
R

LogiCORE™ IP
SPI-4.2 Lite v4.3

User Guide
UG181 June 27, 2008

SPI-4.2 Lite v4.3 User Guide www.xilinx.com
UG181 June 27, 2008

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

© 2005-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

The following table shows the revision history for this document.

R

Date Version Revision

8/31/05 1.1 Initial Xilinx release.

1/18/06 1.2 Updated release version, tool version, and release date.

7/13/06 2.0 Updated version to 4.1, release date, ISE to v8.2i.

2/15/07 3.0 Updated version to 4.2, ISE to v9.1i, added Virtex-3E support.

4/02/07 3.1 Added support for Spartan-3A DSP devices.

4/16/08 4.0 Updated for ISE v10.1.

6/27/08 4.5 Updated the ISE v10.1 SP1 release.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com
UG181 June 27, 2008

Table of Contents

Preface: About This Guide
Contents . 11
Conventions . 12

Typographical . 12
Online Document . 13

Chapter 1: Introduction
About the Core . 15
Recommended Design Experience . 15
Additional Core Resources . 15
Technical Support. 16
Feedback. 16

SPI-4.2 Lite Core . 16
Document . 16

Chapter 2: Core Architecture
System Overview . 17

Sink Core . 18
Source Core . 18

Sink Core Interfaces. 19
Sink SPI-4.2 Interface . 21
Sink User Interface . 22

Source Core Interfaces . 30
Source SPI-4.2 Interface . 31
Source User Interface . 32

Chapter 3: Generating the Core
CORE Generator Graphical User Interface . 43
Main Screen . 44
Sink Status Options Screen. 44

Calendar . 45
Flow Control . 45
Status Interface . 45

Sink Other Options Screen . 46
Synchronization . 46
FIFO Threshold. 46
Clocking . 47

Source Status Options Screen . 47
Calendar . 47
Status Interface . 48
Synchronization . 48

Source Other Options Screen . 48

http://www.xilinx.com

www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Bursting . 48
FIFO Threshold. 49
Clocking . 49

Calendar COE File Format . 50

Chapter 4: Designing with the Core
General Design Guidelines . 51

Know the Degree of Difficulty . 51
Understand Signal Pipelining . 51
Keep it Registered . 52
Recognize Timing Critical Signals . 52
Use Supported Design Flows . 52
Make Only Allowed Modifications . 52

Initializing the SPI-4.2 Lite Core . 52
Sink Core . 53

Basic Operation . 53
SPI-4.2 Interface . 53
Sink User Interface . 58
Sink Static Configuration Signals . 67
Sink Data Capture Implementation . 69
Synchronization and Start-up . 70
Error Handling . 72

Source Core . 76
Basic Operation . 76
Source SPI-4.2 Interface . 76
Source User Interface . 82
Source Static Configuration Signals . 93
Synchronization and Start-up . 94
Error Handling . 96

Chapter 5: Constraining the Core
Overview . 99
Sink Core Required Constraints . 99

Timing Constraints . 99
DCM and Static Alignment Constraints . 101
Placement Constraints . 102

Sink Core Optional Constraints . 103
IDelayCtrl . 103
I/O Standards Constraints . 103
Area Group Constraints . 104
Timing Ignore Constraints . 104

Source Core Required Constraints . 104
Timing Constraints . 104
Placement Constraints . 105

Source Core Optional Constraints . 107
I/O Standards Constraints . 107
Area Group Constraints . 107
Timing Ignore Constraints . 108

User Constraints . 108

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com
UG181 June 27, 2008

Constraints Migration . 108
New Target Region or Device Package. 108
Modifying the UCF File. 109

Chapter 6: Special Design Considerations
Sink Clocking Options . 111

Embedded Clocking . 111
User Clocking . 112

Source Clocking Options . 115
Master Clocking . 116
Slave Clocking . 119

Multiple Core Implementations . 120
Instantiating Multiple Cores. 120
Generating the Cores . 121
Creating Top-Level UCF File . 121
Clocking Considerations . 122

Chapter 7: Simulating and Implementing the Core
Functional Simulation. 125

Generating a Simulation Model . 125
Timing Simulation . 126

Synthesis . 127
Synthesis of Example Design . 127

Xilinx Tool Flow . 128
Example Design Script . 128
NGDBuild . 128
Mapping the Design . 128
Place and Route . 128
Static Timing Analysis . 129
Timing Simulation . 129
Generating a Bitstream . 129

Appendix A: SPI-4.2 Lite Control Word

Appendix B: SPI-4.2 Lite Calendar Programming
Overview . 133
Example 1 . 133
Example 2 . 133
Example 3 . 134

Appendix C: SPI-4.2 Lite Core Verification

http://www.xilinx.com

www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

http://www.xilinx.com

Schedule of Figures

Chapter 2: Core Architecture
Figure 2-1: SPI-4.2 Lite Core in a Typical Link Layer Application 18
Figure 2-2: Sink Core Block Diagram . 20
Figure 2-3: Source Core Block Diagram and I/O Interface Signals 31

Chapter 3: Generating the Core
Figure 3-1: SPI-4.2 Lite Sink and Source Main Customization Screen 44

Chapter 4: Designing with the Core
Figure 4-1: SPI-4.2 Interface to the 64-Bit User Interface . 54
Figure 4-2: Sink Data Path - Short Packet Transfers with Minimum SOP Spacing

Enforced . 55
Figure 4-3: Sink Training Valid Status . 59
Figure 4-4: Sink FIFO Almost Empty . 60
Figure 4-5: Sink FIFO Empty . 60
Figure 4-6: Status FIFO Calendar and Status Memory Block Diagram 62
Figure 4-7: Sink Calendar Initialization . 63
Figure 4-8: Typical Flow Control Implementation for 4-Channel System 64
Figure 4-9: Sink Status FIFO Interface Example 1: 10-channel Configuration. 65
Figure 4-10: Sink Status FIFO Interface Example: 64-channel Configuration 66
Figure 4-11: Sink Status Path - User Interface to SPI-4.2 Interface 67
Figure 4-12: FIFO Almost Full Mode “00” . 68
Figure 4-13: FIFO Almost Full Mode “01” . 68
Figure 4-14: FIFO Almost Full Mode “10” or “11” . 69
Figure 4-15: Sink Startup Sequence State Machine . 71
Figure 4-16: Short Packet Support . 73
Figure 4-17: Sequential Payload Control Word Example . 74
Figure 4-18: Example of Error Flag SnkFFDIP4Err . 75
Figure 4-19: Example of Error Flag SnkFFDIP4Err and SnkFFPayloadDIP4 75
Figure 4-20: Example of Error Flag SnkFFPayloadErr . 76
Figure 4-21: Source Data Path: User Interface to SPI-4.2 Interface 77
Figure 4-22: Source Data Path - Minimum SOP Spacing Enforced 78
Figure 4-23: Source Data Path - Short Packet Transfers . 78
Figure 4-24: Source FIFO Almost-full Condition . 84
Figure 4-25: Source FIFO Overflow Condition. 84
Figure 4-26: Writing to the Source FIFO . 85
Figure 4-27: Typical User Design Example . 86
Figure 4-28: Source Calendar Initialization. 87
Figure 4-29: Addressable Status FIFO Interface . 88

www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Figure 4-30: Addressable Status FIFO Interface: 4-Channel Configuration 89
Figure 4-31: Addressable Status FIFO Interface: 256-channel configuration 90
Figure 4-32: Addressable Status FIFO Interface - SPI-4.2 Interface to User Interface . . 91
Figure 4-33: Transparent Status FIFO Interface Block Diagram . 92
Figure 4-34: Transparent Source Status FIFO Interface: 256-channel Configuration . . . 93
Figure 4-35: Example Of Source Burst Mode = 0 . 94
Figure 4-36: Example Of Source Burst Mode = 1 . 94
Figure 4-37: Source Startup Sequence State Machine . 95

Chapter 6: Special Design Considerations
Figure 6-1: Embedded Clocking Option . 112
Figure 6-2: Example: Sink User Clocking Inputs . 113
Figure 6-3: Sink User Clocking: Global Clocking . 114
Figure 6-4: Sink User Clocking: Regional Clocking . 115
Figure 6-5: Source Clocking: Master and Slave Implementation 116
Figure 6-6: Source Clocking: Global Clocking for SysClk. 117
Figure 6-7: Source Clocking: Global Clocking for TSClk . 117
Figure 6-8: Source Clocking: Regional Clocking for SysClk . 118
Figure 6-9: Source Clocking: Regional Clocking for TSClk . 118
Figure 6-10: Slave Clocking Inputs . 119

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com
UG181 June 27, 2008

Chapter 2: Core Architecture
Table 2-1: Sink SPI-4.2 Interface Signals . 21
Table 2-2: Sink Control and Status Signals . 22
Table 2-3: Sink FIFO Signals . 23
Table 2-4: Sink Calendar Control Signals . 25
Table 2-5: Sink Status FIFO Signals . 25
Table 2-6: Sink Static Configuration Signals . 27
Table 2-7: Sink Core Clocks: Embedded Clocking . 29
Table 2-8: Sink Core Clocks: Status Signals . 29
Table 2-9: Sink Core Clocks: User Clocking . 30
Table 2-10: Source SPI-4.2 Interface Signals . 32
Table 2-11: Source Control and Status Signals . 33
Table 2-12: Source FIFO Signals . 35
Table 2-13: Source Calendar Control Signals . 36
Table 2-14: Source Status FIFO Signals . 36
Table 2-15: Source Static Configuration Signals . 38
Table 2-16: Source Core Clocks: Master Configuration . 40
Table 2-17: Source Core Clock Status Signals: Master Configuration 40
Table 2-18: Source Core Clocks: Slave Configuration . 41

Chapter 3: Generating the Core

Chapter 4: Designing with the Core
Table 4-1: Formatting SPI-4.2 Interface Data (RDat) 64-bit User Interface (Example) . . 56
Table 4-2: SPI-4.2 Control Word Mapping to 64-bit User Interface 57
Table 4-3: SPI-4.2 Control Word Mapping to 32-bit User Interface 57
Table 4-4: Status Written into SnkStat per Channel per Write Cycle. 65
Table 4-5: Status Written to Status FIFO Interface . 66
Table 4-6: Example of Formatting Source FIFO Data for a 64-bit User Interface 79
Table 4-7: SPI-4.2 Control Word Mapping to 32-bit Interface . 80
Table 4-8: SPI-4.2 Control Word Mapping to 64-bit User Interface 81
Table 4-9: Status Written into SrcStat per Channel per Clock Cycle 89
Table 4-10: Status Read Summary . 90
Table 4-11: Status for the 256-channel Source Calendar Initialization System 92

Chapter 6: Special Design Considerations
Table 6-1: Sink Core Embedded Clocking Resources . 111
Table 6-2: Sink Core User Clocking Resources. 113

Schedule of Tables

http://www.xilinx.com

www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

R

Table 6-3: SysClk Clocking Resources . 119
Table 6-4: TSClk Clocking Resources . 119

Appendix A: SPI-4.2 Lite Control Word
Table A-1: SPI-4.2 Lite Control Word Format . 131

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 11
UG181 June 27, 2008

R

Preface

About This Guide

This user guide describes the function and operation of the Xilinx LogiCORE™ IP SPI-4.2
(PL4) Lite core, and provides information about designing, customizing, and
implementing the core.

Contents
This guide contains the following chapters:

• Preface, “About this Guide” describes the organization and purpose of the user guide
and the conventions used in this document.

• Chapter 1, “Introduction” introduces the SPI-4.2 Lite core and provides related
information, including recommended design experience, additional resources,
technical support, and submitting feedback to Xilinx.

• Chapter 2, “Core Architecture” describes the SPI-4.2 Lite core architecture and
interface signals.

• Chapter 3, “Generating the Core” describes how to generate the SPI-4.2 Lite core
using the Xilinx CORE Generator™.

• Chapter 4, “Designing with the Core” describes how to use the Xilinx SPI-4.2 Lite core
in a user application.

• Chapter 5, “Constraining the Core” describes how to constrain the core.

• Chapter 6, “Special Design Considerations” describes how to instantiate multiple SPI-
4.2 Lite cores in a design.

• Chapter 7, “Simulating and Implementing the Core” instructs you how to simulate
and implement the SPI-4.2 Lite core in their design.

• Appendix A, “SPI-4.2 Lite Control Word” defines the SPI-4.2 control word format.

• Appendix B, “SPI-4.2 Lite Calendar Programming” contains examples that describe
how to program calendars for the Source Status FIFO and Sink Status FIFO of the SPI-
4.2 Lite core.

• Appendix C, “SPI-4.2 Lite Core Verification” describes the software verification of the
SPI-4.2 Lite core.

http://www.xilinx.com

12 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 13
UG181 June 27, 2008

Conventions
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL) Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

14 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Preface: About This Guide
R

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 15
UG181 June 27, 2008

R

Chapter 1

Introduction

The SPI-4.2 (PL4) Lite core implements and is functionally compliant to the OIF-SPI-4-02.1
System Packet Interface Phase 2 specification and supports both VHDL and Verilog design
environments.

This chapter introduces the SPI-4.2 Lite core and provides related information, including
recommended design experience, additional resources, technical support, and how to
submit feedback to Xilinx.

About the Core
The SPI-4.2 Lite core is a Xilinx CORE Generator IP core, included in the latest IP Update
on the Xilinx IP Center.

For detailed information about the core, see
www.xilinx.com/products/ipcenter/DO-DI-POSL4MC.htm.

For information about system requirements, installation, and licensing options, see the
SPI-4.2 Lite Getting Started Guide.

Recommended Design Experience
Although the SPI-4.2 Lite core is a fully verified solution, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and user constraints files
(UCF) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Additional Core Resources
For detailed information and updates about the SPI-4.2 Lite core, see the following
documents, located on the SPI-4.2 product lounge page at:

www.xilinx.com/ipcenter/posphyl4/spi42_core.htm

• SPI-4.2 Lite Data Sheet

• SPI-4.2 Lite Release Notes

• SPI-4.2 Lite Getting Started Guide

http://www.xilinx.com/products/ipcenter/DO-DI-POSL4MC.htm
http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-POSL4MC

16 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 1: Introduction
R

Technical Support
To obtain technical support specific to the SPI-4.2 Lite core, visit www.xilinx.com/support.
Questions are routed to a team of engineers with expertise using the SPI-4.2 Lite core.

Xilinx will provide technical support for use of this product as described in the SPI-4.2 Lite
User Guide and the SPI-4.2 Lite Getting Started Guide. Xilinx cannot guarantee timing,
functionality, or support of this product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the SPI-4.2 Lite core and the
documentation provided with the core.

SPI-4.2 Lite Core
For comments or suggestions about the SPI-4.2 Lite core, please submit a webcase from
www.xilinx.com/support/clearexpress/websupport.htm. Be sure to include the
following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
www.xilinx.com/support/clearexpress/websupport.htm. Be sure to include the
following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support
http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 17
UG181 June 27, 2008

R

Chapter 2

Core Architecture

This chapter describes the SPI-4.2 Lite core architecture and interface signals.

System Overview
The SPI-4.2 Lite core is comprised of two separate cores that enable the transmission
(Source core) and reception (Sink core) of data.

• Sink Core. Receives data from the SPI-4.2 interface. It takes the 16-bit interface and
maps it to a 32-bit or 64-bit interface enabling the internal logic to run at a quarter of
the line rate.

• Source Core. Transmits data on the SPI-4.2 interface. Payload data written into the
core as 32-bit or 64-bit words (two or four 16-bit SPI-4.2 Lite words, respectively) is
mapped onto the 16-bit SPI-4.2 interface.

Figure 2-1 illustrates the interfaces of the SPI-4.2 Lite core and shows it in a typical link-
layer application.

In the link layer example, the SPI-4.2 interface connects an external physical-layer device to
a link-layer implemented in a Virtex™-4 FPGA. The user logic reads data from the Sink
core and writes data into the Source core. A standard FIFO interface is provided for this

http://www.xilinx.com

18 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

data access and facilitates integration within a system. Dedicated signals are used to
configure the Sink and Source cores in circuit and monitor a suite of status registers.

Sink Core
The Sink core receives data from the SPI-4.2 interface. It takes the 16-bit interface and maps
it to a 32-bit or 64-bit interface enabling the internal logic to run at a half (for 32-bit) or an
quarter (for 64-bit) of the line rate. The user data and the corresponding control signals are
accessed with a standard FIFO interface. The FIFO read and write operations are
performed in independent clock domains.

The Sink core implements the following features:

• Supports 32-bit or 64-bit user data width

• Dedicated output signal indicating loss of valid RDClk

• Provides a FIFO reset signal for clearing contents of the data pipe during operation

• Provides support for forcing the insertion of DIP-2 errors for system testing

• Regional clocking option (for Virtex-4 and Virtex-5 devices only, saves global clocking
resources)

• Provides both embedded and user clocking options

For more information on core features, see Chapter 4, “Designing with the Core.”

Source Core
The Source core transmits data on the SPI-4.2 interface. Payload data written into the core
as 32-bit or 64-bit words (two or four 16-bit SPI-4.2 Lite words, respectively) are mapped
onto the 16-bit SPI-4.2 interface. While packet data written into the core may not be 32-bit
or 64-bit aligned, the core optimally maps the data to 16-bit words such that no filler idle
cycles are inserted. The data along with the control signals are written into the core via a

Figure 2-1: SPI-4.2 Lite Core in a Typical Link Layer Application

Virtex-4 or Spartan-3 Device

SPI-4.2 Lite Source Core

SPI-4.2
 Interface User

Interface

 SPI-4.2 Lite
PHY Layer Device

(Xilinx FPGA
or

ASSP)

User’s Logic

(Link Layer
Processor)

SPI-4.2 Lite Sink Core

User
Sink

Interface

SPI-4.2
Sink

Interface

Rx Data Path

Rx Status Path

Tx Data Path

Tx Status Path

User
Source

Interface

SPI-4.2
Source

Interface

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 19
UG181 June 27, 2008

Sink Core Interfaces
R

standard FIFO interface, and the FIFO read and write operations are performed in
independent clock domains.

The Source core implements the following features:

• Supports 32-bit or 64-bit user data width.

• Optionally transmits only complete data bursts.

• Provides both master and slave clocking to facilitate multiple core implementations.

• Enables addressable or transparent access to SPI-4.2 flow control data.

• Provides a FIFO reset signal for clearing contents of the data pipe during operation.

• Provides support for forcing the insertion of DIP-4 errors for system testing.

For more information on core features, see Chapter 4, “Designing with the Core.”

Sink Core Interfaces
The Sink core has five functional modules:

• Sink Data FIFO

• Sink Data Receive

• Sink Status Registers

• Sink Calendar

• Sink Status Transmit

The Sink core has the following interfaces:

• Sink SPI-4.2 Interface

• Sink User Interface

♦ Sink Control and Status Interface

♦ Sink FIFO Interface

♦ Sink Status and Flow Control Interface

- Calendar Control Interface

- Status FIFO Interface

♦ Sink Configuration Interface

♦ Sink Clocking Interface

http://www.xilinx.com

20 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

The functional modules and signals which comprise the different interfaces are shown in
Figure 2-2 and defined in tables in the following sections.

Figure 2-2: Sink Core Block Diagram

SPI-4.2 Lite Sink Core

Sink Data
Receive

Sink Data
FIFO

Sink Status
Transmit

Sink Status
Registers

Sink
Calendar

SPI-4
Sin

Interfa

FIFO
nterface

FIFO
Status

nterface

Control
and

Status
nterface

Calendar
Control
nterface

Reset_n

SnkFifoReset_n

RDClk

 RDat[15:0]

RSClk

RStat[1:0]

RCtl

SnkFFClk

SnkFFRdEn_n

SnkFFAddr[7:0]

SnkFFData[63:0] or [31:0]

SnkFFMod[2:0] or [1:0]

SnkFFSOP

SnkFFEmpty_n

SnkFFErr

SnkFFEOP

SnkFFAlmostEmpty_n

SnkStatClk

SnkStatAddr[3:0]

SnkCalClk

SnkCalWrEn_n

SnkCalAddr[8:0]

SnkCalData[7:0]

SnkTrainValid

SnkFFDIP4Err

SnkEn

SnkAlmostFull_n

SnkBusErr

Static Configuration Signals

SnkFFValid

SnkOverflow_n

SnkOof

SnkFFPayloadErr

SnkCalDataOut[7:0]

SnkStat[31:0]

SnkStatWrEn_n

SnkStatMask[15:0]

SnkFFPayloadDIP4

SnkFFBurstErr

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 21
UG181 June 27, 2008

Sink Core Interfaces
R

Sink SPI-4.2 Interface
The SPI-4.2 interface uses LVDS I/O buffers to receive 16-bit data words. The 16-bit data
words received on the SPI-4.2 interface are combined into 32-bit or 64-bit data words by the
SPI-4.2 Lite core, which allows the user interface to run at a half (32-bit interface) or quarter
(64-bit interface) of the data rate. For example, for a 200 Mbps data rate and a 32-bit
interface, you can read data from the Sink core at 100 MHz, and if a 64-bit interface is used,
you can read data from the Sink core at 50 MHz and maintain the same data rate.

The resulting data words are written into an asynchronous FIFO. The received 16-bit
control words are stored out of band in the FIFO, along with the corresponding data word.
The received control words that are not idle or training words can contain the information
listed below:

• Start or continuation of the following packet

• Link address of the following packet

• End of the preceding packet

• Number of valid bytes in the last word of the preceding packet

• Error conditions in the preceding packet

In addition to receiving 16-bit data words, the SPI-4.2 interface also sends flow control data
at 1/4 rate (or 1/8 rate) of its data interface. The 32-bit status (2-bit status for each channel)
from the user interface is processed and formatted by the SPI-4.2 Lite core to be transmitted
on RStat. Table 2-1 defines the Sink SPI-4.2 interface signals.

Table 2-1: Sink SPI-4.2 Interface Signals

Name Direction
Clock

Domain
Description

RDClk_P

RDClk_N

Input n/a SPI-4.2 Receive Data Clock (LVDS): Source synchronous clock received with
RDat and RCtl. The rising and falling edges of this clock (DDR) are used to
clock RDat and RCtl.

RDat_P[15:0]

RDat_N[15:0]

Input RDClk SPI-4.2 Receive Data Bus (LVDS): The 16-bit data bus used to receive SPI-4.2
data and control information.

RCtl_P

RCtl_N

Input RDClk SPI-4.2 Receive Control (LVDS): Signal that indicates whether data or control
information is present on the RDat bus. When RCtl is deasserted, data is
present on RDat. When RCtl is asserted, control information is present on
RDat.

RSClk Output n/a SPI-4.2 Receive Status Clock: Source synchronous clock transmitted with
RStat at 1/2 or 1/4 rate of the RDClk. The rate of the status clock is controlled
by the static configuration signal RSClkDiv. You can select this signal to be
transmitted as LVTTL or LVDS.

RStat[1:0] Output RSClk SPI-4.2 Receive FIFO Status: FlFO Status Channel flow control interface. You
can select this bus to be transmitted as LVTTL or LVDS.

http://www.xilinx.com

22 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

Sink User Interface
The Sink User Interface includes all signals other than those on the SPI-4.2 Interface. The
high-performance logic on the Sink back-end enables the user interface to run at higher
frequencies than the SPI-4.2 Interface. This is sometimes required if a large percentage of
the traffic consists of small packets.

The User Interface is subdivided into five smaller interfaces. Each of these interfaces are
presented in detail below:

• Control and Status Interface: The signals of this interface apply to the operation of
the Sink core.

• FIFO Interface: The signals of this interface allow you to access data received on the
SPI-4.2 Interface.

• Status and Flow Control Interface: The signals of this interface send flow control
information on the SPI-4.2 Interface.

• Static Configuration Interface: The signals of this interface allow you to configure the
core.

• Clocking Interface: The signals of this interface report the status of the clocks and
include the general purpose clocks.

Sink Control and Status Interface

The Sink core control and status signals either control the operation of the entire Sink core
or provide status information that is not associated with a particular channel (port) or
packet. Table 2-2 defines the Sink control and status signals.

Table 2-2: Sink Control and Status Signals

Name Direction
Clock

Domain
Description

Reset_n Input n/a Reset: Active Low signal that asynchronously initializes internal flip-flops,
registers, and counters. When Reset_n is asserted, the Sink core will go out
of frame and the entire data path is cleared (including the FIFO). The Sink
core will also assert SnkOof, and deassert SnkBusErr and SnkTrainValid.
When Reset_n is asserted, the Sink core will transmit framing "11" on RStat
and continue to drive RSClk.

Following the deassertion of Reset_n, the sink calendar should be
programmed if the calendar is initialized in-circuit.

SnkFifoReset_n Input SnkFFClk Sink FIFO Reset: Active low signal enables you to reset the Sink FIFO and
the associated data path logic. This enables the FIFO to be cleared while
remaining in frame.

Coming out of SnkFifoReset_n, the Sink core will discard all data on the SPI-
4.2 interface until a valid SOP control word is received.

SnkEn Input SnkStatClk Sink Enable: Active high signal that enables the Sink core. When SnkEn is
deasserted, the Sink core will go out of frame and will not store any
additional data in the FIFO. The current contents of the FIFO remain intact.

The Sink core will also assert SnkOof, and deassert SnkBusErr and
SnkTrainValid. When SnkEn is deasserted, the Sink core will transmit
framing "11" on RStat and continue to drive RSClk.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 23
UG181 June 27, 2008

Sink Core Interfaces
R

Sink FIFO Interface

The Sink FIFO Interface signals allow you to access the data (received on the SPI-4.2
Interface) that is stored in the FIFO. The signals on this interface is defined in Table 2-3.

SnkOof Output SnkFFClk Sink Out-of-Frame: Active high signal that indicates that the SPI-4.2 Lite
Sink block is not in frame. This signal is asserted when SnkEn is deasserted
or the Sink block loses synchronization with the data received on the SPI-4.2
Interface. This signal is deasserted once the Sink block reacquires
synchronization with the received SPI-4.2 data.

SnkBusErr Output SnkFFClk Sink Bus Error: Active high signal that indicates SPI-4.2 protocol violations
or bus errors that are not associated with a particular packet. Information on
the specific error condition that caused the SnkBusErr assertion is provided
on SnkBusErrStat

SnkBusErrStat[7:0] Output SnkFFClk Sink Bus Error Status: Each bit of this bus corresponds to a specific Sink Bus
Error condition and is asserted concurrently with SnkBusErr. The error
conditions detected are reported as follows:

SnkBusErrStat [0]: Minimum SOP spacing violation

SnkBusErrStat [1]: Control word with EOP not preceded by a data word

SnkBusErrStat [2]: Payload control word not followed by a data word

SnkBusErrStat [3]: DIP4 error received during training or on idles

SnkBusErrStat [4]: Reserved control words received

SnkBusErrStat [5]: Non-zero address bits on control words received (except
on payload and training control words)

SnkBusErrStat [6:7]: Reserved bits (tied low)

SnkTrainValid Output SnkFFClk Sink Training Valid: Active high signal that indicates that a valid training
pattern has been received. This signal is asserted for the duration of the
training pattern (20 SPI-4.2 bus clock cycles or 5 RDClk0_GP clock cycles), if
the training pattern received is successfully decoded.

Table 2-2: Sink Control and Status Signals (Continued)

Name Direction
Clock

Domain
Description

Table 2-3: Sink FIFO Signals

Name Direction Description

SnkFFClk Input Sink FIFO Clock: All Sink FIFO Interface signals are synchronous to the rising edge of
this clock.

SnkFFRdEn_n Input Sink FIFO Read-Enable: When detected low at the rising edge of SnkFFClk, data and
status information is available from the FIFO on the next rising edge of SnkFFClk.

SnkFFAddr[7:0] Output Sink FIFO Channel Address: Channel number associated with the data on SnkFFData.

SnkFFData[31:0]

or

SnkFFData[63:0]

Output Sink FIFO Data Out: The Sink FIFO data bus. Bit 0 is the LSB.

The core can be configured to have a 32- or 64-bit Interface. The 64-bit interface enables
running at half the clock rate required for a 32-bit interface.

SnkFFMod[1:0]

or

SnkFFMod[2:0]

Output Sink FIFO Modulo: This signal indicates which bytes on the SnkFFData bus are valid
when the SnkFFEOP signal is asserted.

SnkFFMod[1:0] is used with a 32-bit interface.

SnkFFMod[2:0] is used with a 64-bit interface.

http://www.xilinx.com

24 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

SnkFFSOP Output Sink FIFO Start of Packet: When asserted (active high), this signal indicates the start of
a packet is being read out of the Sink FIFO.

SnkFFEOP Output Sink FIFO End of Packet: When asserted (active high), this signal indicates that the end
of a packet is being read out of the Sink FIFO.

SnkFFErr Output Sink FIFO Error: When asserted (active high), this signal indicates that the current
packet is terminated with an EOP abort condition. This signal is only asserted when
SnkFFEOP is asserted.

SnkFFEmpty_n Output Sink FIFO Empty: When asserted (active low), this signal indicates that the Sink FIFO
is empty. No data can be read until this signal is deasserted. This signal is asserted with
the last data word read out of the FIFO.

SnkFFAlmostEmpty_n Output Sink FIFO Almost Empty: When this signal is asserted (active low), it indicates that one
word remains in the FIFO, and you should deassert the read enable signal on the next
clock cycle. The user’s read logic should evaluate the SnkFFEmpty_n signal to verify
that there is no data in the FIFO in case an additional word was simultaneously written
into the FIFO. An example of the behavior of this interface signal is provided with the
SPI-4.2 Lite core in the Design Example (see the pl4_lite_fifo_loopback_read.v/vhd file.)

SnkFFValid Output Sink FIFO Read Valid: When asserted (active high), this signal indicates that the
information on SnkFFData, SnkFFAddr, SnkFFSOP, SnkFFEOP, SnkFFBurstErr,
SnkFFMod, SnkFFErr, SnkFFDIP4Err, and SnkFFPayloadErr is valid.

SnkFFDIP4Err Output Sink FIFO DIP-4 Error: When asserted (active high), this signal indicates that a DIP-4
parity error was detected with the SPI-4.2 control word ending a packet or burst of data.
This signal is asserted at the end of that packet or burst of data.

