
MF910-06

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

(S1C63 Family Assembler Package)
S5U1C63000A Manual

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

MS-DOS, Windows, Windows 95, Windows 98 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC-DOS, PC/AT, PS/2, VGA, EGA and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
NEC PC-9800 Series and NEC are registered trademarks of NEC Corporation.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 2001 All rights reserved.

The information of the product number change

Configuration of product number
Devices

Comparison table between new and previous number
S1C63 Family processors

Starting April 1, 2001, the product number will be changed as listed below. To order from April 1,
2001 please use the new product number. For further information, please contact Epson sales
representative.

S1 C 63158 F 0A01
Packing specification
Specification
Package (D: die form; F: QFP)
Model number
Model name (C: microcomputer, digital products)
Product classification (S1: semiconductor)

Development tools
S5U1 C 63000 A1 1

Packing specification
Version (1: Version 1 ∗ 2)
Tool type (A1: Assembler Package ∗ 1)
Corresponding model number
(63000: common to S1C63 Family)
Tool classification (C: microcomputer use)
Product classification
(S5U1: development tool for semiconductor products)

∗ 1: For details about tool types, see the tables below. (In some manuals, tool types are represented by one digit.)
∗ 2: Actual versions are not written in the manuals.

Previous No.
E0C63158
E0C63256
E0C63358
E0C63P366
E0C63404
E0C63406
E0C63408
E0C63F408
E0C63454
E0C63455
E0C63458
E0C63466
E0C63P466

New No.
S1C63158
S1C63256
S1C63358
S1C6P366
S1C63404
S1C63406
S1C63408
S1C6F408
S1C63454
S1C63455
S1C63458
S1C63466
S1C6P466

S1C63 Family peripheral products
Previous No.
E0C63467
E0C63557
E0C63558
E0C63567
E0C63F567
E0C63658
E0C63666
E0C63F666
E0C63A08
E0C63B07
E0C63B08
E0C63B58

New No.
S1C63467
S1C63557
S1C63558
S1C63567
S1C6F567
S1C63658
S1C63666
S1C6F666
S1C63A08
S1C63B07
S1C63B08
S1C63B58

Previous No.
E0C5250
E0C5251

New No.
S1C05250
S1C05251

Comparison table between new and previous number of development tools
Development tools for the S1C63 Family Development tools for the S1C63/88 Family

Previous No.
ADP63366
ADP63466
ASM63
GAM63001
ICE63
PRC63001
PRC63002
PRC63004
PRC63005
PRC63006
PRC63007
URS63366

New No.
S5U1C63366X
S5U1C63466X
S5U1C63000A
S5U1C63000G
S5U1C63000H1
S5U1C63001P
S5U1C63002P
S5U1C63004P
S5U1C63005P
S5U1C63006P
S5U1C63007P
S5U1C63366Y

Previous No.
ADS00002
GWH00002
URM00002

New No.
S5U1C88000X1
S5U1C88000W2
S5U1C88000W1

00

00

S5U1C63000A MANUAL EPSON i
(S1C63 FAMILY ASSEMBLER PACKAGE)

INTRODUCTION

Introduction
This document describes the development procedure from assembling source files to debugging. It also
explains how to use each development tool of the "S1C63 Family Assembler Package" common to all the
models of the S1C63 Family.

Caution
We are not responsible for any problems involving products you have manufactured using packed data
created without the use of the tool contained in this package, or using packed data edited after being
created using the tool contained in this package.

How To Read the Manual
This manual was edited particularly for those who are engaged in program development. Therefore, it
assumes that the reader already possesses the following fundamental knowledge:
• Basic knowledge about assembler language
• Basic knowledge about the general concept of program development by an assembler
• Basic operating methods for Windows®95/98 or Windows NT®4.0

Before installation
See Chapter 1. Chapter 1 describes the composition of this package, and provides a general outline of
each tool.

Installation
Install the tools following the installation procedure described in "setup_e.pdf".

To understand the flow of program development
See the program development flow in Chapter 2.

For coding
See the necessary parts in Chapter 4. Chapter 4 describes the grammar for the assembler language as
well as the assembler functions. Also refer to the following manuals when coding:

S1C63xxx Technical Manual
Covers device specifications, and the operation and control method of the peripheral circuits.

S1C63000 Core CPU Manual
Has the instructions and details the functions and operation of the Core CPU.

For debugging
Chapter 8 gives detailed explanation of the debugger. Sections 8.1 to 8.8 give an overview of the
functions of the debugger. See Section 8.9 for details of the debug commands. Also refer to the follow-
ing manuals to understand operations of the In-Circuit Emulator (ICE) and the Peripheral Circuit
Board S5U1C63xxxP:

S5U1C63000H1 Manual (S1C63 Family In-Circuit Emulator)
Explains the functions and handling methods of the ICE.

S5U1C63xxxP Manual (Peripheral Circuit Board for S1C63xxx)
Covers the functions and handling methods of the peripheral circuit board that provides the
hardware specifications of each model to the ICE.

For details of each tool
Chapters 3 to 8 explain the details of each tool. Refer to it if necessary.

Once familiar with this package
Refer to the listings of instructions and commands contained in Appendices.

ii EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

INTRODUCTION

Manual Notations
This manual was prepared by following the notation rules detailed below:

(1) Sample screens
The sample screens provided in the manual are all examples of displays under Windows®95/98.
These displays may vary according to the system or fonts used.

(2) Names of each part
The names or designations of the windows, menus and menu commands, buttons, dialog boxes, and
keys are annotated in brackets []. Examples: [Command] window, [File | Exit] menu item ([Exit]
command in [File] menu), [Key Break] button, [q] key, etc.

(3) Names of instructions and commands
The CPU instructions and the debugger commands that can be written in either uppercase or lower-
case characters are annotated in lowercase characters in this manual, except for user-specified sym-
bols.

(4) Notation of numeric values
Numeric values are described as follows:
Decimal numbers: Not accompanied by any prefix or suffix (e. g., 123, 1000).
Hexadecimal numbers: Accompanied by the prefix "0x" (e. g., 0x0110, 0xffff).
Binary numbers: Accompanied by the prefix "0b" (e. g., 0b0001, 0b10).
However, please note that some sample displays may indicate hexadecimal or binary numbers not
accompanied by any symbol. Moreover, a hexadecimal number may be expressed as xxxxh, or a
binary number as xxxxb, for reasons of convenience of explanation.

(5) Mouse operations
To click: The operation of pressing the left mouse button once, with the cursor (pointer)

placed in the intended location, is expressed as "to click". The clicking operation of
the right mouse button is expressed as "to right-click".

To double-click: Operations of pressing the left mouse button twice in a row, with the cursor (pointer)
placed in the intended location, are all expressed as "to double-click".

To drag: The operation of clicking on a file (icon) with the left mouse button and holding it
down while moving the icon to another location on the screen is expressed as "to
drag".

To select: The operation of selecting a menu command by clicking is expressed as "to select".

(6) Key operations
The operation of pressing a specific key is expressed as "to enter a key" or "to press a key".
A combination of keys using "+", such as [Ctrl]+[C] keys, denotes the operation of pressing the [C] key
while the [Ctrl] key is held down. Sample entries through the keyboard are not indicated in [].
Moreover, the operation of pressing the [Enter] key in sample entries is represented by "↵ ".
In this manual, all the operations that can be executed with the mouse are described only as mouse
operations. For operating procedures executed through the keyboard, refer to the Windows manual or
help screens.

(7) General forms of commands, startup options, and messages
Items given in [] are those to be selected by the user, and they will work without any key entry
involved.
An annotation enclosed in < > indicates that a specific name should be placed here. For example, <file
name> needs to be replaced with an actual file name.
Items enclosed in { } and separated with | indicate that you should choose an item. For example, {A |
B} needs to have either A or B selected.

(8) Development tool name
ICE: Indicates S5U1C63000H1 (S1C63 Family In-Circuit Emulator).

S5U1C63000A MANUAL EPSON iii
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

CHAPTER 1 GENERAL .. 1
1.1 Features ... 1

1.2 Tool Composition .. 2
1.2.1 Composition of Package .. 2
1.2.2 Outline of Software Tools .. 2

1.3 Working Environment .. 3

1.4 Installation .. 4

1.5 Directories and Files after Installation ... 4

CHAPTER 2 SOFTWARE DEVELOPMENT PROCEDURE .. 6
2.1 Software Development Flow ... 6

2.2 Development Using Work Bench ... 7
2.2.1 Starting Up the Work Bench .. 7
2.2.2 Creating a New Project ... 8
2.2.3 Editing Source Files .. 8
2.2.4 Configuration of Tool Options ... 10
2.2.5 Building an Executable Object .. 11
2.2.6 Debugging .. 12

CHAPTER 3 WORK BENCH ... 13
3.1 Features .. 13

3.2 Starting Up and Terminating the Work Bench .. 13

3.3 Work Bench Windows ... 14
3.3.1 Window Configuration ... 14
3.3.2 Window Manipulation .. 15

3.4 Toolbar and Buttons ... 19
3.4.1 Standard Toolbar .. 19
3.4.2 Build Toolbar ... 20
3.4.3 Window Toolbar ... 20
3.4.4 Toolbar Manipulation .. 21
3.4.5 [Insert into project] Button on a [Edit] Window.. 21

3.5 Menus ... 22
3.5.1 [File] Menu .. 22
3.5.2 [Edit] Menu .. 23
3.5.3 [View] Menu ... 23
3.5.4 [Insert] Menu ... 24
3.5.5 [Build] Menu .. 24
3.5.6 [Tools] Menu .. 25
3.5.7 [Window] Menu ... 25
3.5.8 [Help] Menu .. 25

3.6 Project and Work Space ... 26
3.6.1 Creating a New Project .. 26
3.6.2 Inserting Sources into a Project ... 27
3.6.3 [Project] Window ... 28
3.6.4 Opening and Closing a Project .. 28
3.6.5 Files in the Work Space Folder ... 29

3.7 Source Editor ... 30
3.7.1 Creating a New Source or Header File .. 30
3.7.2 Loading and Saving Files .. 31
3.7.3 Edit Function ... 32
3.7.4 Tag Jump Function ... 35
3.7.5 Printing .. 36

Contents

iv EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

3.8 Build Task ... 36
3.8.1 Preparing a Build Task .. 36
3.8.2 Building an Executable Object .. 36
3.8.3 Debugging .. 37
3.8.4 Executing Other Tools .. 38

3.9 Tool Option Settings ... 40
3.9.1 Assembler Options ... 40
3.9.2 Linker Options ... 41
3.9.3 Debugger Options .. 43
3.9.4 HEX Converter Options ... 43

3.10 Work Bench Options ... 44

3.11 Short-Cut Key List .. 45

3.12 Error Messages .. 45

3.13 Precautions .. 46

CHAPTER 4 ASSEMBLER .. 47
4.1 Functions .. 47

4.2 Input/Output Files .. 47
4.2.1 Input File .. 47
4.2.2 Output Files .. 48

4.3 Starting Method.. 49

4.4 Messages .. 50

4.5 Grammar of Assembly Source .. 51
4.5.1 Statements .. 51
4.5.2 Instructions (Mnemonics and Pseudo-instructions) 53
4.5.3 Symbols (Labels) .. 54
4.5.4 Comments ... 56
4.5.5 Blank Lines .. 56
4.5.6 Register Names .. 57
4.5.7 Numerical Notations .. 57
4.5.8 Operators ... 58
4.5.9 Location Counter Symbol "$" .. 60
4.5.10 Optimization Branch Instructions for Old Preprocessor 60

4.6 Section Management .. 61
4.6.1 Definition of Sections ... 61
4.6.2 Absolute and Relocatable Sections .. 61
4.6.3 Sample Definition of Sections .. 62

4.7 Assembler Pseudo-Instructions .. 63
4.7.1 Include Instruction (#include) .. 64
4.7.2 Define Instruction (#define) ... 65
4.7.3 Numeric Define Instruction (#defnum) .. 67
4.7.4 Macro Instructions (#macro ... #endm) .. 68
4.7.5 Conditional Assembly Instructions
 (#ifdef ... #else ... #endif, #ifndef... #else ... #endif) 70
4.7.6 Section Defining Pseudo-Instructions (.code, .data, .bss) 72
4.7.7 Location Defining Pseudo-Instructions (.org, .align) 74
4.7.8 Absolute Assembling Pseudo-Instruction (.abs) .. 77
4.7.9 Symbol Defining Pseudo-Instruction (.set) .. 78
4.7.10 Data Defining Pseudo-Instructions (.codeword, .word) 79
4.7.11 Area Securing Pseudo-Instructions (.comm, .lcomm) 80
4.7.12 Global Declaration Pseudo-Instruction (.global) 81
4.7.13 List Control Pseudo-Instructions (.list, .nolist) .. 81
4.7.14 Source Debugging Information Pseudo-Instructions (.stabs, .stabn) 81
4.7.15 Comment Adding Function .. 82
4.7.16 Priority of Pseudo-Instructions .. 82

S5U1C63000A MANUAL EPSON v
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

4.8 Relocatable List File .. 83

4.9 Sample Executions ... 84

4.10 Error/Warning Messages .. 87
4.10.1 Errors ... 87
4.10.2 Warning .. 88

4.11 Precautions .. 88

CHAPTER 5 LINKER .. 89
5.1 Functions .. 89

5.2 Input/Output Files .. 89
5.2.1 Input Files .. 89
5.2.2 Output Files .. 90

5.3 Starting Method.. 91

5.4 Messages .. 94

5.5 Linker Command File ... 95

5.6 Link Map File ... 96

5.7 Symbol File ... 97

5.8 Absolute List File ... 98

5.9 Cross Reference File .. 99

5.10 Linking .. 100

5.11 Branch Optimization Function .. 102

5.12 Error/Warning Messages ... 103
5.12.1 Errors .. 103
5.12.2 Warning ... 103

5.13 Precautions ... 104

CHAPTER 6 HEX CONVERTER ... 105
6.1 Functions ... 105

6.2 Input/Output Files ... 105
6.2.1 Input Files ... 105
6.2.2 Output Files ... 105

6.3 Starting Method... 106

6.4 Messages ... 107

6.5 Output Hex Files ... 108
6.5.1 Hex File Configuration ... 108
6.5.2 Motorola-S Format .. 108
6.5.3 Intel-HEX Format ... 109
6.5.4 Conversion Range ... 109

6.6 Error/Warning Messages ... 110
6.6.1 Errors .. 110
6.6.2 Warning ... 110

6.7 Precautions ... 110

CHAPTER 7 DISASSEMBLER .. 111
7.1 Functions ... 111

7.2 Input/Output Files ... 111
7.2.1 Input Files ... 111
7.2.2 Output Files ... 111

vi EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

7.3 Starting Method... 112

7.4 Messages ... 113

7.5 Disassembling Output ... 114

7.6 Error/Warning Messages ... 117
7.6.1 Errors .. 117
7.6.2 Warning ... 117

CHAPTER 8 DEBUGGER .. 118
8.1 Features ... 118

8.2 Input/Output Files ... 118
8.2.1 Input Files ... 118
8.2.2 Output Files ... 119

8.3 Starting Method... 120
8.3.1 Start-up Format ... 120
8.3.2 Start-up Options .. 120
8.3.3 Start-up Messages ... 121
8.3.4 Hardware Check at Start-up ... 121
8.3.5 Method of Termination .. 123

8.4 Windows .. 124
8.4.1 Basic Structure of Window .. 124
8.4.2 [Command] Window ... 126
8.4.3 [Source] Window ... 127
8.4.4 [Data] Window .. 129
8.4.5 [Register] Window .. 129
8.4.6 [Trace] Window ... 130

8.5 Tool Bar ... 131
8.5.1 Tool Bar Structure ... 131
8.5.2 [Key Break] Button ... 131
8.5.3 [Load File] and [Load Option] Buttons ... 131
8.5.4 [Source], [Mix], and [Unassemble] Buttons .. 131
8.5.5 [Go], [Go to Cursor], [Go from Reset], [Step], [Next],
 and [Reset] Buttons .. 131
8.5.6 [Break] Button .. 132
8.5.7 [Help] Button .. 132

8.6 Menu.. 133
8.6.1 Menu Structure .. 133
8.6.2 [File] Menu ... 133
8.6.3 [Run] Menu ... 133
8.6.4 [Break] Menu .. 134
8.6.5 [Trace] Menu .. 134
8.6.6 [View] Menu .. 135
8.6.7 [Option] Menu .. 135
8.6.8 [Windows] Menu ... 135
8.6.9 [Help] Menu ... 135

8.7 Method for Executing Commands ... 136
8.7.1 Entering Commands from Keyboard ... 136
8.7.2 Executing from Menu or Tool Bar ... 138
8.7.3 Executing from a Command File .. 139
8.7.4 Log File ... 140

8.8 Debug Functions ... 141
8.8.1 Loading Program and Data Files ... 141
8.8.2 Source Display and Symbolic Debugging Function 142
8.8.3 Displaying and Modifying Program, Data, Option Data and Register 144
8.8.4 Executing Program ... 146
8.8.5 Break Functions .. 149

S5U1C63000A MANUAL EPSON vii
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

8.8.6 Trace Functions ... 152
8.8.7 Operation of Flash Memory .. 155
8.8.8 Coverage ... 156
8.8.9 Writing Data to the FPGA on the Standard Peripheral Circuit Board 156

8.9 Command Reference ... 157
8.9.1 Command List ... 157
8.9.2 Reference for Each Command .. 158
8.9.3 Program Memory Operation ... 159

a / as (assemble mnemonic) ... 159
pe (program memory enter) ... 161
pf (program memory fill) ... 162
pm (program memory move) .. 163

8.9.4 Data Memory Operation ... 164
dd (data memory dump) ... 164
de (data memory enter) ... 166
df (data memory fill) .. 168
dm (data memory move) .. 169
dw (data memory watch) .. 170

8.9.5 Command to Display Option Information .. 172
od (option data dump) ... 172

8.9.6 Register Operation .. 174
rd (register display) ... 174
rs (register set) ... 175

8.9.7 Program Execution ... 177
g (go) ... 177
gr (go after reset CPU) .. 179
s (step) ... 180
n (next) ... 182

8.9.8 CPU Reset ... 183
rst (reset CPU) ... 183

8.9.9 Break ... 184
bp (break point set) .. 184
bc / bpc (break point clear) ... 186
bd (data break) .. 187
bdc (data break clear) ... 189
br (register break) .. 190
brc (register break clear) ... 192
bs (sequential break) ... 193
bsc (sequential break clear) .. 195
bsp (break stack pointer) ... 196
bl (break point list) .. 198
bac (break all clear) .. 199

8.9.10 Program Display ... 200
u (unassemble) ... 200
sc (source code) ... 202
m (mix) ... 204

8.9.11 Symbol Information ... 206
sy (symbol list) ... 206

8.9.12 Load File ... 207
lf (load file) .. 207
lo (load option) .. 208

8.9.13 Flash Memory Operation .. 209
lfl (load from flash memory) .. 209
sfl (save to flash memory) .. 211
efl (erase flash memory) .. 213

8.9.14 Trace .. 214
tm (trace mode display/set) ... 214
td (trace data display) ... 216
ts (trace search) ... 219
tf (trace file) ... 221

viii EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

8.9.15 Coverage ... 222
cv (coverage) ... 222
cvc (coverage clear) .. 223

8.9.16 Command File ... 224
com (execute command file) .. 224
cmw (execute command file with wait) .. 225
rec (record commands to a file) ... 226

8.9.17 log ... 227
log (log) ... 227

8.9.18 Map Information ... 228
ma (map information) .. 228

8.9.19 Mode Setting ... 229
md (mode) .. 229

8.9.20 FPGA Operation ... 232
xfer/xfers (xilinx fpga data erase) .. 232
xfwr/xfwrs (xilinx fpga data write) .. 233
xfcp/xfcps (xilinx fpga data compare) ... 234
xdp/xdps (xilinx fpga data dump) .. 235

8.9.21 Quit ... 236
q (quit) ... 236

8.9.22 Help ... 237
? (help) ... 237

8.10 Status/Error/Warning Messages ... 238

CHAPTER 9 FUNCTION OPTION GENERATOR .. 240
9.1 Outline of the Function Option Generator winfog 240

9.2 Input/output Files .. 240

9.3 Using winfog ... 241
9.3.1 Starting Up .. 241
9.3.2 Window .. 242
9.3.3 Menus and Toolbar Buttons .. 243
9.3.4 Operation Procedure ... 244

9.4 Error Messages ... 247

9.5 Example Output Files .. 248

CHAPTER 10 SEGMENT OPTION GENERATOR .. 249
10.1 Outline of Segment Option Generator winsog .. 249

10.2 Input/output Files .. 249

10.3 Using winsog ... 250
10.3.1 Starting Up .. 250
10.3.2 Window .. 252
10.3.3 Menus and Toolbar Buttons .. 253
10.3.4 Option Selection Buttons .. 254
10.3.5 Operation Procedure ... 254

10.4 Error Messages ... 260

10.5 Example Output Files .. 261

CHAPTER 11 MELODY ASSEMBLER .. 262
11.1 Outline of the Melody Assembler winmla ... 262

11.2 Input/output Files .. 262

S5U1C63000A MANUAL EPSON ix
(S1C63 FAMILY ASSEMBLER PACKAGE)

CONTENTS

11.3 Using winmla .. 263
11.3.1 Starting Up .. 263
11.3.2 Window .. 264
11.3.3 Menus and Toolbar Buttons .. 265
11.3.4 Operation Procedure ... 266

11.4 Melody Data .. 269
11.4.1 Outline of Melody Data .. 269
11.4.2 Melody Data Creation Procedure ... 269
11.4.3 Method of Creating Melody Data ... 270
11.4.4 Description of Melody Data .. 271
11.4.5 Precautions ... 274

11.5 Error Messages ... 275

11.6 Error Symbols ... 276

11.7 Sample Files .. 277

CHAPTER 12 MASK DATA CHECKER .. 281
12.1 Outline of the Mask Data Checker winmdc .. 281

12.2 Input/Output Files ... 281

12.3 Using winmdc .. 282
12.3.1 Starting Up .. 282
12.3.2 Menus and Toolbar Buttons .. 283
12.3.3 Operation Procedure ... 284

12.4 Error Messages ... 287

12.5 Example Output File ... 288

APPENDIX QUICK REFERENCE

CHAPTER 1: GENERAL

S5U1C63000A MANUAL EPSON 1
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 1 GENERAL

1.1 Features
The S1C63 Family Assembler Package contains software development tools that are common to all the
models of the S1C63 Family. The package comes as an efficient working environment for development
tasks, ranging from source program assembly to debugging.
Its principal features are as follows:

Simple composition
A task from assembly to debugging can be made with minimal tools.

Integrated working environment
A Windows-based integrated environment allows the tool chain to be used on its Windows GUI
interface <Workbench wb63>.

Modular programming
The relocatable assembler lets you develop a program which is made up of multiple sources. This
makes it possible to keep a common part independently and to use it as a part or a basis for the next
program.

Source debugging
A debugger can display an assembler source to show its execution status and allow debugging
operations on it. This makes debugging much easier to perform.

Common to all S1C63 chips
The tools included in this package are common to all S1C63 Family models except for several chip
dependent masking tools ("Dev" tools). The chip dependent information is read from the ICE param-
eter file for each chip.

Complete compatibility with old syntax sources
By supporting old syntax, existing sources written for old 63 tools are available with these new tools.

CHAPTER 1: GENERAL

2 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

1.2 Tool Composition

1.2.1 Composition of Package
The S1C63 Family Assembler Package contains the items listed below. When it is unpacked, make sure
that all items are supplied.

1) CD-ROM (Tools and PDF manuals are included) One
2) Warranty card ... One each in English and Japanese
3) Registration card .. One each in English and Japanese

1.2.2 Outline of Software Tools
The following shows the outlines of the software tools included in the package:

Assembler (as63.exe)
Converts the mnemonic of the source files into object codes (machine language) of the S1C63000. The
results are output in a relocatable object file. This assembler includes preprocessing functions such as
macro definition/call, conditional assembly, and file-include functions.

Linker (lk63.exe)
Links the relocatable objects created by the assembler by fixing the memory locations, and creates
executable absolute object codes. The linker also provides an auto EXT insertion/correction function
allowing the programmer to create sources without having to know branch destination ranges.

Hex converter (hx63.exe)
Converts an absolute object in IEEE-695 format output from the linker into ROM-image data in
Motorola-S format or Intel-HEX format. This conversion is needed when making the ROM or when
creating mask data using the mask data checker.

Disassembler (ds63.exe)
Disassembles an absolute object file in IEEE-695 format or a hex file in Motorola-S format, and restores
it to a source format file. The restored source file can be processed in the assembler/linker/hex
converter to obtain the same object or hex file.

Debugger (db63.exe)
This software performs debugging by controlling the ICE hardware tool. Commands that are used
frequently, such as break and step, are registered on the tool bar, minimizing the necessary keyboard
operations. Moreover, sources, registers, and command execution results can be displayed in multiple
windows, with resultant increased efficiency in the debugging tasks.

Work Bench (wb63.exe)
This software provides an integrated development environment with Windows GUI. Creating/
editing source files, selecting files and major start-up options, and the start-up of each tool can be
made with simple Windows operations.

CHAPTER 1: GENERAL

S5U1C63000A MANUAL EPSON 3
(S1C63 FAMILY ASSEMBLER PACKAGE)

The tools listed below are Windows GUI applications for creating mask data. A device information
definition file (s1c63xxx.ini) is required to run these tools. The CD-ROM contains the device information
definition files for the models supported with the following tools. For unsupported models, model
specific Development Tools are provided.

Function option generator (winfog.exe)
This tool creates an ICE function option setup file after selecting the mask options of the S1C63xxx
and the function option document file that is necessary to generate IC mask patterns. You can create
function option data by selecting the appropriate item using the check boxes.

Segment option generator (winsog.exe)
This tool creates an ICE segment option setup file after selecting the segment options of the S1C63xxx
and the segment option document file that is necessary to generate IC mask patterns. You can create
segment assignment data by merely clicking on the display memory map and segment decode table
shown on the window. The winsog is used only for the model that has segment options.

Melody assembler (winmla.exe)
This tool converts the melody data created using an editor into the melody ROM and melody option
data for the S1C63xxx melody generator. The winmla is used only for the model with a melody output
function.

Mask data checker (winmdc.exe)
This tool checks the data in development-completed program ROM/data ROM files and option
document files to create the mask data file that will be presented to Seiko Epson.

1.3 Working Environment
To use the S1C63 Family Assembler Package, the following conditions are necessary:

Personal computer
An IBM PC/AT or a compatible machine which is equipped with a CPU equal to or better than a
Pentium 75 MHz, and 32MB or more of memory is recommended.
To use the optional In-Circuit Emulator ICE, the personal computer also requires a serial port (with a
D-sub 9 pin).

Display
A display unit capable of displaying 800 × 600 dots or more is necessary.

Hard disk and CD-ROM drive
Since the installation is done from a CD-ROM to a hard disk, a CD-ROM drive and a hard disk drive
are required.

Mouse
A mouse is necessary to operate the tools.

System software
The S1C63 Family Assembler Package supports Microsoft® Windows®95 (English or Japanese),
Windows®98 (English or Japanese) and Windows NT®4.0 (English or Japanese).

Other development tools
To debug the target program, the optional In-Circuit Emulator and a Peripheral Circuit Board
S5U1C63xxxP are needed as the hardware tools.
The S5U1C63xxxP board is prepared for each S1C63 model.

CHAPTER 1: GENERAL

4 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

1.4 Installation
The supplied CD-ROM contains the installer (Setup.exe) that installs the tools.
To install the tools, start up the "Setup.exe" and follow the instructions in the dialog boxes that will be
appeared. For more information on the installation procedure, please refer to "setup_e.pdf" on the CD-
ROM.

1.5 Directories and Files after Installation
The installer copies the following files in the specified directory (default is "C:\EPSON\S1C63\"):

[EPSON\S1C63]
README_E.TXT ... ReadMe document (English)
README_J.TXT ... ReadMe document (Japanese)

[\BIN] ... S1C63 Family Assembler Package Tool
WB63.EXE ... Work bench
AS63.EXE ... Assembler
LK63.EXE ... Linker
HX63.EXE ... Hex converter
DS63.EXE ... Disassembler
DB63.EXE ... Debugger
S1C63.CNT ... Help index
S1C63.HLP ... Help contents
. Other related files

[\DEV]
[\BIN] ... S1C63 Family Development Tool for Windows

WINFOG.EXE ... Function option generator
WINSOG.EXE ... Segment option generator
WINMLA.EXE ... Melody assembler
WINMDC.EXE ... Mask data checker

[\63xxx] ... Model-dependent files
S1C63xxx.INI ... Device information definition file
PAR63xxx.PAR ... Parameter file
C63xxx.FSA ... Sample function option HEX file (for ICE configuration)
C63xxx.SSA ... Sample segment option HEX file (for ICE configuration)

:

[\WRITER]
[\6xxxx] (\6Pxxx or \6Fxxx)

[\URW2]
US6xxxx.EXE ... ROM Writer II control software (English)
JP6xxxx.EXE ... ROM Writer II control software (Japanese)
6xxxx.FRM ... Firmware
. Other related files

: ∗ Refer to the technical manual for details of the ROM Writer II.

[\ICE]
[\ICE63UPD]

TM63.EXE ... ICE firmware updater to support standard peripheral circuit board
ICE63.COM
I63COM.O
I63.PAR

[\FPGA]
C63xxx.MOT ... FPGA data to configure standard peripheral circuit board
:

CHAPTER 1: GENERAL

S5U1C63000A MANUAL EPSON 5
(S1C63 FAMILY ASSEMBLER PACKAGE)

[\DOC]
[\ENGLISH] ... Document folder (English)

REL_xxxx_E.TXT ... Tool release note
MANUAL_E.PDF ... This manual in PDF format
QUICK_E.PDF ... Quick reference in PDF format

[\HARD]
xxxx_E.PDF ... Hardware development tool manuals in PDF format

[\JAPANESE] ... Document folder (Japanese)
REL_xxxx_J.TXT ... Tool release note
MANUAL_J.PDF ... This manual in PDF format
QUICK_J.PDF ... Quick reference in PDF format

[\HARD]
xxxx_J.PDF ... Hardware development tool manuals in PDF format

Online manual in PDF format
The online manuals are provided in PDF format, so Adobe Acrobat Reader Ver. 4.0 or later is needed
to read it.

Files for future release models
The files for future release models may be provided in FDs. Refer to the Readme file included in the
FD for installation.

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

6 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 2 SOFTWARE DEVELOPMENT PROCEDURE
This chapter outlines a basic development procedure.

2.1 Software Development Flow
Figure 2.1.1 represents a flow of software development work.

S1C63xxx Development Tool

Work Bench

wb63

Assembler

as63

file.MS

Preprocessed
source file(s)

Linker

lk63

file.Ofile.LST

Object
file(s)

Assembly
list file(s)

file.ALS
Absolute
list file

Cross
reference
file

file.SYMSymbol file

file.MAP file.XRFLink map file

file.CM
Linker

command file

file.MAK
Make

file

Debugger

db63

HEX converter

hx63

file.ABS

Disassembler

ds63

file.MS

Disassembled
source file

In-Circuit Emulator

Segment Option

Generator winsog

file.SSA

Segment option
HEX file

file.SDC

file.par file.ini

Mask Data Checker

winmdc

file.PAn
Mask
data file

SEIKO EPSON

Function Option

Generator winfog

file.FSA file.FDC

Function option
document file

Function option
HEX file

Segment option
document file

file.S file.MS
Assembly
source file(s)or

Intel-HEX
format files

Motorola-S
format files

or

fileC.HEX file.CSA

Absolute
object file

fileL.HEX

fileH.HEX

file.LSA

file.HSA

Melody
data file file.MDT

Melody Assembler

winmla

file.MSA

Melody ROM
option HEX file

file.MDC

Melody ROM option
document file

Fig. 2.1.1 Software development flow

The work bench provides an integrated development environment from source editing to debugging.
Tools such as the assembler and linker can be invoked from the work bench. The tools can also be in-
voked individually from the DOS prompt.
Refer to the respective chapter for details of each tool.
Some models provide other development tools (fog63xxx, sog63xxx, etc.) instead of the "S1C63xxx
Development Tool" shown above. Those model dependent tools are not covered in this manual. For
details, refer to the tool manual associated with each specific model.

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

S5U1C63000A MANUAL EPSON 7
(S1C63 FAMILY ASSEMBLER PACKAGE)

2.2 Development Using Work Bench
This section shows a basic development procedure using the work bench wb63.
Refer to Chapter 3, "Work Bench", for operation details.

2.2.1 Starting Up the Work Bench

Start up the work bench by choosing "WorkBench63" from the program menu.

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

8 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

2.2.2 Creating a New Project
The work bench manages necessary file and tool setting information as a project.
First a new project file should be created.

1. Select [New] from the [File] menu (or click the [New] button).

 [New] button

The [New] dialog box appears.

2. Select [EPSON Project File] and click [OK].

The [Project] dialog box appears.

3. Enter a project name, select an ICE parameter file and select a
directory, then click [OK].

 ∗ The [ICE parameter file:] box lists the parameter files that exist
in the "dev63" directory.

The work bench creates a folder (directory) with the specified
project name as a work space, and puts the project file (.epj) into
the folder.
The specified project name will also be used for the absolute object
and other files.

2.2.3 Editing Source Files
The work bench has an editor function. This makes it possible to edit source files without another editor.
To create a new source file:

1. Select [New] from the [File] menu (or click the [New] button).

 [New] button

The [New] dialog box appears.

2. Select [EPSON Assembly Source File] and click [OK].

Created project [Project] window

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

S5U1C63000A MANUAL EPSON 9
(S1C63 FAMILY ASSEMBLER PACKAGE)

3. Enter source codes in the [Edit] window.

[Edit] windowA new edit window appears.

4. Save the source in a file by selecting [Save] from the [File] menu (or clicking the [Save] button).

 [Save] button

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

10 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5. Click the [Insert into project] button on the [Edit] window.

 [Insert into project] button

The created source file is added in the project.

To add existing source files, use [Files into project...] in the [Insert] menu. It can also be done by dragging
source files from Windows Explorer to the project window.
Create necessary source files and add them into the project.

 Sample list in the [Project] window

The added source files are listed in the project window. Double-clicking a listed source file name opens
the edit window.

2.2.4 Configuration of Tool Options
The work bench supports all the start up options of each tool and they can be selected in a dialog box. A
make process for generating an executable object will be configured based on the settings.
In addition to option selection, command files for the linker and debugger can be configured here.
To set tool options:

1. Select [Setting...] from the [Build] menu.

A dialog box appears.

2. Configure options if necessary.
Check box items can be selected by clicking. Items in the list can be toggled or entered by double-
clicking.

Refer to Chapter 3, "Work Bench", for details of the [Settings] dialog box.

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

S5U1C63000A MANUAL EPSON 11
(S1C63 FAMILY ASSEMBLER PACKAGE)

2.2.5 Building an Executable Object
To make an executable object file:

1. Select [Build] from the [Build] menu (or click the [Build] button).

 [Build] button

This will invoke the assembler and linker to create an executable object file. If a HEX file format (Intel
HEX or Motorola S) is selected by the [Output format] box, the HEX converter will be invoked after
linking. By default, an absolute object file in IEEE-695 format will be created.

 [Output format] box

Messages delivered from each executed tool are displayed in the [Output] window. The work bench has a
tag-jump function that jumps to the source line in which an error has occurred by double-clicking a
source syntax error message that appears in the [Output] window. It opens the corresponding source
window if it is closed.

[Output] window

Linked with the corresponding source line

In the build task, a general make process is executed to update the least necessary files. To rebuild all the
files without the make function, select [Rebuild All] from the [Build] menu (or click the [Rebuild All]
button).

 [Rebuild All] button

To invoke the assembler only to correct syntax errors, select [Assemble] in the [Built] menu (or click the
[Assemble] button).

 [Assemble] button

CHAPTER 2: SOFTWARE DEVELOPMENT PROCEDURE

12 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

2.2.6 Debugging
To debug the executable object:

1. Select [Debug] from the [Build] menu (or click the [Debug] button).

 [Debug] button

The debugger starts up with the specified ICE parameter file and then loads the executable object file.

Note: Make sure that the ICE is ready to debug before invoking the debugger. Refer to the ICE hardware
manual for settings and startup method of the ICE.

For the debugging functions and operations, refer to Chapter 8, "Debugger".

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 13
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 3 WORK BENCH
This chapter describes the functions and operating method of the Work Bench wb63.

3.1 Features
The Work Bench wb63 provides an integrated operating environment ranging from editing source files to
debugging. Its functions and features are summarized below:

• Source edit function that supports copy/paste, find/replace, print, label jump and tag jump from error
messages.

• Allows simple management of all necessary files and information as a project.
• General make process to invoke necessary tools and to update the least necessary files.
• Supports all options of the assembler, linker, HEX converter, disassembler and debugger.
• Windows GUI interface for simple operation.

3.2 Starting Up and Terminating the Work Bench

To start up the work bench

Choose "WorkBench63" from the [Program] menu to start
up the work bench.

 ∗ If "WorkBench63" is not registered in the [Program]
menu, it means that the installation was not successful.
Therefore, reinstall the tools .

When the work bench starts up, the window shown below
appears.

To terminate the work bench
Select [Exit] from the [File] menu.

CHAPTER 3: WORK BENCH

14 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.3 Work Bench Windows

3.3.1 Window Configuration
Menu bar Toolbar [Edit] window

[Project] window [Output] window Status bar

The work bench has three types of windows: [Edit] window, [Project] window and [Output] window.

[Edit] window
This window is used for editing a source file. A standard text file can also be displayed in this win-
dow. Two or more windows can be opened in the edit window area.
When an assembly source file is opened, the source is displayed with in colors according to the
contents. The default colors are shown below.
S1C63 instructions: Black
Preprocess (#) pseudo-instructions: Dark brown
Assemble (.) pseudo-instructions: Blue
Labels: Light brown
Comments: Green

These colors can be changed by the [Tools | Options] menu command (refer to Section 3.10).

[Project] window
This window shows the currently opened work space folder and lists all the source files in the project,
with a structure similar to Windows Explorer.
Double-clicking a source file icon opens the source file in the [Edit] window.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 15
(S1C63 FAMILY ASSEMBLER PACKAGE)

[Output] window
This window displays the messages delivered from the executed tools in a build or assemble process.
Double-clicking a syntax error message with a source line number displayed in this window activates
or opens the [Edit] window of the corresponding source so that the source line in which the error has
occurred can be viewed.

Menu bar
Refer to Section 3.5.

Toolbar
Refer to Section 3.3.

Status bar
Shows help messages when the mouse cursor is placed on a menu item or a button.
It also indicates the cursor position in the [Edit] window and Key lock status (Num lock, Caps lock,
Scroll lock).

3.3.2 Window Manipulation

Resizing the windows

←| |→

←
|

 |→

Each window area can be
resized by dragging the win-
dow boundary. The size
information is saved when the
work bench is terminated. So
the same window layout will
appear at the next time the
work bench starts up.

Double click

Floating and docking the
[Project] and [Output]
window

The [Project] window and the
[Output] window can be made
a floating window by double-
clicking the window boundary
and the floating window can be
moved and resized in the work
bench window. The floating
window will be restored to a
docking window by double
clicking the window's title bar
or dragging the title bar
towards an edge of the work
bench window.

CHAPTER 3: WORK BENCH

16 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Closing the [Project] and [Output] window
The [Project] window and the [Output] window can be closed by selecting [Project Window] and
[Output Window] from the [View] menu, respectively. To open them, select the menu items again.

Maximizing the [Edit] window area

Opening/Closing [Edit] windows
An [Edit] window opens when a source file (text file) is loaded using a menu, button or a file icon in
the [Project] window, or when a new source is created.
[Edit] windows close by clicking the [Close] box of each window or selecting [Close] from the [File]
menu.
When a project file is saved, the [Edit] window information (files opened, size and location) is also
saved. So the next time the project opens, editing can begin in the saved condition.

Arrangement of the [Edit] windows
The [Edit] windows being opened can be arranged similar to standard Windows applications.

1 Cascade windows
Select [Cascade] from the [Window] menu or click the [Cascade Windows] button.

 [Cascade Windows] button

The [Edit] window area can be maxi-
mized to the full screen size by selecting
[Full Screen] from the [View] menu. All
other windows and toolbars are hidden
behind the [Edit] window area.
To return it to the normal display, click
the button that appears on the screen.
This button can be moved anywhere in
the screen by dragging its title bar.
Pressing the [ESC] key also returns the
window to the normal display.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 17
(S1C63 FAMILY ASSEMBLER PACKAGE)

2 Tile windows
To tile windows vertically, select [Tile Vertically] from the [Window] menu or click the [Tile Vertically]
button.

 [Tile Vertically] button

To tile windows horizontally, select [Tile Horizontally] from the [Window] menu or click the [Tile
Horizontally] button.

 [Tile Horizontally] button

CHAPTER 3: WORK BENCH

18 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3 Maximizing an [Edit] window
Click the [Maximize] button on the window title bar. The window will be maximized to the [Edit]
window area size and other [Edit] windows will be hidden behind the active window.

4 Minimizing an [Edit] window
Click the [Minimize] button on the window title bar. The window will be minimized as a window
icon. The minimized icons can be arranged at the bottom of the [Edit] window area by selecting
[Arrange Icons] from the [Window] menu.

5 Moving and resizing an [Edit] window
The [Edit] window allows changing of its location and its size in the same way as the standard
Windows applications if it is not maximized.

Switching active [Edit] window
Click the window to be activated if it can be viewed. Otherwise, select the window name (source file
name) from the currently-opened window list in the [Window] menu.

Scrolling display contents
A standard scroll bar appears if the display contents exceed the display size of a window. Use it to
scroll the display contents. The arrow keys can also be used.

Showing and hiding the status bar
The status bar can be shown or hidden by selecting [Status Bar] from the [View] menu.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 19
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.4 Toolbar and Buttons
Tree types of toolbars have been implemented in the work bench: standard toolbar, build toolbar and
window tool bar.

3.4.1 Standard Toolbar
This toolbar has the following standard buttons:

Standard toolbar

Build toolbar Window toolbar

[New] button
Creates a new document. A dialog box will appear allowing selection from among three document
types: assembly source, assembly header and project.

[Open] button
Opens a document. A dialog box will appear allowing selection of the file to be opened.

[Save] button
Saves the document in the active [Edit] window to the file. The file will be overwritten.
This button becomes inactive if no [Edit] window is opened.

[Save All] button
Saves the documents of all [Edit] windows and the project information to the respective files.

[Cut] button
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] button
Copies the selected text in the [Edit] window to the clipboard.

[Paste] button
Pastes the text copied on the clipboard to the current cursor position in the [Edit] window or
replaces the selected text with the copied text.

[Find] button
Finds the specified word in the active [Edit] window. A dialog box will appear allowing specifica-
tion of the word to be found and a search condition.

[Find Next] button
Finds next target word towards the end of the file.

[Find Previous] button
Finds next target word towards the beginning of the file.

[Print] button
Prints the document in the active [Edit] window. A standard print dialog will appear allowing a
specific print condition.

[Help] button
Displays the help window.

CHAPTER 3: WORK BENCH

20 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.4.2 Build Toolbar
This tool bar has the following buttons and list boxes used to build a project:

[Assemble] button
Assembles the assembly source in the active [Edit] window. This button becomes active only when
the active [Edit] window shows an assembly source file.

[Build] button
Builds the currently opened project using a general make process.

[Rebuild All] button
Builds the currently opened project. All the source files will be assembled regardless of whether
they are updated or not.

[Stop Build] button
Stops the build process being executed. This button becomes active only while a build process is
being executed.

[ICE Parameter] pull-down list box
Selects the ICE parameter file for the model being developed. In this box, all the
ICE parameter files that exist in the "Dev63" directory are listed.

[Output Format] pull-down list box
Selects an executable object file format. Three types of formats are available:
IEEE-695 absolute object format, Intel HEX format and Motorola S format. The
build process will generate an executable object in the format selected here.

[HEX Convert] button
Invokes the HEX converter to convert an absolute object into an Intel HEX object or a Motorola S
object. A dialog box will appear allowing selection of an absolute object and options of the HEX
converter.

[Disassemble] button
Invokes the disassembler to disassemble an absolute object. A dialog box will appear allowing
selection of an absolute object and options of the disassembler.

[Debug] button
Invokes the debugger with the specified ICE parameter file.

3.4.3 Window Toolbar
This tool bar has the following buttons used in window manipulation:

[Cascade] button
Cascades the opened [Edit] windows.

[Tile Horizontally] button
Tiles the opened [Edit] window horizontally.

[Tile Vertically] button
Tiles the opened [Edit] window vertically.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 21
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.4.4 Toolbar Manipulation

Hiding and showing toolbars
Each toolbar can be hidden if not needed. Select the toolbar name from the [View] menu. This opera-
tion toggles between hiding and showing the toolbar.

Changing the toolbar location
Toolbars can be moved to another location in the toolbar area by dragging them. If a toolbar is moved
out of the toolbar area, it will be changed to a window.

3.4.5 [Insert into project] Button on a [Edit] Window

 [Insert into project] button

When a source file (.s or .ms) is opened, the [Insert into project] button appears on the [Edit] window. It
can be used to insert the source file into the current opened project.
For other file types, the [Edit] window opens without the [Insert into project] button.

CHAPTER 3: WORK BENCH

22 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.5 Menus

3.5.1 [File] Menu
[New...] ([Ctrl]+[N])
Creates a new document. A dialog box will appear allowing selection
from among three document types: assembly source, assembly header
and project.

[Open...] ([Ctrl]+[O])
Opens a document. A dialog box will appear allowing selection of the
file to be opened.

[Close]
Closes the active [Edit] window. This menu item appears when an
[Edit] window becomes active.

[Open Workspace...]
Opens a project. A dialog box will appear allowing selection of the
project to be opened.

[Close Workspace]
Closes the currently opened project. This menu item becomes inactive
if no project is opened.

[Save] ([Ctrl]+[S])
Saves the document in the active [Edit] window to the file. The file
will be overwritten. This menu item appears when an [Edit] window
becomes active.

[Save As...]
Saves the document in the active [Edit] window with another file
name. A dialog box will appear allowing specification of a save
location and a file name. This menu item appears when an [Edit]
window becomes active.

[Save All]
Saves the documents of all [Edit] windows and the project information
to the respective files.

[Print...] ([Ctrl]+[P])
Prints the document in the active [Edit] window. A standard [print]
dialog box will appear allowing a specific print condition. This menu
item appears when an [Edit] window becomes active.

[Print Preview]
Displays a print image of the document in the active [Edit] window.
This menu item appears when an [Edit] window becomes active.

[Page Setup...]
Displays a dialog box for selecting paper and printer.

The file names listed in this menu
are recently used source and
project files. Selecting one opens
the file.
The number of files to be listed can
be selected by the [Tools | Options]
menu command.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 23
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.5.2 [Edit] Menu
[Undo] ([Ctrl]+[Z])
Undoes the previous executed operation in the [Edit] window.

[Cut] ([Ctrl]+[X])
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] ([Ctrl]+[C])
Copies the selected text in the [Edit] window to the clipboard.

[Paste] ([Ctrl]+[V])
Pastes the text copied on the clipboard to the current cursor position in the
[Edit] window or replaces the selected text with the copied text.

[Select All] ([Ctrl]+[A])
Selects all text in the active [Edit] window.

[Find...] ([Ctrl]+[F])
Finds the specified word in the active [Edit] window. A dialog box will
appear allowing specification of the word to be found and a search condition.

[Replace] ([Ctrl]+[H])
Replaces the specified words in the active [Edit] window with one another. A
dialog box will appear allowing specification of the words.

[Go To] ([Ctrl]+[G])
Jumps to the specified line or label in the active [Edit] window. A dialog box
will appear allowing specification of a line number or a label name.

3.5.3 [View] Menu
[Standard Bar]
Shows or hides the standard toolbar.

[Status Bar]
Shows or hides the status bar located at the bottom of the work bench
window.

[Output Window]
Opens or closes the [Output] window.

[Project Window]
Opens or closes the [Project] window.

[Build Bar]
Shows or hides the build toolbar.

[Window Bar]
Shows or hides the window toolbar.

[Full Screen]
Maximizes the [Edit] window area to the full screen size.

CHAPTER 3: WORK BENCH

24 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.5.4 [Insert] Menu
[File...]
Inserts the specified file to the current cursor position in the [Edit]
window or replaces the selected text with the contents of the
specified file. A dialog box will appear allowing selection of the file
to be inserted.

[Files into project...]
Adds the specified source file in the currently opened project. A
dialog box will appear allowing selection of the file to be added.

3.5.5 [Build] Menu
[Assemble] ([Ctrl]+[F7])
Assembles the assembly source in the active [Edit] window. This
menu item becomes active only when the active [Edit] window
shows an assembly source file.

[Build] ([F7])
Builds the currently opened project using a general make process.

[Rebuild All]
Builds the currently opened project. All the source files will be
assembled regardless of whether they are updated or not.

[Stop Build] ([Ctrl]+[Break])
Stops the build process being executed. This button become active
only while a build process is being executed.

[Debug] ([F5])
Invokes the debugger with the specified ICE parameter file.

[Settings...] ([Alt]+[F7])
Displays a dialog box for selecting tool options.

[ICE parameter file...]
Displays a dialog box for selecting an ICE parameter file.

[Output Format...]
Displays a dialog box for selecting an executable object file format.
Three types of formats are available: IEEE-695 absolute object
format, Intel HEX format and Motorola S format. The build process
will generate an executable object in the format selected here.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 25
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.5.7 [Window] Menu
This menu appears when an [Edit] window is opened.

[Cascade]
Cascades the opened [Edit] windows.

[Tile Horizontally]
Tiles the opened [Edit] window horizontally.

[Tile Vertically]
Tiles the opened [Edit] window vertically.

[Arrange Icons]
Arranges the minimized [Edit] window icons at the bottom of the [Edit] win-
dow area.

[Close All]
Closes all the [Edit] windows opened.

3.5.8 [Help] Menu
[Help]
Displays the [Help] window.

[About WB63...]
Displays a dialog box showing the version of the work bench.

3.5.6 [Tools] Menu
[HEX Converter...]
Invokes the HEX converter to convert an absolute object into an Intel HEX object
or Motorola S object. A dialog box will appear allowing selection of an absolute
object and options for the HEX converter.

[Disassembler...]
Invokes the disassembler to disassemble an absolute object. A dialog box will
appear allowing selection of an absolute object and options for the disassembler.

[WinFOG]
Invokes the function option generator winfog.

[WinSOG]
Invokes the segment option generator winsog.

[WinMLA]
Invokes the melody assembler winmla.

[WinMDC]
Invokes the mask data checker winmdc.

[Options...]
Displays a dialog box for selecting work bench options such as character colors
in the [Edit] window and a printing font.

CHAPTER 3: WORK BENCH

26 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.6 Project and Work Space
The work bench manages a program development task using a work space folder and a project file that
contains file and other information necessary for invoking the development tools.

3.6.1 Creating a New Project
A new project file can be created by the following procedure:

1. Select [New] from the [File] menu or click the [New] button.

 [New] button

The [New] dialog box appears.

2. Select [EPSON Project File] and click [OK].
The [Project] dialog box appears.

3. Enter a project name, select an ICE parameter file and select a directory, then click [OK].

∗ The [ICE parameter file:] box lists the parameter files that exist in the "dev" directory.

The work bench creates a folder (directory) with the specified project name as a work space, and puts the
project file (.epj) into the folder.
If a folder which has the same name as that of a specified one already exists in the specified location, the
work bench uses the folder as the work space. Thus you can specify a folder in which sources are created.
The specified project name will also be used for the absolute object and other files.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 27
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.6.2 Inserting Sources into a Project
The sources created must be inserted into the project.
To insert a source into a project, use one of the four methods shown below:

1. [Insert | Files into project...] menu item
A dialog box appears when this menu item is selected.

Choose a source file from the list box and then click [Open].

2. [File | Open...] menu item or [Open] button

 [Open] button

A dialog box appears when this menu item or button is selected.

Choose a source file from the list box and select the [Into project] button, then click [Open].

3. [Insert into project] button on the [Edit] window

 [Insert into project] button

When the source file has been opened, click the [Insert into project] button on the [Edit] window. Do
not forget to save the source to the file before inserting into the project.

4. Dragging source files on the [Project] window
Drag source files from Windows Explorer to the [Project] window. These files will be added to the
current project.

When a source file is inserted into the project, the source file name appears in the [Project] window.

Removing a source from the project
To remove a source file from the project, select the source in the [Project] window and then press the
[Delete] key. This removes only the source information, and does not delete the actual source file.

CHAPTER 3: WORK BENCH

28 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.6.3 [Project] Window
The [Project] window shows the work space folder and the source files included in the project that has
been opened.

When a source file icon is double-clicked, the source file will be opened or the corresponding [Edit]
window will be activated.

Shortcut menu in the [Project] window

When the folder icon or a source file icon is clicked with the right mouse
button, a shortcut menu including the available build menu items
appears.
[Properties...] shows the source file information as follows:

Note: Note that the list in the [project] window is not the actual directory structure.
Sources of the project in other folders than the work space folder are also listed as they exist in
the work space folder.

3.6.4 Opening and Closing a Project
To open a project, select [Open WorkSpace...] from the [File] menu.
A dialog box appears allowing selection of a project file.

The work bench allows only one project to be opened at a time. So if a project has been opened, it will be
closed when another project is opened. At this time, a dialog box appears to select whether the current
project file is to be saved or not if it has not already been saved after a modification.

The project file can also be opened by selecting [Open] from the [File] menu or clicking the [Open]
button. In this case, choose the file type as Project Files (*.epj) in the file open dialog box.

To close the currently opened project file, select [Close WorkSpace] from the [File] menu. At this time, a
dialog box appears to select whether the current project file is to be saved or not if it has not already been
saved after a modification. If [Yes] (save) is selected in this dialog box, all the modification items includ-
ing sources, tool settings and window configuration will be saved.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 29
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.6.5 Files in the Work Space Folder
The work bench generates the following files in the work space folder:

<file>.epj Project file
This file contains the project information.

<file>.cm Linker command file
This file is generated when a build task is started, and is used by the linker to generate an absolute
object file.

Example:
; S1C WorkBench Generated
; Thursday, November 05, 1998

"C:\EPSON\S1C63\DEV\63A08\PAR63A08.PAR" ;ICE parameter file

-o "test.abs" ;output file : absolute object

; linked object file(s)
"sub.o"
"main.o"

The contents vary according to the source files included in the project and the linker option setting.

<file>.cmd Debugger startup command file
This file is generated when a build task is started, and is used by the debugger to execute the com-
mand in this file when it is started up.

Example:
lf "test.abs"

The work bench generates this file so that the executable file according to the format selection is
loaded when the debugger starts up.

<file>.mak "make" file for build task
This file is generated when a build task is started, and is used for the build process in the work bench.

Example:
S1C WorkBench Generated
Thursday, November 05, 1998

ASM = as63.exe
LINK = lk63.exe
HEX = hx63.exe
ASM_FLG = -g
LINK_FLG = -g
HEX_FLG =

ALL : test.abs

test.abs : test.cm sub.o main.o
$(LINK) $(LINK_FLG) test.cm

sub.o : C:\EPSON\S1C63\Test\sub.s
$(ASM) $(ASM_FLG) C:\EPSON\S1C63\Test\sub.s

main.o : C:\EPSON\S1C63\Test\main.s
$(ASM) $(ASM_FLG) C:\EPSON\S1C63\Test\main.s

This is a generic make file that contains macro setting and dependency list.

The following files are generated by the development tools during a build process:

<file>.o Relocatable object files (generated by the assembler)
<file>.abs Absolute object file (generated by the linker)
<file>.hsa, <file>.lsa, <file>.csa Motorola S files (generated by the HEX converter when this format

is specified in the work bench)
<file>h.hex, <file>l.hex, <file>c.hex Intel HEX files (generated by the Hex converter when this format

is specified in the work bench)

CHAPTER 3: WORK BENCH

30 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.7 Source Editor
The work bench has a source editor function. Sources can be created and modified in the [Edit] window.

3.7.1 Creating a New Source or Header File
To create a new source file:

1. Select [New] from the [File] menu or click the [New] button.

 [New] button

The [New] dialog box appears.

2. Select [EPSON Assembly Source File] and click [OK].
An [Edit] window appears.

Enter source codes in this window.

The [New] dialog box allows selection of the [EPSON Header File]. Select it when creating a header file
for constant definitions.

[Edit] window

Enter source codes here.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 31
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.7.2 Loading and Saving Files
To load a source file:

1. Select [Open...] from the [File] menu or click the [Open] button.

 [Open] button

The [Open] dialog box appears.

2. Choose a source file to be opened after selecting the file type, "Assembly Source Files (*.s, *.ms)", and
click [OK]. An [Edit] window opens and shows the contents of the source file.

CHAPTER 3: WORK BENCH

32 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

To save the source:

1. Activate the [Edit] window of the source to be saved.

2. Select [Save as...] from the [File] menu.
The [Save As] dialog box appears.

3. Enter the file name and then click [OK].

When overwriting the source on the existing file, select [Save] from the [File] menu or click the [Save]
button.

 [Save] button

To save all the source files opened and the project file, use the [File | Save All] menu item or the [Save
All] button.

 [Save All] button

3.7.3 Edit Function
The source editor has general text editing functions similar to standard Windows applications.

Editing text
Basic text editing function is the same as general Windows applications.
Cut, copy and paste are supported in the [Edit] menu and with the toolbar buttons. These commands
are available only in the [Edit] window.
Undo can be selected from the [Edit] menu.

The tab stops are set at every 8 characters.

Find, replace and go to
Any words can be searched in the active [Edit] window.

Find
To find a word, select [Find...] from the [Edit] menu or click the [Find] button.

 [Find] button

The [Find] dialog box appears.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 33
(S1C63 FAMILY ASSEMBLER PACKAGE)

The controls in the dialog are as follows:

[Find what:] text box
Enter the word to be found in this text box. The specified word is maintained as the finding word
even if this dialog box is closed.

[Match whole word only] check box
If this option is selected, the work bench searches only the words that are completely matched
with the specified word. If not, only the part of word that matches the specified word will be
searched.

[Match case] check box
If this option is specified, a case-sensitive search is performed. If not, a case-insensitive search is
performed.

[Direction] option
If the [Up] radio button is selected, the specified word is searched toward to the beginning of the
file. If the [Down] radio button is selected, a search is performed toward to the end of the file.

[Find Next] button
Clicking this button starts searching the specified word. If the specified word is found, the [Edit]
window refreshes the display and highlights the word found.

[Cancel] button
Clicking this button closes the dialog box.

Once a word to be found is specified in the [Find] dialog box, the [Find Next] and [Find Previous]
buttons on the toolbar can be used for a forward or backward search.

 [Find Next] button [Find Previous] button

Replace
To replace a word with another one, select [Replace] from the [Edit] menu.
The [Replace] dialog box appears.

The controls in the dialog are as follows:

[Find what:] text box
Enter the word to be found in this text box. If a word has been specified in the [Find] dialog box, it
appears in this box.

[Replace with:] text box
Enter the substitute word in this box.

[Match whole word only] check box
If this option is selected, the work bench searches only the words that are completely matched
with the specified word. If not, only the part of word that matches the specified word will be
searched.

[Match case] check box
If this option is specified, a case-sensitive search is performed. If not, a case-insensitive search is
performed.

CHAPTER 3: WORK BENCH

34 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

[Find Next] button
Clicking this button starts searching the specified word. If the specified word is found, the [Edit]
window refreshes the display and highlights the word found.

[Replace] button
By clicking this button after the specified word is found, it is replaced with the substitute word.
Then the work bench searches the next.

[Replace All] button
Replaces all the specified found words with the substitute word. Note that undo function cannot
be performed for this operation except for the last replaced word.

[Cancel] button
Clicking this button closes the dialog box.

Go to
You can go to any source line or any label position quickly.
To do this, select [Go To] from the [Edit] menu.
The [Go To] dialog box appears.

Going to a source line

1. Select "Line" in the [Go to what:] list box.

2. Type a line number in the [Enter Line Number] box and then click the [Go To] button.

Going to a label position

1. Select "Label" in the [Go to what:] list box.
The [Enter Line Number] box changes to the [Select Label] list box.

2. Select a label from the [Select Label] box and then click the [Go To] button.

The [Select Label] list box has a pull-down menu that contains the list of labels defined in the current
source file.

The [Edit] windows for source files (*.s, *.ms) have the [Go To Label] list box similar to the [Select
Label] list box in the [Go To] dialog box. You can also go to a label position using this box.

Inserting a file
To insert a file such as a header file and another source at the cursor position of the current source,
select [File...] from the [Insert] menu.
A dialog box will appears allowing selection of the file to be inserted.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 35
(S1C63 FAMILY ASSEMBLER PACKAGE)

Shortcut menu
The [Edit] window supports a short cut menu that appears by clicking the right mouse button on the
[Edit] window. It can also be done by pressing the [Short cut menu] key while the [Edit] window is
active if the key is available on the keyboard. It contains the editing menu items descried above, so
you can select an edit command using this menu.

3.7.4 Tag Jump Function
When assembler syntax errors occur during assembling, their error messages are displayed in the [Out-
put] window. In this case, you can go to the source line in which an error has occurred by double-clicking
the error message in the [Output] window.
However, this function is available only when the error message contains a source line number.

Linked with the corresponding source line

CHAPTER 3: WORK BENCH

36 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.7.5 Printing
The document in the [Edit] window can be printed out.
The [Print...], [Print Preview] and [Page Setup...] commands are provided in the [File] menu. The [Print]
button can also be used. They have the same function as those of standard Windows application.
Select one after activating the [Edit] window of the document to be printed.

3.8 Build Task
By using the [Build] menu or [Build] toolbar, the assembler, linker, debugger, HEX converter and
disassembler can be executed from the work bench.
In the work bench, process to generate an executable object from the source files is called a build task.

For details of each development tool, refer to the respective chapter.

3.8.1 Preparing a Build Task
Before starting a build task, necessary source files should be prepared and tool options should be config-
ured.
1. Create a new project. (Refer to Section 3.6.1.)
2. Select an ICE parameter file. (Refer to Section 3.6.1.)
3. Create source files and add them into the project. (Refer to Sections 3.7 and 3.6.2.)
4. Select tool options (Refer to Section 3.9.)

3.8.2 Building an Executable Object
To generate an executable object:

1. Open the project file.

2. Select an output format (absolute, Intel HEX or Motorola S) using the [Output Format] list box.

3. Select [Build] from the [Build] menu or click the [Build] button.

 [Build] button

The work bench generates a make file according to the source files in the project and the tool options set
by the user. This file is used to control invocation of tools.
First, the make process invokes the assembler for each source file to be assembled. If the latest relocatable
object file exists in the work space, the corresponding source file is not assembled to reduce process time.
Next, the linker is invoked to generate an absolute object file. The linker command file used in this phase
is automatically generated.
If absolute object has been selected as the output format, the build task is completed at this phase. If Intel
HEX or Motorola S has been selected, the HEX converter will be invoked to generate an object in the
specified format.

To rebuild all files including the latest relocatable object files, select [Rebuild All] from the [Build] menu
or click the [Rebuild All] button.

 [Rebuild All] button

The build task can be suspended by selecting [Stop Build] from the [Build] menu or clicking the [Stop
Build] button.

 [Stop Build] button

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 37
(S1C63 FAMILY ASSEMBLER PACKAGE)

To invoke only the assembler, select [Assemble] from the [Build] menu or click the [Assemble] button
after activating the [Edit] window of the source to be assembled.

 [Assemble] button

3.8.3 Debugging
To debug the generated executable file, select [Debug] from the [Build] menu or click the [Debug] button.

 [Debug] button

The debugger starts up with the specified ICE parameter file and then loads the executable object by the
command file generated from the work bench.
This command file contains the command to load the specified type of an executable object to the
debugger. The contents of the command file can be edited in the [Settings] dialog box explained in
Section 3.9.

∗ When the building process is performed again after invoking the debugger, the debugger will reload
the object file if its window can be activated.

Refer to Chapter 8, "Debugger", for operating the debugger.

CHAPTER 3: WORK BENCH

38 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.8.4 Executing Other Tools
The HEX converter and disassembler can be invoked independently. The mask data creation tools can
also be invoked from wb63.

HEX converter
To invoke the HEX converter, select [HEX converter...] from the [Tools] menu or click the [HEX
convert] button.

 [HEX convert] button

Then select an absolute object file to be converted in the [Hex data convert] dialog box.

This dialog box allows selection of the HEX converter options.

[ICE Parameter file:] list box
Select an ICE parameter file from the pull-down list.

[Output Format:] list box
Select an output format from between Intel HEX and Motorola S.

[Output error log file] check box
Select this option to generate the error log file of the HEX converter.

[Do not fill room with 0xFF] check box
Select this option when not filling the unused program area with 0xFF.

After selecting an absolute object and options, click the [Open] button. The HEX converter starts up
and converts the selected object into the specified format. The messages delivered from the HEX
converter are displayed in the [Output] window.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 39
(S1C63 FAMILY ASSEMBLER PACKAGE)

Disassembler
To invoke the disassembler, select [Disassembler...] from the [Tools] menu or click the [Disassemble]
button.

 [Disassemble] button

Then select the executable object file to be disassembled in the [Disassemble] dialog box.

This dialog box allows selection of the disassembler options.

[Output error log file] check box
Select this option to generate the error log file of the disassembler.

