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Conventions

»

5

bold
italic

monospace

monospace bold

monospace italic

The following conventions are used in this manual:

Square brackets enclose optional items—for example, [response]. Square
brackets al so cite bibliographic references.

The» symbol leads you through nested menu items and dialog box options
to afinal action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

Thisicon denotes a note, which aerts you to important information.

Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

Italic text denotesvariables, emphasis, across-reference, or anintroduction
to akey concept. Italic text al so denotestext that isaplacehol der for aword
or value that you must supply.

Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
Thisfontisalso used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

Bold text in thisfont denotes the messages and responses that the computer
automatically printsto the screen. This font also emphasizes lines of code
that are different from the other examples.

Italic text in this font denotes text that is a placeholder for aword or value
that you must supply.
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Introduction

This chapter starts with an outline of the manual and some useful notes. It
also provides an overview of the Model Reduction Module, describes the
functionsin this module, and introduces nomenclature and concepts used
throughout this manual .

Using This Manual

This manual describes the Model Reduction Module (MRM), which
provides a collection of tools for reducing the order of systems.

Readerswho are not familiar with Parameter Dependent Matrices (PDMs)
should consult the Xmarh User Guide before using MRM functions and
tools. Although several MRM functions accept both PDMs and matrices as
input parameters, PDMs are preferable because they can include additional
information that is useful for ssimulation, plotting, and signal labeling.

Document Organization
This manual includes the following chapters:

e Chapter 1, Introduction, startswith an outline of the manual and some
useful notes. It also provides an overview of the Model Reduction
Module, describes the functions in this module, and introduces
nomenclature and concepts used throughout this manual.

e Chapter 2, Additive Error Reduction, describes additive error
reduction including discussions of truncation of, reduction by,
and perturbation of balanced realizations.

»  Chapter 3, Multiplicative Error Reduction, describes multiplicative
error reduction presenting considerations for using multiplicative
rather than additive error reduction.

e Chapter 4, Frequency-Weighted Error Reduction, describes
frequency-weighted error reduction problems, including controller
reduction and fractional representations.

© National Instruments Corporation 1-1 Xmath Model Reduction Module



Chapter 1 Introduction

Chapter 5, Urtilities, describes three utility functions: hankelsv( ),
stable( ),and compare( ).

Chapter 6, Tutorial, illustrates a number of the MRM functions and
their underlying idess.

Bibliographic References

Throughout this document, bibliographic references are cited with
bracketed entries. For example, areference to [VODM1] corresponds
to a paper published by Van Overschee and De Moor. For atable of
bibliographic references, refer to Appendix A, Bibliography.

Commonly Used Nomenclature

This manual uses the following general nomenclature:

Conventions

Xmath Model Reduction Module

Matrix variables are generally denoted with capital |etters; vectorsare
represented in lowercase.

G(s) is used to denote a transfer function of a system where s isthe
Laplace variable. G(g) is used when both continuous and discrete
systems are allowed.

H(s) isused to denote the frequency response, over some range of
frequencies of a system where s isthe Laplace variable. H(g) is used
to indicate that the system can be continuous or discrete.

A single apostrophe following a matrix variable, for example, x’,
denotes the transpose of that variable. An asterisk following a matrix
variable, for example, A*, indicates the complex conjugate, or
Hermitian, transpose of that variable.

This publication makes use of the following types of conventions: font,
format, symbol, mouse, and note. These conventions are detailed in
Chapter 2, MATRIXx Publications, Online Help, and Customer Support,
of the MATRIXx Getting Started Guide.

1-2 ni.com



Chapter 1 Introduction

Related Publications

For acomplete list of MATRIXX publications, refer to Chapter 2,
MATRIXx Publications, Online Help, and Customer Support, of the
MATRIXx Getting Started Guide. Thefollowing documentsare particularly
useful for topics covered in this manual:

*  MATRIXx Getting Started Guide

*  Xmath User Guide

e Control Design Module

» Interactive Control Design Module

e Interactive System Identification Module, Part 1
»  Interactive System Ildentification Module, Part 2
*  Model Reduction Module

e Optimization Module

*  Robust Control Module

*  XuModule

MATRIXx Help

Model Reduction Module function reference information is available in
the MATRIXx Help. The MATRIXx Help includes all Model Reduction
functions. Each topic explains a function’ s inputs, outputs, and keywords
in detail. Refer to Chapter 2, MATRIXx Publications, Online Help, and
Customer Support, of the MATRIXx Getting Started Guide for complete
instructions on using the help feature.

Overview

TheXmath Model Reduction Module (MRM) providesacollection of tools
for reducing the order of systems. Many of the functions are based on
state-of -the-art algorithmsin conjunction with researchersat the Australian
National University, who were responsiblefor the origina development of
some of thea gorithms. A common theme throughout the moduleisthe use
of Hankel singular values and balanced realizations, although
considerations of numerical accuracy often dictates whether thesetoolsare
used implicitly rather than explicitly. The tools are particularly suitable
when, asgenerally here, quality of approximation ismeasured by closeness
of frequency domain behavior.

© National Instruments Corporation 1-3 Xmath Model Reduction Module



Chapter 1 Introduction

Functions

Xmath Model Reduction Module

Asshown in Figure 1-1, functions are provided to handle four broad tasks:

Model reduction with additive errors
Model reduction with multiplicative errors

Model reduction with frequency weighting of an additive error,
including controller reduction

Utility functions

Additive Error Multiplicative Frequency Weighted
Model Reduction Model Reduction Model Reduction

balmoore

redschur

ophank bst wtbalance

truncate mulhank fracred

balance

mreduce

Utility Functions

hankelsv
stable
compare

Figure 1-1. MRM Function
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Chapter 1 Introduction

Certain restrictions regarding minimality and stability are required of the
input data, and are summarized in Table 1-1.

Table 1-1. MRM Restrictions

balance( ) A stable, minimal system

balmoore ( ) | A state-space system must be stable and minimal,
having at least one input, output, and state

bst( ) A state-space system must be linear,
continuous-time, and stable, with full rank along
the jw-axis, including infinity

compare ( ) Must be a state-space system

fracred( ) A state-space system must be linear and continuous

hankelsv( ) A system must be linear and stable

mreduce ( ) A submatrix of amatrix must be nonsingular
for continuous systems, and variant for discrete
systems

mulhank ( ) A state-space system must be linear,
continuous-time, stable and square, with full
rank along the jm-axis, including infinity

ophank ( ) A state-space system must be linear,
continuous-time and stable, but can be nonminimal

redschur ( ) A state-space system must be stable and linear,
but can be nonminimal

stable ( ) No restriction

truncate( ) Any full-order state-space system

wtbalance( ) | A state-space system must be linear and

continuous. Interconnection of controller and plant
must be stable, and/or weight must be stable.

Documentation of the individua functions sometimes indicates how the
restrictions can be circumvented. There are a number of model reduction
methods not covered here. These include:

e Padé Approximation

»  Methods based on interpolating, or matching at discrete frequencies

© National Instruments Corporation

1-5 Xmath Model Reduction Module



Chapter 1 Introduction

Nomenclature

L, approximation, in which the L, norm of impul se response error (or,
by Parseval’stheorem, the L, norm of the transfer-function error along
the imaginary axis) serves as the error measure

Markov parameter or impul se response matching, moment matching,
covariance matching, and combinations of these, for example,
g-COVER approximation

Controller reduction using canonical interactions, balanced Riccati
equations, and certain balanced controller reduction algorithms

This manual uses standard nomenclature. The user should be familiar with
the following:

Xmath Model Reduction Module

sup denotes supremum, the least upper bound.
The acute accent (") denotes matrix transposition.

A superscripted asterisk (*) denotes matrix transposition and complex
conjugation.

Amax(A) for asquare matrix A denotes the maximum eigenvalue,
presuming there are no complex eigenvalues.

Re\,(A) and [A;(A)| for asquare matrix A denote an arbitrary real part
and an arbitrary magnitude of an eigenvalue of A.
| X(jw)|., foratransfer function X(-) denotes:

sup

e X G0) XG0 11"
—oco < (D) <K o0

An all-passtransfer-function W(s) isonewhere | X(jw)| = 1 for al ;

to each pole, there corresponds a zero which is the reflection through

the jw-axis of the pole, and there are no jm-axis poles.

An all-pass transfer-function matrix W(s) is a square matrix where
W (Go)W(jw) =1

P >0and P> 0forasymmetric or hermitian matrix denote positive

and nonnegative definiteness.

P,> P, and P,> P, for symmetric or hermitian P, and P, denote

P,— P, ispositive definite and nonnegative definite.

A superscripted number sign (#) for a square matrix A denotes the
M oore-Penrose pseudo-inverse of A.

1-6 ni.com



Chapter 1 Introduction

Anineguality or boundistight if it can be met in practice, for example
1 +logx—x<0

istight because the inequality becomes an equality for x = 1. Again,
if F(jo) denotes the Fourier transform of some f(¢t)e L,, the
Heisenberg inequality states,

[lrayad

[ J' 7 [f(t)lzdtT/z Uu)le(ju))lzdw}

<
1/2

and the bound is tight since it is attained for f{r) = exp + (—k#9).

Commonly Used Concepts

This section outlines some frequently used standard concepts.

Controllability and Observahility Grammians

Suppose that G(s) = D + C(sI-A)™1B is a transfer-function matrix with
Re);(A)<0. Then there exist symmetric matrices P, Q defined by:

PA’ + AP =-BB’
QA+A'Q=-CC

These are termed the controllability and observability grammians of the
realization defined by {A,B,C,D}. (Sometimesin the code, WC is used for
P and WO for Q.) They have a number of properties:

© National Instruments Corporation

P>0,with P> 0if and only if [A,B] iscontrollable, 0 > 0Owith Q > 0
if and only if [A,C] is observable.

p= j BB e dt and O = J'eA"C'CeA’dt

0 0
With vec P denoting the column vector formed by stacking column 1
of P on column 2 on column 3, and so on, and ® denoting Kronecker
product

[I®A+A®IvecP = —vec(BB’)

The controllability grammian can be thought of as measuring the
difficulty of controlling asystem. More specificaly, if the systemisin
the zero state initially, the minimum energy (as measured by the L,
norm of u) required to bring it to the state xq is xoP ~/xg; S0 small
eigenvalues of P correspond to systems that are difficult to control,
while zero eigenval ues correspond to uncontrollable systems.

1-7 Xmath Model Reduction Module



Chapter 1 Introduction

The controllability grammian is also E[x(¢)x'(z)] when the system
X = Ax + Bw has been excited from time —- by zero mean white
noisewith E[w(t)w’(s)] = I8(t—s).

The observability grammian can be thought of as measuring the
information contained in the output concerning an initia state.
If x = Ax,y = Cx with x(0) = xq then:

[y vwar = ¥,0x,
0

Systems that are easy to observe correspond to Q with large
eigenvalues, and thus large output energy (when unforced).

lyapunov (A,B*B"') producesP and lyapunov (A',C'*C)
produces Q.

For adiscrete-time G(z) = D + C(zI-A) "B with [A,(A)|<1, P and Q are:
P—APA’=BB’
Q-A'QA=CC
Thefirst dot point above remains valid. Also,
p= iAkBB’A’k and O = iAkC’CA’k
k=0 k=0

with the sums being finitein case A is nilpotent (which isthe case if
the transfer-function matrix has a finite impulse response).

[I-A® A] vec P = vec (BB’)
lyapunov ( ) can beused to evaluate P and Q.

Hankel Singular Values

If P, Q are the controllability and observability grammians of a
transfer-function matrix (in continuous or discrete time), the Hankel
Singular Values are the quantities L, Y2(PQ). Notice the following:

Xmath Model Reduction Module

All eigenvalues of PQ are nonnegative, and so are the Hankel singular
values.

The Hankel singular values are independent of the realization used to
calculate them: when A,B,C,D arereplaced by TAT-1, TB, CT-*and D,
then P and Q arereplaced by TPT’ and (T-1)'QT-L; then PQ isreplaced
by TPQT-1 and the eigenvalues are unaltered.

The number of nonzero Hankel singular valuesisthe order or
McMillan degree of the transfer-function matrix, or the state
dimension in aminimal realization.

1-8 ni.com



Chapter 1 Introduction

»  Suppose the transfer-function matrix corresponds to a discrete-time
system, with state variable dimension n. Then the infinite Hankel
matrix,

CB CAB CA’B
= |C4B c4’B
cA’B
has for its singular values the n nonzero Hankel singular values,
together with an infinite number of zero singular values.

The Hankel singular values of a(stable) all pass system (or all pass matrix)
areadll 1.

Slightly different procedures are used for calculating the Hankel singular
values (and so-called weighted Hankel singular values) in the various
functions. These procedures are summarized in Table 1-2.

Table 1-2. Calculating Hankel Singular Values

(balance( )) For adiscussion of thebalancing a gorithm, refer to
the Internally Balanced Realizations section; the
Hankel singular values are given by

diag(R?) = HSV

balmoore( ) For adiscussion of the balancing algorithm, refer to
the Internally Balanced Realizations section; the
matrix Sy yieldsthe Hankel singular valuesthrough

diag (SH)

hankelsv( ) real (sgrt(eig(p*q)))

ophank ( ) Cdlshankelsv( )

redschur ( ) Computes a Schur decomposition of P*Q and then
takes the square roots of the diagonal entries

bst( ) Sameasredschur ( ) except either P or Q can be

mulhank ( ) aweighted grammian

wtbalance( )

fracred( )

© National Instruments Corporation 1-9 Xmath Model Reduction Module



Chapter 1 Introduction

Internally Balanced Realizations

Xmath Model Reduction Module

Suppose that arealization of atransfer-function matrix hasthe
controllability and observability grammian property that P= Q = X for
somediagonal . Thentherealizationistermed internally balanced. Notice
that the diagonal entries o; of X are square roots of the eigenvalues of PQ,
that is, they are the Hankel singular values. Often the entries of X are
assumed ordered with 6; > G,41.

Asnoted in the discussion of grammians, systems with small (eigenvalues
of ) P are hard to control and those with small (eigenvalues of) Q are hard
to observe. Now a state transformation 7= o 7 will cause P = Q to be
replaced by o2P, o2Q, implying that ease of control can be obtained at the
expense of difficulty of observation, and conversely. Balanced realizations
are those when ease of control has been balanced against ease of
observation.

Given an arbitrary realization, there are a number of ways of finding a
state-variable coordinate transformation bringing it to balanced form.

A good survey of the available algorithms for balancing isin [LHPW87].
One of theseisimplemented in the Xmath function balance( ).

The one implemented in balmoore ( ) as part of thismoduleis more

sophisticated, but more time consuming. It proceeds as follows:

1. Singular value decompositions of P and Q are defined. Because P and
Q are symmetric, thisis equivalent to diagonalizing P and Q by
orthogonal transformations.

P=US U’
Q=US U/,
2. Thematrix,

172

H = SO 1/2

UHSHVH
isconstructed, and from it, asingular value decomposition is obtained:
H=U,S,Vy
3. Thebalancing transformation is given by:
T = UySy *U,S;*
The balanced realization is T-AT, T-'B, CT.
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Thisisamost the algorithm set out in Section |1 of [LHPW87]. The one
difference (anditisminor) isthat in [LHPW8T7], lower triangular Cholesky
factors of P and Q are used, in place of U,S. Y2 and U,,S,Y2in forming H
in step 2. The grammians themselves need never be formed, as these
Cholesky factors can be computed directly from A, B, and C in both
continuous and discrete time; this, however, is not done in balmoore.

The algorithm has the property that:
ToT = T'P(TYY =5,
Thus the diagonal entries of Sy, are the Hankel singular values.

The algorithm implemented in balance ( ) isolder, refer to [Lau80].
A lower triangular Cholesky factor L, of P isfound, sothat L.L. = P.
Then the symmetric matrix L.’QL, is diagonalized (through a singular
value decomposition), thus L’ QL .= VRU’, with actually V = U. Findly,
the coordinate basis transformation is given by 7 = L_.VR-Y4, resulting in
T’QT = T-P(T-Y) = RY2,

Singular Perturbation

A common procedure for approximating systems is the technique of
Singular Perturbation. The underlying heuristic reasoning is as follows.
Suppose there is a system with the property that the unforced responses of
the system contain some modes which decay to zero extremely fast. Then
an approximation to the system behavior may be attained by setting state
variable derivatives associated with these modesto zero, evenin theforced
case. The phrase “ associated with the modes” isloose: exactly what occurs
is shown below. The phrase “even in the forced case” captures alogical
flaw in the argument: smallnessin the unforced case associated with initial
conditions is not identical with smallness in the forced case.

Suppose the system is defined by:

X Ay Ap|[*2] B>
x

v = e, c) iju

(1-1)
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and also:
-1
Re)(A,)<0 and  Reh,(4,, —A,A54,,) <O0.
Usually, we expect that,
ReA,(Ay) «Rehi(Ay, —A 1 Assdy)

in the sensethat theintuitive argument hingeson this, but it isnot necessary.

Then asingular perturbation is obtained by replacing x, by zero; this
means that:

_ -l -1
Ay x;+Apx, +Bu =0 or Xy = =AypAy x| —AyByu

Accordingly,
. -1 -1
Xy = (A = ApAnpdy)x + (B —A4 1,45 B))u

-1 -1
Yy = (Cy=Cydpdy)x; + (D —CydyBy)u (1-2)
Equation 1-2 may be an approximation for Equation 1-1. This means that:
e Thetransfer-function matrices may be similar.

e If Equation 1-2isexcited by someu(:), withinitial condition x,(¢,), and
if Equation 1-1 is excited by the same u(+) with initial condition given
by,

o Xy(to) and Xa(to) = —AAXa(to) Az Bay(to),
then x4(-) and y(-) computed from Equation 1-1 and from Equation 1-2
should be similar.

« If Equation 1-1 and Equation 1-2 are excited with the same u(-), have
the same x,(z,) and Equation 1-1 has arbitrary x,, then x;(-) and y(-)
computed from Equation 1-1 and Equation 1-2 should be similar after
apossibleinitial transient.

Asfar asthetransfer-function matricesare concerned, it can be verified that
they are actually equal at DC.
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Similar considerations govern the discrete-time problem, where,

[xl(kﬂ)} _ [y, 44)) [xl(m}{&}u(k)
X, (k+1) Ay Ay x,(k) B,
[x, (k)

¥k = [, ¢) b

} + Du(k)

can be approximated by:
x (k1) = [Ayy + A (T=Ay) ™ Ay T (k) +
[B) +A,5(I = Ay,)" Bylu(k)

yi = [Cp + Cz([—Azz)_lAzl]xl(k) +
[D+ C,(I-Ay,) " Bylu(k)

mreduce ( ) Can carry out singular perturbation. For further discussion,
refer to Chapter 2, Additive Error Reduction. If Equation 1-1 is balanced,
singular perturbation is provably attractive.

Spectral Factorization

Let W(s) be a stable transfer-function matrix, and suppose asystem S with
transfer-function matrix W(s) is excited by zero mean unit intensity white
noise. Then the output of S is a stationary process with a spectrum ®(s)
related to W(s) by:

D(s) = W(s)W'(=s) (1-3)
Evidently,
d(jw) = WGO)W (jo)

so that @(jm) isnonnegative hermitian for all w; when W(jo) isascalar, so
is ®(jm) with ®(jo) = [W(jo)[.

In the matrix case, ® is singular for some w only if W does not have full
rank there, and in the scalar case only if W has a zero there.

Spectral factorization, as shown in Example 1-1, seeks a W(jo), given
O(jw). Inthe rational case, a W(jo) existsif and only if ®(jo) is
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nonnegative hermitian for al w. If ® isscalar, then ®(jw)>0 for al w.
Normally onerestricts attention to ®(-) with lim,,_,..®(jw)<eo. A key result
isthat, given arational, nonnegative hermitian ®(jw) with
limg,_,..®(jm)<eo, there exists arational W(s) where,

. W(oo)<oo

«  W(s) isstable.

e W(s) isminimum phase, that is, the rank of W(s) isconstant in Re[s]>0.

