg;eéegés g%m:g%g\u(” cycle precharge Full cycle precharge Normal precharge
TLBISYNC TLBISYNC selects 32-bit or 64-bit bus mode. 32-bit mode 64-bit mode
Factory usage mode only. Must be tied high at .
DBWO HRESET transition. N/A Required
—==c Factory usage mode only. Must be tied high at .
DBDIS HRESET transition. N/A Required
L2 TSTCLK Factory usage mode only. Must be tied high at N/A Required
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7.2.13 1/0 Voltage Select Signals

Table 7-7 shows the settings for the I/O voltage signals.

Table 7-7. Bus Voltage Selection Settings

Voltage Selection OVDEVSSeIIEeLCt #1 OVop Select #2
LITSTCLK
Reserved 0 0
1.8V 0 1
25V 1 1
33V 1 0

7.2.14 Test Interface Signals

The processor provides two sets of pins for controlling JTAG and level-sensitive scan design (LSSD) testing.

7.2.14.1 IEEE 1149.1a-1993 Interface Description

The 750GX has five dedicated JTAG signals, which are described in Table 7-8. The test data input (TDI) and
test data output (TDO) scan ports are used to scan instructions, as well as data into the various scan regis-
ters for JTAG operations. The scan operation is controlled by the test access port (TAP) controller, which in
turn is controlled by the test mode select (TMS) input sequence. The scan data is latched in at the rising edge
of the test clock (TCK). Test reset (TRST) is a JTAG optional signal, which is used to reset the TAP controller
asynchronously. The TRST signal assures that the JTAG logic does not interfere with the normal operation of
the chip, and must be asserted and deasserted coincident with the assertion of the HRESET signal.

Table 7-8. IEEE Interface Pin Descriptions

Signal Name Input/Output Weak Pullup Provided IEEE 1149.1a-1993 Function Timing Comments
TDI Input Yes Serial scan input signal Asserted/Negated—Not used
; ; during normal operation. TMS,
TDO Output No Serial scan output signal TDI, and TRST have internal

pullups provided; TCK does not.
For normal operation, TMS and
TCK Input No Scan clock TDI may be left unconnected,
TCK_must be set high or low,
and TRST must be asserted
TRST Input Yes TAP controller reset sometime during power-up for
JTAG logic initialization.

TMS Input Yes TAP controller mode signal

7.2.14.2 LSSD_MODE

State Asserted LSSD test enable. The LSSD test enable signal is an input-only signal.
Timing Assertion/ Must be set high by the system during normal operation.

Negation
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7.2.143 L1_TSTCLK

State LSSD test clock in test mode, and bus voltage select in functional mode. See
Table 7-7, Bus Voltage Selection Settings, on page 275.

Timing Assertion/ Signal should be held to a constant value for I/O voltage selection.
Negation

7.2.14.4 L2_TSTCLK

State Reserved pin that must be negated for system operation.
Timing Assertion/ Must be held constant for system operation.
Negation
Start-Up See Table 7-6, Summary of Mode Select Signals, on page 274 for a descrip-

tion of the start-up function.

7.2.14.5 BVSEL

State I/O voltage is selectable through using the BVSEL pin and L1_TSTCLK pin.
See Table 7-7, Bus Voltage Selection Settings, on page 275.

Timing Signal should be held to a constant value for I/O voltage selection.

7.2.15 Clock Signals

The 750GX requires a single system clock input (SYSCLK). This input represents the frequency at which the
bus interface for the 750GX will operate. Internally, the 750GX uses a PLL circuit to generate a master core
clock that is frequency-multiplied and phase-locked to the SYSCLK input. This master core clock is the clock
actually used by the 750GX to operate the internal circuitry. The PLL samples the master clock at the latch
boundary (that is, end of clock tree) and minimizes the clock skew between the rising edge of SYSCLK and
the master clock at the latch boundary. This mechanism provides I/O timings accurate to the rising edge of
SYSCLK. However, if the chip is operated in bypass mode (PLL not used), this phase correcting circuitry
cannot be used, and the I/O timings are unreliable.

The PLL is configured by the PLL_CFG(0:4) pins. These pins select the multiplier that the PLL will use to
multiply the SYSCLK frequency up to the internal core frequency. In addition, the pins PLL_RNG(0:1) must
be set to select the appropriate frequency operating range of the PLL. See the PowerPC 750GX Datasheet
for more information.
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7.2.15.1 System Clock (SYSCLK)—Input

The 750GX requires a single system clock (SYSCLK) input. This input sets the frequency of operation for the
bus interface. Internally, the 750GX uses a PLL circuit to generate a master clock for all of the CPU circuitry
(including the bus interface circuitry) which is phase-locked to the SYSCLK input.

State Asserted/ The primary clock input for the 750GX. SYSCLK represents the bus clock
Negated frequency for bus operation. Internally, the processor core will be operating
at an integer or half-integer multiple (= 1.0) of the bus clock frequency.

Timing Assertion/ See the IBM PowerPC 750GX RISC Microprocessor Datasheet for timing
Negation comments. Loose duty cycle allowed.

Note: SYSCLK is used as a frequency reference for the internal PLL clock
regenerator. It must not be suspended or varied during normal operation to
ensure proper PLL operation.

7.2.15.2 Clock Out (CLK_OUT)—Output

The clock out (CLK_OUT) signal is an output signal.

State Asserted/ PLL clock output for PLL testing or monitoring. (See HID1 for select and
Negated enable.)

The CLK_OUT signal is provided for testing only.

Timing Assertion/ See the IBM PowerPC 750GX RISC Microprocessor Datasheet. Driven with
Negation a bus-rate clock during the assertion of HRESET. The default state during
normal operation is high impedance.

7.2.15.3 PLL Configuration (PLL_CFG[0:4])—Input

The PLL is configured by the PLL_CFGJ0:4] signals. For a given SYSCLK (bus) frequency, the PLL configu-
ration signals set the internal CPU frequency of operation. See the PowerPC 750GX Datasheet for PLL
configuration.

State Asserted/ Configures the operation of the PLL and the internal processor clock
Negated frequency. Settings are based on the desired bus and internal frequency of
operation.
Timing Assertion/ Must remain stable during operation; should only be changed during the
Negation assertion of HRESET. These bits can be read through the PCE[0-4] bits in

the HID1 register.
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7.2.15.4 PLL Range (PLL_RNG[0:1])—Input

State

Timing

7.2.16 Power and Ground Signals

The 750GX provides the following connections for power and ground:

* Vpp—The Vpp signals provide the supply voltage connection for the processor core.

Configures the PLL operating-frequency range. Internal core clock
frequency must be within the specified range.

Must remain stable during normal operation; should only be changed during
the assertion of HRESET. These bits are readable through bits PRE[5:6] in

* OVpp—The OVpp signals provide the supply voltage connection for the system interface drivers.

* AVpp—The AVpp power signal provides power to the clock generation phase-locked loop. See the

PowerPC 750GX Datasheet for information on how to use this signal.

* GND and OGND—The GND and OGND signals provide the connection for grounding the 750GX. On the

750GX, there is no electrical distinction between the GND and OGND signals.
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8. Bus Interface Operation

This chapter describes the PowerPC 750G X microprocessor’s bus interface and its operation. It shows how
the 750GX signals, defined in Chapter 7, Signal Descriptions, on page 249, interact to perform address and
data transfers.

The bus interface buffers bus requests from the instruction and data caches, and executes the requests per
the 60x bus protocol. It includes Address Register queues, prioritizing logic, and bus control logic. It captures
snoop addresses for snooping in the cache and in the Address Register queues. It also snoops for reserva-
tions and holds the touch load address for the cache. All data storage for the Address Register buffers (load-
and-store data buffers) are located in the cache section. The data buffers are considered temporary storage
for the cache and not part of the bus interface.

The general functions and features of the bus interface are:
« Eight Address Register buffers that include the following:

— Instruction-cache load address buffer

— Four data-cache load address buffers

— Two data-cache castout/store address buffers

— Data-cache snoop copy-back address buffer (associated data block buffer located in cache)
— Reservation address buffer for snoop monitoring

— L2 castout buffer

 Pipeline collision detection for data-cache buffers

* Reservation address snooping for Load Word and Reserve Indexed (lwarx) and Store Word Conditional
Indexed (stwcx.) instructions

« Address pipelining for four load/store transactions and one snoop transaction

» Load ahead of store capability

Figure 8-1 on page 280 provides a conceptual block diagram of the bus interface. The Address Register
queues in the figure hold transaction requests that the bus interface can issue on the bus independently of
the other requests. The bus interface can have up to four load/store transactions operating on the bus at any
given time through the use of address pipelining. Enabling MuM allows four cache reloads or cache inhibited
loads to be pipelined in a continuous fashion on the 60x bus. If there is a miss in the L2 cache, then the
request is passed on to the BIU via three additional L2-to-BIU reload-request queues. Data returned from the
bus is loaded into the data-cache reload buffer, one of the L2 reload buffers, and the critical word is forwarded
to the load/store unit. For a D-cache-line load due to the cache miss of a load instruction, the critical double
word is simultaneously written to the 256-bit line fill buffer and forwarded to the requesting load/store unit.
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Figure 8-1. Bus Interface Address Buffers
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8.1 Bus Interface Overview

The bus interface prioritizes requests for bus operations from the instruction and data caches, and performs
bus operations in accordance with the protocol described in the PowerPC Microprocessor Family: The Bus
Interface for 32-Bit Microprocessors. It includes Address Register queues, prioritization logic, and a bus
control unit. The bus interface latches snoop addresses for snooping in the data cache and in the Address
Register queues, and for reservations controlled by the Load Word and Reserve Indexed (lwarx) and Store
Word Conditional Indexed (stwcx.) instructions, and maintains the touch load address for the cache. The
interface allows four levels of pipelining for load/store transactions. That is, with certain restrictions discussed
later, there can be four outstanding load/store transactions at any given time. Accesses are prioritized with
load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit (a maximum of four
per cycle) where they are dispatched to the execution units at a peak rate of two instructions per clock.
Conversely, load-and-store instructions explicitly specify the movement of operands to and from the integer
and Floating Point Register files and the memory system.

When the 750G X encounters an instruction or data access, it calculates the logical address (effective
address in the architecture specification) and uses the low-order address bits to check for a hit in the L1
32-KB instruction and data caches. During cache lookup, the instruction and data memory management units
(MMUSs) use the higher-order address bits to calculate the virtual address from which they calculate the phys-
ical address (real address in the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred in the L1 instruction or data cache. If the
access misses in the corresponding cache, the physical address is used to access the L2 cache tags (if the
L2 cache is enabled). If no match is found in the L2 cache tags, the physical address is used to access
system memory.
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In addition to the loads, stores, and instruction fetches, the 750GX performs hardware table-search opera-
tions following translation lookaside buffer (TLB) misses, L2 cache castout operations when the least-recently
used (LRU) cache lines are written to memory after a cache miss, and cache-line snoop push-out operations
when a modified cache line experiences a snoop hit from another bus master.

Figure 1-1, 750GX Microprocessor Block Diagram, on page 25 shows the address path from the execution
units and instruction fetcher, through the translation logic to the caches and bus interface logic.

The 750GX uses separate address and data buses and a variety of control and status signals to perform
reads and writes. The address bus is 32 bits wide, and the data bus is 64 bits wide. The interface is synchro-
nous—all 750GX inputs are sampled at, and all outputs are driven from, the rising edge of the bus clock. The
processor runs at a multiple of the bus-clock speed.

8.1.1 Operation of the Instruction and Data L1 Caches

The 750GX provides independent instruction and data L1 caches. Each cache is a physically-addressed,
32-KB cache with 8-way set associativity. Both caches consist of 128 sets of eight cache lines, with eight
words in each cache line.

Because the data cache on the 750GX is an on-chip, write-back primary cache, the predominant type of
transaction for most applications is burst-read memory operations, followed by burst-write memory operations
and single-beat (noncacheable or write-through) memory read and write operations. Additionally, there can
be address-only operations, variants of the burst and single-beat operations (that is, global memory opera-
tions that are snooped, and atomic memory operations), and address retry activity (that is, when a snooped
read access hits a modified line in the cache).

Since the 750GX data-cache tags are single ported, simultaneous load or store and snoop accesses cause
resource contention. Snoop accesses have the highest priority and are given first access to the tags, unless
the snoop access coincides with a tag write, in which case the snoop is retried and must rearbitrate for
access to the cache. Loads or stores that are deferred due to snoop accesses are performed on the clock
cycle following the snoop.

The 750GX supports a 3-state coherency protocol that supports the modified, exclusive, and invalid (MEI)
cache states. The protocol is a subset of the modified, exclusive, shared, and invalid (MESI) 4-state protocol
and operates coherently in systems that contain 4-state caches. With the exception of the Data Cache Block
Set to Zero (dcbz) instruction,! the 750GX does not broadcast cache-control instructions. The cache-control
instructions are intended for the management of the local cache, but not for other caches in the system.

Instruction-cache lines in the 750GX are loaded in four beats of 64 bits each. The burst load is performed as
critical double word first. The critical double word is simultaneously written to the cache and forwarded to the
instruction prefetch unit, thus minimizing stalls due to load delays. If subsequent loads follow in sequential
order, the instructions will be forwarded to the requesting unit as the cache block is written.

Data-cache lines in the 750GX are loaded into the cache in one cycle of 256 bits. For a cache-line load due to
the cache miss of a load instruction, the critical double word is simultaneously written to the 256-bit line fill
buffer and forwarded to the requesting load/store unit. If subsequent loads follow in sequential order, the data
will be forwarded to the load/store unit as the cache block is written into the cache.

1. And the Data Cache Block Invalidate (dcbi), Data Cache Block Store (dcbst), and Data Cache Block Flush (dcbf) instruc-
tions, if the address broadcast enable bit in Hardware-Implementation-Dependent O Register (HIDO[ABE]) is enabled.
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Cache lines are selected for replacement based on a pseudo least-recently-used (PLRU) algorithm. Each
time a cache line is accessed, it is tagged as the most-recently-used line of the set. When a miss occurs, and
all eight lines in the set are marked as valid, the least recently used line is replaced with the new data. When
data to be replaced is in the modified state, the modified data is written into a write-back buffer while the
missed data is being read from memory. When the load completes, the 750GX then pushes the replaced line
from the write-back buffer to the L2 cache (if enabled), or to main memory in a burst write operation.

8.1.2 Operation of the Bus Interface

Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes) and 4-beat (32 bytes) burst data transfers.
The address and data buses are independent for memory accesses to support pipelining and split transac-
tions. The 750GX can pipeline as many as four load/store transactions and has limited support for out-of-
order split-bus transactions.

Access to the bus interface is granted through an external arbitration mechanism that allows devices to
compete for bus mastership. This arbitration mechanism is flexible, allowing the 750GX to be integrated into
systems that implement various fairness and bus-parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered to maximize the efficiency of the bus without sacrificing
coherency of the data. The 750GX allows load operations to bypass store operations (except when a depen-
dency exists). In addition, the 750GX can be configured to reorder high-priority store operations ahead of
lower-priority store operations. Because the processor can dynamically optimize run-time ordering of
load/store traffic, overall performance is improved.

Note: The Synchronize (sync) and Enforce In-Order Execution of 1/O (eieio) instructions can be used to
enforce strong ordering.

The following sections describe how the 750GX interface operates and provide detailed timing diagrams that
illustrate how the signals interact. A collection of more general timing diagrams are included as examples of
typical bus operations. Figure 8-2 on page 283 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface—all 750GX input signals are sampled and output signals are driven on the
rising edge of the bus clock cycle (see the PowerPC 750G X Datasheet for exact timing information).

8.1.3 Bus Signal Clocking

All signals for the 750GX bus interface are specified with respect to the rising-edge of the external system
clock input (SYSCLK), and they are guaranteed to be sampled as inputs or changed as outputs with respect
to that edge.

System Implementation Note: Since the same clock edge is referenced for driving or sampling the bus sig-
nals, the possibility of clock skew exists between various modules in a system due to routing or the use of
multiple clock lines. It is the responsibility of the system to handle any such clock skew problems that could
occur.

8.1.4 Optional 32-Bit Data Bus Mode

The 750GX supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the same as the
64-bit data bus mode with the exception of the byte lanes involved in the transfer and the number of data
beats that are performed. The number of data beats required for a data tenure in the 32-bit data bus mode is
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one, two, or eight beats depending on the size of the program transaction and the cache mode for the
address. For additional information about 32-bit data bus mode, see Section 8.6.1, 32-Bit Data Bus Mode, on
page 316.”

8.1.5 Direct-Store Accesses

The 750GX does not support the extended transfer protocol for accesses to the direct-store storage space.
The transfer protocol used for any given access is selected by the T bit in the MMU Segment Registers. If the
T bit is set, the memory access is a direct-store access. An attempt to access instructions or data in a direct-
store segment will result in the 750GX taking an instruction storage interrupt (1SI) or data-storage interrupt
(DSI) exception.

Figure 8-2. Timing Diagram Legend

Note: A bar over signal name indicates active low.

ap0 750GX input (while 750GX is a bus master)
BR 750GX output (while 750GX is a bus master)
ADDR+ 750GX output (grouped: here, address plus attributes)
W 750GX internal signal (inaccessible to the user, but used in diagrams to

clarify operations)

Compelling dependency—event will occur on the next clock cycle

Prerequisite dependency—event will occur on an undetermined subsequent
clock cycle

750GX tristate output or input

D
- 750GX nonsampled input
~

Signal with sample point

A sampled condition (dot on high or low state) with multiple dependencies

Timing for a signal had it been asserted (it is not actually asserted)
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8.2 Memory-Access Protocol

Memory accesses are divided into address and data tenures. Each tenure has three phases—bus arbitration,
transfer, and termination. The 750GX also supports address-only transactions. Note that address and data
tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that both consist of
three phases—arbitration, transfer, and termination. Address and data tenures are independent (indicated in
Figure 8-3 by the fact that the data tenure begins before the address tenure ends), which allows split-bus
transactions to be implemented at the system level in multiprocessor systems. The figure also shows a data
transfer that consists of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte
cache lines require data-transfer termination signals for each beat of data.

Figure 8-3. Overlapping Tenures on the 750GX Bus for a Single-Beat Transfer

ADDRESS TENURE

ARBITRATION TRANSFER TERMINATION

INDEPENDENT ADDRESS AND DATA

DATA TENURE

ARBITRATION SINGLE-BEAT TRANSFER TERMINATION

The basic functions of the address and data tenures are as follows.

Address tenure:

Arbitration During arbitration, address-bus arbitration signals are used to gain mastership of the
address bus.

Transfer After the 750GX is the address-bus master, it transfers the address on the address bus. The
address signals and the transfer attribute signals control the address transfer. The address
parity and address-parity error signals ensure the integrity of the address transfer.

Termination After the address transfer, the system signals that the address tenure is complete or that it
must be repeated.
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Data tenure:

Arbitration To begin the data tenure, the 750GX arbitrates for mastership of the data bus.

Transfer After the 750GX is the data-bus master, it samples the data bus for read operations or
drives the data bus for write operations. The data parity and data-parity error signals
ensure the integrity of the data transfer.

Termination Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure.
However, in burst accesses, the data termination signals apply to individual beats and indi-
cate the end of the tenure only after the final data beat.

The 750GX generates an address-only bus transfer during the execution of the dcbz instruction (and for the
dcbi, dcbf, dcbst, sync, and eieio instructions, if HIDO[ABE] is enabled), which uses only the address bus
with no data transfer involved. Additionally, the 750GX retry capability provides an efficient snooping protocol
for systems with multiple memory systems (including caches) that must remain coherent.

8.2.1 Arbitration Signals

Arbitration for both address-bus and data-bus mastership is performed by a central, external arbiter and,
minimally, by the arbitration signals shown in Section 7.2.1, Address-Bus Arbitration Signals, on page 251.
Most arbiter implementations require additional signals to coordinate bus master/slave/snooping activities.
Note that address-bus busy (ABB) and data bus busy (DBB) are bidirectional signals. These signals are
inputs unless the 750GX has mastership of one or both of the respective buses. They must be connected
high through pull-up resistors so that they remain negated when no devices have control of the buses.

The following list describes the address arbitration signals:

BR (bus request) Assertion indicates that the 750GX is requesting mastership of the address bus.

BG (bus grant) Assertion indicates that the 750G X might, with the proper qualification, assume
mastership of the address bus. A qualified bus grant occurs when BG is asserted
and ABB and address retry (ARTRY) are negated.

If the 750GX is parked, BR need not be asserted for the qualified bus grant.
ABB (address bus Assertion by the 750GX indicates that the 750GX is the address-bus master.
busy)

The following list describes the data arbitration signals:

DBG (data-bus grant) Indicates that the 750GX might, with the proper qualification, assume mastership of
the data bus. A qualified data-bus grant occurs when DBG is asserted while DBB,
date retry (DRTRY), and ARTRY are negated.

The ARTRY signal is driven from the bus and is only for the address-bus tenure
associated with the current data-bus tenure (that is, not from another address
tenure).
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DBWO (data-bus write-  Assertion indicates that the 750G X might perform the data-bus tenure for an

only) outstanding write address even if a read address is pipelined before the write
address. If DBWO is asserted, the 750G X will assume data-bus mastership for a
pending data-bus write operation. The 750GX will take the data bus for a pending
read operation if this input is asserted along with DBG and no write is pending.
Care must be taken with DBWO to ensure the desired write is queued (for
example, a cache-line snoop push-out operation).

DBB (data bus busy) Assertion by the 750GX indicates that the 750GX is the data-bus master. The
750GX always assumes data-bus mastership if it needs the data bus and is given a
qualified data-bus grant (see DBG).

For more detailed information on the arbitration signals, see Section 7.2.1,
Address-Bus Arbitration Signals, on page 251, and Section 7.2.6, Data-Bus Arbi-
tration Signals, on page 264.

8.2.2 Miss-under-Miss

To improve processor performance, a feature called miss-under-miss (MuM) has been added which makes
better use of the address pipelining function of the 60x bus and memaory subsystem. It does this by looking
deeper into the L/S unit and starting the process of fetching pending load misses in a pipelined fashion on the
bus. Past versions of the 750 family supported limited pipelining where cache-inhibited stores and castouts
could be pipelined with instruction and data reloads. Reloads, however, consumed a majority of the bus
cycles and were not pipelined into other reloads, stalling the processor for instructions or data. Enabling MuM
now allows four reloads or cache-inhibited loads to be pipelined in a continuous fashion on the 60x bus, with
the BIU keeping track of requests, addreesses, and pipelining.

Note: The MuM only works because the the 60x bus is an in-order transfer. If it was a transaction type bus
(out of order with tags), then the L/S and Dcache would need the extra queues as well.

Figure 8-4. Cache Diagram for Miss-under-Miss Feature
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The data cache allows hits under one miss, but stalls for a second miss until the first miss is reloaded. The
MuM feature enables a second request queue to the L2 cache for handling up to four misses. If there is a hit
in the L2 cache for a data-cache miss-under-miss, then the L2 data is held until needed for allocation in the
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data cache. If there is a miss in the L2 cache, then the request is passed on to the bus interface unit (BIU) via
three additional L2-to-BIU reload-request queues. Data returned from the bus is loaded into the data-cache
reload buffer, one of the L2 reload buffers, and the critical word is forwarded to the load/store unit.

A dedicated snoop copyback queue has been added, which enables a fifth transaction to pipeline on the bus.
It supports enveloped write transactions with the assertion of DBWO. All snoop copybacks are issued from
this queue.

A maximum of four reloads can be in progress through the L2 cache. The instruction cache will only request
one reload at a time, and the data cache can request up to four. There can be a maximum of one instruction
cache and three data cache reloads, or four data cache reloads.

An example of 1-level address pipelining is shown in Figure 8-5 on page 287. Note that to support address
pipelining, the memory system must no longer require the first address on the bus in order to complete the
first data tenure, and possibly can also queue the second address to maximize the parallelism on the bus.

Figure 8-5. First Level Address Pipelining

Addr #1 Addr #2 (1), (2) - Indicates masters 1 and 2,
or transactions 1 and 2 from
1) 2) the same master.
BG F 1
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AACK
Data #1 Data #2
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8.2.2.1 Miss-under-Miss and System Performance

The MuM feature allows loads and stores that miss in the L1 cache to continue to the L2 cache, even though
the L1 cache is busy reloading a prior miss. Hence the name, miss-under-miss (MuM). If MuM requests also
miss in the L2 cache, they will proceed to the 60x bus in a pipelined fashion. A performance benefit is realized
when pipelining on the 60x bus because the penalty for large memory latency only occurs with the first
memory access. The greatest performance advantage is achieved if MuM requests can be sustained for as
long as possible. Load/store instruction sequences affect how much benefit the MuM feature will produce.

The best sequence is a series of load instructions that reference a different cache-line index (EA[20:26]).
Blocks of memory can be efficiently loaded into the data cache with tight loops that increment the address by
x'20', as in the following example.

The L/S to data cache has two lines to indicate the normal request path and the MuM request path. MuM can
serially request up to three more loads (hold,Eib0, and Eib1) but the address queues are really in the BIU
which can hold up to 4 loads. MuM will be throttled by other events such as a full 3 entry Store queue in the
L/S.
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The BIU has both AR buffers and a 4-deep reload-request queue. So, the BIU operation for the MuM support
is not dependent on the LSU queue, as it has enough buffers and queue depth to manage the outstanding
transactions. The LSU has no additional queues for MuM. MuM just uses what is already there. If there are
four data cache reload requests, the data cache does a lookup, reports a miss, and passes the request on to
the L2/BIU, and it does not store any information.