SnkFFPayloadDIP4 Output Sink FIFO Payload DIP4 Error: When asserted (active high), this signal indicates that a
DIP-4 parity error was detected with the SPI-4.2 control word starting a packet or burst
of data. This signal is asserted at the end of that packet or burst of data.

SnkFFBurstErr Output Sink FIFO Burst Error: When asserted (active high), this signal indicates that the Sink
core has received data that was terminated on a non-credit boundary without an EOP.
SnkFFBurstErr may be used by the user’s logic to indicate missing EOPs, or incorrectly
terminated bursts. In this case the Sink core does not assert SnkFFEOP or SnkFFErr.

SnkFFPayloadErr Output Sink FIFO Payload Error: When asserted (active high), this signal indicates that the
received data was not preceded by a valid payload control word. Since it is not clear
what the packet Address and SOP should be, it is flagged as an error. This is asserted
with each data word coming out of the FIFO, and will remain asserted until a valid
payload control word is followed by data.

SnkAlmostFull_n Output Sink Almost Full: When asserted (active low), this signal indicates that the Sink core is
approaching full (as defined by the parameter SnkAFThresAssert), and that immediate
action should be taken to prevent overflow.

SnkOverflow_n Output Sink Overflow: When asserted (active low), this signal indicates that the Sink core has
overflowed and is in an error condition. Data will be lost if SnkOverflow_n is asserted,
since no data is written into the FIFO when the overflow signal is asserted.

Table 2-3: Sink FIFO Signals (Continued)

Name Direction Description

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 25
UG181 June 27, 2008

Sink Core Interfaces
R

Sink Status and Flow Control Interface (Calendar Control and Status FIFO)

The Sink Status and Flow Control interface enables you to send flow control data on the
SPI-4.2 Interface. The status information is sent based on the channel order and channel
frequency defined in the programmable calendar. Table 2-4 and Table 2-5 define the
calendar interface and status FIFO interface signals.

Table 2-4: Sink Calendar Control Signals

Name Direction
Clock

Domain
Description

SnkCalClk Input n/a Sink Calendar Clock: All Sink calendar signals are synchronous to
this clock.

SnkCalWrEn_n Input SnkCalClk Sink Calendar Write Enable: When this signal is asserted (active
low), the Sink Calendar is written with the data on the SnkCalData
bus on the rising edge of SnkCalClk. When the signal is deasserted,
the Sink Calendar data can be read on SnkCalDataOut.

SnkCalAddr[8:0] Input SnkCalClk Sink Calendar Address: When SnkCalWrEn_n is asserted, this bus
indicates the calendar address to which the data on SnkCalData is
written. When SnkCalWrEn_n is deasserted, this bus indicates the
calendar address from which the channel number on SnkCalDataOut
is driven.

SnkCalData[7:0] Input SnkCalClk Sink Calendar Data: This bus contains the channel number to write
into the calendar buffer when SnkCalWrEn_n is enabled. The channel
numbers written into the calendar indicate the order that status is
sent on RStat.

SnkCalDataOut[7:0] Output SnkCalClk Sink Calendar Data Output: This bus contains the channel number
that is read from the calendar buffer when SnkCalWrEn_n is disabled.
The channel numbers read from the calendar indicate the order that
status is sent on RStat.

Table 2-5: Sink Status FIFO Signals

Name Direction
Clock

Domain
Description

SnkStatClk Input n/s Sink Status Clock: All Sink Status write signals are synchronous to
this clock.

SnkStat[31:0] Input SnkStatClk Sink Status Bus: This 32-bit bus is used to write status information
into the Status FIFO. You can write the status for 16 channels each
clock cycle.

The 16-channel status that are accessed simultaneously are grouped
in the following manner: channels 15 to 0, channels 31 to 16, channels
47 to 32, . . . , channels 255 to 239.

SnkDIP2ErrRequest Input SnkStatClk Sink DIP2 Error Request: This is an active high signal that requests
an incorrect DIP-2 to be sent out of the RStat bus. When this signal is
asserted, Sink Status FIFO responds by inverting the next DIP2 value
that it transmits.

http://www.xilinx.com

26 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

Sink Static Configuration Interface

These signals are inputs to the core that are statically driven by setting them to a constant
value in the top-level wrapper file. The SPI-4.2 Lite release includes a wrapper file that has
the static configuration signals connected to the values selected in the CORE Generator
GUI. Customization of these signals can be done using the GUI.

Two of the Sink Static Configuration signals can be changed in circuit. There are static
registers for SnkCalendar_M and SnkCalendar_Len that are synchronous to SnkStatClk.
To change these parameters while the core is operational, SnkEn must first be deasserted.

If you sets the configuration signal to an illegal number, the core is automatically set to the
minimum value. Table 2-6 defines the Sink Static Configuration signals.

SnkStatAddr[3:0] Input SnkStatClk Sink Status Address bus: The Sink Status Address determines the
group of 16-channel status that SnkStat will be updating.

Bank 0: SnkStatAddr=0, channels 15 to 0

Bank 1: SnkStatAddr=1, channels 31 to 16

Bank 2: SnkStatAddr=2, channels 47 to 32

. . .

Bank 15: SnkStatAddr=15, channels 255 to 239

SnkStatWr_n Input SnkStatClk Sink Status Write: The Sink Status Write (active low) qualifies the
SnkStatMask signal. When SnkStatWr_n is asserted (active low),
status for the different channels is updated. When SnkStatWr_n is
deasserted (active high), SnkStat input is ignored.

SnkStatMask[15:0] Input SnkStatClk Sink Status Mask Bus: The Sink Status Mask determines if the 2-bit
status among the corresponding group of 16 channels of status on
SnkStat (being addressed by SnkStatAddr) will be updated when
SnkStatWr_n is asserted (active low):

SnkStatMask[x] = 1, status for channel (x+(SnkStatAddr*16)) will be
updated.

SnkStatMask[y] = 0, status for channel (y+(SnkStatAddr*16)) will not
be updated.

For example, if SnkStatMask[15] = 1 and SnkStatAddr = 1, then
SnkStat[31:30] = 00 will overwrite the current status on channel 31. If
SnkStatMask is all zeros, none of the sixteen 2-bit status values will
be updated. If SnkStatMask is all ones, all sixteen of the 2-bit status
values will be updated.

Table 2-5: Sink Status FIFO Signals (Continued)

Name Direction
Clock

Domain
Description

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 27
UG181 June 27, 2008

Sink Core Interfaces
R

Table 2-6: Sink Static Configuration Signals

Name Direction Range Description

NumDip4Errors[3:0] Static
Input

1-15

Value of 0 is set to 1

Number of DIP-4 Errors: The Sink Interface will go
out-of-frame (assert SnkOof) and stop accepting data
from the SPI-4.2 bus after receiving NumDip4Errors
consecutive DIP-4 errors.

NumTrainSequences[3:0] Static
Input

1-15

Value of 0 is set to 1

Number of Complete Training Sequences: A
complete training pattern consists of 10 training
control words and 10 training data words. The Sink
interface requires NumTrainSequences consecutive
training patterns before going in frame (deasserting
SnkOof) and accepting data from the SPI-4.2 bus.

SnkCalendar_M[7:0] Input 0-255

(effective range 1-256)

Sink Calendar Period: The SnkCalendar_M parameter
sets the number of repetitions of the calendar sequence
before the DIP-2 parity and framing words are
inserted.

The core implements this parameter as a static register
synchronous to SnkStatClk, and it can be updated in
circuit by first deasserting SnkEn.

Note that the Sink Calendar Period equals
SnkCalendar_M + 1. For example, if
SnkCalendar_M=22, the Sink Calendar Period will be
equal to 23.

SnkCalendar_Len[8:0] Input 0-511

(effective range 1-512)

Sink Calendar Length: The SnkCalendar_Len
parameter sets the length of the calendar sequence.

The core implements this parameter as a static register
synchronous to SnkStatClk, and it can be updated in
circuit by first deasserting SnkEn.

Note that the Sink Calendar Length equals
SnkCalendar_Len + 1. For example, if
SnkCalendar_Len=15, the Sink Calendar Length will
be equal to 16.

SnkAFThresAssert[8:0] Static
Input

1–508
Values less than1 are
set to 1.
Values greater than
508 are set to 508.

Sink Almost Full Threshold Assert: The
SnkAFThresAssert parameter defines the minimum
number of empty FIFO locations that exist when
SnkAlmostFull_n is asserted. Note that the assert
threshold must be less than or equal to the negate
threshold (SnkAFThresNegate).

When SnkAlmostFull_n is asserted, the core initiates
the flow control mechanism selected by the parameter
FifoAFMode. The FifoAFMode defines when the
interface stops sending valid FIFO status levels and
begins sending flow control information on RStat. This
indicates to the transmitting device that the core is
almost full and additional data cannot be sent.

http://www.xilinx.com

28 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

SnkAFThresNegate[8:0] Static
Input

SnkAFThresAssert to
508
Values less than
SnkAFThresAssert are
set to
SnkAFThresAsset.
Values greater than
508 are set to 508.

Sink Almost Full Threshold Negate: The
SnkAFThresNegate parameter defines the minimum
number of empty FIFO locations that exist when
SnkAlmostFull_n is deasserted. Note that the negate
threshold must be greater or equal to the assert
threshold (SnkAFThresAssert).

When SnkAlmostFull_n is deasserted, the core stops
sending flow control (deasserts SnkAlmostFull_n) and
resumes transmission of valid FIFO status levels. This
indicates to the transmitting device that additional
data can be sent.

RSClkDiv Static
Input

n/a Sink Status Clock Divide: This static input is used to
determine if the RSClk is 1/4 of the data rate, which is
compliant with the OIF specification, or 1/8 of the data
rate, which is required by some PHY ASSPs:

0: RSClkDiv = 1/4 rate (default value)

1: RSClkDiv = 1/8 rate

RSClkPhase Static
Input

n/a Sink Status Clock Phase: This static input determines
whether the FIFO Status Channel data (RStat[1:0])
changes on the rising edge of RSClk or the falling edge
of RSClk:

0: RSClkPhase = rising edge of RSClk (default value)

1: RSClkPhase = falling edge of RSClk

FifoAFMode[1:0] Static
Input

n/a Sink Almost Full Mode: Selects the mode of operation
for the Sink interface when the Sink core reaches the
Almost Full threshold (SnkAFThresAssert).

If FifoAFMode is set to “00,” the Sink interface goes
out-of-frame when the core is almost full, and the Sink
Status logic sends the framing sequence “11” until Sink
core is not almost full.

If FifoAFMode is set to “01,” the Sink interface remains
in frame (SnkOof deasserted), and the Sink Status logic
sends satisfied “10” on all channels until
SnkAlmostFull_n is deasserted.

If FifoAFMode is set to “10” or “11,” the Sink interface
will remain in frame (SnkOof deasserted), and the Sink
Status logic continues to drive out the user’s status
information (i.e., continues in normal operation). In
this case, you should take immediate action to prevent
overflow and loss of data.

Table 2-6: Sink Static Configuration Signals (Continued)

Name Direction Range Description

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 29
UG181 June 27, 2008

Sink Core Interfaces
R

Sink Clocking Interface

The Sink core supports two clocking implementations: embedded clocking and user
clocking. The embedded clocking configuration provides a complete solution with the
clock circuitry embedded within the Sink core. The user clocking configuration allows the
clocking scheme to be implemented external to the Sink core.

A list of the Sink clocks for embedded clocking and their description is provided in
Table 2-7. Table 2-8 defines the DCM reset and clock status signals, and Table 2-9 defines
the user clocking signals. The minimum frequency for all clocks is dependent on the
minimum frequency of the DCM.

Table 2-7: Sink Core Clocks: Embedded Clocking

Clock Pins Direction Description Max. Frequency

RDClk0_GP Output
(User Interface)

RDClk0 General Purpose:
This clock is the full Rate
Receive Data Clock. It is
used for clocking the
internal logic of the core and
is routed to the User
Interface for use by the
user’s logic.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

RDClk180_GP Output
(User Interface)

RDClk180 General
Purpose: This clock is the
inverted equivalent of
RDClk0_GP. It is used for
clocking the internal logic of
the core and is routed to the
User Interface for use by the
user’s logic.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

Table 2-8: Sink Core Clocks: Status Signals

Name Direction
Clock

Domain
Description

DCMReset_RDClk Input N/A Reset of RDClk’s DCM

Locked_RDClk Output N/A Locked status of RDClk’s DCM

DCMLost_RDClk Output N/A Indicates RDClk input has stopped (status bit
one of RDClk DCM)

SnkClksRdy Output N/A Indicates all Sink core clocks are ready for use

http://www.xilinx.com

30 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

Source Core Interfaces
The Source core includes five functional modules:

• Source Data FIFO

• Source Data Transmit

• Source Status Registers

• Source Calendar

• Source Status Receive

The Source core is comprised of the following interfaces:

• Source SPI-4.2 Interface

• Source User Interface

♦ Source Control and Status Interface

♦ Source FIFO Interface

♦ Source Status and Flow Control Interface

- Calendar Control Interface

- Status FIFO Interface

♦ Source Configuration Signals Interface

♦ Source Clocking Interface

Table 2-9: Sink Core Clocks: User Clocking

Clock Pins Direction Description Max. Frequency

RDClk0_USER Input

(User Interface)

RDClk0_USER: This clock
is used for clocking the
internal logic of the core.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

RDClk180_USE
R

Input

(User Interface)

RDClk180_USER: This
clock is the inverted
equivalent of
RDClk0_USER. It is used
for clocking the internal
logic of the core.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 31
UG181 June 27, 2008

Source Core Interfaces
R

Figure 2-3 illustrates the functional modules and signals in each interface—all signals are
defined in sections following this illustration.

Source SPI-4.2 Interface
The SPI-4.2 interface uses LVDS I/O buffers to transmit 16-bit data words. The data words
received on the User Interface and the out-of-band control words are multiplexed onto the
SPI-4.2 Lite 16-bit databus. The source core supports a 32-bit and 64-bit user interface,
which allows it to run at a half (32-bit interface) or quarter (64-bit interface) of the data rate.
For example, for a 200 Mbps SPI-4.2 data rate and a 32-bit interface, you can write data into
the Source core at 100 MHz. If a 64-bit interface is used, you can write data into the Source
core at 50 MHz and maintain the same data rate.

Figure 2-3: Source Core Block Diagram and I/O Interface Signals

SPI-4.2 Lite Source Core

Control
and Status
Interface

Source Data
Transmit

Source Data
FIFO

Reset_n

SPI4.2
Source

Interface

FIFO
Interface

FIFO
Status

Interface

Calendar
Control

Interface

Source Status
Registers

Source
Calendar

Source Status
Receive

SrcFifoReset_n

SrcTriStateEn

TDClk

TDat[15:0]

TSClk

TStat[1:0]

TCtl

SysClk

SrcOof

SrcDIP2Err

SrcEn

TrainingRequest

IdleRequest

SrcPatternErr

SrcFFClk

SrcFFWrEn_n

SrcFFAddr[7:0]

SrcFFData[63:0] or [31:0]

SrcFFMod[2:0] or [1:0]

SrcFFSOP

SrcFFErr

SrcFFEOP

SrcFFAlmostFull_n

SrcFFOverflow_n

SrcStat[31:0]

SrcCalClk

SrcCalWrEn_n

SrcCalAddr[8:0]

SrcCalData[7:0]

Static Configuration Signals

SrcStatClk

SrcCalDataOut[7:0]

SrcStatAddr[3:0]

SrcStatCh[7:0]

SrcStatChValid

http://www.xilinx.com

32 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

In addition to transmitting 16-bit data words, the SPI-4.2 interface also receives flow
control data at 1/4 rate of its data interface. The 2-bit status received can be presented to
you in 2 interfaces: transparent and addressable.

Table 2-10 defines the Source SPI-4.2 interface signals.

Source User Interface
The Source User Interface includes all signals other than those on the SPI-4.2 interface. The
high performance logic on the Source back-end enables the user interface to run at higher
frequencies than the SPI-4.2 interface. This is sometimes required if a large percentage of
the traffic consists of small packets.

The Source User Interface is subdivided into 5 smaller interfaces. Each of these signal types
are presented in detail below:

• Control and Status Interface. The signals of this interface apply to the operation of
the Sink core.

• FIFO Interface. The signals of this interface allow you to access data received on the
SPI-4.2 Interface.

• Status and Flow Control Interface. The signals of this interface send flow control
information on the SPI-4.2 Interface.

• Static Configuration Interface.The signals of this interface allow you to configure the
core.

• Clocking Interface. The signals of this interface report the status of the clocks and
include the general purpose clocks.

Table 2-10: Source SPI-4.2 Interface Signals

Name Direction
Clock

Domain
Description

TDClk_P

TDClk_N

Output n/a SPI-4.2 Transmit Data Clock (LVDS): Source
synchronous clock transmitted with TDat. The
rising and falling edges of this clock (DDR) are
used to clock TDat and TCtl.

TDat_P[15:0]

TDat_N[15:0]

Output TDClk SPI-4.2 Transmit Data Bus (LVDS): The 16-bit data
bus is used to transmit SPI-4.2 data and control
information.

TCtl_P

TCtl_N

Output TDClk SPI-4.2 Transmit Control (LVDS): SPI-4.2 Interface
signal that defines whether data or control
information is present on the TDat bus. When TCtl
is Low, data is present on TDat. When TCtl is High,
control information is present on TDat.

TSClk Input n/a SPI-4.2 Transmit Status Clock: Source
synchronous clock that is received by the Source
core with TStat at 1/4 rate (or 1/8 rate) of TDClk.
You can select this signal to be transmitted as
LVTTL or LVDS.

TStat[1:0] Input TSClk SPI-4.2 Transmit FIFO Status: FlFO-Status-
Channel flow control interface. You can select this
bus to be transmitted as LVTTL or LVDS.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 33
UG181 June 27, 2008

Source Core Interfaces
R

Source Control and Status Interface

The Source Control and Status signals either control the operation of the entire Source core
or provide status information that is not associated with a particular channel (port) or
packet. Table 2-11 defines the source control and status signals.

Table 2-11: Source Control and Status Signals

Name Direction
Clock

Domain
Description

Reset_n Input n/a Reset_n: This active low, asynchronous control signal enables you to restart the
entire Source core. This means that the core will go out-of-frame. While Reset_n
is asserted, the Source core transmits idles cycles on TDat. Coming out of
Reset_n, the Source core transmits training patterns.

Following the release of Reset_n, the Source Calendar should be programmed
if the calendar is to be initialized in-circuit.

SrcFifoReset_n Input SrcFFClk SrcFifoReset_n: This active low control signal enables you to reset the Source
FIFO and the associated data path logic. This enables the FIFO to be cleared
while remaining in frame.

Upon Source FIFO Reset, the Source core sends idle cycles until you writes data
into the FIFO.

SrcEn Input SrcStatClk Source Enable: Active high signal that enables the Source core. When SrcEn is
deasserted, the Source core will not store or verify received status information.
The Source core will also assert SrcOof, and deassert SrcDIP2Err and
SrcPatternErr. When SrcEn is deasserted, the Source core will transmit training
patterns on TDat.

SrcOof Output SrcFFClk Source Out-of-Frame: When this signal is asserted (active high), it indicates
that the SPI-4.2 Lite Source core is not in frame. This signal is asserted when the
Source core has lost synchronization on the transmit FIFO status interface. This
is caused by the receipt of consecutive DIP-2 parity errors (determined by the
parameter NumDip2Errors), invalid received status frame sequence (of four
consecutive frame words "11"), or when SrcEn is deasserted.

This signal is deasserted once the Source core reacquires synchronization with
the SPI-4.2 transmit Status Channel. Synchronization occurs when consecutive
valid DIP2 words (determined by the Static Configuration signal
NumDip2Matches) are received and SrcEn is asserted.

SrcOofOverride Input SrcFFClk Source Out-of-Frame Override: When this signal is asserted, the source core
behaves like it is in frame and sends data on TDat, regardless of the status
received on TStat. This signal is used for system testing and debugging.

SrcDIP2Err Output SrcFFClk Source DIP-2 Parity Error: When this signal is asserted (active high), it
indicates that a DIP-2 parity error was detected on TStat. This signal is asserted
for one clock cycle each time a parity error is detected.

SrcStatFrameErr Output SrcFFClk Source Status Frame Error: When this signal is asserted (active high), it
indicates that a non “11” frame word was received after DIP2 on TStat. This
signal is asserted for one clock cycle each time an error frame word is detected.

http://www.xilinx.com

34 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

SrcPatternErr Output SrcFFClk Source Data Pattern Error: When this signal is asserted (active high), it
indicates that the data pattern written into the Source FIFO is illegal. Illegal
patterns include the following:

• Burst of data terminating on a non-credit boundary (not a multiple
of 16 bytes) with no EOP

• Non-zero value on SrcFFMod when SrcFFEOP is deasserted
This signal is asserted for one clock cycle each time an illegal data pattern is
written into the Source FIFO.

IdleRequest Input SrcFFClk Idle Request: This is an active high signal that requests idle control words be
sent out of the Source SPI-4.2 interface. The Source core responds by sending
out idle control words at the next burst boundary. This signal overrides normal
SPI-4.2 data transfer requests, but it does not override training sequence
requests (TrainingRequest).

Activating the request for idle cycles does not affect the Source FIFO contents
or the user side operation.

TrainingRequest Input SrcFFClk Training Pattern Request: This is an active high signal that requests training
patterns be sent out of the Source SPI-4.2 interface. The Source core responds
by sending out training patterns at the next burst boundary. This signal
overrides idle requests (IdleRequest) and normal SPI-4.2 data transfers.

Activating the request for training cycles does not affect the Source FIFO
contents or the user side operation.

SrcTriStateEn Input SrcFFClk SrcTriStateEn: This is an active high control signal that enables you to tri-state
the IOB drivers for the following Source core outputs: TDClk, TDat[15:0], and
TCtl.

When SrcTriStateEn=0 the outputs are not tri-stated.

When SrcTriStateEn=1 the outputs are tri-stated.

Default setting for this signal is disabled (SrcTriStateEn=0.)

Table 2-11: Source Control and Status Signals (Continued)

Name Direction
Clock

Domain
Description

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 35
UG181 June 27, 2008

Source Core Interfaces
R

Source FIFO Interface

The Source FIFO Interface signals allow you to write data into the FIFO to be transmitted
on the SPI-4.2 Interface. Table 2-12 defines the Source FIFO signals.

Table 2-12: Source FIFO Signals

Name Direction
Clock

Domain
Description

SrcFFClk Input n/a Source FIFO Clock: All Source FIFO Interface signals are
synchronous to the rising edge of this clock.

SrcFFWrEn_n Input SrcFFClk Source FIFO Write-Enable: When asserted (active low) at the rising
edge of SrcFFClk, data and packet information is written into the
FIFO.

SrcFFAddr[7:0] Input SrcFFClk Source FIFO Channel Address: Channel number associated with
the data on SrcFFData.

SrcFFData[31:0]

or

SrcFFData[63:0]

Input SrcFFClk Source FIFO Data: The Source FIFO data bus. Bit 0 is the LSB. The
core can be configured to have a 32-bit or a 64-bit interface. The 64-
bit interface enables you to run at half the clock rate required for a
32-bit interface.

SrcFFMod[1:0]

or

SrcFFMod[2:0]

Input SrcFFClk Source FIFO Modulo: This signal indicates which bytes on the
SrcFFData bus are valid when the SrcFFEOP or SrcFFErr signal is
asserted. When SrcFFEOP is deasserted, SrcFFMod should always
be zero.

SrcFFMod[1:0] is used with a 32-bit interface.

SrcFFMod[2:0] is used with a 64-bit interface.

SrcFFSOP Input SrcFFClk Source FIFO Start of Packet: When asserted (active high), this
signal indicates that the start of a packet is being written into the
Source FIFO.

SrcFFEOP Input SrcFFClk Source FIFO End of Packet: When asserted (active high), this signal
indicates that the end of a packet is being written into the Source
FIFO. May be concurrent with SrcFFSOP.

SrcFFErr Input SrcFFClk Source FIFO Error: When asserted (active high) simultaneously
with the SrcFFEOP flag, the current packet written into the FIFO
contains an error. This causes an EOP abort to be sent on the SPI-4.2
Interface.

SrcFFErr can be used in combination with SrcFFEOP to insert
erroneous DIP-4 values for testing purposes. When SrcFFErr is
asserted and SrcFFEOP is not asserted, the core inserts an EOP (1 or
2 bytes depending on the SrcFFMod value) with an erroneous DIP-
4 value. The erroneous DIP4 value is an inversion of the correctly
calculated value.

SrcFFAlmostFull_n Output SrcFFClk Source FIFO Almost Full: When asserted (active low), this signal
indicates that the FIFO is approaching full, and no more data
should be written.

SrcFFOverflow_n Output SrcFFClk Source FIFO Overflow: When asserted (active low), this signal
indicates that the FIFO has overflowed and is in an error condition.
No more data can be written until it is deasserted. SrcFFWrEn_n is
ignored if SrcFFOverflow_n is asserted.

http://www.xilinx.com

36 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

Source Status and Flow Control Interface (Calendar Control and Status
FIFO)

The Source Status and Flow Control Interface enables you to receive flow control data from
the SPI-4.2 interface. The status information is received based on the channel order and
frequency defined in the programmable calendar. The Source Calendar Control signals are
defined in Table 2-13. The Source Status FIFO Signals are defined in Table 2-14. Table 2-15
defines Source Static Configuration signals.

Table 2-13: Source Calendar Control Signals

Name Direction
Clock

Domain
Description

SrcCalClk Input n/a Source Calendar Clock: All Source calendar signals are synchronous
to this clock.

SrcCalWrEn_n Input SrcCalClk Source Calendar Write Enable: When this signal is asserted (Active
Low), the Source Calendar is loaded with the data on the SrcCalData
bus on the rising edge of SrcCalClk.

SrcCalAddr[8:0] Input SrcCalClk Source Calendar Address: When SrcCalWrEn_n is asserted, this bus
indicates the calendar address to which the data on SrcCalData is
written. When SrcCalWrEn_n is deasserted, this bus indicates the
calendar address from which the data on SrcCalDataOut is driven.

SrcCalData[7:0] Input SrcCalClk Source Calendar Data: This bus contains the channel number to
write into the calendar buffer when SrcCalWrEn_n is enabled. The
channel numbers written into the calendar indicate the order that
status is updated on the SrcStat bus.

SrcCalDataOut[7:0] Output SrcCalClk Source Calendar Data Output: This Source Calendar Data Output
bus contains the channel number that is read from the calendar buffer
when SrcCalWrEn_n is disabled. The channel numbers read from the
calendar indicates the order that status is updated on SrcStat bus.

Table 2-14: Source Status FIFO Signals

Name Direction
Clock

Domain
Description

SrcStatClk

(Addressable I/F
Only)

Input n/a Source Status Clock: For the Addressable Interface, all Source Status
read signals are synchronous to this clock.

For the Transparent Interface, this clock signal is not present. For this
interface, all signals are synchronous to TSClk_GP.

SrcStat[31:0]

(Addressable I/F
Only)

SrcStat[1:0]

(Transparent I/F Only)

Output SrcStatClk

(Addressabl
e I/F only)

TSClk_GP

(Transparent
I/F only)

Source Status: For the Addressable Interface, the 32-bit Source Status
bus is the dedicated 16-channel interface. You can read the status for
16-channels each clock cycle. The 16-channel status that are accessed
simultaneously are grouped in the following manner: channel 15 to
0, channel 31 to 16, channel 47 to 32, ..., channel 255 to 240.

For the Transparent Interface, this Source Status bus is two bits wide
and represents the last status received.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 37
UG181 June 27, 2008

Source Core Interfaces
R

Source Static Configuration Interface

These signals are inputs to the core that are statically driven by setting them to a constant
value in the top-level wrapper file. The SPI-4.2 Lite release includes a wrapper file that has
the static configuration signals connected to the values selected in the CORE Generator
GUI. Customization of these signals is done using the GUI.

Three of the Source Static Configuration signals can be changed in-circuit. There are static
registers for SrcBurstLen (synchronous to SrcFFClk), and SrcCalendar_M and
SrcCalendar_Len (synchronous to SrcStatClk.) To change these parameters while the
core is operational, you must first deassert SrcEn.

SrcStatAddr[3:0]

(Addressable I/F
Only)

Input SrcStatClk Source Status Address:

For the Addressable Interface, the Source Status Address determines
which group of 16-channels gets its status driven onto SrcStat on the
following clock cycle. The address bus is associated with banks of
channels as follows:

Bank 0: SrcStatAddr=0 channel 15-0

Bank 1: SrcStatAddr=1, channel 31-16

Bank 2: SrcStatAddr=2, channel 47-32

...

Bank 15: SrcStatAddr=15 channel 255-240

For the Transparent Interface, this signal is not present.

SrcStatCh[7:0] Output TSClk_GP Source Status Channel: The Source Status Channel is an 8-bit bus
containing the channel address that is being updated on the
SrcStatAddr bus in the current clock cycle.

SrcStatChValid Output TSClk_GP Source Status Channel Valid: When asserted, Source Status Channel
Valid indicates that the value on SrcStatCh is valid. When the core is
processing DIP-2 or frame words, SrcStatChValid is deasserted. Note
that a transition of the SrcStatChValid from 0 to 1 indicates that the
core has started a new calendar sequence.

Table 2-14: Source Status FIFO Signals (Continued)

Name Direction
Clock

Domain
Description

http://www.xilinx.com

38 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

Note that there are legal values for each of the signals. If the configuration signal is set to an
illegal number, the core automatically sets it to the minimum value. Table 2-15 defines the
Source Static Configuration signals.

Table 2-15: Source Static Configuration Signals

Name Direction Range Description

SrcBurstMode Static Input 0 or 1 Source Burst Mode: When SrcBurstMode is set to zero,
the Source core transmits data in the FIFO if the data in
the FIFO is terminated by an EOP or if there is a
complete credit of data.

When SrcBurstMode is set to1, the Source core only
transmits data that is terminated by an EOP or when
there is data in the FIFO equal to the maximum burst
length defined by SrcBurstLen.