Inthescalar case, all zeros of W(s) liein Re[s]<0, or in Re[s]<0 if ®(jw)>0
for al .

In the matrix case, and if ®(jw) isnonsingular for some w, it means that
W(s) issquareand W1(s) hasall itspolesin Re[s]< 0, or in Re[s]<0if ®(jm)
isnonsingular for al w.

Moreover, the particular W(s) previously defined is unique, to within right
multiplication by a constant orthogonal matrix. In the scalar case, this
means that W(s) is determined to within a+1 multiplier.

Example 1-1 Example of Spectral Factorization

Xmath Model Reduction Module

Suppose:

2

o +1
2

o +4

O(jo) =

Then Equation 1-3 is satisfied by W(s) = is—:r-r—%, which is stable and
minimum phase. §
s—1 s—=3 s—1 75 + 1

Also, Equation 1-3issatisfiedby 75 and {5, {y,and ¢ 5, and
so forth, but none of these is minimum phase.

bst( ) andmulhank( ) both require execution within the program of
a spectral factorization; the actual algorithm for achieving the spectral
factorization depends on a Riccati equation. The concepts of a spectrum
and spectral factor also underpin aspects of wtbalance( ).

1-14 ni.com



Chapter 1 Introduction

Low Order Controller Design Through Order Reduction

The Model Reduction Module is particularly suitable for achieving low
order controller design for ahigh order plant. This section explains some of
the broad issues involved.

Most modern controller design methods, for example, LOG and He, yield
controllers of order roughly comparable with that of the plant. It follows
that, to obtain alow order controller using such methods, one must either
follow a high order controller design by a controller reduction step,

or reduce an initially given high order plant model, and then design a
controller using the resulting low order plant, with the understanding that
the controller will actually be used on the high order plant. Refer to

Figure 1-2.
High Order Plant High Order Controller
Plant Controller
Reduction Reduction
A A
Low Order Plant Low Order Controller

Figure 1-2. Low Order Controller Design for a High Order Plant

Generaly speaking, in any design procedure, it is better to postpone
approximation to alate step of the procedure: if approximation is done
early, the subsequent steps of the design procedure may have unpredictable
effects on the approximation errors. Hence, the scheme based on high order
controller design followed by reduction is generally to be preferred.

Controller reduction should aim to preserve closed-loop properties as far
as possible. Hence the controller reduction procedures advocated in this
modul e reflect the plant in some way. Thisleadsto the frequency weighted
reduction schemes of wtbalance( ) and fracred( ), asdescribedin
Chapter 4, Frequency-Weighted Error Reduction. Plant reductionlogically
should al so seek to preserve closed-l1oop properties, and thusshould involve
the controller. With the controller unknown however, thisisimpossible.
Nevertheless, it can be argued, on the basis of the high loop gain property
within the closed-loop bandwidth that is typical of many systems, that
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multiplicative reduction, as described in Chapter 4, Frequency-Weighted
Error Reduction, is asound approach. Chapter 3, Multiplicative Error
Reduction, and Chapter 4, Frequency-Weighted Error Reduction, develop

these arguments more fully.
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Additive Error Reduction

This chapter describes additive error reduction including discussions of
truncation of, reduction by, and perturbation of balanced realizations.

Introduction

Additive error reduction focuses on errors of the form,
|G -G.(jo)..

where G isthe originally given transfer function, or model, and G, isthe
reduced one. Of course, in discrete-time, one works instead with:

|G -6,/

Asisargued in later chapters, if oneis reducing a plant that will sit inside
aclosed loop, or if oneisreducing acontroller, that againis sittingin a
closed loop, focus on additive error model reduction may not be
appropriate. It is, however, extremely appropriate in considering reducing
thetransfer function of afilter. One pertinent application comes specifically
from digital filtering: a great many design algorithms lead to afinite
impulse response (FIR) filter which can have a very large number of
coefficients when poles are close to the unit circle. Model reduction
provides a means to replace an FIR design by a much lower order infinite
impulseresponse (11R) design, with close matching of the transfer function
at al frequencies.
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Truncation of Balanced Realizations

A group of functions can be used to achieve areduction through truncation
of abalanced realization. This meansthat if the original systemis

%2 Ay Ap|[X2] B>

v=lovcen, @1

and therealization is internally balanced, then atruncation is provided by
X, = A, x,+Bu

y = Cx,+Du

The functionsin question are:

. balmoore( )

e balance( ) (refer to the Xmarh Help)
. truncate( )

. redschur ( )

One only can speak of internally balanced realizations for systems which
are stable; if the aim is to reduce a transfer function matrix G(s) which
contains unstabl e poles, one must additively decomposeit into astable part
and unstable part, reduce the stable part, and then add the unstabl e part back
in. Thefunction stable( ), describedin Chapter 5, Utilities, can be used
to decompose G(s). Thus:

G(s) = G49) + Gy(s)(Gys) stable, G,(s) unstable)
Gq(s) = found by agorithm (reduction of G4(s))
Gi(s) = Gg(9) + Gy(9) (reduction of G(s))
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A very attractive feature of the truncation procedure is the availability
of an error bound. More precisely, suppose that the controllability and
observability grammians for [Enn84] are

P:Q:Z:[Zl O] (2-2)
0%,

with the diagonal entriesof X in decreasing order, that is, 6, > 6,> --. Then
the key result is,

IGG® -G, (). <2tr,

with G, G, thetransfer function matrices of Equation 2-1 and Equation 2-2,
respectively. This formula shows that small singular values can, without
great cost, be thrown away. It also isvalid in discrete time, and can be
improved upon if there are repeated Hankel singular values. Provided that
the smallest diagonal entry of X, strictly exceedsthe largest diagonal entry
of X,, the reduced order system is guaranteed to be stable.

Several other points concerning the error can be made:

* Theerror G(jw)—G,(jw) asafunction of frequency isnot flat; itiszero
at = oo, and may take itslargest value at o = 0, so that thereisin
general no matching of DC gains of the original and reduced system.

» Theactua error may be considerably less than the error bound at all
frequencies, so that the error bound formula can be no more than an
advance guide. However, the bound is tight when the dimension
reduction is 1 and the reduction is of a continuous-time
transfer-function matrix.

e With g(+) and g,(-) denoting the impulse responses for impulse
responses of G and G, and with G, of degree k, thefollowing L, bound
holds [GCP88]

lg =g, <42k + 1)trx,
This bound also will apply for the L., error on the step response.

Itishelpful to note one situation wherereductionislikely to be difficult (so
that X will contain few diagonal entries which are, relatively, very small).

Suppose G(s), strictly proper, has degree n and has (n — 1) unstable zeros.
Then as o runs from zero to infinity, the phase of G(s) will change by

(2n = D)r/2. Much of thischange may occur inthe passband. Suppose G, (s)
has degree n—1; it can have no more than (n — 2) zeros, sinceit is strictly
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proper. So, even if all zeros are unstable, the maximum phase shift when
moves from 0to « is (2n — 3)n/2. It followsthat if G(jw) remainslargein
magnitude at frequencies when the phase shift has moved past (2n — 3)7/2,
approximation of G by G, will necessarily be poor. Put another way, good
approximation may depend somehow on removing roughly cancelling
pole-zeros pairs; when there are no left half plane zeros, there can be no
rough cancellation, and so approximation is unsatisfactory.

Asaworking rule of thumb, if there are p right half plane zerosin the
passband of a strictly proper G(s), reduction to a G,(s) of order less than
p + 1islikely to involve substantial errors. For non-strictly proper G(s),
having p right half plane zeros meansthat reduction to a G, (s) of order less
than p islikely to involve substantial errors.

An all-pass function exemplifies the problem: there are n stable poles and
n unstable zeros. Since all singular values are 1, the error bound formula
indicates for areduction to order n — 1 (when it is not just a bound, but
exact) amaximum error of 2.

Another situation where poor approximation can arise is when a highly
oscillatory system isto be replaced by a system with areal pole.

Reduction Through Balanced Realization Truncation

This section briefly describes functions that reduce ( ), balance( ),
and truncate ( ) toachieve reduction.

e balmoore( )—Computesan internally balanced realization of a
system and optionally truncates the realization to form an
approximation.

* Dbalance( )—Computesan internally balanced realization of a
system.
e truncate( )—Thisfunction truncates a system. It allows

examination of a sequence of different reduced order models formed
from the one balanced realization.

e redschur( )—Thesefunctionsin theory function amost the same
asthe two features of balmoore ( ). That is, they produce a
state-variable realization of areduced order model, such that the
transfer function matrix of the model could have resulted by truncating
abalanced realization of the original full order transfer function
matrix. However, theinitially given redization of the original transfer
function matrix isnever actually balanced, which can be anumerically
hazardous step. Moreover, the state-variable realization of the reduced
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order model is not onein general obtainable by truncation of an
internally-balanced realization of the full order model.

Figure 2-1 sets out several routes to a reduced-order realization. In
continuous time, a truncation of a balanced realization is again balanced.
Thisis not the case for discrete time, but otherwise it looks the same.

Full Order Realization

|
|

balmoore balmoore bal dsch
(with both steps) (with first step) alance redschur
truncate
Balanced Realization of Nonbalanced
Reduced Order Model Realization of
(in continuous time) Reduced Order Model

Reduced Order Model Transfer Function

Figure 2-1. Different Approaches for Obtaining the Same Reduced Order Model

Singular Perturbation of Balanced Realization

Singular perturbation of a balanced realization is an attractive way to
produce a reduced order model. Suppose G(s) is defined by,

X Ayy Ap|[X2 B,

y = [Cl Cz}x+Du
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with controllability and observability grammians given by,

P:Q:Z:[Zl 0]
0%,

in which the diagona entries of X are in decreasing order, that is,
G412 0, > -+, and such that the last diagonal entry of X, exceeds
the first diagonal entry of %,. It turns out that ReA(4,,)<0 and
Re}»,(All—Ale;;A21)< 0, and areduced order model G,(s) can be
defined by:

, -1 -1

X = (A —ApApnAy)x + (By +—A 1,4, By)u
-1 -1

Yy = (C=Cydpdy))x+(D—-CydynBr)u

The attractive feature [LiA89] is that the same error bound holds as for
bal anced truncation. For example,

IG(i® - G,(jw)|.<2tr%,

Although the error bounds are the same, the actual frequency pattern of
the errors, and the actual maximum modulus, need not be the same for
reduction to the same order. One crucia differenceis that balanced
truncation provides exact matching at o = e, but does not match at DC,
while singular perturbation is exactly the other way round. Perfect
matching at DC can be a substantial advantage, especidly if input signals
are known to be band-limited.

Singular perturbation can beachieved withmreduce ( ). Figure 2-1 shows
the two alternative approaches. For both continuous-time and discrete-time
reductions, the end result is a balanced realization.

Hankel Norm Approximation

In Hankel norm approximation, onerelieson thefact that if one choosesan
approximation to exactly minimize one norm (the Hankel norm) then the
infinity norm will be approximately minimized. The Hankel norm is
defined in the following way. Let G(s) be a (rational) stable transfer
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function matrix. Consider the way the associated impul se response maps
inputs defined over (—<,0] in L, into outputs, and focus on the output over
[0,00). Define the input as u(r) for ¢ < 0, and set v(¢) = u(—r). Define the
output as y(¢) for r > 0. Then the mapping is

y(t) = jCepr(Hr)Bv(r)dr

if G(s) = C(sI-A)~1B. The norm of the associated operator is the Hankel
norm |Gl ; of G. A key resultisthat if 6, > 6, > -, arethe Hankel singular
values of G(s), then |Gll; = o,

To avoid minor confusion, suppose that all Hankel singular values of G are
distinct. Then consider approximating G by some stable G of prescribed
degree k much that ||G _ é"H isminimized. It turns out that

lnf& of degree k ”G - G”H = Ok« l(G)
and there is an algorithm available for obtaining G. Further, the
optimum G which isminimizing||G — G|, does areasonable job
of minimizing |G — G|.., becauseit can be shown that

l6-cl.< 3 o

Jj=k+1

where n = deg G, with this bound subject to the proviso that G and E; are
allowed to be nonzero and different at s = oo.

The bound on || G- é|| isone half that applying for balanced truncation.
However,

» Itisactua error that isimportant in practice (not bounds).

e TheHankel norm approximation does not give zero error at @ = oo
or at o = 0. Balanced realization truncation gives zero error at o = oo,
and singular perturbation of a balanced realization gives zero error
aw=0.

There is one further connection between optimum Hankel norm
approximation and L., error. If one seeksto approximate G by asum G + F,
with G stable and of degree k and with F’ unstable, then:

inf - I6-G-FA. = o,.,(G)

G of degree k and F unstable
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balmoore( )

Further, the é which is optimal for Hankel norm approximation alsois
optimal for this second type of approximation.

In Xmath Hankel norm approximation is achieved with ophank ( ).
The most comprehensive reference is [Glo84].

Xmath Model Reduction Module

[SysR,HSV,T] = balmoore(Sys, {nsr,bound})

Thebalmoore ( ) function computesaninternally-balanced realization of
a continuous system and then optionally truncatesit to provide a balance
reduced order system using B.C. Moore’s algorithm.

Whenbalmoore ( ) isbeingusedto reduce asystem, itsobjective mirrors
that of redschur ( ), therefore, if the same sys and nsr areused for both
algorithms, the reduced order system should have the same transfer

function (though in general the state-variablerealizationswill be different).

When balmoore( ) isbeing used to balance asystem, its objective, like
that of balance, is to generate an internally-balanced state-variable
realization. The implementations are not identical.

balmoore ( ) only can be applied on systemsthat have a stable A matrix,
and are controllable and observable, (that is, minimal). Checks, which are
rather time-consuming, are included. The computation isintrinsically not
well-conditioned if sys is nearly nonminimal. The first part of
balmoore ( ) servesto find atransformation matrix T such that the
controllability and observability grammians after transformation are equal,
and diagonal, with decreasing entries down the diagonal, that is, the system
representation isinternally balanced. (The condition number of T isa
measure of theill-conditioning of the algorithm. If there is a problem with
ill-conditioning, redschur ( ) can be used as an alternative.) If this
common grammian is X, then after transformation:

(continuous) A+ AX=-BB" XA+AZ% =-CC
(discrete) X-AX4 =-BB’ X-A'TA=-CTC

Y = diag[o,, 0,, 03..., 0,,] With 6, < 6, | > 0 with thes; the Hankel
Singular Values of sys. In the second part of balmoore ( ), atruncation
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of the balanced system occurs, (assuming nsr isless than the number of
states). Thus, if the state-space representation of the balanced system is

A= [A“AIZ} B = {31] c=c ¢
A21 AZZ BZ

with A1, possessing dimension nsr X nsr, By possessing nsr rowsand C;
possessing nsr columns, the reduced order system sysr is:

(continuous) (discrete)
X; = Ayx;+Bu xi(k+1) = A4y,x,(k) + Byu(k)
y = Cix+Du y(k) = Cx(k) + Du(k)

The following error formulais relevant:

(continuous)
licGor-a"1-1¢,Gor-4,)"' (8, + D)]|..

< 2[6nsr+ ¥ Opsr+2 Tt Gns]

(discrete)
lic®1-4y"B+D1-1C,(°1-4,)" B, + DI|..

<2[o +0 +..+0

nsr+1 nsr+2 ns]

It isthis error bound which is the basis of the determination of the order
of the reduced system when the keyword bound is specified. If the error
bound sought is smaller than 2c,,,, then no reduction is possible which is
consistent with the error bound. If it islarger than 2¢7X, then the constant
transfer function matrix D achieves the bound.

For continuous systems, the actual approximation error depends on
frequency, but is always zero at o = «. In practice it is often greatest at

o = 0; if thereduction of state dimensionis 1, theerror bound isexact, with
the maximum error occurring at DC. The bound also is exact in the special
case of asingle-input, single-output transfer function which has poles and
zero alternating along the negative real axis. It isfar from exact when the
poles and zeros approximately alternate along the imaginary axis (with the
poles stable).

© National Instruments Corporation 2-9 Xmath Model Reduction Module



Chapter 2 Additive Error Reduction
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The actual approximation error for discrete systems a so depends on
frequency, and can belarge at o = 0. The error bound isamost never tight,
that is, the actual error magnitude as a function of o almost never attains
the error bound, so that the bound can only be aguideto the sel ection of the
reduced system dimension.

In principle, the error bound formulafor both continuous and discrete
systemscan beimproved (that is, madetighter or lesslikely to overestimate
the actual maximum error magnitude) when singular values occur with
multiplicity greater than one. However, because of errors arising in
calculation, itissafer to proceed conservatively (that is, work with the error
bound above) when using the error bound to select nsr, and examine the
actual error achieved. If thisis smaller than required, a smaller dimension
for the reduced order system can be selected.

mreduce ( ) providesan alternative reduction procedure for a balanced
realization which achieves the same error bound, but which has zero error
at o = 0. For continuous systems there is generally some error at = oo,
because the D matrix is normally changed. (This means that normally the
approximation of astrictly proper system throughmreduce ( ) will not be
strictly proper, in contrast to the situation withbalmoore ( ).) For discrete
systemsthe D matrix is aso normally changed so that, for example, a
system which was strictly causal, or guaranteed to contain adelay (that is,
D = 0), will be approximated by a system sysRr without this property.

The presentation of the Hankel singular values may suggest alogical
dimension for the reduced order system; thusif ¢, » o, . ;, it may be
sensible to choose nsr = k.

Withmreduce ( ) and acontinuous system, the reduced order system
Sysr isinternally balanced, with the grammian diag[c,, 6,, ...,0,,,], SO
that its Hankel Singular Values are a subset of those of the original system
Sys. Provided 6., > G,,,,, ;, SysR dsois controllable, observable, and
stable. Thisis not guaranteed if 6,,;, = ©,,,,,, SOitishighly advisableto

avoid this situation. Refer to the balmoore( ) section for more on the
balmoore ( ) agorithm.

Withmreduce ( ) and discrete systems, the reduced order system sysRris
not in general balanced (in contrast to balmoore ( )), and its Hankel
singular values are not in general a subset of those of sys. Provided
Onsr> Osrn + 1, the reduced order system sysr aso is controllable,
observable and stable. Thisis not guaranteed if 6, = ©,,,+, SOitis
highly advisable to avoid this situation. For additional information about
the balmoore ( ) function, refer to the Xmath Help.
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balance (), truncate (), redschur (), mreduce ()

Related Functions

SysR = truncate(Sys,nsr, {VD,VA})

The truncate ( ) function reduces a system sys by retaining the first
nsr states and throwing away the rest to form a system sysr.

If for sys one has,
4 = Ay Ay B = B, C = [C1 Cz}
A21 A22 BZ

the reduced order system (in both continuous-time and discrete-time cases)
isdefined by A4;, By, C1, and D. If sys isbalanced, then sysr isan
approximation of sys achieving acertain error bound. truncate ( ) may
well be used after an initial application of balmoore ( ) tofurther reduce
asystem should alarger approximation error be tolerable. Alternatively, it
may be used after aninitial application of balance( ) Of redschur( ).
If sys was calculated from redschur ( ) and va, vD were posed as
arguments, then sysr iscalculated asin redschur ( ) (refer to the
redschur( ) section).

truncate ( ) should be contrasted with mreduce ( ), which achieves a
reduction through a singular perturbation calculation. If sys is balanced,
the same error bound formulas apply (though not necessarily the same
errors), truncate () aways ensures exact matching at s = « (in the
continuous-time case), or exacting matching of the first impul se response
coefficient D (in the discrete-time case), whilemreduce ( ) ensures
matching of DC gainsfor sys and sysr in both the continuous-time and
discrete-time case. For a additional information about the truncate ( )
function, refer to the Xmath Help.

balance (), balmoore (), redschur (), mreduce ()
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redschur( )

Algorithm

Xmath Model Reduction Module

[SysR,HSV, slbig, srbig,VD,VA] = redschur (Sys, {nsr,bound})

The redschur ( ) function uses a Schur method (from Safonov and
Chiang) to calculate a reduced version of a continuous or discrete system
without balancing.