T T T T
example:1
addis r15,0,0x4200 # Base Data Addressinr15
addi  r16,0,0x0020 # Loop Count is 32
mtctr  rl16
Iptop:  Iwz  r20,0x0000(r15)
lwz  r21,0x0020(r15)
lwz  r22,0x0040(r15)
lwz  r23,0x0060(r15)
addi  r15,r15,0x0080 # Modify Base Data Address
bdnz  Iptop
b finish
T T T T T

There are several conditions, listed below, that can stall, limit, or prevent MuM so that the performance
advantage on the bus will not be realized.

1. Sequential cacheable loads to the same index.

Sequential cacheable loads or stores that reference the same L1 cache index will not be pipelined. The
index bits are EA(20:26). A load to the same cache-line index as an outstanding load miss will prohibit all
further MuM, even for successive loads to a different cache line, until the outstanding load miss is com-
plete. The MuM feature does not look deeper into the load/store request queue for other loads that do not
reference the same cache line once an index conflict exists.

Cache-inhibited loads do not have this restriction.
2. TLB miss resulting in a table walk.

When address translation is enabled using paging, a TLB miss occurs for load or store instructions that
reference a page of memory not described in the TLB. A hardware table walk is then started, which reads
page table entries (PTEs) from the caches or the bus. During this process, MuM will be prohibited until
the table walk is complete.

3. Load request for a graphics instruction, such as External Control In Word Indexed (eciwx).

Graphics instructions, such as eciwx, halt MuM, but once the eciwx is active on the bus, other qualified
loads can initiate an MuM. An eciwx load will not be pipelined into other loads, but other loads can pipe-
line into it.

4. There is a load to guarded memory.

Guarded loads are not allowed to be pipelined into other loads, and other loads are not pipelined into it.

Note: Real mode, the default if address translation is not enabled, defines the write-through, caching-
inhibited, memory coherency, guarded (WIMG) bits to b'0011". The guarded attribute is set, and, there-
fore, MuM will not occur. Address translation must be enabled, and it must set the guarded bit (of WIMG)
to zero for MuM.

5. Load multiple and load string instructions limit MuM.
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Load multiple and load string instructions allow one MuM (two outstanding miss requests) to pipeline on
the 60x bus.

A load is aliased to a store in the store queue, which means it references a byte to the same index and
word. Loads are normally allowed to bypass stores in the 3-deep store queue. However, a load that
aliases a store must allow the store to proceed ahead of it (in program order). The aliased store can start
an MuM, but load MuM will wait until the alias condition is complete.

There is a cache inhibit (Cl), eieio, or sync instruction in the store queue.

Loads can bypass stores in the store queue, providing the store queue does not contain a Cl, eieio, or
sync instruction. MuM is prohibited while these instructions are executing.

Store queue in LSU is full (three entries).

Once the store queue is full, and another store is dispatched, then the stores must be allowed to empty.
In this state, MuM will drop down to two outstanding misses.

Exception, DSI, or alignment error.

Any load or store instruction resulting in an exception, DSI, or alignment error will not be serviced for an
MuM.

The Iwarx, Data Cache Block Touch (dcbt), Data Cache Block Touch for Store (dcbtst), dcbst, dcbf,
dcbz, dcbi, TLB Invalidate Entry (tlbie), and eieio instructions stall MuM requests.

These instructions represent special cache and synchronizing mechanisms that will prevent MuM
requests from starting until they have completed.

Cacheable loads will not MuM into cache-inhibited loads, and vice versa.

Mixing cacheable loads with Cl loads in the instruction stream prevents MuM requests from executing.
Cacheable loads pipeline into other cacheable loads, but not into cache-inhibited loads. The two types of
loads allow MuM requests only to their respective type.

Store misses pipeline to a maximum depth of two outstanding misses as shown below.
Load word A miss

StorewordB MuM

.... no further load or store MuM

Store word A miss

Storeword B MuM
.... ho further load or store MuM

Load miss pipeline in BIU to a maximum depth of four outstanding misses (same as the reload-request
queue).

If there are two outstanding requests, two more MuM requests can be issued if the above conditions are
not true and the following conditions are true:

a. The transaction is a load.
b. The load transaction preceding a new MuM request is aligned on a cache-line boundary.

c. There are no outstanding dependencies. For MuM, all operands for the address calculation must be
valid.

d. No preceding MuM request is an L2 cache hit. Once it is determined that an MuM request is an
L2 hit, then no more MuM requests will proceed.

e. The limit for reloads (four) has not been reached.

In little-endian mode, MuM is constrained to a maximum depth of two outstanding misses.
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8.2.2.2 Speculative Loads and Conditional Branches

Loads that are dispatched before a preceding conditional branch is resolved are speculative. Mispredicted
branches cause the speculative loads to be canceled. Normally, the cancellation is confined to the load/store
unit, and no additional cycles are wasted. However, this is not the case when MuM is enabled. The specula-
tive loads might be MuM requests that have started on the 60x bus. All outstanding MuM requests must
complete, since there is no way to cancel them once they are started on the 60x bus. The load/store unit is
now stalled until all outstanding loads have completed. The data cache is not reloaded for any MuM request
that is canceled. However, the MuM reload is loaded into the L2 cache if enabled.

8.3 Address-Bus Tenure

This section describes the three phases of the address tenure—address-bus arbitration, address transfer,
and address termination.

8.3.1 Address-Bus Arbitration

When the 750GX needs access to the external bus and it is not parked (@ is negated), it asserts the bus
request (BR) signal until it is granted mastership of the bus and the bus is available (see Figure 8-6). The
external arbiter must grant master-elect status to the potential master by asserting the bus grant (BG) signal.
The 750GX requesting the bus determines that the bus is available when the ABB input is negated. When the
address bus is not busy (ABB input is negated), BG is asserted and the address retry (ARTRY) input is
negated. This is referred to as a qualified bus grant. The potential master assumes address-bus mastership
by asserting ABB when it receives a qualified bus grant.

Figure 8-6. Address-Bus Arbitration
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External arbiters must allow only one device at a time to be the address-bus master. For implementations in
which no other device can be a master, BG can be grounded (always asserted) to continually grant master-
ship of the address bus to the 750GX.

Note: Arbiter designs must ensure that no more than one address-bus master can be granted the bus at one
time (that is, bus grants must be mutually exclusive).

If the 750GX asserts BR before the external arbiter asserts BG, the 750GX is considered to be unparked, as
shown in Figure 8-6. Figure 8-7 shows the parked case, where a qualified bus grant exists on the clock edge
following a need_bus condition. Notice that the bus clock cycle required for arbitration is eliminated if the
750GX is parked, reducing overall memory latency for a transaction. The 750GX always negates ABB for at
least one bus clock cycle after the address acknowledge (AACK) signal is asserted, even if it is parked and
has another transaction pending.

Typically, bus parking is provided to the device that was the most recent bus master. However, system
designers might choose other schemes, such as providing unrequested bus grants in situations where it is
easy to correctly predict the next device requesting bus mastership.

Figure 8-7. Address-Bus Arbitration Showing Bus Parking
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When the 750GX receives a qualified bus grant, it assumes address-bus mastership by asserting ABB and
negating the BR output signal. Meanwhile, the 750G X drives the address for the requested access onto the
address bus and asserts transfer start (TS) to indicate the start of a new transaction.

When designing external bus arbitration logic, note that the 750GX might assert BR without using the bus
after it receives the qualified bus grant. For example, in a system using bus snooping, if the 750GX asserts
BR to perform a replacement copy-back operation, another device can invalidate that line before the 750GX
is granted mastership of the bus. Once the 750GX is granted the bus, it no longer needs to perform the copy-
back operation. Therefore, the 750GX does not assert ABB and does not use the bus for the copy-back oper-
ation. Note that the 750GX asserts BR for at least one clock cycle in these instances.
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System designers should note that it is possible to ignore the ABB signal, and regenerate the state of ABB
locally within each device by monitoring the TS and AACK input signals. The 750GX allows this operation by
using both the ABB input signal and a locally regenerated version of ABB to determine if a qualified bus grant
state exists (both sources are internally ORed together). The ABB signal can only be ignored if ABB and TS
are asserted simultaneously by all masters, or where arbitration (through assertion of BG) is properly
managed in cases where the regenerated ABB might not properly track the ABB signal on the bus. If the
750GX’s ABB signal is ignored by the system, it must be connected to a pull-up resistor to ensure proper
operation. Additionally, the 750GX will not qualify a bus grant during the cycle that TS is asserted on the bus
by any master. Address-bus arbitration without the use of the ABB signal requires that every assertion of TS
be acknowledged by an assertion of AACK while the processor is not in sleep mode.

8.3.2 Address Transfer

During the address transfer, the physical address and all attributes of the transaction are transferred from the
bus master to the slave devices. Snooping logic can monitor the transfer to enforce cache coherency; see the
discussion of snooping in Section 8.3.3, Address Transfer Termination, on page 300.
The signals used in the address transfer include the following signal groups:

« Address transfer start signal: transfer start (ﬁ)

« Address transfer signals: address bus (A[0-31]), and address parity (AP[0-3])

+ Address transfer attribute signals: transfer type (TT[0-4]), transfer size (TSIZ[0-2]), transfer burst
(TBST), cache inhibit (CI) write-through (WT), and global (GBL)

Figure 8-8 on page 293 shows that the timing for all of these signals, except TS, is identical. All of the
address transfer and address transfer attribute signals are combined into the ADDR+ grouping in Figure 8-8.
The TS signal indicates that the 750GX has begun an address transfer and that the address and transfer
attributes are valid (within the context of a synchronous bus). The 750GX always asserts TS coincident with
ABB. As an input, TS need not coincide with the assertion of ABB on the bus (that is, TS can be asserted
with, or on, a subsequent clock cycle after ABB is asserted; the 750GX tracks this transaction correctly).

In Figure 8-8, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs in bus clock
cycle 0 and the address transfer is terminated in bus clock 3). In this diagram, the address-bus termination
input, AACK, is asserted to the 750GX on the bus clock following assertion of TS (as shown by the depen-
dency line). This is the minimum duration of the address transfer for the 750GX; the duration can be extended
by delaying the assertion of AACK for one or more bus clocks.
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Figure 8-8. Address-Bus Transfer
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8.3.2.1 Address-Bus Parity

The 750GX always generates 1 bit of correct odd-byte parity for each of the 4 bytes of address when a valid
address is on the bus. The calculated values are placed on the AP[0-3] outputs when the 750GX is the
address-bus master. If the 750G X is not the master and TS and GBL are asserted together (qualified condi-
tion for snooping memory operations), the calculated values are compared with the AP[0-3] inputs. If there is
an error, and address-parity checking is enabled (HIDO[EBA] set to 1), a machine-check exception is gener-
ated. An address-bus parity error causes a checkstop condition if MSR[ME] is cleared to 0. For more informa-
tion about checkstop conditions, see Chapter 4, Exceptions, on page 151.

8.3.2.2 Address Transfer Attribute Signals

The transfer attribute signals include several encoded signals such as the transfer type (TT[0-4]) signals,
transfer burst (TBST) signal, transfer size (TSI1Z[0-2]) signals, write-through (WT), and cache inhibit (CI).
Section 7.2.4, Address Transfer Attribute Signals, on page 255 describes the encodings for the address
transfer attribute signals.

Transfer Type (TT[0-4]) Signals

Snooping logic should fully decode the transfer type signals if the GBL signal is asserted. Slave devices can
sometimes use the individual transfer type signals without fully decoding the group. For a complete descrip-
tion of the encoding for TT[0-4], see Table 8-1 and Table 8-2 on page 295.

Transfer Size (TSIZ[0-2]) Signals

The TSIZ[0-2] signals indicate the size of the requested data transfer as shown in Table 8-1. The TSIZ[0-2]
signals can be used along with TBST and A[29-31] to determine which portion of the data bus contains valid
data for a write transaction or which portion of the bus should contain valid data for a read transaction. Note
that, for a burst transaction (as indicated by the assertion of TBST), TSIZ[0-2] are always set to 0b010.
Therefore, if the TBST signal is asserted, the memory system should transfer a total of eight words (32
bytes), regardless of the TSIZ[0-2] encodings.

Table 8-1. Transfer Size Signal Encodings

TBST TSIZO TSIZ1 TSI1Z2 Transfer Size
Asserted 0 1 0 8-word burst
Negated 0 0 0 8 bytes
Negated 0 0 1 1 byte
Negated 0 1 0 2 bytes
Negated 0 1 1 3 bytes
Negated 1 0 0 4 bytes
Negated 1 0 1 5 bytes (N/A)
Negated 1 1 0 6 bytes (N/A)
Negated 1 1 1 7 bytes (N/A)

Bus Interface Operation gx_08.fm.(1.2)

Page 294 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache line). Data trans-
fers that cross an aligned, 32-byte boundary either must present a new address onto the bus at that boundary
(for coherency consideration) or must operate as noncoherent data with respect to the 750GX. The 750GX
never generates a bus transaction with a transfer size of 5 bytes, 6 bytes, or 7 bytes.

Write-Through (WT) Signal

The 750GX provides the WT signal to indicate a write-through operation as determined by the WIM bit
settings during address translation by the MMU. The WT signal is also asserted for burst writes due to the
execution of the dcbf and dcbst instructions, and snoop push operations. The WT signal is deasserted for
accesses caused by the execution of the External Control Out Word Indexed (ecowx) instruction. During_
read operations, the 750G X uses the WT signal to indicate whether the transaction is an instruction fetch (WT
negated) or a data read operation (WT asserted).

Cache Inhibit (CI) Signal

The 750GX indicates the caching-inhibited status of a transaction (determined by the setting of the WIM bits
by the MMU) through the use of the CI signal. The CI signal is asserted even if the L1 caches are disabled or
locked. This signal is also asserted for bus transactions caused by the execution of eciwx and ecowx instruc-
tions independent of the address translation.

8.3.2.3 Burst Ordering During Data Transfers

During burst data-transfer operations, 32 bytes of data (one cache line) are transferred to or from the cache in
order. Burst write transfers are always performed zero double word first, but since burst reads are performed
critical double word first, a burst read transfer might not start with the first double word of the cache line, and
the cache-line fill might wrap around the end of the cache line.

Table 8-2. Burst Ordering—64-Bit Bus

Double-Word Starting Address:
Data Transfer

A[27-28] = 00 A[27-28] = 01 A[27-28] = 10 A[27-28] = 11
First data beat DWO Dw1 Dw2 DW3
Second data beat Dw1 DW2 DW3 DWO
Third data beat DwW2 Dw3 DWO Dwi
Fourth data beat DW3 DWO Dw1 DW2

Note: A[29-31] are always 0b00O for burst transfers by the 750GX.
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Table 8-3. Burst Ordering—32-Bit Bus

For Starting Address:
Data Transfer

A[27-28] = 00 A[27-28] = 01 A[27-28] = 10 A[27-28] = 11
First data beat DWO0-U DW1-U DW2-U DW3-U
Second data beat DWO-L DW1-L DW2-L DW3-L
Third data beat DW1-U DW2-U DW3-U DWO0-U
Fourth data beat DW1-L DW2-L DW3-L DWO-L
Fifth data beat DW2-U DW3-U DWO0-U DW1-U
Sixth data beat Dw2-L DW3-L DWO-L DW1-L
Seventh data beat DW3-U DWO-U DW1-U DW2-U
Eighth data beat DW3-L DWO-L DW1-L DW2-L

Note:

A[29-31] are always 0b00O for burst transfers by the 750GX.
“U” and “L” represent the upper and lower word of the double word respectively.

8.3.2.4 Effect of Alignment in Data Transfers

Table 8-4 lists the aligned transfers that can occur on the 750GX bus. These are transfers in which the data
is aligned to an address that is an integral multiple of the size of the data. For example, Table 8-4 shows that
1-byte data is always aligned. However, for a 4-byte word to be aligned, it must be oriented on an address
that is a multiple of four.

Table 8-4. Aligned Data Transfers (Page 1 of 2)

Data-Bus Byte Lane(s)

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29-31]

1 2 3 4 5 6 7
000 X — — — — — — —
001 — X — — — — — —
010 — — X — — — — —
011 — — — X — — — —
Byte
100 — — — — X — — —
101 — — — — — X — —
110 — — — — — — X —
111 — — — — — — — X
000 X X — — — — — —

010 — — X X — — — —
Half word

O OoOo/lo o olo o o o o o
P PP, O O O O O O o o

100 — — — — X X — —

o 0o/ o o r R |lkr R R R R| R

0 1 110 — — — — — — X X

Note: The entries with an “x” indicate the byte portions of the requested operand that are read or written during a bus transaction.
The entries with a “—" are not required and are ignored during read transactions, and they are driven with undefined data during all write
transactions.
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Table 8-4. Aligned Data Transfers (Page 2 of 2)

Data-Bus Byte Lane(s)

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29-31]
1 2
1 0 0 000 X X X
Word
1 0 0 100 — — —
Double word 0 0 0 000 X X X

3

X

X

4

X

X

5

X

X

6 7
X X
X X

Note: The entries with an “x” indicate the byte portions of the requested operand that are read or written during a bus transaction.
The entries with a “-” are not required and are ignored during read transactions, and they are driven with undefined data during all write

transactions.

The 750GX supports misaligned memory operations, although their use can substantially degrade perfor-
mance. Misaligned memory transfers address memory that is not aligned to the size of the data being trans-
ferred (such as, a word read of an odd byte address). Although most of these operations hit in the primary
cache (or generate burst memory operations if they miss), the 750GX interface supports misaligned transfers

within a word (32-bit aligned) boundary, as shown in Table 8-5 on page 298.

Note: The 4-byte transfer in Table 8-5 is only one example of misalignment. As long as the attempted trans-
fer does not cross a word boundary, the 750G X can transfer the data on the misaligned address (for example,
a half-word read from an odd byte-aligned address). An attempt to address data that crosses a word bound-

ary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operations, they are best avoided.
In addition to the double-word straddle boundary condition, the address-translation logic can generate
substantial exception overhead when the load/store multiple and load/store string instructions access
misaligned data. It is strongly recommended that software attempt to align data where possible.
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Table 8-5. Misaligned Data Transfers (4-Byte Examples)

Transfer Size Data-Bus Byte Lanes

(Four Bytes) TSIZ[0-2] A[29-31] o 1 5 3 4 5 s .
Aligned 100 000 A A A A — — — —
Misaligned—first access 011 001 A A A — — — —
second access 001 100 — — — — A — — —
Misaligned—first access 010 010 — — A A — — — —
second access 011 100 — — — — A A — —
Misaligned—first access 001 011 — — — A — — — —
second access 011 100 — — — — A A —
Aligned 100 100 — — — — A A
Misaligned—first access 011 101 — — — — — A A
second access 001 000 A — — — — — — —
Misaligned—first access 010 110 — — — — — — A A
second access 010 000 A A — — — — — —
Misaligned—first access 001 111 — — — — — — — A
second access 011 000 A A A — — — — —
Note:
A: Byte lane used

— Byte lane not used

Effect of Alignment in Data Transfers (32-Bit Bus)

The aligned data-transfer cases for 32-bit data-bus mode are shown in Table 8-6 on page 298. All of the
transfers require a single data beat (if caching-inhibited or write-through) except for double-word cases which
require two data beats. The double-word case is only generated by the 750GX for load or store double oper-
ations to or from the floating-point General Purpose Registers (GPRs). All caching-inhibited instruction
fetches are performed as word operations.

Table 8-6. Aligned Data Transfers (32-Bit Bus Mode) (Page 1 of 2)

Data-Bus Byte Lanes

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29-31]
1 2 3 4 5 6 7
0 0 1 000 A — — — X X X X
0 0 1 001 — A X — X X X X
0 0 1 010 — — A — X X X X
0 0 1 011 — — — A X X X X
Byte
0 0 1 100 A — — — X X X X
0 0 1 101 — A — — X X X X
0 0 1 110 — — A — X X X X
0 0 1 111 — — — A X X X X
Bus Interface Operation gx_08.fm.(1.2)
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Table 8-6. Aligned Data Transfers (32-Bit Bus Mode) (Page 2 of 2)

Data-Bus Byte Lanes

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29-31]
2 3 4 5 6 7
0 1 0 000 A A — — X X X X
0 1 0 010 — — A A X X X X
Half word
0 1 0 100 A A — — X X X X
0 1 0 110 — — A A X X X X
1 0 0 000 A A A A X X X X
Word
1 0 0 100 A A A A X X X X
Double word 0 0 0 000 A A A A X X X X
Second beat 0 0 0 000 A A A A X X X X
Note:
A: Byte lane used
— Byte lane not used
X: Byte lane not used in 32-bit bus mode

Misaligned data transfers when the 750GX is configured with a 32-bit data bus operate in the same way as
when configured with a 64-bit data bus, with the exception that only the DH[0-31] data bus is used. See
Table 8-7 on page 299 for an example of a 4-byte misaligned transfer starting at each possible byte address
within a double word.

Table 8-7. Misaligned 32-Bit Data-Bus Transfer (4-Byte Examples)

Transfer Size Data-Bus Byte Lanes

(Four Bytes) TSIZ[0-2] A[29-31] o . ) R A . 5 ,
Aligned 100 000 A A A A X X X X
Misaligned—first access 011 001 A A A X X X X
second access 001 100 A — — — X X X X
Misaligned—first access 010 010 — — A A X X X X
second access 010 100 A A — X X X X X
Misaligned—first access 001 011 — — — A X X X X
second access 011 100 A A — X X X X
Aligned 100 100 A A A X X X X
Misaligned—first access 011 101 — A A X X X X
second access 001 000 A — — — X X X X
Misaligned—first access 010 110 — — A A X X X X
second access 010 000 A A — — X X X X
Misaligned—first access 001 111 — — — A X X X X
second access 011 000 A A A — X X X X
Note:
A: Byte lane used
— Byte lane not used
X: Byte lane not used in 32-bit bus mode
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8.3.2.5 Alignment of External Control Instructions

The size of the data transfer associated with the eciwx and ecowx instructions is always 4 bytes. If the eciwx
or ecowx instruction is misaligned and crosses any word boundary, the 750GX will generate an alignment
exception.

8.3.3 Address Transfer Termination

The address tenure of a bus operation is terminated when completed with the assertion of AACK, or retried
with the assertion of ARTRY. The 750GX does not terminate the address transfer until the AACK input is
asserted. Therefore, the system can extend the address transfer phase by delaying the assertion of AACK to
the 750GX. The assertion of AACK can be as early as the bus clock cycle following TS (see Figure 8-9 on
page 301), which allows a minimum address tenure of two bus cycles. As shown in Figure 8-9, these signals
are asserted for one bus clock cycle, tristated for half of the next bus clock cycle, driven high until the
following bus cycle, and finally tristated. Note that AACK must be asserted for only one bus clock cycle.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted anytime during the
address tenure and through the cycle following AACK. The assertion causes the entire transaction (address
and data tenure) to be rerun. As a snooping device, the 750GX asserts ARTRY for a snooped transaction that
hits modified data in the data cache that must be written back to memory, or if the snooped transaction could
not be serviced. As a bus master, the 750GX responds to an assertion of ARTRY by canceling the bus trans-
action and rerequesting the bus. Note that after recognizing an assertion of ARTRY and canceling the trans-
action in progress, the 750GX is not guaranteed to run the same transaction the next time it is granted the
bus due to internal reordering of load-and-store operations.

If an address retry is required, the ARTRY response will be asserted by a bus snooping device as early as the
second cycle after the assertion of TS. Once asserted, ARTRY must remain asserted through the cycle after
the assertion of AACK. The assertion of ARTRY during the cycle after the assertion of AACK is referred to as
a qualified ARTRY. An earlier assertion of ARTRY during the address tenure is referred to as an early
ARTRY.

As a bus master, the 750G X recognizes either an early or qualified ARTRY and prevents the data tenure
associated with the retried address tenure. If the data tenure has already begun, the 750GX cancels and
terminates the data tenure immediately even if the burst data has been received. If the assertion of ARTRY is
received up to or on the bus cycle following the first (or only) assertion of TA for the data tenure, the 750G X
ignores the first data beat, and if it is a load operation, does not forward data internally to the cache and
execution units. If ARTRY is asserted after the first (or only) assertion of TA, improper operation of the bus
interface can result.

During the clock of a qualified ARTRY, the 750GX also determines if it should negate BR and ignore BG on
the following cycle. On the following cycle, only the snooping master that asserted ARTRY and needs to
perform a snoop copy-back operation is allowed to assert BR. This guarantees the snooping master an
opportunity to request and be granted the bus before the just-retried master can restart its transaction. Note
that a nonclocked bus arbiter might detect the assertion of address-bus request by the bus master that
asserted ARTRY, and return a qualified bus grant one cycle earlier than shown in Figure 8-9.