[Output Option]
Select a character case option using the radio buttons.
When [Default] is selected, the disassembled source will be made with all labels in upper-case
characters and instructions in lower-case characters.
When [Upper case] is selected, the source will be made with upper-case characters only.
When [Lower case] is selected, the source will be made with lower-case characters only.

After selecting an executable object and options, click the [Open] button. The disassembler starts up
and converts the selected object into the source file. The messages delivered from the disassembler are
displayed in the [Output] window.

Function option generator, segment option generator, melody assembler
and mask data checker

The [Tools] menu allows invocation of the following tools:

[WinFOG] Function option generator winfog (Chapter 9)
[WinSOG] Segment option generator winsog (Chapter 10)
[WinMLA] Melody assembler winmla (Chapter 11)
[WinMDC] Mask data checker winmdc (Chapter 12)

Refer to the respective chapter for how to use each tool.

Note: These tools do not support some models (no device information definition file is provided). In this
case, other tools are provided for each model. However those tools cannot be invoked from the
[Tools] menu.

CHAPTER 3: WORK BENCH

40 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.9 Tool Option Settings
The development tools have startup options that can be specified when invoking them.
These settings can be made in the [Settings] dialog box that appears by selecting [Settings...] from the
[Build] menu.

Click the tool name tab to view option settings of each tool.

Clicking the [OK] button updates option setting information in the project and then closes the dialog box.
To continue to select other tool options, click the [Apply] button. This does not close the dialog box.
Clicking the [Cancel] button closes the dialog box.

3.9.1 Assembler Options

In this dialog, the following four assembler options can be selected.
[Error file] Output of an error file (No: Not output, Yes: Output)
[Debug info] Addition of debugging information to the relocatable object (No: Not added, Yes: Added)
[List file] Output of the relocatable list file (No: Not output, Yes: Output)
[Defines] Name definition for conditional assembly (Enter a define name.)

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 41
(S1C63 FAMILY ASSEMBLER PACKAGE)

The edit box shows the default setting ([Default]) and the list of source files in the project.
The default setting applies to all the sources excluding ones that are specified independently.
To select options of a specific source, select the check box at the front of the source file name.

Check here → ■■ sub.s No No No

Each of the [Error file], [Debug info] and [List file] options is set to either "No" or "Yes" and it toggles by
double-clicking. For example, to change the default [List file] option from "No" to "Yes", double click "No"
in the [Default] line. It changes to "Yes".

Source Error file Debug info List file Defines
 [Default] No Yes No ← Double-click here. It will be changed to Yes.

To define a name for conditional assembly, double-clicking the [Defines] part.

Source Error file Debug info List file Defines
 [Default] No Yes No ← Double-click here, then type a define name.

An text box appears. Type a name in the box. If two or more names are to be entered, separate each name
with a comma (,).

Refer to Chapter 4, "Assembler", for details of the assembler options.

3.9.2 Linker Options

In this dialog, section allocation, symbol definition and other linker options can be specified.
The work bench generates a linker command file including these specifications, and specifies it when
invoking the linker.

Specifying section allocation
This option is set by default as all the sections will be allocated from the memory start address. To
specify a section start address, double click the cell and then enter the address.

Source BSS CODE DATA
■■ [Default] ← Double-click here to change default CODE section start address, then type an address.

Source BSS CODE DATA
■■ [Default] 0x100

The edit box shows the default setting ([Default]) and the list of source files in the project.
The default setting applies to all the sections excluding those of the source specified.
To set a specific source independently, select the check box at the front of the source file name.

Check here → ■■ sub.s 0x200

✓

✓

CHAPTER 3: WORK BENCH

42 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Symbol definition
To define a symbol, click the [New] button and then enter the symbol name and address in the edit
box.

Symbol Addr
[] [] ← Enter a symbol name and the address.

To modify a symbol name or address, double click the name or the address in the edit box and then
enter a new name or address.

Symbol Addr
TEST 0x0000 ← Double-click to modify.

To delete a symbol, highlight the symbol line by clicking and then click the [Delete] button.

Other option selections

[Disable all branch optimization] check box
Select this option if extension code insertions, deletions and corrections are not necessary.

[Disable insertion of branch extension] check box
Select this option if extension code insersions are not necessary.

[Output Error log file] check box
Select this option to generate the error log file of the linker.

[Disable removal branch optimization] check box
Select this option if extension code deletions are not necessary.

[Add source debug information] check box
Select this option to add the debugging information. If this option is not specified, the sources
cannot be displayed in debugging.

[Output absolute list file] check box
Select this option to generate the absolute list file.

[Output Map file] check box
Select this option to generate the link map file.

[Output Symbol file] check box
Select this option to generate the symbol file.

[Output cross reference file] check box
Select this option to generate the cross reference file.

Refer to Chapter 5, "Linker", for details of the linker options.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 43
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.9.3 Debugger Options

[COM Port:] list box
Select a COM port of the personal
computer used to communicate with
the ICE. COM1 is set by default.

[bps:] list box
Select a baud rate to communicate
with the ICE. 9600 bps is set by
default.

[Initial Command:] edit box
This box is used to edit the debugger
commands to be executed when the
debugger starts up. The work bench
generates a command file with the
commands entered in this box and
specifies it when invoking the
debugger. A load command is
initially set so that the debugger can
load the object at start up.

Refer to Chapter 8, "Debugger", for
details of the debugger options.

3.9.4 HEX Converter Options

[Output Format:] list box
An output format of the executable
object to be generated by the build
task can be selected.
When "Absolute Object" is selected,
the build task will be terminated
after linking has completed. The
HEX converter will not be invoked.
When "Intel Hex" or "Motorola S" is
selected, the HEX converter will be
invoked after linking has completed.
Other HEX converter options
become selectable when one of them
is selected.

[Do not fill room with 0xFF] check box
Select this option when not filling
the unused program area with 0xFF.

[Output error log file] check box
Select this option to generate the
error log file of the HEX converter.

Refer to Chapter 6, "HEX Converter", for
details of the HEX converter options.

CHAPTER 3: WORK BENCH

44 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.10 Work Bench Options
[Options...] in the [Tools] menu allows selection of some options for customizing the work bench. When
this menu item is selected, a dialog box appears.

File menu options
[MRU Files:] box

This option allows selection of a number of recently used files to be listed in the [File] menu. The
selectable range is 0 to 9.

[MRU Projects:] box
This option allows selection of a number of recently used project files to be listed in the [File]
menu. The selectable range is 0 to 9.

Print options
[Unit:] radio button

This option allows selection of a unit used for specifying the margins of the printing sheet. Either
"inch" or "mm" can be selected. This selection affects the margin setup field in the [Page Setup...]
dialog box.

[Font:] list box
This option allows selection of a font used for printing the document in the [Edit] window.

Editor options
[Auto Save:] box

This option sets an auto-save interval for the document to be edited in the [Edit] window. The
selectable range is 0 to 999 minutes. When 0 is selected, the document being edited will not be
automatically saved.

[Line No.] check box
This option enables or disables the line number display in the [Edit] window.

Color selection list box
These list boxes allow selection of colors used to display the document in the [Edit] window. Text
(mnemonics), comments, assembler pseudo-instructions, preprocessor pseudo-instructions, labels
and line numbers are displayed with different colors selected here.

Note: The contents selected in this dialog box will be effective after restarting the work bench.

CHAPTER 3: WORK BENCH

S5U1C63000A MANUAL EPSON 45
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.11 Short-Cut Key List

Key operation Function

Ctrl + N Creates a new document

Ctrl + O Opens an existing document

Ctrl + F12 Opens an existing document

Ctrl + S Saves the document

Ctrl + P Print the active document

Ctrl + Shift + F12 Print the active document

Ctrl + Z Undoes the last action

Alt + BackSpace Undoes the last action

Ctrl + X Cuts the selection and puts it on the clipboard

Shift + Delete Cuts the selection and puts it on the clipboard

Ctrl + C Copies the selection to the clipboard

Ctrl + Insert Copies the selection to the clipboard

Ctrl + V Inserts the clipboard contents at the insertion point

Shift + Insert Inserts the clipboard contents at the insertion point

Ctrl + A Selects the entire document

Ctrl + F Finds the specified text

F3 Finds next

Shift + F3 Finds previous

Ctrl + H Replaces the specified text with different text

Ctrl + G Moves to the specified location

Ctrl + F7 Assembles the file

F7 Builds the project

Ctrl + Break Stops the build

F5 Debugs the project

Alt + F7 Edits the project build and debug settings

Ctrl + Tab Next MDI Window

Short-cut-key Opens the popup menu

Shift + F10 Opens the popup menu

3.12 Error Messages
The work bench error messages are given below.

Error message Description

<filename> is changed by another editor. Reopen this file? The currently opened file is modified by another editor.

Cannot create file: <filename> The file (linker command file, debugger command file,

etc.) cannot be created.

Cannot find file: <filename> The source file cannot be found.

Cannot find ICE parameter file The ICE parameter file cannot be found.

Cannot open file: <filename> The source file cannot be opened.

You cannot close workspace while a build is in progress. The project close command or work bench terminate

Select the Stop Build command before closing. command is specified while the build task is being

processed.

Would you like to build it? The debugger invoke command is specified when the

build task has not already been completed.

CHAPTER 3: WORK BENCH

46 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

3.13 Precautions
(1) The source file that can be displayed and edited in the work bench is limited to 16M byte size.

(2) The label search and coloring function of the work bench does not support labels that have not ended
with a colon (:).

(3) The work bench can create a make, linker command and debugger command files, note, however, that
these files or settings created with another editor cannot be input into the work bench.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 47
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 4 ASSEMBLER
This chapter describes the functions of the assembler as63 and grammar involved with the creation

of assembly source files.

4.1 Functions
The assembler as63 is a tool that constitutes the core of this software package. It assembles (translates)
assembly source files and creates object files in the machine language.
The functions and features of the assembler are summarized below:
• Allows absolute and relocatable sections mixed in one source.
• Allows to develop programs in multiple sources by creating relocatable object files that can be com-

bined by the linker.
• Can add source debugging information for source debugging on the debugger.
• Upper compatible with the old S1C63 preprocessor and assembler.

The assembler provides the following additional functions as well as the basic assembly functions:
• Macro definition and macro invocation
• Definition of Define name
• Operators
• Insertion of other file
• Conditional assembly

The assembler processes source files in two stages: preprocessing stage and assembling stage. The
preprocessing stage expands the additional function part described in the source file to mnemonics that
can be assembled, and delivers them to a temporary file (preprocessed file). The assembling stage as-
semble the preprocessed file to convert the source codes into the machine codes.

4.2 Input/Output Files

Assembler

as63

file.s

Assembly source file

file.o file.msfile.lst

Object fileRelocatable
list file

file.err

Error filePreprocessed
source file

to Linker

Fig. 4.2.1 Flow chart

4.2.1 Input File
Assembly source file

File format: Text file
File name: <File name>.s

<File name>.ms (A preprocessed source file created by the assembler or disassembler.)
Description: File in which a source program is described. If the file extension is omitted, the

assembler finds a source file that has the specified file name and an extension ".s".
Note: When a ".s" source file is specified, it will be processed in the preprocessing stage

and then the assembling stage. When a ".ms" source file is specified, it will be
processed only in the assembling stage. Therefore, ".ms" files cannot include prepro-
cessor instructions.

CHAPTER 4: ASSEMBLER

48 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.2.2 Output Files
Object file

File format: Binary file in relocatable IEEE-695 format
File name: <file name>.o (The <file name> is the same as that of the input file, unless otherwise

specified with the -o option.)
Output destination: Current directory

Description: File in which machine language codes are stored in a relocatable form available for
the linker to link with other modules and to generate an executable absolute object.

Relocatable list file
File format: Text file

File name: <file name>.lst (The <file name> is the same as that of the input file, unless other-
wise specified with the -o option.)

Output destination: Current directory
Description: File in which offset locations, machine language codes and source codes are stored

in plain text.

Preprocessed file
File format: Text file

File name: <file name>.ms (The <file name> is the same as that of the input file, unless other-
wise specified with the -o option.)

Output destination: Current directory
Description: File in which instructions for preprocessing (e.g. conditional assembly and macro

instructions) are expanded into an assembling format.

Error file
File format: Text file

File name: <file name>.err (The <file name> is the same as that of the input file, unless other-
wise specified with the -o option.)

Output destination: Current directory
Description: The file is created if the -e option is specified. It records error messages and other

information which the assembler delivers via the Standard Output (stdout).

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 49
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.3 Starting Method

General form of command line

as63 ^ [options] ^ [<source file name>]

^ denotes a space.
[] indicates the possibility to omit.

Source file name
In the command line, only one assembly source file can be specified at a time. Therefore, you will
have to process multiple files by executing the assembler the number of times equal to the number of
files to be processed.
A long file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options
The assembler comes provided with the following six start-up options:

-d <define name>
Function: Definition of Define name

Explanation: • Works in the same manner as you describe "#define <define name>" at top of
the source. It is an option to control the conditional assembly at the start-up.

• One or more spaces are necessary between -d and the <define name>.
• To define two or more Define names, repeat the specification of "-d <define

name>".
-g

Function: Addition of debugging information
Explanation: • Creates an output file containing symbolic/source debugging information.

• Always specify this function when you perform symbolic/source debugging.
Default: If this option is not specified, no debugging information will be added to the

relocatable object file.
-o <file name>

Function: Specification of output path/file name
Explanation: • Specifies an output path/file name without extension or with an extension ".o".

If no extension is specified, ".o" will be supplemented at the end of the specified
output path/file name.

Default: The input file name is used for the output file names.
-c

Function: Ignore character case of symbols
Explanation: • Allows description of symbols in case insensitive.

Default: If this option is not specified, symbol names will be case sensitive.
-l

Function: Output of relocatable list file
Explanation: • Outputs a relocatable list file.

Default: If this option is not specified, no relocatable list file will be output.
-e

Function: Output of error file
Explanation: • Creates an .err file which contains the information that the assembler outputs to

the Standard Output (stdout), such as error messages.
Default: If this option is not specified, no error file will be created.

When entering an option in the command line, you need to place one or more spaces before and after
the option. The options can be specified in any order. It is also possible to enter options after the
source file name.

Example: c:\epson\s1c63\bin\as63 -g -e -l -d TEST1 -d TEST2 test.s

CHAPTER 4: ASSEMBLER

50 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.4 Messages
The assembler delivers all its messages through the Standard Output (stdout).

Start-up message
The assembler outputs only the following message when it starts up.

Assembler 63 Ver x.xx

Copyright (C) SEIKO EPSON CORP. 1998-2001

End message
The assembler outputs the following messages to indicate which files have been created when it ends
normally.
Created preprocessed source file <FILENAME.MS>

Created relocatable object file <FILENAME.O>

Created relocatable list file <FILENAME.LST>

Created error log file <FILENAME.ERR>

Assembly 0 error(s) 0 warning(s)

Usage output
If no file name was specified or the option was not specified correctly, the assembler ends after
delivering the following message concerning the usage:

Usage: as63 [options] <file name>

Options: -d <symbol> Add preprocess definition

 -e Output error log file (.ERR)

 -g Add source debug information in object

 -l Output relocatable list file (.LST)

 -c Ignore character case of symbols

 -o <file name> Specify output file name

File name: Source file name (.S or .MS)

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example:

TEST.S(5) Error: Illegal syntax

Assembly 1 error(s) 0 warning(s)

In the case of an error, the assembler ends without creating an output file. If an error occurs at the
preprocessing stage in the assembler, the assembler stops processing and outputs preprocess-level
errors only.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

TEST.S(6) Warning: Expression out of range

Assembly 0 error(s) 1 warning(s)

In the case of a warning, the assembler ends after creating an output file.

The source file name that was specified in the command line will appear at the beginning of the error
and warning messages.
For details on errors and warnings, refer to Section 4.10, "Error/Warning Messages".

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 51
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.5 Grammar of Assembly Source
Assembly source files should be created on a general-purpose editor or the source editor of the work
bench. Save sources as standard text files. For the file name, a long file name supported in Windows can
be specified.

This section explains the rules and grammar involved with the creation of assembly source files.

4.5.1 Statements
Each individual instruction or definition of an assembly source is called a statement. The basic composi-
tion of a statement is as follows:

Syntax pattern
(1) Mnemonic Operand (;comment)
(2) Assembler pseudo-instruction Parameter (;comment)
(3) Label: (;comment)
(4) ;comment

Example: <Statement> <Syntax Pattern>
#include "define.h" (2)

.set IO1, 0xfff1 (2)

; TEXT SECTION (ROM, 13bit width) (4)

.org 0x100 (2)
NMI: (3)

reti (1)
nop (1)
nop (1)
jr NMI (1)

.org 0x110 (2)
BOOT: (3)

ld %f,0x4 (1)
ld %a,0 (1)
ld %a,0 (1)
ldb %ext,0 ; clear memory 0 to 3 (1)
 : :

The example given above is an ordinary source description method. For increased visibility, the elements
composing each statement are aligned with tabs and spaces.

CHAPTER 4: ASSEMBLER

52 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Restrictions
 • Only one statement can be described in one line. A description containing more than two instructions

in one line will result in an error. However, a comment or a label may be described in the same line
with an instruction.
Example:

;OK
BOOT: ld %f,0x4

;Error
BOOT: ld %f,0x4 ld %a,0x0

 • One statement cannot be described in more than one line. A statement that cannot complete in one
line will result in an error.
Example:

.word 0x0,0x1,0x2,0x3 ... OK

.word 0xa,0xb,0xc,0xd ... OK

.word 0x0,0x1,0x2,0x3
0xa,0xb,0xc,0xd ... Error

 • The maximum describable number of characters in one line is 259 (ASCII characters). If this number is
exceeded, an error will result.

 • The usable characters are limited to ASCII characters (alphanumeric symbols), except for use in
comments. Also, the usable symbols have certain limitations (details below).

 • The reserved words such as mnemonics and pseudo-instructions are all not case sensitive, while the
user defined items such as labels and symbols are all case sensitive if the -c option is not specified.
Therefore, mnemonics and pseudo-instructions can be written in uppercase (A–Z) characters, lower-
case (a–z) characters, or both. For example, "ld", "LD", and "Ld" are all accepted as "ld" instructions.
For purposes of discrimination from symbols, this manual uses lowercase characters for the reserved
words.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 53
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.5.2 Instructions (Mnemonics and Pseudo-instructions)
The assembler supports all the mnemonics of the S1C63000 instruction set and the assembler pseudo-
instructions. The following shows how to describe the instructions.

Mnemonics
An instruction is generally composed of [mnemonic] + [operand]. Some instructions do not contain an
operand.

General notation forms of instructions

General forms: <Mnemonic>
<Mnemonic> tab or space <Operand>
<Mnemonic> tab or space <Operand1>, <Operand2>
<Mnemonic> tab or space <Operand1>, <Operand2>, <Operand3>

Examples: nop

jr NMI

ld %f,0x4

There is no restriction as to where the description of a mnemonic should begin in a line. A tab or space
preceding a mnemonic is ignored.

An instruction containing an operand needs to be separated into the mnemonic and the operand with
one or more tabs or spaces. If an instruction requires multiple operands, the operands must be
separated from each other with one comma (,). Space between operands is ignored.

The elements of operands will be described further below.

Types of mnemonics
The following 39 types of mnemonics can be used in the S1C63 Family:

add adc and bit calr calz clr cmp dec ex halt inc int jp jr jrc jrnc jrnz

jrz ld ldb nop or pop push ret retd reti rets rl rr sbc set sll slp srl sub

tst xor

For details on instructions, refer to the "S1C63000 Core CPU Manual".

Note
The assembler is commonly used for all the S1C63 Family models, so all the instructions can be
accepted. Be aware that no error will occur in the assembler even if instructions or operands unavail-
able for the model are described. They will be checked in the linker.

Assembler pseudo-instructions
The assembler pseudo-instructions are not converted to execution codes, but they are designed to
control the assembler or to set data.
For discrimination from other instructions, all the assembler pseudo-instructions begin with a sharp
(#) or a period (.).

General notation forms of pseudo-instructions

General forms: <Pseudo-instruction>
<Pseudo-instruction> tab or space <Parameter>
<Pseudo-instruction> tab or space <Parameter1> tab, space or comma <Parameter2> ...

Examples: #define SW1 1

.org 0x100

.comm BUF 4

There is no restriction as to where the description of an instruction may begin in a line.

An instruction containing a parameter needs to be separated into the instruction and the parameter
with one or more tabs or spaces. If an instruction requires multiple parameters, they are separated
from each other with an appropriate delimiter.

CHAPTER 4: ASSEMBLER

54 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Types of pseudo-instructions
The following 25 types of pseudo-instructions are available:

#include #define #macro #endm #ifdef #ifndef #else #endif #defnum
.abs .align .org .code .data .bss .codeword .word .comm .lcomm
.global .set .list .nolist .stabs .stabn

For details of each pseudo-instruction and its functionality, refer to Section 4.7, "Assembler Pseudo-
Instructions".

Restriction
The mnemonics and pseudo-instructions are all not case sensitive. Therefore, they can be written in
uppercase (A–Z) characters, lowercase (a–z) characters, or both. For example, "ld", "LD", and "Ld" are
all accepted as "ld" instructions. However, the user defined symbols used in the operands or param-
eters are case sensitive. They must be the same with the defined characters. When assembling with the
"-c" option, all symbols are case insensitive.

4.5.3 Symbols (Labels)
A symbol (label) is an identifier designed to refer to an arbitrary address in the program. It is possible to
refer to a branch destination of a program or a data memory address using the defined symbol.

Definition of a symbol
Usable symbols are defined as 16-bit values by any of the following methods:

1. <Symbol>:
Example: LABEL1:

... LABEL1 is a label that indicates the address of a described location.

Preceding spaces and tabs are ignored. It is a general practice to describe from the top of a line.

2. Definition using the .set pseudo-instruction
Example: .set ADDR1 0xff00

... ADDR1 is a symbol that represents absolute address 0xff00.

3. Definition using the .comm or .lcomm pseudo-instruction
Example: .comm BUF1 4

... BUF1 is a label that represents a RAM address.

The .comm and .lcomm pseudo instructions can define labels only in bss sections (data memory
such as RAM). Program memory addresses cannot be defined.

Reference with symbols
A defined symbol denotes an address.
The actual address value should be determined in the linking process, except in the case of absolute
sections.
Examples: LABEL1:

:

 jr LABEL1 ... jumps to the LABEL1 location.

.set IO_M 0xfff0

.org 0x0000

.bss

.comm COUNT1 1

.code

ldb %ext,IO_M@h

ldb %xl,IO_M@l ... 0xfff0 is loaded to X-register. (@h and @l are symbol masks.)
inc [COUNT1] ... Regarded as inc [0x0000].

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 55
(S1C63 FAMILY ASSEMBLER PACKAGE)

Scope
The scope is a reference range of a symbol (label). It is called local if the symbol is to be referenced
within the same file, and it is called global if the symbol is to be referenced from other files.
Any defined symbol's scope is local in default. To make a symbol's scope global, use the .global
pseudo-instruction both in the file in which the symbol is defined and in the file that references the
symbol.
A double definition of local symbols will be an error at the assembly stage, while a double definition
of global symbols will be an error at the link stage.
Example:

File in which global symbol is defined (file1)
.global SYMBOL ... Global declaration of a symbol which is to be defined in this file.

SYMBOL:

 :

LABEL: ... Local symbol
 : (Can be referenced to only in this file)

File in which a global symbol is referenced to (file2)
.global SYMBOL ... Global declaration of a symbol defined in other source file.
call SYMBOL ... Symbol externally referenced to.
 :

LABEL: ... Local symbol
 : (Treated as a different symbol from LABEL of file1)

The assembler regards those symbols as those of undefined addresses in the assembling, and includes
that information in the object file it delivers. Those addresses are finally determined by the processing
of the linker.

 ∗ When a symbol is defined by the .comm pseudo-instruction, that symbol will be a global symbol.
Therefore, in a defined file, no global declaration needs to be made using the .global pseudo-instruc-
tion. On the contrary, in a file to be referenced, the global declaration is necessary prior to the refer-
ence.

Symbol masks
Symbol masks are designed to acquire the upper 8-bit address and the lower 8-bit address from a
symbol representing a 16-bit address.
The following 5 types of symbol masks can be used:
@l or @L Acquires the lower 8 bits of an absolute address.
@h or @H Acquires the upper 8 bits of an absolute address.
@rl or @RL Acquires the lower 8 bits of a relative address.
@rh or @RH Acquires the upper 8 bits of a relative address.
@xh or @XH Acquires the upper 8 bits of an absolute address by inverting them (Used exclu-

sively for the "ldb" instruction combined with the "cmp" instruction).
Sample uses:
ldb %ext,ADDR@h
ldb %xl,ADDR@l ... Functions as "ld %x, ADDR (16-bit)"

ldb %ext,NUM@h
add %x,NUM@l ... Functions as "add %x, NUM (16-bit)"

ldb %ext,LABEL@rh
calr LABEL@rl ... Functions as "calr LABEL (16-bit)"

ldb %ext,DATA@xh
cmp %x,DATA@l ... Functions as "cmp %x, DATA (16-bit)"

.set IO_ADDR 0xff12
ldb %ext,IO_ADDR@l
ld %a,[%y] ... Functions as "ld %a, [IO_ADDR]"

CHAPTER 4: ASSEMBLER

56 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Restrictions
 • The maximum number of characters of a symbol is 259 (not including colon). If this number is ex-

ceeded, an error will result.

 • Only the following characters can be used:
A–Z a–z _ 0–9 ?

 • A symbol cannot begin with a numeral.
Examples: ;OK ;Error

FOO: 1lable:

L1: L 1:

.set IO 0xfff0 .set #IO 0xfff0

.comm BUF 4 .lcomm 1st_BUF 2

 • Since symbols are case sensitive by default, uppercase and lowercase are discriminated. When refer-
encing a defined symbol, use the characters exactly the same as the defined symbol.
Examples: _Abcd:

 :

jr _ABCD ... Does not jump to _Abcd

However, symbols will be case insensitive if the -c option is specified.

 • The symbol masks are effective only on the defined symbols. If a symbol mask is applied to a numeric
value, an error will result.

 • If a symbol mask is omitted, the lower bits effective for that instruction will be used. However, if the
bit value does not fall within the instruction range, an error or warning will be issued.

 • Symbols and symbol masks cannot be used on 4-bit immediate values.

4.5.4 Comments
Comments are used to describe a series of routines, or the meaning of each statement. Comments cannot
comprise part of coding.

Definition of comment
A character string beginning with a semicolon (;) and ending with a line feed code (LF) is interpreted
as a comment. Not only ASCII characters, but also other non-ASCII characters can be used to describe
a comment.
Examples: ;This line is a comment line.

LABEL: ;This is the comment for LABEL.

 ld %a,%b ;This is the comment for the instruction on the left.

Restrictions
 • A comment is allowed up to 259 characters, including a semicolon (;), spaces before, after and inside

the comment, and a return/line feed code.

 • When a comment extends to several lines, each line must begin with a semicolon.
Examples: ;These are

 comment lines. ... The second line will not be regarded as a comment. An error will
result.

;These are

; comment lines. ... Both lines will be regarded as comments.

4.5.5 Blank Lines
This assembler also allows a blank line containing only a return/line feed code. It need not be made into a
comment line using a semicolon.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 57
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.5.6 Register Names
The CPU register names may be written in either uppercase or lowercase letters.

Table 4.5.6.1 Notations of register names

Register Notation

 A Data register A %a, %A, a or A

 B Data register B %b, %B, b or B

 BA BA-register pair %ba, %BA, ba or BA

 X Index register X %x, %X, x or X

 XH Upper 8 bits of X-register %xh, %XH, xh or XH

 XL Lower 8 bits of X-register %xl, %XL, xl or XL

 Y Index register Y %y, %Y, y or Y

 YH Upper 8 bits of Y-register %yh, %YH, yh or YH

 YL Lower 8 bits of Y-register %yl, %YL, yl or YL

 F Flag register F %f, %F, f or F

 EXT Extension register EXT %ext, %EXT, ext or EXT

 SP1 Stack pointer SP1 %sp1, %SP1, sp1 or SP1

 SP2 Stack pointer SP2 %sp2, %SP2, sp2 or SP2

Note: "%" can be omitted. These symbols are reserved words, therefore they cannot be used as user-
defined symbol names.

4.5.7 Numerical Notations
This Assembler supports three kinds of numerical notations: decimal, hexadecimal, and binary.

Decimal notations of values
Notations represented with 0–9 only will be regarded as decimal numbers. To specify a negative
value, put a minus sign (-) before the value.
Examples: 1 255 -3

Characters other than 0–9 and the sign (-) cannot be used.

Hexadecimal notations of values
To specify a hexadecimal number, place "0x" before the value.
Examples: 0x1a 0xff00

"0x" cannot be followed by characters other than 0–9, a–f, and A–F.

Binary notations of values
To specify a binary number, place "0b" before the value.
Examples: 0b1001 0b1001100

"0b" cannot be followed by characters other than 0 or 1.

Specified ranges of values
The size (specified range) of immediate data varies with each instruction.
The specifiable ranges of different immediate data are given below.

Table 4.5.7.1 Types of immediate data and their specifiable ranges

Symbol Type Decimal Hexadecimal Binary

imm2 2-bit immediate data 0–3 0x0–0x3 0b0–0b11

imm4 4-bit immediate data 0–15 0x0–0xf 0b0–0b1111

imm6 Software vectored interrupt address 0–64 0x0–0x3f 0b0–0b111111

imm8 8-bit immediate data 0–255 0x0–0xff 0b0–0b11111111

n4 4-bit n-ary specified data 1–16 0x1–0x10 0b0–0b10000

sign8 Signed 8-bit immediate data -128–127 0x0–0xff 0b0–0b11111111

add6 6-bit address 0–64 0x0–0x3f 0b0–0b111111

CHAPTER 4: ASSEMBLER

58 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Other numerical notations
The following numerical notations can also be used:
nnnnB: Binary numbers
nnnnO: Octal numbers
nnnnQ: Octal numbers
nnnnH: Hexadecimal numbers

"nnnnB" (binary numbers) and "nnnnH" (hexadecimal numbers) are converted into the new format
("0bnnnn" and "0xnnnn") in the preprocessing stage.
"nnnnO" and "nnnnQ" (octal numbers) are converted into hexadecimal numbers ("0xnnnn") in the
preprocessing stage.

ASCII to HEX conversion
One or two ASCII characters (enclosed with ' ') can be described in source files unless converting into
numbers. The numeric operators can also be used. The described characters are converted into ASCII
codes and delivered to the output relocatable object file.

Examples: retd '1' → (retd 0x31)

retd '23' → (retd 0x3233)

retd '4'+1 → (retd 0x35)

Note: Three or more characters and the following characters cannot be described:
Control codes (0x0 to 0x1f) space @ [] ; ,

4.5.8 Operators
An expression that consists of operators, numbers and/or defined symbols (including labels) can be used
for specifying a number or defining a Define name (only for number definition).
The preprocess in the assembler handles expressions in signed 16-bit data and expands them as hexadeci-
mal numbers.

Types of operators

Arithmetic operators Examples
+ Addition, Plus sign +0xff, 1+2

- Subtraction, Minus sign -1+2, 0xff-0b111

* Multiplication 0xf*5

/ Division 0x123/0x56

% Residue 0x123%0x56 (%% is also be supported.)
>> Shifting to right 1>>2

<< Shifting to left 0x113<<3

^H Acquires upper 8 bits 0x1234^H

^L Acquires lower 8 bits 0x1234^L

() Parenthesis 1+(1+2*5)

The arithmetic operator returns the result of arithmetic operation on the specified terms.

Logical operators Examples
& Bit AND 0b1101&0b111

| Bit OR 0b123|0xff

^ Bit XOR 12^35

~ Bit inversion ~0x1234

The logical operator returns the result of logic operation on the specified terms.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 59
(S1C63 FAMILY ASSEMBLER PACKAGE)

Relational operators Examples
== Equal SW==0

!= Not equal SW!=0

< Less than ABC<5

<= Less than or equal ABC<=5

> Greater than ABC>5

>= Greater than or equal ABC>=5

&& AND ABC&&0xf

|| OR ABC||0b1010

The relational operator returns 1 if the expression is true, otherwise it returns 0.

Priority
The operators have the priority shown below. If there are two or more operators with the same
priority in an expression, the assembler calculates the expression from the left.

1. () High priority
2. + (plus sign), - (minus sign), ~ ↑
3. ^H, ^L
4. *, /, % (%%)
5. + (addition), - (subtraction)
6. <<, >>
7. ==, !=, <, <=, >, >=
8. &
9. ^
10. |
11. && ↓
12. || Low priority

Examples
#defnum BLK_HEADER_SIZE 4

#defnum BLK_START 0x30+BLK_HEADER_SIZE*2

#defnum BLK_END BLK_START+4*2

#macro ADD_X ADDR

ldb %ext,(ADDR*2)^H ... Can be used in macros.
add %x,(ADDR*2)^L

#endm

ldb %ext,BLK_START^H ; %x=BLK_START

ldb %xl, BLK_START^L

ld [%x],0b11&0x110

ldb %ext, ~BLK_END^H ; cmp %x, BLK_END

cmp %x, BLK_END^L

ADD_X (0x1200+0x34)*2 ; %x+=0x1234*2

CHAPTER 4: ASSEMBLER

60 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Precautions
 • Minus numbers -1 to -32768 are handled as 0xffff to 0x8000.

 • The assembler handles expressions as 16-bit data. Pay attention to the data size when using it as 4-bit
immediate data, especially when it has a minus value.
Example:

ld %a,-2+1 ... NG. It will be expanded as "ld a,0xffff".
ld %a,(-2+1)&0xf ... OK. It will be expanded as "ld a,0xf".

 • Expressions are calculated with a sign (like a signed short in C language).
Pay attention to the calculation results of the >>, / and % operators using hexadecimal numbers.
Example:

.set NUM1 0xfffe/2 ... -2/2 = -1 (0xffff)
The / and % operators can only be used within the range of +32767 to -32768.

.set NUM2 0xfffe>>1 ... -2>>1 = -1 (0xffff)
Mask as (0xfffe>>1)&0x7fff.

 • When using an expression in a #define statement, it will be expanded as is. Pay attention when a
number is defined using the #define pseudo-instruction.
Example:

#define NUM1 1+1

ld %a,NUM1*2 ... This will be expanded as "ld %a, 1+1*2" (=3).
#define NUM2 (1+1)

ld %a,NUM2*2 ... This will be expanded as "ld %a, (1+1)*2" (=4).

 • Do not insert a space or a tab between an operator and a term.

4.5.9 Location Counter Symbol "$"
The address of each instruction code is set in the 16-bit location counter when a statement is assembled. It
can be referred using a symbol "$" as well as labels. "$" indicates the current location, thus it can be used
for relative branch operation. The operators can be used with this symbol similar to labels.
Example: jr $... Jumps to this address (means endless loop).

jr $+2 ... Jumps to two words after this address.
jr $-10 ... Jumps to 10 words before this address.
jr $+16+(16*(BLK>16)) ... Operators and defined symbols can be used.

Precaution
When the address referred to relatively with "$" is in another section, it should be noted if the in-
tended section resides at the addressed place, because if the section is relocatable, the absolute
address is not fixed until the linking is completed.

4.5.10 Optimization Branch Instructions for Old Preprocessor
The old version of the S1C63 preprocessor has optimization branch instructions for optimizing the
extension code. Since this function is supported by the linker in the current version, they are expanded
without an extension code in the assembler. The relative distance to the label does not affect this expan-
sion.

Optimization Branch Instruction Mnemonic after Expansion
xjr LABEL → jr LABEL
xjrc LABEL → jrc LABEL
xjrnc LABEL → jrnc LABEL
xjrz LABEL → jrz LABEL
xjrnz LABEL → jrnz LABEL
xcalr LABEL → calr LABEL

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 61
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.6 Section Management

4.6.1 Definition of Sections
The memory configuration of the S1C63 Family microcomputer is divided into a code ROM that contains
programs written, and data memories such as data RAM and I/O memory. Moreover, some models carry
a data ROM that holds static data written.
A section refers to an area where codes are written (or to be mapped), and there are three types of sec-
tions in correspondence with the memories:

1. CODE section Area located within a code ROM.
2. DATA section Area located within a data ROM.
3. BSS section Denotes a RAM area.

To allow to specify these sections in a source file, the assembler comes provided with pseudo-instruc-
tions.

CODE section
The .code pseudo-instruction defines a CODE section. Statements from this instruction to another
section defining instruction will be regarded as program codes, and will be so processed as to be
mapped in the code ROM. The source file will be regarded as a CODE section by default. Therefore,
the part that goes from top of the file, to another section will be processed as a CODE section. Because
this section is of 13 bits/word, 4-bit data cannot be defined.

DATA section
The .data pseudo-instruction defines a DATA section. Statements from this instruction to another
section defining instruction will be regarded as 4-bit data, and will be so processed as to be mapped in
the data ROM. Therefore, nothing else can be described in this area other than the symbols for
referring to the address of the data ROM, the 4-bit data defining pseudo-instruction (.word), and
comments. This section is applied only to models having a data ROM.

BSS section
The .bss pseudo-instruction defines a BSS section. Statements from this instruction to another section
defining instruction will be regarded as 4-bit data, and will be so processed as to be mapped in the
data memory (RAM). Therefore, nothing else can be described in this area other than the symbols for
referring to the address of the data memory, the area securing pseudo-instructions (.comm and
.lcomm).
The .comm pseudo-instruction and the .lcomm pseudo-instruction are designed to define the symbol
and size of a data area. Although the BSS section basically consists in a RAM area, it can as well be
used as a data memory area, such as display memory and I/O memory. Since code definition in this
area is meaningless in embedded type microcomputers, such as those of the S1C63 Family, nothing
else can be described other than the two instructions and comments.

4.6.2 Absolute and Relocatable Sections
The assembler is a relocatable assembler that always generates an relocatable object and needs the linker
to make it into an executable absolute object. However, each section in one source can be absolute or
relocatable depending on how they are described. The section whose absolute address is specified with
the .org pseudo-instruction in the source is an absolute section, while the section whose absolute address
is not specified is an relocatable section. Absolute addresses of relocatable sections will be fixed by the
linker. Both types of sections can be included in one source.

CHAPTER 4: ASSEMBLER

62 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.6.3 Sample Definition of Sections

 :

 CODE1 (Relocatable program)
 :

.data

 :

 DATA1 (Relocatable data definition)
 :

.bss

 :

 BSS1 (Relocatable RAM area definition)
 :

.code

.org 0x0 ... If this specification is omitted, a CODE section begins from the address following CODE1.
 :

 CODE2 (Absolute program)
 :

.bss

.org 0x0 ... If this specification is omitted, a BSS section begins from the address following BSS1.
 :

 BSS2 (Absolute RAM area definition)
 :

.code

 :

 CODE3 (Relocatable program)
 :

.data

.org 0x8000 ... If this specification is omitted, a DATA section begins from the address following DATA1.
 :

 DATA2 (Absolute data definition)
 :

In the section definition shown above, absolute sections and relocatable sections are mixed in one source.
Absolute sections are sections whose absolute addresses are specified with the .org pseudo-instructions.
CODE2, BSS2 and DATA2 are absolute sections. Absolute sections will be located at the place specified.

Other sections are relocatable in the sense that the absolute location addresses are not fixed at the assem-
bly stage and will be fixed later at the linking stage.

Precautions
When there appears in a section a statement which is designed for other section, a warning will be
issued and a new section will be started according to the statement.
Examples: .code

.comm BUF 16 ... Warning; A new bss section begins

.bss

ld %a,%b ... Warning; A new code section begins

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 63
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7 Assembler Pseudo-Instructions
The assembler pseudo-instructions are not converted to execution codes, but they are designed to control
the assembler or to set data.
For discrimination from other instructions, all the assembler pseudo-instructions begin with a character
"#" or ".". The instructions that begin with "#" are preprocessed pseudo-instructions and they are ex-
panded into forms that can be assembled. The expanded results are delivered in the preprocessed file
(.ms). The original statements of the pseudo-instructions (#) are changed as comments by attaching a ";"
before delivering to the file. The instruction that begins with "." are used for section and data definitions.
They are not converted at the preprocessing stage.
All the pseudo-instruction characters are not case sensitive.
The following pseudo-instructions are available in the assembler:

Pseudo-instruction Function
#include Includes another source.
#define Defines a constant string.
#defnum Defines a constant number. (∗ 1)
#macro–#endm Defines a macro.
#ifdef–#else–#endif Defines an assemble condition.
#ifndef–#else–#endif Defines an assemble condition.
.abs Specifies absolute assembling. (∗ 1)
.align Sets alignment of a section.
.org Sets an absolute address.
.code Declares a CODE section (mapping to the built-in code ROM).
.data Declares a DATA section (mapping to the built-in data ROM).
.bss Declares a BSS section (mapping to the built-in RAM).
.codeword Defines data in the CODE section.
.word Defines data in the DATA section.
.comm Secures a global area in the BSS section.
.lcomm Secures a local area in the BSS section.
.global Defines an external reference symbol.
.set Defines an absolute address symbol.
.list Controls assembly list output.
.nolist Controls assembly list output.
.stabs Debugging information (source name).
.stabn Debugging information (line number).

∗ 1: Maintained only for compatibility with the older assembler.

CHAPTER 4: ASSEMBLER

64 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.1 Include Instruction (#include)
The include instruction inserts the contents of a file in any location of a source file. It is useful when the
same source is shared in common among several source files.

Instruction format

#include "<File name>"

 • A drive name or path name can as well be specified as the file name.
 • One or more spaces are necessary between the instruction and the "<File name>".
 • Character case is ignored for both #include itself and "<File name>".

Sample descriptions:
#include "sample.def"

#include "c:\EPSON\S1C63\header\common.h"

Expansion rule
The specified file is inserted in the location where #include was described.

Precautions
 • Only files created in text file format can be inserted.

 • The #include instruction can be used in the including files. However, nesting is limited up to 10 levels.
If this limit is surpassed, an error will result.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 65
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.2 Define Instruction (#define)
Any substitute character string can be left defined as a Define name by the define instruction (#define),
and the details of that definition can be referred to from various parts of the program using the Define
name.

Instruction format

#define <Define name> [<Substitute character string>]

<Define name>:
 • The first character is limited to a–z, A–Z, ? and _.
 • The second and the subsequent characters can use a–z, A–Z, 0–9, ? and _.
 • Uppercase and lowercase characters are discriminated. (#define itself is case insensitive.)

When assembling with the "-c" option, all symbols are case insensitive.
 • One or more spaces or tabs are necessary between the instruction and the Define name.

<Substitute character string>:
 • When writing all characters can be used, but a semicolon (;) is interpreted as the start of a comment.
 • Uppercase and lowercase characters are discriminated.
 • One or more spaces or tabs are necessary between the Define name and the substitute character string.
 • The substitute character string can be omitted. In that case, NULL is defined in lieu of the substitute

character string. It can be used for the conditional assembly instruction.

Sample definitions:
#define TYPE1

#define L1 LABEL_01

#define Xreg %x

#define CONST (DATA1+DATA2)*2

Expansion rule
If a Define name defined appears in the source, the assembler substitutes a defined character string
for that Define name.

Sample expansion:
#define INT_F1 0xfff0

#define INT_F1_1 0

 :

set [INT_F1], INT_F1_1 ... Expanded to "set [0xfff0],0".
 :

CHAPTER 4: ASSEMBLER

66 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Precautions
 • The assembler only permits backward reference of a Define name. Therefore the name definition must

precede the use of it.

 • Once a Define name is defined, it cannot be canceled. However, redefinition can be made using
another Define name.
Example:

#define XL %xl

#define Xlow XL

ldb [Xlow],%ba ... Expanded to "ldb [%xl],%ba".

 • When the same Define name is defined duplicatedly, a warning message will appear. Until it is
redefined, it is expanded with the original content, and once it is redefined, it is expanded with the
new content.

 • No other characters than delimiters (space, tab, line feed, and comma) can be added before and after a
Define name in the source, unless they are enclosed in [] or []+. However, an operator or a symbol
mask (@..) can be added to a Define name string without delimiters.
Examples:

#define INT_F 0xfff

tst [INT_F1],0 ;tst [0xfff1],0? ... Specification like this is invalid.

#define L LABEL

ldb %ext,L@h ... Replaced with "ldb %ext,LABEL@h".
ldb %xl,L@l ... Replaced with "ldb %xl,LABEL@l".

 • When using an expression in a #define statement, it will be expanded as is. Pay attention when a
number is defined using the #define pseudo-instruction.
Examples:

#define NUM1 1+1

ld %a,NUM1*2 ... Expanded as "ld %a, 1+1*2" (=3).

#define NUM2 (1+1)

ld %a,NUM2*2 ... Expanded as "ld %a, (1+1)*2" (=4).

 • The internal preprocess part of the assembler does not check the validity of a statement as the result of
the replacement of the character string.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 67
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.3 Numeric Define Instruction (#defnum)

Instruction format

#defnum <Numeric Define name> <Number>

Function
The #defnum pseudo-instruction is provided for compatibility with the older assembler. In the older
assembler, #defnum is required to define a numeric constant, while #define is for defining a string. In
the new assembler, there is no need to differentiate between a numeric constant and a string.
Therefore the new assembler should use the #define instruction.

CHAPTER 4: ASSEMBLER

68 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.4 Macro Instructions (#macro ... #endm)
Any statement string can be left defined as a macro using the macro instruction (#macro), and the content
of that definition can be invoked from different parts of the program with the macro name. Unlike a
subroutine, the part that is invoking a macro is replaced with the content of the definition.

Instruction format

#macro <Macro name> [<Dummy parameter>] [,<Dummy parameter>] ...
<Statement string>

#endm

<Macro name>:
 • The first character is limited to a–z, A–Z, ? and _.
 • The second and the subsequent characters can use a–z, A–Z, 0–9, ? and _.
 • Uppercase and lowercase characters are discriminated. (#macro itself is case insensitive.)

When assembling with the "-c" option, all symbols are case insensitive.
 • One or more spaces or tabs are necessary between the instruction and the macro name.

<Dummy parameter>:
 • Dummy parameter symbols for macro definition. They are described when a macro to be defined

needs parameters.
 • One or more spaces or tabs are necessary between the macro name and the first parameter symbol.

When describing multiple parameters, a comma (,) is necessary between one parameter and another.
 • The same symbols as for a macro name are available.
 • The number of parameters are limited according to the free memory space.

<Statement string>:
 • The following statements can be described:

- Basic instruction (mnemonic and operand)
- Conditional assembly instruction
- Internal branch label*
- Comments

 • The following statements cannot be described:
- Assembler pseudo-instructions (excluding conditional assembly instruction)
- Other labels than internal branch labels
- Macro invocation

∗ Internal branch label
A macro is spread over to several locations in the source. Therefore, if you describe a label in a macro,
a double definition will result, with an error issued. So, use internal branch labels which are only
valid within a macro.
 • The number of internal-branch labels are limited according to the free memory space.
 • The same symbols as for a macro name are available.

Sample definition:
#define C_RESET 0b1101

#macro WAIT COUNT

 ld %a,COUNT

 and %f,C_RESET

LOOP:

 nop

 jr LOOP

#endm

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 69
(S1C63 FAMILY ASSEMBLER PACKAGE)

Expansion rules
When a defined macro name appears in the source, the assembler inserts a statement string defined in
that location.
If there are actual parameters described in that process, the dummy parameters will be replaced with
the actual parameters in the same order as the latter are arranged.
The internal branch labels are replaced, respectively, with __L0001 ... from top of the source in the
same order as they appear.

Sample expansion:
When the macro WAIT shown above is defined:
Macro invocation

 :

WAIT 15

 :

After expansion
 :

;WAIT 15

ld %a,15

and %f,0b1101

__L0001:

nop

jr __L0001

("__L0001" denotes the case where an internal branch label is expanded for the first time in the source.)

Precautions
 • The assembler only permits backward reference of a macro invocation. Therefore the macro definition

must precede the use of it.

 • Once a defined macro name is defined, it cannot be canceled. If the same macro name is defined
duplicatedly, a warning message will appear. Until it is redefined, it is expanded with the original
content, and once it is redefined, it is expanded with the new content. Definition should be done with
distinct names, although the program operation will not be affected.

 • No other characters than delimiters (space, tab, line feed, and commas) can be added before and after
a dummy parameter in a statement.

 • The same character string as that of the define instruction cannot be used as a macro name.

 • When the number of dummy parameters differs from that of actual parameters, an error will result.

 • The maximum number of parameters and internal branch labels are limited according to the free
memory space.

 • "__Lnnnn" used for the internal branch labels should not be employed as other label or symbol.

CHAPTER 4: ASSEMBLER

70 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.5 Conditional Assembly Instructions (#ifdef ... #else ... #endif, #ifndef... #else ... #endif)

A conditional assembly instruction determines whether assembling should be performed within the
specified range, dependent on whether the specified name (Define name) is defined or not.

Instruction formats

Format 1) #ifdef <Name>
 <Statement string 1>

[#else
<Statement string 2>]

#endif

If the name is defined, <Statement string 1> will be subjected to the assembling.
If the name is not defined, and #else ... <Statement string 2> is described, then <Statement string 2>
will be subjected to the assembling. #else ... <Statement string 2> can be omitted.

Format 2) #ifndef <Name>
 <Statement string 1>

[#else
<Statement string 2>]

#endif

If the name is not defined, <Statement string 1> will be subjected to the assembling.
If the name is defined, and #else ... <Statement string 2> is described, <Statement string 2> will be
subjected to the assembling. #else ... <Statement string 2> can be omitted.

<Name>:
Conforms to the restrictions on Define name. (See #define.)

<Statement string>:
All statements, excluding conditional assembly instructions, can be described.

Sample description:
#ifdef TYPE1

ld %x,0x12

#else

ld %x,0x13

#endif

#ifndef SMALL

#define STACK1 0x31

#endif

Name definition
Name definition needs to have been completed by either of the following methods, prior to the
execution of a conditional assembly instruction:

(1) Definition using the start-up option (-d) of the assembler.
Example: as63 -d TYPE1 sample.s

(2) Definition in the source file using the #define instruction.
Example: #define TYPE1

The #define statement is valid even in a file to be included, provided that it goes before the
conditional assembly instruction that uses its Define name. A name defined after a conditional
assembly instruction will be regarded as undefined.

When a name is going to be used only in conditional assembly, no substitute character string
needs to be specified.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 71
(S1C63 FAMILY ASSEMBLER PACKAGE)

Expansion rule
A statement string subjected to the assembling is expanded according to the expansion rule of the
other preprocessing pseudo-instructions. (If no preprocessing pseudo-instruction is contained, the
statement will be output in a file as is.)

Precaution
A name specified in the condition is evaluated with discrimination between uppercase and lowercase.
When assembling with the "-c" option, all symbols are case insensitive.
The condition is deemed to be satisfied only when there is the same Define name defined.

CHAPTER 4: ASSEMBLER

72 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.6 Section Defining Pseudo-Instructions (.code, .data, .bss)
The section defining pseudo-instructions define one related group of codes or data and make it possible
to relocate by the groups at the later linking stage. Even if these section defining pseudo-instructions are
not used, the section kind will be automatically judged by its contents (however, a warning occurs). If the
new codes or data without section definition are different from the previous code or data kind, they will
be taken as another new section.

.code pseudo-instruction

Instruction format

.code

Function
Declares the start of a CODE section. Statements following this instruction are assembled as those to
be mapped in the code ROM, until another section is declared.
The CODE section is set by default in the assembler. Therefore, the .code pseudo-instruction can be
omitted at top of a source file. Always describe it when you change a section to a CODE section.

Precautions
 • A CODE section can be divided among multiple locations of a source file for purpose of definition

(describing the .code pseudo-instruction in the respective start positions).

 • A CODE section is relocatable by default unless its location is specified with the .org pseudo-instruc-
tion or more loosely with the .align pseudo-instruction.

.data pseudo-instruction

Instruction format

.data

Function
Declares the start of a DATA section. Statements following this instruction are assembled as those to
be mapped in the data ROM, until another section is declared.

Precautions
 • The DATA section is a static data area, and effective only for models with data ROM installed.

 • In a DATA section, nothing other than the .org and .word pseudo-instructions, symbols, and com-
ments can be described.

 • A DATA section can be divided among multiple locations of a source file for purpose of definition
(describing the .data pseudo-instruction in the respective start positions).

 • A DATA section is relocatable by default unless its location is specified with the .org pseudo-instruc-
tion or more loosely with the .align pseudo-instruction.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 73
(S1C63 FAMILY ASSEMBLER PACKAGE)

.bss pseudo-instruction

Instruction format

.bss

Function
Declares the start of a BSS section. Statements following this instruction are assembled as those to be
mapped in the RAM, until another section is declared.

Precautions
 • In a BSS section, nothing else other than the .comm, .lcomm, and .org pseudo-instructions, symbols,

and comments can be described.

 • A BSS section can be divided among multiple locations of a source file for purpose of definition
(describing the .bss pseudo-instruction in the respective start positions).

 • A BSS section is relocatable by default unless its location is specified with the .org pseudo-instruction
or more loosely with the .align pseudo-instruction.

CHAPTER 4: ASSEMBLER

74 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.7 Location Defining Pseudo-Instructions (.org, .align)
The absolute addressing pseudo-instructions (.align and .org) work to specify absolute location of a
section in different precision such as 2n words alignment level and complete absolute address level.

.org pseudo-instruction

Instruction format

.org <Address>

<Address>:
Absolute address specification
• Only decimal, binary and hexadecimal numbers can be described.
• The addresses that can be specified are from 0 to 65,535 (0xffff).
• One or more spaces or tabs are necessary between the instruction and the address.

Sample description:
.code

.org 0x0100

Function
Specifies an absolute address location of a CODE, DATA or BSS section in an assembly source file. The
section with the .org pseudo-instruction is taken as an absolute section.

Precautions
 • If an overlap occurs as the result of specifying absolute locations with the .org pseudo-instruction, an

error will result.
Examples:

.bss

.org 0x00

.comm RAM0 4 ... RAM secured area (0x00–0x03)

.org 0x01

.comm RAM1 4 ... Error (because the area of 0x01–0x03 is overlapped)

 • When the .org pseudo-instruction appears in a section, a new absolute section starts at that point. The
section type does not change. The .org pseudo-instruction keeps its effect only in that section until the
next section definer (.code, .data or .bss) or the next location definer (.org or .align) appears.
Example:

:

.code ... The latest relocatable section definition.
:

.org 0x100 ... Starts new absolute CODE section from address 0x100.
:

.bss ... This section is relocatable not affected by the ".org" pseudo-instruction.
:

.code ... This section is also relocatable not affected by the ".org" pseudo-instruction.
:

 • If the .org pseudo-instruction is defined immediately after a section definer (.code, .data or .bss), the
section definer does not start a new section. But .org starts a new section with the attribute of the
section definer.
Example:

.code ... This does not start a new CODE section.

.org 0x100 ... This starts an absolute CODE section.
:

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 75
(S1C63 FAMILY ASSEMBLER PACKAGE)

 • If the .org pseudo-instruction is defined immediately before a section definer (.code, .data or .bss), it
does not start a new section and makes no effect to the following sections.
Example:

.code ... The latest relocatable section definition.
:

.org 0x100 ... This does not start a new absolute section and makes no effect.

.bss ... The another kind (BSS) of section which is not affected by the
: previous ".org" pseudo-instruction in the CODE section.

.code ... This will be an relocatable CODE section not affected by the
: previous ".org" pseudo-instruction.

CHAPTER 4: ASSEMBLER

76 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

.align pseudo-instruction

Instruction format

.align <Alignment number>

<Alignment number>:
Word alignment in 2n value
• Only decimal, binary and hexadecimal numbers can be described.
• The alignment that can be specified is a 2n value.
• One or more spaces or tabs are necessary between the instruction and the alignment number.

Sample description:
.code

.align 32 ... Sets the location to the next 32-word boundary address.

Function
Specifies location alignment in words of a CODE, DATA or BSS section in an assembly source file. The
section with the .align pseudo-instruction can be taken as a loosely absolute section in the sense that
its location is partially defined.

Precautions
 • When the .align pseudo-instruction appears in a section, a new absolute section starts at that point.

The section type does not change. The .align pseudo-instruction keeps its effect only in that section
until the next section definer (.code, .data or .bss) or the next location definer (.org or .align) appears.
Example:

:

.code ... The latest relocatable section definition.
:

.align 32 ... Starts new loosely absolute CODE section from the next 32-word boundary address.
:

.bss ... This section is relocatable not affected by the ".align" pseudo-instruction.
:

.code ... This section is also relocatable not affected by the ".align" pseudo-instruction.
:

 • If the .align pseudo-instruction is defined immediately after a section definer (.code, .data or .bss), the
section definer does not start a new section. But .align starts a new section with the attribute of the
section definer.
Example:

.code ... This does not start a new CODE section.

.align 32 ... This starts a loosely absolute CODE section.
:

 • If the .align pseudo-instruction is defined immediately before a section definer (.code, .data or .bss), it
does not start a new section and makes no effect to the following sections.
Example:

.code ... The latest relocatable section definition.
:

.align 32 ... This does not start a new absolute section and makes no effect.

.bss ... The another kind (BSS) of section which is not affected by the
: previous ".align" pseudo-instruction in the CODE section.

.code ... This will be an relocatable CODE section not affected by the
: previous ".align" pseudo-instruction.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 77
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.8 Absolute Assembling Pseudo-Instruction (.abs)

Instruction format
.abs

Function
The .abs pseudo-instruction is provided for compatibility with the older assembler. In the older
assembler, this pseudo-instruction is required to specify that a source file uses absolute sections as
opposed to relocatable sections. It is not necessary to use this instruction in the new assembler,
because the new assembler allows the use of absolute and relocatable sections in one source file. Use
the .org or .align pseudo-instruction for defining absolute sections.

CHAPTER 4: ASSEMBLER

78 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.9 Symbol Defining Pseudo-Instruction (.set)

Instruction format

.set <Symbol>[,] <Value>

<Symbol>:
Symbols for value reference
• The 1st character is limited to a–z, A–Z, ? and _.
• The 2nd and the subsequent character can use a–z, A–Z, 0–9, ? and _.
• Uppercase and lowercase are discriminated.
 When assembling with the "-c" option, all symbols are case insensitive.
• One or more spaces, or tabs are necessary between the instruction and the symbol.

<Value>:
Value specification
• Only decimal, binary, and hexadecimal numbers can be described.
• The values that can grammatically be specified are from 0 to 65,535 (0xffff).
• One or more spaces, tabs, or a comma (,) are necessary between the instruction and the value.

Sample description:
.set DATA1 0x20

.set STACK1 0x100

Function
Defines a symbol for a value such as an absolute address.

Precaution
When the defined symbol is used as an operand, the defined value is referred as is. Therefore, if the
value exceeds the valid range of the operand, a warning will result.
Example:

.set DATA1 0xff00

ldb %ext,DATA1@h ... OK
ldb %xl,DATA1@l ... OK
ld %a,DATA1 ... Warning

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 79
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.10 Data Defining Pseudo-Instructions (.codeword, .word)

.codeword pseudo-instruction

Instruction format

.codeword <Data>[,<Data> ...,<Data>]

<Data>:
13-bit data
• Only decimal, binary and hexadecimal numbers can be described.
• The data that can be specified are from 0 to 8,191 (0x1fff).
• One or more spaces or tabs are necessary between the instruction and the first data.
• A comma (,) is necessary between one data and another.

Sample description:
.code

.codeword 0xa,0xa40,0xff3

Function
Defines 13-bit data to be written to the code ROM.

Precaution
The .codeword pseudo-instruction can be used only in CODE sections.

.word pseudo-instruction

Instruction format

.word <Data>[,<Data> ...,<Data>]

<Data>:
4-bit data
• Only decimal, binary and hexadecimal numbers can be described.
• The data that can be specified are from 0 to 15 (0xf).
• One or more spaces or tabs are necessary between the instruction and the first data.
• A comma (,) is necessary between one data and another.

Sample description:
.data

.word 0xa,0xb,0xc,0xd

Function
Defines 4-bit data to be written to the data ROM.

Precaution
The .word pseudo-instruction can be used only in DATA sections.

CHAPTER 4: ASSEMBLER

80 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.11 Area Securing Pseudo-Instructions (.comm, .lcomm)

Instruction format

.comm <Symbol>[,] <Size>

.lcomm <Symbol>[,] <Size>

<Symbol>:
Symbols for data memory access (address reference)
• The 1st character is limited to a–z, A–Z, ? and _.
• The 2nd and the subsequent character can use a–z, A–Z, 0–9, ? and _.
• Uppercase and lowercase are discriminated.
 When assembling with the "-c" option, all symbols are case insensitive.
• One or more spaces or tabs are necessary between instruction and symbol.

<Size>:
Number of words of the area to be secured (4 bits/word)
• Only decimal, binary and hexadecimal numbers can be described.
• The size that can grammatically be specified is from 0 to 65,534.
• One or more spaces, tabs or a comma (,) are necessary between symbol and size.

Sample description:
.bss

.comm RAM0 4

.lcomm BUF,1

Function
Sets an area of the specified size in the BSS section (RAM and other data memory), and creates a
symbol indicating its top address with the specified name. By using this symbol, you can describe an
instruction to access the RAM.

Difference between .comm and .lcomm
The .comm pseudo-instruction and the .lcomm pseudo-instruction are exactly the same in function,
but they do differ from each other in the scope of the symbols they create. The symbols created by the
.comm pseudo-instruction become global symbols, which can be referred to externally from other
modules (however, the file to be referred to needs to be specified by the .global pseudo-instruction.)
The symbols created by the .lcomm pseudo-instruction are local symbols, which cannot be referred to
from other modules.

Precaution
The .comm and .lcomm pseudo-instructions can only be described in BSS sections.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 81
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.12 Global Declaration Pseudo-Instruction (.global)

Instruction format

.global <Symbol>

<Symbol>:
Symbol to be defined in the current file, or symbol already defined in other module
• One or more spaces or tabs are necessary between the instruction and the symbol.

Sample description:
.global GENERAL_SUB1

Function
Makes global declaration of a symbol. The declaration made in a file with a symbol defined converts
that symbol to a global symbol which can be referred to from other modules. Prior to making refer-
ence, declaration has to be made by this instruction on the side of the file that is going to make the
reference.

4.7.13 List Control Pseudo-Instructions (.list, .nolist)

Instruction format

.list

.nolist

Function
Controls output to the relocatable list file.
The .nolist pseudo-instruction stops output to the relocatable list file after it is issued.
The .list pseudo-instruction resumes from there the output which was stopped by the .nolist pseudo-
instruction.

Precaution
The assembler delivers relocatable list files only when it is started up with the -l option specified.
Therefore, these instructions are invalid, if the -l option was not specified.

4.7.14 Source Debugging Information Pseudo-Instructions (.stabs, .stabn)

Instruction formats

(1) .stabs "<File name>", FileName
(2) .stabn 0, FileEnd
(3) .stabn <Line number>, LineInfo

Function
The assembler outputs object files in IEEE-695 format, including source debugging information
conforming to these instructions. This debugging information is necessary to perform debugging by
Debugger db63, with the assembly source displayed.

Format (1) delivers information on the start position of a file.
Format (2) delivers information on the end position of a file.
Format (3) delivers information on the line No. of an instruction in a source file.

Insertion of debugging information
When the -g option is specified as a start option, the preprocess stage of the assembler will insert
debugging pseudo-instructions in the preprocessed file. Therefore, you do not have to describe these
pseudo-instructions in creating source files.

CHAPTER 4: ASSEMBLER

82 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.7.15 Comment Adding Function
The preprocessing pseudo-instructions that begin with "#" are all expanded to codes that can be as-
sembled, and delivered in the preprocessed file. Even after that, those instructions are rewritten with
comments beginning with a semicolon (;), so that the original instructions can be identified. However,
note that the replacements of Define names will not subsist as comments.

The comment is added to the first line following the expansion. In case the original statement is accompa-
nied by a comment, that comment is also added.
A macro definition should have a semicolon (;) placed at top of the line.

Example:
• Before expansion

#define Areg %a

#macro ADDX2Y VALUE

ld Areg, VALUE

add Areg, [%x]

ld [%y], Areg

#endm

ADDX2Y 10h ; MX + 10h -> MY

• After expansion (no debugging information)
;#define Areg %a

;#macro ADDX2Y VALUE

; ld Areg, VALUE

; add Areg, [%x]

; ld [%y], Areg

;#endm

;ADDX2Y 10h ; MX + 10h -> MY

ld %a, 0x10

add %a, [%x]

ld [%y], %a

4.7.16 Priority of Pseudo-Instructions
Some remarks concerning the priority among the preprocessing pseudo-instructions will be given below:

1. The conditional assembly instructions (#ifdef, #ifndef) have the first priority. Nesting cannot be made
of those instructions.

2. Define instruction (#define), include instruction (#include), or macro instruction (#macro) can be
described within a conditional assembly instruction.

3. Define instruction (#define), include instruction (#include), and macro instruction (#macro) cannot be
described within a macro definition.