The objectiveof redschur ( ) isthesameasthat of balmoore ( ) when
the latter is being used to reduce a system; this meansthat if the same sys
andnsr are used for both algorithms, the reduced order system should have
the same transfer function matrix. However, in contrast to balmoore ( ),
redschur ( ) donotinitialy transform sys to an internally balanced
realization and then truncate it; nor is sysRr in balanced form. The fact that
thereis no balancing offers numerical advantages, especialy if sys is
nearly nonminimal.

Sys should be stable, and thisis checked by the algorithm. In contrast to
balmoore( ), minimality of sys (that is, controllability and
observability) is not required.

If the Hankel singular values of sys areorderedas 6, 26,2 ...26,,20,
then those of sysr inthe continuous-timecasearec, 26,2 ... 20, > 0.
A restriction of thealgorithmisthat ¢, > G,,, ., ; iSrequired for both
continuous-time and discrete-time cases. Under thisrestriction, sysr is

guaranteed to be stable and minimal.

The agorithms depend on the same algorithm, apart from the cal culation
of the controllability and observability grammians W.. and W, of the
original system. These are obtained as follows:

cc

(continuous) W.A"+ AW, = —BB’ WA+ AW,

(discrete) W.-AW.A" = BB’ W,—A'W,A = CC

The maximum order permitted is the number of nonzero eigenval ues of
W.W, that are larger than €.
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Next, Schur decompositions of W.W,, are formed with the eigenval ues of
W.W, in ascending and descending order. These eigenvalues are the square
of the Hankel singular values of sys, and if sys isnhonminimal, some can
be zero.

V,A WcWoVA - Sasc

V’D Wc Wo VD Sdes

ThematricesV,, Vp areorthogona and S, S, are upper triangular. Next,
submatrices are obtained as follows:

0
Vibig = VA[I }

nsr

Insr
Vibig = VD[ 0 }

and then a singular value decomposition is found:

— 7
UebigSebigVebig - Vlbierbig

From these quantities, the transformation matrices used for calculating
SysR are defined:

172

Sivig = VivigUepigSeniq
Sevie = Vibig ebigSlljizg
and the reduced order systemis:
Ag = S;bigASrbig B = S;bigB
Ap = CS,,;, D

Anerror bound isavailable. Inthe continuous-timecaseitisasfollows. Let
G(jo) and Gg(jo) be the transfer function matrices of sys and sysgr,
respectively.

For the continuous case:

"G(]O)) - GR(](D)HM < 2(Gnsr+ 1 + Opusr+2 ot Gns)
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Related Functions

ophank( )

For the discrete-time case:

|G/ = Gr(¢).<2(0,5 41 +Gpyrin o+ 5,0
When {bound} is specified, the error bound just enunciated is used to
choose the number of statesin sysr so that the bound is satisfied and nsr
isassmall as possible. If the desired error bound is smaller than 2c,,,,

no reduction is made.

In the continuous-time case, the error depends on frequency, but is always
zero at m = oo, If the reduction in dimension is 1, or the system sys is
single-input, single-output, with alternating poles and zeros on the real
axis, the bound istight. It is far from tight when the poles and zeros
approximately aternate along the jw-axis. It isnot normally tight in the
discrete-time case, and for both continuous-time and discrete-time cases,
it isnot tight if there are repeated singular values.

The presentation of the Hankel singular values may suggest alogical
dimension for the reduced order system; thusif 6, » 6, |, it may be
sensible to choose nsr = k.

ophank (), balmoore ()

Restriction

Xmath Model Reduction Module

[SysR, SysU,HSV] = ophank(Sys, {nsr,onepass})

The ophank ( ) function calculates an optimal Hankel norm reduction
of sys.

This function has the following restriction:

e Only continuous systems are accepted; for discrete systems use
makecontinuous ( ) beforecallingbst ( ), then discretize the
result.

Sys=ophank (makecontinuous (SysD) ) ;
SysD=discretize (Sys) ;
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Algorithm

The algorithm does the following. The system sys and the reduced order
system sysR are stable; the system sysu hasal its polesin Re[s] > 0. If
the transfer function matrices are G(s), G,(s) and G,(s) then:

*  G,(s) isastable approximation of G(s).

*  G,(s) + G,(s) isamoreaccurate, but not stable, approximation of G(s),
and optimal in a certain sense.

Of course, the algorithm works with state-space descriptions; that of G(s)
can be minimal, while that of G,(s) cannot be.

These statements are explained in the Behaviors section. If onepass is
specified, reduction is calculated in one pass. If onepass isnot calledoris
set to 0 {onepass=0}, reduction is calculated in (number of states of

Sys - nsr) passes. There seemsto be no general rule to suggest which
setting produces the more accurate approximation G,. Therefore, if
accuracy of approximation for agiven order iscritical, both should betried.
As noted previously, if an approximation involving an unstable system is
desired, the default {onepass=11} is specified.

Behaviors

The following explanation deals first with the keyword {onepass}.
Suppose that 64, ©,,..., 6, are the Hankel Singular values of S, which has
transfer function matrix G(s). Suppose that the singular values are ordered
so that:

0;=0,=..50, >0, 41.. =0, j.. =0, >0, ..

ny

Z O, 417

n,_1+2 = Gn,,,(:cns) 20

Thus, there are n; equal values, followed by n, — nq equal values, followed
by ny —n, equa values, and so forth.

The order nsr of G,(s) cannot be arbitrary when there are equal Hankel
singular values. In fact, the orders shown in Table 2-1 for the strictly stable
G, (all polesin Re[s]<0) and strictly unstable G, (all poles Re[s]>0) are
possible (and there are no other possibilities).
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Table 2-1. Orders of G
Number of Number of
Order of Order of | Eliminated States | Eliminated States
G, nsr G, nsu (Retaining G,) (Discarding G,)
0 ns —ny ny ns
ny ns —np np,—ny ns —ny
ny ns —ng nz—np ns —np
U U U U
My —1 0 ns— Ny _1 ns — Ny, _1

Xmath Model Reduction Module

By abuse of notation, when we say that G is reduced to acertain order, this
corresponds to the order of G,(s) alone; the unstable part of G,,(s) of the
approximation is most frequently thrown away. The number of eliminated
states (retaining G,,) refersto:

(# of statesin G) — (# of statesin G,) — (# of statesin G,)

This number is always the multiplicity of a Hankel singular value. Thus,
when the order of G, isn; _ the number of eliminated statesisn;—n; _4 or
the multiplicity of 6, | . 1=0,:

For each order n;_4 of G,(s), it ispossibleto find G, and G,, so that:
|G(j®) - G,.(jo) - G,(jo)., < 0,

(Choosing i = 1 causes G, to be of order zero; identify ng = 0.) Actualy,
among all “approximations’ of G(s) with stable part restricted to having
degree n; _4 and with no restriction on the degree of the unstable part, one
can never obtain alower bound on the approximation error than 6, ; in the
scalar or SISO G(s) case, the G,(s) which achieves the previous bound is
unique, whilein the matrix or MIMO G(s) case, the G,(s) which achieves
the previous bound may not be unique [Glo84]. The algorithm we use to
find G,(s) and G,,(s) however allows no user choice, and deliversasingle
pair of transfer function matrices.

The transfer function matrix G,(jw) alone can be regarded as a stable

approximation of G(jw). If the D matrix in G,(jo) is approximately

chosen, (and the algorithm ensuresthat it is), then:
|GGjo)-G,(jo).<0, +0, +..+0C (2-3)

1 N ns
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Thus, the penalty for not being allowed to include G,, in the approximation
isanincrease in the error bound, by 6, +1 + ... +0,,. A number of
theoretical developments hinge on bounding the Hankel singular val ues of
G,(s) and G,(—s) interms of those of G(s). With G, (s) of order n; _4, there
holds:

6.(G)So (G = 1,2,...,n,_,
The transfer function matrix G, (s), being unstable, does not have Hankel
singular values; however, G, (—s) (which is stable) does have Hankel
singular values. They satisfy:

G, (=)1£6, , ()

In most cases, the Hankel singular values of G(s) are distinct. If,
accordingly,

|G-Gr-G,.. = o;
then G, has degree (i— 1), G, has degree ns —i and

|IG-G,]. =0,+0,,,+..+C (2-4)

Observe that the bound (Equation 2-3 or Equation 2-4), which is not
necessarily obtained, isone half that applying for both balanced truncation
(asimplemented by balmoore ( ) or, effectively, by redschur ( )); it
also is one half that obtained when applying mreduce to abalanced
realization. In general, the D matrices of G and G, are different, that is,
G(o0) # G,(=0) (incontrast tobalmoore ( ) andredschur ( )). Similarly,
G(0) # G,(0) in general (in contrast to the result when mreduce isapplied
to a balanced realization). The price paid for obtaining a smaller error
bound overall through Hankel norm reduction is that one no longer
(normally) secures zero error at = o or ® = 0.

Two special cases should be noted. If nsr = 0then G,(s) isaconstant only.
This constant can be added onto G, (s), so that G(s) isthen being
approximated by atotally unstable transfer function matrix, with error 6;
thistype of approximation isknown as Nehari approximation. The second
special case ariseswhen nsr =n,,_, (or NS — 1 if the smallest Hankel
singular value has multiplicity 1). In this case, G,(s) becomes a constant,
which can then be lumped in with G, (s), so that G(s), of degree NS, isthen
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being approximated by a stable G,(s) with the actual error (as opposed to
just the error bound) satisfying:

[G(s)=G.(s)].. = o,

Note G, is optimal, that is, there is no other G, achieving a lower bound.

Onepass Algorithm

Xmath Model Reduction Module

Thefirst steps of the algorithm are to obtain the Hankel singular values of
G(s) (by usinghankelsv( ))andidentify their multiplicities. (Stability of
G(s) ischecked in this process.) If the user has specified nsr and this does
not coincide with one of 014,15, ... an error messageis obtained; generally,
al the o, are different, so the occurrence of error messages will berare.
The next step of the algorithm isto calculate the sum G(s) = G,(s) + G,(s),
following [SCL90]. (A separate function ophred( ) iscaled for this
purpose.) The controllability and observability grammians P and Q are
found in the usual way.

AP+ PA’ = —BB’
QA +A'Q=-CC

and then a singular value decomposition is obtained of the

matrix QP —c. I
S, 0|V 2
(v, 0] > 1) = oP-o1

Thereareprecisely n;— n; _, zero singular val ues, thisbeing the multiplicity
of 6,,. Next, the following definitions are made:

1 An -
21 A

B - (0] gp
B, Uy’

[C; C,] = CP[V, V,]

Ul/

’

(03 A"+ QAP)(V, V)
2

LN
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and finaly:
4= 5;1(17111—;1—12;132221)
B = 551(31—2—12;1;232)
6 = E‘1—6'21232;1;
D= D—Cz;lzzz’z

These four matrices are the constituents of the system matrix of é(s),
where:

G(s) = G,(s) + G, (s)

Digression:

This choice isrelated to the ideas of [Glo84]_in the following way;
in [Glo84], the complete set isidentified of G(s) satisfying

l6G®) -Gl = o,

with G havi ng a stable part of order n;_ 4. The set is parameterized in
terms of a stable transfer function matrix K(s) which has to satisfy

C,+K(s)B, = 0
[-K'(5®)K(jo) <0 for all ®

with C,, B, being two matrices appearing in the course of the algorithm
of [Glo84], and enjoying the property C,C, = B,B,. The particular
choice

K(s) = —CZ(C'2C2)#B2

in the algorithm of [Glo84] and flagged in corollary 7.3 of [Glo84] is
equivalent to the previous construction, in the sense of yielding the
same G, though the actual formulas used here and in [Glo84] for the
construction procedure are quite different. In anumber of situations,
including the case of scalar (SISO)G(s), thisisthe only choice.

The next step of the algorithmisto call stable( ), to separate é(s) into
its stable and unstable parts, call them G(s)and G,(s), stable( ) will
aways assign the matrix D to G,(s), and thefinal step of the algorithmis
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to choose the D matrix of G,(s), by splitting D between G.(s) and G, (s).
Thisisdone by using a separate function ophiter ( ). Suppose G,(s) is
the unstable output of stable ( ), andlet K(s) = G,(-s). By applying the
multipass Hankel reduction algorithm, described further below, K(s) is
reduced to the constant K, (the approximation), which satisfies,

|K(s) =Ky|..<0,(K) +... + 5 0, _, (K)

<6, +,(G)*..+0,(G)

that is, if it islarger than,

nS

|G (=) —Ky||.. < Z o,(G)

k=n+1
then one chooses:
G, = G, +K,
G, = G, +K,

This ensures satisfaction of the error bound for G — G, given previoudly,

because:
|6-G . = [G-Gr=Gu+ (Gu=Ky)|.
=|G-Gr -Gl + |K-K)|..
<6,(G)*+6, . 1(G)+..+0,(G)
Multipass Algorithm

We now explain the multipass algorithm. For simplicity in first explaining
the idea, suppose that the Hankel singular values at every stage or pass are
distinct.

1. Find astable order ns — 1 approximation G,,_(s) of G(s) with:

"G(j(o)_Gns—ljmlloc = Gns(G)

(This can be achieved by the algorithm already given, and thereis no
unstable part of the approximation.)
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2. Find astable order ns — 2 approximation G, _, of G,,,_1(s), with

”Gns—l(jo‘)) _Gns—2(j0))||oo = Gns—l(Gns—l)

3. (Step ns—nr):
Find a stable order nsr approximation of G, + 1,
With( G, 1(J®) = G, (jO)|., = O s 1(Grgrat)
Then, because 6,(G,,,_,) < 06,(G) for i <ns,

Gi(Gns—Z) < G[(Gns—l)

for i<s—i, ..., thisbeing a property of the algorithm, there follows:

||G(](’0) - Gnvr(J(D)” < Gsr+ I(Gnsr+ 1) oot Gns(G)

ns

< Y 00

i=nsr+1

The only difference that arises when singular values have multiplicity in
excess of 1 isthat the degree reduction at a given step is greater. Thus, if
0,(G) has multiplicity k, then G(s) is approximated by G, _(s) of degree
ns —k.

No separate optimization of the D matrix of G, isrequired. The
approximation error bound isthe same asfor thefirst agorithm. The actual
approximation error may be different. Notice that this second algorithm
does not calculate an unstable G,(s) such that

||G(](D) - GnsrUO‘)) - GM(]CO)”oc = Ousr+1

Discrete-Time Systems

No specia agorithmis presented for discrete-time systems. Any stable
discrete-time transfer-function matrix G(z) can be used to define a stable
continuous-time transfer-function matrix by abilinear transformation, thus

o = (229

when ¢ is a positive constant.
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We use sysZ to denote G(z) and define:
bilinsys=makepoly([-1,a]/makepoly([1l,al)

as the mapping from the z-domain to the s-domain. The specification is
reversed because this function uses backward polynomial rotation. Hankel
norm reduction is then applied to H(s), to generate, a stable reduced order
approximation H,(s) and unstable H(s) such that:

”H_Hr _Hu”

O

1

|H-H,| = 0,+0, 1 +..+0,

Here, the s,; are the Hankel singular values of both G(z) and H(s); they are
the same:

_ z—1
G,.(z2) = H,(OLZ—_I_

—_
N—

_ z— 1)
G,(z) = Hu(ocz+ 1

We then implement the s-domain equivalent with:

sysS=subsys (sysZ,bilinsys)

Thereisnosimplerulefor choosing o;; the choice o, = 1isprobably asgood
asany. Theorders of G, and G, are the same as those of H, and H,,,
respectively. The error formulas are as follows:

l6(e*) =G, -G (). = o,

ns

|6 ~G,(¢*)|..<0, +0, . +..0

Impulse Response Error

Xmath Model Reduction Module

If G, isdetermined by thefirst (single-pass) algorithm, the impulse
response error (for r > 0) between the impulse responses of G and G, can
be bounded. As shown in Corollary 9.9 of [Glo84], if G, isof degreei — 1
and the multiplicity of the ith larger singular value c; of G is r, then:

6,[G-G,1<0,G forj
<0;_;4+(G) forj

1,2,.,2i=2+r

2i—1+r, .. ,ns+i—1

2-22 ni.com



Chapter 2 Additive Error Reduction

It follows by aresult of [BoD87] that the impulse response error for ¢ > 0
satisfies:

le() =g, (0] 1 $2{ 2i=2+1)5,(G) + Y 6,(G)

Evidently, Hankel norm approximation ensures some form of
approximation of the impul se response too.

Unstable System Approximation

A transfer function G(s) with stable and unstable poles can be reduced by
applying stable( ) to separate G(s) into a stable and unstable part. The
former is reduced and then the unstable part can be added back on. For
additional information about the ophank ( ) function, refer to the Xmath
Help.

Related Functions

stable(), redschur (), balmoore ()
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This chapter describes multiplicative error reduction presenting
two reasons to consider multiplicative rather than additive error reduction,
one general and one specific.

Selecting Multiplicative Error Reduction

The general reason to use multiplicative error reduction is that many
specifications are given using decibels; +1 db correspondsto a
multiplicative error of about 12%. Specifications regarding phase shift also
can be regarded as multiplicative error statements: £0.05 radians of phase
shift islike 5% multiplicative error also.

The more specific reason arises in considering the problem of plant
approximation, with a high order (possibly very high order) plant being
initially prescribed, with no controller having been designed, and with a
requirement to provide asimpler model of the plant, possibly to allow
controller design. Consider the arrangement of Figure 3-1, controller C(s)
designed for G(s)j with G(s) = (I + A)G(s).

a
v
Q
) 4

Figure 3-1. Controller C(s) Designed for Multiplicative Error Reduction

The full order plant is G = (I + A)G, and the reduced order model is G.
Since (G-G)G™! = A, thismeansthat A isthe multiplicative error.
Another way one could measure the multiplicative error would be as
(G- G)G™". Inthe matrix plant case, interchange of the order of the
product gives two more possibilities again.

The following multiplicative robustness result can be found in [Vid85].
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Multiplicative Robustness Result

Xmath Model Reduction Module

Suppose C stabilizes é,that A = (G—é‘)é—1 has no jw-axis poles, and
that G has the same number of polesin Re[s] >0as G . If for dl o,

laGollélocGot+6GocGol | <1 (3-1)
then C stabilizes G.

Thisresult indicatesthat if acontroller C isdesigned to stabilize anominal
or reduced order model G, satisfaction of Equation 3-1 ensures that the
controller also will stabilize the rrue plant G.

In reducing amodel of the plant, there will be concern not just to have this
type of stability property, but aso concern to have aslittle error as possible
between the designed system (based on G') and the true system (based

on G). Extrapolation of the stahility result then suggests that the goal
should be not just to have Equation 3-1, but to minimize the quantity on the
left side of Equation 3-1, or its greatest value:

max{a(jo) G CUOII +Glio) o] |}

However, there are difficulties. The principal oneisthat if we are reducing
the plant without knowledge of the controller, we cannot calculate the
measure because we do not know C(jw). Nevertheless, one could presume
that, for awell designed system, GC(I + GC)‘1 will be close to I over the
operating bandwidth of the system, and have smaller norm than 1 (tending
to zero as w—- in fact) outside the operating bandwidth of the system.
This suggests that in the absence of knowledge of C, one should carry out
multiplicative approximation by seeking to minimize:

max[[AGo)| = [[AGo)]..
(O]

Thisisthe prime rationale for (unweighted) multiplicative reduction of a
plant.