Note that if the 750GX asserts ARTRY due to a snoop operation, and asserts BR in the bus cycle following
ARTRY in order to perform a snoop push to memory, the 750GX might not be able to accept a BG until
several bus cycles later. (The delay in responding to the assertion of BG only occurs during snoop pushes
from the L2 cache.) The bus arbiter should keep BG asserted until it detects BR negated or TS asserted from
the 750GX, which indicates that the snoop copy-back has begun. The system should ensure that no other
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address tenures occur until the current snoop push from the 750GX is completed. Snoop push delays can
also be avoided by operating the L2 cache in write-through mode so no snoop pushes are required by the L2
cache.

Figure 8-9. Snooped Address Cycle with ARTRY
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8.4 Data-Bus Tenure

This section describes the data-bus arbitration, transfer, and termination phases defined by the 750G X
memory-access protocol. The phases of the data tenure are identical to those of the address tenure, under-
scoring the symmetry in the control of the two buses.

8.4.1 Data-Bus Arbitration

Data-bus arbitration uses the data arbitration signal group—DBG, DBWO, and DBB. Additionally, the combi-
nation of TS and TT[0-4] provides information about the data-bus request to external logic.

The TS signal is an implied data-bus request from the 750GX. The arbiter must qualify TS with the transfer
type (TT) encodings to determine if the current address transfer is an address-only operation, which does not
require a data-bus transfer (see Figure 8-9). If the data bus is needed, the arbiter grants data-bus mastership
by asserting the DBG input to the 750GX. As with the address-bus arbitration phase, the 750GX must qualify
the DBG input with a number of input signals before assuming bus mastership, as shown in Figure 8-10.
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Figure 8-10. Data-Bus Arbitration
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A qualified data-bus grant can be expressed as the following:

QDBG = DBG asserted while DBB, DRTRY, and ARTRY (associated with the data-bus operation) are
negated.

When a data tenure overlaps with its associated address tenure, a qualified ARTRY assertion coincident with
a data-bus grant signal does not result in data-bus mastership (DBB is not asserted). Otherwise, the 750G X
always asserts DBB on the bus clock cycle after recognition of a qualified data-bus grant. Since the 750G X
can pipeline transactions, there might be an outstanding data-bus transaction when a new address transac-
tion is retried. In this case, the 750G X becomes the data-bus master to complete the outstanding transaction.

8.4.1.1 Using the DBB Signal

The DBB signal should be connected between masters if data tenure scheduling is left to the masters.
Optionally, the memory system can control data tenure scheduling directly with DBG. However, it is possible
to ignore the DBB signal in the system if the DBB input is not used as the final data-bus allocation control
between data-bus masters, and if the memory system can track the start and end of the data tenure. If DBB is
not used to signal the end of a data tenure, DBG is only asserted to the next bus master the cycle before the
cycle that the next bus master might actually begin its data tenure, rather than asserting it earlier (usually
during another master’s data tenure) and allowing the negation of DBB to be the final gating signal for a qual-
ified data-bus grant. Even if DBB is ignored in the system, the 750GX always recognizes its own assertion of
DBB, and requires one cycle after data tenure completion to negate its own DBB before recognizing a quali-
fied data-bus grant for another data tenure. If DBB is ignored in the system, it must still be connected to a
pull-up resistor on the 750GX to ensure proper operation.

Bus Interface Operation gx_08.fm.(1.2)
Page 302 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

8.4.2 Data-Bus Write-Only

As a result of address pipelining, the 750GX can have up to two data tenures queued to perform when it
receives a qualified DBG. Generally, the data tenures should be performed in strict order (the same order as
their address tenures were performed). The 750GX, however, also supports a limited out-of-order capability
with the data-bus write-only (DBWO) input. When recognized on the clock of a qualified DBG, DBWO can
direct the 750GX to perform the next pending data write tenure even if a pending read tenure would have
normally been performed first. For more information on the operation of DBWO, see Section 8.9, Using Data-
Bus Write-Only, on page 320.

If the 750GX has any data tenures to perform, it always accepts data-bus mastership to perform a data tenure
when it recognizes a qualified DBG. If DBWO is asserted with a qualified DBG and no write tenure is queued
to run, the 750GX still takes mastership of the data bus to perform the next pending read data tenure.

Generally, DBWO should only be used to allow a copy-back operation (burst write) to occur before a pending
read operation. If DBWO is used for single-beat write operations, it can negate the effect of the eieio instruc-
tion by allowing a write operation to precede a program-scheduled read operation.

8.4.3 Data Transfer

The data-transfer signals include the data bus high (DH[0-31]), data bus low (DL[0-31]), and data bus parity
(DP[0-7]) signals. For memory accesses, the DH and DL signals form a 64-bit data path for read and write
operations.

The 750GX transfers data in either single-beat or 4-beat burst transfers. Single-beat operations can transfer
from 1 to 8 bytes at a time and can be misaligned; see Section 8.3.2.4, Effect of Alignment in Data Transfers,
on page 296. Burst operations always transfer eight words and are aligned on 8-word address boundaries.
Burst transfers can achieve significantly higher bus throughput than single-beat operations.

The type of transaction initiated by the 750G X depends on whether the code or data is cacheable and, for
store operations, whether the cache is in write-back or write-through mode, which software controls on either
a page or block basis. Burst transfers support cacheable operations only. That is, memory structures must be
marked as cacheable (and write-back for data store operations) in the respective page or block descriptor to
take advantage of burst transfers.

The 750GX output TBST indicates to the system whether the current transaction is a single-beat or 4-beat
transfer (except during eciwx and ecowx transactions, when it signals the state of bit 28 of the External
Access Register (EAR[28]). A burst transfer has an assumed address order. For load or store operations that
miss in the cache (and are marked as cacheable and, for stores, write-back in the MMU), the 750GX uses the
double-word-aligned address associated with the critical code or data that initiated the transaction. This mini-
mizes latency by allowing the critical code or data to be forwarded to the processor before the rest of the
cache line is filled. For all other burst operations, however, the cache line is transferred beginning with the
8-word-aligned data.

8.4.4 Data-Transfer Termination

Four signals are used to terminate data-bus transactions—TA, DRTRY, transfer error acknowledge (TEA),
and ARTRY. The TA signal indicates normal termination of data transactions. It must always be asserted on
the bus cycle coincident with the data that it is qualifying. It can be withheld by the slave for any number of
clocks until valid data is ready to be supplied or accepted. DRTRY indicates invalid read data in the previous
bus clock cycle. DRTRY extends the current data beat and does not terminate it. If it is asserted after the last
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(or only) data beat, the 750GX negates DBB but still considers the data beat active and waits for another
assertion of TA. DRTRY is ignored on write operations. TEA indicates a nonrecoverable bus error event.
Upon receiving a final (or only) termination condition, the 750GX always negates DBB for one cycle.

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the negation of DBB,
the memory system should tristate the data bus on the clock after the final assertion of TA, even though it will
negate DRTRY on that clock. This is to prevent a potential momentary data-bus conflict if a write access
begins on the following cycle.

The TEA signal is used to signal a nonrecoverable error during the data transaction. It can be asserted on
any cycle during DBB, or on the cycle after a qualified TA during a read operation, except when no-DRTRY
mode is selected (where no-DRTRY mode cancels checking the cycle after TA). The assertion of TEA termi-
nates the data tenure immediately even if in the middle of a burst. However, it does not prevent incorrect data
that has just been acknowledged with a TA from being written into the 750GX cache or to GPRs. The asser-
tion of TEA initiates either a machine-check exception or a checkstop condition based on the setting of the
MSR[ME] bit.

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY is for the address
tenure associated with the data tenure in operation. If ARTRY is connected for the 750GX, the earliest allow-
able assertion of TA to the 750GX is directly dependent on the earliest possible assertion of ARTRY to the
750GX; see Section 8.3.3, Address Transfer Termination, on page 300.

8.4.4.1 Normal Single-Beat Termination

Normal termination of a single-beat data read operation occurs when TA is asserted by a responding slave.
The TEA and DRTRY signals must remain negated during the transfer (see Figure 8-11).

Figure 8-11. Normal Single-Beat Read Termination
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The DRTRY signal is not sampled during data writes, as shown in Figure 8-12.
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Figure 8-12. Normal Single-Beat Write Termination

\ 0 | 1 | 2 \ 3 \

[
_ Vanmmp S
qual DBG \k /
oBE = /_\_
data >< ;: ><
@ AN !

drtry

AACK /

Normal termination of a burst transfer occurs when TA is asserted for four bus clock cycles, as shown in
Figure 8-13. The bus clock cycles in which TA is asserted need not be consecutive, thus allowing pacing of
the data-transfer beats. For read bursts to terminate successfully, TEA and DRTRY must remain negated
during the transfer. For write bursts, TEA must remain negated for a successful transfer. DRTRY is ignored
during data writes.

Figure 8-13. Normal Burst Transaction
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For read bursts, DRTRY can be asserted one bus clock cycle after TA is asserted to signal that the data
presented with TA is invalid and that the processor must wait for the negation of DRTRY before forwarding
data to the processor (see Figure 8-14). Thus, a data beat can be terminated by a predicted branch with TA,
and then one bus clock cycle later confirmed with the negation of DRTRY. The DRTRY signal is valid only for
read transactions. TA must be asserted on the bus clock cycle before the first bus clock cycle of the assertion
of DRTRY; otherwise, the results are undefined.

The DRTRY signal extends data-bus mastership such that other processors cannot use the data bus until
DRTRY is negated. Therefore, in the example in Figure 8-14, data-bus tenure for the next transaction cannot
begin until bus clock cycle 6. This is true for both read and write operations even though DRTRY does not
extend bus mastership for write operations.

Figure 8-14. Termination with DRTRY

\ 1 | 2 | 3 \ 4 \ 5 \

]
TS ﬁ
uaI@@
q Qha/
C

DBB

5 {

drtry N .

Bus Interface Operation gx_08.fm.(1.2)
Page 306 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

Figure 8-15 shows the effect of using DRTRY during a burst read. It also shows the effect of using TA to pace
the data-transfer rate. Notice that in bus clock cycle 3 of Figure 8-15, TA is negated for the second data beat.
The 750GX data pipeline does not proceed until bus clock cycle 4 when the TA is reasserted.

Figure 8-15. Read Burst with TA Wait States and DRTRY
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Note: DRTRY is useful for systems that implement predicted forwarding of data such as those with direct-
mapped, third-level caches where hit or miss is determined on the following bus clock cycle, or for parity-
checked or ECC-checked memory systems. Also note that DRTRY might not be implemented on other
PowerPC processors.

8.4.4.2 Data-Transfer Termination Due to a Bus Error

The TEA signal indicates that a bus error occurred. It might be asserted during data-bus tenure. Asserting
TEA to the 750GX terminates the transaction. That is, further assertions of TA are ignored and the data-bus
tenure is terminated.

Assertion of the TEA signal causes a machine-check exception (and possibly a checkstop condition within
the 750GX).

Note: The 750GX does not implement a synchronous error capability for memory accesses. This means that
the exception instruction pointer saved into Machine Status Save/Restore Register 0 (SRRO) does not point
to the memory operation that caused the assertion of TEA, but to the instruction about to be executed (per-
haps several instructions later). However, assertion of TEA does not invalidate data entering the GPR or the
cache. Additionally, the address corresponding to the access that caused TEA to be asserted is not latched
by the 750GX. To recover, the exception handler must determine and remedy the cause of the TEA, or the
750G X must be reset. Therefore, this function should only be used to indicate fatal system conditions to the
processor.

After the 750GX has committed to run a transaction, that transaction must eventually complete. Address retry
causes the transaction to be restarted. TA wait states and DRTRY assertion for reads delay termination of
individual data beats. Eventually, however, the system must either terminate the transaction or assert the
TEA signal. For this reason, care must be taken to check for the end of physical memory and the location of
certain system facilities to avoid memory accesses that result in the assertion of TEA.
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Note: TEA generates a machine-check exception depending on MSR[ME]. Clearing the machine-check-
exception enable control bits leads to a true checkstop condition (instruction execution halted and processor
clock stopped).

8.4.5 Memory Coherency—MEI Protocol

The 750GX provides dedicated hardware to provide memory coherency by snooping bus transactions. The
address retry capability enforces the 3-state, MEI cache-coherency protocol (see Figure 8-16 on page 309).

The global (@) output signal indicates whether the current transaction must be snooped by other snooping
devices on the bus. Address-bus masters assert GBL to indicate that the current transaction is a global
access (that is, an access to memory shared by more than one device). If GBL is not asserted for the transac-
tion, that transaction is not snooped. When other devices detect the GBL input asserted, they must respond
by snooping the broadcast address.

Normally, GBL reflects the M bit value specified for the memory reference in the corresponding translation
descriptors. Note that care must be taken to minimize the number of pages marked as global, because the
retry protocol discussed in the previous section is used to enforce coherency and can require significant bus
bandwidth.

When the 750GX is not the address-bus master, GBL is an input. The 750GX snoops a transaction if TS and
GBL are asserted together in the same bus clock cycle (this is a qualified snooping condition). No snoop
update to the 750GX cache occurs if the snooped transaction is not marked global. This includes invalidation
cycles.

When the 750GX detects a qualified snoop condition, the address associated with the TSis compared
against the data-cache tags. Snooping completes if no hit is detected. If, however, the address hits in the
cache, the 750GX reacts according to the MEI protocol shown in Figure 8-16, assuming the WIM bits are set
to write-back, caching-enabled, and coherency-enforced modes (WIM = 001).
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Figure 8-16. MEI Cache-Coherency Protocol—State Diagram (WIM = 001)
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This section shows timing diagrams for various scenarios. Figure 8-17 on page 310 illustrates the fastest
single-beat reads possible for the 750GX. This figure shows both minimal latency and maximum single-beat
throughput. By delaying the data-bus tenure, the latency increases, but, because of split-transaction pipe-
lining, the overall throughput is not affected unless the data-bus latency causes the third address tenure to be

delayed.

Note that all bidirectional signals are tristated between bus tenures.
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Figure 8-17. Fastest Single-Beat Reads
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Figure 8-18 illustrates the fastest single-beat writes supported by the 750GX. All bidirectional signals are
tristated between bus tenures.

Figure 8-18. Fastest Single-Beat Writes
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Figure 8-19 shows three ways to delay single-beat reads using data-delay controls:
« The TA signal can remain negated to insert wait states in clock cycles 3 and 4.
» For the second access, DBG could have been asserted in clock cycle 6.

 Inthe third access, DRTRY is asserted in clock cycle 11 to flush the previous data.

Note: All bidirectional signals are tristated between bus tenures. The pipelining shown in Figure 8-19 can
occur if the second access is not another load (for example, an instruction fetch).

Figure 8-19. Single-Beat Reads Showing Data-Delay Controls
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Figure 8-20 shows data-delay controls in a single-beat write operation. Note that all bidirectional signals are
tristated between bus tenures. Data transfers are delayed in the following ways:

+ The TA signal is held negated to insert wait states in clocks 3 and 4.
« Inclock 6, DBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).
Figure 8-20. Single-Beat Writes Showing Data-Delay Controls
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Figure 8-21 shows the use of data-delay controls with burst transfers. Note that all bidirectional signals are
tristated between bus tenures. Also note:

 The first data beat of burst read data (clock 0) is the critical quadword.

« The write burst shows the use of TA signal negation to delay the third data beat.
» The final read burst shows the use of DRTRY on the third data beat.

« The address for the third transfer is delayed until the first transfer completes.

Figure 8-21. Burst Transfers with Data-Delay Controls
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Figure 8-22 shows the use of the TEA signal. Note that all bidirectional signals are tristated between bus
tenures. Also note:

« The first data beat of the read burst (in clock 0) is the critical quadword.
« The TEA signal truncates the burst write transfer on the third data beat.
« The 750GX eventually causes an exception to be taken on the TEA event.

Figure 8-22. Use of Transfer Error Acknowledge (TEA)
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8.6 Optional Bus Configuration

The 750GX supports optional bus configurations that are selected during the negation of the HRESET signal.
The operation and selection of the optional bus configuration are described in the following sections.

8.6.1 32-Bit Data Bus Mode

The 750GX supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the same as the
64-bit data bus mode with the exception of the byte lanes involved in the transfer and the number of data
beats that are performed. When in 32-bit data bus mode, only byte lanes 0 through 3 are used corresponding
to DHO-DH31 and DPO-DP3. Byte lanes 4 through 7 corresponding to DLO-DL31 and DP4-DP7 are never
used in this mode. The unused data bus signals are not sampled by the 750GX during read operations, and
they are driven low during write operations.

The number of data beats required for a data tenure in the 32-bit data bus mode is one, two, or eight beats
depending on the size of the program transaction and the cache mode for the address. Data transactions of
one or two data beats are performed for caching-inhibited load/store or write-through store operations. These
transactions do not assert the TBST signal even though a two-beat burst may be performed (having the same
TBST and TSIZ[0-2] encodings as the 64-bit data bus mode). Single-beat data transactions are performed
for bus operations of 4 bytes or less, and double-beat data transactions are performed for 8-byte operations
only. The 750GX only generates an 8-byte operation for a double-word-aligned load or store double operation
to or from the Floating Point Registers. All cache-inhibited instruction fetches are performed as word (single-
beat) operations.

Data transactions of eight data beats are performed for burst operations that load into or store from the
750GX’s internal caches. These transactions transfer 32 bytes in the same way as in 64-bit data bus mode,
asserting the TBST signal, and signaling a transfer size of 2 (TSIZ(0-2) = 0b010).

The same bus protocols apply for arbitration, transfer, and termination of the address and data tenures in the
32-bit data bus mode as apply to the 64-bit data bus mode. Late ARTRY cancellation of the data tenure
applies on the bus clock after the first data beat is acknowledged (after the first TA) for word or smaller trans-
actions, or on the bus clock after the second data beat is acknowledged (after the second TA) for double-
word or burst operations (or coincident with respective TA if no-DRTRY mode is selected).

An example of an eight-beat data transfer while the 750GX is in 32-bit data bus mode is shown in Figure 8-23
on page 317.
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Figure 8-23. 32-Bit Data-Bus Transfer (8-Beat Burst)
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An example of a two-beat data transfer (with DRTRY asserted during each data tenure) is shown in
Figure 8-24.
Figure 8-24. 32-Bit Data-Bus Transfer (2-Beat Burst with DRTRY)
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The 750GX selects 64-bit or 32-bit data bus mode at startup by sampling the state of the TLBISYNC signal at
the negation of HRESET. If the TLBISYNC signal is negated at the negation of HRESET, the 750GX enters
64-bit data mode. If TLBISYNC is asserted at the negation of HRESET, the 750GX enters 32-bit data mode.

Table 8-3 on page 296 describes the burst ordering when the 750GX is in 32-bit mode.

The aligned data-transfer cases for 32-bit data bus mode are shown in Table 8-6. All of the transfers require
a single data beat (if caching-inhibited or write-through) except for double-word cases which require two data
beats. The double-word case is only generated by the 750GX for load or store double operations to/from the
Floating Point Registers. All caching-inhibited instruction fetches are performed as word operations.

Misaligned data transfers in the 32-bit bus mode is the same as in the 64-bit bus mode with the exception that
only DH[0-31] data lines are used. Table 8-7 shows examples of 4-byte misaligned transfers starting at each
possible byte address within a double word.

8.6.2 No-DRTRY Mode

The 750GX supports an optional mode to disable the use of the data retry function provided through the
DRTRY signal. The no-DRTRY mode allows the forwarding of data during load operations to the internal CPU
one bus cycle sooner than in the normal bus protocol.

The 60x bus protocol specifies that, during load operations, the memory system can, normally, cancel data
that was read by the master on the bus cycle after TA was asserted. In the 750GX implementation, this late
cancellation protocol requires the 750GX to hold any loaded data at the bus interface for one additional bus
clock to verify that the data is valid before forwarding it to the internal CPU. For systems that do not imple-
ment the DRTRY function, the 750GX provides an optional no-DRTRY mode that eliminates this 1-cycle stall
during all load operations, and allows for the forwarding of data to the internal CPU immediately when TA is
recognized.

When the 750GX is in the no-DRTRY mode, data can no longer be cancelled the cycle after it is acknowl-
edged by an assertion of TA. Data is immediately forwarded to the CPU internally, and any attempt at late
cancellation by the system might cause improper operation by the 750GX.

When the 750GX is following normal bus protocol, data might be cancelled the bus cycle after TA by either of
two means—Ilate cancellation by DRTRY, or late cancellation by ARTRY. When no-DRTRY mode is selected,
both cancellation cases must be disallowed in the system design for the bus protocol.

When no-DRTRY mode is selected for the 750G X, the system must ensure that DRTRY is not asserted to the
750GX. If it is asserted, it can cause improper operation of the bus interface. The system must also ensure
that an assertion of ARTRY by a snooping device occurs before or coincident with the first assertion of TA to
the 750GX, but not on the cycle after the first assertion of TA.

Other than the inability to cancel data that was read by the master on the bus cycle after TA was asserted, the
bus protocol for the 750GX is identical to that for the basic transfer bus protocols described in this section,
including 32-bit data-bus mode.

The 750GX selects the desired DRTRY mode at startup by sampling the state of the DRTRY signal itself at
the negation of the HRESET signal. If the DRTRY signal is negated at the negation of HRESET, normal oper-
ation is selected. If the DRTRY signal is asserted at the negation of HRESET, no-DRTRY mode is selected.
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8.7 Processor State Signhals
This section describes the 750G X's support for atomic update and memory through the use of the lwarx and
stwcx. opcode pair, and includes a description of the TLB Invalidate Synchronize (TLBISYNC) input.

8.7.1 Support for the lwarx and stwcx. Instruction Pair

The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexed (stwcx.) instructions

provide a means for atomic memory updating. Memory can be updated atomically by setting a reservation on

the load and checking that the reservation is still valid before the store is performed. In the 750GX, the reser-
vations are made on behalf of aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is driven synchronously with the bus clock and reflects the status of the
reservation coherency bit in the Reservation Address Register; see Chapter 3, Instruction-Cache and Data-
Cache Operation, on page 121 for more information. For information about timing, see Section 7.2.11.3,
Reservation (RSRV)—Output, on page 273.

8.7.2 TLBISYNC Input

The TLBISYNC input allows for the hardware synchronization of changes to MMU tables when the 750GX
and another direct memory access (DMA) master share the same MMU translation tables in system memory.
It is asserted by a DMA master when it is using shared addresses that could be changed in the MMU tables
by the 750GX during the DMA master’s tenure.

The TLBISYNC input, when asserted to the 750GX, prevents the 750GX from completing any instructions
past a TLB Synchronize (tlbsync) instruction. Generally, during the execution of an eciwx or ecowx instruc-
tion by the 750GX, the selected DMA device should assert the 750GX’s TLBISYNC signal and maintain it
asserted during its DMA tenure if it is using a shared translation address. Subsequent instructions by the
750GX should include a sync and tlbsync instruction before any MMU table changes are performed. This
will prevent the 750G X from making table changes disruptive to the other master during the DMA period.

8.8 IEEE 1149.1a-1993 Compliant Interface

The 750GX boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1a-1993 standard.
This section describes the 750GX’s IEEE 1149.1a-1993 (JTAG) interface.

8.8.1 JTAG/COP Interface

The 750GX has extensive on-chip test capability including the following:

» Debug control/observation (COP)
« Boundary scan (standard IEEE 1149.1a-1993 [JTAG] compliant interface)
« Support for manufacturing test

The COP and boundary scan logic are not used under typical operating conditions. Detailed discussion of the
750GX test functions is beyond the scope of this document. However, sufficient information has been
provided to allow the system designer to disable the test functions that would impede normal operation.

The JTAG/COP interface is shown in Figure 8-25. For more information, see IEEE Standard Test Access
Port and Boundary Scan Architecture IEEE STD 1149.1a-1993.
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Figure 8-25. IEEE 1149.1a-1993 Compliant Boundary-Scan Interface

— | TDI (Test Data Input)
— | TMS (Test Mode Select)
— > TCK (Test Clock Input)
«— | TDO (Test Data Output)

— | TRST (Test Reset)

8.9 Using Data-Bus Write-Only

The 750GX supports split-transaction pipelined transactions. It supports a limited out-of-order capability for its
own pipelined transactions through the data-bus write-only (DBWO) signal. When recognized on the clock of
a qualified DBG, the assertion of DBWO directs the 750GX to perform the next pending data write tenure (if
any), even if a pending read tenure would have normally been performed because of address pipelining. The
DBWO signal does not change the order of write tenures with respect to other write tenures from the same

750GX. It only allows a write tenure to be performed ahead of a pending read tenure from the same 750GX.

In general, an address tenure on the bus is followed strictly in order by its associated data tenure. Transac-
tions pipelined by the 750GX complete strictly in order. However, the 750GX can run bus transactions out of
order only when the external system allows the 750G X to perform a cache-line-snoop-push-out operation (or
other write transaction, if pending in the 750GX write queues) between the address and data tenures of a
read operation through the use of DBWO. This effectively envelopes the write operation within the read oper-
ation. Figure 8-26 shows how the DBWO signal is used to perform an enveloped write transaction.

Figure 8-26. Data-Bus Write-Only Transaction
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Note that although the 750G X can pipeline any write transaction behind the read transaction, special care
should be used when using the enveloped write feature. It is envisioned that most system implementations
will not need this capability; for these applications, DBWO should remain negated. In systems where this
capability is needed, DBWO should be asserted under the following scenario:

1. The 750GX initiates a read transaction (either single-beat or burst) by completing the read address ten-
ure with no address retry.