4. Define name definitions are expanded with priority over macro definitions.

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 83
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.8 Relocatable List File
The relocatable list file is an assembly source file that carries assembled results (offset addresses and
object codes) added to the first half of each line. It is delivered only when the start-up option (-l) is
specified.
Its file format is a text file, and the file name, <File name>.lst. (The <File name> is the same as that of the
input source file.)
The format of each line of the assembly list file is as follows:

Line No.: Address Code Source statement

Example

Assembler 63 ver x.xx Relocatable List File MAIN.LST Mon Jan 15 12:40:41 2001

 1: ; main.s
 2: ; AS63 test program (main routine)
 3: ;

:
 25:
 26: .org 0x110
 27: BOOT:
 28: 0110 0900 ldb %ba,SP1_INIT_ADDR
 29: 0111 1fc4 ldb %sp1,%ba ; set SP1
 30: 0112 0900 ldb %ba,SP2_INIT_ADDR
 31: 0113 1fc6 ldb %sp2,%ba ; set SP2
 32: 0114 0200 calr INIT_RAM_BLK1 ; initialize RAM block 1
 33: LOOP:
 34: 0115 0200 calr INC_RAM_BLK1 ; increment RAM block 1
 35: 0116 0000 jr LOOP ; infinity loop
 36:
 37:
 38: ;***** RAM block *****
 39:
 40: .org 0x0
 41: .bss
 42: 0000 00 .comm RAM_BLK0, 4
 43: 0004 00 .comm RAM_BLK1, 4

Content of line No.
The source line number from top of the file will be delivered.

Content of address
In the case of an absolute section, an absolute address will be delivered in hexadecimal number.
In the case of a relocatable section, a relative address will be delivered in hexadecimal number from
top of the file.

Content of code
CODE section: The instruction (machine language) codes are delivered in hexadecimal numbers. One

address corresponds with one instruction. The assembler sets the operand (immediate
data) of the code that refers to unresolved address to 0. The immediate data will be
decided by the linker.

DATA section: The 4-bit data defined by the .word pseudo-instruction are delivered. One address
corresponds with one data.

BSS section: Irrespective of the size of the secured area, 00 is always delivered here.
Only the address defined for a symbol (top address of the secured area) is delivered as
the address of the BSS section.

CHAPTER 4: ASSEMBLER

84 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.9 Sample Executions

Command line
C:\EPSON\S1C63\bin\as63 -g -e -l main.s

Assembly source file
; main.s
; AS63 test program (main routine)
;

;***** INITIAL SP1 & SP2 ADDRESS DEFINITION *****

#ifdef SMALL_RAM
.set SP1_INIT_ADDR 0xb ;SP1 init addr = 0x2c

#else
.set SP1_INIT_ADDR 0x4b ;SP1 init addr = 0x12c

#endif

.set SP2_INIT_ADDR 0x1f ;SP2 init addr = 0x1f

;***** NMI & BOOT, LOOP *****

.global INIT_RAM_BLK1 ; subroutine in sub.s

.global INC_RAM_BLK1 ; subroutine in sub.s

.org 0x100
NMI:

calr INIT_RAM_BLK1 ; initialize RAM block 1
reti ; in NMI(watchdog timer)

.org 0x110
BOOT:

ldb %ba,SP1_INIT_ADDR
ldb %sp1,%ba ; set SP1
ldb %ba,SP2_INIT_ADDR
ldb %sp2,%ba ; set SP2
calr INIT_RAM_BLK1 ; initialize RAM block 1

LOOP:
calr INC_RAM_BLK1 ; increment RAM block 1
jr LOOP ; infinity loop

;***** RAM block *****

.org 0x0

.bss

.comm RAM_BLK0, 4

.comm RAM_BLK1, 4

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 85
(S1C63 FAMILY ASSEMBLER PACKAGE)

Preprocessed file
.stabs "C:\EPSON\S1C63\Test\main.s", FileName
; main.s
; AS63 test program (main routine)
;

;***** INITIAL SP1 & SP2 ADDRESS DEFINITION *****

;#ifdef SMALL_RAM
; .set SP1_INIT_ADDR 0xb ;SP1 init addr = 0x2c
;#else

.set SP1_INIT_ADDR 0x4b ;SP1 init addr = 0x12c
;#endif

.set SP2_INIT_ADDR 0x1f ;SP2 init addr = 0x1f

;***** NMI & BOOT, LOOP *****

.global INIT_RAM_BLK1 ; subroutine in sub.s

.global INC_RAM_BLK1 ; subroutine in sub.s

.org 0x100
NMI:
.stabn 23, LineInfo

calr INIT_RAM_BLK1 ; initialize RAM block 1
.stabn 24, LineInfo

reti ; in NMI(watchdog timer)

.org 0x110
BOOT:
.stabn 28, LineInfo

ldb %ba,SP1_INIT_ADDR
.stabn 29, LineInfo

ldb %sp1,%ba ; set SP1
.stabn 30, LineInfo

ldb %ba,SP2_INIT_ADDR
.stabn 31, LineInfo

ldb %sp2,%ba ; set SP2
.stabn 32, LineInfo

calr INIT_RAM_BLK1 ; initialize RAM block 1
LOOP:
.stabn 34, LineInfo

calr INC_RAM_BLK1 ; increment RAM block 1
.stabn 35, LineInfo

jr LOOP ; infinity loop

;***** RAM block *****

.org 0x0

.bss

.comm RAM_BLK0, 4

.comm RAM_BLK1, 4
.stabn 0, FileEnd

CHAPTER 4: ASSEMBLER

86 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Assembly list file
Assembler 63 ver x.xx Relocatable List File MAIN.LST Mon Jan 15 12:40:41 2001

 1: ; main.s
 2: ; ASM63 test program (main routine)
 3: ;
 4:
 5: ;***** INITIAL SP1 & SP2 ADDRESS DEFINITION *****
 6:
 7: #ifdef SMALL_RAM
 8: .set SP1_INIT_ADDR 0xb ;SP1 init addr = 0x2c
 9: #else
 10: .set SP1_INIT_ADDR 0x4b ;SP1 init addr = 0x12c
 11: #endif
 12:
 13: .set SP2_INIT_ADDR 0x1f ;SP2 init addr = 0x1f
 14:
 15:
 16: ;***** NMI & BOOT, LOOP *****
 17:
 18: .global INIT_RAM_BLK1 ; subroutine in sub.s
 19: .global INC_RAM_BLK1 ; subroutine in sub.s
 20:
 21: .org 0x100
 22: NMI:
 23: 0100 0200 calr INIT_RAM_BLK1 ; initialize RAM block 1
 24: 0101 1ff9 reti ; in NMI(watchdog timer)
 25:
 26: .org 0x110
 27: BOOT:
 28: 0110 0900 ldb %ba,SP1_INIT_ADDR
 29: 0111 1fc4 ldb %sp1,%ba ; set SP1
 30: 0112 0900 ldb %ba,SP2_INIT_ADDR
 31: 0113 1fc6 ldb %sp2,%ba ; set SP2
 32: 0114 0200 calr INIT_RAM_BLK1 ; initialize RAM block 1
 33: LOOP:
 34: 0115 0200 calr INC_RAM_BLK1 ; increment RAM block 1
 35: 0116 0000 jr LOOP ; infinity loop
 36:
 37:
 38: ;***** RAM block *****
 39:
 40: .org 0x0
 41: .bss
 42: 0000 00 .comm RAM_BLK0, 4
 43: 0004 00 .comm RAM_BLK1, 4

Error file
Assembler 63 Ver x.xx Error log file MAIN.ERR Mon Jan 15 12:40:41 2001

Assembler 63 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 1998-2001

Created preprocessed source file MAIN.MS
Created relocatable list file MAIN.LST
Created error log file MAIN.ERR
Created relocatable object file MAIN.O

Assembly 0 error(s) 0 warning(s)

CHAPTER 4: ASSEMBLER

S5U1C63000A MANUAL EPSON 87
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.10 Error/Warning Messages

4.10.1 Errors
When an error occurs, no object file will be generated.
The assembler error messages are delivered/displayed in the following format:

<Source file name> (<Line number>) Error : <Error message>

Example: TEST.S(431) Error: Illegal syntax

∗ Some error messages are displayed without a line number.

The assembler error messages are given below:

Error message Description

Address out of range The specified address is out of range.

Cannot open <file kind> file <FILE NAME> The specified file cannot be opened.

Cannot read <file kind> file <FILE NAME> The specified file cannot be read.

Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.

Directory path length limit The path name length has exceeded the limit.

<directory path length limit> exceeded

Division by zero The divisor in the expression is 0.

File name length limit <file name length limit> The file name length has exceeded the limit.

exceeded

Illegal macro label <label> The internal branch label in macro definition is incorrect.

Illegal macro parameter <parameter> The macro parameter is illegal.

Illegal syntax The statement has a syntax error.

Line length limit <line length limit> exceeded The number of characters in one line has exceeded the limit.

Macro parameter range <macro parameter range> The number of macro parameters has exceeded the limit.

exceeded

Memory mapping conflict The address is already used.

Multiple statements on the same line Two or more statements were described on one line.

Nesting level limit <nesting level limit> exceeded Nesting of #include has exceeded the limit.

Number of macro labels limit The number of internal branch labels has exceeded the limit.

<number of macro label limit> exceeded

Out of memory Cannot secure memory space.

Second definition of label <label> The label is already defined.

Second definition of symbol <symbol> The symbol is already defined.

Symbol name length limit <symbol name length limit> The symbol name length has exceeded the limit.

exceeded

Token length limit <token length limit> exceeded The token length has exceeded the limit.

Unexpected character <name> An invalid character has been used.

Unknown label <label> Reference was made to an undefined label.

Unknown mnemonic <name> A nonexistent instruction was used.

Unknown register <name> A nonexistent register name was used.

Unknown symbol <name> A reference to an undefined symbol was made.

Unknown symbol mask <name> The symbol mask has a description error.

Unsupported directive <directive> A nonexistent pseudo-instruction was used.

CHAPTER 4: ASSEMBLER

88 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

4.10.2 Warning
When a warning occurs, the assembler will keep on processing, and terminates the processing after
displaying a warning message, unless an error is produced.
The warning message is delivered/displayed in the following formats:

<Source file name> (<Line number>) Warning : <Warning message>

Example: TEST.S(41) : Warning : Expression out of range

The warning messages are given below:

Warning message Description

Expression out of range The result of the expression is out of the effective range.

Invalid symbol mask The symbol mask is not defined correctly.

Second definition of define symbol <symbol> The symbol is already defined.

Section activation expected, use <.code/.bss> There is no section definition.

4.11 Precautions

(1) Nesting of the #include pseudo instruction is limited to a maximum 10 levels. If this limit is sur-
passed, an error will result.

(2) A maximum of 64 internal branch labels can be specified per macro and maximum 9999 internal
branch labels can be expanded within one source file. If these limits are exceeded, an error will result.

(3) Other limitations such as the number of sections depend on the free memory space.

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 89
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 5 LINKER
This chapter describes the functions of the linker, lk63.

5.1 Functions
The linker lk63 is a software that generates executable object files. It provides the following functions:

• Puts together multiple object modules to create one executable object file.
• Resolves external reference from one module to another.
• Relocates relative addresses to absolute addresses.
• Delivers debugging information, such as line numbers and symbol information, in the object file

created after linking.
• Capable of outputting a link map file, symbol file, absolute list file and a cross reference file.
• Automatic page correction function (insertion/removal/correction of the "ldb %ext, imm8" branch

extension instruction) for branch instructions.

5.2 Input/Output Files

Linker

lk63

file.o

Relocatable
object file(s)

Linker
command file

file.sym file.xrf

file.cm

ICE
parameter file

file.par

file.abs

Absolute
object file

Cross
reference file

file.als

Absolute
list file

file.map

Link
map file

Symbol
file

Error file

lk63.err

to Debugger

from Assembler

Fig. 5.2.1 Flow chart

5.2.1 Input Files

Relocatable object file ∗ This file must always be specified in either a command line or a link command file.

File format: Binary file in IEEE-695 format
File name: <File name>.o (A path can also be specified.)

Description: Object file of individual modules created by the assembler.

Linker command file
File format: Text file

File name: <File name>.cm (A path can also be specified.)
Description: File to specify the linker options. This makes it possible to reduce typing in a command

line. This file is dispensable if all start-up options can be input in a command line.

ICE parameter file ∗ This file must always be specified in either a command line or a link command file.

File format: Binary file
File name: <File name>.par (A path can also be specified.)

Description: File to specify the memory mapping and unsupported instruction information of each
S1C63 Family model. This file is provided for each model and commonly used with the
debugger and HEX converter.

CHAPTER 5: LINKER

90 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.2.2 Output Files
An output file name can be specified in the command line or command file using the -o start-up option. If
no output file name is specified, the same name as that of the relocatable object file to be linked first is
used.

Absolute object file
File format: Binary file in IEEE-695 format

File name: <File name>.abs
Output destination: Current directory

Description: Object file in executable format that can be input to the debugger. All the modules
comprising one program are linked together in the file, and the absolute addresses
that all the codes will map are determined. It also contains the necessary debugging
information in IEEE-695 format.

Link map file
File format: Text file

File name: <File name>.map
Output destination: Current directory

Description: Mapping information file showing from which address of a section each input file
was mapped. This file is output when the -m start-up option is specified.

Symbol file
File format: Text file

File name: <File name>.sym
Output destination: Current directory

Description: Symbols defined in all the modules and their address information are delivered to
this file. This file is delivered when the -s start-up option is specified.

Cross reference file
File format: Text file

File name: <File name>.xrf
Output destination: Current directory

Description: Labels defined in all the modules and their defined and referred addresses are
delivered in this file. This file is delivered when the -x start-up option is specified.

Absolute list file
File format: Text file

File name: <File name>.als
Output destination: Current directory

Description: File delivered when the -l start-up option is specified. The file contents are similar to
the relocatable list file output by the assembler except that the location addresses are
absolute and takes the form of an integrated single file.

Error file
File format: Text file

File name: lk63.err
Output destination: Current directory

Description: The file is created if the -e start-up option is specified. It records the information
which the linker outputs to the Standard Output (stdout), such as error messages.
The file name is "lk63.err" by default, but it can be changed using the -o start-up
option.

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 91
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.3 Starting Method

General form of command line

lk63 ^ [Options] ^ [<Relocatable object files>] ^ [<Linker command file>] ^ <ICE parameter file>

^ denotes a space.
[] indicates the possibility to omit.
The order of options and file names can be arbitrary.

File names
Files are identified with their extensions. Therefore, an appropriate extension should be included in
each file name. However, the extension ".o" of the relocatable object file can be omitted.
Relocatable object files: <File name.o>
Linker command file: <File name.cm>
ICE parameter file: <File name.par>

When using a linker command file, options, relocatable object file names, an ICE parameter file name
and an output file name can be described in the linker command file. If all the items to be specified are
entered in a command line, the linker command file is not necessary.

When linking multiple relocatable object files from a command line, one or more spaces should be
placed between the file names.

For the output file name, specify an absolute object file name (.abs). The file name will be used for
other output files. If no absolute object file name is specified, the same name as that of the relocatable
object file to be linked first is used as the output file name.

The ICE parameter file cannot be omitted.

A long file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options
The linker comes with the following options:

-d
Function: Disable full branch optimization

Explanation: Disables automatic insertion/deletion/correction of the extension codes (ldb
%ext, imm8) for branch instructions (jumps and calls).

Default: If this option is not specified, the branch optimization function will be enabled.
Note: In the previous version, omission of the -d option enables automatic insertion and

correction of the extension codes, note, however, that deletion of the extension
codes must be enabled using the -er option. The current version has no -er option
and the deletion function is enabled by default. Conversely, the -dr option must
be specified to disable the deletion function. Be aware of this difference when
using a project created in the previous version in particular.

-di
Function: Disable insertion of branch extension

Explanation: Disables extension code insertion when the branch optimization function (inser-
tion/deletion/correction) is enabled.

Default: If this option is not specified, necessary extension codes will be inserted when the
full branch optimization function is specified.

-dr
Function: Disable removal branch optimization

Explanation: Disables extension code deletion when the branch optimization function (inser-
tion/deletion/correction) is enabled. This will be needed when at least the
existing extension codes should not be removed.

Default: If this option is not specified, unnecessary extension codes will be removed when
the full branch optimization function is specified.

CHAPTER 5: LINKER

92 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

-e
Function: Output of error file

Explanation: Creates an .err file which contains the information that the linker outputs to the
Standard Output (stdout), such as error messages.

Default: If this option is not specified, no error file will be created.

-g
Function: Addition of debugging information

Explanation: • Creates an absolute object file containing debugging information.
• Always specify this function when you perform source display or use the

symbolic debugging facility of the debugger.
Default: If this option is not specified, no debugging information will be added to the

absolute object file.

-l
Function: Output of absolute list file

Explanation: Outputs an absolute list file.
Default: If this option is not specified, no absolute list file will be output.

-m
Function: Output of link map file

Explanation: Outputs a link map file.
Default: If this option is not specified, no link map file will be output.

-o <file name>
Function: Specification of output path/file name

Explanation: Specifies an output path/file name without extension or with an extension ".abs".
If no extension is specified, ".abs" will be supplemented at the end of the specified
output path/file name.

Default: The 1st input file name is used for the output file names.

-s
Function: Output of symbol file

Explanation: Outputs a symbol file.
Default: If this option is not specified, no symbol file will be output.

-x
Function: Output of cross reference file

Explanation: Outputs a cross reference file.
Default: If this option is not specified, no cross reference file will be output.

-code <address>
Function: Set up of a relocatable CODE section start address

Explanation: • Sets the absolute start address of a relocatable CODE section. Absolute sections
remain unaffected.

• CODE sections are mapped in succession from this address, unless otherwise
specified.

• One or more spaces or tabs are necessary between -code and <address>.
• The address should be described in hexadecimal format (0xnnnn).

Default: If this option is not specified, the CODE section will begin from the code ROM
physical start address specified with the ICE parameter file.

Sample description: -code 0x100

-data <address>
Function: Set up of a relocatable DATA section start address

Explanation: • Sets the absolute start address of a relocatable DATA section. Absolute sections
remain unaffected.

• DATA sections are mapped in succession from this address, unless otherwise
specified.

• One or more spaces or tabs are necessary between -data and <address>.
• The address should be described in hexadecimal format (0xnnnn).

Default: If this option is not specified, the DATA section will begin from the data ROM
physical start address specified with the ICE parameter file.

Sample description: -data 0x8000

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 93
(S1C63 FAMILY ASSEMBLER PACKAGE)

-bss <address>
Function: Set up of a relocatable BSS section start address

Explanation: • Sets the absolute start address of a relocatable BSS section. Absolute sections
remain unaffected.

• BSS sections are mapped in succession from this address, unless otherwise
specified.

• One or more spaces or tabs are necessary between -bss and <address>.
• The address should be described in hexadecimal format (0xnnnn).

Default: If this option is not specified, the BSS section will begin from the RAM physical
start address specified with the ICE parameter file.

Sample description: -bss 0x000

-rcode <file name>=<address>
Function: Set up of the file-specific CODE section start address

Explanation: • Sets the absolute address to map the CODE section of the specified module.
This command serves to specify a module having a code to be fixed at a specific
address, such as the interrupt vector. Absolute sections in the specified file
remain unaffected.

• One or more spaces or tabs are necessary between -rcode and <file name>.
• The address should be described in hexadecimal format (0xnnnn).

Default: If this option is not specified, the CODE section of each module is mapped
continuously from the address that was set by the -code option.

Sample description: -rcode test1.o = 0x0110

-rdata <file name>=<address>
Function: Set up of the file-specific DATA section start address

Explanation: • Sets the absolute address to map the DATA section of the specified module.
This command serves to specify a module having data to be fixed at a specific
address of the data ROM. Absolute sections in the specified file remain unaf-
fected.

• One or more spaces or tabs are necessary between -rdata and <file name>.
• The address should be described in hexadecimal format (0xnnnn).

Default: If this option is not specified, the DATA section of each module is mapped
continuously from the address that was set by the -data option.

Sample description: -rdata test1.o = 0x8100

-rbss <file name>=<address>
Function: Set up of the file-specific BSS section start address

Explanation: • Sets the absolute address to map the BSS section of the specified module. This
command serves to specify a module having a symbol to be fixed at a specific
address of the RAM. Absolute sections in the specified file remain unaffected.

• One or more spaces or tabs are necessary between -rbss and <file name>.
• The address should be described in hexadecimal format (0xnnnn).

Default: If this option is not specified, the BSS section of each module is mapped continu-
ously from the address that was set by the -bss command.

Sample description: -rbss test1.o = 0x100

-defsym <symbol name>=<address>
Function: Specification of a global symbol address

Explanation: • The absolute address of a global symbol is given for the referencing side.
• The symbols to be specified with this option should not be defined in the

source as an actual address label that can be referred to.
• One or more spaces or tabs are necessary between -defsym and <symbol

name>.
Sample description: -defsym BOOT = 0x100

When inputting an option in the command line, one or more spaces are necessary before and after the
option.
Examples: c:\epson\s1c63\bin\lk63 -defsym INIT=0x200 test.cm par63xxx.par

c:\epson\s1c63\bin\lk63 -g -e -s -m test1.o test2.o -o test.abs par63xxx.par

CHAPTER 5: LINKER

94 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.4 Messages
The linker delivers all its messages to the Standard Output (stdout).

Start-up message
The linker outputs only the following message when it starts up.

Linker 63 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 1998-2001

End message
The linker outputs the following messages to indicate which files has been created when it ends
normally.

Created absolute object file <FILENAME.ABS>
Created absolute list file <FILENAME.ALS>
Created map file <FILENAME.MAP>
Created symbol file <FILENAME.SYM>
Created cross reference file <FILENAME.XRF>
Created error log file <FILENAME.ERR>

Link 0 error(s) 0 warning(s)

Usage output
If no file name was specified or an option was not specified correctly, the linker ends after delivering
the following message concerning the usage:

Usage: lk63 [options] <file names>
Options: -d Disable full branch optimization
 -dr Disable removal branch optimization
 -e Output error log file (.ERR)
 -g Add source debug information
 -l Output absolute list file (.ALS)
 -m Output map file (.MAP)
 -o <file name> Specify output file name
 -s Output symbol file (.SYM)
 -x Output cross reference file (.XRF)
 -code <address> Specify CODE start address
 -data <address> Specify DATA start address
 -bss <address> Specify BSS start address
 -rcode <file name>=<address> Specify CODE start address of the file
 -rdata <file name>=<address> Specify DATA start address of the file
 -rbss <file name>=<address> Specify BSS start address of the file
 -defsym <symbol>=<address> Define symbol address
File names: Relocatable object file (.O)
 Command parameter file (.CM)
 ICE parameter file (.PAR)

When error/warning occurs
If an error takes place, an error message will appear before the end message shows up.
Example:

Error: Cannot create absolute list file TEST.ABS
Link 1 error(s) 0 warning(s)

In the case of an error, the linker ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning: No debug information in TEST.O
Link 0 error(s) 1 warning(s)

In the case of a warning, the linker ends after creating an output file, but the result cannot be guaran-
teed.

For details on errors and warnings, refer to Section 5.12, "Error/Warning Messages".

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 95
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.5 Linker Command File
To simplify the keystroke in the command line at the time of start up, execute the link processing through
the linker by inputting a linker command file (.cm) that holds the necessary specifications (any options
and file names) described.

Sample linker command file

-e ; Generate error file
-g ; Add debug information
-code 0x0100 ; Fix CODE section start address
-rcode test2.o = 0x0110 ; Fix CODE section start position of test2.o
-data 0x8000 ; Fix DATA section start address
-bss 0x00e0 ; Fix BSS section start address

-defsym IO = 0xFF00 ; Set global symbol

-o test.abs ; Specify output file name
test1.o ; Specify input file 1
test2.o ; Specify input file 2

Create the linker command file with the following rules:

File format
The linker command file is a general text format as shown above.
".cm" should be used for the file name extension.

Option description
All options should begin with a hyphen (-). Each individual option needs to be delineated with more
than one space, tab, or line feed. For better visibility, it is recommended to describe each option in a
separate line.

Notes: • A numeric value to specify an address should be described in the hexadecimal format (0xnnnn).
Decimal and binary notations will not be accepted.

• When an option that is only permitted in single setting is specified in a duplicated manner, the
last entered option will be effective.

Example: -code 0x0000
-code 0x0100 ... -code 0x0100 is effective.

Input file specification
Describe the relocatable object file names at the end of the link command file. The mapping by linking
takes place in described order, unless otherwise specified.
The extension (.o) of the relocatable object files can be omitted.

Comment
A comment can be described in the linker command file.
As in the source file, the character string from a semicolon (;) to the end of the line is regarded as a
comment.

Blank line
A blank line carrying only blank characters and a line feed will be ignored. It need not be converted to
a comment using a semicolon.

CHAPTER 5: LINKER

96 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.6 Link Map File
The link map file serves to refer to the mapping information for the modules of each section. It is output
if the -m option is specified.
The file format is a text file, and its file name is "<File name>.map". (<File name> is the same as that of
the output object file.)

Sample link map file

Linker 63 ver x.xx Link map file TEST.MAP Mon Jan 15 12:40:41 2001

CODE section map of TEST.ABS
Index Start End Size Opt Type File SecNbr
 0: 0x0000 0x000d 0x000e +0 Rel SUB.S 1
 1: 0x000e 0x00ff 0x00f2 --- --- ------------ ---
 2: 0x0100 0x0102 0x0003 +1 Abs MAIN.S 1
 3: 0x0103 0x010f 0x000d --- --- ------------ ---
 4: 0x0110 0x0118 0x0009 +2 Abs MAIN.S 2
 5: 0x0119 0x1fff 0x1ee7 --- --- ------------ ---
Total: 0x1a occupied, 0x1fe6 blank

BSS section map of TEST.ABS
Index Start End Size Type File SecNbr
 0: 0x0000 0x0007 0x0008 Rel MAIN.S 3
 1: 0x0008 0xf2bf ------ --- ------------ ---
 2: 0xf800 0xf8ff ------ --- ------------ ---
 3: 0xff00 0xffff ------ --- ------------ ---
Total: 0x8 occupied, 0xf4b8 blank

Contents of link map file

Index Indicates the index number of the section.

Start Indicates the start address of the section.

End Indicates the end address of the section.

Size Indicates the size of the section.

Opt Indicates the number of extension codes that are inserted or removed.

Type Indicates the section type: Rel = relocatable section and Abs = absolute section.

File Indicates the file names of the linked module.

SecNbr Indicates the section number.

Total Indicates the total map size and the unused area size.

"---" in the Size, Opt, Type, File and SecNbr columns indicate that no section is allocated.

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 97
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.7 Symbol File
The symbol file serves to refer to the symbols defined in all the modules and their address information. It
is delivered if the -s start-up option is specified.
The file format is a text file, and its file name is "<File name>.sym". (<File name> is the same as that of the
output object file.)

Sample symbol file

Linker 63 ver x.xx Symbol file TEST.SYM Mon Jan 15 12:40:41 2001

CODE section labels of TEST.ABS
Address Type File Symbol
0x0110 Local "MAIN.O" BOOT
0x0007 Global "SUB.O" INC_RAM_BLK1
0x0000 Global "SUB.O" INIT_RAM_BLK1
0x0116 Local "MAIN.O" LOOP
0x0100 Local "MAIN.O" NMI

BSS section labels of TEST.ABS
Address Type File Symbol
0x0000 Global "MAIN.O" RAM_BLK0
0x0004 Global "MAIN.O" RAM_BLK1

Contents of symbol file

Symbol Indicates all the defined symbols in alphabetical order.

Address Indicates the absolute address defined for the symbol.

Type Indicates the scope of the symbol: Global or Local.

File Indicates the object file in which the symbol has been defined.

CHAPTER 5: LINKER

98 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.8 Absolute List File
The absolute list file is an assembly source file that carries the absolute addresses and object codes added
to the first half of each line. It is delivered only when the -l option is specified. Its file format is a text file,
and the file name is <file name>.als. (The <file name> is the same as that of the output object file.) While
a relocatable list file can be made for each assembly source file, the absolute list file is made as a single
file integrating all the linked objects and their according sources.

Sample absolute list file

Linker 63 ver x.xx Absolute list file TEST.ALS Mon jan 15 12:40:41 2001

 1: ; sub.s
 2: ; AS63 test program (subroutine)
 3:
 4: .global RAM_BLK1
 5:
 6: ;***** RAM block 1 initialize *****
 7:
 8: .global INIT_RAM_BLK1
 9: INIT_RAM_BLK1:
 10: 0000 0800 ldb %ext,RAM_BLK1@h
 11: 0001 0a04 ldb %xl,RAM_BLK1@l ;set RAM_BLK1 address to x
 12: 0002 1e90 ld [%x]+,0x0
 : : : :
 55: .org 0x110
 56: BOOT:
 57: 0110 094b ldb %ba,SP1_INIT_ADDR
 58: 0111 1fc4 ldb %sp1,%ba ; set SP1
 59: 0112 091f ldb %ba,SP2_INIT_ADDR
 60: 0113 1fc6 ldb %sp2,%ba ; set SP2
 61: 0114 08fe (+) ldb ext,fe
 62: 0115 02ea calr INIT_RAM_BLK1 ; initialize RAM block 1
 63: LOOP:
 64: 0116 08fe (+) ldb ext,fe
 65: 0117 02ef calr INC_RAM_BLK1 ; increment RAM block 1
 66: 0118 00fd jr LOOP ; infinity loop
 : : : :

Contents of absolute list file
The format of each line of the absolute list file is as follows:
Line No. Absolute address Code Source statement

Line No. Indicates the line number from the top of the file.
Address Indicates the absolute address after the instruction is allocated.
Code Indicates the object code.
Source The contents of the assembly source file are delivered.

Results of branch optimization (extension code insertion/deletion/correction)
As the result of branch optimization, extension codes (ldb %ext, imm8) may be coded without accor-
dance to the source part. To show the result of such code optimizations clearly, the following descrip-
tion will be made on an absolute list file.
When an extension code is inserted:

"(+)" is placed to the right of the code part. There is no original source for the code but the disas-
sembled "ldb %exe, imm8" is delivered at the source part.

When an extension code is deleted:
"(-)" is placed to the left of the original source part. The original statement appears at the source
part in the list file but no code is delivered.

When the operand of an extension code is corrected:
"(*)" is placed to the left of the source statement.

Instructions preprocessed in the assembler
The instructions expanded in the assembler (macros and include sources) are listed with a "+".

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 99
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.9 Cross Reference File
The cross reference file enumerates all the address labels with their absolute addresses and all the ad-
dresses where the address labels are referred to. It is delivered only when the -x option is specified. Its file
format is a text file, and the file name is <file name>.xrf. (The <file name> is the same as that of the
output object file.)

Sample cross reference file

Linker 63 ver x.xx Cross reference file TEST.XRF Mon Jan 15 12:40:41 2001

Label "INIT_RAM_BLK1" at 0x0000 SUB.O CODE, Global
0x0101 MAIN.O CODE
0x0115 MAIN.O CODE

Label "RAM_BLK0" at 0x000 MAIN.O BSS, Global
0x0101 MAIN.O CODE
0x0115 MAIN.O CODE

Label "RAM_BLK1" at 0x004 MAIN.O BSS, Global
0x0000 SUB.O CODE
0x0001 SUB.O CODE
0x0007 SUB.O CODE
0x0008 SUB.O CODE

Label "INC_RAM_BLK1" at 0x0007 "SUB.O" CODE, Global
0x0117 MAIN.O CODE

Label "NMI" at 0x0100 MAIN.O CODE, Local

Label "BOOT" at 0x0110 MAIN.O CODE, Local

Label "LOOP" at 0x0116 MAIN.O CODE, Local
0x0118 MAIN.O CODE

Contents of cross reference file
The format of each label information is as follows:
Label information

<Address> <File name> <Type>

Label information
Indicates the following information:
• Label name
• Defined address
• Object file in which the label is defined.
• Section type
• Scope

Address Indicates the address where the label is referred.

File Indicates the object file in which the label is referred.

Type Indicates the type of section that contains the address where the label is referred.

CHAPTER 5: LINKER

100 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.10 Linking

Linking rules
The linking process takes place in conformity with the following rules:

 • Absolute sections are mapped ahead of relocatable sections, according to the absolute addresses
which were defined at the time of assembling. If an absolute section exceeds the available memory
area, an error will occur.

 • The relocatable sections in the file of which the section start address was specified with an option
(-rcode, -rdata, -rbss) are mapped from the specified address. Other relocatable sections are mapped
from top of the relocatable CODE/DATA/BSS section.

 • Basically, the relocatable sections except those that are specified with the -rcode, -rdata or -rbss option
are arranged successively in the order of processing. However, if a relocatable section cannot be
mapped subsequent to the previous mapped section, for instance, there is unused area indicated by
the ICE parameter file or an already mapped absolute section, the linker searches another area to map
the section. If there is no available area, an error will occur. A section is not divided into two or more
blocks when it is mapped.
After that, another section may be mapped in the vacant area if it is possible to map there.

Restrictions on linking
Note that all sections may not be mapped depending on each section size or address specifications
even if the relocatable object size is within the available memory size.

Example of linking
A sample case where two relocatable object files, "test1.o" and "test2.o", are linked together under the
following condition is described further below.

Memory configuration of the model
Code ROM: 0x0000 to 0x1fff
Data ROM: 0x8000 to 0x87ff
RAM: 0x0000 to 0x07ff
Display, I/O memory: 0xf000 to 0xffff

Relocatable object files

test1.o
CODE1 (relocatable)

DATA1 (relocatable)
BSS1 (relocatable)

CODE2 (absolute 0x0100–) (.org is used.)

(.org is used.)BSS2 (absolute 0xf000–)

test2.o
CODE3 (relocatable)

DATA2 (absolute 0x8400–)
BSS3 (absolute 0xff00–)

CODE4 (relocatable) (.org is used.)

BSS4 (relocatable)

Fig. 5.10.1 Structure of sample relocatable files

Sample linker command file

-code 0x0000 ; Relocatable CODE section start address
-rcode test2.o = 0x0110 ; CODE section start address of test2.o
-data 0x8000 ; Relocatable DATA section start address
-bss 0x0000 ; Relocatable BSS section start address
-rbss test2.o = 0x0400 ; BSS section start address of test2.o
-o test.abs ; Output file name
test1.o ; Input file 1
test2.o ; Input file 2

When linking is executed with the commands defined above, the linker maps the sections of each
module in the manner graphically presented in Figure 5.10.2.

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 101
(S1C63 FAMILY ASSEMBLER PACKAGE)

test1.o test.abs

Data ROM area

RAM area

0x0000
0x0100
0x0110

0x8000

0x8400

0x0000

0x0400

0xf000

0xff00

0x00ff
0x010f

0x1fff

0x83ff

0x87ff

0x03ff

0x07ff

0xfeff

0xffff

CODE2

DATA1

DATA2

CODE3

CODE4

CODE1

BSS1

BSS4

BSS4

BSS3

Code ROM area

Display memory
I/O memory area

test1.o
CODE1 (relocatable)

DATA1 (relocatable)
BSS1 (relocatable)

CODE2 (absolute 0x0100–)

BSS2 (absolute 0xf000–)

test2.o
CODE3 (relocatable)

DATA2 (absolute 0x8400–)
BSS3 (absolute 0xff00–)

CODE4 (relocatable)

BSS4 (relocatable)

Fig. 5.10.2 Example of linking

The absolute sections CODE2, BSS2, DATA2 and BSS3 are mapped to the location specified in the
source files.

The start addresses of the CODE and BSS relocatable sections in "test2.o" is specified by the -rcode and
-rbss options, so CODE3 is mapped from address 0x0110 and CODE 4 follows CODE3. BSS4 is
mapped from address 0x0400.

Since the start addresses of the relocatable CODE, DATA and BSS sections in "test1.o" have not been
specified, they are mapped from the relocatable section start addresses specified by the -code, -data
and -bss options. First the linker will try to map CODE1 from address 0x0000 to address 0x00ff. If
CODE 1 is smaller than 0x100 words, CODE1 can be mapped from address 0x0000. In this example,
CODE1 is mapped behind CODE4 because CODE1 is larger than 0x100 words.
DATA1 is mapped from address 0x8000 and BSS1 is mapped from address 0x0000.
A section cannot be overlapped to other sections, therefore an error will occur if there is no free area
larger than the section size. For example, an error will occur if CODE2 is larger than 0x10 words.

CHAPTER 5: LINKER

102 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.11 Branch Optimization Function
The PC relative branch instructions (jr, jrc, jrnc, jrz, jrnz and calr) need an address extension instruction
(ldb %ext, imm8) when the relative distance to the destination address exceeds the -127 to 128 range.
Since the location of relocatable sections is not decided until the linking process is completed, the linker
has a function that automatically inserts, removes or corrects the extension codes. This makes it possible
to omit the address extension instruction in the source. However, this function is valid only for the branch
instructions that use a label to specify the destination address.
This branch optimization function (automatically insertion/deletion/correction of the extension codes) is
enabled by default and the branch codes will be optimized unless otherwise specified. All the insertion/
deletion/correction functions can be disabled by specifying the -d option. The -di and -dr options can
also be specified to disable the extension code insertion and deletion functions, respectively (if the -d
option is not specified).

The linker checks the distance from a PC relative branch instruction code to the branch destination label,
and inserts, removes or corrects the extension codes according to the check results.

(1) When the branch destination is located within the -127 to +128 range from the branch instruction:
If the branch instructon code does not have an extension code, no extension code is inserted.
If the branch instruction has an extension code, it is removed (if the -dr option is specified, existing
expansion code will not be removed).
Examples:
jr LABEL → jr LABEL

ldb %ext,LABEL@rh

calr LABEL@rl → calr LABEL@rl

(2) When the branch destination is located outside the -127 to +128 range from the branch instruction:
If the branch instructon code does not have an extension code, an appropriate extension code is
inserted.
If the branch instruction has an illegal extension code, it is replaced with a correct extension code.
Examples:
jr LABEL → ldb %ext,LABEL@rh

jr LABEL@rl

ldb %ext,LABEL1@rh → ldb %ext,LABEL2@rh

calr LABEL2@rl calr LABEL2@rl

Unused memory spaces may be generated between sections caused by the branch optimization. In this
case the linker moves the relocatable section following an unused area toward a lower address so that the
codes are embedded in the unused area.

Note: In the previous version, omission of the -d option enables automatic insertion and correction of the
extension codes, note, however, that deletion of the extension codes must be enabled using the -er
option. The current version has no -er option and all the insertion/deletion/correction functions are
enabled by default. To disable the deletion and insertion functions when the -d option is omitted,
the -dr option and -di option must be specified, respectively. Be aware that the current version may
generate an object different from that of the previous version because the current version uncondi-
tionally deletes unnecessary extension codes when the project for the previous version with no -d
option is processed. Specify the -dr option to generate the same optimized codes as the previous
version.

CHAPTER 5: LINKER

S5U1C63000A MANUAL EPSON 103
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.12 Error/Warning Messages

5.12.1 Errors
When an error occurs, the linker will immediately terminate the processing after displaying an error
message. No object file will be output. Other files will be delivered only in the part which was processed
prior to the occurrence of the error.
The error messages are given below.

Error message Description

Branch destination too far from <address> The branch destination address is out of range.

CALZ for non zero page at <address> The specified address is out of the range (0x0000–0x00ff).

Cannot create absolute object file <FILE NAME> The absolute object file cannot be created.

Cannot open <file kind> file <FILE NAME> The file cannot be opened.

Cannot read <file kind> file <FILE NAME> The file cannot be read.

Cannot relocate <section kind> section of The relocatable section cannot be allocated.

<FILE NAME>

Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.

Illegal address range <address> for a code at The address specified by TST/SET/CLR is out of the range

<address> (0x0000–0x003f or 0xffC0–0xffff).

Illegal file name <FILE NAME> The file name is incorrect.

Illegal file name <FILE NAME> specified with The file name specified with the option is incorrect.

option <option>

Illegal ICE parameter at line <line number> of The ICE parameter file contains an illegal parameter setting.

<FILE NAME>

Illegal object <FILE NAME> The input file is not an object file in IEEE-695 format.

Illegal option <option> An illegal option is specified.

No address specified with option <option> Address is not specified with the option.

No code to locate There is no valid code for mapping.

No ICE parameter file specified ICE parameter file is not specified.

No name and address specified with option <option> Name and address are not specified with the option.

No object file specified Object files to be linked are not specified.

Out of memory Cannot secure memory space.

<section kind> section <address>-<address> overlaps The address range of the section overlaps with another

with <section kind> section <address>-<address> section's address range.

<section kind> section <address>-<address> overlaps The address range of the section overlaps with the

with the unavailable memory unavailable memory.

Unresolved external <label> in <FILE NAME> Reference was made to an undefined symbol.

Unusable instruction code <instruction code> The object contains an instruction invalid for the model.

in <FILE NAME>

5.12.2 Warning
Even when a warning appears, the linker continues with the processing. It completes the processing after
displaying a warning message, unless, in addition, an error takes place. The output files will all be
delivered, but the operation of the program cannot be guaranteed.
The warning messages and their contents are given below.

Warning message Description

Cannot create <file kind> file <FILE NAME> The file cannot be created.

Cannot open <file kind> file <FILE NAME> The file cannot be opened.

No debug information in <FILE NAME> Debugging information is not included in the file.

No symbols found Symbols cannot be found.

Second definition of label <label> in The label has already been defined.

<FILE NAME>

Second ICE parameter file <FILE NAME> ignored Two or more ICE parameter files are specified.

CHAPTER 5: LINKER

104 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

5.13 Precautions

(1) Upper limits, such as a maximum section count and the number of objects to be linked, depend on the
free memory space.

(2) To load the absolute object file created by the linker to the debugger, the same ICE parameter file must
be specified when the debugger is invoked.

(3) In the previous version, omission of the -d option enables automatic insertion and correction of the
extension codes, note, however, that deletion of the extension codes must be enabled using the -er
option. The current version has no -er option and all the insertion/deletion/correction functions are
enabled by default. To disable the deletion and insertion functions when the -d option is omitted, the -
dr option and -di option must be specified, respectively. Be aware that the current version may
generate an object different from that of the previous version because the current version uncondition-
ally deletes unnecessary extension codes when the project for the previous version with no -d option
is processed. Specify the -dr option to generate the same optimized codes as the previous version.

CHAPTER 6: HEX CONVERTER

S5U1C63000A MANUAL EPSON 105
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 6 HEX CONVERTER
This chapter describes the functions of hex converter, hx63.

6.1 Functions
The hex converter hx63 converts an absolute object file in IEEE-695 format output from the linker into a
hex file in Motorola-S format or Intel-HEX format. This conversion is needed when debugging the
program with the ROM or when creating mask data using the mask data checker.
When creating the ROM-image hex data, the hex converter fills the unused area of each model with 0xff.

6.2 Input/Output Files

filec.hex file.csa
filel.hex

Hex Converter

hx63

file.abs
Absolute

object file

fileh.hex

file.lsa

file.hsaIntel-HEX
format files

Motorola-S
format filesor

hx63.err

Error file

ROM or Mask data creation

ICE
parameter filefile.par

from Linker

Fig. 6.2.1 Flow chart

6.2.1 Input Files
Absolute object file

File format: Binary file in IEEE-695 format
File name: <File name>.abs (A path can also be specified.)

Description: Absolute object file created by the linker.

ICE parameter file ∗ This file must always be specified.
File format: Binary file

File name: <File name>.par (A path can also be specified.)
Description: File to specify the memory mapping information of each S1C63 Family model. This

file is provided for each model and is commonly used with the linker and debugger.

6.2.2 Output Files
Hex file

File format: Text file in Motorola-S format or Intel-HEX format
File name: Motorola-S format <File name>.hsa, <File name>.lsa and <File name>.csa

Intel-HEX format <File name>h.hex, <File name>l.hex and <File name>c.hex
Output destination: Current directory

Description: Three hex files are generated: ".hsa" or "h.hex" that contains the five high-order bits
of the object codes with 0b000 extended, ".lsa" or "l.hex" that contains the eight low-
order bits and ".csa" or "c.hex" that contains four-bit data for the data ROM.
Motorola-S format files are delivered by default. Intel-HEX format files can be
specified using the -i option.

Error file
File format: Text file

File name: hx63.err
Output destination: Current directory

Description: The file is created if the -e start-up option is specified. It records information that the
hex converter outputs to the Standard Output (stdout), such as error messages. The
file name is "hx63.err" by default, but it can be changed using the -o start-up option.

CHAPTER 6: HEX CONVERTER

106 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

6.3 Starting Method

General form of command line

 hx63 ^ [Options] ^ <Absolute object file name> ^ <ICE parameter file name>

^ denotes a space.
[] indicates the possibility to omit.
The order of options and file names can be arbitrary.

File names
Absolute object file: <File name>.abs
ICE parameter file: <File name>.par

The extension of an absolute object file can be omitted. The ICE parameter file must be specified with
its extension.

A long file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options
The hex converter comes provided with the following four start-up options:

-b
Function: Conversion of existing codes only

Explanation: Converts and delivers only the object codes that exist in the specified absolute object
file. Data for unused addresses is not delivered.

Default: If this option is not specified, the hex data for the entire available memory range
of the model is delivered to the output file. Unused addresses are filled with 0xff.

-e
Function: Output of error files

Explanation: Creates an .err file which contains the information that the hex converter outputs
to the Standard Output (stdout), such as error messages.

Default: If this option is not specified, no error file will be created.
-i

Function: Conversion into Intel-HEX format
Explanation: Generates the hex files ("h.hex", "l.hex" and "c.hex") in Intel-HEX format.

Default: If this option is not specified, Motorola-S format files (".hsa", ".lsa" and ".csa") are
generated.

-o <file name>
Function: Specification of output path/file name

Explanation: Specifies an output path/file name without extension or with an extension ".hsa",
".lsa", ".csa", "h.hex", "l.hex" or "c.hex". By specifying only one file name, three hex
files will be generated.
If no extension is specified, an appropriate extension will be supplemented at the
end of the specified output path/file name. In this case, ".hsa", ".lsa" or ".csa" is
added to the output file name. If Intel-HEX format is specified, "h.hex", "l.hex" or
"c.hex" is added to the output file name. It may change a DOS file name (8
characters max.) to a long file name for Windows.

Default: The input file name is used for the output file names.

When entering an option in the command line, one or more spaces are necessary before and after the
option.
Example: c:\epson\s1c63\bin\hx63 -e test.abs par63xxx.par

CHAPTER 6: HEX CONVERTER

S5U1C63000A MANUAL EPSON 107
(S1C63 FAMILY ASSEMBLER PACKAGE)

6.4 Messages
The hex converter delivers all its messages via the Standard Output (stdout).

Start-up message
The hex converter outputs only the following message when it starts up.

Hex converter 63 Ver x.xx

Copyright (C) SEIKO EPSON CORP. 1998-2001

End message
The hex converter outputs the following messages to indicate which files have been created when it
ends normally.

Created hex file <FILE NAME>.HSA
Created hex file <FILE NAME>.LSA
Created hex file <FILE NAME>.CSA
Created error log file HX63.ERR

Hex conversion 0 error(s) 0 warning(s)

Usage output
If no file name was specified or an option was not specified correctly, the hex converter ends after
delivering the following message concerning the usage:

Usage: hx63 [options] <file names>
Options: -b Do not fill unused memory with 0xff
 -e Output error log file (HX63.ERR)
 -i Use Intel Hex format
 -o <file name> Specify output file name
File names: Absolute object file (.ABS)
 ICE parameter file (.PAR)

When error/warning occurs
If an error occurs, an error message will appear before the end message shows up.
Example:

Error : No ICE parameter file specified
Hex conversion 1 error(s) 0 warning(s)

In the case of an error, the hex converter ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning : Output file name conflict
Hex conversion 0 error(s) 1 warning(s)

In the case of a warning, the hex converter ends after creating the output files, but the result cannot be
guaranteed.

For details on errors and warnings, refer to Section 6.6 "Error/Warning Messages".

CHAPTER 6: HEX CONVERTER

108 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

6.5 Output Hex Files

6.5.1 Hex File Configuration
Since each S1C63000 instruction has a 13-bit code, the hex converter always generates two hex files for the
high-order data and the low-order data of the program code. The low-order data hex file (".lsa" or "l.hex")
contains the low-order bytes (bits 7 to 0) of the object codes. The high-order data hex file (".hsa" or
"h.hex") contains the high-order bytes (bits 12 to 8 suffixed by high-order bits 0b000).
4-bit data for the data ROM is output to the ".csa" or "c.hex" file.
By specifying the -i option, the hex converter can convert the absolute object file into Intel-HEX files as
well as Motorola-S format. However, use Motorola-S format format when loading the hex files to the
debugger or creating the mask data by the mask data checker because the debugger and mask data
checker do not support Intel-HEX files.

6.5.2 Motorola-S Format
The hex converter converts an absolute object file in the IEEE-695 format into the Motorola-S2 format files
by default.
The files are generated with an extension ".hsa" for the high-order program file, ".lsa" for the low-order
program file and ".csa" for the data ROM file.
The following shows a sample data in Motorola-S2 format:

S224000000FFFB
S224000020FFDB
 :
S22400010008E000F04200420606FF89
 :
S804000000FB

length
address data sum

S2 (1 bytes): Indicates that the line is a data record.
S8 (1 bytes): Indicates that the line is an end record (end of data).
length (1 byte): Indicates the record length of "address + data + sum". The maximum length of a

data record is 0x24, while the end record is fixed at 0x04.
address (3 bytes): Indicates the address where the head data in a record is placed.
data (32 bytes max.): The object codes are placed here. This is not included in the end record.
sum (1 byte): This is a checksum (1's complement) from "length" to the last data.

The end records are always "S804000000FB".

CHAPTER 6: HEX CONVERTER

S5U1C63000A MANUAL EPSON 109
(S1C63 FAMILY ASSEMBLER PACKAGE)

6.5.3 Intel-HEX Format
The hex converter converts an absolute object file in the IEEE-695 format into the Intel-HEX format files
when the -i option is specified.
The files are generated with a name "<file name>h.hex" for the high-order program file, "<file name>l.hex" for
the low-order program file and "<file name>c.hex" for the data ROM file.
The following shows a sample data in Intel-HEX format:

:10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
 :
:1001000008E000F04200420606FFFFFFFFFFFFFF8E
 :
:100FF000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01
 :
:00000001FF

data volume type
address data sum

data volume (1 byte): Indicates the data length of each record. The maximum length of a data record is
0x10, while the end record is fixed at 0x00.

address (2 bytes): Indicates the address where the head data in a record is placed.
type (1 byte): Indicates the type of hexadecimal format, currently only "00".
data (16 bytes max.): The object codes are placed here. This is not included in the end record.
sum (1 byte): This is a checksum (2's complement) from "Data volume" to the last data.

The end records are always "00000001FF".

Note: When using hex files for creating the mask data, do not specify Intel-HEX format because the
mask data checker does not support this format.

6.5.4 Conversion Range
By default, the hex converter generates the hex files that include all the codes of the ROM area available
for each model. Data for unused addresses are delivered as 0xff. For example, if the model has a built-in
2KB code ROM and the program uses the area from address 0x0 to address 0x6ff, the hex converter fills
the area from address 0x700 to address 0x7ff with 0xff. If there are unused addresses in the range from
0x0 to 0x6ff, those data are also delivered as 0xff.
When creating the mask data by the mask data checker, the hex files must be generated in this format.

When the -b option is specified, the hex converter does not deliver data in unused addresses of the
absolute object file. This allows minimization of the output hex files. Note, however that the hex files
generated in this format cannot be used for creating the mask data.

CHAPTER 6: HEX CONVERTER

110 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

6.6 Error/Warning Messages

6.6.1 Errors
When an error occurs, the hex converter immediately terminates the processing after displaying an error
message. It will not output hex files.
The hex converter error messages are given below.

Error message Description

Cannot create <file kind> file <FILE NAME> The file cannot be created.

Cannot open <file kind> file <FILE NAME> The file cannot be opened.

Cannot read <file kind> file <FILE NAME> The file cannot be read.

Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.

Illegal file name <FILE NAME> specified with The specified hex file name is incorrect.

option <option>

Illegal ICE parameter at line <line number> of The ICE parameter file contains an illegal parameter setting.

<FILE NAME>

Illegal file name <FILE NAME> The specified input file name is incorrect.

Illegal option <option> An illegal option is specified.

Illegal absolute object format The input file is not an object file in IEEE-695 format.

No ICE parameter file specified ICE parameter file is not specified.

Out of memory Cannot secure memory space.

6.6.2 Warning
Even if a warning is issued, the hex converter keeps on processing, and completes the processing after
displaying a warning message, unless, in addition, any error occurs.

Warning message Description

Input file name extension .XXX conflict Two or more file names with the same extension have been

specified. The last one is used.

6.7 Precautions
(1) When creating the hex files for making the mask data file in the mask data checker, specify Motorola-S

format and convert for the entire available memory range of the model (do not specify the -b and -i
options). Otherwise, an error will occur in the mask data checker. Refer to the "Development Tool
Manual" of each model for details of the mask data checker.

(2) If an 8-character output file name (DOS file name) without extension is specified for the Intel-HEX
files, it will be changed to a long file name because "h.hex", "l.hex" or "c.hex" is added to the file name.

CHAPTER 7: DISASSEMBLER

S5U1C63000A MANUAL EPSON 111
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 7 DISASSEMBLER
This chapter describes the functions of the disassembler, ds63.

7.1 Functions
The disassembler's input is an object in IEEE-695 or Motorola-S format. The code in the object file is
disassembled into mnemonics, and output as a source file. The restored source file can be processed in
the assembler/linker/hex converter to obtain the same object or hex file.

7.2 Input/Output Files

ds63.err

Error file

Disassembler

ds63

file.abs
IEEE-695 absolute

 object file
Motorola-S file

or

file.ms

Preprocessed source file

from Linker from Hex converter

file.csa
file.lsa

file.hsa

Fig. 7.2.1 Flow chart

7.2.1 Input Files
Absolute object file

File format: Binary file in IEEE-695 format
File name: <File name>.abs (A path can also be specified)

Description: Absolute object file created by the linker

Hex file
File format: Text file in Motorola-S format

File name: <File name>.hsa, <File name>.lsa and <File name>.csa
Description: Hex files created by the hex converter. Three hex files are needed: ".hsa" that con-

tains the four high-order bits of the object codes with 0b000 extended, ".lsa" that
contains the eight low-order bits and ".csa" that contains four-bit data for the data
ROM. If there is no data ROM, the ".csa" file is not required.

7.2.2 Output Files
Source file

File format: Text file
File name: <File name>.ms

Output destination: Current directory
Description: Disassembled contents of the input file are delivered.

Error file
File format: Text file

File name: ds63.err
Output destination: Current directory

Description: The file is created if the -e start-up option is specified. It records the information that
the disassembler outputs to the Standard Output (stdout), such as error messages.
The file name is "ds63.err" by default, but it can be changed using the -o start-up
option.

CHAPTER 7: DISASSEMBLER

112 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

7.3 Starting Method

General form of command line

 ds63 ^ [Options] ^ <Absolute object or hex file name>

^ denotes a space.
[] indicates the possibility to omit.

File names
Absolute object file: <File name>.abs
Motorola-S files: <File name>.hsa, <File name>.lsa, <File name>.csa

The input file must be specified with its extension.
The Motorola-S file can be specified with either ".hsa", ".lsa" or ".csa" as the extension. The other
unspecified files will be automatically loaded.

A long file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options
The disassembler comes provided with the following four start-up options:

-cl
Function: Use of lower-case characters

Explanation: Creates all instructions and labels using lower-case characters.
Default: If neither this option nor the -cu option is specified, the source will be made with

all labels in upper-case characters and instructions in lower-case characters.

-cu
Function: Use of upper-case characters

Explanation: Creates all instructions and labels using upper-case characters.
Default: If neither this option nor the -cl option is specified, the source will be made with

all labels in upper-case characters and instructions in lower-case characters.

-e
Function: Output of error file

Explanation: Creates an .err file which contains the information that the disassembler outputs
to the Standard Output (stdout), such as error messages.

Default: If this option is not specified, an error file will not be created.

-o <file name>
Function: Specification of output path/file name

Explanation: Specify an output path/file name without extension or with the extension ".ms".
If no extension is specified, ".ms" will be supplemented at the end of the specified
output path/file name.

Default: The input file name is used for the output file name.

When entering an option in the command line, one or more spaces are necessary before and after the
option.
Example: c:\epson\s1c63\bin\ds63 -e -o c:\output.ms

CHAPTER 7: DISASSEMBLER

S5U1C63000A MANUAL EPSON 113
(S1C63 FAMILY ASSEMBLER PACKAGE)

7.4 Messages
The disassembler delivers all its messages via the Standard Output (stdout).

Start-up message
The disassembler outputs the following message when it starts up.

Disassembler 63 Ver x.xx

Copyright (C) SEIKO EPSON CORP. 1998-2001

End message
The disassembler outputs the following messages to indicate which files have been created when it
ends normally.

Created preprocessed source file <FILE NAME>.MS
Created error log file DS63.ERR

Disassembly 0 error(s) 0 warning(s)

Usage output
If no file name was specified or an option was not specified correctly, the disassembler ends after
delivering the following message concerning the usage:

Usage: ds63 [options] <file name>
Options: -cl Use lower case characters
 -cu Use upper case characters
 -e Output error log file (DS63.ERR)
 -o <file name> Specify output file name
File names: Absolute object file (.ABS or .CSA/.LSA/.HSA)

When error/warning occurs
If an error occurs, an error message will appear before the end message shows up.
Example:

Error: Cannot open file TEST.ABS
Disassembly 1 error(s) 0 warning(s)

In the case of an error, the disassembler ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning: Input file name extension .HSA conflict
Disassembly 0 error(s) 1 warning(s)

In the case of a warning, the disassembler ends after creating an output file.

For details on errors and warnings, refer to Section 7.6 "Error/Warning Messages".

CHAPTER 7: DISASSEMBLER

114 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

7.5 Disassembling Output
The data/code mnemonics are restored from the target code. As for the branch instructions, a label will
be automatically generated such as "CODEx:" where "x" denotes a hexadecimal number string. Other
reference symbols will also be generated as "LABELx", "IOx" and "RAMx". The ".org" pseudo-instruction
is used to specify the starting location of each code block.
The following shows examples of disassembled sources:

Sample outputs

Absolute list file "test.als"
Linker 63 ver x.xx Absolute list file "TEST.ALS" Mom Jan 15 12:40:41 2001

 1: ; sub.s
 2: ; AS63 test program (subroutine)
 3:
 4: .global RAM_BLK1
 5:
 6: ;***** RAM block 1 initialize *****
 7:
 8: .global INIT_RAM_BLK1
 9: INIT_RAM_BLK1:
 10: 0000 0800 ldb %ext,RAM_BLK1@h
 11: 0001 0a04 ldb %xl,RAM_BLK1@l ;set RAM_BLK1 address to x
 12: 0002 1e90 ld [%x]+,0x0
 13: 0003 1e90 ld [%x]+,0x0
 14: 0004 1e90 ld [%x]+,0x0
 15: 0005 1e80 ld [%x],0x0 ;set 0x0000 to RAM_BLK1
 16: 0006 1ff8 ret
 17:
 18: ;***** RAM block 1 increment *****
 19:
 20: .global INC_RAM_BLK1
 21: INC_RAM_BLK1:
 22: 0007 0800 ldb %ext,RAM_BLK1@h
 23: 0008 0a04 ldb %xl,RAM_BLK1@l ;set RAM_BLK1 address to x
 24: 0009 1911 add [%x]+,1
 25: 000a 1990 adc [%x]+,0
 26: 000b 1990 adc [%x]+,0
 27: 000c 1980 adc [%x],0 ; increment 16bit value
 28: 000d 1ff8 ret
 29: ; main.s
 30: ; AS63 test program (main routine)
 31: ;
 32:
 33: ;***** INITIAL SP1 & SP2 ADDRESS DEFINITION *****
 34:
 35: #ifdef SMALL_RAM
 36: .set SP1_INIT_ADDR 0xb ;SP1 init addr = 0x2c
 37: #else
 38: .set SP1_INIT_ADDR 0x4b ;SP1 init addr = 0x12c
 39: #endif
 40:
 41: .set SP2_INIT_ADDR 0x1f ;SP2 init addr = 0x1f
 42:
 43:
 44: ;***** NMI & BOOT, LOOP *****
 45:
 46: .global INIT_RAM_BLK1 ; subroutine in sub.s
 47: .global INC_RAM_BLK1 ; subroutine in sub.s
 48:
 49: .org 0x100
 50: NMI:
 51: 0100 08fe (+) ldb ext,fe
 52: 0101 02fe calr INIT_RAM_BLK1 ; initialize RAM block 1
 53: 0102 1ff9 reti ; in NMI(watchdog timer)
 54:

CHAPTER 7: DISASSEMBLER

S5U1C63000A MANUAL EPSON 115
(S1C63 FAMILY ASSEMBLER PACKAGE)

 55: .org 0x110
 56: BOOT:
 57: 0110 094b ldb %ba,SP1_INIT_ADDR
 58: 0111 1fc4 ldb %sp1,%ba ; set SP1
 59: 0112 091f ldb %ba,SP2_INIT_ADDR
 60: 0113 1fc6 ldb %sp2,%ba ; set SP2
 61: 0114 08fe (+) ldb ext,fe
 62: 0115 02ea calr INIT_RAM_BLK1 ; initialize RAM block 1
 63: LOOP:
 64: 0116 08fe (+) ldb ext,fe
 65: 0117 02ef calr INC_RAM_BLK1 ; increment RAM block 1
 66: 0118 00fd jr LOOP ; infinity loop

Output source file "test.ms" (default)
;Disassembler 63 Ver x.xx Assembly source file TEST.MS Mon Jan 15 13:10:20 2001

 .set LABEL1 0x4
 .set LABEL2 0x4
 .set LABEL3 0x4b
 .set LABEL4 0x1f
 .code
 .org 0x0
CODE1:
 ldb %ext,LABEL1@h
 ldb %xl,LABEL1@l
 ld [%x]+,0x0
 ld [%x]+,0x0
 ld [%x]+,0x0
 ld [%x],0x0
 ret
CODE2:
 ldb %ext,LABEL2@h
 ldb %xl,LABEL2@l
 add [%x]+,0x1
 adc [%x]+,0x0
 adc [%x]+,0x0
 adc [%x],0x0
 ret
 .code
 .org 0x100
 ldb %ext,CODE1@rh
 calr CODE1@rl
 reti
 .code
 .org 0x110
 ldb %ba,LABEL3@l
 ldb %sp1,%ba
 ldb %ba,LABEL4@l
 ldb %sp2,%ba
 ldb %ext,CODE1@rh
 calr CODE1@rl
CODE3:
 ldb %ext,CODE2@rh
 calr CODE2@rl
 jr CODE3@rl

Output source file "test.ms" (when -cl is specified)
;Disassembler 63 Ver x.xx Assembly source file TEST.MS Mon Jan 15 13:10:20 2001

 .set label1 0x4
 .set label2 0x4
 .set label3 0x4b
 .set label4 0x1f
 .code
 .org 0x0
code1:
 ldb %ext,label1@h
 ldb %xl,label1@l
 ld [%x]+,0x0
 ld [%x]+,0x0
 ld [%x]+,0x0
 ld [%x],0x0
 ret
code2:
 ldb %ext,label2@h
 ldb %xl,label2@l
 add [%x]+,0x1
 adc [%x]+,0x0

CHAPTER 7: DISASSEMBLER

116 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

 adc [%x]+,0x0
 adc [%x],0x0
 ret
 .code
 .org 0x100
 ldb %ext,code1@rh
 calr code1@rl
 reti
 .code
 .org 0x110
 ldb %ba,label3@l
 ldb %sp1,%ba
 ldb %ba,label4@l
 ldb %sp2,%ba
 ldb %ext,code1@rh
 calr code1@rl
code3:
 ldb %ext,code2@rh
 calr code2@rl
 jr code3@rl

Output source file "test.ms" (when -cu is specified)
;Disassembler 63 Ver x.xx Assembly source file TEST.MS Mon Jan 15 13:10:20 2001

 .SET LABEL1 0X4
 .SET LABEL2 0X4
 .SET LABEL3 0X4B
 .SET LABEL4 0X1F
 .CODE
 .ORG 0X0
CODE1:
 LDB %EXT,LABEL1@H
 LDB %XL,LABEL1@L
 LD [%X]+,0X0
 LD [%X]+,0X0
 LD [%X]+,0X0
 LD [%X],0X0
 RET
CODE2:
 LDB %EXT,LABEL2@H
 LDB %XL,LABEL2@L
 ADD [%X]+,0X1
 ADC [%X]+,0X0
 ADC [%X]+,0X0
 ADC [%X],0X0
 RET
 .CODE
 .ORG 0X100
 LDB %EXT,CODE1@RH
 CALR CODE1@RL
 RETI
 .CODE
 .ORG 0X110
 LDB %BA,LABEL3@L
 LDB %SP1,%BA
 LDB %BA,LABEL4@L
 LDB %SP2,%BA
 LDB %EXT,CODE1@RH
 CALR CODE1@RL
CODE3:
 LDB %EXT,CODE2@RH
 CALR CODE2@RL
 JR CODE3@RL

CHAPTER 7: DISASSEMBLER

S5U1C63000A MANUAL EPSON 117
(S1C63 FAMILY ASSEMBLER PACKAGE)

7.6 Error/Warning Messages

7.6.1 Errors
When an error occurs, the disassembler immediately terminates the processing after displaying an error
message. It will not output a source file.
The disassembler error messages are given below.

Error message Description

Cannot create <file kind> file <FILE NAME> The file cannot be created.

Cannot open <file kind> file <FILE NAME> The file cannot be opened.

Cannot read <file kind> file <FILE NAME> The file cannot be read.

Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.

Illegal file name <FILE NAME> specified with The specified output source file name is incorrect.

option <option>

Illegal file name <FILE NAME> The specified input file name is incorrect.

Illegal HEX data format The input file is not a Motorola-S format file.

Illegal option <option> An illegal option is specified.

Out of memory Cannot secure memory space.