Two other points should be noted. First, because frequencies well beyond
the closed-loop bandwidth, GC(7 + GC)™" will be small, it isin asense,
wasteful to seek to have A(jw) small at very high frequencies. The choice
of maxe|A(jm)|| astheindex is convenient, because it removes a
reguirement to make assumptions about the controller, but at the sametime
it does not allow |A(jm)| to be made even smaller in the closed-loop
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bandwidth at the expense of being larger outside this bandwidth, which
would be preferable.

Second, the previously used multiplicative error is (G — E})é_l. Inthe
algorithmsthat follow, the error § = (G — G)G_l appears. It iseasy to

check that:
o _lAGe.
6 < ——F
U =TT aGw
and
I3Gw)l.
A 7 < —
80N =5 Gl

This means that if either bound is small, so is the other, with the bounds
approximately equal.

Two algorithms for multiplicative reduction are presented: bst ( ),
amnemonic for balanced stochastic truncation, and mulhank ( ).
Roughly, they relate to one another in the same way that redschur ( )
and ophank ( ) relate, that is, one focuses on balanced realization
truncation and the other on Hankel norm approximation. Some of the
similarities and differences are as follows:

*  When the errors are small, the error bound formulafor bst ( ) is
about one half of that for bst ( ).

*  Withbst ( ), theactual multiplicative error asafunction of frequency
goes to zero as w— oo (or, after using an optional transformation given
in the algorithm description, to zero as w— 0); withmulhank ( ), the
error tends to be more uniform as a function of frequency.

* bst( ) canhandlenonsquare reduction, whilemulhank ( ) cannot.

» Both agorithms are restricted to stable G(s); both preserve right half
plane zeros, that is, these zeros are copied into the reduced order
object; both have difficulties with jm-axis zeros of G(s), but these
difficulties are not insuperable.

bst( )

[SysR,HSV] = bst(Sys, {nsr,left, right, bound, method})

Thebst ( ) function calculates abal anced stochastic truncation of sys for
the multiplicative case.
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Restrictions

Algorithm

Xmath Model Reduction Module

Theobjective of theal gorithmisto approximate ahigh-order stabletransfer
function matrix G(s) by alower-order G,(s) with either inv (g) (g-gr) or
(g-gr) inv (g) minimized, under the condition that G, is stable and of the
prescribed order.

This function has the following restrictions:

e Theuser must ensure that the input system is stable and nonsingular at
s = infinity.

e Theagorithm may be problematicif theinput system hasazero onthe
Jjw-axis.

¢ Only continuous systems are accepted; for discrete systems use

makecontinuous ( ) beforecalingbst ( ), then discretize the
result.

Sys=bst (makecontinuous (SysD)) ;
SysD=discretize (Sys) ;

The modifications described in this section allow you to circumvent the
previous restrictions.

The objective of thea gorithmisto approximate ahigh order stabletransfer
function matrix G(s) by alower order G (s) with, in the square G(s) case,
eitherH(G -GG L, or ” G (G- Gr)”’;o (approximately) minimized,
under the constraint that G, is stable and of prescribed order nsr. In case
G isnot square but has full row rank, the algorithm seeks to minimize:

l6-6).66.7(G-6,)

oo

Recall that X.(s) = X'(—s) sothat when s = j,
X.(jo) = X (jo)

When G is not square but has full column rank, the algorithm seeks to
minimize:

l(G-6)@6.00" -6,

oo
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These cases are secured with the keywords right and left, respectively.
If thewrong option isreguested for anonsguare G(s), an error message will
result.

The algorithm hasthe property that right half plane zeros of G(s) remain as
right half plane zeros of G (s). Thismeansthat if G(s) has order nsr withn,
zerosin Re[s] > 0, G,(s) must have degree at least n,., else, given that it has
n, zerosin Re[s] > 0 it would not be proper, [Gre38].

The conceptual basis of the algorithm can best be grasped by considering
the case of scalar G(s) of degree n. Then one can form a minimum phase,
stable W(s) with |W(jm)[2 = |G(jw) 2 and then an all-passfunction (the phase
function) W(=s) G(s). This all pass function has a mixture of stable and
unstable poles, and it encodes the phase of G(j). Its stable part hasn
Hankel singular values 6; with ¢, < 1, and the number of ; equal to 1isthe
sameasthe number of zerosof G(s) inRe[s] > 0. State-variablerealizations
of W,G and the stable part of W-1(—s)G(s) can be connected in a nice way,
and when the stable part of W-1(—s)G(s) has a balanced realization, we say
that therealization of G is stochastically balanced. Truncating the balanced
realization of the stable part of W-1(—s)G(s) induces a corresponding
truncationintherealization of G(s), and the truncated realization definesan
approximation of G. Further, agood approximation of atransfer function
encoding the phase of G somehow ensures agood approximation, albeit in
amultiplicative sense, of G itself.

Algorithm with the Keywords right and left

The following description of the algorithm with the keyword right is
based on ideas of [GrA86] developed in [SaC88]. The procedureis almost
the samewhen left is specified, except the transpose of G(s) is used; the
algorithm finds an approximation in the same manner asfor right, but
transposes the approximation to yield the desired G,.(s).

1. Theagorithm checks
e That the system is state-space, continuous, and stable
» That acorrect option has been specified if the plant is honsquare

e That D isnonsingular; if the plant is nonsquare, DD” must be
nonsingular
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With G(s) = D + C(sI — A)~1B and stable, with DD nonsingular and
G(jo) G'(—jm) nonsingular for all w, part of a state variable realization
of aminimum phase stable W(s) is determined such that

W1—s)W(s) = G(s)G (-s) with

W(s) = Dy+Cyl(sI-A4,) "B,

The state variable matrices in W(s) are obtained as follows. The
controllability grammian P associated with G(s) isfirst found from
AP + PA" + BB'=0then Ay =A, By=PC"+ BD".

When G(s) is square, the algorithm checks to seeif thereis a zero or
singularity of G(s) closeto the jw-axis (the zeros are given by the
eigenvalues of A — BD-1C and are computed reliably with the aid of
schur ( )). If oneisfound, you are warned that results may be
unreliable. Next, a stabilizing solution Q is found for the following
Riccati equation:

QA+4'Q+(C~B'yy) (DD (C~By0) = 0

The singriccati( ) functionisused; failure of the nonsingularity
condition on G(jw)G" (—jw) will normally result in an error message
that no stabilizing solution exists. To obtain the best numerical results,
singriccati ( ) isinvoked withthekeyword {method="schur"}.
Although Dy, Cy, are not needed for the remainder of the algorithm,
they are simply determined in the square case by

D, =D C,=D"(C-B,0)

with minor modification in the nonsquare case. The real point of the
agorithm isto compute P and Q; the matrix Q satisfies (square or
nonsquare case).

QA+A40+CpyCy =0

P, Q arethe controllability and observability grammians of thetransfer
function Cy(sI — A)™1B. Thistransfer function matrix, it turns out, is
the strictly proper, stable part of 6(s) = W(—s)G(s), which obeys the
matrix all-pass property 0(s)0"(—s) = I, and is the phase matrix
associated with G(s).

Compute ordered Schur decompositions of PQ, with the eigenvalues
of PQ isascending and descending order. Obtain the phase matrix
Hankel singular values, that is, the Hankel singular values of the
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strictly proper stable part of 06(s), asthe square roots of the eigenvalues
of PQ. Call these quantities v;. The Schur decompositions are,

VA;{PQVA = Sasc V/DPQVD = Sdes

where V,, V, are orthogonal and S, S,., are upper triangular.

4. Define submatrices asfollows, assuming the dimension of the reduced
order system nsr isknown:

0
Vibig = VA[I }

nsr

Insr
Vibig = VD[ 0 }

Determine a singular value decomposition,

U

ebigS

ebig Veb[g = Vlbig Vrb[g

and then define transformation matrices:

_ ~1/2
Slbig - VlbigU S

ebighebig
_ ~1/2
Srbig - Vrbig Veb[gSebig

Thereduced order system G, is:

Ap = SppiAS

rbig Bp = SipigB

Ap = CSppig Dp =D

where step 4 isidentical with that used in redschur ( ), except
the matrices P, Q which determine V,, V, and so forth, are the
controllability and observability grammians of Cy,(sI —A)™1B rather

than of C(sI —A)~1B, the controllability grammian of G(s) and the
observability grammian of W(s).

The error formula[WaS9(] is:

V.

<2y (3-2)

I—v;

6" G-a,

All v; obey v; < 1. One can only diminatev; wherev; < 1. Hence, if nsr is
chosen so that v, + 1 = 1, the algorithm produces an error message. The
algorithm also checksthat nsr does not exceed the dimension of aminimal
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state-variablerepresentation of G. Inthiscase, the user iseffectively asking
for G, = G. When the phase matrix has repeated Hankel singular values,
they must all be included or all excluded from the model, that is,

Vng = Vng + 1 1S NOt permitted; the algorithm checks for this.

The number of v; equal to 1 isthe number of zerosin Re[s]>0 of G(s), and
as mentioned already, these zeros remain as zeros of G, (s).

If error is specified, then the error bound formula (Equation 3-2) in
conjunction with the v; values from step 3 isused to define nsr for step 4.
For nonsquare G with more columns than rows, the error formulais:

ns

1/2 V.
<2 z !
* 1—v,

i=nsr+1

[(G-G.6.6)7"(G-6G,)

If the user is presented with the v;, the error formula provides a basis for
intelligently choosing nsr. However, the error bound is not guaranteed to
be tight, except when nsr = ns — 1.

Securing Zero Error at DC

Xmath Model Reduction Module

The error G-Y(G — G,) as afunction of frequency is always zero at o = oo.
When the algorithm is being used to approximate a high order plant by a
low order plant, it may be preferableto secure zero error at ® = 0. A method
for doing thisis discussed in [GrA90]; for our purposes:

1. Weneedabilinear transformation of sys = 1/z. Given G(s) wegenerate
H(s) through:
bilinsys=makepoly ([b3,b4]/makepoly([bl,b2])
sys=subsys (sys,bilinsys)

2. Reduce with the previous algorithm:
[sr,nsr,hsv] = bst(sys)

3. Usethe hilinear transformation s= 1/z again:

[srl,nsrl] = bilinear(sr,nsr,[0,1,1,01)

Thev; are the same for G(s) and H(s) = G(s~1). The error bound formulais
the same; H is stable and H(jw)H'(—w) of full rank for all o including

o = oo if and only if G hasthe same property; right half plane zerosof G are
still preserved by the algorithm. The error GG — G, ), though now zero at
® =0, isin general nonzero at o = eo.

3-8 ni.com



Chapter 3 Multiplicative Error Reduction

Hankel Singular Values of Phase Matrix of G,

Thev;, i =1,2,...,ns have been termed above the Hankel singular values of
the phase matrix associated with G. The corresponding quantitiesfor G, are
v, i=1,.., nsr.

Further Error Bounds

The introduction to this chapter emphasized the importance of the error
measures

lG-6)67.or|G; (G-,

oo

for plant reduction, as opposed to](G — G,)G ™' . or o' (G-6,)

The BST agorithm ensures that in addition to (Equation 3-2), there holds
[WaS90a).

ns
1%

~%2 z l—l‘v}

1

G;(G-G,)

i=nsr+1

which also means that for a scalar system,

58.69[2 3 lv" ]dB
—

1

G}"
‘ZOIOglo—G-

i=nsr+1
and, if the bound is small:

ns

Vi
|phase(G) —phase(G,)| < Z - radians

i=nsr+1

Reduction of Minimum Phase, Unstable G

For square minimum phase but not necessarily stable G, it aso is possible
to use this algorithm (with minor modification) to try to minimize (for G,
of acertain order) the error bound

l6-6,67

oo
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which also can be relevant in finding a reduced order model of a plant.
The procedure requires G again to be nonsingular at m = -, and to have no
jow-axispoles. Itisasfollows:

1. Form H = G If G isdescribed by state-variable matrices A, B, C, D,
then H isdescribed by A — BD1C, BD™L, -D~1C, D-L. H is square,
stable, and of full rank on the jw-axis.

2. Form H, of the desired order to minimize approximately:

e - 1,)..

3. SeaG,=H71.
Observe that

H'(H-H) = I-H 'H,

—1
”

= I-GG

(G,- )G,

The reduced order G, will have the same polesin Re[s] > 0 as G, and
be minimum phase.

Imaginary Axis Zeros (Including Zeros at o)

We shall now explain how to handle the reduction of G(s) which hasarank
drop at s = 0 or on the jm-axis. The key isto use a bilinear transformation,
[Saf87]. Consider the bilinear map defined by

z—a
—bz+1

_ sta
bs+1

where 0 < a < b~1 and mapping G(s) into E;(s) through:

o0 = o757

o = 2
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The values of G(s), as shown in Figure 3-2, along the jo-axis are
the same as the values of G(s) around a circle with diameter defined by
[a —j0, b1+ j0O] on the positive real axis.

»
»

G(s) G(s)
values values

Figure 3-2. Bilinear Mapping from G(S) to (és) (Case 1)

Also, the values of E;(s) , asshown in Figure 3-3, along the jw-axis are
the same as the values of G(s) around acircle with diameter defined by
[-b71+,0,—a +0].

v

G(s) G(s)

values values

Figure 3-3. Bilinear Mapping from G(s) to (E;s) (Case 2)

We can implement an arbitrary bilinear transform using the subsys ( )
function, which substitutes a given transfer function for the s- or z-domain
operator.

Toimplement G(s) = G( St )use:

p (s) The il

gtildesys=subsys (gsys,makep([-b,1]/makep([1,-al)
+a

. _ ~ (s |
Toimplement G(s) = G(S—+ 1) use:

gsys=subsys (gtildesys,makep ([b,1]/makep([1l,al)

E Note The systems substituted in the previous calls to subsys invert the function
specification because these functions use backward polynomial rotation.
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Any zero (or rank reduction) onthejw-axis of G(s) becomesazero (or rank
reduction) in Re[s] > 0 of G(s), and if G(s) has azero (or rank reduction)
at infinity, thisis shifted to a zero (or rank reduction) of G(s) at the point
b7, (in Re[s] > 0). If al poles of G(s) areinside thecircle of diameter
[-b71+0,a + 0], al polesof G(s)will beinRe[s] <0, andif G(s) hasno
zero (or rank reduction) on thiscircle, G(s) will have no zero (or rank
reduction) on the jm-axis, including @ = e.

If G(s) isnonsingular for almost all values of s, it will be nonsingular or

have no zero or rank reduction onthecircle of diameter [-b1+ j0,—a + jO]

for almost all choices of a,b. If a and b are chosen small enough, G(s) will

haveal itspolesinsidethiscircleand no zero or rank reduction onit, while

G(s) then will haveall polesin Re[s] < 0 and no zero or rank reduction on

the jw-axis, including s = . The steps of the algorithm, when G(s) has a

zero on the jw-axis or at s = oo, are asfollows:

1. Forsmal a,pwithO<a<b form G(s) = G(
gtildesys.

2. Reduce G(s) to G,(s), thisbeing possible because G(s) is stable and
has full rank on s = jo, including ® = oo,

_ S (sta
3. FormG,(s) = Gr(bs+1

(G-G,)|.. will be overbounded by the error
«, and G, will contain the same zerosin Re[s] 20 asG.

s—a
—bs+1

) asshown for

) asshown for gsys.

—1

he error ’LG
6" G-,

If thereis no zero (or rank reduction) of G(s) at the origin, one can take

a = 0 and b~1 = bandwidth over which a good approximation of G(s) is
needed, and at the very least b1 sufficiently large that the poles of G(s)
liein the circle of diameter [-b1+j0, —a +jO]. If thereis a zero or rank
reduction at the origin, one can replacea = 0 by a = b. It ispossible to take
b too small, or, if thereis a zero at the origin, to take a too small. The user
will be presented with an error message that there is a jw-axis zero and/or
that the Riccati equation solution may bein error. The basic explanation is
that asb — 0, and thusa — O, the zeros of G(ss) approach those of G(s).
Thus, for sufficiently small b, one or more zeros of G(s) may beidentified
as lying on the imaginary axis. The remedy isto increase a and/or b above
the desirable values.

The procedure for handling jw-axis zeros or zeros at infinity will be
deficient if the number of such zeros is the same as the order of G(s)—for
example, if G(s) = 1/d(s), for some stable d(s). In this case, it is possible
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again with abilinear transformation to secure multiplicative
approximations over alimited frequency band. Suppose that

G(s) = G( s )

es+1

Create a system that corresponds to é(s) with:
gtildesys=subs (gsys, (makep([-eps,1])/makep([1l,-1))
bilinsys=makep([eps,1])/makep([1,0])

sys=subsys (sys,bilinsys)

Under this transformation:

»  Vauesof G(s) aong the jm-axis correspond to values of é(s) around
acirclein the left half plane on diameter (-~ + j0, 0).

* Vauesof E}(s) along the jw-axis correspond to values of G(s) around
acirclein theright half plane on diameter (0, ¢ +;0).

Multiplicative approximation of G(s) (along the jw-axis) corresponds to
multiplicative approximation of G(s) around acirclein theright half plane,
touching the jw-axis at the origin. For those points on the jw-axis near the
circle, there will be good multiplicative approximation of G(j). If itis
desired to have a good approximation of G(s) over aninterval [—j €2, jQ],
then achoice such ase! =5 Q or 10 Q needs to be made. Reduction then
proceeds as follows:

1. Form G(s).

2. Reduce E;(s)through bst( ).

3. Form G,(s) = —G,(s/(1 —es)) with:
gsys=subsys (gtildesys (gtildesys,
makep ([-eps,-11) /makep[-1,-0]))

Notice that the number of zeros of G(s) in the circle of diameter

0,e" +0)s
setsalower bound onthe degree of G,.(s)—for such zerosbecomeright hal f
plane zerosof G(s), and must be preserved by bst ( ). Obviously, zeros at

s =0 are never in this circle, so a procedure for reducing G(s) = 1/d(s) is
available.
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There is one potential source of failure of the algorithm. Because G(s) is
stable, G(s) certainly will be, asitspoleswill beintheleft half planecircle
on diameter (—e =0, 0). If G,(s) acquires a pole outside thiscircle

(but still in the left half plane of course)—and this appears possiblein
principle—G,(s) will then acquireapolein Re [s] > 0. Should thisdifficulty
be encountered, a smaller value of € should be used.

Related Functions

redschur (), mulhank ()

mulhank( )

[SysR,HSV] = mulhank(Sys, {nsr,left,right,bound, method})

Themulhank ( ) function calculatesan optima Hankel norm reduction of
sys for the multiplicative case.

Restrictions
This function has the following restrictions:

e Theuser must ensurethat the input systemis stable and nonsingular at
s = infinity.

e Theagorithm may be problematicif theinput system hasazero onthe
Jjw-axis.

«  Only continuous systems are accepted; for discrete systems use

makecontinuous ( ) beforecalling mulhank ( ), then discretize
the result.

Sys=mulhank (makecontinuous (SysD)) ;
SysD=discretize (Sys) ;

Algorithm

The objective of thealgorithm, likebst ( ), istoapproximate ahigh order
sguare stable transfer function matrix G(s) by alower order G.(s) with
either ||(G - G,)G_IHw or HG_I(G - G,)ﬁ‘w (approximately) minimized,
under the constraint that G, is stable and of prescribed order.