SrcBurstLen[5:0] Input 1-63

Values equal to 0 are set
to 1.

Source Burst Length: The Source core automatically
segments packets larger than this parameter into
multiple bursts, which are each SrcBurstLen in length.
This parameter is defined in credits (16 bytes).
The core implements this parameter as a static register
synchronous to SrcFFClk, and it can be updated in
circuit by first deasserting SrcEn.

SrcAFThresAssert[8:0] Static Input If SrcBurstMode = 0
1 to 508
Values less than 1 are set
to 1.
Values greater than 508
are set to 508.

If SrcBurstMode = 1
SrcBurstLen to 508.
Values less than
SrcBurstLen are set to
SrcBurstLen.
Values greater than 508
are set to 508.

Source Almost Full Threshold Assert: The
SrcAFThresAssert parameter specifies the minimum
number of empty FIFO locations that exist in the Source
FIFO before the Almost Full signal (SrcFFAlmostFull_n)
is asserted.

If SrcBurstMode=0, then SrcAFThresNegate is greater
than or equal to SrcAFThresAssert.

If SrcBurstMode=1, then:

(1) SrcAFThresNegate is greater than or equal to
SrcAFThresAssert

(2) SrcAFThresNegate and SrcAFThresAssert are
greater than or equal to SrcBurstLen

SrcAFThresNegate[8:0] Static Input SrcAFThresAssert to
508

Values less than
SrcAFThresAssert are
set to
SrcAFThresAssert.

Values greater than 508
are set to 508.

Source Almost Full Threshold Negate: The
SrcAFThresNegate parameter specifies the minimum
number of empty FIFO locations that exist in the Source
FIFO before the Almost Full signal (SrcFFAlmostFull_n)
is deasserted.

If SrcBurstMode=0, then:

SrcAFThresNegate is greater than or equal to
SrcAFThresAssert.

If SrcBurstMode=1, then:

(1) SrcAFThresNegate is greater than or equal to
SrcAFThresAssert

(2) SrcAFThresNegate and SrcAFThresAssert are
greater than or equal to SrcBurstLen

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 39
UG181 June 27, 2008

Source Core Interfaces
R

Source Clocking Interface

The Source core supports two clocking implementations: master clocking and slave
clocking. The master clocking configuration provides a complete solution with the clock
circuitry embedded within the Source core. The slave clocking configuration allows the
clocking scheme to be implemented external to the Source core.

A list of the Source clocks for master clocking and their description is provided in
Table 2-16. Table 2-17 defines the Source Core clock status signals, and Table 2-18 defines

SrcCalendar_M[7:0] Input 0-255

(effective range 1-256)

Source Calendar Period: The SrcCalendar_M
parameter sets the number of repetitions of the calendar
sequence before the DIP-2 parity and framing words are
received.

The Source core implements this parameter as a static
register synchronous to SrcStatClk, and it can be
updated in circuit by first deasserting SrcEn.

Note that the Source Calendar Period equals
SrcCalendar_M + 1. For example, if SrcCalendar_M=22,
the Source Calendar Period will be equal to 23.

SrcCalendar_Len[8:0] Input 0-511

(effective range 1-512)

Source Calendar Length: The SrcCalendar_Len
parameter sets the length of the calendar sequence.

The Source core implements this parameter as a static
register synchronous to SrcStatClk, and it can be
updated in circuit by first deasserting SrcEn.

Note that the Source Calendar Length equals
SrcCalendar_Len + 1. For example, if
SrcCalendar_Len=15, the Source Calendar Length will
be equal to 16.

DataMaxT[15:0] Static Input 0, 16-65535 Maximum Data-Training Interval: Maximum interval
between scheduling of training sequences on the SPI-
4.2 data path (in SPI-4.2 bus cycles). Note that setting
DataMaxT to zero configures the core to never send
periodic training.

AlphaData[7:0] Static Input 0-255 Data Training Pattern Repetitions: Number of
repetitions of the 20-word data training pattern. Note
that setting AlphaData to zero configures the core to not
periodically send training patterns. In this case, you can
manually send training patterns by asserting the
TrainingRequest command.

NumDip2Errors[3:0] Static Input 1-15

Value equal to 0 gets set
to 1

Number of DIP-2 Errors: The Source Interface will go
out-of-frame (SrcOof asserted) and stop transmitting
SPI-4.2 data across the data bus after receiving
NumDip2Errors consecutive DIP-2 errors.

NumDip2Matches[3:0] Static Input 1-15

Value equal to 0 gets set
to 1

Number of DIP-2 Matches: The Source Interface
requires NumDip2Matches consecutive DIP-2 matches
before going in-frame and beginning to transfer SPI-4.2
data across the SPI-4.2 data bus.

Table 2-15: Source Static Configuration Signals (Continued)

Name Direction Range Description

http://www.xilinx.com

40 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

the slave clocking signals. The minimum frequency for all clocks is dependent on the
minimum frequency of the DCM.

Table 2-16: Source Core Clocks: Master Configuration

Clock Pins Direction Description Max Freq.

SysClk_P

SysClk_N

Input

(differential)

SysClk: A The frequency of
TDClk is the same as SysClk.

It is recommended that
SysClk should be a low jitter
(<50ps) reference clock, as
any jitter present on the
SysClk input will appear on
the TDClk output.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

SysClk0_GP Output

(user interface)

SysClk0 General Purpose:
This clock is generated from
SysClk. It is used to clock the
Internal Source core logic.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

SysClk180_GP Output

(user interface)

SysClk180 General
Purpose: This clock is
generated from SysClk and
the inverted equivalent of
SysClk0_GP. It is used to
clock the internal Source
core’s logic.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

TSClk_GP Output

(user interface)

TSClk General Purpose:
This clock is generated from
TSClk. It is a quarter the
frequency of TDClk.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

Table 2-17: Source Core Clock Status Signals: Master Configuration

Signal Name Direction
Clock

Domain
Description

DCMReset_TDClk Input N/A Reset of TDClk DCM

Locked_TDClk Output N/A Locked status of TDClk DCM

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 41
UG181 June 27, 2008

Source Core Interfaces
R

DCMLost_TDClk Output N/A Indicates TDClk input has stopped (status
bit one of TDClk DCM)

SrcClksRdy Output N/A Indicates all Source core clocks are ready
for use.

Table 2-18: Source Core Clocks: Slave Configuration

Clock Pins Direction Description Max Freq.

SysClk0_GBSLV Input

(user interface)

SysClk0: This clock is
used to clock the internal
source core logic.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

SysClk180_GBSL
V

Input

(user interface)

SysClk180: This clock is
the inverted equivalent of
SysClk0_GBSLV. It is used
to clock the internal
Source core logic.

Virtex-5: 275 MHz

Virtex-4: 190 MHz

Virtex-II Pro: 160 MHz

Virtex-II: 160 MHz

Spartan-3: 115 MHz

Spartan-3E: 90 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

TSClk_GBSLV Input

(user interface)

TSClk: This clock is one-
fourth the frequency of
TDClk.

Virtex-5: 69 MHz

Virtex-4: 47.5 MHz

Virtex-II Pro: 40 MHz

Virtex-II: 40 MHz

Spartan-3: 28.75 MHz

Spartan-3E: 22.5 MHz

Spartan-3A/3AN/3A DSP:
105 MHz

Table 2-17: Source Core Clock Status Signals: Master Configuration (Continued)

Signal Name Direction
Clock

Domain
Description

http://www.xilinx.com

42 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 2: Core Architecture
R

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 43
UG181 June 27, 2008

R

Chapter 3

Generating the Core

The SPI-4.2 Lite core is a fully configurable implementation of the OIF-SPI4-02.1
Specification. Using the CORE Generator GUI, you can configure the core and customize
the delivered files including the example wrapper and UCF files.

Note: After the core is generated, only static configuration signals options can be modified by
changing the input values. If other modifications are required, you must regenerate the core with new
options.

CORE Generator Graphical User Interface
The SPI-4.2 Lite CORE Generator GUI consists of five windows:

• Main window. Enables you to generate specific hardware components (using
dedicated logic resources) and select options that apply to both the Sink and Source
cores.

• Sink core options. Two windows are provided for configuring the Sink core.

• Source core options. Two windows are provided for configuring the Source core.

http://www.xilinx.com

44 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 3: Generating the Core
R

Main Screen
The main SPI-4.2 Lite screen defines the component name, core options, and UCF File
options.

Component Name

The Component Name is the base name of the output files generated for the core. The
name must begin with a letter and be composed of the following characters: a to z, 0 to 9,
and “_”.

Core Options

Number of Channels

The SPI-4.2 Lite core supports between 1 and 256 channels.

User Data Interface

The SPI-4.2 Lite core supports either 32-bit or 64-bit user data interface.

UCF Information

This section displays a summary of the contents of the example UCF file that will be
generated.

Sink Status Options Screen
This screen contains options for the static configuration parameters of the Sink core. The
static configuration parameters below determine the behavior of the status interface.

Figure 3-1: SPI-4.2 Lite Sink and Source Main Customization Screen

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 45
UG181 June 27, 2008

Sink Status Options Screen
R

Calendar
Options in this section affect the behavior of the Sink core with respect to its calendar and
status interfaces.

Iterations of Calendar Sequence Before DIP2

This is the value of static configuration signal SnkCalendar_M; it is the number of times
the Sink core will repeat the calendar sequence before sending a DIP2 value and frame
word on RStat. The valid range is 1 to 256.

Length of Calendar Sequence

This is the value of static configuration signal SnkCalendar_Len; it is the number of
entries in the calendar sequence. The valid range is 1 to 512.

Load Init File

If this option is selected, the Sink core calendar block RAM will be initialized at startup
with a sequence loaded from a COE file. The sequence can be overwritten at runtime via
the calendar interface.

Load Coefficients

For this option, select the name of the COE file with the calendar programming
information. For more information see “Calendar COE File Format,” page 50.

Show Coefficients

This shows the contents of the loaded COE file.

Flow Control
This option selects the value of static configuration signal FifoAFMode; it determines the
behavior of the Sink core status interface when the internal FIFO is almost full. See
“FifoAFMode and Sink Almost Full,” page 67.

Send Satisfied on All Channels

This causes the Sink core to send the satisfied (“10”) status on RStat for each channel.

Send Framing

This causes the Sink core to send framing (“11”) on RStat and go out-of-frame.

Send Current Status

This causes the Sink core to continue sending the stored status value on RStat for each
channel.

Status Interface
This option selects the default static configuration parameters for Sink core status channel
clocking and I/O type.

http://www.xilinx.com

46 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 3: Generating the Core
R

Rate

This is the value of static configuration signal RSClkDiv; it selects the frequency of RSClk
with respect to RDClk.

Alignment

This is the value of static configuration signal RSClkPhase; it determines whether RStat
transitions on the rising or falling edge of RSClk.

Status I/O

This controls whether RStat and RSClk I/O in the generated wrapper file use LVDS or
LVTTL I/O.

Sink Other Options Screen
This window contains options that affect the FIFO flags, clocking implementation, status
channel behavior, and I/O type.

Synchronization
These options select the default static configuration parameters for core synchronization.

Number of Training Sequences

This is the value of static configuration signal NumTrainSequences; it is the number of
training sequences the Sink core must receive on RDat before going in-frame and transiting
from framing to status on RStat. The valid range is 1 to 15.

Number of DIP4 Errors

This is the value of static configuration signal NumDIP4Errors; it is the number of
consecutive control words with invalid DIP4 values the Sink core must receive on RDat
before going out-of-frame and sending framing on RStat. The valid range is 1 to 15.

FIFO Threshold
These options select the default static configuration parameters for Sink core FIFO
Threshold behavior.

Almost Full Assert

This is the value of static configuration signal SnkAFThresAssert; it is the internal FIFO
level at which the Sink core will assert SnkFFAlmostFull_n and take the specified flow
control action. The valid range is 1–508 and is measured from the full level. For example, if
the value chosen is 10, SnkFFAlmostFull_n will be asserted when there are 10 FIFO
locations empty.

Almost Full Negate

This is the value of static configuration signal SnkAFThresNegate; it is the internal FIFO
level at which the Sink core will deassert SnkFFAlmostFull_n and return RStat behavior

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 47
UG181 June 27, 2008

Source Status Options Screen
R

to normal. The valid range is the Almost Full Assert value to 508 and is also measured from
the full level.

Clocking

Clock Mode

The Sink core netlist will contain a complete clocking solution if Embedded Clocking is
selected. If User Clocking is selected, you must provide a clock generation method
external to the Source core. For more information, see “Sink Clocking Options,” page 111.

Clock Distribution

If User Clocking is selected for the Virtex-4 and Virtex-5 device architectures, the RDClk
clocking implementation can use either global or regional clock buffers. For more
information, see “Sink Clocking Options,” page 111.

Source Status Options Screen
This screen contains options for the static configuration parameters of the Source core. The
static configuration parameters below determine the behavior of the status interface.

Calendar
This describes the status pattern that the Source core expects on its status interface.

Iterations of Calendar Sequence Before DIP2

This is the value of static configuration signal SrcCalendar_M; it is the number of times
the Source core will expect the calendar sequence to repeat before seeing a DIP2 value and
framing on TStat. The valid range is 1 to 256.

Length of Calendar Sequence

This is the value of static configuration signal SrcCalendar_Len; it is the number of
entries in the calendar sequence. The valid range is 1 to 512.

Load Init File

If this option is selected, the Source core calendar block RAM will be initialized at startup
with a sequence loaded from a COE file.

Load Coefficients

This option lets you select the name of the COE file with calendar programming
information. For more information see “Calendar COE File Format,” page 50.

Show Coefficients

This option lets you view the contents of the loaded COE file.

http://www.xilinx.com

48 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 3: Generating the Core
R

Status Interface

Status FIFO Interface

This option selects whether the Source core netlist is generated with an addressable or
transparent user status interface. For more information, see the “Source Status and Flow
Control Signals,” page 85.

Status I/O

This option controls whether the Source core status I/O in the generated wrapper file uses
LVDS or LVTTL I/O.

Synchronization
These options select the default static configuration parameters for core synchronization.

Number of DIP2 Matches

This is the value of static configuration signal NumDIP2Matches; it is the number of
consecutive valid DIP2 words the Source core must observe on TStat before it goes in
frame, deasserts SrcOof, and begins to transmit data on TDat. The valid range is 1 to 15.

Number of DIP2 Errors

This is the value of static configuration signal NumDip2Errors; it is the number of
consecutive invalid DIP2 words the Source core must observe on TStat before going out-
of-frame. The valid range is 1 to 15.

Source Other Options Screen
This window contains options that affect data burst behavior, FIFO flag behavior, and
clocking implementation.

Bursting
This selects the static configuration parameters that determine Source core transmit
behavior.

Number of Data Cycles Before Training

This is the value of static configuration signal DataMaxT; it is the approximate number of
cycles of data the Source core will transmit on TDat between periodic training sequences.
The valid values are 0 and 16 to 65535. A value of 0 indicates that the core will not send
periodic training.

Number of Training Patterns During Training

This is the value of static configuration signal AlphaData; it is the number of training
patterns the Source core will transmit on TDat each time periodic training is sent. The valid
range is from 0 to 255. A value of 0 indicates that the core will not send periodic training.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 49
UG181 June 27, 2008

Source Other Options Screen
R

Burst Size in Credits

This is the value of static configuration signal SrcBurstLen; it is the maximum burst length
in credits. The valid range is from 1 to 63.

Burst Mode

This is the value of static configuration signal SrcBurstMode. It specifies how the Source
core transmits data. Complete Bursts Only causes the core to send only data bursts that
are of Burst Size (as defined above) or terminated by an EOP. Segmentation of Bursts at
Credit Boundary causes the core to send data bursts that terminate at any credit boundary
or with an EOP. See“Source Burst Mode,” page 93.

FIFO Threshold
This option lets you select the default static configuration parameters for Source core FIFO
Threshold behavior.

Almost Full Assert

This is the value of static configuration signal SrcAFThresAssert; it is the internal FIFO
level at which the Source core will assert SrcFFAlmostFull_n. When the burst mode is
selected to be complete burst only, the valid range of SrcAFThresAssert is from
SrcBurstLen to 508, otherwise the valid range is from 6 to 508. The Almost Full Assert value
is measured from the full level. For example, if the value chosen is 40,
SrcFFAlmostFull_n will be asserted when there are 40 FIFO locations empty.

Almost Full Negate

This is the value of static configuration signal SrcAFThresNegate; it is the internal FIFO
level at which the Source core will deassert SrcFFAlmostFull_n. The valid range is the
Almost Full Assert value to 508 and is also measured from the full level.

Clocking

Clock Mode

The Source core netlist will contain a complete clocking solution if Master Clocking is
selected. If Slave Clocking is selected, you must provide a clock generation method
external to the Source core. For more information, see “Source Clocking Options,” page
115.

SysClk Distribution

For Virtex-4 and Virtex-5 FPGA designs, the SysClk internal clocking implementation uses
either the global clock buffers or the regional clock buffers. For more information, see
“Source Clocking Options,” page 115.

TSClk Distribution

For Virtex-4 FPGA designs, the TSClk internal clocking implementation uses either the
global clock buffers or the regional clock buffers. For more information, see “Source
Clocking Options,” page 115.

http://www.xilinx.com

50 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 3: Generating the Core
R

Calendar COE File Format
The initial contents of the calendar can be assigned by specifying the desired information
in a separate text file called a COE file. To select and load a COE file, first create the desired
coe file, select Load Coefficients on the parameterization window, and choose the desired
file from the file dialog box. An example COE file for a 12-channel SPI-4.2 Lite core with a
round-robin calendar and a calendar length of 12 (SnkCalendar_Len = "11" or
SrcCalendar_Len = "11") follows:

MEMORY_INITIALIZATION_RADIX=16;
MEMORY_INITIALIZATION_VECTOR=00,01,02,03,04,05,06,07,08,09,0A,0B;

When specifying the initial contents for the calendar in a coe file, the keywords
MEMORY_INITIALIZATION_RADIX and MEMORY_INITIALIZATION_VECTOR are used.
The MEMORY_INITIALIZATION_VECTOR takes the form of a sequence of comma-
separated values, one value per calendar entry, terminated by a semicolon. These values
are listed in ascending order, where the first entry in the
MEMORY_INITIALIZATION_VECTOR is the first entry in the calendar. Any amount of
white space, including new lines, can be included in the vector to enhance readability. The
format of an individual value in the vector depends on the
MEMORY_INITIALIZATION_RADIX value, which can be 2, 10, or 16 (the default value is
10). The vector must be consistent with the MEMORY_INITIALIZATION_RADIX value and
each value must fall within the range of 0 to 255 (base 10).

Note that the number of entries in the coe file is not required to be the same as calendar
length specified in the GUI. If the calendar length is smaller than the number of entries, the
calendar sequence used in the core will be a subset of the calendar sequence specified in
the coe file. This subset will contain calendar entries 0 to Calendar Length-1 from the COE
file. If the calendar length is larger than the number of entries, the calendar sequence
specified in the coe file will be padded with zeros to match the calendar length.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 51
UG181 June 27, 2008

R

Chapter 4

Designing with the Core

This chapter contains general design guidelines, detailed descriptions about the behavior
of each interface, example waveforms, and implementation considerations. To design an
application using the SPI-4.2 Lite core, follow the guidelines provided in this chapter.

General Design Guidelines
This section describes the steps required to implement each feature of the SPI-4.2 Lite core
into a fully-functioning design integrated with user application logic. Remember that not
all designs will require all steps listed in this chapter.

We recommend you to follow the guidelines below for optimum results.

Know the Degree of Difficulty
A fully compliant SPI-4.2 Lite core is challenging to implement in any technology.

The degree of difficulty is significantly influenced by the following:

• Maximum system clock frequency

• Targeted device architecture

• Specific user application

All implementations require careful attention to system performance requirements.
Pipelining, placement constraints, and logic duplication are all methods you can use to
improve system performance.

Understand Signal Pipelining
Due to the nature of packet protocols, it is important to understand that the SPI-4.2 Lite
Sink and Source cores have been pipelined to maximize performance. The 32- or 64-bit
data written into the Source core user interface takes several clock cycles before appearing
on the SPI-4.2 interface. This is due to the pipelining required to format the packet, create
control words, calculate DIP4, etc.

Similarly, SPI-4.2 packets that are received by the Sink core take several clock cycles before
appearing on the user interface. This is due to the pipelining required to convert the
streaming input bus to an aligned output with packet information, error signals, and so on.
The exact latency of the Sink and Source cores will vary based upon core configuration,
and is best determined through simulation.

http://www.xilinx.com

52 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Keep it Registered
The best method to simplify timing and increase system performance in an FPGA design is
to keep everything registered. That is, all inputs and outputs from the user application
should come from, or connect to, a flip-flop. While registering signals may not be possible
for all paths, it simplifies timing analysis and helps you achieve timing closure.

Recognize Timing Critical Signals
Watch the timing and loading on the signals listed below. Some of these signals are part of
the critical timing path. The following list of signals are timing critical and may require
special attention when used in the user application:

• SnkFFRdEn_n

• SrcFFWrEn_n

Use Supported Design Flows
The SPI-4.2 Lite core has been tested with a variety of design flows. While other design
tools can be used to simulate and synthesize your design with the core, their functionality
cannot be guaranteed. See Chapter 7, “Simulating and Implementing the Core” for
information about supported design tools.

Make Only Allowed Modifications
All modifications to the SPI-4.2 Lite core must be made using the Xilinx CORE Generator.
Do not make other modifications as they may have adverse effects on system timing and
SPI-4.2 protocol compliance.

Initializing the SPI-4.2 Lite Core
The SPI-4.2 Lite Sink and Source cores require initialization before receiving and
transmitting data. The initialization steps are:

• Reset core

To reset the cores, the signal Reset_n must be asserted. The reset signal for each core
must remain asserted until the clocks are ready for use.

• Reset DCMs

This step is only applicable if TDClk or RDClk is distributed using global clocking. The
DCMs are only used when the global clocking option is selected. If regional clocking is
selected for all clocks, this step can be skipped. If one or more DCMs are used, you
must reset each DCM in the core while the core is in reset. Reset the DCM by asserting
the DCM reset signal (ex: DCMReset_RDClk). Once the DCM reset is asserted, wait for
the assertion of the DCM locked signal (ex: Locked_RDClk). When the locked signal
is asserted, the clock is ready for use.

See “Sink Clocking Options,” page 111 and “Source Clocking Options,” page 115 for
more information on the regional and global clocking options

• Deassert core reset

Once all the clocks are ready for use, the SnkClksRdy and SrcClksRdy signals will
assert. The Reset_n signal can be deasserted only when these signals are asserted.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 53
UG181 June 27, 2008

Sink Core
R

• Initializing Status Calendar

After the core exits the reset mode, the sink and status calendars must be initialized or
programmed. There are two ways to do this:

♦ Initialize calendar with a default value: Using the CORE Generator GUI load an
initialization file with the calendar contents. See Chapter 3, “Generating the Core”
for more information.

♦ Programming calendar after reset: Using the calendar control interface to
program the calendar contents. See “Sink Calendar Initialization,” page 62 and
“Source Calendar Initialization,” page 86 sections for more information.

After initializing the core, it can be enabled for operation.

Sink Core

Basic Operation
The Sink core receives data across the SPI-4.2 Lite interface and converts the 16-bit data
into 32-bit or 64-bit data words that can be accessed on the user interface. It also transmits
flow control information on the SPI-4.2 Lite interface by converting a 32-bit status bus to a
2-bit status word.

The following sections explain how the sink core interfaces operate. See “Sink Core
Interfaces,” page 19 for the signal list of each interface.

SPI-4.2 Interface
The SPI-4.2 data path combines 16-bit data words received on the SPI-4.2 Interface into 32-
or 64-bit data words. This allows you interface to run at half (32-bit interface), or a quarter
(64-bit interface) of the data rate. For example, for a 200 Mbps SPI-4.2 data rate and a 32-bit
user interface, you can read data from the Sink core at 100 MHz. If a 64-bit user interface is
used, data can be read from the Sink core at 50 MHz and maintain the same data rate.

After the data path combines the 16-bit data words received on the SPI-4.2 interface, the
data words are written into an asynchronous FIFO. The received 16-bit control words are
stored out of band in the FIFO, along with the corresponding data word. The received
control words that are not idle (training words) can contain the information listed below:

• Start or continuation of the following packet

• Link address of the following packet

• End of the preceding packet

• Number of valid bytes in the last word of the preceding packet

• Error conditions in the preceding packet

For details about the assignment of each bit in the control word, as defined by the OIF SPI-
4.2 specification, see Appendix A, “SPI-4.2 Lite Control Word.”

Sink Data Path: Example 1

Figure 4-1 is an example of data received on the SPI-4.2 Interface and read on the 64-bit
user interface. In this example, the first received control word (C1) is a payload resume
(with no SOP) for channel 1, followed by two 16-bit words (channel 1, packet A and packet
B). The second control word (C2) is an EOP for channel 1 and a payload resume for channel
2 (with no SOP), followed by two 16-bit words. The third control word (C3) is an EOP for

http://www.xilinx.com

54 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

channel 2 and an SOP for channel 1, followed by three 16-bit words. The last control word
(C4) is an EOP for channel 1.

The data received on the SPI-4.2 Interface is processed and stored in the Sink FIFO.
Figure 4-1 also shows the data being read out of the FIFO and uses forward slashes to
indicate that there is latency in processing and storing the SPI-4.2 data. The first 64-bit
word on the FIFO interface contains the two 16-bit words received for channel 1 with an
EOP. The second 64-bit word contains the two words received for channel 2 with an EOP.
The last 64-bit word on the FIFO interface contains the three words written for channel 1.
When the last word is read out of the FIFO, both the SnkFFSOP and SnkFFEOP for channel
1 are asserted.

Sink Data Path: Example 2

The Sink core automatically and optimally handles any size packet including short packets
(less than eight cycles apart), which have multiple SOPs or payload control words.

There are two scenarios in which short packets can be received:

• Received SOPs that are less than eight cycles apart. Data is passed through the core
as received and a SnkBusErr is flagged, indicating a protocol violation.

• Received Payload Control words that are less than eight cycles apart. Though the
SPI-4.2 specification requires that successive SOPs must occur not less than eight
cycles apart, there is no restriction on payload control words, which are not SOPs. The
Sink core can process single payload control words followed by single data words
(CTL-DATA-CTL-DATA-CTL, etc.). Because this is not a protocol violation, no
SnkBusErr is asserted.

Figure 4-2 shows the transfer of short packets from the SPI-4.2 Interface through the Sink
FIFO to the 64-bit user interface. Because each packet contains fewer than 14 bytes, or
seven clock cycles of data, idle control word insertion is necessary to meet the start-of-
packet spacing requirement of eight cycles. The transfer on the SPI-4.2 Interface begins
with a payload control word (C1), indicating a start of packet (SOP) on channel 1. Next,
two clock cycles, of two bytes each, are used to transfer the data associated with channel 1.
The transfer concludes with an end-of-packet control word (C2). The transfer being fewer

Figure 4-1: SPI-4.2 Interface to the 64-Bit User Interface

RDat_P

RDClk_P

RCtl_P

SnkFFClk

SnkFFRdEn_n

SnkFFAddr

SnkFFData

SnkFFMod

SnkFFSOP

SnkFFEOP

SnkFFValid

1A 1B 2A 2B 1CC1 C3 C4C2 1A 1B

CH1

2A 2B -- --1A 1B -- --

100100

CH2

1A 1B 1C --

110

CH1

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 55
UG181 June 27, 2008

Sink Core
R

than 14 bytes, four idle cycles are required to meet the SOP spacing requirement. After the
four idle cycles, the transfer begins with a start-of-packet control word (C3) for channel 2.
Next, three clock cycles (of two bytes each) are used to transfer the data associated with
channel 2. The transfer concludes with an end-of-packet control word (C4).

Figure 4-2 also shows the data being read out of the FIFO and indicates with forward
slashes that there is latency in processing and storing the SPI-4.2 data. The first 64-bit word
on the FIFO interface contains the four bytes of valid data received for channel 1. The
control signals SnkFFSOP and SnkFFEOP are active, indicating that this is the start and
end of the packet for channel 1. The second 64-bit word contains the six bytes of valid data
for channel 2, and the control signals SnkFFSOP and SnkFFEOP are both asserted.

Table 4-1 provides example formatting for the data and control received on the SPI-4.2
Interface. This data is formatted and presented on the 64-bit Sink FIFO Interface. Control
words are shown in binary and payload transfers are shown as hexadecimal. After an SOP
is received, the following 16-bit word transfer is left justified when written into the FIFO
(written to the most significant 16 bits). For the 64-bit interface, the 16 bits will be in the
SnkFFData[63:48]. The table shows the receipt of an SOP for channel 2, then a series of
payload word transfers. The DIP-4 parity depends on this control word and any
proceeding transfer, and it is shown in the table as “pppp.”

Following this example, two additional tables show the mapping between SPI-4.2 Control
Words and packet status signals for a 64-bit user interface (Table 4-2) and for a 32-bit user
interface (Table 4-3).