7.6.2 Warning
Even if a warning is issued, the disassembler keeps on processing, and completes the processing after
displaying a warning message, unless, in addition, an error is produced.

Warning message Description

Input file name extension .XXX conflict Two or more file names with the same extension have been

specified. The last one is used.

Cannot open Hex file xxx.csa The file cannot be opened. It is assumed there is no data

memory.

CHAPTER 8: DEBUGGER

118 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 8 DEBUGGER
This chapter describes how to use the Debugger db63.

8.1 Features
The Debugger db63 is used to debug a program after reading an object file in the IEEE-695 format that is
generated by the linker.
It has the following features and functions:

• Various data can be referenced at the same time using multiple windows.
• Frequently used commands can be executed from tool bars and menus using a mouse.
• Also available are source display and symbolic debug functions which correspond to assembly source

codes.
• Consecutive program execution and two types of single-stepping are possible.
• Five break functions are supported.
• A real-time display function shows register and memory contents on-the-fly.
• A time display function showing execution time by both duration and steps.
• An advanced trace function.
• An automatic command execution function using a command file.

8.2 Input/Output Files

Debugger

db63

file.absfile.par file.cmd

IEEE-695
object fileParameter file

file.log

Log file

file.cmd

Record file

file.trc

Trace file

from Linker

ICE

Program/data
HEX files

file.msa
file.ssa

file.fsa

file.csa
file.lsa

file.hsa

Option
HEX files

Command file
file.s

Source file(s)

Fig. 8.2.1 Flow chart

8.2.1 Input Files

Parameter file
File format: Binary file

File name: <file name>.par
Description: This file contains memory information on each microcomputer model and is indispensable

for starting the debugger. This file is provided for each microcomputer model.

The following files are read by the debugger according to command specification.

Object file
File format: Binary file in the IEEE-695 format

File name: <file name>.abs (An extension other than ".abs" can also be used.)
Description: This is an object file generated by the linker. This file is read into the debugger by the lf

command. By reading a file in the IEEE-695 format that contains debug information, source
display and symbolic debugging can be performed.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 119
(S1C63 FAMILY ASSEMBLER PACKAGE)

Source file
File format: Text file

File name: <file name>.s
Description: This is the source file of the above object file. It is read when the debugger performs source

display.

Program file
File format: HEX file in Motorola-S format

File name: <file name>.hsa, <file name>.lsa
Description: This is a load image file of the program ROM, and is read into the debugger by the lo

command. The file ".hsa" corresponds to the 5 high-order bits of the program code and the
file ".lsa" corresponds to the 8 low-order bits of the program code. These files are generated
for the purpose of creating mask data from an object file in the IEEE-695 format by the Hex
convertor. Unlike files in the IEEE-695 format, these files cannot be used for source display
or symbolic debugging, but can be used to check the operation of final program data.

Data file for data ROM
File format: HEX file in Motorola-S format

File name: <file name>.csa
Description: This is a load image file of the data ROM, and is read into the debugger by the lo com-

mand. This file is generated for the purpose of creating mask data from an object file in the
IEEE-695 format by the Hex convertor. When an absolute object file in the IEEE-695 format
is loaded, it is not necessary to load this file.

Option data file
File format: HEX file in Motorola-S format

File name: <file name>.fsa, <file name>.ssa, <file name>.msa (Varies with the type of microcomputer)
Description: These data files are used to set up hardware options for each microcomputer model and is

read by the lo command. These files are generated by a development tool available for each
microcomputer model.

Command file
File format: Text file

File name: <file name>.cmd (An extension other than ".cmd" can also be used.)
Description: This file contains a description of debug commands to be executed successively. By writing

a series of frequently used commands in this file, the time and labor required for entering
commands from the keyboard can be saved. The command described in the file are read
and executed using the com or cmw command.

8.2.2 Output Files
Log file
File format: Text file

File name: <file name>.log (An extension other than ".log" can also be used.)
Description: This file contains the information of executed commands and execution results that are

output to a file. Output of this file can be controlled by the log command.

Record file
File format: Text file

File name: <file name>.cmd (An extension other than ".cmd" can also be used.)
Description: This file contains the information of executed commands that are output to a file. Output of

this file can be controlled by the rec command.

Trace file
File format: Text file

File name: <file name>.trc (An extension other than ".trc" can also be used.)
Description: This file contains the specified range of trace information. Output of this file can be con-

trolled by the tf command.

CHAPTER 8: DEBUGGER

120 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.3 Starting Method

8.3.1 Start-up Format

General form of command line

db63 ^ <parameter file name> ^ [start-up option]

^ denotes a space.
[] indicates the possibility to omit.

Note: The parameter file will be recognized by its extension ".par", so ".par" must be included in the
parameter file name to be specified.

8.3.2 Start-up Options
The debugger has three start up options available.

<command file name>
Function: Specifies a command file.

Explanation: For a series of commands to be executed immediately after the debugger starts
up, specify a command file that describes those commands.

-comX
Function: Specifies a communication port.

Explanation: This option specifies the communication port through which a personal com-
puter is communicated with by the ICE. Specify a port number in the X part of
this option. The port that can be used for this purpose varies among different
personal computers.
Unless this option is specified, the com1 port is used to communicate with the
ICE.

-b <baud rate>
Function: Specifies a communication transmission rate.

Explanation: This option specifies the baud rate on the personal computer. For <baud rate>,
select one from 2400, 4800, 9600, 19200, or 38400.
Unless specified otherwise, the baud rate is set to 9600 bps. This value is the
same as the initial setting of the ICE.
The baud rate on the ICE is set using the DIP switch mounted on the ICE.

When entering an option in a command line, make sure that there is at least one space before and after
the option.
Example: c:\epson\s1c63\bin\db63 par63xxx.par startup.cmd -com2 -b 19200

The default start-up options are set as: -com1 & -b 9600
If no parameter file name was specified or the option was not specified correctly, the debugger ends after
delivering the following message concerning the usage:

-Usage-

 db63.exe parameter file name <startup options>

Options:

 command file: ... specifies a command file

 -comX(X:1-4) ... com port, default com1

 -b ... baud rate, 2400, 4800, 9600(default), 19200, 38400

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 121
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.3.3 Start-up Messages
When the debugger starts up, it outputs the following message in the [Command] window. (Refer to the
next section for details about windows.)

 Debugger63 Ver x.xx Copyright SEIKO EPSON CORP. 1998-2001

Connecting COMx with xxxxx baud rate ... done

Parameter file name : xxxxxxxx.par

 Version : xx

 Chip name : 63xxx

CPU version : x.x

PRC board version : x.x

LCD board version : x.x

EXT board version : x.x

ICE hardware version : x.x

ICE software version : x.x

DIAG test : omitted

Map............................... done

Initialize........................ done

>

8.3.4 Hardware Check at Start-up
When the debugger is invoked, it first performs the tests and initializing operations described below.

(1) Testing connection of the ICE
Debugger db63 first checks to see that the ICE is connected to your system and that communication is
possible without any problems. The following message is displayed in the [Command] window.

During test
Connecting COMx with xxxxx baud rate ...

When terminated normally
Connecting COMx with xxxxx baud rate ... done

When an error is encountered
Connecting COMx with xxxxx baud rate ... failure

<error message>

The error message indicates that communication between the personal computer and the ICE is not
functioning properly. In this case, to verify the following:

• A standard RS-232C cable is used
• The COM port is correct
• The baud rates on both sides are matched
• The PRC board is correctly fitted in place
• The ICE's power is turned on
• The ICE remains reset

For the causes of errors, refer to Section 8.10, "Status/Error/Warning Messages".

CHAPTER 8: DEBUGGER

122 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

If this test indicates that the ICE is not in ready state, the debugger performs the following:

When the ICE is executing the target program:
In this case, the debugger sends a forcible break command to the ICE; it then retests the connection of
the ICE several seconds later.

When the ICE is in the BUSY state:
In this case, the debugger will try to retest the connection with the ICE several seconds later.

When the ICE is in a free-run state:
In this case, the debugger displays the following message:

Connecting COMx with xxxxx baud rate ... failure

Error : ICE is free run mode

Temporarily quit the debugger and set the ICE to the ICE mode (by turning the ICE/RUN switch to
the ICE position), then restart up the debugger.

When the ICE is performing self-diagnosis:
In this case, the debugger waits until the ICE's self-diagnosis is completed before it starts testing the
connection of the ICE. Note that the ICE's self-diagnosis is executed simultaneously if it is activated
when its DIP switch SW8 is in the up position. If the SW8 switch is in the down position, self-diagno-
sis is not executed. Self-diagnosis from start to finish requires about 5 minutes. Wait until it is com-
pleted.
You will then see the following message:

Connecting COMx with xxxxx baud rate ...

DIAG test, please wait 5 min. .. done

If an error is found in self-diagnosis, an error message will be displayed on the screen instead of
"done" above.

(2) Version check
When the connection test terminates normally, the debugger checks the contents of the parameter file,
the version of the ICE, and the versions of the peripheral boards inserted in the ICE.

Parameter file name : xxxxxxxx.par

 Version : xx

 Chip name : 63xxx

CPU version : x.x

PRC board version : x.x

LCD board version : x.x

EXT board version : x.x

ICE hardware version : x.x

ICE software version : x.x

DIAG test : omitted

Here, the debugger checks to see if the ICE's system configuration (including extension boards such as
a PRC board (Peripheral Circuit Board) and an LCD board) and their versions are matched to the
setup contents of the parameter file.
If the ICE does not have a necessary board, or contains an unnecessary board or a board of different
version, a warning message appears on the screen.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 123
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) ICE initialization
When the above tests are finished, the debugger initializes the ICE as follows:
• Mapping (memory configuration is set according to the parameter file)
• Initializing mapped memory (RAM: 0xa; code ROM: 0x1fff; data ROM: 0xf)
• Initializing option data (cleared to 0)
• Initializing break conditions (all break conditions are cleared)
• Initializing trace conditions (normal trace is set and the trace trigger point is set to 0)
• Setting execution cycles counter to 0.
• Initial setting of watch data addresses (addresses 0, 4, 8, and C)
• Initializing CPU registers

When initialization is terminated normally:

Map............................... done

Initialize........................ done

>

When an error is encountered:

Map............................... done

Initialize........................ Error

 Please quit db63 and restart!

>

If an error occurs in the above initialization process, temporarily quit the debugger. Check the cause
of the error and repair it before restarting the debugger.

After initialization, the state of the screen including the position and size of the windows will return the
same as the last time the debugger was terminated. The contents displayed in each window if it is opened
are as follows:

Window Display contents
[Command] window Initialization information (and waits for command input)
[Data] window Data memory contents starting from data memory address 0
[Register] window Current register values
[Source] window Program memory contents starting from program memory address 0x0100

The previously set display mode (Unassemble, Source or Mix) is used.
[Trace] window Blank

8.3.5 Method of Termination
To terminate the debugger, select [Exit] from the [File] menu.

You can also input the q command in the [Command] window to terminate the debugger.

>q

CHAPTER 8: DEBUGGER

124 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.4 Windows
This section describes the types of windows used by the debugger.

8.4.1 Basic Structure of Window
The diagram below shows the window structure of the debugger.

Depending on the computer used, the windows may differ from the above display depending on the
screen resolution, the number of dots in system font, etc. Adjust the size of each window to suit needs.

[Source] window [Trace] window [Register] window

[Command] window [Data] window

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 125
(S1C63 FAMILY ASSEMBLER PACKAGE)

Features common to all windows

(1) Open/close and activating a window
All windows except [Command] can be closed or opened.
To open a window, select the window name from the [View] menu. To close a window, click the
[Close] box on the window. After initialization, the state of the screen including the position and size
of the windows will return to the same as the last time the debugger was terminated.
The opened windows are listed in the [Window] menu. Selecting one from the list activates the
selected window. It can also be done by simply clicking on an inactive window. Furthermore, pressing
[Ctrl]+[Tab] switches the active window to the next open window.

(2) Resizing and moving a window
Each window can be resized as needed by dragging the boundary of the window with the mouse. The
[Minimize] and [Maximize] buttons work in the same way as in general Windows applications. Each
window can be moved to the desired display position by dragging the window's title bar with the
mouse. However, windows can only be resized and moved within the range of the application
window.

(3) Scrolling a window
All windows can be scrolled. (The [Register] window can be scrolled only when its size is reduced.)
Use one of the following three methods to scroll a window:

1. Click on an arrow button or enter an arrow key (cursor movement) to scroll a window one line at a
time.

2. Click on the scroll bar of a window to scroll it one page (current window size) at a time.
3. Drag the scroll bar handle of a window to move it to the desired area.

(4) Other
The opened windows can be cascaded or tiled using the [Window] menu.

Note for display
The windows may display incorrect contents caused by incompatibility between the OS and the video
card or driver. If there is any problem try the following methods to fix it.
• Update the driver to the latest version if an older version has been installed.

Please inquire about the version to the distributor.
• If the driver allows selection of extended function such as acceleration, turn the functions off.
• If the problem is not fixed using the above, try the standard driver supplied with Windows95/98/NT.

CHAPTER 8: DEBUGGER

126 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.4.2 [Command] Window

The [Command] window is used to do the following:

(1) Entering debug commands
When the prompt ">" appears in the [Command] window, the system will accept a command entered
from the keyboard.
If some other window is selected, click on the [Command] window. A cursor will blink at the prompt,
indicating that readiness to input a command. (Refer to Section 8.7.1, "Entering Commands from
Keyboard".)

(2) Displaying debug commands selected from menus or tool bar
When a command is executed by selecting the menu item or tool bar button, the executed command
line is displayed in the [Command] window.

(3) Displaying command execution results
The [Command] window displays command execution results. However, some command execution
results are displayed in the [Source], [Data], [Register], or [Trace] windows. The contents of these
execution results are displayed when their corresponding windows are open. If the corresponding
window is closed, the execution result is displayed in the [Command] window.
When writing to a log file, the content of the write data is displayed in the window. (Refer to the
description for log command.)

Note: The [Command] window cannot be closed.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 127
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.4.3 [Source] Window

The [Source] window displays the contents of (1) to (4) listed below. This window also allows breakpoints
to be set and words or labels to be found.

(1) Unassembled codes and source codes
You can choose one of the following three display modes:

[Mix] button

1. Mix mode
(selected by the [Mix] button or entering the m command)
In this mode, the window displays the addresses, codes, unassembled contents,
and corresponding source line numbers and source statements. (See the dia-
gram above.)

2. Source mode
(selected by the [Source] button or entering the sc command)
In this mode, the window displays the source line numbers and source state-
ments.

3. Unassemble mode
(selected by the [Unassemble] button or entering the u command)
In this mode, the window displays the addresses, codes, and unassembled
contents. This format is selected when the debugger starts up.

[Source] button

[Unassemble] button

Note: The m, sc and u commands can update the [Source] window if the window is already opened. If
the [Source] window is closed, the program code is displayed in the [Command] window.
The [Mix], [Source] and [Unassemble] buttons open the [Source] window if the window is closed.

All program code in the 64K address space can be referenced by scrolling the window. When a break
occurs, the display content is updated so that the address line to be executed next is displayed, with
an arrow mark at the beginning of the line for identification.
Use the scroll bar or arrow keys to scroll the window. Or enter a command to display the program
code beginning with a specified position.

 ∗ Display of source line numbers and source statements
The source line numbers and source statements can only be displayed when the IEEE-695 absolute
object file including debugging information for the source display is loaded. Furthermore, the source
statements that are actually displayed from this file are those which have had the -g option specified
by the assembler.

CHAPTER 8: DEBUGGER

128 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

 ∗ Updating of display
When a program is loaded and executed (g, gr, s, n, or rst command), or the memory contents are
changed (a (as), pe, pf, or pm command), the display contents are updated. In this case the [Source]
window updates its display contents so that the current PC address can always be displayed. The
display contents are also updated when the display mode is changed.

(2) Current PC
The current PC (program counter) address line is indicated by an arrow mark at the beginning of the
line. (Address 0x0110 in the diagram)

(3) PC breakpoint
The address line where a breakpoint is set is indicated by a red ● mark at the beginning of the line.
(Address 0x0117 in the diagram)

(4) Trace trigger point
The address line where a trace trigger point is set is indicated by the letter "T" at the beginning of the
line. (Address 0x0115 in the diagram)

(5) Break setting at the cursor position
Place the cursor at an address line where a breakpoint is to be set (not available for a source-only line).

[Break] button

[Go to Cursor] button

Then click on the [Break] button. A PC breakpoint will be set at that address. If
the same is done at the address line where a PC breakpoint has been set, the
breakpoint will be cleared.

If the [Go to Cursor] button is clicked, the program will execute beginning
with the current PC position, and program execution breaks at the line where
the cursor is located.

(6) Finding labels and words
Any labels and words can be found using the [Search Label] pull-down list box or the [Find] button
on the [Source] window.

[Search Label] pull-down list box

 [Find] button

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 129
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.4.4 [Data] Window
(1) Displaying data memory contents

The [Data] window displays the memory dump
results in hexadecimal numbers.
The display area is the entire 64K-word data memory
space (RAM, data ROM, I/O). The contents of all
addresses from 0x0000 to 0xffff can be displayed by
scrolling the window. The contents of unmapped
addresses in each microcomputer model are indicated
by an "∗ ".

 * Updating of display
The display contents of the [Data] window are updated automatically when memory contents are
modified with a command (de, df, or dm command), or by direct modification. After executing the
program (g, gr, s, n, or rst command), the display contents are also updated. To refresh the [Data]
window manually, execute the dd command or click the vertical scroll bar.

(2) Direct modification of data memory contents
The [Data] window allows direct modification of data memory contents. To modify data on the [Data]
window, place the cursor at the front of the data to be modified or double click the data, and then type
a hexadecimal character (0–9, a–f). Data in the address will be modified with the entered number and
the cursor will move to the next address. This allows successive modification of a series of addresses.

8.4.5 [Register] Window
(1) Displaying register contents

The [Register] window displays the contents of the PC, A register, B register,
X register and its memory, Y register and its memory and flags (E, I, C, Z),
stack pointers (SP1, SP2), EXT register, and QUEUE register.

(2) Execution cycle counter
This counter calculates and indicates the number of executed cycles or
execution time since the CPU was reset.

(3) Monitor data
The debugger allows you to specify four addresses in RAM and monitor the
memory contents at these addresses. The [Register] window displays the
contents of these four watch data addresses (4 words each beginning from
the specified address). When the debugger starts up, addresses 0, 4, 8, and
C are initially set as the watch data addresses. The contents are arranged
sequentially from left to right in order of their addresses as they are dis-
played on the screen.

 ∗ Updating the display
The display is updated when registers are dumped (rd command), when watch data addresses are set
(dw command), when register data is modified (rs command), when the CPU is reset (rst command),
or after program execution (g, gr, s, or n command) is completed.
When the on-the-fly function is enabled, the PC, flag and watch data are updated in real time at 0.5
second intervals while the program is being executed. Other contents are left blank until the program
is stopped by a break.

(4) Direct modification of register contents
The [Register] window allows direct modification of register contents. To modify data on the [Regis-
ter] window, select (highlight) the data to be modified and type a hexadecimal number (0–9, a–f), then
press [Enter]. The register data will be modified with the entered number.

CHAPTER 8: DEBUGGER

130 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.4.6 [Trace] Window

The [Trace] window displays the trace result up to 8,192 cycles by reading it from the ICE trace memory.
The following lists the trace contents:
• Traced cycle number
• Fetched address
• Fetched code and disassembled contents
• Register contents (A, B, X, Y, and flags)
• Memory access status (address, R/W, data, and SP1/SP2)
• TRCIN pin input status

This window also displays the trace data search results by the ts command.

 ∗ Updating of display:
The contents of the [Trace] window are cleared when the target program is being executed. During
this period, the [Trace] window does not accept scrolling and resizing operations.
After an program execution is terminated, this window displays the latest data traced during the
execution. To specify a display start cycle, execute the td command.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 131
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.5 Tool Bar
This section outlines the tool bar available with the debugger.

8.5.1 Tool Bar Structure
The tool bar has 14 buttons, each one assigned to a frequently used command.

The specified function is executed when you click on the corresponding button.

8.5.2 [Key Break] Button
This button forcibly breaks execution of the target program. This function can be used to cause the
program to break when the program has fallen into an endless loop.

8.5.3 [Load File] and [Load Option] Buttons

[Load File] button
This button reads an object file in the IEEE-695 format into the debugger. It performs the same
function when the lf command is executed.

[Load Option] button
This button reads a program file, data file for the data ROM or an optional HEX file in Motorola-S
format into the debugger. It performs the same function when the lo command is executed.

8.5.4 [Source], [Mix], and [Unassemble] Buttons
These buttons open the [Source] window or switch over the display modes.

[Source] button
This button switches the display of the [Source] window to the source mode. The [Source] window
opens if it is closed. This button performs the same function when the sc command is executed.

[Unassemble] button
This button switches the display of the [Source] window to the unassemble mode. The [Source]
window opens if it is closed. This button performs the same function when the u command is
executed.

[Mix] button
This button switches the display of the [Source] window to the mix mode (unassemble & source).
The [Source] window opens if it is closed. This button performs the same function when the m
command is executed.

8.5.5 [Go], [Go to Cursor], [Go from Reset], [Step], [Next], and [Reset] Buttons

[Go] button
This button executes the target program from the address indicated by the current PC. It performs the
same function when the g command is executed.

[Go to Cursor] button
This button executes the target program from the address indicated by the current PC to the cursor
position in the [Source] window (the address of that line). It performs the same function when the
g <address> command is executed.
Before this button can be selected, the [Source] window must be open and the address line where
the program is to break must be clicked. Selecting a break address by clicking on the address line
is valid for only the lines that have actual code, and is invalid for the source-only lines.

CHAPTER 8: DEBUGGER

132 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

[Go from Reset] button
This button resets the CPU and then executes the target program from the program start address
(0x110). It performs the same function when the gr command is executed.

[Step] button
This button executes one instruction step at the address indicated by the current PC. It performs
the same function when the s command is executed.

[Next] button
This button executes one instruction step at the address indicated by the current PC. If the instruc-
tion to be executed is calr, calz or int, it is assumed that a program section until control returns to
the next address constitutes one step and all steps of their subroutines are executed. This button
performs the same function when the n command is executed.

[Reset] button
This button resets the CPU. It performs the same function when the rst command is executed.

8.5.6 [Break] Button
Use this button to set and clear a breakpoint at the address where the cursor is located in the
[Source] window. This function is valid only when the [Source] window is open. Note that select-
ing a break address by clicking on the address line is valid for only the lines that have actual code
and is invalid for the source-only lines.

8.5.7 [Help] Button
By clicking on this button, a help window appears on the screen, displaying the contents of help topics.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 133
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.6 Menu
This section outlines the menu bar available with the debugger.

8.6.1 Menu Structure
The menu bar has eight menus, each including frequently-used commands.

8.6.2 [File] Menu
[Load File...]
This menu item reads an object file in the IEEE-695 format into the debugger.
It performs the same function when the lf command is executed.

[Load Option...]
This menu item reads a program file, data file for the data ROM or an optional
HEX file in Motorola-S format into the debugger. It performs the same
function when the lo command is executed.

[Flash Memory Operation...]
This menu item reads/writes data from/to the Flash memory or erases the
Flash memory contents. It performs the same function when the lfl, sfl or efl
command is executed.

[Exit]
This menu item quits the debugger. It performs the same function when the q
command is executed.

8.6.3 [Run] Menu
[Go]
This menu item executes the target program from the address indicated by the
current PC. It performs the same function when the g command is executed.

[Go to Cursor]
This menu item executes the target program from the address indicated by the
current PC to the cursor position in the [Source] window (the address of that
line). It performs the same function when the g <address> command is
executed.
Before this menu item can be selected, the [Source] window must be open and
the address line where the program is to break must be clicked. Selecting a
break address by clicking on the address line is valid for only the lines that
have actual code, and is invalid for the source-only lines.

[Go from Reset]
This menu item resets the CPU and then executes the target program from the
program start address (0x0110). It performs the same function when the gr
command is executed.

[Step]
This menu item executes one instruction step at the address indicated by the
current PC. It performs the same function when the s command is executed.

[Next]
This menu item executes one instruction step at the address indicated by the
current PC. If the instruction to be executed is calr, calz or int, it is assumed
that a program section until control returns to the next address constitutes one
step and all steps of their subroutines are executed. This menu item performs
the same function when the n command is executed.

CHAPTER 8: DEBUGGER

134 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

[Command File...]
This menu item reads a command file and executes the debug commands written
in that file. It performs the same function when the com or cmw command is
executed.

[Reset CPU]
This menu item resets the CPU. It performs the same function when the rst com-
mand is executed.

8.6.4 [Break] Menu
[Breakpoint Set...]
This menu item displays, sets or clears PC breakpoints using a dialog box. It
performs the same function as executing the bp command.

[Data Break...]
This menu item displays, sets or clears data break conditions using a dialog box. It
performs the same function as executing the bd command.

[Register Break...]
This menu item displays, sets or clears register break conditions using a dialog
box. It performs the same function as executing the br command.

[Sequential Break...]
This menu item displays, sets or clears sequential break conditions using a dialog
box. It performs the same function as executing the bs command.

[Stack Break...]
This menu item displays or sets stack break conditions using a dialog box. It
performs the same function as executing the bsp command.

[Break List]
This menu item displays the all break conditions that have been set. It performs the
same function as executing the bl command.

[Break All Clear]
This menu item clears all break conditions. It performs the same function as
executing the bac command.

8.6.5 [Trace] Menu
[Trace Mode Set...]
This menu item sets a trace mode and trace conditions using a dialog box. It
performs the same function as executing the tm command.

[Trace Search...]
This menu item searches trace information from the trace memory under the
condition specified using a dialog box. It performs the same function as executing
the ts command.

[Trace File...]
This menu item saves the specified range of the trace information displayed in the
[Trace] window to a file. It performs the same function as executing the tf com-
mand.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 135
(S1C63 FAMILY ASSEMBLER PACKAGE)

[Command]
This menu item activates the [Command] window.

[Program]
This menu item opens or activates the [Source]
window and displays the program from the current
PC address in the display mode selected from the
sub menu items. These sub menu items perform the
same functions as executing the u, sc, and m com-
mand, respectively.

[Data Dump]
This menu item opens or activates the [Data] window and displays the data memory
contents from the memory start address.

[Register]
This menu item opens or activates the [Register] window and displays the current
values of the registers.

[Trace]
This menu item opens or activates the [Trace] window and displays the trace data
sampled in the ICE trace memory.

[Toolbar]
This menu item shows or hides the toolbar.

[Status Bar]
This menu item shows or hides the status bar.

8.6.6 [View] Menu

8.6.7 [Option] Menu
[Log...]
This menu item starts or stops logging using a dialog box. It performs the same
function as executing the log command.

[Record...]
This menu item starts or stops recording of a command execution using a dialog
box. It performs the same function as executing the rec command.

[Mode Setting...]
This menu item sets the on-the-fly display, break and execution counter modes using
a dialog box. It performs the same functions as executing the md command.

8.6.8 [Windows] Menu
[Cascade]
This menu item cascades the opened windows.

[Tile]
This menu item tiles the opened windows.

This menu shows the currently opened window names. Selecting one activates the
window.

8.6.9 [Help] Menu
[Contents...]
This menu item displays the contents of help topics.

[About Db63...]
This menu item displays an About dialog box for the debugger.

CHAPTER 8: DEBUGGER

136 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.7 Method for Executing Commands
All debug functions can be performed by executing debug commands. This section describes how to
execute these commands. Refer to the description of each command for command parameters and other
details.

To execute a debug command, activate the [Command] window and input the command from the
keyboard. The menu and tool bar can be used to execute frequently-used commands.

8.7.1 Entering Commands from Keyboard
Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt
">" appears on the last line in this window and a cursor is blinking behind it, the system is ready to
accept a command from the keyboard.
Input a debug command at the prompt position. The commands are not case-sensitive; they can be input
in either uppercase or lowercase.

General command input format

>command [parameter [parameter ... parameter]] ↵

• A space is required between a command and parameter.
• A space is required between parameters.

Use the arrow keys, [Back Space] key, or [Delete] key to correct erroneous input.
When you press the [Enter] key after entering a command, the system executes that command. (If the
command entered is accompanied by guidance, the command is executed when the necessary data is
input according to the displayed guidance.)

Input example:
>g↵ (Only a command is input.)
>com test.cmd↵ (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless a parameter or the commands that modify the existing
data are specified, a guidance mode is entered when only a command is input. In this mode, the
system brings up a guidance field, so input a parameter there.

Input example:
>lf↵
File name ? test.abs↵ ... Input data according to the guidance (underlined part).
>

 • Commands requiring parameter input as a precondition
The lf command shown in the above example reads an absolute object file into the debugger. Com-
mands like this that require an entered parameter as a precondition are not executed until the param-
eter is input and the [Enter] key pressed. If a command has multiple parameters to be input, the
system brings up the next guidance, so be sure to input all necessary parameters sequentially. If the
[Enter] key is pressed without entering a parameter in some guidance session of a command, the
system assumes the command is canceled and does not execute it.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 137
(S1C63 FAMILY ASSEMBLER PACKAGE)

 • Commands that replace existing data after confirmation
The commands that rewrite memory or register contents one by one provide the option of skipping
guidance (do not modify the contents), returning to the immediately preceding guidance, or terminat-
ing during the input session.

[Enter] key Skips input.
[^] key Returns to the immediately preceding guidance.
[q] key Terminates the input session.

Input example:
>de↵ ... Command to modify data memory.
Data enter address ? :0↵ ... Inputs the start address.
0000 A:1↵ ... Modifies address 0x0000 to 1.
0001 A:^↵ ... Returns to the immediately preceding address.
0000 1:0↵ ... Inputs address 0x0000 back again.
0001 A:↵ ... Skips address 0x0001 by pressing [Enter] alone.
0002 A:↵
0001 A:q↵ ... Terminates the input session.
>

Numeric data format of parameter
For numeric values to be accepted as a parameter, they must be input in hexadecimal numbers for
almost all commands. However, some parameters accept decimal or binary numbers.

The following characters are valid for specifying numeric data:

Hexadecimal: 0–9, a–f, A–F, ∗
Decimal: 0–9
Binary: 0, 1, ∗
("∗ " is used to mask bits when specifying a data pattern.)

Specification with a symbol
For address specifications, symbols defined in the source can also be used. However, it is necessary to
load an absolute object file that contains debug information.
Symbols should be used as follows:

Global symbol @<symbol name> e.g. @RAM_BLK1

Local symbol @<symbol name>@<source file name> e.g. @LOOP@main.s

Successive execution using the [Enter] key
The commands listed below can be executed successively by using only the [Enter] key after execut-
ing once. Successive execution here means repeating the previous operation or continuous display of
the previous contents.

Execution commands: g (go), s (step), n (next), com (execute command file)
Display commands: sc (source), m (mix), u (unassemble), dd (data memory dump),

od (option data dump), td (trace data display), cv (coverage), sy (symbol list),
ma (map information)

The successive execution function is terminated when some other command is executed.

CHAPTER 8: DEBUGGER

138 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.7.2 Executing from Menu or Tool Bar
The menu and tool bar are assigned frequently-used commands as described in Sections 8.5 and 8.6. A
command can be executed simply by selecting desired menu command or clicking on the tool bar button.
Table 8.7.2.1 lists the commands assigned to the menu and tool bar.

Table 8.7.2.1 Commands that can be specified from menu or tool bar

Command Function Menu Button

lf Load IEEE-695 absolute object file [File | Load File...]

lo Load Motorola-S file [File | Load Option...]

g Execute program successively [Run | Go]

g <address> Execute program to <address> successively [Run | Go to Cursor]

gr Reset CPU and execute program successively [Run | Go from Reset]

s Step into [Run | Step]

n Step over [Run | Next]

com, cmw Load and execute command file [Run | Command File...] –

rst Reset CPU [Run | Reset CPU]

bp, bc (bpc) Set/clear PC breakpoint [Break | Breakpoint Set...]

bd, bdc Set/clear data break [Break | Data Break...] –

br, brc Set/clear register break [Break | Register Break...] –

bs, bsc Set/clear sequential break [Break | Sequential Break...] –

bsp Set stack break [Break | Stack Break...] –

bl Break list [Break | Break List...] –

bac Clear all break conditions [Break | Break All Clear] –

tm Set trace mode [Trace | Trace Mode Set...] –

ts Search trace information [Trace | Trace Search...] –

tf Save trace information to a file [Trace | Trace File...] –

u Unassemble display [View | Program | Unassemble]

sc Source display [View | Program | Source Display]

m Mix display [View | Program | Mix Mode]

lfl Load from flash memory [File | Flash Memory Operation...] –

sfl Save to flash memory [File | Flash Memory Operation...] –

efl Erase flash memory [File | Flash Memory Operation...] –

dd Dump data memory [View | Data Dump] –

rd Display register values [View | Register] –

td Display trace information [View | Trace] –

log Turn log output on or off [Option | Log...] –

rec Record commands to a command file [Option | Record...] –

md Set modes [Option | Mode Setting...] –

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 139
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.7.3 Executing from a Command File
Another method for executing commands is to use a command file that contains descriptions of a series
of debug commands. By reading a command file into the debugger the commands written in it can be
executed.

Creating a command file
Create a command file as a text file using an editor.
Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends
using ".cmd".

Command files can also be created using the rec command. The rec command creates a command file
and saves the executed commands to the file.

Example of a command file
The example below shows a command group necessary to read an object file and an option file.

Example: File name = startup.cmd

lf test.abs

lo test.fsa

lo test.ssa

A command file to write the commands that come with a guidance mode can be executed. In this case,
be sure to break the line for each guidance input item as a command is written.

Reading in and executing a command file
There are two methods to read a command file into the debugger and to execute it, as described
below.

(1) Execution by the start-up option
By specifying a command file in the debugger start-up command, one command file can be executed
when the debugger starts up.
If the above example of a command file is specified, for example, the necessary files are read into the
debugger immediately after the debugger starts up, so everything is ready to debug the program.

Example: Startup command of the debugger

db63 startup.cmd par63xxx.par

(2) Execution by a command
The debugger has the com and cmw commands available that can be used to execute a command file.
The com command reads in a specified file and executes the commands in that file sequentially in the
order they are written.
The cmw command performs the same function as the com command except that each command is
executed at intervals specified by the md command (1 to 256 seconds).

Examples: com startup.cmd

cmw test.cmd

The commands written in the command file are displayed in the [Command] window.

Restrictions
Another command file can be read from within a command file. However, nesting of these command
files is limited to a maximum of five levels. An error is assumed and the subsequent execution is
halted when the com or cmw command at the sixth level is encountered.

CHAPTER 8: DEBUGGER

140 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.7.4 Log File
The executed commands and the execution results can be saved to a file in text format that is called a "log
file". This file allows verification of the debug procedures and contents.
The contents displayed in the [Command] window are saved to this file.

Command example

>log tst.log

After the debugger is set to the log mode by the log command (after it starts outputting to a log file),
the log command toggles (output turned on in log mode ↔ output turned off in normal mode).
Therefore, you can output only the portions needed can be output to the log file.

Display of [Command] window in log mode
The contents displayed in the [Command] window during log mode differ from those appearing in
normal mode.

(1) When executing a command when each window is open
(When the window that displays the command execution result is opened)
Normal mode: The contents of the relevant display window are updated. The execution results are

not displayed in the [Command] window.
Log mode: The same contents as those displayed in the relevant window are also displayed in the

[Command] window. However, changes made to the relevant window by scrolling or
opening it are not reflected in the [Command] window.

(2) When executing a command while each window is closed
When the relevant display window is closed, the execution results are always displayed in the
[Command] window regardless of whether operation is in log mode or normal mode.

For the display format in the [Command] window, refer to each command description.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 141
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8 Debug Functions
This section outlines the debug features of the debugger, classified by function.
Refer to Section 8.9, "Command Reference" for details about each debug command.

8.8.1 Loading Program and Data Files

Loading files
The debugger can read a file in IEEE-695 format or Motorola-S format in the debugging process.
Table 8.8.1.1 lists the files that can be read by the debugger and the load commands.

Table 8.8.1.1 Files and load commands

File type Data type Ext. Generation tool Com. Menu Button

IEEE-695 Program/data .abs Linker lf [File | Load File...]

Motorola-S Program (5 high-order bits) .hsa HEX convertor lo [File | Load Option...]

Program (8 low-order bits) .lsa HEX convertor

Function option .fsa Function option generator

Segment option .ssa Segment option generator

Melody data .msa Melody assembler

(Ext. = Extension, Com. = Command)
Debugging a program with source display

To debug a program using the source display and symbols, the object file must be in IEEE-695 format
read into the debugger. If any other program file is read, only the unassemble display is produced.

CHAPTER 8: DEBUGGER

142 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.2 Source Display and Symbolic Debugging Function
The debugger allows program debugging while displaying the assembly source statements. Address
specification using a symbol name is also possible.

Displaying program code
The [Source] window displays the program in the specified display mode. The display mode can be
selected from among the three modes: Unassemble mode, Source mode, Mix mode.

Table 8.8.2.1 Commands/tool bar buttons to switch display mode

Display mode Command Menu Button

Unassemble u [View | Program | Unassemble]

Source sc [View | Program | Source Display]

Mix m [View | Program | Mix Mode]

(1) Unassemble mode

In this mode, the debugger displays the program codes after unassembling into mnemonics.

(2) Source mode

In this mode, the source that contains the code at the current PC address is displayed like an editor
screen. This mode is available only when an absolute object file that contains source debugging
information has been loaded.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 143
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) Mix mode

In this mode, both unassembled codes and sources are displayed like an absolute list. This mode is
available only when an absolute object file that contains source debugging information has been
loaded.

Refer to Section 8.4.3, "[Source] Window" for details about the display contents.

Symbol reference
When debugging a program after reading an object file in IEEE-695 format, the symbols defined in the
source file can be used to specify an address. This feature can be used when entering a command
having <address> in its parameter from the [Command] window or a dialog box.

(1) Referencing global symbols
Follow the method below to specify a symbol that is declared to be a global symbol/label by the
.global or .comm pseudo-instruction.

@<symbol>

Example of specification:
>m @BOOT

>de @RAM_BLK1

(2) Referencing local symbols
Follow the method below to specify a local symbol/label that is used in only the defined source file.

@<symbol>@<file name>

The file name here is the source file name (.s) in which the symbol is defined.

Example of specification:
>bp @SUB1@test.s

(3) Displaying symbol list
All symbols used in the program and the defined addresses can be displayed in the [Command]
window.

Table 8.8.2.2 Command to display symbol list

Function Command

Displaying symbol list sy

CHAPTER 8: DEBUGGER

144 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.3 Displaying and Modifying Program, Data, Option Data and Register
The debugger has functions to operate on the program memory, data memory, and registers, as well as
option data. Each memory area is set to the debugger according to the map information that is given in a
parameter file.

Operating on program memory area
The following operations can be performed on the program memory area:

Table 8.8.3.1 Commands to operate on program memory

Function Command

Entering/modifying program code pe

In-line assemble a (as)

Rewriting specified area pf

Copying specified area pm

(1) Entering/modifying program code
The program code at a specified address is modified by entering hexadecimal data.

(2) In-line assemble
The program code at a specified address is modified by entering a mnemonic code.

(3) Rewriting specified area
An entire specified area is rewritten with specified code.

(4) Copying specified area
The content of a specified area is copied to another area.

Operating on data memory area
The following operations can be performed on the data memory areas (RAM, data ROM, display
memory, I/O memory):

Table 8.8.3.2 Commands/menu item to operate on data memory

Function Command Menu

Dumping data memory dd [View | Data Dump]

Entering/modifying data de –

Rewriting specified area df –

Copying specified area dm –

(1) Dumping data memory
The contents of the data memory are displayed in hexadecimal dump format. If the [Data] window is
opened, the contents of the [Data] window are updated; if not, the contents of the data memory are
displayed in the [Command] window.

(2) Entering/modifying data
Data at a specified address is rewritten by entering hexadecimal data. Data can be directly modified
on the [Data] window.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 145
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) Rewriting specified area
An entire specified area is rewritten with specified data.

(4) Copying specified area
The content of a specified area is copied to another area.

(5) Monitoring memory
Four memory locations, each with area to store 4
consecutive words, can be registered as watch
data addresses. The registered watch data can be
verified in the [Register] window. The content of
this window is updated in real time at 0.5-second
intervals by the on-the-fly function. Addresses 0,
4, 8, and C are made the watch data addresses by
default.

The memory content displayed
at the left indicates data at a
specified address, and the one
displayed at the right indicates
4-word data at the high-order
address.

Monitor data

Operating registers
The following operations can be performed on registers:

Table 8.8.3.3 Commands/menu items to operate registers

Function Command Menu

Displaying registers rd [View | Register]

Modifying register values rs –

(1) Displaying registers
Register contents can be displayed in the [Register] or [Command]
window.
Registers: PC, A, B, X and [X], Y and [Y], F, SP1, SP2, EXT, and QUEUE

While the program is being executed, the PC address and F register are
updated in real time every 0.5 seconds by the on-the-fly function.

(2) Modifying register values
The contents of the above registers can be set to any desired value.
The register values can be directly modified on the [Register] window.

Displaying option data
Option data in the ICE option areas (function option data, segment option data, or melody data). Data
is displayed in the [Command] window in hexadecimal dump format.

Table 8.8.3.4 Command to display option data

Function Command

Displaying option data od

CHAPTER 8: DEBUGGER

146 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.4 Executing Program
The debugger can execute the target program successively or execute instructions one step at a time
(single-stepping).

Successive execution

(1) Types of successive execution
There are two types of successive execution available:
• Successive execution from the current PC
• Successive execution from the program start address (0x0110) after resetting the CPU

Table 8.8.4.1 Commands/menu items/tool bar buttons for successive execution

(2) Stopping successive execution
Using the successive execution command (g), can specify up to two temporary break addresses that
are only effective during program execution.
The temporary break address can also be specified from the [Source] window (one location only).
If the cursor is placed on an address line in the [Source] window and the [Go to Cursor] button
clicked, the program starts executing from the current PC address and breaks before executing the
instruction at the address the cursor is placed.

Except being stopped by this temporary break, the program continues execution until it is stopped by
one of the following causes:
• Break conditions set by a break set up command are met.
• The [Key Break] button is clicked or the [Esc] key is pressed.
• A map break, etc. occurs.

 [Key Break] button ∗ When the program does not stop, use this button to forcibly stop it.

(3) On-the-fly function
The ICE and debugger provide the on-the-fly function to display the PC address, F register and
watch data values every 0.5 seconds (default) during successive execution. These contents are dis-
played in the relevant positions of the [Register] window. If the [Register] window is closed, they are
displayed in the [Command] window. In the initial debugger settings, the display update interval of
the on-the-fly function is set to twice per second. It can be modified to 0 (OFF)–5 (times) per second
using the md command. This function provides a complete real-time display that is implemented
using the ICE hardware.

Function Command Menu Button

Successive execution from current PC g [Run | Go]

[Run | Go to Cursor]

Successive execution after resetting CPU gr [Run | Go from Reset]

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 147
(S1C63 FAMILY ASSEMBLER PACKAGE)

Single-stepping

(1) Types of single-stepping
There are two types of single-stepping available:

• Stepping through all instructions (STEP)
All instructions are executed one step at a time according to the PC, regardless of the type of
instruction.

• Stepping through instructions except subroutines (NEXT)
The calr, calz and int instructions are executed under the assumption that one step constitutes the
range of statements until control is returned to the next step by a return instruction. Other instruc-
tions are executed in the same way as in ordinary single-stepping.

In either case, the program starts executing from the current PC.

Table 8.8.4.2 Commands/menu items/tool bar buttons for single-stepping

Function Command Menu Button

Stepping through all instructions s [Run | Step]

Stepping through all instructions except subroutines n [Run | Next]

When executing single-stepping by command input, the number of steps to be executed can be
specified, up to 65,535 steps. When using menu commands or tool bar buttons, the program is ex-
ecuted one step at a time.
In the following cases, single-stepping is terminated before a specified number of steps is executed:
• When the [Key Break] button is clicked or the [Esc] key is pressed.
• When a map break or similar break occurs.

Single-stepping is not suspended by breaks set by the user such as a PC break or data break.

 [Key Break] button ∗ When the program does not stop, use this button to forcibly stop it.

(2) Display during single-stepping
In the initial debugger settings, the display is updated as follows:
The display contents of the [Register] window are updated every step. If the [Register] window is
closed, its contents are displayed in the [Command] window. This default display mode can be
switched over by the md command so that the display contents are updated at only the last step in a
specified number of steps.
The display of the [Source] and [Data] windows are updated after the specified number of step
executions are completed.

(3) HALT and SLEEP states and interrupts
The CPU is placed in a standby mode when the halt or slp instruction is executed. An interrupt is
required to cancel this mode.
The debugger has a mode to enable or disable an external interrupt for use in single-step operation.

Table 8.8.4.3 External interrupt modes

External interrupt

halt and slp instructions

Enable mode

Interrupt is processed.

Executed as the halt instruction.

Processing is continued by an

external interrupt or clicking on

the [Key Break] button.

Disable mode

Interrupt is not processed.

The halt and slp instructions are

replaced with a nop instruction as

the instruction is executed.

In the initial settings, the debugger is set to the interrupt disable mode. The interrupt enable mode can
also be set by using the md command.

CHAPTER 8: DEBUGGER

148 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Measuring execution cycles/execution time

(1) Execution cycle counter and measurement mode
The ICE contains a 31-bit execution cycle counter allowing you to measure the program execution
time or the number of bus cycles executed. The measurement mode (time or bus cycle) can be selected
using the md command. In the initial debugger settings, the bus cycle mode is selected.
The following lists the maximum values that can be measured by the execution cycle counter:

Execution time mode: 2,147,483,647 µsec = approx. 36 min. (error = ±1 µsec)
Bus cycle mode: 2,147,483,647 cycles (error = ±0)

(2) Displaying measurement results
The measurement result is displayed in the [Register] window. This display is cleared during program
execution and is updated after completion of execution. If the [Register] window is closed, the
measurement result can be displayed in the [Command] window using the rd command. The execu-
tion results of single-stepping are also displayed here.
If the counter's maximum count is exceeded, the system indicates "over flow".

(3) Hold mode and reset mode
In the initial debugger settings, the execution cycle counter is set to hold mode. In this mode, the
measured values are combined until the counter is reset.
The reset mode can be set by the md command. In this mode, the counter is reset each time the
program is executed. In successive execution, the counter is reset when the program is made to start
executing by entering the g command and measurement is taken until the execution is terminated
(beak occurs). (The same applies for the gr command except that the counter is reset simultaneously when
the CPU is reset. Consequently, the counter operates the same way in both hold and reset modes.)
In single-stepping, the counter is reset when the program is made to start executing by entering the s
or n command and measurement is taken until execution of a specified number of steps is completed.
The counter is reset every step if execution of only one step is specified or execution is initiated by a
tool bar button or menu command.

(4) Resetting execution cycle counter
The execution cycle counter is reset in the following cases:
• When the CPU is reset with the rst command, [Reset] in the [Run] menu, or the [Reset] button
• When the gr command or [Go from Reset] in the [Run] menu is executed
• When the execution cycle counter mode is switched over by the md command (between execution

time and bus cycle modes or between hold and reset modes)
• When program execution is started in reset mode

Resetting the CPU
The CPU is reset when the gr command is executed, or by executing the rst command.
When the CPU is reset, the internal circuits are initialized as follows:

(1) Internal registers of the CPU

PC ... 0x0110
A, B ... 0xa
X, Y, QUEUE ... 0xaaaa
F ... 0b0000
SP1, SP2, EXT ... 0xaa

(2) The execution cycle counter is reset to 0.

(3) The [Source] and [Register] windows are redisplayed.
Because the PC is set to 0x0110, the [Source] window is redisplayed beginning with that address.
The [Register] window is redisplayed with the internal circuits initialized as described above.

The data memory contents are not modified.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 149
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.5 Break Functions
The target program is made to stop executing by one of the following causes:
• Break command conditions are satisfied.
• The [Key Break] button is activated.
• The ICE BRKIN pin is pulled low.
• A map break or similar break occurs.

Break by command
The debugger has five types of break functions that allow the break conditions to be set by a com-
mand. When the set conditions in one of these break functions are met, the program under execution
is made to break.

(1) Break by PC
This function causes the program to break when the PC matches the set address. The program is made
to break before executing the instruction at that address. The PC breakpoints can be set for multiple
addresses.

Table 8.8.5.1 Commands/menu items/tool bar button to set breakpoints

Function Command Menu Button

Set breakpoints bp [Break | Breakpoint Set...]

Clear breakpoints bc (bpc) [Break | Breakpoint Set...]

The addresses that are set as PC breakpoints are marked with a ● as they are displayed in the [Source]
window.
Using the [Break] button easily allows the setting and canceling of breakpoints.
Click on the address line in the [Source] window at where the program break is desired (after moving
the cursor to that position) and then click on the [Break] button. A ● mark will be placed at the
beginning of the line indicating that a breakpoint has been set there, and the address is registered in
the breakpoint list. Clicking on the line that begins with a ● and then the [Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

 ∗ The temporary break addresses that can be specified by the successive execution commands (g) do not
affect the set addresses in the breakpoint list.

(2) Data break
This break function allows a break to be executed when a location in the specified data memory area
is accessed. In addition to specifying a memory area in which to watch accesses, specification as to
whether the break is to be caused by a read or write, as well as specification of the content of the data
read or written. The read/write condition can be masked, so that a break will be generated for
whichever operation, read or write, is attempted. Similarly, the data condition can also be masked in
bit units. A break occurs after completing the cycle in which an operation to satisfy the above speci-
fied condition is performed.

Table 8.8.5.2 Commands/menu item to set data break

Function Command Menu

Set data break condition bd [Break | Data Break...]

Clear data break condition bdc [Break | Data Break...]

For example, if the program is executed after setting the data break condition as Address = 0x10, Data
pattern = ∗ (mask) and R/W = W, the program breaks after writing any data to the data memory
address 0x10.

CHAPTER 8: DEBUGGER

150 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) Register break
This break function causes a break when the A, B, F, X, and Y register reach a specified value. Each
register can be masked (so they are not included in break conditions). The F register can be masked in
bit units. A break occurs when the above registers are modified to satisfy all set conditions.

Table 8.8.5.3 Commands/menu item to set register break

Function Command Menu

 Set register break conditions br [Break | Register Break...]

 Clear register break conditions brc [Break | Register Break...]

For example, if the program is executed after setting 0 for the data of the A register and "∗∗ 1∗ " for the
data of the F register (C flag = 1) and masking all others, the program breaks when the A register is
cleared to 0 and the C flag is set to 1.

(4) Sequential break
This break function allows settings of up to three break addresses and the number of times the
instructions of the last address to be executed. While passing through all addresses sequentially in the
order set, the program executes instructions at the final specified address the directed number of
times, and then fetches the instruction at that address one more time before it breaks.

Table 8.8.5.4 Commands/menu item to set sequential break

Function Command Menu

 Set sequential break conditions bs [Break | Sequential Break...]

 Clear sequential break conditions bsc [Break | Sequential Break...]

For example, if you execute the program after first setting a break address in two locations at ad-
dresses 0x1000 and 0x2000 and specifying 3 for the execution count using the bs command, the
program executes address 0x2000 three times after executing address 0x1000 more than one time, and
when the PC reaches 0x2000, it breaks before performing the 4th execution.
The execution count can be set up to 4,095.

(5) Accessing outside stack area
In this case, a break occurs when a location outside the stack area is accessed by stack pointer SP1 or
SP2.
Before this function can be used, the SP1 and SP2 areas must be set by the bsp command. The initial
value is 0x0 to 0x3ff for SP1, and 0x0 to 0xff for SP2. The address of SP1 must be specified in units of 4
words.

Table 8.8.5.5 Command/menu item to set stack break

Forced break by the [Key Break] button or the [Esc] key
The [Key Break] button or the [Esc] key can be used to forcibly terminate the program under execu-
tion when the program has fallen into an endless loop or cannot exit a standby (HALT or SLEEP)
state.

 [Key Break] button

Pulling ICE BRKIN pin low
The program is made to break by pulling the ICE BRKIN pin low (by applying a low-level pulse
for more than 20 ns).

Function Command Menu

 Set stack break conditions bsp [Break | Stack Break...]

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 151
(S1C63 FAMILY ASSEMBLER PACKAGE)

Map break and illegal instruction break
The program also breaks when one of the following errors is encountered during program execution:

(1) Access to undefined program area
A break occurs when an undefined area of the program memory map is accessed.

(2) Access to undefined data area
A break occurs when an undefined area of the data memory map is accessed.

(3) Write to data ROM area
A break occurs when a write to the data ROM area is attempted.

Notes: • If the return address is popped from the stack by a ret or reti instruction in an area with prohib-
ited 16-bit access, invalid data is read out from a 16-bit data bus that does not have any memory
connected. In the ICE, because the bus is pulled up, 0xffff is read out, causing control to
return to that address. This could result in generating a map break.

• A break caused by an undefined program area access occurs before execution of such opera-
tion. On the other hand, a map break caused by access to an undefined data area or a write to
the data ROM area occurs one or two instructions after execution of such operation.

• In user breaks based on command settings also, a PC break and sequential break occur before
execution of operation. However, other breaks such as a data break, register break, and stack
break occur one or two instructions after execution of operation.

CHAPTER 8: DEBUGGER

152 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.6 Trace Functions
The debugger has a function to trace program execution.

Trace memory and trace information
The ICE contains a trace memory. When the program executes instructions in the trace range
according to the trace mode, the trace information on each cycle is taken into this memory. The trace
memory has the capacity to store information for 8,192 cycles, making it possible to trace up to 4,096
instructions (for two-clock instructions only). When the trace information exceeds this capacity, the
data is overwritten, the oldest data first unless operating in single-delay trigger mode. Consequently,
the trace information stored in the trace memory is always within 8,192 cycles. The trace memory is
cleared when a program is executed, starting to trace the new execution data.

The following lists the trace information that is taken into the trace memory in every cycle. This list is
corresponded to display in the [Trace] window.

trace cycle: Trace cycle (decimal). The last information taken into the trace memory becomes
00001.

fetch addr: Fetch address (hexadecimal).
fetch code disasm:Fetch code (hexadecimal) and disassembled content.
register: Values of A, B, X, and Y registers after cycle execution (hexadecimal).
flag: States of E, I, C, and Z flags after cycle execution (binary).
data: Accessed data memory address (hexadecimal), read/write (denoted by r or w at

the beginning of data), and data (1-digit hexadecimal for 4-bit access; 4-digit
hexadecimal for 16-bit access).

SP: Stack access (1 for SP1 access; 2 for SP2 access).
trace in: Input to TRCIN pin (denoted by L when low-level signal is input).

Notes: The S1C63000 CPU uses two-stage pipelined instruction processing, one for fetch and one for
execution. Therefore, please pay attention to the following:

• The CPU fetches the next instruction in the last execution cycle of an instruction. Because the
instruction is executed beginning from the cycle which is after the fetch, the displayed states of
the registers, etc. are not the execution results of the fetch instruction that is displayed on the
same line.

• For reasons of the ICE operation timing, the trace data at the boundary of operations, such
as in the fetch cycle at which trace starts or the execution cycle at which trace ends, will not
always be stored in memory.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 153
(S1C63 FAMILY ASSEMBLER PACKAGE)

(1) Normal trace mode
In this mode, the trace information on all bus cycles is taken into the trace memory during program
execution. Therefore, until a break occurs, the trace memory always contains the latest information on
bus cycles up to the one that is executed immediately beforehand.

(2) Single delay trigger trace mode
In this mode as in other modes, trace is initiated by a start of program execution. When the address
(trace trigger point) that is set by the tm command is executed, trace is performed beginning from that
point before being halted according to the next setting, which is also set by the command.

 • If the trace trigger point is set to "start"
Trance is halted after sampling trace information for 8,192 cycles beginning from the trace trigger
point. In this case, the trace information at the trace trigger point is the oldest information stored
in the trace memory.
If the program stops before tracing all 8,192 cycles, trace information on some cycles preceding the
trace trigger point may be left in the trace memory within its capacity.

Execution started
Trace trigger point

Trace sampling range

8,192 cycles

Fig. 8.8.6.1 Trace range when "start" is selected

 • If the trace trigger point is set to "middle"
Trace is halted after sampling trace information for 4,096 cycles beginning from the trace trigger
point. In this case, the trace information of 4,096 cycles before and after the trace trigger point are
sampled into the trace memory.
If the program stops before tracing all 4,096 cycles, trace information for the location 4,096 cycles
before the trace trigger point may be left in the trace memory, according to its capacity.

Execution started
Trace trigger point

Trace sampling range

(4,096 cycles) 4,096 cycles

Fig. 8.8.6.2 Trace range when "middle" is selected

 • If the trace trigger point is set to "end"
Trace is halted after sampling trace information at the trace trigger point. In this case, the trace
information at the trace trigger point is the latest information stored in the trace memory.
If the program stops before tracing the trace trigger point, the system operates in the same way as
in normal mode.

Execution started
Trace trigger point

Trace sampling range

8,192 cycles

Fig. 8.8.6.3 Trace range when "end" is selected

If the program is halted in the middle of single delay trigger trace, bus cycles are traced from the
beginning when trace is executed next.

Trace modes
Three trace modes are available, depending on the method for sampling trace information.

Table 8.8.6.1 Trace mode setup command

Function Command Menu

 Set trace mode tm [Trace | Trace Mode Set...]

CHAPTER 8: DEBUGGER

154 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) Address-area trace
In this mode, trace information is taken into the trace memory only when instructions within (or
outside) a specified address range are executed. This address range can be set in up to four locations
by the tm command. Whether you want trace to be performed within or outside that address range
can also be specified by a command.

 ∗ Trace trigger address
The tm command sets a trace trigger address regardless of the trace mode specified. When the
[Source] window is open, the address thus set is marked by a "T" at the beginning of the address.
When the program executes that address, the ICE outputs a low-level pulse from its TRGOUT pin.

Displaying and searching trace information
The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace]
window is closed, the information is displayed in the [Command] window. In the [Trace] window, the
entire trace memory data can be seen by scrolling the window. The trace information can be displayed
beginning from a specified cycle.
The display contents are as described above.

Table 8.8.6.2 Command/menu item to display trace information

Function Command Menu

Display trace information td [View | Trace]

It is possible to specify a search condition and display the trace information that matches a specified
condition.
The search condition can be selected from the following three:
1. Program's execution address
2. Address from which data is read
3. Address to which data is written

When the above condition and one address are specified, the system starts searching. When the trace
information that matches the specified condition is found, the system displays the found data in the
[Trace] window (or in the [Command] window if the [Trace] window is closed).

Table 8.8.6.3 Command/menu item to search trace information

Function Command Menu

 Search trace information ts [Trace | Trace Search...]

Saving trace information
After the trace information is displayed in the [Trace] window using the td or ts commands, the trace
information within the specified range can be saved to a file.

Table 8.8.6.4 Command/menu item to save trace information

Function Command Menu

 Save trace information tf [Trace | Trace File...]

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 155
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.7 Operation of Flash Memory
The ICE in-circuit emulator contains flash memory. This memory is designed to allow data to be
transferred to and from the ICE's emulation memory and the target memory by a command.
The flash memory retains data even when the ICE is turned off. By writing the program and/or data
under debug into the flash memory before turning off the power, you can call it up and continue debug-
ging next time. Also, even when operating the ICE in free-run mode (in which a program is executed
using only the ICE), you may need to write the program into the flash memory.

The following operations can be performed on the flash memory:

(1) Read from flash memory
Data is loaded from the flash memory into the emulation and/or target memory.

(2) Write to flash memory
Data in the emulation and/or target memory is saved to the flash memory. Also, the contents of the
parameter file can be written to the flash memory as necessary. After writing to the flash memory in
this way, you can protect it against read and write.

(3) Erasing flash memory
All contents of the flash memory are erased.

Table 8.8.7.1 Commands to operate on flash memory

Function Command Menu

 Read from flash memory lfl [File | Flash Memory Operation...]

 Write to flash memory sfl [File | Flash Memory Operation...]

 Erase flash memory efl [File | Flash Memory Operation...]

Note: Unless the contents of the parameter file that is specified when invoking Debugger db63 match the
contents of parameters in the flash memory, neither write (sfl) nor read (lfl) to and from the flash
memory can be performed. After you have received the shipment of the ICE, erased the flash
memory, or used a different parameter file (designed for some other microcomputer model in the S1
63 Family), be sure to write the contents of your parameter file along with other data into the
flash memory using the sfl command.

 ∗ Free-run of the ICE
When operating the ICE in free-run mode (with the program executed using only the ICE), the IC
 uses the data written in the flash memory. Therefore, before the ICE can be used in free-run
mode, the entire program, data, and option data must be written into the flash memory.
To operate the ICE in free-run mode, set the ICE/RUN switch to the RUN position and turn on the
power. During free-run, map breaks caused by operation in the program and data areas set by a
parameter file are effective. When a map break occurs, the PC LED on the ICE stops and the EMU
LED turns off. All other break settings are invalid because they cannot be written into the flash
memory.

CHAPTER 8: DEBUGGER

156 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.8.8 Coverage
The ICE retains coverage information (i.e., information on addresses at which a program is executed)
and it can be displayed in the [Command] window.
Because the executed address range is displayed as shown below, it is possible to know which areas have
not been executed.

Coverage Information:

 0: 0110..0118

 1: 0200..020f

Table 8.8.8.1 Coverage commands

Function Command

 Display coverage information cv

 Clear coverage information cvc

8.8.9 Writing Data to the FPGA on the Standard Peripheral Circuit Board
The standard peripheral circuit board is configured for the supported model by writing the peripheral
function data to the on-board FPGA. This writing is necessary the first time the standard peripheral
circuit board is used or before beginning development of another model.
The debugger supports the following FPGA data handling functions:

(1) Erasing FPGA
All contents of the FPGA are erased.

(2) Writing data to FPGA
Data in the specified file is written to the FPGA. Also, the write command supports erasing the FPGA.
Data for the supported models are provided as "c63xxx.mot" files in the "epson\s1c63\ice\fpga"
directory (default).

(3) FPGA data comparison
The contents of the FPGA and specified file are compared.

(4) FPGA data dump
The FPGA data is displayed in a hexadecimal dump format.

Table 8.8.9.1 FPGA commands

Function Command

 Erase FPGA xfer/xfers

 Write to FPGA xfwr/xfwrs

 Compare FPGA data and file xfcp/xfcps

 Dupm FPGA data xdp/xdps

Note: The standard peripheral circuit board has two on-board FPGAs, main FPGA and sub FPGA, and
the different commands are provided for each FPGA (suffix "s" indicates that the command is for
the sub FPGA).
However, it is not necessary to write data to the sub FPGA normally, because the sub FPGA
contains LCD DC output function.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 157
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9 Command Reference

8.9.1 Command List
Table 8.9.1.1 lists the debug commands available with the debugger.

Table 8.9.1.1 Command list
Classification Command Function Page

Program memory a / as (assemble) Assemble mnemonic 159
operation pe (program memory enter) Input program code 161

pf (program memory fill) Fill program area 162
pm (program memory move) Copy program memory 163

Data memory dd (data memory dump) Dump data memory 164
operation de (data memory enter) Input data 166

df (data memory fill) Fill data area 168
dm (data memory move) Copy data area 169
dw (data memory watch) Set watch data address 170

Option information od (option data dump) Dump option data 172
Register operation rd (register display) Display register values 174

rs (register set) Modify register values 175
Program execution g (go) Execute successively 177

gr (go after reset CPU) Reset CPU and execute successively 179
s (step) Step into 180
n (next) Step over 182

CPU reset rst (reset CPU) Reset CPU 183
Break bp (breakpoint set) Set breakpoint 184

bc / bpc (breakpoint clear) Clear breakpoint 186
bd (data break) Set data break 187
bdc (data break clear) Clear data break 189
br (register break) Set register break 190
brc (register break clear) Clear register break 192
bs (sequential break) Set sequential break 193
bsc (sequential break clear) Clear sequential break 195
bsp (break stack pointer) Specify stack area (for illegal stack access detection) 196
bl (breakpoint list) Display all break conditions 198
bac (break all clear) Clear all break conditions 199

Program display u (unassemble) Unassemble display 200
sc (source code) Source display 202
m (mix) Mix display 204

Symbol information sy (symbol list) List symbols 206
Load file lf (load file) Load IEEE-695 format absolute object file 207

lo (load option) Load Motorola-S format file 208
Flash memory lfl (load from flash memory) Read from flash memory 209
operation sfl (save to flash memory) Write to flash memory 211

efl (erase flash memory) Erase flash memory 213
Trace tm (trace mode) Set trace mode 214

td (trace data display) Display trace information 216
ts (trace search) Search trace information 219
tf (trace file) Save trace information into a file 221

Coverage cv (coverage) Display coverage information 222
cvc (coverage clear) Clear coverage information 223

Command file com (execute command file) Load & execute command file 224
cmw (execute command file with wait) Load/execute command file with execution intervals 225
rec (record commands to file) Record commands to a command file 226

Log log (log) Turn log output on or off 227
Map information ma (map information) Display map information 228
Mode setting md (mode) Set mode 229
FPGA operation xfer/xfers (xlinx fpga data erase) Erase FPGA 232

xfwr/xfwrs (xlinx fpga data write) Write to FPGA 233
xfcp/xfcps (xlinx fpga data compare) Compare FPGA data and file 234
xdp/xdps (xlinx fpga data dump) Dump FPGA data 235

Quit q (quit) Quit debugger 236
Help ? (help) Display command usage 237

CHAPTER 8: DEBUGGER

158 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.2 Reference for Each Command
The following sections explain all the commands by functions.