2. Then, the 750GX initiates a write transaction by completing the write address tenure, with no address
retry.

3. At this point, if DBWO is asserted with a qualified data-bus grant to the 750GX, the 750GX asserts DBB
and drives the write data onto the data bus, out of order with respect to the address pipeline. The write
transaction concludes with the 750GX negating DBB.

4. The next qualified data-bus grant signals the 750GX to complete the outstanding read transaction by
latching the data on the bus. This assertion of DBG should not be accompanied by an asserted DBWO.

Any number of bus transactions by other bus masters can be attempted between any of these steps.

Note the following regarding DBWO:
« DBWO can be asserted if no data-bus read is pending, but it has no effect on write ordering.

» The ordering and presence of data-bus writes is determined by the writes in the write queues at the time
BG is asserted for the write address (not DBG). If a particular write is desired (for example, a cache-line-
snoop-push-out operation), then BG must be asserted after that particular write is in the queue, and it
must be the highest priority write in the queue at that time. A cache-line-snoop-push-out operation might
be the highest priority write, but more than one might be queued.

» Because more than one write might be in the write queue when DBG is asserted for the write address,
more than one data-bus write can be enveloped by a pending data-bus read.

The arbiter must monitor bus operations and coordinate the various masters and slaves with respect to the
use of the data bus when DBWO is used. Individual DBG signals associated with each bus device should
allow the arbiter to synchronize both pipelined and split-transaction bus organizations. Individual DBG and
DBWO signals provide a primitive form of source-level tagging for the granting of the data bus.

Note that use of the DBWO signal allows some operation-level tagging with respect to the 750GX and the use
of the data bus.
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9. L2 Cache

This chapter describes the 750GX microprocessor‘s implementation of the 1-MB L2 cache.

Note: The L2 cache is initially disabled following a power-on or hard reset. Before enabling the L2 cache,
configuration parameters must be set in the L2 Cache Control Register (L2CR), and the L2 tags must be
globally invalidated. The L2 cache should be initialized during system start-up (see Section 9.4 on page 329).

9.1 L2 Cache Overview

The 750GX microprocessor’s L2 cache is implemented with an internal 4-way set-associative tag memory
with 4096 tags per way, and an internal 1-MB SRAM for data storage. The tags are sectored to support two
cache blocks per tag entry (two 32-byte sectors totalling 64 bytes). Each sector (32-byte cache block) in the
L2 cache has its own valid and modified bits. Each set of four cache lines maintains three least recently used
(LRU) bits to implement a pseudo-LRU replacement mechanism. In addition, the SRAM includes an 8-bit
error correction code (ECC) for every double word. The ECC logic corrects most single-bit errors and detects
the remaining single-bit errors and all double-bit errors as data is read from the SRAM. The L2 cache main-
tains cache coherency through snooping, and is normally configured to operate in copy-back mode.

The L2 Cache Control Register (L2CR) allows control of the following:

» L2-cache configuration

» Double-bit error machine check

» Global invalidation of L2 contents

» Write-through operation

e L2 test support

* L2 locking by way

» Data-only and instruction-only modes

9.2 L2 Cache Operation

The L2 cache for the 750GX microprocessor is a combined instruction and data cache that receives memory
requests from both L1 instruction and L1 data caches independently. The L1 requests are generally the result
of instruction fetch misses, data load or store misses, write-through operations, or cache-management
instructions. Each L1 request generates an address lookup in the L2 tags. If a hit occurs, the instructions or
data are forwarded to the L1 cache. A miss in the L2 tags causes the L1 request to be forwarded to the 60x
bus interface. The cache block received from the bus is forwarded to the L1 cache immediately, and is also
loaded into the L2 cache with the tag marked valid and unmodified. If the cache block loaded into the L2
cache causes a new tag entry to be allocated and the current tag entry is marked valid modified, the modified
sectors of the tag to be replaced are castout from the L2 cache to the 60x bus.

At any given time, the L1 instruction cache might have one instruction fetch request, and the L1 data cache
might have four loads and two stores requesting L2 cache access. The L2 cache also services snoop
requests from the 60x bus. When there are multiple pending requests to the L2 cache, snoop requests have
highest priority, followed by data load-and-store requests (serviced on a first-in, first-out basis). Instruction
fetch requests have the lowest priority in accessing the L2 cache when there are multiple accesses pending.
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If multiple read requests from the L1 caches are pending, the L2 cache can perform hit-under-miss opera-
tions, supplying the available instruction or data while a bus transaction for previous L2 cache misses is being
performed. The L2 cache also supports miss-under-miss operation. Up to four outstanding misses are
supported: one miss from the instruction cache and three from the data cache, or four data-cache misses.
Requests that hit will be serviced even while misses are in progress on the bus.

All requests to the L2 cache that are marked cacheable (even if the respective L1 cache is disabled or locked)
cause tag lookup and will be serviced if the instructions or data are in the L2 cache. Burst and single-beat
read requests from the L1 caches that hit in the L2 cache are forwarded to the L1 caches as instructions or
data, and the L2 LRU bit for that tag is updated. Burst writes from the L1 data cache due to a castout or
replacement copyback are written only to the L2 cache, and the L2 cache sector is marked modified.

If the L2 cache is configured as write-through, the L2 sector is marked unmodified, and the write is forwarded
to the 60x bus. If the L1 castout requires a new L2 tag entry to be allocated and the current tag is marked
modified, any modified sectors of the tag to be replaced are cast out of the L2 cache to the 60x bus.

Single-beat read requests from the L1 caches that miss in the L2 cache do not cause any state changes in
the L2 cache and are forwarded on the 60x bus interface. Cacheable single-beat store requests marked
copy-back that hit in the L2 cache are allowed to update the L2 cache sector, but do not cause L2-cache
sector allocation or deallocation. Cacheable, single-beat store requests that miss in the L2 cache are
forwarded to the 60x bus. Single-beat store requests marked write-through (through address translation or
through the configuration of L2ZCR[WT]) are written to the L2 cache if they hit, and are written to the 60x bus
independent of the L2 hit/miss status. If the store hits in the L2 cache, the modified/unmodified status of the
tag remains unchanged. All requests to the L2 cache that are marked cache-inhibited by address translation,
through either the memory management unit (MMU) or by the default write/cache inhibit/memory coher-
ence/guarded storage (WIMG) configuration, bypass the L2 cache and do not cause any L2-cache tag state
change.

The 750GX microprocessor 4-way set-associative L2 cache uses a 3-bit per set, pseudo-LRU replacement
algorithm. Bit O is the global LRU bit, which indicates that the LRU way is in the lower (0 or 1) or upper (2 or 3)
ways. Bit 1 is the lower LRU bit, which indicates that the LRU way is either way 0 or way 1. Bit 2 is the upper
LRU bit, which indicates that the LRU way is either way 2 or way 3. Together, the three bits represent a partial
ordering of the four ways, such that the LRU and most recently used (MRU) ways are identified, but the other
two ways are not ordered with respect to each other. Table 9-1 shows the interpretation of the three LRU bits
in the absence of any cache locking.

Table 9-1. Interpretation of LRU Bits

LRU Bits LRU Way MRU Way
000
001
010
011
100
110
101

W W NN PO O
Ol Pr O P N W|IN W

111
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Whenever a way in the set is referenced, the LRU bits are updated. The new value of the LRU bits depends
on the old value, which way is currently being accessed, and whether the operation is an invalidation or a
load/store. Table 9-2 shows the new value of the LRU bits for the various combinations of these variables. An
‘X’ indicates don't care, while a ‘-’ indicates no change from previous value.

Table 9-2. Modification of LRU Bits

Old LRU Hit Way Invalidate New LRU
00x none X 11-
01x none X 10-
1x0 none X 0-1
1x1 none X 0-0
XXX 0 0 11-
XXX 1 0 10-
XXX 2 0 0-1
XXX 3 0 0-0
XXX 0 1 00-
XXX 1 1 01-
XXX 2 1 1-0
XXX 3 1 1-1

The 4-way set-associative L2 cache can be locked by way as described below. The determination of the new
LRU value does not depend on the locked status of the ways. However, the interpretation of the LRU bits
shown in Table 9-2 does change when one or more ways of the cache are locked.

Any combination of ways can be locked. The effect of locking on the replacement algorithm is that the least
recently used of the unlocked ways is chosen for replacement. Table 9-3 shows the interpretation of the LRU
bits in the presence of one or two locked ways. If three ways are locked, the unlocked way is always replaced,
and if all four ways are locked, no replacement takes place. In Table 9-3, bit zero of the lock bits controls
whether way 0 is locked, bit one controls whether way 1 is locked, and so forth.

Table 9-3. Effect of Locked Ways on LRU Interpretation (Page 1 of 2)

LRU Bits Lock Bits LRU Way
00x Oxxx 0
00x 10xx 1
000 110x 2
001 11x0 3
01x X0xx 1
01x 01xx 0
010 110x 2
011 11x0 3
1x0 XX0X 2
1x0 xx10 3
100 0x11 0
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Table 9-3. Effect of Locked Ways on LRU Interpretation (Page 2 of 2)

LRU Bits
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Page 326 of 377

110
1x1
Ix1
101
111

Lock Bits
x011
Xxx0
xx01
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Figure 9-1. L2 Cache
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The execution of the Store Word Conditional Indexed (stwcx.) instruction results in single-beat writes from
the L1 data cache. These single-beat writes are processed by the L2 cache according to hit/miss status, L1
and L2 write-through configuration, and reservation-active status. If the address associated with the stwcx.
instruction misses in the L2 cache, or if the reservation is no longer active, the stwcx. instruction bypasses
the L2 cache and is forwarded to the 60x bus interface. If the stwcx. instruction hits in the L2 cache and the
reservation is still active, one of the following actions occurs:

« If the stwcx. hits a modified sector in the L2 cache (independent of write-through status), or if the stwcx.
hits both the L1 and L2 caches in copy-back mode, the stwcx. is written to the L2 cache and the reserva-
tion completes.

« If the stwcx. hits an unmodified sector in the L2 cache, and either the L1 or L2 cache is in write-through
mode, the stwcx. is forwarded to the 60x bus interface and the sector hit in the L2 cache is invalidated.

L1 cache-block-push operations generated by the execution of Data Cache Block Flush (dchf) and Data
Cache Block Store (dcbst) instructions write through to the 60x bus interface and invalidate the L2-cache
sector if they hit. The execution of dcbf and dcbst instructions that do not cause a cache-block-push from the
L1 cache are forwarded to the L2 cache to perform a sector invalidation and/or a push from the L2 cache to
the 60x bus as required. If the dcbf and dcbst instructions do not cause a sector push from the L2 cache,
they are forwarded to the 60x bus interface for address-only broadcast if HIDO[ABE] is set to 1.

The L2 flush mechanism is similar to the L1 data-cache flush mechanism. The L2 flush requires that the
entire L1 data cache be flushed prior to flushing the L2 cache. Also, interrupts must be disabled during the L2
flush so that the LRU algorithm does not get disturbed. The L2 can be flushed by executing uniquely
addressed load instructions to each of the 32-byte blocks of the L2 cache. This requires a load to each of the
two sectors in each of the four ways in each of the 4096 sets of the L2 cache. The loads must not hit in the L1
cache in order to effect a flush of the L2 cache.

The Data Cache Block Invalidate (dchi) instruction is always forwarded to the L2 cache and causes a sector
invalidation if a hit occurs. The instruction is also forwarded to the 60x bus interface for broadcast if
HIDO[ABE] is set to 1. The instruction-cache-block invalidate (icbi) instruction invalidates only L1-cache
blocks and is never forwarded to the L2 cache.

Any Data Cache Block Set To Zero (dcbz) instructions that are marked global do not affect the L2 cache
state. If an instruction hits in the L1 and L2 caches, the L1 data-cache block is cleared and the instruction
completes. If an instruction misses in the L2 cache, it is forwarded to the 60x bus interface for broadcast. Any
dcbz instructions that are marked nonglobal act only on the L1 data cache without reference to the state of
the L2 cache.

The Synchronize (sync) and Enforce In-Order Execution of I/O (eieio) instructions bypass the L2 cache and
are forwarded to the 60x bus.
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9.3 L2 Cache Control Register (L2CR)

The L2 Cache Control Register is used to configure and enable the L2 cache. The L2CR is a supervisor-level
read/write, implementation-specific register that is accessed as Special Purpose Register (SPR) 1017. The
contents of the L2CR are cleared during power-on reset. For a full description of L2CR and its bits, see
Section 2.1.5, L2 Cache Control Register (L2CR), on page 81.

9.4 L2 Cache Initialization

The L2 cache is initially disabled following a power-on or hard reset. Before enabling the L2 cache, other
configuration parameters must be set in the L2CR, and the L2 tags must be globally invalidated. The L2
cache should be initialized during system start-up.
The sequence for initializing the L2 cache is as follows.

1. Power-on reset (automatically performed by the assertion of the HRESET signal).

2. Disable interrupts and dynamic power management (DPM).

3. Disable L2 cache by clearing L2CR[L2E].

4. Perform an L2 global invalidate as described in Section 9.5.

5

. After the L2 global invalidate has been performed, and the other L2 configuration bits have been set,
enable the L2 cache for normal operation by setting the L2CR[L2E] bit to 1.

9.5 L2 Cache Global Invalidation

The L2 cache supports a global invalidation function in which all bits of the L2 tags (tag data bits, tag status
bits, and LRU bit) are cleared. It is performed by an on-chip hardware state machine that sequentially cycles
through the L2 tags. The global invalidation function is controlled through L2CR[GI], and it must be performed
only while the L2 cache is disabled.

The sequence for performing a global invalidation of the L2 cache is as follows:

1. Flush the L2 to save any modified data.

2. Execute a sync instruction to finish any pending store operations in the load/store unit, disable the L2
cache by clearing L2CR[L2E], and execute an additional sync instruction after disabling the L2 cache to
ensure that any pending operations in the L2 cache unit have completed.

3. Initiate the global invalidation operation by setting the L2ZCR[GI] bit to 1.

4. Monitor the L2CR][IP] bit to determine when the global invalidation operation is complete (indicated by the
clearing of L2CR][IP]). The global invalidation requires approximately 32 K core clock cycles to complete.

5. After detecting the clearing of L2CR][IP], clear L2CR[GI] and re-enable the L2 cache for normal operation
by setting L2CR[L2E].

Never perform a global invalidation of the L2 cache while in dynamic power-management enable mode. Be
sure the HIDO[DPM] bhit is zero. Also ensure that the processor is in a tight, uninterruptable software loop
monitoring the end of the global invalidate, so that an L1 data-cache miss cannot occur that would initiate a
reload from system memory during the global invalidate operation.
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9.6 L2 Cache Used as On-Chip Memory

The L2 cache can be configured to be unlocked, partially locked, or completely locked. When configured to
be unlocked, the L2 cache is 4-way set-associative, with 32 bytes per sector, two sectors per block. When
configured to be completely locked, the L2 cache is a 1-MB on-chip memory (OCM) that is explicitly managed
by software. With one, two, or three ways locked, the locked partition is a software managed OCM, while the
unlocked partition is a 3-, 2-, or 1-way (direct mapped) cache that is managed by hardware. The locked cache
is considered to be local memory, and so is not kept coherent with main memory.

9.6.1 Locking the L2 Cache

Locking of the L2 cache is controlled by the L2CR[LOCK] bits (bits 24:27) as follows:

* 0000 No cache locking
e 1xxx Lock way O
e xIxx Lock way 1
e xx1x Lock way 2
e xxx1 Lock way 3

Note: L2CR[LOCKLO] and L2CR[LOCKHI] can also be used to lock ways 0 and 1, and ways 2 and 3, respec-
tively. These bits are defined in this way to provide a form of backward compatibility with the 750FX design.
However, new software should use the L2CR[LOCK] bits to control L2-cache locking.

Any cache line in a locked part of the L2-cache array can be read or written by the processor, but cannot be
deallocated for line replacement. The locked L2 cache is intended to be a local memory for the processor,
and so should not contain addresses that are accessed outside the processor. However, the L2 controller
does snoop the locked ways, and a snoop hit can cause a deallocation. In addition, for the specific case of an
stwcex. marked write through that hits in a locked line, the line will be invalidated in the L2 cache. In this case,
the store will be forwarded to the bus, as is the case for the unlocked L2. Finally, invalid lines in the locked
part cannot be allocated by any mechanism.
To lock instructions or data in way 0 of the L2 cache requires the following sequence:

1. Execute a sync instruction to allow all load/store activity to complete.

2. Set the data-only bit (L2CR[DO] = 1) to prevent the current instruction stream from being cached in
the L2.

. Flush the L2 to save any modified data.

. Disable the L2 as usual for invalidation.

. Invalidate the L2 to prevent collisions with lines to be locked.

. Lock ways 1 through 3 (L2CR[LOCK] = 0111) so all allocations are in way O.
. Enable the L2.

. Load the contents to be locked (see Section 9.6.1.1).

© 00 N O 0o~ W

. Execute a sync instruction

10. Lock way 0 and unlock ways 1 through 3 (L2CR[LOCK] = 1000).

11. Reset the data-only bit (L2ZCR[DQ] = 0).

At this point, all data and instructions to be locked are in way 0 of the L2 cache. To lock multiple ways, first

unlock the ways that are to be locked, and lock all others as described in step 6. Then, lock the selected ways
and unlock all others as described in step 10.
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9.6.1.1 Loading the Locked L2 Cache

Contents are loaded into the L2 cache simply by executing load instructions to cacheable addresses that
miss in the L1. Note that instructions to be locked in the L2 cache are loaded as data. Only one access to
each 32-byte cache block is needed to allocate the entire block in the cache.

Note: While lines are being allocated in way 0 using this procedure, the cache behaves as a direct-mapped
cache. Therefore, the various blocks of code and data must be located in physical memory such that each
line is in a unigue equivalence class with respect to the organization of the L2 cache. Each way contains
256 KB, consisting of 4096 lines of two 32-byte sectors.

In addition to the constraint imposed by the cache associativity, it is important while loading the contents to be
locked that no spurious lines are allocated. The use of the ‘data only’ mode prevents the current instruction
stream from being allocated. To prevent unwanted data from being allocated, the load sequence must either
avoid using other data (for example, by using immediate fields in the instructions to specify load addresses)
or must prevent that data from colliding with other data or instructions to be allocated (for example, by allo-
cating it explicitly as part of the data to be locked).

The contents of the locked cache cannot be deallocated implicitly under normal conditions (see the excep-
tions for snoops and stwcx. marked write through described above), but can be deallocated by the processor
using a dcbi instruction, as described below.

9.6.1.2 Locked Cache Operation

When one or more ways of the L2 cache are locked, the locked ways behave like the normal (unlocked)
cache except in the following situations:

Replacement never occurs in the locked cache. If one way is locked, an L2 miss causes replacement in
one of the unlocked ways of the cache by the new block of data or instructions received from the bus (or
from the L1 cache in the case of a castout). If all ways are locked, an L2 miss causes the new block of
data or instructions from the bus to be forwarded to the L1 cache without updating the L2. In the case of a
castout that misses in a completely locked L2, the data is forwarded to the bus from the L1 without updat-
ing the L2. Although the locked cache is not kept coherent with main memory in general, a store access
marked write-through that hits in a locked way updates the L2 as usual and is also forwarded to the bus.

An stwcx. marked cache-inhibited that hits in a locked way invalidates the corresponding cache line, and also
gets forwarded to the 60x bus. The locked cache is snooped and responds identically to an unlocked cache,
which might also result in the invalidation of locked cache lines. The L2ZCR[SHEE] bit can be set to enable
such an event to raise a machine check. The L2CR[SHERR] bit is a sticky bit that records the occurrence of
an invalidation in a locked line. This bit can be cleared by a Move-to Special-Purpose Register (mtspr)
instruction to the L2CR. Note that Load Word and Reserve Indexed (Iwarx) and stwcx. instructions should
not be used with locked cache addresses when trying to synchronize outside the processor, since the locked
memory is not shared externally. More generally, coherency is not maintained for locked addresses. Any
updates to locked memory that must be reflected outside the processor must be made through software, by
cache-inhibited operations or copies to other addresses.

A dcbst instruction is used to update external memory with the more recent contents of the internal cache. A
dcbf instruction also does this, while invalidating the internal copy. A dcbf or dcbst that hits in the locked
cache maodifies the locked cache with the castout block if it hit in the L1 cache, but does nothing if it missed in
the L1 cache (the corresponding behavior for a hit in the normal L2 cache is to invalidate the block if the
access hit in the L1, and to flush the block if it missed in the L1).
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The dcbz instruction has no effect on the L2-cache state, whether the state is locked or not. The dcbi instruc-
tion causes invalidation of the block in the case of an L2 hit, for both normal and locked caches.

9.7 Data-Only and Instruction-Only Modes

The 750GX microprocessor supports a data-only mode of L2 operation that can be used for test (as
described in Section 9.8.2 on page 333) or for specific applications that might perform better when the L2 is
used to store only data. This mode is selected by setting the L2CR[DO] bit to 1. In L2 data-only mode, all
requests from the L1 instruction cache are treated as cache-inhibited, and so bypass the L2 and are
forwarded to the external bus. Once the L2CR[DO] bit is set, instructions currently in the L2 cache are not
accessible. Over time, cache lines containing instructions will be replaced with those containing data.

Similarly, the 750GX microprocessor supports an instruction-only mode of L2 operation, selected by setting
the L2CRJ[IO] bit to 1. In this mode, all requests from the L1 data cache are treated as cache inhibited by the
L2 cache. When L2CR][IO] is set, any L2-cache lines containing data will be replaced over time with those
containing instructions, until, in steady state, the L2 cache contains only instructions.

9.8 L2 Cache Test Features and Methods

In the course of system power-up, testing might be required to verify the proper operation of the L2 tag
memory, SRAM, and overall L2-cache system. The following sections describe the 750GX’s features and
methods for testing the L2 cache. The L2-cache address space should be marked as guarded (G = 1) so
spurious load operations are not forwarded to the 60x bus interface before branch resolution during L2-cache
testing.

9.8.1 L2CR Support for L2 Cache Testing

L2CR[DO] and L2CR[TS] support the testing of the L2 cache. L2ZCR[DO] prevents instructions from being
cached in the L2. This allows the L1 instruction cache to remain enabled during the testing process without
having L1 instruction misses affect the contents of the L2 cache. It also allows all L2-cache activity to be
controlled by program-specified load-and-store operations.

L2CR[TS] is used with the dcbf and dcbst instructions to push data into the L2 cache. When L2CR[TS] is
set, and the L1 data cache is enabled, an instruction loop containing a dcbf instruction can be used to store
any address or data pattern to the L2 cache. Additionally, 60x bus broadcasting is inhibited when a dcbz
instruction is executed. This allows the use of a dcbz instruction to clear an L1-cache block, followed by a
dcbf instruction to push the cache block into the L2 cache and invalidate the L1-cache block.

When the L2 cache is enabled, cacheable single-beat read operations are allowed to hit in the L2 cache, and
cacheable write operations are allowed to modify the contents of the L2 cache when a hit occurs. Cacheable
single-beat reads and writes occur when address translation is disabled, which invokes the use of the default
WIMG bits (0011). They also occur when address translation is enabled and accesses are marked as cache-
able through the page table entries or the Block Address Translation (BAT) Registers, and the L1 data cache
is disabled or locked. When the L2 cache has been initialized and the L1 cache has been disabled or locked,
load or store instructions then bypass the L1 cache and hit in the L2 cache directly. When L2CR[TS] is set,
cacheable single-beat writes are inhibited from accessing the 60x bus interface after an L2-cache miss.

During L2-cache testing, the performance monitor can be used to count L2-cache hits and misses, thereby
providing a numerical signature for test routines and a way to verify proper L2-cache operation.

L2 Cache gx_09.fm.(1.2)
Page 332 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

9.8.2 L2 Cache Testing

A typical test for verifying the proper operation of the 750GX microprocessor’s L2-cache memory follows this
sequence:

1. Initialize the L2 test sequence by disabling address translation to invoke the default WIMG setting (0011).
Set L2CR[DO] and L2CR[TS], and perform a global invalidation of the L1 data cache and the L2 cache.
The L1 instruction cache can remain enabled to improve execution efficiency.

2. Test the L2-cache SRAM by enabling the L1 data cache and executing a sequence of dcbz, store word
(stw), and dcbf instructions to initialize the L2 cache with a desired range of consecutive addresses and
with cache data consisting of zeros. Once the L2 cache holds a sequential range of addresses, disable
the L1 data cache and execute a series of single-beat load-and-store operations employing a variety of
bit patterns to test for stuck bits and pattern sensitivities in the L2-cache SRAM. The performance monitor
can be used to verify whether the number of L2-cache hits or misses corresponds to the tests performed.

3. Test the L2-cache tag memory by enabling the L1 data cache and executing a sequence of dcbz, stw,
and dcbf instructions to initialize the L2 cache with a wide range of addresses and cache data. Once the
L2 cache is populated with a known range of addresses and data, disable the L1 data cache and execute
a series of store operations to addresses not previously in the L2 cache. These store operations should
miss in every case. Note that setting L2ZCR[TS] inhibits L2-cache misses from being forwarded to the 60x
bus interface, thereby avoiding the potential for bus errors due to addressing hardware or nonexistent
memory. The L2 cache then can be further verified by reading the previously loaded addresses and
observing whether all the tags hit, and that the associated data compares correctly. The performance
monitor can also be used to verify whether the proper number of L2-cache hits and misses correspond to
the test operations performed.

