
MSP50C6xx Mixed-Signal Processor
User’s Guide

Mixed Signal Products

SPSU014A

Printed on Recycled Paper



IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright   2001, Texas Instruments Incorporated



iiiRead This First

Preface

Read This First

About This Manual

This user’s guide gives information for the MSP50C6xx mixed-signal proces-
sor. This information includes a functional overview, a detailed architectural
description, device peripheral functional description, assembly language
instruction listing, code development tools, applications, customer informa-
tion, and electrical characteristics (in data sheet).

How to Use This Manual

This document contains the following chapters:

� Chapter 1 –Introduction to the MSP50C6xx

� Chapter 2 –MSP50C6xx Architecture

� Chapter 3 –Peripheral Functions

� Chapter 4 –Assembly Language Instructions

� Chapter 5 –Code Development Tools

� Chapter 6 –Applications

� Chapter 7 –Customer Information

� Appendix A –Additional Information

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).



Notational Conventions

iv  

Here is a sample program listing:

0011  0005  0001         .field    1, 2
0012  0005  0003         .field    3, 4
0013  0005  0006         .field    6, 3
0014  0006               .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ”section name”, address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

� Square brackets ( [ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16–bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ( { and } ) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: *, *+, or *–.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:



Information About Cautions and Warnings

vRead This First

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Trademarks

Intel, i486, and Pentium are trademarks of Intel Corporation.

Microsoft, Windows, Windows 95, and Windows 98 are registered trademarks of Microsoft Corporation.



 

vi  



Contents

vii

Contents

1 Introduction to the MSP50C6xx 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1 Features of the MSP50C6xx 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 Applications 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.3 Development Device: MSP50P614 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4 Functional Description for the MSP50C614 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.5 MSP50C601, MSP50C604, and MSP50C605 1-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 MSP50C6xx Architecture 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 Architecture Overview 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 Computation Unit 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.1 Multiplier 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.2 Arithmetic Logic Unit 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Data Memory Address Unit 2-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.1 RAM Configuration 2-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.2 Data Memory Addressing Modes 2-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Program Counter Unit 2-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.5 Bit Logic Unit 2-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6 Memory Organization: RAM and ROM 2-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6.1 Memory Map 2-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6.2 Peripheral Communications (Ports) 2-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6.3 Interrupt Vectors 2-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6.4 ROM Code Security 2-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6.5 Macro Call Vectors 2-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.7 Interrupt Logic 2-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.8 Clock Control 2-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.8.1 Oscillator Options 2-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.8.2 PLL Performance 2-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.8.3 Clock Speed Control Register 2-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.8.4 RTO Oscillator Trim Adjustment 2-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.9 Timer Registers 2-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.10 Reduced Power Modes 2-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.11 Execution Timing 2-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

viii  

3 Peripheral Functions 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1 I/O 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.1 General-Purpose I/O Ports 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.2 Dedicated Input Port F 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.3 Dedicated Output Port G 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.4 Branch on D Port 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.5 Internal and External Interrupts 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Digital-to-Analog Converter (DAC) 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.1 Pulse-Density Modulation Rate 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.2 DAC Control and Data Registers 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.3 PDM Clock Divider 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Comparator 3-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4 Interrupt/General Control Register 3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5 Hardware Initialization States 3-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Assembly Language Instructions 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1 Introduction 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 System Registers 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.1 Multiplier Register (MR) 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.2 Shift Value Register (SV) 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.3 Data Pointer Register (DP) 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.4 Program Counter (PC) 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.5 Top of Stack, (TOS) 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.6 Product High Register (PH) 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.7 Product Low Register (PL) 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.8 Accumulators (AC0–AC31) 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.9 Accumulator Pointers (AP0–AP3) 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.10 Indirect Register (R0–R7) 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.11 String Register (STR) 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.12 Status Register (STAT) 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Instruction Syntax and Addressing Modes 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.1 MSP50P614/MSP50C614 Instruction Syntax 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.2 Addressing Modes 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.3 Immediate Addressing 4-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.4 Direct Addressing 4-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.5 Indirect Addressing 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.6 Relative Addressing 4-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.7 Flag Addressing 4-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.8 Tag/Flag Bits 4-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

ixContents

4.4 Instruction Classification 4-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.2 Class 2 Instructions: Accumulator and Constant Reference 4-28. . . . . . . . . . . . . . 
4.4.3 Class 3 Instruction: Accumulator Reference 4-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.4 Class 4 Instructions: Address Register and Memory Reference 4-34. . . . . . . . . . . 
4.4.5 Class 5 Instructions: Memory Reference 4-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.6 Class 6 Instructions: Port and Memory Reference 4-38. . . . . . . . . . . . . . . . . . . . . . 
4.4.7 Class 7 Instructions: Program Control 4-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.8 Class 8 Instructions: Logic and Bit 4-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.9 Class 9 Instructions: Miscellaneous 4-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.5 Bit, Byte, Word and String Addressing 4-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.6 MSP50P614/MSP50C614 Computational Modes 4-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.7 Hardware Loop Instructions 4-53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.8 String Instructions 4-55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.9 Lookup Instructions 4-57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.10 Input/Output Instructions 4-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.11 Special Filter Instructions 4-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.12 Conditionals 4-69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.13 Legend 4-70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.14 Individual Instruction Descriptions 4-74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.15 Instruction Set Encoding 4-189. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.16 Instruction Set Summary 4-198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Code Development Tools 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1 Introduction 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2 MSP50C6xx Development Tools Guidelines 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2.1 Categories of MSP50Cxx Development Tools 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.2 Tools Definitions 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.3 Documentation 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 MSP50C6xx Code Development Tools 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.1 System Requirements 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.2 Hardware Tools Setup 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Assembler 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.1 Assembler Directives 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.5 C– – Compiler 5-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.1 Foreword 5-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.2 Variable Types 5-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.3 External References 5-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.4 C– – Directives 5-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.5 Include Files 5-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.6 Function Prototypes and Declarations 5-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.7 Initializations 5-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.8 RAM Usage 5-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.9 String Functions 5-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5.10 Constant Functions 5-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

x  

5.6 Implementation Details 5-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.1 Comparisons 5-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.2 Division 5-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.3 Function Calls 5-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.4 Programming Example 5-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6.5 Programming Example, C –– With Assembly Routines 5-29. . . . . . . . . . . . . . . . . . 

5.7 C– – Efficiency 5-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.7.1 Real Time Clock Example 5-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.8 Beware of Stack Corruption 5-57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.9 Reported Bugs With Code Development Tool 5-58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Applications 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1 Application Circuits 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 Initializing the MSP50C6xx 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2.1 File init.asm 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3 TI-TALKS Example Code 6-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4 RAM Overlay 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4.1 RAM Usage 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.2 RAM Overlay 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.3 Adding Customer Variables 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.4 Common Problems 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 Customer Information 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1 Mechanical Information 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.1 Die Bond-Out Coordinates 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1.2 Package Information 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 Customer Information Fields in the ROM 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.3 Speech Development Cycle 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.4 Device Production Sequence 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.5 Ordering Information 7-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.6 New Product Release Forms (NPRF) 7-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Additional Information A-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.1 Additional Information A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xiContents

Figures

1–1 Functional Block Diagram for the MSP50C614/MSP50P614 1-5. . . . . . . . . . . . . . . . . . . . . . . . 
1–2 Oscillator and PLL Connection 1-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1–3 RESET Circuit 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–1 MSP50C6xx Core Processor Block Diagram 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2 Computational Unit Block Diagram 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–3 Overview of the Multiplier Unit Operation 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–4 Overview of the Arithmetic Logic Unit 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–5 Overview of the Accumulators 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–6 Data Memory Address Unit 2-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–7 C6xx Memory Map (not drawn to scale) 2-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–8 Interrupt Initialization Sequence 2-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–9 PLL Performance 2-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–10 Instruction Execution and Timing 2-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–1 PDM Clock Divider 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2 Relationship Between Comparator/Interrupt Activity and the TIMER1 Control 3-16. . . . . . . . 
4–1 Top of Stack (TOS) Register Operation 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2 Relative Flag Addressing 4-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–3 Data Memory Organization and Addressing 4-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–4 Data Memory Example 4-47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–5 FIR Filter Structure 4-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–6 Setup and Execution of MSP50P614/MSP50C614 Filter Instructions, N+1 Taps 4-67. . . . . . 
4–7 Filter Instruction and Circular Buffering for N+1 Tap Filter 4-68. . . . . . . . . . . . . . . . . . . . . . . . . . 
4–8 Valid Moves/Transfer in MSP50P614/MSP50C614 Instruction Set 4-132. . . . . . . . . . . . . . . . . 

5–1 10-Pin IDC Connector (top view looking at the board) 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2 Hardware Tools Setup 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–1 Minimum Circuit Configuration for the C614/P614 Using a 
   Resistor-Trimmed Oscillator 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–2 Minimum Circuit Configuration for the C614/P614 Using a 
   Crystal-Referenced Oscillator 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–1 100-Pin QFP Mechanical Information 7-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2 64-Pin QFP Mechanical Information 7-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3 120-Pin, Grid Array Package for the Development Device, MSP50P614 7-9. . . . . . . . . . . . . . 
7–4 Bottom View of 120-Pin PGA Package of the MSP50P614 7-10. . . . . . . . . . . . . . . . . . . . . . . . 
7–5 Speech Development Cycle 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xii  

Tables

2–1 Signed and Unsigned Integer Representation 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2 Summary of MSP50C614’s Peripheral Communications Ports 2-17. . . . . . . . . . . . . . . . . . . . . 
2–3 Programmable Bits Needed to Control Reduced Power Modes 2-36. . . . . . . . . . . . . . . . . . . . . 
2–4 Status of Circuitry When in Reduced Power Modes (Refer to Table 2–3) 2-37. . . . . . . . . . . . 
2–5 How to Wake Up from Reduced Power Modes (Refer to Table 2–3 and Table 2–4) 2-38. . . . 
2–6 Destination of Program Counter on Wake-Up Under Various Conditions 2-39. . . . . . . . . . . . . 

3–1 Interrupts 3-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2 State of the Status Register (17 bit) after RESET Low-to-High 

(Bits 5 through 16 are left uninitialized) 3-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–1 Status Register (STAT) 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2 Addressing Mode Encoding 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–3 Rx Bit Description 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–4 Addressing Mode Bits and {adrs} Field Description 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–5 MSP50P614/MSP50C614 Addressing Modes Summary 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . 
4–6 Auto Increment and Auto Decrement Modes 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–7 Flag Addressing Field {flagadrs} for Certain Flag Instructions (Class 8a) 4-12. . . . . . . . . . . . . 
4–8 Initial Processor State for the Examples Before Execution of Instruction 4-13. . . . . . . . . . . . . 
4–9 Indirect Addressing Syntax 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–10 Symbols and Explanation 4-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–11 Instruction Classification 4-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–12 Classes and Opcode Definition 4-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–13 Class 1 Instruction Encoding 4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–14 Class 1a Instruction Description 4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–15 Class 1b Instruction Description 4-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–16 Class 2 Instruction Encoding 4-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–17 Class 2a Instruction Description 4-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–18 Class 2b Instruction Description 4-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–19 Class 3 Instruction Encoding 4-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–20 Class 3 Instruction Description 4-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–21 Class 4a Instruction Encoding 4-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–22 Class 4a Instruction Description 4-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–23 Class 4b Instruction Description 4-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–24 Class 4c Instruction Description 4-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–25 Class 4d Instruction Description 4-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–26 Class 5 Instruction Encoding 4-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–27 Class 5 Instruction Description 4-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xiiiContents

4–28 Class 6a Instruction Encoding 4-38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–29 Class 6a Instruction Description 4-38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–30 Class 6b Instruction Description 4-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–31 Class 7 Instruction Encoding and Description 4-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–32 Class 8a Instruction Encoding 4-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–33 Class 8a Instruction Description 4-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–34 Class 8b Instruction Description 4-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–35 Class 9a Instruction Encoding 4-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–36 Class 9a Instruction Description 4-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–37 Class 9b Instruction Description 4-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–38 Class 9c Instruction Description 4-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–39 Class 9d Instruction Description 4-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–40 Data Memory Address and Data Relationship 4-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–41 MSP50P614/MSP50C614 Computational Modes 4-50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–42 Hardware Loops in MSP50P614/MSP50C614 4-54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–43 Initial Processor State for String Instructions 4-55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–44 Lookup Instructions 4-57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–45 Auto Increment and Decrement 4-73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–46 Addressing Mode Bits and adrs Field Description 4-73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–47 Flag Addressing Syntax and BIts 4-73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–48 Names for cc 4-88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–1 String Functions 5-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–1 Signal and Pad Descriptions for the MSP50C614 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2 Signal and Pad Descriptions for the MSP50C605 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3 Signal and Pad Descriptions for the MSP50C601 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–4 Signal and Pad Descriptions for the MSP50C604 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 

xiv  



1-1

Introduction to the MSP50C6xx

The MSP50C6xx is a low cost, mixed signal controller, that combines a speech
synthesizer, general-purpose input/output (I/O), onboard ROM, and direct
speaker-drive in a single package. The computational unit utilizes a powerful
new DSP which gives the MSP50C6xx unprecedented speed and
computational flexibility compared with previous devices of its type. The
MSP50C6xx supports a variety of speech and audio coding algorithms,
providing a range of options with respect to speech duration and sound quality.

Topic Page

1.1 Features of the MSP50C6xx 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Applications 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3 Development Device: MSP50P614 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.4 Functional Description for the MSP50C614 1–5. . . . . . . . . . . . . . . . . . . . . . 

1.5 MSP50C601, MSP50C604, and MSP50C605 1–9. . . . . . . . . . . . . . . . . . . . . 

Chapter 1



Features of the MSP50C6xx

 1-2

1.1 Features of the MSP50C6xx

� Advanced, integrated speech synthesizer for high quality sound

� Operates up to 12.32 MHz (performs up to 12.32 MIPS)

� Very low-power operation, ideal for hand-held devices

� Low voltage operation, sustainable by three batteries

� Reduced power stand-by modes, less than 10 µA in deep-sleep mode

� Supports high-quality synthesis algorithms such as MELP, CELP, LPC,
and ADPCM

� Contains 32K words onboard ROM (2K words reserved)

� Up to 2.36 Mbits of internal data ROM for speech storage

� 640 words RAM

� Up to 64 input/output pins

� Direct speaker driver, 32 Ω

� One-bit comparator with edge-detection interrupt service

� Resistor-trimmed oscillator or 32.768-kHz crystal reference oscillator

� Serial scan port for in-circuit emulation and diagnostics

� The MSP50C6xx is sold in die form or QFP package. An emulator device,
MSP50P614 is sold in a ceramic package for development.

� The MSP50P614 devices operate from 4.0 Vdc to 6.0 Vdc, and
the MSP50C6xx devices operate from 3.0 Vdc to 5.2 Vdc



Applications

1-3Introduction to the MSP50C6xx

1.2 Applications

Due to its low cost, low-power consumption, and high programmability, the
MSP50C6xx is suitable for a wide variety of applications incorporating flexible
I/O and high-quality speech:

� Consumer � Education
Toys and Games Electronic Learning Aids
Appliances Talking Dictionaries
Talking Clocks Language Translators
Navigation Aids Talking Books

� Industrial � Medical
Warning Systems Controls Aids for the Handicapped

� Telecom � Security
Answering Machines Security Systems
Voice Mail Systems Home Monitors



Development Device: MSP50P614

 1-4

1.3 Development Device: MSP50P614

The MSP50P614 is an EPROM based version of the MSP50C614, and is
available in a 120-pin windowed ceramic pin grid array. This EPROM based
version of the device is only available in limited quantities to support software
development. Since the MSP50P614 program memory is EPROM, each
person doing software development should have several of these PGA
packaged devices.

The MSP50P614 is also used to emulate the MSP50C601, MSP50C604, and
MSP50C605 with the addition of external logic.

The MSP50C6xx code development software (EMUC6xx) supports non-real-
time debugging by scanning the code sequence through the MSP50C6xx/
MSP50P614 scanport without programming the EPROM. However, the rate
of code execution is limited by the speed of the PC parallel port. Any
MSP50C6xx/MSP50P614 can be used in this debugging mode.

The MSP50P614 EPROM must be programmed to debug the code in real
time. The EMUC6xx software is used to program the EPROM, set a break-
point, and evaluate the internal registers after the breakpoint is reached. If a
change is made to the code, the code will need to be updated and programmed
into another device while erasing previous devices. This cycle of program-
ming, debugging, and erasing typically requires 10–15 devices to be in the
eraser at any one time, so 15–20 devices may be required to operate efficient-
ly. The windowed PGA version of the MSP50P614 is required for this debug-
ging mode.

Note:

The MSP50P614 operates with a voltage range of 4 V to 6 V. However, the
MSP50C6xx devices operate at a different voltage range (3 V to 5.2 V).
Please refer to the data sheet for specific device information.



Functional Description for the MSP50C614

1-5Introduction to the MSP50C6xx

1.4 Functional Description for the MSP50C614

The MSP50C614 device consists of a micro-DSP core, embedded program
and data memory, and a self-contained clock generation system. General-pur-
pose periphery is comprised of 64 bits of flexible I/O. The block diagram ap-
pearing in Figure 1–1 gives an overview of the MSP50C614/MSP50P614
functionality.

Figure 1–1. Functional Block Diagram for the MSP50C614/MSP50P614

 

SCANIN

SYNC

PLL

OSCOUT

OSCIN

RESET

DACM

DACP

PGMPULSE

TEST

SCANCLK

SCANOUT

Serial Comm.
OTP Program

Emulation
Break Point

(C6xx only)

(P614 only)

DAC 0x30

32 Ohm PDM

Initialization
Logic

OSC Reference

Resistor
Trimmed
32 kHz nominal

Crystal
Referenced
32.768 kHz

PLL Filter

or

or

Scan Interface Power (P614 only)

VDD VPPVSS

5 5

(EP)ROM 32k x (16 + 1) bit

Test-Area
(reserved)

0x0000 to
0x07FF

User ROM 0x0800 to
0x7FEF

INT vectors 0x7FF0 to
0x7FFF

Core

Instr. Decoder

PCU Prog. Counter Unit

CU Computational Unit

TIMER1 PRD1
0x3A

TIM1
0x3B

TIMER2 PRD2
0x3E

TIM2
0x3F

Clock Control 0x3D

Gen. Control 0x38

Interrupt Processor
FLAG
0x39

MASK
0x38

DMAU Data Mem. Addr.

RAM   640 x 17 bit
(data) 0x000 to

0x027F

A port I/O

Data 0x00

Control 0x04

B port I/O

Data 0x08

Control 0x0C

C port I/O

Data 0x10

Control 0x14

Comparator
1 bit: PD5 vs PD4

D port I/O

Data 0x18

Control 0x1C

E port I/O

Data 0x20

Control 0x24

F port INPUT

Data 0x28

G port OUTPUT

Data 0x2C

8

PA0–7

8

PB0–7

8

PC0–7

8

PD0–7

8

PE0–7

8

PF0–7

16

PG0–15

+ –



Functional Description for the MSP50C614

 1-6

The core processor is a general-purpose 16 bit micro-controller with DSP
capability. The basic core block includes a computational unit (CU), data
address unit, program address unit, two timers, eight level interrupt processor,
and several system and control registers. The core processor provides
break-point capability to the MSP50C6xx code development software
(EMUC6xx).

The processor is a Harvard type for efficient DSP algorithm execution. It re-
quires separate program and data memory blocks to permit simultaneous ac-
cess. The ROM has a protection scheme to prevent third-party pirating. It is
configured in 32K 17-bit words.

The total ROM space is divided into two areas: 1) The lower 2K words are re-
served by Texas Instruments for a built-in self-test, 2) the upper 30K is for user
program/data.

The data memory is internal static RAM. The RAM is configured in 640 17-bit
words. Both memories are designed to consume minimum power at a given
system clock and algorithm acquisition frequency.

A flexible clock generation system is included that enables the software to
control the clock over a wide frequency range. The implementation uses a
phase-locked loop (PLL) circuit to generate the processor clock. The
Processor clock is programmable in 65.536-kHz steps between 64 kHz and
12.32 MHz. The PLL reference clock is also selectable; either a
resistor-trimmed oscillator or a crystal-referenced oscillator may be used.
Internal and peripheral clock sources are controlled separately to provide
different levels of power management (see Figure 1–2).



Functional Description for the MSP50C614

1-7Introduction to the MSP50C6xx

Figure 1–2. Oscillator and PLL Connection

MSP50P614
MSP50C6xx

OSCIN OSCOUT PLL

C(PLL) = 3300 pF†22 pF†22 pF†10 MΩ†

10 MΩ†

32.768 kHz†

† Keep these components as close as possible to the OSCIN, OSCOUT, and PLL pins.

a) Crystal Reference Oscillator Connections

b) Resistor Trim Oscillator Connections

MSP50C6xx
MSP50P614

OSCIN OSCOUT PLL

R(RTO) = 470 kΩ 1%†

C(PLL) = 3300 pF†

† Keep these components as close as possible to the OSCIN, OSCOUT, and PLL pins.

The peripheral consists of five 8-bit wide general-purpose I/O ports, one 8-bit
wide dedicated input port, and one 16-bit wide dedicated output port. The
general-purpose I/O ports are bit-wise programmable as either
high-impedance inputs or as totem-pole outputs. They are controlled via
addressable I/O registers. The input-only port has a programmable pullup
option (100-kΩ minimum resistance) and a dedicated service interrupt. These
features make the input port especially useful as a key-scan interface.

A simple one-bit comparator is also included in the periphery. The comparator
is enabled by a control register, and its input pins are shared with two pins in
one of the general-purpose I/O ports.



Functional Description for the MSP50C614

 1-8

Rounding out the MSP50C6xx periphery is a built in pulse-density-modulated
(PDM) digital-to-analog converter (DAC) with direct speaker-drive capability.

Typical connections to implement reset functionality are shown in Figure 1–3.

An external reset circuit is required to hold the reset pin low until the
MSP50C6xx power supply has stabilized in the specified voltage range. In
some cases, a simple reset circuit (as shown in Figure 1–3) can be used for
this purpose. However, this simple circuit may not be suitable for all applica-
tions. For example, if the power supply has an unpredictable rise time or has
intermittent voltage sags, the device may not initialize properly. The diode and
the switch shown in Figure 1–3 may be optional for some applications. The
diode provides a lower impedance path for the capacitor to discharge when
power is removed. This make the circuit more reliable when power is removed
and quickly reapplied.

Figure 1–3. RESET Circuit

Reset
Switch

1 µF
(20%)

Inside the
MSP50P614
MSP50C6xx

VDD

VSS

100 kΩ IN914

5 V

VPP

To Pin 1 of Optional (Scanport)
Connector

RESET 1 kΩ†

To Pin 2 of optional (scan port) connector†

IN914‡
(MSP50P614 only)

† If it is necessary to use the software development tools to control the MSP50P614 in an application board, the 1 kΩ resistor is
needed to allow the development tool to over drive the RESET circuit on the application board.

‡ This Diode can be omitted (shorted) if the application does not require use of the scanport interface. See Section 7.1 regarding
scan port bond out.

Note:

This simple circuit may not be suitable for all applications. For example, if the
power supply has an unpredictable rise time or has intermittent voltage sags,
the device may not initialize properly.



MSP50C601, MSP50C604, and MSP50C605

1-9Introduction to the MSP50C6xx

1.5 MSP50C601, MSP50C604, and MSP50C605

Related products, the MSP50C601, MSP50C604, and MSP50C605 use the
MSP50C6xx core. The MSP50C601 has a 128K byte data ROM built into the
chip and 32 I/O port pins. The MSP50C605 has a 224K byte data ROM built
into the chip and 32 I/O port pins. The MSP50C604 has a 64K byte data ROM
built into the chip and 16 I/O port pins. The MSP50C601 can provide up to 24
minutes, the MSP50C605 can provide up to 37 minutes, and the MSP50C604
can provide up to 6.5 minutes of uninterrupted speech. The MSP50C604 is de-
signed to support slave operation with an external host microcontroller. In this
mode the MSP50C604 can be programmed with a code that communicates
with the host via a command set. This command set can be designed to sup-
port LPC, CELP, MELP, and ADPCM coders by selecting the appropriate com-
mand. The MSP50C604 can also be used stand-alone in master mode. The
MSP50C601, MSP50C604, and MSP50C605 use the MSP50P614 as the de-
velopment version device.



 

 1-10



2-1

MSP50C6xx Architecture

A detailed description of the MSP50C6xx architecture is included in this chap-
ter. After reading this chapter, the reader will have in-depth knowledge of inter-
nal blocks, memory organization, interrupt system, timers, clock control mech-
anism, and various low power modes.

Topic Page

2.1 Architecture Overview 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Computation Unit 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Data Memory Address Unit 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Program Counter Unit 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Bit Logic Unit 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6 Memory Organization: RAM and ROM 2–15. . . . . . . . . . . . . . . . . . . . . . . . 

2.7 Interrupt Logic 2–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.8 Clock Control 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.9 Timer Registers 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.10 Reduced Power Modes 2–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.11 Execution Timing 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2



 

 2-2

2.1 Architecture Overview

The core processor in the C6xx is a medium performance mixed signal proces-
sor with enhanced microcontroller features and a limited DSP instruction set.
In addition to its basic multiply/accumulate structure for DSP routines, the core
provides for a very efficient handling of string and bit manipulation. A unique
accumulator-register file provides additional scratch pad memory and mini-
mizes memory thrashing for many operations. Five different addressing
modes and many short direct references provide enhanced execution and
code efficiency.

The basic elements of the C6xx core are shown in Figure 2–1. In addition to
the main computational units, the core’s auxiliary functions include two timers,
an eight-level interrupt processor, a clock generation circuit, a serial scan-port
interface, and a general control register.



 

2-3MSP50C6xx Architecture

Figure 2–1. MSP50C6xx Core Processor Block Diagram

Multiplier (MR)† Shift Value (SV)†

17 x 17 Multiplier

Product High (PH)†

16 bit ALU

MUX

32 Accumulators (AC0–AC31)†

Column Exchange

Loop (R4)
Index (R5)
Page (R6)
Stack (R7)

R0
R1
R2
R3

Arithmetic Unit

MUX

MUX

Data Memory
640 x 17 bit

Interrupt Flag Register (IFR)†

Control Register (CTRL)†

Interrupt Inputs

Interrupt Processor

Serial Interface Register†

Oscillator Register†

Timer Period (PRD1 and PRD2)†

Timer Register (TIM1 and TIM2)†

AP0–AP3†

Accumulator Pointer

Incrementor

+1

Peripheral
Interface

Instruction
Decoder

Frequency
Divider

VCO

Serial
Interface

Top Of Stack (TOS)†

Program Counter (PC)†

Protection Register (PR)†

Data Pointer (DP)†

MUX

String Register†

MUX

Repeat Counter†

Status Register (STAT)†

Flag Register†
Vectors

Macro Calls

Program Memory
30k x 17 bit

Test Code
2k x 17 bit

† Indicates internal programmable registers.



 

 2-4

Figure 2–2. Computational Unit Block Diagram

Accumulators

5

16

AC3
AC2
AC1
AC0

Read/Write

AC7
AC6
AC5
AC4

AC11
AC10
AC9
AC8

AC15
AC14
AC13
AC12

AC19
AC18
AC17
AC16

AC23
AC22
AC21
AC20

AC27
AC26
AC25
AC24

AC31
AC30
AC29
AC28

AP3
AP2
AP1
AP0

5

Internal Databus – 16 bit

Shift Value (SV)

Multiplier Register (MR)

17 bit x 17 bit
Multiplexer

Product High (PH)

16

16

16 MSB

16

16

16

16

16

16

0

16

(Product Low, PL)
16 LSB

16

ALU

A B

16

0

16



Computation Unit

2-5MSP50C6xx Architecture

2.2 Computation Unit

The computational unit (CU) is comprised of a (17-bit by 17-bit) Booth’s
algorithm multiplier and a 16-bit arithmetic logic unit (ALU). The block diagram
of the CU is shown in Figure 2–2. The multiplier block is served by 4 system
registers: a 16-bit multiplier register (MR), a 16-bit write-only multiplicand
register, a 16-bit high word product register (PH), and a 4-bit shift value register
(SV). The output of the ALU is stored in one 16-bit accumulator from among
the 32 which compose the accumulator-register block. The accumulator
register block can supply either one operand to the ALU (addressed
accumulator register or its offset register) or two operands to the ALU (both the
addressed register and its offset).

2.2.1 Multiplier

The multiplier executes a 17-bit by 17-bit 2s complement multiply and
multiply-accumulate in a single instruction cycle. The sign bit within each
operand is bit 16, and its value extends from bit 0 (LSB) to bit 15 (MSB). The
sign bit for either operand (multiplier or multiplicand) can assume a positive
value (zero) or a value equal to the MSB (bit 15). In assuming zero, the extra
bit supports unsigned multiplication. In assuming the value of bit 15, the extra
bit supports signed multiplication. Table 2–1 shows the greater magnitude
achievable when using unsigned multiplication (65535 as opposed to 32767).

Table 2–1. Signed and Unsigned Integer Representation

Unsigned Signed

Decimal Hex Decimal Hex

65535 0xFFFF −1 0xFFFF

32768 0x8000 −32768 0x8000

32767 0x7FFF 32767 0x7FFF

0 0x0000 0 0x0000

During multiplication, the lower word (LSB) of the resulting product, product
low, is multiplexed to the ALU. Product low is either loaded to or arithmetically
combined with an accumulator register. These steps are performed within the
same instruction cycle. Refer to Figure 2–3 for an overview of this operation.
At the end of the current execution cycle, the upper word (MSB) of the product
is latched into the product high register (PH).



Computation Unit

 2-6

The multiplicand source can be either data memory, an accumulator, or an
accumulator offset. The multiplier source can be either the 16-bit multiplier
register (MR) or the 4-bit shift value (SV) register. For all multiply operations,
the MR register stores the multiplier operand. For barrel shift instructions, the
multiplier operand is a 4-to-16-bit value that is decoded from the 4-bit shift
value register (SV).

As an example of a barrel shift operation, a coded value of 0x7 in the SV
register results in a multiplier operand of 0000000010000000 (1 at bit 7). This
causes a left-shift 7-times on the 16 bit multiplicand. The output result is 32-bit.
On the other hand, if the status bit FM (multiplier shift mode) is SET, then the
multiplier operand (0000000010000000) is left-shifted once to form a 17
significant-bit operand (00000000100000000). This mode is included to avoid
a divide-by-2 of the product, when interpreting the input operands as signed
binary fractions. The multiplier shift mode status bit is located in the status
register (STAT).

All three multiplier registers (PH, SV, and MR) can be loaded from data
memory and stored to data memory. In addition, data can be transferred from
an accumulator register to the PH, or vice versa. Both long and short constants
can be directly loaded to the MR from program memory.

The multiplicand is latched in a write-only register from the internal data bus.
The value is not accessible by memory or other system registers.



Computation Unit

2-7MSP50C6xx Architecture

Figure 2–3. Overview of the Multiplier Unit Operation

MULTIPLIER UNIT INPUTS

Multiplicand 16-bit

- latched in a write-only register
from one of the following sources ...

Data Memory
Accumulator
Offset Accumulator

X Multiplier

- writeable and readable by Data Memory
as one of the following ...

Multiplier Register†

Shift Value Register
or

MULTIPLYING: 16-bit

4-bitSHIFTING:

(MR)

(SV)

MULTIPLIER UNIT
performs multiplication and barrel shifting

MULTIPLIER UNIT INPUTS

MSB 16-bit LSB 16-bit

- readable and writeable by Data Memory - a simulated register:  PL is realized in ALU-A
- readable and writeable by ALU-A

(PH)  Product High (PL)  Product Low

† Also write-able by Program Memory

2.2.2 Arithmetic Logic Unit

The arithmetic logic unit is the focal point of the computational unit, where data
can be added, subtracted, and compared. Logical operations can also be
performed by the ALU. The basic hardware word-length of the ALU is 16 bits;
however, most ALU instructions can also operate on strings of 16-bit words
(i.e., a series or array of values). The ALU operates in conjunction with a
flexible, 16-bit accumulator register block. The accumulator register block is
composed of thirty-two, 16-bit registers which further enhances execution and
promotes compact code.

The ALU has two distinct input paths, denoted ALU-A and ALU-B (see
Figure-2–4). The ALU-A input selects between all zeros, the internal databus,
the product high register (PH), the product low (PL), or the offset output of the
accumulator register block. The ALU-B input selects between all zeros and the
output from the accumulator register block.



Computation Unit

 2-8

The all-zero values are necessary for data transfers and unitary operations.
All-zeros also serve as default values for the registers, which helps to minimize
residual power consumption. The databus path through ALU-A is used to input
memory values (RAM) and constant values (program memory) to the ALU.
The PH and PL inputs are useful for supporting multiply-accumulate
operations (refer to Section 2.2.1, Multiplier).

The operations supported by the ALU include arithmetic, logic, and
comparison. The arithmetic operations are addition, subtraction, and load
(add to zero). The logical operations are AND, OR, XOR, and NOT.
Comparison includes equal-to and not-equal-to. The compare operations may
be used with constant, memory, or string values without destroying any
accumulator values.

2.2.2.1 Accumulator Block

The output of the ALU is the accumulator block. The accumulator block is com-
posed of thirty-two, 16-bit registers. These registers are organized into two ter-
minals, denoted accumulator and OFFSET accumulator. The terminals pro-
vide references for all of the data which is to be held in the accumulator block.
The accumulator incorporates one-half of the 32 accumulator registers:
AC0..AC15. The OFFSET accumulator incorporates the other half:
AC16..AC31.



Computation Unit

2-9MSP50C6xx Architecture

Figure 2–4. Overview of the Arithmetic Logic Unit

ALU INPUTS

ALU-A 16-bit

- selects between ...

all 0’s
Offset Accumulator Register
Data Memory

ALU-B  16-bit

- selects between ...

(PH)
(PL)

ARITHMETIC LOGIC UNIT
performs arithmetic, comparison, and logic

ALU OUTPUTS
THE ACCUMULATOR BLOCK

Accumulator Register OFFSET Accumulator Register

AC0, AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8,
AC9, AC10, AC11, AC12, AC13, AC14, AC15

16 × 16-bit registers ... 16 × 16-bit registers ...

Program Memory
Product High†
Product Low†

all 0’s
Accumulator Register

AC16, AC17, AC18, AC19, AC20, AC21, AC22,
AC23, AC24, AC25, AC26, AC27, AC28, AC29,
AC30, AC31

† For multiply-accumulate operations.

2.2.2.2 Accumulator Pointer Block

There are four 5-bit registers which are used to store pointers to members of
the accumulator block. The accumulator pointers (AP0, AP1, AP2, AP3) are
used in two modes: 1) as a direct reference to one of 32, or 2) as an indirect
reference. The indirect reference includes a direct reference to one of 16 and
an offset (optional) which increments the reference by 16: AC(N+16). For
example, AC0 has its offset register located at AC16. AC1 has an offset
register located at AC17, and so on. The block is circular: address 31, when
incremented, results in address 0. The offsets of AC16 through AC31,
therefore, are AC0 through AC15, respectively (see Figure 2–5). Indirect
referencing by the AP pointers is supported by most of the C6xx’s
accumulator-referenced instructions.



Computation Unit

 2-10

When writing an accumulator-referenced instruction, therefore, the working
accumulator address is stored in one of AP0 to AP3. The C6xx instruction set
provides a two-bit field for all accumulator referenced instructions. The two-bit
field serves as a reference to the accumulator pointer which, in turn, stores the
address of the actual 16-bit accumulator. Some MOV instructions store the
contents of the APn directly to memory or load from memory to the APn
register. Other instructions can add or load 5-bit constants to the current APn
register contents. A full description of the C6xx instruction set is given in
Chapter 4, Assembly Language Instructions.

Figure 2–5. Overview of the Accumulators

Accumulator Block: 32, 16-bit registers AC(0) . . . AC(31)

Accumulator Block Pointers: 4, 5-bit registers AP(0) . . . AP(3)

The accumulator block pointers may assume values in one of two forms:

1) DIRECT REFERENCE: 0 . . . 31

AC Register #

2) INDIRECT REFERENCE: 0 . . . 15 points to: 0 . . . 15

0 . . . 15 OFFSET points to: 16 . . . 31

15 . . . 31 OFFSET points to: 0 . . . 15

– AP registers are served by a 5-bit processor for sequencing addresses or repetitive operations.

– Selection between the 4 AP’s is made in the 2-bit An field in all accumulator-referenced
instructions

2.2.2.3 String Operations

The AP registers are served by a 5-bit processor that provides efficient
sequencing of accumulator addresses. The design automates repetitive
operations like long data strings or repeated operations on a list of data.

When operating on a multiword data string, the address is copied from the AP
register to fetch the least significant word of the string. This copy is then
consecutively incremented to fetch the next n words of the string. At the
completion of the consecutive operations, the actual address stored in the AP
register is left unchanged; its value still points to the least significant location.
The AP register, therefore, is loaded and ready for the next repeatable
operation.



Data Memory Address Unit

2-11MSP50C6xx Architecture

For some instructions, the 5-bit string processor can also preincrement or
predecrement the AP pointer-value by +1 or –1, before being used by the
accumulator register block. This utility can be effectively used to minimize
software overhead in manipulating the accumulator address. The
premodification of the address avoids the software pipelining effect that
post-modification would cause.

Some C6xx instructions reference only the accumulator register and cannot
use or modify the offset register that is fetched at the same time. Other instruc-
tions provide a selection field in the instruction word (A~ or ~A op-code bit).
This has the effect of exchanging the column addressing sense and thus the
source or order of the two registers. Also, some instructions can direct the ALU
output to be written either to the accumulator register or to the offset accumula-
tor register. Refer to Chapter 4, Assembly Language Instructions, for more de-
tails.

The ALU’s accumulator block functions as a small workspace, which elimi-
nates the need for many intermediate transfers to and from memory. This al-
leviates the memory thrashing which frequently occurs with single accumula-
tor designs.

2.3 Data Memory Address Unit

The data memory address unit (DMAU) provides addressing for data memory
(internal RAM). The block diagram of the DMAU is shown in Figure 2–6. The
unit consists of a dedicated arithmetic block and eight read/write registers (R0
through R7). Each read/write register is 16-bits in size. The arithmetic block
is used to add, subtract, and compare memory-address operands. The
register set includes four general-purpose registers (R0 to R3) and four
special-purpose registers. The special-purpose registers are: the LOOP
control register (R4), the INDEX register (R5), the PAGE register (R6), and the
STACK register (R7). The DMAU generates a RAM address as output. The
DMAU functions completely in parallel with the computational unit, which
helps the C6xx maintain a high computational throughput.



Data Memory Address Unit

 2-12

Figure 2–6. Data Memory Address Unit

R3
R2
R1
R0

R7
R6
R5
R4

Internal
Databus

Arithmetic Block

RAM Address

Internal Program Bus

Register Addressing Mode

STACK
PAGE
INDEX
LOOP

2.3.1 RAM Configuration

The data memory block (RAM) is physically organized into 17-bit parallel
words. Within each word, the extra bit (bit 16) is used as a flag bit or tag for
op-codes in the instruction set. Specifically, the flag bit directs complex branch
conditions associated with certain instructions. The flag bit is also used by the
computational unit for signed or unsigned arithmetic operations (see
Section 2.2.1, Multiplier).

The size of the C6xx RAM block is 640 17-bit locations. Each address provided
by the DMAU causes 17 bits of data to be addressed. These 17 bits are
operated on in different ways, depending on the instructions being executed.
For most instructions, the data is interpreted as 16-bit word format. This means
that bits 0 through 15 are used, and bit 16 is either ignored or designated as
a flag or status bit.



Data Memory Address Unit

2-13MSP50C6xx Architecture

There are two-byte instructions, for example MOVB, which cause the proces-
sor to read or write data in a byte (8-bit) format. (The B appearing at the end
of MOVB designates it as an instruction that uses byte-addressable argu-
ments.) The byte-addressable mode causes the hardware to read/write either
the upper or lower 8 bits of the 16-bit word based on the LSB of the address.
In this case, the address is a byte address, rather than a word address. Bits
0 through 7 within the word are used, so that a single byte is automatically right-
justified within the databus. Bits 8 through 15 may also be accessed as the up-
per byte at that same address.

A third data-addressing mode is the flag data mode, whereby, the instruction
operates on only the single flag bit (bit 16) at a given address. All flag mode
instructions execute in one instruction cycle. The flags can be referenced in
one of two addressing modes: 1) global address, whereby 64 global flags are
located at fixed locations in the first 64 RAM addresses, and 2) flag relative
address, whereby a reference is made relative to the current PAGE (R6). The
relative address supports 64 different flags whose PAGE-offset values are
stored in the PAGE register. The flag mode instructions cannot address
memory in the INDEX-relative modes. See Chapter 4, Assembly Language
Instructions, for more details.

2.3.2 Data Memory Addressing Modes

The DMAU provides a powerful set of addressing modes to enhance the per-
formance and flexibility of the C6xx core processor. The addressing modes for
RAM fall into three categories:

� Direct addressing
� Indirect addressing with post-modification
� Relative addressing

The relative addressing modes appear in three varieties:

� Immediate Short, relative to the PAGE (R6) register.
The effective RAM address is: [*R6 + (a 7 bit direct offset)].

� Relative to the INDEX (R5) register.
The effective RAM address is: [*R5 + (an indexed offset)].

� Long Immediate, relative to the register base.
The effective RAM address is: [*Rx + (a 16 bit direct offset)].

Refer to Chapter 4, Assembly Language Instructions, for a full description of
how these modes are used in conjunction with various instructions.



Program Counter Unit

 2-14

2.4 Program Counter Unit

The program counter unit provides addressing for program memory (onboard
ROM). It includes a 16-bit arithmetic block for incrementing and loading
addresses. It also consists of the program counter (PC), the data pointer (DP),
a buffer register, a code protection write-only register, and a hardware loop
counter (for strings and repeated-instruction loops). The program counter unit
generates a ROM address as output.

The program counter value, PC, is automatically saved to the stack on various
CALL instructions and interrupt service branches. The stack consists of one
hardware-level register (TOS) which points to the top-of-stack. The TOS is
followed by a software stack. The software stack resides in RAM and is
addressed using the STACK register (R7) in indirect mode (see Section 2.3,
Data Memory Address Unit).

The hardware loop counter controls the execution of repeated instructions
using one of two modes: 1) consecutive iterations of a single instruction
following the repeat (RPT) instruction, or 2) a single instruction which operates
on a string of data values (string loops). For all types of repeated execution,
interrupt service branches are automatically disabled (temporarily).

The data pointer (DP) register is loaded at two instances: 1) from the
accumulator during lookup-table instructions, and 2) from the databus during
the fetch of long string constants. To simplify algorithms which require
sequential indices to lookup tables, the DP register may be stored in RAM.

2.5 Bit Logic Unit

The bit logic unit is a 1-bit unit which operates on flag bit data. It is controllable
by eleven different instructions, which generate the decision flags for
conditional program control. The results of operations performed by the bit
logic unit are sent either to the flag bit of RAM memory or to the TF1 and TF2
bits of the status register (STAT).



Memory Organization: RAM and ROM

2-15MSP50C6xx Architecture

2.6 Memory Organization: RAM and ROM

Data memory (RAM) and program memory (ROM) are each restricted to
internal blocks on the C6xx. The program memory is read-only and limited to
32K, 17-bit words. The lower 2048 of these words is reserved for an internal
test code and is not available to the user. The data memory is static RAM and
is limited to 640, 17-bit words. 16 bits of the 17-bit RAM are used for the data
value, while the extra bit is used as a status flag.

The C6xx does not have the capability to execute instructions directly from
external memory. However, additional program memory (external ROM) can
be accessed using the general-purpose I/O. The interface for external ROM
must be configured in the software.

2.6.1 Memory Map

The memory map for the C6xx is shown in Figure 2–7. Refer to Section 2.6.3,
Interrupt Vectors, for more detailed information regarding the interrupt vectors,
and to Section 2.6.2, Peripheral Communications (Ports), for more information
on the I/O communications ports.



Memory Organization: RAM and ROM

 2-16

Figure 2–7. C6xx Memory Map (not drawn to scale)

0x00

Program Memory

0x0000 Internal Test Code
2048 x 17 bit

0x07FF
0x0800

0x7F00

0x7FF0

0x7FF7

(reserved)

User ROM
30704 x 17 bit

(C6xx : read-only)
(P614 : EPROM)

Usable Interrupt
Vectors

8 x 17 bit

Macro Call Vectors
255 x 17 bit

(overlaps interrupt
vector locations)

0x0000
RAM

640 x 17 bit

Data Memory

0x027F

Peripheral Ports

PA0–7 data

0x04 PA0–7 ctrl

0x08 PB0–7 data

0x0C PB0–7 ctrl

0x10 PC0–7 data

0x14 PC0–7 ctrl

0x18 PD0–7 data

0x1C PD0–7 ctrl

0x20 PE0–7 data

0x24 PE0–7 ctrl

0x28 PF0–7 data

0x2C PG0–15 data

0x30 DAC data

0x34 DAC ctrl

0x38 IntGenCtrl

0x39 IFR

0x3A PRD1

0x3B TIM1

0x3D ClkSpdCtrl

0x3E PRD2

0x3F TIM2

0x2F RTRIM

Unusable Interrupt
Vectors

(reserved)

RESET vector

0x7FF8

0x7FFE
0x7FFF

Shaded boxes highlight dedicated ROM and control registers.

2.6.2 Peripheral Communications (Ports)

Peripheral functions in the C6xx are controlled using one or more of the I/O
address-mapped communications ports. Table 2–2 describes the ports.

The width of each mapped location, shown in width of location, is independent
of the address spacing. In other words, some registers are smaller in width
than the spacing between neighboring addresses. The few unused bits appear
to the right of the LSB values within the DAC Data register, address 0x30 (refer
to Section 3.2.2, DAC Control and Data Registers).



Memory Organization: RAM and ROM

2-17MSP50C6xx Architecture

When writing to any of the locations in the I/O address map, therefore, the
bit-masking need only extend as far as width of location. Within a 16-bit
accumulator, the desired bits (width of location) should be right-justified. The
write operation is accomplished using the OUT instruction, with the address
of the I/O port as an argument.

A read from these locations is accomplished using the IN instruction, with the
address of the I/O port as an argument. When reading from the I/O port to a
16-bit accumulator, the IN instruction automatically clears any extra bits in
excess of width of location. The desired bits in the result will be right-justified
within the accumulator.

Allowable access indicates whether the port is bidirectional, read-only, or
write-only. The last column of the table points to the section in this manual
where the functions of each bit have been defined in more detail.

Table 2–2. Summary of MSP50C614’s Peripheral Communications Ports

I/O Map
Address

Width of
Location

Allowable
Access

Control Register
Name Abbreviation

State after
RESET LOW

Section for
Reference

0x00 8 bits Read & Write I/O port A data PA0..7 Data unknown†

0x04 8 bits Read & Write I/O port A control PA0..7 Ctrl 0x00 ‡

0x08 8 bits Read & Write I/O port B data PB0..7 Data unknown

0x0C 8 bits Read & Write I/O port B control PB0..7 Ctrl 0x00

0x10 8 bits Read & Write I/O port C data PC0..7 Data unknown 3.1.1

0x14 8 bits Read & Write I/O port C control PC0..7 Ctrl 0x00

0x18 8 bits Read & Write I/O port D data PD0..7 Data unknown

0x1C 8 bits Read & Write I/O port D control PD0..7 Ctrl 0x00

0x20 8 bits Read & Write I/O port E data PE0..7 Data unknown

0x24 8 bits Read & Write I/O port E control PE0..7 Ctrl 0x00

0x28 8 bits Read Only Input port F data PF0..7 Data unknown 3.1.2

0x2C 16 bits Read & Write Output port G data PG0..15 Data 0x0000 3.1.3

0x2F 17 bits Read Only RTO oscillator trim
adjustment RTRIM 0x0000 2.8.4

0x30 16 bits Write Only DAC data DAC Data 0x0000 3.2.2

0x34 4 bits Read & Write DAC control DAC Ctrl 0x0 3.2.2

0x38 16 bits Read & Write Interrupt/general Ctrl IntGenCtrl 0x0000 3.4

† Input states are provided by the external hardware.
‡ A control register value of 0x00 yields a port configuration of all inputs.



Memory Organization: RAM and ROM

 2-18

Table 2–2.  Summary of C614’s Peripheral Communications Ports (Continued)

I/O Map
Address

Width of
Location

Allowable
Access Control Register Name Abbreviation

State after
RESET LOW

Section for
Reference

0x39 8 bits Read & Write Interrupt flag IFR Same state as
before RESET 2.7

0x3A 16 bits Read & Write TIMER1 period PRD1 0x0000
2 8

0x3B 16 bits Read & Write TIMER1 count-down TIM1 0x0000
2.8

0x3D 16 bits Write Only Clock speed control ClkSpdCtrl 0x0000 2.9.3

0x3E 16 bits Read & Write TIMER2 period PRD2 0x0000
2 8

0x3F 16 bits Read & Write TIMER2 count-down TIM2 0x0000
2.8

2.6.3 Interrupt Vectors

When its event has triggered and its service has been enabled, an interrupt
causes the program counter to branch to a specific location. The destination
location is stored (programmed) in the interrupt vector, which resides in an up-
per address of ROM. The following table lists the ROM address associated
with each interrupt vector:

Interrupt Name ROM address of
Vector

Event Source Interrupt Priority

INT0 0x7FF0 DAC Timer Highest

INT1 0x7FF1 TIMER1 2nd

INT2 0x7FF2 TIMER2 3rd

INT3 0x7FF3 port D2 4th

INT4 0x7FF4 port D3 5th

INT5 0x7FF5 all port F 6th

INT6 0x7FF6 port D4 7th

INT7 0x7FF7 port D5 Lowest

0x7FFE storage for ROM Protection Word

RESET 0x7FFF storage for initialization vector

Note: ROM Locations that Hold Interrupt Vectors

ROM locations that hold interrupt vectors are reserved specifically for this
purpose. Additional ROM locations 0x7FF8 - 0x7FFD are reserved for future
expansion. Like the interrupt vectors, they should not be used for general
program storage.



Memory Organization: RAM and ROM

2-19MSP50C6xx Architecture

The branch to the program location that is specified in the interrupt vector is,
of course, contingent on the occurrence of the trigger event. Refer to Section
3.1.5, Internal and External Interrupts, for more information regarding the
specific conditions for each interrupt-trigger event. The branch operation,
however, is also contingent on whether the interrupt service has been enabled.
This is done individually for each interrupt, using the interrupt mask bits within
the interrupt/general control register. Refer to Section 2.7, Interrupt Logic, for
more details.

The ROM location 0x7FFF holds the program destination associated with the
hardware RESET event (branch happens after RESET LOW-to-HIGH). The
location 0x7FFE holds the read/write block-protection word. Refer to Sec-
tion 2.6.4, ROM Code Security, for an explanation of the ROM security
scheme.

2.6.4 ROM Code Security

The C6xx provides a mechanism for protecting its internal ROM code from
third-party pirating. The protection scheme is composed of two levels, both of
which prevent the ROM contents from being read. Protection may be applied
to the entire program memory, or it can be applied to a block of memory
beginning at address 0x0000 and ending at an arbitrary address. The two
levels of ROM protection are designated as follows:

� Direct read and write protection, via the ROM scan circuit.

� Indirect read protection, which prohibits the execution of memory-lookup
instructions.

For the purposes of direct security, the ROM is divided into two blocks. The first
block begins at location 0x0000, and ends, inclusively, at location
(m × 512 – 1), where m is some integer. Each address specifies a 17-bit word
location. The second block begins at location (m × 512), and ends, inclusively,
at 0x7FFF (the end of the ROM). The first block is protected from reads and
writes by programming a block protection bit, and the second block is
protected from reads and writes by programming a global protection bit.

The two-block system is designed in such a way that a secondary developer
is prevented from changing the partition address between blocks. Once the
block protection has been engaged, then the only security option available to
the secondary developer is engaging the global protection.



Memory Organization: RAM and ROM

 2-20

Note: Instructions with References

Care must be taken when employing instructions that have either long string
constant references or look-up table references. These instructions will
execute properly only if the address of the instruction and the address of the
data reference are within the same block.

The protection modes are implemented on the C6xx as follows. Within the
ROM is a dedicated storage for the block protection word (address 0x7FFE).
The block protection word is divided into two 6-bit fields and two single-bit
fields. The remainder of the 17-bit word is broken into three single-bit fields
which are reserved for future use.

Block Protection Word

address 0x7FFE (17-bit wide location)

WRITE only 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 R R TM TM TM TM TM TM GP BP R FM FM FM FM FM   FM

05 04 03 02 01 00 05 04 03 02 01 00

TM : True Protection Marker (NTM) GP : Global Protection (0 value protects)

FM : False Protection Marker (NFM) BP : Block Protection (0 value protects)

R : Reserved for future use (must be 1)    1 : Default value of cells on erasure

The two 6-bit fields are designated as the true protection marker, (TM5 through
TM0) and the false protection marker, (FM5 through FM0). When setting up
a partition for partial ROM protection, the address of the partition must be spe-
cified as:



Memory Organization: RAM and ROM

2-21MSP50C6xx Architecture

[(NTM + 1) * 512 – 1] = highest ROM address within the block to be
protected

(NTM + 1) * 512 = lowest ROM address which is left unprotected
          NTM = the value programmed at TM5…TM0 (true

 protection marker)
         NFM ≡ the binary complement of NTM
         NFM = the value programmed at FM5…FM0 (false

protection marker)

The purpose of the true and false protection markers is to provide parity. An
erased P614 EPROM cell defaults to the value 1. Once programmed from 1
to 0, it cannot be programmed back to 1, unless the cell (and all other cells
along with it) are subject to erasure. A multi-pass programming, therefore, can
only lower the value stored at an EPROM address and never raise it. Once a
valid block-partition address has been properly specified in both TM and FM,
it is impossible to change TM to another address and still maintain parity with
FM.

Note: Block Protection Mode 

When applying the block protection mode, bits FM5 through FM0 must be
programmed as the logical inverse of bits TM5 through TM0, respectively.

Across the span of the 32k word ROM space, there are 64 possible values for
NTM (including zero). Hence, the 6-bit-wide locations for TM and FM.

The two single-bit fields found within the block protection word are the block
protection bit (BP) and the global protection bit (GP). If BP and GP are both
SET (erased), then no protection is applied to the ROM.

If BP is CLEAR and GP is SET, then the block protection mode is engaged.
This means that read and write access is prevented at locations 0x0000
through [(NTM + 1) × 512 – 1]. Read and write access is permitted at locations
[(NTM + 1) × 512] through 0x7FFF.

If GP is CLEAR, then the global protection mode is engaged. This prevents
read and write access to all addresses of the ROM, regardless of the value of
BP.

Note: Block Protection Word

The remaining bits in the block protection word are reserved for future use,
but must remain set in order to ensure future compatibility. These bits are
numbers 6, 15, and 16.



Interrupt Logic

 2-22

When the device is powered up, the hardware initialization circuit reads the
value stored in the block protection word. The value is then loaded to an inter-
nal register and the security state of the ROM is identified. Until this occurs,
execution of any instructions is suspended.

The same initialization sequence is executed before entry into the special
test-modes available on the P614 and C6xx (EPROM mode, emulation mode,
and trace mode). This insures that the protection scheme is always in force
when running the processor in one of these modes. A dedicated circuit
ensures that a switch between emulation mode and trace mode cannot occur
without going through the initialization (security check). This forces all look-up
tables and long constant references to originate from an external program
source, when in emulation mode. It is possible to switch from trace mode to
emulation mode by lowering VPP, but this transition, by design, does not
jeopardize code security.

2.6.5 Macro Call Vectors

Macro call vectors are similar to CALL instructions except they take an 8-bit
address. The upper 8 bits is always 7Fh. See Section 4.14.84, VCALL, for
more information on the VCALL instruction.

2.7 Interrupt Logic

An eight-level interrupt system is included as part of the C6xx’s core processor.
The initialization and control of these interrupts is governed by the following
components: the global interrupt enable, the interrupt flag register, the
interrupt mask register, and the interrupt service branch. Each of these is
described below.

Interrupts must be globally enabled using the INTE instruction, and they are
globally disabled using the INTD instruction. INTE sets the global interrupt
enable bit, and INTD clears the global interrupt enable bit. The state of this bit
specifically determines whether any interrupt service branches will be taken.
The global interrupt enable appears as bit 4 within the status register (STAT).

Note:

To ensure proper executions of the INTD instruction, it is recommended that
the INTD instruction be prescaled with a RPT 2–2 instruction.

Each interrupt level waits for the conditions of its trigger event (refer to
Figure 2–8). At the time that a trigger event occurs, the respective bit is



Interrupt Logic

2-23MSP50C6xx Architecture

automatically SET in the interrupt flag register (IFR). The IFR is an 8-bit wide
port-addressed register; wherein, each interrupt level is represented. A set bit
in the IFR indicates that the interrupt is pending and waiting to be serviced. A
clear bit indicates that the interrupt is not currently pending. The address of the
IFR is 0x39. After a RESET low, the IFR is left in the same state it was before
the RESET low, assuming there is no interruption in power. For a full
description of the interrupt-trigger events, refer to Section 3.1.5, Internal and
External Interrupts.

(8-bit wide location)

07 06 05 04 03 02 01 00 ← INT number

IFR
Interrupt Flag register
address 0x39

D5 D4 PF D3 D2 T2 T1    DA
low high
priority      priority

D5 : port D5 falling-edge† PF : any port F falling-edge

D4 : port D4 rising-edge† T2 : TIMER2 underflow

D3 : port D3 falling-edge T1 : TIMER1 underflow

D2 : port D2 rising-edge DA : DAC timer underflow

   1 : A bit value 1 indicates pending interrupt waiting to be serviced.

RESET: The IFR is left in the same state it was before RESET low, assuming no interruption in power.

† INT6 and INT7 may be associated instead with the Comparator function, if the Comparator Enable bit has been set. Refer to
Section 3.3, Comparator, for details.

Individual interrupts are enabled or disabled for service by setting or clearing
the respective bit in the interrupt mask register (IMR, 8 bits). If an interrupt level
has its bit cleared in the IMR, then the interrupt service associated with that
interrupt is disabled. Setting the bit in the IMR allows service to occur (pending
the trigger-event which is registered in the IFR).

The IMR is accessible as part of another (larger) register, namely, the
interrupt/general control register (peripheral port 0x38). After a RESET LOW,
the default value of each bit in the IMR is zero: no interrupt service enabled.
A full description of the bit locations in the interrupt/general control register can
be found in Section 3.4, Interrupt/General Control Register.

The IMR functions independently of the IFR, in the sense that interrupt-trigger
events can be registered in the IFR, even if the respective IMR bit is clear. Both
the IFR and IMR are readable and writeable as port addressed registers. To
read the register, use the IN instruction in conjunction with the port address
(0x38 or 0x39). Use the OUT instruction to write. (Refer to Section 2.6.2,
Peripheral Communications (Ports), for more information.)



Interrupt Logic

 2-24

Note: Setting a Bit in the IFR Using the OUT Instruction

Setting a bit within the IFR using the OUT instruction is a valid way of obtain-
ing a software interrupt. An IFR bit may also be cleared, using OUT, at any
time.

Assuming the global interrupt enable is set and the specific bit within the IMR
is set, then, at the time of the interrupt-trigger event, an interrupt service
branch is initiated. (The trigger event is marked by a 0-to-1 transition in the IFR
bit). At that time, the core processor searches all interrupt levels which have
both: 1) pending interrupt flag, and 2) interrupt service enabled. The highest
priority interrupt among these is selected. The program then branches to the
location which is stored in the associated Interrupt Vector (Section 2.6.3, Inter-
rupt Vectors). This location constitutes the start of the interrupt service routine.
Instructions in the interrupt service routine are executed until the IRET (return)
instruction is encountered. Afterwards, any other pending interrupts will be
similarly serviced, in the order of their priority. Eventually, the program returns
to whatever point it was before the first interrupt service branch.

When an interrupt service branch is taken, the global interrupt enable is
automatically cleared by the core processor. This disables all further interrupt
service branches while still in the pending service routine. As a result, the
programmer must re-enable the interrupts globally using the INTE instruction.
If performed as the second-to-last instruction in the service routine, then no
nesting of multiple interrupts will occur. If, on the other hand, a nesting of
certain interrupts is desired, then the INTE instruction may be included as the
first instruction (or anywhere else) within the service routine.

When an interrupt service branch is taken, the processor core also clears
another status, namely, the respective bit in the IFR. This action automatically
communicates to the IFR that the current pending interrupt is now being
serviced. Once cleared, the IFR bit is ready to receive another SET whenever
the next trigger event occurs for that interrupt.

Note: Interrupt Service Branch

If the interrupt service branch is not enabled by the respective bit in the mask
register, then neither the global interrupt enable nor the respective flag bit is
cleared. No program vectoring occurs.



Interrupt Logic

2-25MSP50C6xx Architecture

Figure 2–8 provides an overview of the interrupt control sequence. INT0 is the
highest priority interrupt, and INT7 is the lowest priority interrupt.

Figure 2–8. Interrupt Initialization Sequence

INTD
instruction

CLEAR

INTE
instruction

SET

Global Interrupt Enable

CLEAR

• Internal Timer Underflow
• External Input Falling-Edge
• External Input Rising-Edge

• Software Write Instruction†

Interrupt-Trigger Event

SET BIT

INT Flag bits (IFR)
Associated With the Interrupt-Trigger Event

Interrupt Flag Register (0x39)

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

CLEAR BIT

INT Mask bits (IMR)
Specific Enable for Interrupt Service

Interrupt / General Control Register (0x38)†

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

Interrupt Service Branch

Highest Priority INT is Selected From
Among Those Flagged and Enabled.

Program Branches to Location
Stored in Interrupt Vector.

Interrupt
Service
Routine
(1 of 8)

Interrupt Vector Storage

INTE
IRET

0x7FF0 0x7FF2 0x7FF4 0x7FF6
0x7FF1 0x7FF3 0x7FF5 0x7FF7

† The port-addressed write instruction (OUT) can be used to SET or CLEAR bits in the IFR and IMR.



Clock Control

 2-26

In addition to being individually enabled, all interrupts must be GLOBALLY
enabled before any one can be serviced. Whenever interrupts are globally
disabled, the interrupt flag register may still receive updates on pending trigger
events. Those trigger events, however, are not serviced until the next INTE
instruction is encountered.

After an interrupt service branch, it is the responsibility of the programmer to
re-SET the global interrupt enable, using the INTE instruction.

2.8 Clock Control

2.8.1 Oscillator Options

The C6xx has two oscillator options available. Either option may be enabled
using the appropriate control bits in the clock speed control register
(ClkSpdCtrl). The ClkSpdCtrl is described in Section 2.9.3, Clock Speed Con-
trol Register.

The first oscillator option, called the resistor-trimmed oscillator (RTO), is useful
in low-cost applications where accuracy is less critical. This option utilizes a
single external resistor to reference and stabilize the frequency of an internal
oscillator. The oscillator is designed to run nominally at 32 kHz. It has a low VDD
coefficient and a low temperature coefficient (refer to the data sheet). The
reference resistor is mounted externally across pins OSCIN and OSCOUT. The
RTO oscillator is insensitive to variations in the lead capacitance at these pins.
The required value of the reference resistor is 470 kΩ (1%).

The second oscillator option, CRO for crystal referenced, is a real time clock
utilizing a 32.768 kHz crystal. The crystal is mounted externally across pins
OSCIN and OSCOUT.

2.8.2 PLL Performance

A software controlled PLL multiplies the reference frequency (generated from
either RTO or CRO) by integer multiples. This higher frequency drives the
master clock which, in turn, drives the CPU clock. The master clock (MC)
drives the circuitry in the periphery sections of the C6xx. The CPU Clock drives
the core processor; its rate determines the overall processor speed. The multi-
plier in the PLL circuit, therefore, allows the master clock and the CPU clock
to be adjusted between their minimum and maximum values.

For either oscillator option, the reference frequency (32.768 kHz) is multiplied
by four before it is accessed by the PLL circuit. The base frequency for the PLL,



Clock Control

2-27MSP50C6xx Architecture

therefore, is 131.07 kHz, and the multiplier operates in increments of this base
frequency. The minimum multiplication of the base frequency is 1, and the
maximum multiplication is 256. The resulting master clock frequency, there-
fore, can be varied from a minimum of 131.07 kHz to a maximum of 
33.554 MHz, in 131.07 kHz steps.

From the master clock to the CPU clock, there is a divide-by-two in frequency.
The CPU clock, therefore, can be set to run between 65.536 kHz and the maxi-
mum achievable (refer to the data sheet), in 65.536 kHz steps.

The maximum required CPU clock frequency for the C6xx is 8 MHz over the
entire VDD range. This rate applies to the speed of the core processor. Higher
CPU clock frequencies may be achieved, but these are not qualified over the
complete range of supply voltages in the guaranteed specification.

Figure 2–9. PLL Performance

Oscillator Reference
32 kHz

RTO CRO

Selection Made in ClkSpdCtrl

crystal
referenced

Resistor
Trimmed or

PLL
Phase-Locked-Loop circuit

Multiplier Adjusted in ClkSpdCtrl
x 1 ... x 256

x4

Timer Source Option
Selected in IntGenCtrl

1
0

TIMER2

1
0

TIMER2

÷2

MC
Master Clock : Runs Periphery

131.07 kHz ... 33.554 MHz

÷2

CPU Clock
Core-Processor Speed

65.536 kHz ... FMAX

(FMAX = 8 MHz)



Clock Control

 2-28

2.8.3 Clock Speed Control Register

The ClkSpdCtrl is a 16-bit memory mapped register located at address 0x3D.
The reference oscillator (RTO or CRO) is selected by setting one of the two
control bits located at bits 8 and 9. Setting bit 8 configures the C6xx for the RTO
reference option and simultaneously starts that oscillator. Setting bit 9
configures the C6xx for the CRO reference option and simultaneously pulses
the crystal, which starts that oscillator.

Note: ClkSpdCtrl Bits 8 and 9

When bit 8 is set in the ClkSpdCtrl register, the crystal oscillator bit (bit 9) be-
comes the least significant bit of the 6-bit resistor trim value. Thus, bits 15–11
and 9 make up the 6-bit resistor trim value. For example, if the ClkSpdCtrl
register is 00010X11XXXXXXXX (X means don’t care, bold numbers are re-
sistor trim bits), then the resistor trim value is equal to five.

The default value of the ClkSpdCtrl is 0x0000, which means that neither option
is enabled by default. Immediately after a RESET LOW-to-HIGH, and
regardless of whether a resistor or a crystal is installed across OSCIN/
OSCOUT, the C6xx does not have a reference oscillator running. In the
absence of a reference, however, the PLL still oscillates; it bottoms-out at a
minimum frequency. The master clock, in turn, runs at a very slow frequency
(less than 100 kHz) in the absence of a reference oscillator. Under this
condition, program execution is supported at a slow rate until one of the two
references (RTO or CRO) is enabled in software. (Refer to the data sheets for
the MSP50Cxx devices).

Once a reference oscillator has been enabled, the speed of the master clock
(MC) can be set and adjusted, as desired. Bits 7 through 0 in the ClkSpdCtrl
constitute the PLL multiplier (PLLM). The value written to the PLLM controls
the effective scaling of the MC, relative to the 131.07 kHz base frequency. A
0 value in PLLM yields the minimum multiplication of 1, and a 255 value in
PLLM yields the maximum multiplication of 256. The resulting MC frequency,
therefore, is controlled as follows:

MC Master clock frequency kHz = (PLLM register value + 1) × 131.07 kHz

CPU Clock frequency kHz = (PLLM register value + 1) × 65.536 kHz



Clock Control

2-29MSP50C6xx Architecture

The configuration of bits in the clock speed control register appears below:

ClkSpdCtrl register

address 0x3D (16-bit wide location)

WRITE only 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

T5 T4 T3 T2 T1  I  C or T0 R M M M M M M M M

 T : RTO oscillator-Trim adjust          R : enable Resistor-trimmed oscillator

  I : Idle State clock Control         M : PLLM multiplier bits for MC

C : enable Crystal oscillator
     (or T0 if R is set

0x0000 : default state after RESET LOW

Bit 10 in the ClkSpdCtrl is idle state clock control. The level of deep-sleep
generated by the IDLE instruction is partially controlled by this bit. When this
bit is cleared (default setting), the CPU clock is stopped during the sleep, but
the MC remains running. When the idle state clock control bit is set, both the
CPU clock and the MC are stopped during sleep. Refer to section 2.11 for more
information regarding the C6xx’s reduced-power modes.

Note: Reference Oscillator Stopped by Programmed Disable

If the reference oscillator is stopped by a programmed disable, then, on re-
enable, the oscillator requires some time to restart and resume its correct fre-
quency. This time imposes a delay on the core processor resuming full-
speed operation. The time-delay required for the CRO to start is GREATER
than the time-delay required for the RTO to start.

2.8.4 RTO Oscillator Trim Adjustment

Bits 15 through 11 and bit 9 (6 bits total) in the ClkSpdCtrl effect a software
control for the RTO oscillator frequency. The purpose of this control is to trim
the RTO to its rated (32 kHz) specification. The correct trim value varies from
device to device. The user must program bits 15 through 11 and 9, in order to
achieve the 32-kHz specification within the rated tolerances. Texas
Instruments provides the trim value to the programmer of the P614 part with
a sticker on the body of the chip. For the C6xx parts, the correct trim value is
located at I/O location 0x2Fh.



Clock Control

 2-30

RTRIM Register (Read Only) (Applies to MSP50C6xx Device Only)

I/O Address 0x2Fh (17-bit wide location)

16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 R R R R R R R R R R R T5 T4 T3 T2 T1 T0

T: RTO oscillator-trim storage (device specific)

R: reserved for Texas Instruments use

ClkSpdCtrl Value Copied (Shaded)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5 T4 T3 T2 T1 I T0 1 M7 M6 M5 M4 M3 M2 M1 M0

When selecting and enabling the RTO oscillator,therefore, the bits at positions
05 through 01 should be read from I/O location 0x2F (MSP50C6xx device
only), then copied to the ClkSpdCtrl trim adjust (bits 15 through 11 of control
register 0x3D), and bit 0 of 0x2F I/O port should be copied to bit 9 of ClkSpdCtrl
register. The bit ordering is the same; bit 04 of I/O 0x2F copies to bit 15 of
register 0x3D. Likewise, bit 00 of I/O 0x2F copies to bit 9 of register 0x3D.

However, the general specification of the adjustment can be useful in certain
circumstances. For example, the adjustment can be used to obtain a program-
matic increase or decrease in the speed of the RTO reference. The default val-
ue for the adjustment, after RESET low, is all zeros. The zero value generates
the slowest programmable rate for the RTO reference. The maximum value,
0x3F, generates the fastest programmable rate for the RTO reference. The full
range from 0x00 to 0x3F, effects an approximate +62% change (based on the
RTO resistor value specification).

On the P614 part, the above method does not cause in the correct trim value
to be loaded in ClkSpdCtrl. MSP50P614 is an EPROM device. Any
preprogrammed value is erased when the chip goes through a UV erase
procedure. The RTO trim value must, therefore, be computed separately for
each chip. RTO trim values differ from one chip to another, is identical for the
same chip.

Note: Register Trim Value

A resistor trim value is only needed when the resistor trimmed oscillator
(RTO) is used. The MSP50P614 device must determine the trim value sepa-
rately and use this value in the ClkSpdCtrl register bits 15–11 and 9, but C6xx
device needs to copy bit 0 of I/O location 0x2F to bit 9 of the ClkSpdCtrl regis-
ter and bits 5 through 1 to bits 15 through 11 of ClkSpdCtrl register.



Timer Registers

2-31MSP50C6xx Architecture

This software-controlled trim for the RTO is not a replacement for the external
reference-resistor mounted at pins OSCIN and OSCOUT. Also, note that this
adjustment has no effect on the rate of the CRO reference oscillator.

2.9 Timer Registers

The C6xx contains two identical timers, TIMER1 and TIMER2. Each includes
a period register and a count-down register. The period register (PRD1 or
PRD2) defines the initial value for the counter, and the count-down register
(TIM1 or TIM2) does the counting. When the count-down register decrements
to the value 0x0000, then the value currently stored in the period register is
loaded to the count-down register. The count-down register then resumes
counting again from that value.

For each TIMER, there is an interrupt-trigger event associated with the
TIMER’s underflow condition (the point of reaching 0x0000 and then re-setting
again). When enabled, the interrupt INT1 is triggered by the underflow of
TIMER1, and the interrupt INT2 is triggered by the underflow of TIMER2. INT1
and INT2 are the second and third-highest priority interrupts in the C6xx. Refer
to Section 2.7, Interrupt Logic, for a summary of the interrupt logic, and to
Section 2.6.3, Interrupt Vectors, for a listing of the interrupt vectors.

Both the period and the count-down registers are readable and writeable as
port-addressed registers:

(16-bit wide location)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PRD1 register†

address 0x3A
P P P P P P P P P P P P P P P P
TIMER1 Period

TIM1 register†

address 0x3B
T T T T T T T T T T T T T T T T
TIMER1 Count-Down     Triggers INT1 on underflow

PRD2 register
address 0x3E

P P P P P P P P P P P P P P P P
TIMER2 Period

TIM2 register
address 0x3F

T T T T T T T T T T T T T T T T
TIMER2 Count-Down     Triggers INT2 on underflow

P : period register (initial counter value)

T : count-down register (counts from the value in P)

0x0000 : default state of both registers after RESET LOW

† TIMER1 may be associated with the comparator function, if the comparator enable bit is set. Refer to Section 3.3, Comparator,
for details.



Timer Registers

 2-32

Reading from either the PRD or the TIM returns the current state of the register.
This can be used to monitor the progress of the TIM register at any time.