Figure 4-2: Sink Data Path - Short Packet Transfers with Minimum SOP Spacing Enforced

RDat_P

RDClk_P

RCtl_P

1A 1B I I I 2A 2B 2CI I IC1 C3 C4C2

CH1

1A 1B -- --

100

SnkFFClk

SnkFFRdEn_n

SnkFFAddr

SnkFFData

SnkFFMod

SnkFFSOP

SnkFFEOP

CH2

2A 2B 2C --

110

http://www.xilinx.com

56 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Table 4-1: Formatting SPI-4.2 Interface Data (RDat) 64-bit User Interface (Example)

Data Received on the
SPI-4.2 Interface

(RDat [15:0])
RCtl RDClk

cycle

Data Read
from the Sink FIFO
(SnkFFData[63:0])

SnkFFClk
cycle

Control Bits Read
from

the Sink FIFO

SOP

b:[1001.0000.0010.pppp]

1 1 N/A n N/A

SPI-4.2 Lite Word 0 (P0)

F1E2

0 2

SPI-4.2 Lite Word 1 (P1)

D3C4

0 3

SPI-4.2 Lite Word 2 (P2)

B5A6

0 4

SPI-4.2 Lite Word 3 (P3)

F9E8

0 5 SnkFFData[63:0] =

P0.P1.P2.P3 =

[F1E2.D3C4.B5A6.F9
E8]

n + 1 SnkFFSOP = 1

SnkFFEOP = 0

SnkFFMod = 000

SnkFFErr = 0

SnkFFAddr =
00000010

SPI-4.2 Lite Word 4 (P4)

1F2E

0 662

SPI-4.2 Lite Word 5 (P5)

3D4C

0 7

SPI-4.2 Lite Word 6 (P6)

5B6A

0 8

SPI-4.2 Lite Word 7 (P7)

9F8E

0 9 SnkFFData[63:0] =

P4.P5.P6.P7 =

[1F2E.3D4C.5B6A.9F
8E]

n + 2 SnkFFSOP= 0

SnkFFEOP = 0

SnkFFMod = 000

SnkFFErr = 0

SnkFFAddr =
00000010

SPI-4.2 Lite Word 8 (P8)

ABCD

0 10

SPI-4.2 Lite Word 9 (P9)

1200

0 11

EOP / MOD

b:[0110.aaaa.aaaa.pppp]

1 12

SnkFFData[63:0] =

P8.P9 =

[ABCD.1200.0000.00
00]

n + 3 SnkFFSOP= 0

SnkFFEOP = 1

SnkFFMod = 011

SnkFFErr = 0

SnkFFAddr =
00000010

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 57
UG181 June 27, 2008

Sink Core
R

Table 4-2: SPI-4.2 Control Word Mapping to 64-bit User Interface

Control Word

Associated SPI-4.2
Control

Word bits on RDat
(Qualified by RCtl=1)

Associated Sink FIFO Signals

Start of Packet (SOP) RDat[15] = 1, RDat[12] = 1 SnkFFSOP,
SnkFFAddr[7:0] <== RDat[11:4]

New Burst (address
change)

RDat[15] = 1, RDat[12] = 0 SnkFFAddr[7:0] <== RDat[11:4]

End of Packet (EOP,
even bytes valid)

RDat[14:13] = 10 SnkFFEOP, SnkFFMod[2:0]

When RDat[14:13] = 10:

Mod = 000 if data bits 63–0 have valid data

Mod = 110 if data bits 63–16 have valid data

Mod = 100 if data bits 63–32 have valid data

Mod = 010 if data bits 63–48 have valid data

End of Packet (EOP,
odd bytes valid)

RDat[14:13] = 11 SnkFFEOP, SnkFFMod[2:0]

When RDat[14:13] = 11:

Mod = 111 if data bits 63–8 have valid data

Mod = 101 if data bits 63–24 have valid data

Mod = 011 if data bits 63–40 have valid data

Mod = 001 if data bits 63–56 have valid data

End of Packet

(EOP Abort, error
condition)

RDat[14:13] = 01 SnkFFErr & SnkFFEOP

Table 4-3: SPI-4.2 Control Word Mapping to 32-bit User Interface

Control Word

Associated SPI-4.2
Control

Word bits on RDat
(Qualified by RCtl=1)

Associated Sink FIFO Signals

Start of Packet (SOP) RDat[15] = 1, RDat[12] = 1 SnkFFSOP,
SnkFFAddr[7:0] <== RDat[11:4]

New Burst
(address change)

RDat[15] = 1, RDat[12] = 0 SnkFFAddr[7:0] <== RDat[11:4]

End of Packet
(EOP, even bytes
valid)

RDat[14:13] = 10 SnkFFEOP, SnkFFMod[1:0]

When RDat[14:13] = 10:

MOD = 10 if data bits 31–16 have valid data

MOD = 00 if data bits 31–0 have valid data

http://www.xilinx.com

58 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Sink User Interface
The Sink User Interface includes all the signals to the core other than those on the SPI-4.2
Interface (See “SPI-4.2 Interface,” page 53). The high performance Sink back-end enables
the user interface to run at higher frequencies than the SPI-4.2 Interface. This is sometimes
required if a large percentage of traffic consists of small packets.

The user interface has three major sections:

• Control and Status Signals: These signals apply to the operation of the entire Sink
core

• FIFO Interface Signals: These signals allow you to access the data received on the
SPI-4.2 Interface

• Status and Flow Control Signals: These signals are used to send flow control
information on the SPI-4.2 Interface

Sink Control and Status Signals

These signals control the operation of the entire Sink core or provide status information not
associated with a specific channel (port) or packet. The Sink control and status signals are
defined in Table 2-2.

There are six global status signals:

• Sink Out-of-Frame (SnkOof) is asserted active high whenever the core loses
synchronization with the SPI-4.2 interface.

• Sink Bus Error Status (SnkBusErrStat[7:0]) is asserted when a SPI-4.2 protocol
violation or an error not associated with a specific data packet occurs. Each bit of the
SnkBusErrStat bus corresponds to one of the following conditions:

♦ SnkBusErrStat[0]: Minimum SOP spacing was violated.

♦ SnkBusErrStat[1]: EOP control word not immediately preceded by data.
(Example: EOP followed immediately by another EOP)

♦ SnkBusErrStat[2]: Payload control word not immediately followed by data.
(Example: A payload control word is followed immediately by another payload
control word.)

♦ SnkBusErrStat[3]: DIP4 error received during idles or training patterns.

♦ SnkBusErrStat[4]: Reserved control words received.

End of Packet
(EOP, odd bytes
valid)

RDat[14:13] = 11 SnkFFEOP, SnkFFMod[1:0]

When RDat[14:13] = 11:

MOD = 11 if data bits 31–8 have valid data

MOD = 01 if data bits 31–24 have valid data

End of Packet
(EOP Abort, error
condition)

RDat[14:13] = 01 SnkFFErr & SnkFFEOP

Table 4-3: SPI-4.2 Control Word Mapping to 32-bit User Interface (Continued)

Control Word

Associated SPI-4.2
Control

Word bits on RDat
(Qualified by RCtl=1)

Associated Sink FIFO Signals

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 59
UG181 June 27, 2008

Sink Core
R

♦ SnkBusErrStat[5]: Control word with payload bit not set and non-zero address
(excluding Training Control word).

♦ SnkBusErrStat[7:6]: Tied to zero. (reserved)

If the core receives two (or more) back-to-back payload control words, the last one
received is used and the others are discarded. If the core receives two (or more) EOPs
back-to-back, the first one is used and the others are discarded. For more information
see “Error Handling,” page 72.

• Sink Bus Error (SnkBusErr) is asserted active high when any of the error conditions
that flags the Sink Bus Error Status bus is triggered. SnkBusErr is triggered
concurrently with SnkBusErrStat.

For each SPI-4.2 protocol violation or error that triggers SnkBusErr or
SnkBurErrStat, these signals will be asserted for at least one RDClk0_GP clock cycle
translated into the SnkFFClk domain.

• Sink Training is Valid (SnkTrainValid) is asserted when valid training data is
received. The behavior of this signal is illustrated in the timing diagram in Figure 4-3.
As is shown, the SnkTrainValid signal is driven high for the duration of a complete
training pattern after it has successfully been received.

• SnkFifoReset_n is used when you want to clear the FIFO (and the associated data
path logic) while remaining in frame. When SnkFifoReset_n is deasserted, the Sink
data path will not write data into the FIFO until a packet with a valid SOP is received.

• Reset_n is used when you want to restart the entire Sink core. It will cause the
interface to go out-of-frame. When Reset_n is deasserted, the Sink core will initiate
the synchronization start-up sequence.

Sink FIFO Interface Signals

The Sink FIFO Interface signals allow you to access the data (received on the SPI-4.2
Interface) that is stored in the FIFO. These signals are defined in Table 2-3. Waveforms
illustrating the handshaking and FIFO status signals are shown in Figure 4-4 and
Figure 4-5. The Sink FIFO Interface signals are synchronous to SnkFFClk, and the FIFO is
510 words deep. A FIFO word is 1/2 credit wide for the 64-bit interface, and 1/4 credit
wide for the 32-bit interface.

Sink FIFO Almost Empty

The behavior of the Almost Empty (SnkFFAlmostEmpty_n) status signal is illustrated in
Figure 4-4. As is shown in this waveform, the Almost Empty flag is asserted with the
second to last word read out of the FIFO. When this signal is asserted (active low), it
indicates that one word remains in the FIFO, and the read enable signal should be

Figure 4-3: Sink Training Valid Status

Training Control Training DataIdle Training Data
Multiple Training

Patterns

SnkFFClk

SnkTrainValid

RdClk

RDat 000F 0FFF F000 F0000FFF

http://www.xilinx.com

60 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

deasserted on the next clock cycle. The Sink FIFO read logic should then evaluate the
SnkFFEmpty_n signal to verify that there is no data in the FIFO in case an additional word
was simultaneously written into the FIFO. An example of this is provided with the SPI-4.2
Lite core in the Design Example (see the pl4_lite_fifo_loopback_read.v/vhd file.)
This example also illustrates the Sink FIFO Valid signal, which is asserted while there is
valid data on the data bus.

Sink FIFO Empty

Figure 4-5. illustrates the behavior of the Empty (SnkFFEmpty_n) status signal. As shown
in the waveform, the empty flag is asserted with the last word read out of the FIFO. In this
example, the Almost Empty flag is asserted prior to a read access being initiated. In this
case, there is one data word remaining in the FIFO. To access this word, assert the Sink
FIFO Read Enable (SnkFFRdEn_n) signal for one cycle.

Sink Almost Full

The behavior of Sink Almost Full flag (SnkAlmostFull_n) is dependent on the static
configuration signals SnkAFThresAssert and SnkAFThresNegate. When the
SnkAlmostFull_n flag is asserted, SnkAFThresAssert specifies the number of empty
FIFO locations available. For a 64-bit user interface, each FIFO location can contain up to
1/2 of a credit (8 bytes) worth of data from a single packet. For a 32-bit user interface, each
FIFO location can contain up to 1/4 of a credit (4 bytes) worth of data from a single packet.
SnkAFThresNegate specifies when the SnkAlmostFull_n flag is deasserted.

The number of bytes that can be written into the Sink SPI-4.2 interface after the Sink
Almost Full flag is asserted depends on received packet sizes, data patterns, and

Figure 4-4: Sink FIFO Almost Empty

Figure 4-5: Sink FIFO Empty

SnkFFData

SnkFFRdEn_n

SnkFFClk

SnkFFAlmostEmpty_n

SnkFFValid

SnkFFEmpty_n

SnkFFData

SnkFFRdEn_n

SnkFFClk

SnkFFAlmostEmpty_n

SnkFFValid

SnkFFEmpty_n

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 61
UG181 June 27, 2008

Sink Core
R

operations occurring on the sink user interface. Configure the SnkAFThresAssert value
according to your specific system requirements.

See “FifoAFMode and Sink Almost Full,” page 67 for a description of the behavior of Sink
FIFO interface when the Sink Almost Full flag is asserted.

Sink Overflow

The assertion of Sink Overflow flag (SnkOverflow_n) indicates that there is a write
operation attempted on the FIFO when there are no empty FIFO locations available. This
results in data loss since no more data will be written into the FIFO until it is not in a full
state. When the overflow condition occurs, it is recommended that you reset the FIFO since
data corruption has occurred. To avoid the overflow condition, you should use the Sink
Almost Full flag to gauge the readiness of the sink core to receive data (see “FifoAFMode
and Sink Almost Full,” page 67.)

Sink Status and Flow Control Signals

The Sink Status FIFO interface enables you to send flow control data on the SPI-4.2
Interface. The channel order and frequency that the status is sent is user-programmed in a
calendar. A two-bit register is provided for each location in the calendar to store the
channel status information (hungry=01, starving=00, satisfied=10). Figure 4-6 illustrates
how the calendar information is retrieved to determine the order and frequency that a
particular channel’s FIFO Status information is transmitted on RStat. A detailed
description of the calendar interface and the Status FIFO interface is provided in the
following section. A summary of the Sink Status Path signals and their definitions is
provided in Table 2-4 and Table 2-5.

http://www.xilinx.com

62 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Sink Calendar Initialization

There are two ways to initialize the Sink Calendar: by loading a COE file in the CORE
Generator GUI or initializing in-circuit at startup. Using the Generator GUI loads the
Calendar contents into the UCF file. For more information, see Chapter 3, “Generating the
Core.”

Initializing the Calendar In-Circuit

At startup, the Sink Calendar buffer can be programmed by first deasserting Sink Enable
(SnkEn), then using the calendar write enable, address bus, and data bus. SnkCalAddr is
used to indicate the location in the calendar buffer, and SnkCalData is used to indicate
the channel number that should be written into that location. When outputting RStat, the
status for the channel written to SnkCalAddr=0 is output first, followed by

Figure 4-6: Status FIFO Calendar and Status Memory Block Diagram

Status Memory

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

248 249 250 251 252 253 254 255

15

247

. . .

. . .

Sink FIFO
Status Interface

Sink
Calendar
Control

SnkCalClk

SnkCalWrEn_n

SnkCalAddr[8:0]

SnkCalData[7:0]

SnkCalDataOut[7:0]

Calendar RAM

.

.

.

0

1

2

3

4

5

509

510

511

SnkCalendar_M

SnkCalendar_Len

RSTAT[1:0]

SnkStatAddr = 0
Bank 0: Ch 0-15

SnkStatClk

SnkStatAddr[3:0]

SnkStat[31:0]

SnkStatWrEn_n

SnkStatMask[15:0]

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 63
UG181 June 27, 2008

Sink Core
R

SnkCalAddr=1, and so forth, until the end of the Calendar is reached, as defined by
SnkCalendar_Len.

The waveform in Figure 4-7 illustrates the programming of the Sink Calendar. In this
example, SnkCalendar_Len is set to five and SnkCalendar_M is set to zero; indicating
that the calendar length is six, and should be repeated once. This means that the Sink
Calendar will be expected to drive the FIFO Status Channel data (onto the SPI-4.2 bus) in
the following sequence: status for channel 3, status for channel 0, status for channel 1,
status for channel 2, status for channel 3, and status for channel 0.

To verify what is programmed into the calendar buffer, read the contents using the Sink
Calendar Data Out bus SnkCalDataOut[7:0]. When the calendar write enable signal is
deasserted, the data stored in the location specified by the calendar address is driven onto
the SnkCalDataOut bus.

Note: For a 1-channel system, it is not necessary to program the Calendar since, by default, all
locations are set to zero.

Sink Flow Control

Typically, there are two ways to implement the SPI-4.2 Lite Sink flow control:

• Automatic: For a single channel system or a system that does not require flow control
on a per-channel basis, the SPI4.2 Lite Sink core can be configured to perform flow
control automatically. See “FifoAFMode and Sink Almost Full,” page 67.

• Manual: When per-channel flow control is required, the interface is fully
customizable. A typical implementation is shown in Figure 4-8. In this case, external
FIFOs are used to provide additional per-channel storage and to facilitate per-channel
flow control. A programmable full indication on the individual user FIFOs can be
used to drive the status interface of the Sink core. This provides flexibility in
implementing the optimal flow control to meet individual system requirements.

If implementing large channel solutions, the individual user FIFOs may be shared by
sets of channels or alternative approaches may be implemented that enable
minimizing the external logic required.

The Sink Status FIFO interface has a 32-bit bus for all channel configurations (e.g., whether
the core is configured for four channels or 128 channels or 256 channels). This allows you
to write the FIFO Status Channel data for 16 channels at a time. There are four address lines
for selecting which 16 channels to access. (For systems using 1-16 channels, the address
lines can be permanently set to zero.) The latency between the user interface and SPI-4.2
Interface for the Sink Status Path is seven RSClk cycles and one SnkStatClk cycle.

Figure 4-7: Sink Calendar Initialization

SnkCalendar_M

SnkCalendar_Len

SnkCalClk

SnkCalWrEn_n

SnkCalAddr[8:0]

SnkCalData[7:0]

SnkCalDataOut[7:0]

0x00 0x01 0x02 0x03

CH3 CH0 CH1 CH2

0x04 0x05

CH3 CH0

CH3

0x00 0x01

SnkCalendar_M=0 (0000.0000)

SnkCalendar_Len=5 (0.0000.0101)

http://www.xilinx.com

64 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Status for 16 channels each clock cycle can be written. The SnkStatAddr bus is used to
select which 16 channels are written, and the core supports configurations of 1–256
channels. The 16 channels of FIFO Status that are written are addressed as follows:

• Bank 0: SnkStatAddr[3:0]=0 for channels 15 to 0

• Bank 1: SnkStatAddr[3:0]=1 for channels 31 to 16

• Bank 2: SnkStatAddr[3:0]=2 for channels 47 to 32

• Bank 3: SnkStatAddr[3:0]=3 for channels 63 to 48

• ...

• Bank 14: SnkStatAddr[3:0]=14 for channels 239 to 224

• Bank 15: SnkStatAddr[3:0]=15 for channels 255 to 240

The status that is written is mapped to the 16-bit bus as follows:

• For Bank 0: SnkStatAddr[3:0]=0

• SnkStat[1:0] => Channel 0, where SnkStat[1] is the MSB of the 2-bit status

• SnkStat[3:2] => Channel 1

• SnkStat[5:4] => Channel 2

• ...

• SnkStat[11:10] => Channel 13

• SnkStat[13:12] => Channel 14

• SnkStat[15:14] => Channel 15

Figure 4-8: Typical Flow Control Implementation for 4-Channel System

FIFO
Channel 0

FIFO
Channel 1

FIFO
Channel 2

FIFO
Channel 3

SPI-4.2 Sink Core

FIFO

Status I/F

User
Interface

M
U

X

Status:
 Starving
 Hungry
 Satisfied

Flow Control
Programmable

Full

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 65
UG181 June 27, 2008

Sink Core
R

Sink Status FIFO Interface: Example 1

This example illustrates writing to the Status FIFO Interface for a 10-channel SPI-4.2 Lite
Sink core as shown in Figure 4-9. Because there are fewer than 17 channels, the Sink Status
Address bus (SnkStatAddr[3:0]) is permanently tied to zero. In this example, the mask
functionality is used to indicate that only 10 channels have valid status. The mask can
change from clock-cycle to clock-cycle, but in this illustration it is fixed (SnkStatMask=
0x03FF).

The Sink Status Write signal (SnkStatWr_n) is used to write status values to be
transmitted on the SPI-4.2 Interface in the order specified by the calendar buffer. The status
written in this example listed below. Note that the status data on SnkStat[31:0] is
represented in hexadecimal.

Table 4-4 shows the status written into SnkStat for each channel on every write
clock cycle.

Sink Status FIFO Interface: Example 2

This example illustrates writing to the Status FIFO Interface for a 64-channel SPI-4.2 Lite
Sink core as shown in Figure 4-10. To write the status for 64 channels, address the
following four banks, depending on the status of the channel being updated:

• Bank 0: SnkStatAddr[3:0]= 0000, for channels 15 to 0

• Bank 1: SnkStatAddr[3:0]= 0001, for channels 31 to 16

• Bank 2: SnkStatAddr[3:0]= 0010, for channels 47 to 32

• Bank 3: SnkStatAddr[3:0]= 0011, for channels 63 to 48

In the example shown in Figure 4-10, the mask (SnkStatMask[15:0]) is used to update
only the channels for which FIFO status has changed. The status written in this example is
shown in Table 4-5.

Table 4-4: Status Written into SnkStat per Channel per Write Cycle

Write Cycle Starving Status Satisfied Status

0,1,2,3 CH 0-9 none

4 CH 1-9 CH 0

5 CH 1,2, 4-9 CH 0,3

6–7 CH 4-9 CH 0,1,2,3

8 CH 0 CH 1-9

Figure 4-9: Sink Status FIFO Interface Example 1: 10-channel Configuration

SnkStatClk

SnkStatMask[15:0]

SnkStatAddr[3:0]

SnkStat[31:0]

SnkEn

SnkStatWr_n

Write 0 Write 1 Write 2 Write 3 Write 4 Write 5 Write 6 Write 7 Write 8

BINARY

BINARY

HEX 0000.00AA0000.0000

0000.0011.1111.1111

0000

000A.AAA80000.00820000.0002

http://www.xilinx.com

66 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Sink Status FIFO Status Interface: Example 3

This example illustrates status received on the user interface and written to the SPI-4.2 bus.
Figure 4-11 shows a RStat waveform for a calendar length of four
(SnkCalendar_Len=3) and calendar repetition value of one (SnkCalendar_M=0). Note
that FIFO status information is periodic, repeating the sequence of a framing pattern (11),
a repeated set of FIFO status words (SnkCalendar_M + 1 times) in accordance with the
programmed calendar order, and a DIP-2 value. The programmed calendar sequence is
channel 0, 1, 2, 3, and the following RStat[1:0] sequence is illustrated:

• Sequence #: CH0, CH1, CH2, CH3

• Sequence 1: 10, 00, 00, 00

• Sequence 2: 10, 00, 10, 10

• Sequence 3: 10, 10, 10, 10

Table 4-5: Status Written to Status FIFO Interface

Write Cycle
Status

Address
Status Mask

Starving
Status

Satisfied Status

0-1 Bank 0 1111.1111.1111.1111 CH 0-15 none

2 Bank 0 0000.0000.0000.0001 none CH 0

3 Bank 1 1000.0000.0000.0000 none CH 31

4-5 Bank 2 1111.1111.1111.1111 CH 32-47 none

6-7 Bank 3 1111.1111.1111.1111 CH 48-63 none

8-9 Bank 0 1111.0000.0000.0000 none CH 12-15

Figure 4-10: Sink Status FIFO Interface Example: 64-channel Configuration

SnkStatClk

SnkStatMask[15:0]

SnkStatAddr[3:0]

SnkStat[31:0]

SnkEn

SnkStatWr_n

Write 0 Write 1 Write 2 Write 3 Write 4 Write 5 Write 6 Write 7 Write 8

BINARY

0000BINARY 0001 0010 0011

HEX 0000.0000

0000

0000.0000

1111.0000.0000.0000

0000.0000.0000.0001

8000.00000000.0002

1111.1111.1111.1111 1111.1111.1111.1111

AA00.0000

1000.0000.0000.0000

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 67
UG181 June 27, 2008

Sink Core
R

Insertion of DIP2 Errors

The sink core enables you to force the insertion of DIP2 errors for use during system testing
and debugging. This is supported by the SnkDIP2ErrRequest signal. When the
SnkDIP2ErrRequest signal is asserted, the next DIP2 value is sent on RStat is erred.
The erroneous DIP2 value is an inversion of the correctly calculated DIP2.

Sink Static Configuration Signals
The sink static configuration signals are inputs to the core that are statically driven to
determine the behavior of the core. See Table 2-6, page 27 for a full list of static
configuration signals.

Two of the Sink Static Configuration signals can be changed in circuit. There are static
registers for SnkCalendar_M and SnkCalendar_Len that are synchronous to
SnkStatClk. To change these parameters while the core is operational, first deassert
SnkEn.

FifoAFMode and Sink Almost Full

You can select the behavior of the Sink core when it is almost full. This is done by setting
the static configuration signal Sink FIFO in Almost Full Mode (FifoAFMode[1:0]).
Figure 4-14, Figure 4-15, and Figure 4-16 are timing diagrams illustrating the behavior of
the core for each of the three modes.

FIFO Almost Full Mode “00”

When the FIFO Almost Full Mode (FifoAFMode) is set to “00” and the Sink core becomes
Almost Full, the Sink interface will go out-of-frame, and the Sink Status logic sends the
framing sequence “11” until SnkAlmostFull_n is deasserted, and the Sink core
transitions back to in-frame. This is illustrated in Figure 4-12.

Figure 4-11: Sink Status Path - User Interface to SPI-4.2 Interface

SnkCalendar_M

SnkCalendar_Len

SnkStatClk

SnkStat[31:0] 0x00000002 0x000000A2

SnkStatAddr[3:0] 0000

SnkStatMask[15:0]

SnkStatWr_n

0000.0000.0000.1111

0x000000AA

0 = 0000 0000

3 = 0 0000 0011

RSClk

RStat 0011 10 11 10 10 11 10DIP 00 DIP DIP 11

http://www.xilinx.com

68 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

FIFO Almost Full Mode “01”

When the FIFO Almost Full Mode (FifoAFMode) is set to “01,” and the Sink core becomes
Almost Full, the Sink interface remains in-frame (SnkOof deasserted), and the Sink Status
logic sends satisfied (“10”) on all channels until SnkAlmostFull_n is deasserted. This is
illustrated in Figure 4-13.

Figure 4-12: FIFO Almost Full Mode “00”

Figure 4-13: FIFO Almost Full Mode “01”

D D

11 11

D D D D D D D DD D DRDat_P

RDClk_P

D

SnkAlmostFull_n

SnkFFClk

00 00 00 00RStat

RSClk

SnkStat

SnkStatClk

00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 11 11 11 11 11 11 11 11 11 11 11

SnkOof

D D D D

00 00 000000 00 00

D D D D D

D D

10 10

D D D D D D D DD D DRDat_P

RDClk_P

D

SnkAlmostFull_n

SnkFFClk

00 00 00 00RStat

RSClk

SnkStat

SnkStatClk

00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 10 10 10 10 10 10 10 10 10 10 10 10

SnkOof

D D D D

00 00 000000 00 00

D D D D

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 69
UG181 June 27, 2008

Sink Core
R

FIFO Almost Full Mode “10” or “11”

When the FIFO Almost Full Mode (FifoAFMode) is set to “10” or “11,” and the Sink core
becomes Almost Full, the Sink Status logic will continue to drive out user status
information (that is, continue in normal operation). In this last case, take immediate action
to prevent FIFO overflow and loss of data. This is illustrated in Figure 4-14.

Sink Data Capture Implementation
The SPI-4.2 Lite core supports static alignment of the RDClk to RDat[15:0] as defined by
the SPI-4.2 OIF Standard.

Static Alignment

The Sink Core performs static alignment by shifting the clock relative to the 16-bit data
such that the incoming clock edge is centered to the data eye of RDat/RCtl. For designs
using global clocking distribution, this alignment is performed by a DCM. For Virtex-4 and
Virtex-5 FPGA designs using regional clocking distribution, the IDELAY function is used
to shift the clock in relation to the data bits.

DCM Alignment Implementation Considerations

The Sink Core also supports the legacy static alignment, which uses the DCM to phase-
shift the RDClk. The DCM-based static alignment is supported only for global clocking
distribution. The ability of the DCM to shift the internal clock in small increments (~50ps),
enables the RDClk to be shifted relative to the sampled data. For statically-aligned
systems, the DCM output clock phase offset is a critical part of the system. The static
alignment solution, using the DCM, assumes that the PCB is designed with precise delay
and impedance matching for all LVDS differential pairs of the data bus. This assumption is
critical as the DCM does not compensate for deviations in delay between bits.

Determine the optimal DCM setting (PHASE_SHIFT) to ensure that the target system has
the maximum system margin and performance across voltage, temperature, and process
(chip-to-chip) variations. Testing the system to determine the best DCM PHASE_SHIFT

Figure 4-14: FIFO Almost Full Mode “10” or “11”

10 10

DD D D D D DD D D DRDat_P

RDClk_P

D

SnkAlmostFull_n

SnkFFClk

00 00 00 00RStat

RSClk

SnkStat

SnkStatClk

00 00 00 00 10 10 10 10 10 10 10 10 00 00 00 00 00 00

00 10 10 10 10 10 10 10 10 10 10 10 10

SnkOof

D D

00 00 001010 00 00

D D DD D D

http://www.xilinx.com

70 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

setting has the added advantage of providing a benchmark of the system margin, based on
the UI (unit interval or bit time).

System Margin (ps) = UI(ps) * (working phase shift range/128)

Xilinx does not recommend that a single DCM PHASE_SHIFT value will be effective
across all hardware platforms. Xilinx also does not recommend that you attempt to
determine the PHASE_SHIFT setting empirically. In addition to the clock-to-data phase
relationship, other factors such as package flight time (package skew) and clock routing
delays (internal to the device) affect the clock-data relationship at the sample point (in the
IOB) and are difficult to characterize.

The optimal PHASE_SHIFT setting should be investigated during hardware integration
and debugging. Note that the phase shift setting provided with the SPI-4.2 Lite core in the
constraints file is only a place holder. This default setting has changed over various SPI-4.2
Lite releases to account for changes to the DCM DESKEW ADJUST attribute. For further
information on how to find the ideal phase shift value for your system, see the Xilinx SPI-
4.2 solution record 16112.

Note: This alignment method can be used only with global clock distribution.

ISERDES Alignment Implementation Considerations (Virtex-4 and Virtex-5 only)

Static alignment can be performed using the IDELAY function of the Virtex-4 and Virtex-5
device ISERDES for regional clocking distribution. The ability of the IDELAY function to
delay its input by small increments (75ps), enables the internal RDClk to be shifted relative
to the sampled data. For statically aligned systems, the delay chain length is a critical path
of the system. The static alignment solution assumes that the PCB is designed with precise
delay and impedance matching for all LVDS differential pairs of the data bus. In this case,
the primary alignment mechanism is time shifting the internal RDClk relative to the data
bits using the IDELAY function.

you must determine the optimal delay in the ISERDES (IOBDELAY) to ensure that the
target system will have the maximum system margin and performance across voltage,
temperature, and process (chip to chip) variations. Xilinx does not recommend a single
IOBDELAY value that will be effective across all hardware platforms. Xilinx also does not
recommend that you attempt to determine the IOBDELAY setting empirically. In addition
to the clock-to-data phase relationship, other factors such as package flight time (package
skew) and clock routing delays (internal to the device) affect the clock data relationship at
the sample point (in the IOB) and are difficult to characterize. The optimal IOBDELAY
setting should be investigated during hardware integration and debugging. Note that the
IOBDELAY setting provided with the SPI-4.2 Lite core in the constraints file is only a place
holder.

An example of this implementation is available through the GUI using the Sink core in user
clocking mode with regional clocking distribution.

Synchronization and Start-up
After the sink core has been initialized, as described in the “Initializing the SPI-4.2 Lite
Core,” it has to be synchronized before data and status can be received and transmitted.

http://www.xilinx.com
http://support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=16112
www.support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=16112
www.support.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=16112

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 71
UG181 June 27, 2008

Sink Core
R

Figure 4-15 shows a state machine diagram illustrating the Sink core startup sequence and
error condition processing.