The explanations contain the following items.

Function

Indicates the functions of the command.

Format

Indicates the keyboard input format and parameters required for execution.

Example

Indicates a sample execution of the command.

Note

Shows notes on using.

GUI utility

Indicates a menu item or tool bar button if they are available for the command.

Notes: • In the command format description, the parameters enclosed by < > indicate they are necessary
parameters that must be input by the user; while the ones enclosed by [] indicate they are
optional parameters.

• The input commands are case-insensitive, you can use either upper case or lower case letters
or even mixed.

• An error results if the number of parameters is not correct when you input a command using
direct input mode.

Error : Incorrect number of parameters

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 159
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.3 Program Memory Operation

a / as (assemble mnemonic)

Function

This command assembles the input mnemonic and rewrites the corresponding code to the program
memory at the specified address.

Format

(1) >a <address> <mnemonic> [<file name>]↵ (direct input mode)

(2) >a [<address>]↵ (guidance mode)
Start address ? : <address>↵ ... Displayed only when <address> is omitted.
Address Original code Original mnemonic : <mnemonic>↵
..........
>

<address>: Start address from which to write code; hexadecimal or symbol (IEEE-695 format only)
<mnemonic>: Input mnemonic; valid mnemonic of S1C63000 (expression and symbols are supported)
<file name>: File in which the symbol used in the operand was defined.
Condition: 0 ≤ address ≤ last program memory address

Examples

Format (1)
>a 200 "ld %a,f"↵ ... Assembles "LD %A,0xF" and rewrites the code at address 0x200.

Format (2)
>a↵
Start address ? 200↵ ... Address is input.
0200 1ff6 ld %a,%f : add %a,%b↵ ... Mnemonic is input.
Source file name (enter to ignore) ?↵ ... Ignored ∗
0201 1fff *nop : ^↵ ... Returned to previous address.
0200 1972 add %a,%b : ↵ ... Input is skipped.
0201 1fff *nop : q↵ ... Command is terminated.
>

 ∗ Source file name should be entered when a symbol/label is used as the operand. Specify the source
file name in which the symbol was defined.

0200 1972 add %a,%b : jr LOOP↵ ... Symbol is used.
Source file name (enter to ignore) ? main.s↵ ... Source file name is input.

CHAPTER 8: DEBUGGER

160 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Notes

 • The a and as commands have the same function.

 • The start address you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

 • An error results if the input mnemonic is invalid for S1C63000.
Error : illegal mnemonic

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous address.
"↵ " … Input is skipped. (keep current value)
If the maximum address of program memory is reached and gets a valid input other than "^↵ ", the
command is terminated.

 • When the contents of the program memory are modified using the a (as) command, the unassemble
contents of the [Source] window are updated immediately.

 • Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 161
(S1C63 FAMILY ASSEMBLER PACKAGE)

pe (program memory enter)

Function

This command rewrites the contents of the specified address in the program memory with the input
hexadecimal code.

Format

(1) >pe <address> <code1> [<code2> [...<code8>]]↵ (direct input mode)

(2) >pe [<address>]↵ (guidance mode)
Program enter address ? <address>↵ ... Displayed only when <address> is omitted.
Address Original code : <code>↵
..........
>

<address>: Start address from which to write code; hexadecimal or symbol (IEEE-695 format only)
<code(1–8)>: Write code; hexadecimal (valid operation code of S1C63000)
Condition: 0 ≤ address ≤ last program memory address, 0 ≤ input code ≤ 0x1fff

Examples

Format (1)
>pe 200 1972↵ ... Rewrites the code at address 0x200 with 0x1972 (add %a, %b).

Format (2)
>pe↵
Program enter address ? 200↵ ... Address is input.
0200 1fff : 1972↵ ... Code is input.
0201 1fff : ↵ ... Address 0x201 is skipped.
0202 1fff : q↵ ... Command is terminated.
>

Notes

 • The start address you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not hexadecimal number or not a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

 • Code must be input using a hexadecimal number in the range of 13 bits (0 to 0x1fff).
An error results if the input one is not a hexadecimal number.

Error : invalid value
An error results if the input code exceeds the limit or it is invalidated in the .PAR file.

Error : illegal code

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous address.
"↵ " … Input is skipped. (keep current value)
If the maximum address of program memory is reached and gets a valid input other than "^↵ ", the
command is terminated.

 • When the contents of the program memory are modified using the pe command, the unassemble
contents of the [Source] window are updated immediately.

 • Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

GUI utility

None

CHAPTER 8: DEBUGGER

162 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

pf (program memory fill)

Function

This command rewrites the contents of the specified program memory area with the specified code.

Format

(1) >pf <address1> <address2> <code>↵ (direct input mode)
(2) >pf↵ (guidance mode)

Start address ? <address1>↵
End address ? <address2>↵
Fill code ? <code>↵
>

<address1>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<code>: Write code; hexadecimal (valid operation code of S1C63000)
Condition: 0 ≤ address1 ≤ address2 ≤ last program memory address, 0 ≤ code ≤ 0x1fff

Examples

Format (1)
>pf 200 20f 1ffe↵ ... Fills the area from address 0x200 to address 0x20f with 0x1ffe (nop).

Format (2)
>pf↵
Start address ? 200↵ ... Start address is input.
End address ? 20f↵ ... End address is input.
Fill code ? 1fff↵ ... Code is input.
>
∗ Command execution can be canceled by entering only the [Enter] key and nothing else.

Notes

 • The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

 • An error results if the start address is larger than the end address.
Error : end address < start address

 • When the contents of the program memory is modified using the pf command, the contents of the
[Source] window are updated automatically.

 • Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 163
(S1C63 FAMILY ASSEMBLER PACKAGE)

pm (program memory move)

Function

This command copies the content of a specified program memory area to another area.

Format

(1) >pm <address1> <address2> <address3>↵ (direct input mode)

(2) >pm↵ (guidance mode)
Start address ? <address1>↵
End address ? <address2>↵
Destination address ? <address3>↵
>

<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ last program memory address

0 ≤ address3 ≤ last program memory address

Examples

Format (1)
>pm 200 2ff 280↵ ... Copies the codes within the range from address 0x200 to address 0x2ff

 to the area from address 0x280.
Format (2)
>pm↵
Start address ? 200↵ ... Source area start address is input.
End address ? 2ff↵ ... Source area end address is input.
Destination address ? 280↵ ... Destination area start address is input.
>
∗ Command execution can be canceled by entering only the [Enter] key and nothing else.

Notes

 • The addresses you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

 • An error results if the start address is larger than the end address.
Error : end address < start address

 • When the contents of the program memory is modified using the pm command, the contents of the
[Source] window are updated automatically.

 • Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

GUI utility

None

CHAPTER 8: DEBUGGER

164 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.4 Data Memory Operation

dd (data memory dump)

Function

This command displays the content of the data memory in a 16 words/line hexadecimal dump format.

Format

>dd [<address1> [<address2>]]↵ (direct input mode)
<address1>: Start address to display; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address to display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffff

Display

(1) When [data] window is opened

If both <address1> and <address2> are not defined,
the [Data] window is redisplayed beginning with
address 0x0000.
If <address1> is defined , or even <address2> is
defined, the [Data] window is redisplayed in such a
way that <address1> is displayed at the uppermost
line.
Even when <address1> specifies somewhere in 16
addresses/line, data is displayed beginning with
the top of that line. For example, even though you
may have specified address 0xff08 for <address1>,
data is displayed beginning with address 0xff00.

However, if an address near the uppermost part of data memory (e.g. maximum address is 0xffff),
such as 0xffc0, is specified as <address1>, the last line displayed in the window in this case is 0xfff0,
the specified address is not at the top of the window.
Since the [Data] window can be scrolled to show the entire data memory, defining <address2> does
not have any specific effect. Only defining <address1> and both defining <address1> and <address2>
has same display result.

(2) When [data] window is closed
If both <address1> and <address2> are not defined, the debugger displays data for 256 words from
address 0x000 in the [Command] window.
>dd↵
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000: A A A A D C 0 3 A A A A A A A A
0010: A A A A A A A A A A A A A A A A
 : : :
00E0: A A A A A A A A A A A A A A A A
00F0: A A A A A A A A A A A A A A A A
>

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>dd ff00↵
FF00: 0 0 3 * 0 0 0 2 0 0 1 0 2 0 * *
FF10: * * * * * * * * * * * * * * * *
 : : :
FFE0: 0 0 0 0 0 0 0 0 * * * * * * * *
FFF0: 0 0 0 0 0 0 0 0 * * * * * * * *
>

"∗ " indicates an unused address.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 165
(S1C63 FAMILY ASSEMBLER PACKAGE)

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.
>dd 008 017↵
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000: 0 0 0 0 0 0 0 0
0010: 0 0 0 0 0 0 0 0
>

(3) During log output
If a command execution is being output to a log file by the log command when you dump the data
memory, data is displayed in the [Command] window even if the [Data] window is opened and are
also output to the log file.
If the [Data] window is closed, data is displayed in the [Command] window in the same way as in (2)
above.
If the [Data] window is open, it is redisplayed to show data in the same way as in (1) above. In this
case, the same number of lines is displayed in the [Command] window as are displayed in the [Data]
window.

(4) Successive display
Once you execute the dd command, data can be displayed successively with the [Enter] key only until
some other command is executed.
When you hit the [Enter] key, the [Data] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines following the
previously displayed address (same number of lines as displayed in the [Data] window during log
output).
>dd↵
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000: A A A A A A A A A A A A A A A A
0010: A A A A A A A A A A A A A A A A
 : : :
00F0: A A A A A A A A A A A A A A A A
>↵
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0100: A A A A A A A A A A A A A A A A
0110: A A A A A A A A A A A A A A A A
 : : :
01F0: A A A A A A A A A A A A A A A A
>

When the line at address 0xfff0 is displayed, the system stands by waiting for command input. If you
hit the [Enter] key here, data is displayed beginning with address 0x0000.

Notes

 • Both the start and end addresses specified here must be within the range of the data memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xFFFF

 • An error results if the start address is larger than the end address.
Error : end address < start address

GUI utility

[View | Data Dump] menu item
When this menu item is selected, the [Data] window opens or becomes active and displays the current
data memory contents.

CHAPTER 8: DEBUGGER

166 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

de (data memory enter)

Function

This command rewrites the contents of the data memory with the input hexadecimal data. Data can
be written to continuous memory locations beginning with a specified address.

Format

(1) >de <address> <data1> [<data2> [...<data16>]]↵ (direct input mode)

(2) >de↵ (guidance mode)
Data enter address ? : <address>↵
Address Original data : <data>↵
..........
>

<address>: Start address from which to write data; hexadecimal or symbol (IEEE-695 format only)
<data(1–16)>: Write data; hexadecimal
Condition: 0 ≤ address ≤ 0xffff, 0 ≤ data ≤ 0xf

Examples

Format (1)
>de 100 0↵ ... Rewrites data at address 0x100 with 0.

Format (2)
>de↵
Data enter address ? :100↵ ... Address is input.
0100 0 : a↵ ... Data is input.
0101 0 : ↵ ... Skipped.
0102 0 : q↵ ... Command is terminated.
>

Notes

 • The start address specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xFFFF

 • The contents of the unused area will be marked as "∗ ". If you encounter any address marked by "∗ ",
press [Enter] key to skip that address or terminate the command.

 • Data must be input using a hexadecimal number in the range of 4 bits (0–0xf). An error results if the
limit is exceeded.

Error : Data out of range, use 0-0xF

 • When the contents of the data memory is modified using the de command, the displayed contents of
the [Data] window are updated automatically.

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous address.
"↵ " … Input is skipped. (keep current value)
If the maximum address of data memory is reached and gets a valid input other than "^↵ ", the
command is terminated.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 167
(S1C63 FAMILY ASSEMBLER PACKAGE)

GUI utility

[Data] window
The [Data] window allows direct modification of
data. Click the [Data] window and select the
displayed data to be modified then enter a hexadeci-
mal number.

CHAPTER 8: DEBUGGER

168 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

df (data memory fill)

Function

This command rewrites the contents of the specified data memory area with the specified data.

Format

(1) >df <address1> <address2> <data> ↵ (direct input mode)

(2) >df↵ (guidance mode)
Start address ? <address1>↵
End address ? <address2>↵
Data pattern ? <data>↵
>

<address1>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<data>: Write data; hexadecimal
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffff, 0 ≤ data ≤ 0xf

Examples

Format (1)
>df 200 2ff 0↵ ... Fills the data memory area from address 0x200 to address 0x2ff with 0x0.

Format (2)
>df↵
Start address ? 200↵ ... Start address is input.
End address ? 2ff↵ ... End address is input.
Data pattern ? 0↵ ... Data is input.
>
∗ Command execution can be canceled by entering only the [Enter] key and nothing else.

Notes

 • Both the start and end addresses specified here must be within the range of the data memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xFFFF

 • An error results if the start address is larger than the end address.
Error : end address < start address

 • Data must be input using a hexadecimal number in the range of 4 bits (0 to 0xf). An error results if the
limit is exceeded.

Error : Data out of range, use 0-0xF

 • Write operation is not performed to the read only address of the I/O area.

 • When there is an unused area in the specified address range, no error occurs. The area other than the
unused area will be filled with the specified data.

 • When the contents of the data memory is modified using the df command, the displayed contents of
the [Data] window are updated automatically.

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 169
(S1C63 FAMILY ASSEMBLER PACKAGE)

dm (data memory move)

Function

This command copies the contents of the specified data memory area to another area.

Format

(1) >dm <address1> <address2> <address3>↵ (direct input mode)

(2) >dm↵ (guidance mode)
Start address ? <address1>↵
End address ? <address2>↵
Destination address ? <address3>↵
>

<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffff, 0 ≤ address3 ≤ 0xffff

Examples

Format (1)
>dm 200 2ff 280↵ ... Copies data within the range from address 0x200 to address 0x2ff

 to the area from address 0x280.
Format (2)
>dm↵
Start address ? 200↵ ... Source area start address is input.
End address ? 2ff↵ ... Source area end address is input.
Destination address 280↵ ... Destination area start address is input.
>
∗ Command execution can be canceled by entering only the [Enter] key and nothing else.

Notes

 • All the addresses specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xFFFF

 • Write operation is not performed to the read-only address of the I/O area.

 • Data in the write-only area cannot be read. If the source area contains write-only address, 0 is written
to the corresponding destination. If the destination area contains read-only address, the data of that
address can not be rewritten. If the source and destination areas contain I/O address of mixed read-
only bits and write-only bits, either read or write operation can be executed for the corresponding
bits.

 • When the contents of the data memory is modified using the dm command, the displayed contents of
the [Data] window are updated automatically.

GUI utility

None

CHAPTER 8: DEBUGGER

170 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

dw (data memory watch)

Function

This command registers four data memory locations as the watch data addresses. Memory contents
equivalent to 4 words at each watch address are displayed in the [Register] window.

Format

(1) >dw <address1> [... <address4>] ↵ (direct input mode)

(2) >dw↵ (guidance mode)
Address 1 = Old value : <address1>↵
Address 2 = Old value : <address2>↵
Address 3 = Old value : <address3>↵
Address 4 = Old value : <address4>↵
>

<address1–4>: Watch address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffff

Examples

Format (1)
>dw 10 14 18 1C↵ ... Sets watch addresses to 0x10, 0x14, 0x18, and 0x1c.

Format (2)
>dw↵
Address1 = 0010 :0↵
Address2 = 0014 :4↵
Address3 = 0018 :8↵
Address4 = 001c :c↵
>

Notes

 • When the debugger starts up, four locations at addresses 0, 4, 8, and 0xc are initially set as the watch
data addresses.

 • The address specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xFFFF

 • The watch data addresses are set in units of 4 words. A warning results if you specify an address that
is outside the 4-word boundary, with your specified address rounded down to a multiple of 4.
Example: >dw↵

Address1 = 0000 :0↵
Address2 = 0004 :10↵
Address3 = 0008 :15↵ ... Illegal address
Address4 = 000c :19↵ ... Illegal address
Warning : round down to multiple of 4
Address1 = 0
Address2 = 10
Address3 = 14
>

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 171
(S1C63 FAMILY ASSEMBLER PACKAGE)

 • Be aware that a value is displayed as the watch data even if the invalid address, which is displayed as
an "∗ " in the dd command, is registered. The value in this case is indeterminate.

 • The value displayed to the left shows the content of the start address, and that displayed to the right
is the content of an address that is equal to the start address + 3.

GUI utility

None

CHAPTER 8: DEBUGGER

172 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Format

(1) >od <type> [<address1> [<address2>]]↵ (direct input mode)

(2) >od↵ (guidance mode)
1. fog 2. sog 3. mla . . . ? <type>↵
Start address ? <address1>↵
End address ? <address2>↵
Option data display
>

<type>: Option type; fog, sog, or mla
<address1>: Start address of specified range; hexadecimal
<address2>: End address of specified range; hexadecimal
Condition: 0 ≤ address1 ≤ address2 ≤ 0xef (fog), 0x1fff (sog) or 0xfff (mla)

Examples

Format (1)
>od fog 0 f↵ ... Displays function option data within the range of 0 to 0xf.
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Format (2)
>od
1.fog 2.sog 3.mla ...? 1↵ ... Function option is selected.
Start address ? 10↵ ... Start address is input.
End address ? 1f↵ ... End address is input.
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>

Notes

 • The start and end addresses can be omitted by entering the [Enter] key only.
If the start address is omitted, data is displayed beginning with address 0.
If the end address is omitted, data is displayed for up to 16 lines within the range of the option area.

 • Data in unused areas is marked by an "∗ " as it is displayed in the window.

 • The maximum number of lines that can be displayed at once is 16 (fog data is limited to 15 lines).
Even if you specify the end address in an attempt to display more than 16 lines, the system will only
display data for 16 lines and then stand by waiting for a command input. As with the dd command,
this command allows you to display data for the following addresses by entering the [Enter] key only.
(The maximam number of lines is 16.)

8.9.5 Command to Display Option Information

od (option data dump)

Function

This command displays option data in the [Command] window in a hexadecimal dump format after
reading it from the ICE.

Option data Target memory address range

 Function option data (fog) 0 to 0xef

 Segment option data (sog) 0 to 0x1fff

 Melody data (mla) 0 to 0xfff

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 173
(S1C63 FAMILY ASSEMBLER PACKAGE)

 • Both the start and end addresses must be specified within the setup range of each option. An error
results if this limit is exceeded.
Error : FO address out of range, use 0-0xEF

... Specified address for the function option is outside the range.
Error : SO address out of range, use 0-0x1FFF

... Specified address for the segment option is outside the range.
Error : MLA address out of range, use 0-0xFFF

... Specified address for the melody data is outside the range.

 • An error results if the start address is larger than the end address.
Error : end address < start address

 • The default value of option data is 0.

GUI utility

None

CHAPTER 8: DEBUGGER

174 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.6 Register Operation

rd (register display)

Function

This command displays the contents of the registers, execution cycle counter, and watch data.

Format

>rd↵ (direct input mode)

Display

(1) Contents of display
The following lists the contents displayed by this command.
PC: Program counter
A: A register
B: B register
X: Contents of X register and indirectly addressed data memory
Y: Contents of Y register and indirectly addressed data memory
EICZ: Flags
SP1: Stack pointer SP1
SP2: Stack pointer SP2
EXT: EXT register
QUEUE: QUEUE register
bus cycle: Execution cycle counter
[xxxx]: Watch data at four locations

 ∗ If the memory locations indicated by the X and Y registers are in an unused area, the data in that area
is marked by an "∗ " as it is displayed.
Note that watch data is always displayed even if it resides in an unused area (indeterminate).

(2) When [Register] window is opened
When the [Register] window is opened, all the above contents are displayed in the [Register] window
according to the program execution. When you use the rd command, the displayed contents of the
[Register] window is updated.

(3) When [Register] window is closed
Data is displayed in the [Command] window in the following manner:
>rd↵
PC:0110 A:A B:A X:[AAAA] = * Y:[AAAA] = * EICZ:0000 SP1:AA SP2:AA EXT:AA
QUEUE:AAAA bus cycle:000002AB3D cycle
[0000] = 0000 [0010] = AAAA [0014] = AAAA [0018] = AAAA
>

(4) During log output
If a command execution result is being output to a log file by the log command, the register values are
displayed in the [Command] window even if the [Register] window is opened and are also output to
the log file.

GUI utility

[View | Register] menu item
When this menu item is selected, the [Register] window opens or becomes active and displays the
current register contents.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 175
(S1C63 FAMILY ASSEMBLER PACKAGE)

rs (register set)

Function

This command modifies the register values.

Format

(1) >rs <register> <value> [<register> <value> [...<register> <value>]]↵ (direct input mode)

(2) >rs↵ (guidance mode)
PC = Old value : <value>↵
 A = Old value : <value>↵
 B = Old value : <value>↵
 X = Old value : <value>↵
 Y = Old value : <value>↵
FE = Old value : <value>↵
F I = Old value : <value>↵
FC = Old value : <value>↵
FZ = Old value : <value>↵

SP1 = Old value : <value>↵
SP2 = Old value : <value>↵
EXT = Old value : <value>↵

Q = Old value : <value>↵
>

<register>: Register name (PC, A, B, X, Y, F, SP1, SP2, EXT, Q)
<value>: Value to be set to the register; hexadecimal

Examples

Format (1)
>rs pc 110 f 0↵ ... Sets PC to 0x0110 and resets all the flags.

Format (2)
>rs↵
 PC= 116: 110↵
 A= 0: f↵
 B= 0: ↵
 X= 0: 100↵
 Y= 0: 100↵
 FE= 0: ↵
 FI= 0: ↵
 FC= 1: 0↵
 FZ= 1: 0↵
SP1= aa: ff↵
SP2= aa: ff↵
EXT= 0: ↵
 Q= 0: ↵

When a register is modified, the [Register] window is updated to show the contents you have input. If
you input "q↵ " to stop entering in the middle, the contents input up to that time are updated.

CHAPTER 8: DEBUGGER

176 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Notes

 • An error results if you input a value exceeding the register's bit width.
Error : invalid value

 • An error results if you input a register name other than PC, A, B, X, Y, F, SP1, SP2, EXT or Q in direct
input mode.

Error : Incorrect register name, use PC/A/B/X/Y/F/SP1/SP2/EXT/Q

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous register.
"↵ " … Input is skipped. (keep current value)

GUI utility

[Register] window
The [Register] window allows direct modification of data. Click the [Register] window, select the
displayed data to be modified and enter a value then press [Enter].

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 177
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.7 Program Execution

g (go)

Function

This command executes the target program from the current PC position.

Format

>g [<address1> [<address2>]]↵ (direct input mode)

<address1–2>: Temporary break addresses; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1(2) ≤ last program memory address

Operation

(1) Program execution
The target program is executed from the address indicated by the PC. Program execution is continued
until it is made to break for one of the following causes:
• The set break condition is met
• The [Key Break] button is clicked or the [Esc] key is pressed
• A map break, etc., occurs

If a temporary break is specified, the program execution will be suspended before executing the
instruction at the specified address. Up to two temporary break addresses can be specified.

>g 1a0↵ ... Executes the program from the current PC address to address 0x1a0.

When program execution breaks, the system stands by waiting for a command input after displaying
a break status message. When you hit the [Enter] key here, program execution is resumed beginning
with a PC address next to the break address. Temporary break address settings are also valid.

(2) Window display by program execution
In the initial debugger settings, the on-the-fly function is turned on.
During program execution, the PC, flags and watch data contents in the [Register] window are
updated in real time every 0.5 seconds (default) by the on-the-fly function. If the [Register] window is
closed, the above contents are displayed in the [Command] window. The on-the-fly function can be
turned off by the otf command. In this case, the [Register] window is updated after a break.

The [Source] window is updated after a break in such a way that the break address is displayed
within the window.

If the [Trace] window is opened, the display contents are cleared as the program is executed. It is
updated with the new trace information after a break.

If the [Data] window is opened, the display contents are updated after a break.

(3) Display during log mode
If the program is executed after turning on the log mode, an on-the-fly display appears in the [Com-
mand] window as well as the [Register] window.
Example:
>g
PC:0007 EICZ:0001 [0000] = AAAA [0004] = 3D30 [0008] = AAAA [000C] = AAAA
PC:000C EICZ:0000 [0000] = AAAA [0004] = 5250 [0008] = AAAA [000C] = AAAA
PC:0117 EICZ:1001 [0000] = AAAA [0004] = 6760 [0008] = AAAA [000C] = AAAA
PC:000B EICZ:0000 [0000] = AAAA [0004] = 8C70 [0008] = AAAA [000C] = AAAA
Key Break
PC:0008 A:F B:1 X:[0007] = 0 Y:[AAAA] = * EICZ:1001 SP1:4A(128) SP2:1F EXT:00
QUEUE:0118 bus cycle:0000029332 cycle [0000] = AAAA [0004] = E280 [0008] = AAAA
[000C] = AAAA
>

When a break occurs, the same display appears as when data is displayed by the rd command.

CHAPTER 8: DEBUGGER

178 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(4) Execution cycle counter
The execution cycle counter displayed in the [Register] window indicates the number of cycles
executed or the execution time of the target program. (Refer to Section 8.8.4 for details.)
In the initial debugger settings, the execution cycle counter is set to hold mode so that execution time
is added up until the CPU is reset. If this mode is changed to reset mode by the md command, the
execution cycle counter is cleared to 0 each time the g command is executed. The counter is also reset
simultaneously when execution is restarted by hitting the [Enter] key.

Notes

 • If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

 • The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

GUI utility

[Run | Go] menu item, [Go] button
When this menu item or button is selected, the g command without temporary break is executed.

 [Go] button

[Run | Go to Cursor] menu item, [Go to Cursor] button
When this menu item or button is selected after placing the cursor to the temporary break address line
in the [Source] window, the g command with a temporary break is executed. The program execution
will be suspended after executing the address at the cursor position.

 [Go to Cursor] button

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 179
(S1C63 FAMILY ASSEMBLER PACKAGE)

gr (go after reset CPU)

Function

This command executes the target program from the boot address after resetting the CPU.

Format

>gr [<address1> [<address2>]]↵ (direct input mode)

<address1–2>: Temporary break addresses; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1(2) ≤ last program memory address

Operation

This command resets the CPU before executing the program. This causes the PC to be set at address
0x0110, from which the command starts executing the program.
Once the program starts executing, the command operates in the same way as the g command, except
that the gr command does not support the function for restarting execution by hitting the [Enter] key.
Refer to the explanation of the g command for more information.

Notes

 • If a break condition is met, program execution is suspended and the PC will be set to the program
address at the breakpoint.

 • The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

GUI utility

[Run | Go from Reset] menu item, [Go from Reset] button
When this menu item or button is selected, the gr command is executed.

 [Go from Reset] button

CHAPTER 8: DEBUGGER

180 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

s (step)

Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

Format

>s [<step>]↵ (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0 ≤ step ≤ 65,535

Operation

(1) Step execution
If the <step> is omitted, only the program step at the address indicated by the PC is executed, other-
wise the specified number of program steps is executed from the address indicated by the PC.

>s↵ ...Executes one step at the current PC address.
>s 20↵ ...Executes 20 steps from the current PC address.

The program execution is suspended by the following cause even before the specified number of steps
is completed.
• The [Key Break] button is clicked or the [Esc] key is pressed
• A map break, etc. occurs

After each step is completed, the register contents in the [Register] window are updated. If the
[Register] window is closed, the register contents are displayed in the [Command] window same as
executing the rd command.
When program execution is completed by stepping through instructions, the system stands by
waiting for command input. If you hit the [Enter] key here, the system single-steps the program in the
same way again.

(2) HALT and SLEEP states and interrupts
When the halt or slp instruction is executed, the CPU is placed in standby mode. An interrupt is
required to clear this mode. The debugger has a mode to enable or disable an external interrupt for
use in a single-step operation.

External interrupt

halt and slp instructions

Enable mode

Interrupt is processed.

Executed as the halt instruction.

Processing is continued by an

external interrupt or clicking on

the [Key Break] button.

Disable mode

Interrupt is not processed.

The halt and slp instructions are

replaced with a nop instruction as

the instruction is executed.

In the initial settings, the debugger is set to the interrupt disable mode.
The interrupt enable mode can also be set by using the md command.

(3) Execution cycle counter
The execution cycle counter displayed in the [Register] window indicates the number of cycles
executed or the execution time of the target program.
In the initial debugger settings, the execution cycle counter is set to hold mode so that execution time
is added up until the CPU is reset. If this mode is changed to reset mode by the md command, the
execution cycle counter is cleared to 0 each time the s command is executed. The counter is also reset
simultaneously when execution is restarted by hitting the [Enter] key.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 181
(S1C63 FAMILY ASSEMBLER PACKAGE)

(4) During log mode
If the program is single-stepped after turning on the log mode, the same contents as when executing
the rd command are displayed in the [Command] window after each step is completed.

Notes

 • The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.

Error : Number of steps out of range, use 0-65535

 • If the [Data] window is opened, its display contents are updated after the execution.

 • During a single-step operation, the program will not break even if the break condition set by a
command is met.

 • Unlike in successive executions (g or gr command), the [Register] window is updated every time a
step is executed.

GUI utility

[Run | Step] menu item, [Step] button
When this menu item or button is selected, the s command without step count is executed.

 [Step] button

CHAPTER 8: DEBUGGER

182 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

n (next)

Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

Format

>n [<step>]↵ (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0 ≤ step ≤ 65,535

Operation

This command basically operates in the same way as the s command.
However, the calr, calz and int instructions, including all subroutines until control returns to the next
address, are executed as one step.

Notes

 • The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.

Error : Number of steps out of range, use 0-65535

 • If the [Data] window is opened, its display contents are updated after the execution.

 • During a single-step operation, the program will not break even if the break condition set by a
command is met.

 • Unlike in successive executions (g or gr command), the [Register] window is updated every time a
step is executed.

GUI utility

[Run | Next] menu item, [Next] button
When this menu item or button is selected, the n command without step count is executed.

 [Next] button

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 183
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.8 CPU Reset

rst (reset CPU)

Function

This command resets the CPU.

Format

>rst↵ (direct input mode)

Notes

 • The registers and flags are set as follows:
PC: 0110
A: A
B: A
X: AAAA
Y: AAAA
EICZ: 0000
SP1: AA
SP2: AA
EXT: AA
QUEUE: AAAA

 • The execution cycle counter is cleared to 0.

 • If the [Source] window is open, the window is redisplayed beginning with address 0x0110. If the
[Register] window is open, the window is redisplayed with the above contents.

 • The debug status, such as memory contents, breaks, and trace, is not reset.

GUI utility

[Run | Reset CPU] menu item, [Reset] button
When this menu item or button is selected, the rst command is executed.

 [Reset] button

CHAPTER 8: DEBUGGER

184 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.9 Break

bp (break point set)

Function

This command sets or clears breakpoints using a program's execution address.

Format

(1) >bp <break1> [<break2> [... <break16>]]↵ (direct input mode)

(2) >bp↵ (guidance mode)
PC break set status
1. set 2. clear 3. clear all ... ? <1 | 2 | 3>↵
.......... (guidance depends on the above selection, see examples)
>

<break1–16>: Break address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address

Examples

Format (1)
>bp 116 200↵ ... Sets break points at addresses 0x0116 and 0x0200.

* The direct input mode cannot clear the set break points.
Format (2)
>bp↵ (Set)
No PC break is set.
1. set 2. clear 3. clear all ...? 1↵ ... "1. set" is selected.
Set break address ? : 116↵ ... Address 0x0116 is set as a breakpoint.
Set break address ? : 200↵ ... Address 0x0200 is set as a breakpoint.
Set break address ? : ↵ ... Terminated by [Enter] key.
>bp↵ (Clear)
 1: 0116
 2: 0200
1. set 2. clear 3. clear all ...? 2↵ ... "2. clear" is selected.
Clear break address ? : 200↵ ... Break address 0x0200 is cleared.
Clear break address ? : ↵ ... Terminated by [Enter] key.
>bp↵ (Clear all)
 1: 0116
1. set 2. clear 3. clear all ...? 3↵ ... "3. clear all" is selected.
>bp↵
No PC break is set.
1. set 2. clear 3. clear all ...? ↵ ... Terminated by [Enter] key.
>

Notes

 • The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

 • An error results if you attempt to clear an address that has not been set.
Error : Input address does not exist

 • For direct input mode, an error results if you attempt to set breakpoints at more than 16 locations at a
time. But for guidance mode, there is no such limitation, so you can specify more than 16 breakpoints
before terminating the command by the [Enter] key.

 • You can use this command for multiple times to set new breakpoints.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 185
(S1C63 FAMILY ASSEMBLER PACKAGE)

GUI utility

[Break | Breakpoint Set...] menu item
When this menu item is selected, a dialog box appears for setting breakpoints.

To set a breakpoint, select a [Set] button and
enter an address in the text box corresponding
to the selected button.
When setting more than four breakpoints, click
the [Next] button to continue settings.
The [Previous] and [Next] buttons are used to
view previous and subsequent four
breakpoints.
To clear a breakpoint, select the [Clear] button
of the address to be cleared.
The [Clear All Breakpoint] button clears all the
set breakpoints

[Break] button
When this button is clicked after placing the cursor to a line in the [Source] window, the address at the
cursor position is set as a breakpoint. If the address has been set as a breakpoint, this button clears the
breakpoint.

 [Break] button

The set breakpoints are marked with a ● at the beginning of the address lines in the [Source] window.

CHAPTER 8: DEBUGGER

186 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

bc / bpc (break point clear)

Function

This command clears the specified breakpoints that have been set.

Format

>bc [<break1> [. . .<break16>]]↵ (direct input mode)

<break1–16>: Break address; hexadecimal or symbol (IEEE-695 format only)

Examples
>bp↵
 1: 0116 ... Breakpoints that have been set.
 2: 0200
 3: 0260
1. set 2. clear 3. clear all ...? ↵
>bc 200↵ ... Clears breakpoints at address 0x0200.
>bp↵
 1: 0116
 2: 0260
1. set 2. clear 3. clear all ...? ↵
>bc↵ ... Clears all breakpoints.
>bp↵
No PC break is set.
1. set 2. clear 3. clear all ...? ↵
>

Notes

 • The bc and bpc commands have the same functions.

 • If no address parameter is specified, all the breakpoints that have been set are cleared.

 • The format of parameters is same as the bp command. You can also use the guidance input mode of bp
command to do the same operation.

 • You can use this command for multiple times to clear breakpoints.

 • An error results if an address that is not set at a breakpoint is specified.
Error : Input address does not exist

GUI utility

[Break | Breakpoint Set …] menu item
When this menu item is selected, a dialog box appears for clearing breakpoints. (See the bp com-
mand.)

[Break] button
When this button is clicked after placing the cursor to a break address line in the [Source] window, the
breakpoint is cleared. If the address has not been set as a breakpoint, this button sets a new breakpoint
at the address.

 [Break] button

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 187
(S1C63 FAMILY ASSEMBLER PACKAGE)

bd (data break)

Function

This command sets or clears data break. This command allows you to specify the following break
conditions:
1. Memory address range to be read or written (one area)
2. Data pattern to be read or written (bit mask possible)
3. Memory read/write (three conditions: read, write, or read or write)

The program breaks after completing a memory access that satisfies the above conditions.

Format

(1) >bd <data> <option> <address1> <address2>↵ (direct input mode)

(2) >bd↵ (guidance mode)
Data break set status
1. set 2. clear …? <1 | 2>↵ (Command is completed when "2" is selected.)
data Old data : <data>↵
R/W (R,W,∗) Old option : <option>↵
Start address Old address : <address1>↵
End address Old address : <address2>↵
>

<data>: Data pattern; binary (∗ can be input for the bits to be masked)
<option>: Memory read/write option; r, w, or ∗
<address1–2>: The specified address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ 0xffff, 0 ≤ data ≤ 0b1111

Examples

Format (1)
>bd 1000 W 0 f↵ ... Sets a data break condition so that the program breaks when 0x8 is written

 to the address range from 0x0 to 0xf.
* The direct input mode cannot clear the set condition.

Format (2)
>bd↵
data: - R/W: - area: -
1. set 2. clear ...? 1↵ ... "1. set" is selected.
data ---- : 1***↵ ... Data pattern is set to 0b1***.
R/W (R,W,*) - : w↵ ... R/W condition is set for write access.
Start address ---- : 0↵ ... Break address range is set to 0x0–0xf.
End address ---- : f
>bd↵
data: 1*** R/W: W area: 0000 - 000F ... Currently set condition.
1. set 2. clear ...? 2↵ ... "2. clear" is selected.
>bd↵
data: - R/W: - area: -
1. set 2. clear ...? ↵ ...Terminated by [Enter] key.
>

"∗ " in the binary data pattern specifies that the bit will not be compared with the actual read/write
data.

CHAPTER 8: DEBUGGER

188 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Notes

 • For the first time this command is executed, no item can be skipped because no default value is set.

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous item.
"↵ " … Input is skipped. (keep current value)
When the command is terminated in the middle of guidance by "q↵ ", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

 • The addresses must be specified within the range of the data memory area available for each micro-
computer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xFFFF

 • An error results if the start address in the address range is larger than the end address.
Error : end address < start address

 • Address and R/W specifications are effective even for 16-bit access (push/pop to and from SP1 stack).
However, the data specification will not have any effect because data is compared with a 4-bit bus. In
this case, specify data with "∗∗∗∗ ". When setting a break for 4-bit access, be careful not to specify an
address that overlaps the 16-bit access area, because such specification can cause the system to operate
erratically.

 • The data value can be input as a binary number with or without mask bits in the range of 4 bits (0 to
0xf). An error results if the limit is exceeded.

Error : invalid data pattern

 • An error results if you input the R/W option other than "r", "w" or "∗ ".
Error : Incorrect r/w option, use r/w/*

 • The program stops one to two instructions after the break condition has been met.

GUI utility

[Break | Data Break …] menu item
When this menu item is selected, a dialog box appears for setting a data break condition.

To set a data break condition, enter an
address and a data pattern in the text
box, and select R/W condition from
the radio buttons. Then click [OK].
To clear the set data break condition,
click [Clear].

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 189
(S1C63 FAMILY ASSEMBLER PACKAGE)

bdc (data break clear)

Function

This command clears the data break condition that has been set.

Format

>bdc↵ (direct input mode)

GUI utility

[Break | Data Break …] menu item
When this menu item is selected, a dialog box appears for clearing the set data break condition. (See
the bd command.)

CHAPTER 8: DEBUGGER

190 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

br (register break)

Function

This command sets or clears register break. This command allows you to specify data or a mask that
constitutes a break condition for each register (A, B, F, X, and Y). The program will break when all
setting conditions are met.

Format

(1) >br <register> <value> [<register> <value> [...<register> <value>]]↵ (direct input mode)

(2) >br↵ (guidance mode)
Register break set status
1. set 2. clear …? <1 | 2>↵ (Command is completed when "2" is selected.)
A Old value : <value>↵
B Old value : <value>↵
FE Old value : <value>↵
FI Old value : <value>↵
FC Old value : <value>↵
FZ Old value : <value>↵
X Old value : <value>↵
Y Old value : <value>↵
>

<register>: Register name; A, B, F, X or Y
<value>: Data pattern for the register; hexadecimal or binary (F register) (* can be used for the bits to be

masked)

Examples

Format (1)
>br f **1*↵ ... Sets a register break condition so that the program breaks when the C flag is set.

Format (2)
>br↵
A: - B: - X: - Y: - EICZ: -
1. set 2. clear ...? 1↵ ... "1. set" is selected.
A - : a↵ ... Data 0xa is set for A register condition.
B - : *↵ ... "*" masks the register condition.
FE - : *↵
FI - : *↵
FC - : 1↵
FZ - : *↵
X - : 20↵
Y - : ^↵ ... "^↵ " returns guidance to previous setting.
X 20 : 60↵
Y - : *↵
>br↵
A:a B:* X:60 Y:* EICZ:**1*
1. set 2. clear ...? 2↵ ... "2. clear" is selected.
>br↵
A: - B: - X: - Y: - EICZ: -
1. set 2. clear ...? ↵ ...Terminated by [Enter] key.
>

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 191
(S1C63 FAMILY ASSEMBLER PACKAGE)

Notes

 • For the first time this command is executed, no item can be skipped because no default value is set.

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous address.
"↵ " … Input is skipped. (keep current value)
When the command is terminated in the middle of guidance by "q↵ ", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

 • An error results if you input the register name other than A, B, X, Y or F when using the direct input
mode.

Error : Incorrect register name, use A/B/X/Y/F

 • You can use the direct input mode to set register break condition at a time, or change one or several
items for register break setting.

 • The register value can be input as a binary number with or without mask bits or a hexadecimal
number in the range of the bit width of each register. An error results if the limit is exceeded.

Error : invalid data pattern

 • The program stops one to two instructions after the break condition has been met.

GUI utility

[Break | Register Break …] menu item
When this menu item is selected, a dialog box appears for setting register break conditions.

To set a register condition, select the radio
button for the register and enter a value in
the [Enter Value:] box, then click [Modify].
All the register condition must be set. Enter
an "∗ " to exclude the register from the break
condition.
When the [Apply] button is clicked, the
dialog box closes and the register break is
set with the specified conditions. However,
if there is a register of which the condition
has not been set (indicated with "---"), no
register break condition is set.
To clear the register break conditions, click
[Clear].

CHAPTER 8: DEBUGGER

192 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

brc (register break clear)

Function

This command clears the register break conditions that have been set.

Format

>brc↵ (direct input mode)

GUI utility

[Break | Register Break …] menu item
When this menu item is selected, a dialog box appears for clearing the register break conditions. (See
the br command.)

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 193
(S1C63 FAMILY ASSEMBLER PACKAGE)

bs (sequential break)

Function

This command sets and clears sequential break and displays the sequential break condition that have
been set.
This command allows you to set break addresses in up to three locations and the number of times you
want the program to be executed at the last of the three addresses. While passing through all ad-
dresses sequentially in the order they are set, the program executes the last-specified address a
specified number of times, then breaks after fetching the instruction from that address again.

Format

(1) >bs <pass> <address1> [<address2> [<address3>]]↵ (direct input mode)

(2) >bs↵ (guidance mode)
Sequential break set status
1. set 2. clear …? <1 | 2>↵ (Command is completed when "2" is selected.)
Number of sequential address (1–3) ? : <1 | 2 | 3>↵
Set address ? Old address : <address1>↵
Set address ? Old address : <address2>↵
Set address ? Old address : <address3>↵
Pass count ? Old count : <pass>↵
>

<pass>: Pass count; decimal
<address1–3>: Program execution address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1–3 ≤ last program memory address, 0 ≤ pass ≤ 4095

Examples

Format (1)
>bs 3 116 120↵

... Sets two sequential addresses and the pass count. In this case, a break will occur when the
 CPU fetches the instruction at address 0x0120 after the instruction at address 0x0116 is executed
 and the instruction at address 0x0120 is executed three times.

Format (2)
>bs↵
1: - 2: - 3: - pass: -
1. set 2. clear ...? 1↵ ... "1. set" is selected.
Number of seqential address (1-3) ? : 2↵ ... Number of addresses is input.
Set address ? : 116↵ ... 1st address is input.
Set address ? : 120↵ ... 2nd address is input.
Pass count ? : 3↵ ... Pass count is input.
>bs↵
1: 0116 2: 0120 3: - pass:3
1. set 2. clear ...? 2↵ ... "2. clear" is selected.
>bs↵
1: - 2: - 3: - pass: -
1. set 2. clear ...? ↵ ...Terminated by [Enter] key.
>

 ∗ If you press [Enter] in the middle of a guidance, the command is canceled.

CHAPTER 8: DEBUGGER

194 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Notes

 • The maximum number of times a program can be executed is 4,095. Specifying a pass count exceeding
this limit will result in an error.

Error : Number of passes out of range, use 0-4095

 • The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

GUI utility

[Break | Sequential Break …] menu item
When this menu item is selected, a dialog box appears for setting sequential break conditions.

To set a sequential break, enter sequential addresses and a
pass count in the text boxes, then click [OK]. At least one
address (Address 1) and the pass count must be set.
To clear the sequential break condition, click [Clear].

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 195
(S1C63 FAMILY ASSEMBLER PACKAGE)

bsc (sequential break clear)

Function

This command clears the sequential break condition that has been set.

Format

>bsc↵ (direct input mode)

GUI utility

[Break | Sequential Break …] menu item
When this menu item is selected, a dialog box appears for clearing sequential break conditions. (See
the bs command.)

CHAPTER 8: DEBUGGER

196 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

bsp (break stack pointer)

Function

This command allows you to specify a stack area to generate a break for illegal stack access.
A break occurs when stack operation is performed in locations other than the area specified by this
command.

Format

(1) >bsp <address1> <address2> <address3> <address4>↵ (direct input mode)

(2) >bsp↵ (guidance mode)
Stack area set status
SP1 start address ? : <address1>↵
SP1 end address ? : <address2>↵
SP2 start address ? : <address3>↵
SP2 end address ? : <address4>↵
>

<address1>: SP1 start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: SP1 end address; hexadecimal or symbol (IEEE-695 format only)
<address3>: SP2 start address; hexadecimal or symbol (IEEE-695 format only)
<address4>: SP2 end address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1(2) ≤ 0x03ff, 0 ≤ address3(4) ≤ 0x00ff

Examples

Format (1)
>bsp 0 3ff 0 ff↵ ... Sets SP1 area to 0x0–0x3FF and SP2 area to 0x0–0xFF.

Format (2)
>bsp↵
SP1 : 0000 - 03FF SP2 : 0000 - 00FF
SP1 start address ? : 0↵ ... Address is input.
SP1 end address ? : 1ff↵
SP2 start address ? : 0↵
SP2 end address ? : ff↵
>bsp↵
SP1 : 0000 - 01FF SP2 : 0000 - 00FF
SP1 start address ? : ↵ ... Terminated by [Enter] key.
>

 ∗ If you press only [Enter] in the middle of a guidance, the command is canceled.

Notes

 • The stack area that is set by this command will not affect the stack operation performed in the pro-
gram.

 • Specify the SP1 address in the range of 0 to 0x3ff and the SP2 address in the range of 0 to 0xff. Entering an
address exceeding this limit will result in an error.

Error : SP1 address out of range, use 0-0x3FF
Error : SP2 address out of range, use 0-0xFF

 • Specify the SP1 address in units of 4 words (start address = multiple of 4; end address = multiple of 4
+ 3).

 • Due to the S1C63000 CPU's prefetch function, SP1 can access the top end of the actually used stack + 4
words. Depending on your system configuration, add 4 to the end address when you set it.

 • The program stops one to two instructions after the break condition has been met.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 197
(S1C63 FAMILY ASSEMBLER PACKAGE)

GUI utility

[Break | Stack Break …] menu item
When this menu item is selected, a dialog box appears for setting stack areas.

To set stack areas, enter start and end addresses in the text
boxes, then click [OK].

CHAPTER 8: DEBUGGER

198 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

bl (break point list)

Function

This command lists the current setting of all break conditions.

Format

>bl↵ (direct input mode)

Example
>bl↵
PC break:
 1: 0116
 2: 0200
Sequential break:
1: 0116 2: 0120 3: - pass:3
Data break:
data: 1*** R/W: W area: 0000 - 000F
Register break:
A:* B:* X:* Y:* EICZ:**1*
Stack break:
SP1 : 0000 - 03FF SP2 : 0000 - 00FF
>

GUI utility

[Break | Break List] menu item
When this menu item is selected, the bl command is executed.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 199
(S1C63 FAMILY ASSEMBLER PACKAGE)

bac (break all clear)

Function

This command clears all break conditions set by the bp, bd, br and/or bs commands.

Format

>bac↵ (direct input mode)

GUI utility

[Break | Break All Clear] menu item
When this menu item is selected, the bac command is executed.

CHAPTER 8: DEBUGGER

200 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.10 Program Display

u (unassemble)

Function

This command displays a program in the [Source] window after unassembling it. The display con-
tents are as follows:
• Program memory address
• Object code
• Unassembled contents of the program

Format

>u [<address>]↵ (direct input mode)

<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address

Display

(1) When [Source] window is opened

If <address> is not specified, display in the [Source] window is changed to the unassemble display
mode. If <address> is specified, display in the [Source] window is changed to the unassemble display
mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of unassembled result are displayed in the [Command] window. The system then waits
for a command input.
If <address> is not specified, this display begins with the current PC (displayed in the [Register]
window). If <address> is specified, the display begins with <address>.
>u↵
 ADDR CODE UNASSEMBLE
 0110 094B ldb %ba,0x4b
 0111 1FC4 ldb %sp1,%ba
 0112 091F ldb %ba,0x1f
 0113 1FC6 ldb %sp2,%ba
 : : : :
 011E 1FFF *nop
 011F 1FFF *nop
>

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 201
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) During log output
If the command execution result is being output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.
If the [Source] window is closed, the result is displayed in the same way as in (2) above.
If the [Source] window is opened, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the u command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the u com-
mand is executed during log output).

Note

The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
 Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
 Error : Address out of range, use 0-0xXXXX

GUI utility

[View | Program | Unassemble] menu item, [Unassemble] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

 [Unassemble] button

CHAPTER 8: DEBUGGER

202 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

sc (source code)

Function

This command displays the contents of the program source file in the [Source] window. The display
contents are as follows:
• Line number in the source file
• Source code

Format

>sc [<address>] ↵ (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address

Display

(1) When [Source] window is opened

If <address> is not specified, display in the [Source] window is changed to the source display mode.
If <address> is specified, display in the [Source] window is changed to the source display mode. At
the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of source code are displayed in the [Command] window. The system then waits for a
command input.
If <address> is not specified, this display begins with the current PC (displayed in the [Register]
window). If <address> is specified, the display begins with <address>.
>sc↵
 ldb %ba,SP1_INIT_ADDR
 ldb %sp1,%ba ; set SP1
 ldb %ba,SP2_INIT_ADDR
 ldb %sp2,%ba ; set SP2
 calr INIT_RAM_BLK1 ; initialize RAM block 1
LOOP:
 ldb %ext,INC_RAM_BLK1@rh
 calr INC_RAM_BLK1@rl ; increment RAM block 1
 ldb %ext,LOOP@rh
 jr LOOP@rl ; infinity loop
>

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 203
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) During log output
If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are also output to the log file.
If the [Source] window is closed, code is displayed in the same way as in (2) above.
If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the sc command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the sc com-
mand is executed during log output).

Notes

 • Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

 • The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
 Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
 Error : Address out of range, use 0-0xXXXX

GUI utility

[View | Program | Source Display] menu item, [Source] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

 [Source] button

CHAPTER 8: DEBUGGER

204 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

m (mix)

Function

This command displays the unassembled result of the program and the contents of the program
source file in the [Source] window. The display contents are as follows:
• Line number
• Program memory address
• Object code
• Unassembled contents of the program
• Source code

Format

>m [<address>] ↵ (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address ≤ last program memory address

Display

(1) When [Source] window is opened

If <address> is not specified, display in the [Source] window is changed to the mix (unassemble &
source) display mode. If <address> is specified, display in the [Source] window is changed to the mix
(unassemble & source) display mode. At the same time, code is displayed beginning with <address>.

(2) When [Source] window is closed
The 16 lines of mix display are produced in the [Command] window. The system then waits for a
command input.
If <address> is not specified, this display begins with the current PC (displayed in the [Register]
window). If <address> is specified, the display begins with <address>.
>m↵
0110 094b ldb ba,4b ldb %ba,SP1_INIT_ADDR
0111 1fc4 ldb sp1,ba ldb %sp1,%ba
0112 091f ldb ba,1f ldb %ba,SP2_INIT_ADDR
0113 1fc6 ldb sp2,ba ldb %sp2,%ba
0114 08fe ldb ext,fe (+) ldb ext,fe
0115 02ea calr ea calr INIT_RAM_BLK1
 LOOP:
0116 08fe ldb ext,fe (*) ldb %ext,INC_RAM_BLK1@rh
0117 02ef calr ef calr INC_RAM_BLK1@rl
 (-) ldb %ext,LOOP@rh

 : : : : : : :

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 205
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) During log output
If the command execution result is output to a log file as specified by the log command, code is
displayed in the [Command] window and its contents are output to the log file also.
If the [Source] window is closed, code is displayed in the same way as in (2) above.
If the [Source] window is open, the window is redisplayed. In this case, the same number of lines is
displayed in the [Command] window as displayed in the [Source] window.

(4) Successive display
If you execute the m command after entering it from the keyboard, code can be displayed successively
by entering the [Enter] key only until some other command is executed.
When you press the [Enter] key, the [Source] window is scrolled forward one screen.
When displaying code in the [Command] window, 16 lines of code following the previously displayed
address are displayed (the same number of lines as displayed in the [Source] window if the m com-
mand is executed during log output).

Notes

 • Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

 • The display start address you specified must be within the range of the program memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
 Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
 Error : Address out of range, use 0-0xXXXX

GUI utility

[View | Program | Mix Mode] menu item, [Mix] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

 [Mix] button

CHAPTER 8: DEBUGGER

206 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.11 Symbol Information

sy (symbol list)

Function

This command displays a list of symbols in the [Command] window.

Format

(1) >sy [/a]↵ (direct input mode)
(2) >sy $<keyword> [/a]↵ (direct input mode)
(3) >sy #<keyword> [/a]↵ (direct input mode)

<keyword>: Search character string; ASCII character
Condition: 0 ≤ length of keyword ≤ 32

Examples

Format (1)
>sy↵
INC_RAM_BLK1 0007
INIT_RAM_BLK1 0000
RAM_BLK0 0000
RAM_BLK1 0004
BOOT@C:\E0C63\TEST\MAIN.S 0110
LOOP@C:\E0C63\TEST\MAIN.S 0116
NMI@C:\E0C63\TEST\MAIN.S 0100
>

In format (1), all the defined symbols are displayed in alphabetical order. Global symbols are dis-
played first, then local symbols. Shown to right to each symbol is the address that is defined in it.

Format (2)
>sy $R↵
INC_RAM_BLK1 0007
INIT_RAM_BLK1 0000
RAM_BLK0 0000
RAM_BLK1 0004
>

In format (2), the debugger displays global symbols that contain the character string specified by
<keyword>.

Format (3)
>sy #B↵
BOOT@C:\E0C63\TEST\MAIN.S 0110
>

In format (3), the debugger displays local symbols that contain the character string specified by
<keyword>.

When local symbols are displayed, @ and the source file name in which the symbol is defined are
added.

Notes

 • The symbol list will be sorted by letter order if no option is added. If the option is added, the
symbol list will be sorted by address.

 • The symbol list can only be displayed when the object file in IEEE-695 format has been read.

 • The specification of keyword conforms to which defined for assembler tools.

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 207
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.12 Load File

lf (load file)

Function

This command loads an object file in IEEE-695 format into the debugger.

Format

(1) >lf <file name>↵ (direct input mode)

(2) >lf↵ (guidance mode)
File Name ? <file name>↵
>

<file name>: File name to be loaded (path can also be specified)

Examples

Format (1)
>lf test.abs↵
Loading file ... OK!
>

Format (2)
>lf↵
File name ? test.abs
Loading file ... OK!
>

Notes

 • An error results if the loaded file is linked with a different ICE parameter file than the one the
debugger is using.

Error : Different chip type, cannot load this file

 • Only an IEEE-695 format object file (generated by the linker) can be loaded by the lf command.

 • If you want to use source display and symbols when debugging a program, the object file must be in
IEEE-695 format that contains debug information loaded into the computer.

 • If the [Source] window is opened when loading a file, its contents are updated. The program contents
are displayed from the current PC address.

 • If an error occurs when loading a file, portions of the file that have already been read will remain in
the emulation memory.

GUI utility

[File | Load File …] menu item, [Load File] button
When this menu item or button is selected, a dialog box appears allowing selection of an object file to
be loaded.

 [Load File] button

CHAPTER 8: DEBUGGER

208 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

lo (load option)

Function

This command loads a Motorola-S format program, data or option file listed below into the debugger.

File Name specification
Program file ~.hsa (5 high-order bits), ~.lsa (8 low-order bits)
Data file* ~.csa
Function option data file ~.fsa
Segment option data file* ~.ssa
Melody data file* ~.msa

∗ Not used in some microcomputer models

Format

(1) >lo <file name>↵ (direct input mode)

(2) >lo↵ (guidance mode)
File Name ...? <file name>↵
>

<file name>: File name to be loaded (path can also be specified)

Examples

Format (1)
>lo test.lsa↵ ...Loads the program files test.lsa and test.hsa.
Loading file ... OK!
>

Format (2)
>lo↵
File name ? test.fsa↵ ...Loads a function option file.
Loading file ... OK!
>

Notes

 • The debugger determines the file type based on the specified file name. Therefore, the debugger
cannot load a file not following to the name specification listed above, and an error will result.

Error : invalid file name

 • If an error occurs when loading a file, portions of the file that have already been read are left as they
were loaded.

GUI utility

[File | Load Option …] menu item, [Load Option] button
When this menu item or button is selected, a dialog box appears allowing selection of a hex file to be
loaded.

 [Load Option] button

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 209
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.13 Flash Memory Operation

lfl (load from flash memory)

Function

This command loads the memory contents from the flash memory of the ICE into the target memory.
It therefore allows you to debug the program beginning from the contents previously saved to the
flash memory up to latest one.

Format

(1) >lfl <content> [... <content>]↵ (direct input mode)

(2) >lfl↵ (guidance mode)
Read program 1. yes 2. no ...? <1 | 2>↵

data 1. yes 2. no ...? <1 | 2>↵
fog 1. yes 2. no ...? <1 | 2>↵
sog 1. yes 2. no ...? <1 | 2>↵
mla 1. yes 2. no ...? <1 | 2>↵

Loading ...
>

<content>: Data type; p (program) / d (data) / f (fog) / s (sog) / m (mla)

Examples

Format (1)
>lfl p↵ ...Loads program data.
Loading from flash memory ... done!

Format (2)
>lfl↵
Read program 1.yes 2.no ...? 1↵ ...Select the contents to be loaded.
 data 1.yes 2.no ...? 1↵
 fog 1.yes 2.no ...? 1↵
 sog 1.yes 2.no ...? 1↵
 mla 1.yes 2.no ...? 1↵
Loading from flash memory ... done!
>

Notes

 • If the flash memory is protected against read/write, an error will result and memory contents will not
be loaded into the target memory.

Error : flash ROM is protected

 • If the flash memory has been erased, an error will result and memory contents will not be loaded into
the target memory.

Error : format error

CHAPTER 8: DEBUGGER

210 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

 • If the flash memory and target memory are mapped differently (e.g., the parameter file used in the
current debug differs from one that was used when the program was saved to the flash memory), an
error will result and memory contents will not be loaded into the target memory.

Error : Map information is not the same

In this case, the system displays the map information of the target memory and the flash memory
after showing the message above.

 ICE flash

Chip name 63A08
Parameter version 02 00
Size of program 2000 0
 data RAM 800 8000
 data ROM 1000 7000
 ext. memory 100 700
 LCD 2C0 800
 IO 20 20
 FO 20 F0
 SO1 0 1000
 SO2 100 1000
 MLA 510 1000

Redo the loading with the correct parameter file using the efl or sfl command.

 • If an error occurs when loading data, portions of the data that have already been read into the target
memory are left as they were loaded.

GUI utility

[File | Flash Memory Operation…] menu item
When this menu item is selected, a dialog box appears allowing selection of flash memory operations.

To execute the lfl command, select "Load from
flash memory" from the [Operation] list box and
select contents using the check boxes, then clock
[OK].

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 211
(S1C63 FAMILY ASSEMBLER PACKAGE)

sfl (save to flash memory)

Function

This command writes the contents of the target memory in the ICE into the flash memory.
Writing to the flash memory allows the ICE to be operated in free-run mode. Furthermore, the next
debug session can be continued immediately from the current contents in the flash memory.

Format

(1) >sfl <content> [... <content>] [-p]↵ (direct input mode)

(2) >sfl↵ (guidance mode)
Protect flash memory 1. yes 2. no ...? <1 | 2>↵

Write program 1. yes 2. no ...? <1 | 2>↵
data 1. yes 2. no ...? <1 | 2>↵
fog 1. yes 2. no ...? <1 | 2>↵
sog 1. yes 2. no ...? <1 | 2>↵
mla 1. yes 2. no ...? <1 | 2>↵

Saving ...
>

<content>: Data type; p (program) / d (data) / f (fog) / s (sog) / m (mla)
-p: Protect option

Examples

Format (1)
>sfl p d f s m -p↵ ...Saves all contents and sets prorect.
Please wait few minutes
Save to flash memory ... done!
>

Format (2)
>sfl↵
Protect flash memory 1.yes 2.no ...? 1↵ ... Protect is set.
 Write program 1.yes 2.no ...? 1↵ ... Write contents are selected.
 data 1.yes 2.no ...? 1↵
 fog 1.yes 2.no ...? 1↵
 sog 1.yes 2.no ...? 1↵
 mla 1.yes 2.no ...? 1↵
Please wait few minutes
Save to flash memory ... done!
>

 ∗ If you enter only the [Enter] key in the middle of guidance, the guidance is terminated and only the
area you have selected up to that time is written into the flash memory.

Notes

 • If the flash memory is write-protected, an error results and memory contents are not written to the
flash memory.

Error : flash ROM is protected
The write-protect can be removed by erasing the flash memory with the efl command.

CHAPTER 8: DEBUGGER

212 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

 • If the flash memory has been erased, an error results, in which case you can choose to continue or stop
processing.

Error : format error
Save with the map information,
 or quit the command ? 1.save 2.quit ...? 1
Protect flash memory 1.yes 2.no ...?

 • If the flash memory and target memory are mapped differently, an error results. In this case, the
system displays the map information of the memory and a message prompting you to choose to
continue or stop processing.

Error : Map infomation is not the same
 ICE flash

Chip name 63A08
Parameter version 02 00
Size of program 2000 0
 data RAM 800 8000
 data ROM 1000 7000
 ext. memory 100 700
 LCD 2C0 800
 IO 20 20
 FO 20 F0
 SO1 0 1000
 SO2 100 1000
 MLA 510 1000
Save with the map information,
 or quit the command ? 1.save 2.quit ...? 1
Protect flash memory 1.yes 2.no ...?

 • When shipped from the factory or erased by the efl command, all data in the flash memory is initial-
ized to 0xff. When part of the data, such as a program, is written to the flash memory by the slf
command, all other data in it remains unchanged (= 0xff). In this condition, the ICE cannot be oper-
ated in free-run mode. To operate the ICE in free-run mode, always make sure that after erasing the
flash memory, all the data has been written into the flash memory.
In the ICE, furthermore, the default values for all option data are 0x00. Consequently, if you write to
the flash memory before loading option data (lo command), the data you have written to the flash
memory is overwritten by 0x00.

GUI utility

[File | Flash Memory Operation…] menu item
When this menu item is selected, a dialog box appears allowing selection of flash memory operations.

To execute the sfl command, select "Save to flash
memory" from the [Operation] list box and select
contents to be saved using the check boxes, then
clock [OK]. The -p option can be specified using
the [Protect flash memory] check box.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 213
(S1C63 FAMILY ASSEMBLER PACKAGE)

efl (erase flash memory)

Function

This command erases the contents of the ICE flash memory (including map information) and removes
its protect function.

Format

efl↵ (direct input mode)

Example

>efl↵
Clear flash memory ... done!
>

Note

When erased by the efl command, all data in the flash memory is initialized at 0xff. Even when part of
the data, such as a program, is thereafter written to the flash memory by the slf command, all other
data remains unchanged (= 0xff). In this condition, the ICE cannot be operated in free-run mode. In
order for the ICE to be operated in free-run mode, always make sure that after erasing the flash
memory, all the data has been written into the flash memory.
In the ICE, furthermore, the default values for all option data are 0x00. Consequently, if you write to
the flash memory before loading option data (lo command), the data you have written to the flash
memory is overwritten by 0x00.

GUI utility

[File | Flash Memory Operation…] menu item
When this menu item is selected, a dialog box appears allowing selection of flash memory operations.

To execute the efl command, select "Erase flash
memory" from the [Operation] list box and then
clock [OK].

CHAPTER 8: DEBUGGER

214 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.14 Trace

tm (trace mode display/set)

Function

This command sets and displays a trace mode. It allows you to set the following three trace modes
and a trace trigger point (when a specified address is executed, the TRGOUT pin outputs a pulse).

1. Normal trace mode
The data written to the trace memory is always the latest trace information.

2. Single-delay trigger trace mode
One of the following three trace sampling areas can be specified with respect to the trace trigger
point:
• Start: Trace information is a sample beginning from the trace trigger point.
• Middle: Trace information is a sample from before and after the trace trigger point.
• End: Trace information is a sample all the way up to the trace trigger point.

3. Address-area trace mode
The execution process is traced as instructions inside or outside a specified address range are
executed. This address range can be specified in up to four locations.

Format

(1) >tm <mode> <trigger> [<option>] [<addr1> <addr2> [... <addr7> <addr8>]↵ (direct input mode)

(2) >tm↵ (guidance mode)
Current type setting
1. normal 2. single delay 3. address area . . . ? <1 | 2 | 3>↵
Trigger address ? : <trigger>↵
...... (guidance depends on the above selection, see examples)
>

<mode>: Trace mode; -n (normal), -s (single delay), or -a (address area)
<trigger>: Trace trigger address; hexadecimal or symbol (IEEE-695 format only)
<option>: For single-delay trace mode: s (start) / m (middle) / e (end)

For addres-area trace mode: i (in area) / o (out area)
<addr1–8>: Address ranges; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ trigger, addr1–8 ≤ last program memory address

Examples

Format (1)
>tm -n 116↵ ... Sets normal trace mode and sets trigger point to 0x0116.