Writing to the PRD register does not change the TIM register until the TIM
register has finished decrementing to 0x0000. The new value in the PRD
register is then loaded to the TIM register, and counting resumes from the new
value.

Note: Writing to the TIM Register

Writing to the TIM register causes the same value to be written to the PRD
register. In this case, the TIM register is immediately updated, and counting
continues immediately from the new value.

Each TIMER decrements its count-down register at a fixed clock rate. The rate
is selectable between two existing clock sources: the reference oscillator or
1/2 Master Clock. The rate of the master clock (MC) is programmable. It is
determined by the value loaded to the PLL multiplier (Section 2.9.3, Clock
Speed Control Register). The source to the TIMER is therefore one-half the
frequency of the programmed master clock (1/2 MC). If, instead, the reference
oscillator is selected as the source to the TIMER, then the source is either a
resistor-trimmed oscillator (RTO) or a crystal oscillator (CRO). Both reference
oscillators are designed to run at a nominal 32 kHz. Refer to Section 2.9,
Clock Control, for more information regarding the oscillator configuration and
clock programmability.

Selection between the timer-source options is made using two control bits in
the interrupt/general control register (IntGenCtrl). The IntGenCtrl is a 16-bit
port-addressed register at 0x38. Clearing bit 8 selects 1/2 MC as the source
for TIMER1. Setting bit 8 selects the reference oscillator as the source for TIM-
ER1. Similarly, clearing bit 9 of the IntGenCtrl selects 1/2 MC as the source for
TIMER2. Setting bit 9 selects the reference oscillator as the source for TIM-
ER2. The default value after a RESET LOW is zero: select 1/2 MC as the
source.

Each of the TIMERs counts from the value stored in its period register to
0x0000. These maximum and minimum counts each receive a full clock cycle
from the TIMER source. This means that the true period of the TIMER, from
one underflow event to the next, is the value stored in the period register plus
one:

Time duration btwn. underflows = (value in PRD + 1) ÷ (frequency of Timer
Source)

TIMER1 and TIMER2 must be enabled for use. This is done at the IntGenCtrl
register. Bit 10 of the IntGenCtrl is the enable bit for TIMER1, and bit 11 is the



Reduced Power Modes

2-33MSP50C6xx Architecture

enable bit for TIMER2. Setting the enable bit enables the TIMER, i.e., starts
count-down running. Clearing the enable bit disables the TIMER, i.e., stops
the count-down. The default setting after a RESET LOW is zero: both TIMERs
disabled. Refer to Section 3.4, Interrupt/General Control Register, for sum-
mary information regarding the IntGenCtrl.

The TIMER enable bits may be used to start and stop the TIMERs repeatedly
in software. Switching the enable bit from 1 to 0 stops the TIMER, but the
current value in the count-down register is retained. When the enable bit is
subsequently switched from 0 to 1, count-down then resumes from the held
value. The following procedure outlines one (of many) possible ways to start
the TIMERs. TIMER2 is given as an example:

1) Select the TIMER2 clock source: 1/2 MC or RTO/CRO (bit 9 of the Int-
GenCtrl, address 0x38).

2) Clear the TIMER2 enable (bit 11 in the IntGenCtrl).

3) Load the count-down register (TIM2) with the desired period value ahead-
of-time. This prepares TIM2 for counting, and also loads the period regis-
ter (PRD2) with its value.

4) Be sure the TIMER2 interrupt (INT2) has been enabled for service (set bit
2 of IntGenCtrl).

5) Flip the TIMER2 enable bit from 0 to 1, at the precise time you want count-
ing to begin.

2.10 Reduced Power Modes

The power consumption of the C6xx is greatest when the DAC circuitry is
called into operation, i.e., when the synthesizer speaks. There are, however,
a number of reduced power modes (sleep states) on the C6xx which may be
engaged during quiet intervals.

The performance and flexibility of the reduced power modes make the C6xx
ideal for battery powered operation. Refer to data sheets for the MSP50C6xx
devices.

The reduced power state on the C6xx is achieved by a call to the IDLE
instruction. The idle state is released by some interrupt event. Different modes
(or levels) of reduced-power are brought about by controlling a number of
different core and periphery components on the device. These components
are independently enabled/disabled before engaging the IDLE instruction.
The number of subsystems left running during sleep directly impacts the



Reduced Power Modes

 2-34

overall power consumption during that state. The various subsystems that
determine (or are affected by) the depth of sleep include the:

� Processor core, which is driven by the CPU clock
� PLL clock circuitry
� PLL reference oscillator
� C6xx periphery, which is driven by the master clock
� TIMER1 and TIMER2
� PDM pulsing

The deepest sleep achievable on the C6xx, for example, is a mode where all
of the previously listed subsytems are stopped. In this state, the device draws
less than 10 µA of current and obtains the greatest power savings. It may be
awakened from this state using an external interrupt (input port).

A number of control parameters determine which of the internal components
are left running after the IDLE instruction. In most cases, the states of these
controls may be mixed in any combination. There are three combinations,
however, which are primarily useful. The three modes (light, mid, and deep
sleep) are executed through the independent control of two bits: 1) the idle
state clock control, and 2) the reference oscillator enable. The other pertinent
controls simply enhance the performance of the modes dictated by these two.
Table 2–3 gives a listing of all of the controls which should be maintained by
the programmer before engaging the IDLE instruction. In some cases, it will
be impossible to wake from sleep unless certain controls are set appropriately
before going to sleep. (In those cases, only the hardware RESET low-to-high
will bring the device back into its normal operating state.)

The top row in Table 2–3 lists the first of the two primary controls, namely, the
idle state clock control. The idle state clock control determines the status of the
master clock (MC) during sleep. Setting the idle state control causes the CPU
clock, the PLL clock circuitry, and the MC to stop after the next IDLE
instruction. Clearing the idle state control causes only the CPU clock to stop
after IDLE. The PLL clock circuitry governs the MC and determines its rate.
Whenever the PLL circuitry is suspended, therefore, the MC stops. The idle
state clock control is accessed at bit 10 in the ClkSpdCtrl register (refer to
Section 2.8.3, Clock Speed Control Register, for more information).

The reference oscillator enable is the other control which selects between the
three reduced power modes listed in Table 2–3. This control may be one of two
bits, depending on which oscillator reference is implemented in circuitry (refer
to Section 2.8.3, Clock Speed Control Register). When using the
resistor-trimmed oscillator (RTO), the reference oscillator enable appears as
bit 8 in the ClkSpdCtrl register. When using the crystal-referenced oscillator
(CRO), the reference oscillator enable appears as bit 9 in the ClkSpdCtrl
register. If both bits 8 and 9 are clear, then no reference oscillator is enabled.



Reduced Power Modes

2-35MSP50C6xx Architecture

If either of bits 8 or 9 are set, then the reference oscillator enable is considered
set. This enables the PLL circuitry to regulate to the reference frequency, 32
kHz (assuming the idle state clock control is clear). Whichever state the
reference oscillator is in before idle, it remains in that state (running or stopped)
after idle. If the reference oscillator is left running during sleep, however, it
comes at a cost to power consumption. (This may be a necessary cost if, in
your application, elapsed time needs to be monitored during sleep.)

The power consumed during sleep when the RTO oscillator is left running is
greater than the power consumed during sleep when the CRO oscillator is left
running.

If the idle state clock control is clear, then the PLL circuitry, active during sleep,
will attempt to regulate the MC to whatever frequency is programmed in the
PLL multiplier (see Section 2.9.3, Clock Speed Control Register). The MC con-
tinues to run at this frequency, even during sleep, provided that the reference
oscillator is enabled.

If the idle state clock control is set, then neither the MC, CPU clock, nor the
TIMER clocks run during sleep, unless the TIMER source is linked to the
reference oscillator (Section 2.8, Time Registers). These relationships are
shown explicitly, as a function of the reduced power mode, in Table 2–4.

Because the DAC circuitry is the single most source of power consumed on
the C6xx, it is important to disable the DAC entirely before engaging any IDLE
instruction. This is accomplished at the DAC control register, address 0x34.
Refer to Section 3.2.2, DAC Control and Data Registers.

The ARM bit is another important control to consider before engaging the
reduced power mode. It is recommended that the ARM bit be cleared
whenever the idle state clock control is clear, and set whenever the idle state
clock control is set. The set ARM bit causes an asynchronous response to all
programmable interrupts when in the sleep state. (The cleared ARM bit yields
the standard synchronous response at all times.) Affected interrupts include
those tied to TIMER1 and TIMER2, as well as those tied to the inputs at Ports
F, D2, D3, D4, and D5. The advantage to having the ARM bit set is that the
device may be awakened by one of these interrupts, even when the PLL clock
circuitry is stopped in sleep (by virtue of the idle state control). The
disadvantage of the asynchronous response, however, is that it can render
irregularities in the timing of response to these same inputs.



Reduced Power Modes

 2-36

Note: Idle State Clock Control Bit

If the idle state clock control bit is set and the ARM bit is clear, the only event
that can wake the C6xx after an IDLE instruction is a hardware RESET low-
to-high. When at sleep, the device will not respond to the input ports, nor to
the internal timers.

Table 2–3. Programmable Bits Needed to Control Reduced Power Modes

→   deeper sleep … relatively less power  →

Control Bit Label for
Control Bit

LIGHT MID DEEP

Idle state clock control
   bit 10
   ClkSpdCtrl register (0x3D)

A 0 1 1

Enable reference oscillator
   bit 09 : CRO or
   bit 08 : RTO
   ClkSpdCtrl register (0x3D)

B 1 1 0

ARM
   bit 14
   IntGenCtrl register (0x38)

C 0 1 1

Enable PDM pulsing
   bit 02
   DAC Control register (0x34)

D Should be cleared before any IDLE instruction.

IDLE instruction
   (executes the mode)

E Same instruction is used to engage any of the modes.

PLL multiplier
   bits 07 through 00
   ClkSpdCtrl register (0x3D)

F Programmed value is 0 … 255 .



Reduced Power Modes

2-37MSP50C6xx Architecture

Table 2–4. Status of Circuitry When in Reduced Power Modes (Refer to Table 2–3)

→   deeper sleep … relatively less power  →

Component Determined
by Controls

LIGHT MID DEEP

CPU clock
   (processor core)

E stopped stopped stopped

PLL clock circuitry A, E running stopped stopped

Master clock (MC) status
   (C6xx periphery)

A, E running stopped stopped

MC rate B, F 131 kHz … 34 MHz — —

Synchrony of external interrupts C, E Synchronous Asynchronous Asynchronous

PDM pulsing D stopped stopped stopped

TIMER1 or TIMER2 status
  •  Assuming TIMER is enabled
    1) TIMER source = 1/2 MC
    2) TIMER source = RTO or CRO

A, B, E
1) running
2) running

1) stopped
2) running

1) stopped
2) stopped

If the reference oscillator is stopped by a programmed disable or by an IDLE
instruction, then, on re-enable or wake-up, the oscillator requires some time
to restart and resume its correct frequency. This time imposes a delay on the
core processor resuming full-speed operation. The time-delay required for the
CRO to start is greater than the time-delay required for the RTO to start.

There are a number of ways to wake the C6xx from the IDLE-induced sleep
state. The various options are summarized, as a function of the reduced power
mode, in Table 2–5. Naturally, the RESET event (happens after the RESET pin
has gone low-to-high) causes an immediate escape from sleep; whereby, the
program counter assumes the location stored in the RESET interrupt vector.
The RESET escape from sleep is always enabled, regardless of the depth of
sleep or the state of programmable controls.

The more functional methods available for waking the device are: 1) the
Internal TIMER interrupt, and 2) the external input-port interrupt. For either of
these options to work, the respective bit in the interrupt mask register (address
0x38) must be set to enable the associated interrupt service. If the appropriate
IMR bit is not set before the IDLE instruction, then the interrupt-trigger event
will not be capable of waking the device from sleep. Note also the state of the
idle state clock control bit and the ARM bit, if you expect to wake-up using



Reduced Power Modes

 2-38

either type of interrupt (internal or external). In most cases, the state of these
bits should coincide.

The interrupt-trigger event associated with each of the two internal TIMERs is
the underflow condition of the TIMER. In order for a TIMER underflow to occur
during sleep, the TIMER must be left running before going to sleep. In certain
cases, however, the act of going to sleep can bring a TIMER to stop, thereby
preventing a TIMER-induced wake-up. The bottom row of Table 2–4 illustrates
the various conditions under which the TIMER will continue to run after the
IDLE instruction. Note that the reduced power mode DEEP leaves both
TIMERs stopped after IDLE. This mode cannot, therefore, be used for a timed
wake-up sequence.

Table 2–5. How to Wake Up from Reduced Power Modes (Refer to Table 2–3 and
Table 2–4)

→   deeper sleep … relatively less power  →

Event Determined
by Controls

LIGHT MID DEEP

Timer interrupts
  TIMER1 and TIMER2
  •  Assuming respective IMR bit is set
  •  Assuming ARM bit is set as in C

A, B, C If TIMER is running,
then Underflow wakes device.

No wake-up
from TIMER.

External interrupts
  Port F and D2,3,4,5 (if input)
  •  Assuming respective IMR bit is set
  •  Assuming ARM bit is set as in C

C Rising-Edge, or Falling-Edge,
as appropriate, wakes device.

RESET none RESET LOW-to-HIGH always wakes device.

DAC Timer
  •  Assuming PDM bit is clear as in D

D No wake-up from DAC Timer.

The external interrupt is the other programmable option for waking the C6xx
from sleep. The associated interrupt-trigger event is, in some cases, a rising-
edge at the input port; in some cases it is a falling-edge. Refer to Section 3.1.5,
Internal and External Interrupts, for a full description of these events. Consider
also the comparator driven interrupts described in Section 3.3, Comparator.
The input ports which are supported by external interrupt include the entire F
Port, and, when programmed as inputs, Ports D2, D3, D4, and D5. Refer to Sec-
tion 3.1, I/O, for a description of the various I/O configurations.



Reduced Power Modes

2-39MSP50C6xx Architecture

Under normal operation the DAC timer, when IMR enabled, triggers an
interrupt on underflow. Before any IDLE instruction, however, the entire DAC
circuitry should be disabled. This ensures the effectiveness of the reduced
power mode and prevents any wake-up from the DAC timer.

In order to wake the device using a programmable interrupt, the interrupt mask
register must have the respective bit set to enable interrupt service (see Sec-
tion 2.7, Interrupt Logic). In some cases, the ARM bit must also be set, in order
for the interrupts to be visible during sleep.

After the C6xx wakes from sleep, the program counter assumes a specific
location, resuming normal operation of the device. Normally, the destination
of the program on wake-up is the interrupt service routine associated with the
interrupt which initiated the wake-up. The start of the interrupt service routine
is defined by the program location stored in the respective interrupt vector (see
Section 2.6.3, Interrupt Vectors). This wake-up response requires that the
global interrupt enable is set before going to sleep (use the INTE instruction).

If the global interrupt enable is CLEAR before going to sleep, then the
programmed interrupt can still wake the device, provided that the respective
IMR and ARM bits are set as in Table 2–3. The program counter returns to the
location immediately following the IDLE instruction. This wake-up response
may be useful for putting the C6xx into a hold sleep, where any number of
programmable interrupts can wake the device. To accomplish this, the
appropriate interrupts should be enabled in the IMR. Table 2–6 lists the
possible destinations of the program counter on wake-up.

Table 2–6. Destination of Program Counter on Wake-Up Under Various Conditions

State of Interrupt Controls
before IDLE Instruction

Assuming Wake-Up can occur…
Destination of Program Counter after Wake-Up

•  Global interrupt enable is SET
•  Respective IMR bit is SET

Program counter goes to the location stored in the interrupt vector
associated with the waking Interrupt.

•  Global interrupt enable is CLEAR
•  Respective IMR bit is SET

Program counter goes to the next instruction immediately following
the IDLE which initiated sleep.

•  Global interrupt enable is SET
•  Respective IMR bit is CLEAR

Wake-up cannot occur from the programmed Interrupt under these
conditions.

If RESET low-to-high occurs, then program goes to the location
stored in the RESET interrupt vector.



Execution Timing

 2-40

2.11 Execution Timing

For executing program code, the C6xx’s core processor has a three-level
pipeline. The pipeline consists of instruction fetch, instruction decode, and
instruction execution. A single instruction cycle is limited to one program Fetch
plus one data memory read or write. The master clock consists of two phases
with non-overlap protection. A fully static implementation eliminates pre-
charge time on busses or in memory blocks. This design also results in a very
low power dissipation. Figure 2–10 illustrates the basic timing relationship
between the master clock and the execution pipeline.

Figure 2–10. Instruction Execution and Timing

N N+1 N+2 N+3 N+4 N+5 N+6 N+7FETCH

CLOCK

N–1 N N+1 N+2 N+3 N+4 N+5DECODE

N–2 N–1 N N+1 N+2 N+3 N+4 N+5EXEC

N–1 N N+1 N+2 N+3 N+4 N+5DATA ADD

N N+1 N+2 N+3 N+4 N+5 N+6 N+7PC ADD



3-1

Peripheral Functions

This chapter describes in detail the MSP50C6xx peripheral functions, i.e., I/O
control ports, general purpose I/O ports, interrupt control registers, compara-
tor and digital-to-analog (DAC) control mechanisms.

Topic Page

3.1 I/O . . . 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Digital-to-Analog Converter (DAC) 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Comparator 3–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.4 Interrupt/General Control Register 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.5 Hardware Initialization States 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 3



I/O

 3-2

3.1 I/O

This section discusses the I/O capabilities of the MSP50C6xx family. The fol-
lowing table shows the number and types of I/O available on each device.
Please note that this section discusses all I/O ports, which are only available
on the MSP50C614 device. All other devices have only a subset of the I/O that
is available on the MSP50C614.

Device Ports Available No. of General
Purpose I/O

No. of Dedicated
Inputs

No. of Dedicated
Outputs

MSP50C614 A,B,C,D,E,F,G 40 8 16

MSP50C604 C,D 16 0 0

MSP50C605 C,D,E,F 24 8 0

MSP50C601 C,D,E,F 24 8 0

3.1.1 General-Purpose I/O Ports

The forty configurable input/output pins are organized in 5 ports, A,B,C,D, and
E. Each port is one byte wide. The pins within these ports can be individually
programmed as input or output, in any combination. The selection is made by
clearing or setting the appropriate bit in the associated control register (Control
A, B, C, D, or E). Clearing the bit in the control register renders the pin as a
high-impedance input. Setting the control bit renders the pin as a totem-pole-
output.

When configured as an input, the data presented to the input pin can be read
by referring to the appropriate bit in the associated data register (Data A, B,
C, D, or E). This is done using the IN instruction, with the address of the data
register as an argument.

When configured as an output, the data driven by the output pin can be
controlled by setting or clearing the appropriate bit in the associated data
register. This is done using the OUT instruction, with the address of the data
register as an argument.



I/O

3-3Peripheral Functions

Port A Port B Port C Port D Port E

Control register address 0x04h† 0x0Ch 0x14h 0x1Ch 0x24h

Possible control values 0 = High-Z INPUT 1 = TOTEM-POLE OUTPUT

Value after RESET low 0 = High-Z INPUT

Data register address 0x00h 0x08h 0x10h 0x18h 0x20h

Possible input data values Low = 0     High = 1    (don’t care on write)

Possible output data values 0 = Low     1 = High

† Each of these I/O ports is only 8 bits wide. The reason for the 4-byte address spacing is so that
instructions with limited addressability (such as memory transfers) can still access
these registers.

Note: Reading the Data Register

Whether configured as input or as output, reading the data register reads the
actual state of the pin.

The state of the control registers is initialized to 0x00 when the RESET pin is
taken low. This puts all of the programmable I/O pins into an input state. This
condition is maintained after RESET is taken high, and until the control regis-
ters are modified. The state of the data registers is not initialized with RESET.
After RESET is taken high, the state of the data registers is unknown and must
be initialized using software.

The 8-bit width is the true size of the mapped location. This is independent of
the address spacing, which is greater than 8-bits. When writing to any of the
locations in the I/O address map, therefore, the bit-masking need only extend
across 8 bits. Within a 16-bit accumulator, the desired bits should be
right-justified. When reading from these locations to a 16-bit accumulator, the
IN instruction automatically clears the extra bits in excess of 8. The desired bits
in the result will be right-justified within the accumulator.



I/O

 3-4

The following table shows the bit locations of the I/O port mapping:

(8-bit wide location)
07    06   05   04    03   02    01   00

A port data register address 0x00. . . . . A7   A6   A5   A4   A3   A2   A1   A0

A port control register address 0x04. . .  C    C     C     C      C    C     C     C

B port data register address 0x08. . . . . B7   B6   B5   B4   B3   B2   B1   B0

B port control register address 0x0C. . .  C    C     C     C      C    C     C     C

C port data register address 0x10. . . . . C7   C6   C5   C4   C3   C2   C1   C0

C port control register address 0x14. . .  C    C     C     C      C    C     C     C

D port data register address 0x18. . . . . D7   D6   D5   D4   D3   D2   D1   D0

D port control register† address 0x1C. .  C    C     C     C      C    C     C     C

E port data register address 0x20. . . . . E7   E6   E5   E4   E3   E2   E1   E0

E port control register address 0x24. . .  C    C     C     C      C    C     C     C

A7, B7, C7, D7, E7 : data register
C : control register (0 = IN,  1 = OUT)

0x00 : state of control register after RESET low

† Ports D4 and D5 may be dedicated to the Comparator function, if the Comparator Enable bit is
set. If so, then bits 4 and 5 of the D port Control register must be CLEAR. Please refer to Section
3.3, Comparator, for details.

Port D0 is connected to the branch condition COND1. Port D1 is connected to
the branch condition COND2, assuming the comparator is disabled. Please
refer to Section 3.1.4, Branch on D Port, (and to Section 3.3, Comparator) for
more information. External interrupts can be detected when transitions occur
on ports D2, D3, D4, and D5. The interrupts associated with the D port are
supported whether those pins are programmed as inputs or as outputs.

3.1.2 Dedicated Input Port F

Port F is an 8-bit wide input-only port. The data presented to the input pin can
be read by referring to the appropriate bit in the F port data register, address
0x28. This is done using the IN instruction, with the 0x28 address as an
argument. The state of the F port data registers is not initialized with RESET.
After RESET is taken high, the state of the F port data register is unknown.

Each of the pins at port F has a programmable pull-up resistor. All eight pullup
resistors can be enabled by setting the enable pullup (EP) in the interrupt/gen-
eral control register (IntGenCtrl). The address of the IntGenCtrl is 0x38, and
the location of the EP bit is 12. Clearing the EP bit disables the eight pullups,



I/O

3-5Peripheral Functions

and setting the EP bit enables the eight pullups. After RESET low, the default
setting for the EP bit is 0 (F-port pullups disabled).

Input Port F

Data register address 0x28h

Possible input data values Low = 0     High = 1

Possible output data values N/A

Value after RESET low Pullup resistors DISABLED

When reading from the 8-bit F-port data register to a 16-bit accumulator, the
IN instruction automatically clears the extra bits in excess of 8. The desired bits
in the result will be right-justified within the accumulator.

The following table shows the bit locations of the port F address mapping:

F port Input Data register
address 0x28h
READ only

(8-bit wide location)
07  06  05  04  03  02   01   00

F7  F6  F5  F4  F3  F2  F1  F0

The external interrupt INT5 is triggered by a falling-edge event on any of the
eight port-F input pins (see Section 3.1.5, Internal and External Interrupts).
The F port input pins are gated through an eight-input AND gate, such that any
input pin going low causes the output of the AND gate to go low. Therefore,
if any input pin is held low, the device will not trigger INT5 when another input
is taken low. Specifically, INT5 is triggered if all eight port-F pins are held high,
and then one or more of these pins is taken low. This allows port F to be espe-
cially useful as a key-scan interface.

3.1.3 Dedicated Output Port G

Port G is a 16-bit wide output-only port. The output drivers have a Totem-Pole
configuration. The data driven by the output pin can be controlled by setting
or clearing the appropriate bit in the G port data register, address 0x2C. This
is done using the OUT instruction, with the 0x2C address as an argument. The
port G outputs are set to 0 (logic low) when the RESET pin is taken low. This
condition is maintained after RESET is taken high, and until the G port data
register is modified.



I/O

 3-6

Totem-Pole Output Port G

Data register address 0x2Ch

Possible input data values N/A

Possible output data values 0 = Low     1 = High

Value after RESET low 0 = Low

The following table shows the bit locations of the port G address mapping:

G port Data 
address 0x2C
read and write

(16-bit wide location)
15     14     13    12    11     10    09    08   07   06   05   04  03   02   01  00

G15  G14  G13  G12  G11  G10  G9  G8  G7  G6  G5  G4 G3  G2  G1  G0

                            0x0000 : default state of data register after RESET low

3.1.4 Branch on D Port

Instructions exist to branch conditionally depending upon the state of ports D0
and D1. These conditionals are COND1 and COND2, respectively. The condi-
tionals are supported whether the D0 and D1 ports are configured as inputs or
as outputs. The following table lists the four possible logical states for D0 and
D1, along with the software instructions affected by them.

D0 = 1 COND1 = TRUE. . . CIN1
CNIN1

JIN1
JNIN1

has its conditional call taken.
has its conditional call ignored.
has its conditional jump taken.
has its conditional jump ignored.

D0 = 0 COND1 = FALSE. . . CIN1
CNIN1

JIN1
JNIN1

has its conditional call ignored.
has its conditional call taken.
has its conditional jump ignored.
has its conditional jump taken.

† D1 = 1 COND2 = TRUE. . . CIN2
CNIN2

JIN2
JNIN2

has its conditional call taken.
has its conditional call ignored.
has its conditional jump taken.
has its conditional jump ignored.

† D1 = 0 COND2 = FALSE. . . CIN2
CNIN2

JIN2
JNIN2

has its conditional call ignored.
has its conditional call taken.
has its conditional jump ignored.
has its conditional jump taken.

† COND2 may be associated instead with the comparator function, if the comparator Enable bit
is set. Please refer to Section 3.3, Comparator, for details.



I/O

3-7Peripheral Functions

3.1.5 Internal and External Interrupts

INT3, INT4, INT6, and INT7 are external interrupts which may be triggered by
events on the PD2, PD3, PD4, and PD5 pins. These interrupts are supported
whether the D-port pins are programmed as inputs or outputs. (When
programmed as an output, the pin effectively triggers a software interrupt.)

INT5 is an external interrupt triggered by a falling-edge event on any of the
F-port inputs. It is triggered if all eight port-F pins are held high, and then one
or more of these pins is taken low.

Only the transition from 0xFFh (all high) to (one or more pins) low will trigger
the INT5 event. If any F-port pin is continuously held low and another is toggled
high-to-low, no interrupt is detected at the toggling pin. After all F-port pins
have been brought high again, then it is possible for a new INT5 trigger to
occur.

INT0 is an internal interrupt (highest priority) which is triggered by an underflow
condition on the DAC Timer (see Section 3.2.2, DAC Control and Data
Registers). INT1 and INT2 are high-priority, internal interrupts triggered by the
underflow conditions on TIMER1 and TIMER2, respectively. Please refer to
Section 2.8, Timer Registers, for a full description of the TIMER controls and
their underflow conditions.

When properly enabled, any of these interrupts may be used to wake the de-
vice up from a reduced-power state. In a deep-sleep state, they can also be
used to wake the device when used in conjunction with the ARM bit. Please
refer to Section 2.11, Reduced Power Modes, for information regarding the
MSP50C6xx’s reduced power modes.



I/O

 3-8

A summary of the interrupts is given in Table 3–1.

Table 3–1. Interrupts

Interrupt Vector Source Trigger Event Priority Comment

INT0 0x7FF0 DAC Timer Timer underflow Highest Used to synch. speech data

INT1 0x7FF1 TIMER1 Timer underflow 2nd

INT2 0x7FF2 TIMER2 Timer underflow 3rd

INT3 0x7FF3 PD2 Rising edge 4th Port D2 goes high

INT4 0x7FF4 PD3 Falling edge 5th Port D3 goes low

INT5† 0x7FF5 All port F Any falling edge 6th Any F port pin goes from all-high to low

INT6‡ 0x7FF6 PD4 Rising edge 7th Port D4 goes high

INT7‡ 0x7FF7 PD5 Falling edge Lowest Port D5 goes low

† All F port pins must be high previous to one or more going low.
‡ INT6 and INT7 may be associated with the Comparator function, if the Comparator Enable bit has been set.

Note: Interrupts in Reduced Power Mode

An interrupt may be lost if its event occurs during power-up or wake-up from
a reduced power mode. Also, note that interrupts are generated as a divided
signal from the master clock. The frequency of the various timer interrupts
will therefore vary, depending upon the operating master clock frequency.



Digital-to-Analog Converter (DAC)

3-9Peripheral Functions

3.2 Digital-to-Analog Converter (DAC)

The MSP50C6xx incorporates a two-pin pulse-density-modulated DAC which
is capable of driving a 32-Ω loudspeaker directly. To drive loud speakers other
than 32 Ω, an external impedance-matching circuit is required.

3.2.1 Pulse-Density Modulation Rate

The rate of the master clock (MC) determines the pulse-density-modulation
(PDM) rate, and this governs the output sampling-rate and the achievable
DAC resolution. In particular, the sampling rate is determined by dividing the
PDM rate by the required resolution:

Output sampling rate = PDM Rate ÷ 2 (# DAC resolution bits)

PDM Rate #DAC resolution bits

Set in ClkSpdCtrl register Set in DAC control register

Address 0x3D Address 0x34

For example, a 9 bit PDM DAC at 8 kHz sampling rate requires a PDM rate of
4.096 MHz.

There are four sampling rates which may be used effectively within the
constraints of the MSP50C6xx and the various software vocoders provided by
Texas Instruments. These are: 7.2 kHz, 8 kHz, 10 kHz, and 11.025 kHz. Other
sampling rates, however, may also be possible.

From the MC to the PDM clock, there is an optional divide-by-two in frequency.
This option is controlled by the PDM clock divider in the interrupt/general
control register. This means that the PDM rate can be set to run between
131.07 kHz and 33.554 MHz in 131.07 kHz steps (the same as the MC). Or,
the PDM rate can be set to run between 65.536 kHz and the maximum
achievable CPU frequency (see the MSP50C6xx data sheet (SPSS023),
Electrical Specifications) in 65.536-kHz steps. The PDM clock divider
determines which of these two ranges apply. Within these ranges, it is the
PLLM that sets the rate: ClkSpdCtrl, 0x3D. Refer to Section 3.2.3, PDM Clock
Divider, for more information regarding the PDM clock divider and the
available combinations of CPU clock rates vs sampling rates. (Section 2.9.3,
Clock Speed Control Register, contains more details regarding the PLLM.)

3.2.2 DAC Control and Data Registers

The resolution of the PDM-DAC is selected using the control bits in the DAC
control register (address 0x34). The available options are 8, 9, or 10 bits of res-
olution. Bits 0 and 1 in the DAC control register control this option:



Digital-to-Analog Converter (DAC)

 3-10

DAC Control register
Address 0x34 (4-bit wide location)

03    02    01    00

Set DAC resolution to 8 bits:
Set DAC resolution to 9 bits:
Set DAC resolution to 10 bits:

DM    E     0      0
DM    E     0      1
DM    E     1      0

DM : Drive Mode selection  (0 = C3x style  :  1 = C5x style)
   E : pulse-density-modulation Enable   (overall DAC enable)
0x0 : default state of register after RESET low

Bit 2 in the DAC control register is used to enable/disable the pulse-density
modulation. This bit must be set in order to enable the overall functionality of
the DAC. After RESET is held low, the default state of bit 2 is clear. In this state,
the output at the DAC pins is guaranteed to be zero (no PDM pulsing). During
DAC activity, the PDM enable bit may also be toggled at any time to achieve
the zero state. In other words, toggling the PDM enable bit from high-to-low-to-
high brings the DAC output to the known state of zero.

Note: PDM Enable Bit

By default, the PDM enable bit is cleared: DAC function is off.

Data values are output to the DAC by writing to the DAC data register, address
0x30. The highest-priority interrupt, INT0, is generated at the sampling rate
governed by the ClkSpdCtrl and the DAC control register. The program in
software is responsible for writing a correctly-scaled DAC value to the DAC
data register, in response to each INT0 interrupt. The register at 0x30 is 16-bits
wide. The data is written in sign-magnitude format. Bit 15 of the register is the
sign bit. Bits 14 and 13 are the overflow bits. Bits 12 through 3 are the
data-value bits: The MSB is bit 12, and the LSB is bit 5, 4, or 3, depending on
the resolution.

DAC Data register

Address 0x30 (16-bit wide location)

Write Only 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

10 bit DAC resolution:
9 bit DAC resolution:
8 bit DAC resolution:

  S O O M D D D D D D D D L X X X
  S O O M D D D D D D D L X X X X
  S O O M D D D D D D L X X X X X

 S : Sign bit M : Most-significant data value D ; Data (magnitude)
 O : Overflow bits L : Least-significant data value X : ignored bits

The overflow bits function in different ways, depending on the drive mode
selected. The two DAC drive modes are informally named C3x style and C5x



Digital-to-Analog Converter (DAC)

3-11Peripheral Functions

style. Their selection is made at bit 3 of the DAC control register (0x34). The
C3x style is selected by clearing bit 3, and the C5x style is selected by setting
bit 3. The default value of the selection is zero which yields the C3x style.

The overflow bits appear in the DAC data register (14 and 13) to the left of the
MSB data bit (12). In the C3x style mode, the overflow bits serve as a 2-bit
buffer to handle overflow in the value field (bits 12…3). Any magnitude written
to the value field which is greater than 1023 (up to the limit 4095) lands a 1 in
the overflow. The overflow state (when a 1 appears in either bit 13 or 14) yields
the maximum PDM saturation and delivers the maximum possible current
drive to the loudspeaker. The overflow bits thus help to ensure that the audible
artifacts of wrap-around do not occur.

3.2.3 PDM Clock Divider

The pulse-density-modulation rate is determined by the master clock. The
PDM rate may be set equal to the rate of the MC, or it may be set at one-half
the rate of the MC. This option is controlled by the PDM clock divider (PDMCD)
in the interrupt/general control register (IntGenCtrl). The PDMCD is located at
bit 13 in IntGenCtrl (address 0x38).

Clearing the PDMCD bit results in a PDM rate equal to 1/2 MC (i.e., the CPU
Clock rate). Setting the PDMCD bit results in a PDM rate equal to the MC. After
RESET is held low, the default setting for the PDMCD bit is zero (PDM
rate = 1/2 MC).

Figure 3–1. PDM Clock Divider

MC
Master Clock : 131.07 kHz ... 33.554 MHz

÷2

CPU Clock
Core-Processor Speed

65.536 kHz ... FMAX

(8 MHz is max assured : see Chapter 9)

(rate adjusted in ClkSpdCtrl)

PDMCD
PDM Clock Divider
Bit 13 in IntGenCtrl

(frequency)

÷2

x1

0

1

PDM Rate
Pulse-Density-Modulation Rate

Governs DAC Capacity

65.536 kHz ... FMAX
or

131.07 ... 33.554 MHz



Digital-to-Analog Converter (DAC)

 3-12

For a given sampling rate and DAC resolution, the CPU clock rate may be
increased, if necessary, through the use of over-sampling. In the previous
example, an original sampling rate of 8 kHz and a PDM rate of 4 MHz was
used. A 2-times over-sampling, therefore, would require the PDM rate to be
8 MHz. This can be accomplished in two ways:

PDM rate = 8 MHz : Set the master clock to 8 MHz also (ClkSpdCtrl).
Set the PDMCD bit to 1: 1x master clock (IntGenCtrl).
CPU clock rate will be 4 MHz.

PDM rate = 8 MHz : Set the master clock to 16 MHz.
Set the PDMCD bit to 0: 1/2 master clock.
CPU clock rate will be 8 MHz.

In the case of over-sampling, the same number of instructions are achievable
between each INT0 interrupt. Not every INT0, however, requires an
independently computed synthesis value, hence, the advantage in increased
instruction capacity. A 2-times over-sampling means that every 2nd INT0
requires a computed update from the synthesis algorithm. The other INT0 may
be satisfied with an interpolating filter computation, then a return to the main
program.

As stated previously, the maximum ensured CPU clock frequency for the
MSP50C6xx operates over the entire VDD range. This rate applies to the
speed of the core processor. Operating the processor higher than the listed
specification is not recommended by Texas Instruments.

The following tables illustrate a number of possible combinations with respect
to sampling rate, PDM rate, DAC resolution, master clock rate, and CPU clock
rate. The first table applies to the 8 kHz sampling rate and N-times-8 kHz
over-sampling. The second applies to the 10 kHz sampling rate and
N-times-10 kHz over-sampling.

Note:

The value programmed to the PLLM register is not exactly the multiplicative
factor between the 32-kHz reference and the master clock. Refer to
Section 2.9.3, Clock Speed Control Register, for more information on the
relationship between the PLLM and the resulting MC rate.

The column in these tables output sampling rate reports the true audio
sampling rate achievable by the MSP50C6xx, using the 32.768-kHz CRO. The
values reported are not always exact multiples of the 8-kHz and 10-kHz
options; however, they are the closest obtainable (using the PLLM multiplier)
under the given set of constraints.



Digital-to-Analog Converter (DAC)

3-13Peripheral Functions

Example 3–1. 8-kHz Sampling Rate

8 kHz Nominal Synthesis Rate

32.768 kHz Oscillator Reference

DAC
Precision

IntGenCtrl
PDMCD

Bit

Over-
Sampling

Factor

ClkSpdCtrl
PLLM

Register
Value
(hex)

Master
Clock
Rate 
(MHz)

PDM 
Rate

(MHz)

CPU
Clock
Rate 
(MHz)

Output
Sampling

Rate 
(kHz)

Number of
Instructs
Between

DAC
 Interrupts

Number of
Instructs
Between 

8 kHz
 Interrupts

8 bits 1 1x 0x 0F 2.10 2.10 1.05 8.19 128 128

2x 0x 1E 4.06 4.06 2.03 15.87 128 256

4x 0x 3E 8.26 8.26 4.13 32.26 128 512

8x 0x 7C 16.38 16.38 8.19 64.00 128 1024

0 1x 0x 1E 4.06 2.03 2.03 7.94 256 256

2x 0x 3E 8.26 4.13 4.13 16.13 256 512

4x 0x 7C 16.38 8.19 8.19 32.00 256 1024

9 bits 1 1x 0x 1E 4.06 4.06 2.03 7.94 256 256

2x 0x 3E 8.26 8.26 4.13 16.13 256 512

4x 0x 7C 16.38 16.38 8.19 32.00 256 1024

0 1x 0x 3E 8.26 4.13 4.13 8.06 512 512

2x 0x 7C 16.38 8.19 8.19 16.00 512 1024

10 bits 1 1x 0x 3E 8.26 8.26 4.13 8.06 512 512

2x 0x 7C 16.38 16.38 8.19 16.00 512 1024

0 1x 0x 7C 16.38 8.19 8.19 8.00 1024 1024



Digital-to-Analog Converter (DAC)

 3-14

Example 3–2. 10-kHz Sampling Rate

10 kHz Nominal Synthesis Rate

32.768 kHz Oscillator Reference

DAC
Precision

IntGenCtrl
PDMCD

Bit

Over-
Sampling

Factor

ClkSpdCtrl
PLLM

Register
Value
(hex)

Master
Clock
Rate

(MHz)

PDM
RATE
(MHZ)

CPU
Clock
Rate

(MHz)

Output
Sampling

Rate
(kHz)

Number of
Instructs
Between

DAC
 Interrupts

Number of
Instructs
Between 

10 kHz
 Interrupts

8 bits 1 1x 0x 13 2.62 2.62 1.31 10.24 128 128

2x 0x 26 5.11 5.11 2.56 19.97 128 256

4x 0x 4D 10.22 10.22 5.11 39.94 128 512

8x 0x 9B 20.45 20.45 10.22 79.87 128 1024

0 1x 0x 26 5.11 2.56 2.56 9.98 256 256

2x 0x 4D 10.22 5.11 5.11 19.97 256 512

4x 0x 9B 20.45 10.22 10.22 39.94 256 1024

9 bits 1 1x 0x 26 5.11 5.11 2.56 9.98 256 256

2x 0x 4D 10.22 10.22 5.11 19.97 256 512

4x 0x 9B 20.45 20.45 10.22 39.94 256 1024

0 1x 0x 4D 10.22 5.11 5.11 9.98 512 512

2x 0x 9B 20.45 10.22 10.22 19.97 512 1024

10 bits “1” 1x 0x 4D 10.22 10.22 5.11 9.98 512 512

2x 0x 9B 20.45 20.45 10.22 19.97 512 1024

“0” 1x 0x 9B 20.45 10.22 10.22 9.98 1024 1024



Comparator

3-15Peripheral Functions

3.3 Comparator

The MSP50C6xx provides a simple comparator that is enabled by a control
register option. The inputs of the comparator are shared with pins PD4 and
PD5. PD5 is the noninverting input to the comparator, and PD4 is the inverting
input.

When the comparator is enabled, the conditional operation COND2 (normally
associated with PD1) becomes associated with the comparator result. In addi-
tion, the interrupts associated with PD4 and PD5 (namely, INT6 and INT7), be-
come interrupts based on a transition in the comparator result. Finally, the
start/stop function of TIMER1 may be controlled, indirectly, by a comparator
transition. When enabled, the comparator controls the following four events:

(1) Steady-State Comparator TRUE VPD5 > VPD4 COND2 = TRUE . . .

CIN2
CNIN2

has its conditional call taken.
has its conditional call ignored.

JIN2
JNIN2

has its conditional jump taken.
has its conditional jump ignored.

(2) Steady-State Comparator FALSE VPD5 < VPD4 COND2 = FALSE . . .

CIN2
CNIN2

has its conditional call ignored.
has its conditional call taken.

JIN2
JNIN2

has its conditional jump ignored.
has its conditional jump taken.

(3) Comparator transition FALSE-to-TRUE VPD5 rises above VPD4 . . .

INT6 trigger event (If interrupt mask bit, D4, is set)

TIMER1 stops counting (If INT7 flag was set and TIMER1 ENABLE was cleared)

(4) Comparator transition TRUE-to-FALSE VPD5 falls below VPD4 . . .

INT7 trigger event (If interrupt mask bit, D5, is set)

TIMER1 starts counting (If INT6 flag was cleared and TIMER1 ENABLE was cleared)

With regards to the transition events, the rising-edge in the comparator is a
trigger for INT6. This happens independently of any activity associated with
TIMER1. TIMER1, on the other hand, can be stopped by a rising edge of the
comparator. The INT7 flag must be set, and the TIMER1 ENABLE must be
cleared before the event.

INT6 flag refers to bit 6 within the interrupt flag register (IFR, peripheral port
0x39). This bit is automatically SET anytime that an INT6 event occurs. This
causes the device to branch to the INT6 vector if the associated mask bit is set
(IntGenCtrl, address 0x38, bit 6). The INT6 flag is automatically CLEARed
when the device branches to the INT6 vector at 0x7FF6. Refer to Section 2.7,
Interrupt Logic, for more details)



Comparator

 3-16

The INT6 Flag may also be SET or CLEARed deliberately, at any time, in
software. Use the OUT instruction with the associated I/O port address (IFR,
address 0x39).

INT7 flag refers to bit 7 within the interrupt flag register. This bit is automatically
SET anytime that an INT7 event occurs. This causes the device to branch to
the INT7 vector if the associated mask bit is set (IntGenCtrl, address 0x38, bit
7). The INT7 flag is automatically cleared when the device branches to the
INT7 vector at 0x7FF7.

The INT7 Flag may also be SET or CLEARed at any time, in software. Use the
OUT instruction with the associated I/O port address (IFR, address 0x39).

The TIMER1 enable bit is set or cleared in software: bit 10 of the IntGenCtrl.

Similarly, the falling-edge event in the comparator is a trigger for INT7. This
happens independently of any activity associated with TIMER1. TIMER1 can
be started by the falling-edge of the comparator. The INT6 flag must be
cleared, and the TIMER1 ENABLE must be cleared before the event.

Figure 3–2. Relationship Between Comparator/Interrupt Activity and the TIMER1 Control

INT Flag bits (IFR)
Associated With the Interrupt-Trigger Event

Interrupt Flag Register (0x39)

0 1 2 3 4 5 INT6 INT7

INT-Trigger
Event

INT Service
Branch

port-addressed
write instruction

Comparator ENABLE
Bit 15, IntGenCtrl (0x38)

TIMER1 ENABLE
Bit 10, IntGenCtrl (0x38)

TIMER1 Control
0 = TIM1 stopped
1 = TIM1 running

The comparator, along with all of its associated functions, is enabled by setting
bit 15 of the interrupt/general control register (IntGenCtrl, address 0x38). The
default value of the register is zero: comparator disabled.

Note: IntGenCtrl Register Bit 15

At the time that bit 15 in the IntGenCtrl is set, PD4 and PD5 become the
comparator inputs. At any time during which bit 15 is set, PD4 and PD5 MUST
be set to INPUT (I/O Port D Control, address 0x1C, bits 4 and 5 CLEARed).
Failure to do so may result in a bus contention.



Comparator

3-17Peripheral Functions

The function of pins PD4 and PD5, and the behavior of events COND2, INT6,
INT7, and TIMER1 are different, depending on whether the comparator has
been enabled or disabled. A summary of the various states appears in the fol-
lowing table:

Comparator ENABLED SET bit 15 in the IntGenCtrl, address 0x38 . . .

PD4 functions as comparator negative input
PD5 functions as comparator positive input

(port D Control, 0x1C, bit 4 MUST be 0)
(port D Control, 0x1C, bit 5 MUST be 0)

COND2 maps to the state of the comparator (PD5 relative to PD4)

INT6 is triggered by PD5 rising above PD4
INT7 is triggered by PD5 falling below PD4

(IntGenCtrl, 0x38, bit 6 must be 1)
(IntGenCtrl, 0x38, bit 7 must be 1)

TIMER1 may be started by PD5 rising above PD4

TIMER1 will be stopped by PD5 falling below PD4

(assuming TIMER1 Enable is 0 and INT6
flag is 0)
(assuming TIMER1 Enable is 0 and INT7
flag is 1)

Comparator DISABLED CLEAR bit 15 in the IntGenCtrl,  address 0x38 . . .

PD4 functions as a general-purpose I/O pin
PD5 functions as a general-purpose I/O pin

(See Section 3.1.1)
(See Section 3.1.1)

COND2 maps to the state of the I/O pin PD1 (See Section 3.1.4)

INT6 is triggered by a rising edge at PD4
INT7 is triggered by a falling edge at PD5

(IntGenCtrl, 0x38, bit 6 must be 1)
(IntGenCtrl, 0x38, bit 7 must be 1)

TIMER1 is started/stopped in software by setting/clearing TIMER1 enable
(IntGenCtrl, 0x38, bit 10)



Interrupt/General Control Register

 3-18

3.4 Interrupt/General Control Register

The interrupt/general control (IntGenCtrl) is a 16-bit wide port-mapped register
located at address 0x38. The primary component in the IntGenCtrl is the 8-bit
interrupt mask register (IMR). The IMR is used to individually enable all
interrupts except RESET. Each bit of the IMR is associated with one of the
interrupts described in Section 3.1.5. An interrupt is enabled when the
appropriate IMR bit is set. The IMR is located at bits 0 through 7 in the
IntGenCtrl. Bit 0 is associated with INT0, which is the highest priority interrupt.
Bit 7 is associated with INT7. Refer to Section 2.7, Interrupt Logic, for more
information regarding the interrupt-system logic and initialization sequence.

IntGenCtrl register

address 0x38 (16-bit wide location)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CE AR PD EP E2 E1 S2 S1 D5 D4 PF D3 D2 T2 T1 DA

low
priority

high
priority

0x0000 : State after RESET low
Interrupt mask register

CE : Comparator enable
AR : ARM bit
PD : Pulse-density clock: PDMCD
EP : Enable pullup resistors on port F

D5  :  port D5 falling-edge
D4  :  port D4 rising-edge
PF  :  any port F falling-edge
D3  :  port D3 falling-edge

E2 : Enable TIMER2 (1 value starts timer)
E1 : Enable TIMER 1 (1 value starts timer)
S2 : Clock source for TIMER2 (0 = MC/2, 1 = ref Osc)
S1 : Clock source for TIMER1 (0 = MC/2, 1 = ref Osc)

D2  :  port D2 rising-edge
T2  :  TIMER2 underflow
T1  :  TIMER1 underflow
DA  :  DAC timer underflow

(1 value enables interrupt service)

The remaining bits in the IntGenCtrl have various control functions which are
not directly related to the interrupt system. Four of these are related to the timer
functions. Bits 8 and 9 are used to select the clock sources which govern the
rates of TIMER1 and TIMER2. Clearing bit 8 chooses 1/2 MC as the source
for TIMER1 (i.e., the TIMER runs at one-half the frequency of the Master
Clock). Setting bit 8 chooses the reference oscillator (RTO or CRO) as the
source for TIMER1. (The same applies for bit 9 and TIMER2.) Bits 10 and 11
are used to enable TIMER1 and TIMER2, respectively. Setting bit 10 starts
TIMER1, and clearing bit 10 stops TIMER1. (The same applies for bit 11 and
TIMER2).



Interrupt/General Control Register

3-19Peripheral Functions

The upper four bits in the IntGenCtrl have independent functions. Bit 12 is the
enable bit for the pull-up resistors on port F. Setting this bit applies individual
pull-up resistors to each of the F port pins (see Section 3.1.2, Dedicated Input
Port F).

Bit 13 is the PDMCD bit for the pulse-density modulation clock. Clearing this
bit yields a PDM clock rate equal to one-half the frequency of the master clock
(i.e., the CPU clock rate). Setting bit 13 yields a PDM rate equal to the rate of
the master clock (see Section 3.2.3, PDM Clock Divider)

Bit 14 is the ARM bit. If the master clock has been suspended during sleep,
then the ARM bit must be set (before the IDLE instruction), in order to allow
a programmable interrupt to wake the MSP50C6xx. Refer to Section 2.11,
Reduced Power Modes, for more information.

Finally, the top-most bit in the IntGenCtrl is the comparator enable bit. Setting
bit 15 enables the comparator and all of its associated functions. Some of the
MSP50C6xx’s conditions, interrupts, and timers behave differently, depending
on whether the comparator is enabled or disabled by this bit. Refer to Section
3.3, Comparator, for a full description.



Hardware Initialization States

 3-20

3.5 Hardware Initialization States

The RESET pin is configured at all times as an external interrupt. It provides
for a hardware initialization of the MSP50C6xx. When the RESET pin is held
low, the device assumes a deep sleep state and various control registers are
initialized. After the RESET pin is taken high, the Program Counter is loaded
with the value stored in the RESET Interrupt Vector.

Note: Internal Power Reset Function

There is no power-on reset function internal to the MSP50C6xx. After the ini-
tial power-up or after an interruption in power, the RESET pin must be cycled
low-to-high. The application circuitry must therefore provide a mechanism
for accomplishing this during a power-up transition or after a power fluctua-
tion.

The application circuits shown in Section 6.1, Application Circuits, illustrate
one implementation of a reset-on-power-up circuit. The circuit consists of an
RC network (100 kΩ, 1 µF). When powering VDD from 0 V, the circuit provides
some delay on the RESET pin’s low-to-high transition. This delay helps to en-
sure that the MSP50C6xx initialization occurs after the power supply has had
time to stabilize between VDD MIN and VDD MAX. VDD MIN and VDD MAX are
the minimum and maximum supply voltages as rated for the device. The circuit
shown, however, may not shield the RESET pin from every kind of rapid fluc-
tuation in the power supply. At any time that the power supply falls below VDD
MIN, even momentarily, then the RESET pin must be held low and then high
once again, either by the user of the device or by some other external circuitry
(refer to the MSP50C6xx data sheet (SPSS023), Electrical Specifications sec-
tion).

When the RESET pin is held low, the MSP50C6xx is considered reset and has
the following internal states:

RESET low . . .

� I/O ports are be placed in a high impedance Input condition: Ports A, B,
C, D, and E.

� All outputs on Port G is are set to low (0x0000).
� Device is placed in a deep sleep state.
� PLL circuitry, master clock, CPU clock, and TIMERs are stopped.
� Current draw from the VDD is less than 10 µA in this condition.
� Interrupt flag register (IFR at address 0x39) is not automatically cleared.
� Internal RAM is not automatically cleared.



Hardware Initialization States

3-21Peripheral Functions

Note: Internal RAM State after Reset

The RESET low will not change the state of the internal RAM, assuming there
is no interruption in power. This applies also to the interrupt flag register. The
same applies to the states of the accumulators in the computational unit.

When RESET is brought back high again, many of the programmable controls
and registers are left in their default states:

RESET high, just after low . . .

� No reference oscillator is enabled. PLL runs at its minimum achievable
rate.

� Master clock runs at a very slow frequency (less than 100 kHz).
� PLL multiplier is set to 0x00 (renders slowest speed for MC, once

reference is enabled).
� RTO oscillator trim bits are set to zero (renders slowest speed for RTO,

once enabled).
� Interrupt mask register is 0x00. Global interrupt enable is clear. All

Interrupts are disabled.
� I/O Ports A through E and output Port G have the same state as in RESET

low.
� All pull-up resistors on input Port F are disabled.
� DAC circuitry is disabled (no PDM pulsing).
� Both TIMER1 and TIMER2 are disabled. Count-down and period registers

are 0x0000.
� The status register is partially initialized, as specified in Table 3–2.
� Idle state clock control and ARM bit are both set to zero.

� The processor begins by executing the following steps:

1) ROM block protection word is read from address 0x7FFE.

2) ROM block protection word is loaded to an internal register.

3) RESET interrupt vector is read from address 0x7FFF.

4) Program counter is loaded with the value read from (3); execution re-
sumes there.

Note: Stack Pointer Initialization

The software stack pointer (R7) must be initialized by the programmer, so
that it points to some legitimate address in data memory (RAM). This must
be done prior to any CALL or Ccc instruction. If this is not done, then the first
push/pop operation performed will use the current location pointed to by R7.



Hardware Initialization States

 3-22

Table 3–2. State of the Status Register (17 bit) after RESET Low-to-High
(Bits 5 through 16 are left uninitialized)

Bit Bit Name Initialized Value Description

0 XM 0 Extended sign mode disabled

1 UM 0 Unsigned multiplier mode disabled (allows signed multiplier mode)

2 OM 0 Overflow mode disabled (allows ALU normal mode)

3 FM 0
Shift mode for fractional multiplication disabled (allows unsigned
fractional/integer arithmetic)

4 IM 0 Global interrupt enable bit

5 (reserved) Reserved for future use

6 XZF Transfer equal-to-zero status bit

7 XSF Transfer sign status bit

8 RCF Auxiliary register carry-out status bit

9 RZF Auxiliary register equal-to-zero status bit

10 OF Same state as Accumulator overflow status bit

11 SF before RESET Accumulator sign status bit (extended 17th bit)

12 ZF Accumulator equal-to-zero status bit (16 bits)

13 CF Accumulator carry-out status bit (16th ALU bit)

14 TF1 Test flag 1

15 TF2 Test flag 2

16 TAG Memory tag



4-1

Assembly Language Instructions

This chapter describes in detail about MSP50P614/MSP50C614 assembly
language. Instruction classes, addressing modes, instruction encoding and
explanation of each instruction is described.

Topic Page

4.1 Introduction 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 System Registers 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Instruction Syntax and Addressing Modes 4–8. . . . . . . . . . . . . . . . . . . . . . 

4.4 Instruction Classification 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.5 Bit, Byte, Word and String Addressing 4–44. . . . . . . . . . . . . . . . . . . . . . . . 

4.6 MSP50P614/MSP50C614 Computational Modes 4–49. . . . . . . . . . . . . . . . 

4.7 Hardware Loop Instructions 4–53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.8 String Instructions 4–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.9 Lookup Instructions 4–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.10 Input/Output Instructions 4–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.11 Special Filter Instructions 4–59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.12 Conditionals 4–69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.13 Legend 4–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.14 Individual Instruction Descriptions 4–74. . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.15 Instruction Set Encoding 4–189. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.16 Instruction Set Summary 4–198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4



Introduction

 4-2

4.1 Introduction

In this chapter each MSP50P614/MSP50C614 class of instructions is
explained in detail with examples and restrictions. Most instructions can
individually address bits, bytes, words or strings of words or bytes. Usable
program memory is 30K by 17-bit wide and the entire 17-bits are used for
instruction set encoding. The execution of programs can only be executed
from internal program memory. Usable program memory starts from location
800h. The data memory is 640 by 17-bits of static RAM, 16 bits of which are
an arithmetic value. The 17th bit is used for flags or tags.

4.2 System Registers

A functional description of each system register is described below.

4.2.1 Multiplier Register (MR)

The multiplier uses this 16-bit register to multiply with the multiplicand. MOV
instructions are used to load the MR register. The multiplicand is usually the
operand of the multiply instructions. All multiply, multiply-accumulate
instructions, and filter instructions (FIR, FIRK, COR and CORK) use the MR
register (see Section 4.11 for detail).

4.2.2 Shift Value Register (SV)

The shift value register is 4-bits wide. For barrel shift instructions, the multiplier
operand decodes a 4-bit value in the shift value register (SV) to a 16-bit value.
For example, a value of 7H in the SV register is decoded to a multiplier operand
of 0000000010000000 binary. In effect, this causes a left shift of 7 bits to in the
final 32-bit product. In other words, a nonzero value, say k (0 ≤ k ≤ 15), in the
SV register means padding k number of zeros to the right of the final result.

4.2.3 Data Pointer Register (DP)

The data pointer register (DP) is a 16-bit register that is used to point to a
program memory location for various look up table instructions. DP is not
directly loaded by the user, It is loaded during the execution of lookup
instructions overwriting the previous content of the DP register. Lookup
instructions are described in detail in Section 4.9. The DP register auto-
increments the next logical program memory location after the execution of a
lookup instruction. In addition to lookup instructions, the filter instructions FIRK
and CORK (see Section 4.11 for detail) use the DP pointer to look up filter
coefficients. It may be required to context save and restore the DP in interrupt
service routines.

4.2.4 Program Counter (PC)

The program counter (PC) holds the program memory location to be used for
the next instruction’s execution. It increments (by 1 for single word instructions



System Registers

4-3Assembly Language Instructions

or by 2 for double word instructions) each execution cycle and points to the
next program memory location to fetch. During a maskable interrupt, the next
PC address is stored in the TOS register and is reloaded from TOS after the
interrupt encounters an IRET instruction. Call and jump instructions also store
the next instruction address by adding PC+2 and then storing the result in the
TOS register. Upon encountering a RET instruction, the TOS value is reloaded
to the PC. Call instructions may not precede RET instructions. Similarly, a RET
instruction may not immediately follow another RET instruction. In these
conditions, pipeline operations breaks down and the PC never recovers its re-
turn address from the TOS register. The processor stalls, and the only solution
is to reset the device. On the other hand, RET can be safely replaced by IRET
eliminating processor stalls in all conditions. However, IRET takes one more
cycle than RET.

4.2.5 Top of Stack, (TOS)

The top of stack (TOS) register holds the value of the stack pointed by the stack
register (R7). The MSP50P614/MSP50C614 hardware uses TOS register for
very efficient returns from CALL instructions. Figure 4-1 shows the operation
of the TOS register. When call instructions are executed, the old TOS register
value is pushed into the stack by pre-incrementing R7. The current PC value
is incremented by 2 to compute the final return address and is then stored in
the TOS register. Thus, the TOS register holds the next PC value pointing to
the next instruction. When the subroutine reaches the RET instruction, the
program counter (PC) is loaded with the TOS register. Next, the TOS is loaded
with the value pointed to by R7. Finally, the stack register (R7) is decremented.

Figure 4–1. Top of Stack (TOS) Register Operation

Program counter (PC)

+2

Data memory stack area

Stack register (R7)

Top of stack register (TOS)

Read before
incrementing R7

Increment R7 then
store TOS value

Preincrement
during write  (+2)

Postdecrement
during read  (+2)

The MSP50P614/MSP50C614 development tools use the TOS register for
parameter passing. The TOS register must be used with caution inside user
programs. If the TOS register and stack register (R7) are not restored to their
previous values after using the TOS register in an application, the program can
hang the processor or cause the program to behave in an unpredictable way.



System Registers

 4-4

It is recommended to avoid using the TOS register altogether in applications
and leave its operation to development tools only.

4.2.6 Product High Register (PH)

This register holds the upper 16 bits of the 32-bit result of a multiplication,
multiply-accumulate, or shift operation. The lower 16 bits of the result are
stored in the PL register. The PH register can be loaded directly by MOV
instructions. Special move accumulate instructions MOVAPH, MOVAPHS,
MOVSPH, MOVSPHS also use the PH register.

4.2.7 Product Low Register (PL)

This register holds the lower 16 bits of the 32-bit result of a multiplication,
multiply-accumulate, or shift operation. The upper 16 bits of the result are
stored in the PH register. There are no instructions that load or save the PL
register directly, but multiply-accumulate instructions allow the contents of the
PL register to be added, subtracted or transferred to the accumulator.

4.2.8 Accumulators (AC0–AC31)

There are 32 accumulators on the MSP50P614/MSP50C614. Each is 16 bits
wide. The first sixteen accumulators, AC0–AC15, have offset accumulators,
AC16–AC31, and vice versa. At any one time, four accumulators can be
selected through accumulator pointer registers, AP0–AP3 (see section 4.2.9).
Some instructions can specify offset accumulators which are the
accumulators pointed to by APn +16 or APn –16 (whichever is in the range 0
to 31). The offset accumulators are indicated by an offset bit (A~) in some
instructions. When this bit is 0, An points to the accumulator directly. If it is 1,
then An~ points to the offset (for some instructions this scheme changes). The
selected accumulator pointer register should contain the index to the
corresponding accumulator. For example, if AP0 has a value of 25, then it is
pointing to accumulator AC25. If the offset bit is 1, A0~, then it is pointing to
accumulator AC9 (25–16=9). Because, accumulators can only be addressed
through accumulator pointers, special symbols are used in MSP50P614/
MSP50C614 instructions. Accumulators are indicated by the symbol An,
where n ranges from 0 to 3. The symbol indicates that the accumulator pointed
to by APn is the referring accumulator. If APn has a value of k, it is pointing to
accumulator ACk. Similarly, An~ points to the offset accumulator pointed by
APn. For example, if AP3 = 22, then A3 is accumulator AC22 and A3~ is
accumulator AC6.



System Registers

4-5Assembly Language Instructions

During accumulator read operations, both An and offset An~ are fetched.
Depending on the instruction, either or both registers may be used. In addition,
some write operations allow either register to be selected.

The accumulator block can also be used in string operations. The selected
accumulator (An or An~) is the least significant word (LSW) of the string and
is restored at the end of the operation. String instructions are described in
detail in section 4.8.

4.2.9 Accumulator Pointers (AP0–AP3)

The accumulator pointer (AP) registers are 5-bit registers which point to one
of the 32 available accumulators. The APs contain the index of accumulators.
Many instructions allow preincrement or predecrement accumulator pointers.
Such instructions have a suffix of ++A for preincrement or – –A for
predecrement. Accumulator pointers can be stored or loaded from memory
using various addressing modes. Limited arithmetic operations can be
performed on accumulator pointers.

Bit Bits 16 – 5 4 3 2 1 0

AP0–AP3 Not used Points to An
n = val (b0–b4)

4.2.10 Indirect Register (R0–R7)

Indirect registers, R0–R7, are 16-bit registers that are used in various
addressing modes or as general-purpose registers. R0, R1, R2 and R3 can
be usedsolely as general-purpose registers. These registers can also be used
as indirect registers with relative addressing.

The R4 or LOOP register is used with instructions BEGLOOP and ENDLOOP
to define a hardware controlled loop. If R4 is loaded with a value, n (0 ≤ n ≤
32767), the BEGLOOP and ENDLOOP block will be executed n+2 times. The
loop stops when R4 becomes negative.

The R5 or INDEX register is used with indirect addressing and relative addres-
sing modes of certain instructions.

The R6 or PAGE register is used with page relative addressing and relative flag
addressing.

The R7 or STACK register holds the pointer to the stack. It can be used as a
general-purpose register as long as no CALL/RET instructions are used
before restoring it with its old value. However, this register can only be used
as a general-purpose register when maskable interrupts are disabled. The old



System Registers

 4-6

value of the STACK register should be stored before use and restored after
use. This register must point to the beginning of the stack in the RESET
initialization routine before any CALL instruction or maskable interrupts can be
used. CALL instructions increment R7 by 2., RET instructions decrement R7
by 2. The stack in MSP50P614/MSP50C614 is positively incremented.

4.2.11 String Register (STR)

The string register (STR) holds the length of the string used by all string instruc-
tions. MOV instructions are used to load this register to define the length of a
string. The value in this register is not altered after the execution of a string
instruction. A value of zero in this register defines a string length of 2. Thus,
a numerical value, ns, in the STR register, defines a string length of ns+2. The
maximum string length is 32. Therefore, 0 ≤ nS ≤ 30 corresponds to actual
string lengths from 2 to 32.

4.2.12 Status Register (STAT)

The status register (STAT) provides the storage of various single bit mode
conditions and condition bits. As shown in Table 4–1, mode bits reside in the
first 5 LSBs of the status register and can be independently set or reset with
specific instructions. See section 4.6 for detail about these computational
modes. Condition bits and flags are used for conditional branches, calls, and
flag instructions. Flags and status condition bits are stored in the upper 10 bits
of the 17-bit status register. MOV instructions provide the means for context
saves and restores of the status register. The STAT should be initialized to
0000h after the processor resets.

The XSF and XZF flags are related to data flow to or from the internal data bus.
If the destination of the transfer is an accumulator, then the SF, ZF, CF and OF
flags are affected. If the destination of the transfer is Rx, the RCF and RZF
flags are affected. If the destination of the transfer is through the internal
databus, the XSF and XZF flags are affected. The SF flag is the sign flag and
it is equal to the most significant bit of an accumulator when an accumulator
instruction is executed. ZF is the zero flag and is set when the instruction
causes the accumulator value to become zero. CF is the carry flag and is set
when the instruction causes a carry. A carry is generated by addition,
subtraction, multiplication, multiply-accumulate, compare, shifting and some
MOV instructions (that have accumulation features). CF is reset if no carry
occurs after execution of an instruction. OF is set when a computation causes
overflow in the result. It is reset if no overflow occurs during an accumulator
based instruction. Overflow saturation mode is set by the OM bit as explained
in Section 4.6.



System Registers

4-7Assembly Language Instructions

Table 4–1. Status Register (STAT)

Bit Name Function

0 XM Sign extended mode bit. This bit is one, if sign extension mode is enabled. See
MSP50P614/MSP50C614 Computational Modes, Section 4.6.

1 UM Unsigned multiplier mode. This bit is one if unsigned multiplier mode is enabled. See
MSP50P614/MSP50C614 Computational Modes, Section 4.6.

2 OM Overflow mode. This bit is one if overflow (saturation) mode is enabled. See
MSP50P614/MSP50C614 Computational Modes, Section 4.6.

3 FM Fractional multiplication shift mode. This bit is set if fractional mode is enabled. See
MSP50P614/MSP50C614 Computational Modes, Section 4.6.

4 IM Maskable interrupt enable mode. If this bit is zero, all maskable interrupts are disabled.

5 Reserved Reserved for future use.

6 XZF Transfer(x) equal to zero status (flag) bit. In transfer instructions, this bit is set if the operation
cause the destination result to become zero (excluding accumulator and Rx registers).

7 XSF Transfer(x) sign status (flag) bit. In transfer instructions, the sign bit of the value is copied to
this bit if the destination is not accumulator or Rx registers.

8 RCF Indirect register carry out status (flag) bit. This bit is set if an addition to the value of Rx register
caused a carry.

9 RZF Indirect register equal to zero status (flag) bit. This bit is set if the Rx register content used by
the instruction is zero.

10 OF Accumulator overflow status (flag) bit. This bit is set if an overflow occurs during computation
in ALU.

11 SF Accumulator sign status (flag) bit (extended 17th bit). This bit is set if the 16th bit (the sign bit)
of the destination accumulator is 1.

12 ZF Accumulator equal to zero status (flag) bit (16 bits). This bit is set to 1 if the result of previous
instruction cause the destination accumulator to become zero.

13 CF Accumulator carry out status (flag) bit ( 16th ALU bit).

14 TF1 Test Flag 1. Test flags are related with Class 8 instructions discussed later.

15 TF2 Test Flag 2. Test flags are related with Class 8 instructions discussed later.

16 TAG Memory tag. Holds the 17th bit whenever a memory value is read.



Instruction Syntax and Addressing Modes

 4-8

4.3 Instruction Syntax and Addressing Modes

MSP50P614/MSP50C614 instructions can perform multiple operations per
instruction. Many instructions may have multiple source arguments. They can
premodify register values and can have only one destination. The addressing
mode is part of the source and destination arguments. In the following subsec-
tion, a detail of the MSP50P614/MSP50C614 instruction syntax is explained
followed by the subsection which describes addressing modes.

4.3.1 MSP50P614/MSP50C614 Instruction Syntax

All MSP50P614/MSP50C614 instructions with multiple arguments have the
following syntax:

name [dest] [, src] [, src1] [, mod]

where the symbols are described as follows:

name name of the instruction. Instruction names are shown in bold letters. If the
instruction name is followed by a B, the arguments are all byte types. If
name is followed by an S, all arguments are word string (strings of words)
types. If name is followed by BS, all arguments are byte string types.

dest destination of data to be stored after the execution of an instruction. Op-
tional or not used for some instructions. Destination is also used as both a
source and a destination for some instructions. If a destination is specified,
it must always be the first argument. Destinations can be system registers
or data memory locations referred by addressing modes. This is instruc-
tion specific.

src source of first data. Optional or not used for some instruction. Source can
be a system register, a data memory location referred by addressing
modes, or a program memory location. This is instruction specific.

src1 source of second data. Some instructions use a second data source. Op-
tional or not used for some instructions. Source 1 can be a system register,
a data memory location referred by addressing modes, or a program
memory location. This is instruction specific.

mod pre or post modification of a register. The meaning of mod is instruction
specific.

[ ] Square brackets represent optional arguments. Some instructions have
many combinations of source and destination registers and addressing
modes. The combination is instruction class specific.

The possible combinations of sources, destinations and modifications are de-
pendent on the instruction class. Instruction classes are discussed in detail in
Section 4.4.



Instruction Syntax and Addressing Modes

4-9Assembly Language Instructions

4.3.2 Addressing Modes

The addressing modes on the MSP50P614/MSP50C614 are immediate, di-
rect, indirect with post modification, and three relative modes. The relative
modes are:

� Relative to the INDEX or R5 register. The effective address is (indirect reg-
ister + INDEX).

� Short relative to the PAGE or R6 register. The effective address is
(PAGE+7-bit positive offset).

� Long relative to Rx. The effective address is (indirect register Rx + 16-bit
positive offset).

When string instructions are executed, the operation of the addressing mode
used is modified. For all addressing modes except indirect with post modifica-
tion, a temporary copy of the memory address is used to fetch the least signifi-
cant data word of the string. Over the next n instruction cycles, the temporary
copy of the address is auto-incremented to fetch the next n words of the string.
Since the modification of the address is temporary, all Rx registers are un-
changed and still have reference to the least significant data word in memory.
String data fetches using the indirect with post modification addressing mode
and writes the modified address back to the indirect register at each cycle of
the string. This will leave the address in the Rx register pointing to the data
word whose address is one beyond the most significant word of the string.

All addressing modes except immediate addressing are encoded in bits 0 to
7 of the instruction’s op-code. Table 4–2 through Table 4–6 show the encoding
of various addressing modes. Addressing mode bits (except immediate and
flag addressing) come with an am, Rx and pm field. These are combined into
a single field called {adrs}. The appropriate decoding and syntax for each ad-
dressing mode with the {adrs} field is described in Table 4–4. The pm field only
applies to indirect addressing. For other addressing modes, it is coded as zero.

Table 4–2. Addressing Mode Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode next A am Rx pm

am contains addressing mode bits 5 – 7. See Table 4–4 for details.
Rx is the register being used. See for Table 4–3 for details.
pm is the post modification flag. See Table 4–3 for details.
next A is the accumulator pointer premodification field. See Table 4–5 for details.



Instruction Syntax and Addressing Modes

 4-10

Table 4–3. Rx Bit Description

Rx Operation

0 0 0 R0

0 0 1 R1

0 1 0 R2

0 1 1 R3

1 0 0 R4 or LOOP

1 0 1 R5 or INDEX

1 1 0 R6 or PAGE

1 1 1 R7 or STACK

Table 4–4. Addressing Mode Bits and {adrs} Field Description

Relative Repeat
addressing mode encoding, adrs

Relative 
Addressing

Modes

Clocks
clk

Words
w

Repeat
Operation‡

clk
{adrs} 7 6 5 4 3 2 1 0

Modes clk w clk
am Rx (x = 0 … 7) pm

Direct† 2 2 nR+4 *dma16 0 0 0 Rx 0 0

Short relative 1 1 nR+2 *R6 + offset7 1 offset7

Relative to R5 1 1 nR+2 *Rx + R5 0 1 0 Rx 0 0

Long relative† 2 2 nR+4 *Rx + offset16 0 0 1 Rx 0 0

Indirect 1 1 nR+2 *Rx 0 0

*Rx++
0 1 1 Rx

0 1

*Rx––
0 1 1 Rx

1 0

*Rx++R5 1 1

† = dma16 and offset16 is the second word
‡  nR is RPT instruction argument



Instruction Syntax and Addressing Modes

4-11Assembly Language Instructions

Table 4–5. MSP50P614/MSP50C614 Addressing Modes Summary
ADDRESSING SYNTAX OPERATION

Direct name [dest,] [src,] *dma16 [*2] [, next A]
name *dma16 [*2] [,src] [, next A]

Second word operand (dma16) used directly as memory
address.