Reset

The Sink core remains in the Reset state until the following conditions are true:

• Reset_n is deasserted

• SnkEn is asserted

In this state, the Sink core transmits framing patterns (11) on RStat[1:0]. The core is Out
of Frame in this state.

Hunt

The core remains in the hunt state until a set number of consecutive training patterns are
received as defined by the parameter NumTrainSequences

In this state, the Sink core transmits framing patterns (11) on RStat[1:0]. The core is Out
of Frame in this state.

Sync Wait

In the Sync Wait state, the Sink core has completed the start-up sequence and is waiting to
receive the first valid SOP to data transition on RDat.

The Sink core will remain in this state until the following conditions are true:

• SnkFifoReset_n is deasserted

• The first valid SOP-to-data transition is received on RDat

In this state, the Sink core continuously checks DIP-4 parity, and sends FIFO Channel
status on RStat. The core is In Frame in this state.

Figure 4-15: Sink Startup Sequence State Machine

RESET HUNT
SYNC
WAIT

SYNC
DATA

SYNC
TRAIN

FIFO Reset
Asserted

Reset De-asserted;
Sink Enabled

Consecutive DIP4
Errors Received;
Almost Full and

FifoAFMode = "00"

Reset Asserted;
Sink Disabled

Consecutive Valid
Training Sequences

Received

Valid SOP to Data
Transition Detected;

FIFO Reset De-asserted

 Training Pattern
Detected

Data Transition Detected

http://www.xilinx.com

72 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Sync Data

In the Sync Data state, normal core operation is enabled.

In this state, the Sink core continuously checks DIP-4 parity, stores data received on
RDat[15:0] into the Sink FIFO, and sends FIFO Channel status on RStat. The core is In
Frame in this state.

Sync Train

The Sink core enters the Sync Train state when a training pattern is detected on
RDat[15:0]. The Sink core stops storing data to the Sink FIFO while in this state. The core
remains in this state while training is received on RDat.

In this state, the Sink core continuously checks DIP-4 parity, and sends FIFO Channel
status on RStat. The core is In Frame in this state.

In-Frame and Out-of-Frame Behavior

There are a number of conditions that must be met before the Sink core deasserts SnkOof
and starts accepting data. Data will be written to the FIFO when the following conditions
are met:

• Reset_n is deasserted

• SnkFifoReset_n is deasserted

• SnkEn is asserted

• SnkOof is deasserted (NumTrainSequences consecutive training patterns received)

• First valid SOP-to-data transition detected (after SnkOof or SnkFifoReset_n
deasserted)

Three conditions will cause the Sink core to lose synchronization and assert SnkOof. The
core stops writing data to the FIFO when any of these conditions occur.

• SnkEn is deasserted

• SnkAlmostFull_n asserted and SnkFifoAFMode = Send Framing Patterns ("00")

• NumDip4Errors consecutive DIP4 errors are detected

Error Handling
This section describes how the Sink core handles receiving non-compliant SPI-4.2 data and
subsequent error handling in a number of common scenarios. This section also provides
information on the Sink core error status signals.

Short Packet Support (less than 16-byte packet support)

Though the SPI-4.2 specification requires that successive start-of-packets must occur not
less than eight cycles apart, there is no restriction on payload control words—which are not
SOPs. The Sink core automatically handles any size packets, including multiple SOP that
are less than eight cycles apart. If SOPs are less than eight cycles apart, the data will be
passed through the core correctly, but the status output SnkBusErr will be flagged to
indicate a protocol violation.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 73
UG181 June 27, 2008

Sink Core
R

Figure 4-16 illustrates back-to-back short packets. In this example there are four channels
that are each sending 17-byte packets with a maximum burst of 16 bytes.

Sink FIFO Burst Error

When data received on RDat is terminated on a non-credit boundary without an EOP, the
Sink core flags this error at the end of the burst by asserting SnkFFBurstErr.
SnkFFBurstErr may be used by the user logic to indicate missing EOPs, or incorrectly
terminated bursts. In this case the Sink core does not assert SnkFFEOP or SnkFFErr.

EOP Abort Handling

When an EOP abort is received, the Sink core asserts the output flags SnkFFEOP and
SnkFFErr when the packet is terminated. In this case, the Sink core does not assert
SnkFFBurstErr.

Loss of RDClk

When RDClk is not driven, the status signal DCMLost_RDClk is asserted. If RDClk is
never present, then the Locked_RDClk signal will never be asserted and the Sink core will
not achieve synchronization. If RDClk is present and then lost, then Locked_RDClk will
be deasserted and DCMLost_RDClk will be asserted. If DCMLost_RDClk is asserted, it is
recommended that you reset the Sink core and re-initiate the synchronization process.

Sink SPI-4.2 Bus Error and Sink Bus Error Status[7:0]

A Sink SPI-4.2 Bus Error (SnkBusErr) is an error indication of SPI-4.2 protocol violations
or bus errors not associated with a particular data packet. Sink Bus Error Status
(SnkBusErrStat[7:0]) triggers simultaneously with SnkBusErr and clarifies which
protocol violations have occurred. Each bit of the SnkBusErrStat bus corresponds to one
of the following detected conditions.

• SnkBusErrStat[0]: Minimum SOP spacing was violated

• SnkBusErrStat[1]: EOP control word not immediately preceded by data

(Example: EOP followed immediately by another EOP)

• SnkBusErrStat[2]: Payload control word not immediately followed by data

(Example: A payload control word is followed immediately by another payload
control word.)

• SnkBusErrStat[3]: DIP4 error received during idle or training patterns

• SnkBusErrStat[4]: Reserved control words received

Figure 4-16: Short Packet Support

CH 0

16 bytes
1 byte w/ EOP

CH 1

CH 2

CH 3

Ch 0

CTL
16 bytes

Ch 1

CTL
16 bytes

Ch 2

CTL
16 bytes

Ch 3

CTL
16 bytes

Ch 0

CTL
1 byte

Ch0 EOP

Ch1 CTL
1 byte

http://www.xilinx.com

74 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

• SnkBusErrStat[5]: Control word with payload bit not set and non-zero address
(excluding Training Control word)

• SnkBusErrStat[7:6]: Unused and tied to zero (reserved)

If the core receives two (or more) back-to-back payload control words, the last one received
is used and others are discarded. If the core receives two (or more) back-to-back EOP
control words, the first one is used and the others are discarded. Any of the error
conditions that flag the Sink Bus Error Status bus also flags SnkBusErr.

Sequential Payload Control Words

If back-to-back payload control words are sent, the Sink core only uses the payload control
word that precedes a data word. All other payload control words are dropped by the Sink
core. Each time a payload control word is dropped, it is flagged on SnkBusErr. This
behavior is illustrated in Figure 4-17.

Sequential End-of-Burst Control Words

The Sink core only stores the end-of-burst control word that was preceded by data. It drops
any other end-of-burst control words that are not preceded by data and flags SnkBusErr.
Figure 4-17 illustrates this behavior.

Sink DIP-4 Error Handling

When a DIP-4 error occurs at the end of a burst (for the previous packet), the Sink core
stores a SnkFFDIP4Err flag. Figure 4-18 illustrates a DIP-4 error that occurred on an end-of-
packet control word.

Figure 4-17: Sequential Payload Control Word Example

Ch 1
SOP

Ch 2
SOP

Ch 3
SOP

DATA
Ch 3
EOP

Ch 2
EOP

Ch 1
EOP

Dropped:
SnkBusErr

(flagged
two times)

Good Packet

Bit
Bucket

Dropped:
SnkBusErr

(flagged
two times)

Bit
Bucket

SPI-4.2 Interface

User Interface:

Addr3
SOP
Data

Addr3
--
Data

Addr3
EOP
Data

Addr0
SOP
Data

. . .

DATA DATA DATA
Ch 0
SOP

Addr3
--
Data

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 75
UG181 June 27, 2008

Sink Core
R

When a DIP-4 error occurs on a payload control word (start of burst for the next packet),
the Sink core stores a SnkFFPayloadDIP4 flag. If the payload control word was also the
end-of-burst control word for the previous packet, then SnkFFDIP4Err would also be
asserted for the previous packet. Since the OIF SPI-4.2 specification does not distinguish
between these two DIP-4 errors, the Sink core will tag each terminated packet with a DIP-
4 error on SnkFFDIP4Err, and each started packet with a DIP-4 error on
SnkFFPayloadDIP4.

This is illustrated in Figure 4-19 where packet 1 is flagged with a SnkFFDIP4Err and
packet 2 is flagged with SnkFFPayloadDIP4. Note that both DIP-4 errors are asserted at
the end of the burst or packet.

Figure 4-18: Example of Error Flag SnkFFDIP4Err

Figure 4-19: Example of Error Flag SnkFFDIP4Err and SnkFFPayloadDIP4

DIP-4 Error Calculated

User Interface

SPI-4.2 Interface

IDLEIDLE CH 4
SOP

DATA DATA DATA CH4
EOP

Addr4
SOP
Data

Addr4
--
Data

Addr4
EOP
Data
SnkFFDIP4Err

SOP
SnkFFDIP4Err

SPI-4.2 Interface

User Interface

DATADATA DATA DATA DATA DATAEOP
CH 1

EOP
CH 1

DATA IDLEIDLE SOP
CH 1

CH 0

Packet 1 Packet 2
SnkFFPayloadDIP4

DIP-4 Error

Addr0
SOP
Data

Addr0
--
Data

Addr0
EOP
SnkFFDIP4Err

Addr1
SOP
Data

Addr1
--
Data

Addr1
--
Data

Addr1
EOP
SnkFFPayloadDIP4

http://www.xilinx.com

76 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Reserved Control Words

As defined by the OIF SPI-4.2 specification, a reserved control word contains an SOP, but
the payload control bit (RDat[15]) is not set to a one. If this occurs and is followed by
data, the Sink core asserts SnkFPayloadErr for the duration of the burst, indicating that the
burst did not have a correct payload control word. This indicates that the SOP and address
configuration will not be valid. This error will also be flagged on SnkBusErr. This
behavior is illustrated in Figure 4-20.

If this behavior occurs and is not followed by data, then the Sink core drops the control
word and asserts the output SnkBusErr.

Source Core

Basic Operation
The Source core receives 32-bit or 64-bit data on the user interface and converts data to 16-
bit data which is transferred across the SPI-4.2 interface. It also receives flow control
information of the SPI-4.2 interface and processes it into 32-bit or 2-bit status word,
depending on the status FIFO interface— accessible through the user interface.

The following sections explain how the Source core operates. See “Source Core Interfaces,”
page 30 for the signal list of the interfaces.

Source SPI-4.2 Interface
The SPI-4.2 user interface combines data words and out-of-band control signals and
multiplexes them to the SPI-4.2 16-bit databus. This allows the user interface to run at half
(64-bit interface) or a quarter (32-bit interface) of the data rate. For example, for a 200 Mbps
SPI-4.2 data rate and a 32-bit user interface, you can write data into the Source core at
100 MHz. With a 64-bit user interface, one can write data into the Source core at 50 MHz
and maintain the same data rate.

Figure 4-20: Example of Error Flag SnkFFPayloadErr

IDLE SOP DATA DATA IDLE

Reserved Ctl word detected:
RDat[15]=0
RDat[12]=1

User Interface

DATA

SPI-4.2 Interface

EOP

Addr=prev Addr
SOP=0
Data
SnkFFPayloadErr

Addr
--
Data
SnkFFPayloadErr

Addr
EOP
Data
SnkFFPayloadErr

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 77
UG181 June 27, 2008

Source Core
R

Source Data Path: Example 1

An example of the data received on the user interface and subsequently transmitted on the
SPI-4.2 Interface is shown in Figure 4-21. In this illustration, a 14-byte packet of data is
written into channel 1, followed by an 8-byte packet into channel 2. On the SPI-4.2 bus, the
transfer begins with a payload control word (C1) indicating the start of packet (SOP), and
address of the data to follow. Next, seven SPI-4.2 bus cycles of data, two bytes each, are
used to transfer the data associated with channel 1. The transfer on channel 1 is concluded
with an end-of-packet control word (C2). Because the next FIFO location contains the start
of a new packet on channel 2, the SOP and address of that packet are combined with the
end-of-packet information from channel 1 to form one control word (C2). The second
packet is terminated with an EOP (C3).

Source Data Path: Example 2

Figure 4-22 shows the transfer of short packets from the Source FIFO to the SPI-4.2 bus
interface. Because each of the packets contain fewer than 14 bytes (or seven SPI-4.2 bus
cycles of data), idle word insertion is necessary to meet the start-of-packet spacing
requirement of eight cycles.

The transfer begins with a 4-byte packet of data for channel 1 written into the Source FIFO.
Next, a 6-byte packet of data is written into the FIFO for channel 2. Finally, a 4-byte packet
for channel 3 is written into the FIFO. The transfer on the SPI-4.2 bus begins with a control
word (C1) indicating a start-of-packet for channel 1. Next, the four bytes of data for
channel 1 are transferred. While the FIFO contains the start-of-packet information for
channel 2, that information cannot be combined with the end-of-packet information from
channel 1 because of the 8-cycle start-of-packet spacing requirement.

For this reason, five additional idle control words (I) are sent across the SPI-4.2 bus with the
first idle control word containing the end-of-packet information for channel 1. The next
SPI-4.2 cycle contains the start-of-packet and address information for channel 2 (C2). This
payload control word is followed by the six bytes of data for channel 2.

Again, because of the start-of-packet spacing requirement, another four cycles of idle
control words (I) must be sent across the interface with the first idle control word

Figure 4-21: Source Data Path: User Interface to SPI-4.2 Interface

CH1

1E 1F 10 --1A 1B 1C 1D

CH2

2A 2B 2C 2D

110000 000

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

TDat_P

TDClk_P

TCtl_P

C1 1A 1B 1C 1D 1E 1F C2 2A 2B 2C 2D10 C3

http://www.xilinx.com

78 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

containing the end-of-packet information for channel 2. Finally, the start-of-packet and
address information for channel 3 are sent in the payload control word (C3).

If the payload control words did not contain SOP indications (such as payload resumes),
the Source core would not be required to enforce minimum SOP spacing. The Source core
will then pack the EOP and Payload Control word into a single cycle and will not insert
idle cycles. This behavior is illustrated in Figure 4-23.

The Source core formats the data to be written onto the SPI-4.2 Lite bus (TDat). Table 4-6
shows an example of the formatting that this block does with the data read-out of the
Source FIFO (control words are binary and payload transfers are hexadecimal). When an
SOP is read out of the FIFO, the following 16-bit word transfer sent on the SPI-4.2 data bus
is an SOP control word. This example shows the receipt of an SOP for channel 2 and two

Figure 4-22: Source Data Path - Minimum SOP Spacing Enforced

Figure 4-23: Source Data Path - Short Packet Transfers

CH1

1A 1B -- --

CH2

3A 3B -- --2A 2B 2C --

100 100110

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

TDat_P

TDClk_P

TCtl_P

1A 1B I I I C2 2A 2B I I I I C3IC1

CH3

I1A 1B I I I C2 2A 2B 2CIC1 I

CH1

1A 1B -- --

CH2

3A 3B -- --2A 2B 2C --

100 100110

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

TDat_P

TDClk_P

TCtl_P

1A C2 2A 2B C3C1

CH3

I1A 1B C2 2A 2B 2CC1

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 79
UG181 June 27, 2008

Source Core
R

64-bit words from the Source FIFO are transmitted on the SPI-4.2 data bus. The DIP-4
parity depends on this control word and any proceeding transfer; therefore, it is left as
“pppp” (shown in the 13th TDClk clock cycle).

Following this example are two tables showing the mapping between the packet status
signals on the user interface and SPI-4.2 control words for a 32-bit user interface (Table 4-7)
and for a 64-bit user interface (Table 4-8).

Table 4-6: Example of Formatting Source FIFO Data for a 64-bit User Interface

Data Written to the
Source FIFO

(SrcFFData[63:0])

SrcFFClk
Cycle

FIFO Control Bit
Data Transmitted on the

SPI-4.2 Interface
 (TDat [15:0])

TCtl
TDClk
cycle

SrcFFData[63:0] =

[F1E2.D3C4.B5A6.9F8E]
1 SrcFFSOP = 1

SrcFFEOP = 0

SrcFFMOD = 000

SrcFFAddr = 0000.0010

SrcFFErr = 0

N/A N/A n

SOP

b:[1001.0000.0010.pppp]

1 n+1

SPI-4.2 Lite Word 0 (P0)

F1E2

0 n+2

SPI-4.2 Lite Word 1 (P1)

D3C4

0 n+3

SrcFFData[63:0] =

[1F2E.3D4C.5B6A.F9E8]
2 SrcFFSOP= 0

SrcFFEOP = 0

SrcFFMOD = 000

SrcFFAddr = 0000.0010

SrcFFErr = 0

SPI-4.2 Lite Word 2 (P2)

B5A6

0 n+4

SPI-4.2 Lite Word 3 (P3)

9F8E

0 n+5

SPI-4.2 Lite Word 4 (P4)

1F2E

0 n+6

SPI-4.2 Lite Word 5 (P5)

3D4C

0 n+7

SrcFFData[63:0]

[ABCD.1200.0000.0000]
3 SrcFFSOP= 0

SrcFFEOP=1

SrcFFMOD = 011

SrcFFAddr = 0000.0010

SrcFFErr = 0

SPI-4.2 Lite Word 6 (P6)

5B6A

0 n+8

SPI-4.2 Lite Word 7 (P7)

F9E8

0 n+9

SPI-4.2 Lite Word 8 (P8)

ABCD

0 n+10

SPI-4.2 Lite Word 9 (P9)

1200

0 n+11

4 EOP / MOD

b:[0110.0000.0010.pppp]

1 n+12

http://www.xilinx.com

80 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Table 4-7: SPI-4.2 Control Word Mapping to 32-bit Interface

Control Word
Associated SPI-4.2 Lite Control Word

bits on TDat
(Qualified by TCtl=1)

Associated Source FIFO Signal(s)

Start of Packet (SOP) TDat[15] =1, TDat[12]=1,

TDat[11:4] <== SrcFFAddr[7:0]

SrcFFSOP, SrcFFAddr[7:0]

New Burst
(address change without SOP)

TDat[15] = 1, TDat[12] = 0,
TDat[11:4] <== SrcFFAddr[7:0]

SrcFFAddr[7:0]

End of Packet
(EOP, even bytes valid)

TDat[14:13] = 10 SrcFFEOP, SrcFFMOD[1:0]

When TDat[14:13] = 10:

MOD = 10 if data bits 31–16 have valid data

MOD =00 if data bits 31–0 have valid data

End of Packet

(EOP, odd bytes valid)

TDat[14:13] = 11 SrcFFEOP & SrcFFMod[1:0]

When TDat[14:13] = 11:

MOD = 11 if data bits 31–8 have valid data

MOD = 01 if data bits 31–24 have valid data

End of Packet

(EOP, abort, error condition)

TDat[14:13] = 01 SrcFFErr, SrcFFEOP,

SrcFFMOD[1:0]

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 81
UG181 June 27, 2008

Source Core
R

Transmitting Training Patterns

Training patterns are transmitted at startup (after reset) until the core acquires
synchronization on the FIFO Status Channel. Subsequently, if the parameter DataMaxT or
AlphaData are not zero, the core will transmit AlphaData training patterns at least every
DataMaxT cycles.

The core continuously monitors the number of data cycles since the transmission of the last
training pattern. Once a DataMaxT interval of SPI-4.2 bus cycles has completed, the
current transfer is terminated on the next burst boundary, and training patterns will be
transmitted on the SPI-4.2 bus (AlphaData number of times). Once the training patterns
have completed, the SPI-4.2 Lite core will resume transmission of data on the data bus.

The control signal TrainingRequest (see Table 2-11) is provided for you to request that
training patterns be sent out of the Source SPI-4.2 interface. When the TrainingRequest
signal is asserted, the transmission of data is halted on the next burst boundary and
training patterns are transmitted on the SPI-4.2 Interface.

If the static configuration signal AlphaData[7:0] (see Table 2-15) is set to zero, and the
TrainingRequest signal is asserted, the Source core will transmit a complete training
pattern sequence. The core will continue to transmit training patterns until
TrainingRequest is deasserted. When it is deasserted, the core will halt transmission of
training patterns after the current sequence is complete.

If the static configuration signal AlphaData[5:0] is set to a non zero value, the Source
core sends the number of training patterns defined by AlphaData every time it detects a
rising edge on the TrainingRequest signal.

Table 4-8: SPI-4.2 Control Word Mapping to 64-bit User Interface

Control Word
Associated SPI-4.2 Lite Control
Word bits on TDat (Qualified by

TCtl=1)
Associated Source FIFO Signal(s)

Start of Packet (SOP) TDat[15] =1, TDat[12]=1,

TDat[11:4] <== SrcFFAddr[7:0]

SrcFFSOP, SrcFFAddr[7:0]

New Burst (address change
without SOP)

TDat[15] = 1, TDat[12] = 0,

TDat[11:4] <== SrcFFAddr[7:0]

SrcFFAddr[7:0]

End of Packet

(EOP, even bytes valid)

TDat[14:13] = 10 SrcFFEOP, SrcFFMOD[2:0]

When TDat[14:13] = 10:

MOD = 000 if data bits 63-0 have valid data

MOD =110 if data bits 63-16 have valid data

MOD =100 if data bits 63-32 have valid data

MOD = 010 if data bits 63-48 have valid data

End of Packet

(EOP, odd bytes valid)

TDat[14:13] = 11 SrcFFWEOP & SrcFFWMod[2:0]

When TDat[14:13] = 11:

MOD = 111 if data bits 63-8 have valid data

MOD = 101 if data bits 63-24 have valid data

MOD = 011 if data bits 63-40 have valid data

MOD = 001 if data bits 63-56 have valid data

End of Packet

(EOP, abort, error condition)

TDat[14:13] = 01 SrcFFErr, SrcFFEOP,

SrcFFMOD[2:0]

http://www.xilinx.com

82 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Transmitting Idle Cycles

Idle cycles are sent on the SPI-4.2 Interface only when there is no data in the FIFO. The core
will also insert idle cycles when the control signal IdleRequest (see Table 2-11) is
asserted. When this signal is asserted, the transmission of data is halted on the next burst
boundary and idle cycles are forced onto the SPI-4.2 Interface. The insertion of training
patterns always takes precedence over the transmission of idle cycles.

Inserting DIP4 Errors

For system diagnostics, one can force DIP4 errors to be inserted with a specific packet. This
is supported by using the SrcFFErr signal. When SrcFFErr is asserted and SrcFFEOP is
deasserted, it signals the core to terminate the current packet with an EOP and to force the
insertion of an erroneous DIP4 value. See “Inserting DIP4 Errors,” page 82.

Source User Interface
The Source User Interface includes all the signals to the core that are not found on the SPI-
4.2 Interface (See “Source SPI-4.2 Interface”). This user interface can operate up to 190 MHz
in Virtex-4 devices and 275 MHz in Virtex-5 devices with a 64- or 32-bit data interface.

The user interface has three types of signals:

• Control and Status Signals. These signals apply to the operation of the Source core

• FIFO Interface Signals. These signals allow you to write data to the FIFO to be
transmitted on the SPI-4.2 Interface

• Status and Flow Control Signals. These signals are used to receive flow control
information from the SPI-4.2 Interface

Source Control and Status Signals

The Source core control and status signals control the operation of the entire Source core
and provide status information that is not associated with a specific channel (port) or
packet. Descriptions for these signals can be found in Table 2-11, page 33.

The Source core is reset asynchronously by the signal Reset_n, and there are three global
status signals:

• Source Out-of-Frame (SrcOof) is asserted whenever the core has lost
synchronization with the SPI-4.2 status bus (TStat).

• Source DIP2 Error (SrcDIP2Err) is asserted when a DIP2 error is detected on the
SPI-4.2 status bus.

• Source Status Frame Error (SrcStatFrameErr) is asserted when a non-”11” frame
word is detected on the SPI-4.2 bus.

• Source Pattern Error (SrcPatternErr) is asserted when an illegal data pattern is
written into the Source FIFO. There are two conditions that trigger this error signal:

♦ The address was changed on a non-credit boundary, without an EOP. In this
case, the remainder of that packet will be terminated with an EOP Abort, and sent
out the SPI-4.2 bus.

♦ The SrcFFMod signal is non-zero without an EOP. In this case an EOP abort will
not be asserted. When this occurs, the Source core will ignore the SrcFFMod
value and send the data word with MOD set to zero.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 83
UG181 June 27, 2008

Source Core
R

The control signal TrainingRequest is used to request that training patterns be sent out
of the Source SPI-4.2 interface. When this signal is asserted, data transmission is halted on
the next burst boundary and training patterns are transmitted on the SPI-4.2 Interface. For
more information on the behavior of TrainingRequest, see “Transmitting Training
Patterns”.

The control signal IdleRequest signals that idle control words are to be sent on the SPI-
4.2 bus. This request overrides payload data transfers, but not training sequence requests.
When this signal is asserted, the data transmission is halted on the next burst boundary
and idle cycles are transmitted on the SPI-4.2 Interface. Idle cycles continue to be
transmitted until the signal is deasserted. For more information, see “Transmitting Idle
Cycles”.

The control signal SrcTriStateEn allows you to set the IOB drivers to high impedance
for Source core output signals TDClk, TDat[15:0], and TCtl. The Source core has the
default setting for this signal as outputs not to be tri-stated (SrcTriStateEn=0).

The control signal SrcOofOverride removes the requirement that the Source core must
receive consecutive valid DIP2 values on TStat. This signal forces the Source core to go in-
frame, and begin transmitting data on the SPI-4.2 interface. This signal is intended for
system testing and debugging.

The control signals SrcFifoReset_n and Reset_n provide reset capability to you:

• SrcFifoReset_n is used to clear the FIFO (and the associated data path logic) while
remaining in-frame. When SrcFifoReset_n is deasserted, the Source core will send
idle cycles until you write data into the FIFO.

• Reset_n is used to restart the entire Source core, and causes the interface to go out-
of-frame. When Reset_n is deasserted, the Source core will initiate the
synchronization startup sequence.

Source FIFO Interface Signals

The Source FIFO Interface signals allow you to write data to the FIFO for transmission to
the SPI-4.2 Interface. The description of each signal is summarized in Table 2-12. The
Source FIFO Interface signals are synchronous to SrcFFClk, and the effective FIFO depth
is 510 words. A FIFO word is 1/2 credit wide for a 64-bit interface, and 1/4 credit wide for
a 32-bit interface.

The SPI-4.2 Source core offers 64- and 32-bit FIFO Interface options for writing data into the
FIFO. Waveforms illustrating handshaking and FIFO status signals are shown in
Figure 4-24, Figure 4-25, and Figure 4-26. The Source core also supports insertion of DIP-4
errors on a per-packet basis for system diagnostics. For more information, see “Insertion of
DIP-4 Errors,” page 85.

Source FIFO Almost Full

Figure 4-24 shows the Almost Full response of the Source FIFO. The behavior of the Source
Almost Full flag (SrcAlmostFull_n) is dependent on the static configuration signals
SrcAFThresAssert and SrcAFThresNegate. When the SrcAlmostFull_n flag is
asserted, SrcAFThresAssert specifies the number of available empty FIFO locations.
For a 64-bit user interface, each FIFO location can contain up to 1/2 credit (8 bytes) worth
of data from a single packet. For a 32-bit user interface, each FIFO location can contain up
to 1/4 credit (4 bytes) worth of data from a single packet. SrcAFThresNegate specifies
when the SrcAlmostFull_n flag is deasserted.

http://www.xilinx.com

84 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Source FIFO Overflow

Figure 4-25 shows the overflow response of the Source FIFO. The assertion of
SrcFFAlmostFull_n indicates that the FIFO is almost full, and that data should no
longer be written into the FIFO. If data continues to be written into the FIFO, it may
overflow and result in data loss. The assertion of SrcFFOverflow_n indicates that an
overflow has occurred and that the current data (along with any subsequent data written
to the FIFO) will be lost. You may resume writing data to the FIFO once
SrcFFAlmostFull_n is deasserted

Figure 4-24: Source FIFO Almost-full Condition

Figure 4-25: Source FIFO Overflow Condition

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

SrcFFErr

SrcFFOverflow_n

SrcFFAlmostFull_n

CH1 CH2

000 000

CH1

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

SrcFFErr

SrcFFOverflow_n

SrcFFAlmostFull_n

CH1

000 000

CH2

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 85
UG181 June 27, 2008

Source Core
R

Writing to the Source FIFO

A pause to a transfer on a credit (16 bytes) boundary is illustrated in Figure 4-26. In the
example shown, two packets for unique channels are transferred into the FIFO. You write
32 bytes of data for channel 1, followed by 32 bytes of data for channel 2. Next, the final
eight bytes of data and associated EOP for channel 1 is written to the FIFO. Finally, the
remaining 16 bytes of data and associated EOP is written into the FIFO for channel 2. The
data will be transferred across the SPI-4.2 bus in the same order it is written into the FIFO

Insertion of DIP-4 Errors

The Source core enables you to force the insertion of DIP4 error for use during system
testing and debugging. This is supported by the SrcFFErr signal. When a SrcFFEOP flag
is asserted, SrcFFErr is used to indicate that the current packet contains an error and
causes the core to transmit an EOP abort with the packet. When SrcFFEOP is not asserted,
the assertion of SrcFFErr causes the core to force the insertion of an EOP (1 byte or 2 bytes
depending on SrcFFMod) with an erroneous DIP4 value when this data is transmitted on
the TDat bus. The erroneous DIP4 value is an inversion of the correctly calculated DIP4
value. Note that the DIP-4 error insertions are independent of SrcFFSOP.

Source Status and Flow Control Signals

The Source core transmits data in the order that it was written to the FIFO. You can pause
data transmission by sending idle cycles (using IdleRequest) or training
(TrainingRequest), but unless the FIFO is cleared (Reset_n or SrcFifoReset_n), the
data written into the FIFO will be transmitted in order. Ensure that proper data scheduling
is implemented to prevent a channel from going hungry or overflowing. This can be
accomplished using the status information from the Source core to determine which
channel data should be written next. A typical user flow-control design is shown in
Figure 4-27. This is an illustration of a two-channel system. The diagram shows an arbiter
that is used to poll the FIFO Status for each channel. It then uses this information to
determine which data is written to the Source core FIFO.