4. The entire L2 cache can be tested by clearing L2CR[DO] and L2CR[TS], restoring the L1 and L2 caches
to their normal operational state, and executing a comprehensive test program designed to exercise all
the caches. The test program should include operations that cause L2 hit, reload, and castout activity that
can be subsequently verified through the performance monitor.

9.9 L2 Cache Timing

Loading the L2-cache SRAM can occur from the store data queue (which includes single beat stores and L1
castouts), or from the 2-entry, L2 reload data queue. When data is available in either queue, arbitration for the
L2 cache takes place. The requests for the L2 cache, in prioritized order, include a snoop request, an L2
castout, the store data queue, a lookup request, or an L2 reload. Loads always take four beats, starting in the
cycle in which a request is granted. A double word of data with the ECC correction bits is written with each
beat, filling a 32-byte cache line. The arbitration phase and data phase are pipelined, allowing new arbitration
during a previous data phase.

L1 misses that hit in the L2 cache will incur a 5-cycle latency for the critical word returned to the L1. This
latency includes one cycle for ECC correction. The L2-cache read data path is 256 bits, which loads the L1
data-cache reload buffer in one cycle, at the same time forwarding the critical word to the load/store unit.
Instruction-cache misses, however, will be serviced in four beats from the L2 with the critical word first.
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10. Power and Thermal Management

The 750GX microprocessor is specifically designed for low-power operation. It provides both automatic and
program-controlled power reduction modes for progressive reduction of power consumption. It also provides
a thermal assist unit (TAU) to allow on-chip thermal measurement, allowing sophisticated thermal manage-
ment for high-performance portable systems. This chapter describes the hardware support provided by the
750GX for power and thermal management.

10.1 Dynamic Power Management

Dynamic power management (DPM) automatically powers up and down the individual execution units of the
750GX, based upon the contents of the instruction stream. For example, if no floating-point instructions are
being executed, the floating-point unit is automatically powered down. Power is not actually removed from the
execution unit; instead, each execution unit has an independent clock input, which is automatically controlled
on a clock-by-clock basis. Since complementary metal-oxide semiconductor (CMOS) circuits consume negli-
gible power when they are not switching, stopping the clock to an execution unit effectively eliminates its
power consumption. The operation of DPM is completely transparent to software or any external hardware.
Dynamic power management is enabled by setting the DPM bit in Hardware-Implementation-Dependent
Register 0 (HIDO[DPM] = 1).

10.2 Programmable Power Modes

The 750GX provides four programmable power modes—full on, doze, nap, and sleep. Software selects these
modes by setting one (and only one) of the three power saving mode bits in the HIDO Register.

Hardware can enable a power management state through external asynchronous interrupts. Such a hard-
ware interrupt causes the transfer of program flow to interrupt handler code, which then invokes the appro-
priate power saving mode. The 750GX also contains a decrementer, which allows it to enter the nap or doze
mode for a predetermined amount of time and then return to full power operation through a decrementer
interrupt.

Note: The 750GX cannot switch from one power management mode to another without first returning to full-
on mode.

The sleep mode disables bus snooping. Therefore, a hardware handshake is provided to ensure coherency
before the 750GX enters this power management mode.

These power states and power saving modes are shown Figure 10-1, 750GX Power States and Table 10-1
on page 336 summarizes the four power modes.
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Figure 10-1. 750GX Power States
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T1: HIDO(Doze) = 1 and MSR(POW) 0 — 1

T2: HRESET, SRESET, INT, SMI, MCP, DEC, PEM, machine-check interrupts, thermal-management interrupt
T3: HIDO(Nap) = 1 and MSR(POW) 0 — 1

T4:HRESET, SRESET, INT, SMI, MCP, DEC

T5: HIDO(Sleep) = 1 and MSR(POW) 0 — 1

T6: HRESET, SRESET, INT, SMI, MCP

T7: QACK0 -1

T8: QACK1 -0

Table 10-1. 750G X Microprocessor Programmable Power Modes

Power

Management Functioning Units Activation Method Full-Power Wake Up Method
Mode

Full on All units active — —

* Bus snooping External asynchronous exceptionsl
» Data cache as needed Decrementer interrupt
Doze » Decrementer timer Controlled by software Performance-monitor interrupt
Thermal-management interrupt
Hard or soft reset
» Bus snooping (enabled by deas- External asynchronous exceptionsl

Nap sertion of QACK) Controlled by hardware and software | Decrementer interrupt
» Decrementer timer Hard or soft reset

External asynchronous exceptions*

Sleep None Controlled by hardware and software
Hard or soft reset

1. Exceptions are referred to as interrupts in the architecture specification.
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10.2.1 Power Management Modes

The following sections describe the characteristics of the 750GX’s power management modes, the require-
ments for entering and exiting the various modes, and the system capabilities provided by the 750GX while
the power management modes are active.

A power saving mode is activated by setting the power management enable bit in the Machine State Register
(MSR[POW)]) and one of the three HIDO power saving mode bits which are listed in Table 10-2.

Table 10-2. HIDO Power Saving Mode Bit Settings

HIDO Bits Power Saving Mode
8 Low-power doze
9 Low-power nap
10 Low-power sleep

10.2.1.1 Full On Mode

Full on mode is selected when the POW bit in MSR is cleared. This is the default state following initialization
of a hard reset (HRESET). The 750GX is fully powered, and all functional units are operating at full processor
speed at all times.

10.2.1.2 Doze Mode

Doze mode disables most functional units but maintains cache coherency by enabling the bus interface unit
and snooping. A snoop hit causes the 750GX to enable the data cache, copy the data back to memory,
disable the cache, and fully return to the doze state. Doze mode can be summarized as follows:

» Most functional units are disabled.
« Data cache, L2 cache, bus snooping logic, and the time base/decrementer are still enabled.
« Doze mode is enabled with the following sequence:

1. Set the doze bit (HIDO[8] = 1); clear the nap and sleep bits (HIDO[9] and HIDO[10] = 0).
2. 750GX enters doze mode after several processor clocks.

« Several methods of returning to full-on mode:

— Assert INT, MCP, SMI, decrementer, performance-monitor, or thermal-management interrupts
— Assert hard reset or soft reset.

» Transition to full-power state takes no more than a few processor cycles.
» Phase-locked loop (PLL) is required to be running and locked to the system clock (SYSCLK).

10.2.1.3 Nap Mode

The nap mode disables the 750GX but still maintains the PLL and the time base/decrementer. The time base
can be used to restore the 750GX to full-power state after a programmed amount of time. To maintain data
coherency, bus snooping is disabled for nap and sleep modes through a hardware handshake sequence
using the quiesce request (QREQ) and quiesce acknowledge (QACK) signals. The 750GX asserts the QREQ
signal to indicate that it is ready to disable bus snooping. When the system has ensured that snooping is no
longer necessary, it will assert QACK and the 750GX will enter the nap mode. If the system determines that a
bus snoop cycle is required, QACK is deasserted to the 750GX for at least eight bus clock cycles, and the
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750GX will then be able respond to a snoop cycle. Assertion of QACK following the snoop cycle will again
disable the 750GX’s snoop capability. The 750GX’s power dissipation while in nap mode with QACK deas-
serted is the same as the power dissipation while in doze mode.

The 750GX also allows dynamic switching between nap and doze modes to allow the use of nap mode
without sacrificing hardware snoop coherency. For this operation, negating QACK at any time for at least
eight bus cycles guarantees that the 750G X has transitioned from nap mode to doze mode in order to snoop.
Reasserting QACK then allows the 750GX to return to nap mode. This sequencing could be used by the
system at any time with knowledge of what power management mode the 750GX is in currently, if any. Nap
mode can be summarized as follows:

» Time base/decrementer still enabled.

« Thermal-management unit enabled.

» Most functional units disabled.

« All nonessential input receivers disabled.

« Nap mode is enabled with the following sequence:

1. Set nap bit (HIDO[9] = 1); clear doze and sleep bits (HIDO[8] and HIDO[10] = 0).
2. 750GX asserts quiesce request (QREQ) signal.

3. System asserts quiesce acknowledge (QACK) signal.

4. 750GX enters nap mode after several processor clocks.

« Nap mode bus snoop sequence:

1. System deasserts QACK signal for eight or more bus clock cycles.
2. 750GX snoops address tenures on the bus.
3. System asserts QACK signal to restore full nap mode.

« Several methods of returning to full-power mode:

— Assert INT, MCP, SMI, or decrementer interrupts.
— Assert hard reset or soft reset.

 Transition to full-power takes no more than a few processor cycles.
e PLL running and locked to SYSCLK.
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10.2.1.4 Sleep Mode

Sleep mode consumes the least amount of power of the four modes since all functional units are disabled. To
conserve the maximum amount of power, the PLL can be disabled by placing the PLL_CFG signals in the
PLL bypass mode, and disabling SYSCLK.

Note: Forcing the SYSCLK signal into a static state does not disable the 750GX’s PLL, which will continue to
operate internally at an undefined frequency unless placed in PLL bypass mode.

Due to the fully static design of the 750GX, internal processor state is preserved when no internal clock is
present. Because the time base and decrementer are disabled while the 750GX is in sleep mode, the
750GX’s time-base contents will have to be updated from an external time base after exiting sleep mode if
maintaining an accurate time-of-day is required. Before entering the sleep mode, the 750GX asserts the
QREQ signal to indicate that it is ready to disable bus snooping.

When the system has ensured that snooping is no longer necessary, it asserts QACK and the 750G X will
enter sleep mode. Sleep mode can be summarized as follows:

« All functional units disabled (including bus snooping and time base/decrementer).

» All nonessential input receivers disabled.

— Internal clock regenerators disabled.
— PLL still running (see below).

« Sleep mode is enabled with the following sequence:

1. Set sleep bit (HIDO[10] = 1); clear doze and nap bits (HIDO[8] and HIDO[9]).
2. 750GX asserts quiesce request (QREQ).

3. System asserts quiesce acknowledge (QACK).

4. 750GX enters sleep mode after several processor clocks.

« Several methods of returning to full-on mode:

— Assert INT, SMI, or MCP interrupts.
— Assert hard reset or soft reset.

e PLL can be disabled and SYSCLK can be removed while in sleep mode.
* Return to full-on mode after PLL and SYSCLK are disabled in sleep mode:

Enable SYSCLK.

Reconfigure PLL into desired processor clock mode.

System logic waits for PLL start-up and relock time (100 us). L
System logic asserts one of the sleep recovery signals (for example, INT).

10.2.1.5 Dynamic Power Reduction

The 750GX functional units will go into a low power mode automatically if the unit is idle. This mode will not
affect operational performance and is entered when the DPM bit is enabled in HIDO (HIDO bit 11). This oper-
ation is transparent to software or any external hardware.
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10.2.2 Power Management Software Considerations

Since the 750GX is a dual-issue processor with out-of-order execution capability, care must be taken in how
the power management mode is entered. Furthermore, nap and sleep modes require all outstanding bus
operations to be completed before these power management modes are entered. Normally, during system
configuration time, one of the power management modes would be selected by setting the appropriate HIDO
mode bit. Later on, the power management mode is invoked by setting the MSR[POW] bit. To ensure a clean
transition into and out of a power management mode, the Move-to Machine State Register (mtmsr) (POW)
instruction should be preceded by a Synchronize (sync) instruction and followed by an Instruction Synchro-
nize (isync) as shown below.

loop:

sync

mtmsr (POW)
isync

br loop

10.3 750GX Dual PLL Feature

10.3.1 Overview

Due to the relationship of power to frequency and voltage (power is proportional to frequency and a square of
voltage), running the processor at a lower frequency and associated lower voltage can result in significant
power savings. The 750GX design includes two PLLs (PLLO and PLL1), which allows the processor clock
frequency to be dynamically changed to one of the PLL frequencies via software control. The HID1 Register
(described in Section 2.1.2.3 on page 70) contains fields that specify the frequency range of each PLL, the
clock multiplier for each PLL, external or internal control of PLLO, and a bit to choose which PLL is selected
(that is, which is the source of the processor clock at any given time). In addition, the supplied processor
voltage (Vpp) can be varied to support the selected frequency: lower voltage, lower frequency, and lower
power for normal processing tasks or higher voltage, higher frequency for situations requiring high perfor-
mance. PLL voltages (AVpp) should remain constant at all times.

At power-on reset, the HID1 Register contains zeros for all the non-read-only bits (bits 7 to 31). This configu-
ration corresponds to the selection of PLLO as the source of the processor clocks, and selects the external
configuration and range pins to control PLLO (see Chapter 8, Bus Interface Operation, on page 279). The
external configuration and range pin values are accessible to software via HID1 read-only bits 0-6. PLL1 is
always controlled by its internal configuration and range bits. The HID1 setting associated with a hard reset
corresponds to a PLL1 configuration of clock off, and the selection of the medium frequency range.

As stated in the PowerPC 750GX RISC Microprocessor Datasheet, HRESET must be asserted during power
up long enough for the PLLs to lock and for the internal hardware to be reset. Once this timing is satisfied,
HRESET can be negated. The processor will now proceed to execute instructions, clocked by PLLO as
configured via the external pins. The processor clock frequency can be modified from this initial setting in one
of two ways. First, as with earlier designs, HRESET can be asserted, and the external configuration pins can
be set to a new value. The machine state is lost in this process, and, as always, HRESET must be held
asserted while the PLL relocks, and the internal state is reset. Second, the introduction of another PLL
provides an alternative means of changing the processor clock frequency, which does not involve the loss of
machine state, nor a delay for PLL relock.
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Note: If the PLL software configuration is used, sufficient time must be allowed for the chosen PLL to lock.
See the PowerPC 750GX RISC Microprocessor Datasheet for more information.

The following sequence can be used to change processor clock frequency. Assume PLLO is currently the
source for the processor clock. The first step is to configure PLL1 to produce the desired clock frequency, by
setting HID1[PR1] and HID1[PC1] to the appropriate values. Next, wait for PLL1 to lock. The lock time is the
same for both PLLs and is provided in the PowerPC 750G X RISC Microprocessor Datasheet. Finally, set
HID1[PS] to a 1 to initiate the transition from PLLO to PLL1 as the source of the processor clocks. From the
time the HID1 Register is updated to select the new PLL, the transition to the new clock frequency will
complete within three bus cycles. After the transition, the HID1(PSTAT1) bit indicates which PLL is in use.

Once both PLLs are running and locked, the processor frequency can be toggled with very low latency. For
instance, when it is time to change back to the PLLO frequency, there is no need to wait for PLL lock.
HID1[PS] can be reset to 0, causing the processor clock source to transition from PLL1 back to PLLO. If PLLO
will not be needed for some time, it can be configured to be off while not in use. This is done by resetting the
HID1[PCO] field to 0, and setting HID1[PIO] to 1. Turning the nonselected PLL off results in a modest power
savings, but introduces added latency when changing frequency. If PLLO is configured to be off, the proce-
dure for switching to PLLO as the selected PLL involves changing the configuration and range bits, waiting for
lock, and then selecting PLLO, as described in the previous paragraph.

The following are hazards that must be avoided in reconfiguring the PLLs:

« The configuration and range bits in HID1 should only be modified for the nonselected PLL, since it will
require time to lock before it can be used as the source for the processor clock.

* The HID1[PIQ] bit should only be modified when PLLO is not selected.

* Whenever one of the PLLs is reconfigured, it must not be selected as the active PLL until enough time
has elapsed for the PLL to lock.

« At all times, the frequency of the processor clock, as determined by the various configuration settings,
must be within the specification range for the current operating conditions. In particular, in systems where
Vpp can be varied to achieve additional power efficiency, a transition from low frequency to high fre-
quency requires that Vpp is at a sufficiently high level to support the higher frequency.

* Never select a PLL that is in the “off” configuration.

10.3.2 Configuration Restriction on Frequency Transitions

It is considered a programming error to switch from one PLL to the other when both are configured in a half-
cycle multiplier mode. For example, with PLLO configured in 9:2 mode (PLL_CFG[0:4] ='01001") and PLL1
configured in 13:2 mode (PLL_CFGJ0:4] ='01101"), changing the select bit (HID1[PS]) is not allowed. In
cases where such a pairing of configurations is desired, an intermediate full-cycle configuration must be used
between the two half-cycle modes. For example, with PLLO at 9:2, PLL1 configured at 6:1 is selected. Then
PLLO is reconfigured at 13:2, locked, and selected. For more information about hardware-implementation-
dependent bit functions for HID1, see Section 2.1.2.3 on page 70.
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10.3.3 Dual PLL Implementation

Switching between the two PLLs on the 750GX is intended to be a seamless, 3-cycle operation. As shown in
Figure 10-2, the two PLL outputs will feed a multiplexer (MUX), controlled by a signal from the PLL select
logic.

Figure 10-2. Dual PLL Block Diagram
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Each PLL will use as a feedback path, a clock regeneration path that is a copy of a typical path in the actual
clock tree. Since both PLLs will be generating outputs that are integral or half integral multiples of the
SYSCLK frequency, all three clocks (SYSCLK, PLLO, and PLL1 out) will have a rising edge on (at least) every
other rising edge of SYSCLK. When the two PLLs are both configured for half integral multiples of SYSCLK,
they cannot have a common rising edge. This leads to the restriction that switching between half cycle
settings is not allowed.

In the case where at least one PLL is configured for an integral multiple of SYSCLK, all three clocks will have
a common rising edge. In the absence of skew between the two PLL outputs, the MUX control signal could be
changed just before, or just after, that common rising edge to achieve seamless switching. The PLL select
logic in Figure 10-2 represents the logic needed to generate the MUX control signal.

When HID1 is written to switch from one to the other PLL, the control logic waits for the rising edges of both
PLLs to line up with the rising edge of SYSCLK. When both the PLLO and PLL1 clocks are high, the MUX
control signal is switched. If the bus/core ratio of the PLL being switched to is greater than 2.5x, one clock
pulse will be blocked. This provides seamless functionality regardless of any skew between the PLLs,
including snoop requests that could come in during a PLL switch operation. Timing of the switch signal is crit-
ical to ensure that there are no glitches or short clocks distributed to the logic.

There is also fence logic between the HID1 Register and the PLL and associated control logic to allow reset
functionality and to prevent the PLLs from becoming corrupted by a scan operation. This requirement allows
an operation such as a RISCWatch Long Shift Register Latch (LSRL) scan to occur without corrupting the
clocks. See Figure 10-3 on page 343.

Power and Thermal Management gx_10.fm.(1.2)
Page 342 of 377 March 27, 2006



User’'s Manual
IBM PowerPC 750GX and 750GL RISC Microprocessor

Figure 10-3. Dual PLL Switching Example, 3X to 4X
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10.4 Thermal Assist Unit

With the increasing power dissipation of high-performance processors and operating conditions that span a
wider range of temperatures than desktop systems, thermal management becomes an essential part of
system design to ensure reliable operation of portable systems. One key aspect of thermal management is
ensuring that the junction temperature of the microprocessor does not exceed the operating specification.
While the case temperature can be measured with an external thermal sensor, the thermal constant from the
junction to the case can be large, and accuracy can be a problem. This might lead to lower overall system
performance due to the necessary compensation to alleviate measurement deficiencies.

The 750GX provides the system designer an efficient means of monitoring junction temperature through the
incorporation of an on-chip thermal sensor and programmable control logic to enable a thermal-management
implementation tightly coupled to the processor for improved performance and reliability.

10.4.1 Thermal Assist Unit Overview

The on-chip thermal assist unit (TAU) is composed of a thermal sensor, a digital-to-analog converter (DAC), a
comparator, control logic, and four dedicated Special Purpose Registers (SPRs). See Figure 10-4 on
page 344 for a block diagram of the TAU.
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Figure 10-4. Thermal Assist Unit Block Diagram
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The TAU provides thermal control by periodically comparing the 750GX’s junction temperature against user-
programmed thresholds, and generating a thermal-management interrupt if the threshold values are crossed.
The TAU also enables the user to determine the junction temperature through a software successive approx-
imation routine.

The TAU is controlled through four supervisor-level SPRs, accessed through the Move-to Special Purpose
Register (mtspr) and Move-from Special Purpose Register (mfspr) instructions. Two of the SPRs (THRM1
and THRM2) provide temperature threshold values that can be compared to the junction temperature value,
and control bits that enable comparison and thermal interrupt generation. The third SPR (THRM3) provides a
TAU enable bit and a sample interval timer. To enhance accuracy, THRM4 provides the temperature offset
measured and burned into the THRM4 Register at the factory.

Note that all the bits in THRM1, THRM2, and THRM3 are cleared to 0 during a hard reset. THRM4 always
contains the fused offset value determined at the factory. The TAU remains idle and in a low-power state until
configured and enabled.

The bit fields of THRM1 and THRM2 are described in Section 2.1.4.1, Thermal-Management Registers 1-2
(THRM1-THRM2), on page 78. The bit fields of THRM3 are described Section 2.1.4.2, Thermal-Manage-
ment Register 3 (THRM3), on page 79. The bit fields of THRM4 are described on Section 2.1.4.3, Thermal-
Management Register 4 (THRM4), on page 80.

10.4.2 Thermal Assist Unit Operation

The TAU can be programmed to operate in single-threshold or dual-threshold modes, which results in the
TAU generating a thermal-management interrupt when one or both threshold values are crossed. In addition,
with the appropriate software routine, the TAU can also directly determine the junction temperature. The
following sections describe the configuration of the TAU to support these modes of operation.
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10.4.2.1 TAU Single-Threshold Mode

When the TAU is configured for single-threshold mode, either THRM1 or THRM2 can be used to contain the
threshold value, and a thermal-management interrupt is generated when the threshold value is crossed. To
configure the TAU for single-threshold operation, set the desired temperature threshold, the thermal-manage-
ment interrupt direction (TID), thermal-management interrupt enable (TIE), and SPR valid (V) bits for either
THRM1 or THRM2. The unused THRMn threshold SPR should be disabled by clearing the V bit to 0. In this
discussion, THRMn refers to the THRM threshold SPR (THRM1 or THRM2) selected to contain the active
threshold value.

After setting the desired operational parameters, the TAU is enabled by setting the THRM3J[E] bit to 1, and
placing a value that allows a sample interval of 20 microseconds or greater in the THRM3[SITV] field. The
THRM3J[SITV] setting determines the number of processor clock cycles between input to the DAC and
sampling of the comparator output. Accordingly, the use of a value smaller than recommended in the
THRM3J[SITV] field can cause inaccuracies in the sensed temperature.

If the junction temperature does not cross the programmed threshold, the thermal-management interrupt bit
(THRMN[TIN]) is cleared to 0 to indicate that no interrupt is required, and the thermal-management interrupt
valid bit (THRMn[TIV]) is set to 1 to indicate that the TIN bit state is valid. If the threshold value has been
crossed, the THRMN[TIN] and THRMn[TIV] bits are set to 1, and a thermal-management interrupt is gener-
ated if both the THRMn[TIE] and MSR[EE] bits are set to 1.

A thermal-management interrupt is held asserted internally until recognized by the 750GX’s interrupt unit.
Once a thermal-management interrupt is recognized, further temperature sampling is suspended, and the
THRMN[TIN] and THRMn[TIV] values are held until an mtspr instruction is executed to THRMn.

The execution of an mtspr instruction to THRMn anytime during TAU operation will clear the THRMn[TIV] bit
to 0 and restart the temperature comparison. Executing an mtspr instruction to THRM3 will clear both
THRM1[TIV] and THRM2[TIV] bits to 0, and restart temperature comparison in THRMn if the THRM3[E] bit is
set to 1.

Examples of valid THRM1 and THRM2 bit settings are shown in Table 10-3.

Table 10-3. Valid THRM1 and THRM2 Bit Settings (Page 1 of 2)

TINY Tiv? TID TIE v Description
X X X X 0 The threshold in the SPR will not be used for comparison.
Threshold is used for comparison; thermal-management interrupt assertion is dis-
X X X 0 1
abled.
Set TIN, and do not assert thermal-management interrupt if the junction temperature
X X 0 0 1
exceeds the threshold.
X X 0 1 1 Set TIN, and assert thermal-management interrupt if the junction temperature
exceeds the threshold.
Set TIN, and do not assert thermal-management interrupt if the junction temperature
X X 1 0 1 ;
is less than the threshold.
Set TIN, and assert thermal-management interrupt if the junction temperature is less
X X 1 1 1
than the threshold.
X 0 X X 1 The state of the TIN bit is not valid.
Note:

1. The TIN and TIV bits are read-only status bits.
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Table 10-3. Valid THRM1 and THRM2 Bit Settings (Page 2 of 2)

TINY Tiv? TID TIE v Description

The junction temperature is less than the threshold, and, as a result, the thermal-

0 1 0 X 1 management interrupt is not generated for TIE = 1.