Long Relative name [dest] [,src] ,*Rx+offset16 [, next A]
name *Rx+offset16 [,src] [, next A]

Selects one of 8 address registers as base value and adds
the value in the second word operand. Does not modify the
base address register.

Relative to R5
(INDEX)

name [dest] [,src] ,*Rx+R5 [, next A]
name *Rx+R5 [,src] [, next A]

Selects one of 8 address registers as base value and adds
the value in R5. Does not modify the base address register.

Indirect name [dest] [, src] ,*Rx++R5 [, next A]
name [dest] [, src] ,*Rx [, next A]
name [dest] [, src] ,*Rx++ [, next A]
name [dest] [, src] ,*Rx— [, next A]
name *Rx++R5 [, src] [, next A]
name *Rx [, src] [, next A]
name *Rx++ [, src] [, next A]
name *Rx––  [, src] [, next A]

Selects one of 8 address registers to be used as the ad-
dress, post modifications of increment, decrement, and +
INDEX(R5) are possible.

Short Relative name [dest] [, src] ,*R6+offset7 [, next A]
name *R6+offset7 [, src] [, next A]

Selects PAGE(R6) register as the base address and adds a
7-bit positive address offset from operand field (b6–b0).
This permits the relative addressing of 128 bytes or 64
words. Does not modify the PAGE address register. k is
shown as constant.

Global Flag name TFn, dma6
name dma6, TFn

For use with flag instructions only. Adds lower 7 bits of
instruction to a fixed address base reference of zero. 64
fixed flags are addressed by this mode beginning at ad-
dress 0000h.

Relative Flag name TFn, *R6+offset6
name *R6+offset6, TFn

For use with flag instructions only. Adds lower 7 bits of
instruction(lsb set to zero) to a address base reference
stored in the PAGE register (R6). 64 flags relative to PAGE
may be addressed with this mode.

Table 4–6. Auto Increment and Auto Decrement Modes

Operation Syntax next A

No modification 0 0

Aufto decrement ––A 0 1

Auto increment ++A 1 0

String mode 1 1

Table 4–6 describes the accumulator pointer auto preincrement or
predecrement syntax. Not all instructions can premodify accumulator pointers.
The next A field is a two-bit field using bits 10 and 11 of only certain classes
of instructions. Instructions with a [next A] have either a ––A or a ++A in the
instruction. See Table 4–6.



Instruction Syntax and Addressing Modes

 4-12

For any particular addressing mode, replace the {adrs} with  the syntax shown
in Table 4–4. To encode the instruction, replace the am, Rx and pm bits with
the bits required by the addressing mode (Table 4–4). For example, the
instruction MOV An[~], {adrs} [, next A] indicates all of the following (only partial
combinations are shown):

MOV  A0, *0xab12 ; n = 0, {adrs} = dma16 = 0xab12

MOV  A1, *R6+0x2f, ++A ; n = 1, {adrs} = *R6+0x2f, offset7 = 0x2f,
  [next A] = ++A

MOV  A2~, *R0+R5, ––A ; n = 2, {adrs} = *R0+R5, x = 0, [next A] = ––A

MOV  A3, *R1+0x12ef ; n = 3, {adrs} = *R1+0x12ef, x = 1,
 offset16 = 0x12ef

MOV  A0, *R2 ; n = 0, {adrs} = *R2, x = 2

MOV  A1, *R3++, ––A ; n = 1, {adrs} = *R3++, x = 3, [next A] = ––A

MOV  A2~, *R4–– ; n = 2, {adrs} = *R4––, x = 4

MOV  A3, *R7++R5, ++A ; n = 3, {adrs} = *R7++R5, x = 7, [next A] = ++A

Flag instructions apply to certain classes of instructions (Class 8a). They ad-
dress only the flag bit by either a 6-bit global address or a 6-bit relative address
from the indirect register R6. If bit 0 of these instructions is 0, then bits 1 to 6
of the opcode are taken as the bit address starting from data memory location
0000h. If bit 0 is 1, then bits 1 to 6 are used as an offset from the page register
R6 to compute the relative address. Bits 0 to 6 of flag instructions are written
as {flagadrs} throughout this manual. When this symbol appears, it should be
replaced by the syntax and bits shown in Table 4–7

For example, AND TFn, {flagadrs} can be written as follows (not all possible
combinations are shown):

AND TF1, *0x21 ; global flag addressing, flag address is 0x21 absolute

AND TF2, *R6+0x21 ; relative flag addressing, flag address is R6+0x21
  absolute

Table 4–7. Flag Addressing Field {flagadrs} for Certain Flag Instructions (Class 8a)

Flag Repeat
{flagadrs} flag addressing mode encoding, flagadrs

Flag
Addressing

Modes

Clocks
clk

Words
w

Repeat
Operation,†

clk
Syntax 6 5 4 3 2 1 0

Modes clk w clk
flag address bits g/r

Global 1 1 nR+2 *dma6 dma6 0

Relative 1 1 nR+2 *R6+offset6 offset6 1

† nR is RPT argument



Instruction Syntax and Addressing Modes

4-13Assembly Language Instructions

4.3.3 Immediate Addressing

The address of the memory location is encoded in the instruction word or the
word following the opcode is the immediate value. Single word instructions
take one clock cycle and double word instructions take two clock cycles.

Syntax:

name dest, [src,] imm  [, next A]

Where:   imm is the immediate value of a 16-bit number.

Example 4.3.1 ADD AP0, 0x1A
Assume the initial processor state in Table 4–8 before execution of this instruc-
tion. This instruction adds the immediate value 0x1A to AP0. Final result AP0
= 0x1A + 2 = 0x1C.

Table 4–8. Initial Processor State for the Examples Before Execution of Instruction

Registers (register# = value)

AP0 = 2 AP1 = 21 (0x15) AP2 = 11 (0x0B) AP3 = 29 (0x1D)

R0 = 0x0454 R1 = 0x0200 R2 = 0x0540 R3 = 0x03E2

R4 = 0x0000 R5 = 2 R6 = 0x03E4 R7 = 0x0100

AC2 = 0x13F0 AC1 = 0x0007 AC17 = 0x0112 AC20 = 0x3321

AC3 = 0xFEED AC28 = 0x11A2 AC29 = 0xAB AC19 = 0x1200

MR = 0x1A15

data memory (*address = data) [word address; to convert to byte, address multiply by 2]

*0x022A = 0x0400 *0x01F2 = 0x12AC *0x02A1 = 0x1001 *0x012F = 0x0000

*0x0100 = 0x0ABC *0x0080 = 0x0000 *0x0001 = 0x499A *0x01FA = 0x0112

program memory (*address = data)

*0x13F0 = 0x1B12

Example 4.3.2 MOV R5, 0xF000
Loads the immediate value 0xF000 to R5 register. Final result, R5 = 0xF000.

Example 4.3.3 MOVB MR, 0xF2
Loads the immediate byte 0xf2 to MR register. Final result, MR = 0xf2.

Example 4.3.4 AND A0, A0~, 0xFF20, ––A
Assume the initial processor state in Table 4–8 before execution of this instruc-
tion. The source accumulator pointer AP0 is predecremented. After predecre-
ment, A0 points to AC1, and A0~ points to AC17. AC17 is anded with the im-
mediate 16-bit value (0xFF20) and the result is stored in AC1. Final result, AP0
= 1, AC1 = 0xFF20 AND AC17 = 0xFF20 AND 0x0112 = 0x0100.



Instruction Syntax and Addressing Modes

 4-14

4.3.4 Direct Addressing

Direct addressing always requires two instruction words. The second word
operand is used directly as the memory address. The memory operand may
be a label or an expression.

Syntax:

name [dest,] [src,] *dma16 [* 2] [, next A]
name *dma16 [* 2] [, src] [, next A]

Memory Operand Operand

Note the multiplication by 2 with the data memory address. This only needs
to be done for word addresses, i.e., the address that points to 16-bit words.
This is not required for byte addresses. This is explained in detail in section
4.5.

Example 4.3.5 MOV A2, *0x022A * 2
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Loads the contents of data memory location 0x022A (=0x0400) to A2 or
AC11. The MSP50P614/MSP50C614 always accesses data memory as byte
addresses. To read a word address, multiply the address by 2. Final result,
A2 = AC11 = 0x0400.

Example 4.3.6 MOV A1~, *0x01F2 * 2, ++A
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Preincrement AP1. After preincrement A1 is AC22 and A1~ is AC6. The
content of data memory location 0x01F2 (=0x12AC) is then loaded to accumu-
lator AC22 (offset of AC6). Final result, AP1=22, AC6 = 0x12AC.

Example 4.3.7 SUB A1~, A1, *0x02A1 * 2, ––A
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Predecrement AP1. After predecrement A1 is AC20 and A1~ is AC4. Sub-
tract the content of 0x02A1 (=0x1001) in data memory from AC20 and store
result to AC4. Final result, AP1 = 20, AC4 = AC20 – 0x1001 = 0x3321 – 0x1001
= 0x2320.

Example 4.3.8 MOV *0x012F * 2, *A0
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. This is a table lookup instruction. This instruction reads the program
memory address stored in A0 or AC2 and stores the data in data memory loca-
tion 0x012F. Final result, *0x012F = 0x1B12.

Example 4.3.9 MULR *0x02A1 * 2
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Multiply MR with the contents of 0x02A1. The MSB of the result is stored
in PH register and rounded. The LSB is ignored. Final result, multiply MR •
*0x02A1 = 0x1A15 •  0x1001 = 0x1A16A15, PH = 0x01A1.



Instruction Syntax and Addressing Modes

4-15Assembly Language Instructions

4.3.5 Indirect Addressing

Indirect addressing uses one of 8 registers (R0...R7) to point memory
addresses. The selected register can be post-modified. Modifications include
increments, decrements, or increments by the value in the index register (R5).
For post-modifications, the register increments or decrements itself by 2 for
word operands and by 1 for byte operands. Syntaxes are shown in Table 4–9.

Table 4–9. Indirect Addressing Syntax

Syntax Operation

name [dest,] [src,] ,*Rx++R5 [, next A]
name *Rx++R5 [, src]  [, next A]

Premodify accumulator pointer if next A is included. Add Rx with R5.

name [dest,] [src,] ,*Rx [, next A]
name *Rx [, src] [, next A]

Premodify accumulator pointer if next A is included. Use address
pointed by Rx, Rx content unchanged

name [dest,] [src,] ,*Rx++ [, next A]
name *Rx++ [, src] [, next A]

Premodify accumulator pointer if next A is included. Use address
pointed by Rx, post increment Rx after use

name [dest,] [src,] ,*Rx–– [, next A]
name *Rx–– [, src] [, next A]

Premodify accumulator pointer if next A is included. Use address
pointed by Rx, post decrement Rx after use

Address Memory Operand

++   ––   ++R5

Rx
(x = 0 – 7)

Note that the Rx registers treats data memory as a series of bytes. Therefore,
when a word is loaded, Rx++ increments by 2 (Rx–– decrements by 2). When
loading a word address into Rx, the address must be converted into a byte ad-
dress (by multiplying by 2). For example, if we want Rx to point to the word ad-
dress, 0x100, Rx should be loaded with 0x100*2=0x200.

Example 4.3.10 MOV A1~, *R1++R5, ++A
Refer to the initial processor state in Table 4–8 before execution of this
instruction. Preincrement AP1. After preincrement A1 is AC22 and A1~ is AC6.
The contents of the data memory location stored in R1 are loaded into
accumulator AC6. R1 is then incremented by R5. Final result, AP1=22, AC6
= 0xacb, R1 = R1 + R5 = 0x0202. Note that the addressing of the Rx registers
is byte addressing.

Example 4.3.11 ADD A3~, A3, R6++R5, ––A
Refer to the initial processor state in Table 4–8 before execution of this
instruction. Predecrement AP3. After predecrement, A3 is AC28 and A3~ is
AC12. The contents of the data memory location stored in R6 are added to
AC28. The result is stored in accumulator AC12. R6 is then incremented by
R5. Final result, AP3=28, AC12 = AC28 + *R6 = 0x11A2 + 0x12AC = 0x244E,
R6 = R6+R5 = 0x3E6. Note that the Rx registers use byte addresses.



Instruction Syntax and Addressing Modes

 4-16

Example 4.3.12 MOV *R5++R5, A0~, ++A
Refer to the initial processor state in Table 4–8 before execution of this
instruction. Preincrement AP0. After preincrement, A0 is AC3 and A0~ is
AC19. The contents of AC19 are stored in the data memory location in R5. R5
is then incremented by R5. Final result, AP0=3, R5 = 0x0004, *0x0002 =
0xFEED.

Example 4.3.13 MOV A2, *R0
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. The contents of the data memory address in R0 are loaded into A2
(AC11). Final result, AC11 = 0x0400. Note the addressing is byte addressing.
Thus, *R0 = 0x0454 indicates the word memory location 0x454/2 = 0x022A.

Example 4.3.14 IN *R4++, 0x00
The contents of the I/O port location 0x00 (port PPA) are stored in the location
pointed to by R4. R4 is incremented by 2 after this operation.

Example 4.3.15 MOVB *R7++, A3
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Store the lower 8 bits of A3 (AC29) in the data memory byte address
pointed to by R7. R7 is then incremented by one. Notice that to find the word
address, divide the address in R7 by 2. Final result, R7=0x0101, *0x0100 =
0xAB (byte address) or *0x80 = 0xAB00 (word address).

Example 4.3.16 OUT 0x08, *R1––
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. The contents of the data memory byte location stored in R1 are placed
on port 0x08 (port PPB). R1 is then decremented by 2. Final result, R1 =
0x01FE, *0x08 = 0xCB. Port PPB is 8-bits wide, so the upper 8-bits of *R1
(0x0A) are ignored.

4.3.6 Relative Addressing

There are three types of relative addressing on the MSP50P614/MSP50C614:
short relative, long relative, and relative to the index register, R5. These ad-
dressing modes are described below.

4.3.6.1 Relative to Index Register R5

This relative addressing mode uses one of the 8 address registers (R0–R7)
as a base value. The index register, R5, is added to the base address value
in Rx. The base address register is not modified. Thus, the effective address
is Rx + R5.

Syntax:

name [dest,] [src,] *Rx+R5 [, next A]
name *Rx+R5 [, src] [, next A]



Instruction Syntax and Addressing Modes

4-17Assembly Language Instructions

Address

+

Rx
(x = 0 – 7)

Index Register (R5)

Operand

Example 4.3.17 AND A0, *R3+R5
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. A0 is accumulator AC2. The contents of the data memory byte location
pointed to by R3+R5 is ANDed with AC2. The result is stored in AC2. The val-
ues in R3 and R5 are unchanged. Final result, AC2 = AC2 AND *0x01F2 =
0x13F0 AND 0x12AC = 0x12A0.

Example 4.3.18 MOV *R2+R5, A2~, ++A
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Preincrement AP2. After preincrement, A2 is AC12 and A2~ is AC28.
Store AC28 in the data memory byte location R2+R5. The values in R2 and
R5 are unchanged. Final result, *0x02A1 = 0x11A2.

Example 4.3.19 ADD A0~, A0, *R4+R5, ––A
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Predecrement AP0. After predecrement, A0 is AC1 and A0~ is AC17. Add
AC1 to the contents of byte location R4+R5 and put the result in AC17. The
values in R4 and R5 are unchanged. Final result, AC17 = AC1 + *(R4+R5) =
0x0007 + *0x0002 = 0x0007 + 0x499A = 0x49A1.

4.3.6.2 Short Relative

Short relative (also called PAGE Relative) addressing selects the Page
register (R6) as a base value and adds a 7-bit positive offset from the operand.
The page register is not modified.

Syntax:

name [dest,] [src,] *R6+offset7 [, next A]
name *R6+offset7 [, src] [, next A]

Address

+

R6
PAGE register

7-Bit positive offset

Operand



Instruction Syntax and Addressing Modes

 4-18

Example 4.3.20 MOV A3, *R6+0x10
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Load A3 (AC29) with the contents of byte address, R6+0x10. The value
of R6 is unchanged. Final result, AC29=0x0112.

Example 4.3.21 ADD A0~, A0, *R6+0x10, ++A
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Preincrement AP0. After preincrement, A0 is AC3 and A0~ is AC19. Add
AC3 to the contents of byte address R6+0x10 and store the result in AC19. The
value in R6 is unchanged. Final result, AC19 = AC3 + *(R6+0x10) = 0xFEED
+ *0x01FA = 0xFEED + 0x0112 = 0xFFFF.

4.3.6.3 Long Relative

Long relative addressing selects one of the 8 address registers (Rx) as a base
value and adds the value of the second word operand. The base address reg-
ister is not modified.

Syntax:

name [dest,] [src,] *Rx+offset16 [, next A]
name *Rx+offset16 [, src] [, next A]

Address

+

Rx
(x = 0 – 7)

Memory Operand

Operand

Example 4.3.22 MOV A0~, *R1+0x0254, ++A
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Preincrement A0. After preincrement, A0 is AC3 and A0~ is AC19. Load
the contents of the data memory byte location R1+0x0254 into AC19. R1 re-
mains unchanged. Final result, AP0=3, AC19=*(R1+0x0254) = *0x022A =
0x0400.

Example 4.3.23 MOV *R7+0x0442, MR
Refer to the initial processor state in Table 4–8 before execution of this instruc-
tion. Store the value in MR to data memory byte location, R7+0x0442. R7 re-
mains unchanged. Final result, *0x02A1 = 0x1A15.



Instruction Syntax and Addressing Modes

4-19Assembly Language Instructions

4.3.7 Flag Addressing

This addressing mode addresses only the 17th bit (the flag/tag bit) located in
data memory. This addressing applies to Class 8a instructions as explained
in section 4.4. Using flag addressing, the flag bit can be loaded or saved. In
addition, various logical operations can be performed without affecting the re-
maining 16 bits of the selected word. Two addressing modes are provided. The
first addressing mode, global flag addressing, has bit 0 set to zero and a six
bit field (b1–b6) that defines the flag word address. The second mode, relative
flag addressing, has bit 0 set to one and a 6-bit field (b1–b6) that defines the
flag address relative to R6 (see Figure 4–2). In other words, the, i.e., effective
address = (contents of R6) + (6-bit offset). In flag addressing, R6 contains the
address that points to the 17th bit. This should not be confused with byte ad-
dresses and word addresses.

Figure 4–2. Relative Flag Addressing

Address

+

R6
PAGE register

6-Bit positive offset

Operand

Syntax: name {dest}, {src}
Global Flag: name TFn, dma6 

name dma6, TFn
Relative Flag: name TFn, *R6+offset6

name *R6+offset6, TFn

Example 4.3.24 MOV *0x02, TF2
Take the test flag 2 bit (TF2 in the status register) and place it into the 17th bit
of the data memory location 0x02.

Example 4.3.25 AND TF1, *0x20
AND the test flag 1 bit (TF1 in status register) with the 17th bit of the data
memory location 0x20 and store the result in the TF1 bit of the STAT.

Example 4.3.26 OR TF2, *R6+0x02
OR the test flag 2 bit (TF2 in status register) with the 17th bit of the data memory
location *(R6+0x02) and store the result in the TF2 bit in of the status register.
So, if R6=0x0100, then relative flag address is 0x0102.

Example 4.3.27 XOR TF1, *R6+0x20
XOR the test flag 1 bit (TF1 in status register) with the 17th bit of the data
memory location *(R6+0x20) and store the result in TF1 bit of the status
register. So, if R6=0x0100, then relative flag address is 0x0120.



Instruction Syntax and Addressing Modes

 4-20

4.3.8 Tag/Flag Bits

The words TAG and flag may be used interchangeably in this manual. The
TAG bit is the 17th bit of a word of data memory. There are 640 words of RAM,
each 17 bits wide, on the C614. Therefore, there are 640 TAG bits on the C614.
When an instruction of the format,

MOV accumulator, RAM

is performed, the STAT register is affected by various properties of this trans-
fer. The TAG bit of the RAM location is copied into the TAG bit of the STAT reg-
ister during such transfers.

The TAG bit can be modified using several instructions: STAG, RTAG, SFLAG,
RFLAG. There are subtle differences between these instructions that the user
must understand before using them. The first difference between the xTAG
and xFLAG instructions is the addressing.

STAG *0x0000 ;sets the TAG bit of RAM word zero

RTAG *0x0002 ;clears the TAG bit of RAM word one

STAG  *0x0002 * 2 ;sets the TAG bit of RAM word two

STAG and RTAG use RAM byte addresses to specify which TAG to set or clear.
This immediately causes confusion since there are 1280 bytes and only 640
TAGs. What happens when an odd byte is used to set a tag with STAG?

STAG *0x0001 ;sets the TAG bit of RAM word zero

STAG *0x0003 ;sets the TAG bit of RAM word one

STAG  *0x0005 * 2 ;sets the TAG bit of RAM word five

All word boundaries in RAM start at even numbers, RAMeven. If an odd byte,
RAMeven + 1 is used to set a TAG, then the TAG for RAMeven is set. Thus,

STAG *0x0000

STAG *0x0001

are functionally equivalent.

As a sharp contrast, the SFLAG and RFLAG instructions use RAM word ad-
dresses to specify which TAG to set or clear.

SFLAG *0x0000 ;sets the TAG bit of RAM word zero

SFLAG *0x0001 ;sets the TAG bit of RAM word one

Another difference between the xTAG and xFLAG instructions is the addres-
sing modes. STAG and RTAG can use {adrs} addressing modes. This in-
cludes, direct, short relative, relative to R5, long relative, and indirect addres-
sing modes. This affects the number of clock cycles it takes to execute xTAG
instructions.



Instruction Syntax and Addressing Modes

4-21Assembly Language Instructions

However, xFLAG instructions use {flagadrs} addressing modes. This includes
global (dma6) and relative (R6 + 6–bit offset). Both take only one clock cycle.

Possible sources of confusion: Consider the following code,

ram0 equ0x0000 *2  ;RAM word zero

ram1 equ0x0001 *2  ;RAM word one

ram2 equ0x0002 *2  ;RAM word two

STAG *ram1

MOV A0,*ram1  ;TAG bit is set in STAT register

RTAG *ram1

SFLAG *ram1  ;This sets the TAG bit of ram2!

MOV A0,*ram1  ;TAG bit is not set in STAT register!

MOV TF1,*ram1  ;TF1 bit in STAT is set!?

Explanation: The first three instructions perform as you would expect. The
TAG bit is set at the RAM variable, ram1. The TAG bit is set in the STAT register
when the MOV instruction executes. Finally, ram1’s TAG bit is cleared.

The next two instructions are problematic. When SFLAG sets the tag bit, it will
set the tag bit for the second word location, ram2. This does not set the TAG
bit for ram1. What is worse is that the value in ram1 must be less than 64
(dma6) since this is global addressing for SFLAG. To access TAG bits for high-
er RAM, the R6 (PAGE) register is needed.

The last instruction is also confusing. Why is TF1 set in the STAT even though
ram1’s TAG bit is not set? The answer is that this MOV instruction considers
the {src} argument to be a word value instead of the usual byte value. Thus,
this MOV instruction operates on ram2 rather than on ram1.



Instruction Classification

 4-22

4.4 Instruction Classification

The machine level instruction set is divided into a number of classes. The
classes are primarily divided according to field references associated with
memory, hardware registers, and control fields. The following descriptions
give class-encode bit assignments, the OP code value within the class, and
the abbreviated field descriptions.

Some of the following symbols will be used repeatedly throughout this chapter
as shown in Table 4–10 (for additional information see section 4.13).

Table 4–10. Symbols and Explanation

Symbol Explanation

! Invert the bit of the source. Used with flag addressing only.

{adrs}n The contents of the effective data memory address referred to by the addressing mode syntax. If
n is specified, n bits are involved. If unspecified, data is 16 bits. See Table 4–4.

{cc} Condition code mnemonic used with conditional branch/calls and test flag/bit instructions. Curly
braces indicate this field is not optional.

{flagadrs} Flag addressing syntax as shown in Table 4–7.

~A Select offset accumulator as the destination accumulator if this bit is 1.

~A~ Can be either ~A or A~ based on the opcode (or instruction).

A~ Select offset accumulator as source if this bit is 1.

adrs Addressing mode bits am, Rx, pm. See Table 4–4.

An Accumulator pointed to by APn. Accumulators cannot be referenced directly. For example, A22 is
not valid since accumulators are only addressible though the accumulator pointers AP0–AP3.
Therefore, to access accumulators, use A0, A1, A2 and A3. This should not be confused with
APn where AP is an accumulator pointer, not an accumulator.

An~ Indicates the offset of the accumulator pointed to by accumulator pointer An. This is also an ac-
cumulator, not an accumulator pointer.

Apn Accumulator pointer APn where n = 0, 1, 2 or 3. The difference between An and APn is that An is
the accumulator pointed to by APn. In both cases, n ranges from 0 to 3.

cc Condition code bits used with conditional branch/calls and test flag/bit instructions.

clk Clock cycles to execute the instruction

dma[n] n bit data memory address. For example, dma8 means 8–bit location data memory address. If n
is not specified, defaults to dma16.

flagadrs Flag addressing bits as shown in Table 4–7.

flg Test flag bit.

g/r Global/relative flag bit for flag addressing.

imm[n] n bit immediate value

k0...kn Constant field bits.



Instruction Classification

4-23Assembly Language Instructions

Table 4–11. Symbols and Explanation (Continued)

Symbol Explanation

next A Accumulator control bits as described in Table 4–6.

[next A] The preincrement (++A) or predecrement (––A) operation on accumulator pointers An or An~.

Not NOT condition on conditional jumps, conditional calls or test flag instructions.

nR Value in the repeat counter loaded by repeat instruction.

ns Value in string register STR.

offset[n] n bit offset from a reference register.

pma[n] n bit program memory address. For example, pma8 means 8-bit program memory address. If n
is not specified, defaults to pma16.

port[n] n bit I/O port address.

R Rx registers are treated as general-purpose registers. These bits are not related to any addres-
sing modes.

Rx Indirect register bits as described in Table 4–3.

s Represents string mode if 1, otherwise normal mode.

x Don’t care

Instructions on the MSP50P614/MSP50C614 are classified based on the op-
erations the instruction group performs (see Table 4–11). Each instruction
group is referred to as a class. There are 9 instruction classes. Classes are
subdivided into subclasses. Classes and opcode definitions are shown in
Table 4–11.

Table 4–11. Instruction Classification

Class Sub-
Class

Description

1 Accumulator and memory reference instructions

A Accumulator and memory references with or without string operations and accumulator
preincrementing

B Accumulator and memory references with or without string operations

2 Accumulator constant reference

A Short constant to accumulator

B Long constant to accumulator

3 Accumulator reference instructions with no addressing modes



Instruction Classification

 4-24

Table 4–11. Instruction Classification (Continued)

Class Sub-
Class

Description

4 Register and memory reference

A Memory references that use Rx; all addressing modes available

B Memory references with short constant fields operating on Rx

C Memory references with long constant fields operating on Rx in errata, has not been connected

D Memory references with R5 operating on Rx

5 General mMemory reference instructions

6 I/O port and memory reference instructions

A Port/memory reference

B Port/accumulator reference

7 Program control instructions

A Macro call instructions

B Conditional and unconditional jump instructions

C Conditional and unconditional call instructions

8 Logical bit instructions

A Logical flag instructions

B Test status instructions

9 Miscellaneous instructions

A Filter instructions

B Miscellaneous short constant instructions

C Accumulator address instructions

D Other instructions



Instruction Classification

4-25Assembly Language Instructions

Table 4–12. Classes and Opcode Definition
Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 1a 0 0 C1a ~A~ next A An am Rx pm

Class 1b 0 1 C1b s An am Rx pm

Class 2a 1 0 1 0 C2a An imm8

Class 2b 1 1 1 0 0 next A An C2b 0 0 1 A~ ~A

Class 3 1 1 1 0 0 next A An C3 0 A~† ~A

Class 4a 1 1 1 1 0 C4a R am Rx pm

Class 4b 1 0 1 1 C4b k4 k3 k2 k7 k6 k5 R k1 k0

Class 4c 1 1 1 1 1 1 1 0 0 0 C4c R x x

Class 4d 1 1 1 1 1 1 1 0 0 1 C4d R x x

Class 5 1 1 0 1 C5 am Rx pm

Class 6a 1 1 0 0 C6a port4 am Rx pm

Class 6b 1 1 1 0 1 1 s An port6 C6b ~A~

Class 7a 1 1 1 1 1 1 1 0 1 vector8

Class 7b 1 0 0 0 0 0 Not cc rx pm

JMP *An 1 0 0 0 1 0 x An x x x x x x x x

Class 7c 1 0 0 0 0 1 Not cc x x x x x

CALL *An 1 0 0 0 1 1 x An x x x x x x x x

Class 8a 1 0 0 1 1 flg n C8a flagadrs g/r

Class 8b 1 0 0 1 0 flg Not cc Rx C8b C8b

Class 9a 1 1 1 0 1 0 0 An C9a 0 Rx 1 1

Class 9b 1 1 1 1 1 1 0 C9a k

Class 9c 1 1 1 1 1 0 1 An 0 C9c x imm5

Class 9d 1 1 1 1 1 1 1 1 0 C9d 0 0 0 0

ENDLOOP n 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 n

NOP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
† Meaning of this bit depends on what class 3 instruction is used.

4.4.1 Class 1 Instructions: Memory and Accumulator Reference

This class of instructions controls execution between data memory and the
accumulator block. In addition to the explicit opcode field that specifies an
arithmetic operation, an eight-bit data memory addressing mode reference
field (am, Rx, pm i.e., adrs field) controls the addressing of one input operand,
and a 4-bit field (An and next A in class 1a) or 2-bit field (An in class 1b) selects
an accumulator location as the other input operand. The results are written to
the addressed accumulator location (or to the offset accumulator in class 1a
if ~A bit = 1). In addition, each instruction can be treated as a single word length
operation or as a string, depending on the string control encoded in the op code
(s = 1 in class 1b and An = 11 binary in class 1a).



Instruction Classification

 4-26

Class 1a provides the four basic instructions of load, store, add, and subtract
between accumulator and data memory. Either the accumulator or the offset
accumulator (A~ bit dependent) can be stored in memory with the MOV
instruction. The MOV instruction can load the accumulator (or its offset)
depending on the ~A bit. The ADD or SUB instructions add or subtract memory
from an accumulator register and save the results in the accumulator register
(~A=0) or its offset (~A=1). Two of the four codes provided by the next A field
will cause a pre–increment or a predecrement of the accumulator register
pointer (AP) prior to execution. This preincrement is a permanent change to
the referenced AP and further expands the use of the accumulator block as
an efficient workspace. Preincrements and predecrements are not available
in string mode

One of the four codes of the An field (An = 11 binary) will cause the instruction
to be treated as a multicycle string instruction. This will not result in any perma-
nent modification to the referenced AP.

Since there is no reference to offset accumulators in Class 1b instructions, the
execution operates on memory and accumulators. All other modes of control
(string, preincrement/predecrement AP, data memory addressing modes,
etc.) are provided for logical, byte, multiply-accumulate, and barrel shift
instructions.

Table 4–13. Class 1 Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 1a 0 0 C1a ~A~ next A An adrs

Class 1b 0 1 C1b s An adrs

Table 4–14. Class 1a Instruction Description

C1a Mnemonic Description

0 0 ADD An[~], An, {adrs} [, next A]
ADDS An[~], An, {adrs}

Add contents of data memory location referred by {adrs} to accumulator An
and store the results in the same accumulator An (if ~A=0) or offset
accumulator An~ (~A=1). ALU status is  modified.

0 1 SUB An[~], An, {adrs} [, next A]
SUBS An[~], An, {adrs}

Subtract contents of data memory location referred by {adrs} from
accumulator An and store the results in the same accumulator An (if ~A=0)
or offset accumulator An~ (~A=1). ALU status is modified.

1 0 MOV An[~], {adrs} [, next A]
MOVS An[~], {adrs}

Load accumulator An (~A=0) or offset accumulator An~ (~A=1) from data
memory location referred to {adrs}. ALU status is modified.

1 1 MOV {adrs}, An[~] [, next A]
MOVS {adrs}, An[~]

Store accumulator (A~=0) or offset accumulator (A~=1) to data memory
location referred to by addressing mode {adrs}. Transfer status is modified.



Instruction Classification

4-27Assembly Language Instructions

Table 4–15. Class 1b Instruction Description

C1b Mnemonic Description

0 0 0 0 OR An, {adrs}
ORS An, {adrs}

Logical  OR the contents of the data memory location in {adrs}
and the selected accumulator.  Result(s) stored in
accumulator(s). ALU status is modified

0 0 0 1 AND An, {adrs}
ANDS An, {adrs}

Logical AND the contents of the data memory location in {adrs}
and the accumulator. Result(s) stored in accumulator(s). ALU
status is modified

0 0 1 0 XOR An, {adrs}
XORS An, {adrs}

Exclusive OR the contents of the data memory location in
{adrs} and the accumulator. Result(s) stored in accumulator(s).
ALU status is modified

0 0 1 1 MOVB An, {adrs}8
MOVBS An, {adrs}8

Load the contents of the data memory location in {adrs}and to
the lower 8 bits of the accumulator. Zero fill the upper byte in the
accumulator ALU status is modified.

0 1 0 0 MOVB {adrs}8, An
MOVBS {adrs}8, An

Store the lower 8 bits of accumulator to the data memory
location in {adrs}. The data byte is automatically routed to either
the lower byte or upper byte in the 16-bit memory word based
on the LSB of the address. Transfer status is modified.

0 1 0 1 Reserved N/A

0 1 1 0 CMP An, {adrs}
CMPS An, {adrs}

Store the arithmetic status of the contents of {adrs} subtracted
from accumulator into the ALU status bits. The accumulator is
not modified.

0 1 1 1 MOV {adrs} , *An
MOVS {adrs} , *An

Look up the value stored in program memory addressed by the
accumulator and store in the data memory location in {adrs}.
Transfer status is modified .

1 0 0 0 MULTPL An, {adrs}
MULTPLS An, {adrs}

Multiply the MR register by the contents of {adrs} and transfer
the lower 16 bits of the result to the accumulator. Latch the
upper 16 bits into the PH register. ALU status is modified.

1 0 0 1 MOVSPH An, MR, {adrs}
MOVSPHS An, MR, {adrs}

Load the MR register in signed mode from the data memory
location in {adrs}. In parallel, subtract the PH register from the
accumulator. The string bit will string with the previous ALU
status (CF, ZF)  but it will not load the string counter (executes
once). ALU status is modified.

1 0 1 0 MOVAPH An, MR, {adrs}
MOVAPHS An, MR, {adrs}

Load the MR register in signed mode from the data memory
location in {adrs}. In parallel, add  the PH register  to the
accumulator. The string bit will string with the previous ALU
status (CF, ZF) but it will not load the string counter (executes
once). ALU status is modified.



Instruction Classification

 4-28

Table 4–15. Class 1b Instruction Description (Continued)

C1b Mnemonic Description

1 0 1 1 MULAPL An, {adrs}
MULAPLS An, {adrs}

Multiply the MR register by the addressing mode {adrs} and add
the lower 16 bits of the product to the accumulator. Latch the
upper 16 bits into the PH register. ALU status is modified.

1 1 0 0 SHLTPL An, {adrs}
SHLTPLS An, {adrs}

Shift left n bits (SV reg).  The 16-bit contents of the data memory
location in {adrs} are shifted and placed in accumulator (string)
An. Zeros fill from the right and either zeros or ones fill the left
depending on the sign (assuming XSGM mode is set). Transfer
the lower 16 bits to the accumulator and latch the upper 16 bits
in PH. ALU status is modified.

1 1 0 1 SHLSPL An, {adrs}
SHLSPLS An, {adrs}

Shift left n bits (SV reg ). The contents of the data memory
location in {adrs} are placed in a 32-bit result.  Zeros fill from the
right and either zeros or sign extended ones fill the left (if XSGM
mode is set). Subtract the lower 16 bits from the accumulator
and latch the upper 16 bits in PH. ALU status is modified.

1 1 1 0 SHLAPL An, {adrs}
SHLAPLS An, {adrs}

Shift left n bits (SV reg). The contents of the data memory loca-
tion in {adrs} are placed into a 32-bit result.  Zeros fill the right
and either zeros or sign extended ones fill the left (in XSGM
mode). Add the lower 16 bits to the accumulator and latch the
upper 16 bits in PH. ALU status is modified.

1 1 1 1 MULSPL An, {adrs}
MULSPLS An, {adrs}

Multiply the MR register by the contents of {adrs} and subtract
the lower 16 bits of the product from the accumulator. Latch the
upper 16 bits into the PH register. ALU status is modified.

4.4.2 Class 2 Instructions: Accumulator and Constant Reference

These instructions provide the capability to reference short (8 bits) or long (16
bits or (nS+2) * 16-bit string) constants stored in program memory and to
execute arithmetic and logical operations between accumulator contents and
these constants. Since the MSP50P614/MSP50C614 is a Harvard type
processor, these instructions are necessary and distinct from the general class
of memory reference instructions. Subclass 2a, listed belows include
references between accumulator and short 8-bit constants. This class has the
advantage of requiring only 1 instruction word to code and 1 instruction cycle
to execute Thus is particularly useful for control variables such as loop counts,
indexes, etc. The short constants also provide full capability for byte
operations in a single instruction word.

Subclass 2b references accumulator and long constants from program
memory (16 bits for non string constants and (nS+2) * 16 bits for string
constants). Class 2b instructions take 2 instruction words to code. The execu-
tion of these instructions is 2 instruction cycles when the long constant is a
single word. The execution is nS+2 execution cycles for nS word string



Instruction Classification

4-29Assembly Language Instructions

constants. Long constants (16 bits) and long string constants differ in that ref-
erences are made to constants in the second word of the two-word instruction
word. References made to a single 16-bit integer constant are immediate. That
is, the actual constant value follows the first word opcode in memory. For string
constants, the second word reference to the constants is immediate-indirect
which indicates that the second word is the address of the least significant
word of the string constant. This definition allows all long string constants to
be located in a table and permits the reference in the machine language listing
to be consistent with those of shorter constants.

Table 4–16. Class 2 Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 2a 1 0 1 0 C2a An imm8

Class 2b 1 1 1 0 0 next A An C2b 0 0 1 A~ ~A

Table 4–17. Class 2a Instruction Description

C2a Mnemonic Description

0 0 0 ADDB An, imm8 Add an 8-bit positive constant to the accumulator and store the result in the
accumulator. ALU status is modified.

0 0 1 MOVB An, imm8 Load an 8-bit positive constant into accumulator. ALU status is modified.

0 1 0 SUBB An, imm8 Subtract 8-bit positive constant from accumulator and store result
accumulator. ALU status modified.

0 1 1 CMPB An, imm8 Modify ALU status with the result of 8-bit positive value subtracted from
accumulator. Original accumulator value not modified.

1 0 0 ORB An, imm8 Logical OR 8-bit positive constant with accumulator and store result to
accumulator. ALU status modified.

1 0 1 ANDB An, imm8 Logical AND 8-bit positive constant with accumulator. Store result to
accumulator. ALU status modified.

1 1 0 XORB An, imm8 Logical XOR 8-bit positive constant with accumulator. Store result to
accumulator. ALU status modified.

1 1 1 MOVB MR, imm8 Load 8-bit constant to Multiplier register (MR). Does not change UM mode in
status register but will zero fill the top 8 bits in MR register. No change in status.



Instruction Classification

 4-30

Table 4–18. Class 2b Instruction Description

C2b Mnemonic Description

0 0 0 ADD An[~], An[~], imm16 [, next A]
ADDS An[~], An[~], pma16

Add long constant to accumulator (or offset accumulator if
A~=1) and store result to accumulator (~A=0) or offset
accumulator (~A=1). ALU status modified.

0 0 1 MOV An[~], imm16 [, next A]
MOVS An[~], pma16

Load long constant to accumulator (~A=0 or 1). ALU status is
modified.

0 1 0 SUB An[~], An[~], imm16 [, next A]
SUBS An[~], An[~], pma16

Subtract a long constant from the accumulator (A~=0 or 1).
Store the result in accumulator (~A=0) or offset accumulator
(~A=1). ALU status is modified.

0 1 1 CMP An[~], imm16 [, next A]
CMPS An[~], pma16

Modify ALU status by subtracting a long constant from accu-
mulator (A~=0) or from offset accumulator (A~=1). Neither ac-
cumulator or offset accumulator is modified

1 0 0 OR An[~], An[~], imm16 [, next A]
ORS An[~], An[~], pma16

Logical OR a long constant with accumulator (A~=0 or 1).
Store the result in accumulator(~A=0) or offset accumulator
(~A=1). ALU status is modified.

1 0 1 AND An[~], An[~], imm16 [, next A]
ANDS An[~], An[~], pma16

Logical AND a long constant with accumulator (A~=0 or
1).Store the result to accumulator(~A=0 or 1) . ALU status is
modified.

1 1 0 XOR An[~], An[~], imm16 [, next A]
XORS An[~], An[~], pma16

Logical exclusive OR a long constant with accumulator (A~=0
or 1) Store the result to accumulator (~A=0 or 1). ALU status is
modified.

1 1 1 MOV MR, imm16 [, next A] Load a long constant to MR in signed mode. No change in
status.

4.4.3 Class 3 Instruction: Accumulator Reference

These instructions reference the accumulator and, in some instances, specific
registers for transfers. Some instructions use a single accumulator operand
and others use both the accumulator and the offset accumulator to perform
operations between two accumulator values. The A~ bit in the instruction word
reverses the sense of the addressed accumulator and the addressed offset
accumulator. In general, if A~=1, the instruction uses the offset accumulator
as the input operand on single accumulator operand instructions.  It
interchanges the arithmetic order (subtract, compare, multiply–accumulate,
etc.) of the two operands when both are used. Exceptions to the rule are the
instructions NEGAC[S], NOTAC[S], MULSPL[S], MULAPL[S], MULTPL[S],
SHLSPL[S], SHLTPL[S] and SHLAPL[S], which use the reverse A~ control
(A~=1 for accumulator, A~=0 for offset accumulator). The ~A bit in the
instruction word controls the destination of the result to be the accumulator
(~A=0) or the offset accumulator (~A=1).

In addition to basic accumulator arithmetic functions this class also includes
an accumulator lookup instruction and several register transfer instructions



Instruction Classification

4-31Assembly Language Instructions

between the accumulator and the MR, SV, or PH register. As with all accumula-
tor referenced instructions, string operations are possible as well as premodi-
fication of one of 4 indirectly referenced accumulator pointer registers (AP).

Table 4–19. Class 3 Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 3 1 1 1 0 0 next A An C3 0 A~ ~A

Table 4–20. Class 3 Instruction Description

C3 Mnemonic Description

0 0 0 0 0 NEGAC An[~], An[~] [, next A]
NEGACS An[~], An[~]

Store the 2’s complement of the source accumulator
(A~=0 or 1) to the destination accumulator (~A=0 or 1).
ALU status is modified.

0 0 0 0 1 NOTAC An[~], An[~] [, next A]
NOTACS An[~], An[~]

Place the 1’s complement of the source accumulator
(A~=0 or 1) into the destination accumulator (~A=0 or 1).
ALU status is modified.

0 0 0 1 0 MOV An[~], *An[~] [, next A]
MOVS An[~], *An[~]

Look up a value in program memory addressed by
accumulator (A~=0 or 1).  Place the lookup value into the
accumulator (~A=0 or 1). The lookup address is
post–incremented in the DP register. ALU status is
modified based on the lookup value.

0 0 0 1 1 ZAC An[~] [, next A]
ZACS An[~]

Zero  accumulator (~A=0 or 1). ALU status is modified.

0 0 1 0 0 SUB An[~], An, An~ [, next A]
SUB An[~], An~, An [, next A]
SUBS An[~], An, An~
SUBS An[~], An~, An

Subtract offset accumulator from accumulator (A~=0) or
subtract accumulator from offset accumulator (A~=1).
Store the result in accumulator (~A=0 or 1). ALU status is
modified.

0 0 1 0 1 ADD An[~], An~, An [, next A]
ADDS An[~], An~, An

Add accumulator to offset accumulator and store result to
accumulator (~A=0 or 1). ALU status is modified.

0 0 1 1 0 SHLAC An[~], An[~] [, next A]
SHLACS An[~], An[~]

Shift accumulator left 1 bit and store the result into
accumulator(~A=0) or offset accumulator (~A=1). The
LSB is set to zero and the MSB is stored in a carryout
status bit. ALU status is modified.

0 0 1 1 1 MOV An, An~ [, next A]
MOVS An, An~

Copy  accumulator (A~=0 or 1) to accumulator (~A=0 or 1).
ALU status is modified.

† These instructions have a special 1 word string operations when string mode is selected. The instructions ignore the string count,
executing only once but maintain the carry and comparison to zero operation of the previous arithmetic operation as if the
sequence of the previous string instruction and this instruction execution was a part of a larger string operation.



Instruction Classification

 4-32

Table 4–20. Class 3 Instruction Description (Continued)

C3 Mnemonic Description

0 1 0 0 0 XOR An[~], An~, An [, next A]
XORS An[~], An~, An

Logically exclusive OR accumulator with offset
accumulator and store the results in accumulator (~A=0 or
1). ALU status is modified.

0 1 0 0 1 OR An[~], An~, An [, next A]
ORS An[~], An~, An

Logically OR accumulator with offset accumulator and
store results into accumulator (~A=0 or 1). ALU status is
modified.

0 1 0 1 0 AND An[~], An~, An [, next A]
ANDS An[~], An~, An

Logically AND accumulator with offset accumulator and
store result(s) into accumulator (~A=0 or 1). ALU status is
modified.

0 1 0 1 1 SHRAC An[~], An[~] [, next A]
SHRACS An[~], An[~]

Shift accumulator or offset accumulator right 1 bit and
store result in accumulator (~A=0 or 1).  MSB will be set to
zero or be set equal to the sign bit (XSGM dependent).
ALU status is modified.

0 1 1 0 0 SUB An[~], An[~], PH [, next A]
SUBS An[~], An[~], PH
†

Subtract product high register from accumulator (A~=0) or
from offset accumulator (A~=1) and store the result into
accumulator (~A=0) or into the offset accumulator (~A=1).
ALU status is modified. String bit causes subtract with
carry status (CF).

0 1 1 0 1 ADD An[~], An[~], PH [, next A]
ADDS An[~], An[~], PH
†

Add product high register to accumulator or to offset
accumulator and store the result into accumulator (~A=0
or 1).  ALU status is modified. The string bit causes an add
with carry status (CF).

0 1 1 1 0 MOV An[~], PH [, next A]
MOVS An[~], PH
†

Transfer product high register to accumulator (~A=0) or
offset accumulator (~A=1). ALU status is modified.  String
bit will cause stringing with current ZF status bit.

0 1 1 1 1 EXTSGN An[~] [, next A]
EXTSGNS An[~]
†

Copy SF bit in status register to all 16 bits of the
accumulator or offset accumulator. On strings, the
accumulator address is preincremented causing the sign
of the addressed accumulator to be extended into the next
accumulator address.

1 0 0 0 0 CMP An~, An [, next A]
CMP An, An~ [, next A]
CMPS An~, An
CMPS An, An~

Subtract offset accumulator from accumulator(A~=0) or
subtract accumulator from offset accumulator (A~=1) and
store the status of the result into ALU status. Accumulator
or offset accumulator original value remains unchanged.

1 0 0 0 1 reserved N/A

1 0 0 1 0 reserved N/A

1 0 0 1 1 reserved N/A

† These instructions have a special 1 word string operations when string mode is selected. The instructions ignore the string count,
executing only once, but maintain the carry and comparison to zero operation of the previous arithmetic operation as if the
sequence of the previous string instruction and current instruction were part of a larger string operation.



Instruction Classification

4-33Assembly Language Instructions

Table 4–20. Class 3 Instruction Description (Continued)

C3 Mnemonic Description

1 0 1 0 0 MOV SV, An[~] [, next A]
MOVS SV, An[~]

Transfer accumulator(A~=0) or offset accumulator (A~=1)
to SV register. Transfer status is modified.

1 0 1 0 1 MOV PH, An[~] [, next A]
MOVS PH, An[~]

Transfer accumulator (A~=0) or offset accumulator (A~=1)
to PH register. Transfer status is modified.

1 0 1 1 0 MOV MR, An[~] [, next A]
MOVS MR, An[~]

Transfer accumulator (A~=0) or offset accumulator (A~=1)
to MR register in the signed multiplier mode (UM bit in
status register set to 0). Transfer status is modified.

1 0 1 1 1 MOVU MR, An[~] [, next A] Transfer accumulator (A~=0 or 1) to MR register in the
unsigned multiplier mode(UM bit set to 1). Transfer status
is modified.

1 1 0 0 0 MULSPL An[~], An[~] [, next A]
MULSPLS An[~], An[~]

Multiply the MR register by accumulator (A~=1) or offset
accumulator (A~=0) , subtract lower 16 bits of the product
from the offset accumulator (A~=1) or accumulator
(A~=0). Store in the accumulator (~A=0) or offset
accumulator (~A=1). Latch the upper 16 bits in PH. ALU
status is modified.

1 1 0 0 1 MULAPL An[~], An[~] [, next A]
MULAPLS An[~], An[~]

Multiply MR register by accumulator (A~=1) or offset
accumulator (A~=0) , add lower 16 bits of product to offset
accumulator (A~=1) or accumulator (A~=0) and store to
accumulator (~A=0) or offset accumulator (~A=1). Latch
upper 16 bits in PH. ALU status is modified.

1 1 0 1 0 SHLTPL An[~], An[~][, next A]
SHLTPLS An[~], An[~]

Barrel shift the accumulator (A~=1 or  1) value n bits left
(SV reg). Store the upper 16 bits of the 32-bit shift result to
PH (msbs extended by XM mode bit). Transfer the lower
16 bits to accumulator (~A=0) or offset(~A=1). ALU status
is modified.

1 1 0 1 1 MULTPL An[~], An[~] [, next A]
MULTPLS An[~], An[~]

Multiply MR register by accumulator(A~=1) or offset
(A~=0), transfer lower 16 bits of product to accumulator
(~A=0) or offset accumulator(~A=1). Latch upper 16 bits of
Product to PH register. ALU status is modified.

1 1 1 0 0 SHLSPL An[~], An[~] [, next A]
SHLSPLS An[~], An[~]

Barrel shift the accumulator(A~=1) or offset accumulator
(A~=0) value n bits left (SV reg). Store the upper 16 bits to
PH. Subtract the lower 16 bits of value from offset (A~=1)
or accumulator (A~=0) and store in accumulator (~A=0) or
offset accumulator (~A=1). ALU status is modified.

1 1 1 0 1 SHLAPL An[~], An[~] [, next A]
SHLAPLS An[~], An[~]

Barrel shift the accumulator(A~=1) or offset accumulator
(A~=0) value n bits left (SV reg). Store the upper 16 bits to
PH. Add the lower 16 bits of value to offset accumulator
(A~=1) or accumulator (A~=0) and store in accumulator
(~A=0) or offset accumulator(~A=1). ALU status is
modified.



Instruction Classification

 4-34

Table 4–20. Class 3 Instruction Description (Continued)

C3 Mnemonic Description

1 1 1 1 0 MUL An[~] [, next A]
MULS An[~]

Multiply MR register by accumulator (A~=1) or offset
accumulator (A~=0) and latch the rounded upper 16 bits of
the resulting product into the PH register.

1 1 1 1 1 SHL An[~] [, next A]
SHLS An[~]

Barrel shift the accumulator (A~=1) or offset accumulator
(A~=0) value n bits left (n stored in SV register). Store the
upper 16 bits of the 32-bit shift result to PH.

4.4.4 Class 4 Instructions: Address Register and Memory Reference

Class 4 instructions operate on the indirect register, Rx, that exists in the ad-
dress unit (ADU).  Even though the last three registers (R5–R7) are special
(INDEX, PAGE, and STACK), class 4 instructions uniformly apply to all regis-
ters. Subclass 4a provides transfers to and from memory. In indirect mode, any
one auxiliary register can serve as the address for loading and storing the con-
tents of another.

Subclass 4b instructions provide some basic arithmetic operations between
referenced auxiliary register and short 8-bit constants from program memory.
These instructions are included to provide efficient single cycle instructions for
loop control and for software addressing routines.

Subclass 4c provide basic arithmetic operations between the referenced auxil-
iary register and 16-bit constants from program memory. These instruction re-
quire 2 instruction cycles to execute.

Also a compare to R5 (INDEX) is provided for efficient loop control where the
final loop counter value is not chosen to be zero.

Table 4–21. Class 4a Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 4a 1 1 1 1 0 C4a R adrs

Class 4b 1 0 1 1 C4b k4 k3 k2 k7 k6 k5 R k1 k0

Class 4c 1 1 1 1 1 1 1 0 0 0 C4c R x x

Class 4d 1 1 1 1 1 1 1 0 0 1 C4d R x x



Instruction Classification

4-35Assembly Language Instructions

Table 4–22. Class 4a Instruction Description

C4a Mnemonic Description

0 MOV {adrs}, Rx Store Rx register to data memory referred by addressing mode {adrs}. Modify
transfer status.

1 MOV Rx, {adrs} Load Rx with the value in data memory referred by addressing mode {adrs}.
Modify transfer status.

Table 4–23. Class 4b Instruction Description

C4b Mnemonic Description

0 0 ADDB Rx, imm8 Add 8-bit positive constant to Rx register. Modify RX status.

0 1 SUBB Rx, imm8 Subtract 8-bit positive constant from Rx register. Modify RX status.

1 0 MOVB Rx, imm8 Load Rx with the an 8-bit positive constant. Modify RX status.

1 1 CMPB Rx, imm8 Store the status of the subtraction (Rx – 8-bit positive constant) into RZF and RCF
bits of the STAT register. Rx remains unchanged.

Table 4–24. Class 4c Instruction Description

C4c Mnemonic Description

0 0 ADD Rx, imm16 Add 16-bit positive constant to Rx register. Modify RX status.

0 1 SUB Rx, imm16 Subtract 16-bit positive constant from Rx register. Modify RX status.

1 0 MOV Rx, imm16 Load Rx with the an 16-bit positive constant. Modify RX status.

1 1 CMP Rx, imm16 Store the status of the subtraction (Rx – 16-bit positive constant) into RZF and RCF
bits of the STAT register. Rx remains unchanged.

Table 4–25. Class 4d Instruction Description

C4d Mnemonic Description

0 0 ADD Rx, R5 Add R5 to Rx register, Modify RX status.

0 1 SUB Rx, R5 Subtract R5 from Rx register. Modify RX status.

1 0 MOV Rx, R5 Load Rx with R5. Modify RX status.

1 1 CMP Rx, R5 Store the status of the subtraction (Rx – R5) into RZF and RCF bits of the STAT
register. Rx and R5 remain unchanged.



Instruction Classification

 4-36

4.4.5 Class 5 Instructions: Memory Reference

Class 5 instructions provide transfer to and from data memory and all registers
except accumulators and Rx which are included in classes 1 and 4. The
registers referenced for both read and write operations are the multiplier
register (MR), the product high register (PH), the shift value register (SV), the
status register (STAT), the top of stack (TOS), the string register (STR), and
the  four accumulator pointer registers AP0 to AP3. The data pointer register
(DP) is read only since its value is established by lookup table instructions. The
RPT n (repeat) instruction is write only since repeated instructions cannot be
interrupted. IRET and RET instructions are read only operations for popping
the stack and are included in this class because the stack is memory mapped.
Also included in this class are four flag instructions that modify flag memory
and two instructions that multiply memory by MR, storing the results in the PH
register.

Table 4–26. Class 5 Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 5 1 1 0 1 C5 adrs

RET 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0

IRET 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0

Table 4–27. Class 5 Instruction Description

C5 Mnemonic Description

0 0 0 0 0 MOV {adrs}, SV Store SV in the data memory location referred by addressing mode
{adrs}, zero filled on upper 12 bits. Transfer status is modified.

0 0 0 0 1 MOV {adrs}, PH Store the PH in the data memory location referred by addressing mode
{adrs}. Transfer status is modified.

0 0 0 1 0 MOV {adrs}, STAT Store the status (STAT) register contents to the data memory location
referred by addressing mode {adrs} (17 bits including TAG). No
modification of status.

0 0 0 1 1 MOV {adrs}, STR Store string (STR) register contents to data memory location referred by
addressing mode {adrs}, zero filled on upper 8 bits. Transfer status is
modified.

0 0 1 n MOV {adrs}, APn Store the accumulator pointer (APn) register to the data memory location
in {adrs}. The upper 10 bits are zero filled. Transfer status is modified.

0 1 0 0 0 MOV {adrs}, MR Store the contents of the multiplier (MR) register in {adrs}. Transfer
status is modified.

0 1 0 0 1 Reserved

0 1 0 1 0 MOV {adrs}, DP Store the data pointer (DP) register contents to the location referred by
{adrs}. Transfer status is modified.



Instruction Classification

4-37Assembly Language Instructions

Table 4–27. Class 5 Instruction Description (Continued)

C5 Mnemonic Description

0 1 0 1 1 MOV {adrs}, TOS Store the contents of the top of stack (TOS) register to the data memory
location referred by addressing mode {adrs}. Transfer status is modified.

0 1 1 0 0 STAG {adrs} Store 1 to the 17th bit of data memory location referred by {adrs}. Set the
tag bit.

0 1 1 0 1 RTAG {adrs} Store 0 to the 17th bit of data memory location referred by {adrs}. Clear
the tag bit.

0 1 1 1 n–1 MOVT {adrs}, TFn Store TF1 bit if n=1, TF2 bit if n=0 status bit to 17th bit of data memory
location referred by addressing mode {adrs}.

1 0 0 0 0 MOV SV, {adrs}4 Load shift value (SV) register with contents of the location referred by ad-
dressing mode {adrs}. Transfer status is modified.

1 0 0 0 1 MOV PH, {adrs} Load Product High (PH) register with content of data memory location
value referred by addressing mode {adrs}. Transfer is status modified.

1 0 0 1 0 MOV TOS, {adrs} Load top of stack (TOS) register with content of data memory location
referred by addressing mode {adrs}.

1 0 0 1 1 MOV STR, {adrs}8 Load String (STR) register with content of data memory location referred
by addressing mode {adrs}. Only the lower 8 bits are loaded. Transfer
status modified.

1 0 1 n n MOV APn, {adrs} Load lower 5 bits with content of data memory location referred by
addressing mode {adrs} to accumulator pointer (AP) register n. Transfer
status is modified (16-bit value).

1 1 0 0 0 MOV MR, {adrs} Load Multiplier (MR) register with content of data memory location
referred by addressing mode {adrs} and set the multiplier signed mode
(UM=0 in STAT register). Transfer status is modified.

1 1 0 0 1 MOVU MR, {adrs} Load Multiplier (MR) register with content of data memory location
referred by addressing mode {adrs} and set the multiplier unsigned mode
(UM=1 in STAT register). Transfer status is modified.

1 1 0 1 0 MULR {adrs} Multiply MR register by content of data memory location referred by
addressing mode {adrs}, add 0x00008000 to the 32-bit product to
produce a rounding on the upper 16 bits. Store the upper rounded 16 bits
to the PH register. No status change.

1 1 0 1 1 MUL {adrs} Multiply MR register by content of data memory location referred by
addressing mode {adrs} and store the most significant 16 bits of product
into the PH register. No status change.

1 1 1 0 0 RET† Return from subroutine. Load data memory location value addressed by
R7 (STACK) to program counter.

1 1 1 0 1 IRET† Return from interrupt routine. Load data memory location value ad-
dressed by R7 (STACK) to program counter.

† The entire 17 bit is encoded. See Table 4–26.



Instruction Classification

 4-38

Table 4–27. Class 5 Instruction Description (Continued)

C5 Mnemonic Description

1 1 1 1 0 RPT {adrs}8 Load repeat counter with lower 8 bits of data memory location referred by
addressing mode {adrs}. Interrupts are queued during execution.

1 1 1 1 1 MOV STAT, {adrs} Load status (STAT) register with effective data memory location referred
by addressing mode {adrs} (17 bits with TAG).

4.4.6 Class 6 Instructions: Port and Memory Reference

These instructions provide the basic expansion port of the MSP50P614/
MSP50C614 processor. IN instructions transfer 16-bit data from one of 16
expansion ports. OUT instructions transfer 16-bit data to one of the 16
expansion ports. In a typical system, the expansion ports are divided into those
that serve internal peripheral functions and those that serve external pins. For
subclass 6b, IN and OUT provide bidirectional transfers between the same
port address (16) and accumulator. In addition, IN and OUT instructions in
class 6b can communicate with an extra 48 ports (a total of 64 including the
shared ports). Class 6b instructions also have reference to the string bit for
checking the arithmetic status of a string transfer.

Table 4–28. Class 6a Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 6a 1 1 0 0 C6a port4 adrs

Class 6b 1 1 1 0 1 1 s An port6 C6b ~A~

Table 4–29. Class 6a Instruction Description

C6a Mnemonic Description

0 IN {adrs}, port4 Transfer a 16-bit value of addressed port to data memory location referred
by addressing mode {adrs}. Refer to port address map. Transfer status is
modified.

1 OUT port4, {adrs} Transfer a 16-bit value in the data memory location referred by addressing
mode {adrs} to addressed port. Refer to Port address map. Transfer is sta-
tus modified.



Instruction Classification

4-39Assembly Language Instructions

Table 4–30. Class 6b Instruction Description

C6b Mnemonic Description

0 IN An[~], port6
INS An[~], port6

Transfer the port’s 16-bit value to an accumulator. Port addresses 0–63
are valid. ALU status is modified.

1 OUT port6, An[~]
OUTS port6, An[~]

Transfer a 16-bit accumulator value to the addressed port. Port address-
es 0–63 are valid. Transfer status is modified.

4.4.7 Class 7 Instructions: Program Control

This class of instructions provides the logical program control of conditional
branches (jumps) and calls (subroutines).

Both branch and call instructions require a 32-bit instruction word. The first
word contains the opcode and condition fields and the second word contains
the destination address. The condition field can specify the true (Not=0) or
false (Not=1) condition of 22 different status conditions. The status bits that es-
tablish the conditions are latched and remain unchanged until another instruc-
tion that affects them is executed.

In addition to call, a macro-call instruction is included. This instruction is similar
to an unconditional call instruction. When executed it pushes the PC+1 value
to the STACK and loads a paged vector (7F loaded in the upper 8 bits of PC
and an 8-bit vector number loaded into the lower 8 bits of the PC). This makes
the macro–call a single word instruction that take 2 instruction cycles to
execute. This instruction is useful for referencing frequently used subroutines.
A normal RET instruction is used to return to the main program from
macro-calls.

Auxiliary register R7 (STACK) is used as the program stack pointer and is
automatically incremented on calls and macro-calls. It is automatically
decremented on returns. Interrupts are vectored in the same way as
macro-calls. The stack pointer is incremented when interrupts fire and
decremented when an IRET is executed. One side effect of the program
stack’s operation is that it is not permissible to return to a RET instruction.
Either the compiler inserts a NOP between such occurrences or the
programmer must avoid this sequence.



Instruction Classification

 4-40

Table 4–31. Class 7 Instruction Encoding and Description

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VCALL
vector8

1 1 1 1 1 1 1 0 1 vector8

Jcc 1 0 0 0 0 0 Not cc Rx pm

JMP *An 1 0 0 0 1 0 x An x

Ccc 1 0 0 0 0 1 Not cc x

CALL *An 1 0 0 0 1 1 x An x

cc
cc names Description

cc
cc name Not cc name

0 0 0 0 0 Z NZ Conditional on ZF=1

0 0 0 0 1 S NS Conditional on SF=1

0 0 0 1 0 C NC Conditional on CF=1

0 0 0 1 1 B NB Conditional on ZF=0 and CF=0

0 0 1 0 0 A NA Conditional on ZF=0 and CF=1

0 0 1 0 1 G NG Conditional on SF=0 and ZF=0

0 0 1 1 0 E NE Conditional if ZF=1 and OF=0

0 0 1 1 1 O NO Conditional if OF=1

0 1 0 0 0 RC RNC Conditional on RCF=1

0 1 0 0 1 RA RNA Conditional on RZF=0 and RCF=1

0 1 0 1 0 RE RNE Conditional on RZF=1

0 1 0 1 1 REZI Conditional on value of Rx=0 (Not available on Calls)

0 1 1 0 0 RLZI Conditional on MSB of Rx=1. Not available on Calls.

0 1 1 0 1 L NL Conditional on ZF=0 and SF=1

0 1 1 1 0 Not assigned

0 1 1 1 1 Not assigned

1 0 0 0 0 TF1 NTF1 Conditional on TF1

1 0 0 0 1 TF2 NTF2 Conditional on TF2

1 0 0 1 0 TAG NTAG Conditional on TAG

1 0 0 1 1 IN1 NIN1 Conditional on IN1 status

1 0 1 0 0 IN2 NIN2 Conditional on IN2 status



Instruction Classification

4-41Assembly Language Instructions

Table 4–31. Class 7 Instruction Encoding and Description (Continued)

cc
cc names Description

cc
cc name Not cc name

1 0 1 0 1 Unconditional

1 0 1 1 0 Not assigned

1 0 1 1 1 Not assigned

1 1 0 0 0 XZ XNZ Conditional on XSF

1 1 0 0 1 XS XNS Conditional on XZF

1 1 0 1 0 XG XNG Conditional on ! XSF and ! XZF

1 1 0 1 1 Not assigned

1 1 1 0 0 Not assigned

1 1 1 0 1 Not assigned

1 1 1 1 0 Not assigned

1 1 1 1 1 Not assigned

4.4.8 Class 8 Instructions: Logic and Bit

This class of instructions provides a flexible and efficient means to make
complex logical decisions. Instead of making a sequence of single bit
decisions and constructing a logical statement through a branch decision tree,
the program can sequentially combine several status conditions to directly
construct a final logic value (TF1 or TF2) which can be used to control a
subsequent branch or call. This class includes two subclasses. Class 8a
instructions update one of the test flags (TF1 or TF2) with a logical combination
of the old test flag value and an addressed memory flag value. Subclass 8b
provides a flexible means of logically combining the test flag (TF1 or TF2) with
a status condition and storing the results back to the test flag.

Table 4–32. Class 8a Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 8a 1 0 0 1 1 flg Not C8a flagadrs

Class 8b 1 0 0 1 0 flg Not cc Rx C8b

RFLAG {flagadrs} 1 0 0 1 1 0 0 0 1 1 flagadrs

SFLAG {flagadrs} 1 0 0 1 1 1 0 1 0 1 flagadrs



Instruction Classification

 4-42

Table 4–33. Class 8a Instruction Description

C8a Mnemonic Description

0 0 0 MOV TFn, {flagadrs} Load flag bit (17th bit) from data memory referred by flag addressing mode
{flagadrs} to either TF1 or TF2 in status register. Load with inverted value if
Not=1.

0 1 0 OR TFn, {flagadrs} Logically OR either TF1 or TF2 with flag bit (17th bit) from data memory
referred by flag addressing mode {flagadrs} (or inverted value if N=1)
addressed by the instruction and store back to TF1 or TF2 respectively.

1 0 0 AND TFn, {flagadrs} Logically AND either TF1 or TF2 with flag bit (17th bit) from data memory
referred by flag addressing mode {flagadrs} (or inverted value if Not=1)
addressed by the instruction and store back to TF1 or TF2 respectively.

1 1 0 XOR TFn, {flagadrs} Logically exclusive OR either TF1 or TF2 with flag bit (17th bit) from data
memory in {flagadrs} if Not=1(or inverted value if Not=0) addressed by the
instruction and store back to TF1 or TF2 respectively.

0 0 1 MOV {flagadrs}, TFn Store TF1 or TF2 to flag bit (17th bit) from data memory referred by flag
addressing mode {flagadrs}.

Table 4–32 RFLAG {flagadrs} Reset flag bit (17th bit) from data memory referred by flag addressing mode
{flagadrs}.to 0

Table 4–32 SFLAG {flagadrs} Set flag bit (17th bit) from data memory referred by flag addressing mode
{flagadrs}.to 1

Table 4–34. Class 8b Instruction Description

C8b Mnemonic Description

0 0 MOV TFn, {cc} [, Rx] Load a logic value of the tested condition to one of the test flag bits in
status register (TF1 or TF2).

0 1 OR TFn, {cc} [, Rx] Logically modify one of the two test flags in status register (TF1 or TF2) by
ORing it with the status condition specified.

1 0 AND TFn, {cc} [, Rx] Logically modify one of the two test flags in status register (TF1 or TF2) by
ANDing it with the status condition specified.

1 1 XOR TFn, {cc} [, Rx] Logically modify one of the two test flags in status register (TF1 or TF2) by
EXCLUSIVE ORing it with the status condition specified. For this instruction
the polarity of Not  is inverted (Not=1 for XOR, Not=0 for XNOR).

4.4.9 Class 9 Instructions: Miscellaneous

This instruction class includes all the remaining instructions that do not fit in
the previous classes. Some instructions have byte wide operand fields and
others have no operands. One subclass is a set of instructions that provide
specific DSP functions (FIR filters). Another subclass provides some
hardware/ software loop capability. Ten instructions provide the means to set
or reset five different status mode bits independently.



Instruction Classification

4-43Assembly Language Instructions

Table 4–35. Class 9a Instruction Encoding

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class 9a 1 1 1 0 1 0 0 An C9a 0 Rx 1 1

Class 9b 1 1 1 1 1 1 0 C9a imm8

Class 9c 1 1 1 1 1 0 1 APn 0 C9c x imm5

Class 9d 1 1 1 1 1 1 1 1 0 C9d 0 0 0 0

ENDLOOP n 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 n

NOP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4–36. Class 9a Instruction Description

C9a Mnemonic Description

0 0 FIRK An, *Rx Finite impulse response tap execution. When used with repeat counter will execute a
16 bit ×16 bit multiplication between an indirect-addressed data memory buffer and
program memory (coefficients). 32-bit accumulation. Circular buffering. Each tap
executes in 2 cycles. Rx automatically increments by 2 per tap.

0 1 FIR An, *Rx Finite impulse response tap execution. When used with the repeat counter, it will
execute a 16 bit ×16 bit multiplication between two indirect-addressed data memory
buffers into a 32-bit accumulator. Circular buffer operation. Executes in 2 instruction
cycles. Rx and R(x+1) automatically increments by 2 per tap.

1 0 CORK An, *Rx Correlation function. When used with repeat will execute 16×16 multiplication
between data memory and program memory, 48-bit accumulation, and a circular
buffer operation. Each tap takes 3 instruction cycles. Rx automatically increments by
2 per tap.

1 1 COR An, *Rx Correlation function. When used with repeat will execute 16×16 multiplication
between two indirectly addressed data memory buffers, 48-bit accumulation, and a
circular buffer operation. Each tap takes 3 instruction cycles. Rx and R(x+1)
automatically increments by 2 per tap.

Table 4–37. Class 9b Instruction Description

C9b Mnemonic Description

0 0 RPT imm8 Load the repeat counter with an 8-bit constant and execute the instruction
that follows imm8+2 times. Interrupts are queued during execution.

0 1 MOV STR, imm8 Load the STR register with an 8-bit constant.

1 0 MOV SV, imm4 Load the SV (shift value) register with a 4-bit constant.



Bit, Byte, Word and String Addressing

 4-44

Table 4–38. Class 9c Instruction Description

C9c Mnemonic Description

0 MOV APn, imm6 Load the accumulator pointer (AP) with a 5-bit constant.

1 ADD APn, imm5 Add a 5-bit constant imm5 to the referenced accumulator pointer(AP).

Table 4–39. Class 9d Instruction Description

C9d Mnemonic Description

0 0 0 0 BEGLOOP Marks the beginning of loop. Queue interrupts and pushes the next PC value onto a
temporary stack location.

0 0 0 1 ENDLOOP n If R4 is not negative, pops the temporary stack value back on the PC and decrements
R4 by n. If R4 is negative, the instruction is a NOP and execution will exit the loop. n is
either 1 or 2

0 0 1 0 IDLE Stops processor clocks. Device enters low power mode waiting on an interrupt to
restart the clocks and execution.

1 0 0 0 INTE Sets IM bit in status register to a 1, thus enabling interrupts.

1 0 0 1 INTD Sets IM bit in status register to a 0, thus disabling interrupts.

1 0 1 0 SXM Sets XM in status register to 1 enabling sign extension mode.

1 0 1 1 RXM Sets XM in status register to 0, disabling sign extension mode.

1 1 0 0 SFM Sets FM in status register to 1, enabling multiplier shift mode for signed fractional
arithmetic.

1 1 0 1 RFM Sets FM in status register to 0, enabling multiplier shift mode for unsigned fractional
or integer arithmetic.

1 1 1 0 SOVM Set OM bit in status register to 1, enabling ALU saturation output (DSP mode).

1 1 1 1 ROVM Set OM bit in status register to 0, disabling the saturating ALU operation (normal
mode).

4.5 Bit, Byte, Word and String Addressing

The MSP50P614/MSP50C614 has instructions which address bits, bytes,
words and strings in data memory or program memory. Data memory is always
accessed in bytes by the hardware, but is based on the instruction. The data
memory location is treated as a byte, word, or flag address. There are five
different kinds of addresses: byte addresses, byte-string addresses, word
addresses, word-string addresses, and flag addresses. Each type of address
is described below. Refer to Figure 4–3 and Table 4–40 for reference.

Byte and byte string address:  Byte addressing is used to access individual
bytes with an instruction in byte mode. Such instructions have a suffix, B, at
the end of instruction name (for example, ADDB, MOVB, etc.). A byte string



Bit, Byte, Word and String Addressing

4-45Assembly Language Instructions

is a string of bytes. The length of the byte string is stored in the string register
(STR). To define the length of a string, the STR register should hold the length
of the string minus 2. For example, if the length of a byte string is 10, then STR
should be 8. A byte string address can be even or odd. Byte string data is
fetched from the lower address (starting address) one byte at a time to consec-
utive addresses.