Figure 4-26: Writing to the Source FIFO

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

SrcFFErr

SrcFFOverflow_n

SrcFFAlmostFull_n

CH1

000 000

CH2 CH1 CH2

000

http://www.xilinx.com

86 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

To enable designing back-end user logic, the Source core presents status information in two
ways:

• Addressable Status Interface. This interface allows polling the status of 16 channels
at a time. This polling is synchronous to a user-defined clock (SrcStatClk).
Additionally, the last channel receiving a status update on TStat[1:0] is presented
(synchronous to TSClk).

• Transparent Status Interface. This interface presents status information as it is
received on TStat[1:0] with minimal latency. It also provides the ideal interface to
customize how to process the FIFO status information as it is received.

A user-programmable calendar is also provided. This calendar stores the order and
frequency that each channel status that is received on TStat, which is identical to the
sequence defined by the device that is receiving data from the Source interface. This is the
mechanism that enables the interfaces to determine which channel status is being received
on TStat. As defined by the SPI-4.2 specification, there are two bits provided for each
channel, indicating the channel status (hungry=01, starving=00, satisfied=10).

These interfaces are described in greater detail in the following sections. Descriptions of
the Source Status Path signals are provided in Table 2-13 and Table 2-14, page 36.

Source Calendar Initialization

There are two ways to initialize the Source calendar. The calendar can be initialized by
loading the COE file in the CORE Generator GUI. This loads the calendar contents into the
UCF file. For more information, see Chapter 3, “Generating the Core.” If this method is not
used, the calendar must be initialized in-circuit at startup.

Figure 4-27: Typical User Design Example

POLLING

Source Core

FIFO

Status I/F

FIFO
Channel 0

FIFO
Channel 1

User
Interface

M
U

X

Arbiter

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 87
UG181 June 27, 2008

Source Core
R

Initializing the Calendar In-Circuit

At start-up, you can program the Source calendar buffer by first deasserting Source Enable
(SrcEn), then using the calendar write enable, address bus, and data bus. SrcCalAddr is
used to indicate the location in the calendar buffer, and SrcCalData is used to indicate
the channel number that should be written into that location. This programming defines
the sequence that the status for each channel will be received. It is programed identically to
the device that the Source core has transmitted data.

The waveform in Figure 4-28 illustrates the programming of the Source calendar. In this
example, SrcCalendar_Len is set to five and SrcCalendar_M is set to zero (indicating
that the calendar length is six, and should be repeated once). In this example, TStat[1:0]
will receive status for each channel in the following sequence: status for channel 3, status
for channel 0, status for channel 1, status for channel 2, status for channel 3, and status for
channel 0.

To verify what has been programmed into the calendar buffer, you can read the contents
using Source Calendar Data Out (SrcCalDataOut[7:0]). When the calendar write
enable signal is deasserted, the data stored in the location specified by the calendar address
is driven on the SrcCalDataOut bus. It is not necessary to program the calendar on a one-
channel system, since by default all locations are set to zero.

Source Flow Control: Addressable Status Interface

The Addressable Status Interface is 32 bits for all channel configurations. This allows you
to read the FIFO Status Channel data for 16 channels at a time. There are four address lines
(SrcStatAddr) for selecting which 16 channels you are accessing. (Note that for systems
using 1-16 channels, the address lines can be permanently set to zero.) A block diagram of
how the Addressable Interface processes the received SPI-4.2 Status is shown in
Figure 4-29. The minimum latency between the user interface and SPI-4.2 Interface for this
Status Path interface is 9 TSClk cycles.

Status for 16 channels in each clock cycle can be read. Use the SrcStatAddr bus to select
which 16 channels are read. The core supports configurations of 1–256 channels.

The accessible 16-channel status banks are addressed as follows:

• Bank 0: SrcStatAddr[3:0]=0 for channels 15 to 0

• Bank 1: SrcStatAddr[3:0]=1 for channels 31 to 16

• Bank 2: SrcStatAddr[3:0]=2 for channels 47 to 32

• Bank 3: SrcStatAddr[3:0]=3 for channels 63 to 48

Figure 4-28: Source Calendar Initialization

SrcCalendar_M

SrcCalendar_Len

SrcCalClk

SrcCalWrEn_n

SrcCalAddr[8:0]

SrcCalData[7:0]

0x00 0x01 0x02 0x03

CH3 CH0 CH1 CH2

SrcCalDataOut[7:0]

0x04 0x05

CH3 CH0

CH3 CH0

0x00 0x01 0x02

SrcCalendar_M=0 (0000.0000)

SrcCalendar_Len=5 (0.0000.0101)

http://www.xilinx.com

88 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

• ...

• Bank 14: SrcStatAddr[3:0]=14 for channels 239 to 224

• Bank 15: SrcStatAddr[3:0]=15 for channels 255 to 240

The status that is accessed is mapped to the 16-bit bus as follows (assuming SrcStatAddr
[3:0] = 0):

• SrcStat[1:0] => Channel 0, where SrcStat[1] is the MSB of the 2-bit status

• SrcStat[3:2] => Channel 1

• SrcStat[5:4] => Channel 2

• ...

• SrcStat[11:10] => Channel 13

• SrcStat[13:12] => Channel 14

• SrcStat[15:14] => Channel 15

The operation of the Addressable Status FIFO interface is explained using three examples
described below and illustrated in Figure 4-30, Figure 4-31, and Figure 4-32.

Addressable Status FIFO Interface: Example 1

This example illustrates reading the Status FIFO Interface for a 4-channel Source core, as
shown in Figure 4-30. As there are fewer than 17 channels, the Source Status Address bus
(SrcStatAddr[3:0]) is permanently tied to zero. The Source Status address
(SrcStatAddr[3:0]) causes the Source Status data bus (SrcStat[31:0]) to be
updated on the next clock cycle. Both buses use the user-selected clock domain
(SrcStatClk), which can be tied to the SPI-4.2 Interface clock domain (TSClk_GP).

Figure 4-29: Addressable Status FIFO Interface

Q D

SrcStatClk

WData

WAddr

WEN

WCLK

SrcStatClk SrcStatClk

Q D

TSClk_GP

FIFO Status Cyclic Buffer
(Dual Port LUT RAM)

Q D

TSClk_GP

RData

RAddr

SrcStatAddr

SrcStatAddr

1 FifoWrAddress is the channel address
retrieved from the Calendar.

32

Write_En

FifoWrAddress

TStat_Delayed[1:0]

TSClk_GP

Write_En

FifoWrAddress 1

SrcStat[31:0]

SrcStatCh

SrcStatChValid

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 89
UG181 June 27, 2008

Source Core
R

The Source Status Channel (SrcStatCh[7:0]) indicates which channel status was last
updated on the SPI-4.2 Interface and is qualified by the Source Status Channel Valid signal
(SrcStatChValid=1). SrcStatChValid enables SrcStatCh[7:0] to be encoded,
and the valid signal is disabled when the core processes a received DIP-2 or framing word.
Note that the SrcStatusCh[7:0] and SrcStatChValid use the SPI-4.2 Interface clock
domain (TSClk_GP).

In this illustration, status is read for the 4-channel system. The calendar length is set to six
and programmed to round-robin this sequence: Ch0, Ch1, Ch2, Ch3, Ch0, Ch1. Table 4-9
shows the status written into the SrcStat for each channel on every write clock cycle.

Addressable Status FIFO Interface: Example 2

This example illustrates reading the Status FIFO Interface for a 256-channel Source core,
shown in Figure 4-31. To read the status for 256 channels, address the following sixteen
banks—depending on the channel status is being read.

• Bank 0: SrcStatAddr[3:0]= 0000, for channels 15 to 0

Table 4-9: Status Written into SrcStat per Channel per Clock Cycle

Read Cycle Starving Status Satisfied Status

0 CH 0-3 none

1 CH 0-3 none

2 CH 0-3 none

3 CH 0-3 none

4 CH 0-3 none

5 CH 0-3 none

6 CH 0-3 none

7 CH 1-3 CH 0

8 CH 2-3 CH 0-1

9 CH 3 CH 0-2

Figure 4-30: Addressable Status FIFO Interface: 4-Channel Configuration

0x00000002

0x0000000A

0x0000002A

Read 0 Read 1 Read 2 Read 3 Read 4 Read 5 Read 6 Read 7 Read 8 Read 9

Independent
Clock

Domains

SrcStatAddr[3:0
]

BIN

SrcStat[31:0] HEX

SrcEn

0x00000000

0000

SrcStatClk

SrcStatCh[7:0] DEC

SrcStatValid

0 1 2 3 0 1 20 1

TSClk_GP

http://www.xilinx.com

90 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

• Bank 1: SrcStatAddr[3:0]= 0001, for channels 31 to 16

• Bank 2: SrcStatAddr[3:0]= 0010, for channels 47 to 32

• Bank 3: SrcStatAddr[3:0]= 0011, for channels 63 to 48

• ...

• Bank 15: SrcStatAddr[3:0]= 1111, for channels 255 to 240

The status read in the example shown in Figure 4-31 is summarized in Table 4-10.

Addressable Status FIFO Interface: Example 3

This example illustrates status received on the SPI-4.2 bus and written to the user interface
(Figure 4-32). The calendar length is seventeen (SrcCalendar_Len=16) and calendar
repetition value is one (SrcCalendar_M=0). This illustrates a system in which the

Table 4-10: Status Read Summary

Read Cycle Status Address Starving Status Satisfied Status

0 Bank 15 CH 240–255 None

1 Bank 15 CH 240–255 None

2 Bank 15 CH 240–255 None

3 Bank 0 CH 0–15 None

4 Bank 0 CH 0–15 None

5 Bank 0 CH 1–15 CH 0

6 Bank 15 CH 242–255 CH 240–241

7 Bank 15 CH 243–255 CH 240–242

8 Bank 15 CH 241–254 CH 255

9 Bank 0 CH 0–13 CH 14–15

10 Bank 0 CH 0–12 CH 13–15

Figure 4-31: Addressable Status FIFO Interface: 256-channel configuration

0x00000002

0x0000000A

0x0000002A

0x80000000

0xA0000000

0xA8000000

Independent
Clock

Domains

SrcStatCh[7:0]

SrcStatValid

CH240 CH241 CH242 CH15 CH14 CH13 CH240 CH241 CH242 CH15 CH14 CH13

TSClk

SrcStatClk

SrcStatAddr[3:0] 1111 0000 1111

SrcStat[31:0]

SrcEn

0000

0x00000000

Read 0 Read 1 Read 2 Read 3 Read 4 Read 5 Read 6 Read 7 Read 8 Read 9 Read 10

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 91
UG181 June 27, 2008

Source Core
R

internal status path clock (SrcStatClk) is synchronous to the external status path clock
(TSClk). In other words, SrcStatClk is tied to TSClk_GP. This enables one to always be
accessing the last updated status information, which is achieved by connecting
SrcStatAddr directly to the most significant four bits of the SrcStatCh bus.

In this example, the status for each channel alternates between starving and satisfied. To
read the status for the full sequence, first set the SrcStatAddr to zero for channels 0-15,
and then to one to address channel 16. Notice that during the DIP-2 and framing cycles, the
SrcStatValid is deasserted. During this time, the output on the bus is not defined.

FIFO status information is periodic, repeating the sequence of a frame word (11), a
repeated set of FIFO status words (SrcCalendar_M + 1 times) in accordance with the
programmed calendar order, and a DIP-2 value. Figure 4-32 shows the receipt of one
complete calendar sequence followed by the beginning of a second sequence. At startup,
the circuitry initializes the Calendar buffer as described (See “Source Calendar
Initialization,” page 86) and asserts the Source Enable signal (SrcEn). After reset is
deasserted, the Source Interface sends training patterns on the data path (TDat[15:0]),
and looks for non-framing data on the status path (TStat[1:0]). When
NumDip2Matches valid DIP2 values are received on the status path, valid data can be sent
on the SPI-4.2 data path. If there is no data in the Source FIFO to be sent, the core sends idle
cycles.

Source Flow Control: Transparent Status Interface

The Transparent Status Interface is 2 bits for all channel configurations. For the Transparent
Interface, you are presented with the current status received on the SPI-4.2 Interface. The 2-
bit status is presented to you by a corresponding channel address (SrcStatCh[7:0]) and is
qualified with the valid signal SrcStatChValid. Unlike the Addressable Interface, the
transparent interface does not store the received status in a cyclic buffer. This means you
can not access the status of a specific channel, but receives the status in real time as it is
received by the Source core. A block diagram of how the Transparent Interface processes
the received SPI-4.2 FIFO Status is shown in Figure 4-33. The minimum latency between
the user interface and SPI-4.2 Interface for this Status Path interface is 4 TSClk_GP cycles.

Figure 4-34 illustrates the output of the Transparent Status FIFO Interface for a 256-channel
configuration. On each clock cycle, the status (SrcStat[1:0]) and its corresponding
channel (SrcStatCh[7:0]) is presented. The Source Status and channel address are only
valid when SrcStatChValid is asserted (equal to one). When SrcStatChValid is

Figure 4-32: Addressable Status FIFO Interface - SPI-4.2 Interface to User Interface

0 = 0000 0000

16 = 0 0001 0000

SrcCalendar_M

SrcCalendar_Len

TSClk = SrcStatClk

TStat 11 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 dip 1100 10 00 10 00 10 00

SrcStatValid

0x888 0x8888 0x88888 0x888888

0x8888888

0x88 0x8888888A0x88888888

SrcStatCh[7:0] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2

SrcStat[31:0]

SrcStatAddr[3:0] =
SrcStatCh[7:4]

HEX 0x8 0x8 0x00x0

0 1 0

http://www.xilinx.com

92 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

deasserted (equal to zero), the interface is receiving DIP-2 or framing and the data on
SrcStat[1:0] is not valid. For the Transparent Interface, all outputs use the SPI-4.2
Interface clock domain (TSClk_GP).

Table 4-11 presents status for the 256-channel Source Calendar Initialization system:

Figure 4-33: Transparent Status FIFO Interface Block Diagram

Table 4-11: Status for the 256-channel Source Calendar Initialization System

Read Cycle Channel Status

0 0 Hungry

1 2 Satisfied

2 128 Starving

3 129 Hungry

4 9 Hungry

5 1 Satisfied

6 Invalid Invalid (DIP-2)

7 Invalid Invalid (Frame word)

8 10 Starving

9 79 Hungry

10 16 Satisfied

SrcStat[1:0]
Q D

TSClk_GP

TStat_Delayed[1:0]

TSClk_GP

Write_En

FifoWrAddress 1SrcStatCh[7:0]
Q D

SrcStatChValid
Q D

TSClk_GP

2

1 FifoWrAddress is the channel address
retrieved from the Calendar.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 93
UG181 June 27, 2008

Source Core
R

Source Static Configuration Signals
The source static configuration signals are inputs to the core, statically driven to determine
the behavior of the core. See Table 2-15, page 38 for a full list of static configuration signals.

Three of the Source Static Configuration signals can be changed in-circuit. There are static
registers for SrcBurstLen (synchronous to SrcFFClk), and SrcCalendar_M and
SrcCalendar_Len (synchronous to SrcStatClk.) To change these parameters while the
core is operational, first deassert SrcEn.

Source Burst Mode

Source Burst Mode (SrcBurstMode) is a static configuration signal that allows one to
define how data is transmitted by the Source core. If this signal is set to zero, the Source
core transmits data in the FIFO whenever there is a complete credit of data, or when there
is an end-of-packet flag (SrcFFEOP.) This is compliant with the transmit operation as
defined by the SPI-4.2 OIF specification. If a partial credit is written into the FIFO and then
paused, the data in the FIFO will be transmitted up to the last credit boundary.

When SrcBurstMode is set to 1, the Source core only transmits data that is terminated by
an EOP or when there is data in the FIFO equal to the maximum burst length defined by
the static configuration signal SrcBurstLen. If an incomplete burst is written into the
FIFO and paused, then data in the FIFO will be transmitted up to the last burst boundary.

When SrcBurstMode is set to 1, the Source FIFO thresholds (SrcAFThresAssert and
SrcAFThresNegate) must be greater than or equal to the burst length (SrcBurstLen).
If the FIFO thresholds are set to less than the burst length, the core will force the threshold
values to the burst length. This ensures that the FIFO will not report Almost Full before a
burst of data has been written into the core.

Figure 4-34: Transparent Source Status FIFO Interface: 256-channel Configuration

Read 0 Read 1 Read 2 Read 3 Read 4 Read 5 Read 6 Read 7 Read 8 Read 9 Rd 10

TSClk_GP

SrcStatCh[7:0] DEC

SrcStat[1:0] BIN

SrcEn

SrcStatValid

0 2 128 129 10 79 169 1

01 10 00 01 01 10 01 11 00 01 10

http://www.xilinx.com

94 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Source Burst Mode Example

SrcBurstLen equals 2 credits and 1.5 credits are written into the FIFO followed by 0.5
credits. Figure 4-35 illustrates the behavior of the Source core when SrcBurstMode=0.
Figure 4-36 illustrates the behavior of the Source core when SrcBurstMode=1.

Synchronization and Start-up
After the Source core has been initialized, as described in “Initializing the SPI-4.2 Lite
Core,” page 52, the source core has to be synchronized before data and status can be
received and transmitted. Figure 4-37 is a state machine diagram illustrating the Source
core startup and error condition processing.

Figure 4-35: Example Of Source Burst Mode = 0

Figure 4-36: Example Of Source Burst Mode = 1

CH1

04 05 06 0700 01 02 03 10 11 12 13

000000 000

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

TDat_P

TDClk_P

TCtl_P

C1 IDLE

CH1

14 15 16 17

000

C2 IDLE IDLE IDLE C300 01 02 03 04 05 0706 10 11 12 13 14 15 1716 C4

CH1

04 05 06 0700 01 02 03 10 11 12 13

000000 000

SrcFFClk

SrcFFWrEn_n

SrcFFAddr

SrcFFData

SrcFFMod

SrcFFSOP

SrcFFEOP

TDat_P

TDClk_P

TCtl_P

C1

CH1

14 15 16 17

000

00 01 02 03 04 05 0706 10 11 12 13 14 15 1716 C2

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 95
UG181 June 27, 2008

Source Core
R

RESET

The Source core remains in the RESET state until the Reset_n signal is deasserted. When
in the RESET state, the Source core transmits idle patterns on TDat[15:0] and the Status
FIFO is driven to be satisfied (“10”) for all channels.

HUNT

When Reset_n is deasserted, the state machine goes to the HUNT state and sends
continuous training patterns on the SPI-4.2 Interface. Once the Source core is enabled
(SrcEn=1), the Source Status Interface attempts to acquire synchronization on the FIFO
Status Channel. When the Source Status Interface has found the “11” framing pattern, the
Source core and monitors for the programmed number of consecutive DIP-2 correct
matches (NumDip2Matches). When in the HUNT state, the Status FIFO is driven to be
satisfied (“10”) for all channels.

SYNC

If the number of correct DIP-2 matches are received (NumDip2Matches), the Source core
goes into the SYNC state. In this state, the core transmits the flow control data received on
the status path (TStat[1:0]) onto the user interface. It also transmits the data that has
been written into the FIFO on the SPI-4.2 Lite data bus (TDat[15:0]). If an incorrect
framing pattern (of four consecutive "11") is received, a set number of consecutive DIP-2
errors (defined by NumDip2Errors) are received, or if SrcEn is deasserted, the state
machine returns to the HUNT State.

Figure 4-37: Source Startup Sequence State Machine

<NumDip2Errors> Consecutive
Incorrect DIP-2 Calculations Deleted
or Source Disabled

Reset Asserted

Reset Asserted

The Source core remains in the reset state
until the following condition is true:
Reset_n is deasserted

The source core transmits idle patterns
on TDat[15:0] while in the reset state.

The Source core remains in the hunt state
until the following conditions are:
-- The PHY device is no longer sending
 framing (TSTAT /= "11")
-- Once framing is not being received, a
 consecutive number of DIP2 matches
 (defined by the parameter
 <NumDip2Matches> is received.
-- Source is enabled
 Each "11" to non "11" transition is
 translated as a start of a status sequence.

The source core transmits training patterns
on TDat[15:0] while in the hunt state.

In the sync state, the Source core has
completed the start-up sequence and
normal core operation is enabled.

In normal operation, the Source core
transmits data bursts that have been
written into the Source FIFO. It also
sends periodic training patterns on TDat
and continuously checks DIP-2 parity
on TStat.

RESET HUNT SYNC

http://www.xilinx.com

96 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

Error Handling
This section describes how the Source core handles the receipt of non-compliant SPI-4.2
data and subsequent error handling in a number of common scenarios. This section also
provides additional information on the Source core error status signals.

Source Behavior Before Synchronization

• To go into frame, the Source core must receive the number of complete status
sequences defined by NumDip2Matches.

♦ Each received status sequence must contain the correct number of entries (defined
by SrcCalendar_Len* SrcCalendar_M) followed by the DIP-2 calculation and
a frame word "11."

• When the core is out of sync, it will resychronize to the first "11-to-non-11" transition.
Once it receives this transition, it will go in-frame once it receives the expected
number of correct consecutive DIP-2 words.

• If there is a calendar mismatch with the receiving device, the core may not go into
frame. If the mismatch causes DIP-2 errors, then SrcDIP2Err will be asserted.

• When the core is out of frame, every "11-to-non-11" transition is considered as a start
of status sequence.

• The core checks if a "11" is received after an expected DIP-2 value is received. If a non
”11” frame word is received the SrcStatFrameErr signal will assert.

Source Behavior After Synchronization

• If the core receives an incorrect DIP-2 word, SrcDIP2Err flag will be asserted.

• If the core receives an incorrect frame word (not “11”), the SrcStatFrameErr flag
will assert. This is another indication that the calendar is mismatched.

• After a specified number of consecutive DIP-2 Errors (defined by NumDip2Errors),
the Source core will go out-of-frame.

• If the Source core receives four consecutive frame words ("11"), it will go out-of-frame.

• Once in frame, the core does not realign to the beginning of a status sequence. The
assertion of DIP-2 errors would indicate a possible mismatch with the calendar of the
receive device.

• A mismatch with the calendar of the receive device can be detected by polling that
you have received a "11" as status on SrcStat.

EOP Abort Insertion

An EOP Abort will be inserted when a burst termination on a non-credit boundary without
an EOP is followed by an SOP or an address change.

If a burst is paused on a non-credit boundary and then resumed with data (without an
SOP) from the same channel, an EOP abort will not be inserted.

Source Out of Frame

Source Out of Frame (SrcOof) is asserted when the Source core is out-of-frame. The
following cases can cause the Source core to go out-of-frame:

• Case 1: You reset the core by asserting Reset_n.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 97
UG181 June 27, 2008

Source Core
R

♦ Action: The Source core will transmit idle cycles when Reset_n is asserted.
When Reset_n is deasserted, the core will initiate the synchronization start-up
sequence.

• Case 2: If the core receives a number of consecutive DIP-2 errors as defined by
NumDip2Errors.

♦ Action: The Source core terminates the current packet at the next burst boundary,
and begins transmitting training patterns on TDat[15:0].

• Case 3: If the core receives four framing sequences "11" in a row on TStat.

♦ Action: The Source core terminates the current packet at the next burst boundary,
and begins transmitting training patterns on TDat[15:0].

After the Source core is in frame, it will resume transmitting the remaining data stored in
the FIFO. (Note that if SrcFifoReset_n is asserted, the Source core will remain in frame
(SrcOof will be deasserted).

Source DIP-2 Error Handling

The Source core asserts the DIP-2 error flag (SrcDIP2Err) when a DIP-2 error is received
on TStat.

Source Status Frame Word Handling

The Source core asserts the frame error flag (SrcStartFrameErr) when an incorrect
frame word (non-”11”) is received on TStat at the end of the status sequence.

Source Pattern Error Handling

Source Pattern Error (SrcPatternErr) is asserted when an illegal data pattern is written
into the Source FIFO. The two conditions that will trigger this error signal are:

• Case 1: The address was changed on a non-credit boundary, without an EOP: In this
case, the remainder of that packet will be terminated with an EOP Abort, and sent out
the SPI-4.2 bus.

• Case 2: The SrcFFMod signal is non-zero without an EOP: In this case, an EOP abort
will not be asserted. When this occurs, the Source core will ignore the SrcFFMod
value and send the data word with MOD set to zero.

Incorrect Burst Termination

When a burst (that has an odd number of bytes), terminated with an EOP, is not padded
with zeros, the Source core sets unused bytes to zero (as required by the SPI4 specification).
The Source core will also assert SrcPatternErr, but the core will not assert an EOP abort.

http://www.xilinx.com

98 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 4: Designing with the Core
R

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 99
UG181 June 27, 2008

R

Chapter 5

Constraining the Core

This chapter describes the timing and placement constraints required by the SPI-4.2 Lite
core to meet the performance requirements, including a set of optional constraints. These
constraints are provided in an example user constraints file (UCF).

In this chapter, <snk_instance_name> and <src_instance_name> are used to
indicate the instance name used to instantiate the Sink and Source cores in HDL
respectively. Depending on where the cores are instantiated in the user design hierarchy,
<*instance_name> will change to include the design hierarchy.

For example, in the example UCF file, the cores are instantiated in a top-level wrapper file
as “<component_name>_pl4_lite_snk_top0” and
“<component_name>_pl4_lite_src_top_master_addr0.” Therefore, the
<snk_instance_name> used for the Sink core is
“<component_name>_pl4_lite_snk_top0” and the <src_instance_name> used
for the Source core is “<component_name>_pl4_lite_src_top_master_addr0”. In
this context, <component_name> is the name given by the user in the CORE Generator
SPI-4.2 Lite GUI.

Overview
The SPI-4.2 Lite core provides flexibility to the user to drive constraints with user-specific
design requirements. The large number of possible core implementations makes it
impossible to include constraints for all of them. Even if such constraints were generated,
they would tend to be less than optimal for any particular FPGA design. In many cases,
only the timing constraints are required to ensure correct implementation of the core. Any
configuration that achieves static timing closure (for example, meets the timing constraints
of the operating clock frequency) is valid and will operate correctly.

The following sections describe how each set of constraints provided in the example UCF
file interacts with the implementation tool flow. In many cases, the placement constraints
are not required. However, when used, they must be appropriately modified for the
chosen device and consistent with other constraints. For example, I/O bank locations and
Sink and Source clock region constraints need to be compatible if used together. For more
information about the definition and use of a UCF file or specific constraints, see the Xilinx
Libraries Guide and/or Development System Reference Guide.

Sink Core Required Constraints

Timing Constraints
Timing constraints are crucial for proper operation. The following constraints are provided
with the SPI-4.2 Lite core, but can be modified to meet individual system requirements. In

http://www.xilinx.com

100 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 5: Constraining the Core
R

the following examples, the target performance is 340 Mbps. Please ensure that
modifications to these constraints do not create paths that are unconstrained.

Time Names for Clocks

The following Sink core clock constraints are required:

• NET “RDClk_P” TNM_NET = “RDClk_P”;

• NET "<snk_instance_name>/U0/cal0/EnRSClk_int*" TNM = FFS
snk_cal_flops;

The following Sink core user-interface-clock constraints are required when the example
design is used, and the user interface signals are looped back to the source core interface.

• NET "CalClk" TNM_NET = "CalClk";

• NET "LoopbackClk" TNM_NET = "LoopbackClk";

The following Sink core user interface clock constraints are only required when the
respective clocks are used.

• NET "SnkCalClk" TNM_NET = "SnkCalClk";

• NET "SnkFFClk" TNM_NET = "SnkFFClk";

• NET "SnkStatClk" TNM_NET = "SnkStatClk";

Timespecs for Clocks

These constraints specify the frequency and duty cycle of the clock signal. For high
frequency clocks, clock jitter is also specified. These values can be modified according to
user design.

The following Sink core clock constraints are always required. The generated SPI-4.2 Lite
core may have different timing constraints than the examples provided.

• TIMESPEC "TS_RDClk_P" = PERIOD "RDClk_P" 170MHz HIGH 50%
INPUT_JITTER 300ps;

• TIMESPEC "TS_SnkCalFlops" = FROM "snk_cal_flops" TO
"snk_cal_flops" "TS_RDClk_P"/ 4;

The following Sink core user interface clock constraints are required when the example
design is used, and the user interface signals are looped back to the source core interface.

• TIMESPEC "TS_CalClk" = PERIOD "CalClk" 43MHz HIGH 50%;

• TIMESPEC "TS_LoopbackClk" = PERIOD "LoopbackClk" 170MHz HIGH
50% INPUT_JITTER 300ps;

The following Sink core user interface clocks constraints are only required when the
respective clocks are used.

• TIMESPEC "TS_SnkCalClk" = PERIOD "SnkCalClk" 43MHz HIGH 50%;

• TIMESPEC "TS_SnkFFClk" = PERIOD "SnkFFClk" 170MHz HIGH 50%
INPUT_JITTER 111ps;

• TIMESPEC "TS_SnkStatClk" = PERIOD "SnkStatClk" 43MHz HIGH 50%;

Maxdelay for Reset

The following Sink core reset signal constraints are always required. Once generated, the
SPI-4.2 Lite core may have different timing constraints than the examples provided below.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 101
UG181 June 27, 2008

Sink Core Required Constraints
R

• NET
"<snk_instance_name>/U0/pl4_lite_snk_core0/pl4_lite_snk_cal0/rs
clk_rst" MAXDELAY = 5.8 ns;

• NET
"<snk_instance_name>/U0/pl4_lite_snk_reset01/snk_stat_clk_gen/
reset_out_i" MAXDELAY = 5.8 ns;

• NET
"<snk_instance_name>/U0/pl4_lite_snk_reset01/snk_ff_clk_rst_gen
/reset_out_i” MAXDELAY = 5.8 ns

• NET
"<snk_instance_name>/U0/pl4_lite_snk_reset01/snk_ff_clk_rst_gen
/fifo_reset_out_i" MAXDELAY = 5.8 ns;

• NET
"<snk_instance_name>/U0/pl4_lite_snk_reset01/rdclk0_rst_gen/
fifo_reset_out_i” MAXDELAY = 5.8 ns;

• NET
"<snk_instance_name>/U0/pl4_lite_snk_reset01/rdclk0_rst_gen/
reset_out_i" MAXDELAY = 5.8 ns;

These MAXDELAY values differ depending on target speed grade and core performance.