The junction temperature is greater than the threshold, and, as a result, the thermal-

1 1 0 X 1 management interrupt is generated if TIE = 1.
0 1 1 X 1 The junction temperature is greater than the threshold, and, as a result, the thermal-
management interrupt is not generated for TIE = 1.
The junction temperature is less than the threshold, and, as a result, the thermal-
1 1 1 X 1 ; ) . -
management interrupt is generated if TIE = 1.
Note:

1. The TIN and TIV bits are read-only status bits.

10.4.2.2 TAU Dual-Threshold Mode

The configuration and operation of the TAU’s dual-threshold mode is similar to single-threshold mode, except
both THRM1 and THRM2 are configured with the desired threshold and TID values, and the TIE and V bits
are set to 1. When the THRMB3J[E] bit is set to 1 to enable temperature measurement and comparison, the first
comparison is made with THRML1. If no thermal-management interrupt results from the comparison, the
number of processor cycles specified in THRM3[SITV] elapses, and the next comparison is made with
THRM2. If no thermal-management interrupt results from the THRM2 comparison, the time specified by
THRM3J[SITV] again elapses, and the comparison returns to THRML1.

This sequence of comparisons continues until a thermal-management interrupt occurs, or the TAU is
disabled. When a comparison results in an interrupt, the comparison with the threshold SPR causing the
interrupt is halted, but comparisons continue with the other threshold SPR. Following a thermal-management
interrupt, the interrupt service routine must read both THRM1 and THRM2 to determine which threshold was
crossed. Note that it is possible for both threshold values to have been crossed, in which case the TAU
ceases making temperature comparisons until an mtspr instruction is executed to one or both of the
threshold SPRs.

10.4.2.3 750GX Junction Temperature Determination

While the 750GX’s TAU does not implement an analog-to-digital converter to enable the direct determination
of the junction temperature, system software can execute a simple successive approximation routine to find
the junction temperature.

The TAU configuration used to approximate the junction temperature is the same required for single-
threshold mode, except that the threshold SPR selected has its TIE bit cleared to 0 to disable thermal-
management interrupt generation. Once the TAU is enabled, the successive approximation routine loads a
threshold value into the active threshold SPR, and then continuously polls the threshold SPRs TIV bit until it is
set to 1, indicating a valid TIN bit. The successive approximation routine can then evaluate the TIN bit value,
and then increment or decrement the threshold value for another comparison. This process is continued until
the junction temperature is determined.
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10.4.2.4 Power Saving Modes and TAU Operation

The static power saving modes provided by the 750GX (the nap, doze, and sleep modes) allow the tempera-
ture of the processor to be lowered quickly, and can be invoked through the use of the TAU and associated
thermal-management interrupt. The TAU remains operational in the nap and doze modes, and in sleep mode
as long as the SYSCLK signal input remains active. If the SYSCLK signal is made static when sleep mode is
invoked, the TAU is rendered inactive. If the 750GX is entering sleep mode with SYSCLK disabled, the TAU
should be configured to disable thermal-management interrupts, to avoid an unwanted thermal-management
interrupt when the SYSCLK input signal is restored.

TAU Calibration Offset

Due to process and thermal sensor variations, a temperature offset is provided and can be read via an mfspr
instruction to THRM4. The TOFFSET field is an 8-bit sighed integer that represents the temperature offset
measured, and it is burned into the THRM4 Register at test to allow for enhanced accuracy. When in TAU
single- or dual-threshold mode, TOFFSET should be subtracted from the desired temperature before setting
the THRMn(THRESHOLD) field. In junction temperature determination mode, TOFFSET must be added to
the final threshold number to determine the temperature.

The temperature, in °C, equals:

THRMn[THRESHOLD] + sign-extended [TOFFSET)]

10.5 Instruction-Cache Throttling

The 750GX provides an instruction-cache throttling mechanism to effectively reduce the instruction execution
rate without the complexity and overhead of dynamic clock control. Instruction-cache throttling, when used in
conjunction with the TAU and the dynamic power management capability, provides the system designer with
a flexible means of controlling device temperature while allowing the processor to continue operating.

The instruction-cache throttling mechanism simply throttles the instruction forwarding from the instruction
cache to the instruction buffer. Normally, the instruction cache forwards four instructions to the instruction
buffer every clock cycle if all the instructions hit in the cache. For thermal management, the 750GX provides
a supervisor-level Instruction Cache Throttling Control (ICTC) Special Purpose Register (SPR). The instruc-
tion forwarding rate is reduced by writing a nonzero value into the ICTC[FI] field, and enabling instruction-
cache throttling by setting the ICTC[E] bit to 1. An overall junction temperature reduction can result in proces-
sors that implement dynamic power management by reducing the power to the execution units while waiting
for instructions to be forwarded from the instruction cache. Thus, instruction-cache throttling does not provide
thermal reduction unless HIDO[DPM] is set to 1.

A description of the ICTC Register and its bit fields can be found at Section 2.1.3 on page 77.

Note: During instruction-cache throttling, the configuration of the PLL remains unchanged.

Figure 10-5. Instruction Cache Throttling Control SPR Diagram
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The bit field settings of the ICTC SPR are shown in Table 10-4 on page 348.

Table 10-4. ICTC Bit Field Settings

Bits Name Description

Bits reserved for future use. The system software should always write zeros to these bits when writing to

0-22 Reserved ihe THRM SPRs.
Instruction forwarding interval expressed in processor clocks.
0x00 O clock cycle

23-30 Fl 0x01 1 clock cycle
OxFF 255 clock cycles
Cache throttling enable

31 E 0 Disable instruction-cache throttling.
1 Enable instruction-cache throttling.
Power and Thermal Management gx_10.fm.(1.2)
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11. Performance Monitor and System Related Features

The performance-monitor facility provides the ability to monitor and count predefined events such as
processor clocks, misses in the instruction cache, data cache, or L2 cache, types of instructions dispatched,
mispredicted branches, and other occurrences. The count of such events (which might be an approximation)
can be used to trigger the performance-monitor exception. The performance-monitor facility is not defined by
the PowerPC Architecture.

The performance monitor can be used for the following:

» To increase system performance with efficient software, especially in a multiprocessing system. Memory
hierarchy behavior can be monitored and studied in order to develop algorithms that schedule tasks (and
perhaps partition them) and that structure and distribute data optimally.

« To improve processor architecture, the detailed behavior of the PowerPC 750GX’s structure must be
known and understood in many software environments. Some environments might not be easily charac-
terized by a benchmark or trace.

« To help system developers bring up, debug, and tune their systems.

The performance monitor uses the following 750G X-specific Special-Purpose Registers (SPRs).

» The Performance-Monitor Counter Registers (PMC1-PMC4) are used to record the number of times a
certain event has occurred. UPMC1-UPMC4 provide user-level read access to these registers.

e The Monitor Mode Control Registers (MMCRO-MMCRL1) are used to enable various performance-moni-
tor interrupt functions and select events to count. UMMCRO-UMMCRL1 provide user-level read access to
these registers.

* The Sampled Instruction Address Register (SIA) contains the effective address of an instruction execut-
ing at or around the time that the processor signals the performance-monitor interrupt condition. USIA
provides user-level read access to the SIA.

Four 32-bit counters in the 750GX count occurrences of software-selectable events. Two control registers,
MMCRO and MMCR1, are used to control performance-monitor operation. The counters and the Control
Registers are supervisor-level SPRs. However, in the 750GX, the contents of these registers can be read by
user-level software using separate SPRs (UMMCRO and UMMCR1). Control fields in the MMCRO and
MMCRL1 select the events to be counted, can enable a counter overflow to initiate a performance-monitor
exception, and specify the conditions under which counting is enabled.

As with other PowerPC exceptions, the performance-monitor interrupt follows the normal PowerPC exception
model with a defined exception vector offset (0xO0OF00). Its priority is below the external interrupt and above
the decrementer interrupt.

11.1 Performance-Monitor Interrupt

The performance monitor enables the generation of a performance-monitor interrupt triggered by a counter
overflow condition in one of the Performance-Monitor Counter Registers (PMC1-PMC4). A counter is consid-
ered to have overflowed when its most-significant bit is set. A performance-monitor interrupt can also be
caused by flipping certain bits from O to 1 in the Time Base Register, which provides a way to generate a time
reference-based interrupt.

Although the interrupt signal condition can occur with the external interrupt enable bit in the Machine State
Register (MSR[EE]) off, the actual exception cannot be taken until the MSR[EE] bit is on.
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As a result of a performance-monitor exception being taken, the action taken depends on the programmable
events. To help track which part of the code was being executed when an exception was signaled, the
address of the last completed instruction during that cycle is saved in the Sampled Instruction Address (SIA)
register. The SIA is not updated if no instruction completed the cycle in which the exception was taken.

Exception handling for the Performance-Monitor Interrupt Exception is described in Section 4.5.13, Perfor-
mance-Monitor Interrupt (0xO0FO00), on page 172.

11.2 Special-Purpose Registers Used by Performance Monitor

The performance monitor incorporates the SPRs listed in Table 11-1. All of these supervisor-level registers
are accessed through Move-to Special Purpose Register (mtspr) and Move-from Special Purpose Register
(mfspr) instructions.

Table 11-1. Performance Monitor SPRs

SPR Number SPR[5-9] || SPR[0-4] Register Name Access Level
952 11101 11000 MMCRO Supervisor
953 11101 11001 PMC1 Supervisor
954 11101 11010 PMC2 Supervisor
955 11101 11011 SIA Supervisor
956 11101 11100 MMCR1 Supervisor
957 11101 11101 PMC3 Supervisor
958 11101 11110 PMC4 Supervisor
936 11101 01000 UMMCRO User (read only)
937 11101 01001 UPMC1 User (read only)
938 11101 01010 UPMC2 User (read only)
939 11101 01011 USIA User (read only)
940 11101 01100 UMMCR1 User (read only)
941 11101 01101 UPMC3 User (read only)
942 11101 01110 UPMC4 User (read only)

Notes:

* The user registers (UMMCRO, UMMCR1, UPMC1, and so on) contain the same values as the nonuser registers but provide read-
only access to the Performance-Monitor Registers while in user mode. An attempt to write to a user register in either supervisor or
user mode results in a program interrupt.

» Reading and writing these registers does not synchronize the machine. An explicit synchronization instruction should be placed
before and after a Move-from Special Purpose Register (mfspr) or Move-to Special Purpose Register (mtspr) instruction to one of
these registers to ensure an accurate count.
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11.2.1 Performance-Monitor Registers

This section describes the registers used by the performance monitor.

11.2.1.1 Monitor Mode Control Register 0 (MMCRO)

The Monitor Mode Control Register 0 (MMCRO) is a 32-bit SPR provided to specify events to be counted and
recorded. MMCRO can be written to only in supervisor mode. User-level software can read the contents of
MMCRO by issuing an mfspr instruction to UMMCRO, described in Section 11.2.1.2 on page 351.

This register must be cleared at power up. Reading this register does not change its contents. MMCRO can
be accessed with the mtspr and mfspr instructions using SPR 952.

For a diagram of this register and a description of its fields, see Monitor Mode Control Register 0 (MMCRO)
on page 72.

11.2.1.2 User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level software. UMMCRO can
be accessed with the mfspr instructions using SPR 936.

11.2.1.3 Monitor Mode Control Register 1 (MMCR1)

The Monitor Mode Control Register 1 (MMCRL1) functions as an event selector for Performance-Monitor
Counter Registers 3 and 4 (PMC3 and PMC4). Corresponding events to the MMCRL1 bits are described in
Section 11.2.1.5, Performance-Monitor Counter Registers (PMCn), on page 351.

MMCRL1 can be accessed with the mtspr and mfspr instructions using SPR 956. User-level software can
read the contents of MMCRL1 by issuing an mfspr instruction to UMMCRZ1, described in Section 11.2.1.4.

For a diagram of this register and a description of its fields, see Monitor Mode Control Register 1 (MMCR1)
on page 74.

11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCRL1 are reflected to UMMCRZ1, which can be read by user-level software. UMMCR1 can
be accessed with the mfspr instructions using SPR 940.

11.2.1.5 Performance-Monitor Counter Registers (PMCn)

PMC1-PMC4 are 32-bit counters that can be programmed to generate interrupt signals when they overflow.
For a diagram of these registers and a description of the fields, see Performance-Monitor Counter Registers
(PMCn) on page 74.

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the value
2147483648 (0x8000_0000). However, an interrupt is not signaled unless both MMCRO[ENINT] and either
PMCL1INTCONTROL or PMCINTCONTROL in the MMCRO register are also set appropriately.

Note: The interrupts can be masked by clearing MSR[EE]. The interrupt signal condition might occur with
MSR[EE] cleared, but the exception is not taken until MSR[EE] is set. Setting MMCRO[DISCOUNT] forces
counters to stop counting when a counter interrupt occurs.
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Software is expected to use the mtspr instruction to explicitly set PMC to nonoverflowed values. Setting an
overflowed value might cause an erroneous exception. For example, if both MMCRO[ENINT] and either
PMC1INTCONTROL or PMCINTCONTROL are set and the mtspr instruction loads an overflow value, an
interrupt signal might be generated without event counting having taken place.

The event to be monitored can be chosen by setting MMCRO0[19:31]. The selected events are counted begin-
ning when MMCRO is set until either MMCRO is reset or a performance-monitor interrupt is generated.
Table 11-2 lists the selectable events and their encodings.

Table 11-2. PMC1 Events—MMCRO0[19:25] Select Encodings

Encoding
000 0000
000 0001
000 0010

0000011

0000100
0000101
0000110

0000111
0001000
0001001

0001010
0001011
0001100

All others

Description
Register holds current value.
Number of processor cycles.
Number of instructions that have completed. Does not include folded branches.

Number of transitions from 0 to 1 of specified bits in the Time Base Lower (TBL) register. Bits are specified through
RTCSELECT, MMCRO[7-8].

00 31
01 23
10 19
11 15

Number of instructions dispatched—o0, 1, or 2 instructions per cycle.
Number of Enforce In-Order Execution of I/O (eieio) instructions completed.
Number of cycles spent performing table-search operations for the instruction translation lookaside buffer (ITLB).

Number of accesses that hit the L2. This event includes cache operations (such as data-cache-block set-to-zero
[dcbz]).

Number of valid instruction effective addresses (EAs) delivered to the memory subsystem.

Number of times the address of an instruction being completed matches the address in the Instruction Address
Breakpoint Register (IABR).

Number of loads that miss the L1 with latencies that exceeded the threshold value.
Number of branches that are unresolved when processed.
Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream.

Reserved. Might be used in a later revision.

Bits MMCRO0[26:31] specify events associated with PMC2, as shown in Table 11-3.

Table 11-3. PMC2 Events—MMCRO0[26:31] Select Encodings (Page 1 of 2)

Encoding Description

00 0000 Register holds current value.

00 0001 Counts processor cycle.

00 0010 Counts completed instructions. Does not include folded branches.
Counts transitions from 0 to 1 of TBL bits specified through MMRCO[RTCSELECT].
00 47

00 0011 01 51
10 55
11 63

00 0100 Counts instructions dispatched: 0, 1, or 2 instructions per cycle.
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Table 11-3. PMC2 Events—MMCRO0[26:31] Select Encodings (Page 2 of 2)

Encoding Description
00 0101 Counts L1 instruction-cache misses.

00 0110 Counts ITLB misses.

00 0111 Counts L2 instruction misses.

00 1000 Counts branches predicted or resolved not taken.

00 1001 Reserved

00 1010 Counts times a reserved load operations completes.

00 1011 Counts completed load-and-store instructions.

00 1100 Counts snoops to the L1 and the L2.

001101 Counts the L1 castout to the L2.

001110 Counts completed system unit instructions.

001111 Counts instruction fetch misses in the L1.

010000 Counts branches allowing out-of-order execution that resolved correctly.
All others Reserved.

Bits MMCR1][0:4] specify events associated with PMC3, as shown in Table 11-4.

Table 11-4. PMC3 Events—MMCR1[0:4] Select Encodings (Page 1 of 2)

Encoding Description
0 0000 Register holds current value.
0 0001 Number of processor cycles.
00010 Number of completed instructions, not including folded branches.

Number of transitions from 0 to 1 of specified bits in the Time Base Lower (TBL) register. Bits are specified through
RTCSELECT (MMCRO[7-8]).

00011 00 47
01 51
10 55
11 63
00100 Number of instructions dispatched. 0, 1, or 2 per cycle.
00101 Number of L1 data-cache misses. Does not include cache operations.
00110 Number of data TLB (DTLB) misses.
00111 Number of L2 data misses.
01000 Number of predicted branches that were taken.
01001 Reserved.
01010 Number of store conditional instructions completed.
01011 Number of instructions completed from the floating-point unit (FPU).
01100 Number of L2 castouts caused by snoops to modified lines.
01101 Number of cache operations that hit in the L2 cache.
01110 Reserved.
01111 Number of cycles generated by L1 load misses.
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Table 11-4. PMC3 Events—MMCR1[0:4] Select Encodings (Page 2 of 2)

Encoding Description
1 0000 Number of branches in the second speculative stream that resolve correctly.
10001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies.
All others Reserved. Might be used in a later revision.

Bits MMCR1[5:9] specify events associated with PMC4, as shown in Table 11-5.

Table 11-5. PMC4 Events—MMCR1[5:9] Select Encodings

Encoding Comments
00000 Register holds current value
00001 Number of processor cycles
00010 Number of completed instructions, not including folded branches

Number of transitions from 0 to 1 of specified bits in the Time Base Lower (TBL) register. Bits are specified through

00011 RTCSELECT, MMCRO[7-8]. 00 = 31, 01 = 23,10 =19, 11 =15
00100 Number of instructions dispatched. O, 1, or 2 per cycle
00101 Number of L2 castouts
00110 Number of cycles spent performing table searches for DTLB accesses.
00111 Reserved. Might be used in a later revision.
01000 Number of mispredicted branches. Reserved for future use.
01001 Reserved. Might be used in a later revision.
01010 Number of store conditional instructions completed with reservation intact
01011 Number of completed sync instructions
01100 Number of snoop request retries
01101 Number of completed integer operations
01110 Number of cycles the branch processing unit (BPU) cannot process new branches due to having two unresolved
branches
All others Reserved. Might be used in a later revision.

The PMC registers can be accessed with the mtspr and mfspr instructions using the following SPR
numbers:

* PMC1is SPR 953.
* PMC2is SPR 954.
* PMCS3is SPR 957.
* PMC4 is SPR 958.

11.2.1.6 User Performance-Monitor Counter Registers (UPMC1-UPMC4)

The contents of the PMC1-PMC4 are reflected to UPMC1-UPMC4, which can be read by user-level soft-
ware. The UPMC registers can be read with the mfspr instructions using the following SPR numbers:

+ UPMClis SPR 937.
+ UPMC2is SPR 938.
*+ UPMC3is SPR 941.
* UPMC4 is SPR 942.
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11.2.1.7 Sampled Instruction Address Register (SIA)

The Sampled Instruction Address Register (SIA) is a supervisor-level register that contains the effective
address of an instruction executing at or around the time that the processor signals the performance-monitor
interrupt condition. The SIA is shown in Sampled Instruction Address Register (SIA) on page 75.

If the performance-monitor interrupt is triggered by a threshold event, the SIA contains the address of the
exact instruction (called the sampled instruction) that caused the counter to overflow.

If the performance-monitor interrupt was caused by something besides a threshold event, the SIA contains
the address of the last instruction completed during that cycle. SIA can be accessed with the mtspr and
mfspr instructions using SPR 955.

11.2.1.8 User Sampled Instruction Address Register (USIA)

The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be accessed
with the mfspr instructions using SPR 939.

11.3 Event Counting

Counting can be enabled if conditions in the processor state match a software-specified condition. Because a
software task scheduler can switch a processor’s execution among multiple processes and because statistics
on only a particular process might be of interest, a facility is provided to mark a process. The performance-
monitor (PM) bit, MSR[29], is used for this purpose. System software can set this bit when a marked process
is running. This enables statistics to be gathered only during the execution of the marked process. The states
of MSR[PR] and MSR[PM] together define a state that the processor (supervisor or program) and the process
(marked or unmarked) can be in at any time. If this state matches a state specified by the MMCRO, the state
for which monitoring is enabled, counting is enabled.

The following states can be monitored:

* Supervisor only

» User only

» Marked and user only

« Not marked and user only

» Marked and supervisor only

* Not marked and supervisor only
e Marked only

« Not marked only

In addition, one of two unconditional counting modes can be specified:

« Counting is unconditionally enabled regardless of the states of MSR[PM] and MSR[PR]. This can be
accomplished by clearing MMCRO[0-4].

« Counting is unconditionally disabled regardless of the states of MSR[PM] and MSR[PR]. This is done by
setting the disable bit (DIS) to 1 (MMCRO[O0] = 1).

The performance-monitor counters count specified events and are used to generate performance-monitor

exceptions when an overflow (most-significant bit is a 1) situation occurs. The 750GX performance monitor
has four, 32-bit registers that can count up to Ox7FFFFFFF (2,147,483,648 in decimal) before overflowing.
Bit 0 of the registers is used to determine when an interrupt condition exists.
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11.4 Event Selection

Event selection is handled through MMCRO and MMCRL.
» The four event-select fields in MMCRO and MMCRL1 are:
MMCRO0[19:25] PMC1SELECT PMC1 input selector. 128 events selectable; 25 defined. See

MMCRO[26:31] PMC2SELECT

MMCRO0[0:4] PMC3SELECT

MMCRO[5:9] PMC4SELECT

Table 11-2 on page 352.

PMC2 input selector. 64 events selectable; 21 defined. See
Table 11-3 on page 352.

PMC3 input selector. 32 events selectable and defined. See
Table 11-4 on page 353.

PMC4 input selector. 32 events selectable. See Table 11-5 on
page 354.

« Inthe tables, a correlation is established between each counter, events to be traced, and the pattern
required for the desired selection.

* The first five events are common to all four counters and are considered to be reference events. These
are as follows.

00000
00001
00010
00011

00100

Register holds current value
Number of processor cycles
Number of completed instructions, not including folded branches

Number of transitions from 0 to 1 of specified bits in the Time Base Lower (TBL) register.
Bits are specified through RTCSELECT, MMCRO[7-8].

00=31
01=23
10=19
11=15

Number of instructions dispatched. 0, 1, or 2 per cycle

« Some events can have multiple occurrences per cycle, and therefore need two or three bits to represent
them.

11.5 Notes

The following warnings should be noted:

« Only those load and stores in queue position 0 of their respective load/store queues are monitored when
a threshold event is selected in PMCL1.

e The 750GX cannot accurately track threshold events with respect to the following types of loads and
stores:

— Unaligned load-and-store operations that cross a word boundary
— Load-and-store multiple operations
— Load-and-store string operations
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11.6 Debug Support

11.6.1 Overview

The 750GX provides the following debug support features:

» Branch trace

* Single step instruction trace

« Instruction-address breakpoint
« Data-address breakpoint
Externally triggered soft stop

The trace mode allows either a single step trace if MSR[SE] = 1 or a branch trace if MSR[BE] = 1. The
instruction-address breakpoint and data-address breakpoint modes are invoked by setting the appropriate
bits in the Instruction Address Breakpoint Register (IABR) and Data Address Breakpoint Register (DABR).
Each of these debug features except for data-address breakpoint is a common feature of PowerPC devices.
The variances are noted in the following paragraphs.

11.6.2 Data-Address Breakpoint

The data-address breakpoint feature is controlled by the DABR Special Purpose Register which is described
in Section 4.5.17, Data Address Breakpoint Exception, on page 175. The data-address breakpoint action can
be one of the following:

« Data-storage interrupt (DSI)
« Soft stop
» Hard stop

A DSI on a data access does not complete the interrupting instruction.

11.7 JTAG/COP Functions

11.7.1 Introduction

The 750GX implements the Joint Test Action Group (JTAG) and common on-chip processor (COP) functions
for facilitating board testing and chip debug. The JTAG boundary scan features are used for board testing,
while the COP features are used mainly for system debug using a RISCWatch. The JTAG features and the
interface are fully compliant with the IEEE 1149.1a-1993 standard. The COP functions are compliant with the
JTAG standard whenever possible, and the COP external interface adheres to the IEEE 1149.1a-1993 serial
protocol. In this document, IEEE 1149.1a-1993 and JTAG are used interchangeably. The 750GX does
support the optional test reset pin.

11.7.2 Processor Resources Available through JTAG/COP Serial Interface

The shift register latches (SRLs) on the 750GX are linked so that data can be shifted serially through them to
either control or observe resources (such as caches and register files) within the processor. Various chain
configurations are selected by the COP and placed between the JTAG TDI and TDO pins as shown in Figure
11-1, 750GX IEEE 1149.1a-1993/COP Organization, on page 358. RISCWatch configures and controls the
appropriate SRL chains to read and write various processor resources for system debug, including:
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Internal registers (such as the general-purpose, floating-point, and processor version registers)
Data cache

Instruction cache

L2 cache

L2 tag

Data tag

Instruction tag

Data translation lookaside buffer (TLB)

Data Segment Registers

Instruction TLB

Instruction Segment Registers

Instruction Block-Address-Translation (BAT) Registers
External memory

INTMEM will allow reading and writing the above arrays while accessing a chain shorter than the LSRL.

INTMEM is a proper subset of the LSRL (Long Shift Register Latch).

The scan chains for the 750GX are shown Figure 11-1. The 750GX does support the optional test reset

(TRST) pin.

Figure 11-1. 750GX IEEE 1149.1a-1993/COP Organization
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11.8 Resets

The 750GX supports two types of resets: a hard and a soft reset.