NOTE: Data Memory Access

Data memory access (RAM) is always accessed with byte addresses. Pro-
gram memory (ROM) is accessed with 17-bit words. Rx registers autoincre-
ment (or autodecrement) by 1 for byte addressing, by 2 for word addressing,
or by the length of the string in bytes if Rx++ (or Rx– –) is used.

Word and Word String Addresses: One data memory word is composed of
two consecutive bytes. A word address is always an even byte address and
the least significant bit of the byte address is assumed to be zero. Instructions
that operate on words have internal hardware which increments the byte ad-
dress appropriately to load the two consecutive bytes in one clock cycle. To
use an absolute word address, the address should be multiplied by 2. A word-
string is a string of consecutive words. Like a byte-string, word-strings use the
STR register to define the string length. Word-strings always start at an even
byte address. When string instructions are used, words are fetched from the
first word-string memory location to consecutive addresses. The word address
is the data memory address in bytes. This is obtained by multiplying the byte
address by two.

Figure 4–3. Data Memory Organization and Addressing

17th Bit

17th Bit

17th Bit

17th Bit

17th Bit

17th Bit

0000h

0001h

0002h

0040h

0041h

nnnn

Global
flags

Relative
flags

Flag
addresses†

MS Byte

MS Byte

MS Byte

MS Byte

0000h

0002h

0004h

nnnn

LS Byte

LS Byte

LS Byte

LS Byte

Data memory
address (even)

0001h

0003h

0005h

nnnn+1

Data memory
address (odd)

1 Word

Note: Word address is data memory address (or byte
address) divided by 2.

† Flag address always accesses the 17th bit of 17 bit wide data word in data memory.



Bit, Byte, Word and String Addressing

 4-46

Flag Address: The flag (or TAG) address uses linear addressing from 0 to the
size of data memory in 17-bit wide words (0 to 639 for MSP50P614/
MSP50C614). Only the 17th bit is accessible. When a word memory location
is read, the corresponding flag for that location is always loaded into the TAG
bit of the status register (STAT). The flag address always corresponds to a
17-bit wide word address. If string instructions are used, then the flag bit of the
last memory location of the string is loaded into the TAG bit of the status regis-
ter. Global flag addressing or relative flag addressing is used to address flags.
Flag bits can be set or reset using flag instructions in addition to various logical
operations. The flag address does not have a string mode.

Rx Post Modifications: Indirect addressing allows post modification of Rx.
For byte and byte-string mode, Rx is post modified by 1 for each byte. For word
and word-string mode Rx is post modified by 2 for each word. Post modification
of Rx is not available for flag addressing.

Table 4–40. Data Memory Address and Data Relationship

Mode Address Used Data Order Rx Post modify†

Single byte Absolute 16-bit address 8-bit data 1

Byte string Beginning of string at lower address String length times 8-bit data
by Incrementing addresses

1 per byte in string

Single word Even address, if odd address is used,
the LSB bit of address is assumed 0

16-bit data 2

Word string Even address beginning at a lower
address; if odd address is used, the
LSB bit of address is assumed 0

String length times 16-bit data
by incrementing addresses

2 per word in
string

Flag Address is considered as holding 17-bit
data, but only 17th bit is accessed.

1-bit data not available

† Rx post modification is available by various addressing modes (see 4.3, Instruction Syntax and Addressing Modes for detail).

Example 4.5.1 MOVB A0, *0x0003
Refer to Figure 4–4 for this example. This instruction loads the value 0x78 to
the accumulator. The upper 8 bits of the accumulator is padded with zeros.

Example 4.5.2 MOV A0, *0x0000
MOV A0, *0x0001

Refer to Figure 4–4 for this example. Both instructions will load the value
0x1234 to the accumulator. In word addressing, the LSB bit of the address is
assumed to be zero. Thus, in the second instruction, the least significant bit
of the address is ignored.

Example 4.5.3 MOV A0, *0x0004 * 2
Refer to Figure 4–4 for this example. The word address 0x0004 is referred.
Multiplication by 2 is necessary to convert the word address into the equivalent
byte address . After multiplication, the byte address is 0x0008. This instruction
will load the value 0x1122 to the accumulator.



Bit, Byte, Word and String Addressing

4-47Assembly Language Instructions

Figure 4–4. Data Memory Example

Absolute Word
Memory Location

Data Memory Location (even) = 2 *
(Absolute word memory location) MS Byte LS Byte Data Memory

Location (odd)

0x0000 0x0000 0x12 0x34 0x0001

0x0001 0x0002 0x56 0x78 0x0003

0x0002 0x0004 0x9a 0xbc 0x0005

0x0003 0x0006 0xde 0xf0 0x0007

0x0004 0x0008 0x11 0x22 0x0009

0x0005 0x000a 0x33 0x44 0x000b

Example 4.5.4 MOV STR, 4–2
MOV AP0, 2
MOVBS A0, *0x0003

Refer to Figure 4–4 for this example. The byte-string length is 4. It is loaded
to the string register (STR) in the first instruction. AP0 is 2 and it points to AC2.
Third instruction loads the value of the string at byte address, 0x0003, and
subsequently stores its contents into four consecutive accumulators starting
from AC2. The result is, AC2 = 0x0078, AC3 = 0x009A, AC4 = 0x00BC,
AC5 = 0x00DE.

Example 4.5.5 MOV STR, 4–2
MOV AP0, 2
MOVS A0, *0x0003

Refer to Figure 4–4 for this example. The byte-string length is 4. AP0 is loaded
with 2 and points to AC2. The third instruction loads the value of the string at
address 0x0002 (LSB bit is assumed 0) and stored into four consecutive
accumulators starting from AC2. The result is, AC2 = 0x5678, AC3 = 0x9ABC,
AC4 = 0xDEF0, AC5 = 0x1122. Same result can be obtained by replacing the
third instruction by,

MOVS A0, *0x0001 * 2
which uses the absolute word memory address.

Example 4.5.6 MOV STR, 4–2
OV AP0, 2
MOV R0, 0x0005
MOVBS A0, *R0++

Refer to Figure 4–4 for this example. The byte string length is 4. AP0 points
to AC2. R0 is loaded with 0x0005. The fourth instruction loads the value of the
byte-string at the address in R0 (i.e, 0x0005 in byte mode). R0 auto–incre-
ments by 1 after every fetch and stores the RAM contents into four consecutive
accumulators starting from AC2. The result is, AC2 = 0x00BC, AC3 = 0x00DE,
AC4 = 0x00F0, AC5 = 0x0011. There were four byte fetches and the new value
of R0 = 0x0009.



Bit, Byte, Word and String Addressing

 4-48

Example 4.5.7 MOV STR, 4–2
MOV AP0, 2
MOV R0, 0x0001 * 2
MOVBS A0, *R0++

Refer to Figure 4–4 for this example. The word-string length is 4. AP0 points
to AC2 accumulator. R0 is loaded with 0x0002. The fourth instruction loads the
value of the word-string at the RAM address in R0, 0x0002. R0 autoincrements
by 2 after each fetch and stores them into four consecutive accumulators
starting from AC2. The result is, AC2 = 0x5678, AC3 = 0x9ABC, AC4 =
0xDEF0, AC5 = 0x1122. There were 4 word fetches and the new value of R0
= 0x000A.

Example 4.5.8 SFLAG *0x0003
MOV A0, *0x0003 * 2
RFLAG *0x0003
MOV A0, *0x0003 * 2

Refer to Figure 4–4 for this example. This example illustrates the use of the
TAG and flag bits. Notice that SFLAG uses a word address, 0x0003, while the
MOV instruction uses a byte address 0x0003 * 2. The first instruction sets the
flag/tag bit at flag address 0x0003. Flag address 0x0003 represents the 17th

bit of the 3rd word (or 6th byte) of RAM. In the second instruction, this flag bit
is placed in the TAG status bit of the STAT and the value in RAM location
0x0003 * 2 is placed in A0. The third instruction resets the flag/tag to 0 at the
same flag address. The fourth instruction reads the same word memory loca-
tion and writes the TAG bit of STAT, which is now 0. Note: SFLAG *0x0003
could have been replaced by STAG *0x0003 * 2 and RFLAG *0x0003 could
have been replaced by RTAG *0x0003 * 2.

Example 4.5.9 SFLAG *0x0005
MOVB A0, *0x000b 
RFLAG *0x0005
MOVB A0, *0x000b

Refer to Figure 4–4 for this example. The SFLAG instruction sets the 17th bit
(tag/flag) of the 5th word of RAM. The MOVB instruction gets the lower byte
of the 5th word of RAM and puts it in A0. In addition, the TAG bit of the STAT
register is set. If the MOVB instruction addressed *0x000A instead of *0x000B,
the STAT register would still be updated with the same tag/flag bit (the 17th bit
of the 5th word of RAM). This means that odd byte locations in RAM, RAModd,
have the same tag/flag as the preceding byte location RAModd –1. For exam-
ple, the 7th word of RAM is made up of two bytes: 0x000E, and 0x000F. These
two byte locations share the same tag/flag bit.



MSP50P614/MSP50C614 Computational Modes

4-49Assembly Language Instructions

Example 4.5.10 MOV STR, 0
SFLAG *0x00032
MOVS A0, *0x0031 * 2
RFLAG *0x00032
MOVS A0, *0x0031 * 2

Refer to Figure 4–4 for this example. This example is to illustrate the effect of
the tag/flag bit when used with a string instruction. The string register (STR)
is loaded with 0 (string length of 2). The second instruction sets the flag bit to
1 at flag address 0x0032. The next instruction reads the word-string at word
memory location, 0x0031, into A0 and also sets the TAG bit of STAT to 1 corre-
sponding to the last memory location of the string (which is word address
0x0032 in this case). The next two instructions verify this by setting the flag to
zero and reading the memory string again.

4.6 MSP50P614/MSP50C614 Computational Modes

MSP50P614/MSP50C614 has the following computational modes which are
the first 4 bits of the status register.

� Sign extension mode (bit 0 or XM bit of STAT)

� Unsigned mode (bit 1 or UM bit of STAT)

� Overflow mode (bit 2 or OM bit of STAT)

� Fractional mode (bit 3 or FM bit of STAT)

These modes can be set by setting the appropriate status register bits or by
special instructions (Class 9) as shown in Table 4–41.



MSP50P614/MSP50C614 Computational Modes

 4-50

Table 4–41. MSP50P614/MSP50C614 Computational Modes

Computational
Mode

Setting
Instruction

Resetting
Instruction

Function

Sign extension SXM RXM STAT.XM = 1 produces sign extension on data as it is
passed into accumulators. This mode copies the 16th bit of
the data in the multiplier/multiplicand to the 17th bit. This
causes signed multiplication of two signed numbers.
STAT.XM = 0 suppresses sign extension.

Unsigned none none STAT.UM = 1 causes unsigned multiplication where the mul-
tiplier assumes its arguments as unsigned value. MOVU
instruction can be used to enable this mode. STAT.UM = 0
disables unsigned multiplication.

Overflow SOVM ROVM STAT.OM = 1 initiates overflow mode. Overflows cause the
accumulator to acquired the most positive or most negative
value. In the case of string values, only the MSB 16 bits are
modified. The remaining bits in the string are unchanged.
STAT.OM = 0 normal overflow operation and the
accumulator content is unchanged if any overflow occurs.
Affects OF bit of STAT in case of overflow.

Fractional SFM RFM STAT.FM = 1 enables fractional multiplication shift mode.
The multiplier is shifted left 1 bit to produce a 17 bit operand.
This mode is used on signed binary fractions and does not
require the user to left shift as it would have been required if
the FM bit was not set. STAT.FM = 1 turns off fractional
mode.

Sign Extension Mode: Sign extension mode can be enabled/disabled by
setting/resetting the XM bit of STAT. When in sign extension mode, a multiply
operation will copy the 16th bit of the multiplier/multiplicand to the 17th bit.
When multiplied, this will give a 17 x 17 bit multiplication producing 34-bit result
where the upper two bits (33rd and 34th bits) are the sign bits and discarded
by the processor. Sign extension is also applicable in string mode. Sign
extension mode is the recommended mode to use for signed number
multiplication.

Example 4.6.1 SXM
MOV A0, 0x8000
MOV MR, 0x8000
MULTPL A0, A0

This example illustrates the sign extension mode during multiplication. Here,
two negative number 0x8000 are multiplied with 0x8000 to obtain a positive
number 0x40000000. If the signs were not extended, we would have obtained
0xC0000000, a negative number.



MSP50P614/MSP50C614 Computational Modes

4-51Assembly Language Instructions

Example 4.6.2 SXM
MOV STR, 2–2    ; string length=2
MOV MR, 0x8000
MOV A0, 0x8000, ++A ; load MS Byte
MOV A0, 0x0000, ––A ; load LS Byte
MULTPLS A0, A0

This example illustrates the sign extension mode on a string during
multiplication. Here, two negative numbers 0x80000000 and 0x8000 are
multiplied to obtain a positive number 0x400000000000. If the signs were not
extended, we would have obtained 0xC00000000000, a negative number.

Unsigned Mode: The multiplier unsigned mode may be enabled/disabled by
setting/resetting the UM bit of the STAT. When in unsigned mode, the 17th bit
of the multiplier is loaded as zero to indicate an unsigned value. When UM is
set to zero, signed multiplication is enabled and the multiplier copies the MSB
of the multiplier (16th bit) to the 17th bit of the multiplier.

Example 4.6.1 MOV A0, 0x8000
MOVU MR, A0
MOV A0, 0x80
MULTPL A0, A0

In this example, we do an unsigned multiplication between 0x8000 and 0x80.
The first two lines set up the MR register with value 0x8000 and switch to
unsigned multiplication mode. Line 3 loads A0 with 0x80 and line 4 multiplies
the values in unsigned mode. The lower 16 bits of the result is stored in A0 and
the upper 16 bits are stored in PH. The final result is 0x400000, where PH
holds the value 0x0040 and A0 holds the lower 16 bits. Notice that if the
multiplication is not done in unsigned mode, the MR is treated as negative. We
would have obtained 0xFFC00000 (PH = 0xFFC0, A0 = 0000), which is the
negative value of the previous result. The key to unsigned multiplication is the
MOVU instruction in the second line which set the UM bit to 1 in the STAT
register and switches the multiplication mode to unsigned.

Overflow Mode: The accumulator’s overflow mode may be enabled/disabled
by setting/resetting the OM bit of STAT. When the computation is in the
overflow mode and an overflow occurs, the overflow flag is set and the
accumulator is loaded with either the most positive or the most negative value
representable in the accumulator, depending upon the direction of the
overflow. In string mode, instead of representing the most positive or most
negative value, only the 16-bit MSB is set to 0x7FFF or 0x8000 depending on
direction of overflow. The remaining words of the accumulator string are
unchanged. If the OM status register bit is reset and an overflow occurs, the
overflowed results are placed in the accumulator without modification. Note
that logical operations cannot result in overflow.



MSP50P614/MSP50C614 Computational Modes

 4-52

Example 4.6.1 SOVM
MOV A0, 0x7FFE
ADD A0, 5

In this example, we set the overflow mode (OM = 1 of STAT). Adding 0x7FFE
with 5 causes an overflow (OF = 1 of STAT). Since the expected result is a
positive value, the accumulator saturates to the largest representable value,
0x7FFF. If overflow mode was not set before the ADD instruction, then the
accumulator would overflow. Therefore, the result, 0x8003, would be a
negative value.

Example 4.6.2 SOVM
MOV STR, 2–2 ;string length = 2
MOV AP0, 0
MOV A0, 0x1234
MOV A0~, 0x1000
MOV A0, 0x7F00, ++A
MOV A0~, 0x1000
MOV AP0,0 ;point to beginning

;of string
ADD A0, A0~, A0

In this example, saturation on a string value is illustrated. A 2 word string is
loaded into the STR register. The accumulator string, A0, is loaded with
0x7F001234 and accumulator string A0~ is loaded with 0x10001000. When
the two values are added together, it causes an overflow. The OF bit of the
STAT is set to 1, the 16-bit MSBs of the string become 0x7FFF, and the lower
bits of the string become 0x2234. The final result is 0x7FFF2234. Note that if
overflow mode was not set, the result would have been 0x8F002234.

Fractional Mode: Multiplier fractional mode may be enabled/disabled by
setting/resetting the FM bit of STAT. When the multiplier is in fractional mode,
the multiplier is shifted left 1 bit to form a 17 significant bit operand. Fractional
mode avoids a divide by 2 of the product when interpreting the input operands
as signed binary fractions (Q formats). Fractional mode works with string
mode as well.

Example 4.6.1 SXM
MOV A0, 0x7FFF
MOV MR, 0x7FFF
MULTPL A0, A0 ;0x7FFF * 0x7FFF

;PH = 0x3FFF A0~ = 0001
SFM
MULTPL A0~,A0 ;PH = 0x7FFE A0~ = 0002

This example illustrates the differences between a regular multiply and a frac-
tional mode multiply. The first multiply in the above code is nonfractional. The



Hardware Loop Instructions

4-53Assembly Language Instructions

high word of the result is stored in the PH register and is 0x3FFF. The low word
is stored in A0~ as 0x0001. If the two numbers are considered as Q15 fraction-
al numbers (all bits are to the right of the decimal point), then the result will be
a Q30 number. To translate a Q30 number back to a Q15 number, first left shift
the number (MOV A0,PH, SHL A0,A0), and then truncate the lower word (ig-
nore A0~). When fractional mode is set, the left shift is done automatically
(MOV A0,PH). Thus, the desired Q15 result is already in the PH register.

4.7 Hardware Loop Instructions

These instructions enhance both execution speed and code space
requirements for procedures that use short loop sequences. Because of
pipeline delays and the software overhead associated with counting,
comparing and branching, software controlled structures are very inefficient
for short loops. To ease this burden, two basic types of hardware assisted loop
structures are included in the MSP50P614/MSP50C614 processor. Hardware
loop instructions are summarized in Table 4–42.

Repeatable Instructions: Most instructions can be repeated N+2 times with
zero software overhead. Repeated instructions are functionally identical to
coding the same instruction N+2 times in sequence. Repeat loops require a
RPT instruction to set a count length, N. This immediately precedes the
instruction to be repeated.  This next instruction is repeated N+2 times. The
RPT instruction is useful for clearing RAM locations, filtering, etc. If the
repeating instruction utilizes auto–increments/decrements to either Rx or AC
registers (i.e. *R2++ or ++A), then the repeated modification controls will be
permanent. If the repeatable instruction is a string instruction, then the string
register (STR) will be replaced by N. During the execution of a RPT instruction,
interrupts are queued. Queued interrupts are serviced after the RPT operation
completes according to their priority.

String Instructions: String loops are enabled by direct field decodes in
classes 1, 2b, 3 and 6b and have no counter overhead. These instructions
automatically load the counter using the contents of the STR. String instruction
loops are different because they assume the references made to data memory
and accumulators are long data strings, causing pointers to auto–increment.
Incrementing pointers does not affect the permanent value stored in Rx or APn
registers. For arithmetic string operations, carries from one word operation will
automatically be linked to the carry in of the next word operation. Additionally,
status equal to zero will be detected on the result as a long string. These
combinations provide efficient and convenient means to operate between lists
or stings or between a fixed location and a list or string. All string instructions
have a suffix, S. In this text, string instructions are written as nameS. During



Hardware Loop Instructions

 4-54

the execution of a string instruction, interrupts are queued. Queued interrupts
are serviced according to their priority after the string operation is complete.

In addition to repeat and string instructions, the combination of repeated string
instructions has a very useful function. Since there is only one counter to
control the hardware repeat count, it is not possible to nest repeats and strings.
When a repeat instruction is followed by a string instruction the string register
count is replaced by the value in the preceding repeat instruction. This offers
greater utility in some programs and avoids load and store operations on the
string register.

Loop Instructions: This is a software loop with an explicit reference to R4.
The beginning of the loop is marked with the BEGLOOP instruction which
pushes the next sequential address to a temporary register. A second
instruction, ENDLOOP, marks the end of the loop. When executed, ENDLOOP
loads the temporary register to the program counter if R4 is positive and then
post decrements R4. If R4 is negative, the program counter executes a NOP
instruction and exits the loop. Since interrupts are queued during the execution
of the loop, no provision for saving the contents of the temporary register is
made. Interrupts, if enabled before the execution of BEGLOOP, will
automatically be re-enabled after exiting the loop. Enabling interrupts inside
the loop have no effect. Queued interrupts are processed according to their
priority after the loop exits provided the corresponding interrupt is enabled.
The loop overhead is 1 instruction cycle per loop cycle, ideal for repeating high
priority repeated blocks in DSP routines.

Table 4–42. Hardware Loops in MSP50P614/MSP50C614

Syntax Operation Limitations

RPT imm8 | {adrs}8
{repeatable instruction}

{repeatable instruction} is executed  nR+2 times, where nR is
the value in repeat counter. If the instruction following RPT is a
string instructions, then string length used will be nR, not the
value in the STR register. All interrupts are queued during loop
execution. Queued interrupts are processed according to
priority after the completion of the RPT loop.

0 ≤ nR≤ 255

{STR= nS}
{string instruction}

String length for the {string instruction} is nS+2. All interrupts
are queued during loop execution. Queued interrupts are
processed according to priority after the completion of the
{string instruction}. The maximum accumulator string length is
32, i.e., 0 ≤ nS ≤ 29.

0 ≤ nS ≤ 255
NOTE: 0 ≤ nS ≤ 29
for accumulator
strings.

{R4= NLOOP}
BEGLOOP
{...body of loop...}
ENDLOOP

The number of times the {...body of loop...} is executed is
NLOOP+2. All interrupts are queued during loop execution.
Queued interrupts are processed according to priority after the
completion of the BEGLOOP/ENDLOOP block.

0 ≤ NLOOP ≤ 32767



String Instructions

4-55Assembly Language Instructions

4.8 String Instructions

Class 1, 2, 3, and 6 instructions can have string modes. During the execution
of string instruction, STR register value plus 2 is assumed as string length. An
accumulator string is a group of consecutive accumulators spanning from An
to the next N consecutive accumulators (N is the length of the string). The STR
register should be loaded with N–2 to define a string length, N. A value of zero
in the STR register defines a string length of 2 (string length 1 means the
instruction is not in string mode). Arithmetic string instructions treat the string
as an N word arithmetic value. The result is also an arithmetic value of the
same length. Conditionals are set as they would be set without string mode.
Comparing two strings is equivalent to comparing each bit of the string. The
accumulator status is modified representing the outcome of the entire
operation. Examine the following examples.

Table 4–43. Initial Processor State for String Instructions

Registers (register# = value)

AP0 = 2 AP1 = 21 (0x15) AP2 = 11 (0x0B) AP3 = 29 (0x1D)

AC0 = AC1 = AC2 = AC3 =

AC4 = AC5 = AC6 = AC7 =

AC8 = AC9 = AC10 = AC11 = 0xAAAA

AC12 = 0xAAAA AC13 = 0xAAAA AC14 = 0xAAAA AC15 = 0xAAAA

AC16 = AC17 = AC18 = AC19 =

AC20 = AC21 = 0x1223 AC22 = 0xFBCA AC23 = 0x233E

data memory (*address = data)

*0x0200 = 0x12AC *0x0201 = 0xEE34 *0x0202 = 0x9086 *0x0203 = 0xCDE5

program memory (*address = data)

*0x1400 = 0x0123 *0x1401 = 0x4567 *0x1402 = 0x89AB *0x1403 = 0xCDEF

*0x1404 = 0xFEDC *0x1405 = 0xBA98 *0x1404 = 0x7654 *0x1405 = 0x3210

Example 4.8.1 MOV STR, 4–2;  string length = 2
MOVS A0, 0x1400

Refer to initial the processor state in Table 4–43. A0 points to AC2. Consider
a program memory location string of length 4 at 0x1400 =
0xCDEF89AB45670123. STR equal to 4–2=2, defines a string length of 4.
Final result, AC2=0x0123, AC3=0x4567, AC4=0x89AB, and AC5=0xCDEF,

Example 4.8.2 MOV STR, 3–2;  string length = 3
ADDS A1~, A1, *0x0200

Refer to the initial processor state in Table 4–43. A1 is AC21, A1~ is AC5, the



String Instructions

 4-56

A1 string is 0x233EFBCA1223 and *0x200 = 0x9086EE3412AC. STR =
3–2=1, defines a string length of 3. Final result, A1~ string =
0x233EFBCA1223 + 0x9086EE3412AC = 0xB3C5E9FE24CF, AC5=0x24CF,
AC6=0xE9FE, AC7=0xB3C5, STR=2 (unchanged). Notice that this instruction
has accumulated a carry.

Special String Sequences: There are two string instructions that have a
special meaning. If any of the following instructions: MULAPL, MULSPL,
MULTPL, SHLAPL, SHLSPL, SHLTPL, EXTSGNS, MOVAPH immediately
precedes ADDS An[~],An[~],PH and SUBS An[~],An[~],PH, the following
things happen:

1) Carry generated by the preceding instruction is used in computation.

2) Interrupts can occur between these instructions.

3) All instructions in the sequence execute as a single string operation. So,
An[~] accumulator pointed by the first instruction of the sequence should
be used for the remaining instructions in the sequence and changing the
value of n on one of the above instructions in the sequence has no effect.

4) Accumulators used by ADDS and SUBS (when used with PH) auto–incre-
ment internal registers, not APn. So subsequent ADDS and SUBS (im-
mediately following) instructions write into higher accumulators.

5) The sequence ends with ADDS or SUBS (used with PH).

6) These sequences may not give same result when single step debugging
because, single stepping changes the internal state. They should be used
either with a hardware breakpoint or with fast run mode. The breakpoint
should be set after the sequence ends.

For example, MULAPL A0, A0~
ADDS A0, A0, PH

The first instruction performs a multiply-accumulate with MR and A0~, and
stores PL in A0. The second instruction adds PH to the second word of
memory string A0 and puts the result in accumulator string A0~. The MULAPL
– ADDS sequence is a special sequence. If A0 is AC0=0xFFFF and MR=0xFF,
after execution AC0=0xFF01, AC1=0x00FE. If you replace ADDS A0, A0, PH
with ADDS A1, A1, PH and A1 points to a different accumulator, the result is
still the same. This is because, the state generated by MULAPL (and other
similar instructions described above) is used by ADDS instruction. If another
ADDS A0, A0, PH instruction follows the previous one, AC2=0x00FE since the
ADDS instruction auto–increments an internal register (not APn). The same
reason applies for SUBS An[~],An[~],PH instruction. IMPORTANT: Interrupts
may occur between these sequences and the result can be incorrect if the in-
terrupt service changes the state of the processor To prevent interrupts from
happening, use the INTD instruction before the execution of the sequence and
an INTE afterwards.



Lookup Instructions

4-57Assembly Language Instructions

4.9 Lookup Instructions

Table lookup instructions transfer data from program memory (ROM) to data
memory or accumulators. These instructions are useful for reading permanent
ROM data into the user program for manipulation. For example, lookup tables
can store initial filter coefficients, characters for an LCD display which can be
read for display in the LCD screen, etc. There are four lookup instructions as
shown in Table 4–44. Lookup instructions always read the program memory
address from the second argument (which is accumulator or its offset). An
asterisk (*) always precedes this accumulator to indicate that this is an
address.

Table 4–44. Lookup Instructions

Instructions Description

Data Transfer

MOV {adrs}, *An The program memory address is stored in accumulator An. Store the contents of
this address in data memory location referred by addressing mode {adrs}.

MOV An[~], *An[~] [, next A] The program memory address is stored in accumulator An or its offset An~. Store
the contents of this address in accumulator An or An~.

MOVS {adrs}, *An The program memory string address is stored in accumulator An. Store the
contents of this address to the data memory string referred by the addressing
mode {adrs}. The string length is defined in STR register.

MOVS An[~], *An[~] The program memory string address is stored in accumulator An or its offset An~.
Store the contents of this address to the accumulator string An or its offset An~.
The string length is defined in STR register.

Data Manipulation on Strings

ADDS An[~], An[~], pma16 ADD the accumulator string An or its offset An~ with the program memory string at
location pma16 and store the result to the accumulator string An or its offset An~.
The string length is defined in STR register.

ANDS An[~], An[~], pma16 Bitwise/logical AND the string An (or its offset An~) with the program memory
string at location pma16 and store the result in the accumulator string An or its
offset An~. The string length is defined in STR register.

CMPS An[~], pma16 Compare the accumulator string An (or its offset An~) with the program memory
string at location pma16 and store the result in accumulator string An or its offset
An~. The string length is defined in STR register.

SUBS An[~], An[~], pma16 Subtract accumulator string An (or its offset An~) with program memory string at
location pma16 and store the result in accumulator string An or its offset An~. The
string length is defined in STR register.

XORS An[~], An[~], pma16 Bitwise/Logical XOR the accumulator string An or its offset An~ with program
memory string at location pma16 and store the result to accumulator string An or
its offset An~. The string length is defined in STR register.



Lookup Instructions

 4-58

Lookup instructions make use of the data pointer (DP) internally. The DP
stores the address of the program memory location, loads the value to the
destination, and increments it automatically after every load. Thus, the value
of the DP is always the last used program memory address plus one. The
content of DP changes after the execution of lookup instructions. If filter
instructions FIRK and CORK are used, it is required to context save DP in the
interrupt service routine. Since these filter instructions use DP to read
coefficient data (see section 4.10), any interrupt occurring between loading the
first coefficient and the execution of a FIRK/CORK will change the last value
of DP (if the interrupt routine uses a lookup instruction). DP can be stored in
RAM ( MOV {adrs}, DP ), and a restoration is done as follows,

MOV An, {adrs}
SUB An, 0x1
MOV An, *An

Context save and restore of instructions are not required if filter instructions
are not used.

Example 4.9.1

Interrupt

MOV A0, 0x100
MOV A0, *A0

RPT N–2
FIRK A2, R0++
...

; DP = 0x101 after execution

; Beginning of interrupt service routine
; context save
MOV *ctx_DP, DP ; ctx_DP stores the present DP = 0x101

...some lookup instructions...

; context restore
MOV *A0, *ctx_DP
SUB A0, 0x1
MOV A0, *A0
...
IRET

; DP = 0x101
; A0 = 0x100 after execution
; DP = 0x101 after execution



Input/Output Instructions

4-59Assembly Language Instructions

4.10 Input/Output Instructions

The MSP50P614/MSP50C614 processor communicates with other on-chip
logic as well as external hardware through a parallel I/O interface. Up to 40 I/O
ports are addressable with instructions that provide bidirectional data transfer
between the I/O ports and the accumulators.

Data input is performed with the IN instruction (Class 6). This instruction uses
a memory address and a 4-bit port address. It can also use an accumulator
(or offset accumulator) and a 6-bit port address. String transfers are allowed
between the accumulators and the input port.

Data output is performed with the OUT instruction (Class 6). The OUT
instruction can specify a memory address and a 4-bit port address. It can also
use an accumulator (or offset accumulator) and a 6-bit port address. String
transfers are allowed between the accumulators and the output port.

4.11 Special Filter Instructions

The MSP50P614/MSP50C614 processor can perform some DSP functions.
Fundamental to many filtering algorithms is the FIR structure which requires
several parallel operations to execute for each tap of the filter as shown in
Figure 4–5. Each tap has 1 multiply and 1 accumulation to obtain the output,
y, for N+1 taps,

Figure 4–5. FIR Filter Structure

Delay
16

Samples, x[k]

Newest sample
x[k]

xh[0]

Delay

x[k–1]

xh[1]

Delay

x[k–2]

xh[2]

Delay

Oldest sample
x[k-N]

xh[N]

+

32 or 48

N+1 Tap FIR filter

t

x[k–3]

x[k–2]

x[k–1]

x[k]

x[k+1]

x[k+2]

y[k] = Σm=0..N h [m]⋅x[k-m]

y [k]� h [0] x [k]� h [1]x [k-1]� h [2]x [k-2]����� h [N]� x [k-N ]



Special Filter Instructions

 4-60

N tap filters ideally require 2N multiply–accumulates. Four instructions are
provided to compute this equation: FIR, FIRK, COR and CORK. All filter
instructions require overflow modes to be reset since these instructions have
built in overflow hardware. In addition, these instructions must be used with a
RPT instruction.

FIR and FIRK instructions perform 16-x-16 bit multiplies and 32-bit
accumulation in 2 clock cycles (per tap). The FIR/FIRK instruction takes 2N
clock cycles (for N taps) to execute (once inside the RPT loop). FIRK is useful
for fixed filters and requires the minimum amount of data memory. However,
the DP register may need to be context saved and restored since the filter
coefficients are in ROM. FIR is useful for adaptive filtering or applications
where coefficients are provided from an external source. FIR does not require
a context save and restore for the DP register since both the buffer and the
coefficients are in RAM.

COR and CORK instructions perform 16-x-16 bit multiplies and 48-bit
accumulation in 3 clock cycles (per tap). Once inside the RPT loop, the total
number of clock cycles for an N tap filter is 3N. The COR and CORK
instructions are identical in operation and arguments to FIR and FIRK.
However, an additional 16-bit extended accumulate cycle is added to prevent
the arithmetic overflow common in auto correlation filters.

FIR (COR) Instructions: The execution of the filter instructions is shown in
Figure 4–6. To use FIR (COR) instructions, some initial setup is required.
Consecutive Rx pair {Rxeven, Rxeven+1} should be chosen with Rxeven pointing
to the RAM sample buffer array and Rxeven+1 pointing to the RAM coefficient
array.  The MR register should be loaded with the first coefficient, h[0]. FIR
(COR) can now execute with a repeat instruction for N taps. The value of
Rxeven is incremented during execution. After execution, the last value of
Rxeven points to the sample buffer location where the next sample can be
stored.

FIRK (CORK) Instructions: FIRK (CORK) instructions work exactly the same
was as FIR(COR) instructions, however, the coefficient array is located in
program memory (ROM). Instead of loading Rxeven+1 with the pointer to
coefficient array in RAM, the data pointer, DP, is loaded with the value of the
coefficient array.

Circular Buffering:The easiest way to understand circular buffering is by
example. Suppose a filter, h[n], has three coefficients. Then, theoretically, to
calculate one output sample of the filter, the buffer should contain the current
sample plus the past 2 samples. Since the output, y[k], for a three tap filter is,

y[k] = h[0]• ×[k] + h[1]• ×[k–1] + h[2]• ×[k–2]

On the C614, the circular buffer must contain N+1 samples. In the above ex-
ample, the buffer must contain four locations (which is one more location than



Special Filter Instructions

4-61Assembly Language Instructions

theory requires). The second to last RAM location in the circular buffer is
tagged using an STAG instruction. Below is an example of how to set up circu-
lar buffering with FIR or COR.

When using the FIR or COR instruction with circular buffering, RAM needs to
be allocated for the circular buffer and the filter coefficients. Therefore, the filter
coefficient RAM locations must be loaded into RAM and the circular buffer
must be cleared before the first FIR or COR instruction is executed.

; Set up for FIR filtering (N = 3)

; First clear circular buffer and set tag of second to last
;   sample

zac a0

mov r0,circBuff ;point to circular buffer

rpt N–2 ;repeat N times

mov *r0++,a0 ;clear RAM locations in circular
;  buffer

mov *r0,a0 ;N+1 sample in buffer

mov r5,2 ;now step back one word and set tag

sub r0,r5 ;point r0 back to 2nd to last sample
;  in buffer

stag *r0 ;set tag

; Second initialize filter coeffs to proper values

; –––––  NOTE: In this code, N must be less than 33 since

; –––––     there are only 32 accumulator registers!

mov STR,N–2 ;set string length to N

zacs a0 ;zero out N accumulators

mov a0,FIR_COEFFS;point to filter coeffs

movs a0,*a0 ;get N filter coeffs

mov r0,coeffs ;point to RAM locs. for filter coeffs

movs *r0,a0 ;put filter coeffs into RAM locs.

mov a0,circBuff ;set up pointer to start of circular
;  buffer

mov *startOfBuff,a0

; Initialize filterSTAT_tag (THIS IS IMPORTANT!)

rovm ;This line is MANDATORY!

sxm ;Sample values are signed

mov *filterSTAT_tag,STAT

Three more details in the above example merit an explanation. The first detail
is the pointer to the start of the circular buffer (startOfBuff). This keeps
track of the location of the newest or current sample in the circular buffer. It
moves backwards by one location in the buffer each time the FIR or COR
instruction is executed so that the oldest sample in the buffer is overwritten with
the next sample. This backwards movement is also circular. For example, sup-
pose that startOfBuff points to the first RAM location of the circular buffer.



Special Filter Instructions

 4-62

After the FIR or COR instruction executes, the new startOfBuff will be the
last location in the circular buffer. After another FIR/COR instruction, the new
startOfBuff will be the second to last location in the circular buffer, and so
on.

The second detail is the STAT register. The STAT register must be saved im-
mediately after every FIR or COR instruction. Consequently, this saved value
must be loaded before every FIR or COR instruction. If the tag bit in the STAT
register is set before an FIR or COR instruction, this tells the processor two
things. First, it knows that it must wrap around to the first RAM location of the
circular buffer. Second, it knows that the startOfBuff (and R0) currently
points to the last location in the circular buffer. Thus, R0 will increment by R5
after the first multiply. This will become more clear after examining the next ex-
ample code.

The third detail is that the filter coefficients take up only N RAM locations, but
the circular buffer takes up N+1 RAM locations.

Below is an example of the FIR or COR execution inside a DAC interrupt ser-
vice routine.

; FIR Filtering routine (N = 3)
––––––––––––––––––––––––––––––––––––––––––

rovm ;reset overflow mode

mov R5, –2 * N ;circular buffer length (3 words)

mov R1,coeffs ;R1 points to first of N filter
   coefficients

mov MR,*R1++ ;must increment R1

mov R0,*startOfBuff ;R0 points to start of circular
   buffer

mov AP0,0 ;set up room for the

mov STR,0 ; 32 bit output sample (AC0
   and AC1)

zacs A0 ; STR should be 1 for COR/CORK
   instructions

mov STAT,*filterSTAT_tag ;load STAT with last filter
   tag status

rpt N–2

fir A0,*R0++ ;Do one sample ––> 32 bit result

mov *filterSTAT_tag,STAT ;save STAT with last filter
   tag status

;R0 now points to the last/oldest
   sample

movs *ySampleOut,A0 ;FIR outputs bits 0–15 in AC0,
   16–32 in AC1



Special Filter Instructions

4-63Assembly Language Instructions

mov A0,*nextSample ;Replace last sample with newest
   sample

mov *R0,A0 ; and update the start of the

mov *startOfBuff,R0 ; circular buffer to here (R0)

First, the overflow mode must be reset. Next, R5 must be loaded with the wrap
around value of the circular buffer. Wrap around happens automatically. This
tells the processor how many words to step back when the end of the circular
buffer is reached. This value must be negative and equal to N words even
though the buffer is N+1 words long. For example, suppose a four word circular
buffer starts at RAM location 0x0100 and ends at 0x0106 (N = 3). In order to
wrap around from location 0x0106 back to location 0x0100, the value 0x006
must be subtracted from 0x0106, giving 0x0100.

0x0100

TAGGED LOCATION

0x0106

0x0104

0x0102

Go back N words to
wrap around

R0 must point to the current starting point of the circular buffer. R1 must point
to the filter coefficients. The MR register must contain the first filter coefficient,
h[0]. R0 and R1 must be used this way. The filtering operation will not work if
the Rx registers are reversed. The following are the only allowable register
combinations,

R0 points to circular buffer and R1 points to filter coefficients
R2 points to circular buffer and R3 points to filter coefficients



Special Filter Instructions

 4-64

Any combination of registers different from the above will yield incorrect
results with the FIR/COR instruction.

Use R5 to
wrap around

R0

0x010

0x0100

0x0106

0x0102

x[k] x[k–1]

x[k–2]x[k–3]

tag

After FIR/COR execution

The STAT register is saved in the filterSTAT_tag location. The output of the fil-
tering operation in the example is located in AC0 (lower word) and AC1 (high
word). This 32-bit result is stored in the SampleOut RAM location. R0 should
be pointing to the oldest sample. The oldest sample, x[k–3], is overwritten
by the next sample to be filtered, x[k+1]. R0 is saved in the startOfBuff
pointer for the next FIR/COR instruction

Notice that R0 points backwards by one location from its starting point each
time an FIR/COR instruction is executed. In the above figure, R0 would end
up at successive locations in a clockwise manner.



Special Filter Instructions

4-65Assembly Language Instructions

Important Note About Setting the STAT Register

It is very important to consider the initial value of the filterSTAT_tag variable.
Failure to set up the filterSTAT_tag variable can cause incorrect results in FIR/
COR operations. Overflow mode must always be reset. The overflow bit of the
STAT register may not be set.

For samples or filter coefficients that are signed, the sign extension mode bit
must also be set. Use the following set up for the filterSTAT_tag variable,

rovm ; Mandatory

; –– Any addition modes can be set hereafter ––

sxm ; For signed samples, coefficients, filter output

mov *filterSTAT_tag,STAT

The FIRK/CORK instructions are almost identical to the FIR/COR instructions.
The main difference is that the filter coefficients are placed in ROM instead of
RAM. In other words, the filter coefficients are in a look-up table. As a result,
the R1 register is not used. Before a FIRK/CORK instruction executes, the
data pointer register, DP, must be set by the following code,

rovm ;reset overflow mode

mov R5, –2 * N ;circular buffer length (3 words)

mov A0,FIRK_COEFFS ; Loads address of lookup table

mov A0,*A0 ; Loads first coefficient to A0 and
   sets DP

mov MR,A0 ; Load first coefficient in to MR
   register

In the sequence of code above, the DP register points to the first filter coeffi-
cient (in program memory located at FIRK_COEFFS). This happens during
the mov A0,*A0 instruction. In addition, the DP register automatically incre-
ments to the next address. It should be pointing to the second filter coefficient
in program memory. If the contents of the DP register are used somewhere
else in the program, a context save and restore must be performed on the DP
register for each FIRK/CORK instruction. See the chapter 4 section called,
Lookup Instructions. During FIRK/CORK execution, the MR register is loaded
with the contents of the DP register, the DP register increments, pointing to the
next filter coefficient, and the multiply-accumulate is performed.

The remaining FIRK/CORK code is almost the same as the FIR/COR code.

mov R0,*startOfBuff ;R0 points to start of circular
   buffer

mov AP0,0 ;set up room for the

mov STR,0 ;32 bit output sample (AC0 and
   AC1)

zacs A0 ; STR should be 1 for COR/CORK
   instructions



Special Filter Instructions

 4-66

mov STAT,*filterSTAT_tag ;load STAT with last filter
 tag status

rpt N–2

firk A0,*R0++ ;Do one sample ––> 32 bit result

mov *filterSTAT_tag,STAT ;save STAT with last filter
 tag status

;R0 now points to the last
 sample

movs *ySampleOut,A0 ;FIR outputs bits 0–15 in
 AC0, 16–32 in AC1

mov A0,*nextSample ;Replace last sample with
  newest sample and update

mov *R0,A0 ; the start of the

mov *startOfBuff,R0 ; circular buffer to here
  (R0)

The set up for the FIRK/CORK instruction is the same as the set up for the FIR/
COR instruction with the exception that the filter coefficients do not need to be
loaded into RAM locations. Rather, they can be included just before speech
data or elsewhere in the program code as follows,

FIRK_COEFFS

include “\..\tables\coeffs.dat”



Special Filter Instructions

4-67Assembly Language Instructions

Figure 4–6. Setup and Execution of MSP50P614/MSP50C614 Filter Instructions,
N+1 Taps

Accumulators

0–15th bits of y�

16–31st bits of y�

32–47th bits of y�

ACr

ACr+1

ACr+2

y[k] = Σm=0..N h[m]x[k–m]

+

MultiplierPH MR

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

Past N samples,
x[k]

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

Coefficients, h[k]
k = 0..N

Data memory
(FIR/COR)

Program memory (FIRK/CORK)

sample_buf

coeff_array

ACr+1ACr+2 ACry =

For COR/CORK

ACrACr+1y =

For FIR/FIRK

TAG=1 for 2nd to last sample for
Circular buffer operation

+

Accumulators Pointer

Point to accumulator, ACrAn = ACn

Circular buffer operation only

Circular buffer length, –2NR5

sample_buf address
Rxeven

{R0,R2,R4,R6}

coeff_array address

DP coeff_array address

Rxeven+1
{R1,R3,R5,R7}

FIR/COR only

FIRK/CORK only

† The value of y is stored in ACr and ACr+1 for FIR instruction (32-bit accumulation). COR instruction uses 48-bit accumulation
and includes accumulator ACr+2.

coeff_array Coefficients, h[k]
k = 0..N



Special Filter Instructions

 4-68

Figure 4–7. Filter Instruction and Circular Buffering for N+1 Tap Filter

16 BitsTAG

AC n+1AC n+2 AC ny

if TAG = 1Rxevencoeff_array

DP coeff_array

Rxeven+1

CORK/FIRK only

COR/FIR only

h[0]

h[1]

h[2]

0

0

0

h[3]

h[4]

0

0

0

h[N–1]

0

0

0

h[N]0

0

16 Bits17th Bit

coeff_array

coeff_array is stored in
program or data memory
based on filter instruction.

x[k]

x[k–1]

x[k–2]

0

0

0

x[k–3]

x[k–4]

0

0

0

x[k–N]

0

0

1

x[k+1]0

16 Bits17th Bit

sample_buf

x

x

x

x

x

x

x

+

STAT

x[k–N–1] is replaced
by  x[k+1]

y = Σk=0..N h[m] × x[k–m]

+ R5 = –2(N+1)

program memory (FIRK/CORK)

data memory (FIR/COR)

48-bit accumulation for COR/CORK

32-bit accumulation
for FIR/FIRK

17th Bit

Rxeven



Conditionals

4-69Assembly Language Instructions

4.12 Conditionals

The condition bits in the status register (STAT) are used to modify program
control through conditional branches and calls. Various combinations of bits
are available to provide a rich set of conditional operations. These condition
bits can also be used in Boolean operations to set the test flags TF1 and TF2
in the status register.

STAT register
bit settings

Arithmetic/Logic
Condition

Condition
mnemonic

Alternate†

mnemonic

’NOT’‡
condition
mnemonic

’NOT’ ‡
condition
alternate†

mnemonic

ZF = 1 Zero flag ZF NZF

SF = 1 Sign flag SF NSF

CF = 1 Carry flag CF NCF

ZF = 0 & CF = 0 Below (unsigned) B NAE NB AE

ZF = 0 & CF = 1 Above (unsigned) A NBE NA BE

ZF = 1 & SF = 0 Greater (signed) G NLE NG LE

ZF = 1 & OF = 0 Equal E NE

OF = 1 Overflow flag OF NOF

ZF = 0 & SF = 1 Less (signed) L NGE NL GE

RCF = 1 Rx carry flag RCF RNCF

RZF = 0 & RCF = 1 Rx above (unsigned) RA RNBE RNA RBE

RZF = 1 Rx equal RE RZ RNE RNZ

TF1 = 1 Test flag 1 TF1 NTF1

TF2 = 1 Test flag 2 TF2 NTF2

TAG = 1 Memory tag TAG NTAG

IN1§ Input line 1 IN1 NIN1

IN2§ Input line 2 IN2 NIN2

XZF = 1 Transfer zero flag XZF XNZF

XSF = 1 Transfer sign flag XSF XNSF

XZF = 0 & XSF = 0 Transfer greater (signed) XG XNLE XNG XLE
† Alternate mnemonics are provided to help program readability. They generate the same opcodes as the associated condition.
‡ Status register (STAT) bit settings are inverted for NOT conditions.
§ Hardware lines used for I/O expansion design. These lines are PA0 and PA1.



Legend

 4-70

4.13 Legend

All instructions of the MSP50P614/MSP50C614 use the following syntax:

name [dest] [, src] [, src1] [, mod]

name Name of the instruction. Instruction names are shown in bold letter through out the text.

dest Destination of the data to be stored after the execution of the instruction. Optional for some instructions or
not used. Destination is also used as both source and destination for some instructions.

src Source of the first data. Optional for some instructions or not used.

src1 Source of the second data. Some instructions use a second data source. Optional for some instructions
or not used.

mod Post modification of a register. This can be either next A or Rmod and will be specified in the instruction.

The following table describes the meanings of the symbols used in the
instruction set descriptions:

Bold type means it must be typed exactly as shown.
italics type means it is a variable.
[ ] square brackets enclose optional arguments.

Operands

0 ≤ dma6 ≤ 63

0 ≤ dma16 ≤ 65535 dma16 ≤ 639 for MSP50P614/MSP50C614

0 ≤ imm5 ≤ 31

0 ≤ imm16 ≤ 65535

0 ≤ offset6 ≤ 63

0 ≤ offset7 ≤ 127

0 ≤ offset16 ≤ 65535

0 ≤ pma8 ≤ 255

0 ≤ pma16 ≤ 65535 pma16 ≤ 32767 for MSP50P614/MSP50C614

0 ≤ port4 ≤ 15

0 ≤ port6 ≤ 63

Symbol Meaning

! Invert the bit of the source. Used with flag addressing only.

An Accumulator selector where n = 0...3. An is the accumulator pointed by APn.

An~ Offset accumulator selector where n = 0...3. An is the accumulator pointed by APn+16; APn wraps
after 31.



Legend

4-71Assembly Language Instructions

Symbol Meaning

A~ Select offset accumulator as the source if this bit is 1. Used in opcode encoding only.

~A Select offset accumulator as the destination accumulator if this bit is 1. Used in opcode encod-
ing only.

A~ Select offset accumulator as the source if this bit is 0. Used in opcode encoding only.

~A~ Can be either ~A or A~ based on opcode (or instruction). Used in Opcode encoding only.

An[~] Can be either An or An~ where n = 0...3

APn Accumulator Pointer register where n = 0..3. Low-order 5 bits select one of 32 accumulators.

adrs Addressing mode bits am, Rx, pm. See Table 4–46.

{adrs}n Addressing mode which must be provided. It should be of the format shown in Table 4–46. The curly
braces { } are not included in the actual instruction. The subscript n represents the data size (in bits)
the instruction will use. For example, {adrs}8 means that the instruction will use 8-bit data from the
addressed memory and the upper bits may not be used. If n is not provided, data width is 16 bits.

cc Condition code bits used with conditional branch/calls and test flag/bit instructions.

{cc} Conditional code mnemonic used with conditional branch/calls and test flag/bit instructions. Curly
braces indicates this field is not optional.

CF Carry flag

clk Total clock cycles per instruction

dma[n] n bit data memory address. For example, dma8 means 8-bit location data memory address. If n is
not specified, defaults to dma16.

DP Data pointer register, 16 bits

flagadrs Flag addressing syntax as shown in Table 4–47.

flg Test flag bit. Used in opcode encoding only.

{flagadrs} Flag addressing syntax as shown in Table 4–48.

FM Fractional mode

g/r Global/relative flag bit for flag addressing.

IM Interrupt enable mode

imm[n] n bit immediate value. If n is not specified, defaults to imm16.

k0...kn Constant field bits.

MR Multiply register, 16 bits

next A Accumulator pointer premodification. See Table 4–45.

Not Not condition on conditional jumps, conditional calls or test flag instructions.

N/R Not repeatable or not recommended



Legend

 4-72

Symbol Meaning

nR Value in repeat counter loaded by RPT instructions

ns Value in string register STR

OF Overflow flag

offset[n] n bit offset from a reference register.

OM Overflow mode

PC Program counter, 16 bits

pma[n] n bit program memory address. For example, pma8 means 8-bit program memory address. If n is
not specified, defaults to pma16.

port[n] n bit I/O port address. Certain instructions multiply this port address by 4.

PH Product high register, 16 bits

PL Product low register, 16 bits (cannot be read/written directly)

R Rx register treated as a general purpose register. This bit is not related to any addressing mode.

RCF Register carry flag

Rx Indirect register x where x = 0..7

RZF Register zero flag

s Represents string mode if 1, otherwise normal mode.

SF Sign flag

STAT Status register, 17 bits

STR String register, 8 bits

SV Shift value register, 4 bits

TAG Memory tag

TF1 Test flag 1

TF2 Test flag 2

TOS Top of stack register, 16 bits

UM Unsigned mode

w Word(s) taken by instruction

x Don’t care

XM Extended sign mode

XSF Transfer (TX) sign flag

XZF Transfer (TX) zero flag

ZF Zero flag



Legend

4-73Assembly Language Instructions

Table 4–45. Auto Increment and Decrement

Operation next A b9 b8

No modification 0 0

Auto increment ++A 0 1

Auto Decrement ––A 1 0

Table 4–46. Addressing Mode Bits and adrs Field Description

String†
Addressing Mode Encoding

Relative
Addressing

Clocks Words

String†
Repeat

Operation
{adrs} 7 6 5 4 3 2 1 0

Addressing
Modes clk w

Operation
Clocks am Rx (x = 0 … 7) pm

Direct 2 2 nR+4 *dma16 0 0 0 x 0 0

Short relative 1 1 nR+2 *R6 + offset7 1 offset7

Relative to R5 1 1 nR+2 *Rx + R5 0 1 0 Rx 0 0

Long relative 2 2 nR+4 *Rx + offset16 0 0 1 Rx 0 0

*Rx 0 0

Indirect 1 1 nR+2
*Rx++ 0 1

Indirect 1 1 nR+2
*Rx–– 0 1 1

Rx 1 0

*Rx++R5 1 1

† Replace nR with nS for string operation.

Note: dma16 and offset16 is the second word.

Table 4–47. Flag Addressing Syntax and BIts

Repeat
{flagadrs} flag addressing mode encoding, flagadrs

Flag
Addressing

Clocks Words
Repeat

Operation† Syntax 6 5 4 3 2 1 0
Addressing

Modes clk w clk flag address bits g/r

Global 1 1 nR+2 *dma6 dma6 0

Relative 1 1 nR+2 *R6+offset6 offset6 1

† nR is RPT instruction argument



Individual Instruction Descriptions

 4-74

4.14 Individual Instruction Descriptions

In this section, individual instructions are discussed in detail. Use the
conditionals in Section 4.12 and the legend in Section 4.13 to help with
individual instruction descriptions. Each instruction is discussed in detail and
provides the following information:

� Assembler syntax
� Clock cycles required with or without repeat instructions
� Words required
� Limitation and restrictions
� Execution
� Affected flags
� Opcode
� Description
� Recommendation to other related instructions (See Also field)
� Examples



Individual Instruction Descriptions

4-75Assembly Language Instructions

4.14.1 ADD Add word

Syntax

[label] name dest, src [, src1] [,mod] Clock, clk Words, w With RPT, clk Class

ADD An[~], An, {adrs} [, next A] Table 4–46 Table 4–46 Table 4–46 1a

ADD An[~], An[~], imm16 [, next A] 2 2 N/R 2b

ADD An[~], An[~], PH [, next A] 1 1 nR+3 3

ADD An[~], An~, An [, next A] 1 1 nR+3 3

ADD Rx, imm16 2 2 N/R 4c

ADD Rx, R5 1 1 nR+3 4d

ADD† APn, imm5 1 1 N/R 9c
† Does not affect the status flags.

Execution [premodify AP if mod specified]
dest  ⇐   dest  +  src (for two operands)
dest  ⇐   src  +  src1 (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is Rx: RCF, RZF are set accordingly
src1 is {adrs}: TAG is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD An[~], An, {adrs} [, next A] 0 0 0 0 ~A next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ADD An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 0 0 0 0 1 A~ ~A

x imm16

ADD  An[~], An[~], PH [, next A] 1 1 1 0 0 next A An 0 1 1 0 1 0 A~ ~A

ADD  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 0 1 0 1 0 A~ ~A

ADD Rx, imm16 1 1 1 1 1 1 1 0 0 0 0 0 Rx 0 0

x imm16

ADD Rx, R5 1 1 1 1 1 1 1 0 0 1 0 0 Rx 0 0

ADD APn, imm5 1 1 1 1 1 0 1 APn 0 1 0 imm5



Individual Instruction Descriptions

 4-76

Description

Syntax Description

ADD dest, src ADD src with dest and store the result to dest.

ADD dest, src, src1 [,mod] ADD src1 with src and store the result to dest. Premodify the mod before
execution. (if provided)

See Also ADDB, ADDS, SUB, SUBB, SUBS

Example 4.14.1.1 ADD A2~, A2, *R2++R5, ––A
Decrement accumulator pointer AP2. Add word at address in R2 to A2, put result in A2~. Add value in
R5 to R2 and store in R2.

Example 4.14.1.2 ADD A1, A1, 0x1221
Add immediate value of 0x1221 to A1 and store result in A1.

Example 4.14.1.3 ADD A0, A0~, PH
Add PH to accumulator A0~ and store result in accumulator A0.

Example 4.14.1.4 ADD A1, A1~, A1
Add accumulator A1 to accumulator A1~, put result in accumulator A1.

Example 4.14.1.5 ADD R3, 0x1000
Add 0x1000 to register R3 store result in R3.

Example 4.14.1.6 ADD R2, R5
Add R2 to R5, store result in R2.

Example 4.14.1.7 ADD AP3, 0x10
Add immediate 0x10 to accumulator pointer AP3, store result in accumulator pointer AP3.



Individual Instruction Descriptions

4-77Assembly Language Instructions

4.14.2 ADDB ADD BYTE

Syntax

[label] name dest, src Clock, clk Words, w With RPT, clk Class

ADDB An, imm8 1 1 N/R 2a

ADDB Rx, imm8 1 1 N/R 4b

Execution dest  ⇐   dest  +  src
PC ⇐  PC + 1

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is Rx: RCF, RZF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDB An imm5 1 0 1 0 0 0 0 An imm8

ADD Rx, imm8 1 0 1 1 0 0 k4 k3 k2 k7 k6 k5 Rx k1 k0

See Also ADD, ADDS, SUB, SUBB, SUBS

Description Add immediate value of unsigned src byte to value stored in dest register and
store result in the same dest register.

Example 4.14.2.1 ADDB A2, 0x45
Add immediate 0x45 to A2.

Example 4.14.2.2 ADDB R5, 0xf2
Add immediate 0xf2 to R5.



Individual Instruction Descriptions

 4-78

4.14.3 ADDS Add String

Syntax

[label] name dest, src, src1 Clock, clk Words, w With RPT, clk Class

ADDS An[~], An, {adrs} Table 4–46 Table 4–46 Table 4–46 1a

ADDS An[~], An[~], pma16 nS+4 2 N/R 2b

ADDS An[~], An~, An nS+2 1 nR+2 3

ADDS† An[~], An[~], PH 1 1 1 3

† This instruction ignores the string count, executing only once but maintains the CF and ZF status of the previous multi-
ply or shift operation as if the sequence was a single string. This instruction should immediately follow one of the fol-
lowing class 1b instructions: MOVAPH, MULAPL, MULSPL, SHLTPL, SHLSPL, and SHLAPL. An interrupt should
not occur between one of these instructions and ADDS. An interrupt may cause incorrect results. Interrupts must be
explicitly disabled at least one instruction before the class 1b instruction. This special sequence is protected inside
a BEGLOOP – ENDLOOP construct.  In addition, single stepping is not allowed for this instruction. An in this instruc-
tion should be the same as An in one of the listed class 1b instruction. Offsets are allowed. See Section 4.8 for more
detail.

Execution dest string ⇐   src string +  src1 string
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
src1 is {adrs}: TAG is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDS An[~], An, {adrs} 0 0 0 0 ~A 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ADDS An[~], An[~], pma16 1 1 1 0 0 1 1 An 0 0 0 0 0 1 A~ ~A

x pma16

ADDS An[~], An~, An 1 1 1 0 0 1 1 An 0 0 1 0 1 0 A~ ~A

ADDS An[~], An[~], PH 1 1 1 0 0 1 1 An 0 1 1 0 1 0 A~ ~A

Description Add value of src string to the value of src1 string and store resulting string in
dest. String length minus two should be stored in STR before execution.

See Also ADD, ADDB, SUB, SUBB, SUBS

Example 4.14.3.1 ADDS A0, A0~, *R2
Add data memory string beginning at address in R2 to accumulator string A0~, put result in accumulator
string A0.

Example 4.14.3.2 ADDS A0, A0~, 0x1400
Add program memory string beginning at address 0x1400 to accumulator string A0~, put result in
accumulator string A0.



Individual Instruction Descriptions

4-79Assembly Language Instructions

Example 4.14.3.3 ADDS A1, A1~, A1
Add accumulator string A1 to accumulator string A1~, put result in accumulator string A1.

Example 4.14.3.4 MULAPL A0, A0~
ADDS A0, A0~, PH

The first instruction multiplies MR and A0~, adds PL to A0, and stores the result in A0. The second
instruction adds PH to the second word of memory string A0 and puts the result in accumulator string
A0. Note that MULAPL and ADDS constitute a special sequence. When this sequence occurs,
interrupts are NOT disabled, so interrupts should be disabled for correct operation. In extended sign
mode, if A0 is AC0 = 0x0000, A0~ is AC16=0xFFFF and MR=0xFF, after execution AC0=0xFF01,
AC1=0xFFFF.



Individual Instruction Descriptions

 4-80

4.14.4 AND Bitwise AND

Syntax

[label] name dest, src [, src1] [, mod] Clock, clk Word, w With RPT, clk Class

AND An, {adrs} Table 4–46 Table 4–46 1b

AND An[~], An[~], imm16 [, next A] 2 2 N/R 2b

AND An[~], An~, An [, next A] 1 1 nR+3 3

AND TFn, [!]{flagadrs} 1 1 N/R 8a

AND TFn, {cc} [, Rx] 1 1 nR+3 8b

Execution [premodify AP if mod specified]
dest  ⇐   dest  AND  src (for two operands)
dest  ⇐   src  AND  src1 (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is TFn: TFn bits in STAT register are set accordingly
src is {adrs}: TAG bit is set accordingly
src is {flagadrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AND  An, {adrs} 0 1 0 0 0 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

AND  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 1 0 1 0 0 1 A~ ~A

x imm16

AND  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 1 0 1 0 0 A~ ~A

AND  TFn, {flagadrs} 1 0 0 1 1 flg Not 1 0 0 flagadrs

AND  TFn, {cc} [, Rx] 1 0 0 1 0 flg Not cc Rx 1 0

Description

Syntax Description

AND dest, src, src1 [, mod] Bitwise AND src1 and src and store result in dest. Premodification of accumulator
pointers are allowed with some operand types.

AND dest, src Bitwise AND dest and src and store result in dest.

AND TFn, {flagadrs} AND TFn bit with 17th bit of data memory address referred by addressing mode
{flagadrs}, store result in TFn bit in STAT register. n is either 1 or 2.

AND TFn, {cc} [, Rx] AND test condition {cc} with TFn bit in STAT register. Rx must be provided if cc is
one of {RZP, RNZP, RLZP, RNLZP} to check if the selected Rx is zero or negative.
Rx should not be provided for other conditionals. n is 1 or 2.



Individual Instruction Descriptions

4-81Assembly Language Instructions

See Also ANDS, ANDB, OR, ORB, ORS, XOR, XORB, XORS

Example 4.14.4.1 AND A3, *R4—–
And word at address in R4 to A3, store result in A3. Decrement value in R4 by 2 (word mode) after the
AND operation.

Example 4.14.4.2 AND A0~, A0, 0xff0f, ––A
Predecrement accumulator pointer AP0. And immediate value 0xff0f to register accumulator A0, store
result in accumulator A0~.

Example 4.14.4.3 AND TF2, *0x0020
AND global flag bit at RAM word location 0x0020 to TF2 in the STAT. Store result in the TF2 bit in the
STAT register. Note that {flagadrs} cannot exceed values greater than *0x003F.

Example 4.14.4.4 AND TF1, TF2
AND TF1 with TF2 bit in the STAT register and store result in TF1.



Individual Instruction Descriptions

 4-82

4.14.5 ANDB Bitwise AND Byte

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

ANDB An, imm8 1 1 N/R 2a

Execution dest  ⇐   dest  AND src byte
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ANDB  An, imm8 1 0 1 0 1 0 1 An imm8

Description Bitwise AND src byte and byte stored in dest register and store result in dest register.

See Also AND, ANDS, OR, ORB, ORS, XOR, XORB, XORS

Example 4.14.5.1 ANDB A2, 0x45
AND immediate value 0x45 to A2 (byte mode). Store result in A2. Upper 8 bits of A2 will be ANDed with
zeros.



Individual Instruction Descriptions

4-83Assembly Language Instructions

4.14.6 ANDS Bitwise AND String

Syntax

[label] name dest, src [, src1] Clock, clk Word, w With RPT, clk Class

ANDS An, {adrs} Table 4–46 Table 4–46 1b

ANDS An[~], An[~], pma16 nR+4 1 N/R 2b

ANDS An[~], An~, An nR+3 1 nR+3 3

Execution dest string ⇐   dest string AND  src string (for two operands)
dest string ⇐   src string AND  src1 string (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ANDS An, {adrs} 0 1 0 0 0 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ANDS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 1 0 1 0 0 1 A~ ~A

x pma16

ANDS  An[~], An~, An 1 1 1 0 0 1 1 An 0 1 0 1 0 0 A~ ~A

Description

Syntax Description

ANDS dest, src Bitwise AND of src string and dest string and store result in dest string.

ANDS dest, src, src1 Bitwise AND src1 string src string and store result in dest string.

See Also AND, ANDB, OR, ORB, ORS, XOR, XORB, XORS

Example 4.14.6.1 ANDS A0, *R2
AND data memory string beginning at address in R2 to A0, put result in A0.

Example 4.14.6.2 ANDS A0~, A0, 0x1400
AND program memory string beginning at address in 0x1400 to A0, put result in A0~.

Example 4.14.6.3 ANDS A0, A0~, A0
AND accumulator string A0 to accumulator string A0~, put result in accumulator string A0.

Example 4.14.6.4 ANDS A0, A0~, *R2
AND memory string beginning at address in R2 to A0~, put result in A0.



Individual Instruction Descriptions

 4-84

4.14.7 BEGLOOP Begin Loop

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

BEGLOOP† 1 1 N/R 9d

† Loop must end with ENDLOOP.

Execution Save next instruction address (PC  +  1)
(mask interrupts)
PC  ⇐   PC  +  1

Flags Affected none

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BEGLOOP 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Description This instruction saves the next sequential address in a shadow register and
masks interrupts. Interrupts occurring during execution of this and following
instructions are actually queued until the loop is complete (see ENDLOOP).
The loop executes N number of times.  Thus, N – 2, should be loaded in R4
in order to loop N times.

BEGLOOP and ENDLOOP block has following restrictions:
� No CALL instructions can be used.
� All maskable interrupts are queued.
� BEGLOOP/ENDLOOP block cannot be nested.

See Also ENDLOOP

Example 4.14.7.1 MOV R4, count – 2 ;init R4 with loop count
BEGLOOP
ADD A0, A0~, A0 ;add A0~ to A0 (count) times
ENDLOOP

Initialize R4 with the loop count value minus 2 to repeat the loop for count times. Execute the ADD A0,
A0~, A0 instruction until R4 is negative. R4 is decremented each time ENDLOOP is encountered. When
R4 is negative, ENDLOOP becomes a NOP and execution continues with the next instruction after
ENDLOOP.



Individual Instruction Descriptions

4-85Assembly Language Instructions

4.14.8 CALL Unconditional Subroutine Call

Syntax

[label] name address Clock, clk Word, w With RPT, clk Class

CALL pma16 2 2 N/R 7c

CALL *An 2 1 N/R 7c

Execution R7  ⇐   R7 + 2
*R7  ⇐   TOS
TOS  ⇐   PC + 2
PC ⇐  *An or pma16

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CALL  pma16 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0

x pma16

CALL  *An 1 0 0 0 1 1 0 An† 0 0 0 1 1 1 1 0

† The value of An is in the following table.

An Bit 9 Bit 8

A0 0 0

A1 0 1

A2 1 0

A3 1 1

Description PC + w is pushed onto the top of stack (TOS) and the second word operand
or accumulator value is loaded into the PC. Call instructions cannot immedi-
ately followed by RET instructions. No restrictions apply if IRET is used instead
of RET.

Syntax Description

CALL pma16 Unconditional call to specified program memory address pma16.

CALL  *An Call to address referenced by An.

See Also Ccc, VCALL, RET, IRET

Example 4.14.8.1 CALL 0x2010
Call unconditionally program memory address 0x2010.

Example 4.14.8.2 CALL *A0
Call unconditionally program memory address stored in accumulator A0.



Individual Instruction Descriptions

 4-86

Note:

You can not RET to a RET. For example, the following code can cause prob-
lems:

CALL my sub
RET

To eliminate any problem, a NOP (or other code) should be inserted between
the CALL and the RET. For example:

CALL my sub
NOP
RET



Individual Instruction Descriptions

4-87Assembly Language Instructions

4.14.9 Ccc Conditional Subroutine Call

Syntax

[label] name address Clock, clk Word, w With RPT, clk Class

Ccc† pma16 2 2 N/R 7c

† Cannot immediately follow a CALL instruction with a return instruction.

If true If Not true

[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]

CZ
CS
CC
CG
CE
CA
CB
CO
CRC
CRE
CL
CTF1
CTF2
CTAG
CIN1
CIN2
CXZ
CXS
CXG
CRA

pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16

[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]

CNZ
CNS
CNC
CNG
CNE
CNA
CNB
CNO
CRNC
CRNE
CNL
CNTF1
CNTF2
CNTAG
CNIN1
CNIN2
CXNZ
CXNS
CXNG
CRNA

pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16
pma16

Execution IF (cc = true)
*R7  ⇐   TOS

TOS  ⇐   PC  +  2
PC  ⇐   pma16
R7  ⇐   R7  +  2

ELSE
NOP
PC ⇐  PC + 2

Flags Affected none

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ccc  pma16 1 0 0 0 0 1 Not cc 0 0 0 0 0

x pma16



Individual Instruction Descriptions

 4-88

Table 4–48. Names for cc

cc
cc names Descriptioncc

cc name Not cc name

p
True condition (Not true condition)

0 0 0 0 0 Z NZ Conditional on ZF=1 (Not condition ZF=0)

0 0 0 0 1 S NS Conditional on  SF=1 (Not condition SF=0)

0 0 0 1 0 C NC Conditional on CF=1 (Not condition CF=0)

0 0 0 1 1 B NB Conditional on ZF=0 and CF=0 (Not condition ZF≠0 or CF≠0)

0 0 1 0 0 A NA Conditional on ZF=0  and CF=1 (Not condition ZF≠0 or CF≠1)

0 0 1 0 1 G NG Conditional on  SF=0 and ZF=0 (Not condition SF≠0 or ZF≠0)

0 0 1 1 0 E NE Conditional if ZF=1 and OF=0 (Not condition ZF≠1 or OF≠0)

0 0 1 1 1 O NO Conditional if OF=1 (Not condition OF=0)

0 1 0 0 0 RC RNC Conditional on RCF=1 (Not condition RCF=0)

0 1 0 0 1 RA RNA Conditional on RZF=0 and RCF=1 (Not condition RZF≠0 or RCF≠1)

0 1 0 1 0 RE RNE Conditional on RZF=1 (Not condition RZF=0)

0 1 0 1 1 RZP RNZP Conditional on value of Rx=0 Not available on calls. (Not condition Rx≠0)

0 1 1 0 0 RLZP RNLZP Conditional on MSB of Rx=1. Not available on calls. (Not condition MSB of Rx=0)

0 1 1 0 1 L NL Conditional on ZF=0  and SF=1 (Not condition ZF≠0 or SF≠1)

0 1 1 1 0 Reserved

0 1 1 1 1 Reserved

1 0 0 0 0 TF1 NTF1 Conditional on TF1=1 (Not condition TF1=0)

1 0 0 0 1 TF2 NTF2 Conditional on TF2=1 (Not condition TF2=0)

1 0 0 1 0 TAG NTAG Conditional on TAG=1 (Not condition TAG=0)

1 0 0 1 1 IN1 NIN1 Conditional on IN1=1 status. (Not condition IN1=0)

1 0 1 0 0 IN2 NIN2 Conditional on IN2=1 status. (Not condition IN2=0)

1 0 1 0 1 Unconditional

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 XZ XNZ Conditional on XZF=1 (Not condition XZF=0)

1 1 0 0 1 XS XNS Conditional on  XSF=1 (Not condition XSF=0)

1 1 0 1 0 XG XNG Conditional on XSF=0 and XZF=0 (Not condition XSF≠0 or XZF≠0)

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 Reserved



Individual Instruction Descriptions

4-89Assembly Language Instructions

Description If cc condition in Table 4–48 is true, PC + 2 is pushed onto the stack and the
second word operand is loaded into the PC. If the condition is false, execution
defaults to a NOP. A Ccc instruction cannot be followed by a return (RET)
instruction. No restriction applies if IRET is used instead of RET.

Syntax Alternate Syntax Description

CA pma16

CNA pma16

CNBE  pma16

CBE  pma16

Conditional call on above (unsigned)†

Conditional call on not above (unsigned)†

CB pma16

CNB pma16

Conditional call on below (unsigned)

Conditional call on not below (unsigned)

CC pma16

CNC pma16

Conditional call on CF = 1

Conditional call on CF = 0

CE pma16

CNE pma16

Conditional call on equal

Conditional call on not equal

CG pma16

CNG pma16

CNLE pma16

CLE pma16

Conditional call on greater (signed)†

Conditional call on not greater (signed)†

CIN1 pma16

CNIN1 pma16

Conditional call on IN1 = 1

Conditional call on IN1 = 0

CIN2 pma16

CNIN2 pma16

Conditional call on IN2 = 1

Conditional call on IN2 = 0

CL pma16

CNL pma16

CNGE pma16

CGE pma16

Conditional call on less (signed)†

Conditional call on not less (signed)†

CO pma16

CNO pma16

Conditional call on OF = 1

Conditional call on OF = 0

CS pma16

CNS pma16

Conditional call on SF = 1

Conditional call on SF = 0

CTAG pma16

CNTAG pma16

Conditional call on TAG = 1

Conditional call on TAG = 0

CTF1 pma16

CNTF1 pma16

Conditional call on TF1 = 1

Conditional call on TF1 = 0

CTF2 pma16

CNTF2 pma16

Conditional call on TF2 = 1

Conditional call on TF2 = 0

CZ pma16

CNZ pma16

Conditional call on ZF = 1

Conditional call on ZF = 0

CRA pma16

CRNA pma16

CRNBE pma16

CRBE pma16

Conditional call on Rx above (unsigned)†

Conditional call on Rx not above (unsigned)†



Individual Instruction Descriptions

 4-90

Syntax DescriptionAlternate Syntax

CRC pma16

CRNC pma16

Conditional call on RCF = 1

Conditional call on RCF = 0

CRE pma16

CRNE pma16

CRZ pma16

CRNZ pma16

Conditional call on RZF = 1 (equal)†

Conditional call on RZF = 0 (not equal)†

CXG pma16

CXNG pma16

CXNLE pma16

CXLE pma16

Conditional call on transfer greater (signed)†

Conditional call on transfer not greater (signed)†

CXS pma16

CXNS pma16

Conditional call on XSF = 1

Conditional call on XSF = 0

† Alternate mnemonics are provided as a way of improving source code readability. They generate the same opcode as the
original mnemonic. For example, CA (call above) tests the same conditions as CNBE (call not below or equal) but may have
more meaning in a specific section of code.