DCM and Static Alignment Constraints
DCM and BUFR (Virtex-4 and Virtex-5 devices only) constraints are needed to align
incoming data (RDat and RCtl) to its clock (RDClk) in the static alignment configuration.
In addition, the frequency of the DCM clock input must also be specified for complete
timing analysis. The following constraints are provided with the SPI-4.2 Lite core. You can
modify these constraints to meet your system requirements.

Phase Shift for DCM

The following constraints are used to align the incoming data (RDat and RCtl) to its clock
(RDClk) when global clocking is used. This is accomplished by changing the phase of the
I/O clock in relation to the data. The default PHASE_SHIFT value of 62 is the correct
nominal “PHASE_SHIFT,” assuming RDClk transitions at the same time as RDat and
RCtl inputs.

• INST "<snk_instance_name>/U0/pl4_lite_snk_clk0/rdclk_dcm0"
CLKOUT_PHASE_SHIFT = FIXED;

• INST "<snk_instance_name>/U0/pl4_lite_snk_clk0/rdclk_dcm0"
PHASE_SHIFT = 62;

Clock Delay in ISERDES

The following constraint applies to Virtex-4 and Virtex-5 devices only, and is needed to
align the incoming data (RDat and RCtl) to its clock (RDClk) at the ISERDES. The
alignment method can be used only when sink user clocking mode with regional clocking
distribution is selected. Alignment is accomplished by delaying the RDClk input in the
ISERDES using the “IOBDELAY” attribute. The default value in the UCF is the correct
“IOBDELAY” for the defined RDClk frequency, assuming RDClk transitions at the same
time as RDat and RCtl inputs. Each increment or decrement of the IOBDELAY value shifts
the RDat and RCtl input by 75 ps forwards or backwards. See the Virtex-4 Data Sheet and
the Virtex-5 Data Sheet for more information.

http://www.xilinx.com

102 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 5: Constraining the Core
R

• INST "<snk_instance_name>/U0/clk0/rdclk_dcm0" IOBDELAY_VALUE =
0;

Placement Constraints
Although the SPI-4.2 Lite core does not require fixed pinouts, there are several placement
constraints that are critical to meet performance requirements and process through the
Xilinx tools. The constraints generated in the CORE Generator system is only an example
and should be modified. The user can modify these constraints to:

• Move the core placement to a different area
• Target a different device (other than the example device package configuration)

See Constraints Migration Guide for information on how to migrate the core to a different
area or device-package.

I/O Placement

In SPI-4.2 Lite core, the user has the flexibility to place the SPI-4.2 Lite I/Os according to
their needs. The user is not restricted to place the I/Os in the bank options provided in the
GUI. The placement of the I/Os can be defined using 2 kinds of constraints: bank or pin-
lock constraints.

The following is an example of how to define I/O bank constraints:

• INST "RCtl*" LOC = "Bank5"; # 1 LVDS I/O pair
• INST "RDat*" LOC = "Bank5"; # 16 LVDS I/O pairs

Note that all the SPI-4.2 Lite I/Os do not need to be in a single bank as given in the example
UCF. Ensure that there are enough I/Os in the targeted bank (or banks) when using these
constraints.

The following is an example of how to define I/O pin lock constraints:

• NET "RDat_P(15)" LOC = "G18";

• NET "RDat_P(14)" LOC = "B24";

• NET "RDat_P(13)" LOC = "F18";

• NET "RDat_P(12)" LOC = "E21";

• NET "RDat_P(11)" LOC = "A20";

• NET "RDat_P(10)" LOC = "D22";

To use these constraints, add the constraints and modify the pinout accordingly. If you use
an area group to define the placement of the Sink core, place the SPI-4.2 Lite pins (RCtl
and RDat) in the same clock region as the defined area group. This is especially needed if
regional clocking is used.

The user also has the same flexibility of placing RDClk using the above constraints type.
However, there are some general guidelines when using different clocking options.

If regional clocking is chosen, RDClk must be placed on a clock capable I/O pin that is in
the same clock region as the Lite Sink core logic.

To illustrate, in the example UCF file:

• INST "RDClk" LOC = "Bank5";

If global clocking is chosen, RDClk must be placed on a pin that is connected to a global
clock buffer. For instance, in the example UCF file:

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 103
UG181 June 27, 2008

Sink Core Optional Constraints
R

• INST "RDClk*" LOC = "Bank3";

IOB Register Packing

The following constraints are mandatory for the Sink core. It ensures that the output
register 3 of the RStat and RSClk signals are packed in the IOB. This guarantees that the
timing between the output pad and the register is met.

• INST "<snk_instance_name>/U0/pl4_lite_snk_core0/pl4_lite_snk_cal0/
rstat1_ff" IOB=TRUE;

• INST "<snk_instance_name>/U0/pl4_lite_snk_core0/pl4_lite_snk_cal0/
rstat0_ff" IOB=TRUE;

• INST "<snk_instance_name>/U0/pl4_lite_snk_core0/pl4_lite_snk_cal0/
r sclk_ff" IOB=TRUE;

Sink Core Optional Constraints
In addition to the required constraints, the following constraints can be used based on your
design requirements.

IDelayCtrl
The following constraint defines where to place the IDelayCtrl. It must be placed in the
I/O banks where the SPI-4.2 Lite I/Os are placed.

• INST "<snk_instance_name>/rdclk_idelctl” = IDELAYCTRL_X0Y4;

I/O Standards Constraints
Different I/O standards for several input and output pins can be defined. To change the
I/O standards for SnkIdelayRefClk (regional clocking only), RSClk, and RStat to
LVTTL, add the following constraints in the design:

• NET "SnkIdelayRefClk" IOSTANDARD = LVTTL;

• NET "RSClk" IOSTANDARD = LVTTL;

• NET "RStat" IOSTANDARD = LVTTL;

To change the I/O standards of the SPI-4.2 Lite data bus, control bit, and clock inputs to
LVDS 25 with internal device termination or DCI, add the following constraints in the
design:

• INST "RDat_P(*)" IOSTANDARD = LVDS_25_DCI;

• INST "RDat_N(*)" IOSTANDARD = LVDS_25_DCI;

• INST "RCtl_P" IOSTANDARD = LVDS_25_DCI;

• INST "RCtl_N" IOSTANDARD = LVDS_25_DCI;

• INST "RDClk_P" IOSTANDARD = LVDS_25_DCI;

• INST "RDClk_N" IOSTANDARD = LVDS_25_DCI;

To change the I/O standards of the SPI-4.2 Lite data bus, control bit, and clock inputs to
LVDS 25 with internal differential termination, add the following constraints in the design:

• INST "<sink_instance_name>/U0/pl4_lite_snk_clk0/rdclk_ibufg0"
DIFF_TERM = TRUE;

http://www.xilinx.com

104 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 5: Constraining the Core
R

• INST
"<sink_instance_name>/U0/pl4_lite_snk_io0/buffer_data/Dat*"
DIFF_TERM = TRUE;

• INST "<sink_instance_name>/U0/pl4_lite_snk_io0/buffer_data/Ctl"
DIFF_TERM = TRUE;

Area Group Constraints
The area group constraints can be used by the user to define a specific placement of the
sink core. These constraints are not required for Sink cores that use global clocking
distribution but are recommended for Sink cores that use regional clocking distribution.

The following static alignment constraints are used to place the Sink core in one clock
region in the example UCF:

• * INST <snk_instance_name>/* AREA_GROUP = AG_pl4_lite_snk;

• * AREA_GROUP "AG_pl4_lite_snk" RANGE = CLOCKREGION_X0Y4;

Timing Ignore Constraints
If Sink core static configuration signals are driven statically from a register, apply timing
ignore attributes (TIG) to the static configuration signals to create proper timing ignore
paths. If these are driven statically from a wrapper file, then a TIG is not needed.

In the example UCF file, these constraints are commented out. Add the constraints listed
below include them in the design.

• NET "SnkAFThresAssert(*)" TIG;

• NET "SnkAFThresNegate(*)" TIG;

• NET "FifoAFMode(*)" TIG;

• NET "NumDip4Errors(*)" TIG;

• NET "NumTrainSequences(*)" TIG;

• NET "RSClkPhase" TIG;

• NET "RSClkDiv" TIG;

Source Core Required Constraints

Timing Constraints
Timing constraints are critical for proper operation. The following constraints are provided
with the SPI-4.2 Lite core, and the user can modify these constraints to meet their system
requirements. In the examples below, the target performance is 340 Mbps. However, the
user is responsible for ensuring that any modification to these constraints does not result in
paths which are unconstrained.

Timenames for Clocks

The following constraints are for the Source core clocks, and are always required.

• NET "SysClk_P" TNM_NET = "SysClk_P";

• NET "TSClk" TNM_NET = "TSClk" (for source status I/O type of
LVTTL);

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 105
UG181 June 27, 2008

Source Core Required Constraints
R

• NET "TSClk_P" TNM_NET = "TSClk" (for source status I/O type of
LVDS);

The following constraints are for the Source core user interface clocks, and are only
required if the user interface signals are not looped back to the source core user interface.

• NET "SrcCalClk" TNM_NET = "SrcCalClk";

• NET "SrcFFClk" TNM_NET = "SrcFFClk";

• NET "SrcStatClk" TNM_NET = "SrcStatClk";

Timespecs for Clocks

The following constraints are for the Source core clocks, and are always required. Note the
generated SPI-4.2 Lite core may have different timing constraints than the examples
provided below.

• TIMESPEC "TS_SysClk_P" = PERIOD "SysClk_P" 170MHz HIGH 50%
INPUT_JITTER 200ps;

• TIMESPEC "TS_TSClk" = PERIOD "TSClk" 43MHz HIGH 50%;

The following constraints are for the Source core user interface clocks, and are only
required when the respective clocks are used.

• TIMESPEC "TS_SrcCalClk" = PERIOD "SrcCalClk" 43MHz HIGH 50%;

• TIMESPEC "TS_SrcFFClk" = PERIOD "SrcFFClk" 170MHz HIGH 50% I
NPUT_JITTER 300 ps;

• TIMESPEC "TS_SrcStatClk" = PERIOD "SrcStatClk" 43MHz HIGH 50%;

These constraints specify the frequency and duty cycle of the clock signal. For the high
frequency clocks, clock jitter is also specified. You can modify these values based on target
performance.

Maxdelay for Reset

The following constraints are for the Source core reset signals, and are always required.
Note the generated SPI-4.2 Lite core may have different timing constraints than the
examples provided below.

• NET "<src_instance_name>/U0/pl4_lite_src_reset0/src_tsclk_reset/
reset_out_i" MAXDELAY = 5.8 ns;

• NET "<src_instance_name>/U0/pl4_lite_src_reset0/src_ff_clk_reset_/
reset_out_i" MAXDELAY = 5.8 ns;

• NET "<src_instance_name>/U0/pl4_lite_src_reset0/src_ff_clk_rst/
fifo_reset_out_i" MAXDELAY = 5.8 ns;

• NET "<src_instance_name>/U0/pl4_lite_src_reset0/src_clk_rst/
reset_out_i" MAXDELAY = 5.8 ns;

• NET "<src_instance_name>/U0/pl4_lite_src_reset0/src_clk_rst/
fifo_reset_out_i" MAXDELAY = 5.8 ns;

The MAXDELAY values differ based on target speed grade and core performance.

Placement Constraints
Although the SPI-4.2 Lite core does not require fixed pinouts, there are several placement
constraints that are critical for meeting performance requirements and for processing

http://www.xilinx.com

106 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 5: Constraining the Core
R

through the Xilinx tools. The constraints generated in CORE Generator system are
provided as an example only and should be modified. You can modify these constraints to:

• Move the core placement to a different area
• Target a different device (other than the device package configuration)

See “Constraints Migration” for information on how to migrate the core to a different area
or device-package.

I/O Placement

With SPI-4.2 Lite, one has the flexibility to place the SPI-4.2 Lite I/Os according to
individual needs. You are not restricted to placing the I/Os in the bank options provided in
the GUI. You can define the placement of I/Os using 2 kinds of constraints: bank or pin-
lock constraints.

The following is an example of how to define I/O banks constraints:

• * INST "TDClk*" LOC = "Bank9"; #1 LVDS I/O pair

• * INST "TCtl*" LOC = "Bank9"; #1 LVDS I/O pair

• * INST "TDat*" LOC = "Bank9"; #16 LVDS I/O pairs

All SPI-4.2 Lite I/Os do not need to be in a single bank as given in the example. Ensure that
there are enough I/Os in the targeted bank (or banks) when using these constraints.

The following is an example of I/O pin lock constraint definitions:

• * NET "TDat_P(15)" LOC = "J23";

• * NET "TDat_P(14)" LOC = "K22";

• * NET "TDat_P(13)" LOC = "J26";

• * NET "TDat_P(12)" LOC = "L19";

• * NET "TDat_P(11)" LOC = "L21";

• * NET "TDat_P(10)" LOC = "K24";

To use these constraints, add the constraints and modify the pinout accordingly.

When using an area group to define the placement of the Source core, we recommended
placing the SPI-4.2 Lite pins (RCtl and RDat) in the same clock regions as the defined area
group. This is especially needed if regional clocking is used.

You have the same flexibility when placing SysClk and TSClk using the two constraints
above. However, there are some general guidelines when using different clocking options.
If regional clocking is used, SysClk must be placed on a clock-capable I/O pin that is in
the same clock region as the Sink core logic.

Using the example UCF file:

• * INST "SysClk" LOC = "Bank9";

If global clocking is used, SysClk must be placed on a pin that is connected to a global
clock buffer.

Using the example UCF file:

• * INST "SysClk*" LOC = "Bank4";

If regional clocking is used, TSClk must be placed on a clock capable I/O pin that is in the
same clock region as the source core logic.

Using the example UCF file:

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 107
UG181 June 27, 2008

Source Core Optional Constraints
R

• * INST "TSClk*" LOC = "Bank 9";

If global clocking is used, TSClk must be placed on a pin that is connected to a global clock
buffer.

Using the example UCF file:

• * INST "TSClk*" LOC = "Bank4";

IOB Register Packing

The following constraints are mandatory for the Source core. It ensures that the input
registers of the TStat signal are packed in the IOB. This guarantees that the timing
between the input pad and the register is met.

Source Core Optional Constraints
In addition to the required constraints, you can add the following optional constraints
based on your design requirements.

I/O Standards Constraints
You can define different I/O standards for several input and output pins. To change the
I/O standards for TSClk and TStat to LVTTL, add the following constraints in the
design:

• NET "TSClk" IOSTANDARD = LVTTL;

• NET "TStat" IOSTANDARD = LVTTL;

To change the I/O standards of the Source core input reference clock (SysClk) to LVPECL
33, add the following constraints in the design:

• NET "SysClk_P" IOSTANDARD = LVPECL_33;

To change the I/O standards of the Source core input reference clock (SysClk) to LVDS 25
with internal device termination or DCI, add the following constraints in the design:

• NET "SysClk_P" IOSTANDARD = LVDS_25_DCI;

• NET "SysClk_N" IOSTANDARD = LVDS_25_DCI;

To change the I/O standards of the source core input reference clock (SysClk) to LVDS 25
with internal differential termination, add the following constraints in the design:

• INST "<source_instance_name>/U0/pl4_lite_src_clk0/
sysclk_ibufg0" DIFF_TERM = TRUE;

Area Group Constraints
The area group constraints can be used to define a specific placement of the Source core.
These constraints are not required for Source cores that use global clocking distribution but
are recommended for Source cores that use regional clocking distribution.

Following is an example of an area group constraint for the Source core placed in one clock
region:

• * INST <src_instance_name>/* AREA_GROUP = AG_pl4_lite_src;

• * AREA_GROUP " AG_pl4_lite_src" RANGE = CLOCKREGION_X0Y3;

http://www.xilinx.com

108 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 5: Constraining the Core
R

Timing Ignore Constraints
If Source core static configuration signals are driven statically from a register, apply the
timing ignore attributes (TIG) to the static configuration signals to create proper timing
ignore paths. If these are driven statically from a wrapper file, then the TIG is not needed.

In the example UCF, these constraints are commented out. Uncomment these constraints in
your design.

• NET "SrcAFThresAssert(*)" TIG;

• NET "SrcAFThresNegate(*)" TIG;

• NET "DataMaxT(*)”;

• NET "AlphaData(*)”;

• NET "SrcBurstLen(*)”;

• NET "NumDip2Errors(*)”;

• NET "NumDip2Matches(*)”;

User Constraints
In certain cases, you may need to add additional constraints to cover other logic
implemented in your design. While the UCF file provided with the core is designed to
completely constrain the Xilinx SPI-4.2 Lite core, it may not adequately constrain user-
implemented logic interfaced to the core.

Constraints Migration
The example UCF file provided with the core must be modified to migrate the core to a
different area or target device.

The examples in this section indicate the changes necessary to migrate the Sink and Source
cores to user-defined locations on a XC4VLX40-FF1148 Virtex-4 part by modifying the
example UCF that targets XC4LX25-FF1148. The static alignment example shows the
migration of the Sink and Source cores to the south-west region of the part (banks 11 and
8).

New Target Region or Device Package
When selecting a new target region or device package, first verify that the new region has
enough resources required for the generated core. Resources that need to be taken into
considerations are:

• Block RAMs
• I/O Pins (in targeted I/O banks)
• Logic cells
• Clocking resources: DCM, regional and global buffers

Below are some typical region selections within a device.

• Source Core: One clock region on the same side of the device, east or west.
• Sink Core (static): One clock region on the same side of the device.

The east side is the side of the device with even numbered I/O banks: 6, 8, 10, and so on.
The west side is the side of the device with odd numbered I/O banks: 5, 7, 9, and so on.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 109
UG181 June 27, 2008

Constraints Migration
R

If the target region or device does not contain enough resources, this will result in tool
errors; not due to portability issues but resource issues.

Modifying the UCF File
Once the target region is selected, the UCF file must be modified. While modifying the
constraints, ensure that changes are within the specifications described by the Sink and
Source core required constraints.

Note: The use of optional constraints is up to user discretion.

Following are the UCF modifications:

Target Device

Change CONFIG_PART constraint to a desired device.

Sink Core

Specify pin placements for the SPI-4.2 Lite interface I/Os (RCtl* and RDat*). If regional
clocking is used, the I/Os must be constrained to pins that coincide with the clock regions
of the Sink core. If I/O bank constraints are used, verify that the targeted bank can
accommodate the total LVDS I/O pairs.

In the following example, Bank 8 must contain at least 17 LVDS I/O pairs:

• INST "RCtl*" LOC = "Bank8"; # 1 LVDS I/O pair

• INST "RDat*" LOC = "Bank8"; #16 LVDS I/O pairs

Specify pin placement for RDClk I/O. See “Placement Constraints,” page 102 for
information on placement constraints. For example:

INST "RDClk*" LOC = "Bank4";

Specify an area group constraint if regional clocking is used. In the example UCF file, area
group "AG_pl4_lite_snk" is defined as one adjacent clock region on the same side of the
device.

For example:

AREA_GROUP "AG_pl4_lite_snk" RANGE = CLOCKREGION_X1Y0;

Place the IDELAYCTRL component in the same clock region as the core. For example:

• INST "<sink_instance_name>/rdclk_idelctl” = IDELAYCTRL_X1Y0;

Source Core

Specify pin placement for "SysClk" I/O. See “Placement Constraints,” page 105. For
example:

INST "SysClk*" LOC = "Bank 4";

Specify pin placements for the SPI-4.2 Lite interface I/Os (TDClk*, TDat* and TCtl*). If
regional clocking is used, the I/Os must be constrained to pins that coincide with the clock
regions of the Source core. If I/O bank constraints are used, verify that the targeted bank
can accommodate the total LVDS I/O pairs.

In the following example, Bank 7 contains at least 18 LVDS I/O pairs:

• INST "TDClk*" LOC = "Bank7"; # 1 LVDS I/O pair

http://www.xilinx.com

110 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 5: Constraining the Core
R

• INST "TCtl*" LOC = "Bank7"; # 1 LVDS I/O pair

• INST "TDat*" LOC = "Bank7"; # 16 LVDS I/O pair

Specify pin placement for "TSClk" I/O. See “Placement Constraints,” page 105. For
example:

INST "TSClk" LOC = "Bank3";

Specify an area group constraint if regional clocking is used. In the example UCF file, area
group "AG_pl4_lite_ src" is defined to be one clock region on the same side of the device.

AREA_GROUP "AG_pl4_lite_src" RANGE = CLOCKREGION_X0Y0;

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 111
UG181 June 27, 2008

R

Chapter 6

Special Design Considerations

This chapter describes several design considerations to consider when designing with the
Xilinx SPI-4.2 Lite core:

• Clocking implementations

• Multiple core implementations

Sink Clocking Options
The Sink core supports two clocking implementations: embedded clocking and user
clocking. The embedded clocking configuration provides a complete solution with the
clock circuitry embedded within the Sink core. The user clocking configuration allows the
clocking scheme to be implemented external to the Sink core. This enables the user to craft
a custom clocking solution. The embedded and user clocking configurations are described
in detail below.

Embedded Clocking
The embedded clocking configuration contains the clocking logic internal to the core. The
embedded clocking option always uses global clocking distribution. The implementation
of the embedded clocking option is illustrated in Figure 6-1. Because all global clocks are
implemented differentially, this clocking scheme also minimizes duty-cycle distortion.
Note that the inverter used to generate RDClk180_GP will be absorbed into the DDR flip-
flops. Table 6-1 provides the clocking resource count for the embedded clocking
configuration.

Table 6-1: Sink Core Embedded Clocking Resources

Clocking Distribution BUFR BUFG DCM

Global Clocking 0 1 1

http://www.xilinx.com

112 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

User Clocking
The Sink user clocking configuration allows users to fully customize the way the Sink core
clocks are implemented. An example file is provided (pl4_lite_snk_clk.v/.vhd) that
shows how to implement a clocking module for the Sink core. An illustration of the User
clock inputs and this example module are shown in Figure 6-2 and the user inputs are

Figure 6-1: Embedded Clocking Option

RDClk0_USER
IOB

RDClk

DCMReset_RDClk

Locked_RDClk Denotes I/O on User Interface

RDat[15:0] & RCtl IOBQ D

Q D

RDClk0_GP

RDClk180_GP

IOB DDR Flops

CLK2X

RDClk0_GP

Q D
Sink Internal

Data & Control
Bus

RDClk0_GP

D Q

EN

Enable at ¼ (or 1/8) PL4 Rx data rate

IOB
RStat[1:0] & RSClkInternal Bus

RStat[1:0] & RSClk

CLK0

CLK180

DCM
100 MHz100 MHz

100 MHz

100 MHz

100 MHz

100 MHz

25 MHz

32

16

16

200 MHz Path

RDClk180_USER

IBUFGDSBUFG

100 MHz Path

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 113
UG181 June 27, 2008

Sink Clocking Options
R

defined in Table 2-9, page 30. For all architectures other than Virtex-4 or Virtex-5 devices,
user clocking can only be implemented using global clocking resources.

When targeting the Virtex-4 and Virtex-5 device architectures, the user clocking module
can be configured to use global or regional clocking distribution. Table 6-2 provides the
clocking resource count for the user clocking configurations.

Global Clocking

This implementation uses the DCM and global clock routing to generate a full-rate clock
(RClk0_USER) and inverted full-rate clock (RDClk180_USER). This configuration is
illustrated in Figure 6-3. Note that the inverter used to generate the RDClk180_USER clock
will be absorbed into the DDR flops.

Figure 6-2: Example: Sink User Clocking Inputs

Table 6-2: Sink Core User Clocking Resources

Clocking Option BUFR BUFG DCM

Global clocking 0 1 1

Regional clocking 1 1a

a. The Sink core requires the SnkIdelayRefClk clock (200 MHZ reference clock to be driven by a global
clock buffer. This reference clock provides a time reference to IDELAYCTRL modules to calibrate all the
individual delay elements (IDELAY) in the region. Multiple cores need only one global clock buffer to
distribute the SnkIdelayRefClk clock.

0

User
 Clocking
Example
Module

RDClk_P

RDClk_N

RDClk0_user

RDClk180_user
RDClk0_USER

RDClk180_USER

SPI-4.2 Lite Sink Core

(Configured with User Clocking)

http://www.xilinx.com

114 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

.

Regional Clocking

This implementation uses the regional clock buffer resources BUFIO and BUFR to generate
a full-rate clock (RClk0_USER) and inverted full-rate clock (RDClk180_USER). The user
clocking module also contains IDELAYCTRL and IDELAY modules for phase-shifting the
clock outputs. This is a requirement for static alignment of the clock to the data eye.
Regional clocking distribution in the Sink core requires a 200 MHz reference clock to clock
the IDELAYCTRL module. This guarantees predictable tap delays when shifting the clocks
with the IDELAY module. This extra clock should be considered when implementing
regional clocking in the Sink core. The regional clocking configuration is illustrated in
Figure 6-4. Note that the inverter used to generate the RDClk180_USER clock will be
absorbed into the DDR flops.

Figure 6-3: Sink User Clocking: Global Clocking

RDClk0_USER
IOB

RDClk

DCMReset_RDClk

Locked_RDClk Denotes I/O on User Interface

RDat[15:0] & RCtl IOBQ D

Q D

RDClk0_GP

RDClk180_GP

IOB DDR Flops

CLK2X

RDClk0_GP

Q D
Sink Internal

Data & Control
Bus

RDClk0_GP

D Q

EN

Enable at ¼ (or 1/8) PL4 Rx data rate

IOB
RStat[1:0] & RSClkInternal Bus

RStat[1:0] & RSClk

CLK0

CLK180

DCM
100 MHz100 MHz

100 MHz

100 MHz

100 MHz

100 MHz

25 MHz

32

16

16

200 MHz Path

RDClk180_USER

IBUFGDSBUFG

100 MHz Path

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 115
UG181 June 27, 2008

Source Clocking Options
R

Source Clocking Options
The Source core supports two clocking implementations: master clocking and slave
clocking. The master clocking configuration provides a complete solution with the clock
circuitry embedded within the Source core. The slave clocking configuration allows the
clocking scheme to be implemented external to the Source core. This enables the user to
craft a custom clocking solution or to share the full-rate system clock with multiple Source

Figure 6-4: Sink User Clocking: Regional Clocking

RDClk0_USER
IOB

RDClk

Denotes I/O on User Interface

RDat[15:0] & RCtl IOBQ D

Q D

RDClk0_GP

RDClk180_GP

IOB DDR Flops

RDClk0_GP

Q D
Sink Internal

Data & Control
Bus

RDClk0_GP

D Q

EN

Enable at ¼ (or 1/8) PL4 Rx data rate

IOB
RStat[1:0] & RSClkInternal Bus

RStat[1:0] & RSClk

100 MHz100 MHz

100 MHz

100 MHz

100 MHz

100 MHz

25 MHz

32

16

16

100 MHz Path

200 MHz Path

RDClk180_USER

BUFIOBUFR IBUFDS

O I

IDELAY

http://www.xilinx.com

116 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

cores. An example of using the Slave core to either share clock resources between Source
cores or to implement a custom clocking solution is shown in Figure 6-5.

Master and slave clocking configurations are described in the following sections.

Master Clocking
The master clocking configuration contains the clocking logic internal to the core. For all
architectures other than Virtex-4 and Virtex-5 FPGAs, user clocking can only be
implemented using global clocking resources. When targeting the Virtex-4 or Virtex-5
device architectures, embedded clocking can be configured in one of two ways:

Global Clocking

This implementation uses the DCM and global clock routing to generate a full-rate clock
(SysClk0_GP), an inverted full-rate clock (SysClk180_GP), and the quarter-rate clock
(TSClk_GP). The global clocking implementation for SysClk is illustrated in Figure 6-6
and the global clocking implementation for TSClk is illustrated Figure 6-7. Note that the
inverter used to generate the SysClk180 clock will be absorbed into the DDR flops.

Figure 6-5: Source Clocking: Master and Slave Implementation

Source clocks shared between multiple cores

Custom
Clocking
Module

Source Core:
Slave Clocking

Source Core:
Slave Clocking

Source Core:
Master Clocking

Clocking
Module

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 117
UG181 June 27, 2008

Source Clocking Options
R

Figure 6-6: Source Clocking: Global Clocking for SysClk

Figure 6-7: Source Clocking: Global Clocking for TSClk

IOB DDR Flops

D Q

D Q

DCMReset_TDClk

Locked_TDClk Denotes I/O on User Interface

TDat[15:0] & TCtl IOB

SysClk0_GP

SysClk180_GP

Source Internal
Data & Control

Bus
D Q

SysClk0_GP
IOB

SysClk
CLK0

DCM

100 MHz

32

16

16

100 MHz

100 MHz

SysClk0_GP

100 MHz

100 MHz

100 MHz Path

200 MHz Path

SysClk180_GP

IBUFGDS

CLKIN

BUFG

TSClk_GP
IOB

EN

IOB
TStat[1:0]Internal Bus

TStat[1:0] Q D

TSClk_GP

25 MHz

TSClk

BUFR

25 MHz

BUFIO

http://www.xilinx.com

118 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

Regional Clocking

For Virtex-4 and Virtex-5 device designs, this implementation uses the regional clock
buffer resources BUFIO and BUFR to generate a full-rate clock (SysClk0_GP), an inverted
full-rate clock (SysClk180_GP) and the quarter-rate clock (TSClk_GP). The regional
clocking implementation for SysClk is illustrated in Figure 6-8 and the regional clocking
implementation for TSClk is illustrated Figure 6-9. Note that the inverter used to generate
the SysClk180 clock will be absorbed into the DDR flops.