Format (2)
>tm↵
Normal mode
Trigger Address : 0
1.normal 2.single delay 3.address area ...? 1↵ ... [1. normal] is selected.
Trigger address ? :116↵ ... Trigger address is input.
>tm↵
Normal mode
Trigger Address : 0116
1.normal 2.single delay 3.address area ...? 2↵ ... [2. single delay] is selected.
Trigger address ? :116↵ ... Trigger address is input.
1.start 2.middle 3.end ...? 2↵ ... Trace sampling area is selected.
>

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 215
(S1C63 FAMILY ASSEMBLER PACKAGE)

>tm↵
Single delay mode
Trigger Address : 0116
Position: Middle
1.normal 2.single delay 3.address area ...? 3↵ ... [2. address area] is selected.
Trigger address ? :116↵ ... Trigger address is input.
1.in area 2.out area ...? 1↵ ... In/out is selected.
Start address ? 110↵ ... Address range is input
End address ? 200↵ in up to 4 locations.
Start address ? ↵ ... Terminated by [Enter] key.
>
If you enter the [Enter] key only, the command will be canceled.
However, if more than one pair of addresses is specified after selecting the address-area trace mode
(one pair of addresses is specified in the above example), the range of specified addresses will be set
as the trace area.

Notes

 • The trigger addresses set here are marked by the letter "T" at the beginning of the address lines
displayed in the [Source] window.

 • The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
 Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.
 Error : Address out of range, use 0-0xXXXX

GUI utility

[Trace | Trace Mode Set …] menu item
When this menu item is selected, a dialog box appears allowing selection of a trace mode.

Select a trace mode using the radio
button.
Enter addresses and/or select an option
and then clock [OK].

Normal trace mode

Single-delay trace mode

Address-area trace mode

CHAPTER 8: DEBUGGER

216 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

td (trace data display)

Function

This command displays the trace information that has been sampled into the ICE trace memory.

Format

(1) >td [<cycle>]↵ (direct input mode)

(2) >td↵ (guidance mode)
Start point ?: (ENTER from the latest) <num>↵
(Trace data is displayed)
>

<cycle>: Start cycle number of trace data; decimal (from 0 to 8,191)

Display

The following lists the contents of trace information:
trace cycle: Trace cycle (decimal). The last information taken into the trace memory becomes

00001.
fetch addr: Fetch address (hexadecimal).
fetch code disasm:Fetch code (hexadecimal) and disassembled content.
register: Values of A, B, X, and Y registers after cycle execution (hexadecimal).
flag: States of E, I, C, and Z flags after cycle execution (binary).
data: Accessed data memory address (hexadecimal), read/write (denoted by r or w at

the beginning of data), and data (1-digit hexadecimal for 4-bit access; 4-digit
hexadecimal for 16-bit access).

SP: Stack access (1 for SP1 access; 2 for SP2 access).
trace in: Input to TRCIN pin (denoted by L when low-level signal is input).

(1) When [Trace] window is opened:
When the td command is input without <cycle>, the [Trace] window redisplays the latest data; when
the td command is input with <cycle>, the trace data starting from <cycle> is displayed in the [Trace]
window.
The display contents of the [Trace] window is updated after an execution of the target program.
All trace data can be displayed by scrolling the window.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 217
(S1C63 FAMILY ASSEMBLER PACKAGE)

(2) When [Trace] window is closed:
When the td command is input without <cycle>, the debugger displays 11 lines of the latest trace data
in the [Command] window. When the td command is input with <cycle>, the debugger displays 11
lines of the trace data from <cycle> in the [Command] window.
>td↵
Start point ?:(ENTER from the latest)↵
trace fetch fetch register flag data trace
cycle addr code disasm A B X Y EICZ addr data SP in
00011 0118 00FD jr 0xfd F 1 0007 AAAA 0000 012C rAAAA 1
00010 0116 08FE ldb %ext,0xfe F 1 0007 AAAA 0000 ---- --
00009 0117 02EF calr 0xef F 1 0007 AAAA 1000 ---- --
00008 0007 0800 ldb %ext,0x00 F 1 0007 AAAA 0000 0128 w0118 1
00007 0008 0A04 ldb %xl,0x04 F 1 0007 AAAA 1000 ---- --
00006 0009 1911 add [%x]+,0x01 F 1 0004 AAAA 0000 ---- --
00005 ---- ---- ---------- F 1 0005 AAAA 0000 0004 rD
00004 000A 1990 adc [%x]+,0x00 F 1 0005 AAAA 0000 0004 wE
00003 ---- ---- ---------- F 1 0006 AAAA 0000 0005 r5
00002 000B 1990 adc [%x]+,0x00 F 1 0006 AAAA 0000 0005 w5
00001 ---- ---- ---------- F 1 0007 AAAA 0000 0006 rE
>td 10↵
trace fetch fetch register flag data trace
cycle addr code disasm A B X Y EICZ addr data SP in
00020 0009 1911 add [%x]+,0x01 F 1 0004 AAAA 0000 ---- --
00019 ---- ---- ---------- F 1 0005 AAAA 0000 0004 rC
00018 000A 1990 adc [%x]+,0x00 F 1 0005 AAAA 0000 0004 wD
00017 ---- ---- ---------- F 1 0006 AAAA 0000 0005 r5
00016 000B 1990 adc [%x]+,0x00 F 1 0006 AAAA 0000 0005 w5
00015 ---- ---- ---------- F 1 0007 AAAA 0000 0006 rE
00014 000C 1980 adc [%x],0x00 F 1 0007 AAAA 0000 0006 wE
00013 ---- ---- ---------- F 1 0007 AAAA 0000 0007 r4
00012 000D 1FF8 ret F 1 0007 AAAA 0000 0007 w4
00011 0118 00FD jr 0xfd F 1 0007 AAAA 0000 012C rAAAA 1
00010 0116 08FE ldb %ext,0xfe F 1 0007 AAAA 0000 ---- --
>

(3) During log output
When the command execution result is being output to a log file as specified by the log command, the
trace data is displayed in the [Command] window and its contents are also output to the log file.
If the [Trace] window is closed, data is displayed in the same way as in (2) above.
If the [Trace] window is open, its contents are redisplayed. In this case, the same number of lines are
displayed in the [Command] window as displayed in the [Trace] window.

(4) Successive display
When you execute the td command, the trace data can be displayed successively by entering the
[Enter] key only until some other command is executed.
When you input the [Enter] key, the [Trace] window is scrolled forward one screen.
When displaying data in the [Command] window, 11 lines of data preceding the previously displayed
cycle are displayed in the [Command] window (the same number of lines as displayed in the [Trace]
window if the command is executed during log output).
The direction of display is such that each time you input the [Enter] key, data on older execution
cycles is displayed (FORWARD). This direction can be reversed (BACKWARD) by entering the [B]
key. To return the display direction to FORWARD, input the [F] key. If the [Trace] window is open, the
direction in which the window is scrolled is also changed.

CHAPTER 8: DEBUGGER

218 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

>td 100↵ ... Started display in FORWARD.
 (Data on cycle Nos. 110 to 100 is displayed.)
>b↵ ... Changed to BACKWARD.
 (Data on cycle Nos. 99 to 89 is displayed.)
>↵ ... Continued display in BACKWARD.
 (Data on cycle Nos. 88 to 78 is displayed.)
>f↵ ... Changed back to FORWARD.
 (Data on cycle Nos. 99 to 89 is displayed.)
>

Notes

 • Specify the trace cycle No. within the range of 0 to 8,191. An error results if this limit is exceeded.
Error : Address out of range, use 0-8191

 • The trace memory receives new data until a break occurs. When the trace memory is filled, old data is
overwritten by new data.

 • For reasons of the ICE operation timing, the trace data at the boundary of operations, such as in the
fetch cycle at which trace starts or the execution cycle at which trace ends, will not always be stored in
memory.

GUI utility

[View | Trace] menu item
When this menu item is selected, the [Trace] window opens and displays the latest trace data.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 219
(S1C63 FAMILY ASSEMBLER PACKAGE)

ts (trace search)

Function

This command searches trace information from the trace memory under a specified condition. The
search condition can be selected from three available conditions:

1. Search by executed address
In this mode, you can specify a program memory address. The debugger searches the cycle in
which the specified address is executed.

2. Search for a specified memory read cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is read from the specified address.

3. Search for a specified memory write cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is written to the specified address.

Format

(1) >ts <option> <address>↵ (direct input mode)

(2) >ts↵ (guidance mode)
1. pc address 2. data read address 3. data write address ...? <1 | 2 | 3>↵
Search address ?: <address>↵
(Search result is displayed)
>

<option>: Condition type (program address, data read address or data write address); pc/dr/dw
<address>: Search address; hexadecimal or symbol (IEEE-695 format only)

Display

The search results are displayed in the [Trace] window if it is opened; otherwise, the results are
displayed in the [Command] window in the same way as for the td command.

Format (1)
>ts pc 116↵
Trace searching ... Done!
trace fetch fetch register flag data trace
cycle addr code disasm A B X Y EICZ addr data SP in
00010 0116 08FE ldb %ext,0xfe F 1 0007 AAAA 0000 ---- --
>

Format (2)
>ts↵
1.pc address 2.data read address 3.data write address ...? 1↵
Search address ?:116↵
Trace searching ... Done!
trace fetch fetch register flag data trace
cycle addr code disasm A B X Y EICZ addr data SP in
00010 0116 08FE ldb %ext,0xfe F 1 0007 AAAA 0000 ---- --
>

When command execution results are being output to a log file by the log command, the search
results are displayed in the [Command] window as well as output to the log file even when the
[Trace] window is opened.

CHAPTER 8: DEBUGGER

220 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Note

The address specified for search must be within the range of the program/data memory area available
for each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded for program memory address.

Error : Address out of range, use 0-0xXXXX
An error results if the limit is exceeded for data memory address.

Error : Address out of range, use 0-0xFFFF

GUI utility

[Trace | Trace Search …] menu item
When this menu item is selected, a dialog appears for setting a search condition.

Select a option using the radio button and enter an address
in the text box, then click [OK].

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 221
(S1C63 FAMILY ASSEMBLER PACKAGE)

tf (trace file)

Function

This command saves the specified range of the trace information displayed in the [Trace] window by
the td or ts command to a file.

Format

(1) >tf [<cycle1> [<cycle2>]] <file name>↵ (direct input mode)

(2) >tf↵ (guidance mode)
Start cycle number (max 8191) ? : <cycle1>↵
End cycle number (min 0) ? : <cycle2>↵
File Name ? : <file name>↵
>

<cycle1>: Start cycle number; decimal (max 8,191)
<cycle2>: End cycle number; decimal (min 0)
<file name>: Output file name (path can also be specified)

Examples

Format (1)
>tf trace.trc↵ ... Saves all trace information extracted by the td command.
8191-8000
8000-7000
 :
1000- 1
OK!
>

Format (2)
>tf↵
Start cycle number (max 8191) ? :1000↵
End cycle number (min 0) ? :1↵
File name ? :test.trc↵
1000- 1
OK!
>

Notes

 • If an existing file is specified, the file is overwritten with the new data.

 • The default value of <cycle1> is the last location, and the default value of <cycle2> is "1".

GUI utility

[Trace | Trace File …] menu item
When this menu item is selected, a dialog box appears allowing specification of the parameters.

Enter a start cycle number, end cycle number and a file
name, then click [OK].
To save all the trace information, leave the [Start cycle
number] and [End cycle number] boxes blank.
The file name can be selected using a standard file selec-
tion dialog box that appears by clicking [Browse...].

CHAPTER 8: DEBUGGER

222 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.15 Coverage

cv (coverage)

Function

This command displays coverage information (addresses where the program is executed).
The coverage information is displayed in the [Command] window.

Format

>cv [<address1> [<address2>]]↵ (direct input mode)

<address1>: Start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0 ≤ address1 ≤ address2 ≤ last program memory address

Examples
>cv 100 1ff↵ ... Displays the executed addresses within the range from 0x100 to 0x1ff.
Coverage Infomation:
 1: 0100..0102
 2: 0110..0118
>cv↵ ... Displays all the executed addresses.
Coverage Infomation:
 1: 0000..000d
 2: 0100..0102
 3: 0110..0118
>

Notes

 • If the cv command is input without <address1> and <address2>, coverage information in all address
is displayed; if both <address1> and <address2> are specified, coverage information within the
specified address range is displayed; if just <address1> is specified, the end address is treated as the
maximum program address and coverage information within that range is displayed.

 • The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value (no such symbol / symbol type error)
An error results if the limit is exceeded.

Error : Address out of range, use 0-0xXXXX

 • An error results if the start address is larger than the end address.
Error : end address < start address

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 223
(S1C63 FAMILY ASSEMBLER PACKAGE)

cvc (coverage clear)

Function

This command clears the coverage information.

Format

>cvc↵ (direct input mode)

GUI utility

None

CHAPTER 8: DEBUGGER

224 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.16 Command File

com (execute command file)

Function

This command reads a command file and executes the debug commands written in that file. You can
execute the commands successively, or set an interval between each command execution.

Format

(1) >com <file name> [<interval>]↵ (direct input mode)

(2) >com↵ (guidance mode)
File name ? <file name>↵
Execute commands 1. successively 2. with wait ...? <1 | 2>↵
Interval (0 - 256 seconds) : <interval>↵ (appears only when "2. With wait" is selected)
>(Display execution progress)

<file name>: Command file name (path can also be specified)
<interval>: Interval (wait seconds) between each command; decimal (0–256)

Examples

Format (1)
>com batch1.cmd↵
>..... ... Commands in "batch1.com" are executed successively.

Format (2)
>com↵
File name ? test.cmd↵
Execute commands 1. successively 2. with wait ...? 2↵
Wait time (0 - 256 seconds) : 2↵
>..... ... 2 sec. of interval is inserted after each command execution.

Notes

 • Any contents other than commands cannot be written in the command file.

 • An error results if the file you specified does not exist.
Error : Cannot open file

 • Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a com (or cmw) command at the sixth level is
encountered, the commands in the file specified by that com (or cmw) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.

Error : Maximum nesting level(5) is exceeded, cannot open file

 • If you specify an interval more than 256 seconds, it is set to 256 by default.

 • Use the hot key ([CTRL]+[Q]) to stop executing a command file.

GUI utility

[Run | Command File …] menu item
When this menu item is selected, a dialog box appears allowing selection of a command file.

Enter an interval and a file name, then click [OK].
The file name can be selected using a standard file
selection dialog box that appears by clicking
[Browse...].

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 225
(S1C63 FAMILY ASSEMBLER PACKAGE)

cmw (execute command file with wait)

Function

This command reads a command file and executes the debug commands written in that file at prede-
termined time intervals.
The execution interval of each command can be set in a range of 1 to 256 seconds (in 1-second incre-
ments) using the md command. In the initial debugger settings, the execution interval is 1 second.

Format

(1) >cmw <file name>↵ (direct input mode)

(2) >cmw↵ (guidance mode)
File name ? <file name>↵
>(Display execution progress)

<file name>: Command file name (path can also be specified)

Examples

Format (1)
>cmw batch1.cmd↵
>.....

Format (2)
>cmw↵
File name ? test.cmd↵
>.....

Notes

 • Any contents other than commands cannot be written in the command file.

 • An error results if the file you specified does not exist.
Error : Cannot open file

 • Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a cmw (or com) command at the sixth level is
encountered, the commands in the file specified by that cmw (or com) command will not be executed,
but the subsequent execution of the commands in upper level files will be executed continuously.

Error : Maximum nesting level(5) is exceeded, cannot open file

 • If the cmw command is written in the command file that you want to be read by the com command,
all other commands following that command in the file (even when a com command is included) will
be executed at predetermined time intervals.

 • Use the hot key ([CTRL]+[Q]) to stop executing a command file.

GUI utility

None
However, the same function as the cmw can be executed using [Command File...] in the [Run] menu
(see the com command).

CHAPTER 8: DEBUGGER

226 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

rec (record commands to a file)

Function

This command records all debug commands following this command to a specified command file.

Format

(1) >rec <file name>↵ (direct input mode)

(2) >rec↵ (guidance mode) ...See Examples for guidance.

<file name>: Command file name (path can also be specified)

Examples

(1) First rec execution after debugger starts up
>rec↵
File name ? sample.cmd↵
1. append 2. clear and open ...? 2↵ ...Displayed If the file is already exists.
>

(2) "rec" command input in the second and following sessions
>rec↵
Set to record off mode. ...Record function toggles when rec is input.
.....
>rec↵
Set to record on mode.

Notes

 • In record on mode, besides the commands directly input in the [Command] window, the commands
executed by selecting from a menu or with a tool bar button (except the [Help] menu commands) are
also displayed in the [Command] window, and output to the specified file.
If you modify the register value or data memory contents by direct editing in the [Register] or [Data]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands are also displayed in the [Command] window, and output to the specified file.

 • At the first time, you should specify the file name to which all debug commands following the rec
command will be output.

 • Once an output command file is opened, the recording is suspended and resumed (toggled) every
time you input the rec command. This toggle operation remains effective until you terminate the
debugger. If you want to record following commands to another file, you can use format (1) to specify
the file name, then current output file is closed and all following commands will be recorded in the
newly specified file.

 • If you want to execute some commands frequently, you can record them to a file at the first execution,
and then use the com or cmw command to execute that command file you made.

GUI utility

[Option | Record …] menu item
When this menu item is selected, a standard file selection
dialog box appears for specifying a command recording file.
If the recording function has been activated, a dialog box
appears allowing selection of either record-off mode or
record-on mode. A new recording file can also be specified
using the [New...] button.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 227
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.17 log

log (log)

Function

This command saves the input commands and the execution results to a file.

Format

(1) >log <file name>↵ (direct input mode)

(2) >log↵ (guidance mode) ...See Examples for guidance.

<file name>: Log file name (path can also be specified)

Examples

(1) First log execution after debugger starts up
>log↵
File name ? debug1.log↵
1. append 2. clear and open ...? 2↵ ...Displayed If the file is already exists.
>

(2) "log" command input in the second and following sessions
>log↵
Set to log off mode. ...Logging function toggles when log is input.
.....
>log↵
Set to log on mode.

Notes

 • In log on mode, the contents displayed in the [Command] window are written as displayed directly to
the log file.
The commands executed by selecting from a menu or with a tool bar button are displayed in the
[Command] window. However, the [Help] menu and button commands are not displayed. If you
modify the register value or data memory contents by direct editing in the [Register] or [Data]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands and the execution results are also displayed in the [Command] window, and output to the
specified file.

The displayed contents of the [Source], [Data], [Trace] or [Register] window produced by command
execution are displayed in the [Command] window as well. The on-the-fly information is also dis-
played. However, the updated contents of each window after some execution, as well as the contents
of each window scrolled by scroll bar or arrow keys, are not displayed.

 • At the first time, you should specify the file name to which all following debug commands and
execution results will be output.

 • Once a log file is open, log output is suspended and resumed (toggled) every time you input the log
command. This toggle operation remains effective until you terminate the debugger. If you want to
specify a new log file, you can use format (1) to specify the file name, then current log file is closed
and following commands and results will be output to the newly specified file.

GUI utility

[Option | Log …] menu item
When this menu item is selected, a standard file selection dialog box
appears for specifying a log file.
If the logging function has been activated, a dialog box appears allowing
selection of either log-off mode or log-on mode. A new log file can also
be specified using the [New...] button.

CHAPTER 8: DEBUGGER

228 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.18 Map Information

ma (map information)

Function

This command displays the map information that is set by a parameter file.

Format

>ma↵ (direct input mode)

Example

After the command is input, the system displays the chip name, version of the parameter file, and
map information in each area. When you input the [Enter] key here, the system goes on and displays
the map information in the I/O area and LCD area.
>ma↵
Chip name : 63A08
Parameter file version : 02
Program area : 0000 - 1FFF
Data ram area : 0000 - 07FF
Data rom area : 8000 - 8FFF
LCD area : F000 - F2BF
External memory area : F800 - F8FF
IO area : FF00 - FFFF
Size of FO area : 32
Size of SO1 area : 0
Size of SO2 area : 256
Size of MLA area : 1296
>↵
IO Area
 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF
FF00 mmmm-mmm --mmmmmm -------- -------- -mmm-mmm -------- mmmmmmmm ------mm
FF40 -mmm-mmm -mmm-mmm -----mmm -------- -----mmm ----mmmm ----mmmm -mmm-mmm
FF80 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
FFC0 mmmmmmmm ----mmmm -------- -------- mmmmmmmm -------- mmmmmmmm --------
>↵
LCD Area
 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF
F000 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
F040 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
F080 mmmmmmmm mmmmmmmm -------- -------- -------- -------- -------- --------
F0C0 -------- -------- -------- -------- -------- -------- -------- --------
F100 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
F140 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
F180 mmmmmmmm mmmmmmmm -------- -------- -------- -------- -------- --------
F1C0 -------- -------- -------- -------- -------- -------- -------- --------
F200 -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m
F240 -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m -m-m-m-m
F280 -m-m-m-m -m-m-m-m -------- -------- -------- -------- -------- --------
>

 ∗ When displaying the map information of the I/O and LCD areas, the mapped addresses are marked
by the letter "m".

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 229
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.19 Mode Setting

md (mode)

Function

This command sets the debugger modes described below.

1. Displaying on-the-fly information
You can choose the display interval of the on-the-fly information from 0 to 5 (times) per second.
When 0 is chosen, the on-the-fly information will not be displayed.

2. Measurement mode for the execution cycle counter
This mode can be selected from the actual execution-time measurement mode (indicated in
microseconds) or the bus cycle mode (indicated in terms of the number of cycles executed).

3. Interrupt mode for step execution
You can choose to enable or disable interrupts during single-stepping.

4. Single-step display mode
You can choose to display the execution results of each step or only the last step during single-step
operation. The register values are updated when their contents are displayed in the [Register]
window; they are displayed in the [Command] window if the [Register] window is closed.
If the [Source] window is open, the displayed lines are marked with an arrow as they are executed
according to the setting of this mode.

5. Mode of execution cycle counter
This can be selected from hold mode or reset mode. In reset mode, the counter value is reset to 0
each time you enter a program execution command (including execution by the [Enter] key).
The value of the execution cycle counter is also reset when you execute a gr command, switch this
mode or the counter measurement mode, or execute an rst command.

6. Illegal instruction check mode
When loading a program file into the computer using the lf or lo command, you can choose
whether or not you want illegal instructions to be checked.
This check is disabled when rewriting the program memory with a pe or pf command.

7. cmw command wait time
A cmw command wait time can be set in the range of 1 to 256 seconds (in 1-second increments).

Default values of debugger modes

Mode Default setting

 On-the-fly function Twice per second

 Counter measurement mode Bus cycle

 Interrupt at stepping Not allowed

 Step display Each step

 Execution cycle counter reset Hold

 Illegal instruction check Checked

 cmw wait time 1 second

CHAPTER 8: DEBUGGER

230 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Format

(1) >md <option> <num> [... <option> <num>]↵ (direct input mode)

(2) >md↵ (guidance mode)
Current settings
On the fly interval 0 - 5 times/sec ...? Current setting : <0 ... 5>↵
Counter unit 1. time 2. cycle ...? Current setting : <1 | 2>↵
Interrupt at step 1. allowed 2. not allowed ...? Current setting : <1 | 2>↵
Step display mode 1. each 2. last ...? Current setting : <1 | 2>↵
Counter mode 1. reset 2. hold ...? Current setting : <1 | 2>↵
Illegal instruction 1. check 2. no check ...? Current setting : <1 | 2>↵
Cmw wait time 1 - 256 s ...? Current setting : <1 ... 256>↵
>

<option>: <num>:
-f (on the fly interval) 0–5 times/sec
-u (couter unit) 1. Time 2. Cycle
-i (interrupt at step) 1. Allowed 2. Not allowed
-s (step display mode) 1. Each 2. Last
-c (counter mode) 1. Reset 2. Hold
-il (illegal instruction) 1. Check 2. No check
-cm (cmw wait time) 1–256 sec

Examples
>md -u 1↵ ...Sets the execution cycle counter in time measurement mode.
>md↵
On the fly interval : 2 times/sec
Counter unit : time
Interrupt at step : not allowed
Step display mode : each
Counter mode : hold
Illegal instruction : check
Cmw wait time : 1 s

On the fly interval 0 - 5 times/sec ...? 2 times/sec : 5↵
Counter unit 1.time 2.cycle ...? time : 2↵
Interrupt at step 1.allowed 2.not allowed ...? not allowed : 1↵
Step display mode 1.each 2.last ...? each : 2↵
Counter mode 1.reset 2.hold ...? hold : ↵
Illegal instruction 1.check 2.no check ...? check : ↵
Cmw wait time 1 - 256 s ...? 1 s : 3↵
>

Notes

 • The actual interval of the on-the-fly display is obtained from the expression below.
(1 [sec] / Count set) + (Overhead of the PC, RS232C interface and ICE [sec]) = display interval [sec]
The overhead varies depending on the performance of the PC and baud rate of the RS232C interface.
Be aware that there is a 0.05 sec to 0.1 sec overhead in this system.

 • In guidance mode, the following keyboard inputs have special meaning:
"q↵ " … Command is terminated. (finish inputting and start execution)
"^↵ " … Return to previous item.
"↵ " … Input is skipped. (keep current value)

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 231
(S1C63 FAMILY ASSEMBLER PACKAGE)

GUI utility

[Option | Mode Setting…] menu item
When this menu item is selected, a dialog box appears allowing selection of each mode.

Select the mode using the check boxes or enter the
number interval settings, and then click [OK].

CHAPTER 8: DEBUGGER

232 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.20 FPGA Operation

xfer/xfers (xilinx fpga data erase)

Function

This command erases the contents of the FPGA on the standard peripheral circuit board inserted in
the ICE.

Format

>xfer↵ for main FPGA (direct input mode)
>xfers↵ for sub FPGA (direct input mode)

Example

>xfer↵
>

After the command is entered, a dialog box appears to select start or cancel erasing.

Notes

 • A dialog box appears to show the progress of erasing while executing. To abort erasing, click the
[Cancel] button on the dialog box or press the [ESC] key. When the execution stops, the warning
message shown below is displayed.

Warning : User cancel

In this case, the standard peripheral circuit board cannot be used until the FPGA is erased and
reprogrammed.

 • Erase time is about 2 minutes 40 seconds (max.) when the transfer rate between the ICE and PC is
38400 bps.

 • Do not erase the sub FPGA unless otherwise specified, as it normally contains some LCD functions.

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 233
(S1C63 FAMILY ASSEMBLER PACKAGE)

xfwr/xfwrs (xilinx fpga data write)

Function

This command writes peripheral circuit data to the FPGA on the standard peripheral circuit board
inserted in the ICE.

Format

>xfwr <file name> ;{H | S} [;N]↵ for main FPGA (direct input mode)
>xfwrs <file name> ;{H | S} [;N]↵ for sub FPGA (direct input mode)

<file name>: FPGA data file (.mot: Motorola S, .mcs: Intel HEX)
H: Load Intel HEX file
S: Load Motorola S file
N: Skip erasing before writing data

Examples

>xfwr ..\ice\fpga\c63xxx.mot ;S↵
>

In this example, the main FPGA is erased and then data in the c63xxx.mot file (Motorola S format) is
written to it.

>xfwr ..\ice\fpga\c63xxx.mot ;S ;N↵
>

In this example, erasing before writing is skipped. However, the main FPGA must be erased before-
hand.

Notes

 • Use the file provided by Seiko Epson as the data to be written without modifying the contents. Also
the file extension cannot be changed as it is .mot (Motorola S) or .mcs (Intel HEX). Specifying an
illegal file results in an error and data cannot be written.

Error : cannot open file

 • The N option can be specified when the FPGA has been erased completely using the xfer/xfers
command. When writing data to the FPGA that has not been erased, do not specify the N option.

 • A dialog box appears to show the progress while executing. To abort execution, click the [Cancel]
button on the dialog box or press the [ESC] key. When the execution stops, the warning message
shown below is displayed.

Warning : User cancel

In this case, the standard peripheral circuit board cannot be used until the FPGA is erased and
reprogrammed.

 • Process time including erase is about 8 minutes (max.) when the transfer rate between the ICE and PC
is 38400 bps.

 • Do not write data to the sub FPGA unless otherwise specified, as it normally contains some LCD
functions.

CHAPTER 8: DEBUGGER

234 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

xfcp/xfcps (xilinx fpga data compare)

Function

This command compares the contents between the FPGA and the specified file.

Format

>xfcp <file name> ;{H | S}↵ for main FPGA (direct input mode)
>xfcps <file name> ;{H | S}↵ for sub FPGA (direct input mode)

<file name>: FPGA data file (.mot: Motorola S, .mcs: Intel HEX)
H: Intel HEX file
S: Motorola S file

Examples

>xfcp ..\ice\fpga\c63xxx.mot ;S↵
> ...No error has occurred.

>xfcp ..\ice\fpga\c63yyy.mot ;S↵
Warning : Verify error ...Verify error has occurred.
0X00000 0XFF ...Error addresses and data in the FPGA are displayed.
0X00001 0X84
0X00002 0XAB
 : :
>

Notes

 • Data is verified only within the valid address range in the specified file. If the FPGA contains data
outside the range, it is not verified.

 • Use the file provided by Seiko Epson as the data to be compared without modifying the contents. Also
the file extension cannot be changed as it is .mot (Motorola S) or .mcs (Intel HEX). Specifying an
illegal file results in an error and data cannot be written.

Error : cannot open file

 • A dialog box appears to show the progress while executing. To abort execution, click the [Cancel]
button on the dialog box or press the [ESC] key. When the execution stops, the warning message
shown below is displayed.

Warning : User cancel

GUI utility

None

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 235
(S1C63 FAMILY ASSEMBLER PACKAGE)

xdp/xdps (xilinx fpga data dump)

Function

This command displays the content of the FPGA on the standard peripheral circuit board to the
[Command] window in a 16 words/line hexadecimal dump format.

Format

>xdp <address1> [<address2>]↵ for main FPGA (direct input mode)
>xdps <address1> [<address2>]↵ for sub FPGA (direct input mode)

<address1>: Start address to display; hexadecimal
<address2>: End address to display; hexadecimal
Condition: 0 ≤ address1 ≤ address2 ≤ FPGA end address

Examples

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>xdp 0↵
Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000: FF 84 AB EF F9 D8 FF BB FB BB BF FB BF BF FB BF
00010: BB FB BB BF BB BF FB BB BF BF FB BB FF EE FF EE
00020: EF FE D7 FB FE EE EF EF EE EE FE EE FB FE EF EF
 : : :
000E0: FF FF FF FF FB FF FF FF BD DF FB FD DF FF FF FF
000F0: FF FF BF FF FF FF FF F9 FF FF FF FF FF FF FF FF
>

If both <address1> and <address2> are defined, the debugger displays data from <address1> to
<address2>.
>xdp 100 100↵
Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00100: FF
>

Notes

 • An error results if the specified address is not a hexadecimal number.
Error : invalid value

 • An error results if the start address is larger than the end address.
Error : end address < start address

GUI utility

None

CHAPTER 8: DEBUGGER

236 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.21 Quit

q (quit)

Function

This command quits the debugger.

Format

>q↵ (direct input mode)

GUI utility

[File | Exit] menu item
Selecting this menu item terminates the debugger.

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 237
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.9.22 Help

? (help)

Function

This command displays the input format of each command.

Format

(1) ? (direct input mode)
(2) ? <n> (direct input mode)
(3) ? <command> (direct input mode)

<n>: Command group number; decimal
<command>: Command name
Condition: 1 ≤ n ≤ 6

Examples

When you input the command in Format 1 or 2, the system displays a list of commands classified by
function. Use the command in Format 3 if you want to display the input format of each individual
command.
>?↵
group 1: program, data & register . pe,pf,pm,a(as)/dd,de,df,dm,dw/od/rd,rs

group 2: execution & break g,gr,s,n,rst/bp,bc(bpc),bd,bdc,br,brc,bs,bsc,bsp,bl,bac

group 3: source & symbol u,sc,m/sy

group 4: file & flash rom lf,lo/lfl,sfl,efl/xfer,xfers,xfwr,xfwrs,xfcp,xfcps,xdp,xdps

group 5: trace & coverage tm,td,ts,tf/cv,cvc

group 6: others com,cmw,rec,log/ma,md,q,?

 Type "? <group #>" to show group or type "? <command>" to get usage of the command

>? 1↵
group 1: program, data & register

pe (program enter), pf (program fill), pm (program move), a/as (inline assemble),

dd (data dump), de (data enter), df (data fill), dm (data move), dw (data watch),

od (option dump),

rd (register display), rs (register set)

 Type "? <command>" to get usage of the command

>? pe↵
pe (program enter): change program memory

usage: pe [address] ... change program with guidance

 pe address code1 [... code8] ... change program with specified code

>

GUI utility

[Help | Contents…] menu item, [Help] button
When this menu item or button is selected, the [Help] window opens to show help topics.

 [Help] button

CHAPTER 8: DEBUGGER

238 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

8.10 Status/Error/Warning Messages

1. ICE status messages
Status message Content of message

Break by PC break Break caused by PC breakpoint
Break by data break Break caused by data break condition
Break by register break Break caused by register break condition
Break by sequential break Break caused by sequential break condition
Key Break Break caused by pressing [ESC] key or [Key break] button
Break by accessing no map program area Break caused by accessing undefined program-memory area
Break by accessing no map data area Break caused by accessing undefined data-memory area
Break by accessing ROM area Break caused by writing to data ROM area
Out of SP1 area Break caused by accessing outside SP1 stack area
Out of SP2 area Break caused by accessing outside SP2 stack area
Break by external break Break caused by signal input to ICE BRKIN pin

2. ICE error messages
Error message Content of message

communication error Communication error other than time-out
(overrun, framing, or BCC error)

CPU is running Target is running.
ICE is busy ICE is busy processing a job.
ICE is free run mode ICE is operating in free-run mode.
ICE is maintenance mode ICE is placed in maintenance mode.
no map area, XXXX No-map area is specified for accessing.
not defined ID, XXXX ICE respond ID is invalid.
on tracing System is tracing execution data.
reset time out CPU cannot be reset (for more than 1 second).
target down Peripheral Circuit Board does not operate correctly or remains reset.
Time Out! Communication time-out

3. Flash memory error messages
Error message Content of message

flash memory error, XXXX Writing or erasing flash memory has failed at XXXX.
flash ROM is protected Flash memory is protected against access.
format error Flash memory is not mapped.
Map information is not the same Map information loaded from parameter file does not match that in

the parameter file.
verify error, XXXX Verify error has occurred when data was written to flash memory.

4. Command error/warning messages
Error message Content of message (Commands involved)

Address out of range, use 0–0xXXXX The specified program memory address is out of range.
(a/as, pe, pf, pm, sc, m, u, g, gr, bp, bc, bs, tm, ts, cv)

Address out of range, use 0–0xFFFF The specified data memory address is out of range.
(dd, de, df, dm, dw, bd, ts)

Cannot load program/ROM data, check ABS file Failed to load program/ROM data; some file other than IEEE-695
executable format was specified. (lf)

Cannot open file The file cannot be opened.
(lf, lo, com, cmw, log, rec, xfwr/xfwrs, xfcp/xfcps)

Data out of range, use 0–0xF The specified number is out of the data range. (de, df)
Different chip type, cannot load this file A different ICE parameter is used in the file. (lf)
end address < start address The start address is larger than the end address.

(pf, pm, df, dm, bd, cv, xdp/xdps)
error file type (extension should be CMD) The specified file extension is invalid. (com, cmw)
FO address out of range, use 0–0xEF FO address is invalid. (od)
illegal code The input code is not available. (pe, pf)
illegal mnemonic The input mnemonic is invalid for S1C63000. (a/as)
Incorrect number of parameters The parameter number is incorrect. (All commands)
Incorrect option, use -f/-u/-i/-s/-c/-il/-cm An invalid mode setting option was specified. (md)
Incorrect r/w option, use r/w/* An illegal R/W option was specified. (bd)
Incorrect register name, use A/B/X/Y/F An invalid register name was specified. (br)

CHAPTER 8: DEBUGGER

S5U1C63000A MANUAL EPSON 239
(S1C63 FAMILY ASSEMBLER PACKAGE)

Error message Content of message (Commands involved)
Incorrect register name, The specified register name is invalid. (rs)
use PC/A/B/X/Y/F/SP1/SP2/EXT/Q
Input address does not exist Attempt is made to clear a break address that has not been set. (bp)
invalid command This is an invalid command. (All commands)
invalid data pattern The input data pattern is invalid. (bd, br)
invalid file name The file name (extension) is invalid. (lo)
invalid value The input data, address or symbol is invalid. (All commands)
Maximum nesting level(5) is exceeded, Nesting of the com/cmw command exceeds the limit. (com, cmw)
cannot open file
MLA address out of range, use 0–0xFFF MLA address is invalid. (od)
no such symbol There is no such symbol. (All symbol support commands)
no symbol information No symbol information is available since the ".ABS" file has not

been loaded. (sy)
Number of passes out of range, use 0–4095 The specified pass count for sequential break is out of range. (bs)
Number of steps out of range, use 0–65535 The specified step count is out of range. (s, n)
SO address out of range, use 0–0x1FFF SO address is invalid. (od)
SP1 address out of range, use 0–0x3FF The specified SP1 address is out of range. (bsp)
SP2 address out of range, use 0–0xFF The specified SP2 address is out of range. (bsp)
symbol type error The specified symbol type (program/data) is incorrect.

(All symbol support commands)

Warning message Content of message (Commands involved)
Break address already exists Attempt is made to set an already-set break address. (bp)
Identical break address input Input command contains identical address.
round down to multiple of 4 Watch data address is invalid. (dw)
User cancel Command is aborted by the user. (xfer/xfers, xfwr/xfwrs, xfcp/xfcps)
Verify error FPGA verify error. (xfcp/xfcps)

CHAPTER 9: FUNCTION OPTION GENERATOR

240 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 9 FUNCTION OPTION GENERATOR

9.1 Outline of the Function Option Generator winfog
The S1C63 chip allows several hardware specifications such as I/O port functions to be selected as mask
options. This helps you to configure the hardware of your product by changing the S1C63 chip's mask
patterns according to its specifications.
The Function Option Generator winfog is the software tool for creating the files necessary to generate
mask patterns. Its graphical user interface (GUI) ensures easy selection mask options. From the files
created by winfog, Seiko Epson produces the mask patterns for the S1C63 chip.
In addition, simultaneously with this file, winfog can create mask option setup files (Motorola S2 format
data) that are required when debugging programs with the ICE. When using the ICE to debug a program,
you can download this file from the host computer, making it possible to materialize optional functions
on the ICE that are equivalent to those on the actual IC.

9.2 Input/output Files
Figure 9.2.1 shows the input/output files of winfog.

Selection of
mask options

winfog

Function option
HEX file

Function option
document file

Device information
definition file

To ICE
by debugger

Mask data creation
by mask data checker

s1c63xxx.ini

zzzzzzzz.fsa zzzzzzzz.fdc

Fig. 9.2.1 Input/Output Files of winfog

Device information definition file (s1c63xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Function option document file (zzzzzzzz.fdc)
This is a text format file in which the contents of selected mask options are stored. You can read this
file into winfog and correct the already selected option settings. This file is packed along with com-
pleted other program/data files into a single file by the mask data checker winmdc, which we would
like to have presented to Seiko Epson as the mask data file. From this file, Seiko Epson will create the
mask patterns for the IC.

Function option HEX file (zzzzzzzz.fsa)
This is the Motorola S2 format file necessary to set the selected mask options in the ICE. When you
debug programs with the ICE, download this file into the ICE using debugger commands.

∗ 1 The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.

∗ 2 For details on how to download mask options into the ICE, refer to Chapter 8, "Debugger".

CHAPTER 9: FUNCTION OPTION GENERATOR

S5U1C63000A MANUAL EPSON 241
(S1C63 FAMILY ASSEMBLER PACKAGE)

9.3 Using winfog

9.3.1 Starting Up

Startup from Explorer
Double-click on the winfog.exe icon or select winfog from the start menu.
If the device information definition file (s1c63xxx.ini) was loaded into your computer
during previous execution, winfog automatically reads the same file as it starts.
Alternatively, drag the Device information definition file icon into the winfog.exe icon to
start winfog, which will then read the Device information definition file.

Startup by command input
You can also start winfog from the MS-DOS prompt by entering the command shown below.

>winfog [s1c63xxx.ini]

 denotes entering the return key.
You can specify the device information definition file (s1c63xxx.ini) as a command option. (You can
also specify a path.) When you specify the device information definition file here, winfog reads it as it
starts. This specification can be omitted.

When winfog starts, it displays the [FOG] window. The following diagrams show a [FOG] window when
the device information definition file has been loaded and when it has not.

[FOG] Window (initial screen)

[FOG] Window (after reading the device information definition file)

CHAPTER 9: FUNCTION OPTION GENERATOR

242 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

9.3.2 Window
 Option list area Function option document area

← →

←

→

The area can be resized by dragging the frame boundary.

Message area

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device

information definition file that has been read.

∗ The option list and the function option document vary with each type of microcomputer.

Fig. 9.3.2.1 Window Configuration

The [FOG] window is divided into three areas as shown above.

Option list area
Lists mask options set in the device information definition file (s1c63xxx.ini). Use the check boxes in
this area to select each option. A selected option has its check box marked by ✓ .

Function option document area
Displays the contents of selected options in the function option document format. The contents
displayed in this area are output to the function option document file. When you change any selected
item in the option list area, the display in this area is immediately updated.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.

CHAPTER 9: FUNCTION OPTION GENERATOR

S5U1C63000A MANUAL EPSON 243
(S1C63 FAMILY ASSEMBLER PACKAGE)

9.3.3 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
Open
Opens a function option document file. Use this menu command when correct-
ing an existing file. The [Open] button has the same function.

 [Open] button

End
Terminates winfog.

[Tool] menu
Generate
Creates a file according to the selected contents of the option list. The [Gener-
ate] button has the same function.

 [Generate] button

Setup
Sets the date of creation, output file name and a comment included in the
function option document file. The [Setup] button has the same function.

 [Setup] button

Device INI Select
Loads the device information definition file (s1c63xxx.ini). The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winfog.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winfog. The [Help] button has the same function.

 [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.

CHAPTER 9: FUNCTION OPTION GENERATOR

244 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

9.3.4 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file (s1c63xxx.ini) and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the
specified file exists and there is no problem
with its contents, the option list and the
function option document, which have both
been set by default, are displayed in each
area.
To stop loading the file, click [Cancel].

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winfog.

Note: When you load a device information definition file after setting up options, all settings are reset to
the default state.

(2) Setup
Select [Setup] from the [Tool] menu or click the [Setup] button to bring up the [Setup] dialog box.
From this dialog box, select items and enter data.

 [Setup] button

Date
Displays the current date. Change it as
necessary.

Function Option Document file
Specify the function option document file
name you want to create. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Function Option HEX
Do you make hex file?
Select whether to create a function option
HEX file. You need to create one when you
use the ICE to debug programs.

Function Option HEX file
When you create a function option HEX file,
specify its file name here. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

CHAPTER 9: FUNCTION OPTION GENERATOR

S5U1C63000A MANUAL EPSON 245
(S1C63 FAMILY ASSEMBLER PACKAGE)

EPROM Type
This option is not available for S1C63 Family microcomputers.

User's Name
Enter your company name. Up to 40 characters can be entered. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the function
option document file.

Comment
Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:
• Place of business, your department or section
• Address, telephone number, and facsimile number
• Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the function option document file.
When you have finished entering the above necessary items, click [OK]. The setup contents are saved,
and the dialog box is closed. The setup contents take effect immediately. If you click [Cancel], current
settings will not be changed and the dialog box is closed.

Notes: • File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-

sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part

of directory names (folder names), file names, and extensions:
/ : , ; ∗ ? " < > |

• The symbols shown below cannot be used in the User's Name and Comment:
$ \ | `

(3) Selecting options
Select necessary options by clicking the corresponding check boxes in the option list. When you
change any selection item in the option list area, the display in the function option document area is
updated. Note that when you have loaded the device information definition file, the option list is
placed in its default selection state.
For details about option specifications, refer to the Technical Manual available for each type of
microcomputer.

(4) Creating files
After selecting options, select [Generate] from the [Tool] menu or click the [Generate] button to create
the files.

 [Generate] button

The function option document file you specified from the [Setup] dialog box and the function option
HEX file (if specified) are created. When winfog has finished creating the files normally, it displays the
message "Making file(s) is completed" in the message area. If an error occurs, an error message is
displayed.

CHAPTER 9: FUNCTION OPTION GENERATOR

246 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(5) Correcting an existing document file
You can read an existing function option document file into winfog and correct it as necessary.
To read a file, select [Open] from the [File] menu or click the [Open] button.

 [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option list and the function option document areas are updated according to the contents of the
file. To stop loading the file, click [Cancel].

Perform steps (2) to (4) to update the file.
If you select [Generate] without changing the file name, the message shown below is displayed asking
you whether or not to overwrite the file. Click [Yes] to overwrite or [No] or [Cancel] to stop overwrit-
ing. Use the [Setup] dialog box to change the file name.

Note: The function option document file can be read only when the device information definition file has
been loaded.

(6) Quitting
To terminate winfog, select [End] from the [File] menu.

CHAPTER 9: FUNCTION OPTION GENERATOR

S5U1C63000A MANUAL EPSON 247
(S1C63 FAMILY ASSEMBLER PACKAGE)

9.4 Error Messages
The error messages of winfog are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [FOG] window
message area.

Table 9.4.1 List of winfog Error Messages
Message

File name error
Illegal character
Please input file name
Can't open File : xxxx
INI file is not found
INI file does not include FOG information

Function Option document file is not found
Function Option document file does not
match INI file
A lot of parameter
Making file(s) is completed
[xxxx is no data exist]
Can't open File: xxxx
Making file(s) is not completed
Can't write File: xxxx
Making file(s) is not completed

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
File (xxxx) cannot be opened.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain
function option information.
Specified function option document file does not exist.
Contents of the specified function option document file do not match
device information definition file (.ini).
Too many command line parameters are specified.
Finished creating the file, but the created file (xxxx) does not contain
any data.
File (xxxx) cannot be opened when executing Generate.

File (xxxx) cannot be written when executing Generate.

Display
Dialog
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Dialog
Message

Message

Message

Table 9.4.2 winfog Warning Messages
Message

Are you file update?
xxxx is already exist

Description
Overwrite confirmation message
(Specified file already exists.)

Display
Dialog

CHAPTER 9: FUNCTION OPTION GENERATOR

248 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

9.5 Example Output Files

Note: Option and other configurations vary with each type of microcomputer.

Example of a function option document file
* S1C63xxx FUNCTION OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME zzzzzzzz.FDC ← File name (specified by [Setup])
* USER'S NAME SEIKO EPSON CORPORATION ← User name (specified by [Setup])
* INPUT DATE yyyy/mm/dd ← Date of creation (specified by [Setup])
* COMMENT SAMPLE DATA ← Comment (specified by [Setup])
*
* *** OPTION NO.1 *** ← Option number
* --- OSC1 SYSTEM CLOCK --- ← Option name
* Crystal(32.768KHz) ---- Selected ← Selected specification
 OPT0101 01 ← Mask data
*
* *** OPTION NO.2 ***
* --- OSC3 SYSTEM CLOCK ---
* CR 200KHz ---- Selected
 OPT0201 01
*
* *** OPTION NO.3 ***
* --- INPUT PORT PULL UP RESISTOR ---
* K00 With Resistor ---- Selected
* K01 With Resistor ---- Selected
* K02 With Resistor ---- Selected
* K03 With Resistor ---- Selected
* K10 With Resistor ---- Selected
* K11 With Resistor ---- Selected
* K12 With Resistor ---- Selected
* K13 With Resistor ---- Selected
 OPT0301 01
 OPT0302 01
 OPT0303 01
 OPT0304 01
 OPT0305 01
 OPT0306 01
 OPT0307 01
 OPT0308 01
*
* *** OPTION NO.4 ***
* --- OUTPUT PORT OUTPUT SPECIFICATION ---
* R00 Complementary ---- Selected
* R01 Complementary ---- Selected
* R02 Complementary ---- Selected
* R03 Complementary ---- Selected
 OPT0401 01
 OPT0402 01
 OPT0403 01
 OPT0404 01
*

:
*
* *** OPTION NO.8 ***
* --- SOUND GENERATOR POLARITY ---
* NEGATIVE ---- Selected
 OPT0801 01
*EOF ← End mark

Example of a function option HEX file (Motorola S2 format)
S22400000022FF0200FFFFFFFFFFFFFFFFFFFFFFFF00000000000000FFFFFFFFFFFFFFFFFFCD
S804000000FB

For details about the Motorola S2 format, refer to Section 6.5.2, "Motorola S format".

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 249
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 10 SEGMENT OPTION GENERATOR

10.1 Outline of Segment Option Generator winsog
Some types of microcomputers in the S1C63 Family allow the LCD output pin output specifications and
LCD output pin assignments to be set with hardware options, so that mask patterns for the IC are
generated according to option settings. The Segment Option Generator winsog is the software tool for
creating the files required to generate mask patterns. Its graphical user interface (GUI) ensures simple
mask option setting.
In addition, simultaneously with this file, winsog can create mask option setup files (Motorola S2 format
data) that are required when debugging programs with the ICE. When using the ICE to debug a program,
you can download this file from the host computer, making it possible to realize optional functions on the
ICE that are equivalent to those on the actual IC.

Note: The Segment Option Generator winsog is provided for only certain types of microcomputers that
have set segment options.

10.2 Input/output Files
Figure 10.2.1 shows the input/output files of winsog.

Selection of
mask options

zzzzzzzz.sad zzzzzzzz.sdc

winsog

Segment assignment
data file

Segment option
document file

Function option
document file

zzzzzzzz.ssa

Segment option
HEX file

To ICE
by debugger

Mask data creation
by mask data checker

zzzzzzzz.fdc
Device information

definition file s1c63xxx.ini

Fig. 10.2.1 Input/Output Files of winsog

Device information definition file (s1c63xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Function option document file (zzzzzzzz.fdc)
This is the text format file generated by winfog and contains the selected mask options. This file is
required only when the segment option setup condition depends on the mask option selected with
winfog.

Segment option document file (zzzzzzzz.sdc)
This is a text format file in which setup contents of segment options are stored. You can read this file
into winsog and correct the option settings. This file is packed along with completed other program/
data files into a single file by the mask data checker winmdc, which will be presented to Seiko Epson
as the mask data file. From this file, Seiko Epson will create the mask patterns for the IC.

CHAPTER 10: SEGMENT OPTION GENERATOR

250 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Segment option HEX file (zzzzzzzz.ssa)
This is the Motorola S2 format file necessary to set the selected segment options in the ICE. When you
debug programs with the ICE, download this file into the ICE using debugger db63 commands.

Segment assignment data file (zzzzzzzz.sad)
This is a text format file in which segment assignment data is stored. Create this file when terminating
winsog before finishing segment assignment. You can continue option setting next time by loading
this file to winsog.

∗ 1 The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.

∗ 2 For details on how to download mask options into the ICE, refer to Chapter 8, "Debugger".

10.3 Using winsog

10.3.1 Starting Up

Startup from Explorer
Double-click on the winsog.exe icon or select winsog from the start menu.
If the device information definition file (s1c63xxx.ini) was loaded into your computer
during previous execution, winsog automatically reads the same file as it starts.
Alternatively, drag the device information definition file icon into the winsog.exe icon to
start winsog, which will then read the device information definition file. If a function option
document file is required for setting the segment option, a dialog box will appear to allow
file selection. In this case enter the file name including the path in the text box or choose the
file from the dialog box that appears by clicking on the [Ref] button.

Startup by command input
You can also start winsog from the MS-DOS prompt by entering the command shown below.

>winsog [s1c63xxx.ini]

 denotes entering the return key.
You can specify the device information definition file (s1c63xxx.ini) as a command option. (You can
also specify a path.) When you specify the device information definition file here, winsog reads it as it
starts. If a function option document file is required for setting the segment option, the file
(zzzzzzzz.fdc) must be prepared in the directory in which s1c63xxx.ini and winsog.exe exist before
entering the command. When the command is entered, a dialog box will appear to allow file selection.
Enter the file name including the path in the text box or choose the file from the dialog box that
appears by clicking on the [Ref] button. This specification can be omitted.

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 251
(S1C63 FAMILY ASSEMBLER PACKAGE)

When winsog starts, it displays the [SOG] window. The following diagrams show a [SOG] window when
the device information definition file has been loaded and when it has not.

[SOG] Window (initial screen)

[SOG] Window (after reading the device information definition file)

CHAPTER 10: SEGMENT OPTION GENERATOR

252 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

10.3.2 Window
Option setup area

←

→

The area can be resized by dragging the frame boundary.

Message area

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device

information definition file that has been read.

∗ The display memory addresses and segment configuration vary with each type of microcomputer.

Fig. 10.3.2.1 Window Configuration

The [SOG] window is divided into two areas as shown above.

Option setup area
Comprised of a display memory map, a segment decode table, and buttons to select pin specifications.
By clicking on cells in the display memory map and segment decode table, you can assign display
memory addresses and bits.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 253
(S1C63 FAMILY ASSEMBLER PACKAGE)

10.3.3 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
Open
Opens a segment option document file. Use this menu command when
correcting an existing file. The [Open] button has the same function.

 [Open] button

Record - Save
Saves the current option settings to a file (segment assignment data file).
The [Save] button has the same function.

 [Save] button

Record - Load
Loads a segment assignment data file. The [Load] button has the same
function.

 [Load] button

End
Terminates winsog.

[Tool] menu
Generate
Creates a file according to the contents of segment options set. The
[Generate] button has the same function.

 [Generate] button

Setup
Sets the date of creation or output file name or a comment included in
the segment option document file. The [Setup] button has the same
function.

 [Setup] button

Device INI Select
Loads the device information definition file (s1c63xxx.ini). The [Device
INI Select] button has the same function. This file must be loaded first
before performing any operation with winsog.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winsog. The [Help] button has the same func-
tion.

 [Help] button

The dialog box shown below appears. Click [OK] to close this dialog
box.

CHAPTER 10: SEGMENT OPTION GENERATOR

254 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

10.3.5 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file (s1c63xxx.ini) and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the
specified file exists and there is no problem
with its contents, the set-up items in winsog
are initialized with the loaded device
information.
To stop loading the file, click [Cancel].

10.3.4 Option Selection Buttons
The following buttons are available in the option setup area.

OUTPUT Option buttons
These buttons select SEG pin output modes. These buttons are enabled when you click a SPEC cell in
[SEGMENT DECODE TABLE].

Selects LCD segment output.

Selects DC-complementary output.

Selects DC-Pch open-drain output.

Selects DC-Nch open-drain output.

Selects segment/common shared output.

[Delete] button
Clears one selected segment assignment.

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 255
(S1C63 FAMILY ASSEMBLER PACKAGE)

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winfog.
If a function option document file is required for setting the segment option, the dialog box shown
below will appear to allow file selection. In this case enter the file name including the path in the text
box or choose the file from the dialog box that appears by clicking on the [Ref] button.

Date
Displays the current date. Change it as
necessary.

Segment Option Document file
Specify the segment option document file
name you want to create. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Segment Option HEX
Do you make hex file?
Select whether to create a segment option
HEX file. You need to create one when you
use the ICE to debug programs.

Segment Options HEX file
When you create a segment option HEX file,
specify its file name here. The file name
displayed by default can be modified. You
can use the [Ref] button to look at other
folders.

Note: When you load a device information definition file after setting up options, all settings are reset to
the default state.

(2) Setup
Select [Setup] from the [Tool] menu or click the [Setup] button to bring up the [Setup] dialog box.
From this dialog box, select items and enter data.

 [Setup] button

CHAPTER 10: SEGMENT OPTION GENERATOR

256 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

EPROM Type
This option is not available for S1C63 Family microcomputers.

User's Name
Enter your company name. Up to 40 characters can be entered. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the segment
option document file.

Comment
Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:
• Place of business, your department or section
• Address, telephone number, and facsimile number
• Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the segment option document file.
When you have finished entering the above necessary items, click [OK]. The setup contents are saved,
and the dialog box is closed. The setup contents take effect immediately. If you click [Cancel], current
settings will not be changed and the dialog box is closed.

Notes: • File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-

sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part

of directory names (folder names), file names, and extensions:
/ : , ; ∗ ? " < > |

• The symbols shown below cannot be used in the User's Name and Comment:
$ \ | `

(3) Setting segment outputs
The LCD drive circuit of an S1C63 Family chip that has had segment options set normally allows
selecting the segment output and DC output for every two pins (in certain types of microcomputers,
individually for each pin). Segment output should be specified when using the pins for driving an
LCD panel.
Segment output ports have a built-in segment decoder allowing any address and data bit in the
display memory area to be assigned to any segment. When the segment memory bit is set to 1, the
assigned segment lights up; when the bit is set to 0, the segment dims. Segments and display memory
bits correspond individually, so that you cannot assign one display memory bit to multiple segments.
Therefore, all segments must be assigned different addresses and data bits.
For details about the display memory map and segment assignment, refer to the Technical Manual for
each type of microcomputer.
In the explanation below, the chip is assumed to have four common pins, COM0 to COM3.
Follow the procedure below to assign segments:

1. From the [Memory Address/Data bit] table, select the memory address/data bit you want to
assign by clicking the appropriate cell. The cell changes color to blue.
If you select an incorrect cell, select a correct cell.
The horizontal rows of the table correspond to display memory addresses. The hexadecimal
number shown to the right of the "Memory Address/Data bit" title is the base address of display
memory, with only the lower byte of address being displayed in each row of the table. The vertical
columns of the table correspond to data bits.

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 257
(S1C63 FAMILY ASSEMBLER PACKAGE)

2. From [SEGMENT DECODE TABLE], select the SEG pin/COM pin to which you want to assign the
memory address/data bit selected in 1 by clicking the appropriate cell. A 3-digit numeric value is
displayed in the cell, showing the selected address (2 high-order digits) and data bit (1 low-order
digit), and the cell changes color to yellow.

Selection example:

If you select an incorrect cell, click the [Delete] button to clear its assignment and reselect from 1.
Two or more cells selected by dragging an area can also be deleted using the [Delete] button.
Before selecting a cell in [SEGMENT DECODE TABLE], always select a cell in [Memory Address/
Data bit].

3. Click the SPEC cell for the segment selected in 2 and then the [Seg] button. The cell shows the
letter S and changes color to red. This means that the segment has been set for a LCD segment
output pin.
If your chip requires selecting segment output and DC output every two pins, the other pin that
comprises a pair is set in the same way.

Selection example:

4. Repeat steps 1 to 2 for all segments used for LCD output. Specification selection in 3 may be
performed later.
If any COM cell in one SEG pin is unused, leave it blank.

Selection example:

(4) Setting DC outputs
When using SEG pins for general-purpose DC output, assign segments according to steps 1 and 2
described in Item (3), "Setting segment outputs". However, output control works in such a way that
the display memory assigned to COM0 is enabled while the display memory assigned to COM1
through COM3 are disabled. Therefore, set a memory address/data bit for only COM0 cell and leave
memory address/data bits for COM1 through COM3 cells blank.
For DC output, you may select an output mode between complementary output and Nch (or Pch)
open-drain output. Select your desired output in SPEC cell using the buttons listed below:
[Comp] button: Complementary output (C)
[Nch-] button: N-channel open-drain output (N)
[Pch-] button: P-channel open-drain output (P)
If your chip requires selecting an output mode every two pins, the other pin that comprises a pair is
set in the same way.

Selection example:

(5) Setting SEG/COM shared pins
Whether the SEG/COM shared pins output segment signals or common signals is determined by
selecting the function option.
When using the shared pins as SEG pins, allocate display memory addresses/bits as shown above
and leave unused COM cells blank.
When using the shared pins as COM pins, select segment/common shared output ([M] button) as the
output specification and do not allocate memory.

Note: This setting is required only for microcomputers that have SEG/COM shared pins.

CHAPTER 10: SEGMENT OPTION GENERATOR

258 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(6) Setting unused SEG pins
For SEG pins that are used for neither LCD output nor DC output, leave COM0 through COM3 cells
in [SEGMENT DECODE TABLE] blank. However, SPEC cells cannot be left blank, so select segment
output (S) for the corresponding SPEC cells.

Selection example:

(7) Creating files
After selecting options, select [Generate] from the [Tool] menu or click the [Generate] button to create
the files.

 [Generate] button

The segment option document file you specified from the [Setup] dialog box and the segment option
HEX file (if specified) are created. When winsog has finished creating the files normally, it displays
the message "Making file(s) is completed" in the message area. If an error occurs, an error message is
displayed.

(8) Saving uncompleted segment option data
You can save the segment option settings that have not been completed as a segment assignment data
file. To save data, select [Record - Save] from the [File] menu or click the [Save] button.

 [Save] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Clicking [OK] saves the current assignment data to the specified file. To stop saving, click [Cancel].

You can read an existing segment option document file into winsog and correct it as necessary.
To load a segment assignment data file, select [Record - Load] from the [File] menu or click the [Load]
button.

 [Load] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option setup area is updated according to the segment assignment data saved in the file. You can
continue segment assignment from the previous set state. To stop loading the file, click [Cancel].

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 259
(S1C63 FAMILY ASSEMBLER PACKAGE)

Notes: • The segment assignment data file can be read only when the device information definition file
has been loaded.

• Some models need a function option document file to be loaded at the start of winsog, and the
contents of the file affect the segment option setup condition. Therefore, the segment assign-
ment data file in which the settings do not match the function option cannot be read.

(9) Correcting an existing document file
You can read an existing segment option document file into winsog and correct it as necessary.
To read a file, select [Open] from the [File] menu or click the [Open] button.

 [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
[Memory Address/Data bit] and [SEGMENT DECODE TABLE] are updated according to the contents
of the file. To stop loading the file, click [Cancel].

If you want to change an assigned address, clear its cell assignment using the [Delete] button first and
then reassign a new address. If you want to change a selected output mode too, select the correspond-
ing SPEC cell and clear its selected output mode with the [Delete] button before reselecting a new
output mode. Two or more cells selected by dragging an area can also be deleted using the [Delete]
button.
If you select [Generate] without changing the file name, the dialog box asking you whether to over-
write the file is displayed. Click [Yes] to overwrite or [No] or [Cancel] to stop overwriting. Use the
[Setup] dialog box to change the file name.

Notes: • The segment option document file can be read only when the device information definition file
has been loaded.

• Some models need a function option document file to be loaded at the start of winsog, and the
contents of the file affect the segment option setup condition. Therefore, the segment option
document file in which the settings do not match the function option cannot be read.

(10) Quitting
To terminate winsog, select [End] from the [File] menu.

CHAPTER 10: SEGMENT OPTION GENERATOR

260 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

10.4 Error Messages
The error messages of winsog are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [SOG] window
message area.

Table 10.4.1 List of winsog Error Messages
Message

File name error
Illegal character
Please input file name
Can't open File : xxxx
INI file is not found
INI file does not include SOG information

Function Option document file is not found
Function Option document file does not
match INI file
Segment Option document file is not found
Segment Option document file does not
match INI file
Segment assignment data file is not found
Segment assignment data file does not
match INI file
Can't open File: xxxx
Making file(s) is not completed
Can't write File: xxxx
Making file(s) is not completed
ERROR: SPEC is not set
Making file(s) is not completed
ERROR: SEGMENT DECODE TABLE is
not set.
Making file(s) is not completed

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
File (xxxx) cannot be opened.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain
segment option information.
Specified function option document file does not exist.
Contents of the specified function option document file do not match
device information definition file (.ini).
Specified segment option document file does not exist.
Contents of the specified segment option document file do not match
device information definition file (.ini).
Specified segment assignment data file does not exist.
Contents of the specified segment assignment data file do not match
device information definition file (.ini).
File (xxxx) cannot be opened when executing Generate.

File (xxxx) cannot be written when executing Generate.

One or more SPEC cells are left blank when executing Generate.

Selected memory address/data bit has not been assigned to SEG/COM
terminal cells when executing Generate.

Display
Dialog
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Dialog
Dialog

Dialog
Dialog

Message

Message

Message

Message

Table 10.4.2 winsog Warning Messages

Message
Are you file update?
xxxx is already exist

Description
Overwrite confirmation message
(Specified file already exists.)

Display
Dialog

CHAPTER 10: SEGMENT OPTION GENERATOR

S5U1C63000A MANUAL EPSON 261
(S1C63 FAMILY ASSEMBLER PACKAGE)

10.5 Example Output Files

Note: The display memory addresses, the number of SEG/COM pins, and output specification vary with
each type of microcomputer.