See Also CALL, VCALL, RET, IRET

Example 4.14.9.1 CZ  0x2010
Call routine at program memory address 0x2010 if a previous operation has set the ZF=1 flag in STAT.

Example 4.14.9.2 CTF1 0x2010
Call routine at program memory address 0x2010 if a previous operation has set the TF1=1 flag in STAT.

Example 4.14.9.3 CRNBE 0x2010
Call routine at program memory address 0x2010 if a previous operation has set the flags RCF=1,
RZF=0 in STAT.



Individual Instruction Descriptions

4-91Assembly Language Instructions

4.14.10 CMP Compare Two Words

[label] name src, src1 [, mod] Clock, clk Word, w With RPT, clk Class

CMP An, {adrs} Table 4–46 Table 4–46 1b

CMP An[~], imm16 [, next A] 2 2 N/R 2b

CMP
CMP

An, An~ [, next A]
An~, An [, next A]

1 1 nR+3 3

CMP† Rx, imm16 2 2 N/R 4c

CMP† Rx, R5 1 1 nR+3 4d

† Does not modify An status

Execution [premodify AP if mod specified]
STAT flags set by src – src1 operation
PC = PC + w

Flags Affected src is An: OF, SF, ZF, CF are set accordingly
src is Rx: RCF, RZF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP  An, {adrs} 0 1 0 1 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

CMP  An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 1 1 0 0 1 A~ ~A

x imm16

CMP  An, An~ [, next A] 1 1 1 0 0 next A An 1 0 0 0 0 0 0 0

CMP  An~, An [, next A] 1 1 1 0 0 next A An 1 0 0 0 0 0 1 0

CMP  Rx, imm16 1 1 1 1 1 1 1 0 0 0 1 1 Rx 0 0

x imm16

CMP  Rx, R5 1 1 1 1 1 1 1 0 0 1 1 1 Rx 0 0

Description Subtract value of src1 from src (i.e., src–src1) and only modify the status flag.
Premodification of accumulator pointer is allowed with some operand types.

See Also CMPB, CMPS, Jcc, Ccc

Example 4.14.10.1 CMP A0, *R0
Compare value at accumulator A0 and the content of data memory location pointed by R0 and change
the STAT flags accordingly.

Example 4.14.10.2 CMP A0~, 0x1400, ––A
Predecrement accumulator pointer AP0. Compare value at accumulator A0~ to immediate value at
0x1400 and change the STAT flags accordingly.



Individual Instruction Descriptions

 4-92

Example 4.14.10.3 CMP R2, 0xfe20
Compare value at R2 to immediate value 0xfe20 and change the STAT flags accordingly.

Example 4.14.10.4 CMP R0, R5
Compare value at R0 to R5 and change the STAT flags accordingly.



Individual Instruction Descriptions

4-93Assembly Language Instructions

4.14.11 CMPB Compare Two Bytes

Syntax

[label] name src, src1 Clock, clk Word, w With RPT, clk Class

CMPB An, imm8 1 1 N/R 2a

CMPB Rx, imm8 1 1 N/R 4b

Execution status flags set by  src  –  src1 byte
PC ⇐  PC + 1

Flags Affected src is An: OF, SF, ZF, CF are set accordingly
src is Rx: RCF, RZF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMPB  An, imm8 1 0 1 0 0 1 1 An imm8

CMPB  Rx, imm8 1 0 1 1 1 1 k4 k3 k2 k7 k6 k5 Rx k1 k0

Description Subtract value of src1 (zero filled in upper 8 bits) from src (i.e., src–src1) and
only modify the status flags. Contents of src not changed.

See Also CMP, CMPS, Jcc, Ccc

Example 4.14.11.1 CMPB A0, 0xf3
Compare immediate value 0xf3 to accumulator A0.

Example 4.14.11.2 CMPB R3, 0x21
Compare immediate value 0x21 to R3.



Individual Instruction Descriptions

 4-94

4.14.12 CMPS Compare Two Strings

Syntax

[label] name src, src1 Clock, clk Word, w With RPT, clk Class

CMPS An, {adrs} Table 4–46 Table 4–46 1b

CMPS An[~], pma16 nS+4 2 N/R 2b

CMPS
CMPS

An, An~
An~, An

nS+3 1 nR+3 3

Execution status flags set by  (src  –  src1) string
PC ⇐  PC + w

Flags Affected src is An: OF, SF, ZF, CF are set accordingly
src1 is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMPB  An, {adrs} 0 1 0 1 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

CMPS  An[~], pma16 1 1 1 0 0 1 1 An 0 1 1 0 0 1 A~ 0

x pma16

CMPS  An, An~ 1 1 1 0 0 1 1 An 1 0 0 0 0 0 0 0

CMPS  An~, An 1 1 1 0 0 1 1 An 1 0 0 0 0 0 1 0

Description Subtract src1 string from src string and only modify the status flags. Content
of accumulators are not changed.

See Also CMPB, CMP, Jcc, Ccc

Example 4.14.12.1 CMPS A0, *R0
Compare string at data memory location pointed by R0 to A0 and change the STAT flags accordingly.

Example 4.14.12.2 CMPS A1~, 0x1400
Compare string at program memory location 0x1400 to A1~ and change the STAT flags accordingly.

Example 4.14.12.3 CMPS A2, A2~
Compare accumulator string A2 to accumulator string A2~ and change the STAT flags accordingly.



Individual Instruction Descriptions

4-95Assembly Language Instructions

4.14.13 COR Correlation Filter Function

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

COR An, *Rx 3 1 3(nR+2) 9a

Execution With RPT N–2:
(mask interrupts)
RPT counter = N–2
MR = h[0] = first filter coefficient
x = sample data pointed by Rxeven
h[1] = second filter coefficient pointed by Rxeven+1
y = result stored in three consecutive accumulators (48 bit) pointed by An

{between every accumulation}
IF TAG = 1

Rxeven = Rxeven + R5 {for circular buffering}
ELSE

Rxeven++ { if Rx++ is specified in the instruction}
ENDIF
PC ⇐  PC + 1
{final result}

y��
k�0..N–1

h[k] · x[N–1–k]

(Execution is detailed in section 4.11)

Flags Affected none

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COR  An, *Rx 1 1 1 0 1 0 0 An 1 1 0 Rx 1 1

Description When used with repeat will execute 16 × 16 multiplication between two
indirectly addressed data memory buffers, 48-bit accumulation, and a circular
buffer operation. Each tap takes 3 instruction cycles. The selected register Rx
must be even. This instruction also uses R(x+1). This instruction must be used
with RPT instruction. See section 4.11 for more detail on the setup of
coefficents and sample data. During COR execution, interrupts are queued.

See Also RPT, CORK, FIR, FIRK

Example 4.14.13.1 RPT 0
COR A0, *R0

Computes the calculation for 2 tap correlation filter with 48 bit accumulation. See section 4.11 for more
detail on the setup of coefficents and sample data.



Individual Instruction Descriptions

 4-96

4.14.14 CORK Correlation Filter Function

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

CORK An, *Rx 3 1 3(nR+2) 9a

Execution With RPT N–2:
(mask interrupts)
RPT counter = N–2
MR = h[0] = first filter coefficient
x = sample data pointed at by Rxeven
h[1] = second filter coefficient pointed by DP
y = result stored in three consecutive accumulators (48 bit) pointed by An

{between every accumulation}
IF TAG = 1

Rxeven = Rxeven + R5 {for circular buffering}
ELSE

Rxeven++ { if Rx++ is specified in the instruction}
ENDIF PC ⇐  PC + 1
{final result}

y��
k�0..N–1

h [k] · x[N–1–k]

(Execution is detailed in section 4.11)

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CORK  An, *Rx 1 1 1 0 1 0 0 An 1 0 0 Rx 1 1

Description When used with repeat will execute 16 × 16 multiplication between data
memory and program memory, 48-bit accumulation, and a circular buffer
operation. Each tap takes 3 instruction cycles. Selected register Rx must be
even. This instruction also uses R(x+1). This instruction must be used with
RPT instruction. See Section 4.11 for more detail on the setup of coefficents
and sample data. During CORK execution, interrupt is queued.

See Also RPT, COR, FIR, FIRK

Example 4.14.13.1 RPT 0
CORK A0, *R0

Computes the calculation for 2 tap correlation filter with 48 bit accumulation. See section 4.11 for more
detail on the setup of coefficents and sample data.



Individual Instruction Descriptions

4-97Assembly Language Instructions

4.14.15 ENDLOOP End Loop

Syntax

[label] name # Clock, clk Word, w With RPT, clk Class

ENDLOOP [n] 1 1 N/R 9d

Execution If (R4 ≥ 0)
    decrement R4 by n (1 or 2)
    PC  ⇐   first address after BEGLOOP
else
    NOP
    PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENDLOOP n 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 n

Description This instruction marks the end of a loop defined by BEGLOOP. If register R4
is not negative, R4 is decremented by n and the loop is executed again
beginning with the first instruction after the BEGLOOP. If R4 is negative, a
NOP instruction is executed and program exits the loop. Interrupts (queued by
BEGLOOP) are processed according to their priority. This instruction results
in an overhead of one instruction cycle per loop cycle compared to two
instruction cycle if branching is used. If ENDLOOP is used without any
argument, it assumes n=1.

See Also BEGLOOP, INTE

Example 4.14.15.1 See Example 4.14.7.1 in BEGLOOP.



Individual Instruction Descriptions

 4-98

4.14.16 EXTSGN Sign Extend Word

Syntax

[label] name dest [, mod] Clock, clk Word, w With RPT, clk Class

EXTSGN An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
new most significant word of dest  ⇐   STAT.SF
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTSGN An[~] [, next A] 1 1 1 0 0 next A An 0 1 1 1 1 0 0 ~A

Description Copy accumulator sign flag (SF) to all 16 bits of An[~].

See Also EXTSGNS

Example 4.14.16.1 EXTSGN A0~, ++A
Preincrement accumulator pointer AP0. Sign extend the accumulator A0~.



Individual Instruction Descriptions

4-99Assembly Language Instructions

4.14.17 EXTSGNS Sign Extend String

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

EXTSGNS An[~] nR+3 1 nR+3 3

Execution new most significant word of dest  ⇐   STAT.SF
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTSGNS An[~] 1 1 1 0 0 1 1 An 0 1 1 1 1 0 0 A~

Description Extend the sign bit (SF) of most significant word an additional 16 bits to the left.
The accumulator address is preincremented (internally) causing the sign of
the addressed accumulator to be extended into the next accumulator address.

This instruction ignores the string count, executing only once, but maintains
the CF and ZF status of the previous multiply or shift operation as if the
sequence was a single string.

IMPORTANT:
At this stage of documentation, a bug in this instruction causes the processor
to stall when an attempt is made to sign extend a string that has all zeros in
it. Also, the same interrupt problem on the accumulator pointers exists if the
instruction just before is not a string instruction. For customers who need the
EXTSGNS function now as it was originally intended for string data, there is
a workaround. Unfortunately, it involves the use of two accumulator pointers,
the second pointing to the position in the accumulator register file that would
correspond to the extended word location. For example, if a string exists in
memory with the value Ox943500000000 (3 word string) and the value was
to be moved to a accumulator as a 64 bit sign extended value, the following
code would have been (without bugs):

MOV AP0, 0

MOVS A0, *R0 ; R0 POINTS TO VALUE IN MEMORY

EXTSGNS A0 ; EXTENDS THE SIGN OF ABOVE ADD IN ACC(3)

Since the bug causes the above function to fail, the status of the 2 least signifi-
cant words is equal to zero. However, the same case will be correctly executed
with the desired result with the existing bug:

MOV AP0, 0 ; POINT TO LSW OF ACCUM STRING



Individual Instruction Descriptions

 4-100

MOV AP1, 3 ; Point to loc corresponding to

; extended word in acc

MOVS A0, *R0 ; R0 POINTS TO VALUE IN MEMORY

EXTSGN A1 ; not string version as above

Alternatively, the following code can do the same thing but requires more code:

MOV AP0, 0 ; POINT TO LSW OF ACCUM STRING

MOV AP1, 3 ; Point to loc corresponding to

; extended word in acc

ZAC A1 ; INITIALIZE EXTENDED SIGN VALUE as positive

MOVS A0, *R0 ; R0 POINTS TO VALUE IN MEMORY

JNS POSITIVE ; branch around negative extension,

; accepting default pos extension

NOT A1 ; INVERT EXTENDED SIGN WORD FOR NEG CASE POSITIVE

    ......

See Also EXTSGN

Example 4.14.17.1 EXTSGNS A0~
Sign extend accumulator string A0~. See the previous italic text on the bug in this instruction at the
present time.



Individual Instruction Descriptions

4-101Assembly Language Instructions

4.14.18 FIR FIR Filter Function (Coefficients in RAM)

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

FIR An, *Rx 2 1 2(nR+2) 9a

Execution With RPT N–2:
(mask interrupts)
RPT counter = N–2
MR = h[0] = first filter coefficient
x = sample data pointed at by Rxeven
h[1] = second filter coefficient pointed at Rxeven+1
y = result stored in three consecutive accumulators (32 bit) pointed by An

{between every accumulation}
IF TAG = 1

Rxeven = Rxeven + R5 {for circular buffering}
ELSE

Rxeven++ { if Rx++ is specified in the instruction}
ENDIF
PC ⇐  PC + 1
{final result}

y��
k�0..N–1

h[k] · x[N–1–k]

(Execution is detailed in section 4.11)

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIR  An, *Rx 1 1 1 0 1 0 0 An 0 1 0 Rx 1 1

Description Finite impulse response (FIR) filter. Execute finite impulse response filter taps
using coefficients from data memory and samples from data memory. The
instruction specifies two registers, Rx and R(x+1) which sequentially address
coefficients and the sample buffer in the two instruction FIR tap sequence.

This instruction must be used with RPT instruction. When used with the repeat
counter it will execute a 16 × 16 multiplication between two indirect addressed
data memory buffers, 32-bit accumulation, and circular buffer operation.
Executes in 2 instruction cycles.

Selected register Rx must be even. This instruction also uses R(x+1). See
section 4.11 for more detail on the setup of coefficients and sample data.
During FIR execution, interrupt is queued.



Individual Instruction Descriptions

 4-102

See Also RPT, FIRK, COR, CORK

Example 4.14.18.1 RPT 0
FIR A0, *R0

Computes the calculation for 2 tap FIR filter with 32-bit accumulation. See section 4.11 for more detail
on the setup of coefficients and sample data.



Individual Instruction Descriptions

4-103Assembly Language Instructions

4.14.19 FIRK FIR Filter Function (Coefficients in ROM)

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

FIRK An, *Rx 2 1 2(nR+2) 9a

Execution With RPT N–2:
(mask interrupts)
RPT counter = N–2
MR = h[0] = first filter coefficient
x = sample data pointed by Rxeven
h[1] = second filter coefficient pointed by DP
y = result stored in three consecutive accumulators (32 bit) pointed by An
[between every accumulation}
IF TAG = 1

Rxeven = Rxeven + R5 {for circular buffering}
ELSE

Rxeven++ { if Rx++ is specified in the instruction}
ENDIF
PC ⇐  PC + 1
{final result}

y��
k�0..N–1

h [k] · x[N–1–k]

(Execution is detailed in section 4.11)

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIRK  An, *Rx 1 1 1 0 1 0 0 An 0 0 0 Rx 1 1

Description Finite impluse response (FIR) filter. Execute finite impulse response filter taps
using coefficients from program memory and samples from data memory.
Address reference for data memory is indirect using specified Rx and address
reference for program memory is contained in DP register.

This instruction must be used with RPT instruction. When used with the repeat
counter it will execute 16 × 16 multiplication between indirect addressed data
memory buffer and program memory (coef), 32-bit accumulation, and circular
buffer operation. Each tap executes in 2 cycles. See section 4.11 for more
detail on the setup of coefficents and sample data. Selected register Rx must
be even. During FIRK execution, interrupts are queued.

See Also RPT, FIR, COR, CORK
Example 4.14.19.1 RPT 0

FIRK A0, *R0
Computes the calculation for 2 tap FIR filter with 32 bit accumulation. See section 4.11 for more detail
on the setup of coefficients and sample data.



Individual Instruction Descriptions

 4-104

4.14.20 IDLE Halt Processor

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

IDLE 1 1 N/R 9d

Execution Stop processor clocks
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDLE 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0

Description Halts execution of processor. An external interrupt wakes the processor. This
instruction is the only instruction to enter one of the three low power modes
defined in section 2.11. Low power modes depend on the state of ClkSpdCtrl
register bit 8 through bit 10 and the ARM bit in IntGenCtrl register.

Example 4.14.20.1 MOV A0, 0
OUT 0x34, A0 ; Turn off DAC
MOV A0, 0x0400 ; Turn off clock, idle bit = 1
OUT 0x3d, A0 ; Write in ClkSpdCtrl (write only)
IN A0, 0x38 ; Read IntGenCtrl register value
OR A0, A0, 0x4000 ; Set ARM = 1
OUT 0x38, A0 ; Write to IntGenCtrl
IDLE ; Go to deep sleep mode

To understand this routine, refer to the Reduced Power Modes table in section
2.11. The bits to be set up to switch to deep sleep mode are as follows: set bits
10 of ClkSpdCtrl (IO address 0x3d) register to 1 and reset bits 8 and 9 of
ClkSpdCtrl register to 0 (The PLLM bits are reset to zero in this example
which is not a necessary operation). Note that the ClkSpdCtrl register is write
only. Set the ARM bit in the IntGenCtrl (I/O address 0x38) register to 1
(program line 2 and 3 above). The last line executes the IDLE instruction which
switches the processor to deep sleep mode.



Individual Instruction Descriptions

4-105Assembly Language Instructions

4.14.21 IN Input From Port Into Word

Syntax

[label] name dest, src1 Clock, clk Word, w With RPT, clk Class

IN {adrs}, port4 Table 4–46 Table 4–46 6a

IN An[~],  port6 1 1 nR+3 6b

Execution dest  ⇐   content of port6 or port4
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is {adrs} XZF, XSF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN {adrs}, port4 1 1 0 0 0 port4 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

IN  An[~], port6 1 1 1 0 1 1 0 An port6 ~A

Description Input from I/O port. Words can be input to memory from one of 16 port
addresses or one of 48 port addresses. The port4 address is multiplied by 4
to get the actual port address.

See Also INS, OUT, OUTS

Example 4.14.21.1 IN *R0, 0x0c
Input data from port address 0x0c * 4 = 0x30 to data memory location pointed by R0.

Example 4.14.21.2 IN A2~, 0x3d
Input data from port address 0x3d to accumulator A2~.



Individual Instruction Descriptions

 4-106

4.14.22 INS Input From Port Into String

Syntax

[label] name src, src1 Clock, clk Word, w With RPT, clk Class

INS An[~],  port6 nS+2 1 nR+2 6b

Execution dest  ⇐   content of port6
PC ⇐  PC + 1

Flags Affected dest is An:      OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INS  An[~], port6 1 1 1 0 1 1 1 An port6 0 ~A

Description Input string from same port, port6, to accumulator string. Strings can be input
to accumulators from one of 64 port addresses. In this instruction, port6 is
sampled nS+2 times.  The first sample is stored in the lowest order accumula-
tor of the string and the last sample is stored in the highest order accumulator
of the string.

See Also IN, OUT, OUTS

Example 4.14.22.1 INS A2, 0
Input string starting from port 0 to accumulator string.



Individual Instruction Descriptions

4-107Assembly Language Instructions

4.14.23 INTD Interrupt Disable

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

INTD 1 1 N/R 9d

Execution STAT.IM  ⇐   0 (IM is STAT bit 4)
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTD 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0

Description Disables interrupts.  Resets bit 4 (the IM, interrupt mask bit) of status register
(STAT) to 0.

See Also INTE, IRET

Example 4.14.23.1 INTD
Disable interrupts. INTD must be always be immediately followed by a NOP.  Any maskable interrupt
occurring after the INTD – NOP sequence will not be serviced.



Individual Instruction Descriptions

 4-108

4.14.24 INTE Interrupt Enable

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

INTE 1 1 N/R 9d

Execution STAT.IM  ⇐   1 (IM is STAT bit 4)
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTE 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Description Enables interrupts.  Sets bit 4 (the IM, interrupt mask bit) of status register
(STAT) to 1.

See Also INTD, IRET

Example 4.1 INTE
Enables interrupts. Any maskable interrupts occurring after this instruction is serviced.



Individual Instruction Descriptions

4-109Assembly Language Instructions

4.14.25 IRET Return From Interrupt

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

IRET 2 1 N/R 5

Execution PC ⇐   TOS
R7 ⇐  R7 – 2
TOS ⇐  *R7

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRET 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0

See Also RET, CALL, Ccc, INTE, INTD

Description Return from interrupt. Pop top of stack to program counter.

Example 4.1 IRET
Return from interrupt service routine. If used in a called subroutine, return from subroutine.



Individual Instruction Descriptions

 4-110

4.14.26 Jcc Conditional Jumps
Syntax

[label] name pma16 [, Rmod] Clock, clk Word, w With RPT, clk Class

Jcc pma16 [, Rmod] 2 2 N/R 7b

If true If Not true

[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]

JZ
JS
JC
JG
JE
JA
JB
JO
JRC
JRE
JL
JTF1
JTF2
JTAG
JIN1
JIN2
JXZ
JXS
JXG
JRA
JRZP
JRLZP

pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]

[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]
[label]

JNZ
JNS
JC
JNG
JNE
JNA
JNB
JNO
JRNC
JRNE
JNL
JNTF1
JNTF2
JNTAG
JNIN1
JNIN2
JXNZ
JXNS
JXNG
JRNA
JRNZP
JRNLZP

pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]
pma16 [, Rmod]

Rmod Rx++
Rx––
Rx++R5

Execution IF (condition = true OR unconditional)
PC ⇐   pma16

ELSE
NOP
PC ⇐  PC + 2

[if post modification specified]
IF (Rmod = Rx++)

Rx = Rx + 2
ELSE IF (Rmod = Rx––)

Rx = Rx – 2
ELSE IF (Rmod = Rx++R5)

Rx = Rx +R5

Flags Affected RCF and RZF affected by post-modification of Rx.



Individual Instruction Descriptions

4-111Assembly Language Instructions

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jcc  pma16 1 0 0 0 0 0 Not cc 0 0 0 0 0

x pma16

Jcc  pma16, Rx++ 1 0 0 0 0 0 Not cc Rx 0 1

x pma16

Jcc  pma16, Rx–– 1 0 0 0 0 0 Not cc Rx 1 0

x pma16

Jcc  pma16, Rx++R5 1 0 0 0 0 0 Not cc Rx 1 1

x pma16

cc names Description
cc cc name Not cc name

Description
True condition (Not true condition)

0 0 0 0 0 Z NZ Conditional on ZF=1 (Not condition ZF=0)

0 0 0 0 1 S NS Conditional on  SF=1 (Not condition SF=0)

0 0 0 1 0 C NC Conditional on CF=1 (Not condition CF=0)

0 0 0 1 1 B NB Conditional on ZF=0 and CF=0 (Not condition ZF≠0 or CF≠0)

0 0 1 0 0 A NA Conditional on ZF=0  and CF=1 (Not condition ZF≠0 or CF≠1)

0 0 1 0 1 G NG Conditional on  SF=0 and ZF=0 (Not condition SF≠0 or ZF≠0)

0 0 1 1 0 E NE Conditional if ZF=1 and OF=0 (Not condition ZF≠1 or OF≠0)

0 0 1 1 1 O NO Conditional if OF=1 (Not condition OF=0)

0 1 0 0 0 RC RNC Conditional on RCF=1 (Not condition RCF=0)

0 1 0 0 1 RA RNA Conditional on RZF=0 and RCF=1 (Not condition RZF≠0 or RCF≠1)

0 1 0 1 0 RE RNE Conditional on RZF=1 (Not condition RZF=0)

0 1 0 1 1 RZP RNZP Conditional on value of Rx=0 (Not condition Rx≠0)

0 1 1 0 0 RLZP RNLZP Conditional on MSB of Rx=1. (Not condition MSB of Rx=0)

0 1 1 0 1 L NL Conditional on ZF=0  and SF=1 (Not condition ZF≠0 or SF≠1)

0 1 1 1 0 reserved

0 1 1 1 1 reserved

1 0 0 0 0 TF1 NTF1 Conditional on TF1=1 (Not condition TF1=0)

1 0 0 0 1 TF2 NTF2 Conditional on TF2=1 (Not condition TF2=0)

1 0 0 1 0 TAG NTAG Conditional on TAG=1 (Not condition TAG=0)

1 0 0 1 1 IN1 NIN1 Conditional on IN1=1 status. (Not condition IN1=0)

1 0 1 0 0 IN2 NIN2 Conditional on IN2=1 status. (Not condition IN2=0)

1 0 1 0 1 Unconditional

1 0 1 1 0 reserved

1 0 1 1 1 reserved

1 1 0 0 0 XZ XNZ Conditional on XZF=1 (Not condition XZF=0)

1 1 0 0 1 XS XNS Conditional on  XSF=1 (Not condition XSF=0)

1 1 0 1 0 XG XNG Conditional on XSF=0 and XZF=0 (Not condition XSF≠0 or XZF≠0)

1 1 0 1 1 reserved



Individual Instruction Descriptions

 4-112

cc names Description
cc cc name Not cc name

Description
True condition (Not true condition)

1 1 1 0 0 reserved

1 1 1 0 1 reserved

1 1 1 1 0 reserved

1 1 1 1 1 reserved

Description PC is replaced with second word operand if condition is true (or unconditional).
If test condition is false, a NOP is executed.

Syntax Alternate
Instruction

Description

JA pma16 [, Rmod] JNBE Conditional jump on above (unsigned)

JNA pma16 [, Rmod] JBE Conditional jump on not above (unsigned)

JB pma16 [, Rmod] JNAE Conditional jump on below (unsigned)

JNB pma16 [, Rmod] JAE Conditional jump on not below (unsigned)

JC pma16 [, Rmod] Conditional jump on CF = 1

JNC pma16 [, Rmod] Conditional jump on CF = 0

JE pma16 [, Rmod] Conditional jump on equal

JNE pma16 [, Rmod] Conditional jump on not equal

JG pma16 [, Rmod] JNLE Conditional jump on greater (signed)

JNG pma16 [, Rmod] JLE Conditional jump on not greater (signed)

JIN1 pma16 [, Rmod] Conditional jump on port D pin PD0=1

JNIN1 pma16 [, Rmod] Conditional jump on port D pin PD0=0

JIN2 pma16 [, Rmod] Conditional jump on port D pin PD1=1

JNIN2 pma16 [, Rmod] Conditional jump on port D pin PD1=0

JL pma16 [, Rmod] JNGE Conditional jump on less than(signed)

JNL pma16 [, Rmod] JGE Conditional jump on not less than (signed)

JO pma16 [, Rmod] Conditional jump on OF = 1

JNO pma16 [, Rmod] Conditional jump on OF = 0

JRA pma16 [, Rmod] Conditional jump on Rx above (unsigned)

JRNA pma16 [, Rmod] JRBE Conditional jump on Rx not above (unsigned)

JRC pma16 [, Rmod] Conditional jump on XCF = 1

JRNC pma16 [, Rmod] Conditional jump on XCF = 0

JRE pma16 [, Rmod] JRZ Conditional jump on XZF = 1 (equal)†

JRNE pma16 [, Rmod] JRNZ Conditional jump on XZF = 0 (not equal)†

JRNBE pma16 [, Rmod] Conditional jump on Rx not below or equal (unsigned)†

JRLZP pma16 [, Rmod] Conditional jump on Rx < 0 after post-mod



Individual Instruction Descriptions

4-113Assembly Language Instructions

Syntax DescriptionAlternate
Instruction

JRNLZP pma16 [, Rmod] Conditional jump on Rx ≥ 0 after post-mod

JRZP pma16 [, Rmod] Conditional jump on Rx = 0 after post-mod

JRNZP pma16 [, Rmod] Conditional jump on Rx ≠ 0 after post-mod

JS pma16 [, Rmod] Conditional jump on SF = 1

JNS pma16 [, Rmod] Conditional jump on SF = 0

JTAG pma16 [, Rmod] Conditional jump on TAG = 1

JNTAG pma16 [, Rmod] Conditional jump on TAG = 0

JTF1 pma16 [, Rmod] Conditional jump on TF1 = 1

JNTF1 pma16 [, Rmod] Conditional jump on TF1 = 0

JTF2 pma16 [, Rmod] Conditional jump on TF2 = 1

JNTF2 pma16 [, Rmod] Conditional jump on TF2 = 0

JXG pma16 [, Rmod] JXNLE Conditional jump on transfer greater (signed)†

JXNG pma16 [, Rmod] JXLE Conditional jump on transfer not greater (signed)†

JXS pma16 [, Rmod] Conditional jump on transfer SF = 1

JXNS pma16 [, Rmod] Conditional jump on transfer SF = 0

JXZ pma16 [, Rmod] Conditional jump on transfer ZF = 1 (zero)

JXNZ pma16 [, Rmod] Conditional jump on transfer ZF = 0 (not equal)

JZ pma16 [, Rmod] Conditional jump on ZF = 1

JNZ pma16 [, Rmod] Conditional jump on ZF = 0
† Alternate mnemonics are provided as a way of improving source code readability. They generate the same opcode as the

original mnemonic. For example, JA (jump above) tests the same conditions as JNBE (jump not below or equal) but may have
more meaning in a specific section of code.

See Also JMP, CALL, Ccc

Example 4.14.27.1 JNZ 0x2010
Jump to program memory location 0x2010 if the result is not zero.

Example 4.14.27.2 JE 0x2010, R3++R5
Jump to program memory location 0x2010 if flag RZF = 1. Increment R3 by R5. Since this jump
instruction does not have a P at the end, post-modification is NOT reflected in the STAT register. Thus,
if R3 becomes zero, RZF is not updated.

Example 4.14.27.3 JIN1 0x2010, R1––
Jump to program memory location 0x2010 if I/O port address PD0 pin has a value of 1. Decrement R1
by 2.

Example 4.14.27.4 JTAG 0x2010, R2++
Jump to program memory location 0x2010 if TAG bit of STAT is zero. Increment R2 by 2.



Individual Instruction Descriptions

 4-114

4.14.27 JMP Unconditional Jump

Syntax

[label] name dest [, mod] Clock, clk Word, w With RPT, clk Class

JMP pma16 2 2 N/R 7b

JMP pma16,  Rx++ 2 2 N/R 7b

JMP pma16, Rx–– 2 2 N/R 7b

JMP pma16,  Rx++R5 2 2 N/R 7b

JMP *An 2 1 N/R 7b

Execution PC  ⇐   dest
[Post–modify Rx if specified]

Flags Affected RCF and RZF affected by post–modification of Rx

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP  pma16 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0

x pma16

JMP  pma16, Rx++ 1 0 0 0 0 0 0 1 0 1 0 1 Rx 0 1

x pma16

JMP  pma16, Rx–– 1 0 0 0 0 0 0 1 0 1 0 1 Rx 1 0

x pma16

JMP  pma16, Rx++R5 1 0 0 0 0 0 0 1 0 1 0 1 Rx 1 1

x pma16

JMP  *An 1 0 0 0 1 0 0 An 0 0 0 0 0 0 0 0

Description

Instruction Operation

JMP pma16[, mod] PC is replaced with second word operand. Post modification of Rx register is done
if specified.

JMP  *An PC is replaced with content of accumulator An.

See Also Jcc, CALL, Ccc

Example 4.14.26.1 JMP 0x2010, R2––
Jump unconditionally to program memory location 0x2010. Decrement R2 by 2.

Example 4.14.26.2 JMP *A3
Jump unconditionally to program memory location stored in accumulator A3.



Individual Instruction Descriptions

4-115Assembly Language Instructions

4.14.28 MOV Move Data Word From Source to Destination

Syntax

[label] name dest, src, [, next A] Clock, clk Word, w With RPT, clk Class

MOV {adrs}, An[~] [, next A] Table 4–46 Table 4–46 1a

MOV An[~], {adrs} [, next A] Table 4–46 Table 4–46 1a

MOV {adrs}, *An Table 4–46 Table 4–46 1b

MOV An[~], imm16 [, next A] 2 2 N/R 2b

MOV MR, imm16 [, next A] 2 2 N/R 2b

MOV An, An~ [, next A] 1 1 nR+3 3

MOV An[~], PH [, next A] 1 1 nR+3 3

MOV SV, An[~] [, next A] 1 1 nR+3 3

MOV PH, An[~] [, next A] 1 1 nR+3 3

MOV An[~], *An[~] [, next A] 1 1 nR+3 3

MOV MR, An[~] [, next A] 1 1 nR+3 3

MOV {adrs}, Rx Table 4–46 Table 4–46 4a

MOV Rx, {adrs} Table 4–46 Table 4–46 4a

MOV Rx, imm16 2 2 N/R 4c

MOV Rx, R5 1 1 nR+3 4d

MOV SV, {adrs}4 1 1 nR+3 5

MOV PH, {adrs} Table 4–46 Table 4–46 5

MOV MR, {adrs} Table 4–46 Table 4–46 5

MOV APn, {adrs} Table 4–46 Table 4–46 5

MOV STAT, {adrs} Table 4–46 Table 4–46 5

MOV TOS, {adrs} Table 4–46 Table 4–46 5

MOV {adrs}, PH Table 4–46 Table 4–46 5

MOV {adrs}, MR Table 4–46 Table 4–46 5

MOV {adrs}, STAT Table 4–46 Table 4–46 5

MOV {adrs}, STR Table 4–46 Table 4–46 5

MOV {adrs}, DP Table 4–46 Table 4–46 5

MOV {adrs}, SV Table 4–46 Table 4–46 5

MOV {adrs}, APn Table 4–46 Table 4–46 5

MOV {adrs}, TOS Table 4–46 Table 4–46 5

MOV STR, {adrs}8 Table 4–46 Table 4–46 5

MOV {flagadrs}, TFn 1 1 nR+3 8a

MOV TFn, {flagadrs} 1 1 nR+3 8a



Individual Instruction Descriptions

 4-116

[label] ClassWith RPT, clkWord, wClock, clkdest, src, [, next A]name

MOV TFn, {cc} [, Rx] 1 1 N/R 8b

MOV STR, imm8 1 1 N/R 9b

MOV SV, imm4 1 1 N/R 9b

MOV APn, imm5 1 1 N/R 9c

Execution [premodify AP if mod specified]
dest  ⇐   src
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is Rx: RCF, RZF are set accordingly
dest is {adrs}: XSF, XZF are set accordingly
src is {adrs} TAG bit is set accordingly
src is {flagadrs} TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV  {adrs}, An[~] [, next A] 0 0 1 1 A~ next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  An[~], {adrs} [, next A] 0 0 1 0 A~ next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, *An 0 1 0 1 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 0 1 0 0 1 0 ~A

x imm16

MOV  MR, imm16 [, next A] 1 1 1 0 0 next A An 1 1 1 0 0 1 0 0

x imm16

MOV  An, An~ [, next A] 1 1 1 0 0 next A An 0 0 1 1 1 0 A~ ~A

MOV  An[~], PH [, next A] 1 1 1 0 0 next A An 0 1 1 1 0 0 A~ ~A

MOV  SV, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 0 0 0 A~ 0

MOV  PH, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 0 1 0 A~ 0

MOV  An[~], *An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 1 0 0 A~ ~A

MOV  MR, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 1 0 0 A~ 0

MOV  {adrs}, Rx 1 1 1 1 0 0 Rx {adrs}

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  Rx, {adrs} 1 1 1 1 0 1 Rx {adrs}

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  Rx, imm16 1 1 1 1 1 1 1 0 0 0 1 0 Rx 0 0

x imm16



Individual Instruction Descriptions

4-117Assembly Language Instructions

Instructions 012345678910111213141516

MOV  Rx, R5 1 1 1 1 1 1 1 0 0 1 1 0 Rx 0 0

MOV  SV, imm4 1 1 1 1 1 1 0 1 0 0 0 0 0 imm4

MOV  SV, {adrs}4 1 1 0 1 1 0 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  PH, {adrs} 1 1 0 1 1 0 0 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  MR, {adrs} 1 1 0 1 1 1 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  APn, {adrs} 1 1 0 1 1 0 1 APn adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  STAT, {adrs} 1 1 0 1 1 1 1 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV TOS, {adrs} 1 1 0 1 1 0 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, PH 1 1 0 1 0 0 0 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, MR 1 1 0 1 0 1 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, STAT 1 1 0 1 0 0 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, STR 1 1 0 1 0 0 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, DP 1 1 0 1 0 1 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, SV 1 1 0 1 0 0 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, APn 1 1 0 1 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, TOS 1 1 0 1 0 1 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  STR, {adrs}8 1 1 0 1 1 0 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {flagadrs}, TFn 1 0 0 1 1 flg Not 0 0 1 flagadrs

MOV  TFn, {flagadrs} 1 0 0 1 1 flg Not 0 0 0 flagadrs

MOV  TFn, {cc} [, Rx] 1 0 0 1 0 flg Not cc Rx 0 0

MOV  STR, imm8 1 1 1 1 1 1 0 0 1 imm8

MOV  APn, imm5 1 1 1 1 1 0 1 An 0 0 0 imm5



Individual Instruction Descriptions

 4-118

Description Copy value of src to dest. Premodification of accumulator pointers is allowed
with some operand types.

Syntax Description

MOV An[~], {adrs} [, next A] Move data memory word to An[~]†

MOV {adrs}, An[~] [, next A] Move An[~] word to data memory

MOV An[~], imm16 [, next A] Move immediate word to An[~]†

MOV MR, imm16 [, next A] Move immediate word to multiply register†

MOV An, An~ [, next A] Move An~ word to An

MOV An~, An [, next A] Move An word to An~

MOV An[~], PH [, next A] Move product high reg to An[~]†

MOV SV, An[~] [, next A] Move lower 4 bits of An[~] to SV register

MOV PH, An[~] [, next A] Move An[~] to PH register

MOV MR, An[~] [, next A] Move An[~] to MR register in signed multiplier mode‡

MOV An[~], *An[~] [, next A] Move program memory word at *An[~] to An[~]†

MOV {adrs}, Rx Move Rx word to data memory

MOV Rx, {adrs} Move data memory word to Rx

MOV Rx, imm16 Move immediate word to Rx

MOV Rx, R5 Move R5 to Rx

MOV PH, {adrs} Move data memory word to product high (PH) register

MOV MR, {adrs} Move data memory word to MR, set multiplier signed mode‡

MOV {adrs}, *An Move ROM word at *An to data memory

MOV APn,  {adrs} Move data memory word (lower 6 bits)to APn register

MOV STAT, {adrs} Move data memory word to status register (STAT)

MOV SV, {adrs}‡ Move data memory value (lower 4 bits) to shift value (SV) register

MOV TOS, {adrs} Move data memory word to top of stack (TOS)

MOV {adrs}, PH Move product high (PH) register to data memory

MOV {adrs}, MR Move Multiplier register (MR) to data memory

MOV {adrs}, STAT Move status register (STAT) to data memory

MOV {adrs}, STR Move string register (STR) byte to data memory

MOV {adrs}, DP Move data pointer (DP) to data memory

MOV {adrs}, SV Move shift value (SV) (4 bits) to data memory

MOV {adrs}, APn Move APn register to data memory

MOV STR, {adrs}§ Move data memory byte to string register (STR)

MOV {adrs}, TOS Move top of stack (TOS) to data memory word

MOV TFn, {flagadrs} Move data flag to TFn in STAT register

MOV {flagadrs}, TFn Move TFn from STAT register to memory flag†

MOV TFn, {cc} [, Rx] Load logic value of test condition to TFn bit in STAT register¶

MOV SV, imm4 Move immediate value to shift value (SV) register



Individual Instruction Descriptions

4-119Assembly Language Instructions

Syntax Description

MOV STR, imm8 Move immediate byte to String Register (STR)

MOV APn,  imm5 Move immediate 5-bit value to APn register
† Accumulator condition flags are modified to reflect the value loaded into either An or An~.
‡ Signed multiplier mode resets UM (bit 1 in status register) to 0
¶ Load the logic value of the test condition to the TFn bit in the status register (STAT). If the condition is true, TFn=1, else TFn=0.

See Also MOVU, MOVT, MOVB, MOVBS, MOVS

Example 4.14.28.1 MOV A0, *0x0200 * 2, ++A
Preincrement accumulator pointer AP0. Copy content of word memory location 0x0200 to accumulator
A0.

Example 4.14.28.2 MOV *0x0200 * 2, A0, ++A
Preincrement accumulator pointer AP0. Copy content of accumulator A0 to word memory location
0x0200.

Example 4.14.28.3 MOV *0x0200 * 2, *A1
Transfer content of program memory location pointed by A1 to word data memory location 0x0200.

Example 4.14.28.4 MOV A2, 0xf200, ––A
Predecrement accumulator pointer AP2. Load accumulator A2 with immediate value 0xf200.

Example 4.14.28.5 MOV A0, A0~
Copy content of accumulator A0~ to accumulator A0.

Example 4.14.28.6 MOV A0~, A0
Copy content of accumulator A0 to accumulator A0~.

Example 4.14.28.7 MOV A0~, PH
Copy content of PH to accumulator A0~.

Example 4.14.28.8 MOV SV, A3, ––A
Predecrement accumulator pointer AP3. Copy content of accumulator A3 to SV.

Example 4.14.28.9 MOV PH, A3
Copy content of accumulator A3 to PH.

Example 4.14.28.10 MOV MR, A3, ––A
Predecrement accumulator pointer AP3. Copy content of accumulator A3 to MR.

Example 4.14.28.11 MOV A1~, *A1
Transfer program memory value pointed by accumulator A1 to accumulator A1~. This is a table lookup
instruction.

Example 4.14.28.12 MOV *0x0200 * 2, R0
Store content of R0 to data memory word location 0x0200.



Individual Instruction Descriptions

 4-120

Example 4.14.28.13 MOV R1, 0x0200 * 2
Load immediate word memory address 0x0200 to R1.

Example 4.14.28.14 MOV R7, (0x0280 – 32) * 2
Load R7 (stack register) with the starting value of stack, i.e., 0x0260.

Example 4.14.28.15 MOV *0x0200 * 2, R0
Store R0 to data memory word location 0x0200.

Example 4.14.28.16 MOV R0, R5
Transfer R5 to R0.

Example 4.14.28.17 MOV AP2, *R3
Copy content of data memory location stored in R3 to accumulator pointer AP2.

Example 4.14.28.18 MOV *R6 + 8 * 2, DP
Copy data pointer (DP) to data memory word location pointed by R6 offset by 8 location (short relative
addressing).

Example 4.14.28.19 MOV STR, *0x0200 * 2
Copy the STR register with the content of word memory location 0x0200.

Example 4.14.28.20 MOV *R6+0x20, TF2
Copy TF2 flag to the flag bit in relative flag location R6 offset by 0x20.

Example 4.14.28.21 MOV TF1, ZF
Copy status of ZF flag in STAT register to TF1.

Example 4.14.28.22 MOV SV, 4 – 2
Load SV register with a constant value 2.

Example 4.14.28.23 MOV AP3, 23 – 16
Load accumulator pointer AP3 with value 7.



Individual Instruction Descriptions

4-121Assembly Language Instructions

4.14.29 MOVAPH Move With Adding PH

Syntax

[label] name dest, src, src1 Clock, clk Word, w With RPT, clk Class

MOVAPH An, MR, {adrs} Table 4–46 Table 4–46 1b

Execution An  ⇐  An + PH 
MR ⇐  contents of {adrs}
PC ⇐  PC + w

Flags Affected TAG, OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVAPH An, MR, {adrs} 0 1 1 0 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Move RAM word to MR register, add PH to An in parallel.

See Also MOVAPHS, MOVTPH, MOVTPHS, MOVSPH, MOVSPHS

Example 4.14.34.1 MOVAPH A0, MR, *R3+R5
Load the contents of the byte address created by adding R3 and R5 to the MR register. At the same
time, add accumulator A0 to the PH register and store the result in A0.



Individual Instruction Descriptions

 4-122

4.14.30 MOVAPHS Move With Adding PH

Syntax

[label] name dest, src, src1 Clock, clk Word, w With RPT, clk Class

MOVAPHS An, MR, {adrs} Table 4–46 Table 4–46 1b

Execution An  ⇐  An + PH 
MR ⇐  contents of {adrs}
PC ⇐  PC + w

Flags Affected TAG, OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVAPHS An, MR, {adrs} 0 1 1 0 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Move RAM word to MR, add PH to second word in An string. Certain restriction
applies to the use of this instruction when interrupts are occuring on the
background. See section 4.8 for more details.

See Also MOVAPH, MOVTPH, MOVTPHS, MOVSPH, MOVSPHS

Example 4.14.35.1 MOVAPHS A0, MR, *R3+R5
Load the content of byte address created by adding R3 and R5 to MR register. At the same time, add
second word in accumulator string A0 to PH register, store result in A0 string.



Individual Instruction Descriptions

4-123Assembly Language Instructions

4.14.31 MOVB Move Byte From Source to Destination

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

MOVB An, {adrs} Table 4–46 Table 4–46 1b

MOVB {adrs}, An Table 4–46 Table 4–46 1b

MOVB An, imm8 1 1 N/R 2a

MOVB MR, imm8 1 1 N/R 2a

MOVB Rx, imm8 1 1 N/R 2b

Execution dest  ⇐   src
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is Rx: RCF, RZF are set accordingly
dest is {adrs}: XSF, XZF are set accordingly
src is {adrs} TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVB  An, {adrs} 0 1 0 0 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVB  {adrs}, An 0 1 0 1 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVB  An, imm8 1 0 1 0 0 0 1 An imm8

MOVB  MR, imm8 1 0 1 0 1 1 1 An imm8

MOVB  Rx, imm8 1 0 1 1 1 0 k4 k3 k2 k7 k6 k5 Rx k1 k0

Description Copy value of unsigned src byte to dest byte.

Syntax Description

MOVB An, {adrs} Move data memory byte to An†

MOVB {adrs}, An Move An byte to data memory

MOVB An, imm8 Move immediate byte to An†

MOVB MR, imm8 Move immediate byte to multiply register (MR)‡

MOVB Rx, imm8 Move immediate byte to Rx
† Zeros loaded to upper 8 bits of An.
‡ Status flags are not modified

See Also MOVU, MOV, MOVT, MOVBS, MOVS

Example 4.14.29.1 MOVB A0, *R2
Copy data memory byte pointed by R2 to accumulator A0.



Individual Instruction Descriptions

 4-124

Example 4.14.29.2 MOVB *R2, A0
Copy lower 8 bits of accumulator A0 to the data memory byte pointed by R2.

Example 4.14.29.3 MOVB A0, 0xf2
Load accumulator A0 with value of 0xf2.

Example 4.14.29.4 MOVB MR, 34
Load MR register with immidiate value of 34 (decimal).

Example 4.14.29.5 MOVB R2, 255
Load R2 with immidiate value of 255 (decimal).



Individual Instruction Descriptions

4-125Assembly Language Instructions

4.14.32 MOVBS Move Byte String from Source to Destination

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

MOVBS An, {adrs}8 Table 4–46 Table 4–46 1b

MOVBS {adrs}, An Table 4–46 Table 4–46 1b

Execution dest  ⇐   src
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is {adrs}: XSF, XZF are set accordingly
src is {adrs} TAG bit is set to bit 17th value

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVBS  An, {adrs}8 0 1 0 0 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVBS  {adrs}8, An 0 1 0 1 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Copy value of src byte to dest.

Syntax Description

MOVBS An, {adrs} Move data memory byte string to An word string

MOVB {adrs}, An Move An byte string to data memory

See Also MOVU, MOV, MOVT, MOVB, MOVS

Example 4.14.30.1 MOVBS A2, *0x0200
Transfer the byte string at data memory location 0x0200 to accumulator string A2.

Example 4.14.30.2 MOVBS *0x0200, A2
Transfer accumulator string A2 to data memory byte string location 0x0200.



Individual Instruction Descriptions

 4-126

4.14.33 MOVS Move String from Source to Destination

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

MOVS An[~], {adrs} Table 4–46 Table 4–46 1a

MOVS {adrs}, An[~] Table 4–46 Table 4–46 1a

MOVS {adrs}, *An Table 4–46 Table 4–46 1b

MOVS An[~], pma16 nS+4 2 N/R 2b

MOVS† An[~], PH 1 1 1 3

MOVS An, An~ nS+2 1 nR+2 3

MOVS An[~], *An[~] nS+4 1 nR+4 3

† Certain restriction applies to the use of this instruction when interrupts are occuring on the background. See Section
4.8 for more detail.

Execution dest  ⇐   src
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is {adrs}: XSF, XZF are set accordingly
src is {adrs} TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVS  An[~], {adrs} 0 0 1 0 A~ 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  {adrs}, An[~] 0 0 0 1 A~ 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  {adrs}, *An 0 1 0 1 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  An[~], pma16 1 1 1 0 0 1 1 An 0 0 1 0 0 1 A~ ~A

x pma16

MOVS  PH, An[~] 1 1 1 0 0 1 1 An 1 0 1 0 1 0 A~ 0

MOVS  SV, An[~] 1 1 1 0 0 1 1 An 1 0 1 0 0 0 A~ 0

MOVS  An[~], PH 1 1 1 0 0 1 1 An 0 0 1 0 0 0 A~ ~A

MOVS  An, An~ 1 1 1 0 0 1 1 An 0 0 1 1 1 0 A~ ~A

MOVS  MR, An[~] 1 1 1 0 0 1 1 An 1 0 1 1 0 0 A~ 0

MOVS   An[~], *An[~] 1 1 1 0 0 1 1 An 0 0 0 1 0 0 A~ ~A



Individual Instruction Descriptions

4-127Assembly Language Instructions

Description Copy value of src string to dest string. Premodification of accumulator pointers
is allowed with some operand types.

Syntax Description

MOVS An[~], {adrs} Move data memory word string to An[~] string

MOVS {adrs}, An[~] Move An[~] string to data memory

MOVS {adrs}, *An Move program memory string at *An to data memory

MOVS An[~], pma16 Move program memory string to An[~] string

MOVS An, An~ Move An~ string to An

MOVS An~, An Move An string to An~ string

MOVS An[~], PH Move product high reg to An[~], string mode. This instruction ignores the string
count, executing only once but maintains the CF and ZF status of the previous
multiply or shift operation as if the sequence was a single string.

MOVS An[~], *An[~] Move program memory string at *An[~] to An[~]

See Also MOVU, MOV, MOVT, MOVB, MOVBS

Example 4.14.31.1 MOVS A2~, *R6
Load the string pointed by R6 to accumulator string A2~.

Example 4.14.31.2 MOVS *R4, A2~
Copy the accumulator string A2~ to data memory location pointed by R4.

Example 4.14.31.3 MOVS *0x0100 * 2, *A0
Transfer the program memory word string pointed by content of A0 to the data memory word location
0x0100. This is a lookup instruction.

Example 4.14.31.4 MOVS A2~, 0x1400
Transfer program memory string at 0x1400 to accumulator string A2~.

Example 4.14.31.5 MOVS A1, A1~
Transfer accumulator string A1~ to accumulator string A1.

Example 4.14.31.6 MOVS A1~, A1
Transfer accumulator string A1 to accumulator string A1~.

Example 4.14.31.7 MOVS A2, PH
Transfer value in PH to accumulator string A2. PH is copied to the second word of the string.



Individual Instruction Descriptions

 4-128

4.14.34 MOVSPH Move With Subtract from PH

Syntax

[label] name dest, src, src1 Clock, clk Word, w With RPT, clk Class

MOVSPH An, MR, {adrs} Table 4–46 Table 4–46 1b

Execution An  ⇐  An – PH
MR ⇐  contents of {adrs}
PC ⇐  PC + w

Flags Affected TAG, OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVSPH An, MR, {adrs} 0 1 1 0 0 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Move data memory to MR, subtract PH from An, store result in An.

See Also MOVSPHS, MOVAPH, MOVAPHS, MOVTPH, MOVTPHS

Example 4.14.36.1 MOVSPH A0, MR, *R3+R5
Load the content of byte address created by adding R3 and R5 to MR register. At the same time, subtract
PH register from accumulator A0, store result in A0.



Individual Instruction Descriptions

4-129Assembly Language Instructions

4.14.35 MOVSPHS Move String With Subtract From PH

Syntax

[label] name dest, src, src1 Clock, clk Word, w With RPT, clk Class

MOVSPHS An, MR, {adrs} Table 4–46 Table 4–46 1b

Execution An  ⇐  An (second word) – PH
MR ⇐  contents of {adrs}
PC ⇐  PC + w

Flags Affected TAG, OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVSPHS An, MR, {adrs} 0 1 1 0 0 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Move data memory word string to MR, subtract PH from second word An
string. Store result in An. Certain restrictions apply to the use of this instruction
when interrupts are occuring on the background. See Section 4.8 for more
details.

See Also MOVSPH, MOVAPH, MOVAPHS, MOVTPH, MOVTPHS

Example 4.14.37.1 MOVSPHS A0, MR, *R3+R5
Load the content of byte address created by adding R3 and R5 to MR register. At the same time, subtract
PH register from second word of A0 string, store result in A0 string.



Individual Instruction Descriptions

 4-130

4.14.36 MOVT Move Tag From Source to Destination

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

MOVT {adrs}, TFn Table 4–46 Table 4–46 5

Execution dest  ⇐   src
PC ⇐  PC + w

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVT  {adrs}, TFn 1 1 0 1 0 1 1 1 fig adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Move TFn from STAT register to memory tag. All addressing modes are
available.

See Also MOVU, MOV, MOVT, MOVB, MOVBS, MOVS

Example 4.14.32.1 MOVT *R3++, TF2
Copy the TF2 flag bit to the 17th bit of the word pointed by R3. Increment R3 by 2.



Individual Instruction Descriptions

4-131Assembly Language Instructions

4.14.37 MOVU Move Data Unsigned

Syntax

[label] name dest, src  [, mod] Clock, clk Word, w With RPT, clk Class

MOVU MR, An[~] [, next A] 1 1 nR+3 3

MOVU MR, {adrs} Table 4–46 Table 4–46 5

Execution [premodify AP if mod specified]
dest  ⇐   src
PC ⇐  PC + w

Flags Affected src is {adrs} TAG bit is set accordingly
UM is set to 1

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVU MR, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 1 1 0 A~ 0

MOVU MR, {adrs} 1 1 0 1 1 1 0 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Copy value of src to dest. Premodification of accumulator pointers is allowed
with some operand types.

Syntax Description

MOVU MR, An[~] [, next A] Move An[~] to MR register in unsigned multiplier mode

MOVU MR, {adrs} Move data memory word to MR, reset multiplier signed mode

See Also MOV, MOVB, MOVT, MOVBS, MOVS

Example 4.14.33.1 MOVU MR, A0~, ++A
Preincrement accumulator pointer AP0. Copy the content of accumulator A0~ to MR register.

Example 4.14.33.2 MOVU MR, *R3
Copy the value pointed by R3 to MR.



Individual Instruction Descriptions

 4-132

Figure 4–8. Valid Moves/Transfer in MSP50P614/MSP50C614 Instruction Set

PH

An

Rx

APn

STR

MR/SV

Immediate

B

B

B

S B

S

S B

ROM

RAM

S

I/O
xxxxxx

xxxx00

STAT

TOS

B
Flag Bit

NOTE: B = Byte move possible.
S = String move possible.
R5 can be moved to Rx, An[–] to An[–]



Individual Instruction Descriptions

4-133Assembly Language Instructions

4.14.38 MUL Multiply (Rounded)

Syntax

[label] name src  [, mod] Clock, clk Word, w With RPT, clk Class

MUL An[~] [, next A] 1 1 nR+3 3

MUL {adrs} Table 4–46 Table 4–46 5

Execution [premodify AP if mod specified]
PH,PL ⇐   MR * src
PC ⇐  PC + w

Flags Affected src is An : OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MUL  An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 1 0 0 A~ 0

MUL  {adrs} 1 1 0 1 1 1 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Multiply MR and src. The 16 MSBs of the 32–bit product are stored in the the
PH register.  The contents of the accumulator are not changed.  The upper 16
bits of the result are rounded for MUL An, but not for MUL {adrs}.  Pre–modify
the accumulator pointer if specified.

Syntax Description

MUL An[~] [, next A] Multiply MR by An[~] word, store result in An[~]†

MUL {adrs} Multiply MR by data memory word‡

† Round upper 16 bits
‡ No status change

See Also MULR, MULAPL, MULSPL, MULSPLS, MULTPL, MULTPLS, MULAPL

Example 4.14.38.1 MUL A0~, ––A
Predecrement accumulator pointer AP0. Multiply MR with accumulator A0~ and store upper 16 bits of
the result (rounded) PH. Accumulator A0~ is left unchanged.

Example 4.14.38.2 MUL *R3––
Multiply MR with the value pointed at by R3 and store the upper 16 bits of the result (rounded) into PH.
Decrement R3 by 2.



Individual Instruction Descriptions

 4-134

4.14.39 MULR Multiply (Rounded) With No Data Transfer

Syntax

[label] name src Clock, clk Word, w With RPT, clk Class

MULR {adrs} Table 4–0–46 Table 4–0–46 5

Execution PH,PL ⇐   MR * src
PC ⇐  PC + 1

Flags Affected TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULR [adrs] 1 1 0 1 1 1 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) (see Section 4.13)

Description Perform multiplication of multiply register (MR) and effective data memory
value, add 08x00 to the product. The 16 MSBs of the 32-bit product are stored
in the product high (PH) register. No status change. Round upper 16 bits.

See Also MULS, MUL, MULAPL, MULSPL, MULSPLS, MULTPL, MULTPLS,
MULAPL

Example 4.14.39.1 MULR *R0++
Multiply MR with the content of data memory location pointed by R0 and store the rounded upper 16
bits of the result in PH. Increment R0 by 2.



Individual Instruction Descriptions

4-135Assembly Language Instructions

4.14.40 MULS Multiply String With No Data Transfer

Syntax

[label] name src Clock, clk Word, w With RPT, clk Class

MULS An [~] nS+3 1 nR+3 3

Execution PH,PL ⇐   MR * src string
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULS  An[~] 1 1 1 0 0 1 1 An 1 1 1 1 0 0 A~ 0

Description Multiply MR and the value in src. The 16 MSBs of the ( (ns+3) x 16 ) –bit product
are stored in the PH register. The value in src is unchanged and the value in
PL is ignored. This instruction rounds the upper 16 bits. Note that An is a string
of length nS+2, where nS is the value in STR register.

See Also MUL, MULR, MULAPL, MULSPL, MULSPLS, MULTPL, MULTPLS,
MULAPL

Example 4.14.40.1 MULS A0
Multiply MR with A0 and store the upper 16 bits (with rounding) to PH register.



Individual Instruction Descriptions

 4-136

4.14.41 MULAPL Multiply and Accumulate Result

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

MULAPL An, {adrs} Table 4–46 Table 4–46 1b

MULAPL An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH,PL ⇐   MR * src
dest ⇐  dest + PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULAPL An, {adrs} 0 1 1 0 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULAPL An[~], An[~], [next A] 1 1 1 0 0 next A An 1 1 0 0 1 0 A~ ~A

Description Perform multiplication of multiply register (MR)  and value of src. The 16 MSBs
of the 32-bit product are stored in the product high (PH) register. The 16 LSBs
of the product (contained in product low (PL) register) added to dest. Certain
restriction applies to the use of this instruction when interrupts are occuring in
the background. See Section 4.8 for more detail.

Syntax Description

MULAPL {adrs} Multiply MR by RAM word, add PL to An

MULAPL An[~], An[~] [, next A] Multiply MR by An[~] word, add PL to An[~]

See Also MULAPLS, MULSPL, MULSPLS, MULTPL, MULTPLS

Example 4.14.41.1 MULAPL A0, *R3++
Multiply MR with the content of data memory word stored at byte location pointed by R3, add PL to
accumulator A0, and store result in accumulator A0. Increment R3 by 2.

Example 4.14.41.2 MULAPL A2, A2~, ––A
Multiply MR register to accumulator A2~, add PL to accumulator A2, and store result to accumulator
A2.



Individual Instruction Descriptions

4-137Assembly Language Instructions

4.14.42 MULAPLS Multiply String and Accumulate Result

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

MULAPLS An, {adrs} Table 4–46 Table 4–46 1b

MULAPLS An[~], An[~] nS+3 1 nR+3 3

Execution PH,PL ⇐   MR * src
dest ⇐  dest + PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs} : TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULAPLS An, {adrs} 0 1 1 0 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULAPL S An[~], An[~], [next A] 1 1 1 0 0 1 1 An 1 1 0 0 1 0 A~ ~A

Description Perform multiplication of multiply register (MR)  and value of src. The 16 MSBs
of the ((ns + 3) × 16)-bit product are stored in the product high (PH) register.
The 16 LSBs of the product (contained in product low (PL) register) added to
dest  string.

Syntax Description

MULAPLS {adrs} Multiply MR by RAM string, add PL to An

MULAPLS An[~], An[~] [, next A] Multiply MR by An[~] string, add PL to An[~]

See Also MULAPL, MULSPL, MULSPLS, MULTPL, MULTPLS

Example 4.14.42.1 MULAPLS A0, *R3++
Multiply MR with the content of data memory word string store at byte location pointed by R3, add
accumulator string A0 to PL, and store result in accumulator A0 string. Increment R3 by 2.

Example 4.14.42.2 MULAPLS A2, A2~, ––A
Multiply MR register to accumulator A2~, add accumulator string A2 to PL and store result to
accumulator A2.



Individual Instruction Descriptions

 4-138

4.14.43 MULSPL Multiply and Subtract PL From Accumulator

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

MULSPL An, {adrs} Table 4–46 Table 4–46 1b

MULSPL An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH,PL ⇐   MR * src
dest ⇐  dest – PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULSPL An, {adrs} 0 1 1 1 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULSPL  An[~], An[~], [next A] 1 1 1 0 0 next A An 1 1 0 0 0 0 A~ ~A

Description Perform multiplication of multiply register (MR)  and value of src. The 16 MSBs
of the 32-bit product are stored in the product high (PH) register. The 16 LSBs
of the product (contained in product low (PL) register) are subtracted from
dest. Certain restrictions apply to the use of this instruction when interrupts are
occuring in the background. See Section 4.8 for more details.

Syntax Description

MULSPL {adrs} Multiply MR by RAM word, substract PL to An

MULSPL An[~], An[~] [, next A] Multiply MR by An[~] word, substract PL to An[~]

See Also MULSPLS, MULTPL, MULTPLS, MULAPL, MULAPLS

Example 4.14.43.1 MULSPL A0, *R3++
Multiply MR with the contents of R3, subtract PL from accumulator A0. and store result in accumulator
A0 post-increment. Post-increment R3 by 2.

Example 4.14.43.2 MULSPL A2, A2~, ––A
Predecrement accumulator pointer AP2. Multiply MR register to accumulator A2~, subtract PL from
accumulator A2, and store result to accumulator A2.



Individual Instruction Descriptions

4-139Assembly Language Instructions

4.14.44 MULSPLS Multiply String and Subtract PL From Accumulator

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

MULSPLS An, {adrs} Table 4–46 Table 4–46 1b

MULSPLS An[~], An[~] nS+3 1 nR+3 3

Execution PH,PL ⇐   MR * src
dest ⇐  dest – PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULSPLS An, {adrs} 0 1 1 1 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULSPL S An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 0 0 0 A~ ~A

Description Perform multiplication of multiply register (MR)  and value of src. The 16 MSBs
of the ((ns + 3) × 16)-bit product are stored in the product high (PH) register.
The 16 LSBs of the product (contained in product low (PL) register) subtracted
from dest string.

Syntax Description

MULSPLS {adrs} Multiply MR by data memory string, subtract PL from An

MULSPLS An[~], An[~] Multiply MR by An[~] string, subtract PL from An[~]

See Also MULSPL, MULTPL, MULTPLS, MULAPL, MULAPLS

Example 4.14.44.1 MULSPLS A0, *R3++
Multiply MR with the contents of R3, subtract PL from accumulator string A0, and store result in
accumulator string A0. Increment R3 by 2.

Example 4.14.44.2 MULSPLS A2, A2~
Multiply MR register to accumulator string A2~, subtract PL from accumulator string A2, and store result
to accumulator string A2.



Individual Instruction Descriptions

 4-140

4.14.45 MULTPL Multiply and Transfer PL to Accumulator

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

MULTPL An, {adrs} Table 4–46 Table 4–46 1b

MULTPL An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH,PL ⇐   MR * src
An ⇐  PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULTPL An, {adrs} 0 1 1 0 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULTPL  An[~], An[~], [next A] 1 1 1 0 0 next A An 1 1 0 1 1 0 A~ ~A

Description Perform multiplication of multiply register (MR)   and value of src. The 16 MSBs
of the 32-bit product are stored in the product high (PH) register. The 16 LSBs
of the product (contained in product low (PL) register) are stored in An. Certain
restrictions apply to the use of this instruction when interrupts are occuring in
the background. See Section 4.8 for more detail.

Syntax Description

MULTPL {adrs} Multiply MR by data memory word, move PL to An

MULTPL An[~], An[~] [, next A] Multiply MR by An[~] word, move PL to An[~]

See Also MULTPLS, MULAPL, MULAPLS, MULSPL, MULSPLS

Example 4.14.45.1 MULTPL A0, *R3++
Multiply the contents of R3 with MR register and store PL in accumulator A0. Increment R3 by 2.

Example 4.14.45.2 MULTPL A2, A2~, ––A
Multiply MR register to accumulator A2~ and store PL to accumulator A2.



Individual Instruction Descriptions

4-141Assembly Language Instructions

4.14.46 MULTPLS Multiply String and Transfer PL to Acumulator

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

MULTPLS An, {adrs} Table 4–46 Table 4–46 1b

MULTPLS An[~], An[~] nS+3 1 nR+3 3

Execution PH, PL  ⇐   MR * src
An ⇐  PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULSPLS An, {adrs} 0 1 1 0 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULSPL S An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 1 1 0 A~ ~A

Description Perform multiplication of multiply register (MR) and value of src string. The 16
MSBs of the ((ns + 3) × 16)-bit product are stored in the product high (PH)
register. The 16 LSBs of the product (contained in product low (PL) register)
stored in An string.

Syntax Description

MULTPLS An, {adrs} Multiply MR by effective data memory string, move PL to An

MULTPLS An[~], An[~] Multiply MR by An[~] string, move PL to An[~]

See Also MULTPL, MULAPL, MULAPLS, MULSPL, MULSPLS

Example 4.14.46.1 MULTPLS A0, *R3++
Multiply the contents of R3 with MR register and store PL in accumulator string A0. Increment R3
by 2.

Example 4.14.46.2 MULTPLS A2, A2~
Multiply MR register to accumulator string A2~ and store PL to accumulator string A2.



Individual Instruction Descriptions

 4-142

4.14.47 NEGAC Two’s Complement Negation of Accumulator

Syntax

[label] name dest, src [,mod] Clock, clk Word, w With RPT, clk Class

NEGAC An[~], An[~] [, next A] nS+3 1 nR+3 3

Execution [premodify AP if mod specified]
dest  ⇐   –src
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NEGAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 0 0 0 A~ ~A

Description Perform two’s complement negation of src accumulator and store result in dest
accumulator.

See Also NEGACS, SUB, SUBB, SUBS, ADD, ADDB, ADDS, NOTAC, NOTACS

Example 4.14.47.1 NEGAC A3~, A3, ––A
Predecrement accumulator pointer AP3. Negate accumulator A3 and store result in accumulator A3~.



Individual Instruction Descriptions

4-143Assembly Language Instructions

4.14.48 NEGACS Two’s Complement Negation of Accumulator String

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

NEGACS An[~], An[~] nS+3 1 nR+3 3

Execution dest  ⇐   –src
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MULSPL S An[~], An[~] 1 1 1 0 0 1 1 An 0 0 0 0 0 0 A~ ~A

Description Perform two’s complement negation of src accumulator string and store result
in dest accumulator string.

See Also NEGAC, SUB, SUBB, SUBS, ADD, ADDB, ADDS, NOTAC, NOTACS

Example 4.14.48.1 NEGACS A3~, A3
Negate accumulator string A3 and store result in accumulator string A3~.



Individual Instruction Descriptions

 4-144

4.14.49 NOP No Operation

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

NOP 1 1 nR+3 9d

Execution PC ⇐  PC + 1 (No operation)

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Description This instruction performs no operation. It consumes 1 clock of execution time
and 1 word of program memory.

See Also RPT

Example 4.14.49.1 NOP
Consumes 1 clock cycle.



Individual Instruction Descriptions

4-145Assembly Language Instructions

4.14.50 NOTAC One’s Complement Negation of Accumulator

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

NOTAC An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
dest  ⇐   NOT  src
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 0 1 0 A~ ~A

Description Premodify accumulator pointer if specified. Perform one’s complement of src
accumulator and store result in dest accumulator.

See Also NOTACS, AND, ANDB, ANDS, OR, ORB, ORS, XOR, XORB, XORS,
NEGAC, NEGACS

Example 4.14.50.1 NOTAC A3~, A3, ––A
Predecrement accumulator pointer AP3. One’s complement (invert bits) accumulator A3 and put result
in accumulator A3~.



Individual Instruction Descriptions

 4-146

4.14.51 NOTACS One’s Complement Negation of Accumulator String

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

NOTACS An[~], An[~] nS+2 1 nR+2 3

Execution dest  ⇐   NOT  src
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTACS   An[~], An[~] 1 1 1 0 0 1 1 An 0 0 0 0 1 0 A~ ~A

Description Perform one’s complement of src accumulator string and store result in dest
accumulator string.

See Also NOTAC, AND, ANDB, ANDS, OR, ORB, ORS, XOR, XORB, XORS, NEGAC,
NEGACS

Example 4.14.51.1 NOTACS A3~, A3
Take the one’s complement (invert bits) of the accumulator string A3 and put result in accumulator string
A3~.



Individual Instruction Descriptions

4-147Assembly Language Instructions

4.14.52 OR Bitwise Logical OR

Syntax

[label] name dest, src [, src1] [, mod] Clock, clk Word, w With RPT, clk Class

OR An, {adrs} Table 4–46 Table 4–46 1b

OR An[~], An[~], imm16 [, next A] 2 2 N/R 2b

OR An[~], An~, An [, next A] 1 1 nR+3 3

OR TFn, {flagadrs} 1 1 N/R 8a

OR TFn, {cc} [, Rx] 1 1 nR+3 8b

Execution [premodify AP if mod specified]
dest  ⇐   dest  OR  src1 (for two operands)
dest  ⇐   src  OR  src1 (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is TFn: TFn bits in STAT register are set accordingly
src is {adrs}: TAG bit is set accordingly
src is {flagadrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OR  An, {adrs} 0 1 0 0 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

OR  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 1 0 0 0 0 1 A~ ~A

OR  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 1 0 0 1 0 A~ ~A

OR  TFn, {flagadrs} 1 0 0 1 1 fig Not 0 1 0 flagadrs

OR  TFn, {cc} [, Rx] 1 0 0 1 0 fig Not cc Rx 0 1

Description Bitwise OR of src and dest.  Result is stored in dest. If three operands are
specified then logical OR src and src1, store result in dest. Premodification of
accumulator pointers are allowed with some operand types.

Syntax Description

OR An, {adrs} OR RAM word to An

OR An[~], An[~], imm16 [, next A] OR immediate word to An[~], store result in An[~]

OR An[~], An~, An [, next A] OR An word to An~ word, store result in An[~]

OR TFn, {flagadrs} OR TFn with memory tag, store result in TFn bit in STAT

OR TFn, {cc} [, Rx] OR test condition with TFn bit in STAT register. Rx must be provided if cc is
one of {RZP, RNZP, RLZP, RNLZP} to check if the selected Rx is zero or
negative. Rx should not be provided for other conditionals.



Individual Instruction Descriptions

 4-148

See Also ORB, ORS, AND, ANDS, XOR, XORS, NOTAC, NOTACS

Example 4.14.52.1 OR A0, *R0++R5
OR accumulator A0 with the value in data memory address stored in R0 and store result in accumulator
A0, Add R5 to R0 after execution.

Example 4.14.52.2 OR A1, A1, 0xF0FF, ++A
Preincrement pointer AP1. OR immediate 0xF0FF to accumulator A1. Store result in accumulator A1.

Example 4.14.52.3 OR A1, A1~, A1, ––A
Pre–decrement accumulator pointer AP1. OR accumulator A1 to accumulator A1~, put result in A1.

Example 4.14.52.4 OR TF1, *R6+0x22
OR TF1 bit in STAT with tag bit (17th bit) at relative flag address 0x22 relative to R6 (i.e., R6+0x22), store
result in TF1 flag in STAT.

Example 4.14.52.5 OR TF1, ZF
OR ZF flag in STAT register with to TF1, put result in TF1 bit in STAT.