Figure 6-8: Source Clocking: Regional Clocking for SysClk

Figure 6-9: Source Clocking: Regional Clocking for TSClk

IOB DDR Flops

D Q

D Q

Denotes I/O on User Interface

TDat[15:0] & TCtl IOB

SysClk0_GP

SysClk180_GP

Source Internal
Data & Control

Bus
D Q

SysClk0_GP IOBSysClk

100 MHz

32

16

16

100 MHz

100 MHz

SysClk0_GP

100 MHz

100 MHz

100 MHz Path

200 MHz Path

SysClk180_GP

IBUFDSBUFIOBUFR

TSClk_GP
IOB

EN

IOB
TStat[1:0]Internal Bus

TStat[1:0] Q D

TSClk_GP

25 MHz

TSClk

BUFR

25 MHz

BUFIO

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 119
UG181 June 27, 2008

Source Clocking Options
R

The clock implementation for SysClk and TSClk is selected in the CORE Generator GUI.
Depending on the chosen clocking option, different clock resources will be used. Table 6-3
and Table 6-4 provide the clocking resource count for each clocking option.

Slave Clocking
The Source slave clocking configuration allows users to fully customize the way the Source
core clocks are implemented. When implementing multiple SPI-4.2 Lite cores in a single
device, the user can have one master clocking SPI-4.2 Lite core which provides the clocking
for all Source slave clocking cores. The user can also implement a single slave-clocking
module that can be used to drive the clocks for all Source cores. An example file is
provided (pl4_lite_src_clk.v/.vhd) to demonstrate how to implement a clocking module
for the Source core. An illustration of the Slave clock inputs and this example module are
shown in Figure 6-10 and the inputs are defined in Table 2-18, page 41.

The clocking implementation in the example file provided (pl4_lite_src_clk.v/.vhd) is
customized based on the user selected parameters in the Coregen GUI. The global or
regional selections for SysClk and TSClk will be reflected in this slave clocking example
file. The implementations of global and regional clocking provided in the example file are
identical to the internal implementations described in the master clocking section.

Table 6-3: SysClk Clocking Resources

Clocking Option BUFR BUFG DCM

Global Clocking 0 1 1

Regional Clocking 1 0 0

Table 6-4: TSClk Clocking Resources

Clocking Option BUFR BUFG DCM

Global Clocking 0 1 0

Regional Clocking 1 0 0

Figure 6-10: Slave Clocking Inputs

Slave
Clocking

Example
Module

SysClk_P

SysClk_N

TSClk

SysClk0_buf

SysClk180_buf

TSClk_buf

SysClk0_GBSLV

SysClk180_GBSLV

TSClk_GBSLV

SPI-4.2 Lite Source Core

(Configured with Slave Clocking)

http://www.xilinx.com

120 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

Multiple Core Implementations
Using the Xilinx SPI-4.2 Lite Core, a designer can implement multiple SPI-4.2 Lite cores in
a single design. Follow the guidelines below to instantiate multiple cores.

Instantiating Multiple Cores
When instantiating multiple cores, the user must instantiate the modules as separate
components in the top-level RTL design because there are different netlists for each core.

For example, in VHDL:

Sink core:

first_pl4_lite_snk_top0 : pl4_lite_snk_top1

second_pl4_lite_snk_top0 : pl4_lite_snk_top2

Source core:

first_pl4_lite_src_top0 : pl4_lite_src_top1

second_pl4_lite_src_top0 : pl4_lite_src_top2

Instantiation templates for the cores are available in the coregen project directory and have
filename extensions of VHO (for VHDL) and VEO (for Verilog).

If the reference clock (SysClk) can be shared between different Source cores, generate the
Source cores with slave clocking to reduce the number of global buffers used in the design.
For Virtex-4 or Virtex-5 FPGA designs, regional clocking for the SPI-4.2 Lite Source FIFO
Status Clocks (TSClk) can be implemented using regional clocking to further reduce the
number of global clock buffers and DCMs used in the design. See “Slave Clocking,” page
119 for more information. If Source cores with slave clocking are used, the separate
clocking module (pl4_lite_src_clk) needs to be instantiated in the design. An
example clocking module is provided in:

<comp_name>/example_design

The inputs and outputs of the example clock module are:

Inputs: SysClk and TSClk

Outputs: Sysclk0_buf, SysClk180_buf, and TSClk_buf

The outputs of the clocking module, SysClk0_bufg, and SysClk180_bufg can be used
to drive the input clocks of the multiple source cores instantiated in the design.

For example:

first_pl4_lite_src_top0 : pl4_lite_src_top1
port map(
................
SysClk180_GBSLV => SysClk180_buf ,
SysClk0_GSLV => SysClk0_buf ,
...............
) ;

second_pl4_lite_src_top0 : pl4_lite_src_top2
port map (
..............
SysClk180_GBSLV => SysClk180_buf,
SysClk0_GBSLV => SysClk0_buf ,
.................

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 121
UG181 June 27, 2008

Multiple Core Implementations
R

);

When instantiating the cores, there are several synthesis attributes that must be included.
The cores need to be defined as black boxes for the synthesis tool, and automatic insertion
of IBUF or OBUF signals for the SPI-4.2 Lite interface signals must be disabled.

For example, in VHDL and Synplicity:

Attribute syn_black_box: boolean ;

Attribute black_box_pad_pin: string ;

Attribute syn_black_box of pl4_lite_snk_top1 : component is true;

Attribute black_box_pad_pin of pl4_lite_snk_top1: component is
“RDClk_P, RDClk_N, RDat_P(15:0), RDat_N(15:0), RCtl_P, RCtl_N” ;

Attribute syn_black_box of pl4_lite_snk_top2 : component is true;

Attribute black_box_pad_pin of pl4_lite_snk_top2 : component is
“RDClk_P, RDClk_N, RDat_P(15:0), RDat_N(15:0), RCtl_P, RCtl_N”;

Attribute syn_black_box of pl4_lite_src_top1 : component is true ;

Attribute black_box_pad_pin of pl4_lite_src_top1: component is
“SysClk_P, SysClk_N, TDClk_P, TDClk_N, TDat_P(15:0), TDat_N(15),
TCtl_P, TCtl_N” ;

Attribute syn_black_box of pl4_lite_src_top2 : component is true ;

Attribute black_blox_pad_pin of pl4_lite_src_top2 : component is
“SysClk_P, SysClk_N, TDClk_P, TDClk_N, TDat_P(15:0), TDat_N(15:0),
TCtl_P, TCtl_N” ;

Examples of the attributes are available in the delivered example wrapper files:

<proj>/implement/<vhdl/verilog>/*.v<vhd>

Generating the Cores
For each core that will be instantiated, unique netlists (with unique component names)
must be generated using the Xilinx CORE Generator. Each NGC file must also be renamed
to match the component names in the top-level file.

For example:

pl4_lite_snk_top1.ngc

pl4_lite_snk_top2.ngc

pl4_lite_src_top1.ngc

pl4_lite_src_top2.ngc

Creating Top-Level UCF File
When instantiating multiple cores, each core is generated separately by the CORE
Generator system and includes a separate top-level UCF file. The user must merge the top-
level UCF files generated for each core to produce a single UCF file with all required
constraints.

http://www.xilinx.com

122 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

For each core constraints, the instance name in the UCF file must be modified to match the
instance names in the top-level RTL design. For the timing and I/O pin location
constraints, change the names to match the I/O ports declared in the top-level design as
shown in the examples below.

• TNMs and TIMESPECs:

Net “First_RDClk_P” TNM_NET = “First_RDClk_P”;

TIMESPEC “TS_First_RDClk_P” = PERIOD “First_RDClk_P” 100 MHz
HIGH 50%;

• I/O pins location:

INST “First_RDat*” LOC = BANK5”;

INST “First_RCtl” LOC = “BANK5”;

INST “First_RDClk” LOC = “BANK3 “;

INST “First_TDat*” LOC = “BANK9”;

INST “First_TCtl” LOC = “BANK9”;

See Chapter 5, “Constraining the Core” for details on how to place the Area Group, and IO
Bank components.

Clocking Considerations
If the reference clock (SysClk) can be shared among different Source cores, we
recommend that Source cores with slave clocking be used in the design with the external
clocking module (pl4_lite_src_clk.v/vhd). For Virtex-4 or Virtex-5 FPGA designs, the SPI-
4.2 Source Status FIFO Clocks (TSClk) can be implemented using regional clock buffer
resources to further reduce the number of global clocks and DCMs used in the design.

The user can also use a single Source core in master clocking mode with global clock option
and use the clock outputs (SysClk180_GP and SysClk0_GP) of this core to drive the
other Source cores in slave clocking mode.

For example:

first_pl4_lite_src_top0 : pl4_lite_src_top1 --- Master clocking
mode

port map (

.........

SysClk180_GP => SysClk180_GP ;

SysClk0_GP => SysClk0_GP;

...........

);

second_pl4_lite_src_top0 : pl4_lite_src_top2 --- Slave clocking
mode

port map (

............

SysClkDiv_GBSLV => SysClk180_GP;

SysClk0_GBSLV => SysClk0_GP;

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 123
UG181 June 27, 2008

Multiple Core Implementations
R

............

);

http://www.xilinx.com

124 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 6: Special Design Considerations
R

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 125
UG181 June 27, 2008

R

Chapter 7

Simulating and Implementing the Core

The SPI-4.2 Lite core is provided as a Xilinx technology-specific netlist and simulation
model. The following sections describe how to simulate and implement the SPI-4.2 Lite
core in a user design.

Functional Simulation
Functional simulation of the SPI-4.2 Lite core is performed with the provided simulation
models (UniSim models). The simulation models provide cycle-accurate simulations for
use in the verification of the user's application. The SPI-4.2 Lite core has been verified with
the Mentor Graphics® ModelSim® PE/SE/EE simulator. While other simulation tools can
be used to simulate the core, they have not been tested and functionality cannot be
guaranteed. Before attempting functional simulation, perform the following steps to
ensure that the simulator environment is properly configured:

1. Compile the Xilinx UniSim libraries (if not already compiled). For details, see Xilinx
Answer Record 15338.

2. Compile the simulation model, user application, and user test environment. An
example functional simulation script is provided with the example design, which
compiles the example design and demonstration test bench. You may use this script as
an example for creating their test environment. For details about the functional
simulation script, see the SPI-4.2 Lite Getting Started Guide.

Generating a Simulation Model
The functional simulation model generated by the SPI-4.2 Lite core is created using the
NETGEN tool. Following is the NETGEN command that is used to generate simulation
model for the Sink core:

netgen -sim -ofmt <vhdl|verilog> <component_name>_pl4_lite_snk_top.ngc
<component_name>_pl4_snk_top.vhd

Generating a Simulation Model with Initialized Calendar

You can program the Sink and Source status calendars in the following ways:

• Using the CORE Generator GUI, initialize the content of the calendar block RAM.

• Using the appropriate calendar programming signals during system operation.

If you choose to program the calendar during system operation, use the provided function
simulation models to verify you design. However, if you choose to initialize the calendar
by defining the initial content of the calendar BRAM, you must generate the functional
simulation models using the steps provided in this section.

http://www.xilinx.com

126 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 7: Simulating and Implementing the Core
R

In the first method, when defining the initial values of the calendar block RAM using a
COE file, the CORE Generator system converts the calendar sequence defined in the COE
file into calendar block RAM constraints in the example UCF file. During implementation,
the UCF calendar constraints are used to initialize the Sink and Source calendar block
RAM content with the desired sequence. However, the functional simulation files must be
manually updated to reflect this programming.

Note that the following steps only apply to a Sink or Source gate-level simulation model
delivered in the SPI-4.2 Lite release (the <component_name>_pl4_lite_snk_top.vhd
or <component_name>_pl4_lite_src_top.vhd or similar files). If the complete
loopback design is run through NGDBuild, or the complete user design is run through
NGDBuild, followed by running the netgen, the gate-level netlist will already contain the
correctly initialized calendar sequence, and no further steps are required.

To change the simulation models to match the physical implementation, follow the steps
below.

1. Generate or modify the top-level UCF files that contain the Sink and Source calendar
initialization values. An example of a 4-channel Sink core configuration is shown
below for the SPI-4.2 Lite core (note that unused entries can either be initialized to 0, or
left unused, which will also default the values to 0):

INST”<component_name>_pl4_lite_snk_top0/pl4_lite_snk_core0/pl4_lite_snk_cal0/CalRAM/BlockRam”

INIT_00 = 0003020100;

2. Copy the UCF calendar constraints into a temporary UCF file using the same name as
the SPI-4.2 Lite core netlist. For example, if the generated sink netlist is
ch4_pl4_lite_snk_top.ngc, the new UCF file should be named
ch4_pl4_lite_snk_top.ucf. The calendar initialization portion of the
pl4_wrapper.ucf should then be copied into this new UCF file, and the top-level
instance name (<component name>pl4_lite_snk_top0/ for the Sink Core,
<component_name>pl4_lite_src_top0/ for the Source Core) needs to be
removed. For the example above, “pl4_lite_snk_top0/” would be removed so that the
file appears as:

INST”<component_name>_pl4_lite_snk_top0/pl4_lite_snk_core0/pl4_lite_snk_cal0/CalRAM/BlockRam”
INIT_00 = 0003020100;

3. Make sure the SPI-4.2 Lite core netlist and the corresponding new UCF files are in the
same directory, and then run NGDBuild:
> ngdbuild ch4_pl4_lite_snk_top

4. Generate the gate-level simulation netlist by running netgen as follows:

> netgen -sim -ofmt <vhdl|verilog> -xon false ch4_pl4_lite_snk_top.ngd

5. The resulting gate-level simulation netlist will contain the calendar sequence load
logic. Replace the gate-level netlists (created by the CORE Generator system) that are
located in the <proj>/directory with the output from netgen.

Timing Simulation
Timing simulation of the SPI-4.2 Lite core is performed on the post-par simulation model
after the core and the user design are implemented through the Xilinx tools. This
simulation will provide not only a cycle-accurate simulation, but also model how the
design will operate in hardware. The SPI-4.2 Lite core has been verified with the Mentor
Graphics ModelSim PE/SE/EE simulator. While other simulation tools can be used to
simulate the core, they have not been tested and functionality cannot be guaranteed.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 127
UG181 June 27, 2008

Synthesis
R

Before attempting timing simulation, follow the steps below to ensure that the simulator
environment is properly configured.

1. Compile the Xilinx SimPrim libraries (if not already compiled). For details, see Xilinx
Answer Record 15338.

2. Run the design through the Xilinx tool flow. An implement script is provided with the
example design. The user may use this script as an example for creating their
environment. For details about the implementation script, see the SPI-4.2 Lite Getting
Started Guide.

3. Compile the post-par simulation model. An example timing simulation script is
provided with the example design, and may be used as an example for creating the
user test environment. For details about the timing simulation script, see the SPI-4.2
Lite Getting Started Guide.

Synthesis

Synthesis of Example Design
Synthesis of the example design is supported by XST and Synplify. While other synthesis
tools may be used to synthesize the example design, they have not been tested and
functionality can not guaranteed. For detailed use of the example design, see the SPI-4.2
Lite Getting Started Guide.

XST

Before synthesizing with XST, be sure that the Xilinx environment is properly configured
for use. A sample synthesis script is provided in the implement directory and can be used
as an example for synthesizing the user design.

1. Create an XST project file or open the Xilinx ISE™ GUI.

2. Add the necessary user source files to the project file or ISE GUI. If creating a project
file, also add the unisim_comp.v[hd] file located in the <Xilinx Install Path>/[vhdl |
verilog]/src/ise/ directory. This file is included automatically when using
the ISE GUI.

3. Synthesize the user application.

• If using the Project Navigator ISE environment, double-click Synthesize-XST in
the Processes for Source window. Set the HDL language to VHDL or Verilog, the
results directory and the part being used.

• If the command line mode is being used, at the prompt, start an XST shell session
by typing xst at the prompt and hitting enter. Synthesize the design by calling the
XST run command to process the files in the project file.

• For additional options that can be set to further customize synthesis of the user
design, see the XST section of the Xilinx development tools manual, located at
www.xilinx.com/documentation.

Synplify

Before synthesizing with Synplify, make sure that the Synplify environment is properly
configured for use. A sample synthesis script is provided in the implement directory,
which can be used as an example for the synthesizing the user design.

1. Create a Synplify project file.

http://www.xilinx.com/documentation
http://www.xilinx.com

128 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 7: Simulating and Implementing the Core
R

2. Add the necessary user source files to the project file.

3. Select target device and speed grade.

4. Synthesize the user application.

Xilinx Tool Flow
This section provides an overview of the Xilinx tool flow and discusses how to implement
the SPI-4.2 Lite core and the user design with the Xilinx implementation tools. Detailed
information about Xilinx tools can be found in the Xilinx Development System Reference
Guide.

Before executing the Xilinx tool flow, a user design netlist must be generated where the
SPI-4.2 Lite core is instantiated and all required constraints must be set in the user
constraints file (ucf). See Chapter 5, “Constraining the Core,” for information about
constraining the user design.

Example Design Script
An implementation script is provided with the example design to execute all the
commands described below. This script can be used as an example of how to run the Xilinx
tools with the SPI-4.2 Lite core. For details about the example design, see the SPI-4.2 Lite
Getting Started Guide.

NGDBuild
Run ngdbuild to translate and merge the various source files of a design into a single NGD
design database.

An example of the ngdbuild command is provided below:

ngdbuild <component_name>_top

The output of ngdbuild will be component_name_top.ngd.

Mapping the Design
To map the logic gates of the user’s design (previously written to an NGD file by ngdbuild)
into the CLBs and IOBs of the physical device, the map command must be executed. The
map command writes out this physical design to an NCD file. An example of the map
command is provided below:

map -o mapped.ncd component_name_top.ngd

The map command outputs a mapped.ncd and mapped.pcf.

Place and Route
To place and route the user’s design logic components (mapped physical logic cells)
contained within a NCD file based on the layout and timing requirements specified within
the physical constraints file (PCF), the par command must be executed. An example of the
par command is provided below:

par mapped.ncd routed.ncd

The par command outputs routed.ncd file that contains the placed and routed design.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 129
UG181 June 27, 2008

Xilinx Tool Flow
R

Static Timing Analysis
To evaluate timing closure on a design and create a timing report file (TWR) derived from
static timing analysis of the physical design file (NCD), the trce command must be
executed. The analysis is typically based on constraints included in the optional physical
constraints file (PCF). An example of the trce command is provided below:

trce -e 10 routed.ncd mapped.pcf -o routed.twr

The trce command outputs a routed.twr file, which performs timing analysis of the
placed and routed design based on the user constraints.

Timing Simulation
After the user design is functionally correct and meets all timing constraints, it is
recommended the user perform back-annotated timing simulation to verify that the entire
user design will function correctly before the user tests their design in hardware. The
netgen command is used to generate a post-par simulation model, which includes all
timing information. An example of the netgen command is provided below:

netgen -sim -ofmt <vhdl | verilog> routed.ncd

The netgen command outputs routed.v[hd] and routed.sdf files, which allow the user to
run timing simulation.

Generating a Bitstream
To create the configuration (BIT) file based on the contents of a physical implementation
file (NCD), the bitgen command must be executed. The BIT file defines the behavior of the
programmed FPGA. An example of the bitgen command is provided below:

bitgen -w routed.ncd

Note the user should take care in setting the required bitgen options, including selection of
the startup clock. See the Development System Reference Guide for details.

http://www.xilinx.com

130 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Chapter 7: Simulating and Implementing the Core
R

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 131
UG181 June 27, 2008

R

Appendix A

SPI-4.2 Lite Control Word

This appendix defines the SPI-4.2 control word format as shown in Table A-1. This table is
reproduced from Table 6.2 in the OIF-SP14-02.1 specification.

Table A-1: SPI-4.2 Lite Control Word Format

Bit
Position

Label Description

15 Type Control Word Type

Set to either of the following:

1: payload control word

0: idle or training control word

14:13 EOPS End-of-Packet Status

Set to one of the following values below according to the
status of the immediately preceding payload transfer

00: Not an EOP

01: EOP Abort

10: EOP Normal termination, 2 bytes valid

11: EOP Normal termination, 1 byte valid

EOPS is valid in the first control word following a burst
transfer. It is ignored and set to “00” otherwise.

12 SOP Start-of-Packet

Set to “1” if the payload transfer immediately following the
control word corresponds to the start of a packet. Set to “0”
otherwise.

Set to “0” in all idle and training control words.

11:4 ADDRESS Port Address

8-bit port address of the payload transfer immediately
following the control word. None of the addresses are
reserved (all 256 are available for payload transfer).

Set to zeroes in all idle control words.

Set to ones in all training control words.

http://www.xilinx.com

132 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Appendix A: SPI-4.2 Lite Control Word
R

3:0 DIP-4 4-bit Diagonal Interleaved Parity

4-bit odd parity computed over the current control word and
the immediately preceding data words (if any) following the
last control word.

Table A-1: SPI-4.2 Lite Control Word Format (Continued)

Bit
Position

Label Description

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 133
UG181 June 27, 2008

R

Appendix B

SPI-4.2 Lite Calendar Programming

This appendix lists examples that describe how to program calendars for the Source Status
FIFO and Sink Status FIFO of the SPI-4.2 Lite core.

Overview
In a typical application, the calendars for the Source FIFO status and Sink FIFO status will
be programmed identically. In this case, the user may choose to combine the Rx and Tx
calendar input signals (clocks, write enable, address, and data) and drive them from the
same Source. This will let the user initialize the Rx and Tx calendars simultaneously.

In the SPI-4.2 Lite core, the notion of calendar replaces the polling/packet (or cell)
available functionality in previous POS-PHY and UTOPIA specifications. In these
preceding standards, the Link or ATM Layer polls the channels and the Physical Layer
responds with a “packet available” or “cell available” status. In SPI-4.2 Lite, the polling is
replaced by FIFO status reporting of each channel in a specific order that is controlled by
the calendar. In this implementation, as illustrated in the examples below, the calendar is
inserted as a table containing channel numbers that is initialized at power-up. Consider the
following examples.

Example 1
In a channelized OC-192 with 192 STS-1 channels, all channels have equal bandwidth and
should report their status with equal frequency. In this case, the Calendar Length is 192
(Calendar_Len=191) and the Calendar entries are: 0, 1, 2, …, 191.

Example 2
In a channelized OC-192 with three STS-48 channels (0, 1, and 2) and 4 STS-12 channels (3,
4, 5, and 6), the three STS-48 channels have four times the bandwidth of the 4 STS-12
channels. Therefore, the 3 high-speed channels should report their status 4 times as
frequently as the low-speed channels in one Calendar cycle. In this case, the Calendar
Length is 16 (Calendar_Len=15) and the Calendar entries are: 0, 1, 2, 3, 0, 1, 2, 4, 0, 1, 2, 5, 0,
1, 2, 6.

Once the Calendar is programmed, the user circuitry updates FIFO status in the dual-port
RAM in the Sink block and the SPI-4.2 Lite core sends the updated status information in
the order programmed in the calendar. Likewise, in the Source block, the SPI-4.2 Lite core
receives the FIFO status information according to the order programmed in the calendar
and writes the status in the dual-port RAM to be read by the user circuitry.

http://www.xilinx.com

134 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Appendix B: SPI-4.2 Lite Calendar Programming
R

Example 3
In a OC-192c application, 1 channel requires the complete SPI-4.2 Lite bandwidth. In this
case, the calendar length can be set to 1 (Calendar_Len=0). The calendar does not have to
be programmed on start-up, as it will initialize to all zeros on power-up.

http://www.xilinx.com

SPI-4.2 Lite v4.3 User Guide www.xilinx.com 135
UG181 June 27, 2008

R

Appendix C

SPI-4.2 Lite Core Verification

Extensive software testing with an internally developed test suite is performed for each
SPI-4.2 Lite release. Using our in-house verification environment, the SPI-4.2 Lite Core was
tested in RTL, post-ngdbuild, and timing simulation. When using the in-house verification
environment, the SPI-4.2 Lite core was tested in three stages:

• Functional (RTL) verification

• Gate-level (post ngdbuild back-annotation HDL) verification

• Gate-level with back-annotated timing (with SDF file) verification targeting the
following device/frequency combinations:

- Virtex-5 devices up to 550 Mbps on the SPI-4.2 interface and 275 MHz on the user
interface (SrcFFClk and SnkFFClk)clocks.

- Virtex-II devices up to 320 Mbps on the SP1-4.2 interface and 160 MHz on the user
interface (SrcFFclk and SnkFFClk) clocks

- Virtex-II Pro devices up to 320 Mbps on the SP1-4.2 interface and 160 MHz on the
user interface (SrcFFClk and SnkFFClk) clocks

- Virtex-4 devices up to 380 Mbps on the SP1-4.2 interface and 190 MHz on the user
interface (SrcFFClk and SnkFFClk) clocks

- Spartan™-3 devices up to 230 Mbps on the SP1-4.2 interface and 115 MHz on the
user interface (SrcFFClk and SnkFFClk) clocks

- Spartan-3A/3AN/3A DSP devices up to 210 Mbps on the SPR-4.2 interface and 105
MHz on the user interface (SrcFFClk and SnkFFClk) clocks

- Spartan-3E devices up to 180 Mbps on the SP1-4.2 interface and 90 MHz on the user
interface (SrcFFClk and SnkFFClk) clocks

For each of these stages, each feature of the SPI-4.2 Lite core was fully verified. The
following are examples of stimulus used to verify the features:

• Verification of valid data:

♦ SPI-4.2 bus traffic that contains short packets that were smaller than one credit (16
bytes)

♦ SPI-4.2 bus traffic that contains long packets that were larger than one credit (16
bytes)

♦ SPI-4.2 bus traffic of a constant packet size

♦ SPI-4.2 bus traffic of a variable packet size

♦ SPI-4.2 bus traffic that consisted of a single burst or packet

http://www.xilinx.com

136 www.xilinx.com SPI-4.2 Lite v4.3 User Guide
UG181 June 27, 2008

Appendix C: SPI-4.2 Lite Core Verification
R

♦ SPI-4.2 bus traffic that caused the SPI-4.2 Lite sink FIFO to be constantly almost
full

♦ Backend data traffic that caused the SPI-4.2 Lite source FIFO to be constantly
almost full

♦ SPI-4.2 bus traffic that caused the sink FIFO to overflow

♦ Backend data traffic that caused the source FIFO to overflow

• Verification of invalid data

♦ SPI-4.2 bus traffic that contained incorrect DIP-4 values

♦ SPI-4.2 status traffic that contained incorrect DIP-2 values

♦ SPI-4.2 status traffic that indicated that the receiving end of the SPI-4.2 Lite source
block was out of frame

♦ SPI-4.2 bus traffic that violated SOP spacing and had incorrect control word
formats

♦ SPI-4.2 bus traffic that contained data bursts that were not preceded by payload
control words

♦ SPI-4.2 bus traffic that terminated on non-credit boundaries with no EOP.

♦ SPI-4.2 bus traffic that contained reserved control words

♦ Backend data traffic that contained no EOP with non-zero MODs.

The behavior of the core was fully verified for a range of core configurations. It was also
fully verified for the following range of clock frequencies.

♦ SPI-4.2 bus clock: 100 MHz to 275 MHz

♦ SrcFFClk and SnkFFClk: 50 MHz to 275 MHz

♦ SnkStatClk and SrcStatClk: 20 MHz to 100 MHz

♦ SrcCalClk and SnkCalClk: 20 MHz to 100 MHz

http://www.xilinx.com

	LogiCORE™ IP SPI-4.2 Lite v4.3
	Table of Contents
	Schedule of Figures
	Schedule of Tables
	About This Guide
	Contents
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Additional Core Resources
	Technical Support
	Feedback
	SPI-4.2 Lite Core
	Document

	Core Architecture
	System Overview
	Sink Core
	Source Core

	Sink Core Interfaces
	Sink SPI-4.2 Interface
	Sink User Interface

	Source Core Interfaces
	Source SPI-4.2 Interface
	Source User Interface

	Generating the Core
	CORE Generator Graphical User Interface
	Main Screen
	Sink Status Options Screen
	Calendar
	Flow Control
	Status Interface

	Sink Other Options Screen
	Synchronization
	FIFO Threshold
	Clocking

	Source Status Options Screen
	Calendar
	Status Interface
	Synchronization

	Source Other Options Screen
	Bursting
	FIFO Threshold
	Clocking

	Calendar COE File Format

	Designing with the Core
	General Design Guidelines
	Know the Degree of Difficulty
	Understand Signal Pipelining
	Keep it Registered
	Recognize Timing Critical Signals
	Use Supported Design Flows
	Make Only Allowed Modifications

	Initializing the SPI-4.2 Lite Core
	Sink Core
	Basic Operation
	SPI-4.2 Interface
	Sink User Interface
	Sink Static Configuration Signals
	Sink Data Capture Implementation
	Synchronization and Start-up
	Error Handling

	Source Core
	Basic Operation
	Source SPI-4.2 Interface
	Source User Interface
	Source Static Configuration Signals
	Synchronization and Start-up
	Error Handling

	Constraining the Core
	Overview
	Sink Core Required Constraints
	Timing Constraints
	DCM and Static Alignment Constraints
	Placement Constraints

	Sink Core Optional Constraints
	IDelayCtrl
	I/O Standards Constraints
	Area Group Constraints
	Timing Ignore Constraints

	Source Core Required Constraints
	Timing Constraints
	Placement Constraints

	Source Core Optional Constraints
	I/O Standards Constraints
	Area Group Constraints
	Timing Ignore Constraints

	User Constraints
	Constraints Migration
	New Target Region or Device Package
	Modifying the UCF File

	Special Design Considerations
	Sink Clocking Options
	Embedded Clocking
	User Clocking

	Source Clocking Options
	Master Clocking
	Slave Clocking

	Multiple Core Implementations
	Instantiating Multiple Cores
	Generating the Cores
	Creating Top-Level UCF File
	Clocking Considerations

	Simulating and Implementing the Core
	Functional Simulation
	Generating a Simulation Model
	Timing Simulation

	Synthesis
	Synthesis of Example Design

	Xilinx Tool Flow
	Example Design Script
	NGDBuild
	Mapping the Design
	Place and Route
	Static Timing Analysis
	Timing Simulation
	Generating a Bitstream

	SPI-4.2 Lite Control Word
	SPI-4.2 Lite Calendar Programming
	Overview
	Example 1
	Example 2
	Example 3

	SPI-4.2 Lite Core Verification

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