11.8.1 Hard Reset

The hard reset is triggered by the assertion of the hard reset pin, HRESET. The HRESET pin is asserted by
several sources:

« System power-on reset
» System reset from a panel switch
* RISCWatch

The duration of HRESET assertion depends on two factors: phase-locked loop (PLL) lock time (as specified
in the 750GX datasheet) and internal processor state initialization time. During a hard reset, the internal
latches are scanned with zeros for initialization which requires a minimum of 255 CPU clocks. A power-on
reset (POR) requires that both HRESET and TRST be active. HRESET must be active for the duration that
includes the PLL lock time plus the 255 CPU clocks for initialization. POR also requires that the test access
port (TAP) controller enter the test-logic-reset state by applying TRST.

For a hard reset to recover from a hardware problem, like a checkstop, only 255 bus clock cycles are neces-
sary to initialize the state of the processor provided the PLL remains locked.

During hard reset, all off-chip drivers will be tristated. After removal of HRESET, the processor will vector to
the system reset interrupt routine at OxFFF00100 with MSR][IP] set high.

During HRESET, the latches dedicated to JTAG functions are not initialized. The JTAG reset signal, TRST,
resets the dedicated JTAG logic. This is in compliance with the IEEE 1149.1a-1993 standard, which prohibits
the chip reset from resetting the JTAG logic. The RISCWatch can stop the processor shortly after the SRLO
scan sequence during a hard reset, by issuing a COP force freeze command. This allows complete control of
the processor by the RISCWatch from a hard reset.

11.8.2 Soft Reset

The processor executes a system reset interrupt if the SRESET signal is asserted. Unlike a hard reset, the
latches are not initialized and the output of the MSR][IP] bit is not modified. Therefore, the system reset inter-
rupt vector address depends on the MSR[IP] bit setting prior to the assertion of SRESET. The SRESET
signal must be asserted for a minimum of two bus clocks.
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11.8.3 Reset Sequence

Figure 11-2. Reset Sequence
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11.9 Checkstops

A checkstop causes the processor to halt and assert the checkstop output pin, CKSTP_OUT. Once the
750GX enters a checkstop state, only a hard reset can clear the processor.

11.9.1 Checkstop Sources

Following is the list of checkstop sources:

* Machine Check with MSR[ME] = 0.
If MSR[ME] = 0 when a machine-check interrupt occurs, then the checkstop state is entered. The
machine-check sources for the 750GX are as follows:

— TEA assertion on the 60x bus

— Address-parity error on the 60x bus
— Data-parity error on the 60x bus

— Machine-check input pin (M_CP)

— Locked L2 Snoop, with the snoop hit in locked line error enable bit in the L2 Cache Control Register
(L2CR[SHEE]) set

— A parity error in either the instruction tag, data tag, instruction cache, data cache, or L2 tag (if
enabled)

« Checkstop input pin (CKSTP_IN)

11.9.2 Checkstop Control Bits

Some of the checkstop sources can be controlled via Hardware-Implementation-Dependent Register 0
(HIDO) and the L2CR register bits.

Table 11-6. HIDO Checkstop Control Bits

Hard
Bits Field Name Reset Description
State
MCP pin mask bit
1 Enables MCP to cause a checkstop if MSR(ME) = 0, or a machine-check inter-
rupt if MSR(ME) = 1.

0 EMCP 0 0 Masks out the MCP pin. Therefore, the MCP pin cannot generate a machine-
check interrupt or a checkstop. The main purpose of this bit is to mask out fur-
ther machine-check interrupts from MCP, similar to the MSR(EE) bit for exter-
nal interrupts.

Bus address-parity checking enable

5 EBA 0 1 Enabl_es an addl_'ess—parit_y error to cause a checkstop if MSR(ME) = 0, or a

machine-check interrupt if MSR(ME) = 1.
0 Prevents address-parity checking.
Bus data-parity checking enable

3 EBD 0 1 Enabl_es a data—_parity error to cause a checkstop if MSR(ME) =0, or a

machine-check interrupt if MSR(ME) = 1.
0 Prevents data-parity checking.

Note: The EBA and EBD bits allow the processor to operate with memory subsystems that do not generate parity. A checkstop latch
is provided in the COP to indicate the checkstop source.
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Table 11-7 shows the control bits for HID2.

Table 11-7. HID2 Checkstop Control Bits

Hard
Bits Field Name Reset Description
State
29 ICPE Enable L1 instruction-cache or instruction-tag parity checking.
30 DCPE Enable L1 data-cache or data-tag parity checking.
31 L2PE Enable L2 Tag parity checking.

Table 11-8. L2CR Checkstop Control Bits

. Hard
Bits Field Reset Description
Name
State
1 Enables a checkstop when snoop encounters a locked L2 line.
29 SHEE 0 Prevents checkstop.

Enables a snoop hit in a locked line to raise a machine check. See Section 9.6.1.2,
Locked Cache Operation, on page 331 for more information.

The checkstop input pin (CKSTP_IN) always causes a checkstop regardless of the state of the MSR[ME] bit.

Note: All checkstops are disabled by a hard reset. To enable the individual checkstops, the user has to set
the appropriate checking enable bits in HIDO and L2CR register.

11.9.3 Open-Collector-Driver States during Checkstop

All the nontest Open Collector Driver (OCD) states except for the checkstop output pin, CKSTP_OUT, are
disabled during a checkstop. This forces the checkstopped processor off the bus, and prevents potential
OCD damage due to multiple drivers being enabled on the same bus during a checkstop.

11.9.4 Vacancy Slot Application

The checkstop input (CKSTP_IN) to the 750GX can be used to implement a vacancy slot mechanism since a
checkstop halts the processor and tristates the OCDs as mentioned above. Several points need to be consid-
ered for the vacancy slot implementation:

« The internal checkstop logic requires its latches to be initialized properly upon a hard reset, and SYSCLK
to be running. Therefore, the processor that is being replaced needs to go through the same hard reset
sequence as the replacement processor. With SYSCLK running, the checkstop power consumption of the
750GX should be similar to the power consumption of the part in nap mode.

» Since a hard reset clears all checkstop conditions, the CKSTP_IN pin needs to be kept asserted after the
negation of a hard reset for the part to enter checkstop.

« The checkstop output pin, CKSTP_OUT, which is asserted, needs to be isolated.

e The IEEE 1149.1a-1993 requires the boundary scan output pin, TDO, to be controllable only by the JTAG
logic. Therefore, if the system POR sequence leaves the TDO pin tristated, then no further isolation is
required. However, if boundary scan is to be done with the replacement processor, then the JTAG logic of
the processor being replaced must be disabled through TRST = 0.
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11.10 750GX Parity

Parity is implemented for the following arrays: instruction cache, instruction tag, data cache, data tag, and
L2 tag. All parity errors, when parity is enabled, result in either a machine-check or checkstop interrupt that is
not recoverable.

For all of the following arrays, parity for a given set of data is a one if there is an odd number of ones in the
data (even parity).

Parity is computed each time data is written to the arrays, independent of the parity checking enable/disable
control bits.

The Force Bad Parity control bits (5 bits) are provided as user visible bits in the HID2 control register and
control the parity bits written when the arrays are written. This is again independent of the parity
enable/disable control bits.

The parity checking enable/disable control bits are provided to select when parity is to be checked for reads
by array group (L1 instruction cache and tag, L1 data cache and tag, and L2 tag). If parity checking is enabled
and bad parity is found on a read for the enabled array, then the MSR(ME) bit controls the action taken by the
processor for the parity error. Parity checking can be enabled or disabled at any time in the code stream
without changing the array enable/disable state, and the arrays do not require invalidation.

The MSR(ME) bit enables the processor to take a machine-check interrupt allowing the operating system to
determine the failing array. If this bit is not asserted, then the processor will take a checkstop. See
Section 4.5.2.1, Machine-Check Exception Enabled (MSR[ME] = 1), on page 168 for further details.

The parity status bits are set at the time of the detection of bad parity only when the array parity enable is set.
These bits are by array group (L1 instruction cache and tag, L2 data cache and tag, and L1 tag) and are
helpful for determining the problem within the machine-check interrupt handler.

The HID2 Register updates are not serialized in the processor. Therefore, it is strongly recommended to
include an Instruction Synchronization (isync) instruction after any write to the HID2 Register to ensure the
changes are complete before proceeding in the code stream.
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11.10.1 Parity Control and Status
Parity is enabled with the Hardware-Implementation-Dependent Register 2 (HID2).

For a diagram of this register and a description of its fields, see Hardware-Implementation-Dependent
Register 2 (HID2) on page 71.

HID2 SPR number is 1016 decimal, (spr[5-9] = 11111, spr[0-4] = 11000).

The status bits (25:27) are set when a parity error is detected and cleared when the HID2 Register is written.

11.10.2 Enabling Parity Error Detection

Parity error detection can be enabled at any time by setting the parity enable bits for the desired arrays in the
HID2 Register (ICPE, DCPE, and L2PE for the ICache/ITag, DCache/DTag, and L2Tag respectively). Parity
errors are reported with the parity status bits in the HID2 Register (ICPS, DCPS, and L2PS for ICache/ITag,
DCache/DTag, and L2Tag respectively). The parity status bits are read only and are automatically cleared
each time the HID2 register is written.

11.10.3 Parity Errors

All parity errors will cause a machine-check interrupt. Since this is an imprecise interrupt, recovery is not
possible. To determine the cause of the machine check, the software must have set the machine-check
enable [ME] bit of the MSR and have an interrupt handler located at 0x00200. This handler can read the
parity status bits in HID2 for display or checking. If the cause of the machine check is found to be a parity
error then after the handler has completed an HRESET must be initiated.
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Acronyms and Abbreviations

BAT
BHT
BIST
BIU
BPU
BSDL
BTIC
BUID
CMOS
COP
cQ
CR
CTR
DABR
DAR
DBAT
DCMP
DEC
DLL
DMISS
DMMU
DPM
DSISR
DTLB
EA
EAR
ECC
FIFO

block-address translation

branch history table

built-in self test

bus interface unit

branch processing unit
Boundary-Scan Description Language
branch target instruction cache
bus unit ID

complementary metal-oxide semiconductor
common on-chip processor
completion queue

Condition Register

Count Register

Data Address Breakpoint Register
Data Address Register

data BAT

data TLB compare

Decrementer Register
delay-locked loop

data TLB miss address

data MMU

dynamic power management

Register used for determining the source of a DSI exception.

data translation lookaside buffer
effective address

External Access Register

error checking and correction

first-in-first-out
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FPR
FPSCR
FPU
GPR
HIDn
IABR
IBAT
ICTC
IEEE
IMMU

L2CR
LIFO
LR
LRU
LSb
LSB
LSU
MEI
MESI
MMCRn
MMU
MSb
MSB
MSR

Floating Point Register

Floating-Point Status and Control Register
floating-point unit

General Purpose Register
Hardware-Implementation-Dependent Register
Instruction Address Breakpoint Register
instruction BAT

Instruction Cache Throttling Control Register
Institute for Electrical and Electronics Engineers
instruction MMU

instruction queue

instruction translation lookaside buffer

integer unit

Joint Test Action Group

secondary cache (level 2 cache)

L2 Cache Control Register

last-in-first-out

link Register

least recently used

least-significant bit

least-significant byte

load/store unit

modified/exclusive/invalid
modified/exclusive/shared/invalid—cache-coherency protocol
Monitor Mode Control Registers

memory management unit

most-significant bit

most-significant byte

Machine State Register
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PLL

PLRU
PMCn
POR
POWER
PTE
PTEG
PVR
RAW
RISC
RTL
RWITM
RWNITM
SDA

SDR1

SIA
SPR
SRn
SRRO
SRR1
SRU
TAU
TB
TBL
TBU
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not a number

no operation

operating environment architecture
processor identification tag
phase-locked loop

pseudo least recently used
Performance-Monitor Counter Registers
power-on reset

Performance Optimized with Enhanced RISC architecture
page table entry

page-table-entry group

Processor Version Register
read-after-write

reduced instruction set computing
register transfer language

read with intent to modify

read with no intent to modify

sampled data address register

Register that specifies the page table base address for virtual-to-physical address transla-

tion.

Sampled Instruction Address Register
Special-Purpose Register

Segment Register

Machine Status Save/Restore Register 0
Machine Status Save/Restore Register 1
system register unit
thermal-management assist unit
time-base facility

Time Base Lower Register

Time Base Upper Register
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THRM n Thermal-Management Registers

TLB translation lookaside buffer

TTL transistor-to-transistor logic

UIMM unsigned immediate value

UISA user instruction set architecture

UMMCRnN User Monitor Mode Control Registers

UPMCn User Performance-Monitor Counter Registers

USIA User Sampled Instruction Address Register

VEA virtual environment architecture

WAR write-after-read

WAW write-after-write

WIMG write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations.
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AACK (address acknowledge) signal, 262
ABB (address bus busy) signal, 285
Address bus
address tenure, 284
address transfer
An, 254
APE, 294
address transfer attribute
Cl, 260
GBL, 261
TBST, 259, 294
TSIZn, 258, 294
TTn, 256, 294
WT, 260
address transfer start
TS, 253, 292
address transfer termination
AACK, 262
ARTRY, 263
terminating address transfer, 300
arbitration signals, 251, 285
bus parking, 291

Address translation, see Memory management unit

Addressing modes, 89
Aligned data transfer, 296, 300
Alignment

data transfers, 296

exception, 170

misaligned accesses, 82

rules, 82
An (address bus) signals, 254
APE (address parity error) signal, 294
Arbitration, system bus, 290, 301
ARTRY (address retry) signal, 263

B

BG (bus grant) signal, 252, 285
Block address translation
block address translation flow, 189
definition, 33
registers
description, 61
initialization, 196
selection of block address translation, 186
Boundedly undefined, definition, 87
BR (bus request) signal, 251, 285
Branch fall-through, 226
Branch folding, 226
Branch instructions
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address calculation, 106

condition register logical, 107

list of instructions, 107

system linkage, 108, 118

trap, 108
Branch prediction, 209, 229
Branch processing unit

branch instruction timing, 231

execution timing, 225

latency, branch instructions, 238

overview, 30
Branch resolution

definition, 209

resource requirements, 237
BTIC (branch target instruction cache), 216
Burst data transfers

32-bit data bus, 296

64-bit data bus, 295

transfers with data delays, timing, 314
Bus arbitration, see Data bus
Bus configurations, 318
Bus interface unit (BIU), 122, 279
Bus transactions and L1 cache, 139
Byte ordering, 89

Cache
arbitration, 217
block instructions

dcbi, data cache block invalidate, 119
dcbt, data cache block touch, 116

block, definition, 123
bus interface unit, 122, 279
cache operations

load/store operations, processor initiated, 130
operations, 136
overview, 281

cache unit overview, 123
cache-inhibited accesses (I bit), 125
characteristics, 121

coherency

description, 125
overview, 142
reaction to bus operations, 143

control instructions, 131

bus operations, 141

data cache configuration, 123
dcbf/dcbst execution, 328

hit, 217

ichi, 328

instruction cache configuration, 124
instruction cache throttling, 347
integration, 122

L1 cache and bus transactions, 139

IBM PowerPC 750GX and 750GL RISC Microprocessor
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L2 interface
cache global invalidation, 329
cache initialization, 329
cache testing, 333
dchi, 328
eieio, 328
operation, 323
stwcx. execution, 328
sync, 328
load/store operations, processor initiated, 130
miss, 222
operations
cache block push operations, 328
data cache transactions, 140
instruction cache block fill, 139
snoop response to bus transactions, 143
PLRU replacement, 137
stwcx. execution, 328
Changed (C) bit maintenance recording, 188, 198
Checkstop
signal, 169, 271
__state, 169
ClI (cache inhibit) signal, 260
CKSTP_IN/CKSTP_OUT(checkstop input/output) sig-
nals, 169, 271
Classes of instructions, 87
Clean block operation, 143
Clock signals
PLL_CFGn, 277
SYSCLK, 277
Completion
completion unit resource requirements, 237
considerations, 224
definition, 209
Context synchronization, 90
Conventions, 209
COP/scan interface, 319
Copy-back mode, 235
CR (condition register)
CR logical instructions, 107
CR, description, 59
CTR register, 59

D

DABR (data address breakpoint register), 62
DAR (data address register), 61
Data bus
arbitration signals, 264, 285
bus arbitration, 301
data tenure, 285
data transfer, 266, 303
data transfer termination, 268, 303
Data cache
configuration, 123
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DCFI, DCE, DLOCK bits, 132
organization, 123
Data organization in memory, 82
Data transfers
alignment, 296
burst ordering, 295
eciwx and ecowx instructions, alignment, 300
operand conventions, 82
__signals, 303
DBB (data bus busy) signal, 286, 302
DBG (data bus grant) signal, 264, 285
DBWO (data bus write only) signal, 286, 303, 320
DEC (decrementer register), 62
Decrementer exception, 171
Defined instruction class, 87
DHn/DLn (data bus) signals, 266
Dispatch
considerations, 224
dispatch unit resource requirements, 237
DRTRY (data retry) signal, 269, 303, 306
DSI exception, 169
DSISR register, 61
DTLB organization, 200
Dynamic branch prediction, 216

E

EAR (external access register), 62
Effective address calculation
address translation, 181
branches, 90
loads and stores, 90, 99, 103
eieio, enforce in-order execution of 1/0, 115
EMI protocol, enforcing memory coherency, 308
Error termination, 307
Event counting, 355
Event selection, 356
Exceptions
alignment exception, 170
decrementer exception, 171
definitions, 162
DSI exception, 169
enabling and disabling exceptions, 160
exception classes, 152
exception prefix (IP) bit, 163
exception priorities, 153
exception processing, 156, 160
external interrupt, 169
FP assist exception, 171
FP unavailable exception, 171
instruction-related exceptions, 91
ISI exception, 169
machine check exception, 167
performance monitor interrupt, 172
program exception, 170
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register settings
MSR, 162
SRRO/SRR1, 156
reset exception, 163
returning from an exception handler, 161
summary table, 152
system call exception, 171
terminology, 151
thermal management interrupt exception, 174
Execution synchronization, 90
Execution unit timing examples, 225
Execution units, 31
External control instructions, 117, 300

F

Features, list, 25
Finish cycle, definition, 210
Floating-Point Execution Models—UISA, 83
Floating-point model
FEO/FE1 bits, 160
FP arithmetic instructions, 95
FP assist exceptions, 171
FP compare instructions, 97
FP multiply-add instructions, 96
FP operand, 84
FP rounding/conversion instructions, 96
FP store instructions, 105
FP unavailable exception, 171
FPSCR instructions, 97
IEEE-754 compatibility, 83
NI bit in FPSCR, 84
Floating-point unit
execution timing, 232
latency, FP instructions, 242
overview, 31
Flush block operation, 143
FPRn (floating-point registers), 59
FPSCR (floating-point status and control register)
FPSCR instructions, 97
FPSCR register description, 59

G

GBL (global) signal, 261
GPRn (general-purpose registers), 59
Guarded memory bit (G bit), 125

H 1,3, K

HIDn (hardware implementation-dependent) registers
HIDO
description, 65
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doze bit, 337
DPM enable bit, 337
nap bit, 338
HID1
description, 70
PLL configuration, 277
HRESET (hard reset) signal, 272
IABR (instruction address breakpoint register), 64
ICTC (instruction cache throttling control) register, 77,
348
IEEE 1149.1-compliant interface, 319
lllegal instruction class, 88
Instruction cache
configuration, 124
instruction cache block fill operations, 139
organization, 125
Instruction cache throttling, 347
Instruction timing
examples
cache hit, 220
cache miss, 223
execution unit, 225
instruction flow, 215
memory performance considerations, 235
terminology, 209
Instructions
branch address calculation, 106
branch instructions, 216, 226, 227
cache control instructions, 328
classes, 87
condition register logical, 107
defined instructions, 87
external control instructions, 117
floating-point
arithmetic, 95
compare, 97
FP rounding and conversion, 96
FP status and control register, 97
multiply-add, 96
illegal instructions, 88
instruction cache throttling, 347
instruction flow diagram, 218
instruction serialization, 225
instruction serialization types, 225
instruction set summary, 86
integer
arithmetic, 92
compare, 93
logical, 94
rotate and shift, 95
integer instructions, 240
isync, instruction synchronization, 162
latency summary, 238
load and store
address generation
floating-point, 103
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integer, 99 Iwarx/stwex. support, 319
byte reverse instructions, 102
floating-point move, 98

floating-point store, 104 M
integer load, 99
integer multiple, 102 Machine check exception, 167
integer store, 101 MCP (machine check interrupt) signal, 62, 152, 271
memory synchronization, 113, 114 MEI protocol
string instructions, 103 hardware considerations, 128
memory control instructions, 115, 119 read operations, 140
memory synchronization instructions, 113, 114 state transitions, 147
processor control instructions, 108, 113, 118 Memory accesses, 282
reserved instructions, 89 Memory coherency bit (M bit)
rfi, 161 cache interactions, 125
stwex., 162 timing considerations, 235
support for lwarx/stwex., 319 Memory control instructions
sync, 162 description, 115, 119
system linkage instructions, 108 Memory management unit
tlbie, 120 address translation flow, 189
tlbsync, 120 address translation mechanisms, 186, 189
trap instructions, 108 block address translation, 186, 189, 196
Integer arithmetic instructions, 92 block diagrams
Integer compare instructions, 93 32-bit implementations, 183
Integer load instructions, 99 DMMU, 185
Integer logical instructions, 94 IMMU, 184
Integer rotate/shift instructions, 95 exceptions summary, 192
Integer store gathering, 234 features summary, 180
Integer store instructions, 101 implementation-specific features, 180
Integer unit execution timing, 232 instructions and registers, 194
Interrupt, external, 169 memory protection, 187
ISI exception, 169 overview, 179
isync, instruction synchronization, 115, 162 page address translation, 186, 189, 202
ITLB organization, 200 page history status, 188, 196—199
Kill block operation, 143 real addressing mode, 189, 195

segment model, 196
Memory synchronization instructions, 113, 114

L Misaligned data transfer, 299
Misalignment
L2CR (L2 cache control register), 81, 329 misaligned accesses, 82
Latency MMCRnN (monitor mode control registers), 72, 172, 351
load/store instructions, 244 MSR (machine state register)
Latency, definition, 210 FEO/FE1 bits, 160
Load/store IP bit, 163
address generation, 99 PM bit, 60
byte reverse instructions, 102 RI bit, 161
execution timing, 233 settings due to exception, 162
floating-point load instructions, 104 Multiple-precision shifts, 95

floating-point move instructions, 98
floating-point store instructions, 105

integer load instructions, 99 N
integer store instructions, 101
latency, load/store instructions, 244 No-DRTRY mode, 318

load/store multiple instructions, 102
string instructions, 103

Logical address translation, 179

LR (link register), 59
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OEA
exception mechanism, 151
memory management specifications, 179
registers, 60
Operand conventions, 82
Operand placement and performance, 233
Operating environment architecture (OEA), 41
Operations
bus operations caused by cache control instructions,
141
instruction cache block fill, 139
read operation, 140
response to snooped bus transactions, 143
single-beat write operations, 311
Overview, 23

P

Page address translation
definition, 33
page address translation flow, 202
page size, 196
selection of page address translation, 186, 192
TLB organization, 200
Page history status
cases of dcbt and dcbtst misses, 197
R and C bit recording, 188, 196—199
Page table updates, 207
Performance monitor
event counting, 355
event selecting, 356
performance monitor interrupt, 172, 349
performance monitor SPRs, 350
purposes, 349
registers, 351
warnings, 356
Physical address generation, 179
Pipeline
instruction timing, definition, 210
pipeline stages, 214
pipelined execution unit, 212
superscalar/pipeline diagram, 212
PMC1 and PMC2 registers, 44
PMCn (performance monitor counter) registers, 74, 172,
351
Power and ground signals, 278
Power management
doze mode, 337
dynamic power management, 335
full-power mode, 337
nap mode, 337
programmable power modes, 336
sleep mode, 339
software considerations, 340
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PowerPC architecture
operating environment architecture (OEA), 41
user instruction set architecture (UISA), 41
virtual environment architecture (VEA), 41
Priorities, exception, 153
Process switching, 162
Processor control instructions, 108, 113, 118
Program exception, 170
Program order, definition, 210
Programmable power states
doze mode, 337
nap mode, 337
sleep mode, 339
Protection of memory areas
no-execute protection, 190
options available, 187
protection violations, 192
PVR (processor version register), 60

Q

QACK (quiescent acknowledge) signal, 273
QREQ (quiescent request) signal, 273
Qualified bus grant, 285

Qualified data bus grant, 302

R

Read operation, 143
Read-atomic operation, 143
Read-with-intent-to-modify operation, 143
Real address (RA), see Physical address generation
Real addressing mode (translation disabled)
data accesses, 189, 195
instruction accesses, 189, 195
support for real addressing mode, 180
Referenced (R) bit maintenance recording, 188, 197,
204
Registers
implementation-specific
ICTC, 77, 348
L2CR, 81, 329
MMCRO, 72, 172, 351
MMCR1, 74, 172, 351
SIA, 75, 172
THRMn, 78
UMMCRO, 73
UMMCRL1, 74
UPMCn, 75
USIA, 76
performance monitor registers, 72
SPR encodings, 112
supervisor-level
BAT registers, 61
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DABR, 62
DAR, 61
DEC, 62
DSISR, 61
EAR, 62
HIDO, 65, 337
HID1, 70