Example of a segment option document file
* S1C63xxx SEGMENT OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME zzzzzzzz.SDC ← File name (specified by [Setup])
* USER'S NAME SEIKO EPSON CORPORATION ← User name (specified by [Setup])
* INPUT DATE yyyy/mm/dd ← Date of creation (specified by [Setup])
* COMMENT SAMPLE DATA ← Comment (specified by [Setup])
*
*
* OPTION NO.xx ← Option number (varies with type of microcomputer)
*
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
 0 163 162 161 1F3 S ← Segment decode table
 1 170 172 171 160 S
 2 143 142 141 1E1 S
 3 150 152 151 140 S
 :
 xx 3B0 3B1 3B2 3B3 S
*EOF ← End mark

Example of a segment assignment data file
* S1C63xxx SEGMENT OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME zzzzzzzz.SAD ← File name (specified by [Setup])
* USER'S NAME ← User name (specified by [Setup])
* INPUT DATE yyyy/mm/dd ← Date of creation (specified by [Setup])
* COMMENT ← Comment (specified by [Setup])
*
*
* OPTION NO.xx ← Option number (varies with type of microcomputer)
*
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
 0 163 162 161 1F3 S ← Segment data has been assigned
 1 170 172 171 160 S
 2 143 142 141 1E1 S
 :
 mm FRE FRE FRE FRE X ← FRE: Segment address and data bit have not been assigned.
 nn FRE FRE FRE FRE X ← X: Output specification has not been set.
 oo FRE FRE FRE FRE X
*EOF ← End mark

Example of a segment option HEX file (Motorola S2 format)
S2240000001603160216011F03FFFFFFFFFFFFFFFF1700170217011600FFFFFFFFFFFFFFFF23
S2240000201403140214011E01FFFFFFFFFFFFFFFF1500150215011400FFFFFFFFFFFFFFFF14
S2240000400103120212011D03FFFFFFFFFFFFFFFF12031F0013021F01FFFFFFFFFFFFFFFFF7
S2240000600303130013011200FFFFFFFFFFFFFFFF1003100210011E02FFFFFFFFFFFFFFFFF6
 :
S2240010E0FF0B
S804000000FB

For details about the Motorola S2 format, refer to Section 6.5.2, "Motorola S format".

CHAPTER 11: MELODY ASSEMBLER

262 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 11 MELODY ASSEMBLER

11.1 Outline of the Melody Assembler winmla
Some S1C63 models have a built-in melody generator that outputs the sound converted from the melody
ROM data. The Melody Assembler winmla is the software tool for converting the melody data created
using an editor into the melody ROM data and melody option setup data. From the file created by
winmla, Seiko Epson produces the mask patterns for the S1C63 chip.
In addition, simultaneously with this file, winmla can create the required HEX file when debugging
programs with the ICE.

11.2 Input/output Files
Figure 11.2.1 shows the input/output files of winmla.

Device information
definition file s1c63xxx.ini

Melody data
conversion

winmla

Melody ROM option
HEX file

Melody ROM option
document file

Melody
data file

To ICE
by debugger

Mask data creation
by mask data checker

zzzzzzzz.mdt

zzzzzzzz.msa zzzzzzzz.mdc

Fig. 11.2.1 Input/Output Files of winmla

Device information definition file (s1c63xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Nelody data file (zzzzzzzz.mdt)
This is a test format file in which the score data is written. Use an editor to create this file. Refer to
Section 11.4, "Melody Data", for details.

Melody ROM option document file (zzzzzzzz.mdc)
This is a text format file in which the contents of selected mask options and the mask data created
from the melody data are stored. You can read this file into winmla and correct the already selected
option settings. This file is packed along with completed other program/data files into a single file by
the mask data checker winmdc, which we would like to have presented to Seiko Epson as the mask
data file. From this file, Seiko Epson will create the mask patterns for the IC.

Melody ROM option HEX file (zzzzzzzz.msa)
This is the Motorola S2 format file necessary to set the selected mask options in the ICE. When you
debug programs with the ICE, download this file into the ICE using debugger commands.

∗ 1 The "xxx" in the file name denotes the model name of a microcomputer. For the "zzzzzzzz" part, any
given file name can be specified.

∗ 2 For details on how to download mask options into the ICE, refer to Chapter 8, "Debugger".

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 263
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.3 Using winmla

11.3.1 Starting Up

Startup from Explorer
Double-click on the winmla.exe icon or select winmla from the start menu.
If the device information definition file (s1c63xxx.ini) was loaded into your computer
during previous execution, winmla automatically reads the same file as it starts.
Alternatively, drag the Device information definition file icon into the winmla.exe icon to
start winmla, which will then read the Device information definition file.

Startup by command input
You can also start winmla from the MS-DOS prompt by entering the command shown below.

>winmla [s1c63xxx.ini]

 denotes entering the return key.
You can specify the device information definition file (s1c63xxx.ini) as a command option. (You can
also specify a path.) When you specify the device information definition file here, winmla reads it as
it starts. This specification can be omitted.

When winmla starts, it displays the [MLA] window. The following diagrams show a [MLA] window
when the device information definition file has been loaded and when it has not.

[MLA] Window (initial screen)

[MLA] Window (after reading the device information definition file)

CHAPTER 11: MELODY ASSEMBLER

264 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.3.2 Window
 Option list area Melody ROM option document area

← →
←

→

The area can be resized by dragging the frame boundary.

Message area

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device

information definition file that has been read.

∗ The option list and the melody ROM option document vary with each type of microcomputer.

Fig. 11.3.2.1 Window Configuration

The [MLA] window is divided into three areas as shown above.

Option list area
Lists melody generator mask options set in the device information definition file (s1c63xxx.ini). Use
the check boxes in this area to select each option. A selected option has its check box marked by ✓ .

Melody ROM option document area
Displays the contents of selected options in the option document format. The contents displayed in
this area are output to the melody ROM option document file. When you change any selected item in
the option list area, the display in this area is immediately updated.

Message area
When you create a file by selecting [Generate] from the [Tool] menu or clicking the [Generate] button,
this area displays a message showing the result of the selected operation.

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 265
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.3.3 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
Open
Opens a melody ROM option document file. Use this menu command when
correcting an existing file. The [Open] button has the same function.

 [Open] button

Exit
Terminates winmla.

[Tool] menu
Generate
Sets the date of creation, output file name and a comment included in the
melody ROM option document file, and creates a file according to the selected
contents of the option list. The [Generate] button has the same function.

 [Generate] button

Device INI Select
Loads the device information definition file (s1c63xxx.ini). The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winmla.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winmla. The [Help] button has the same function.

 [Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.

CHAPTER 11: MELODY ASSEMBLER

266 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.3.4 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the device information definition file
First, select a device information definition file (s1c63xxx.ini) and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the
specified file exists and there is no problem
with its contents, the option list and the
melody ROM option document, which have
both been set by default, are displayed in
each area.
To stop loading the file, click [Cancel].

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winmla.

Note: When you load a device information definition file after setting up options, all settings are reset to
the default state.

(2) Selecting options
Select necessary options by clicking the corresponding check boxes in the option list. When you
change any selection item in the option list area, the display in the melody ROM option document
area is updated. Note that when you have loaded the device information definition file, the option list
is placed in its default selection state.
For details about option specifications, refer to the Technical Manual available for each type of
microcomputer.

(3) Setup and creating files
Select [Generate] from the [Tool] menu or
click the [Generate] button to bring up the
[Generate] dialog box. From this dialog box,
select items and enter data.

 [Generate] button

Date
Displays the current date. Change it as
necessary.

Melody Data file
Specify the melody data file to be assembled.
You can use the [Ref] button to look at other
folders.
This setting is unnecessary when creating a
HEX file from an existing melody ROM
option document file.

Select reference frequency
Select the reference frequency (OSC1
oscillation frequency).

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 267
(S1C63 FAMILY ASSEMBLER PACKAGE)

Melody ROM Option Document file
Specify the melody ROM option document file name you want to create. The file name displayed by
default can be modified. You can use the [Ref] button to look at other folders.

Melody ROM Option HEX
Do you make hex file?
Select whether to create a melody ROM option HEX file. You need to create one when you use the ICE
to debug programs.

Melody ROM Option HEX file
When you create a melody ROM option HEX file, specify its file name here. The file name displayed
by default can be modified. You can use the [Ref] button to look at other folders.

EPROM Type
This option is not available for S1C63 Family microcomputers.

User's Name
Enter your company name. Up to 40 characters can be entered. You can use English letters, numbers,
symbols, and spaces. The content entered here is recorded in the USER'S NAME field of the melody
ROM option document file.

Comment
Enter a comment. Up to 50 characters can be entered in one line. You can enter up to 10 lines. You can
use English letters, numbers, symbols, and spaces. Use the [Enter] key to create a new line. All
comments should include the following information:
• Place of business, your department or section
• Address, telephone number, and facsimile number
• Other: Technical information, etc.

The content entered here is recorded in the COMMENT field of the melody ROM option document
file.

When you have finished entering the above necessary items, click [Generate]. The melody ROM
option document file you specified and the melody ROM option HEX file (if specified) are created,
and the dialog box is closed.
 When winmla has finished creating the files normally, it displays the message "Making file(s) is
completed" in the message area. If an error occurs, an error message is displayed.

If you click [Cancel], current settings will not be changed and the dialog box is closed.

Notes: • File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the exten-

sion up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part

of directory names (folder names), file names, and extensions:
/ : , ; ∗ ? " < > |

• The symbols shown below cannot be used in the User's Name and Comment:
$ \ | `

CHAPTER 11: MELODY ASSEMBLER

268 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(4) Correcting an existing document file
You can read an existing melody ROM option document file into winmla and correct it as necessary.
To read a file, select [Open] from the [File] menu or click the [Open] button.

 [Open] button

The dialog box shown below appears, so enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified file exists and there is no problem with its contents,
the option list and the melody ROM option document areas are updated according to the contents of
the file. To stop loading the file, click [Cancel].

Perform steps (2) and (3) to update the file.
If you select [Generate] without changing the file name, the message shown below is displayed asking
you whether or not to overwrite the file. Click [Yes] to overwrite or [No] or [Cancel] to stop overwrit-
ing. Use the [Generate] dialog box to change the file name.

Note: The melody ROM option document file can be read only when the device information definition file
has been loaded.

(5) Quitting
To terminate winmla, select [Exit] from the [File] menu.

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 269
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.4 Melody Data

11.4.1 Outline of Melody Data
To produce music or sound effects with the melody generator of the S1C63xxx, the following four data
must be created:

(1) Tempo data
Two types of tempo settings are available for a piece of music. They can be selected from 16 types of
tempos.

(2) Main data
a) Control bits Attack (for separating notes), rest and the end of melody are specified.
b) Note data Eight types of notes are available.
c) Interval data The range differs according to the reference frequency (38.4 kHz or 32.768 kHz).
d) Jump bit Used to repeat a phrase and to change the flow.
e) Tempo Either one of the tempo data (1) can be selected.

(3) Control data
The jump destinations (main data numbers) from the main data in which the jump bit is set are
described here.

(4) Option data
The hardware option specifications for melody output are set.

11.4.2 Melody Data Creation Procedure
The following flowchart shows the melody data creation procedure.

Write a score.

Execute the melody assembler to generate

melody ROM option HEX and document data.

Execute the function option generator (winfog)

to create a function option HEX data.

Create the program for

controlling the melody generator.

Start up the db63 and the ICE and then

load the program, function option HEX data

and melody ROM option HEX data to the ICE.

Evaluation and debugging

START

END

OK?

Yes

No

STARTSTART

Create a melody data from the score.

Fig. 11.4.2.1 Melody Data Creation Procedure

CHAPTER 11: MELODY ASSEMBLER

270 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.4.3 Method of Creating Melody Data
The following shows the method of creating melody data according to the creation procedure.

(1) Writing score
Describe music to be played with the S1C63xxx in the form of a score as shown below.

Example of score

=.. 40.0 =.. 80.0<1> <2>

<3> <4> <5> <6> <7> <8> <9> <10> <11>

(2) Creating melody data
Create a melody data based on the score using a general-purpose editor.

Example of melody data
; melody sample file Description from ";" to the end of the line is skipped as it is

regarding as a comment.
TEMPO Start mark of tempo data (It cannot be omitted.)
; m0-tempo 0, 1

TEMPO 0 0 = 4 TEMPO 0 1 = 10 <1> Tempo 0 of the melody No.0 (m0) = 4 <2> Tempo 1 of the m0 = 10
END End mark of tempo data (It cannot be omitted.)

MAIN Start mark of main data (It cannot be omitted.)
; no. cntl note pitch jump tempo The data order is melody data No., control bit, note data,
; m0 test pitch data, jump bit and tempo No. from the left.
 0 1 7 G5 0 0 <3>
 1 1 6 F5 0 0 <4>
 2 1 5 D5# 0 0 <5>
 3 2 4 RR 1 0 <6>
 4 0 3 E5 0 1 <7>
 5 1 2 E5 0 1 <8>
 6 1 1 D5 0 1 <9>
 7 1 0 C5 0 1 <10>
 8 3 0 RR 1 1 <11> The jump bit in the last data of a melody should be set to "1" if data is a rest.
END End mark of main data (It cannot be omitted.)

CONTROL Start mark of control data (It cannot be omitted.)
m0 Melody number (m0–m15)
 0 This means that the m0 begins from 0 <3> in the main data.
 0

 4

END End mark of control data (It cannot be omitted.)

∗ Either capital letters or small letters can be used for describing melody data.

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 271
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.4.4 Description of Melody Data

(1) Tempo data
16 types of tempo data (0 to 15) are available. 2 types of tempo data from them can be selected for
each melody.
Tempo data should be described as follows:

TEMPO Start mark of tempo data (It cannot be omitted.)
 :
TEMPO x 0 = 3 TEMPO x 1 = 9

 :

 : Tempo data (0 to 15)
 : Tempo No. (0, 1)
 : Melody No. (0 to 15)
 :

END End mark (It cannot be omitted.)

- The start mark "TEMPO" and the end mark "END" must be placed at the beginning and the end of
the setting, respectively.

- Tempo data for each melody should be described in one line.
- Melody No. should be described in ascending order (0, 1, 2, ...).
- Tempo No. should be ordered 0 and 1 as above.
- Tempo No. 1 can be omitted if only one tempo is used. In this case, tempo No. 1 will be set to

tempo data 0.

Example:
TEMPO 0 0 = 3

TEMPO 1 0 = 7 TEMPO 1 1 = 5

- Separate "TEMPO" and tempo No. and between tempo No. and melody No. with one or more
spaces or tabs (return can also be used).

- Either capital letters or small letters can be used for the start mark, end mark and "TEMPO" in
data.

Table 11.4.4.1 shows the available tempo data. For example, 60.0 means =.. 60.0, the playing of 60
crotchets per minute.

Table 11.4.4.1 Tempo Data

Tempo data

0

1

2

3

4

5

6

7

Tempo

30.0

32.0

34.0

36.9

40.0

43.6

48.0

53.3

Tempo data

8

9

10

11

12

13

14

15

Tempo

60.0

68.6

80.0

96.0

120.0

160.0

240.0

480.0

CHAPTER 11: MELODY ASSEMBLER

272 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(2) Main data
For the main part of the score such as pitches and the duration should be described in the main data
field as follows:

MAIN Start mark of main data (It cannot be omitted.)
 :

; mX data A comment should be described for easy reading.
0 1 7 G6 0 0

1 1 6 F5 0 0

2 1 5 D5# 0 0

3 2 4 RR 1 0

4 0 3 E5 0 1

5 1 2 E5 0 1

6 1 1 D5 0 1

7 1 0 C5 0 1

8 3 0 RR 1 1

Tempo No.
Jump bit
Pitch data
Note data
Control bit
Main data No.

END End mark (It cannot be omitted.)

(2-1) Main data No.
Assign numbers of main data sequentially from 0 regardless of the melody number. Data can be set
from 0 to 494.

(2-2) Control bit
The control bit specifies attack (separating notes), rest or the end of melody. The control bit values (0
to 3) mean as below.

Table 11.4.4.2 Control Bit

0

1

2

3

Attack is disabled. When the next note has the same pitch, the current note and the next one will be played as

tied notes. In the above main data example, two E5 at the main data No. 4 and 5 will be played as one note.

Attack is enabled. Notes will be played independently even if the next note has the same pitch.

Indicates a rest. When the control bit is set to 2, the melody data in the line is regarded as a rest even if a

pitch is specified. When the control bit is set to 0 or 1 for a rest, an error will occur even if the pitch is set to

"RR" (rest).

Indicates the end of a melody. The control bit in the last data of each melody must be set to 3. When two or

more control bits that are set to 3 are described, the first control bit is effective and the melody ends at that

point.

(2-3) Note data
Note data sets duration of notes or rests. Eight types of notes or rests are available as shown in Table
11.4.4.3. To specify a note that is not available, tie two or more available notes by setting the control bit
to 0. For a rest, tie two or more rests by setting control bit to 2.

Table 11.4.4.3 Notes

Note data

Note

Rest

0 1 2 3 4 5 6 7

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 273
(S1C63 FAMILY ASSEMBLER PACKAGE)

(2-4) Pitch data
The range for selecting pitches differs according to the reference frequency that can be selected from
the [Generate] dialog box of winmla. The frequency should be selected according to the the OSC1
oscillation circuit.
Table 11.4.4.4 shows the correspondence between pitches and HEX codes (example) for each reference
frequency. In melody data, pitch data should be described.

Table 11.4.4.4 Pitch Data (example)

Pitch data

D4

D4#

E4

F4

F4#

G4

G4#

A4

A4#

B4

C5

C5#

D5

D5#

E5

F5

F5#

G5

G5#

Reference frequenc: 38.4 kHz

HEX data

04

12

20

2F

3B

44

51

5B

65

6C

74

7C

84

8D

92

98

9E

A4

AB

Pitch data

A5

A5#

B5

C6

C6#

D6

D6#

E6

F6

F6#

G6

G6#

A6

A6#

B6

C7

C7#

D7

D7#

HEX data

B1

B5

B8

BC

C0

C4

C8

CD

CE

D3

D4

D9

DB

DC

DE

E0

E2

E4

E6

Pitch data

C4

C4#

D4

D4#

E4

F4

F4#

G4

G4#

A4

A4#

B4

C5

C5#

D5

D5#

HEX data

0A

18

27

33

3F

48

55

5F

66

71

79

81

89

8E

94

9D

Pitch data

E5

F5

F5#

G5

G5#

A5

A5#

B5

C6

C6#

D6

D6#

E6

F6

F6#

G6

HEX data

A3

A6

AD

B0

B7

BA

BE

C2

C7

CB

CC

D1

D2

D7

D8

DA

Reference frequenc: 32.768 kHz

∗ All of the half tones should be described using pitches with a #.
∗ The pitch data consists of a letter that indicates a scale code and a number that indicates an

octave number.
∗ "RR" should be described for rests. When specifying "RR", the control bit must be set to 2 for

the middle of the melody or 3 for the end of the melody.

(2-5) Jump bit
The jump bit controls the melody flow. It should be set to 1 to repeat a phrase or to jump to another
part of the same melody or another melody. It must be set to 1 at the end of a melody if a rest is set
there.

0

1

Not jumped.

Jump is enabled. Set also when changing tempo and specifying a rest at the end of a melody.

(2-6) Tempo No.
Tempo can be selected by a number (0 or 1) from two types set at the tempo data field. However, set
tempo No. 0 at the beginning of a melody. Furthermore, it is necessary to set the jump bit to 1 when
changing tempo in the middle of the melody.

CHAPTER 11: MELODY ASSEMBLER

274 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) Control data
In the control data field, the jump destinations (main data numbers) from the main data in which the
jump bit is set are described here. The control data should be described after the main data field. The
following shows the control data corresponding to the main data.

MAIN

; no. cntl note pitch jump tempo

; m0 test

 0 1 7 G5 0 0 <1> <5> ← Data flow

 1 1 6 F5 0 0 <2> <6>

 2 1 5 D5# 0 0 <3> <7>

 3 2 4 RR 1 0 <4> <8>

 4 0 3 E5 0 1 <9>

 5 1 2 E5 0 1 <10>

 6 1 1 D5 0 1 <11>

 7 1 0 C5 0 1 <12>

 8 3 0 RR 1 1 <13>

END

CONTROL Start mark of control data (It cannot be omitted.)

m0 Melody number (m0–m15)

 0 <1>–<4> Indicates that the m0 begins from the melody data No.0

 0 <5>–<8> Indicates that the music flow jumps from the melody data No.3 (<4>) to the melody data No.0.

 4 <9>–<13> Indicates that the second play jumps from the melody data No.3 (<8>) to the melody data No.4.

END End mark (It cannot be omitted.)

(4) Option data
Options can be selected in the option list area of the [MLA] window. Refer to the Technical Manual for
details of the melody options.

11.4.5 Precautions
• Create scores before inputting melody data because the melody data No. may change later when

inserting data in the main data.

• The data fields can be described in any order. However, control data must be placed after main data
(it is not necessary to continue).

• Data parameters must be separated with one or more spaces or tabs (eg., 0 1 7 G5 0 0).

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 275
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.5 Error Messages
The error messages of winmla are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the [MLA] window
message area.

Table 11.5.1 List of winmla Error Messages
Message

File name error
Illegal character
Please input file name
Can't open File : xxxx
INI file is not found
INI file does not include MLA information

Melody Data file is not found
Melody ROM Option document file is not
found
Melody ROM Option document file does
not match INI file
A lot of parameter
MDT file error

Can't open File: xxxx
Making file(s) is not completed
Can't write File: xxxx
Making file(s) is not completed

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
File (xxxx) cannot be opened.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain
melody ROM option information.
Specified melody data file does not exist.
Specified melody ROM option document file does not exist.

Contents of the specified melody ROM option document file do not
match device information definition file (.ini).
Too many command line parameters are specified.
Contents of the read melody data is incorrect.
(Details are saved with error symbols in the ELG file)
File (xxxx) cannot be opened when executing Generate.

File (xxxx) cannot be written when executing Generate.

Display
Dialog
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Dialog

Dialog
Message

Message

Message

Table 11.5.2 winmla Warning Messages
Message

Are you file update?
xxxx is already exist

Description
Overwrite confirmation message
(Specified file already exists.)

Display
Dialog

CHAPTER 11: MELODY ASSEMBLER

276 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.6 Error Symbols
When an error occurs during assembling, the error symbols listed below or an error message is output to
the assembly list file (ELG file).
The error symbol is placed at the beginning of the statement in which an error occurred. If two or more
errors occur, all the error statements have an error symbol.
Example: S (Syntax Error)
LISTING OF ERRORLOG zzzzzzzz.elg 2000-12-22

 TEMPO
 ; m0-tempo 0,1
 TEMPO 0 0 = 1
 END

 MAIN
 ;adr cnt1 note scale jump tempo
 ;m0 For Elize
S 0 1 4 C4 0 0 ←Error statement
S 2 1 4 D4 0 0 ←Error statement
 2 1 4 E4 0 0
 :

The following lists the error symbols in the order of descending priorities.

S (Syntax Error) • There is a fatal syntax error.
• The control data is placed antecedent to the main data.
• There is control data even though main data is not described.

Errors in tempo data
Melody No.: The melody No. is out of the range (0–15),

or not described in ascending order.
Tempo No.: The tempo No. is not 0 or 1.
Tempo data: The tempo data is out of the range (0–15).

Errors in main data
Main data No.: The main data No. is out of the range (0–494),

or not described in ascending order.
Control bit: The control bit is out of the range (0–3).

The control bit for a rest (pitch data = RR) is not 2 or 3.
The control bit at the end of a melody is not 3.

Note data: The note data is out of the range (0–7).
Pitch data: The pitch data is out of the range

(D4–D7#/38.4kHz or C4–G6/32.768kHz).
Jump bit: The jump bit is not 0 or 1.
Tempo No.: The tempo No. is not 0 or 1.

Errors in control data
Melody No.: The melody No. is out of the range (m0–m15),

or not described in ascending order.
Melody data No.: The melody data No. is out of the range set in the main data.

O (ROM Overflow) The definition exceeded the scale ROM capacity (17 or more pitches are defined).
The definition exceeded the tempo ROM capacity (17 or more melodies are defined).
The definition exceeded the main ROM capacity (496 or more main data are defined).
The definition exceeded the control ROM capacity (97 or more control data are defined).

R (Range Error) The location counter value or the specified location exceeded the upper limit of the
melody ROM capacity.

W (Warning) Warning

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 277
(S1C63 FAMILY ASSEMBLER PACKAGE)

11.7 Sample Files

For Elize
Original title: For Elize
Composer: Beethoven

Score

TEMPO

8va

Fine

D.C.

=.. 80

Example of input file (Melody data)

TEMPO
; m0-tempo 0,1
TEMPO 0 0 = 8
END

MAIN
;adr cntl note scale jump tempo
;m0 For Elize
 0 1 7 E5 0 0
 1 1 7 D5# 0 0
 2 1 7 E5 0 0
 3 1 7 D5# 0 0
 4 1 7 E5 0 0
 5 1 7 B4 0 0
 6 1 7 D5 0 0
 7 1 7 C5 0 0
 8 1 5 A4 0 0
 9 1 7 C4 0 0
 10 1 7 E4 0 0
 11 1 7 A4 0 0
 12 1 5 B4 0 0
 13 1 7 E4 0 0
 14 1 7 G4# 0 0
 15 1 7 B4 0 0
 16 1 5 C5 0 0
 17 1 7 E4 0 0
 18 1 7 E5 0 0
 19 1 7 D5# 0 0
 20 1 7 E5 0 0
 21 1 7 D5# 0 0
 22 1 7 E5 0 0
 23 1 7 B4 0 0
 24 1 7 D5 0 0
 25 1 7 C5 0 0

CHAPTER 11: MELODY ASSEMBLER

278 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

 26 1 5 A4 0 0
 27 1 7 C4 0 0
 28 1 7 E4 0 0
 29 1 7 A4 0 0
 30 1 5 B4 0 0
 31 1 7 E4 0 0
 32 1 7 C5 0 0
 33 1 7 B4 0 0
 34 1 6 A4 0 0
 35 2 7 RR 1 0 ;FINE
 36 1 7 B4 0 0
 37 1 7 C5 0 0
 38 1 7 D5 0 0
 39 1 5 E5 0 0
 40 1 7 G4 0 0
 41 1 7 F5 0 0
 42 1 7 E5 0 0
 43 1 5 D5 0 0
 44 1 7 F4 0 0
 45 1 7 E5 0 0
 46 1 7 D5 0 0
 47 1 5 C5 0 0
 48 1 7 E4 0 0
 49 1 7 D5 0 0
 50 1 7 C5 0 0
 51 1 7 B4 0 0
 52 1 7 E4 0 0
 53 1 7 E4 0 0
 54 1 7 E4 0 0
 55 1 7 E4 0 0
 56 1 7 E4 0 0
 57 1 7 E4 0 0
 58 1 7 E5 0 0
 59 1 7 E5 0 0
 60 1 7 D5# 0 0
 61 1 7 E5 0 0
 62 1 7 D5# 0 0
 63 1 7 E5 0 0
 64 1 7 D5# 0 0
 65 1 7 E5 0 0
 66 1 7 D5# 1 0 ;D.C.
 67 3 7 RR 1 0 ;Data for ending the melody
END

CONTROL
m0
 0
 36
 0
 67
END

CHAPTER 11: MELODY ASSEMBLER

S5U1C63000A MANUAL EPSON 279
(S1C63 FAMILY ASSEMBLER PACKAGE)

Example of output file (Melody ROM option document file)

S21400000000000000000000000000000000000000EB Melody address ROM HEX data
S804000000FB
S21400000008000000000000000000000000000000E3
S21400001000000000000000000000000000000000DB Melody tempo ROM HEX data
S804000000FB
S214000000A39D819489710A3F665FA64800000000A0

Melody scale ROM HEX data
S804000000FB
S21400000000000000000000000000000000000000EB
 : : : :
S214000050000000000000000000000000000000009B
S804000000FB Melody control ROM HEX data
S2140000000024004300000000000000000000000084
 : : : :
S214000050000000000000000000000000000000009B
S804000000FB
S21400000001010101010101010101010101010101DB
S21400001001010101010101010101010101010101CB
S21400002001010102010101010101010101010101BA
S21400003001010101010101010101010101010101AB
S21400004001010103000000000000000000000000A5
 : : : :
 : : : :
S2140001F000000000000000000000000000000000FA
S804000000FB

Melody main ROM HEX data
S214000000E0E2E0E2E0E4E6E8AAECEEEAA4EEF0E401
S214000010A8EEE0E2E0E2E0E4E6E8AAECEEEAA4EE2F
S214000020E8E4CAF1E4E8E6A0F2F4E0A6F6E0E6A822
S214000030EEE6E8E4EEEEEEEEEEEEE0E0E2E0E2E043
S214000040E2E0E3F70000000000000000000000000F
 : : : :
 : : : :
S2140001F000000000000000000000000000000000FA
S804000000FB
* S1C63xxx MELODY OPTION DOCUMENT Vx.xx ← Version
*
* FILE NAME zzzzzzzz.MDC ← File name (specified by [Generate])
* USER'S NAME SEIKO EPSON CORPORATION ← User name (specified by [Generate])
* INPUT DATE yyyy/mm/dd ← Date of creation (specified by [Generate])
* COMMENT For Elize ← Comment (specified by [Generate])
*
* *** OPTION NO.1 *** ← Option number
* --- option1 --- ← Option name
* select1 ---- Selected ← Selected specification
 OPT1101 01 ← Mask data
*
* *** OPTION NO.2 ***
* --- option2 ---
* select1 ---- Selected
 OPT1201 01
*
*EOF

CHAPTER 11: MELODY ASSEMBLER

280 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Example of output file (Melody ROM option HEX file)

S21400000000000000000000000000000000000000EB
S21400001008000000000000000000000000000000D3
S21400002000000000000000000000000000000000CB
S214000030A39D819489710A3F665FA6480000000070
S21400004000000000000000000000000000000000AB
S214000050000000000000000000000000000000009B
S214000060000000000000000000000000000000008B
S214000070000000000000000000000000000000007B
S214000080000000000000000000000000000000006B
S214000090000000000000000000000000000000005B
S2140000A000240043000000000000000000000000E4
S2140000B0000000000000000000000000000000003B
S2140000C0000000000000000000000000000000002B
S2140000D0000000000000000000000000000000001B
S2140000E0000000000000000000000000000000000B
S2140000F000000000000000000000000000000000FB
S21400010001010101010101010101010101010101DA
S21400011001010101010101010101010101010101CA
S21400012001010102010101010101010101010101B9
S21400013001010101010101010101010101010101AA
S21400014001010103000000000000000000000000A4
S214000150000000000000000000000000000000009A
 : : : :
 : : : :
S2140002F000000000000000000000000000000000F9
S214000300E0E2E0E2E0E4E6E8AAECEEEAA4EEF0E4FE
S214000310A8EEE0E2E0E2E0E4E6E8AAECEEEAA4EE2C
S214000320E8E4CAF1E4E8E6A0F2F4E0A6F6E0E6A81F
S214000330EEE6E8E4EEEEEEEEEEEEE0E0E2E0E2E040
S214000340E2E0E3F70000000000000000000000000C
 : : : :
 : : : :
S2140004F000000000000000000000000000000000F7
S2140005000101FFFFFFFFFFFFFFFFFFFFFFFFFFFFF2
S804000000FB

CHAPTER 12: MASK DATA CHECKER

S5U1C63000A MANUAL EPSON 281
(S1C63 FAMILY ASSEMBLER PACKAGE)

CHAPTER 12 MASK DATA CHECKER

12.1 Outline of the Mask Data Checker winmdc
The Mask Data Checker winmdc is the software tool for checking the format of each generated file and
creating the files necessary to generate mask patterns. winmdc checks the HEX files of the code ROM and
data ROM generated by the HEX converter hx63, the function option document file generated by the
function option generator winfog, and the segment option document file generated by the segment
option generator winsog. The winmdc also has a function for restoring the created mask data file into the
original file format.

12.2 Input/Output Files
Figure 12.2.1 shows the input/output files of winmdc.

Mask data created
(packed)

To Seiko Epson

Device information
definition file

s1c63xxx.ini

Code ROM
HEX file

Data ROM
HEX file

Melody ROM
 option

document file

zzzzzzzz.mdc

uzzzzzzz.mdc

Function
option

document file

Segment
option

document file

winmdc

Data restored
(unpacked)

winmdc

Pack file
(mask data file)

zzzzzzzz.lsa
zzzzzzzz.csa zzzzzzzz.fdc zzzzzzzz.sdc

zzzzzzzz.hsa

uzzzzzzz.lsa
uzzzzzzz.csa uzzzzzzz.fdc uzzzzzzz.sdc

uzzzzzzz.hsa

c63xxx··yyy.paN

Fig. 12.2.1 Input/Output Files of winmdc

Device information definition file (s1c63xxx.ini)
This file contains option lists for various types of microcomputers and other information. Always be
sure to use the files presented by Seiko Epson. This file is effective for only the type of microcomputer
indicated by the file name. Do not modify the contents of the file or use the file in other types of
microcomputers.

Code ROM HEX files (zzzzzzzz.hsa, zzzzzzzz.lsa)
Both these files are Motorola S2 format HEX files, with the 5 high-order bits of object code (13 bits)
stored in ".hsa" and the 8 low-order bits of object code stored in ".lsa". These files are created from the
object files output by the linker lk63 by converting them into HEX format using the HEX converter
hx63. For details about hx63, refer to Chapter 6, "HEX Converter".

Data ROM HEX file (zzzzzzzz.csa)
This is a Motorola S2 format HEX file containing the 4-bit data to be written into the data ROM. This
file is created simultaneously with the code ROM HEX files by hx63. This file is available for only
microcomputers featuring built-in data ROM.

Function option document file (zzzzzzzz.fdc)
This is a text format file in which the contents of selected function options are stored. This file is
created by the function option generator winfog.

Melody ROM option document file (zzzzzzzz.mdc)
This is a text format file in which the contents of selected melody ROM options are stored. This file is
created by the melody generator winmla. This file is available for only microcomputers with set
melody options.

CHAPTER 12: MASK DATA CHECKER

282 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

Segment option document file (zzzzzzzz.sdc)
This is a text format file in which the contents of segment options set are stored. It is created by the
segment option generator winsog. This file is available for only microcomputers with set segment
options.

Pack file (c63xxx··yyy.paN, N = 0 and over)
This is a text format file which contains the above data files combined into one. We would like to have
this file presented to Seiko Epson as the mask data file. Seiko Epson will create the mask patterns for
the IC from this mask data file.

 ∗ The "xxx··" in the file name denotes the model name of a microcomputer. The "yyy" part of the file
name represents the custom code of each customer. Enter the code from Seiko Epson here. For the
"zzzzzzzz" and "uzzzzzzz" parts, any given file name can be specified.

12.3 Using winmdc

12.3.1 Starting Up

Startup from Explorer

Double-click on the winmdc.exe icon or select winmdc from the start menu.
If the device information definition file (s1c63xxx.ini) was loaded into your computer
during a previous execution, winmdc automatically reads the same file as it starts.
Alternatively, drag the device information definition file icon into the winmdc.exe icon to
start winmdc, which will then read the device information definition file.

Startup by command input
You can also start winmdc from the MS-DOS prompt by entering the command shown below.

>winmdc [s1c63xxx.ini]

 denotes entering the return key.
You can specify the device information definition file (s1c63xxx.ini) as a command option. (You can
also specify a path.) When you specify the Device information definition file here, winmdc reads it as
it starts. This specification can be omitted.

When winmdc starts, it displays the [MDC] window.

[MDC] Window (initial screen)

∗ The microcomputer model name on the title bar is the file name (not including the path and extension) of the device
information definition file that has been read.

∗ The [Pack] and [Unpack] buttons on the tool bar are enabled when the device information definition file is read.

CHAPTER 12: MASK DATA CHECKER

S5U1C63000A MANUAL EPSON 283
(S1C63 FAMILY ASSEMBLER PACKAGE)

12.3.2 Menus and Toolbar Buttons
This section explains each menu item and toolbar button.

[File] menu
End
Terminates winmdc.

[Tool] menu
Pack
Packs the ROM data file and option document file to create a mask data file for
presentation to Seiko Epson. The [Pack] button has the same function.

 [Pack] button

Unpack
Restores files in the original format from a packed file. The [Unpack] button has
the same function.

 [Unpack] button

Device INI Select
Loads the device information definition file (s1c63xxx.ini). The [Device INI
Select] button has the same function. This file must be loaded first before
performing any operation with winmdc.

 [Device INI Select] button

[Help] menu
Version
Displays the version of winmdc. The [Help] button has the same function.
[Help] button

The dialog box shown below appears. Click [OK] to close this dialog box.

CHAPTER 12: MASK DATA CHECKER

284 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

12.3.3 Operation Procedure
The following shows the basic operation procedure.

(1) Loading the Device information definition file
First, select a device information definition file (s1c63xxx.ini) and load it.
Select [Device INI Select] from the [Tool] menu or click the [Device INI Select] button.

 [Device INI Select] button

The dialog box shown below appears. Enter a file name including the path in the text box or select a
file by clicking the [Ref] button.

Click [OK], and the file is loaded. If the specified
file exists and there is no problem with its
contents, the set-up items in winmdc are initial-
ized with the loaded device information.
To stop loading the file, click [Cancel].

Once a device information definition file is selected, the same file is automatically loaded the next
time you start winmdc.

(2) Packing
1. Select [Pack] from the [Tool] menu or click the [Pack] button on the tool bar to bring up the [Pack]

dialog box.

 [Pack] button

CHAPTER 12: MASK DATA CHECKER

S5U1C63000A MANUAL EPSON 285
(S1C63 FAMILY ASSEMBLER PACKAGE)

2. Select the files to be entered.
[Pack Input Files] lists the files of the type specified in the device information definition file by
their default file names. If the data files to be entered are represented by different names in this
list, replace the file names following the procedure below.
a. Select a file name to be changed by clicking on it from the list box.
b. Click the [Ref] button and select the data file to be entered.
Do this for all files listed.
When replacing files, take care not to mistake one file for another. If the input file is erroneous, an
error will result during file packing.

3. Setting output file names
In the [Pack Output File] text box, specify a pack file name in which you want the mask data to be
output. The file name displayed by default can be modified. You can use the [Ref] button to look at
other folders.
Make sure the extension of the output file name is ".pa0". If after presenting data to Seiko Epson,
you present new data due to program bugs or any other reason, increase the number in the last
digit of the extension in increments of one. For example, the extension of the second file presented
should be "c63xxx··yyy.pa1".

Note: File name specification is subject to the following limitations:
1. The number of characters that can be used to specify a file name including the path is 2,048.
2. The file name itself (not including the extension) can be up to 15 characters, and the extension

up to three characters.
3. The file name cannot begin with a hyphen (-), nor can the following symbols be used as part of

directory names (folder names), file names, and extensions:
/ : , ; * ? " < > |

4. Click the [Pack] button to execute packing.
When winmdc has completed packing, it dsiplays a message "Packing completed!" in the [Pack
message] text box. If an error has occurred, an error message is displayed.

5. Click the [Cancel] button to close the dialog box.
Alternatively, you can click the [Cancel] button to quit winmdc before it executes packing.

CHAPTER 12: MASK DATA CHECKER

286 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

(3) Unpacking
1. Select [Unpack] from the [Tool] menu or click the [Unpack] button on the tool bar to bring up the

[Unpack] dialog box.

 [Unpack] button

2. Select the file you want to unpack.
In the [Packed Input File] text box, specify the pack file name you want to enter. Use the names
displayed by default to specify this file name after changing one, or select another file using the
[Ref] button.

3. Set the output file name.
[Unpack Output Files] lists the files of the type specified in the device information definition file
by their default file names. Modify the file name displayed by the following procedure.
a. Click in the list box to select the file name to be modified.
b. Click the [Ref] button to select another folder, and then enter a file name. Modify all the listed

file names. The extensions cannot be changed.

4. Click the [Unpack] button to execute unpacking.
When winmdc has completed unpacking, it displays a message "Unpacking completed!" in the
[Unpack message] text box. If an error has occurred, an error message is displayed.

5. Click the [Cancel] button to close the dialog box.
Alternatively, you can click the [Cancel] button to quit winmdc before it executes unpacking.

(4) Quitting

To terminate winmdc, select [End] from the [File] menu.

CHAPTER 12: MASK DATA CHECKER

S5U1C63000A MANUAL EPSON 287
(S1C63 FAMILY ASSEMBLER PACKAGE)

12.4 Error Messages
The error messages of winmdc are listed below. The "Dialog" in the Display column means that messages
are displayed in the dialog box, and "Message" means that messages are displayed in the message area of
the [Pack] or [Unpack] dialog box.

Table 12.4.1 List of I/O Error Messages
Message

File name error
Illegal character
Please input file name
INI file is not found
INI file does not include MDC information

Can't open file : xxxx
Can't write file: xxxx

Description
Number of characters in the file name or extension exceeds the limit.
Prohibited characters have been entered.
File name has not been entered.
Specified device information definition file (.ini) does not exist.
Specified device information definition file (.ini) does not contain
MDC information.
File (xxxx) cannot be opened.
File (xxxx) cannot be written.

Display
Dialog
Dialog
Dialog
Dialog
Dialog

Dialog
Dialog

Table 12.4.2 List of ROM Data Error Messages
Message

Hex data error: Not S record.
Hex data error: Data is not sequential.
Hex data error: Illegal data.
Hex data error: Too many data in one line.
Hex data error: Check sum error.
Hex data error: ROM capacity over.
Hex data error: Not enough the ROM data.
Hex data error: Illegal start mark.
Hex data error: Illegal end mark.
Hex data error: Illegal comment.

Description
Data does not begin with "S."
Data is not listed in ascending order.
Invalid character is included.
Too many data entries exist in one line.
Checksum does not match.
Data is large. (Greater than ROM size)
Data is small. (Smaller than ROM size)
Start mark is incorrect.
End mark is incorrect.
Model name shown at the beginning of data is incorrect.

Display
Message
Message
Message
Message
Message
Message
Message
Message
Message
Message

Table 12.4.3 List of Function Option Data Error Messages
Message

Option data error : Illegal model name.
Option data error : Illegal version.
Option data error : Illegal option number.
Option data error : Illegal select number.
Option data error : Mask data is not enough.
Option data error : Illegal start mark.
Option data error : Illegal end mark.

Description
Model name is incorrect.
Version is incorrect.
Option No. is incorrect.
Selected option number is incorrect.
Mask data is insufficient.
Start mark is incorrect.
End mark is incorrect.

Display
Message
Message
Message
Message
Message
Message
Message

Table 12.4.4 List of Segment Option Data Error Messages
Message

LCD segment data error : Illegal model name.
LCD segment data error : Illegal version.
LCD segment data error : Illegal segment No.
LCD segment data error : Illegal segment area.
LCD segment data error : Illegal segment output
specification.
LCD segment data error : Illegal data in this line.
LCD segment data error : Data is not enough.
LCD segment data error : Illegal start mark.
LCD segment data error : Illegal end mark.

Description
Model name is incorrect.
Version is incorrect.
Segment No. is incorrect.
Display memory address is out of range.
Specified output mode is incorrect.

Data written here is not hexadecimal number or output mode.
Segment data is insufficient.
Start mark is incorrect.
End mark is incorrect.

Display
Message
Message
Message
Message
Message

Message
Message
Message
Message

CHAPTER 12: MASK DATA CHECKER

288 EPSON S5U1C63000A MANUAL
(S1C63 FAMILY ASSEMBLER PACKAGE)

12.5 Example Output File

Note: The configuration and contents of data vary with each type of microcomputer.

Example of a pack file (mask data file)
*
* S1C63xxx MASK DATA VER x.xx ← Version
*
\PROM ← Code ROM HEX data start mark
S1C63xxxyyy PROGRAM ROM ← Master slice model name
S224000000................................

: : : : :
S804000000FB "zzzzzzzz.hsa", "zzzzzzzz.lsa"
S224000000................................

: : : : :
S804000000FB
\END ← Code ROM HEX data end mark
\CHROM ← Data ROM HEX data start mark
S1C63xxxyyy CHARACTER ROM ← Master slice model name
S224000000................................ "zzzzzzzz.csa"
S804000000FB
\END ← Data ROM HEX data end mark
\FOPTION ← Function option start mark
* S1C63xxx FUNCTION OPTION DOCUMENT Vx.xx ← Model name/version
*
* FILE NAME zzzzzzzz.FDC
* USER'S NAME
* INPUT DATE 2000/06/27
* COMMENT
* "zzzzzzzz.fdc"
* *** OPTION NO.1 ***
* --- OSC1 SYSTEM CLOCK ---
* CR 60KHz(Special Reset) ---- Selected
 OPT0101 03

: : : : :
 OPTii01 02
*EOF
\END ← Function option end mark
\AROM ← Melody address ROM HEX data start mark
S1C63xxxyyy MELODY ADDRESS ROM ← Master slice model name
S214000000................................ "zzzzzzzz.mdc"
S804000000FB
\END ← Melody address ROM HEX data end mark
\TROM ← Melody tempo ROM HEX data start mark
S1C63xxxyyy MELODY TEMPO ROM ← Master slice model name
S214000000................................
S214000010................................ "zzzzzzzz.mdc"
S804000000FB
\END ← Melody tempo ROM HEX data end mark
\SROM ← Melody scale ROM HEX data start mark
S1C63xxxyyy MELODY SCALE ROM ← Master slice model name
S214000000................................ "zzzzzzzz.mdc"
S804000000FB
\END ← Melody scale ROM HEX data end mark
\CROM ← Melody control ROM HEX data start mark
S1C63xxxyyy MELODY CONTROL ROM ← Master slice model name
S214000000................................

: : : : :
S804000000FB "zzzzzzzz.mdc"
S214000000................................

: : : : :
S804000000FB
\END ← Melody control ROM HEX data end mark
\MROM ← Melody main ROM HEX data start mark
S1C63xxxyyy MELODY MAIN ROM ← Master slice model name
S214000000................................

: : : : :
S804000000FB "zzzzzzzz.mdc"
S214000000................................

: : : : :
S804000000FB
\END ← Melody main ROM HEX data end mark

CHAPTER 12: MASK DATA CHECKER

S5U1C63000A MANUAL EPSON 289
(S1C63 FAMILY ASSEMBLER PACKAGE)

\MOPTION ← Melody option start mark
* S1C63xxx MELODY OPTION DOCUMENT Vx.xx ← Model name/version
*
* FILE NAME Samp3V1.mdc
* USER'S NAME
* INPUT DATE 2000/12/13
* COMMENT
*
* *** OPTION NO.jj *** "zzzzzzzz.mdc"
* --- CHANGE MELODY IN OPERATION MODE ---
* CHANGE ---------//--------- SELECTED
 OPTjj01 01

: : : : :
 OPTkk01 01
*
*EOF
\END ← Melody option end mark
\SEGMENT ← Segment option start mark
* S1C63xxx SEGMENT OPTION DOCUMENT Vx.xx ← Model name/version
*
* FILE NAME zzzzzzzz.SDC
* USER'S NAME
* INPUT DATE 2000/9/1
* COMMENT
*
*
* OPTION NO.mm
* "zzzzzzzz.sdc"
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
 0 000 001 002 003 S
 1 020 021 022 023 S
 :
 nn 760 761 762 763 N
*EOF
\END ← Segment option end mark

S1C63 Family Assembler Package

Quick Reference

Memory Map S1C63000 Core CPU

Program area

Software interrupt vectors

Program start address

Hardware interrupt vectors

NMI vector

Program area
Common subroutines, etc.

Program Memory Map

Registers S1C63000 Core CPU

PC

X
XH XL

Y

QUEUE

0 0 0 0 0 0 SP1 0 0

YH YL

00H SP2

EXT

BA
AB

F
ZCIE

15 03 03478
Registers

Program counter Flag register

Index register X

Index register Y

Queue register

Stack pointer 1

Stack pointer 2

Extension register

Data register B & A

Flags

Z:
C:
I:
E:

Zero flag
Carry flag
Interrupt flag
Extension mode flag

(1: Zero, 0: Non zero)
(1: Carry/borrow, 0: No carry)
(1: Enabled, 0: Disabled)
(1: Extended mode, 0: Normal mode)

Address
0xFFFF

0x0140
0x013F

0x0111
0x0110
0x010F

0x0101
0x0100
0x00FF

0x0000

CMOS 4-bit Single Chip Microcomputer

S1C63 Family Assembler Package

Quick Reference
for Development

13 bits

I/O memory area

Data area

Data and SP1 stack area

Data and SP1, SP2 stack area

Data Memory Map
Address
0xFFFF

0xFF00
0xFEFF

0x0400
0x03FF

0x0100
0x00FF

0x0000

4 bits

Instruction List (1) S1C63000 Core CPU

Symbols in the Instruction List

Registers/Register Data
%A, A: Data register A or the contents of the register (4 bits)
%B, B: Data register B or the contents of the register (4 bits)
%BA, BA: Data register BA or the contents of the register (8 bits, the B register is high-order 4 bits)
%X, X: Index register X or the contents of the register (16 bits)
%XH, XH: Index register XH or the contents of the register (high-order 8 bits of the X register)
%XL, XL: Index register XL or the contents of the register (low-order 8 bits of the X register)
%Y, Y: Index register Y or the contents of the register (16 bits)
%YH, YH: Index register YH or the contents of the register (high-order 8 bits of the Y register)
%YL, YL: Index register YL or the contents of the register (low-order 8 bits of the Y register)
%F, F: Flag register F or the contents of the register (4 bits)
%EXT, EXT: Extension register EXT or the contents of the register (8 bits)
%SP1, SP1: Stack pointer SP1 or the contents of the stack pointer (16 bits, setting data = SP1(9:2))
%SP2, SP2: Stack pointer SP2 or the contents of the stack pointer (16 bits, setting data = SP2(7:0))
PC: Contents of the program counter PC (16 bits)

Memory/Addresses/Memory Data
[%X], [X]: Register indirect addressing using X, or the contents of the specified memory
[%Y], [Y]: Register indirect addressing using Y, or the contents of the specified memory
[00addr6]: 6-bit absolute addressing with addr6, or the contents of the specified memory (0x0000–0x003F)
[FFaddr6]: 6-bit absolute addressing with addr6, or the contents of the specified memory (0xFFC0–0xFFFF)
[00imm8]: 8-bit absolute addressing with imm8, or the contents of the specified memory (0x0000–0x00FF)
[FFimm8]: 8-bit absolute addressing with imm8, or the contents of the specified memory (0xFF00–0xFFFF)
[%SP1], [SP1]: 16-bit stack specification or the contents of the stack address
[%SP2], [SP2]: 4-bit stack specification or the contents of the stack address

Immediate Data
immN: N-bit unsigned immediate data (N = 2, 4, 6 or 8)
i7–i0: Bit data of immN
n4: 4-bit radix specification data
n3–n0: Bit data of n4
sign8: Signed 8-bit immediate data
s7–s0: Bit data of sign8
addr6: 6-bit absolute address
a5–a0: Bit data of addr6
00addr6: An address (0x0000–0x003F) specified with addr6
FFaddr6: An address (0xFFC0–0xFFFF) specified with addr6

Functions
←: Indicates that the right item is loaded or set to the left item.
↔: Indicates that data is exchanged between the right and left items.
+: Addition
-: Subtraction
∧: AND
∨: OR
∀: XOR

Flags
Z: Zero flag
C: Carry flag
I: Interrupt flag
E: Extension flag
–: Not changed
↔: Set (1), reset (0) or not changed
1: Set (1)
0: Reset (0)

Clk
Indicates the number of execution cycles.

Symbol
● Indicates that a symbol can be used for the operand instead of an 8-bit or 6-bit
immediate data. However, the symbol value must be within the range that can be
specified. If a symbol mask is listed, the instruction can use the symbol mask for the
operand in addition to a symbol.
Symbol mask
@l: Acquires the low-order 8 bits of an absolute address.
@h: Acquires the high-order 8 bits of an absolute address.
@rl: Acquires the low-order 8 bits of a relative address.
@rh: Acquires the high-order 8 bits of a relative address.
@xh: Acquires the inverted high-order 8 bits of an absolute address.

Note
The "Extended function" shows the operation of the instruction when
"LDB %EXT, imm8" is executed prior to the instruction.

Instruction List (2) S1C63000 Core CPU

Opcode
LD

LD

LD

LD

LD

Operand
%A,%A
%A,%B
%A,%F
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,%A
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X],[%Y]
[%X],[%Y]+
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%X]+,[%Y]
[%X]+,[%Y]+
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y],[%X]
[%Y],[%X]+
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
[%Y]+,[%X]
[%Y]+,[%X]+

Basic function

A ← A
A ← B
A ← F
A ← imm4
A ← [X]
A ← [X], X ← X+1
A ← [Y]
A ← [Y], Y ← Y+1
B ← A
B ← B
B ← imm4
B ← [X]
B ← [X], X ← X+1
B ← [Y]
B ← [Y], Y ← Y+1
F ← A
F ← imm4
[X] ← A
[X] ← B
[X] ← imm4
[X] ← [Y]
[X] ← [Y], Y ← Y+1
[X] ← A, X ← X+1
[X] ← B, X ← X+1
[X] ← imm4, X ← X+1
[X] ← [Y], X ← X+1
[X] ← [Y], X ← X+1, Y ← Y+1
[Y] ← A
[Y] ← B
[Y] ← imm4
[Y] ← [X]
[Y] ← [X], X ← X+1
[Y] ← A, Y ← Y+1
[Y] ← B, Y ← Y+1
[Y] ← imm4, Y ← Y+1
[Y] ← [X], Y ← Y+1
[Y] ← [X], Y ← Y+1, X ← X+1

Extended function
(when "LDB %EXT, imm8" is executed)

–
–
–
–
A ← [00imm8]
–
A ← [FFimm8]
–
–
–
–
B ← [00imm8]
–
B ← [FFimm8]
–
–
–
[00imm8] ← A
[00imm8] ← B
[00imm8] ← imm4
–
–
–
–
–
–
–
[FFimm8] ← A
[FFimm8] ← B
[FFimm8] ← imm4
–
–
–
–
–
–
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
2
2
1
1
1
2
2
1
1
1
2
2

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
↔
↔
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

4-bit data
transfer

Flags

Remarks

Instruction List (3) S1C63000 Core CPU

Opcode
EX
EX

EX

ADD

ADD

ADD

ADD

Operand
%A,%B
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

Basic function

A ↔ B
A ↔ [X]
A ↔ [X], X ← X+1
A ↔ [Y]
A ↔ [Y], Y ← Y+1
B ↔ [X]
B ↔ [X], X ← X+1
B ↔ [Y]
B ↔ [Y], Y ← Y+1
A ← A+A
A ← A+B
A ← A+imm4
A ← A+[X]
A ← A+[X], X ← X+1
A ← A+[Y]
A ← A+[Y], Y ← Y+1
B ← B+A
B ← B+B
B ← B+imm4
B ← B+[X]
B ← B+[X], X ← X+1
B ← B+[Y]
B ← B+[Y], Y ← Y+1
[X] ← [X]+A
[X] ← [X]+B
[X] ← [X]+imm4
[X] ← [X]+A, X ← X+1
[X] ← [X]+B, X ← X+1
[X] ← [X]+imm4, X ← X+1
[Y] ← [Y]+A
[Y] ← [Y]+B
[Y] ← [Y]+imm4
[Y] ← [Y]+A, Y ← Y+1
[Y] ← [Y]+B, Y ← Y+1
[Y] ← [Y]+imm4, Y ← Y+1

Extended function
(when "LDB %EXT, imm8" is executed)

–
A ↔ [00imm8]
–
A ↔ [FFimm8]
–
B ↔ [00imm8]
–
B ↔ [FFimm8]
–
–
–
–
A ← A+[00imm8]
–
A ← A+[FFimm8]
–
–
–
–
B ← B+[00imm8]
–
B ← B+[FFimm8]
–
[00imm8] ← [00imm8]+A
[00imm8] ← [00imm8]+B
[00imm8] ← [00imm8]+imm4
–
–
–
[FFimm8] ← [FFimm8]+A
[FFimm8] ← [FFimm8]+B
[FFimm8] ← [FFimm8]+imm4
–
–
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2

C
–
–
–
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

Z
–
–
–
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

4-bit data
transfer

Arithmetic
operation

Flags

Remarks

Instruction List (4) S1C63000 Core CPU

Opcode
ADC

ADC

ADC

ADC

SUB

SUB

Operand
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4

Basic function

A ← A+A+C
A ← A+B+C
A ← A+imm4+C
A ← A+[X]+C
A ← A+[X]+C, X ← X+1
A ← A+[Y]+C
A ← A+[Y]+C, Y ← Y+1
B ← B+A+C
B ← B+B+C
B ← B+imm4+C
B ← B+[X]+C
B ← B+[X]+C, X ← X+1
B ← B+[Y]+C
B ← B+[Y]+C, Y ← Y+1
[X] ← [X]+A+C
[X] ← [X]+B+C
[X] ← [X]+imm4+C
[X] ← [X]+A+C, X ← X+1
[X] ← [X]+B+C, X ← X+1
[X] ← [X]+imm4+C, X ← X+1
[Y] ← [Y]+A+C
[Y] ← [Y]+B+C
[Y] ← [Y]+imm4+C
[Y] ← [Y]+A+C, Y ← Y+1
[Y] ← [Y]+B+C, Y ← Y+1
[Y] ← [Y]+imm4+C, Y ← Y+1
A ← A-A
A ← A-B
A ← A-imm4
A ← A-[X]
A ← A-[X], X ← X+1
A ← A-[Y]
A ← A-[Y], Y ← Y+1
B ← B-A
B ← B-A
B ← B-imm4

Extended function
(when "LDB %EXT, imm8" is executed)

–
–
–
A ← A+[00imm8]+C
–
A ← A+[FFimm8]+C
–
–
–
–
B ← B+[00imm8]+C
–
B ← B+[FFimm8]+C
–
[00imm8] ← [00imm8]+A+C
[00imm8] ← [00imm8]+B+C
[00imm8] ← [00imm8]+imm4+C
–
–
–
[FFimm8] ← [FFimm8]+A+C
[FFimm8] ← [FFimm8]+B+C
[FFimm8] ← [FFimm8]+imm4+C
–
–
–
–
–
–
A ← A-[00imm8]
–
A ← A-[FFimm8]
–
–
–
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1

C
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Arithmetic
operation

Flags

Remarks

Instruction List (5) S1C63000 Core CPU

Opcode
SUB

SUB

SUB

SBC

SBC

SBC

Operand
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

Basic function

B ← B-[X]
B ← B-[X], X ← X+1
B ← B-[Y]
B ← B-[Y], Y ← Y+1
[X] ← [X]-A
[X] ← [X]-B
[X] ← [X]-imm4
[X] ← [X]-A, X ← X+1
[X] ← [X]-B, X ← X+1
[X] ← [X]-imm4, X ← X+1
[Y] ← [Y]-A
[Y] ← [Y]-B
[Y] ← [Y]-imm4
[Y] ← [Y]-A, Y ← Y+1
[Y] ← [Y]-B, Y ← Y+1
[Y] ← [Y]-imm4, Y ← Y+1
A ← A-A-C
A ← A-B-C
A ← A-imm4-C
A ← A-[X]-C
A ← A-[X]-C, X ← X+1
A ← A-[Y]-C
A ← A-[Y]-C, Y ← Y+1
B ← B-A-C
B ← B-B-C
B ← B-imm4-C
B ← B-[X]-C
B ← B-[X]-C, X ← X+1
B ← B-[Y]-C
B ← B-[Y]-C, Y ← Y+1
[X] ← [X]-A-C
[X] ← [X]-B-C
[X] ← [X]-imm4-C
[X] ← [X]-A-C, X ← X+1
[X] ← [X]-B-C, X ← X+1
[X] ← [X]-imm4-C, X ← X+1

Extended function
(when "LDB %EXT, imm8" is executed)

B ← B-[00imm8]
–
B ← B-[FFimm8]
–
[00imm8] ← [00imm8]-A
[00imm8] ← [00imm8]-B
[00imm8] ← [00imm8]-imm4
–
–
–
[FFimm8] ← [FFimm8]-A
[FFimm8] ← [FFimm8]-B
[FFimm8] ← [FFimm8]-imm4
–
–
–
–
–
–
A ← A-[00imm8]-C
–
A ← A-[FFimm8]-C
–
–
–
–
B ← B-[00imm8]-C
–
B ← B-[FFimm8]-C
–
[00imm8] ← [00imm8]-A-C
[00imm8] ← [00imm8]-B-C
[00imm8] ← [00imm8]-imm4-C
–
–
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

C
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Arithmetic
operation

Flags

Remarks

Instruction List (6) S1C63000 Core CPU

Opcode
SBC

CMP

CMP

CMP

CMP

INC
DEC
ADC

Operand
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
[00addr6]
[00addr6]
%B,%A,n4
%B,[%X],n4

Basic function

[Y] ← [Y]-A-C
[Y] ← [Y]-B-C
[Y] ← [Y]-imm4-C
[Y] ← [Y]-A-C, Y ← Y+1
[Y] ← [Y]-B-C, Y ← Y+1
[Y] ← [Y]-imm4-C, Y ← Y+1
A-A
A-B
A-imm4
A-[X]
A-[X], X ← X+1
A-[Y]
A-[Y], Y ← Y+1
B-A
B-B
B-imm4
B-[X]
B-[X], X ← X+1
B-[Y]
B-[Y], Y ← Y+1
[X]-A
[X]-B
[X]-imm4
[X]-A, X ← X+1
[X]-B, X ← X+1
[X]-imm4, X ← X+1
[Y]-A
[Y]-B
[Y]-imm4
[Y]-A, Y ← Y+1
[Y]-B, Y ← Y+1
[Y]-imm4, Y ← Y+1
[00addr6] ← [00addr6]+1
[00addr6] ← [00addr6]-1
B ← N's adjust (B+A+C)
B ← N's adjust (B+[X]+C)

Extended function
(when "LDB %EXT, imm8" is executed)

[FFimm8] ← [FFimm8]-A-C
[FFimm8] ← [FFimm8]-B-C
[FFimm8] ← [FFimm8]-imm4-C
–
–
–
–
–
–
A-[00imm8]
–
A-[FFimm8]
–
–
–
–
B-[00imm8]
–
B-[FFimm8]
–
[00imm8]-A
[00imm8]-B
[00imm8]-imm4
–
–
–
[FFimm8]-A
[FFimm8]-B
[FFimm8]-imm4
–
–
–
–
–
–
B ← N's adjust (B+[00imm8]+C)

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
●

●

–
–

Clk

2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

C
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Arithmetic
operation

Flags

Remarks

Instruction List (7) S1C63000 Core CPU

Opcode
ADC

ADC

ADC

SBC

SBC

SBC

INC

INC

DEC

DEC

Operand
%B,[%X]+,n4
%B,[%Y],n4
%B,[%Y]+,n4
[%X],%B,n4
[%X],0,n4
[%X]+,%B,n4
[%X]+,0,n4
[%Y],%B,n4
[%Y],0,n4
[%Y]+,%B,n4
[%Y]+,0,n4
%B,%A,n4
%B,[%X],n4
%B,[%X]+,n4
%B,[%Y],n4
%B,[%Y]+,n4
[%X],%B,n4
[%X],0,n4
[%X]+,%B,n4
[%X]+,0,n4
[%Y],%B,n4
[%Y],0,n4
[%Y]+,%B,n4
[%Y]+,0,n4
[%X],n4
[%X]+,n4
[%Y],n4
[%Y]+,n4
[%X],n4
[%X]+,n4
[%Y],n4
[%Y]+,n4

Basic function

B ← N's adjust (B+[X]+C), X ← X+1
B ← N's adjust (B+[Y]+C)
B ← N's adjust (B+[Y]+C), Y ← Y+1
[X] ← N's adjust ([X]+B+C)
[X] ← N's adjust ([X]+0+C)
[X] ← N's adjust ([X]+B+C), X ← X+1
[X] ← N's adjust ([X]+0+C), X ← X+1
[Y] ← N's adjust ([Y]+B+C)
[Y] ← N's adjust ([Y]+0+C)
[Y] ← N's adjust ([Y]+B+C), Y ← Y+1
[Y] ← N's adjust ([Y]+0+C), Y ← Y+1
B ← N's adjust (B-A-C)
B ← N's adjust (B-[X]-C)
B ← N's adjust (B-[X]-C), X ← X+1
B ← N's adjust (B-[Y]-C)
B ← N's adjust (B-[Y]-C), Y ← Y+1
[X] ← N's adjust ([X]-B-C)
[X] ← N's adjust ([X]-0-C)
[X] ← N's adjust ([X]-B-C), X ← X+1
[X] ← N's adjust ([X]-0-C), X ← X+1
[Y] ← N's adjust ([Y]-B-C)
[Y] ← N's adjust ([Y]-0-C)
[Y] ← N's adjust ([Y]-B-C), Y ← Y+1
[Y] ← N's adjust ([Y]-0-C), Y ← Y+1
[X] ← N's adjust ([X]+1)
[X] ← N's adjust ([X]+1), X ← X+1
[Y] ← N's adjust ([Y]+1)
[Y] ← N's adjust ([Y]+1), Y ← Y+1
[X] ← N's adjust ([X]-1)
[X] ← N's adjust ([X]-1), X ← X+1
[Y] ← N's adjust ([Y]-1)
[Y] ← N's adjust ([Y]-1), Y ← Y+1

Extended function
(when "LDB %EXT, imm8" is executed)

–
B ← N's adjust (B+[FFimm8]+C)
–
[00imm8] ← N's adjust ([00imm8]+B+C)
[00imm8] ← N's adjust ([00imm8]+0+C)
–
–
[FFimm8] ← N's adjust ([FFimm8]+B+C)
[FFimm8] ← N's adjust ([FFimm8]+0+C)
–
–
–
B ← N's adjust (B-[00imm8]-C)
–
B ← N's adjust (B-[FFimm8]-C)
–
[00imm8] ← N's adjust ([00imm8]-B-C)
[00imm8] ← N's adjust ([00imm8]-0-C)
–
–
[FFimm8] ← N's adjust ([FFimm8]-B-C)
[FFimm8] ← N's adjust ([FFimm8]-0-C)
–
–
[00imm8] ← N's adjust ([00imm8]+1)
–
[FFimm8] ← N's adjust ([FFimm8]+1)
–
[00imm8] ← N's adjust ([00imm8]-1)
–
[FFimm8] ← N's adjust ([FFimm8]-1)
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