The algorithm has the property that right half plane zeros of G(s) are
retained as zeros of G,(s). This means that if G(s) has order NS with N,
zerosin Re[s] > 0, G,(s) must have degree at least N,—else, given that it
has N, zerosin Re[s] > 0 it would not be proper, [GrA89].
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The conceptual basis of the algorithm can best be grasped by considering
the case of scalar G(s) of degree n. Then one can form a minimum phase,
stable W(s) with [W(jo)[2 = |G(jo)[? and then an all-passfunction (the phase
Sfunction) W(=s) G(s). This all-pass function has a mixture of stable and
unstable poles, and it encodes the phase of G(j). Its stable part has

n Hankel singular values 6, with ¢; < 1, and the number of c; equal to 1
is the same as the number of zeros of G(s) in Re[s]>0. State-variable
realizations of W,G and the stable part of W-1(—s)G(s) can be connected in
anice way. The algorithm computes an additive Hankel norm reduction of
the stable part of W-1(—s)G(s) to cause a degree reduction equal to the
multiplicity of the smallest 6;. The matrices defining the reduced order
object are then combined in a new way to define amultiplicative
approximation to G(s); asit turns out, there is a close connection between
additive reduction of the stable part of W=(=s)G(s) and multiplicative
reduction of G(s). The reduction procedure then can be repeated on the new
phase function of the just found approximation to obtain afurther reduction
againin G(s).

A description of the algorithm for the keyword right follows. It is based
on ideas of [Glo86] in part developed in [GrA86] and further devel oped
in [SaC88]. The procedure is almost the same when {1eft} isspecified,
except the transpose of G(s) is used; the following algorithm finds an
approximation, then transposesit to yield the desired G,.(s).

1. Thealgorithm checksthat G(s) is square, stable, and that the transfer
function is nonsingular at infinity.

2. With G(s) = D + C(sI-A)™B square and stable, with D nonsingular
[rank (d) must equal number of rowsin d] and G(jw) nonsingular for
all finite o, this step determines a state variable realization of a
minimum phase stable W(s) such that,

W (=5)W(s) = G(5)G (-9)

with:

W(S) =Dy + CW(SI_AW)_lBW

Thevariousstate variable matricesin W(s) are obtained asfollows. The
controllability grammian P associated with G(s) isfirst found from
AP + PA” + BB = 0, then:

A,=AB,=PC+BDD, =D’

The algorithm checks to see if thereis a zero or singularity of G(s)
close to the jw-axis. The zeros are determined by calculating the
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eigenvaluesof A —B/D * Cwiththeaid of schur ( ). If any real part
of the eigenvalues islessthan eps, awarning is displayed.

Next, a stabilizing solution Q is found for the following Riccati
equation:

QA+A'Q+(C—B,0)(DD') " (C—B,Q) = 0

Thefunction singriccati ( ) isused; failure of the nonsingularity
condition of G(jw) will normally result in an error message. To obtain
the best numerical results, singriccati ( ) isinvoked with the
keyword method="schur".

The matrix C,,isgivenby C,, = D_I(C—B’WQ).

Noticethat Q satisfies Q4 + 4’0+ C’,,C,, = 0, sothat P and Q are
the controllability and observability grammians of

F(s) = C,(sI-4)"'B

This strictly proper, stable transfer function matrix isthe strictly
proper, stable part (under additive decomposition) of
e(s):W_T(—s)G(s), which obeys the matrix all pass property
0(s)0'(=s)=1. It isthe phase matrix associated with G(s).

The Hankel singular values v, of F(s) = Cw(s]—A)_lB are
computed, by calling hankelsv( ). Thevaue of nsr isobtained if

not prespecified, either by prompting the user or by the error bound
formula (J[GrA89], [Gre88], [Gl086]).

Vasr+1 < HG_I(G_Gr) mS H (1 +Vj)—1 (3-3)
j=nsr+1l
(withv;> v;, 1> - being assumed). If v, = v, 1= ... = v, . for some

k, (that is, v, has multiplicity greater than unity), then v, appears once
only in the previous error bound formula. In other words, the number
of termsin the product is equal to the number of distinct v; less than
Vs Therearerestrictions on nsr. nsr cannot exceed the dimension
of aminimal realization of G(s); althoughv;>;, -, nsr must obey
My > Nperer; @NAdWhile 12> v; for al i, itisnecessary that 1> v, . 1. (The
number of v; equal to 1 isthe number of right half plane zeros of G(s).
They must beretained in G,(s), so the order of G,(s), nsr, must at |east
be equal to the number of v; equal to 1.) The software checks al these
conditions. The minimum order permitted is the number of Hankel
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singular valuesof F(s) larger than 1—¢ (refer to steps 1 through 3 of the
Restrictions section). The maximum order permitted is the number of
nonzero eigenvalues of W.W, larger than €.

Let r be the multiplicity of v,,,. The algorithm approximates

F(s) = C,(sI-4)"'B

by atransfer function matrix I:"(s) of order ns — r, using Hankel norm
approximation. The procedureis slightly different from that used in
ophank ( ).

Construct an SVD of QP — v,zlsl :

OP—vygl = U 2,0 V' = [U,U,] 2,0 V}
00 0 0|y,

with Z; of dimension (ns —r) X (ns —r) and nonsingular. Also, obtain
an orthogonal matrix 7, satisfying:

Ez + E"sz =0

where B, and C’,,, arethelast r rowsof B and C,,, the state variable
matrices appearing in a balanced realization of C’, s(I—A)-1B. Itis
possibleto calculate T without evaluating B B, C,, asit turnsout (refer
to [AnJ]), and the algorithm does this. Now with

%(S) = bF"’ 6F(S]_1;F)_léF
Fy(s) = Cr(sI—AF)BF

there holds:
Ap = S'U V2 A"+ Q4P —v, C.TB'1V,
Br = XU [0B +v,,C]]

Cr = (C,P+v, TB)V

DF = _VnsT
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@ Note The expression 1:*p(s) isthe strictly proper part of ﬁ(s). The matrix
V;l [F(s)—F(s)]isal pass; this property is not always secured in the multivariable case
when ophank ( ) isused to find a Hankel norm approximation of F(s).

5. Theagorithm constructs é and IjV which satisfy,
G(s) = G(s)— W (=5)[F(s) — F(s)]
and,
W(s) = (I—v, T)I~v,.T)"
{W(s) = [F(s) = F(s)1G’ + (=s)}

through the state variable formulas

’

(G(s) = (DU =v, T)IDCr+ ByUE (s~ Ar)" Br)
and:
W(s) = (I=v, YD’ + (I =v, )T =v, ,T)"
Cr(sI—Ap)  [BeD’ + V,C']
Continue the reduction procedure, starting with é I;V F and

repeating the processtill G, of the desired degree nsr is obtained.
For example, in the second iteration, G(s) isgiven by:

ANPN ~

G(sE G(s) = W + (=5)[Fy(s) ~ F(5)] (3-4)

Consequences of Step 5 and Justification of Step 6
A number of properties are true:
e G(s) isof order ns —r, with:

l67'(G-6)|- = v, (3-5)
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. VAV(s) and Gs stand in the same relation as W(s) and G(s), that is:
- W(=)W(s) = G(s)G'(-s)
— WithPA’r+ ArP = —BpB’fr, there holds
By = PCé+BéDé

or

BrD'+V,C’" = P(DCp+B'yU,%,) +Br(I—v, . T')D’
—  With Qg+ 40 = —C’'xCr thereholds

O
CVAV—DG(CG—BWQ)

or

(I=v, . T)I-v, T Cr = [DU~v, D]
{DCp+ B, U(Z,—[BrD'+V,C'T0O)}
_ ADVAV = D,é i i
— F isthestable strictly proper part of (W‘l(—s))G(s).

e TheHankel singular values of I:"p(and 1:“) arethefirst as — r Hankel
singular values of F,

. -1,/ ’ -1
P =2, U0V, = VQU L,

0 = V,PU,E, = 5,U PV,
. E?s has the same zerosin Re[s] > 0 as G(s).

These properties mean that one isimmediately positioned to repeat the

reduction procedure on ¢, with almost all needed quantities being on
hand.
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Error Bounds
The error bound formula (Equation 3-3) is a simple consequence of
iterating (Equation 3-5). To illustrate, suppose there are three reductions
G - G— G, — G3, each by degree one. Then,
G (G=G3) = GH(G-0G)
+G'GG T (G-Gy)
+ G_1 éé_l ézé; (éz - 63)

Also,
le™'6l = |67 G-6)+
<14y,
Similarly,
GG <1+v,, 6215}3||31+vm_2
Then:

HG_I(G_63)H < Vs + (1 + Vns)vns—l + (1 + Vns—l)vns—2

= (1 +Vns)(1 +vns—1)(1 +vns—2)_1

The error bound (Equation 3-3) is only exact when thereisasingle
reduction step. Normally, this algorithm has alower error bound than
bst( );inparticular, if thev; areal distinctand v,,, , ; « 1, the error
bounds are approximately

nsr+

ns ns
z v;  formulhank( ) 2 Z v; forbst(
i=nsr+1 i=nsr+1
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For mulhank ( ), thistrandates for ascalar system into
ns
869 3" v, dB< 20l0g,o|G s/ Gl
i=nsr+1 ns
<8.69 z v, dB
i=nsr+1
and
Iphase error| < z v; radians

i=nsr+1
The bounds are double for bst ( ).

The error as afunction of frequency isalways zero at @ = o for bst ( )
(or at = 0if atransformation s — s~1is used), whereas no such particul ar
property of the error holds for mulhank ( ).

Imaginary Axis Zeros (Including Zeros at o)

When G(jw) issingular (or zero) on the jo axisor at e, reduction can be
handled in the same manner as explained for bst ( ).

The key isto use a bilinear transformation [Saf87]. Consider the bilinear
map defined by

zZ—da

—bz+1

_ Ssta
bs+1

where 0 < a < b1 and mapping G(s) into E;(s) through

0 = {52

o = (322)
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The values of G(s) along the jm-axis are the same as the values of G(s)
around acircle with diameter defined by [ —j0, b_ 1, jO] on the positive
real axis (refer to Figure 3-2). Also, the values of G(s) along the jm-axis
are the same asthe values of G(s) around a circle with diameter defined by
[-b71+,0,—a +0].

We can implement an arbitrary bilinear transform using the subsys ( )
function, which substitutes a given transfer function for the s- or z-domain
operator, as previously shown.

To implement G(s) = G(-—b—+—1) use:

gtildesys=subsys (gsys,makep ([-b,1]/makep([1,-al)

Toimplement G(s) = G(b " 1) use:

gsys=subsys (gtildesys,makep([b,1]/makep([1,a])

@ Note The systems substituted in the previous calls to subsys invert the function
specification because these functions use backward polynomial rotation.

Xmath Model Reduction Module

Any zero (or rank reduction) on the jo-axis of G(s) becomesazero (or rank
reduction) in Re[s] > 0 of G(s), and if G(s) has a zero (or_rank reduction)
at infinity, thisis shifted to a zero (or rank reduction) of G(s) at the point
b1, againin Re[s] > 0. If all poles of G(s) areinsidethe circle of diameter
[-b71+0,a + 0], al polesof G(s) will beinRe[s] <0, andif G(s) hasno
zero (or rank reduction) on thiscircle, G(s) will have no zero (or rank
reduction) on the jm-axis, including @ = c.

If G(s) isnonsingular for almost all values of s, it will be nonsingular or
have no zero or rank reduction onthecircle of diameter [-b1 + jO, —a + jQ]
for almost all choices of a,b. If a and b are chosen small enough, G(s) will
haveall itspolesinsidethiscircleand no zero or rank reduction on it, while
G(s) then will have all polesin Re[s] < 0 and no zero or rank reduction on
the jow-axis, including s = oo.

The steps of the algorithm, when G(s) hasa zero on the jm-axisor at s = e,
areasfollows:

1. Forsmall a,bwithO<a<b™1,form G(s) = G(
gtildesys.

2. Reduce G(s) to G,(s), thisbeing possible because G(s) isstableand
has full rank on s = jo, including ® = oo,

_ s+ta
3. FormG,(s) = G(b Tl

ﬁ) asshown for

) as shown for gsys.
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The error ‘LG_I (G —-G,)||. will be overbounded by the error
HG_I(G —G,)||, and G, will contain the same zerosin Re[s] = 0 as G.

If thereis no zero (or rank reduction) of G(s) at the origin, one can take

a =0 and b1 = bandwidth over which a good approximation of G(s) is
needed, and at the very least b1 sufficiently large that the poles of G(s)
liein the circle of diameter [-b~1+ 0, —a + j 0. If thereis a zero or rank
reduction at the origin, one can replacea = 0 by a = b. It is possible to take
b too small, or, if thereis azero at the origin, to take a too small. In these
casesan error message results, saying that thereisajw-axiszero and/or that
the Riccati equation solution may be in error. The basic explanation is that
asb — 0, and thusa — 0, the zeros of G(s) approach those of G(s). Thus,
for sufficiently small b, one or more zeros of G(s) may be identified as
lying on theimaginary axis. Theremedy isto increase a and/or b abovethe
desirable values.

The previous procedure for handling jm-axis zeros or zeros at infinity will
be deficient if the number of such zerosisthe same asthe order of G(s); for
example, if G(s) = 1/d(s), for some stable d(s). In this case, it is possible
again with a bilinear transformation to secure multiplicative
approximations over alimited frequency band. Suppose that

G(s) = G( S )

es+1

Create a system that correspondsto G(s) with:
gtildesys=subs (gsys, (makep([-eps,1])/makep([1,-1))
bilinsys=makep([eps,1l]) /makep([1,0])

sys=subsys (sys,bilinsys)

Under this transformation:

*  Vauesof G(s) aong the jm-axis correspond to values of E}(s) around
acirclein the left half plane on diameter (-1 + 0, 0).

e Vauesof é(s) along the jw-axis correspond to values of G(s) around
acirclein theright half plane on diameter (0, €1 +j0).
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Related Functions

Xmath Model Reduction Module

Multiplicative approximation of G(s) (along the jm-axis) corresponds to
multiplicative approximation of G(s) around acirclein theright half plane,
touching the jw-axis at the origin. For those points on the jm-axis near the
circle, there will be good multiplicative approximation of G(jo). If agood
approximation of G(s) over an interval [—<, jQ] it is desired, then

e 1=5Q or 10 Q are good choices. Reduction then proceeds as follows:

1 Formé(s).
2. Reduce G(s) throughbst ( ).
3. Form G.(s) = —-G,(s/(1 —es)) with:

gsys=subsys (gtildesys (gtildesys,
makep ([-eps, -1]) /makep[-1,-0]))

Noticethat the number of zerosof G(s) inthecircle of diameter (0,1 + ;0)
setsalower bound on the degree of G,(s)—for such zerosbecomeright half
plane zeros of G(s), and must be preserved by bst ( ). Zerosat s = o are
never in thiscircle, so a procedure for reducing G(s) = 1/d(s) is available.

There is one potential source of failure of the algorithm. Because G(s) is
stable, G(s) certainly will be, asitspoleswill bein theleft half planecircle
on diameter (—e_1 =70, 0). If G.(s) acquires apole outside this circle
(but still in the left half plane of course)—and this appears possiblein
principle—G,(s) will then acquireapolein Re [s] >0. Should thisdifficulty
be encountered, a smaller value of € should be used.

singriccati (), ophank (), bst (), hankelsv ()
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Frequency-Weighted Error

Reduction

Introduction

This chapter describes frequency-weighted error reduction problems. This
includes adiscussion of controller reduction and fractional representations.

Frequency-weighted error reduction means that the error is measured not,
as previously, by

Ey = |G(j) -G, (o).,

but rather by
E, = |G(io) - G,(jo)V(jo)|. (4-1)
or
E, = |[W(jio)[G(j0)-G,(jo)l]. (42
or
Ey = |[W(jo)[G(jw) -G, V(o)|. (4-3)

where W,V are certain weighting matrices. Their presence reflects adesire
that the approximation process be more accurate at certain frequencies
(where V or W have large singular values) than at others (where they

have small singular values). For scalar G(jm), all the indices above are
effectively the same, with the effective weight just |V(jm)|, [W(jw)|,

or [W(jo)V(jm)|.

When the system G isprocessing signalswhich do not have aflat spectrum,
and is to be approximated, thereis considerable logic in using aweight. If
the signal spectrum is ®(jw), then taking V(jw) as a stable spectral factor
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(so that vV o= @) islogical. However, amajor use of weightingisin
controller reduction, which is now described.

Controller Reduction

Freguency weighted error reduction becomes particularly important in
reducing controller dimension. The LQG and H.. design procedureslead to
controllers which have order equal to, or roughly equal to, the order of the
plant. Very often, controllers of much lower order will result in acceptable
performance, and will be desired on account of their greater smplicity.

Itisalmost immediately evident that (unweighted) additive approximation
of acontroller will not necessarily ensure closeness of the behavior of the
two closed-loop systems formed from the original and reduced order
controller together with the plant. Thisbehavior is dependent in part on the
plant, and so one would expect that a procedure for approximating
controllers ought in some way to reflect the plant. This can be done several
ways as described in the Controller Robustness Result section. The
following resultisatrivial variant of onein[Vid85] dealing with robustness
in the face of plant variations.

Controller Robustness Result

Xmath Model Reduction Module

Suppose that a controller C stabilizes aplant P, and that C, is a (reduced
order) approximation to C with the same number of unstable poles. Then
C, stabilizes P also provided

licGioy - c.(jm1PGolr+ cioPGion™|.<1
or
It + PG CGOT (PGOICGOC, o). <1

An extrapolation to this thinking [AnM89] suggeststhat C, will be agood
approximation to C (from the viewpoint of some form of stability
robustness) if

Ey = |(cc-chpa+cpy|.
or

E; = |(c-copa+cpy|.
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isminimized (and of courseislessthan 1). Notice that these two error
measures are like those of Equation 4-1 and Equation 4-2. The fact that the
plant ought to show up in agood formulation of a controller reduction
problem is evidenced by the appearance of P in the two weights.

It isinstructive to consider the shape of the weighting matrix or function
P(/+ CP)™. Consider the scalar plant case. In the pass band, |[PC]islikely
to be large, and if thisis achieved by having |C| large, then |P(/ + CP)7|
will be (approximately) small. Also outside the plant bandwidth,

|P(/+ CP)™| will be small. Thismeansthat it will be most likely to takeits
biggest values at frequencies near the unity gain cross-over frequency. This
means that the approximation C, is being forced to be more accurate near
this frequency than well away from it—a fact very much in accord with
classical control, where one learns the importance of good loop shaping
round this frequency.

The above measures E;5 and E 5 are advanced after a consideration of
stability, and the need for its preservation in approximating C by C,. If one
takes the viewpoint that the important thing to preserve is the closed-loop
transfer function matrix, a different error measure arises. With 7, T,
denoting the closed-loop transfer function matrices,

T—T, = PC(I+PC)—PC(I+PC,)"
Then, to afirst order approximation in C — C,, there holds
T—T.~(+PC) P(C—C,)(I+PC)"
The natural error measure isthen
E, = |a+prcy'Pic-cya+proy’|. (4-4)

and this error measure parallels E5 in Equation 4-3. Further refinement
againispossible. It may well bethat closed-loop transfer function matrices
should be better matched at some frequenciesthan others; if thisweighting
on the error in the closed-loop transfer function matricesis determined by
the input spectrum VV' = @, thenone really wants (T —T,)V to be small,
so that Equation 4-4 is replaced by

Eys = [+ POy P(C-Cp+ POy .
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Most of these ideas are discussed in [Enn84], [AnL89], and [AnM89].
Thefunctionwtbalance ( ) implements weighted reduction, with five
choices of error measure, namely E;s, Egs, Ep, Evs, and E; with arbitrary
V(jw). Thefirst four are specifically for controller reduction, whereas the
last is not aimed specifically at this situation.

Several features of the algorithms are:

Only the stable part of C isreally reduced; the unstable part is copied
exactly into C,.

A modification of balanced realization truncation underpins the
algorithms, namely (frequency) weighted balanced truncation,
although to avoid numerical problems, the actual construction of
afrequency weighted balanced realization of C is avoided.