SR manipulation instructions, 119

Segmented memory model, see Memory management

unit
Serializing instructions, 225
Shift/rotate instructions, 95

SIA (sampled instruction address) register, 75, 172, 355

IABR, 64
ICTC, 77, 348
L2CR, 81, 329
MMCRO, 72, 172, 351
MMCR1, 74, 172, 351
MSR, 60
PMC1 and PMC2, 44
PMCn, 74, 172
PVR, 60
SDR1, 61
SIA, 75, 172, 355
SPRGn, 61
SPRs for performance monitor, 349
SRn, 61
SRRO/SRR1, 61
THRMn, 78
time base (TB), 62
user-level
CR, 59
CTR, 59
FPRn, 59
FPSCR, 59
GPRn, 59
LR, 59
time base (TB), 60, 62
UMMCRO, 73
UMMCRL1, 74
UPMCn, 75
USIA, 76, 355
XER, 59
Rename buffer, definition, 210
Rename register operation, 224
Reservation station, definition, 210
Reserved instruction class, 89
Reset
HRESET signal, 272
reset exception, 163
SRESET signal, 272
Retirement, definition, 210
rfi, 161
Rotate/shift instructions, 95
RSRYV (reserve) signal, 319

Signals
AACK, 262
ABB, 285

address arbitration, 251, 285
address transfer, 292
address transfer attribute, 294
An, 254

ARTRY, 263, 303

BG, 252, 285

BR, 251, 285

Cl, 260
CKSTP_IN/CKSTP_OUT, 169, 271
configuration, 250

COP/scan interface, 319
data arbitration, 285, 301
data transfer termination, 303
DBB, 286, 302

DBG, 264, 285

DBWO, 286, 303, 320
DHn/DLn, 266

DRTRY, 269, 303, 306
GBL, 261

HRESET, 272
MCP, 62, 152, 271
PLL_CFGn, 277

power and ground signals, 278
QACK, 273

QREQ, 273

RSRV, 319

SRESET, 272

TA, 268

TBST, 259, 294, 303

TEA, 269, 303, 307
transfer encoding, 256

TS, 253

TSIZn, 258, 294

TTn, 256, 294

WT, 260

Single-beat transfer

reads with data delays, timing, 312
reads, timing, 310

termination, 304

writes, timing, 311

Snooping, 142
SPRGn registers, 61
SRESET (soft reset) signal, 272

SRRO/SRR1 (status save/restore registers)

SDR1 register, 61
Segment registers
SR description, 61
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Stage, definition, 211
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Stall, definition, 211
Static branch prediction, 216, 229
stwex., 162
Superscalar, definition, 211
sync, 162
SYNC operation, 143
Synchronization
context/execution synchronization, 90
execution of rfi, 161
memory synchronization instructions, 113, 114
SYSCLK (system clock) signal, 277
System call exception, 171
System linkage instructions, 108, 118
System register unit
execution timing, 234
latency, CR logical instructions, 240
latency, system register instructions, 238

T

TA (transfer acknowledge) signal, 268
Table search flow (primary and secondary), 204
TBL/TBU (time base lower and upper) registers, 60, 62
TBST (transfer burst) signal, 259, 294, 303
TEA (transfer error acknowledge) signal, 269, 307
Termination, 300, 303
Thermal assist unit (TAU), 343
Thermal management interrupt exception, 174
THRMn (thermal management) registers, 78
Throughput, definition, 211
Timing diagrams, interface

address transfer signals, 292

burst transfers with data delays, 314

single-beat reads, 310

single-beat reads with data delays, 312

single-beat writes, 311

single-beat writes with data delays, 313

use of TEA, 315

using DBWO, 320
Timing, instruction

BPU execution timing, 225

branch timing example, 231

cache hit, 220

cache miss, 223

execution unit, 225

FPU execution timing, 232

instruction dispatch, 224

instruction flow, 215

instruction scheduling guidelines, 236

IU execution timing, 232

latency summary, 238

load/store unit execution timing, 233

SRU execution timing, 234

stage, definition, 211
TLB
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description, 199
invalidate (tlbie instruction), 201, 207
LRU replacement, 201
organization for ITLB and DTLB, 199
TLB miss and table search operation, 200, 204
TLB invalidate
description, 201
TLB management instructions, 120
TLB miss, effect, 236
tlbie, 120
tlbsync, 120
Transactions, data cache, 140
Transfer, 292, 303
Trap instructions, 108
TS (transfer start) signal, 253, 292
TSIZn (transfer size) signals, 258, 294
TTn (transfer type) signals, 256, 294

U Vv, w

UMMCRO (user monitor mode control register 0), 73, 351
UMMCR1 (user monitor mode control register 1), 74, 351
UPMCn (user performance monitor counter) registers,
_ 75, 354

Use of TEA, timing, 315
User instruction set architecture (UISA)

description, 41

registers, 59
USIA (user sampled instruction address) register, 76,

355

Using DBWO, timing, 320
Virtual environment architecture (VEA), 41
WIMG bits, 308
Write-back, definition, 211
Write-through mode (W bit)

cache interactions, 125
Write-with-Atomic operation, 143
Write-with-Flush operation, 143
Write-with-Kill operation, 143
WT (write-through) signal, 260

X
XER register, 59
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on page 26, added the following to the list under "2-stage load/store unit (LSU)."

"4-entry load queue.”

On page 32, added a third paragraph under Section 1.2.2.3 Load/Store Unit.

On page 279, changed the number "Two" to "Four" in the second subbullet in the bullet list.
On page 279, rewrote the first paragraph after the bullet list.

On page 286, rewrote the first paragraph in Section 8.2.2 Miss-Under-Miss.

On page 286, added a note after the first paragraph.

On page 289, added "in LSU " to #8.

On page 289, added " in BIU" "(same as the reload-request queue)” to #13.
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Removed “Preliminary “ from title and to top of every page.

Added “and 750GL”" to UM title and to top of every page.
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On page 19, added two notes following first paragraph of “About This Manual.”

Revision Log
Page 377 of 377



	Title Page
	Copyright and Disclaimer
	List of Figures
	List of Tables
	About This Manual
	Who Should Read This Manual
	Related Publications
	Conventions Used in This Manual
	Using This Manual with the Programming Environments Manual

	1. PowerPC 750GX Overview
	1.1 750GX Microprocessor Overview
	1.2 750GX Microprocessor Features
	1.2.1 Instruction Flow
	1.2.1.1 Instruction Queue and Dispatch Unit
	1.2.1.2 Branch Processing Unit (BPU)
	1.2.1.3 Completion Unit

	1.2.2 Independent Execution Units
	1.2.2.1 Integer Units (IUs)
	1.2.2.2 Floating-Point Unit (FPU)
	1.2.2.3 Load/Store Unit (LSU)
	1.2.2.4 System Register Unit (SRU)

	1.2.3 Memory Management Units (MMUs)
	1.2.4 On-Chip Level 1 Instruction and Data Caches
	1.2.5 On-Chip Level 2 Cache Implementation
	1.2.6 System Interface/Bus Interface Unit (BIU)
	1.2.7 Signals
	1.2.8 Signal Configuration
	1.2.9 Clocking

	1.3 750GX Microprocessor Implementation
	1.4 PowerPC Registers and Programming Model
	1.5 Instruction Set
	1.5.1 PowerPC Instruction Set
	1.5.2 750GX Microprocessor Instruction Set

	1.6 On-Chip Cache Implementation
	1.6.1 PowerPC Cache Model
	1.6.2 750GX Microprocessor Cache Implementation

	1.7 Exception Model
	1.7.1 PowerPC Exception Model
	1.7.2 750GX Microprocessor Exception Implementation

	1.8 Memory Management
	1.8.1 PowerPC Memory-Management Model
	1.8.2 750GX Microprocessor Memory-Management Implementation

	1.9 Instruction Timing
	1.10 Power Management
	1.11 Thermal Management
	1.12 Performance Monitor

	2. Programming Model
	2.1 PowerPC 750GX Processor Register Set
	2.1.1 Register Set
	2.1.2 PowerPC 750GX-Specific Registers
	2.1.2.1 Instruction Address Breakpoint Register (IABR)
	2.1.2.2 Hardware-Implementation-Dependent Register 0 (HID0)
	2.1.2.3 Hardware-Implementation-Dependent Register 1 (HID1)
	2.1.2.4 Hardware-Implementation-Dependent Register 2 (HID2)
	2.1.2.5 Performance-Monitor Registers

	2.1.3 Instruction Cache Throttling Control Register (ICTC)
	2.1.4 Thermal-Management Registers (THRMn)
	2.1.4.1 Thermal-Management Registers 1-2 (THRM1-THRM2)
	2.1.4.2 Thermal-Management Register 3 (THRM3)
	2.1.4.3 Thermal-Management Register 4 (THRM4)

	2.1.5 L2 Cache Control Register (L2CR)

	2.2 Operand Conventions
	2.2.1 Data Organization in Memory and Data Transfers
	2.2.2 Alignment and Misaligned Accesses
	2.2.3 Floating-Point Operand and Execution Models-UISA
	2.2.3.1 Denormalized Number Support
	2.2.3.2 Non-IEEE Mode (Nondenormalized Mode)
	2.2.3.3 Time-Critical Floating-Point Operation
	2.2.3.4 Floating-Point Storage Access Alignment
	2.2.3.5 Optional Floating-Point Graphics Instructions


	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.2 Floating-Point Instructions
	2.3.4.3 Load-and-Store Instructions
	2.3.4.4 Branch and Flow-Control Instructions
	2.3.4.5 System Linkage Instruction-UISA
	2.3.4.6 Processor Control Instructions-UISA
	2.3.4.7 Memory Synchronization Instructions-UISA

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions-VEA
	2.3.5.2 Memory Synchronization Instructions-VEA
	2.3.5.3 Memory Control Instructions-VEA
	2.3.5.4 Optional External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions-OEA
	2.3.6.2 Processor Control Instructions-OEA
	2.3.6.3 Memory Control Instructions-OEA

	2.3.7 Recommended Simplified Mnemonics


	3. Instruction-Cache and Data-Cache Operation
	3.1 Data-Cache Organization
	3.2 Instruction-Cache Organization
	3.3 Memory and Cache Coherency
	3.3.1 Memory/Cache Access Attributes (WIMG Bits)
	3.3.2 MEI Protocol
	3.3.2.1 MEI Hardware Considerations

	3.3.3 Coherency Precautions in Single-Processor Systems
	3.3.4 Coherency Precautions in Multiprocessor Systems
	3.3.5 PowerPC 750GX-Initiated Load/Store Operations
	3.3.5.1 Performed Loads and Stores
	3.3.5.2 Sequential Consistency of Memory Accesses
	3.3.5.3 Atomic Memory References


	3.4 Cache Control
	3.4.1 Cache-Control Parameters in HID0
	3.4.1.1 Data-Cache Flash Invalidation
	3.4.1.2 Enabling and Disabling the Data Cache
	3.4.1.3 Locking the Data Cache
	3.4.1.4 Instruction-Cache Flash Invalidation
	3.4.1.5 Enabling and Disabling the Instruction Cache
	3.4.1.6 Locking the Instruction Cache

	3.4.2 Cache-Control Instructions
	3.4.2.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
	3.4.2.2 Data Cache Block Zero (dcbz)
	3.4.2.3 Data Cache Block Store (dcbst)
	3.4.2.4 Data Cache Block Flush (dcbf)
	3.4.2.5 Data Cache Block Invalidate (dcbi)
	3.4.2.6 Instruction Cache Block Invalidate (icbi)


	3.5 Cache Operations
	3.5.1 Cache-Block-Replacement/Castout Operations
	3.5.2 Cache Flush Operations
	3.5.3 Data-Cache Block-Fill Operations
	3.5.4 Instruction-Cache Block-Fill Operations
	3.5.5 Data-Cache Block-Push Operations

	3.6 L1 Caches and 60x Bus Transactions
	3.6.1 Read Operations and the MEI Protocol
	3.6.2 Bus Operations Caused by Cache-Control Instructions
	3.6.3 Snooping
	3.6.4 Snoop Response to 60x Bus Transactions
	3.6.5 Transfer Attributes

	3.7 MEI State Transactions

	4. Exceptions
	4.1 PowerPC 750GX Microprocessor Exceptions
	4.2 Exception Recognition and Priorities
	4.3 Exception Processing
	4.3.1 Machine Status Save/Restore Register 0 (SRR0)
	4.3.2 Machine Status Save/Restore Register 1 (SRR1)
	4.3.3 Machine State Register (MSR)
	4.3.4 Enabling and Disabling Exceptions
	4.3.5 Steps for Exception Processing
	4.3.6 Setting MSR[RI]
	4.3.7 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Exception Definitions
	4.5.1 System Reset Exception (0x00100)
	4.5.1.1 Soft Reset
	4.5.1.2 Hard Reset

	4.5.2 Machine-Check Exception (0x00200)
	4.5.2.1 Machine-Check Exception Enabled (MSR[ME] = 1)
	4.5.2.2 Checkstop State (MSR[ME] = 0)

	4.5.3 DSI Exception (0x00300)
	4.5.4 ISI Exception (0x00400)
	4.5.5 External Interrupt Exception (0x00500)
	4.5.6 Alignment Exception (0x00600)
	4.5.7 Program Exception (0x00700)
	4.5.8 Floating-Point Unavailable Exception (0x00800)
	4.5.9 Decrementer Exception (0x00900)
	4.5.10 System Call Exception (0x00C00)
	4.5.11 Trace Exception (0x00D00)
	4.5.12 Floating-Point Assist Exception (0x00E00)
	4.5.13 Performance-Monitor Interrupt (0x00F00)
	4.5.14 Instruction Address Breakpoint Exception (0x01300)
	4.5.15 System Management Interrupt (0x01400)
	4.5.16 Thermal-Management Interrupt Exception (0x01700)
	4.5.17 Data Address Breakpoint Exception
	4.5.17.1 Data Address Breakpoint Register (DABR)

	4.5.18 Soft Stops
	4.5.19 Exception Latencies
	4.5.20 Summary of Front-End Exception Handling
	4.5.21 Timer Facilities
	4.5.22 External Access Instructions


	5. Memory Management
	5.1 MMU Overview
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	5.1.3 Address-Translation Mechanisms
	5.1.4 Memory-Protection Facilities
	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real-Addressing Mode and Block-Address-Translation Selection
	5.1.6.2 Page-Address-Translation Selection

	5.1.7 MMU Exceptions Summary
	5.1.8 MMU Instructions and Register Summary

	5.2 Real-Addressing Mode
	5.3 Block-Address Translation
	5.4 Memory Segment Model
	5.4.1 Page History Recording
	5.4.1.1 Referenced Bit
	5.4.1.2 Changed Bit
	5.4.1.3 Scenarios for Referenced and Changed Bit Recording

	5.4.2 Page Memory Protection
	5.4.3 TLB Description
	5.4.3.1 TLB Organization
	5.4.3.2 TLB Invalidation

	5.4.4 Page-Address-Translation Summary
	5.4.5 Page Table-Search Operation
	5.4.6 Page Table Updates
	5.4.7 Segment Register Updates


	6. Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	6.3 Timing Considerations
	6.3.1 General Instruction Flow
	6.3.2 Instruction Fetch Timing
	6.3.2.1 Cache Arbitration
	6.3.2.2 Cache Hit
	6.3.2.3 Cache Miss
	6.3.2.4 L2 Cache Access Timing Considerations
	6.3.2.5 Instruction Dispatch and Completion Considerations
	6.3.2.6 Rename Register Operation
	6.3.2.7 Instruction Serialization


	6.4 Execution-Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding
	6.4.1.2 Branch Instructions and Completion
	6.4.1.3 Branch Prediction and Resolution

	6.4.2 Integer Unit Execution Timing
	6.4.3 Floating-Point Unit Execution Timing
	6.4.4 Effect of Floating-Point Exceptions on Performance
	6.4.5 Load/Store Unit Execution Timing
	6.4.6 Effect of Operand Placement on Performance
	6.4.7 Integer Store Gathering
	6.4.8 System Register Unit Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Caching and Memory Coherency
	6.5.2 Effect of TLB Miss

	6.6 Instruction Scheduling Guidelines
	6.6.1 Branch, Dispatch, and Completion-Unit Resource Requirements
	6.6.1.1 Branch-Resolution Resource Requirements
	6.6.1.2 Dispatch-Unit Resource Requirements
	6.6.1.3 Completion-Unit Resource Requirements


	6.7 Instruction Latency Summary

	7. Signal Descriptions
	7.1 Signal Configuration
	7.2 Signal Descriptions
	7.2.1 Address-Bus Arbitration Signals
	7.2.1.1 Bus Request (BR)-Output
	7.2.1.2 Bus Grant (BG)-Input
	7.2.1.3 Address Bus Busy (ABB)

	7.2.2 Address Transfer Start Signals
	7.2.2.1 Transfer Start (TS)

	7.2.3 Address Transfer Signals
	7.2.3.1 Address Bus (A[0-31])
	7.2.3.2 Address-Bus Parity (AP[0-3])

	7.2.4 Address Transfer Attribute Signals
	7.2.4.1 Transfer Type (TT[0-4])
	7.2.4.2 Transfer Size (TSIZ[0-2])-Output
	7.2.4.3 Transfer Burst (TBST)
	7.2.4.4 Cache Inhibit (CI)-Output
	7.2.4.5 Write-Through (WT)-Output
	7.2.4.6 Global (GBL)

	7.2.5 Address Transfer Termination Signals
	7.2.5.1 Address Acknowledge (AACK)-Input
	7.2.5.2 Address Retry (ARTRY)

	7.2.6 Data-Bus Arbitration Signals
	7.2.6.1 Data-Bus Grant (DBG)-Input
	7.2.6.2 Data-Bus Write-Only (DBWO)
	7.2.6.3 Data Bus Busy (DBB)

	7.2.7 Data-Transfer Signals
	7.2.7.1 Data Bus (DH[0-31], DL[0-31])
	7.2.7.2 Data-Bus Parity (DP[0-7])
	7.2.7.3 Data Bus Disable (DBDIS)-Input

	7.2.8 Data-Transfer Termination Signals
	7.2.8.1 Transfer Acknowledge (TA)-Input
	7.2.8.2 Data Retry (DRTRY)-Input
	7.2.8.3 Transfer Error Acknowledge (TEA)-Input

	7.2.9 System Status Signals
	7.2.9.1 Interrupt (INT)- Input
	7.2.9.2 System Management Interrupt (SMI)-Input
	7.2.9.3 Machine-Check Interrupt (MCP)-Input
	7.2.9.4 Checkstop Input (CKSTP_IN)-Input
	7.2.9.5 Checkstop Output (CKSTP_OUT)-Output

	7.2.10 Reset Signals
	7.2.10.1 Hard Reset (HRESET)-Input
	7.2.10.2 Soft Reset (SRESET)-Input

	7.2.11 Processor Status Signals
	7.2.11.1 Quiescent Request (QREQ)-Output
	7.2.11.2 Quiescent Acknowledge (QACK)-Input
	7.2.11.3 Reservation (RSRV)-Output
	7.2.11.4 Time Base Enable (TBEN)-Input
	7.2.11.5 TLB Invalidate Synchronize (TLBISYNC)-Input

	7.2.12 Processor Mode Selection Signals
	7.2.13 I/O Voltage Select Signals
	7.2.14 Test Interface Signals
	7.2.14.1 IEEE 1149.1a-1993 Interface Description
	7.2.14.2 LSSD_MODE
	7.2.14.3 L1_TSTCLK
	7.2.14.4 L2_TSTCLK
	7.2.14.5 BVSEL

	7.2.15 Clock Signals
	7.2.15.1 System Clock (SYSCLK)-Input
	7.2.15.2 Clock Out (CLK_OUT)-Output
	7.2.15.3 PLL Configuration (PLL_CFG[0:4])-Input
	7.2.15.4 PLL Range (PLL_RNG[0:1])-Input

	7.2.16 Power and Ground Signals


	8. Bus Interface Operation
	8.1 Bus Interface Overview
	8.1.1 Operation of the Instruction and Data L1 Caches
	8.1.2 Operation of the Bus Interface
	8.1.3 Bus Signal Clocking
	8.1.4 Optional 32-Bit Data Bus Mode
	8.1.5 Direct-Store Accesses

	8.2 Memory-Access Protocol
	8.2.1 Arbitration Signals
	8.2.2 Miss-under-Miss
	8.2.2.1 Miss-under-Miss and System Performance
	8.2.2.2 Speculative Loads and Conditional Branches


	8.3 Address-Bus Tenure
	8.3.1 Address-Bus Arbitration
	8.3.2 Address Transfer
	8.3.2.1 Address-Bus Parity
	8.3.2.2 Address Transfer Attribute Signals
	8.3.2.3 Burst Ordering During Data Transfers
	8.3.2.4 Effect of Alignment in Data Transfers
	8.3.2.5 Alignment of External Control Instructions

	8.3.3 Address Transfer Termination

	8.4 Data-Bus Tenure
	8.4.1 Data-Bus Arbitration
	8.4.1.1 Using the DBB Signal

	8.4.2 Data-Bus Write-Only
	8.4.3 Data Transfer
	8.4.4 Data-Transfer Termination
	8.4.4.1 Normal Single-Beat Termination
	8.4.4.2 Data-Transfer Termination Due to a Bus Error

	8.4.5 Memory Coherency-MEI Protocol

	8.5 Timing Examples
	8.6 Optional Bus Configuration
	8.6.1 32-Bit Data Bus Mode
	8.6.2 No-DRTRY Mode

	8.7 Processor State Signals
	8.7.1 Support for the lwarx and stwcx. Instruction Pair
	8.7.2 TLBISYNC Input

	8.8 IEEE 1149.1a-1993 Compliant Interface
	8.8.1 JTAG/COP Interface

	8.9 Using Data-Bus Write-Only

	9. L2 Cache
	9.1 L2 Cache Overview
	9.2 L2 Cache Operation
	9.3 L2 Cache Control Register (L2CR)
	9.4 L2 Cache Initialization
	9.5 L2 Cache Global Invalidation
	9.6 L2 Cache Used as On-Chip Memory
	9.6.1 Locking the L2 Cache
	9.6.1.1 Loading the Locked L2 Cache
	9.6.1.2 Locked Cache Operation


	9.7 Data-Only and Instruction-Only Modes
	9.8 L2 Cache Test Features and Methods
	9.8.1 L2CR Support for L2 Cache Testing
	9.8.2 L2 Cache Testing

	9.9 L2 Cache Timing

	10. Power and Thermal Management
	10.1 Dynamic Power Management
	10.2 Programmable Power Modes
	10.2.1 Power Management Modes
	10.2.1.1 Full On Mode
	10.2.1.2 Doze Mode
	10.2.1.3 Nap Mode
	10.2.1.4 Sleep Mode
	10.2.1.5 Dynamic Power Reduction

	10.2.2 Power Management Software Considerations

	10.3 750GX Dual PLL Feature
	10.3.1 Overview
	10.3.2 Configuration Restriction on Frequency Transitions
	10.3.3 Dual PLL Implementation

	10.4 Thermal Assist Unit
	10.4.1 Thermal Assist Unit Overview
	10.4.2 Thermal Assist Unit Operation
	10.4.2.1 TAU Single-Threshold Mode
	10.4.2.2 TAU Dual-Threshold Mode
	10.4.2.3 750GX Junction Temperature Determination
	10.4.2.4 Power Saving Modes and TAU Operation


	10.5 Instruction-Cache Throttling

	11. Performance Monitor and System Related Features
	11.1 Performance-Monitor Interrupt
	11.2 Special-Purpose Registers Used by Performance Monitor
	11.2.1 Performance-Monitor Registers
	11.2.1.1 Monitor Mode Control Register 0 (MMCR0)
	11.2.1.2 User Monitor Mode Control Register 0 (UMMCR0)
	11.2.1.3 Monitor Mode Control Register 1 (MMCR1)
	11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)
	11.2.1.5 Performance-Monitor Counter Registers (PMCn)
	11.2.1.6 User Performance-Monitor Counter Registers (UPMC1-UPMC4)
	11.2.1.7 Sampled Instruction Address Register (SIA)
	11.2.1.8 User Sampled Instruction Address Register (USIA)


	11.3 Event Counting
	11.4 Event Selection
	11.5 Notes
	11.6 Debug Support
	11.6.1 Overview
	11.6.2 Data-Address Breakpoint

	11.7 JTAG/COP Functions
	11.7.1 Introduction
	11.7.2 Processor Resources Available through JTAG/COP Serial Interface

	11.8 Resets
	11.8.1 Hard Reset
	11.8.2 Soft Reset
	11.8.3 Reset Sequence

	11.9 Checkstops
	11.9.1 Checkstop Sources
	11.9.2 Checkstop Control Bits
	11.9.3 Open-Collector-Driver States during Checkstop
	11.9.4 Vacancy Slot Application

	11.10 750GX Parity
	11.10.1 Parity Control and Status
	11.10.2 Enabling Parity Error Detection
	11.10.3 Parity Errors


	Acronyms and Abbreviations
	Index
	Revision Log