Example 4.14.52.6 OR TF2, RZP, R2
OR TF2 with the condition code RZP (Rx=0 flag) for R2, and store result in TF2. If the content of R2
is zero then RZP condition becomes true, otherwise false. TF2 bit in STAT is modified based on this
result.



Individual Instruction Descriptions

4-149Assembly Language Instructions

4.14.53 ORB Bitwise OR Byte

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

ORB An, imm8 1 1 N/R 2a

Execution dest  ⇐   dest  OR  src
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ORB  An, imm8 1 0 1 0 1 0 0 An imm8

Description Bitwise OR byte of src and dest. Result is stored in dest. Only lower 8 bits of
accumulator is affected.

See Also OR, ORS, AND, ANDS, XOR, XORS, NOTAC, NOTACS

Example 4.14.53.1 ORB A2, 0x45
OR 0x45 immediate to accumulator A2 lower 8 bits.



Individual Instruction Descriptions

 4-150

4.14.54 ORS Bitwise OR String

Syntax

[label] name dest, src [, src1] Clock, clk Word, w With RPT, clk Class

ORS An, {adrs} Table 4–46 Table 4–46 1b

ORS An[~], An[~], pma16 nS+4 2 N/R 2b

ORS An[~], An~, An nS+2 1 nR+2 3

Execution dest  ⇐   dest  OR  src (for two operands)
dest  ⇐   src1  OR  src (for three operands)
C ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ORS  An, {adrs} 0 1 0 0 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ORS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 1 0 0 0 0 1 A~ ~A

ORS  An[~], An~, An 1 1 1 0 0 1 1 An 0 1 0 0 1 0 A~ ~A

Description Bitwise OR of src and dest. Result is stored in dest. If three operands are
specified then logical OR src1 and src, store result in dest.

Syntax Description

ORS An, {adrs} OR RAM string to An string

ORS An[~], An[~], pma16 OR ROM string to An[~] string, store result in An[~] string

ORS An[~], An~, An OR An string to An~ string, store result in An[~] string

See Also OR, ORB, AND, ANDS, XOR, XORS, NOTAC, NOTACS

Example 4.14.54.1 ORS A0, *R2
OR data memory string beginning at address in R2 to accumulator string A0. Result stored in
accumulator string A0.

Example 4.14.54.2 ORS A0, A0~, 0x13F0
OR program memory string beginning at address in 0x13F0 to accumulator string A0~, put result in
accumulator string A0. Note that the address 0x13F2 is a program memory address.

Example 4.14.54.3 ORS A0, A0~, A0
OR accumulator string A0 to accumulator string A0~, put result in accumulator string A0.



Individual Instruction Descriptions

4-151Assembly Language Instructions

4.14.55 OUT Output to Port

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

OUT port4, {adrs} Table 4–46 nR+3 6a

OUT port6, An[~] Table 4–46 nR+3 6a

Execution port4 or port6 ⇐  src
PC ⇐  PC + w

Flags Affected XSF, XZF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUT  port4, {adrs} 1 1 0 0 1 port4 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

OUT port6, An[~] 1 1 1 0 1 1 0 An port6 1 ~A

Description Output to I/O port. Words (16 bits) in memory can be output to one of 16 port
addresses. Words (16 bits) in the accumulators can be output to these same
16 port addresses or to an additional 48 port addresses. Note that, port4
address is multipled by 4 to get the actual port address.

See Also OUTS, IN, INS

Example 4.14.55.1 OUT 3, * 0x0200 * 2
Outputs the content of word memory location value stored in 0x0200 to I/O port at location 0x0C (PBDIR
port). Note that, address 3 converts to 3 * 4 = 0xc.



Individual Instruction Descriptions

 4-152

4.14.56 OUTS Output String to Port

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

OUTS port6, An[~] nR+2 1 nR+2 6b

Execution port6 ⇐  src
PC ⇐  PC + 1

Flags Affected XSF, XZF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUTS port6, An[~] 1 1 1 0 1 1 1 An port6 1 ~A

Description Output to I/O port. Word in the accumulator string can be output to one of 64
port addresses. String operation writes several consecutive ports starting from
port6 specified in the instruction.

See Also OUT, IN, INS

Example 4.14.56.1 OUTS 0x04, A3
Put the content of acccumulator string A3 to I/O port string address 0x04 (PADIR port). Note that, based
on string length, other consecutive ports may also be written.



Individual Instruction Descriptions

4-153Assembly Language Instructions

4.14.57 RET Return From Subroutine (CALL, Ccc)

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

RET 1 1 N/R 5

Execution PC ⇐  TOS
TOS ⇐  *R7
R7 ⇐  R7 – 2

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0

Description Return from call or vectored call. Pop stack to program counter, continue
execution. Returns from subroutine calls (CALL, Ccc instructions) and
interrupts are different because of the way each process is handled. In order
to prevent execution pipeline problems the interrupt return (IRET) instruction
uses two cycles and the Return (RET) instruction cannot immediately follow
a CALL, i.e., RET followed by a RET should not be allowed.

See Also CALL, Ccc, IRET

Example 4.14.57.1 RET
Returns from subroutine. A CALL or Ccc instruction must have executed before.



Individual Instruction Descriptions

 4-154

4.14.58 RFLAG Reset Memory Flag

Syntax

[label] name src Clock, clk Word, w With RPT, clk Class

RFLAG {flagadrs} 1 1 N/R 8a

Execution memory flag bit at {flagadrs} data memory location ⇐   0
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFLAG {flagadrs} 1 0 0 1 0 0 0 0 1 1 flagadrs

Description Reset flag at addressed memory location to 0.{flagadrs} includes two groups
of memory flag addresses: global flags, which are the first 64 word locations
in RAM; and relative flags, which are 64 locations relative to the page register
(R6). Flag address {flagadrs} only addresses the 17th bit. (See section 4.3.7
for more information)

See Also SFLAG, STAG, RTAG

Example 4.14.58.1 RFLAG *0x21
Resets the flag bit at RAM byte location 0x0042 to zero.

Example 4.14.58.2 RFLAG *R6 + 0x0002
Resets the flag bit at RAM byte location 0x0084 to zero.  Assume R6 = 0x0080. The R6 register is
represented in bytes, but the 0x0002 is represented in words. Thus, 0x0080 bytes plus 0x0002 words
(or 0x0004 bytes) equals 0x0084 (bytes).



Individual Instruction Descriptions

4-155Assembly Language Instructions

4.14.59 RFM Reset Fractional Mode

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

RFM 1 1 N/R 9d

Execution STAT.FM  ⇐   0
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFM 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0

Description Resets fractional mode. Clears bit 3 in status register (STAT). Disable
multiplier shift mode for unsigned fractional or integer arithmetic.

See Also SFM

Example 4.14.59.1 RFM
Resets the fractional mode. Clears FM bit of STAT.



Individual Instruction Descriptions

 4-156

4.14.60 ROVM Reset Overflow Mode

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

ROVM 1 1 N/R 9d

Execution STAT.OM  ⇐   0
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFM 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0

Description Resets overflow mode in status register bit 2 (the OM bit). Disable ALU
saturation output (normal mode).

See Also SOVM

Example 4.14.60.1 ROVM
Resets the overflow mode to zero.



Individual Instruction Descriptions

4-157Assembly Language Instructions

4.14.61 RPT Repeat Next Instruction

Syntax

[label] name src Clock, clk Word, w With RPT, clk Class

RPT {adrs}8 Table 4–46 N/R 5

RPT imm8 1 1 N/R 9b

Execution IF RPT {adrs}8
load src to repeat counter.

ELSE
load imm8 to repeat counter.

(mask interrupt)
repeat next instruction (repeat counter value + 2) times.
PC ⇐  PC + w (next instruction)+1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RPT  {adrs}8 1 1 0 1 1 1 1 1 0 adrs

RPT  imm8 1 1 1 1 1 1 0 0 0 imm8

Description Loads src value to repeat counter. Execute next instruction src value + 2 times.
Interrupts are queued during RPT instruction. Queued interrupts are serviced
after execution completes.

Syntax Description

RPT {adrs}8 Load data memory byte to repeat counter, repeat next instruction

RPT imm8 Load immediate byte to repeat counter, repeat next instruction

See Also BEGLOOP, ENDLOOP

Example 4.14.61.1 RPT *0x0100 * 2
MOV *R1++, A0, ++A

Loads the repeat counter with value stored in word data memory location 0x0100. Only 8 bits of data
from this location are used. The next instruction stores content of A0 to data memory address pointed
by R1. Since R1 post increments and A0 preincrements in this instruction, the overall effect of executing
this instruction with RPT is to store accumulator contents to consecutive data memory locations. See
MOV instruction for detail of various syntax of MOV instruction.

Example 4.14.61.2 RPT 200
NOP

Repeat the NOP instruction 202 times (provided the next instruction is repeatable). This causes 203
instruction cycle delay (including 1 cycle for the RPT instruction).



Individual Instruction Descriptions

 4-158

4.14.62 RTAG Reset Tag

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

RTAG {adrs} Table 4–46 Table 4–46 5

Execution memory tag bit at {adrs}  data memory location ⇐   0
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTAG  {adrs} 1 1 0 1 0 1 1 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Resets tag bit at addressed memory location. All addressing modes are
available. Note that this instruction accesses only the 17th bit of the RAM
location. For odd RAM byte addresses, the least significant bit is ignored.

See Also STAG, RFLAG, SFLAG

Example 4.14.62.1 RTAG * 0x0200 * 2
Reset the tag bit of data memory word location to 0. Note that this operation can also be done with
RFLAG by loading the R6 register with * 0200 * 2.

Example 4.14.62.2 RTAG *R6+0x0002
Reset the tag bit of RAM location 0x0082.  Assume R6 = 0x0080.  Unlike the SFLAG and RFLAG
instructions, the argument of the STAG/RTAG instruction is interpreted as bytes.

Example 4.14.62.3 RTAG *R6+0x0003
Reset the tag bit of RAM location 0x0082.  Assume R6 = 0x0080.



Individual Instruction Descriptions

4-159Assembly Language Instructions

4.14.63 RXM Reset Extended Sign Mode

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

RXM 1 1 N/R 9d

Execution STAT.XM  ⇐   0
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXM 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0

Description Reset extended sign mode status register bit 0 (the XM bit) to 0.

See Also SXM

Example 4.14.63.1 RXM
Resets the sign extension mode to normal mode. Sets XM bit of STAT to 0.



Individual Instruction Descriptions

 4-160

4.14.64 SFLAG Set Memory Flag

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

SFLAG {flagadrs} 1 1 N/R 8a

Execution memory flag bit at {flagadrs} data memory location ⇐   1
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SFLAG {flagadrs} 1 0 0 1 1 1 0 1 0 1 flagadrs

Description Set flag at addressed memory location. {flagadrs} includes two groups of
memory flag adrresses: global flags, which are the first 64 words in RAM; and
relative flags, which are 64 locations relative to the page register (R6). Flag
address {flagadrs} only accesses the 17th bit.

See Also RFLAG, STAG, RTAG

Example 4.14.64.1 SFLAG *R6+0x12
Sets the flag bit of the RAM word addressed by R6 plus 0x0002.  Note that R6 contains a byte address
and 0x0002 is interpreted as a word offset.



Individual Instruction Descriptions

4-161Assembly Language Instructions

4.14.65 SFM Set Fractional Mode

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

SFM 1 1 N/R 9d

Execution STAT.FM  ⇐   1
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXM 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0

Description Sets bit 3 (the FM bit) in status register (STAT) to 1. Enable multiplier shift
mode for signed fractional arithmetic.

Example 4.14.65.1 SFM
Set fractional mode. Set FM bit of STAT to 1.



Individual Instruction Descriptions

 4-162

4.14.66 SHL Shift Left

Syntax

[label] name dest  [, mod] Clock, clk Word, w With RPT, clk Class

SHL An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH, PL  ⇐   src  <<  SV
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHL  An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 1 1 0 A~ 0

Description Premodify the accumulator pointer if specified. Shift accumulator word left nSV
bits (as specified by the SV register) into a 32-bit result. This result is zero-filled
or sign-extended on the left (based on the setting of the extended sign mode
(XM) bit in the status register). The upper 16 bits are latched into the PH
register. Accumulator content is not changed. The lower 16-bit value, PL, is
discarded. The SHL instruction can be used with a RPT instruction, but without
much advantage since the instruction does not write back into the
accumulator. Use SHLAC for this purpose.

See Also SHLS

Example 4.14.66.1 SHL A0, ++A
Preincrement accumulator pointer AP0. Shift accumulator word A0 to the left by SV bits. Accumulator
content is not changed. PH contains the upper 16 bits of the shifted result.



Individual Instruction Descriptions

4-163Assembly Language Instructions

4.14.67 SHLAC Shift Left Accumulator

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

SHLAC An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
dest  ⇐  src << 1
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 0 1 1 0 0 A~ ~A

Description Premodify accumulator pointer if specified. Shift source accumulator src (or
its offset) left by one bit and store the result in the destination accumulator (or
its offset). LSB of result is set to zero.

Example 4.14.67.1 SHLAC A1, A1
Shift accumulator A1 by one bit to the left.

Example 4.14.67.2 SHLAC A1~, A1, ––A
Predecrement accumulator pointer AP1 by 1. Shift the newly pointed accumulator A1 by one bit to the
left, store the result in accumulator A1~.



Individual Instruction Descriptions

 4-164

4.14.68 SHLACS Shift Left Accumulator String Individually

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

SHLACS An[~], An[~] nS+2 1 nR+2 3

Execution dest ⇐  src << 1
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLACS  An[~], An[~] 1 1 1 0 0 1 1 An 0 0 1 1 0 0 A~ ~A

Description Shift the source accumulator string src (or its offset) left one bit and store the
result in destination accumulator string (or its offset). Each accumulator is
shifted individually. The shifted bit is propagated through consecutive
accumulators in the string.

Example 4.14.68.1 SHLACS A1~, A1
Shift accumulator string A1 one bit to the left, store the result in accumulator string A1~. Note that this
instruction alters the content of all accumulators in the string.



Individual Instruction Descriptions

4-165Assembly Language Instructions

4.14.69 SHLAPL Shift Left with Accumulate
Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

SHLAPL An, {adrs} Table 4–46 Table 4–46 1b

SHLAPL An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH, PL ⇐   src << SV
dest ⇐  dest + PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLAPL An, {adrs} 0 1 1 1 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLAPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 0 1 0 A~ ~A

Description Premodify the accumulator pointer if specified. Shift accumulator word or data memory
word pointed by {adrs} to left nSV bits (as specified by the SV register) into a 32-bit
result. This result is zero-filled on the right and either zero-filled or sign-extended on
the left (based on the setting of the extended sign mode (XM) bit in the status register).
The upper 16 bits are latched into the product high (PH) register. The lower 16 bits of
the result [product low (PL) register] is added to the destination accumulator (or its
offset). This instruction propagates the shifted bits to the next accumulator.

Syntax Description

SHLAPL An, {adrs} Shift data memory word left, add PL to An

SHLAPL An[~], An[~] [, next A] Shift An[~] left, add PL to An[~]

See Also SHLAPLS, SHLTPL , SHLTPLS, SHLSPL, SHLSPLS

Example 4.14.69.1 SHLAPL A0, *R4++R5
Shift the word pointed by the byte address stored in R4 by nSV bits to the left, add the shifted value (PL)
with accumulator A0, store the result in accumulator A0. Add R5 to R4 and store result in R4. PH holds
the upper 16 bits of the shift.

Example 4.14.69.2 SHLAPL A2, *R1++
Shift the word pointed by the byte address stored in R1 by nSV bits to the left, add the shifted value (PL)
with the accumulator (A2), and store the result in accumulator A2. Increment R1 (by 2) . PH holds the
upper 16 bits of the shift.

Example 4.14.69.3 SHLAPL A1, A1, ++A
Preincrement accumulator pointer AP1. Shift the accumulator A1 by nSV bits to the left, add the shifted
value (PL) to the accumulator and store the result in accumulator (A1). After execution PH contains the
upper 16 bits of the 32-bit shift.



Individual Instruction Descriptions

 4-166

4.14.70 SHLAPLS Shift Left String With Accumulate

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

SHLAPLS An, {adrs} Table 4–46 Table 4–46 1b

SHLAPLS An[~], An[~] nS+3 1 nR+3 3

Execution PH, PL ⇐   src << SV
dest ⇐  dest + PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLAPLS An, {adrs} 0 1 1 1 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLAPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 1 0 1 0 A~ ~A

Description Shift accumulator string or data memory string pointed by {adrs} to left nSV bits
(as specified by the SV register). The result is zero-filled on the right and either
zero-filled or sign-extended on the left (based on the setting of the extended
sign mode (XM) bit in the status register). The upper 16 bits are latched into
the product high (PH) register. The lower 16 bits of the result [product low (PL)
register]) are added to the destination accumulator (or its offset). This
instruction propagates the shifted bits to the next accumulators in the string.

Syntax Description

SHLAPLS An, {adrs} Shift data memory string left, add PL to An

SHLAPLS An[~], An[~] Shift An[~] string left, addb PL to An[~]

See Also SHLAPL , SHLTPL , SHLTPLS, SHLSPL, SHLSPLS

Example 4.14.70.1 SHLAPLS A0, *R4++R5
Shift the string pointed by the byte address stored in R4 by nSV bits to the left, add the shifted value (PL)
with accumulator string, and store the result in accumulator string A0. Add R5 to R4 and store result
in R4. PH holds the upper 16 bits of the shift.

Example 4.14.70.2 SHLAPLS A2, *R1++
Shift the string pointed by the byte address stored in R1 by nSV bits to the left, add the shifted value (PL)
with accumulator string, the accumulator, and store the result in accumulator string A2. Increment R1
(by 2). PH holds the upper 16 bits of the shift.

Example 4.14.70.3 SHLAPLS A1, A1
Shift the accumulator string A1 by nSV bits to the left, add the shifted value (PL) to the accumulator and
store the result in accumulator string A1. After execution PH contains the upper 16 bits of the 32-bit shift.



Individual Instruction Descriptions

4-167Assembly Language Instructions

4.14.71 SHLS Shift Left Accumulator String to Product

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

SHLS An[~] nS+3 1 nR+3 3

Execution PH, PL  ⇐   src  <<  SV
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLS  An[~] 1 1 1 0 0 1 1 An 1 1 1 1 1 0 A~ 0

Description Shift accumulator string value left nSV bits (as specified by the SV register) into
a ((nS + 2) x 16) -bit result. The result is zero-filled or sign-extended on the left
(based on the setting of the extended sign mode (XM) bit in the status register).
The upper 16 bits are latched into the PH register. Accumulator content is not
changed. The lower 16-bit value is discarded. SHLS instruction can be used
with RPT instructions, but the string length used will be nS + 2.

See Also SHLS

Example 4.14.71.1 SHLS A0
Shift accumulator string A0 to the left. Accumulator content is not changed. PH contains the upper 16
bits of the shifted result.



Individual Instruction Descriptions

 4-168

4.14.72 SHLSPL Shift Left With Subtract PL
Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

SHLSPL An, {adrs} Table 4–46 Table 4–46 1b

SHLSPL An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH, PL ⇐   src << SV
dest ⇐  dest – PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLSPL An, {adrs} 0 1 1 1 0 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLSPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 0 0 0 A~ ~A

Description Premodify the accumulator pointer if specified. Shift accumulator or data memory
value pointed by {adrs} to left nSV bits (as specified by the SV register) into a 32-bit
result. This result is zero-filled on the right and either zero-filled or sign-extended on
the left (based on the setting of the extended sign mode (XM) bit in the status register).
The upper 16 bits are latched into the product high (PH) register. The lower 16 bits of
the result [product low (PL) register] is subtracted from the destination accumulator (or
its offset). This instruction propagates the shifted bit to the next accumulator.

Syntax Description

SHLSPL An, {adrs} Shift data memory word left, substract PL from An

SHLSPL An[~], An[~] [, next A] Shift An[~] left, substract PL to An[~]

See Also SHLSPLS, SHLTPL, SHLTPLS, SHLAPL, SHLAPLS

Example 4.14.72.1 SHLSPL A0, *R4++R5
Shift the word pointed by the byte address stored in R4 by nSV bits to the left, subtract the shifted (PL)
from Accummulator A0, and store the result in accumulator A0. Add R5 to R4 and store result in R4
PH holds the upper 16 bits of the shift.

Example 4.14.72.2 SHLSPL A2, *R1++
Shift the word pointed by the byte address stored in R1 by nSV bits to the left, subtract the shifted value
(PL) from the accumulator A2, and store the result in accumulator A2. Increment R1 (by 2). PH holds
the upper 16 bits of the shift.

Example 4.14.72.3 SHLSPL A1, A1, ++A
Preincrement accumulator pointer AP1. Shift the accumulator A1 by nSV bits to the left, subtract PL from
A1, and store result in accululator A1. After execution PH contains the upper 16 bits of the 32-bit shift.



Individual Instruction Descriptions

4-169Assembly Language Instructions

4.14.73 SHLSPLS Shift Left String With Subtract PL
Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

SHLSPLS An, {adrs} Table 4–46 Table 4–46 1b

SHLSPLS An[~], An[~] nS+3 1 nR+3 3

Execution PH, PL ⇐   src << SV
dest ⇐  dest – PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLSPLS An, {adrs} 0 1 1 1 0 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLSPLS  An[~], An[~] 1 1 1 0 0 1 1 An 1 1 1 0 0 0 A~ ~A

Description Shift accumulator string or data memory string pointed by {adrs} to left nSV bits
(as specified by the SV register). This result is zero-filled on the right and either
zero-filled or sign-extended on the left (based on the setting of the extended
sign mode (XM) bit in the status register). The upper 16 bits are latched into
the PH register. The lower 16 bits of the result PL are subtracted from the
destination accumulator (or its offset). This instruction propagates the shifted
bit to the next accumulator.

Syntax Description

SHLSPLS An, {adrs} Shift RAM string left, subtract PL from An

SHLSPLS An[~], An[~] Shift An[~] string left, subtract PL from An[~]

See Also SHLSPL , SHLTPL , SHLTPLS, SHLAPL, SHLAPLS
Example 4.14.73.1 SHLSPLS A0, *R4++R5
Shift the string pointed by the byte address stored in R4 by nSV bits to the left, subtract the shifted value
(PL) from the value in the accumulator string in A0, and store the result in accumulator string A0. Add
R5 to R4 and store result in R4. After execution of the instruction, PH is copied to the next to the last
accumulator of the string.

Example 4.14.73.2 SHLSPLS A2, *R1++
Shift the string pointed by the byte address stored in R1 by nSV bits to the left, subtract the shifted value
(PL) from the value in the accumulator string in A2, and store the result in accumulator string A2.
Increment R1 (by 2). After execution of the instruction, PH is copied to the next to the last accumulator
of the string.

Example 4.14.73.3 SHLSPLS A1, A1
Shift the accumulator string A1 by nSV bits to the left, subtract the lower 16-bits of shifted value (PL) from
A1, and store the result in A1. After execution PH contains the upper 16 bits of the 32-bit shift.



Individual Instruction Descriptions

 4-170

4.14.74 SHLTPL Shift Left and Transfer PL to Accumulator

Syntax

[label] name dest, src [, mod] Clock, clk Word, w With RPT, clk Class

SHLTPL An, {adrs} Table 4–46 Table 4–46 1b

SHLTPL An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
PH, PL ⇐   src << SV
dest ⇐  PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLTPL An, {adrs} 0 1 1 1 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLTPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 0 1 0 0 A~ ~A

Description Premodify the accumulator pointer if specified. Shift accumulator or data memory
value pointed by {adrs} to left nSV bits (as specified by the SV register) into a 32-bit
result. The result is zero-filled on the right and either zero-filled or sign-extended on the
left (based on the setting of the extended sign mode (XM) bit in the status register). The
upper 16 bits are latched into the PH register. The lower 16 bits of the result PL are
transferred to the destination accumulator (or its offset). This instruction propagates
the shifted bit into PH.

Syntax Description

SHLTPL An, {adrs} Shift data memory word left, transfer PL to An

SHLTPL An[~], An[~] [, next A] Premodify APn if next A specified. Shift An[~] left, transfer PL to An[~]

See Also SHLTPLS, SHLAPL, SHLAPLS, SHLSPL, SHLSPLS

Example 4.14.74.1 SHLTPL A0, *R4++R5
Shift the word pointed by the byte address stored in R4 by nSV bits to the left, and store the result in
accumulator A0. Add R5 to R4 and store result in R4 at each execution to get the next memory value.
After execution PH contains the upper 16 bits of the 32-bit shift.

Example 4.14.74.2 SHLTPL A2, *R1++
Shift the value pointed by the byte address stored in R1 by nSV bits to the left, and store the result in
accumulator A0. Increment R1 (by 2) at each execution to get the next memory value. After execution
PH contains the upper 16 bits of the 32-bit shift.

Example 4.14.74.3 SHLTPL A1, A1, ++A
Preincrement accumulator pointer AP1. Shift the accumulator A1 by nSV bits to the left. After execution
PH contains the upper 16 bits of the 32-bit shift.



Individual Instruction Descriptions

4-171Assembly Language Instructions

4.14.75 SHLTPLS Shift Left String and Transfer PL to Accumulator

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

SHLTPLS An, {adrs} Table 4–46 Table 4–46 1b

SHLTPLS An[~], An[~] nS+3 1 nR+3 3

Execution PH, PL ⇐  src << SV
dest ⇐  PL
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLTPLS An, {adrs} 0 1 1 1 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLTPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 1 0 0 A~ ~A

Description Shift left accumulator string or data memory string pointed at by {adrs} by nSV
bits (as specified by the SV register). The result is zero-filled on the right and
either zero-filled or sign-extended on the left (based on the setting of the
Extended Sign Mode (XM) bit in the status register). The upper 16 bits are
latched into the PH register. The result is transferred to the destination
accumulator (or its offset). This instruction propagates the shifted bits to the
next accumulator, including one accumulator past the string length (which
receives the same data as PH).

Syntax Description

SHLTPLS An, {adrs} Shift data memory string left, transfer result to An

SHLTPLS An[~], An[~] Shift An[~] string left, transfer result to An[~]

See Also SHLTPL, SHLAPL, SHLAPLS, SHLSPL, SHLSPLS

Example 4.14.75.1 SHLTPLS A0, *R4++R5
Shift the string pointed by the byte address stored in R4 by nSV bits to the left, and store the result in
accumulator string A0. Add R5 to R4 and store result in R4. After execution of the instruction, PH is
copied to the next to the last accumulator of the string.

Example 4.14.75.2 SHLTPLS A2, *R1++
Shift the string pointed by the byte address stored in R1 by nSV bits to the left, and store the result in
accumulator string A0. Increment R1 (by 2) at each execution to get the next memory value.

Example 4.14.75.3 SHLTPLS A1, A1
Shift the accumulator string A1 by nSV bits to the left.



Individual Instruction Descriptions

 4-172

4.14.76 SHRAC Shift Accumulator Right

Syntax

[label] name dest, src, [, mod] Clock, clk Word, w With RPT, clk Class

SHRAC An[~], An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
dest ⇐  src >> 1
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHRAC An[~], An[~] [, next a] 1 1 1 0 0 next A An 0 1 0 1 1 0 A~ ~A

Description Premodify accumulator pointer if specified. Shift source accumulator src or its
offset to right one bit and store the result into dest accumulator or its offset.
MSB of result will be set according to extended sign mode (XM) bit in the status
register.

Example 4.14.76.1 SHRAC A1, A1
Shift right one bit the accumulator A1.

Example 4.14.76.2 SHRAC A1~, A1, ++A
Preincrement by one accumulator pointer AP1. Shift right one bit the newly pointed accumulator A1,
and store result to offset accumulator A1~.



Individual Instruction Descriptions

4-173Assembly Language Instructions

4.14.77 SHRACS Shift Accumulator String Right

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

SHRACS An[~], An[~] nS+3 1 nR+3 3

Execution dest ⇐  src >> 1
PC ⇐  PC + 1

Flags Affected OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHRACS  An[~], An[~] 1 1 1 0 0 1 1 An 0 1 0 1 1 0 A~ ~A

Description Shift accumulator string right one bit and store the result into An[~] string. MSB
of each accumulator in the result will be set according to extended sign mode
(XM) bit in the status register. This instruction shifts each accumulator
individually 1 bit to the right, so, shifts from one accumulator are not
propagated to the next consecutive accumulator in the string.

See Also SHRAC, SHL, SHLS, SHLAPL, SHLAPLS, SHLSPL, SHLSPLS, SHLTPL,
SHLTPLS.

Example 4.14.77.1 SHRACS A0, A0
Shift accumulator string A0 1 bit right individually.

Example 4.14.77.2 SHRACS A1, A1~
Shift accumulator string A1~ individually, put result in accumulator string A1.



Individual Instruction Descriptions

 4-174

4.14.78 SOVM Set Overflow Mode

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

SOVM 1 1 N/R 9d

Execution STAT.OM ⇐  1
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SOVM 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0

Description Sets overflow mode in status register (STAT) bit 2 to 1. Enable ALU saturation
output (DSP mode).

See Also ROVM

Example 4.14.78.1 SOVM
Set OM bit of STAT to 1. This is the mode DSP algorithms should use.



Individual Instruction Descriptions

4-175Assembly Language Instructions

4.14.79 STAG Set Tag

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

STAG {adrs} Table 4–46 Table 4–46 5

Execution memory tag bit at address adrs ⇐  1
PC ⇐  PC + w

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STAG  {adrs} 1 1 0 1 0 1 1 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

Description Sets the tag bit at the addressed memory location. All addressing modes are
available. Note that this instruction accesses only the 17th bit of the RAM
location. The argument, {adrs}, is interpreted as bytes. For odd RAM byte
addresses, the least significant bit is ignored.

See Also RTAG, RFLAG, SFLAG

Example 4.14.79.1 STAG *R2+R5
Set TAG bit of the word in RAM byte address, R2 + R5. R2 and R5 remain unchanged.

Example 4.14.79.2 STAG *0x200 * 2
Set TAG bit of RAM word 0x200 (RAM byte address 0x400).

Example 4.14.79.3 STAG *0x401
Set TAG bit of RAM word 0x200 (RAM byte address 0x400).



Individual Instruction Descriptions

 4-176

4.14.80 SUB Subtract

Syntax

[label] name dest, src, src1, [next A]] Clock, clk Word, w With RPT, clk Class

SUB An[~], An, {adrs} [, next A] Table 4–46 Table 4–46 1a

SUB An[~], An[~], imm16 [, next A] 2 2 N/R 2b

SUB An[~], An[~], PH [, next A] 1 1 nR+3 3

SUB An[~], An, An~ [, next A] 1 1 nR+3 3

SUB An[~], An~, An [, next A] 1 1 nR+3 3

SUB Rx, imm16 2 2 N/R 4c

SUB Rx, R5 1 1 N/R 4d

Execution [premodify AP if mod specified]
dest ⇐  dest – src1 (for two operands)
dest ⇐  src – src1 (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is Rx: RCF, RZF are set accordingly
src1 is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SUB  An[~], An, {adrs} [, next A] 0 0 0 0 ~A next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SUB  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 1 0 0 0 1 A~ ~A

SUB  An[~], An[~], PH [, next A] 1 1 1 0 0 next A An 0 1 1 0 0 0 A~ ~A

SUB  An[~], An, An~ [, next A] 1 1 1 0 0 next A An 0 0 1 0 0 0 0 ~A

SUB  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 0 1 0 0 0 1 ~A

SUB  Rx, imm16 1 1 1 1 1 1 1 0 0 0 0 1 Rx 0 0

SUB  Rx, R5 1 1 1 1 1 1 1 0 0 1 0 1 Rx 0 0

Description Subtract value of src from value of dest and store result in dest. If three
operands are specified, then subtract value of src1 from value of src (i.e.,
src-src1) and store result in dest string. Premodification of accumulator
pointers is allowed with some operand types. Note that subtraction is
performed in 2’s complement and therefore the CF (carry flag) may get set
even when subtracting a smaller value from a larger value.



Individual Instruction Descriptions

4-177Assembly Language Instructions

Syntax Description

SUB An[~], An, {adrs} [, next A] Subtract effective data memory word from An[~], store result in An

SUB An[~], An[~], imm16 [, next A] Subtract immediate word from An[~], store result in An[~]

SUB An[~], An[~], PH [, next A] Subtract Product High (PH) register from An[~], store result in An[~]

SUB An[~], An, An~ [, next A] Subtract An~ word from An word, store result in An[~]

SUB An[~], An~, An [, next A] Subtract An word from An~ word, store result in An[~]

SUB Rx, imm16 Subtract immediate word from Rx

SUB Rx, R5 Subtract R5 from Rx

See Also SUBB, SUBS, ADD, ADDB, ADDS

Example 4.14.80.1 SUB A1, A1, 74
Subtract 74 (decimal) immediate from accumulator A1, put result in accumulator A1.

Example 4.14.80.2 SUB A0, A0, 2, ++A
Pre–increment pointer AP0, subtract 2 from new accumulator A0, put result in accumulator A0.

Example 4.14.80.3 SUB A1, A1~, A1
Subtract accumulator A1 from accumulator A1~, put result in accumulator A1.

Example 4.14.80.4 SUB A1, A1, A1~, ––A
Pre–decrement AP1. Subtract accumulator A1~ from accumulator A1, put result in accumulator A1.

Example 4.14.80.5 SUB A3~, A3, *R4—
Subtract word at address in R4 from A3, store result in A3~, decrement value in R4 by 2 (word mode)
after the subtraction.

Example 4.14.80.6 SUB R3, R5
Subtract R5 from R3, put result in R3.



Individual Instruction Descriptions

 4-178

4.14.81 SUBB Subtract Byte

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

SUBB An, imm8 1 1 N/R 2a

SUBB Rx, imm8 1 1 N/R 4b

Execution dest ⇐  dest – imm8
PC ⇐  PC + 1

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is Rx: RCF, RZF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SUBB An imm8 1 0 1 0 0 1 0 An imm8

SUBB Rx, imm8 1 0 1 1 0 1 k4 k3 k2 k7 k6 k5 Rx k1 k0

Description Subtract value of src byte from value of dest byte and store result in dest. Note
that subtraction is performed in 2’s complement and therefore the CF (carry
flag) may get set even when subtracting a smaller value from a larger value.

Syntax Description

SUBB An, imm8 Subtract immediate byte from An

SUBB Rx, imm8 Subtract immediate byte from Rx

Example 4.14.81.1 SUBB A2, 0x45
Subtract 0x45 from accumulator A2 byte.

Example 4.14.81.2 SUBB R3, 0xF2
Subtract 0xF2 from register  R3 byte.



Individual Instruction Descriptions

4-179Assembly Language Instructions

4.14.82 SUBS Subtract Accumulataor String

Syntax

[label] name dest, src, src1 Clock, clk Word, w With RPT, clk Class

SUBS An[~], An, {adrs} Table 4–46 Table 4–46 1a

SUBS An[~], An[~], pma16 ns+4 2 N/R 32b

SUBS An[~], An, An~ ns+2 1 nR+2 3

SUBS An[~], An~, An ns+2 1 nR+2 3

SUBS† An[~], An[~], PH 1 1 1 3

† This instruction ignores the string count, executing only once but maintains the CF and ZF status of the previous multi-
ply or shift operation as if the sequence was a single string. This instruction should immediately follow one of the fol-
lowing class 1b instructions: MOVAPH, MULAPL, MULSPL, SHLTPL, SHLSPL, and SHLAPL. An interrupt can occur
between one of these instructions and this instruction. An interrupt may cause an incorrect result. Also, single stepping
is not allowed for this instruction. An in this instruction should be the same as An in one of the listed class 1b instruc-
tion. Offsets are allowed. See Section 4.8 for detail.

Execution [premodify AP if mod specified]
dest ⇐  dest – src (for two operands)
dest ⇐  src – src1 (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
src1 is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SUBS  An[~], An, {adrs} 0 0 0 1 ~A 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SUBS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 0 1 0 0 1 1 A~ ~A

SUBS  An[~], An, An~ 1 1 1 0 0 1 1 An 0 0 1 0 0 0 0 ~A

SUBS  An[~], An~, An 1 1 1 0 0 1 1 An 0 0 1 0 0 0 1 ~A

SUBS  An[~], An[~], PH 1 1 1 0 0 1 1 An 0 1 1 0 0 0 A~ ~A

Description Subtract the value of the src string from value of the dest string and store the
result in the dest string. If three operands are specified, then subtract value of
src1 string from value of src string (i.e., src–src1) and store result in dest string.
Note that, substraction is performed in 2’s complement and therefore the CF
(carry flag) may get set even when subtracting a smaller value from a large
value.



Individual Instruction Descriptions

 4-180

Syntax Description

SUBS An[~], An, {adrs} Subtract data memory string from An string, store result in An[~] string

SUBS An[~], An[~], pma16 Subtract program memory string from An[~] string, store result in An[~] string

SUBS An[~], An, An~ Subtract An~ string from An string, store result in An[~] string

SUBS An[~], An~, An Subtract An string from An~ string, store result in An[~] string

SUBS An[~], An[~], PH Subtract product high (PH) register from An[~] string mode. This instruction ig-
nores the string count, executing only once but maintains the CF and ZF status of
the previous multiply or shift operation as if the sequence was a single string. Word
alignment with PH is maintained, i.e., PH is subtracted from the second word of the
string. Also, only the second word is copied to the destination string.

Example 4.14.82.1 SUBS A0, A0~, *R2++
Subtract data memory string beginning at address in R2 from accumulator string A0~, put result in
accumulator string A0 then increment R2 by 2.

Example 4.14.82.2 SUBS A1~, A1, 0x1220
Subtract program memory string at address 0x1220 from accumulator string A1, put result in
accumulator string A1~.

Example 4.14.82.3 SUBS A2, A2, A2~
Subtract accumulator string A2~ from accumulator string A2, put result in accumulator string A2.

Example 4.14.82.4 SUBS A2, A2~, A2
Subtract accumulator string A2 from accumulator string A2~, put result in accumulator string A2.

Example 4.14.82.5 SUBS A3~, A3~, PH
Subtract PH from accumulator string A3~, put result in accumulator string A3. This instruction ignores
the string count.



Individual Instruction Descriptions

4-181Assembly Language Instructions

4.14.83 SXM Set Extended Sign Mode

Syntax

[label] name Clock, clk Word, w With RPT, clk Class

SXM 1 1 N/R 9d

Execution STAT.XM ⇐  1
PC ⇐  PC + 1

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SXM 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0

Description Sets extended sign mode status register (STAT) bit 0 to 1.

See Also RXM

Example 4.14.83.1 SXM
Set XM bit of STAT to 1. Now all arithematic operation will be in sign extention mode.



Individual Instruction Descriptions

 4-182

4.14.84 VCALL Vectored Call

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

VCALL vector8 2 1 N/R 7a

Execution Push PC + 1
PC ⇐  *(0x7F00  +  vector8)
R7 ⇐  R7 + 2

Flags Affected None

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VCALL  vector8 1 1 1 1 1 1 1 0 1 vector8

Description Unconditional vectored call (Macro call). Push next address onto stack, load
PC with the content of the address obtained by adding vector8 to 0x7F00. The
execution of the instruction continues from the new PC location. RET
instruction is used to return from VCALL. RET cannot immediately follow
VCALL. IRET can be used instead of RET and IRET can immidiately follow
VCALL. VCALL is used to call frequently used routines and takes 1 word.

See Also RET, IRET, CALL, Ccc

Example 4.14.84.1 VCALL 0x7F02
Loads PC value with the program memory address stored in program memory location 0x7F02.



Individual Instruction Descriptions

4-183Assembly Language Instructions

4.14.85 XOR Logical XOR

Syntax

[label] name dest, src, src1 [, mod] Clock, clk Word, w With RPT, clk Class

XOR An, {adrs} Table 4–46 Table 4–46 1a

XOR An[~], An[~], imm16 [, next A] 2 2 N/R 2b

XOR An[~], An~, An [, next A] 1 1 nR+3 3

XOR TFn, {flagadrs} 1 1 N/R 8a

XOR TFn, {cc} [, Rx] 1 1 nR+3 8b

Execution [premodify AP if mod specified]
dest  ⇐   dest  XOR  src (for two operands)
dest  ⇐   src1  XOR  src (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
dest is TFn: TFn bits in STAT register are set accordingly
src is {adrs}: TAG bit is set accordingly
src is {flagadrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XOR  An, {adrs} 0 1 0 0 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

XOR  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 1 1 0 0 0 1 A~ ~A

XOR  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 1 0 0 0 0 A~ ~A

XOR  TFn, {flagadrs} 1 0 0 1 1 fig Not 1 1 0 flagadrs

XOR  TFn, {cc} [, Rx] 1 0 0 1 0 fig Not cc Rx 1 1

Description Bitwise logical XOR of src and dest. Result is stored in dest. If three operands
are specified, then logical XOR src and src1, store the result in dest. Pre-
modification of accumulator pointers is allowed with some operand types.

Syntax Description

XOR An, {adrs} XOR RAM word to An

XOR An[~], An[~], imm16 [, next A] XOR immediate word to An[~], store result in An[~]

XOR An[~], An~, An [, next A] XOR An word to An~ word, store result in An[~]

XOR TFn, {flagadrs} XOR TFn (either TF1 or TF2) with memory tag, store result in TFn bit in
STAT

XOR TFn, {cc} [, Rx] XOR test condition with TFn (either TF1 or TF2) bit in STAT register. Rx
must be provided if cc is one of {RZP, RNZP, RLZP, RNLZP} to check if
the selected Rx is zero or negative. Rx should not be provided for other
conditionals.



Individual Instruction Descriptions

 4-184

See Also XORB, XORS, AND, ANDS, OR, ORS, ORB, NOTAC, NOTACS

Example 4.14.85.1 XOR A1, A1, 0x13FF
XOR immediate value 0x13FF to A1 and store result in A1.

Example 4.14.85.2 XOR A0, A0, 2, ++A
Pre–increment pointer AP0, then XOR immediate value 2 to new A0 and store result in A0.

Example 4.14.85.3 XOR A1, A1~, A1
XOR accumulator A1 to accumulator A1~, put result in accumulator A1.

Example 4.14.85.4 XOR A3, *R4—
XOR word at address in R4 to accumulator A3, decrement value in R4 by 2 (word mode) after the
operation.

Example 4.14.85.5 XOR A2, A2~, *R2+R5, ––A
Pre–decrement pointer AP2. XOR word at effective address R2+R5 to new accumulator A2~, put result
in accumulator A2. Value of R2 is not modified.

Example 4.14.85.6 XOR TF1, *0x21
XOR TF1 with the flag at global address 0x21 and store result in TF1 in STAT.

Example 4.14.85.7 XOR TF2, *R6+0x21
XOR TF2 with the flag at effective address R6+0x21 and store result in TF2.

Example 4.14.85.8 XOR TF1, CF
XOR TF1 with the condition code CF (Carry Flag) and store result in TF1.

Example 4.14.85.9 XOR TF1, RZP, R3
XOR TF1 with the condition code RZP (Rx=0 flag) for R3, and store result in TF1. If the content of R3
is zero then RZP condition becomes true, otherwise false.



Individual Instruction Descriptions

4-185Assembly Language Instructions

4.14.86 XORB Logical XOR Byte

Syntax

[label] name dest, src Clock, clk Word, w With RPT, clk Class

XORB An, imm8 1 1 N/R 2a

Execution An ⇐  An XOR imm8 (for two operands)
PC ⇐  PC + 1

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XORB  An, imm8 0 0 1 0 1 1 0 An imm8

Description Bitwise logical XOR lower 8 bits of An and dest byte. Result is stored in
accumulator An. Upper 8 bits of accumulator An is not affected.

See Also XOR, XORS, AND, ANDS, OR, ORS, ORB, NOTAC, NOTACS

Example 4.14.86.1 XORB A2, 0x45
XOR 0x45 to accumulator A2 (byte mode). Upper 8 bits of A2 is unchanged.



Individual Instruction Descriptions

 4-186

4.14.87 XORS Logical XOR String

Syntax

[label] name dest, src [, src1] Clock, clk Word, w With RPT, clk Class

XORS An, {adrs} Table 4–46 Table 4–46 1b

XORS An[~], An[~], pma16 nS+4 2 N/R 2b

XORS An[~], An~, An nS+3 1 nR+3 3

Execution dest ⇐   dest  XOR  src (for two operands)
dest ⇐   src1  XOR  src (for three operands)
PC ⇐  PC + w

Flags Affected dest is An: OF, SF, ZF, CF are set accordingly
src is {adrs}: TAG bit is set accordingly

Opcode

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XORS  An, {adrs} 0 1 0 0 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

XORS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 1 1 0 0 0 1 A~ ~A

XORS  An[~], An~, An 1 1 1 0 0 1 1 An 0 1 0 0 0 0 A~ ~A

Description Bitwise XOR of src string and dest string. Result is stored in dest string. If three
operands are specified, then logical XOR src string and src1 string, store result
in dest string.

Syntax Description

XORS An, {adrs} XOR data memory string to An string

XORS An[~], An[~], pma16 XOR program memory string to An[~] string, store result in An[~] string

XORS An[~], An~, An XOR An string to An~ string, store result in An[~] string

See Also XOR, XORB, AND, ANDS, OR, ORS, ORB, NOTAC, NOTACS

Example 4.14.87.1 XORS A0, A0~, *R2
XOR data memory string beginning at address in R2 to accumulator string A0~, put result in
accumulator string A0.

Example 4.14.87.2 XORS A3~, A3, *R1++R5
XOR data memory string beginning at address in R1 to accumulator string A3, put result in accumulator
string A3~. Add value in R5 to the value in R1 and store result in R1.

Example 4.14.87.3 XORS A1~, A1, 0x100 * 2
XOR program memory string beginning at word address 0x0100 to accumulator string A1, put result
in accumulator string A1~.

Example 4.14.87.4 XORS A2, A2~, A2
XOR accumulator string A2 with accumulator string A2~ string, put result in accumulator string A2.



Individual Instruction Descriptions

4-187Assembly Language Instructions

4.14.88 ZAC Zero Accumulator

Syntax

[label] name dest [, mod] Clock, clk Word, w With RPT, clk Class

ZAC An[~] [, next A] 1 1 nR+3 3

Execution [premodify AP if mod specified]
dest ⇐   0
PC ⇐  PC + 1

Flags Affected ZF = 1

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZAC  An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 1 1 0 0 ~A

Description Zero the specified accumulator. Preincrement or predecrement accumulator
pointer APn, if specified.

See Also ZACS

Example 4.14.88.1 ZAC A2
Reset the content of accumulator A0 to zero.

Example 4.14.88.2 ZAC A1~, ++A
Preincrement AP1 by 1. Reset the content of new accumulator A1~ to zero.



Individual Instruction Descriptions

 4-188

4.14.89 ZACS Zero Accumulator String

Syntax

[label] name dest Clock, clk Word, w With RPT, clk Class

ZAC An nS+3 1 nR+3 3

Execution dest ⇐   0
PC ⇐  PC + 1

Flags Affected ZF = 1

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZACS  An[~] 1 1 1 0 0 1 1 An 0 0 0 1 1 0 0 ~A

Description Zero the specified accumulator string.

See Also ZAC

Example 4.14.89.1 ZACS A1~
Reset the content of offset accumulator string A1~ to zero.

Example 4.14.89.2 MOV STR, 32–2
ZACS A0

Reset the content of all accumulators to zero. It does not matter which accumulator AP0 is pointing at
since all the accumulators are zeroed.



Instruction Set Encoding

4-189Assembly Language Instructions

4.15 Instruction Set Encoding
Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD An[~], An, {adrs} [, next A] 1 1 1 0 ~A next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ADD An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 0 0 0 0 1 A~ ~A

x imm16

ADD  An[~], An[~], PH [, next A] 1 1 1 0 0 next A An 0 1 1 0 1 0 A~ ~A

ADD  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 0 1 0 1 0 A~ ~A

ADD Rx, imm16 1 1 1 1 1 1 1 0 0 0 0 0 Rx 0 0

x imm16

ADD Rx, R5 1 1 1 1 1 1 1 0 0 1 0 0 Rx 0 0

ADD APn, imm5 1 1 1 1 1 0 1 APn 0 1 0 imm5

ADDB An, imm5 1 0 1 0 0 0 0 An imm8

ADDB Rx, imm8 1 0 1 1 0 0 k4 k3 k2 k7 k6 k5 Rx k1 k0

ADDS An[~], An, {adrs} 0 0 0 0 ~A 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ADDS An[~], An[~], pma16 1 1 1 0 0 1 1 An 0 0 0 0 0 1 A~ ~A

x pma16

ADDS An[~], An~, An 1 1 1 0 0 1 1 An 0 0 1 0 1 0 A~ ~A

ADDS An[~], An[~], PH 1 1 1 0 0 1 1 An 0 1 1 0 1 0 A~ ~A

AND  An, {adrs} 0 1 0 0 0 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

AND  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 1 0 1 0 0 1 A~ ~A

x imm16

AND  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 1 0 1 0 0 A~ ~A

AND  TFn, {flagadrs} 1 0 0 1 1 flg Not 1 0 0 flagadrs

AND  TFn, {cc} [, Rx] 1 0 0 1 0 flg Not cc Rx 1 0

ANDB  An, imm8 1 0 1 0 1 0 1 An imm8

ANDS  An, {adrs} 0 1 0 0 0 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

ANDS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 1 0 1 0 0 1 A~ ~A

ANDS  An[~], An~, An 1 1 1 0 0 1 1 An 0 1 0 1 0 0 A~ ~A

BEGLOOP 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

CALL  pma16 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0

x pma16

CALL  *An 1 0 0 0 1 1 0 An 0 0 0 0 0 0 0 0

Ccc  pma16 1 0 0 0 0 1 Not cc 0 0 0 0 0

x pma16



Instruction Set Encoding

 4-190

Instructions 012345678910111213141516

CMP  An, {adrs} 0 1 0 1 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

CMP  An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 1 1 0 0 1 A~ ~A

x imm16

CMP  An, An~ [, next A] 1 1 1 0 0 next A An 1 0 0 0 0 0 0 0

CMP  An~, An [, next A] 1 1 1 0 0 next A An 1 0 0 0 0 0 1 0

CMP  Rx, imm16 1 1 1 1 1 1 1 0 0 0 1 1 Rx 0 0

x imm16

CMP  Rx, R5 1 1 1 1 1 1 1 0 0 1 1 1 Rx 0 0

CMPB  An, imm8 1 0 1 0 0 1 1 An imm8

CMPB  Rx, imm8 1 0 1 1 1 1 k4 k3 k2 k7 k6 k5 Rx k1 k0

CMPS  An, {adrs} 0 1 0 1 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

CMPS  An[~], pma16 1 1 1 0 0 1 1 An 0 1 1 0 0 1 A~ 0

x pma16

CMPS  An, An~ 1 1 1 0 0 1 1 An 1 0 0 0 0 0 0 0

CMPS  An~, An 1 1 1 0 0 1 1 An 1 0 0 0 0 0 1 0

COR  An, *Rx 1 1 1 0 1 0 0 An 1 1 0 Rx 1 1

CORK  An, *Rx 1 1 1 0 1 0 0 An 1 0 0 Rx 1 1

ENDLOOP n 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 n

EXTSGN An[~] [, next A] 1 1 1 0 0 next A An 0 1 1 1 1 0 0 ~A

EXTSGNS An[~] 1 1 1 0 0 1 1 An 0 1 1 1 1 0 0 A~

FIR An, *Rx 1 1 1 0 1 0 0 An 0 1 0 Rx 1 1

FIRK  An, *Rx 1 1 1 0 1 0 0 An 0 0 0 Rx 1 1

IDLE 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0

IN  {adrs}, port4 1 1 0 0 0 port4 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

IN An[~], port6 1 1 1 0 1 1 0 An port6 0 ~A

INS An[~], port6 1 1 1 0 1 1 1 An port6 0 ~A

INTD 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0

INTE 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

IRET 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0

JMP pma16 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

x pma16

JMP pma16, Rx++ 1 0 0 0 0 0 0 1 0 1 0 1 Rx 0 1

x pma16



Instruction Set Encoding

4-191Assembly Language Instructions

Instructions 012345678910111213141516

JMP pma16, Rx–– 1 0 0 0 0 0 0 1 0 1 0 1 Rx 1 0

x pma16

JMP pma16, Rx++R5 1 0 0 0 0 0 0 1 0 1 0 1 Rx 1 1

x pma16

JMP  *An 1 0 0 0 1 0 0 An 0 0 0 0 0 0 0 0

Jcc  pma16 1 0 0 0 0 0 Not cc 0 0 0 0 0

x pma16

Jcc  pma16, Rx++ 1 0 0 0 0 0 Not cc Rx 0 1

x pma16

Jcc pma16, Rx–– 1 0 0 0 0 0 Not cc Rx 1 0

x pma16

Jcc pma16, Rx++R5 1 0 0 0 0 0 Not cc Rx 1 1

x pma16

MOV  {adrs}, An[~] [, next A] 0 0 1 1 A~ next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  An[~], {adrs} [, next A] 0 0 1 0 A~ next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, *An 0 1 0 1 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 0 1 0 0 1 0 ~A

MOV  MR, imm16 [, next A] 1 1 1 0 0 next A An 1 1 1 0 0 1 0 0

MOV  An, An~ [, next A] 1 1 1 0 0 next A An 0 0 1 1 1 0 A~ ~A

MOV  An[~], PH [, next A] 1 1 1 0 0 next A An 0 1 1 1 0 0 A~ ~A

MOV  SV, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 0 0 0 A~ 0

MOV  PH, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 0 1 0 A~ 0

MOV  An[~], *An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 1 0 0 A~ ~A

MOV  MR, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 1 0 0 A~ 0

MOV  {adrs}, Rx 1 1 1 1 0 0 Rx {adrs}

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  Rx, {adrs} 1 1 1 1 0 1 Rx {adrs}

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  Rx, imm16 1 1 1 1 1 1 1 0 0 0 1 0 Rx 0 0

MOV  Rx, R5 1 1 1 1 1 1 1 0 0 1 1 0 Rx 0 0

MOV  SV, imm4 1 1 1 1 1 1 0 1 0 0 0 0 0 imm4

MOV  SV, {adrs}† 1 1 0 1 1 0 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

† Signed multiplier mode resets UM (bit 1 in status register ) to 0



Instruction Set Encoding

 4-192

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV  PH, {adrs} 1 1 0 1 1 0 0 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  MR, {adrs} 1 1 0 1 1 1 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  APn, {adrs} 1 1 0 1 1 0 1 APn adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  STAT, {adrs} 1 1 0 1 1 1 1 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV TOS, {adrs} 1 1 0 1 1 0 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, PH 1 1 0 1 0 0 0 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, MR 1 1 0 1 0 1 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, STAT 1 1 0 1 0 0 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, STR 1 1 0 1 0 0 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, DP 1 1 0 1 0 1 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, SV 1 1 0 1 0 0 0 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, APn 1 1 0 1 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {adrs}, TOS 1 1 0 1 0 1 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  STR, {adrs} 1 1 0 1 1 0 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOV  {flagadrs}†, TFn 1 0 0 1 1 flg Not 0 0 1 flagadrs

MOV  TFn, {flagadrs}† 1 0 0 1 1 flg Not 0 0 0 flagadrs

MOV  TFn, {cc} [, Rx] 1 0 0 1 0 flg Not cc Rx 0 0

MOV  STR, imm8 1 1 1 1 1 1 0 0 1 imm8

MOV  APn, imm6 1 1 1 1 1 0 1 An 0 0 0 imm5

MOVB  An, {adrs} 0 1 0 0 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVB  {adrs}, An 0 1 0 1 0 0 0 An adrs

† Flagadrs is 64 locations (global or relative to R6)



Instruction Set Encoding

4-193Assembly Language Instructions

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVB  {adrs}, An x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVB  An, imm8 1 0 1 0 0 0 1 An imm8

MOVB  MR, imm8 1 0 1 0 1 1 1 An imm8

MOVB  Rx, imm8 1 0 1 1 1 0 k4 k3 k2 k7 k6 k5 Rx k1 k0

MOVBS  An, {adrs} 0 1 0 0 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVBS  {adrs}, An 0 1 0 1 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  An[~], {adrs} 0 0 1 0 A~ 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  {adrs}, An[~] 0 0 1 1 A~ 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  {adrs}, *An 0 1 0 1 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVS  An[~], pma16 1 1 1 0 0 1 1 An 0 0 1 0 0 1 A~ ~A

MOVS  PH, An[~] 1 1 1 0 0 1 1 An 1 0 1 0 1 0 A~ 0

MOVS  SV, An[~] 1 1 1 0 0 1 1 An 1 0 1 0 0 0 A~ 0

MOVS  An[~], PH 1 1 1 0 0 1 1 An 0 1 1 1 0 0 A~ ~A

MOVS  An, An~ 1 1 1 0 0 1 1 An 0 0 1 1 1 0 A~ ~A

MOVS  MR, An[~] 1 1 1 0 0 1 1 An 1 0 1 1 0 0 A~ 0

MOVS  An[~], *An[~] 1 1 1 0 0 1 1 An 0 0 0 1 0 0 A~ ~A

MOVT  {adrs}, TFn 1 1 0 1 0 1 1 1 flg adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVU  MR, An[~] [, next A] 1 1 1 0 0 next A An 1 0 1 1 1 0 A~ 0

MOVU  MR, {adrs} 1 1 0 1 1 1 0 0 1 adrs

0 dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVAPH An, MR, {adrs} 0 1 1 0 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVAPHS An, MR, {adrs} 0 1 1 0 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVSPH An, MR, {adrs} 0 1 1 0 0 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MOVSPHS An, MR, {adrs} 0 1 1 0 0 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MUL  An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 1 0 0 A~ 0



Instruction Set Encoding

 4-194

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MUL  {adrs} 1 1 0 1 1 1 0 1 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULR  {adrs} 1 1 0 1 1 1 0 1 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULS  An[~] 1 1 1 0 0 1 1 An 1 1 1 1 0 0 A~ 0

MULAPL An, {adrs} 0 1 1 0 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULAPL An[~], An[~], [next A] 1 1 1 0 0 next A An 1 1 0 0 1 0 A~ ~A

MULAPLS An, {adrs} 0 1 1 0 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULAPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 0 1 0 A~ ~A

MULSPL An, {adrs} 0 1 1 1 1 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULSPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 0 0 0 0 A~ ~A

MULSPLS An, {adrs} 0 1 1 1 1 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULSPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 0 0 0 A~ ~A

MULTPL An, {adrs} 0 1 1 0 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULTPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 0 1 1 0 A~ ~A

MUL TPLS An, {adrs} 0 1 1 0 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

MULTPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 1 1 0 A~ ~A

NEGAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 0 0 0 A~ ~A

NEGACS  An[~], An[~] 1 1 1 0 0 1 1 An 0 0 0 0 0 0 A~ ~A

NOTAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 0 1 0 A~ ~A

NOTACS  An[~], An[~] 1 1 1 0 0 1 1 An 0 0 0 0 1 0 A~ ~A

NOP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OR  An, {adrs} 0 1 0 0 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

OR  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 1 0 0 0 0 1 A~ ~A

OR  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 1 0 0 1 0 A~ ~A

OR  TFn, {flagadrs} 1 0 0 1 1 flg Not 0 1 0 flagadrs

OR  TFn, {cc} [, Rx] 1 0 0 1 0 flg Not cc Rx 0 1

ORB  An, imm8 1 0 1 0 1 0 0 An imm8

ORS  An, {adrs} 0 1 0 0 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]



Instruction Set Encoding

4-195Assembly Language Instructions

Instructions 012345678910111213141516

ORS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 1 0 0 0 0 1 A~ ~A

ORS  An[~], An~, An 1 1 1 0 0 1 1 An 0 1 0 0 1 0 A~ ~A

OUT  port4, {adrs} 1 1 0 0 1 port4 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

OUT port6, An[~] 1 1 1 0 1 1 0 An port6 1 A~

OUTS  port6, An[~] 1 1 1 0 1 1 1 An port6 1 A~

RPT  {adrs} 1 1 0 1 1 1 1 1 0 adrs

RPT  imm8 1 1 1 1 1 1 0 0 0 imm8

RET 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0

RFLAG  {flagadrs} 1 0 0 1 1 0 0 0 1 1 flagadrs

RFM 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0

ROVM 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0

RTAG  {adrs} 1 1 0 1 0 1 1 0 1 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

RXM 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0

SFLAG {flagadrs} 1 0 0 1 1 1 0 1 0 1 flagadrs

SFM 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0

SHL  An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 1 1 0 A~ 0

SHLS  An[~] 1 1 1 0 0 1 1 An 1 1 1 1 1 0 A~ 0

SHLAPL An, {adrs} 0 1 1 1 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLAPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 0 1 0 A~ ~A

SHLAPLS An, {adrs} 0 1 1 1 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLAPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 1 0 1 0 A~ ~A

SHLSPL An, {adrs} 0 1 1 1 0 1 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLSPL  An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 1 0 0 0 A~ ~A

SHLSPLS An, {adrs} 0 1 1 1 0 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLSPLS  An[~], An[~] 1 1 1 0 0 1 1 An 1 1 1 0 0 0 A~ ~A

SHLTPL An, {adrs} 0 1 1 1 0 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SHLTPL An[~], An[~] [, next A] 1 1 1 0 0 next A An 1 1 0 1 0 0 A~ ~A

Instructions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHLTPLS An, {adrs} 0 1 1 1 0 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]



Instruction Set Encoding

 4-196

Instructions 012345678910111213141516

SHLTPLS An[~], An[~] 1 1 1 0 0 1 1 An 1 1 0 1 0 0 A~ ~A

SHLAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 0 1 1 0 0 A~ ~A

SHLACS  An[~], An[~] 1 1 1 0 0 1 1 An 0 0 1 1 0 0 A~ ~A

SHRAC  An[~], An[~] [, next A] 1 1 1 0 0 next A An 0 1 0 1 1 0 A~ ~A

SHRACS  An[~], An[~] 1 1 1 0 0 1 1 An 0 1 0 1 1 0 A~ ~A

STAG  {adrs} 1 1 0 1 0 1 1 0 0 adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SOVM 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0

SUB  An[~], An, {adrs} [, next A] 0 0 0 1 ~A next A An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SUB  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 0 1 0 0 0 1 A~ ~A

SUB  An[~], An[~], PH [, next A] 1 1 1 0 0 next A An 0 1 1 0 0 0 A~ ~A

SUB  An[~], An, An~ [, next A] 1 1 1 0 0 next A An 0 0 1 0 0 0 0 ~A

SUB  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 0 1 0 0 0 1 ~A

SUB  Rx, imm16 1 1 1 1 1 1 1 0 0 0 0 1 Rx 0 0

SUB  Rx, R5 1 1 1 1 1 1 1 0 0 1 0 1 Rx 0 0

SUBB  An, imm8 1 0 1 0 0 1 0 An imm8

SUBB  Rx, imm8 1 0 1 1 0 1 k4 k3 k2 k7 k6 k5 Rx k1 k0

SUBS  An[~], An, {adrs} 0 0 0 1 ~A 1 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

SUBS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 0 1 0 0 0 1 A~ ~A

SUBS  An[~], An, An~ 1 1 1 0 0 1 1 An 0 0 1 0 0 0 0 ~A

SUBS  An[~], An~, An 1 1 1 0 0 1 1 An 0 0 1 0 0 0 1 ~A

SUBS  An[~], An[~], PH 1 1 1 0 0 1 1 An 0 1 1 0 0 0 A~ ~A

SXM 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0

VCALL  vector8 1 1 1 1 1 1 1 0 1 vector8

XOR  An, {adrs} 0 1 0 0 1 0 0 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

XOR  An[~], An[~], imm16 [, next A] 1 1 1 0 0 next A An 1 1 0 0 0 1 A~ ~A

XOR  An[~], An~, An [, next A] 1 1 1 0 0 next A An 0 1 0 0 0 0 A~ ~A

XOR  TFn, {flagadrs} 1 0 0 1 1 flg Not 1 1 0 flagadrs

XOR  TFn, {cc} [, Rx] 1 0 0 1 0 flg Not cc Rx 1 1

XORB  An, imm8 1 0 1 0 1 1 0 An imm8

XORS  An, {adrs} 0 1 0 0 1 0 1 An adrs

x dma16 (for direct) or offset16 (long relative) [see section 4.13]

XORS  An[~], An[~], pma16 1 1 1 0 0 1 1 An 1 1 0 0 0 1 A~ ~A

XORS  An[~], An~, An 1 1 1 0 0 1 1 An 0 1 0 0 0 0 A~ ~A



Instruction Set Encoding

4-197Assembly Language Instructions

Instructions 012345678910111213141516

ZAC  An[~] [, next A] 1 1 1 0 0 next A An 0 0 0 1 1 0 0 ~A

ZACS  An[~] 1 1 1 0 0 1 1 An 0 0 0 1 1 0 0 ~A

cc names Description
Tr e condition (N t tr e condition)

cc cc name Not cc name
True condition (Not true condition)

0 0 0 0 0 Z NZ Conditional on ZF=1 (Not condition ZF=0)

0 0 0 0 1 S NS Conditional on  SF=1 (Not condition SF=0)

0 0 0 1 0 C NC Conditional on CF=1 (Not condition CF=0)

0 0 0 1 1 B NB Conditional on ZF=0 and CF=0 (Not condition ZF≠0 or CF≠0)

0 0 1 0 0 A NA Conditional on ZF=0  and CF=1 (Not condition ZF≠0 or CF≠1)

0 0 1 0 1 G NG Conditional on  SF=0 and ZF=0 (Not condition SF≠0 or ZF≠0)

0 0 1 1 0 E NE Conditional if ZF=1 and OF=0 (Not condition ZF≠1 or OF≠0)

0 0 1 1 1 O NO Conditional if OF=1 (Not condition OF=0)

0 1 0 0 0 RC RNC Conditional on RCF=1 (Not condition RCF=0)

0 1 0 0 1 RA RNA Conditional on RZF=0 and RCF=1 (Not condition RZF≠0 or RCF≠1)

0 1 0 1 0 RE RNE Conditional on RZF=1 (Not condition RZF=0)

0 1 0 1 1 RZP RNZP Conditional on value of Rx=0 Not available on Calls. (Not condition Rx≠0)

0 1 1 0 0 RLZP RNLZP Conditional on MSB of Rx=1. Not available on Calls. (Not condition MSB of
Rx=0)

0 1 1 0 1 L NL Conditional on ZF=0  and SF=1 (Not condition ZF≠0 or SF≠1)

0 1 1 1 0 reserved

0 1 1 1 1 reserved

1 0 0 0 0 TF1 NTF1 Conditional on TF1=1 (Not condition TF1=0)

1 0 0 0 1 TF2 NTF2 Conditional on TF2=1 (Not condition TF2=0)

1 0 0 1 0 TAG NTAG Conditional on TAG=1 (Not condition TAG=0)

1 0 0 1 1 IN1 NIN1 Conditional on IN1=1 status. (Not condition IN1=0)

1 0 1 0 0 IN2 NIN2 Conditional on IN2=1 status. (Not condition IN2=0)

1 0 1 0 1 Unconditional

1 0 1 1 0 reserved

1 0 1 1 1 reserved

1 1 0 0 0 XZ XNZ Conditional on XZF=1 (Not condition XZF=0)

1 1 0 0 1 XS XNS Conditional on  XSF=1 (Not condition XSF=0)

1 1 0 1 0 XG XNG Conditional on XSF=0 and XZF=0 (Not condition XSF≠0 or XZF≠0)

1 1 0 1 1 reserved

1 1 1 0 0 reserved

1 1 1 0 1 reserved

1 1 1 1 0 reserved

1 1 1 1 1 reserved



Instruction Set Summary

 4-198

4.16 Instruction Set Summary

Use the legend in Section 4.13 and the following table to obtain a summary of
each instruction and its format. For detail about the instruction refer to the
detail description of the instruction.

name dest [, src] [, src1] [,mod] Clock, clk Words, w With RPT, clk Class

ADD An[~], An, {adrs} [, next A] Table 4–46 Table 4–46 Table 4–46 1a

ADD An[~], An[~], imm16 [, next A] 2 2 N/R 2b

ADD An[~], An[~], PH [, next A] 1 1 nR+3 3

ADD An[~], An~, An [, next A] 1 1 nR+3 3

ADD Rx, imm16 2 2 N/R 4c

ADD Rx, R5 1 1 nR+3 4d

ADD APn, imm5 1 1 N/R 9c

ADDB An, imm8 1 1 N/R 2a

ADDB Rx, imm8 1 1 N/R 4b

ADDS An[~], An, {adrs} Table 4–46 Table 4–46 Table 4–46 1a

ADDS An[~], An[~], pma16 nS+4 2 N/R 2b

ADDS An[~], An~, An nS+3 1 nR+3 3

ADDS An[~], An[~], PH nS+3 1 nR+3 3

AND An, {adrs} Table 4–46 Table 4–46 1b

AND An[~], An[~], imm16 [, next A] 2 2 N/R 2b

AND An[~], An~, An [, next A] 1 1 nR+3 3

AND TFn, {flagadrs} 1 1 nR+3 8a

AND TFn, {cc} [, Rx] 1 1 nR+3 8b

ANDB An, imm8 1 1 N/R 2a

ANDS An, {adrs} Table 4–46 Table 4–46 1b

ANDS An[~], An[~], pma16 nS+4 1 N/R 2b

ANDS An[~], An~, An nS+3 1 nR+3 3

BEGLOOP 1 1 N/R 9d

CALL pma16 2 2 N/R 7c

CALL *An 2 2 N/R 7c

Ccc pma16 2 2 N/R 7c

CMP An, {adrs} Table 4–46 Table 4–46 1b



Instruction Set Summary

4-199Assembly Language Instructions

name ClassWith RPT, clkWords, wClock, clkdest [, src] [, src1] [,mod]

CMP Rx, imm16 2 2 N/R 2b

CMP An[~], An[~] [, next A] 1 1 N/R 3

CMP An[~], imm16 [, next A] 2 2 N/R 4c

CMP Rx, R5 1 1 N/R 4d

CMPB An, imm8 1 1 N/R 2a

CMPB Rx, imm8 1 1 N/R 4b

CMPS An, {adrs} Table 4–46 Table 4–46 1b

CMPS An[~], pma16 nS+4 2 N/R 2b

CMPS

CMPS

An, An~

An~, An
nS+3 1 nR+3 3

COR An, *Rx 3 1 3(nR+2) 9a

CORK An, *Rx 3 1 3(nR+2) 9a

ENDLOOP n 1 1 N/R 9d

EXTSGN An[~] [, next A] 1 1 nR+3 3

EXTSGNS An[~] nS+3 1 nR+3 3

FIR An, *Rx 2 1 2(nR+2) 9a

FIRK An, *Rx 2 1 2(nR+2) 9a

IDLE 1 1 N/R 9d

IN {adrs}, port4 Table 4–46 Table 4–46 6a

IN An[~], port6 1 1 N/R 6b

INS An[~], port6 nS+4 2 nR+4 6b

INTD 1 1 N/R 9d

INTE 1 1 N/R 9d

IRET 2 1 N/R 5

JMP pma16 2 2 N/R 7b

JMP pma16, Rx++ 2 2 N/R 7b

JMP pma16, Rx–– 2 2 N/R 7b

JMP pma16, Rx++R5 2 2 N/R 7b

JMP *An 2 1 N/R 7b

Jcc pma16 [, Rmod] 2 2 N/R 7b



Instruction Set Summary

 4-200

name ClassWith RPT, clkWords, wClock, clkdest [, src] [, src1] [,mod]

MOV {adrs}, An[~] [, next A] Table 4–46 Table 4–46 1a

MOV An[~], {adrs} [, next A] Table 4–46 Table 4–46 1a

MOV {adrs}, *An Table 4–46 Table 4–46 1b

MOV An[~], imm16 [, next A] 2 2 N/R 2b

MOV MR, imm16 [, next A] 2 2 N/R 2b

MOV An, An~ [, next A] 1 1 nR+3 3

MOV An[~], PH [, next A] 1 1 nR+3 3

MOV SV, An[~] [, next A] 1 1 nR+3 3

MOV PH, An[~] [, next A] 1 1 nR+3 3

MOV An[~], *An[~] [, next A] 1 1 nR+3 3

MOV MR, An[~] [, next A] 1 1 nR+3 3

MOV {adrs}, Rx Table 4–46 Table 4–46 4a

MOV Rx, {adrs} Table 4–46 Table 4–46 4a

MOV Rx, imm16 2 2 N/R 4c

MOV Rx, R5 1 1 nR+3 4d

MOV SV, imm4 1 1 N/R 5

MOV SV, {adrs}† 1 1 nR+3 5

MOV PH, {adrs} Table 4–46 Table 4–46 5

MOV MR, {adrs} Table 4–46 Table 4–46 5

MOV APn, {adrs} Table 4–46 Table 4–46 5

MOV STAT, {adrs} Table 4–46 Table 4–46 5

MOV TOS, {adrs} Table 4–46 Table 4–46 5

MOV {adrs}, PH Table 4–46 Table 4–46 5

MOV {adrs}, MR Table 4–46 Table 4–46 5

MOV {adrs}, STAT Table 4–46 Table 4–46 5

MOV {adrs}, STR Table 4–46 Table 4–46 5

MOV {adrs}, DP Table 4–46 Table 4–46 5

† Signed multiplier mode resets UM (bit 1 in status register) to 0



Instruction Set Summary

4-201Assembly Language Instructions

name dest [, src] [, src1] [,mod] Clock, clk Words, w With RPT, clk Class

MOV {adrs}, SV Table 4–46 Table 4–46 5

MOV {adrs}, APn Table 4–46 Table 4–46 5

MOV {adrs}, TOS Table 4–46 Table 4–46 5

MOV STR, {adrs} Table 4–46 Table 4–46 5

MOV {flagadrs}†, TFn 1 1 nR+3 8a

MOV TFn, {flagadrs}† 1 1 nR+3 8a

MOV TFn, {cc} [, Rx] 1 1 N/R 8b

MOV STR, imm8 1 1 N/R 9b

MOV APn, imm5 1 1 N/R 9c

MOVB An, {adrs}† Table 4–46 Table 4–46 1b

MOVB {adrs}†, An Table 4–46 Table 4–46 1b

MOVB An, imm8 1 1 N/R 2a

MOVB MR, imm8 1 1 N/R 2a

MOVB Rx, imm8 1 1 N/R 4b

MOVBS An, {adrs}† Table 4–46 Table 4–46 1b

MOVBS {adrs}8, An Table 4–46 Table 4–46 1b

MOVS An[~], {adrs} Table 4–46 Table 4–46 1a

MOVS {adrs}, An[~] Table 4–46 Table 4–46 1a

MOVS {adrs}, *An Table 4–46 Table 4–46 1b

MOVS An[~], pma16 nS+4 2 N/R 2b

MOVS PH, An[~] nS+3 1 nR+3 3

MOVS SV, An[~] nS+3 1 nR+3 3

MOVS An[~], PH nS+3 1 nR+3 3

MOVS An, An~ nS+3 1 nR+3 3

MOVS MR, An[~] nS+3 1 nR+3 3

MOVS An[~], *An[~] nS+3 1 nR+3 3

MOVT {adrs}, TFn Table 4–46 Table 4–46 5

MOVU MR, An[~] [, next A] 1 1 nR+3 3

† Flagadrs is 64 locations (global or relative to R6)