Frequency weighted Hankel singular values can be computed,

and although no error bound formulais available (in contrast to the
unweighted problem), generally speaking thereislittle damage donein
reducing by anumber of statesequal to the number of (relatively) small
Hankel singular values.

The error measures themsel ves deserve certain comments:

Xmath Model Reduction Module

The two stability based measures E;g and E,) are derived from a
sufficiency condition for stability, rather than a necessity and
sufficiency condition, and so capture stability alittle crudely.

For any constant nonsingular N, the error measure E,;¢ can be replaced
by ||N(C —c,)p(I+cp)y'N |w and the robustness result remains
valid. Use of an N may improve or worsen the quality of the
approximation.

Having T — T, small normally ensures closeness of the closed-loop
impulse and step responses.

In classical control especialy, constraints on the loop gain can be
imposed (Minimum val ue of gain in one band, maximum value of gain
in another band, for example). None of the methods presented directly
addresses the task of retaining satisfaction of these constraints after
reduction of ahigh order acceptable controller. However, judicious use
of aweight V can assist. Supposethat above the closed-loop bandwidth
there is an overbound constraint on the loop gain, which isviolated
when a controller reduction is performed (but not with the original
controller). At these frequencies, roughly PC and PC, aresmall, so that
T-T, = P(C-C,). Introduction of aweight V in E,;s penalizing
frequenciesin the region in question will evidently encourage PC, to
better track PC.
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Fractional Representations

The treatment of jw-axis or right half plane polesin the above schemesis
crude: they are simply copied into the reduced order controller. A different
approach comes when one uses a so-called matrix fraction description
(MFD) to represent the controller, and controller reduction procedures
based on these representations (only for continuous-time) are found in
fracred( ).Consider first ascalar controller C(s) = n(s)/d(s). One
can take a stable polynomial d(s) of the same degree as d, and then
represent the controller as aratio of two stable transfer functions, namely

)

Now n/d isthe numerator, andd./d the denominator. Write d/d as
1 + e/d. Then we have the equivalence shown in Figure 4-1.

-

Figure 4-1. Controller Representation Through Stable Fractions

QIR
A

v

—» =— —» (C(s)

ISR

Evidently, C(s) can be formed by completing the following steps:
1. Construction of the one-input, two-output stable transfer function

matrix
n/d
G=|"°
L/d}
(which has order equal to that of d or d).

2. Interconnection through negative feedback of the second output to the
single input.

These observations motivate the reduction procedure:
* Reduce G to G,; noticethat G isstable. Let G, be

n./d,
G = _
e/d,
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*  Form the reduced controller by interconnecting using negative
feedback the second output of G, to theinput, that is, set

Co(s) = —=

d.+e

r

Nothing has been said asto how d should be chosen—and the end result
of thereduction, C,(s), depends on d,.. Nor has the reduction procedure
been specified.

When C(s) has been designed to combine a state estimator witha
stabilizing feedback law, it turns out that thereisanatural choicefor d(s).

As for the reduction procedure, one possibility isto use aweight based
on the spectrum of the input signalsto G—and in case C(s) has been
determined by an L QG optimal design, this spectrum turns out to be white,
that is, independent of frequency, so that no weight (apart perhaps from
scaling) is needed. A second possibility isto use aweight based on a
stability robustness measure. These points are now discussed in more
detail.

To understand the construction of anatural fractional representation for
C(s), supposethat P(s) = C(sI—A)_lB and let K, K be matrices such
that A — BK; and A — K- are stable. The controller

~

X = Ax +Bu—K (Cx—y)
u = —KR)AC

generates an estimate —K ,x of the feedback control —K ,x . The controller
can be represented as a series compensator

X = A% +BKzx —K,Cx + K,y
u = —KR)AC

(with compensator input y and output ). Allowing for connection with
negative feedback, the compensator transfer function matrix is:

C(s) = Kg(sI—A+BKp+K,) 'K,
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Matrix algebra shows that C(s) can be described through a left or right
matrix fraction description

C(s) = D} (s)N,(s) = Np(s)Dj (s)
with D;, and related values, all stable transfer function matrices.
In particular:
D, =I+Ky(sI-4A+K,C)"'B
N, = Ke(sI-4 +K,C)'K,,
Ni = Kp(sI—A4 +BK,) 'K,

Dp=1+C(sI-A+BKp) 'K,

For matrix C(s), the left and right matrix fraction descriptions are distinct
entities. It isthe right MFD which corresponds to Figure 4-1; refer to

Figure 4-2.
C
+ - + 1
—PCP-_'_ —» Kg N " —o» Krp ¥ P(s) 5>

A-BK, -

v

C(s) —» P(s)

]

Figure 4-2. C(s) Implemented to Display Right MFD Representation
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The left MFD corresponds to the setup of Figure 4-3.

+
o

| K(sI-A+K,C)" |« (O B

=

Figure 4-3. C(s) Implemented to Display Left MFD Representation

A

The setup of Figure 4-2 suggests approximation of:
Kr -1
G(s) = [C}(sI—A +BK,) K,
whereas that of Figure 4-3 suggests approximation of:

H(s) = Kp(sI-4+K,C)™" [B KE:|

Inthe LQG optimal case, thesignal driving Kg in Figure 4-2 iswhite noise
(the innovations process); this motivates the possibility of using no
frequency dependent weighting in approximating G(s) [but observe that
after approximating, the signal will no longer be white noise, so that
argument is questionable]. Simple appeal to duality motivates using no
frequency dependent weighting for H(s). These are two of the options
offered by fracred( ).

Twomore fracred ( ) options depend on examining stability robustness
(the options are duals of one another). From the stability point of view, the
set-up of Figure 4-3isidentical to that of Figure 4-4, with p = [P 1}.
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LS {KR}(SIA +BKy) 'K, [P(s) 1 >
+ T
= —»QT—v C(s) P(s) >

Figure 4-4. Redrawn; Individual Signal Paths as Vector Paths

It is possible to verify that

(I+PG)'P = [CsI-A+K,C"'B
I=C(sI—(A+K;C)"'Kp)]
and accordingly the output weight (1 + IAJG)_IIA3 = W canbeusedinan
error measure || (G — G,)|. It turns out that the cal culations for frequency

weighted balanced truncation of G and subsequent construction of C,(s) are
exceptionally easy using this weight.

The second fracred( ) optionisthedua of this. The error measureis
|(H —H,)V| where:

p oo [[-KalsI=4+ BK,)'B

C(sI-A+BK;)"'B

It is possible to argue heuristically the relevance of these error measures
from a second point of view. It turns out that:

Dy Np||Vy=Ng| _ |10
—w, W,||V, D, 017
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wthalance( )

(Here, the W; and V; are submatrices of W,V.) Evidently,

(D, NV =1 ad W@jzl

Some manipulation shows that trying to preserve these identities after
approximation of D, N, or Ng, Dg suggests use of the error measures
|W(G-G,)|_ and |(H —H,)V]... For further details, refer to[AnM89] and
[LAL90].

Inall four fracred( ) options, it ispossibleto construct (weighted)
Hankel singular values, and to use them as a guide to the likely quality of
approximation. The patterns tend to be different for the four options.

The fracred( ) optionsare normally different in outcome from the
wtbalance ( ) options. However, if the controller has been designed
by the loop transfer recovery method and is stable, then one of the
fracred( ) optionsisessentially the sameasoneof thewtbalance ( )
options, refer to [LiA90].

More precisely, if the LTR design is performed with input noise or process
noise weighting tending to infinity, reduction with fracred( ) and
type="left stab",whichusestheerror measure|(H—H,)V|, leadsto
effectively the samereduction aswtbalance ( ) withthetype="input
stab". If the LTR design is performed with state or output weighting
tending to infinity (in the index determining the state feedback law),
reduction with fracred( ) and type="right stab" using the error
measure | W(G - G,)|.., leads to effectively the same reduction as
wtbalance ( ) With type="output stab".

Xmath Model Reduction Module

[SysCR, SysCLR,HSV] = wtbalance (Sys, SysC, type, {nscr, SysV})

Thewtbalance( ) function calculates afrequency weighted balanced
truncation of a system.

wtbalance( ) hastwo separate uses:

¢ Reduce the order of acontroller C(s) located in a stable closed-loop,
with the plant P(s) known. Frequency-weighted balanced truncationis
used, with the weightsinvolving P(s) and being calculated in a
predominantly standard way.
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*  Reduce the order of atransfer function matrix C(s) through
frequency-weighted balanced truncation, a stable frequency weight
V(s) being prescribed.

The syntax is more accented towards the first use. For the second use,
the user should set S = 0, NS = 0. Thisresultsin (automaticaly)
SCLR = NSCLR = 0. The user will also select the type="input
spec".

Let C,(s) be the reduced order approximation of C(s) which is being
sought. Its order is either specified in advance, or the user responds to
aprompt after presentation of the weighted Hankel singular values.
Then the different types concentrate on (approximately) minimizing
certain error measures, through frequency weighted balanced
truncation. These are shown in Table 4-1.

Table 4-1. Types versus Error Measures

Type Error Measure
*input stab’ lic-capu+cr™.
"output stab" ltr+pPer'Pre-c)|.
*match” lt7+ PcrPiC-c i+ PCT.
"match spec” |tz +Pc1PiC-Cat+ PCT'H.
"input spec" llc-cav|.

These error measures have certain interpretations, as shown in Table 4-2.

In case C(s) is not a compensator in a closed-loop and the error measure
[VGe)[CGw) - C,(m)]|..

is of interest, you can work with type="input spec" and C', V'inlieu
of Cand V.

There is no restriction on the stability of C(s) [or indeed of P(s)] in the
algorithm, thoughif C(s) isacontroller the closed-loop must be stabilizing.
Also, V(s) must be stable. Hence al weights (on the left or right of

C(jo) — C,(jo) in the error measures) will be stable. The algorithm,
however, treats unstable C(s) in a special way, by reducing only the stable
part of C(s) (under additive decompoasition) and copying the unstable part
into C,(s).
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Thisrather crude approach to the handling of the unstable part of a
controller isavoided in fracred ( ), which provides an aternative to
wtbalance ( ) for controller reduction, at least for an important family
of controllers.

Table 4-2. Error Measure Interpretation for wtbalance

Type

Error Measure Interpretations

"input stab"

A stability robustness argument, based on breaking the loop at the controller
output, indicates that if Cis stabilizing for P and the error measure is less
than 1, then Cr is stabilizing for P. The smaller the error measureis, the
greater the stability robustness.

"output stab"

A similar stability robustness argument, but based on breaking the loop
at the controller input, indicates that if C is stabilizing for P and the error
measure islessthat 1, then C, is stabilizing for P. The smaller the error
measure is, the greater the stability robustness.

"match"

If T=PC(I + PC)tand T,=PC,(I + PC,) ! arethetwo closed-loop transfer
function matrices, then T — T, to first order in C — C,. isgiven by

(I + PC)IP[C,— C][I + PC]™, so that the error measure looks at matching
of the closed-loop transfer function matrix.

"match spec"

It may beimportant to match closed-loop transfer function matrices more
at certain frequencies than others; frequency weighting is achieved by
introducing V(s). Frequencies corresponding to larger values of [V(jm)| or
V(jm)V«(jo) will be the frequencies at which 7(jo) and T,(jw) should have
smaller error.

"input spec"

Thisisthe one error measure that is not associated with a plant, or
closed-loop of some kind. It simply allows the user to emphasize certain
frequencies in the reduction procedures.

Algorithm

The major steps of the algorithm are as follows:

1. Check dimension, syntax, stability of sysv, closed-loop stability, and
decomposition of C(s) into the sum of astable part (polesin Re[s] < 0)
and unstable part (polesin Re[s] =2 0); stable( ) isused for this
purpose.

2. Computeinput (right) weight and/or output (Ieft) weight asappropriate
for the specified type.

Xmath Model Reduction Module 4-12 ni.com



Chapter 4 Frequency-Weighted Error Reduction

3. Compute weighted Hankel Singular Values o; (described in more
detail later). If the order of C,(s) isnot specified a priori, it must be
input at thistime. Certain values may be flagged as unacceptable for
various reasons. In particular nscr cannot be chosen so that
Gnscr = Onser + 1-

4. Execute reduction step on stable part of C(s), based on amodification
of redschur ( ) to accommodate frequency weighting, and yielding
stable part of C,(s).

Compute C,(s) by adding unstable part of C(s) to stable part of C,(s).

6. Check closed-loop stability with C,(s) introduced in place of C(s),
at least in case C(s) is a compensator.

More details of steps 3 and 4, will be given for the case when thereisan
input weight only. The case when there is an output weight only is almost
the same, and the case when both weights are present is very similar, refer
to [Enn844] for atreatment. L et

C(s) = D,+C,(sI-4,)"'B,

w'(s) = D,+C,(sI-4,)" B,
be a stable transfer function matrix to be reduced and its stable weight.
Thus, W(s) may be P(I + CP)™L, correspondingto " input stab", and will

thus have been calculated in step 2; or it maybe an independently specified
stable V(s). Then

-1
sI-4. B.C B.D
Cs()W(s) =DCDW+[CC DCCW][ 0 L ICAW} [B }
SL—= w w

The controllability grammian P satisfying

pl A0 {Ac BCCW}H_{BCDW} [D,B, B'J o
C,Bo 4, [0 4y B,

iswritten as
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and the observability grammian Q, defined in the obvious way, iswritten as

QCC QCW
0=1,
QCW QWW
Itistrivial to verify that 0,4, + 4.0,, = —C,C, sothat Q,. isthe
observability gramian of C,(s) alone, aswell as a submatrix of Q.

The weighted Hankel singular values of C,(s) are the square roots of the
eigenvalues of P..Q... They differ from the usual or unweighted Hankel
singular values because P, is not the controllability gramian of C(s) but
rather a weighted controllability gramian. The usual controllability
gramian can be regarded as E[x x.] when C(s) is excited by white noise.
The weighted controllability gramianis still £[x x_], but now Cy(s) is
excited by colored noise, that is, the output of the shaping filter W(s), which
is excited by white noise.

Small weighted Hankel singular values are a pointer to the possibility
of eliminating states from C,(s) without incurring alarge error in
[[C(w) - C,(jo)]W(jw)|... No error bound formulais known, however.

The actual reduction procedure is virtually the same as that of
redschur ( ), except that P,. isused. Thus Schur decompositions of
P..Q.. are formed with the eigenvalues in ascending and descending order

V;PCCQCC VA Sasc

VDPcchcVD = Sdes

The maximum order permitted is the number of nonzero eigenval ues of
P..Q.. that are larger than €.

The matrices V,,, V, are orthogonal and S,,,. and S, are upper triangular.
Next, submatrices are obtained as follows:

0 [nscr
Vlbig = VA|:I j| Vrhig = VD|: 0 :|

and then a singular value decomposition is formed:

Ueb[gSeh[g Vebig = Vlbierbig
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From these quantities the transformation matrices used for calculating
C,,(s), the stable part of C.(s), are defined

_ —1/2
Slbig - VlbigVebigSebig

~1/2
Vebi S

S v, gYebig

rbig = rbig

and then

ACy = S;bigACS

ACr = CcSpig

Ber = SppigBe
Begr = D¢

rbig

Just as in unweighted balanced truncation, the reduced order transfer
function matrix is guaranteed stable, the same is guaranteed to be true in
weighted balanced truncation when either a left (output) weight or aright
(input) weight isused. It is suspected to be true when both input and output
weights are present. The overall algorithm is not, however, at risk in this
case, sinceit isstability of the closed-loop system which isthe key issue of
concern, (except for type="input spec", but herethereisonly asingle
weight, and so the theory guarantees preservation of stability).

Related Functions

balance (), redschur (), stable(), fracred()

fracred( )

[SysCR,HSV] = fracred(Sys,Kr,Ke, type, {nscr,Qyy})

The fracred( ) function usesfractional representationsto calculate a
reduction of a continuous-time compensator comprising a state estimator
with state feedback law.

Restrictions

1. The closed-loop system (SCLR, NSCLR) is calculated from

sysol=scr*sys # open loop system
syscl=feedback (sysol) # closed loop system

2. Initial state values, state names, and input and output names are not
considered by fracred( ).
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3. Only continuous systems are accepted; for discrete systems use
makecontinuous ( ) beforecallingbst ( ), then discretize the
result.

Sys=fracred (makecontinuous (SysD) ) ;
SysD=discretize(Sys) ;

Defining and Reducing a Controller

Xmath Model Reduction Module

Suppose P(s) = C(sI —A)™1B and A — BK and A — K;C are stable (where
Ky isastabilizing state feedback gain and K; a stabilizing observer gain).
A controller for the plant P(s) can be defined by

~

X = Ax + Bu—K (Cx—y)

—K X

u

(with u the plant input and y the plant output). The associated series
compensator under unity negative feedback is

C(s) = Ky(sT—A+BK+K,;C)"' K,
and this may be written as aleft or right MFD asfollows:

C(s) = [I+Ky(sI—A+K,C) " B] 'Kp(sI-4+K,C) 'K,  (45)

C(s) = Kp(sI—A +BKy) Kyl +C(sI—A+BKp) 'Kyl (4-6)

Thereduction procedures "right perf" and "left perf" havesimilar
rationales. We shall describe "right perf", refer to [AnM89] and
[LiA86]. Thefirst rationale involves observing that to reduce C(s), one
might as well reduce its numerator and denominator simultaneously, and
then form anew fraction C,(s) of lower order than C(s).

This amounts to reducing

E(s) = {KR} (sI—A+BKp) 'K, (47
C
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to, for example,

Es) = |Ke|(s1= )k
C

through, for example, balanced truncation, and then defining:
C(s) = Ra(sI—A) " Rpll+C(sI—A) 'Kzl
= I_(R(SI—;I +I_<E6)_11_<E

For the second rationale, consider Figure 4-5.

v

+ -
NG} -~ » K, ¥ L L es Ki Lo P(s)

Figure 4-5. Internal Structure of Controller

Recognize that the controller C(s) (shown within the hazy rectangle in
Figure 4-5) can be constructed by implementing

Ky(sI—A+BKy) 'K,
and
C(sI-A+BKy) 'K,

and then applying an interconnection rule (connect the output of the second
transfer function matrix back to the input at point X in Figure 4-5).
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Algorithm

Xmath Model Reduction Module

Controller reduction proceeds by implementing the same connection rule
but on reduced versions of the two transfer function matrices.

When K has been defined through Kalman filtering considerations, the
spectrum of the signal driving K in Figure 4-5iswhite, with intensity Q..
It follows that to reflect in the multiple input case the different intensities
on the different scalar inputs, it is advisable to introduce at some stage a
weight Q) into the reduction process.

After preliminary checks, the algorithm steps are:

1. Form the observability and weighted (through Q,,) controllability
grammians of E(s) in Equation 4-7 by

P(4=BKg)' +(4—BKpP = K0, K; (4-8)

O(4—BKy)+(A—BKp)'Q = —KpKy—C'C (4-9)

2. Compute the square roots of the eigenvalues of PQ (Hankel singular
values of thefractional representation of Equation 4-5). The maximum
order permitted is the number of nonzero eigenvalues of PQ that are
larger than €.

3. Introduce the order of the reduced-order controller, possibly by
displaying the Hankel singular values (HSVs) to the user. Broadly
speaking, one can throw away small HSV's but not large ones.

4. Using redschur ( )-type calculations, find a state-variable
description of E.(s). Thismeansthat E,(s) isthe transfer function
matrix of atruncation of abalanced realization of E(s), but the
redschur ( ) type calculations avoid the possibly numerically
difficult step of balancing theinitialy known realization of E(s).
Suppose that:

A = Sp;(A—BKp)S

rbig Kg = SlbigKE

5. Definethe reduced order controller C,(s) by

ACR = Slblg(A_BKR_KEC)S}’bIg (4'10)
so that
Co(s) = Cog(sI—Acg)  Beg
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6. Check the stability of the closed-loop system with C,.(s). When the
type="left perf" isspecified, one workswith

E(s) = Kp(sI—4+K,C)™" [B KE] (4-12)

which is formed from the numerator and denominator of the MFD
in Equation 4-5. The grammian equations (Equation 4-8 and
Equation 4-9) are replaced by

P(A—K,C)' +(A—K,C)P = —BB' —K,Kp,

O(A—K;C)+ (A=K C)Q = —K Ky

redschur ( ) -typecalculationsare used to reduce E(s) and Equation 4-10
again yields the reduced-order controller. Notice that the HSV s obtained
from Equation 4-10 or the left MFD (Equation 4-5) of C(s) will in general
be quite different from those coming from the right MFD (Equation 4-6). It
may be possibleto reduce much morewith theleft MFD than with theright
MFD (or vice-versa) before closed-loop stability islost.

Asnoted inthe fracred( ) inputlisting, type="1left stab" and
"right stab" focuson astability robustness measure, in conjunction
with Equation 4-5 and Equation 4-6, respectively. Leaving aside for the
moment the explanation, the key differencesin the algorithm computations
lie solely in the calculation of the grammians P and Q. For type="1eft
stab", these are given by

P(A—BK,) +(4—BKy)P = —BB’

QU -K,C) +(A—K;C)YQ = —KpKp

and for "right stab",

P(A—BKy) +(A—BKy)P = —K K[’ (4-12)

QA -K,C)+(4-K;C)Q = —C'C (4-13)
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Additional Background

Xmath Model Reduction Module

A discussion of the stability robustness measure can be found in [AnM89]

and [LAL90]. The idea can be understood with reference to the transfer

functions E(s) and E,(s) used in discussing type="right perf".Itis

possible to argue (through block diagram manipulation) that

*  C(s) stabilizes P(s) when E(s) stabilizes (as aseries compensator) with
unity negative feedback P(s) = [P(s) 1]

*  E.(s) dsowill stabilize [P(s)1], and then C,(s) will stabilize P(s),
provided

[C( jol-A+K,C)"'B I-C(jol—-A+ KEC)_lKE} <1 (412)

[EGo) —E, (jw)] o

Accordingly, it makes senseto try to reduce E by frequency-weighted
balanced truncation. When thisis done, the controllability grammian for
E(s) remainsunaltered, whilethe observability grammianisaltered. (Hence
Equation 4-5, at least with Q,, = I, and Equation 4-12 are the same while
Equation 4-6 and Equation 4-13 are quite different.) The calculations
leading to Equation 4-13 are set out in [LAL90].

The argument for type="1eft perf" isdual. Another insight into
Equation 4-14 is provided by relations set out in [NJB84]. There, itis
established (in a somewhat broader context) that

[CGOI-A+K,C)'B  I-C(jol-A4+K,C) 'K,}
{ K.(sI—A4+BKy) 'K, }
X =1

[+ C(jol-A4+BK,) 'K,

Theleft matrix isthe weighting matrix in Equation 4-14; theright matrix is
the numerator of C(jw) stacked on the denominator, or aternatively

=
1

This formula then suggests the desirability of retaining the weight in the
approximation of E(jm) by E.(jo).
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The four schemes all produce different HSVs; it follows that it may be
prudent to try all four schemes for a particular controller reduction. Recall
againthat their relative sizesare only aguide asto what can bethrown away
without incurring much error. There is no simple rule to indicate which of
the four schemes will be the most effective at controller reduction.

Two rough rules can, however, be formulated.

*  Problemswith instability through reduction to too low a controller
order are more likely with "1eft perf" and "right perf" than
"left stab" OF "right stab".

» If the controller has been designed using the loop transfer recovery
idea, "1eft stab" will probably be attractive if the input noise
covarianceisvery large, and "right stab" will probably be
attractive if the output weighting in the performance index is very
large, [LiA90]. The reduced controllers will then actually be very
similar to those obtained using wtbalance ( ) with the option
"input stab" inthefirst caseand "output stab" inthe second
case.

One example gives the HSV s summarized in Table 4-3 for an eighth order
controller.

Table 4-3. HSVs for an Eighth Order Controller

1 2 3 4 5 6 7 8
right perf .0339 .0164 .0128 .0102 .0040 .0037 | .0000 | .0000
left perf 49075 | 48742 | 3.8457 | 3.7813 | 1.2255 | 11750 | .5055 | .0413
right stab | 3.3081 7278 1123 .0783 .0242 .0181 | .0107 | .0099
left stab 13914 | 1.317 1.1269 | 1.0862 .9638 5846 | 5646 | .3144

Themost attractive candidate for reducing to second order isright stab.
Thisis because the HSV s being discarded (columns 3 to 8) are smaller
relativeto those being retained (columns 1 and 2) for right stab thanfor
the other three candidates.

@ Note Therelative values count, not the absolute val ues.

Related Functions

redschur (), wtbalance ()
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This chapter describesthree utility functions: hankelsv( ),stable( ),
and compare( ).

The background to hankelsv ( ), which calculates Hankel singular
values, was presented in Chapter 1, Introduction. Hankel singular values
are also calculated in other functions, sometimes by other procedures.

A comparison of the proceduresis given in the Hankel Singular Values
section. The function compare ( ) servesto facilitate the comparisons
of an unreduced and a reduced system, from various points of views.

Thefunction stable ( ) isused to separate (additively) asystem into its
stable and unstable parts, that is, given G(s), the function determines G,(s)
and G,(s), the first with al polesin Re[s] <0, the second with all polesin
Re[s] = 0, such that

G(s) = Gy(s) + G,(s)

The function is used within some of the other functions of the Model
Reduction Module. It should a so be used when reduction of an unstable
G(s) is contemplated. The normal reduction functions, for example,
balmoore( ) Of redschur( ), require stability of the transfer function
matrix G(s) being reduced. If G(s) isunstable, stable ( ) should beused
to generate G,(s) and G, (s); reduction of G(s) should be performed, and
then G, (s) added to the outcome using the + operator, to yield the desired
reduction of G(s).

hankelsv( )

[HSV,Wc,Wo] = hankelsv(Sys, {noplot})

Thehankelsv( ) function computesthe Hankel Singular Values of a
stable system (continuous or discrete) and displays them in a bar plot.
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Related Functions

stable( )

The gramian matrices are defined by solving the equations (in continuous
time)

AW, + WA’ = —BB’
W, A+A'W,=—C'C

and, in discrete time
W,—-AW_ A" = BB’
W,—A'W,4 = C'C

The computationsare effected with 1yapunov ( ) and stability ischecked,
which istime-consuming. The Hankel singular values are the square roots
of the eigenvalues of the product.

lyapunov (), dlyapunov ()

Algorithm

Xmath Model Reduction Module

[SysS,SysU] = stable(Sys, {tol})

The stable( ) function decomposes sys into its stable (syss) and
unstable(sysu) parts, such that sys=Syss+SysU.

Continuous systems have unstable poles if real parts > -tol.

Discrete systems have unstable poles if magnitudes> 1-to1l.
e Thedirect term (D matrix) isincluded in syss.

e If sys haspolesclustered near -tol (or 1-tol), then syss and sysu
might beill-conditioned. To avoid this problem choose to1 to avalue
that is not close to the mgjority of poles.

The algorithm begins by transforming the A matrix to Schur form, and
counting the number of stable and unstable eigenvalues, together with

those for which classification is doubtful. Stable eigenvalues are those
in either of the following:

*  Re[s] <0 (continuous time)
e |z] < 1 (discrete time)
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Doubtful ones are those for which the real part of the eigenvalue has
magnitude less than or equal to to1 for continuous-time, or eigenvalue
magnitude within the following range for discrete time:

1—tol, 1+¢tol
A warning is given if doubtful eigenvalues exist.

The algorithm then computes areal ordered Schur decomposition of A
so that after transformation
4 = As Asy
0 A4,

where the eigenvalues of Agand A are respectively stable and unstable.
A matrix X satisfying—-Agy + XA, + Agy = 0 isthen determined by calling
the algorithm sylvester ( ). The eigenvalue properties of Agand Ay
guarantee that X exists. If doubtful eigenvalues are present, they are
assigned to the unstable part of sys. In this circumstance you get the
message,

The system has poles near, or upon, the jw-axis

for continuous systems, and the following for discrete systems:

The system has poles near the unit circle.

@ Note If A haseigenvaluesclustered near -tol (1-tol indiscrete-time), then X islikely
to beill-conditioned and consequently syss and sysu will also be ill-conditioned. (For
example, the B matrix of syss could contain very small values, while the C matrix could
contain large values. In this case, syss would be very weakly controllable and very
strongly observable. Thiswill cause problems when gramians and Hankel singular values
are calculated.) To avoid this problem, change to1 to avalue that is not closeto the
majority of eigenvalues.

A further transformation of A is constructed using X:

I i
_ [AOSAOJ

© National Instruments Corporation 5-3 Xmath Model Reduction Module



Chapter 5 Utilities

Related Functions

compare( )

After thislast transformation, and with

B = [BS} C = [CsCyl
BU

it follows that

SysS = [44A44;CD]
and

SysU = [Ay,B:C0]

By combining the transformation yielding the real ordered Schur form for
A with the transformation defined using X, the overall transformation T is
readily identified. In case all eigenvalues of A are stable or all are unstable,
thisisflagged, and T =I.

stable( ) can becombined with areduction algorithm such as
redschur ( ) Ofbalmoore( ) toreducetheorder of asystemwith some
unstable and some stable poles. Oneusesstable ( ) to separatethestable
and unstable parts, and then, for example, reduces the stable part with
redschur ( );thereduced stable part isadded to the original unstable part
to provide the desired system reduction.

sylvester (), schur (), redschur (), balmoore ()

[respdiff] =

Xmath Model Reduction Module

compare (Sys, SysRed, FTvec, {Fmin, Fmax, npts, radians, type})

The compare ( ) function provides anumber of different graphical tests
which can be used to compare two state-space system implementations.
compare ( ) can be used asatool for evaluating a reduced-order system
by comparing it with the original full-order system from which it was
obtained. However, it can be used for more general comparisons as well,
such as examining the results of different discretization or identification
techniques.
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This chapter illustrates a number of the MRM functions and their
underlying ideas. A plant and full-order controller are defined, and then
the effects of various reduction algorithms are examined. The datafor this
exampleis stored inthefilemr_disc.xmd in the Xmath demos directory.
To follow the example, start Xmath, and then select File»Load from the
Xmath Commands menu, or enter the load command with the file
specification appropriate to your operating system from the Xmath
Commands area. For example:

load "$XMATH/demos/mr_disc"

Plant and Full-Order Controller

The plant in question comprises four spinning disks, connected by a
flexible shaft. A motor applies torque to the third disk, and the output
variable of interest isthe angular displacement of the first disk. The plant
transfer function, which is nonminimum phase and has adouble pole at the
origin, isasfollows:

2 2 2 2
s728,mps + @y sC 0+t O] s+4

1 oy o a
Gls) = =5 02 2 12 2 2
4575720,y + @), 205055 + 05 520,045 + o
2 ' 2 ’ 2
O% ;3 o,
with:
=0.02 o =1
CO 0
§1:—0.4 (01:5.65
§2:0.02 (02:0.765
(;=0.02 0 =1.41
£,=0.02 @ =1.85
a=4.84
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A minimal realization in modal coordinatesis C(s/ —A)~1B where:

4= diagﬂo 1}’ {—0.015 0.765}, {—0.028 1.410}’ ~0.04 1.85“
00| |~0.765 —0.015]" |~1.410 —0.028]" |-1.85 -0.04
0.026 ~0.996
0251 0105
0.033 0.261
5 = |-0.886 o = | 0.009
4,017 0.001
0.145 ~0.043
3.604 0.002
0280 -0.026)

The specifications seek high loop gain at low frequencies (for performance)
and low loop gain at high frequencies (to guarantee stability in the presence
of unstructured uncertainty). More specifically, the loop gain hasto lie
outside the shaded region shown in Figure 6-1.

< 40 dB/decade

Loop Gain (dB)

0.3 Frequency (rad/sec)

»
»

0.07

40 dB/decade >

Figure 6-1. Loop Gain Constraints
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With a state weighting matrix,

Q = le-3*diag([2,2,80,80,8,8,3,31);

R =1;

(and unity control weighting), a state-feedback control-gain is determined
through alinear-quadratic performance index minimization as:

[Kr,ev] = regulator(sys,Q,R);

A — B x K, isstable. Next, with an input noise variance matrix Q = W,BBW,
where,

W, = DIAG([0.346, 0.346, 0.024, 0.0240.042, 0.0420.042, 0.042])

and measurement noise covariance matrix R =1, an estimation gain K,
(sothat A — K,C is stable) is determined:

Qhat = Wt*b*b'*Wt;

Rhat = 1;

[Ke,ev] = estimator (sys,Qhat,Rhat, {skipChks}) ;

The keyword skipChks circumvents syntax checking in most functions.
It is used here because we know that ghat does not fulfill positive
semi definiteness due to numerics).

sysc=1lggcomp (sys,Kr,Ke) ;
poles(sysc)

ans (a column vector) =

-0.296674 + 0.292246 3
-0.296674 - 0.292246 3
-0.15095 + 0.765357 3
-0.15095 - 0.765357 3
-0.239151 + 1.415 3
-0.239151 - 1.415 5
-0.129808 + 1.84093 3
-0.129808 - 1.84093 3

The compensator itself is open-loop stable. A brief explanation of how ¢
and wt are chosen is as follows. First, @ is chosen to ensure that the loop
gain |K,Q'0)I -4 )_IB‘ (which would berelevant were the state measurable)
meetsthe constraintsasfar aspossible. However, it isnot possibleto obtain
a40 dB per decade roll-off at high frequencies, as LQ design virtually
dwaysyieldsa20 dB per decade roll-off. Second, aloop transfer recovery
approach to the choice of O as pBB’ for some large p is modified through
theintroduction of thediagonal matrix wt. Thelarger entries of wt, because
of the modal coordinate system, in effect promote better loop transfer
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recovery at low frequencies; there is consequently afaster roll-off of the
loop gain at high frequenciesthan for ‘Kr(jcoI—A )_IB‘ , andthisisdesired.

Figure 6-2 displays the (magnitudes of the) plant transfer function, the
compensator transfer function and the loop gain, aswell asthe constraints;

evidently the compensated plant meets the constraints.

Y ou can enter the following commands to create a plot equivalent to

Figure 6-2:

sysol=sys*sysc;
svals=svplot (sys,w, {radians}) ;
svalsc=svplot (sysc,w, {radians}) ;
svalsol=svplot (sysol,w, {radians}) ;
plot(svals, {x_log, !grid, !ylab,
line_width=2,hold})

plot (svalsc, {keep})

plot (svalsol, {keep})
f2=plot (wc, constr, {keep,
legend=["plant", "compensator",
"compensated plant", "constraint"]})
plot ({'hold})

150 - - ' ot
— = = = compensator
..................... cormpensated plant
100 — = — = constraint
a0
1]
-a0
-100 .
-150
~20 : ' ' '
HooT 0.07 0.1 1 1
Freguency [radfsec]

100

Xmath Model Reduction Module

Figure 6-2. Frequency Response for Plant, Compensator, and Compensated Plant
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Controller Reduction

Tutorial

This section contrasts the effect of unweighted and weighted controller

reduction. Unweighted reduction is at first examined, through

redschur ( ) (Using balance( ) Of balmoore( ) Will givesimilar
results). The Hankel singular values of the controller transfer function are

6.264x1072 4.901x102 2.581x1072 2.474x102
1.545x102 1.335x1072 9.467x1073 9.466x10-3

A reductionto order 2 isattempted. The ending Hankel singular values, that
iS, 63, G4, ..., Og, have asum that isnot particularly small with respect to 6,

and o,; thisis an indication that problems may arise in the reduction.

[syscr,hsv] = redschur (sysc,2);

svalsRol = svplot(sys*syscr,w, {radians}) ;
plot(svalsol, {keep})

f3=plot (wc, constr, {keep, !grid,
legend=["reduced", "original", "constrained"],
title="Open-Loop Gain Using redschur()"})

Open-Loop Gain Using redschur()

reduced

100
50 |
o
=]
ar
EREN
c
o
=
5 S0f
o
s
8 100
(=]
=
=
150}

. . . — — — original
.............. cohstrained

~ oot

0.01 0.1 1 10 100

Freguency [rad/sec]

Figure 6-3. Open-Loop Gain Using redschur
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Xmath Model Reduction Module

Figures 6-3, 6-4, and 6-5 display the outcome of the reduction. The loop
gain isshown in Figure 6-3. The error near the unity gain crossover
frequency may not look large, but it is considerably larger than that
obtained through frequency weighted reduction methods, as described
later.

Figure 6-3 also shows the inability to suppress al three plant resonances,
in contrast to the full-order controller. Two are such as to cause violation
of the specifications. The closed-loop gains differ by some 4 to 5 dB
between the full-order and reduced-order controller, in the vicinity of

0.1 radians per second. The step response has overshoot of 50% as opposed
to 40% and the ripple persists for longer.

We usethe compare ( ) function (refer to the compare( ) section of
Chapter 5, Urilities) to reproduce Figures 6-4 and 6-5. Calculate the
full-order closed-loop system, then the closed-loop system with the
reduced-order compensator:

syscl = feedback(sysol) ;
sysolr=sys*syscr;
sysclr=feedback (sysolr) ;
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Generate Figure 6-4:

compare (syscl, sysclr,w, {radians, type=5})
fd=plot ({keep, legend=["original", "reduced"]})

Singular Yalue Magnitude, dB ariginal
al T T —T T — — reduced
o
_ED .......
100 b
—150 b
20 ; I P P
DD.DEH 0.1 1 10 100
Freguency, rad/sec

Figure 6-4. Closed-Loop Gain with redschur
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Generate Figure 6-5:

tvec=0:(140/99) :140;
compare (syscl, sysclr, tvec, {type=7})
f5=plot ({keep, legend=["original", "reduced"]})

Step Response ariginal

z T T T ™ — — reduced

0 ZID 4ID 60 80 100

Time [sec)

Figure 6-5. Step Response with redschur
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ophank( )
ophank ( ) isnext used to reduce the controller with the results shown in
Figures 6-6, 6-7, and 6-8.
Generate Figure 6-6:
[syscr, sysu, hsv]=ophank (sysc, 2) ;
svalsrol = svplot(sys*syscr,w, {radians});
plot (svalsol, {keep})
f6=plot (wc, constr, {keep, !grid,
title="Open-loop gain using ophank()"})
Cpen-loop gain using ophank() p—
100 T T T — — — original
-------------- constrained
a0
m
=
[T
g 0
=
cn
=
5 =30
o
=
g =100
[ ]
—
=
=150
-z . . . .
DDD.DEH n.01 0.1 1 10 100
Freguency [rad/sec]

Figure 6-6. Open-Loop Gain Using ophank
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Generate Figure 6-7:

syscl = feedback(sysol) ;

sysolr=sys*syscr;

sysclr=feedback (sysolr) ;

compare (syscl, sysclr,w, {radians, type=5})
f7=plot ({keep, legend=["original", "reduced"]})

Singular Yalue hMagnitude, dB ariginal
SD HE HEH N — — reduced
1]
. Ny
100 ko
-150 |-
E?.Elm 0.01 0.1 1 10 100
Freguency, radisec

Figure 6-7. Closed-Loop Gain with ophank
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Generate Figure 6-8:

tvec=0:(140/99) :140;
compare (syscl, sysclr, tvec, {type=7})
f8=plot ({keep, legend=["original", "reduced"]})

Step Fesponse original
Z ' ' ' ' — — reduced
I ,,_ ...................................................................................................................... |
ot S — — -
0 20 40 B0 a0 100
Time (sec)

Figure 6-8. Step Response with ophank
The open-loop gain, closed-loop gain and step response are al inferior to
those obtained with redschur ( ). This emphasizes the point that one
cannot automatically assume that, because the error bound formula for
ophank ( ) ismore attractive than that for redschur ( ), the error itself
will be better for ophank ( ).
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wtbhalance

Xmath Model Reduction Module

The next command examined iswtbalance with the option "match".
[syscr,ysclr,hsv] = wtbalance(sys, sysc, "match",2)

Recall that this command should promote matching of closed-loop transfer
functions. The weighted Hankel singular values are:

1.486 4.513 x 101 8.420 x 102 5.869 x 12

1.999 x 102 1.382 x 1072 7.198 x 102 6.336 x 1073

The relative magnitudes suggest that reduction to order 2 will produce less
of an approximation error here (in the closed-loop transfer function) than a
reduction to this order through redschur ( ) or ophank ( ) (wherethe
implicit criterion is the unweighted error in approximating the controller
transfer function). Examination of Figures 6-9, 6-10, and 6-11 reveal s that
far better approximation is now obtained.