Instruction Set Summary

 4-202

name dest [, src] [, src1] [,mod] Clock, clk Words, w With RPT, clk Class

MOVU MR, {adrs} Table 4–46 Table 4–46 5

MOVAPH An, MR, {adrs} Table 4–46 Table 4–46 1b

MOVAPHS An, MR, {adrs} Table 4–46 Table 4–46 1b

MOVSPH An, MR, {adrs} Table 4–46 Table 4–46 1b

MOVSPHS An, MR, {adrs} Table 4–46 Table 4–46 1b

MUL An[~] [, next A] 1 1 nR+3 3

MUL {adrs} Table 4–46 Table 4–46 5

MULR {adrs} Table 4–46 Table 4–46 5

MULS An[~] nS+3 1 nR+3 3

MULAPL An, {adrs} Table 4–46 Table 4–46 1b

MULAPL An[~], An[~] [, next A] 1 1 nR+3 3

MULAPLS An, {adrs} Table 4–46 Table 4–46 1b

MULAPLS An[~], An[~] nS+3 1 nR+3 3

MULSPL An, {adrs} Table 4–46 Table 4–46 1b

MULSPL An[~], An[~] [, next A] 1 1 nR+3 3

MULSPLS An, {adrs} Table 4–46 Table 4–46 1b

MULSPLS An[~], An[~] nS+3 1 nR+3 3

MULTPL An, {adrs} Table 4–46 Table 4–46 1b

MULTPL An[~], An[~] [, next A] 1 1 nR+3 3

MULTPLS An, {adrs} Table 4–46 Table 4–46 1b

MULTPLS An[~] , An[~] nS+3 1 nR+3 3

NEGAC An[~], An[~] [, next A] 1 1 nR+3 3

NEGACS An[~] , An[~] nS+3 1 nR+3 3

NOTAC An[~], An[~] [, next A] 1 1 nR+3 3

NOTACS An[~] , An[~] nS+3 1 nR+3 3

NOP 1 1 nR+3 9d

OR An, {adrs} Table 4–46 Table 4–46 1b

OR An[~], An[~], imm16 [, next A] 2 2 N/R 2b

OR An[~], An~, An [, next A] 1 1 nR+3 3



Instruction Set Summary

4-203Assembly Language Instructions

name ClassWith RPT, clkWords, wClock, clkdest [, src] [, src1] [,mod]

OR TFn, {flagadrs} 1 1 nR+3 8a

OR TFn, {cc} [, Rx] 1 1 N/R 8b

ORB An, imm8 1 1 N/R 2a

ORS An, {adrs} Table 4–46 Table 4–46 1b

ORS An[~], An[~], pma16 nS+4 2 N/R 2b

ORS An[~], An~, An nS+3 1 nR+3 3

OUT port4, {adrs} Table 4–46 nR+3 6a

OUTS port6, An[~] nS+3 1 nR+3 6b

RPT {adrs}8 Table 4–46 N/R 5

RPT imm8 1 1 N/R 9b

RET 1 1 N/R 5

RFLAG {flagadrs} 1 1 nR+3 8a

RFM 1 1 nR+3 9d

ROVM 1 1 N/R 9d

RTAG {adrs} Table 4–46 Table 4–46 5

RXM 1 1 N/R 9d

SFLAG {flagadrs} 1 1 nR+3 8a

SFM 1 1 N/R 9d

SHL An[~] [, next A] 1 1 nR+3 3

SHLS An[~] nS+3 1 nR+3 3

SHLAPL An, {adrs} Table 4–46 Table 4–46 1b

SHLAPL An[~], An[~] [, next A] 1 1 nR+3 3

SHLAPLS An, {adrs} Table 4–46 Table 4–46 1b

SHLAPLS An[~] , An[~] nS+3 1 nR+3 3

SHLSPL An, {adrs} Table 4–46 Table 4–46 1b

SHLSPL An[~], An[~] [, next A] 1 1 nR+3 3

SHLSPLS An, {adrs} Table 4–46 Table 4–46 1b

SHLSPLS An[~] , An[~] nS+3 1 nR+3 3

SHLTPL An, {adrs} Table 4–46 Table 4–46 1b

SHLTPL An[~], An[~] [, next A] 1 1 nR+3 3



Instruction Set Summary

 4-204

name ClassWith RPT, clkWords, wClock, clkdest [, src] [, src1] [,mod]

SHLTPLS An, {adrs} Table 4–46 Table 4–46 1b

SHLTPLS An[~],  An[~] nS+3 1 nR+3 3

SHLAC An[~], An[~] [, next A] 1 1 nR+3 3

SHLACS An[~],  An[~] nS+3 1 nR+3 3

SHRAC An[~], An[~] [, next A] 1 1 nR+3 3

SHRACS An[~],  An[~] nS+3 1 nR+3 3

STAG {adrs} Table 4–46 Table 4–46 5

SOVM 1 1 N/R 9d

SUB An[~], An, {adrs} [, next A] Table 4–46 Table 4–46 1a

SUB An[~], An[~], imm16 [, next A] 2 2 N/R 2b

SUB An[~], An[~], PH [, next A] 1 1 nR+3 3

SUB An[~], An, An~ [, next A] 1 1 nR+3 3

SUB An[~], An~, An [, next A] 1 1 nR+3 3

SUB Rx, imm16 2 2 N/R 4c

SUB Rx, R5 1 1 nR+3 4d

SUBB An, imm8 1 1 N/R 2a

SUBB Rx, imm8 1 1 N/R 4b

SUBS An[~], An, {adrs} Table 4–46 Table 4–46 1a

SUBS An[~], An[~], pma16 2 2 N/R 2b

SUBS An[~], An, An~ 1 1 nR+3 3

SUBS An[~], An~, An 1 1 nR+3 3

SUBS An[~], An[~], PH 1 1 nR+3 3

SXM 1 1 N/R 9d

VCALL vector8 2 1 N/R 7a

XOR An, {adrs} Table 4–46 Table 4–46 1b

XOR An[~], An[~], imm16 [, next A] 2 2 N/R 2b

XOR An[~], An~, An [, next A] 1 1 nR+3 3

XOR TFn, {flagadrs} 1 1 nR+3 8a

XOR TFn, {cc} [, Rx] 1 1 nR+3 8b

XORB An, imm8 1 1 N/R 2a



Instruction Set Summary

4-205Assembly Language Instructions

name ClassWith RPT, clkWords, wClock, clkdest [, src] [, src1] [,mod]

XORS An, {adrs} Table 4–46 Table 4–46 1b

XORS An[~], An[~], pma16 nS+4 2 N/R 2b

XORS An[~], An~, An nS+3 1 nR+3 3

ZAC An[~] [, next A] 1 1 nR+3 3

ZACS An[~] nS+3 1 nR+3 3

cc names Description
cc name Not cc name

p
True Condition (Not true condition)

Z NZ Conditional on ZF=1 (Not condition ZF=0)

S NS Conditional on  SF=1 (Not condition SF=0)

C NC Conditional on CF=1 (Not condition CF=0)

B NB Conditional on ZF=0 and CF=0 (Not condition ZF≠0 or CF≠0)

A NA Conditional on ZF=0  and CF=1 (Not condition ZF≠0 or CF≠1)

G NG Conditional on  SF=0 and ZF=0 (Not condition SF≠0 or ZF≠0)

E NE Conditional if ZF=1 and OF=0 (Not condition ZF≠1 or OF≠0)

O NO Conditional if OF=1 (Not condition OF=0)

RC RNC Conditional on RCF=1 (Not condition RCF=0)

RA RNA Conditional on RZF=0 and RCF=1 (Not condition RZF≠0 or RCF≠1)

RE RNE Conditional on RZF=1 (Not condition RZF=0)

RZP RNZP Conditional on value of Rx=0 (Not condition Rx≠0) [Not available on Calls]

RLZP RNLZP Conditional on MSB of Rx=1. (Not condition MSB of Rx=0) [Not available on Calls]

L NL Conditional on ZF=0  and SF=1 (Not condition ZF≠0 or SF≠1)

TF1 NTF1 Conditional on TF1=1 (Not condition TF1=0)

TF2 NTF2 Conditional on TF2=1 (Not condition TF2=0)

TAG NTAG Conditional on TAG=1 (Not condition TAG=0)

IN1 NIN1 Conditional on IN1=1 status. (Not condition IN1=0)

IN2 NIN2 Conditional on IN2=1 status. (Not condition IN2=0)

XZ XNZ Conditional on XZF=1 (Not condition XZF=0)

XS XNS Conditional on  XSF=1 (Not condition XSF=0)

XG XNG Conditional on XSF=0 and XZF=0 (Not condition XSF≠0 or XZF≠0)



Instruction S
et S

um
m

ay

4-206
A

ssem
bly Language Instructions

MSP50C614 (MSP50P614) IO Port Description

Address Bits Name R/W 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 After RESET

0x00 8 Port A Data
( )

R/W A7 A6 A5 A4 A3 A2 A1 A0 external
(bidirectional) bit Ax   = 0 ⇒  PAx  low bit Ax   = 1 ⇒  PAx  high input states

0x04 8 Port A Control R/W C C C C C C C C 0x00

bit C = 0 ⇒  PAx  as input bit C = 1 ⇒  PAx as output

0x08 8 Port B Data
(bidi i l)

R/W B7 B6 B5 B4 B3 B2 B1 B0 external
i(bidirectional) bit Bx   = 0 ⇒  PBx  low bit Bx   = 1 ⇒  PBx   high input states

0x0C 8 Port B Control R/W C C C C C C C C 0x00

bit C = 0 ⇒  PBx  as input bit C = 1 ⇒  PBx  as output

0x10 8 Port C Data
( )

R/W C7 C6 C5 C4 C3 C2 C1 C0 external
(bidirectional) bit Cx   = 0 ⇒  PCx  low bit Cx   = 1 ⇒  PCx  high input states

0x14 8 Port C Control R/W C C C C C C C C 0x00

bit C = 0 ⇒  PCx  as input bit C = 1 ⇒  PCx  as output

0x18 8 Port D Data
f

R/W D7 D6 D5† D4† D3 D2 D1 D0 external
multifunction port

(bidirectional)
↓  falling edge ↑  rising edge bit Dx   = 0 ⇒  PDx  low bit Dx   = 1 ⇒  PDx  high input states

(bidirectional)
†PD4 = inverting and PD5 = positive comparator inputs if CE=1 in IO 0x38

PD4↑  triggers INT6 PD5↓  triggers INT7 PD2↑  triggers INT3 PD3↓  triggers INT4

0x1C 8 Port D Control
f

R/W C C C‡ C‡ C‡ C‡ C C 0x00
multifunction control ‡C=0 for interrupts (IO 0x18) bit C = 0 ⇒  PDx  as input bit C = 1 ⇒  PDx  as output

0x20 8 Port E Data
( )

R/W E7 E6 E5 E4 E3 E2 E1 E0 external
(bidirectional) bit Ex   = 0 ⇒  PEx  low bit Ex   = 1 ⇒  PEx  high input states

0x24 8 Port E Control R/W C C C C C C C C 0x00

bit C = 0 ⇒  PDx  as input bit C = 1 ⇒  PDx  as output

0x28 8 Port F Data
( )

R F7 F6 F5 F4 F3 F2 F1 F0 external
(input only) Fx ↓  triggers INT5 bit Fx = 0 ⇒  input PFx  low bit Fx = 1 ⇒  input PFx  high input states

0x2C 16 Port G Data
( )

R/W G15 G14 G13 G12 G11 G10 G9 G8 G7 G6 G5 G4 G3 G2 G1 G0 0x00
(output only) bit Gx  = 0 ⇒  PGx low (output only) bit Gx  = 1 ⇒  PGx high (output only) all 0 outputs

0x2F 8 RTOTRIM
‡MSP C l

R T4 T3 T2 T1 T0 unaffected
‡MSP50C614 only T4–T0 = Resistor trim bits V = 1 ⇒  T4–T0 are valid

0x30 16 DAC Data R/W S O O D D D D D D D D D D – – –§ 0x0000

S O O D D D D D D D D D – – – –¶

S O O D D D D D D D D – – – – –#

S = sign bit O = overflow bit D = data bit – = dont care

§ 10 bit  DAC ¶ 9 bit DAC # 8 bit DAC see P1,P0 in IO 0x34



Instruction S
et S

um
m

ay

4-207
A

ssem
bly Language Instructions

MSP50C614 (MSP50P614) IO Port Description

Address Bits Name R/W 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 After RESET

0x34 4 DAC Control R/W DM E P1 P0 0x0

DM Drive Mode E Function P1 P0 DAC bits

0 3x Style DAC 0 Disable DAC 0 0 8 bit
1

y
5x Style DAC 1 Enable DAC 1 1

0
9 bits
10 bi0 10 bits

0x38 16 Interrupt
G

R/W CE AR PD EP E2 E1 S2 S1 D5 D4 PF D3 D2 T2 T1 DA 0x0000
General
Control

EP
AR

F port Pullup
Arm bit

Timer Function Interrupt enable bits: 1=enable,0=disable
AR
CE

Arm bit
Comparator S1

S2
Timer1 source
Timer2 source

DA
T1

DAC Timer interrupt
Timer 1 interruptS2 Timer2 source T1

T2
D2

Timer 1 interrupt
Timer 2 interrupt

PD2 rising edge interr pt
0=disable 0 = � MC

D2
D3

PD2 rising edge interrupt
PD3 falling edge interrupt

1=enable 1 = MC
D3
PF

PD3 falling edge interru t
F port falling edge interrupt

PD PDM clock E1 Timer1 enable D4
D5

g g
PD4 rising edge interrupt
PD5 falling edge interrupt0

1
� MC
MC

E2 Timer2 enable D5 PD5 falling edge interrupt

1 MC
0 = disable
1 = enable

0x39 8 Interrupt
Flag

R/W D5 D4 PF D3 D2 T2 T1 DA left
unchangedFlag

Register D5 PD5 falling edge interrupt flag DA DAC Timer interrupt flag
unchanged

Register D5
D4

PD5 falling edge interru t flag
PD4 rising edge interrupt flag

DA
T1

DAC Timer interru t flag
Timer 1 interrupt flag

D3
g g g

PD3 falling edge interrupt flag T2
g

Timer 2 interrupt flag
PF F port falling edge interrupt flag D2 PD2 rising edge interrupt flag

0x3A 16 Timer 1 period R/W T I M E R 1 P E R I O D 0x0000

0x3B 16 Timer 1 preset R/W T I M E R 1 P R E S E T 0x0000

0x3D 16 Clock
S

W T4 T3 T2 T1 T0 I C R M7 M6 M5 M4 M3 M2 M1 M0 0x0000
Speed
Control

Resistor Trim bits I
C

Idle bit
CRO

PLLM bits
MC = (PLLM value+1) × 131.07 kHz

0 = disable
C
R

CRO
RTO

MC = (PLLM value+1) × 131.07 kHz
CPU clock = (PLLM value+1) × 65.536 kHz

1 = enable

0x3E 16 Timer 2 period R/W T I M E R 2 P E R I O D 0x0000

0x3F 16 Timer 2 preset R/W T I M E R 2 P R E S E T 0x0000



Instruction S
et S

um
m

ay

4-208
A

ssem
bly Language Instructions

Interrupt Vector Source Trigger Event Priority Comment

INT0 0x7FF0 DAC Timer timer underflow highest used to synch. speech data

INT1 0x7FF1 TIMER1 timer underflow 2nd

INT2 0x7FF2 TIMER2 timer underflow 3rd

INT3 0x7FF3 port PD2 rising edge 4th port PD2 goes HIGH

INT4 0x7FF4 port PD3 falling edge 5th port PD3 goes LOW

INT5 0x7FF5 all port F any falling edge 6th F port goes from all–HIGH to LOW

INT6† 0x7FF6 port PD4 rising edge 7th port PD4 goes HIGH

INT7† 0x7FF7 port PD5 falling edge lowest port PD5 goes LOW

RESET 0x7FFF hardware RESET active low pulse nonmaskable Some internal I/O register

† INT6 and INT7 may be associated instead with the Comparator function, if the Comparator Enable bit has been set. Refer to section 3.3 for details

8 kHz Nominal Synthesis Rate (32.768 kHz oscillator reference)

ClkSpdCtrl Output Number of Number of
IntGenCtrl

ClkSpdCtrl
PLLM Master Clock PDM CPU Clock

Output
Sampling

Number of
Instructs

Number of
Instructs

DAC
P i i

PDMCD
Bi

Over-Sampling
F

Register Rate
(H )

Rate
(H )

Rate 
(H )

p g
Rate btwn DAC btwn 8 kHz

Precision Bit Factor Value (Hz) (Hz) (Hz) (Hz) Interrupts Interrupts

8 bits 1 1x 0x 0F 2.10 M 2.10 M 1.05 M 8.19 k 128 128

2x 0x 1E 4.06 M 4.06 M 2.03 M 15.87 k 128 256

4x 0x 3E 8.26 M 8.26 M 4.13 M 32.26 k 128 512

8x 0x 7C 16.38 M 16.38 M 8.19 M 64.00 k 128 1024

0 1x 0x 1E 4.06 M 2.03 M 2.03 M 7.94 k 256 256

2x 0x 3E 8.26 M 4.13 M 4.13 M 16.13 k 256 512

4x 0x 7C 16.38 M 8.19 M 8.19 M 32.00 k 256 1024

9 bits 1 1x 0x 1E 4.06 M 4.06 M 2.03 M 7.94 k 256 256

2x 0x 3E 8.26 M 8.26 M 4.13 M 16.13 k 256 512

4x 0x 7C 16.38 M 16.38 M 8.19 M 32.00 k 256 1024

0 1x 0x 3E 8.26 M 4.13 M 4.13 M 8.06 k 512 512

2x 0x 7C 16.38 M 8.19 M 8.19 M 16.00 k 512 1024

10 bits 1 1x 0x 3E 8.26 M 8.26 M 4.13 M 8.06 k 512 512

2x 0x 7C 16.38 M 16.38 M 8.19 M 16.00 k 512 1024

0 1x 0x 7C 16.38 M 8.19 M 8.19 M 8.00 k 1024 1024



Instruction S
et S

um
m

ay

4-209
A

ssem
bly Language Instructions

10 kHz Nominal Synthesis Rate (32.768 kHz oscillator reference)

ClkSpdCtrl Master CPU O tp t N mber of N mber of
IntGenCtrl

ClkSpdCtrl
PLLM

Master
Clock PDM

CPU
Clock

Output
Sampling

Number of
Instructs

Number of
Instructs

DAC
IntGenCtrl

PDMCD Over-Sampling
PLLM

Register
Clock
Rate

PDM
Rate

Clock
Rate

Sampling
Rate

Instructs
btwn DAC

Instructs
btwn 10 kHz

Precision Bit Factor Value (Hz) (Hz) (Hz) (Hz) Interrupts Interrupts

8 bits 1 1x 0x 13 2.62 M 2.62 M 1.31 M 10.24 k 128 128

2x 0x 26 5.11 M 5.11 M 2.56 M 19.97 k 128 256

4x 0x 4D 10.22 M 10.22 M 5.11 M 39.94 k 128 512

8x 0x 9B 20.45 M 20.45 M 10.22 M 79.87 k 128 1024

0 1x 0x 26 5.11 M 2.56 M 2.56 M 9.98 k 256 256

2x 0x 4D 10.22 M 5.11 M 5.11 M 19.97 k 256 512

4x 0x 9B 20.45 M 10.22 M 10.22 M 39.94 k 256 1024

9 bits 1 1x 0x 26 5.11 M 5.11 M 2.56 M 9.98 k 256 256

2x 0x 4D 10.22 M 10.22 M 5.11 M 19.97 k 256 512

4x 0x 9B 20.45 M 20.45 M 10.22 M 39.94 k 256 1024

0 1x 0x 4D 10.22 M 5.11 M 5.11 M 9.98 k 512 512

2x 0x 9B 20.45 M 10.22 M 10.22 M 19.97 k 512 1024

10 bits 1 1x 0x 4D 10.22 M 10.22 M 5.11 M 9.98 k 512 512

2x 0x 9B 20.45 M 20.45 M 10.22 M 19.97 k 512 1024

0 1x 0x 9B 20.45 M 10.22 M 10.22 M 9.98 k 1024 1024



Instruction Set Summay

4-210 Assembly Language Instructions



5-1

Code Development Tools

This chapter describes the code development tools for the MSP50C6xx family
of devices. The MSP50C6xx code development tool is used to compile,
assemble, link, and debug programs. A reduced function C compiler,
(called C––) is also part of the code development tool.

Topic Page

5.1 Introduction 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 MSP50C6xx Development Tools Guidelines 5–4. . . . . . . . . . . . . . . . . . . . . 

5.3 MSP50C6xx Code Development Tools 5–8. . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Assembler 5–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.5 C– – Compiler 5–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.6 Implementation Details 5–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.7 C– – Efficiency 5–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.8 Beware of Stack Corruption 5–57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.9 Reported Bugs With Code Development Tool 5–58. . . . . . . . . . . . . . . . . . 

Chapter 5



Introduction

 5-2

5.1 Introduction

The MSP50C6xx code development tool is a system made up of a personal
computer (PC), the EMUC6xx software, an MSP scanport interface, and a
MSP50P614 connected to the application circuits.

EMUC6xx is the software that executes on the PC and provides a user
interface to the compiler, assembler, linker, debugger, and MSP50P614
programmer. This software gains access to the MSP50P614 and MSP50C6xx
devices through a serial interface, called scanport. The MSP scanport
interface (TI part number MSPSCANPORTI/F) is used to connect the scanport
to an enhanced parallel port on the PC. The MSP50P614 is an EPROM based
device used to emulate the MSP50C6xx devices. These EPROM based
devices are packaged in a kit of 15 pieces (TI part number SDK50P614), and
are only available in limited quantities to support code development.

The MSP50P614’s EPROM must be programmed to debug the code in
real-time. The MSP50C6xx code development tool is used to program the
EPROM, set a breakpoint, and evaluate the internal registers after the
breakpoint is reached. This mode is called Run Internal. The Trace mode also
requires the code to be programmed into the EPROM. If a change is made to
the code, the code will need to be updated and programmed into another
device while erasing previous devices. This cycle of programming, debugging,
and erasing typically requires several devices to be in the eraser at any time,
so 10–15 devices may be required to operate efficiently.

The MSP50C6xx code development tool also supports non-real-time
debugging by scanning the code sequence through the scanport without
programming the EPROM. However, the rate of code execution is limited by
the speed of the PC parallel port. These modes are called Run and Fast Run.

Any preproduction applications boards being used for code development must
have a 13x13, 121 pin, zero insertion force (ZIF), PGA socket that allows the
MSP50P614 to be easily changed. Use the PGA package pin assignments
shown in Figure 7–4. These preproduction boards also have the following
requirements for the development tool to function properly. (1) A 10 pin keyed
IDC connector, as shown in Figure 5–1, that connects the MSP50P614 to the
MSP scanport interface should be provided. (2) The VPP pin of the
MSP50P614 must be pulled up with a diode connected to VDD, so the
development tool can apply 12 V to this pin. (3) The development tool must be
allowed to toggle the RESET pin without being loaded by any low impedance
reset circuit. This can be accomplished by inserting a 1-kΩ resistor between
the reset circuit and the RESET pin, and connecting the MSP scanport
interface reset signal directly to the RESET pin. See the reset circuit shown in
Figure 1–3.



Introduction

5-3Code Development Tools

Figure 5–1. 10-Pin IDC Connector (top view looking at the board)

IDC2X5M

RESETVPP

SCANCLKPGMPULSE

SYNCGND

N/CSCANIN

VDDSCANOUT

1

3

5

7

9

2

4

6

8

10

PINOUT DETAILS

10-PIN HEADER
(3M PART# 2510–6002UB)

LAYOUT DETAILS

0.1�

0.800�

0.1�

IDC2X5M

HOLE DIA 0.038�

PAD DIA 0.060�

0.35�

It is also recommended that all production boards provide a method for
connecting the MSP50C6xx code development tool to the scanport. This
allows the development tool to facilitate any post-production debugging. There
are several options for providing access to the scanport. If the production
board has enough room, layout the footprint of the recommended connector
and connect it to the scanport. The connector could be added as need for
debugging. If the production board does not have enough room for the
connector, put test points for the scanport signals and a connector can be hand
wired to these test points. If the production boards use chip-on-board (COB),
be sure to bond-out the scanport signals. It would also be helpful to layout the
board so that a 1-kΩ resistor could be added in series with the reset circuit, as
described in requirement (3) for the preproduction board. This resistor would
not be added during production, and would be shorted with a jumper or etch
on a surface layer of the board. The jumper could be removed or etch could
be cut, and the resistor added when needed.

TI has two evaluation systems that may be used to develop code. The
EVA50C605 and the SPEECH–EVM (requires the appropriate personality
card) are basic target boards. The EVA50C605 has the minimum circuits
required for supporting code development. It has a socket for the MSP50P614,
a socket for a 4M bit EPROM, a reset circuit, test points for power, DAC, and
I/O ports, the external oscillator and PLL filter components, and the scanport
connector. The SPEECH–EVM is a generic board that supports several TI
speech devices by accepting different personality cards. This board has the
same features as the EVA50C605, plus a battery holder, two different speaker



MSP50C6xx Development Tools Guidelines

 5-4

amplifiers, an 8-position DIP switch and two momentary switches connected
to I/O pins. These boards are discussed more in Sections 5.2.2 and 5.2.4.

5.2 MSP50C6xx Development Tools Guidelines

This is a summary of the tools needed for code development and speech edit-
ing for the MSP50C6xx family of speech processors (MSP50C614,
MSP50C605, MSP50C601, and MSP50C604).

5.2.1 Categories of MSP50Cxx Development Tools

There are two kinds of tools:

� Code development tools. These are hardware and software tools for
compiling, assembling, linking, and debugging code for the MSP50C6xx
devices

� Speech editing tools. These are the hardware and software tools for
analyzing speech files, editing speech data, and generating coded
speech.

5.2.1.1 Code Development Tools

� If the user is developing code for an MSP50C604 (being used in master
mode), MSP50C601, MSP50C605, or MSP50C614, the following tools
are needed:

� Hardware
� MSPSCANPORTI/F
� SDK50P614 (kit of 15 MSP50P614s)
� SPEEC-EVM† or EVA50C605†‡

� EPC50C605†

� Software
� MSP50C6xx code development software (EMUC6xx)

� If the user is developing code for an MSP50C604 being used in slave
mode, the following tools are needed:

� Hardware
� MSPSCANPORTI/F
� SDK50P614 (kit of 15 MSP50P614s)
� SPEECH-EVM
� EPC50C604

� Software
� MSP50C6xx code development software (EMUC6xx)



MSP50C6xx Development Tools Guidelines

5-5Code Development Tools

� If the user is developing host code to be used with a catalog MSP50C604
operating in slave mode:

� Hardware
� Catalog device
� SPEECH-EVM†

� PC50C604†
† These items are not needed if the customer designs their own preproduction application boards.
‡ Speech-EVM and EVA50C605 have similar functionality. They both function as basic target boards that support code

development. For more information about these boards refer to Section 5.2.2.

5.2.1.2 Speech Editing Tools

For editing and analyzing speech for the MSP50C6xx family the following is
needed:

� Hardware
� SDS-6000

� Software
� SDS-6000 speech editing software

5.2.2 Tools Definitions

5.2.2.1 Hardware Tools Definitions

Note:

All the following TI part numbers can be purchased through authorized TI
distributors (see http://www.ti.com/sc/docs/general/distrib.htm).

Please contact TI speech applications group (email:
Speak2Me@list.ti.com) for the latest version of the software.

� MSPSCANPORTI/F

The MSP scanport interface board connects the PC’s parallel port to the
MSP50P614 or MSP50C6xx scanport. The user must provide a way of
connecting the MSP scanport interface to their application board. See
Section 5.1 for more details about this requirement.

� SDK50P614

This is a software developers kit that contains 15 units of MSP50P614s
(EPROM devices). The customer will need to have access to an EPROM
eraser (not supplied by TI) to erase these devices.

� EPC50C605



MSP50C6xx Development Tools Guidelines

 5-6

The emulation personality card, for the speech-EVM, that supports code
development on the MSP50C614, MSP50C605, MSP50C601, and
MSP50C604 (being used in master mode). A MSP50P614 is used on this
board to emulate the MSP50C6xx core. An EPROM is used on the
SPEECH-EVM board to emulate the data ROM of the MSP50C601 and
the MSP50C605.

� EPC50C604

The emulation personality card, for the SPEECH-EVM, that supports code
development on the MSP50C604 (being used in slave mode). A
MSP50P614 is used on this board to emulate the MSP50C6xx core and
the external logic devices that are built on the personality card emulate the
slave mode of MSP50C604. The board has a 25-pin connector that allows
a PC parallel port to emulate the host processor.

� PC50C604

The personality card, for the SPEECH-EVM, that has a 64-pin QFP socket
for a catalog MSP50C604 and a 16-pin DIP socket for a catalog
MSP53C39x (see the following note). This board can be used to develop
host codes for use with either a MSP50C691 or MSP53C392 slave device.
It also can be used with the SDS3000 software, which is a MSP50C3x
speech editing system.

Note:

The MSP50C691 and the MSP53C392 are catalog slave speech
synthesizers in the MSP50C6xx and the MSP50C3x family of speech
devices.

� SPEECH–EVM (see the following note)

This board, along with the appropriate personality card, provides a basic
target board that a customer can use to begin code development. The
SPEECH–EVM can be used with the following personality cards:
� EPC50C605
� EPC50C604
� PC50C604

This board supports the following speaker drive options:
� LM386 (with volume control)
� H bridge
� direct drive

There is a socket for an EPROM on the SPEECH–EVM to emulate the
DATA ROM in the MSP50C601 and the MSP50C605.



MSP50C6xx Development Tools Guidelines

5-7Code Development Tools

� EVA50C605 (see the following note)

Same as SPEECH-EVM.

Note:

The SPEECH-EVM and EVA50C605 have similar functionality. They both
function as basic target boards that support code development. One of the
differences is that the SPEECH-EVM has a battery holder, and the
EVA50C605 does not. The SPEECH-EVM also has the hardware circuits to
drive an 8-Ω speaker using the LM386 or H-bridge option. However, the
EVA50C605 can only be used with a 32-Ω speaker (direct drive).

� SDS-6000

The hardware works with SDS6000 software to allow speech editing as
well as verification of speech quality through a MSP50x6xx device. It
connects to a PC through a parallel port.

5.2.2.2 Software Tools Definitions

� MSP50C6xx code development software (EMUC6xx)

The PC based software is used for MSP50C6xx code development and
requires Microsoft Windows 95  or 98  operating systems. It is one part
of the MSP50C6xx code development tools, along with the MSP scanport
interface, and the MSP50C6xx device on an application board.

� TITALKS.zip (formerly known as FIXEDxx.zip)

This contains the latest version of TI compression algorithms. The file
TITALKS.ZIP contains the base code for the MSP50C6xx, which includes
all the TI coders (MELP, CELP, LPC, and ADPCM). There are some
sample codes for LCD drivers, timer 1, and timer 2 interrupts etc. This
software provides a good starting point for the customer to develop the
code for MSP50C6xx devices. Examples of RAM overlay methods have
been included for the customers’ benefit.

� SDS6000

This software is used for speech editing and is designed to be used with
the SDS-6000 hardware.

Note:

Please contact TI Speech Applications Group (email:
Speak2Me@list.ti.com for the latest version of the software.



MSP50C6xx Development Tools Guidelines

 5-8

5.2.3 Documentation

� MSP50C6xx Product Folders

http://www.ti.com/sc/docs/products/speechh/index.htm

� MSP50C6xx User’s Guide

� Datasheet

MSP50C614:

MSP50C605:

MSP50C601:

MSP50C604:

� Applications Notes

Documents that help users in developing code for MSP50C6xx devices
are available.

� SDS6000 Speech Editing Tool manual

� Schematics

Reference designs/schematics for the daughter cards. Schematics of the
SPEECH–EVM and the EVA50C605 are also available.

5.3 MSP50C6xx Code Development Tools

5.3.1 System Requirements

� PC with Intel 486  or Pentium  class processor
� Microsoft Windows 95 , or Windows 98  operating system
� 16M-Byte memory
� 8M-Byte hard disk space
� Enhanced parallel port interface



MSP50C6xx Development Tools Guidelines

5-9Code Development Tools

5.3.2 Hardware Tools Setup

Step 1: Plug in an appropriate personality card (see the following note) on
the SPEECH-EVM or EVA50C605.

Note:

EPC50C605: developing code for MSP50C604 (in master mode,
MSP50C601, MSP50C605, or MSP50C614).

EPC50C604: developing code for a custom MSP50C604 used in slave
mode.

PC50C604: developing host code to be used with a catalog MSP50C604
(slave mode) device.

Step 2: Connect a speaker (see the following note) to the SPEECH-EVM or
EVA50C605 board.

Note:

The SPEECH-EVM or EVA50C605 supports following speaker drive op-
tions:

� LM386 (with volume control)
� H-bridge
� Direct drive

If you choose LM386 or H-bridge as the speaker drive option, you have to
use a 8-Ω speaker. If you choose direct drive as the speaker drive option, you
have to use a 32-Ω speaker.

Step 3: Use the provided parallel cable to connect the PC’s parallel port and
scanport interface.

Step 4: Connect the scanport interface to the SPEECH-EVM or
EVA50C605.

Step 5: Connect the scanport interface to a power supply. The red light on
the scanport interface should be ON.

Step 6: Place a MSP50P614 device on the personality card that you use in
Step 1.

Step 7: Apply power to SPEECH-EVM (see the following note) or
EVA50C605. The green light on the scanport interface should be
ON.



MSP50C6xx Development Tools Guidelines

 5-10

Note:

There is a three-way switch at the edge of the SPEECH-EVM board. After
you apply power to the SPEECH-EVM, you have to turn on the SPEECH-
EVM. There are two ways to turn on the board depending on the power
sources:

� If you are using the on board with AAA batteries as the power source,
you have to slide the switch to the BATT position to turn on the board.

� If the power is provided externally from TB1 connector, you have to slide
the switch to the EXT position to turn on the board.

Step 8: Open EMU50C6xx software. The yellow light on the scanport
interface should be ON.

Figure 5–2. Hardware Tools Setup

MSP Scanport
Interface
(MSPSCANPORTI/F)

RED
LED

GREEN
LED

YELLOW
LED

MSP50P614
Target development

board

IEEE1284
Parallel
Port Cable

PC Parallel port

18 V DC Target board power

Target
board
connector

LED DESCRIPTION

Red MSPSCANPORTI/F power

Yellow Emulation mode/programming (Emul/Prog)

Green Target board power



Assembler

5-11Code Development Tools

5.4 Assembler

5.4.1 Assembler Directives

Assembler directives are texts which have special meaning to the assembler.
Some of these directives are extremely helpful during conditional compiling,
debugging, adding additional features to existing codes, multiple hardware
development, code release etc. Other directives are an essential part of the
assembler to initialize variables with values, assigning symbols to memory
locations, assigning origin of a program, etc. The assembler directives that
start with a # (hash) sign cannot have spaces before the directive. The
following assembler directives are recognized by the assembler. Some of
these assembler directives use expressions and symbols. These are
explained below:

expression can be any numeric value. Addition, subtraction, and multiplication are
allowed.

Examples:
(128 / 2 ) * 2 + (220 / 5) + 2 + *0x200 equates to 0xAE +
*0x200, where *0x200 indicates data memory location.

(2 * 2 / 2 + ((5 * 2) * 3) / 2) | (0x0F & 0x04) equates to
0x15. Note that bitwise AND (& operator) and OR (| operator) operations are
allowed.

(10 * 2) + 5 * *0x120 expression points to data memory content at
0x120, multiplies decimal 5 to it, and finally adds decimal 20. Note that a space
is required between successive asterisks (*). Also note that *0x120 indicates
content of memory location at 0x120 hex.

The grammar for expressions and symbols are as follows:

number: number| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expression: number

| expression + expression

| expression – expression

| expression * expression

| expression / expression

| expression | expression

| expression & expression

| ~expression

| –expression

| +expression

| *expression



Assembler

 5-12

| (expression)

(~ indicates bitwise complement)

symbol is any alphanumeric text starting with an alphabetic character, a number, or
an expression.

Examples:

SYM1 EQU (12 * 256)

SYM2 EQU SYM1 * (32 / 4)

SYM3 EQU SYM1 * SYM2 – *0x200

From the above example SYM1, SYM2 and SYM3 are symbols for some ex-
pression. The grammar for a Symbol is as follows:

symbol: expression

| symbol

Expression Restrictions: It is recommended that a space be inserted between the
operator (i.e., +, –, *, /, |, &) and the symbol or numeric expression to perform
arithmetic and bitwise operations. For example ADD A0, A0, 1 + –2,
adds a –1 to A0, because the argument is read as 1+(–2) = –1; but writing the
argument as 1+–2 may or may not give the correct result. Outside parenthesis
are not allowed in instruction arguments. For example, ADD A0~,A0~,(1 +
(2 * 300) – 256) causes a compile time syntax error. But removing the
outside parenthesis i.e., ADD A0~,A0~, 1 + (2 * 300) – 256, causes
no error.

#ELSE: see #IF and #IFDEF

#END_FT : This directive is created by the C– – compiler when it outputs assembly
code to a file. It marks the end of the function table used to track function calls
and C– – variables in the emulator. Users should NEVER use this directive
in an assembly language program.

#ENDIF: marks the end of a conditional assembly structure started by #IF or #IFDEF



Assembler

5-13Code Development Tools

#IF expression: The start of a conditional assembly structure expression is an
arithmetic expression that can contain symbols. Caution: since conditional
assembly is resolved during the first pass of the assembler, no forward
referenced symbols should be used in a conditional assembly
expression. If an expression is TRUE (non zero), then the lines following this
directive are assembled until a #ELSE or a #ENDIF directive is encountered.
If an expression is FALSE (equal to zero), then all input lines are skipped until
a #ELSE or a #ENDIF directive is encountered. If a #ELSE directive is
encountered first, all lines following it are assembled, until a #ENDIF directive
is found.

Example:

#IF expression
; do something here
#ELSE
; do other things here
#ENDIF

#IFDEF symbol: Start of a conditional assembly structure. If the symbol has been
defined (either with a #DEFINE directive or an EQU directive) then the lines
following this directive are assembled until a #ELSE or a #ENDIF directive are
encountered. If symbol has not been defined, then all input lines are skipped
until a #ELSE or a #ENDIF directive is encountered. If a #ELSE directive is
encountered first, all lines following it are assembled, until a #ENDIF directive
is found.

#IFNDEF: Start of a conditional assembly structure. If symbol has NOT been defined
then the lines following this directive are assembled until a #ELSE or a #ENDIF
directive is encountered. If symbol has been defined (either with a #DEFINE
directive or an EQU directive), then all input lines are skipped until a #ELSE
or a #ENDIF directive are encountered. If a #ELSE directive is encountered
first, all lines following it are assembled, until a #ENDIF directive is found.



Assembler

 5-14

Example:

#IFDEF symbol
; do something here
#ELSE
; do other things here
#ENDIF

#IFNDEF symbol
; do something here
#ELSE
; do other things here
#ENDIF

#START_FT: This directive is created by the C– – compiler when it outputs assembly
code to a file. It marks the beginning of the function table used to track function
calls and C– – variables in the emulator. Users should NEVER use this
directive in an assembly language program.

AORG expression: Marks the start of an ABSOLUTE segment code, i.e., a segment
that cannot be relocated by the linker. expression evaluates to the starting
address of the absolute segment in the program memory.

BYTE expression[,expression]: Introduces one or more data items, of BYTE size (8
bits) . The bytes are placed in program memory in the order in which they are
declared.

CHIP_TYPE chip_name: This directive is provided for compatibility with future chips
in the same family. It defines chip parameters (such as RAM and ROM size)
for the assembler. For now, the only defined chip name is MSP50C6xx.

DATA expression[,expression]: Introduces one or more data items, of WORD size
(16 bits) . The words are placed in the program memory in the order in which
they are declared. Even though the program memory is 17 bits wide, only 16
bits can be read using assembly instructions (like MOV A0,*A0), so the DATA
directive only stores 16 bits per data expression.

DB expression[,expression]: Equivalent to BYTE directive

DEF symbol[,symbol]: Equivalent to GLOBAL directive

DW expression[,expression]: Equivalent to DATA directive



Assembler

5-15Code Development Tools

END expression: Expression defines the start vector for the current assembly
program. This directive generates the following assembly code;

AORG 0xFFFF

DATA expression

which defines the start vector of the program, i.e., the program address where
execution begins when the chip is installed.

label EQU expression: Associates the value of expression with label.

EXTERNAL symbol[,symbol]: This directive is used to indicate to the assembler that
one or more symbols are external references, i.e., symbols that will be
resolved by the linker.

GLOBAL symbol[,symbol]: This directive is used to indicate to the assembler that
one or more symbols are global references. These symbols MUST be defined
in the current file, and will be used by the linker to resolve external references
(present in other files). GLOBAL should only be used for PROGRAM labels.
RAM variables are handled with the GLOBAL_VAR directive.

GLOBAL_VAR symbol[,symbol]: This directive allows a RAM variable to be
referenced from another file. GLOBAL_VAR should be used prior to defining
a RAM variable (with the RESW directive, for example). The file that
references the variable should declare it as EXTERNAL (of REF). Note that
this technique can also be used to make constants defined with the EQU
statement available to other files.

INCLUDE filename: This directive is used to insert another file in the current assembly
file. The name of the file must be enclosed in double quotes. If the file name
itself is enclosed in angled brackets (<>), then the assembler will first look for
the include file in the include directory list that is passed as an argument during
the DLL call.

LIST: The lines following this directive are included in the listing file (extension .lst)
created by the assembler.

REF symbol[,symbol]: Equivalent to EXTERNAL directive

label RESB expression: This directive is used to reserve the number of bytes
indicated by expression, starting at the current RAM address. Label is given
the value of the current RAM address.



C– – Compiler

 5-16

label RESW expression: This directive is used to reserve the number of words
indicated by expression, starting at the current RAM address. label is given the
value of the current RAM address. If the current RAM address is not EVEN,
the assembler increments it by 1 before allocating the desired amount. (Note
that RAM locations are accessed by their BYTE address in MSP50C6xx
assembly language, i.e., word 1 is at address 2, etc...)

RORG expression: Marks the start of a RELATIVE segment code, i.e., a segment that
can be relocated by the linker. Expression is an arbitrary number, but it must
be present or an assembly error will occur.

STRING text_string: Equivalent to the TEXT directive, but the text is terminated by
a 0. (automatically done by the assembler)

TEXT text_string: Equivalent to the BYTE directive, but the data is a text string
enclosed in double quotes.

UNLIST: The lines following this directive are not included in the listing file (extension
.lst) created by the assembler.

5.5 C– – Compiler

The C– – compiler generates an assembly language file of the same name,
with extension .opt. It also generates a file with extension .glb where global
variable initialization is taken care of, if the routine main was encountered in
the current file. A file with extension .ext is also generated to take care of
global and external declarations that will be used by the assembler. These two
files are included in the .opt file generated by the C– – compiler. Note that
all symbols defined in C– – source code are changed before being written to
assembly language: an underscore character is put in front of the first
character of each symbol. Also note that local labels created by the C– –
compiler are built using the current source file name followed by an ordinal
number. Consequently, to avoid problems at link time due to symbols bearing
the same name, never use symbol names starting with an underscore in
assembly language files. It is imperative to use file names that are different
for C– – files (extension .cmm) and assembly language files (extension .asm).

5.5.1 Foreword

C–– is a high level language to be used with the MSP50C6xx
microprocessors. Although it looks a lot like C, it has some
limitations/restrictions which will be highlighted throughout the remainder of
this chapter. This language is compiled into MSP50C6xx assembly language.



C– – Compiler

5-17Code Development Tools

5.5.2 Variable Types

Type Name Mnemonic Range Size in Bytes Example

Integer int [–32768,32767] 2 int i,j;

Character char [0,255] 1 char c,d;

Array of integer int Not Applicable Not Applicable int array[12];

Array of characters char Not Applicable forced to even char text[20]

Pointer to integer int * Not Applicable 2 int *j;

Pointer to character char * Not Applicable 2 char *string;

Notes: 1) There is a major difference between an MSP50C6xx integer string and an array of
integers: an array of integers is an ordered set of n 16 bit integers, whereas an integer
string of length n represents a single integer with 16*n bits. In C– –, MSP50C6xx strings
are declared as arrays of integers, but must be operated upon using the special purpose
string arithmetic functions described below.

2) As in regular C, the above types can be qualified with the word unsigned.

3) There is another important qualifier that is special to C– – : constant. We made the
mnemonic purposely different from the usual C const qualifier, because it is not exactly
equivalent. It is used to initialize arrays in program ROM. A good use of it would be for
a sine table, for example. The syntax is simple, for example:
    constant int array[10]={1,2,3,4,5,6,7,8,9,10},dummy;

4) will create a series of DATA statements in the assembly language output file.
Uninitialized constants (like dummy above) generate a warning and are initialized to
zero. Constants are to be handled with care. Since they cannot be accessed the same
way as RAM variables, special purpose functions have to be used to utilize constants
in a program. The most general of these functions is xfer_const, which transfers values
from the program ROM to the RAM. Also, constants MUST BE GLOBAL. Do not pass
a constant as an argument.

5) The common C types float, struct, union and long are not implemented. (Note that long
is a subset of string of integer).

5.5.3 External References

All RAM allocations in the assembler are global. This results in the following
implications for C– – variables:

� Only the file containing the main routine can contain global variable
definitions.

� Global variables referenced in other files must have been declared as ex-
ternal (keyword extern) at the beginning of the file.

� A function referenced in a file but not defined in that same file must be
introduced with a function prototype in the file where it is referenced (no
need for the extern keyword).



C– – Compiler

 5-18

5.5.4 C– – Directives

C– – has a limited number of directives and some additional directives not
found in ANSI C compilers. The following directives are recognized by the
compiler.

5.5.4.1 #define

This directive is used to introduce 2 types of macros, in typical C fashion:

Without Arguments:
defines a replacement string for a given string

Example:
#define PI 3.1415926535

Every occurrence of the token PI will henceforth be replaced with the string
3.1415926535.

If there is no replacement string, the given string is deemed defined: this can
be used in conjunction with the #ifdef / #ifndef directives. It is also possible
to undefine a macro with the #undefine directive.

With Arguments:
The macro name must be immediately followed by a pair of parenthesis,
which introduces the arguments. This is completely compatible with the usual
C definition.

Example:
#define modulo(i,j)   (i%j)

Every occurrence of the word modulo followed by an expression in
parentheses will be replaced by (i%j), where i is the first argument in the
parenthesis, and j the second argument. modulo((a*b),c) will thus be replaced
by ((a*b)%c).

5.5.4.2 #undefine

The string following this directive is removed from the list of macros. There is
no warning if the string is not found in the macro list.

5.5.4.3 #include

As in regular C, this directive allows for the insertion of a file into the current
file. If the file name that follows is enclosed in < >, the system searches the
include directories for the file, otherwise, if it is enclosed in “ ”, the current
directory is searched.



C– – Compiler

5-19Code Development Tools

Example:
#include “file.h”
#include <stdio.h>

The include directories are defined on the cmm_input structure passed to the
compiler. There is no limit to the nesting of include files.

5.5.4.4 #asm

All text following this directive is inserted as is in the output file, and is
considered as assembly language (hence not compiled). The insertion
continues until a #endasm directive is found. Note that both #asm and
#endasm must be at the beginning of a line, and that all text following them
on the same line is ignored.

5.5.4.5 #endasm

Signals the end of assembly language insertion. Must be paired with a #asm
directive.

5.5.4.6 #ifdef, (#ifndef)

Starts conditional assembly if token following it has been defined (not been
defined) by a #define directive. These directives are terminated by a #endif
directive, and can be coupled with a #else directive, as in regular C. Note that
the test can only check if the named token is currently defined or undefined.

5.5.4.7 #if

Starts conditional assembly if the expression following it evaluates to a non
zero value. This directive is terminated by a #endif directive, and can be
coupled with a #else directive, as in regular C.

5.5.4.8 #else

See #if directive.

5.5.4.9 #endif

Must be present to terminate a #ifdef or #ifndef directive

Note:

Typedef is not supported in C– –.

5.5.5 Include Files

There are currently two include files supplied with C– –, cmm_func.h, which
contains function prototypes for the C– –functions and cmm_macr.h which
contains some predefined macros. Both files are listed below:



C– – Compiler

 5-20

/********************************/

/* Prototypes for C– –functions */

/********************************/

cmm_func add_string(int *result,int *str1,int *str2,int lg);

cmm_func sub_string(int *result,int *str1,int *str2,int lg);

cmm_func mul_string(int *result,int *str1,int mult,int lg1,int lgr);

cmm_func umul_string(int *result,int *str1,unsigned int mult,int lg1,int lgr);

cmm_func or_string(int *result,int *str1,int *str2,int lg);

cmm_func and_string(int *result,int *str1,int *str2,int lg);

cmm_func xor_string(int *result,int *str1,int *str2,int lg);

cmm_func not_string(int *result,int *str1,int lg);

cmm_func neg_string(int *result,int *str1,int lg);

cmm_func copy_string(int *output,int *input,int lg);

cmm_func rshift_string(int *output,int *input,int rshift,int lg);

#ifdef _CMM

cmm_func strcpy(char *outstring,char *instring);

cmm_func strlen(char *instring);

cmm_func calloc(int nitems,int size);

cmm_func malloc(int size);

cmm_func free(int *ptr);

#endif

cmm_func test_string(int *string1,int *string2,int lg,int oper);

cmm_func xfer_const(int *out,int *cst_addr,int lg);

cmm_func xfer_single(int *out,int *cst_addr);

/********************************/

Note the requirement that C– – function declarations (including main) be
preceded by the keyword cmm_func. Also note the conditional assembly
portion, used for compatibility with Borland C.

/******************/

/* Macros for C– – */

/******************/

#define STR_LENGTH(i) (i–2)

/******************/

Major Differences between C and C– –



C– – Compiler

5-21Code Development Tools

Although we have tried to keep the differences between regular C and C– –
to a minimum, there are still a few that require explanation.

5.5.6 Function Prototypes and Declarations

C– – function prototypes and declarations MUST be preceded with the
keyword cmm_func.

Since all functions return through accumulator A0, all functions are of type
integer. The function type may be omitted in the function declaration. If
present, it is ignored anyway. Trying to typecast a function as returning a
pointer will result in a compiler error.

Note: To change a C– – program back into a regular C program (at least from
the point of view of function prototypes and declarations), the following line can
be inserted at the beginning of the C– –program:

#define cmm_func

A library of regular C functions to substitute for the special MSP50C6xx
functions is supplied with the C– – compiler, allowing the user to compare the
results of regular C programs with those of C– –programs. The library is
contained in the C source file cmm_func.c .It should be linked with the C
equivalent of the C– – program, and run in Borland C.

Note:

To use external functions in C– –, a function prototype should be placed in
the file that calls the external function.

5.5.7 Initializations

Due (in part) to the architecture of the MSP50C6xx processors, initialization
is only allowed for global variables. As a side effect, local static variables are
not allowed. For example, a global array can be declared and initialized as
follows:

int int_array[5]={1,2,3,4,5};

Initialization values are stored in program memory.

5.5.8 RAM Usage

RAM location 0 is reserved (and used intensively) by the compiler. The choice
of location 0 does not conflict with the usual definition of a NULL pointer.



C– – Compiler

 5-22

5.5.9 String Functions

Arithmetic string functions are special functions that perform string arithmetic.
The functions currently implemented are shown in Table 5–1.

Table 5–1. String Functions

add_string(int *result,int *str1,int *str2,int lg)adds strings str1 and str2, of length lg (+2),
and puts the result in string result

sub_string(int *result,int *str1,int *str2,int lg) subtracts strings str2 from str1, of length lg
(+2), and puts the result in string result.

mul_string(int *result,int *str1,int mult,int lg1,int lgr)multiplies string str1 of length
lg1 (+2) by integer multiple, and puts the result in string result, of length lgr (+2).

umul_string(int *result,int *str1,int mult,int lg1,int lgr) same as previous one, with
UNSIGNED multiply

or_string(int *result,int *str1,int *str2,int lg) ors strings str1 and str2, of length lg (+2), and
puts the result in string result.

and_string(int *result,int *str1,int *str2,int lg) ands strings str1 and str2, of length lg (+2),
and puts the result in string result.

xor_string(int *result,int *str1,int *str2,int lg) exclusive ors strings str1 and str2, of length
lg (+2), and puts the result in string result.

not_string(int *result,int *str1,int lg) takes the 1’s complement of string str1, of length lg (+2),
and puts the result in strings result.

neg_string(int *result,int *str1,int lg) takes the 2’s complement of string str1, of length lg (+2),
and puts the result in strings result.

test_string(int *string1,int *string2,int lg,int oper) performs a logical test (operation) on
strings string1 and string2 of length lg (+2). The logical value is returned in A0. If string2 is NULL, the logical test is
performed between string string1 and a zero string.

operator can take the following values: (predefined constants)
EQS_N  == ?
NES_N !== ?
LTS_N  < ?
LES_N  <= ?
GES_N  >= ?
GTS_N  > ?
ULTS_N < ? (unsigned)
ULES_N <= ? (unsigned)
UGES_N >= ? (unsigned)
UGTS_N > ? (unsigned)

A major feature of the MSP50C6xx is that the string length present in the string
register is the actual length of the string minus two. To avoid confusion, a
macro is supplied that automatically translates the real length of the string to



C– – Compiler

5-23Code Development Tools

the MSP50C6xx length of the string. It is included in the cmm_macr.h file, and
is called STR_LENGTH(lstr). For example, STR_LENGTH(8) is 8–2 = 6.

Also note that the user has to supply the length of the input string and the length
of the output string in the string multiply operations: the result of multiplying a
string by an integer can be one word longer than the input string. Unpredictable
results may occur if parameter lgr is not at least equal to lgr+1.

5.5.10 Constant Functions

The only two constant functions implemented in C– – are xfer_const and
xfer_single.

cmm_func xfer_const(int *out,int *constant_in,int lg)

It transfers lg+2 integers from program ROM starting at address
constant_in to RAM, starting at address out. Note that constant_in is
not doubled, because it is used in A0 in a MOV A0,*A0 operation. The C– –
compiler takes care of this.

cmm_func xfer_single(int *out,int *constant_in)
transfers a single value.

An example of the use of xfer_const is:

int array[8],i;
const int atan[80*8] ={.........640 integers );
/* .... */
for(i=0;i<80;i++){
xfer_const(array,&atan[i*8],STR_LENGTH(8));
/* ... now use array normally 
..... */
}



Implementation Details

 5-24

5.6 Implementation Details

This section is C– – specific.

5.6.1 Comparisons

We use the CMP instruction for both signed and unsigned comparisons. The
two integers a and b to be compared are in A0 and A0~.

CMP A0,A0~ : A0 contains a, A0~ contains b

A0 A0~ ACO AZ ANEG

5 0 1 0 0

5 1 1 0 0

0 5 0 0 1

1 5 0 0 1

0 0 1 1 0

5 5 1 1 0

FFFF 0 1 0 1

0 FFFF 0 0 0

FFFF FFFF 1 1 0

FFFF FFFE 1 0 0

FFFE FFFF 0 0 1

� Signed comparison of a and b. (a is in A0, b is in A0~)

Assembly Test Condition

_eq a = b AEQ

_ne a != b !AEQ

_lt a < b ALZ

_le a <= b !AGT

_ge a >= b !ALZ

_gt a > b AGT



Implementation Details

5-25Code Development Tools

� Unsigned comparison of a and b. (a is in A0, b is in A0~)

Assembly Test Condition

_ult a < b AULT

_ule a <= b !AUGT

_uge a >= b !AULT

_ugt a > b AUGT

The small number of comparisons was an invitation to use them as vector
calls. We return a 1 or 0 in A0 as the result of the comparison, and also set flag
2 if the comparison is true. The flag is not currently used by the compiler.

It is important to note that functions return their results via A0, but there is no
guarantee that the absolute value of the A0 pointer is not changed by the
function. To compare integers a and b: after loading a in A0, and b in A0~, do
a vector call to the appropriate comparison routine:

Assembly Vector

_eq 0

_ne 1

_lt 2

_le 3

_ge 4

_gt 5

_ult 6

_ule 7

_uge 8

_ugt 9

_lneg 10

We return the result of the comparison in Flag 2 ( set for TRUE, reset for
FALSE), and in A0 (1 for TRUE, 0 for FALSE). We have also implemented
vector calls for string comparisons. There are a few C callable routines that
make use of those calls. (test_string, or_string, and_string,
xor_string, neg_string, not_string)



Implementation Details

 5-26

5.6.2 Division

Integer division currently requires the use of several accumulator pointers. We
divide a 16 bit integer located in A0 by a 16 bit integer located in A0~. We return
the quotient in A0~, and the remainder in A0. We make use of A3~ and A3 for
scratch pads. We also set flag 1 if a division by zero is attempted, and zero out
the quotient and the remainder in this case. We also use PH for temporary
storage of the divisor.

5.6.3 Function Calls

Every function is associated with a stack frame. A regular C program is initially
given control by a call to main(). A C– – program starts with a jump to the
_main symbol, which must therefore be present in the C– – source code.

The stack frame has the following structure:

First Argument Low Address

•  •  • ⇓

Last Argument ⇓

Return Address ⇓

BP Previous BP ⇓

Locals ⇓

SP High Address

BP is the frame pointer (base pointer), SP the stack pointer.

We use R7 for stack pointer, and yet another register for BP, REG_BP (R5,
because of its special arithmetic capabilities). Before a function is called, the
arguments are pushed on the stack, first argument first. The function call
automatically pushes the return address on the stack. Immediately upon
entering the function body, the current BP is pushed on the stack to preserve
it, so that the stack pointer now points to the next location. This location is
copied to REG_BP, which becomes our fixed reference point for the current
function. Locals are then allocated on the stack from this starting location.

When the function returns, SP is made to point to the return address, after the
previous BP is popped. The return is performed by a RET instruction. The
calling routine is then responsible for moving the stack pointer to its previous
location, before the arguments were put on the stack. Because all functions
return via A0, the only function return type allowed is integer. Our
implementation of C– – allows for function prototyping, and checks that
prototype functions are called with the correct number of arguments. Function



Implementation Details

5-27Code Development Tools

declarations ( or function prototypes) are introduced by the mnemonic
cmm_func. We only allow the new style of function declarations /prototypes,
where the type of the arguments is declared within the function’s parentheses.
For example:

cmm_func bidon(int i1,char *i2) is valid, but:

cmm_func bidon(i1,i2) int i1,char *i2; is invalid.

Note: The exact implementation of the MSP50C6xx stack is as follows:

on CALL:

1) Increment R7

2) Transfer TOS (top of stack) register to *R7

3) Transfer return address to TOS register

on RET:

1) next PC = TOS

2) transfer *R7 to TOS

3) decrement R7

We can freely manipulate R7 before a CALL/Ccc and after a RET to load and
unload arguments to and from the stack. The TOS register should never be
altered in the body of a function.

5.6.4 Programming Example

The following example implements string multiplication (i.e., the multiplication
of 2 integer strings). The same source file (with the exception of the first line)
can be used for C– – or regular C. In the case of regular C, it has to be compiled
and linked with cmm_func.c

#define _CMM /*must be present for C– –compiler ONLY*/

#ifdef _CMM

#else

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include “cmm_back.h”

#endif

#include “cmm_func.h”



Implementation Details

 5-28

#include “cmm_macr.h”

constant int M1[4]={0x04CB,0x71FB,0x011F,0x0};

constant int M2[4]={0x85EB,0x8FD9,0x08FB,0x0};

cmm_func string_multiply(int *p,int lgp,int *m1,int lgm1,int *m2,int lgm2)

{

/* note: length of p,(lgp+2) must be at least (lgm1+2) + (lgm2+2) +1 */

/* this function string multiplies string m1 of length lgm1+2 by string m2 of
length lgm2+2, and puts the result into string p, of length lgp+2 */

int sign,i,j;

int *mm1,*mm2,*pp;

sign=1;

mm1=calloc(sizeof(int),lgm1+2);

mm2=calloc(sizeof(int),lgm2+2);

pp =calloc(sizeof(int),lgp+2);

if(test_string(m1,0,lgm1,LTS_N))

{

neg_string(mm1,m1,lgm1);

sign*=–1;

}

else

copy_string(mm1,m1,lgm1);

if(test_string(m2,0,lgm2,LTS_N))

{

neg_string(mm2,m2,lgm2);

sign*=–1;

}

else

copy_string(mm2,m2,lgm2);

for(j=0;j<lgp+2;j++)

p[j]=0;

for(i=0;i<lgm2+2;i++)

{

for(j=0;j<lgp+2;j++)

pp[j]=0;

umul_string(&pp[i],mm1,mm2[i],lgm1);



Implementation Details

5-29Code Development Tools

add_string(p,pp,p,lgm1+i+1);

}

if(sign == –1)

{

neg_string(pp,p,STR_LENGTH((lgp+2)));

copy_string(p,pp,STR_LENGTH((lgp+2)));

}

free(mm1);

free(mm2);

free(pp);

}

cmm_func main(int argc,char *argv)

{

int m1[4],m2[4],product[9];

xfer_const(m1,M1,STR_LENGTH(4));

xfer_const(m2,M2,STR_LENGTH(4));

string_multiply(product,STR_LENGTH(9),m1,STR_LENGTH(4),m2,STR_LENGTH(4));

}

5.6.5 Programming Example, C –– With Assembly Routines

There are several important considerations when using the C–– compiler. The
ram allocation must be coordinated so that a location isn’t accidentally used
twice. In assembly this is usually done with IRX files by making each label
equal to the location of the previous one, plus whatever storage space is need-
ed. All of the IRX files for a project are then combined in a master IRX file so
that the space for each sub file can be allocated. For example ( a master IRX
file ):

RAM_SIZE equ640

STACK equ2 * (RAM_SIZE – 14)

BEGIN_RAM equ0

RESERVED equ   BEGIN_RAM + 2 * 1

RAMSTART_INT equRESERVED

   include ”..\inter\inter_ram.irx”

RAMSTART_ASM equRAMEND_INT

include ”. .\asm_ram.irx”



Implementation Details

 5-30

Here the sub files are inter_ram.irx and asm_ram.irx. The allocation for in-
ter_ram.irx begins at memory location 2. This is because the memory location
0 is reserved for use by the C–– compiler. The allocation for asm_ram.irx be-
gins where the allocation ended for inter_ram.irx. More .irx files can be chained
on in this manner, and all of the allocation is kept organized. When C–– is add-
ed to a project, it is important to make sure that the C–– variables are not allo-
cated in locations already used by assembly variables. This is accomplished
with a dummy array, bogus, located in the file ram.irx. It is simply an integer
array that is included in the C–– program so that it is the first variable allocated.
By making its size equivalent to the amount of memory used for assembly vari-
ables, the C–– variables that the user defines are allocated in unused memory.
It can be set by building the project and finding the location of the last assembly
variable. This can then be converted from hexadecimal to decimal and divided
by two ( because a C–– int is 16 bits ) to find the correct size for bogus. Bogus
can be made larger for extra safety as long as enough memory is left over for
the C–– variables and the stack. If space allows, it is a good idea to add a few
extra words to bogus in case assembly variables are added to the project with-
out modifying bogus.

It is also important not to alter the contents of registers R5 and R7. R7 is the
stack pointer and R5 is a frame pointer used in C to C function calls. Parame-
ters are passed on the stack and the return value is always int and always lo-
cated in a0. The stack usage for function calls is as follows.

C to C function call. The stack is shown after the operation on the bottom is
performed.



Implementation Details

5-31Code Development Tools

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | | |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | |R7|Param 2 |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | | | |Param 2 |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| |R7|Param 1 | |Param 1 |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

| | |Param 1 | |Param 1 |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

R7,R5 |Stack data   |R5|Stack data  |R5|Stack data   |

|–––––––––––––––| |–––––––––––––––| |–––––––––––––––|

 Before call  Parameter 1 Parameter 2



Implementation Details

 5-32

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| |R7 | |R5,R7 | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | R5 | |(old)R5 |<– This is the SP

|––––––––––––––| |––––––––––––––| |––––––––––––––| before the

| | | R5 | |(old)R5 |C function call.

|––––––––––––––| |––––––––––––––| |––––––––––––––|

R7 |Return Addr | |Return Addr | |Return Addr |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Return Addr | |Return Addr | |Return Addr |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 2 | |Param 2 | |Param 2 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 2 | |Param 2 | |Param 2 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 1 | |Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 1 | |Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

R5 |Stack data |R5 |Stack data | |Stack data |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

 Function call  ADDB R7,2   MOV *0,R7

 MOV *R7++,R5   MOV R5,*0



Implementation Details

5-33Code Development Tools

C to C function return (in ronco_return).

| | | | | |

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

R5 | | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

R7 |(old)R5 | |(old)R5 | |(old)R5 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|(old)R5 | |(old)R5 | |(old)R5 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Return Addr |R7 |Return Addr | |Return Addr |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Return Addr | |Return Addr | |Return Addr |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 2 | |Param 2 |R7 |Param 2 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 2 | |Param 2 | |Param 2 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 1 | |Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Param 1 | |Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

|Stack data |R5 |Stack data |R5 |Stack data |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

 SUBB R7,2  MOV A0~,*R7–– RET

 MOV *0,A0~

 MOV R5,*0



Implementation Details

 5-34

|––––––––––––––|

| |

|––––––––––––––|

| |

|––––––––––––––|

| |

|––––––––––––––|

|(old)R5 |

|––––––––––––––|

|(old)R5 |

|––––––––––––––|

|Return Addr |

|––––––––––––––|

|Return Addr |

|––––––––––––––|

|Param 2 |

|––––––––––––––|

|Param 2 |

|––––––––––––––|

|Param 1 |

|––––––––––––––|

|Param 1 |

|––––––––––––––|

R7,R5 |Stack data |

|––––––––––––––|

 SUBB R7,4



Implementation Details

5-35Code Development Tools

C to ASM function call. The stack is shown after the operation on the bottom
is performed.

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | | |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | |R7 |Param 2 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | | | |Param 2 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| |R7 |Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

| | |Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

R7,R5 |Stack data |R5 |Stack data |R5 |Stack data |

|––––––––––––––| |––––––––––––––| |––––––––––––––|

 Before call  Parameter 1  Parameter 2



Implementation Details

 5-36

| |

|––––––––––––––|

| |

|––––––––––––––|

| |

| |

|––––––––––––––|

| |

|––––––––––––––|

R7 |Return Addr |

|––––––––––––––|

|Return Addr |

|––––––––––––––|

|Param 2 |

|––––––––––––––|

|Param 2 |

|––––––––––––––|

|Param 1 |

|––––––––––––––|

|Param 1 |

|––––––––––––––|

R5 |Stack data |

|––––––––––––––|

Function call



C–– Efficiency

5-37Code Development Tools

C to ASM function return

| | | |

|––––––––––––––| |––––––––––––––|

| | | |

|––––––––––––––| |––––––––––––––|

| | | |

|––––––––––––––| |––––––––––––––|

| | | |

|––––––––––––––| |––––––––––––––|

| | | |

|––––––––––––––| |––––––––––––––|

|Return Addr | |Return Addr |

|––––––––––––––| |––––––––––––––|

|Return Addr | |Return Addr |

|––––––––––––––| |––––––––––––––|

R7 |Param 2 | |Param 2 |

|––––––––––––––| |––––––––––––––|

|Param 2 | |Param 2 |

|––––––––––––––| |––––––––––––––|

|Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––|

|Param 1 | |Param 1 |

|––––––––––––––| |––––––––––––––|

R5 |Stack data |R7,R5 |Stack data|

|––––––––––––––| |––––––––––––––|

 RET  SUBB R7, 4

5.7 C–– Efficiency

C–– allows top-level control code to be written in a C-like language. It does
have limitations though. Assembly routines are needed to support C function
calls for operations such as reading/writing ports and speaking. The assembly
code produced by the C–– compiler is not optimized and will not be as efficient
as hand written assembly. Because C–– is not optimized, time critical
operations should always be written in assembly.

Since the compiler does not optimize the assembly, writing C–– code in
different ways results in different levels of overhead. While and do-while loops
have similar overhead (one conditional jump and 1 unconditional jump per



C–– Efficiency

 5-38

repetition), but for loops are implemented with much greater overhead (one
conditional jump and three unconditional jumps per repetition.) For this
reason, it is best to replace for loops with while loops. (This was not done in
the example projects for the sake of readability and to provide an example of
a C–– for loop.) If the number of repetitions is both fixed and small, the code
will execute faster if the loop is unwrapped. Switch statements and if-else
blocks have similar overhead. Switch statements are slightly more efficient
because the values being compared are only looked up once, while an if-else
block looks up the values for each comparison. Switch statements do not use
a table lookup; they use a fall through structure like an if-else block. Because
of the fall through structure of switch and if-else blocks, items occurring first
are executed with less overhead than items occurring last. If it is known that
certain cases will occur more frequently than others, the code will execute
fastest if the most frequently occurring cases are put before the less frequently
occurring ones.

Space for global variables is allocated at compile time. Space for local
variables is allocated on the stack at run time. This means that the compiler
will not generate a warning if local variables exceed the available RAM. The
compiler will generate an error message if the global variables exceed the
available RAM. Caution must be used to avoid overflowing the stack by
allocating too many local variables. During a call, parameters, return address,
local variables, and the frame pointer are stored on the stack using a stack
frame. The stack frame structure allows recursive calls, but the elegant
solution provided by a recursive program is often offset by inefficiency. Using
recursive calls is not recommended with the C–– compiler.

Dividing the program into too many functions can be inefficient also. It may be
stylish to separate portions of the program into functions based on what they
are designed to do, but unless the functions will be used in multiple places in
the program, it is better not to make a function call. There is a tradeoff between
ROM usage and RAM usage depending on the number of times a function will
be needed. Using a function call requires more RAM and instruction overhead.
Not using a function call can require more ROM depending on the size of the
function and the number if times it is used.



C–– Efficiency

5-39Code Development Tools

5.7.1 Real Time Clock Example

The C–– clock works as follows. The Timer2 ISR is set to fire at 1-second
intervals. Inside the ISR a counter is incremented by one each time it fires. An
assembly routine in cmm1.asm (_getSecondsPassed) disables the interrupts,
retrieves the counter, resets it, and turns the interrupts back on. The C––
program calls getSecondsPassed() whenever it is not busy and uses the
return value to update the clock. This keeps the assembly code to a minimum
and allows all of the calculations to be handled in C––. The interrupts are
disabled when the counter is being read to prevent possible loss of time.

_getSecondsPassed
rpt2–2; interrupt can still fire for 2 cycles
intd ; leaving these out can cause loss of a second
mova0~, *seconds_passed
zaca0
mov*seconds_passed, a0
inte
mova0, a0~
ret

The example is divided up into three projects. The first one is a minimal
implementation. It does not have support for speech, LCD, key scanning, or
setting the time. It offers minimum functionality to keep the number of files
small. It is meant to show the basics of a C–– project.

The second project adds speech and key scanning. The speech provides
output and the key scanning is used for input. Adding speech synthesis
increases the number of files in the project dramatically, but the C–– is still
similar. The main changes that relate to C–– are addition of a routine in
cmm1.asm to read buttons on Port D and addition of a routine to speak from
C––.

The third project adds LCD support. It offers the same speaking abilities as the
third project, but uses an LCD screen for additional output. It also
demonstrates the use of arrays in C––.

Example 5–1. First Project

The project is of limited use because there is no way to read the time or change
the time without using a scanport. It does provide a good example of a C––
project that contains a few simple files.

A minimum implementation of the real time clock contains the following files.