Violation of the specification is to be observed in the open-loop gain.
Notice though that:

e Theerror measurefor wtbalance doesnot reflect the open-loop gain;
it reflects the closed-loop gain.

*  Whiletheerror in dB looks large, as an absolute value it is not
extremely so; wtbalance works with additive, not multiplicative
error.

Hence, it cannot be concluded that the algorithm is not working. Use of the
option "match spec" withwtbalance might be conjectured asadevice
for reducing the violation of the specification: one could introduce aweight
V(jw) emphasizing frequenciesfrom 0.1 radians per second to 5 radians per
second.

For example,

V(o) = (s+0.1)(s+10)
(s+1)(s+1.4)

Thiswould tend to force the closed-loop transfer functions derived from
the full-order and reduced controller to match better over this range;
because their absolute value is small there, they are approximately equal
to the open-loop gains which, accordingly, may be close. The flaw in this
reasoning is that a second-order controller, with four independent
parameters only, can only do so much, and thetotality of designer demands
cannot be fully met.
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The following function calls produce Figure 6-9:

svalsrol = svplot(sys*syscr,w, {radians})
plot (svalsol, {keep})

f9=plot (wc, constr, {keep, !grid,
legend=["reduced", "original", "constrained"],
title="Open-Loop Gain Using wtbalance()"})

Open—-Loop Gain Using wibalance() reduced
100 T T T — — — otiginal

-------------- constrained

on
()

=100

Singular Yalue Magnitude, dB
|
&n
=

-150

_7 1 . 1 .
DD[.IDm 0.01 0.1 1 10 100
Freguency [radisec]

Figure 6-9. Open-Loop Gain with wtbalance
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Generate Figure 6-10:

syscl = feedback(sysol) ;

sysolr=sys*syscr;

sysclr=feedback (sysolr) ;

compare (syscl, sysclr,w, {radians, type=5})
f10=plot ({keep, legend=["original", "reduced"]})

Singular Value Magnitude, dB arigiral
50 T T T — — reduced
0

50 poee
—100 Eeee
—150 ke

_on P P I i I :

IE!Dm 0.01 0.1 1 10 100
Frequency, rad/sec

Figure 6-10. Closed-Loop Gain with wtbalance
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Generate Figure 6-11:

tvec=0:(140/99) :140;
compare (syscl, sysclr, tvec, {type=7})
fll=plot ({keep,legend=["original", "reduced"]})

Step Response original
l ' — — reduced
0 20 40 g0 a0 100
Time (sec)

Figure 6-11. Step Response with wtbalance

Figures 6-9, 6-10, and 6-11 are obtained for wtbalance with the option
"input spec". Evidently, thereislittle difference between this and the
result with the option "match". One notices marginally better matching in
the region of interest (0.1 to 5 rad per second) at the expense of matching
at other frequencies. The weighted Hankel singular values again indicate
that it is reasonable to seek a second order controller.
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Generate Figure 6-12:

vtf=poly([-0.1,-10]1)/poly([-1,-1.4])
[,sysv]=check(vtf, {ss,convert});
svalsv = svplot(sysv,w, {radians});

System Singular Yalues

Singular Yalue Magnitude, dB
on

_DS.DW 0.01 0.1 1 10 100
Frequency [rad/sec]

Figure 6-12. Frequency Response of the Weight V(jw)
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Generate Figure 6-13:
[syscr,sysclr,hsv] = wtbalance(sys, sysc,
"input spec",2,sysv)
svalsrol = svplot(sys*syscr,w, {radians})
plot (svalsol, {keep})
f13=plot (wc,constr, {keep, !grid,
legend=["reduced", "original", "constrained"],
title="Open-Loop Gain with wtbal(), \"input spec\""})

100

Open-Loop Gain with wthal(), "input spec”

o
_
T

50+

=100 ¢

Singular Yalue Magnitude, dB

-130 ¢

recluced

— — — original
-------------- constrained |

~Wan

0.01 0.1 1 10 100
Freguency [radisec]

Figure 6-13. Open-Loop Gain from wtbalance with "input spec”
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Generate Figure 6-14:

syscl = feedback(sysol) ;

sysolr=sys*syscr;

sysclr=feedback (sysolr) ;

compare (syscl, sysclr,w, {radians, type=5})
fld=plot ({keep, legend=["original", "reduced"]})

Singular Yalue Magnitude, dB ariginal
ad T T T T - = r:educed:
0
_5|:| Lo |
=100 e
=150 |- |
_EDDU.Dm 0.07 — 0.1 — 1 — 10 — 1§DD

Frequency, rad/sec
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Figure 6-14. System Singular Values of wtbalance with "input spec’
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Generate Figure 6-15:

tvec=0:(140/99) :140;
compare (syscl, sysclr, tvec, {type=7})
f15=plot ({keep, legend=["original", "reduced"]})

Step Response

original

— — reduced

1] 20 a0 G0 80 100
Time [sec)

Figure 6-15. Step Response of wtbalance with "input spec”
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fracred

fracred, the next command examined, has four options—"right
stab", "left stab", "right perf",and "left perf".

Theoptions "left stab", "right perf",and "left perf" al
produce instability. Given the relative magnitudes of the Hankel singular
values, thisis perhaps not surprising. Figures 6-16, 6-17, and 6-18
illustratetheresultsusing "right stab".

Generate Figure 6-16:

svalsrol = svplot(sys*syscr,w, {radians})
plot(svalsol, {keep})

fl6=plot (wc,constr, {keep, !grid,
legend=["reduced", "original", "constrained"],
title="Open-Loop Gain Using fracred()"})

Open-Loop Gain Using fracred()

100 ; ; ; reduced
— — — original
-------------- constrained

i
_
T

=100t

Singular Value Magnitude, dB
|
i
=

=130

_7 . . . 1
DD[.|DIZ|1 0.01 0.1 1 10 100
Frequency [radfsec]

Figure 6-16. Open-Loop Gain Using fracred
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Generate Figure 6-17:

syscl = feedback(sysol) ;

sysolr=sys*syscr;

sysclr=feedback (sysolr) ;

compare (syscl, sysclr,w, {radians, type=5})
fl17=plot ({keep, legend=["original", "reduced"]})

Singular Yalue Magnitude, dB original
a0 T —T T — — reduced
1]
_ED L.

-100 Lo

-150 Lo

_o0 P : P : :
DD.IZID1 0.01 0.1 1 10 100

Frequency, rad/sec

Figure 6-17. Closed-Loop Response with fracred
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Generate Figure 6-18:
tvec=0: (140/99) :140;

compare (syscl, sysclr, tvec, {type=7})
f18=plot ({keep, legend=["original", "reduced"]})

Step Response

H — — reduced

ariginal

20 40 Al
Time (sec)

80

100

Xmath Model Reduction Module

Figure 6-18. Step Response with fracred
The end result is comparable to that from wtbalance ( ) with option

"match".

We can create atable to examine the values of the Hankel singular values
based on different decompositions approaches.

set precision 3 # Optional:

set format fixed # we set a smaller precision here so we

"right stab",2);
"left stab",2);
"right perf",2);

could fit

# the table in the manual.
[syscr, hsvrs] = fracred(sys, Kr, Ke,
[syscr, hsvls] = fracred(sys, Kr, Ke,
[syscr, hsvrp] = fracred(sys, Kr, Ke,
[syscr, hsvlp] = fracred(sys, Kr, Ke,

6-22

"left perf",2);
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hsvtable = [...

"right stab:", string(hsvrs');
"left stab:", string(hsvls');
"right perf:", string(hsvrp');
"left perf:", string(hsvlp')]?

hsvtable (a rectangular matrix of strings)

right stab:3.308 0.728 0.112 0.078 0.024 0.018 0.011 0.010
left stab:1.403 1.331 1.133 1.092 0.965 0.549 0.526 0.313
right perf:0.034 0.016 0.013 0.010 0.004 0.004 0.000 0.000
left perf:4.907 4.874 3.846 3.781 1.225 1.175 0.505 0.041

© National Instruments Corporation 6-23 Xmath Model Reduction Module



Bibliography

[AnJ]

[AnL89]

[AnM89]

[BoD87]

[Enn84]

[Enn84a]

[GCP88]

[Glos4]

[Gloss]

[GrA86]

[GrA89]

BDO Anderson and B. James, “Algorithm for multiplicative approximation of a stable
linear system,” in preparation.

BDO Anderson and Y. Liu, “Controller reduction: Concepts and approaches,” IEEE
Transactions on Automatic Control, Vol. 34, 1989, pp. 802-812.

BDO Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods,
Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.

S. P.Boydand J. Doyle, “ Comparison of peak and RM S gainsfor discrete-time systems,”
System Control Letters, Vol. 9, No. 1, pp. 1-6, 1987.

D. F. Enns, “Model reduction with balanced realizations: an error bound and a frequency
weighted generdization,” Proceedings for the 23rd IEEE Conference on Decision and
Control, Las Vegas, November 1984, pp. 127-132.

D.F. Enns, “Model reduction for control systems design,” PhD Thesis, Dept of
Aeronautics and Astronautics, Stanford University, CA, USA, 1984,

K. Glover, R. F. Curtain, and J. R. Partington, “ Realisation and approximation of linear
infinite-dimensional systemswith error bounds,” SIAM J Controls and Optimization,
Vol. 26, 1988, pp. 863—-898.

K. Glover, “All optimal Hankel norm approximations of linear multivariable systemsand
their Leo error bounds,” Int J Controls, Vol. 39, 1984, pp. 1115-1193.

K. Glover, “Multiplicative approximation of linear multivariable systems with Les error
bounds,” Proceedings for American Controls Conference, Seattle, 1986, pp. 1705-1709.

M. Green and BDO Anderson, “ The approximation of power spectraby phase matching,”
Proceedings for 25th CDC, 1986, pp. 1085-1090.

M. Green and BDO Anderson, “Model reduction by phase matching,” Mathematics of
Control, Signals, and Systems, Vol. 2, 1989, pp. 221-263.

© National Instruments Corporation A-1 Xmath Model Reduction Module



Appendix A

[GrA90]

[Gress]

[Gressa]

[HiP9O]

[LAL90]

[Lauso]

[LHPWST7]

[LiASS]

[LiASY]

[LiA9O]

[Moo81]

[NJB84]

[PeS82]

Bibliography

M. Green and BDO Anderson, “Generalized balanced stochastic truncation,”
Proceedings for 29th CDC, 1990.

M. Green, “Balanced stochastic realization,” Linear Algebra and Applications, Vol. 98,
1988, pp. 211-247.

M. Green, “A relative error bound for balanced stochastic truncation,” IEEE Transactions
on Automatic Control, Vol. 33, 1988, pp. 961-965.

D. Hinrichsen and A J Pritchard, “An improved error estimate for reduced-order models
of discrete-time systems,” IEEE Transactions on Automatic Control, Vol. 35, 1990,
pp. 317-320.

Y. Liu, BDO Anderson, and U-L Ly, “ Coprime factorization controller reduction with
Bezout identity induced frequency weighting,” Automatica, Vol. 26, No. 2, 1990,
pp. 233-249.

A.J. Laub, “Oncomputing ‘balancing’ transformations,” Proceedings on Joint American
Controls Conference, San Francisco, CA, 1980, Section FA8-E.

A.J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward, “ Computation of system balancing
transformations and other applications of simultaneous diagonalizing algorithms,” IEEE
Transactions on Automatic Control, Vol. AC-32, 1987, pp. 115-122.

Y. Liuand BDO Anderson, “ Controller reduction viastabl e factorization and balancing,”
Int. J. Control, Vol. 44, 1986, pp. 507-531.

Y. Liuand BDO Anderson, “ Singular perturbation approximation of balanced systems,”
International Journal of Control, Vol. 50, 1989, pp. 1379-1405.

Y. Liuand BDO Anderson, “Frequency weighted controller reduction methods and loop
transfer recovery,” Automatica, Vol. 26, No. 3, pp. 487—-489.

B.C. Moore, “Principal component analysisin linear systems: Controllability,
observability and model reduction,” IEEE Transactions on Automatic Control,
Vol. AC-26, No. 1, 1981, pp. 17-32.

C. N. Nett, C. A. Jacobson, and M. J. Balas, “A connection between state-space
and doubly coprime fractional representations,” IEEE Transactions on Automatic
Control, Vol. AC-29, 1984, pp. 831-832.

L. Pernebo, and L. M. Silverman, “Model reduction via balanced state space
representations,” IEEE Transactions on Automatic Control, Vol. AC-27, No. 2, 1982,
pp. 382-387.

Xmath Model Reduction Module A-2 ni.com



[Sacs8]

[Saf87]

[SCL90]

[Vid8s]

[WaSo0]

[WaS904]

[BBKSS]

[BeP79]

[BoB90]

[BoB91]

[BH69]

[DoS79]

[Dos8l]

Appendix A Bibliography

M. G. Safonov and R. Y. Chiang, “Model reduction for robust control: a Schur
relative-error method,” Proceedings for the American Controls Conference, 1988,
pp. 1685-1690.

M. G. Safonov, “Imaginary-axis zeros in multivariable He optimal control,” Modeling,
Robustness, and Sensitivity Reduction in Control, (Ed. R. F. Curtain), Springer Verlag,
Berlin, 1987.

M. G. Safonov, R. Y. Chiang, and DJN Limebeer, “Optimal Hankel model reduction
for nonminimal systems,” IEEE Transactions on Automatic Control, Vol. 35 No. 4,
pp. 496-502, 1990.

M. Vidyasagar, Control Systems Synthesis: A Factorization Approach, MIT Press,
Cambridge, MA, 1985.

W. Wang and M. G. Safonov, “A tighter relative error bound for balanced stochastic
truncation,” Systems and Control Letters, Vol. 14, 1990, pp. 307-317.

W. Wang and M. G. Safonov, “ Comparison between continuous and discrete-time model
truncation,” Proceedings for the 29th CDC, 1990,

S. Boyd, V. Baakrishnan, and P. Kabamba, “A bisection method for computing the
Loo norm of atransfer matrix and related problems,” Mathematical Controls, Signals,
and Systems, Vol. 2, No. 3, pp. 207-219, 1989.

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences.
Computer Science and Applied Mathematics series, Academic Press, 1979.

S. Boyd and V. Balakrishnan. “A regularity result for the singular values of atransfer
matrix and a quadratically convergent algorithm for computing its Leo norm.” Systems
Control Letters Vol. 15, pp. 1-7, 1990.

S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance, Prentice-Hall,
1991.

A. E. Bryson and Y. C. Ho, Applied Optimal Control, p. 149, Blaisdell Publishing Co.,
1969.

J. C. Doyleand G. Stein. “Robustnesswith Observers,” IEEE Transactions on Automatic
Control, August 1979.

J. C. Doyleand G. Stein. “Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis.” IEEE Transactions on Automatic Control, Vol. AC-26,
February 1981, pp 4-16.

© National Instruments Corporation A-3 Xmath Model Reduction Module



Appendix A

[Doy82]

[DWS82]

[FaT8sg]

[FaT86]

[Fr87]
[FPGM87]

[GD88g]

[DGKF89]

[Gu8(]

[ONRS4]

[Osb60]

[Saf82]

[SD83]

[SD84]

Bibliography

J. C. Doyle. “Analysis of Feedback Systems with Structured Uncertainties.” IEEE
Proceedings, November 1982.

J.C. Doyle, J. E. Wall, and G. Stein. “ Performance and Robustness Analysisfor Structure
Uncertainties,” Proceedings IEEE Conference on Decision and Control, pp. 629636,
1982.

M. K. Fanand A. L. Tits, “m-form Numerical Range and the Computation of the
Structured Singular Value.” IEEE Transactions on Automatic Control, Vol. 33,
pp. 284-289, March 1988.

M. K. Fanand A. L. Tits. “Characterization and Efficient Computation of the Structured
Singular Value,” IEEE Transactions on Automatic Control, Vol. AC-31, pp. 734743,
August 1986.

B. Francis, A Course in L. Control Theory, Springer-Verlag, Berlin-New York, 1987.

D. S. Flamm, S. Boyd, G. Stein, and S. K. Mitter, “ Tutorial Workshop on Le Control
Theory,” pre-conferenceworkshop, Proceedings 26th IEEE Conference on Decision and
Control, December 1988.

K. Glover and J. C. Doyle, “ State-space formulae for all stabilizing controllers that
satisfy an L norm bound and relationsto risk sensitivity,” Systems and Control Letters,
Vol. 11, pp. 167-172, 1988.

J. C. Doyle, K. Glover, P. K. Khargonekar, and B. Francis, “ State-space solutions to
standard H, and Lo control problems,” IEEE Transactions on Automatic Control,
Vol. AC-34, No. 8, pp. 831-847, August 1989.

N. K. Gupta, “Frequency Shaping of Cost Functionals: An extension of LQG Design
Methods,” AIAA Journal of Guidance and Control, Vol. 3, No. 6, December 1980.

ONR/Honeywell Workshop on Advances in Multivariable Control, Lecture Notes,
Minneapolis, MN, 1984.

E. E. Osborne, “On Preconditioning of Matrices,” JACM, 7:338-345, 1960.

M.G. Safonov, “ Stability Margins of Diagonally Perturbed Multivariable Feedback
Systems,” IEEE Proceedings, 129-D:251-256, November 1982.

M. G. Safonov and J. C. Doyle. “Optimal Scaling for Multivariable Stability Margin
Singular Value Computation,” Proceedings of MECO/EES 1983, Symposium, 1983.

M. G. Safonov and J. C. Doyle, “Minimizing Conservativeness of Robust Singular
Values,” Multivariable Control, pp. 197-207, S. G. Tzafestas, ed. D. Reidel Publishing
Company, 1984.

Xmath Model Reduction Module A-4 ni.com



Appendix A Bibliography

[SLH81] M. G. Safonov, A. J. Laub, and G. L. Hartmann, “ Feedback Properties of Multivariable
Systems: The Role and Use of the Return Difference Matrix,” IEEE Transactions on
Automatic Control, Vol. AC-26, February 1981.

[SA88] G. Stein and M. Athans. “The LQG/LTR Procedure for Multivariable Control Design,”
IEEE Transactions on Automatic Control, Vol. AC-32, No. 2, February 1987, pp.
105-114.

[za81] G. Zames, “Feedback and optimal sensitivity: model reference transformations,
multiplicative semi-norms, and approximate inverses,” IEEE Transactions on Automatic
Control, Vol. AC-26, pp. 301-320, 1981.

[KS72] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, 1972.

© National Instruments Corporation A-5 Xmath Model Reduction Module



Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:
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