C–– Efficiency

 5-40

� [Root]
� cmm1.asm
� cmm1_ram.irx
� flags.irx
� main.cmm
� main.irx
� main_ram.irx
� mainasm.asm
� vroncof2.asm
� rtc.rpj
� [modules]

� [general]
init.asm
io_ports.irx

� [isr]
tim2_isr.asm

� [ram]
� ram.h
� ram.irx

cmm1.asm Assembly to support C–– function calls
cmm1_ram.asm Allocates RAM for use in cmm1.asm
flags.asm Flags used in init.asm and for speech routines
main.cmm C–– program
main.irx Mnemonics for switches and ports used in main.cmm
main_ram.irx Allocates RAM for ISRs and mainasm.asm
vroncof2.asm Assembly routines for built in C–– functions and ISR vector table
rtc.rpj Project file generated by MSP50C6xx development tool
[modules] Directory for ISRs, general purpose files, and plugable modules
[general] Directory holding general-purpose files for initialization and 

mnemonics
init.asm Initializes the clock on startup
io_ports.irx Mnemonics for the io ports
[isr] Directory for ISRs
tim2_isr.asm Timer 2 interrupt service routine
[ram] Directory for top level ram allocation files
ram.h Holds the bogus array used by C––
ram.irx Top level memory allocation



C–– Efficiency

5-41Code Development Tools

Seven of the files are important to the functionality of this project. The Timer2
ISR (tim2_isr.asm) forms the basis for the RTC so it will be discussed first.

timer2_isr
mov *save_tim2_stat,STAT ;save status
mov *save_tim2_a0,a0 ;save a0
; timer fired so 1 second passed
; update the variable storing the seconds passed so far
mov a0, *seconds_passed
add a0, a0, 1
mov *seconds_passed, a0
mov a0,*save_tim2_a0 ;restore a0
mov STAT,*save_tim2_stat ;restore status
inte ;turn interrupts back on

iret

The Timer2 ISR is configured to fire at 1 second intervals. Each time the ISR
executes, it saves any registers that it will modify, increments the RAM location
seconds_passed, and restores the registers it modified.

The second important file is main_ram.irx. It is used to allocate RAM for
seconds_passed and for saving and restoring registers in the Timer2 ISR.

;****************************************************************
; MAIN_RAM.IRX
;
; Start of memory for MAIN module is defined in
; include ”..\ram\ram.irx”
;****************************************************************
; Timer 2 interrupt variables
save_tim2_stat equ RAMSTART_CUSTOMER + 2 * 1
save_tim2_a0 equ save_tim2_stat + 2 * 1
seconds_passed equ save_tim2_a0 + 2 * 1
RAMSTART_CMM1 equ seconds_passed
    include ”cmm1_ram.irx”
; End of RAM
RAMEND_CUSTOMER equ RAMEND_CMM1
RAMLENGTH_CUSTOMER equ  RAMEND_CUSTOMER – RAMSTART_CUSTOMER

Any additional ram that is used in an ISR or in mainasm.asm should be
allocated here. RAM is allocated by making a new label and setting it equal to
the previous label plus an offset. A variable called some_variable could be
allocated by changing

seconds_passed equ save_tim2_a0 + 2 * 1
RAMSTART_CMM1 equ seconds_passed

to
seconds_passed equ save_tim2_a0 + 2 * 1
some_variable equ seconds_passed + 2 * 1
RAMSTART_CMM1 equ some_variable

The next important file is vroncof2.asm. Most of this file is used to support
standard C functionality and will not need to be changed. The part that will



C–– Efficiency

 5-42

change is the table of interrupt vectors. At the top of the file is a list of interrupt
labels. The ones that are not used are commented out with a semicolon.

; external DAC_ISR
; external timer1_isr

external timer2_isr
; external pd2
; external pd3
; external portF
; external pd4
; external pd5

At the bottom of the file are a dummy interrupt routine and the interrupt vector table.

pd2
pd3
portF
pd4
pd5
DAC_ISR
timer1_isr
;timer2_isr

nop
INTE
iret
AORG 07F00h
DATA _EQ,_NE,_LT,_LE,_GE,_GT,_ULT,_ULE,_UGE,_UGT,_LNEG
DATA _EQS,_NES,_LTS,_LES,_GES,_GTS,_ULTS,_ULES,_UGES,_UGTS
DATA _DIV,_DIVU,_EXTB,_ASR
AORG 07FF0h
data DAC_ISR ; the DAC interrupt is used for synthesis
data timer1_isr ; this is the timer1 isr.
data timer2_isr ; this is the timer2 isr.
data pd2
data pd3
data portF
data pd4
data pd5
aorg 0x7ffe
data 0x1ffff ;ROM protection word (0x7ffe)
data init614 ;reset address (0x7fff)

Notice that timer2 was not commented out at the top of the file but it is
commented out in the dummy interrupt routine. External interrupt routines are
switched on by not commenting them at the external statement at the top of
the file and commenting them in the dummy interrupt routine. They are
switched off by commenting their external statement at the top and not
commenting the label in the dummy routine at the bottom. Note that this does
not enable or disable an interrupt, it just controls what is executed when it fires.
Interrupt routines will be enabled and disabled in the next file, but it is important
to provide a dummy routine for unused interrupts in case a programming error
causes them to be accidentally enabled.



C–– Efficiency

5-43Code Development Tools

Mainasm.asm contains the most complex assembly. It is responsible for
initializing assembly variables, enabling or disabling interrupts, and setting up
any timers or I/O ports. It also enables the interrupts. The part that is important
to the project, _goasm, is called at the beginning of the C–– main routine.

;****************************************************************
; Main program
;
; Set i/o for any peripherals (eg ADC chip, flash card or LCD)
; and initialize variables as necessary. All user code should
; start here.
;****************************************************************
; clear the seconds passed counter

zac a0
mov *seconds_passed,a0

; Set TIMER2 to run from the RTO/CTO (32 kHz) and with a 1000ms period. Set this
by
; loading TIM2 with (32768 x 1000/1000), minus 1.

in a0,IntGenCtrl
or a0,TIM2REFOSC ;set bit 9, CTO clock (32 kHz)
and a0,~TIM2ENABLE ;clear bit 11, TIM2 enable
out IntGenCtrl,a0
mov a0,32768 – 1 ;setup a 250ms period
out TIM2,a0 ;load TIM2 and PRD2 in one step
in a0,IntGenCtrl

or a0,TIM2IMR + TIM2ENABLE ;set bit 2 (TIM2 interrupt
    ;enable) and bit 11

out IntGenCtrl,a0
inte
ret

In this example, it clears seconds_passed, which was used in the first file
(timer2_isr.asm), sets up timer2 to run at a 1Hz interval, and enables the
interrupts.

The fifth important file is cmm1.asm. This file is responsible for supporting C––
to assembly function calls. It takes parameters passed on the stack, processes
them, and returns a 16-bit value in A0. In C–– the 16-bit return value is always
of type int.

;****************************************************************
; CMM1.ASM
;
; Revision 1.00
;****************************************************************

rorg 0x0
global _getSecondsPassed
include ”ram\ram.irx”

; retrieve the seconds that have passed, and reset the counter
_getSecondsPassed

rpt2–2 ; interrupt can still fire for 2 cycles
intd ; leaving these out can cause loss of a second
mov a0~, *seconds_passed
zac a0



C–– Efficiency

 5-44

mov *seconds_passed, a0
inte
mov a0, a0~
ret

The file only has one C–– callable function, getSecondsPassed. The function
reads the value in seconds_passed and returns it in A0. All C–– functions have
an underscore preceding their name in assembly. The underscore is ignored
when programming in C––. In C–– a call to this function would look like

int result = getSecondsPassed();

Notice that the underscore is not used here because C–– is being used instead
of assembly. getSecondsPassed() has very simple functionality, but it
illustrates several important points. First, interrupts are disabled with the intd
instruction. This is extremely important because it is not possible to read the
value in seconds_passed and clear it in an atomic operation. If the value is
read and the timer fires before it is cleared, one second will be lost. The next
important feature to note is the inclusion of rpt2–2 before the intd instruction.
Because of pipeline latency, interrupts can still fire for two clock cycles after
an intd instruction. The rpt temporarily disables interrupts and ensures that an
interrupt does not fire and execute an inte before the intd makes it through the
pipeline. Disabling interrupts ensures that the timer will not fire while the value
in seconds_passed is being read and altered.

The sixth file, cmm1_ram.asm, allocates memory for cmm1.asm.

;****************************************************************
; CMM1_RAM.IRX
;
; Start of memory for asmroutines module is defined in
; include ”..\ram\ram.irx”
;****************************************************************
; Variables
; End of memory
RAMEND_CMM1 equ RAMSTART_CMM1
RAMLENGTH_CMM1 equ RAMEND_CMM1 – RAMSTART_CMM1

In this project, cmm1.asm did not use any RAM, but it can be allocated just like
the RAM for the ISRs. For example, a variable named tempa could be
allocated as follows.

; Variables
tempa equ RAMSTART_CMM1 + 2 * 1
; End of memory
RAMEND_CMM1 equ tempa

The last file is the C–– program, main.cmm. This provides all of the top level
functionality for the project. Once all of the previous supporting files have been
written, writing the C–– program is very much like writing a regular C program.

/****************************************************************



C–– Efficiency

5-45Code Development Tools

; MAIN.CMM
; Revision 1.00
****************************************************************/
#include ”ram\ram.h”
cmm_func goasm(); // an pseudo main asm routine
cmm_func getSecondsPassed(); // Retrieves the counter maintained

   // by the Timer2 ISR and resets the
   // counter.

int days=0;
int hours=12;
int minutes=0;
int seconds=0;
int ampm=0;
/************************************************
/ Updates time variables for clock ticks that
/ have occured.
************************************************/
cmm_func updateTime(){

seconds=seconds+getSecondsPassed();
while(seconds>59){

seconds=seconds–60;
minutes++;
if(minutes>59){

minutes=0;
hours++;
if (hours == 12){

if(ampm==0){
ampm=1;

}
else{

ampm=0;
days++;

if(days>6){
days=0;

}//end days
}

}
if (hours>12){

hours=1;
}//end hours

}//end minutes
}//end seconds

}
cmm_func main()
{

goasm(); // run any assembly stuff that needs to be run
while(1){ // infinite loop

updateTime();
}

}

The include statement at the top of the program is for memory allocation
purposes. The C–– compiler is not aware that RAM has been allocated for
assembly and must be kept from overwriting it. This is done with an integer
array called bogus. The array is set to the size of the RAM allocated for



C–– Efficiency

 5-46

assembly divided by two because C–– integers are 16 bit. The perl script in
the main project directory can be used to resize bogus automatically or it can
be done manually. To use the perl script, build the project after making any
changes to assembly ram allocation. Run the perl script and then rebuild the
project. To manually adjust bogus, build the project and then examine the list
file mainasm.lst. Find RAMEND_ASM in the cross reference table and use it
to replace the value in the define statement in ram.h. Rebuild the project to put
the changes into effect. This only needs to be done when changes are made
to assembly RAM allocation. Changes to C–– or assembly code other than
RAM allocation do not require adjustments to bogus.

The next items in the program are function prototypes. All C–– functions have
a return type of int (16 bit) and are declared with the mnemonic cmm_func. The
first one is goasm(). Notice that there is no leading underscore because it is
being called from C–– instead of assembly. The second one is the function in
cmm1.asm for reading the value of seconds_passed.

Global variables are defined next. An integer is used to keep track of each
element of the time. Global variables can be initialized when they are declared.

The function updateTime() is used to update the time. It calls
getSecondsPassed() to determine the number of seconds that have passed
since the time has been updated. It then recalculates the time variables (hours,
minutes, etc.) updateTime() does not pass any values when it returns although
it is technically of type int, like all C–– functions.

The main() function is the starting point for user code. After the 6xx part has
been initialized main() is called from vroncof2.asm. The first call from main()
is to doasm() which is in mainasm.asm. This is the function that sets up the
timer and initializes seconds_passed. The program then goes into an infinite
loop where updateTime() is called. In later projects, this infinite loop will be
expanded to scan keys and write to the LCD.

Example 5–2. Second Project (C–– With Speech)

Adding speech to the first project increases functionality, but also increases
the complexity of the project.



C–– Efficiency

5-47Code Development Tools

� [Root]
� cmm1.asm
� cmm1_ram.irx
� flags.irx
� main.cmm
� main.irx
� main_ram.irx
� mainasm.asm
� vroncof2.asm
� rtc.rpj
� [dsp]

� [celp]
celp.irx
celp4.obj

� [common]
util.obj
util2.obj

� [general]
dsp_var.irx
dsputil.asm
getbits.asm
speak.asm
speak.irx
spk_ram.irx

� [melp]
melp.irx
melp.obj

� [modules]
� [general]

init.asm
io_ports.irx
sleep.asm

� [isr]
tim2_isr.asm
dac_isr.asm
tim1_isr.asm

� [speech]
� [celp]

ampm.qfm
days.qfm
ones.qfm
teens.qfm



C–– Efficiency

 5-48

tens.qfm
� [melp]

ampm.qfm
days.qfm
ones.qfm
teens.qfm
tens.qfm

� [ram]
ram.h
ram.irx

Descriptions of files that are also in Project 1 have been omitted.

[dsp] Directory holding files for speech synthesis.

[celp] Directory holding files for celp synthesis.
celp.irx Mnemonics used by celp.obj.
celp4.obj Celp synthesis routines.
[common] Directory holding utility routines.
util.obj Utilities used for synthesis.
util2.obj Utilities used for synthesis.
[general] Directory for non-coder-specific routines.
dsp_var.irx Constants used by the synthesis routines.
dsputil.asm Routines common to the synthesis algorithms.
getbits.asm Routines for requesting speech data.
speak.asm Routines for speaking a phrase.
speak.irx Combines irx files for each synthesis algorithm.
speak_ram.irx Allocates RAM for speech synthesis.
[melp] Directory holding files for melp synthesis.
melp.irx Mnemonics used by melp.obj.
melp.obj Melp synthesis routines.
sleep.asm Functions to enter sleep modes.
dac_isr.asm DAC interrupt service routine.
tim1_isr.asm Timer 1 interrupt service routine.
[speech] Directory holding speech data.
[celp] Directory holding CELP speech data.
[melp] Directory holding MELP speech data.
ampm.qfm Speech file of AM and PM .
days.qfm Speech file of Sun–Sat.
ones.qfm Speech file of 0–9.
teens.qfm Speech file of 10–19.
tens.qfm Speech file of 20, 30, 40, 50.

Five of the important files from the first project have been modified and there
are many new files.



C–– Efficiency

5-49Code Development Tools

In main_ram.irx, two variables were added to save and restore r3 and r5 when
speaking. These registers are used by C–– so it is a good idea to save and
restore them in case they are modified by the speech routines. This is a good
example of adding RAM for use by cmm1.asm.

;****************************************************************
; MAIN_RAM.IRX
;
; Start of memory for MAIN module is defined in
; include ”..\ram\ram.irx”
;****************************************************************
; Timer 2 interrupt variables
save_tim2_stat equ RAMSTART_CUSTOMER + 2 * 1
save_tim2_a0 equ save_tim2_stat + 2 * 1
seconds_passed equ save_tim2_a0 + 2 * 1
csave_r3 equ seconds_passed + 2 * 1
csave_r5 equ csave_r3 + 2 * 1
RAMSTART_CMM1 equ csave_r5
    include ”cmm1_ram.irx”
; End of RAM
RAMEND_CUSTOMER equ RAMEND_CMM1
RAMLENGTH_CUSTOMER equ  RAMEND_CUSTOMER – RAMSTART_CUSTOMER

The new variables, csave_r3 and csave_r5 were added by using the
mnemonic for the previous variable plus an offset.

The next modified file is vroncof2.asm. Here new interrupt service routines
were added. This project adds speech so the DAC_ISR needs to be added.
Timer 1 is also used for waking up from sleep routines so it was also added.
At the top of the file their labels were uncommented.

external DAC_ISR
external timer1_isr
external timer2_isr

; external pd2
; external pd3
; external portF
; external pd4
; external pd5

external init614
external _main0

At the bottom of the file, their labels were commented out of the dummy
interrupt routine.

pd2
pd3
portF
pd4
pd5
;DAC_ISR
;timer1_isr
;timer2_isr

nop



C–– Efficiency

 5-50

inte
iret

Cmm1.asm was modified to include routines for sleeping and speaking from
C––.

global _inportD
global _getSecondsPassed
global _sleepQuarterSec
global _speakDays
global _speakOnes
global _speakTens
global _speakTeens
global _speakAMPM

New C–– callable functions were declared global.
external sleep_light
external speak

Assembly routines that will be called are declared external.

include ”speech\celp\days.qfm”
include ”speech\celp\ones.qfm”
include ”speech\celp\teens.qfm”
include ”speech\celp\tens.qfm”
include ”speech\celp\ampm.qfm”

Include statements were used to add speech files for all of the phrases that the
clock will need to say.

_sleepQuarterSec
mov a0,8192 – 1 ;setup a 250ms period
out TIM1,a0 ;load TIM1 and PRD1
mov a0, TIM1IMR
call sleep_light
nop
ret

A routine was added to sleep for a quarter second using Timer 1 to wake up.
The program loads the period into the timer 1 period register, sets the wake-up
mask in a0, and calls sleep_light, which is in sleep.asm.

_speakDays
; back up important registers
mov *csave_r5, r5 ; protect r5
mov *csave_r3, r3 ; protect r3

   mov a0, *r7 – 2 ; synthesis table offset
add a0, _days_table
mov a0, *a0
ZAC A0~
CALL SPEAK
; restore important registers
mov r3, *csave_r3 ; restore r3
mov r5, *csave_r5 ; restore r5
ret

_days_table ; table for table lookup



C–– Efficiency

5-51Code Development Tools

DATA MON ;0
DATA TUE ;1
DATA WED ;2
DATA THU ;3
DATA FRI ;4
DATA SAT ;5
DATA SUN ;6

C–– callable speech routines, like the above for speaking days were added.
An integer phrase number is passed on the stack. The routines get this value
from the stack and do a table lookup to get the address of the correct phrase.
The address is loaded into a0 and a0~ is cleared to indicate that the speech
data is in internal ROM. Then speak, which is located in speak.asm, is called.

The final assembly file that was modified was mainasm.asm. The only change
was setting up Timer 1 and enabling the Timer 1 interrupt. The configuration
of Timer 1 is similar to the configuration of Timer 2.

The high level program, main.cmm, was then modified to utilize the new
functionality.

cmm_func main()
{

goasm(); // run any assembly stuff that needs to be run
while(1){ // infinite loop

if(!(inportD()&SW1)){
setTime();

}
if(!(inportD()&SW2)){

speakTime();
}
updateTime();

}
}

The main() routine now reads keys by calling the inportD() which was added
to cmm1.asm as _inportD. The value is compared against a constant to see
if a certain key was pressed and then the function for that key is called. Key
checking and updates to time are all done inside the infinite loop.

Speaking the time is very simple using the routines that were added to
cmm1.asm.

cmm_func speakHours(){
if( hours<10){ // 1–9

speakOnes(hours);
}
else{ // must be 10, 11, or 12

speakTeens(hours–10);
}

}

The appropriate speak function is called and the parameters are passed to it.
The program flow does not return to C–– until the speech file has finished



C–– Efficiency

 5-52

playing. In some cases speech files can be played to debounce keys. This is
why there is no delay in the main() function. Pressing SW2 calls a function, but
the switch will not be read again until the time has been spoken so there is no
need for a delay there.

Example 5–3. Third Project (C–– with an LCD)

The main difference between this project and the second project is the addition
of an LCD display. The variables storing the time were also changed to an
array of ints instead of separate int variables to demonstrate the use of C––
arrays. This is not the clearest or easiest way to keep track of the time. It was
added as an example of C–– arrays. Multidimensional arrays are not
supported in C––, but the same functionality can be achieved by multiplying
and adding the indices. For example, if an array is defined as:

int a [3*4]; // equivalent to int a [3][4] in C

Then the element at row x column y can be accessed by using index = rowNum
* row + column.

value = a[3*1+0]; // equivalent to value = a[1][0] in C

� [Root]
� cmm1.asm
� cmm1_ram.irx
� flags.irx
� main.cmm
� main.irx
� main_ram.irx
� mainasm.asm
� vroncof2.asm
� rtc.rpj
� [dsp]

� [celp]
celp.irx
celp4.obj

� [common]
util.obj
util2.obj

� [general]
dsp_var.irx
dsputil.asm
getbits.asm
speak.asm
speak.irx
spk_ram.irx

� [melp]



C–– Efficiency

5-53Code Development Tools

melp.irx
melp.obj

� [modules]
� [general]

init.asm
io_ports.irx
sleep.asm

� [isr]
tim2_isr.asm
dac_isr.asm
tim1_isr.asm

� [lcd]
lcd.asm
lcd.irx
lcd_ram.irx

� [speech]
� [celp]

ampm.qfm
days.qfm
ones.qfm
teens.qfm
tens.qfm

� [melp]
ampm.qfm
days.qfm
ones.qfm
teens.qfm
tens.qfm

� [ram]
ram.h
ram.irx



C–– Efficiency

 5-54

Descriptions of files that are also in Project 2 have been omitted.

[lcd] Directory holding files for writing to an LCD screen.
lcd.asm Routines for writing to an LCD screen.
lcd.irx Mnemonics used by lcd.asm.
lcd_ram.irx Allocates RAM for lcd.asm.

The only changes to the assembly are in mainasm.asm and in cmm1.asm. In
mainasm.asm, two calls are made to setup and initialize the lcd. To allow this,
the labels for the routines were declared external.

external lcd_setio
external lcd_init

In _goasm, they are then called to initialize the LCD before it is used.

; set up the LCD
call lcd_setio
call lcd_init

In cmm1.asm, simple routines for writing characters and numbers were
added, along with routines to bring the cursor to the beginning of the first and
second row.

_writeNum
mov a0, *r7 – 2
call lcd_wrbcd2
ret

_writeCharacter
mov a0, *r7 – 2
call lcdwchr
ret

_rowZero
call lcd_row0
ret

_rowOne
call lcd_row1
ret

_writeNum and _writeCharacter get a value to write from the stack and then
call routines in lcd.asm. _rowZero and _rowOne simply call routines in
lcd.asm.

main.cmm has been modified by the addition of a function, showTime().

/************************************************
/ Display the time on the LCD
************************************************/
cmm_func showTime(){

int temp;
rowZero();
writeNum(time[WIDTH*0+0]); //hours
writeCharacter(’:’);
writeNum(time[WIDTH*0+1]); //minutes



C–– Efficiency

5-55Code Development Tools

writeCharacter(’:’);
writeNum(time[WIDTH*0+2]); //seconds
writeCharacter(’ ’);
if(time[WIDTH*1+1]==0){ //ampm

writeCharacter(’A’);
}
else{

writeCharacter(’P’);
}
writeCharacter(’M’);
writeCharacter(’ ’);
switch(time[WIDTH*1+0]){ //days

case 0:
writeCharacter(’M’);
writeCharacter(’O’);
writeCharacter(’N’);
break;

case 1:
writeCharacter(’T’);
writeCharacter(’U’);
writeCharacter(’E’);
break;

case 2:
writeCharacter(’W’);
writeCharacter(’E’);
writeCharacter(’D’);
break;

case 3:
writeCharacter(’T’);
writeCharacter(’H’);
writeCharacter(’U’);
break;

case 4:
writeCharacter(’F’);
writeCharacter(’R’);
writeCharacter(’I’);
break;

case 5:
writeCharacter(’S’);
writeCharacter(’A’);
writeCharacter(’T’);
break;

case 6:
writeCharacter(’S’);
writeCharacter(’U’);
writeCharacter(’N’);
break;

}

switch(pendulum){
case 0:

writeCharacter(’ ’);
writeCharacter(’|’);
rowOne();
for(temp=0; temp<16; temp++) writeCharacter(’ ’);
writeCharacter(’o’);



C–– Efficiency

 5-56

writeCharacter(’ ’);
break;

case 1:
writeCharacter(’ ’);
writeCharacter(’(’);
rowOne();
for(temp=0; temp<17; temp++) writeCharacter(’ ’);
writeCharacter(’o’);
break;

case 2:
writeCharacter(’ ’);
writeCharacter(’|’);
rowOne();
for(temp=0; temp<16; temp++) writeCharacter(’ ’);
writeCharacter(’o’);
writeCharacter(’ ’);
break;

case 3:
writeCharacter(’ ’);
writeCharacter(’)’);
rowOne();
for(temp=0; temp<15; temp++) writeCharacter(’ ’);
writeCharacter(’o’);
writeCharacter(’ ’);
writeCharacter(’ ’);
break;

}
rowOne();

}

setTime() was also modified to place an indicator on the LCD below the value
that is being set. updateTime() was modified to call showTime() after the time
is updated.



Beware of Stack Corruption

5-57Code Development Tools

5.8 Beware of Stack Corruption

MSP50C614/MSP50P614 stack (pointed by R7 register) can easily get
corrupted if care is not taken. Notice the following table read code:

SUBB R7, 4

MOV A0, *R7––

ADD A0, address

MOV A0, *A0

ADD A0, *R7––

MOV A0, *A0

RET

This code will work perfectly well if no interrupts happen before SUBB and
MOV instruction. If interrupts do happen between SUBB and MOV
instructions, the parameter in the stack is corrupted by the return address
pushed by the hardware. This problem may not be easily observed in the
system level. But once it happens, it is very difficult to debug. Use the following
method to modify stack pointer instead:

MOV A0, *R7 + –2 * 2

ADD A0, address

MOV A0, *A0

ADD A0, *R7 + –2 * 1

MOV A0, *A0

RET

This method will not have the stack corruption problem since the MOV instruc-
tion performs the entire operation either before or after an interrupt.



Reported Bugs With Code Development Tool

 5-58

5.9 Reported Bugs With Code Development Tool

The following are reported bugs for code development tool version 2.39.

Breakpoint: Placement of hardware breakpoints is important for reliable
operation. Pipeline latency and sleep modes affect the scan logic and prevent
hardware breakpoints from working in the following cases. Placing a
breakpoint within two cycles of an IDLE instruction causes a breakpoint while
the part is still in a low power mode. This will cause the code development tool
to lose sync with the hardware. This is the same effect as trying to stop
execution from the tool while the part is in a low power mode. Hardware
breakpoints should not be placed within two cycles of a label accessed with
a CALL instruction or as an ISR. This results in unreliable performance of the
breakpoint. The breakpoint may not be triggered even though the code is
executed. Placing the breakpoint a few lines into the routine solves this issue.
Placing a hardware breakpoint within two cycles of a RET can be unreliable
also. In general it is best not to place hardware breakpoints at the very
beginning or end of subroutines or ISRs.

Hardware Presence: If the tool tries to communicate with the hardware and
the hardware is not connected or is powered down it will lose sync. It is
important to always keep the chip in the socket and powered unless the tool
is stopped. The tool also communicates with the hardware after linking and
when the tool is started.



6-1

Applications

This chapter contains application information on application circuits,
processor initialization sequence, resistor trim setting, synthesis code,
memory overlays, and ROM usage.

Topic Page

6.1 Application Circuits 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Initializing the MSP50C6xx 6–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 TI-TALKS Example Code 6–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 RAM Overlay 6–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 6



Application Circuits

 6-2

6.1 Application Circuits

Figure 6–1. Minimum Circuit Configuration for the C614/P614 Using a Resistor-Trimmed
Oscillator

To pin 2 of Scan Port Connector†

MSP50C614/
MSP50P614

To pin 1 of Scan Port Connector†

(optional )5 V

0.1 µF
(5)

RREFERENCE 470 kΩ
(1%)

3300 pF

OSCIN

OSCOUT

PLL

DACP

DACM

VPPVDD

1N914†

32 Ω

RESET

VSS

5

5

1 µF
20%

1 kΩ†

100 kΩ

5 V

1N914

Reset
Switch

† The diode across VDD and VPP may be omitted (shorted), if the application does not require use of the scan port interface.
The same applies for the 1-kΩ resistor which appears at the RESET pin; the resistor may be shorted if not using the scan
port. However, the footprint for the resistor is strongly recommended for any MSP50C614 production board. Refer to the
Important Note regarding Scan Port Bond Out appearing in Chapter 7.

(optional )

(MSP50P614 only)

Note, that there are five VDD pins and five VSS pins. Each of these should be
connected, with the separate decoupling capacitors (0.1 µF) included for each
VDD.



Application Circuits

6-3Applications

It is of particular importance to provide a separate decoupling capacitor for the
VDD, VSS pair which services the DAC. These pins are pad numbers 21 and
19, respectively. The relatively high current demands of the digital-to-analog
circuitry make this a requirement.

An alternate circuit, for better clock-precision and better battery life, includes
a crystal oscillator. See Figure 6–2.

Figure 6–2. Minimum Circuit Configuration for the C614/P614 Using a Crystal-Referenced
Oscillator

 
 
 
 

5 V

0.1 µF
(5)

3300 pF

OSCIN

OSCOUT

PLL

DACP

DACM

VPPVDD

1N914†

32 Ω

RESET

VSS

5

5

1 µF
(20%)

1 kΩ†

100 kΩ

5 V

1N914

Reset
Switch

To pin 2 of Scan Port Connector†

To pin 1 of Scan Port Connector†

(optional )

22 pF

22 pF

32 kHz 10 MΩ

10 MΩ

MSP50C614/
MSP50P614

(optional )

(MSP50P614 only)

† The diode across VDD and VPP may be omitted (shorted), if the application does not require use of the scan port
interface. The same applies for the 1-kΩ resistor which appears at the RESET pin; the resistor may be shorted
if not using the scan port. However, the footprint for the resistor is strongly recommended for any MSP50C614
production board. Refer to the Important Note regarding Scan Port Bond Out appearing in Chapter 7.



Initializing the MSP50C6xx

 6-4

In any MSP50C614 application, it is important for certain components to be
located as close as possible to the MSP50C614 die or package. These include
any of the decoupling capacitors at VDD (0.1 µF). It also includes all of the
components in the crystal-reference network between OSCIN and OSCOUT
(22 pF, 10 MΩ, 32 kHz).

6.2 Initializing the MSP50C6xx

The initialization code for the MSP50C6xx is in the file INIT.ASM, in the
MODULES\GENERAL directory of the TI-TALKS code (see the following
information).

The initialization routine does the following:

� Clears the status registers
� Clears all 32 accumulators
� Clears all 640 words of RAM
� Clears all system registers
� Sets the clock to run at 8.192 MHz. If CRO_FLAG is 1, the crystal oscillator

is used. Otherwise, If CRO_FLAG is 0, the resistor-trimmed oscillator is
used.

� Enables port F pullups
� Sets the DAC to 10 bits and turns it on
� Jumps to the label_main in MAIN.ASM

Note:

Care must be taken when branching to the init code to perform a software
reset on parts using resistor trim. The resistor trim is set based on the value
of fuses blown by the tester when the parts are manufactured. The P part
does not have these fuses so initially the value at that location is zero. If the
init routine encounters a zero it knows that it is running on a P part and sets
the resistor trim to a constant value, RESISTORTRIM. This will always work
properly after a hardware reset because all IO port locations are set to zero.
If the programmer branches to the init code to perform a software reset, the
value at 0x2F may not necessarily be zero. The IO addresses are not fully
decoded on the P part, so writing to 0x2C ( port G) also writes to 0x2D, 0x2E,
and 0x2F. This means that the value may not be zero during a software reset.
If this occurs, the init code will misidentify the P part as a C part and will use
the value at 0x2C as the trim. This may cause the P part to run at the wrong
speed. It is important to consider this if the init code is used as a software
reset. The C part has fuses at location 0x2C and fully decoded IO port ad-
dresses so this problem will not occur on masked parts.



Initializing the MSP50C6xx

6-5Applications

6.2.1 File init.asm
;****************************************************************
; INIT.ASM
;
; Revision 1.04
;
; Modified from revision 1.03: if not CRO, we check port 0x2F
;                              to distinguish between P and 
;                              C parts.
;
; Turn off TIMER 2 rather than leave it running.
;
; Modified to cope with 6 bit trim value.  Top 5 bits go to bits
; 15–11 in ClkSpdCtrl, LSB of trim goes to bit 9 in ClkSpdCtrl.
;
; A fairly basic but compact initialization routine for the 614.
; This sets the 614 to run at 8 MHz, 10 bit DAC at 8 kHz.
;
; Geoff Martindale, BP
; May 2000
;****************************************************************

;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!!!!!!!!!!!!    WARNING    !!!!!!!!!!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
;! FOR RESISTOR TRIM USERS:
;! DO NOT WRITE TO PORT G PRIOR TO READING THE RTRIM VALUE!
;! THIS PRESERVES THE ZERO VALUE AT PORT 0x2F WHEN READING THE
;! TRIM VALUE (should be zero if P part, should be non–zero if
;! C part).
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!!!!!!!!!!!!    WARNING    !!!!!!!!!!!!!!!!!!!!!!!!!!!
;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

;****************************************************************
; Start off by clearing all the RAM (and tags) and then zero
; every register.  The status register (STAT) must be cleared
; immediately upon power up.
;****************************************************************
init614

zac a0 ;clear a0
mov *0x001,a0 ;clear second RAM location, leave first for C––
mov STAT,*0x001 ;clear status register

mov STR,32–2 ;set string register to loop 32 times
zacs a0 ;clear all accumulators

out IFR,a0 ;clear pending interrupts 
out IntGenCtrl,a0 ;clear all interrupt mask bits, disable timers

mov r0,0x000 ;point to beginning of RAM
mov r4,RAM_SIZE – 2 ;do a loop RAM_SIZE times

BEGLOOP
rtag *r0 ;reset tag
mov *r0++,a0 ;clear the RAM
ENDLOOP

mov STR,0 ;clear string register



Initializing the MSP50C6xx

 6-6

mov ap0,0 ;clear accum pointer 0
mov ap1,0 ;clear accum pointer 1
mov ap2,0 ;clear accum pointer 2
mov ap3,0 ;clear accum pointer 3

mov r0,0 ;clear register 0
mov r1,0 ;clear register 1
mov r2,0 ;clear register 2
mov r3,0 ;clear register 3
mov r4,0 ;clear register 4
mov r5,0 ;clear register 5
mov r6,0 ;clear register 6
mov r7,0 ;clear register 7

mov sv,0 ;clear shift value register

mov TOS,*0x000 ;clear top of stack register
mov PH,*0x000 ;clear product high register
mov MR,*0x000 ;clear multiplier register

;****************************************************************
; Choose the source for the reference oscillator.  Set the PLLM
; register accordingly (in this case for a CPU clock of 8 MHz)
; and then set TIMER 2 to a 200 ms period.
; Go to sleep (do an IDLE) and wake up when the clock has
; reached full speed and is stable.
;****************************************************************
#if CRO_FLAG

mov a0,CROENABLE ;enable crystal oscillator
#else                                           ;Use BIST to determine P or C part
  ;––––– BOB 5/00 –––––
        IN      A0,0x2F                         ;On uninitialized P parts, port
0x2F is zero

andb a0,0xff ;only want lower 8 bits
        JNZ     ITS_A_C_PART

ITS_A_P_PART
mov A0,RESISTORTRIM ;for P614 the user supplies the trim value

        jmp     setup_trim                      ;Now set up the trim in ClkSpdCtrl

ITS_A_C_PART
        in      A0,RTRIM                        ;for C614 read trim value from
register
  ;––––– BOB 5/00 –––––

setup_trim
and a0,0x3f ;only want lower 6 bits
mov a0~,a0 ;save a copy for later
mov sv,10 ;need to shift left by 10
shltpl a0,a0 ;bit 1 is now bit 11, bit 0 now bit 10
or a0,RTOENABLE ;enable resistor–trimmed oscillator
and a0,~IDLEBIT ;clear bit 10

; GJM  1.10.99
; 6 bit trim resides in bits 15–11 and bit 9 (LSB of trim value)

and a0~,a0~,0x01 ;look at bit 0 of trim value
jz trimbit0 ;do nothing if it is zero
or a0,0x0200 ;else set bit 9

trimbit0
#endif



Initializing the MSP50C6xx

6-7Applications

orb a0,0x7c ;set PLLM for CPU clock of 8 MHz

mov *save_clkspdctrl,a0 ;save the ClkSpdCtrl value for later, when
;waking up from mid or deep sleep

mov a0~,TIM2REFOSC + TIM2IMR ;disable TIMER 2
out IntGenCtrl,a0~
mov a0~,6553 ;setup a 200 ms period
out TIM2,a0~ ;load TIM2 and PRD2 in one fell swoop
mov a0~,TIM2ENABLE + TIM2REFOSC + TIM2IMR
out IntGenCtrl,a0~ ;use 32 kHz crystal as source, wake up from TIM2

out ClkSpdCtrl,a0 ;set clock to full speed!

idle ;go to sleep...

nop ;wake up 200 ms later, clock running at full speed
nop
nop

;****************************************************************
; Upon reset all ports are set to input and port G output is set
; low (0x0000).  Therefore it remains only to enable the pullups
; on port F.
;****************************************************************

in a0,IntGenCtrl
or a0,PFPULLUPS ;enable port F pullups
and a0,~TIM2IMR ;turn off TIMER 2 interrupt
and a0,~TIM2ENABLE ;turn off TIMER 2 ––– added 28.11.99
out IntGenCtrl,a0

;****************************************************************
; Set the DAC to 10 bits, C3x style.  For C5x style set bit 3
; high.
;****************************************************************

movb a0,0x02 ;choose 10 bit DAC, C3x style
orb a0,DACON ;enable DAC
out DACCTRL,a0 ;switch DAC on

;****************************************************************
; Initialization complete.  Now tidy up and branch to the main
; user code.
;****************************************************************

zac a0 ;tidy up
zac a0~

jmp _main ;jump to the main program



TI-TALKS Example Code

 6-8

6.3 TI-TALKS Example Code

The TI-TALKS code contains the four vocoders (MELP, CELP, ADPCM, and
LPC) and demonstrates how to use the interrupts to scan the keys and flash
the LEDs. An LCD driver module is also included.

TI-TALKS should be used as a starting point for code development. Updates
to the vocoders and other modules are sent out by Texas Instruments as
necessary.

Please contact the TI speech applications group (email:
Speak2Me@list.ti.com) for the latest version of the TI-TALKS example code.

Getting Started

Connect the MSP scan port (the small grey metal box) to the PC and to the
speech development board. Ensure that the scan port and the development
board are powered on (the red LED and the green LED on the scan port are
both illuminated) before attempting to start the code development tool.

Click on Start, go to Programs – EMUC6xx and click on MSP50C6xx Code
Development icon. To open a project click on Project – New Project and select
the desired project file. e.g.,
          C:\614\PROJECTS\TI–TALKS604\TI60OBJ.RPJ.

Note that this is an example for TI-TALKS code version 604. The file extension
for the project file is RPJ.

Click on Project – Build  to assemble and link the constituent files of the project.
Then click Debug – Eprom Programming and select Blank Check + Program
to burn the code onto a P614 device. Alternatively, press F3 then Enter.

Set the breakpoint at the _main label. To do this click on the blue magnifying
glass icon at the top of the screen, then from the Symbol list choose _main.
Click OK and the Program Window will display the label and the surrounding
code. The line of code at _main – MOV R7,STACK – is highlighted in cyan.
Set the breakpoint by moving the mouse to this line, holding the SHIFT key and
clicking the right mouse button.

Click on Init – Init All to reset the P614. All the values in the RAM window should
turn blue and should be zero (0000).

To run the program, click on the yellow lightning/black centipede (Run Internal)
icon at the end of the tool bar. The program should halt at the _main label. All
the values in the CPU window should be blue and zero apart from PC, STAT,
DP, RZF and ZF.

To continue, click on the Run Internal icon again. A bugle call is synthesized
in CELP and then the program loops round continuously.



RAM Overlay

6-9Applications

Creating a New Project

The easiest way to create a new project is to copy the entire TI–TALKS604
directory into another directory and renaming the project file as desired. It is
not necessary to change the paths of the files in the project – this will be done
automatically by the code development tool. Note that TI-TALKS604 indicates
version 604 of TI-TALKS code.

6.4 RAM Overlay

The RAM map for the MSP50C6xx family is quite complex. Here the method
of overlaying the RAM is explained, together with examples of how to add
variables for customer code.

6.4.1 RAM Usage

Information about the RAM overlay is contained in the following three include
files (.IRX).

� MAIN_RAM.IRX
� RAM.IRX
� SPK_RAM.IRX

MAIN_RAM.IRX contains definitions for customer RAM. Variable and RAM for
other modules (in the form of RAM.IRX files – see below) should be added
here.

RAM.IRX contains definitions for the RAM used by the coders (MELP, CELP,
LPC, and ADPCM). The only constants which should be changed by the user
are STACK and RAMEND_DSP. The former defines the size of the stack,
which is 20 words by default. The latter defines the amount of RAM consumed
by the largest coder in use, and hence defines the location of the beginning
of customer RAM. For example, if a program uses both the MELP and CELP
coders, then RAMEND_DSP must be equal to RAMEND_MELP. If CELP and
ADPCM are being used, the RAMEND_DSP must be set to RAMEND_CELP.

SPK_RAM.IRX contains definitions for the RAM used by the coders. Three of
these variable, TEMP1, TEMP2, and TEMP3 may be used as general purpose
temporary variables. SPK_RAM.IRX should never be edited or modified in
anyway.



RAM Overlay

 6-10

6.4.2 RAM Overlay

RAM is reserved for variables in the following way. The start address of the
variable is equal to the address of the previous variable, plus the size of that
variable. The size of VAR1 thus depends on the start address of the next
variable. In the example below, dac_buffer starts 2 bytes (one word) after
current_buffer. This means that current_buffer must be one word long. The
variable after dac_buffer, save_dac_r0, starts 2 bytes (one word) after
dac_buffer. Therefore, dac_buffer is one word long. Similarly, save_dac_stat
starts 10 bytes (5 words) after save_dac_regs, therefore, save_dac_regs is a
variable five words long.

dac_buffer equ current_buffer + 2 * 1 ;RESW 1

save_dac_r0 equ dac_buffer + 2 * 1 ;RESW 1

save_dac_regsequ save_dac_r0 + 2 * 1 ;RESW 5

save_dac_statequ save_dac_regs + 2 * 5 ;RESW 1

The above method should be used to declare all customer variables. This is
illustrated in the next section.

6.4.3 Adding Customer Variables

New variables should either be added directly to MAIN_RAM.IRX or should be
included as a module RAM.IRX file. To add a variable new_var, size one word,
would require adding the variable itself and modifying the
RAMEND_CUSTOMER constant. The original MAIN_RAM.IRX file is shown
below.

;****************************************************************
; MAIN_RAM.IRX
;
; Start of memory for MAIN module is defined in
;             include”..\ram\ram.irx”
;****************************************************************

; General purpose variables

ledpattern equ RAMSTART_CUSTOMER + 2 * 1
keypress equ ledpattern + 2 * 1
tabadr equ leypress + 2 * 1

; Time 1 interrupt variables

save_tim1_stat equ save_tim1_a0a + 2 * 1
save_tim2_a0 equ save_tim2_stat + 2 * 1
save_tim2_a0a equ save_tim2_a0 + 2 * 1

; Time 2 interrupt variables



RAM Overlay

6-11Applications

save_tim2_stat equ save_tim1_a0a + 2 * 1
save_tim2_a0 equ save_tim2_stat + 2 * 1
save_tim2_a0a equ save_tim2_a0 + 2 * 1

;End of RAM

RAMEND_CUSTOMER equ save_tim2_a0a
RAMLENGTH_CUSTOMER equ RAMEND_CUSTOMER –
RAMSTART_CUSTOMER

After adding new_var the MAIN_RAM.IRX file would look like this:

;****************************************************************
; MAIN_RAM.IRX
;
; Start of memory for MAIN module is defined in
;             include”..\ram\ram.irx”
;****************************************************************

; General purpose variables

ledpattern equ RAMSTART_CUSTOMER + 2 * 1
keypress equ ledpattern + 2 * 1
tabadr equ leypress + 2 * 1

; Time 1 interrupt variables

save_tim1_stat equ save_tim1_a0a + 2 * 1
save_tim2_a0 equ save_tim2_stat + 2 * 1
save_tim2_a0a equ save_tim2_a0 + 2 * 1

; Time 2 interrupt variables

save_tim2_stat equ save_tim1_a0a + 2 * 1
save_tim2_a0 equ save_tim2_stat + 2 * 1
save_tim2_a0a equ save_tim2_a0 + 2 * 1

; End of RAM

RAMEND_CUSTOMER equ new_var
RAMLENGTH_CUSTOMER equ RAMEND_CUSTOMER –
RAMSTART_CUSTOMER

6.4.4 Common Problems

Since the location and size of a variable depends on a previously declared
variable, it is possible to misspell a variable and end up with one or more
variables starting at the wrong address. Therefore, it is worthwhile checking
the MAIN.LST file and searching for RAMSTART_CUSTOMER, to ensure that
all the customer variables are at the proper address.

Also, when modifying MAIN_RAM.IRX or any of the module RAM.IRX files, it
is a good idea to build the project, rather than doing a make.



 

 6-12



7-1

Customer Information

Customer information regarding package configurations, development cycle,
and ordering forms are included in this chapter.

Topic Page

7.1 Mechanical Information 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 Customer Information Fields in the ROM 7–11. . . . . . . . . . . . . . . . . . . . . . . 

7.3 Speech Development Cycle 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4 Device Production Sequence 7–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5 Ordering Information 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6 New Product Release Forms 7–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7



Mechanical Information

 7-2

7.1 Mechanical Information

The MSP50C614, MSP50C605, and the MSP50C601 are normally sold in die
form, but are also available in a 100-pin QFP package. The MSP50C604 is a
available in die form and in a 64-pin QFP package. The MSP50P614 is
available in a 120-pin, PGA-windowed ceramic package.

NOTE: Scan Port Bond Out

The scan port interface on the MSP50C6xx devices has five dedicated pins
and one shared pin that need to be used by the MSP50Cxx code
development tools. The SCANIN, SCANOUT, SCANCLK, SYNC, and TEST
pins are dedicated to the scan port interface. The RESET pin is shared with
the application. These pins may play an important role in debugging any
system problems. For this reason, these pins must be bonded out on any
MSP50C614 production board. Furthermore, it is recommended that these
pins be connected to test points, so the development tool can be connected.
Since the development tool requires VDD and VSS, test points connected to
these signals are also needed.

The application circuits appearing in section 6.1 show the minimum
recommended configuration for any MSP50C614 application board. For
production purposes, the 1-kΩ resistor which appears at the RESET pin is
optional. It is required for use with the scan port interface, but they may be
shorted otherwise. The footprints for this resistor are strongly recommended.

7.1.1 Die Bond-Out Coordinates

Die bond-out coordinates are available upon request from Texas Instruments
(email: speak2me@list.ti.com).

7.1.2 Package Information

The MSP50C614, MSP50C605, and the MSP50C601 are available in the
100-pin QFP package. See Figure 7–1 and Tables 7–1 thru 7–3. The
MSP50C604 is a available the 64-pin QFP package. See Figure 7–2 and
Table 7–4. For more detailed information, please refer to the device
datasheets available on the TI speech web site (http://www.ti.com/sc/speech).



Mechanical Information

7-3Customer Information

Table 7–1. Signal and Pad Descriptions for the MSP50C614

SIGNAL PIN NUMBER PAD NUMBER I/O DESCRIPTION

Input/Output Ports

PA0 – PA7 66 – 59 75 – 68 I/O Port A general-purpose I/O (1 Byte)

PB0 – PB7 76 – 69 85 – 78 I/O Port B general-purpose I/O (1 Byte)

PC0 – PC7 90 – 83 8 – 1 I/O Port C general-purpose I/O (1 Byte)

PD0 – PD7 100 – 93 18 – 11 I/O Port D general-purpose I/O (1 Byte)

PE0 – PE7 51 – 44 63 – 56 I/O Port E general-purpose I/O (1 Byte)

PF0 – PF7 16 – 9 31 – 24 I Port F dedicated input (1 Byte)

PG0 – PG7 37 – 30 49 – 42 O Port G dedicated output (1 Byte)

PG8 – PG15 25 – 18 39 – 32 O Port G dedicated output (1 Byte)

Pins PD4 and PD5 may be dedicated to the comparator function, if the comparator enable bit is set.
Refer to Section 3.3, Comparator, for details.

Scan Port Control Signals

SCANIN 42 54 I Scan port data input

SCANOUT 38 50 O Scan port data output

SCANCLK 41 53 I Scan port clock

SYNC 40 52 I Scan port synchronization

TEST 39 51 I MSP50C6xx: test modes

The scan port pins must be bonded out on any MSP50C6xx production board.
Consult the “Important Note regarding Scan Port Bond Out”.

Reference Oscillator Signals

OSCOUT 56 65 O Resistor/crystal reference out

OSCIN 57 66 I Resistor/crystal reference in

PLL 58 67 O Phase-lock-loop filter

Digital-to-Analog Sound Outputs

DACP 7 22 O Digital-to-analog plus output (+)

DACM 5 20 O Digital-to-analog minus output (–)

Initialization

RESET 43 55 I Initialization

Power Signals

VSS 1†, 26, 52, 67, 91 9, 19†, 40, 64, 76 Ground

VDD 6†, 8, 27, 68, 92 10, 21†, 23, 41, 77 Processor power (+)

† The VSS and VDD connections service the DAC circuitry. Their pins tend to sustain a higher current draw. A dedicated decoupling
capacitor across these pins is therefore required.



Mechanical Information

 7-4

Table 7–2. Signal and Pad Descriptions for the MSP50C605

SIGNAL PIN NUMBER PAD NUMBER I/O DESCRIPTION

Input/Output Ports

PC0 – PC7 89 – 82 8 – 1 I/O Port C general-purpose I/O (1 Byte)

PD0 – PD7 99 – 92 18 – 11 I/O Port D general-purpose I/O (1 Byte)

PE0 – PE7 46 – 39 48 – 41 I/O Port E general-purpose I/O (1 Byte)

PF0 – PF7 16 – 9 31 – 24 I Port F dedicated input (1 Byte)

Pins PD4 and PD5 may be dedicated to the comparator function, if the comparator enable bit is set.
Refer to Section 3.3, Comparator, for details.

Scan Port Control Signals

SCANIN 37 39 I Scan port data input

SCANOUT 33 35 O Scan port data output

SCANCLK 36 38 I Scan port clock

SYNC 35 37 I Scan port synchronization

TEST 34 36 I C605: test modes

The scan port pins must be bonded out on any MSP50C605 production board.
Consult the “Important Note regarding Scan Port Bond Out”.

Reference Oscillator Signals

OSCOUT 49 51 O Resistor/crystal reference out

OSCIN 48 50 I Resistor/crystal reference in

PLL 47 49 O Phase-lock-loop filter

Digital-to-Analog Sound Outputs

DACP 7 22 O Digital-to-analog plus output (+)

DACM 5 20 O Digital-to-analog minus output (–)

Initialization

RESET 38 40 I Initialization

Power Signals

VSS 17, 50, 90, 100† 32, 52, 9, 19† Ground

VDD 6†, 8, 31, 32, 91 21†, 23, 33, 34, 10 Processor power (+)
† The VSS and VDD connections service the DAC circuitry. Their pins tend to sustain a higher current draw. A dedicated decoupling

capacitor across these pins is therefore required.



Mechanical Information

7-5Customer Information

Table 7–3. Signal and Pad Descriptions for the MSP50C601

SIGNAL PIN NUMBER PAD NUMBER I/O DESCRIPTION

Input/Output Ports

PC0 – PC7 89 – 82 8 – 1 I/O Port C general-purpose I/O (1 Byte)

PD0 – PD7 99 – 92 18 – 11 I/O Port D general-purpose I/O (1 Byte)

PE0 – PE7 46 – 39 48 – 41 I/O Port E general-purpose I/O (1 Byte)

PF0 – PF7 16 – 9 31 – 24 I Port F dedicated input (1 Byte)

Pins PD4 and PD5 may be dedicated to the comparator function, if the comparator enable bit is set.
Refer to Section 3.3, Comparator, for details.

Scan Port Control Signals

SCANIN 37 39 I Scan port data input

SCANOUT 33 35 O Scan port data output

SCANCLK 36 38 I Scan port clock

SYNC 35 37 I Scan port synchronization

TEST 34 36 I C605: test modes

The scan port pins must be bonded out on any MSP50C601 production board.
Consult the “Important Note regarding Scan Port Bond Out”.

Reference Oscillator Signals

OSCOUT 49 51 O Resistor/crystal reference out

OSCIN 48 50 I Resistor/crystal reference in

PLL 47 49 O Phase-lock-loop filter

Digital-to-Analog Sound Outputs

DACP 7 22 O Digital-to-analog plus output (+)

DACM 5 20 O Digital-to-analog minus output (–)

Initialization

RESET 38 40 I Initialization

Power Signals

VSS 17, 50, 90, 100† 32, 52, 9, 19† Ground

VDD 6†, 8, 31, 32, 91 21†, 23, 33, 34, 10 Processor power (+)
† The VSS and VDD connections service the DAC circuitry. Their pins tend to sustain a higher current draw. A dedicated decoupling

capacitor across these pins is therefore required.



Mechanical Information

 7-6

Table 7–4. Signal and Pad Descriptions for the MSP50C604

SIGNAL PIN NUMBER PAD NUMBER I/O DESCRIPTION

Input/Output Ports

PC0 – PC7 89 – 82 8 – 1 I/O Port C general-purpose I/O (1 Byte)

PD0 – PD7 99 – 92 18 – 11 I/O Port D general-purpose I/O (1 Byte)

PE0 – PE7 46 – 39 48 – 41 I/O Port E general-purpose I/O (1 Byte)

PF0 – PF7 16 – 9 31 – 24 I Port F dedicated input (1 Byte)

Pins PD4 and PD5 may be dedicated to the comparator function, if the comparator enable bit is set.
Refer to Section 3.3, Comparator, for details.

Scan Port Control Signals

SCANIN 37 39 I Scan port data input

SCANOUT 33 35 O Scan port data output

SCANCLK 36 38 I Scan port clock

SYNC 35 37 I Scan port synchronization

TEST 34 36 I C605: test modes

The scan port pins must be bonded out on any MSP50C604 production board.
Consult the “Important Note regarding Scan Port Bond Out”.

Reference Oscillator Signals

OSCOUT 49 51 O Resistor/crystal reference out

OSCIN 48 50 I Resistor/crystal reference in

PLL 47 49 O Phase-lock-loop filter

Digital-to-Analog Sound Outputs

DACP 7 22 O Digital-to-analog plus output (+)

DACM 5 20 O Digital-to-analog minus output (–)

Initialization

RESET 38 40 I Initialization

Power Signals

VSS 17, 50, 90, 100† 32, 52, 9, 19† Ground

VDD 6†, 8, 31, 32, 91 21†, 23, 33, 34, 10 Processor power (+)
† The VSS and VDD connections service the DAC circuitry. Their pins tend to sustain a higher current draw. A dedicated decoupling

capacitor across these pins is therefore required.



Mechanical Information

7-7Customer Information

Figure 7–1. 100-Pin QFP Mechanical Information

4040022/B 03/95

0,16 NOM

14,20 17,45
13,80 16,95

50

51

31

30

12,35 TYP

1,03
0,73

0,25

Seating Plane

0,25 MIN

Gage Plane

0,38
0,22

80

1

81

100

22,95
23,45

20,20
19,80

2,50
2,90

3,40 MAX

18,85 TYP

0°–7°

M0,130,65

0,10

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-022



Mechanical Information

 7-8

Figure 7–2. 64-Pin QFP Mechanical Information

4040152/C 11/96

32

17
0,13 NOM

0,25

0,45
0,75

Seating Plane

0,05 MIN

Gage Plane

0,27

33

16

48

1

0,17

49

64

SQ

SQ
10,20

11,80
12,20

9,80

7,50 TYP

1,60 MAX

1,45
1,35

0,08

0,50 M0,08

0°–7°

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
D. May also be thermally enhanced plastic with leads connected to the die pads.



Mechanical Information

7-9Customer Information

The MSP50C614 is available in a windowed-ceramic, 120-pin, grid array
(PGA) packaged for use in software development and prototyping. This PGA
package is shown in Figure 7–3.

Figure 7–3. 120-Pin, Grid Array Package for the Development Device, MSP50P614

extra pin

1 2 3 4 5 6 7 8 9

N
M
L
K
J
H
G
F
E
D
C
B
A

10 9 8 7 6 5 4 3 2 1

N
M
L
K
J
H
G
F
E
D
C
B
A

(BOTTOM VIEW)(TOP VIEW)

111213 1112 1310

Note:

The PGA package is only available in limited quantities for development
purposes.

The pin assignments for the 120-pin PGA are outlined in Figure 7–4.



Mechanical Information

 7-10

Figure 7–4. Bottom View of 120-Pin PGA Package of the MSP50P614

N nc nc †VDD PF7 PF5 PF2 VPP PG15 PG12 PG10 VSS VDD nc

M nc nc DAC
M

DACP PF6 PF3 PF1 PG14 PG11 PG8 nc nc PG7

L PD0 nc nc †VSS VDD PF4 PF0 PG13 PG9 nc nc PG5 PG4

K PD3 PD1 nc PG6 PG3 PG1

J PD5 PD4 PD2 PG2 PG0 scanout

H VDD PD7 PD6

(b tt i )

pgmpuls SYNC scanclk

G VSS PC1 PC0 (bottom view) RESET scanin PE7

F PC2 PC3 PC4 PE4 PE5 PE6

E PC5 PC6 nc PE0 PE2 PE3

D PC7 nc nc extra nc VSS PE1

C nc nc nc nc PB1 PB5 VSS PA3 PA7 nc nc nc nc

B nc nc nc PB0 PB3 PB6 PA0 PA2 PA5 PLL OSCOUT nc nc

A nc nc nc PB2 PB4 PB7 VDD PA1 PA4 PA6 OSCIN nc nc

1 2 3 4 5 6 7 8 9 10 11 12 13

† It is important to provide a separate decoupling capacitor for the VDD, VSS pair which services the DAC. These pins are PGA
numbers N3 and L4, respectively. The relatively high current demands of the digital-to-analog circuitry make this a requirement.
Refer to section 6.1 for details.



Customer Information Fields in the ROM

7-11Customer Information

7.2 Customer Information Fields in the ROM

Customer code information is inserted in the ROM by Texas Instruments. This
information appears as seven distinct fields within the ROM test-area. The
ROM test-area extends from address 0x0000 to 0x07FF. The code-release
information is stored in locations 0x0006 through 0x000C. Assuming these
addresses are not specifically read-protected by the ROM security, they are
read-accessible to the programmer. The fields appear as follows:

MSP50C614 EPROM Test-Area
Customer Information Fields (16-bit wide, the 17th bit is ignored)

Address Field Description Example Value

0x0006 Device number 0x0614 (for MSP50C614)

0x0007 Mask number (assigned by TI) 0x0005

0x0008 Reserved

0x0009 Customer code version number 0x0001

0x000A Customer code revision number 0x0005 (e.g., version 1.5)

0x000B Year mask generated 0x1999

0x000C Data mask generated (mm/dd) 0x0816 (e.g., 8/16/1999)



Speech Development Cycle

 7-12

7.3 Speech Development Cycle

A sample speech development cycle is shown in Figure 7–5. Some of the
components, such as speech recording, speech analysis, speech editing, and
speech evaluation, require different hardware and software. TI provides a
speech development tool, called the SDS6000, which allows the user to
perform speech analysis using various algorithms, speech editing for certain
algorithms, and to evaluate synthesis results through playback of encoded
speech. Design of the software and hardware, development of software, and
prototype construction are all customer-dependent aspects of the speech
development cycle.

Figure 7–5. Speech Development Cycle

Speech Specification

Speaker Selection
Recording Script

Preparation
Software Design Hardware Design

Software Writing Prototype Construction

Software Debugging

System Evaluation

Speech Recording

Speech Analysis

Speech Editing

Speech Evaluation

7.4 Device Production Sequence

For the speech development group at TI to accept a custom device program,
the customer must submit a new product release form (NPRF). This form
describes the custom features of the device (e.g., customer information,
prototype and production qualities, symbolization, etc.). Section 1 is
completed by the customer and Section 2B is completed by the customer for
package sales. Section 2A is completed by TI personnel. A copy of the NPRF
can be found in section 7.6. Copies can be downloaded at
www.ti.com/sc/speech.



Device Production Sequence

7-13Customer Information

TI generates the prototype photomask, then processes, manufactures, and
tests prototype devices for shipment to the customer. The number of
prototypes is 25, for package sales and 200 for die sales, plus additional units
if requested.

All prototype devices are shipped with the following disclaimer: It is understood
that, for expediency purposes, the initial 25 prototype devices (and any
additional prototype devices purchased) were assembled on a prototype (i.e.,
not production-qualified) manufacturing line, whose reliability has not been
characterized. Therefore, the anticipated inherent reliability of these devices
cannot be expressly defined.

The customer verifies the operation and quality of the prototypes and
responds with either written customer prototype approval or disapproval. A
nonrecurring mask charge that includes the 25 prototype devices is incurred
by the customer. A minimum purchase is required during the first year of
production.

†Customer Sends Code (in
QBN or TITAG format) and
completes Section 1 of the

NPRF

‡TI completes Section 2A
of NPRF and sends verifi-
cation code (in QBN for-

mat) with BIST included &
NPRF form to customer

Customer verifies
code is correct.

Customer signs Section 3
of the NPRF and sends it

to TI

TI generates prototype 
parts for Customer

verification

TI sends sample devices
to customer for

verification

Customer verifies the
devices work properly and
completes Section 4 of the

NPRF.

TI produces the chip
in production quantities

† For MSP50C601 and MSP50C605 devices, the customer needs to send the code in QBN format and speech data in BIN format.
‡ For MSP50C601 and MSP50C605 devices, Texas Instruments will send the verification code in QBN format and the verification

speech data in BIN format.

Texas Instruments recommends that prototype devices not be used in
production systems. The expected end-use failure rate of these devices is
undefined; however, it is predicted to be greater than that of the standard
qualified production.



Ordering Information

 7-14

7.5 Ordering Information

Because the MSP50C6xx are custom devices, they receive a distinct identifi-
cation, as follows:

CSM

Gate Code
CSM: Custom
Synthesizer

With Memory

6xx XXX X X

Family
Member

(614, 605, etc.)

ROM
Code

Revision
Letter

Package or Die
PJM: Loopin 100-Pin QFP

PM: 64-Pin QFP (MSP50C604)
Y: Die

7.6 New Product Release Forms (NPRF)

The new product release form is used to track and document all the steps
involved in implementing a new speech code onto one of the parent speech
devices.

Section 1 of the NPRF is completed by the customer (and section 2B if for
package sales) and sent to TI with the code.

Please refer to Section 7.4 of the manual for more information on device
production sequence.

The following are the NPRFs for the MSP50C614, MSP50C604, MSP50C605,
and the MSP50C601.



New Product Release Forms (NPRF)

7-15Customer Information

NEW PRODUCT RELEASE FORM FOR MSP50C614

SECTION 1. OPTION SELECTION

This section is to be completed by the customer and sent to TI along with the mi-
croprocessor code and speech data.

             Company:_________________         Division:______________

        Project Name:_________________ Purchase Order #:______________

  Management Contact:_________________            Phone:(___)_________

   Technical Contact:_________________            Phone:(___)_________

Customer Part Number:_________________

Customer Code Version and Revision: __.__ (of format vv.rr)

(vv = version, rr = revision; numeric values only)

Package Type (check one):

           ___ PJM (100 pin QFP)

           ___ Die

********************************************************************************

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER

This section is to be completed by TI.

TI Part Number: ___________ (CSM614xxxY or CSM614xxxPJM)

SECTION 2B. PACKAGE UNIT SYMBOLIZATION

This section is to be completed by the customer. The first line of the symboliza-
tion is fixed. Except EIA#/Logo. The second and third lines are to be filled in by
the customer.

Top Side Symbolization (100pin ’PJM’)

                  +–––––––––––––––––––––––+   LLLL: LOT TRACE CODE

                  |     ??? YMLLLLT       |     YM: DATE CODE

                  |    <optional 13 char> |      T: ASSY SITE

                  |    <optional 12 char> |    ???: TI EIA NO. or

                  +–––––––––––––––––––––––+           TI LOGO

   For ’100 PJM’ package the customer may choose between

   TI EIA No. 980 or the TI LOGO on the first line.

   2nd Line is typically the TI Part Number.

********************************************************************************

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS

This section is to be completed by the customer and sent to TI after the following
criteria have been met:

        1) The customer has verified that the TI computer generated

           data matches the original data.



New Product Release Forms (NPRF)

 7-16

        2) The customer approves of the symbolization format in

           Section 2B. (Applies to packaged devices only).

I hereby certify that the TI generated verification data has been

checked and found to be correct, and I authorize TI to generate masks,

prototypes, and risk units in accordance with purchase order in

section 1 above. In addition, in the instance that this is a packaged

device, I also authorize TI to use the symbolization format

illustrated in section 2B on all devices.

By:__________________________________    Title:____________________

Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

********************************************************************************

SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION

This section is to be completed by the customer after prototype devices have been
received and tested.

I hereby certify that the prototype devices have been received and

tested and found to be acceptable, and I authorize TI to start normal

production in accordance with purchase order #______________________.

By:__________________________________    Title:____________________

Date:_____________________

********************************************************************************

Return to:   Texas Instruments, Inc.

             Attn: Code Release Team

             P.O. Box 660199, M/S 8718

             Dallas, TX 75266–0199

OR Fax to:   (214)480–7301

             Attn: Code Release Team

Have Questions?:

CALL:        Code Release Team

             (214)480–4444

OR E–MAIL:   code–rel@msp.sc.ti.com



New Product Release Forms (NPRF)

7-17Customer Information

NEW PRODUCT RELEASE FORM FOR MSP50C604

SECTION 1. OPTION SELECTION

This section is to be completed by the customer and sent to TI along with the mi-
croprocessor code and speech data.

             Company:_________________         Division:______________

        Project Name:_________________ Purchase Order #:______________

  Management Contact:_________________            Phone:(___)_________

   Technical Contact:_________________            Phone:(___)_________

Customer Part Number:_________________

Customer Code Version and Revision: __.__ (of format vv.rr)

(vv = version, rr = revision; numeric values only)

Package Type (check one):

           ___ PM (64 Pin)

           ___ die

Customer Code Version and Revision: __.__ (of format vv.rr)

(vv = version, rr = revision; numeric values only)

**********************************************************************

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER

This section is to be completed by TI.

TI Part Number: ___________ (CSM604xxxY or CSM604xxxPM)

SECTION 2B. PACKAGE UNIT SYMBOLIZATION

This section is to be completed by the customer. The first line of the symboliza-
tion is fixed. Except EIA#/Logo. The second and third lines are to be filled in by
the customer.

Top Side Symbolization (64pin ’PM’)

                   +–––––––––––––––––––––––+   LLLL: LOT TRACE CODE

                   |     ??? YMLLLLT       |     YM: DATE CODE

                   |    <optional 10 char> |      T: ASSY SITE

                   |    <optional 10 char> |    ???: TI EIA NO. or

                   +–––––––––––––––––––––––+           TI LOGO

   For ’64 PM’ package the customer may choose between TI EIA No. 980

   or the TI LOGO on the first line.

**********************************************************************

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS

This section is to be completed by the customer and sent to TI after the following
criteria have been met:

        1) The customer has verified that the TI computer generated



New Product Release Forms (NPRF)

 7-18

           data matches the original data.

        2) The customer approves of the symbolization format in

           Section 2B. (Applies to packaged devices only).

I hereby certify that the TI generated verification data has been

checked and found to be correct, and I authorize TI to generate masks,

prototypes, and risk units in accordance with purchase order in

section 1 above. In addition, in the instance that this is a packaged

device, I also authorize TI to use the symbolization format

illustrated in section 2B on all devices.

By:__________________________________    Title:____________________

Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**********************************************************************

SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION

This section is to be completed by the customer after prototype devices have been
received and tested.

I hereby certify that the prototype devices have been received and

tested and found to be acceptable, and I authorize TI to start normal

production in accordance with purchase order #______________________.

By:__________________________________    Title:____________________

Date:_____________________

**********************************************************************

Return to:   Texas Instruments, Inc.

             Attn: Code Release Team

             P.O. Box 660199, M/S 8718

             Dallas, TX 75266–0199

OR Fax to:   (214)480–7301

             Attn: Code Release Team

Have Questions?:

CALL:        Code Release Team

             (214)480–4444

OR E–MAIL:   code–rel@msp.sc.ti.com



New Product Release Forms (NPRF)

7-19Customer Information

NEW PRODUCT RELEASE FORM FOR MSP50C605

SECTION 1. OPTION SELECTION

This section is to be completed by the customer and sent to TI along with the mi-
croprocessor code and speech data.

             Company:_________________         Division:______________

        Project Name:_________________ Purchase Order #:______________

  Management Contact:_________________            Phone:(___)_________

   Technical Contact:_________________            Phone:(___)_________

Customer Part Number:_________________

Customer Code Version and Revision: __.__ (of format vv.rr)

(vv = version, rr = revision; numeric values only)

Package Type (check one):

           ___ PJM (100 pin QFP)

           ___ Die

**********************************************************************

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER

This section is to be completed by TI.

TI Part Number: ___________ (CSM605xxxY or CSM605xxxPJM)

SECTION 2B. PACKAGE UNIT SYMBOLIZATION

This section is to be completed by the customer. The first line of the symboliza-
tion is fixed. Except EIA#/Logo. The second and third lines are to be filled in by
the customer.

Top Side Symbolization (100pin ’PJM’)

                  +–––––––––––––––––––––––+   LLLL: LOT TRACE CODE

                  |     ??? YMLLLLT       |     YM: DATE CODE

                  |    <optional 13 char> |      T: ASSY SITE

                  |    <optional 12 char> |    ???: TI EIA NO. or

                  +–––––––––––––––––––––––+           TI LOGO

   For ’100 PJM’ package the customer may choose between

   TI EIA No. 980 or the TI LOGO on the first line.

   2nd Line is typically the TI Part Number.

**********************************************************************

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS

This section is to be completed by the customer and sent to TI after the following
criteria have been met:

        1) The customer has verified that the TI computer generated

           data matches the original data.



New Product Release Forms (NPRF)

 7-20

        2) The customer approves of the symbolization format in

           Section 2B. (Applies to packaged devices only).

I hereby certify that the TI generated verification data has been

checked and found to be correct, and I authorize TI to generate masks,

prototypes, and risk units in accordance with purchase order in

section 1 above. In addition, in the instance that this is a packaged

device, I also authorize TI to use the symbolization format

illustrated in section 2B on all devices.

By:__________________________________    Title:____________________

Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**********************************************************************

SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION

This section is to be completed by the customer after prototype devices have been
received and tested.

I hereby certify that the prototype devices have been received and

tested and found to be acceptable, and I authorize TI to start normal

production in accordance with purchase order #______________________.

By:__________________________________    Title:____________________

Date:_____________________

**********************************************************************

Return to:   Texas Instruments, Inc.

             Attn: Code Release Team

             P.O. Box 660199, M/S 8718

             Dallas, TX 75266–0199

OR Fax to:   (214)480–7301

             Attn: Code Release Team

Have Questions?:

CALL:        Code Release Team

             (214)480–4444

OR E–MAIL:   code–rel@msp.sc.ti.com



New Product Release Forms (NPRF)

7-21Customer Information

NEW PRODUCT RELEASE FORM FOR MSP50C601

SECTION 1. OPTION SELECTION

This section is to be completed by the customer and sent to TI along with the mi-
croprocessor code and speech data.

             Company:_________________         Division:______________

        Project Name:_________________ Purchase Order #:______________

  Management Contact:_________________            Phone:(___)_________

   Technical Contact:_________________            Phone:(___)_________

Customer Part Number:_________________

Customer Code Version and Revision: __.__ (of format vv.rr)

(vv = version, rr = revision; numeric values only)

Package Type (check one):

           ___ PJM (100 pin QFP)

           ___ Die

**********************************************************************

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER

This section is to be completed by TI.

TI Part Number: ___________ (CSM601xxxY or CSM601xxxPJM)

SECTION 2B. PACKAGE UNIT SYMBOLIZATION

This section is to be completed by the customer. The first line of the symboliza-
tion is fixed. Except EIA#/Logo. The second and third lines are to be filled in by
the customer.

Top Side Symbolization (100pin ’PJM’)

                  +–––––––––––––––––––––––+   LLLL: LOT TRACE CODE

                  |     ??? YMLLLLT       |     YM: DATE CODE

                  |    <optional 13 char> |      T: ASSY SITE

                  |    <optional 12 char> |    ???: TI EIA NO. or

                  +–––––––––––––––––––––––+           TI LOGO

   For ’100 PJM’ package the customer may choose between

   TI EIA No. 980 or the TI LOGO on the first line.

   2nd Line is typically the TI Part Number.

**********************************************************************

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS

This section is to be completed by the customer and sent to TI after the following
criteria have been met:

        1) The customer has verified that the TI computer generated

           data matches the original data.



New Product Release Forms (NPRF)

 7-22

        2) The customer approves of the symbolization format in

           Section 2B. (Applies to packaged devices only).

I hereby certify that the TI generated verification data has been

checked and found to be correct, and I authorize TI to generate masks,

prototypes, and risk units in accordance with purchase order in

section 1 above. In addition, in the instance that this is a packaged

device, I also authorize TI to use the symbolization format

illustrated in section 2B on all devices.

By:__________________________________    Title:____________________

Date:_____________________

(FAX this form to 214–480–7301. Attn: Code Release Team)

**********************************************************************

SECTION 4.APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION

This section is to be completed by the customer after prototype devices have been
received and tested.

I hereby certify that the prototype devices have been received and

tested and found to be acceptable, and I authorize TI to start normal

production in accordance with purchase order #______________________.

By:__________________________________    Title:____________________

Date:_____________________

**********************************************************************

Return to:   Texas Instruments, Inc.

             Attn: Code Release Team

             P.O. Box 660199, M/S 8718

             Dallas, TX 75266–0199

OR Fax to:   (214)480–7301

             Attn: Code Release Team

Have Questions?:

CALL:        Code Release Team

             (214)480–4444

OR E–MAIL:   code–rel@msp.sc.ti.com



A-1

Appendix A

Additional Information

This appendix contains additional information for the MSP50C6xx mixed-sig-
nal processor.

Topic Page

A.1 Additional Information A–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix A



Additional Information

 A-2

A.1 Additional Information

For current information regarding the MSP50C6xx devices (data sheets, de-
velopment tools, etc.), visit the TI Speech Web site:

http://www.ti.com/sc/speech