C
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Arithmetic
operation

Flags

Remarks

Instruction List (8) S1C63000 Core CPU

Opcode
AND

AND

AND
AND

AND

OR

OR

Operand
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B

Basic function

A ← A∧A
A ← A∧B
A ← A∧imm4
A ← A∧[X]
A ← A∧[X], X ← X+1
A ← A∧[Y]
A ← A∧[Y], Y ← Y+1
B ← B∧A
B ← B∧B
B ← B∧imm4
B ← B∧[X]
B ← B∧[X], X ← X+1
B ← B∧[Y]
B ← B∧[Y], Y ← Y+1
F ← F∧imm4
[X] ← [X]∧A
[X] ← [X]∧B
[X] ← [X]∧imm4
[X] ← [X]∧A, X ← X+1
[X] ← [X]∧B, X ← X+1
[X] ← [X]∧imm4, X ← X+1
[Y] ← [Y]∧A
[Y] ← [Y]∧B
[Y] ← [Y]∧imm4
[Y] ← [Y]∧A, Y ← Y+1
[Y] ← [Y]∧B, Y ← Y+1
[Y] ← [Y]∧imm4, Y ← Y+1
A ← A∨A
A ← A∨B
A ← A∨imm4
A ← A∨[X]
A ← A∨[X], X ← X+1
A ← A∨[Y]
A ← A∨[Y], Y ← Y+1
B ← B∨A
B ← B∨B

Extended function
(when "LDB %EXT, imm8" is executed)

–
–
–
A ← A∧[00imm8]
–
A ← A∧[FFimm8]
–
–
–
–
B ← B∧[00imm8]
–
B ← B∧[FFimm8]
–
–
[00imm8] ← [00imm8]∧A
[00imm8] ← [00imm8]∧B
[00imm8] ← [00imm8]∧imm4
–
–
–
[FFimm8] ← [FFimm8]∧A
[FFimm8] ← [FFimm8]∧B
[FFimm8] ← [FFimm8]∧imm4
–
–
–
–
–
–
A ← A∨[00imm8]
–
A ← A∨[FFimm8]
–
–
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
0
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Logic
operation

Flags

Remarks

Instruction List (9) S1C63000 Core CPU

Opcode
OR

OR
OR

OR

XOR

XOR

XOR
XOR

Operand
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,imm4
[%X],%A
[%X],%B
[%X],imm4

Basic function

B ← B∨imm4
B ← B∨[X]
B ← B∨[X], X ← X+1
B ← B∨[Y]
B ← B∨[Y], Y ← Y+1
F ← F∨imm4
[X] ← [X]∨A
[X] ← [X]∨B
[X] ← [X]∨imm4
[X] ← [X]∨A, X ← X+1
[X] ← [X]∨B, X ← X+1
[X] ← [X]∨imm4, X ← X+1
[Y] ← [Y]∨A
[Y] ← [Y]∨B
[Y] ← [Y]∨imm4
[Y] ← [Y]∨A, Y ← Y+1
[Y] ← [Y]∨B, Y ← Y+1
[Y] ← [Y]∨imm4, Y ← Y+1
A ← A∀A
A ← A∀B
A ← A∀imm4
A ← A∀[X]
A ← A∀[X], X ← X+1
A ← A∀[Y]
A ← A∀[Y], Y ← Y+1
B ← B∀A
B ← B∀B
B ← B∀imm4
B ← B∀[X]
B ← B∀[X], X ← X+1
B ← B∀[Y]
B ← B∀[Y], Y ← Y+1
F ← F∀imm4
[X] ← [X]∀A
[X] ← [X]∀B
[X] ← [X]∀imm4

Extended function
(when "LDB %EXT, imm8" is executed)

–
B ← B∨[00imm8]
–
B ← B∨[FFimm8]
–
–
[00imm8] ← [00imm8]∨A
[00imm8] ← [00imm8]∨B
[00imm8] ← [00imm8]∨imm4
–
–
–
[FFimm8] ← [FFimm8]∨A
[FFimm8] ← [FFimm8]∨B
[FFimm8] ← [FFimm8]∨imm4
–
–
–
–
–
–
A ← A∀[00imm8]
–
A ← A∀[FFimm8]
–
–
–
–
B ← B∀[00imm8]
–
B ← B∀[FFimm8]
–
–
[00imm8] ← [00imm8]∀A
[00imm8] ← [00imm8]∀B
[00imm8] ← [00imm8]∀imm4

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2

C
–
–
–
–
–
1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
–
–

Z
↔
↔
↔
↔
↔
1
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
↔
0
0
0

I
–
–
–
–
–
1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
–
–

Mnemonic
Classification

Logic
operation

Flags

Remarks

Instruction List (10) S1C63000 Core CPU

Opcode
XOR

XOR

BIT

BIT

BIT

BIT

Operand
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
%A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

Basic function

[X] ← [X]∀A, X ← X+1
[X] ← [X]∀B, X ← X+1
[X] ← [X]∀imm4, X ← X+1
[Y] ← [Y]∀A
[Y] ← [Y]∀B
[Y] ← [Y]∀imm4
[Y] ← [Y]∀A, Y ← Y+1
[Y] ← [Y]∀B, Y ← Y+1
[Y] ← [Y]∀imm4, Y ← Y+1
A∧A
A∧B
A∧imm4
A∧[X]
A∧[X], X ← X+1
A∧[Y]
A∧[Y], Y ← Y+1
B∧A
B∧B
B∧imm4
B∧[X]
B∧[X], X ← X+1
B∧[Y]
B∧[Y], Y ← Y+1
[X]∧A
[X]∧B
[X]∧imm4
[X]∧A, X ← X+1
[X]∧B, X ← X+1
[X]∧imm4, X ← X+1
[Y]∧A
[Y]∧B
[Y]∧imm4
[Y]∧A, Y ← Y+1
[Y]∧B, Y ← Y+1
[Y]∧imm4, Y ← Y+1

Extended function
(when "LDB %EXT, imm8" is executed)

–
–
–
[FFimm8] ← [FFimm8]∀A
[FFimm8] ← [FFimm8]∀B
[FFimm8] ← [FFimm8]∀imm4
–
–
–
–
–
–
A∧[00imm8]
–
A∧[FFimm8]
–
–
–
–
B∧[00imm8]
–
B∧[FFimm8]
–
[00imm8]∧A
[00imm8]∧B
[00imm8]∧imm4
–
–
–
[FFimm8]∧A
[FFimm8]∧B
[FFimm8]∧imm4
–
–
–

Symbol

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Logic
operation

Flags

Remarks

Instruction List (11) S1C63000 Core CPU

Opcode
CLR

SET

TST

SLL

SRL

RL

RR

LDB

Operand
[00addr6],imm2
[FFaddr6],imm2
[00addr6],imm2
[FFaddr6],imm2
[00addr6],imm2
[FFaddr6],imm2
%A
%B
[%X]
[%X]+
[%Y]
[%Y]+
%A
%B
[%X]
[%X]+
[%Y]
[%Y]+
%A
%B
[%X]
[%X]+
[%Y]
[%Y]+
%A
%B
[%X]
[%X]+
[%Y]
[%Y]+
%BA,%XL
%BA,%XH
%BA,%YL
%BA,%YH
%BA,%EXT
%BA,%SP1
%BA,%SP2

Basic function

[00addr6] ← [00addr6]∧not (2imm2)
[FFaddr6] ← [FFaddr6]∧not (2imm2)
[00addr6] ← [00addr6]∨(2imm2)
[FFaddr6] ← [FFaddr6]∨(2imm2)
[00addr6]∧(2imm2)
[FFaddr6]∧(2imm2)
A (C←D3←D2←D1←D0←0)
B (C←D3←D2←D1←D0←0)
[X] (C←D3←D2←D1←D0←0)
[X] (C←D3←D2←D1←D0←0), X ← X+1
[Y] (C←D3←D2←D1←D0←0)
[Y] (C←D3←D2←D1←D0←0), Y ← Y+1
A (0→D3→D2→D1→D0→C)
B (0→D3→D2→D1→D0→C)
[X] (0→D3→D2→D1→D0→C)
[X] (0→D3→D2→D1→D0→C), X ← X+1
[Y] (0→D3→D2→D1→D0→C)
[Y] (0→D3→D2→D1→D0→C), Y ← Y+1
A (C←D3←D2←D1←D0←C)
B (C←D3←D2←D1←D0←C)
[X] (C←D3←D2←D1←D0←C)
[X] (C←D3←D2←D1←D0←C), X ← X+1
[Y] (C←D3←D2←D1←D0←C)
[Y] (C←D3←D2←D1←D0←C), Y ← Y+1
A (C→D3→D2→D1→D0→C)
B (C→D3→D2→D1→D0→C)
[X] (C→D3→D2→D1→D0→C)
[X] (C→D3→D2→D1→D0→C), X ← X+1
[Y] (C→D3→D2→D1→D0→C)
[Y] (C→D3→D2→D1→D0→C), Y ← Y+1
BA ← XL
BA ← XH
BA ← YL
BA ← YH
BA ← EXT
BA ← SP1
BA ← SP2

Extended function
(when "LDB %EXT, imm8" is executed)

–
–
–
–
–
–
–
–
[00imm8] (C←D3←D2←D1←D0←0)
–
[FFimm8] (C←D3←D2←D1←D0←0)
–
–
–
[00imm8] (0→D3→D2→D1→D0→C)
–
[FFimm8] (0→D3→D2→D1→D0→C)
–
–
–
[00imm8] (C←D3←D2←D1←D0←C)
–
[FFimm8] (C←D3←D2←D1←D0←C)
–
–
–
[00imm8] (C→D3→D2→D1→D0→C)
–
[FFimm8] (C→D3→D2→D1→D0→C)
–
–
–
–
–
–
–
–

Symbol

●

●

●

●

●

●

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

2
2
2
2
1
1
1
1
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
1
1
1
1
1
1
1

C
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
–

E
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Mnemonic
Classification

Logic
operation

Shift and
rotate

8/16-bit
transfer and
operation

Flags

Remarks

Instruction List (12) S1C63000 Core CPU

Opcode
LDB

LDB

LDB

LDB

LDB

LDB

LDB
ADD

CMP

INC

DEC

PUSH

POP

Operand
%BA,imm8
%BA,[%X]+
%BA,[%Y]+
%XL,%BA
%XL,imm8
%XH,%BA
%YL,%BA
%YL,imm8
%YH,%BA
%EXT,%BA
%EXT,imm8

%SP1,%BA
%SP2,%BA
[%X]+,%BA
[%X]+,imm8
[%Y]+,%BA
%X,%BA
%X,sign8
%Y,%BA
%Y,sign8
%X,imm8
%Y,imm8
%SP1
%SP2
%SP1
%SP2
%A
%B
%F
%X
%Y
%A
%B
%F
%X
%Y

Basic function

BA ← imm8
A ← [X], B ← [X+1], X ← X+2
A ← [Y], B ← [Y+1], Y ← Y+2
XL ← BA
XL ← imm8
XH ← BA
YL ← BA
YL ← imm8
YH ← BA
EXT ← BA
EXT ← imm8

SP1 ← BA
SP2 ← BA
[X] ← A, [X+1] ← B, X ← X+2
[X] ← i3~0, [X+1] ← i7~4, X ← X+2
[Y] ← A, [Y+1] ← B, Y ← Y+2
X ← X+BA
X ← X+sign8 (sign8=-128~127)
Y ← Y+BA
Y ← Y+sign8 (sign8=-128~127)
X-imm8 (imm8=0~255)
Y-imm8 (imm8=0~255)
SP1 ← SP1+1
SP2 ← SP2+1
SP1 ← SP1-1
SP2 ← SP2-1
[SP2-1] ← A, SP2 ← SP2-1
[SP2-1] ← B, SP2 ← SP2-1
[SP2-1] ← F, SP2 ← SP2-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← X, SP1 ← SP1-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← Y, SP1 ← SP1-1
A ← [SP2], SP2 ← SP2+1
B ← [SP2], SP2 ← SP2+1
F ← [SP2], SP2 ← SP2+1
X ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
Y ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1

Extended function
(when "LDB %EXT, imm8" is executed)

–
–
–
–
X ← imm16 (imm8 set in EXT is used as high-order 8 bits)
–
–
Y ← imm16 (imm8 set in EXT is used as high-order 8 bits)
–
–
–

–
–
–
–
–
–
X ← X+imm16 (imm8 set in EXT is used as high-order 8 bits)
–
Y ← Y+imm16 (imm8 set in EXT is used as high-order 8 bits)
X-imm16 (imm8 set in EXT is used as high-order 8 bits)
Y-imm16 (imm8 set in EXT is used as high-order 8 bits)
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Symbol

●,@h
–
–
–

●,@l
–
–

●,@l
–
–

●,@l,@h
@rh,@xh

–
–
–

●,@l,@h
–
–

●,@l
–

●,@l
●,@l
●,@l

–
–
–
–
–
–
–
–
–
–
–
–
–
–

Clk

1
2
2
1
1
1
1
1
1
1
1

1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

C
–
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
–
–
–
–
↔
–
–

Z
–
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
–
–
↔
–
–

E
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
↔
0
0

I
–
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
–

Mnemonic
Classification

8/16-bit
transfer and
operation

Stack
operation

Flags

Remarks

Instruction List (13) S1C63000 Core CPU

Opcode
JR
JR

JR
JRC
JRNC
JRZ
JRNZ
JP
CALZ

CALR

CALR

INT

RET
RETS
RETD

RETI

HALT
SLP
NOP

Operand
sign8
%A
%BA
[00addr6]
sign8
sign8
sign8
sign8
%Y
imm8

sign8

[00addr6]

imm6

imm8

Basic function

PC ← PC+sign8+1 (sign8=-128~127)
PC ← PC+A+1
PC ← PC+BA+1
PC ← PC+[00addr6]+1
If C=1 then PC ← PC+sign8+1 (sign8=-128~127)
If C=0 then PC ← PC+sign8+1 (sign8=-128~127)
If Z=1 then PC ← PC+sign8+1 (sign8=-128~127)
If Z=0 then PC ← PC+sign8+1 (sign8=-128~127)
PC ← Y
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1, SP1 ← SP1-1,
PC ← imm8
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1, SP1 ← SP1-1,
PC ← PC+sign8+1 (sign8=-128~127)
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1, SP1 ← SP1-1,
PC ← PC+[00addr6]+1
[SP2-1] ← F, SP2 ← SP2-1,
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1, SP1 ← SP1-1,
PC ← imm6 (imm6=0100H~013FH)
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1, PC ← PC+1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
[X] ← i3~0, [X+1] ← i7~4, X ← X+2
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
F ← [SP2], SP2 ← SP2+1
Halt
Sleep
No operation (PC← PC+1)

Extended function
(when "LDB %EXT, imm8" is executed)

PC ← PC+sign16+1 (sign16=-32768~32767)*1

–
–
–
If C=1 then PC ← PC+sign16+1 (sign16=-32768~32767)*1

If C=0 then PC ← PC+sign16+1 (sign16=-32768~32767)*1

If Z=1 then PC ← PC+sign16+1 (sign16=-32768~32767)*1

If Z=0 then PC ← PC+sign16+1 (sign16=-32768~32767)*1

–
–

([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1, SP1 ← SP1-1,
PC ← PC+sign16+1 (sign16=-32768~32767)*
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Symbol

●,@rl
–
–
●

●,@rl
●,@rl
●,@rl
●,@rl

–
●

●,@rl

●

–

–
–

●,@h,@l

–

–
–
–

Clk

1
1
1
2
1
1
1
1
1
1

1

2

3

1
2
3

2

2
2
1

C
–
–
–
–
–
–
–
–
–
–

–

–

–

–
–
–

↔

–
–
–

Z
–
–
–
–
–
–
–
–
–
–

–

–

–

–
–
–

↔

–
–
–

E
0
0
0
0
0
0
0
0
0
0

0

0

0

0
0
0

↔

0
0
0

I
–
–
–
–
–
–
–
–
–
–

–

–

–

–
–
–

↔

–
–
–

Mnemonic
Classification

Branch control

System
control

Flags

Remarks
∗1: sign16(s15–s8) = imm8, sign16(s7–s0) = sign8

Software Development Flowchart Development Tools

1. Programming
Create assembly source files using the work bench or an
editor.

2. Assembly and Linking
2-1) Start up the work bench.
2-2) Create a project file, then insert source files into the
project.
2-3) Execute the build process.
The work bench executes the assembler and linker
sequentially to generate an executable object file.

3. Option Data Creation *
Create the option HEX/document files (function option,
segment option, melody data) using the option data
creation tools.

4. Debugging
4-1) Start up the debugger from the work bench.
4-2) Load the executable object file and option HEX files,
then debug the program using the debug commands.

5. Mask Data Creation *
When the program development has been completed,
create a mask data file.
5-1) Create the program HEX files using the HEX
converter.
5-2) Convert the program and option document files into
a mask data file using the mask data checker.
5-3) Submit the mask data file to Seiko Epson.

Note:
In some S1C63 models, other development software tools are provided for the part indicated as "S1C63xxx
Development Tool" and "∗" (Steps 3 and 5).
For details, refer to the tool manual associated with each specific model.

S1C63xxx Development Tool

Work Bench

wb63

Assembler

as63

file.MS

Preprocessed
source file(s)

Linker

lk63

file.Ofile.LST

Object
file(s)

Assembly
list file(s)

file.ALS
Absolute
list file

Cross
reference
file

file.SYMSymbol file

file.MAP file.XRFLink map file

file.CM
Linker

command file

file.MAK
Make

file

Debugger

db63

HEX converter

hx63

file.ABS

Disassembler

ds63

file.MS

Disassembled
source file

In-Circuit Emulator

Segment Option

Generator winsog

file.SSA

Segment option
HEX file

file.SDC

file.par file.ini

Mask Data Checker

winmdc

file.PAn
Mask
data file

SEIKO EPSON

Function Option

Generator winfog

file.FSA file.FDC

Function option
document file

Function option
HEX file

Segment option
document file

file.S file.MS
Assembly
source file(s)or

Intel-HEX
format files

Motorola-S
format files

or

fileC.HEX file.CSA

Absolute
object file

fileL.HEX

fileH.HEX

file.LSA

file.HSA

Melody
data file file.MDT

Melody Assembler

winmla

file.MSA

Melody ROM
option HEX file

file.MDC

Melody ROM option
document file

Work Bench wb63 (1) Development Tools

Outline
The work bench provides an integrated development environment
with Windows GUI. Creating/editing source files, selecting files
and major startup options, and the startup of each tool can be
made with simple Windows operations.

Windows

[Edit] window
This window is used for editing a
source file. A standard text file can
also be displayed in this window.
Two or more windows can be opened
in the edit window area.

[Project] window
This window shows the currently
opened work space folder and lists all
the source files in the project, with a
structure similar to Windows Explorer.
Double-clicking a source file icon
opens the source file in the [Edit]
window.

[Output] window
This window displays the messages
delivered from the executed tools in a
build or assemble process.
Double-clicking a syntax error
message with a source line number
displayed in this window activates or
opens the [Edit] window of the corresponding
source so that the source line in which the
error has occurred can be viewed.

Work Bench wb63 (2) Development Tools

[HEX Convert] button
Invokes the HEX converter.

[Disassemble] button
Invokes the disassembler.

[Debug] button
Invokes the debugger with the specified ICE parameter file.

[ICE Parameter] pull-down list box
Selects the ICE parameter file for the model being developed. In this box,
all the ICE parameter files that exist in the "Dev63" directory are listed.

[Output Format] pull-down list box
Selects an executable object file format.
The build process will generate an executable object in the format selected
here.

[Build] tool bar

[Cascade] button
Cascades the opened [Edit] windows.

[Tile Horizontally] button
Tiles the opened [Edit] window horizontally.

[Tile Vertically] button
Tiles the opened [Edit] window vertically.

[Window] tool bar

[Insert Into project] button
Inserts the source file being edited into the current opened project.

[Goto Label] pull-down list box
Goes to the selected label position.

Controls on [Edit] window

Tool bars

[New] button
Creates a new document (source, header or project).

[Open] button
Opens a document (source, header or project).

[Save] button
Saves the document in the active [Edit] window to the file. The file will be overwritten.

[Save All] button
Saves the documents of all [Edit] windows and the project information to the respective files.

[Cut] button
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] button
Copies the selected text in the [Edit] window to the clipboard.

[Paste] button
Pastes the text copied on the clipboard to the current cursor position in the [Edit] window.

[Find] button
Finds the specified word in the active [Edit] window.

[Find Next] button
Finds next target word towards the end of the file.

[Find Previous] button
Finds next target word towards the beginning of the file.

[Print] button
Prints the document in the active [Edit] window.

[Help] button
Displays the help window.

[Standard] tool bar

[Assemble] button
Assembles the assembly source in the active [Edit] window.

[Build] button
Builds the currently opened project using a general make process.

[Rebuild All] button
Rebuilds the currently opened project.

[Stop Build] button
Stops the build process being executed.

[Build] tool bar

Work Bench wb63 (3) Development Tools

Menus
New... ([Ctrl]+[N])
Creates a new document (source, header or project).
Open... ([Ctrl]+[O])
Opens a document (source, header or project).
Close
Closes the active [Edit] window.
Open Workspace...
Opens a project.
Close Workspace
Closes the currently opened project.
Save ([Ctrl]+[S])
Saves the document in the active [Edit] window to the file.
Save As...
Saves the document in the active [Edit] window with another file
name.
Save All
Saves the documents of all [Edit] windows and the project
information to the respective files.
Print... ([Ctrl]+[P])
Prints the document in the active [Edit] window.
Print Preview
Displays a print image of the document in the active [Edit] window.
Page Setup...
Displays a dialog box for selecting paper and printer.
Exit
Terminates the work bench.

Undo ([Ctrl]+[Z])
Undoes the previous executed operation in the [Edit] window.
Cut ([Ctrl]+[X])
Cuts the selected text in the [Edit] window to the clipboard.
Copy ([Ctrl]+[C])
Copies the selected text in the [Edit] window to the clipboard.
Paste ([Ctrl]+[V])
Pastes the text copied to the the [Edit] window.
Select All ([Ctrl]+[A])
Selects all text in the active [Edit] window.
Find... ([Ctrl]+[F])
Finds the specified word in the active [Edit] window.
Replace ([Ctrl]+[H])
Replaces the specified words in the active [Edit] window.
Go To ([Ctrl]+[G])
Jumps to the specified line or label in the active [Edit] window.

The file names listed in this
menu are recently used source
and project files.
Selecting one opens the file.

[File] menu Standard Bar
Shows or hides the standard toolbar.
Status Bar
Shows or hides the status bar.
Output Window
Opens or closes the [Output] window.
Project Window
Opens or closes the [Project] window.
Build Bar
Shows or hides the build toolbar.
Window Bar
Shows or hides the window toolbar.
Full Screen
Maximizes the [Edit] window area to the full screen size.

File...
Inserts the specified file to the text in the [Edit] window.
Files into project...
Adds the specified source file in the currently opened project.

Assemble ([Ctrl]+[F7])
Assembles the assembly source in the active [Edit] window.
Build ([F7])
Builds the currently opened project using a general make process.
Rebuild All
Rebuilds the currently opened project.
Stop Build ([Ctrl]+[Break])
Stops the build process being executed.
Debug ([F5])
Invokes the debugger with the specified ICE parameter file.
Settings... ([Alt]+[F7])
Displays a dialog box for selecting tool options.
ICE parameter file...
Displays a dialog box for selecting an ICE parameter file.
Output Format...
Displays a dialog box for selecting an executable object file format.

[View] menu

[Insert] menu

[Build] menu

[Edit] menu

Work Bench wb63 (4) Development Tools

Menus
HEX Converter...
Invokes the HEX converter.
Disassembler...
Invokes the disassembler.
WinFOG
Invokes the function option generator.
WinSOG
Invokes the segment option generator.
WinMLA
Invokes the melody assembler.
WinMDC
Invokes the mask data checker.
Options...
Displays a dialog box for setting work bench options.

This menu appears when an [Edit] window is opened.
Cascade
Cascades the opened [Edit] windows.
Tile Horizontally
Tiles the opened [Edit] window horizontally.
Tile Vertically
Tiles the opened [Edit] window vertically.
Arrange Icons
Arranges the minimized [Edit] window icons.
Close All
Closes all the [Edit] windows opened.

Help
Displays the [Help] window.
About WB63...
Displays a dialog box showing the version of the work bench.

[Tools] menu

[Window] menu

[Help] menu

Error Messages
<filename> is changed by another editor. The currently opened file is modified by another
Reopen this file? editor.
Cannot create file: <filename> The file (linker command file, debugger command

file, etc.) cannot be created.
Cannot find file: <filename> The source file cannot be found.
Cannot find ICE parameter file The ICE parameter file cannot be found.
Cannot open file: <filename> The source file cannot be opened.
You cannot close workspace while a build The project close command or work bench
is in progress. terminate command is specified while the build
Select the Stop Build command before closing. task is being processed.
Would you like to build it? The debugger invoke command is specified when

the build task has not already been completed.

Short-Cut Key List
Ctrl + N Creates a new document
Ctrl + O Opens an existing document
Ctrl + F12 Opens an existing document
Ctrl + S Saves the document
Ctrl + P Print the active document
Ctrl + Shift + F12 Print the active document
Ctrl + Z Undoes the last action
Alt + BackSpace Undoes the last action
Ctrl + X Cuts the selection and puts it on the clipboard
Shift + Delete Cuts the selection and puts it on the clipboard
Ctrl + C Copies the selection to the clipboard
Ctrl + Insert Copies the selection to the clipboard
Ctrl + V Inserts the clipboard contents at the insertion point
Shift + Insert Inserts the clipboard contents at the insertion point
Ctrl + A Selects the entire document
Ctrl + F Finds the specified text
F3 Finds next
Shift + F3 Finds previous
Ctrl + H Replaces the specified text with different text
Ctrl + G Moves to the specified location
Ctrl + F7 Assembles the file
F7 Builds the project
Ctrl + Break Stops the build
F5 Debugs the project
Alt + F7 Edits the project build and debug settings
Ctrl + Tab Next MDI Window
Short-cut-key Opens the popup menu
Shift + F10 Opens the popup menu

Assembler as63 (1) Development Tools

Outline
Converts the mnemonic of the source files into object codes (machine
language) of the S1C63000. The results are output in a relocatable object file.
This assembler includes preprocessing functions such as macro definition/call,
conditional assembly, and file-include functions.

Flowchart

Assembler

as63

file.s

Assembly source file

file.o file.msfile.lst

Object fileRelocatable
list file

file.err

Error filePreprocessed
source file

to Linker

Start-up Command Usage
Usage: as63 [options] <file name>
Options: -d <symbol> Add preprocess definition
 -e Output error log file (.ERR)
 -g Add source debug information in object
 -l Output relocatable list file (.LST)
 -c Ignore character case of symbols
 -o <file name> Specify output file name
File name: Source file name (.S or .MS)

Pseudo-instructions
#include <file name> Inserts other file in the source file.
#define <define name> [<string>] Defines a character string with a define name.
#defnum <defnum name> <value> Defines a value with a defnum name.
#macro <macro name> [par] [,par] ... Defines a statement string with a macro name.

<statements> (par: Dummy parameters)
#endm
#ifdef <name> Conditional assembling

<statements 1> <name> defined: <statements 1> is assembled.
[#else <name> undefined: <statements 2> is assembled.

<statements 2>]
#endif
#ifndef <name> Conditional assembling

<statements 1> <name> undefined: <statements 1> is assembled.
[#else <name> defined: <statements 2> is assembled.

<statements 2>]
#endif
.code Declares the start of a CODE section.
.data Declares the start of a DATA section.
.bss Declares the start of a BSS section.
.abs Specifies absolute assembling.
.org <address> Specifies an absolute address.
.align <alignment number> Specifies alignment of a section.
.comm <global symbol> <size> Defines a global symbol and secures memory area in a

bss section.
.lcomm <local symbol> <size> Defines a local symbol and secures memory area in a

bss section.
.set <symbol> <address> Defines an absolute address for a symbol.
.global <symbol> Declares the symbol as global.
.codeword <data>[<data> ... <data>] Defines codes in the CODE section.
.word <data>[<data> ... <data>] Defines data in the DATA section.
.list Turns output ON(.list)/OFF(.nolist) in the assembly list
.nolist file. (Effective only when the -l option is specified)
.stabs "<file name>", FileName Outputs source information for debugging.
.stabn 0, FileEnd (Effective only when the -g option is specified)
.stabn <line number>, LineInfo

Assembler as63 (2) Development Tools

Error Messages
Address out of range The specified address is out of range.
Cannot open <file kind> file <FILE NAME> The specified file cannot be opened.
Cannot read <file kind> file <FILE NAME> The specified file cannot be read.
Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.
Directory path length limit The path name length has exceeded the limit.
<directory path length limit> exceeded
Division by zero The divisor in the expression is 0.
File name length limit <file name length limit> The file name length has exceeded the limit.
exceeded
Illegal macro label <label> The internal branch label in macro definition is incorrect.
Illegal macro parameter <parameter> The macro parameter is illegal.
Illegal syntax The statement has a syntax error.
Line length limit <line length limit> exceeded The number of characters in one line has exceeded the limit.
Macro parameter range The number of macro parameters has exceeded the limit.
<macro parameter range> exceeded
Memory mapping conflict The address is already used.
Multiple statements on the same line Two or more statements were described on one line.
Nesting level limit <nesting level limit> exceeded Nesting of #include has exceeded the limit.
Number of macro labels limit The number of internal branch labels has exceeded the limit.
<number of macro label limit> exceeded
Out of memory Cannot secure memory space.
Second definition of label <label> The label is already defined.
Second definition of symbol <symbol> The symbol is already defined.
Symbol name length limit The symbol name length has exceeded the limit.
<symbol name length limit> exceeded
Token length limit <token length limit> exceeded The token length has exceeded the limit.
Unexpected character <name> An invalid character has been used.
Unknown label <label> Reference was made to an undefined label.
Unknown mnemonic <name> A nonexistent instruction was used.
Unknown register <name> A nonexistent register name was used.
Unknown symbol <name> A reference to an undefined symbol was made.
Unknown symbol mask <name> The symbol mask has a description error.
Unsupported directive <directive> A nonexistent pseudo-instruction was used.

Warning Message
Expression out of range The result of the expression is out of the effective range.
Invalid symbol mask The symbol mask is not defined correctly.
Second definition of define symbol <symbol> The symbol is already defined.
Section activation expected, use <.code/.bss> There is no section definition.

Operators Priority
() Parenthesis 1
+ Plus sign 2
- Minus sign 2
~ Negation 2
^H Acquires 8 high-order bits 3
^L Acquires 8 low-order bits 3
* Multiplication 4
/ Division 4
% (%%) Residue 4
+ Addition 5
- Subtraction 5
<< Shifting to left 6
>> Shifting to right 6
== Equal (relational operator) 7
!= Not equal (relational operator) 7
< Less than (relational operator) 7
<= Less than or equal (relational operator) 7
> Greater than (relational operator) 7
>= Greater than or equal (relational operator) 7
& Bit AND 8
^ Bit XOR 9
| Bit OR 10
&& AND (relational operator) 11
|| OR (relational operator) 12

Numbers and symbols can be used as terms in expressions.
The expression is calculated as a signed 16-bit data.
Do not put any space or TAB between operator and number.

Linker lk63 Development Tools

Outline
Links the relocatable objects created by the assembler by fixing
the memory locations, and creates executable absolute object
codes. The linker also provides a branch optimization function that
automatically inserts, deletes or corrects extension codes for
branch instructions.

Flowchart

Start-up Command Usage
Usage: lk63 [options] <file names>
Options: -d Disable all branch optimization
 -di Disable insertion of branch extension
 -dr Disable removal branch optimization
 -e Output error log file (.ERR)
 -g Add source debug information
 -l Output absolute list file (.ALS)
 -m Output map file (.MAP)
 -o <file name> Specify output file name
 -s Output symbol file (.SYM)
 -x Output cross reference file (.XRF)
 -code <address> Specify CODE start address
 -data <address> Specify DATA start address
 -bss <address> Specify BSS start address
 -rcode <file name>=<address> Specify CODE start address of the file
 -rdata <file name>=<address> Specify DATA start address of the file
 -rbss <file name>=<address> Specify BSS start address of the file
 -defsym <symbol>=<address> Define symbol address
File names: Relocatable object file (.O)
 Command parameter file (.CM)
 ICE parameter file (.PAR)

Error Messages
Branch destination too far from <address> The branch destination address is out of range.
CALZ for non zero page at <address> The specified address is out of the range

(0x0000–0x00ff).
Cannot create absolute object file <FILE NAME> The absolute object file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
Cannot read <file kind> file <FILE NAME> The file cannot be read.
Cannot relocate <section kind> section of The relocatable section cannot be allocated.
<FILE NAME>
Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.
Illegal address range <address> for a code at The address specified by TST/SET/CLR is out of the
<address> range (0x0000–0x003f or 0xffC0–0xffff).
Illegal file name <FILE NAME> The file name is incorrect.
Illegal file name <FILE NAME> specified with The file name specified with the option is incorrect.
option <option>
Illegal ICE parameter at line <line number> of The ICE parameter file contains an illegal parameter
<FILE NAME> setting.
Illegal object <FILE NAME> The input file is not an object file in IEEE-695 format.
Illegal option <option> An illegal option is specified.
No address specified with option <option> Address is not specified with the option.
No code to locate There is no valid code for mapping.
No ICE parameter file specified ICE parameter file is not specified.
No name and address specified with option Name and address are not specified with the option.
<option>
No object file specified Object files to be linked are not specified.
Out of memory Cannot secure memory space.
<section kind> section <address>-<address> The address range of the section overlaps with
overlaps with <section kind> section another section's address range.
<address>-<address>
<section kind> section <address>-<address> The address range of the section overlaps with
overlaps with the unavailable memory the unavailable memory.
Unresolved external <label> in <FILE NAME> Reference was made to an undefined symbol.
Unusable instruction code <instruction code> The object contains an instruction invalid for the model.
in <FILE NAME>

Warning Messages
Cannot create <file kind file <FILE NAME> The file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
No debug information in <FILE NAME> Debugging information is not included in the file.
No symbols found Symbols cannot be found.
Second definition of label <label> in The label has already been defined.
<FILE NAME>
Second ICE parameter file <FILE NAME> Two or more ICE parameter files are specified.
ignored

Linker

lk63

file.o

Relocatable
object file(s)

Linker
command file

file.sym file.xrf

file.cm

ICE
parameter file

file.par

file.abs

Absolute
object file

Cross
reference file

file.als

Absolute
list file

file.map

Link
map file

Symbol
file

Error file

lk63.err

to Debugger

from Assembler

HEX Converter hx63 Development Tools

Outline
Converts an absolute object in IEEE-695 format output from the
linker into ROM-image data in Intel-HEX format or Motorola-S
format. This conversion is needed when making the ROM or when
creating mask data using the development tools provided with
each model.

Flowchart

filec.hex file.csa
filel.hex

Hex Converter

hx63

file.abs
Absolute

object file

fileh.hex

file.lsa

file.hsaIntel-HEX
format files

Motorola-S
format filesor

hx63.err

Error file

ROM or Mask data creation

ICE
parameter filefile.par

from Linker

Error Messages
Cannot create <file kind> file <FILE NAME> The file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
Cannot read <file kind> file <FILE NAME> The file cannot be read.
Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.
Illegal file name <FILE NAME> specified with The specified hex file name is incorrect.
option <option>
Illegal ICE parameter at line <line number> of The ICE parameter file contains an illegal parameter setting.
<FILE NAME>
Illegal file name <FILE NAME> The specified input file name is incorrect.
Illegal option <option> An illegal option is specified.
Illegal absolute object format The input file is not an object file in IEEE-695 format.
No ICE parameter file specified ICE parameter file is not specified.
Out of memory Cannot secure memory space.

Warning Message
Input file name extension .XXX conflict Two or more file names with the same extension have been

specified. The last one is used.

Start-up Command Usage
Usage: hx63 [options] <file names>
Options: -b Do not fill unused memory with 0xff
 -e Output error log file (HX63.ERR)
 -i Use Intel Hex format
 -o <file name> Specify output file name
File names: Absolute object file (.ABS)
 ICE parameter file (.PAR)

Disassembler ds63 Development Tools

Outline
Disassembles an absolute object file in IEEE-695 format or a hex
file in Motorola-S format, and restores it to a source format file.
The restored source file can be processed in the
assembler/linker/hex converter to obtain the same object or hex
file.

Flowchart

ds63.err

Error file

Disassembler

ds63

file.abs
IEEE-695 absolute

 object file
Motorola-S file

or

file.ms

Preprocessed source file

from Linker from Hex converter

file.csa
file.lsa

file.hsa

Error Messages
Cannot create <file kind> file <FILE NAME> The file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
Cannot read <file kind> file <FILE NAME> The file cannot be read.
Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.
Illegal file name <FILE NAME> specified with The specified output source file name is incorrect.
option <option>
Illegal file name <FILE NAME> The specified input file name is incorrect.
Illegal HEX data format The input file is not a Motorola-S format file.
Illegal option <option> An illegal option is specified.
Out of memory Cannot secure memory space.

Warning Message
Input file name extension .XXX conflict Two or more file names with the same extension have been

specified. The last one is used.
Cannot open Hex file xxx.csa The file cannot be opened. It is assumed there is no data
 memory.

Start-up Command Usage
Usage: ds63 [options] <file name>
Options: -cl Use lower case characters
 -cu Use upper case characters
 -e Output error log file (DS63.ERR)
 -o <file name> Specify output file name
File names: Absolute object file (.ABS or .CSA/.LSA/.HSA)

Debugger db63 (1) Development Tools

Outline
This software performs debugging by controlling the ICE hardware
tool. Commands that are used frequently, such as break and step,
are registered on the tool bar, minimizing the necessary keyboard
operations. Moreover, sources, registers, and command execution
results can be displayed in multiple windows, with resultant
increased efficiency in the debugging tasks.

Windows

Start-up Command Usage
-Usage-
 db63.exe parameter file name <startup options>
Options:
 command file: ... specifies a command file
 -comX(X:1-4) ... com port, default com1
 -b ... baud rate, 2400, 4800, 9600(default), 19200, 38400

[Source] window
Displays programs with unassemble codes, source codes or
disassemble and source codes.

[Register] window
Displays register values and monitor data.

[Trace] window
Displays traced data.

[Data] window
Displays the contents of the data memory.

[Command] window
Used to enter debug commands and display the execution results.

Buttons

[Key Break] button
Forcibly breaks execution of the target program.

[Load File] button
Reads an object file in the IEEE-695 format into the debugger.

[Load Option] button
Reads a program or optional HEX file in Motorola-S format into the debugger.

[Source] button
Switches the display of the [Source] window to the source mode.

[Unassemble] button
Switches the display of the [Source] window to the unassemble mode.

[Mix] button
Switches the display of the [Source] window to the mix mode.

[Go] button
Executes the target program from the address indicated by the current PC.

[Go to Cursor] button
Executes the target program from the address indicated by the current PC to the cursor
position in the [Source] window (the address of that line).

[Go from Reset] button
Resets the CPU and then executes the target program from the program start address (0x110).

[Step] button
Executes one instruction step at the address indicated by the current PC.

[Next] button
Executes one instruction step at the address indicated by the current PC.
The calr, calz and int instructions and their subroutines are executed as one step.

[Reset] button
Resets the CPU.

[Break] Button
Sets or clears a breakpoint at the address where the cursor is located in the [Source] window.

[Help] Button
Displays the help window.

Tool bar

[Find] button
Searches the specified word
and moves the source display
to the found word location.

[Search Label]
pull-down list box
Moves the source display to
the selected label location.

Controls on [Source] window

Debugger db63 (2) Development Tools

Menus
Load File...
Reads an object file in the IEEE-695 format into the debugger.
Load Option...
Reads a program or optional HEX file in Motorola-S format into the
debugger.
Flash Memory Operation...
Reads/writes data from/to the Flash memory or erases the Flash
memory.
Exit
Terminates the debugger.

Go
Executes the target program from the address indicated by the current PC.
Go to Cursor
Executes the target program from the address indicated by the current PC
to the cursor position in the [Source] window.
Go from Reset
This menu item resets the CPU and then executes the target program
from the program start address (0x110).
Step
Executes one instruction step at the address indicated by the current PC.
Next
Executes one instruction step at the address indicated by the current
PC.The calr, calz and int instructions and their subroutines are executed
as one step.
Command File...
Reads a command file and executes the debug commands written in that file.
Reset CPU
Resets the CPU.

Breakpoint Set...
Displays, sets or clears PC breakpoints.
Data Break...
Displays, sets or clears data break conditions.
Register Break...
Displays, sets or clears register break conditions.
Sequential Break...
Displays, sets or clears sequential break conditions.
Stack Break...
Sets stack area for break.
Break List
Displays all the break conditions that have been set.
Break All Clear
Clears all break conditions.

[File] menu

[Run] menu

[Break] menu

Debugger db63 (3) Development Tools

Cascade
Cascades the opened windows.
Tile
Tiles the opened windows.

This menu shows the currently opened window names.
Selecting one activates the window.

Contents...
Displays the contents of help topics.
About Db63...
Displays an About dialog box for the debugger.

[Window] menu

[Help] menu

Menus
Trace Mode Set...
Sets a trace mode and conditions.
Trace Search...
Searches trace information from the trace memory.
Trace File...
Saves the specified range of the trace information displayed in the [Trace]
window to a file.

Command
Activates the [Command] window.

Program (Unassemble, Source Display, Mix Mode)
Opens or activates the [Source] window and displays the
program from the current PC address in the display mode
selected from the sub menu items.

Data Dump
Opens or activates the [Data] window and displays the data memory
contents from the memory start address.
Register
Opens or activates the [Register] window and displays the current values
of the registers.
Trace
Opens or activates the [Trace] window and displays the trace data sampled
in the ICE trace memory.
Toolbar
Shows or hides the toolbar.
Status Bar
Shows or hides the status bar.

Log...
Starts or stops logging.
Record...
Starts or stops recording of commands executed.
Mode Setting...
Sets the debugger modes.

[Trace] menu

[View] menu

[Option] menu

Debugger db63 (4) Development Tools

Debug Commands

Program memory operation
a (as) [<addr> <mnemonic> [<file name>]] Assemble mnemonic
pe [<addr> <code1> [..<code8>]] Input program code
pf [<addr1> <addr2> <code>] Fill program area
pm [<addr1> <addr2> <addr3>] Copy program memory

Data memory operation
dd [<addr1> [<addr2>]] Dump data memory
de [<addr> <data1> [..<data16>]] Input data
df [<addr1> <addr2> <data>] Fill data area
dm [<addr1> <addr2> <addr3>] Copy data area
dw [<addr1> [..<addr4>]] Set data watch address

Option information
od [{fog|sog|mla} [<addr1> [<addr2>]]] Dump option data

Register operation
rd Display register values
rs [<reg> <value> [..<reg> <value>]] Modify register values

reg={pc|a|b|x|y|f|sp1|sp2|ext|q}
Program execution

g [<addr1> [<addr2]] Execute successively
gr [<addr1> [<addr2]] Reset CPU and execute successively
s [<step>] Step into
n [<step>] Step over

CPU reset
rst Reset CPU

Break
bp [<addr1> [..<addr16>]] Set PC breakpoint
bc (bpc) [<addr1> [..<addr16>]] Clear PC breakpoint
bd [<data> {r|w|∗} <addr1> <addr2>] Set data break
bdc Clear data break
br [<reg> <value> [..<reg> <value>]] Set register break

reg={pc|a|b|x|y|f|sp1|sp2|ext|q}
brc Clear register break
bs [<pass> <addr1> [<addr2> [<addr3>]]] Set sequential break
bsc Clear sequential break
bsp [<addr1> <addr2> <addr3> <addr4>] Specify stack area
bl Display all break conditions
bac Clear all break conditions

Program display
u [<addr>] Unassemble display
sc [<addr>] Source display
m [<addr>] Mix display

Symbol information
sy [{$<keyword>|#<keyword>}] [/a] List symbols

Load file
lf [<file name>] Load IEEE-695 format absolute object file
lo [<file name>] Load Motorola-S format file

Flash memory/FPGA operation
lfl [{p|d|f|s|m} [..{p|d|f|s|m}]] Load data from Flash memory
sfl [{p|d|f|s|m} [..{p|d|f|s|m}]] [-p] Save data to Flash memory
efl Erase Flash memory
xfer(s) Erase FPGA
xfwr(s) <file name> ;{H|S} [;N] Write to FPGA
xfcp(s) <file name> ;{H|S} Compare FPGA data
xdp(s) <addr1> [<addr2>] Dump FPGA data

Trace
tm [{-n|-s|-a} <trigger> [{a|m|e}|{i|o}] [<addr1> <addr2> [..<addr7> <addr8>]]

Set trace mode
td [<cycle>] Display trace information
ts [{pc|dr|dw} <addr>] Search trace information
tf [[<cycle1> [<cycle2>]] <file name>] Save trace information into file

Others
cv [<addr1> [<addr2>]] Display coverage information
cvc Clear coverage information
com [<file name> [<interval>]] Load & execute command file
cmw [<file name>] Load & execute command file with intervals
rec [<file name>] Record commands to a command file
log [<file name>] Turn log output on or off
ma Display map information
md [<option> <num> [..<option> <num>]] Set debugger modes option={-f|-u|-i|-s|-c|-il|-cm}
q Quit debugger
? Displays command usage

A symbol can be used to specify an address as follows:
@<global symbol> or @<local symbol>@<source file name>

Debugger db63 (5) Development Tools

Debugger Messages
Command errors
Cannot load program/ROM data, Failed to load program/ROM data; some file other
check ABS file than IEEE-695 executable format was specified.
Cannot open file The file cannot be opened.
Data out of range, use 0–0xF The specified number is out of the data range.
Different chip type, cannot load this file A different ICE parameter is used in the file.
end address < start address The start address is larger than the end address.
error file type (extension should be CMD) The specified file extension is invalid.
FO address out of range, use 0–0xEF FO address is invalid.
illegal code The input code is not available.
illegal mnemonic The input mnemonic is invalid for S1C63000.
Incorrect number of parameters The parameter number is incorrect.
Incorrect option, use -f/-u/-i/-s/-c/-il/-cm An invalid mode setting option was specified.
Incorrect r/w option, use r/w/* An illegal R/W option was specified.
Incorrect register name, use A/B/X/Y/F An invalid register name was specified.
Incorrect register name, The specified register name is invalid.
use PC/A/B/X/Y/F/SP1/SP2/EXT/Q
Input address does not exist Attempt is made to clear a break address that has

not been set.
invalid command This is an invalid command.
invalid data pattern The input data pattern is invalid.
invalid file name The file name (extension) is invalid.
invalid value The input data, address or symbol is invalid.
Maximum nesting level(5) is exceeded, Nesting of the com/cmw command exceeds the limit.
cannot open file
MLA address out of range, use 0–0xFFF MLA address is invalid.
no such symbol There is no such symbol.
no symbol information No symbol information is available since the ".ABS"

file has not been loaded.
Number of passes out of range, use 0–4095 The specified pass count for sequential break is out

of range.
Number of steps out of range, use 0–65535 The specified step count is out of range.
SO address out of range, use 0–0x1FFF SO address is invalid.
SP1 address out of range, use 0–0x3FF The specified SP1 address is out of range.
SP2 address out of range, use 0–0xFF The specified SP2 address is out of range.
symbol type error The specified symbol type (program/data) is incorrect.

Command warning
Break address already exists Attempt is made to set an already-set break address.
Identical break address input Input command contains identical address.
round down to multiple of 4 Watch data address is invalid.
User cancel Command is aborted by the user.
Verify error FPGA verify error.

ICE status
Break by PC break Break caused by PC breakpoint
Break by data break Break caused by data break condition
Break by register break Break caused by register break condition
Break by sequential break Break caused by sequential break condition
Key Break Break caused by pressing [ESC] key or [Key break] button
Break by accessing no map Break caused by accessing undefined program-memory area
program area
Break by accessing no map Break caused by accessing undefined data-memory area
data area
Break by accessing ROM area Break caused by writing to data ROM area
Out of SP1 area Break caused by accessing outside SP1 stack area
Out of SP2 area Break caused by accessing outside SP2 stack area
Break by external break Break caused by signal input to ICE BRKIN pin

ICE errors
communication error Communication error other than time-out
 (overrun, framing, or BCC error)
CPU is running Target is running.
ICE is busy ICE is busy processing a job.
ICE is free run mode ICE is operating in free-run mode.
ICE is maintenance mode ICE is placed in maintenance mode.
no map area, XXXX No-map area is specified for accessing.
not defined ID, XXXX ICE respond ID is invalid.
on tracing System is tracing execution data.
reset time out CPU cannot be reset (for more than 1 second).
target down Peripheral Circuit Board does not operate correctly

or remains reset.
Time Out! Communication time-out

Flash memory errors
flash memory error, XXXX Writing or erasing flash memory has failed at XXXX.
flash ROM is protected Flash memory is protected against access.
format error Flash memory is not mapped.
Map information is not the same Map information loaded from parameter file does not match

that in the parameter file.
verify error, XXXX Verify error has occurred when data was written to flash

memory.

Command errors
Address out of range, use 0–0xXXXX The specified program memory address is out of range.
Address out of range, use 0–0xFFFF The specified data memory address is out of range.

Function Option Generator winfog (1) Development Tools

Outline
The function option generator winfog is the software tool for creating
the file necessary to generate mask patterns of several hardware
specifications such as I/O port functions. In addition, simultaneously
with this file, winfog can create a mask option setup file that are
required when debugging programs with the ICE.

Windows

Function option document area
Displays the contents of selected options in the function
option document format. The contents displayed in this area
are output to the function option document file. When you
change any selected item in the option list area, the display
in this area is immediately updated.

Option list area
Lists mask options set in the device information definition file
(s1c63xxx.ini). Use the check boxes in this area to select
each option. A selected option has its check box marked by ✓.

Message area
When you create a file by selecting [Generate] from the [Tool]
menu or clicking the [Generate] button, this area displays a
message showing the result of the selected operation.

Buttons

[Open] button
Opens a function option document file.

[Generate] button
Creates a file according to the selected contents of the option list.

[Setup] button
Sets the date of creation, output file name and a comment included in the function
option document file.

[Device INI Select] button
Loads the device information definition file (s1c63xxx.ini).

[Help] button
Displays the version of winfog.

Tool bar

Function Option Generator winfog (2) Development Tools

Menus
Open
Opens a function option document file.
End
Terminates winfog.

Generate
Creates a file according to the selected contents of the option list.
Setup
Sets the date of creation, output file name and a comment included
in the function option document file.
Device INI Select
Loads the device information definition file (s1c63xxx.ini).

Version
Displays the version of winfog.

[File] menu

[Tool] menu

[Help] menu

Error Messages
File name error Number of characters in the file name or extension exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
Can't open File : xxxx File (xxxx) cannot be opened.
INI file is not found Specified device information definition file (.ini) does not exist.
INI file does not include FOG Specified device information definition file (.ini) does not contain
information function option information.
Function Option document file Specified function option document file does not exist.
is not found
Function Option document file Contents of the specified function option document file do not match
does not match INI file device information definition file (.ini).
A lot of parameter Too many command line parameters are specified.
Making file(s) is completed Finished creating the file, but the created file (xxxx) does not contain
[xxxx is no data exist] any data.
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate.
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate.
Making file(s) is not completed

Warning Message
Are you file update? Overwrite confirmation message
xxxx is already exist (Specified file already exists.)

Segment Option Generator winsog (1) Development Tools

Outline
The segment option generator winsog is the software tool for creating the
file necessary to generate mask patterns of LCD output specifications and
LCD output pin assignments. In addition, simultaneously with this file,
winsog can create a mask option setup file that are required when
debugging programs with the ICE.

Windows

Option setup area
Comprised of a display memory map, a segment decode
table, and buttons to select pin specifications. By clicking on
cells in the display memory map and segment decode table,
you can assign display memory addresses and bits.

Selects LCD segment output.

Selects DC-complementary output.

Selects DC-Pch open-drain output.

Selects DC-Nch open-drain output.

Selects segment/common shared output.

Clears selected segment assignments.

Message area
When you create a file by selecting [Generate] from the [Tool]
menu or clicking the [Generate] button, this area displays a
message showing the result of the selected operation.

Buttons

[Open] button
Opens a segment option document file.

[Save] button
Saves the current option settings to a file (segment assignment data file).

[Load] button
Loads a segment assignment data file.

[Generate] button
Creates a file according to the contents of segment options set.

[Setup] button
Sets the date of creation or output file name or a comment included in the segment
option document file.

[Device INI Select] button
Loads the device information definition file (s1c63xxx.ini).

[Help] button
Displays the version of winsog.

Tool bar

Segment Option Generator winsog (2) Development Tools

Menus
Open
Opens a segment option document file.
Record - Save
Saves the current option settings to a file (segment assignment
data file).
Record - Load
Loads a segment assignment data file.
End
Terminates winsog.

Generate
Creates a file according to the contents of segment options set.
Setup
Sets the date of creation or output file name or a comment
included in the segment option document file.
Device INI Select
Loads the device information definition file (s1c63xxx.ini).

Version
Displays the version of winsog.

[File] menu

[Tool] menu

[Help] menu

Error Messages
File name error Number of characters in the file name or extension exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
Can't open File : xxxx File (xxxx) cannot be opened.
INI file is not found Specified device information definition file (.ini) does not exist.
INI file does not include SOG Specified device information definition file (.ini) does not contain
information segment option information.
Function Option document file Specified function option document file does not exist.
is not found
Function Option document file Contents of the specified function option document file do not match
does not match INI file device information definition file (.ini).
Segment Option document file Specified segment option document file does not exist.
is not found
Segment Option document file Contents of the specified segment option document file do not match
does not match INI file device information definition file (.ini).
Segment assignment data file Specified segment assignment data file does not exist.
is not found
Segment assignment data file Contents of the specified segment assignment data file do not match
does not match INI file device information definition file (.ini).
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate.
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate.
Making file(s) is not completed
ERROR: SPEC is not set One or more SPEC cells are left blank when executing Generate.
Making file(s) is not completed
ERROR: SEGMENT DECODE Selected memory address/data bit has not been assigned to
TABLE is not set. SEG/COM terminal cells when executing Generate.
Making file(s) is not completed

Warning Message
Are you file update? Overwrite confirmation message
xxxx is already exist (Specified file already exists.)

Melody Assembler winmla (1) Development Tools

Outline
Some S1C63 models have a built-in melody generator that outputs the sound
converted from the melody ROM data. The Melody Assembler winmla is the software
tool for converting the melody data created using an editor into the melody ROM data
and melody option setup data. In addition, simultaneously with this file, winmla can
create a HEX file that is required when debugging programs with the ICE.

Windows

Melody ROM option document area
Displays the contents of selected options in the option
document format. The contents displayed in this area are
output to the melody ROM option document file. When you
change any selected item in the option list area, the display
in this area is immediately updated.

Option list area
Lists melody generator mask options set in the device
information definition file (s1c63xxx.ini). Use the check boxes
in this area to select each option. A selected option has its
check box marked by ✓.

Message area
When you create a file by selecting [Generate] from the [Tool]
menu or clicking the [Generate] button, this area displays a
message showing the result of the selected operation.

Buttons

[Open] button
Opens a melody ROM option document file.

[Generate] button
Sets the date of creation, output file name and a comment included in the melody
ROM option document file, and creates a file according to the selected contents of
the option list.

[Device INI Select] button
Loads the device information definition file (s1c63xxx.ini).

[Help] button
Displays the version of winmla.

Tool bar

Melody Assembler winmla (2) Development Tools

Menus
Open
Opens a melody ROM option document file.
Exit
Terminates winmla.

Generate
Sets the date of creation, output file name and a comment included
in the melody ROM option document file, and creates a file
according to the selected contents of the option list.
Device INI Select
Loads the device information definition file (s1c63xxx.ini).

Version
Displays the version of winmla.

[File] menu

[Tool] menu

[Help] menu

Error Messages
File name error Number of characters in the file name or extension exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
Can't open File : xxxx File (xxxx) cannot be opened.
INI file is not found Specified device information definition file (.ini) does not exist.
INI file does not include MLA Specified device information definition file (.ini) does not contain
information melody ROM option information.
Melody Data file is not found Specified melody data file does not exist.
Melody ROM Option document Specified melody ROM option document file does not exist.
file is not found
Melody ROM Option document Contents of the specified melody ROM option document file do not
file does not match INI file match device information definition file (.ini).
A lot of parameter Too many command line parameters are specified.
MDT file error Contents of the read melody data is incorrect.

(Details are saved with error symbols in the ELG file)
Can't open File: xxxx File (xxxx) cannot be opened when executing Generate.
Making file(s) is not completed
Can't write File: xxxx File (xxxx) cannot be written when executing Generate.
Making file(s) is not completed

Warning Message
Are you file update? Overwrite confirmation message
xxxx is already exist (Specified file already exists.)

Error Symbols
S (Syntax Error) There is a fatal syntax error.
 The control data is placed antecedent to the main data.
 There is control data even though main data is not describes.

The specified value is out of the range.
O (ROM Over Flow) The definition exceeded the ROM capacity.
R (Range Error) The location counter value or the specified location exceeded the

upper limit of the melody ROM capacity.
W (Warning) Warning

Melody Data

; melody sample file ← Comment

TEMPO ← Start mark of tempo data
; m0-tempo 0,1
TEMPO 0 0 = 4 TEMPO 0 1 = 10

Tempo data (0–15)
Tempo No. (0, 1)
Melody No. (0–15)

END ← End mark of tempo data

MAIN ← Start mark of main data
;no. cntl note scale jump tempo
;m0 test
 0 1 7 G5 0 0 (a)
 1 1 6 F5 0 0 (b)
 2 1 5 D5# 0 0 (c)
 3 2 4 RR 1 0 (d)
 4 0 3 E5 0 1 (e)
 5 1 2 E5 0 1 (f)
 6 1 1 D5 0 1 (g)
 7 1 0 C5 0 1 (h)
 8 3 0 RR 1 1 (i)

 Tempo No. (0, 1)
 Jump bit (0, 1)
 Pitch data (D4–D7#/38.4kHz, C4–G6/32.768kHz, RR: Rest)
 Note data (0–7)
 Control bit (0–3)
 Main data No.(0, 1, 2, ...494 max.)

END ← End mark of main data

CONTROL ← Start mark of control data
m0 ← Melody No. (m0–m15)
 0 ← m0 starts from (a); (a→b→c→d)
 0 ← Jump from (d) to (a); (a→b→c→d)
 4 ← Jump from (d) to (e); (e→f→g→h→i)
END ← End mark of control data

Sample melody Data

Tempo data

Jump bit

Melody Assembler winmla (3) Development Tools

Tempo data
0
1
2
3
4
5
6
7

Tempo ()
30.0
32.0
34.0
36.9
40.0
43.6
48.0
53.3

Tempo data
8
9

10
11
12
13
14
15

Tempo ()
60.0
68.6
80.0
96.0

120.0
160.0
240.0
480.0

=.. =..

0: Not jumped.
1: Jump is enabled. Set also when changing tempo and specifying a rest at the end of a melody.

Control bit

0: Attack is disabled. (Tie)
1: Attack is enabled.
2: Rest
3: End of a melody

Note data

Note data

Note

Rest

0 1 2 3 4 5 6 7

Packing

To Seiko Epson

Device information
definition file

e0c63xxx.ini

Code ROM
HEX file

Data ROM
HEX file

Function option
document file

Segment option
document file

winmdc

Unpackingwinmdc

Pack file
(mask data file)

zzzzzzzz.lsa
zzzzzzzz.csa zzzzzzzz.fdc zzzzzzzz.sdc

zzzzzzzz.hsa

zzzzzzzz.lsa
zzzzzzzz.csa zzzzzzzz.fdc

Melody ROM
option

document file

zzzzzzzz.mdc

zzzzzzzz.mdc zzzzzzzz.sdc
zzzzzzzz.hsa

c63xxx··yyy.paN

Mask Data Checker winmdc (1) Development Tools

Outline
The Mask Data Checker winmdc checks the format of the code/data ROM
HEX files generated by the HEX converter hx63 and the option document
files generated by the function option generator winfog, segment option
generator winsog and melody assembler winmla, and create a file
necessary to generate mask patterns. winmdc also has a function for
restoring the created mask data file into the original file format.

Flowchart

Buttons

[Pack] button
Packs the ROM data file and option document file to create a mask data file for
presentation to Seiko Epson.

[Unpack] button
Restores files in the original format from a packed file.

[Device INI Select] button
Loads the device information definition file (s1c63xxx.ini).

[Help] button
Displays the version of winmdc.

Tool bar

Mask Data Checker winmdc (2) Development Tools

Menus
End
Terminates winmdc.

Pack
Packs the ROM data file and option document file to create a mask
data file for presentation to Seiko Epson.
Unpack
Restores files in the original format from a packed file.
Device INI Select
Loads the device information definition file (s1c63xxx.ini).

Version
Displays the version of winmdc.

[File] menu

[Tool] menu

[Help] menu

I/O Error Messages
File name error Number of characters in the file name or extension

exceeds the limit.
Illegal character Prohibited characters have been entered.
Please input file name File name has not been entered.
INI file is not found Specified device information definition file (.ini)

does not exist.
INI file does not include MDC information Specified device information definition file (.ini)

does not contain MDC information.
Can't open file : xxxx File (xxxx) cannot be opened.
Can't write file: xxxx File (xxxx) cannot be written.

ROM Data Error Messages
Hex data error: Not S record. Data does not begin with "S".
Hex data error: Data is not sequential. Data is not listed in ascending order.
Hex data error: Illegal data. Invalid character is included.
Hex data error: Too many data in one line. Too many data entries exist in one line.
Hex data error: Check sum error. Checksum does not match.
Hex data error: ROM capacity over. Data is large. (Greater than ROM size)
Hex data error: Not enough the ROM data. Data is small. (Smaller than ROM size)
Hex data error: Illegal start mark. Start mark is incorrect.
Hex data error: Illegal end mark. End mark is incorrect.
Hex data error: Illegal comment. Model name shown at the beginning of data is incorrect.

Function Option Data Error Messages
Option data error : Illegal model name. Model name is incorrect.
Option data error : Illegal version. Version is incorrect.
Option data error : Illegal option number. Option No. is incorrect.
Option data error : Illegal select number. Selected option number is incorrect.
Option data error : Mask data is not enough. Mask data is insufficient.
Option data error : Illegal start mark. Start mark is incorrect.
Option data error : Illegal end mark. End mark is incorrect.

Segment Option Data Error Messages
LCD segment data error : Illegal model name. Model name is incorrect.
LCD segment data error : Illegal version. Version is incorrect.
LCD segment data error : Illegal segment No. Segment No. is incorrect.
LCD segment data error : Illegal segment area. Display memory address is out of range.
LCD segment data error : Illegal segment Specified output mode is incorrect.
output specification.
LCD segment data error : Illegal data in this line. Data is not hex number or output mode.
LCD segment data error : Data is not enough. Segment data is insufficient.
LCD segment data error : Illegal start mark. Start mark is incorrect.
LCD segment data error : Illegal end mark. End mark is incorrect.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

- SALES OFFICES -

West
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE
Barcelona Design Center
Edificio Testa, Avda. Alcalde Barrils num. 64-68
E-08190 Sant Cugat del Vallès, SPAIN
Phone: +34-93-544-2490 Fax: +34-93-544-2491

ASIA

EPSON (CHINA) CO., LTD.
23F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300
Phone: 03-573-9900 Fax: 03-573-9169

EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology, Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings.

http://www.epson.co.jp/device/

(S1C63 Family Assembler Package)
S5U1C63000A Manual

EPSON Electronic Devices Website

ELECTRONIC DEVICES MARKETING DIVISION

First issue August, 1997
Printed August, 2001 in Japan BL

M

	Introduction
	Caution
	How To Read the Manual
	Manual Notations

	㄀ 䜀攀渀攀爀愀氀 
	1.1 Features
	1.2 Tool Composition
	1.2.1 Composition of Package
	1.2.2 Outline of Software Tools

	1.3 Working Environment
	1.4 Installation
	1.5 Directories and Files after Installation

	㈀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 倀爀漀挀攀搀甀爀攀 
	2.1 Software Development Flow
	2.2 Development Using Work Bench
	2.2.1 Starting Up the Work Bench
	2.2.2 Creating a New Project
	2.2.3 Editing Source Files
	2.2.4 Configuration of Tool Options
	2.2.5 Building an Executable Object
	2.2.6 Debugging

	㌀ 圀漀爀欀 䈀攀渀挀栀 
	3.1 Features
	3.2 Starting Up and Terminating the Work Bench
	3.3 Work Bench Windows
	3.3.1 Window Configuration
	3.3.2 Window Manipulation

	3.4 Toolbar and Buttons
	3.4.1 Standard Toolbar
	3.4.2 Build Toolbar
	3.4.3 Window Toolbar
	3.4.4 Toolbar Manipulation
	3.4.5 [Insert into project] Button on a [Edit] Window

	3.5 Menus
	3.5.1 [File] Menu
	3.5.2 [Edit] Menu
	3.5.3 [View] Menu
	3.5.4 [Insert] Menu
	3.5.5 [Build] Menu
	3.5.6 [Tools] Menu
	3.5.7 [Window] Menu
	3.5.8 [Help] Menu

	3.6 Project and Work Space
	3.6.1 Creating a New Project
	3.6.2 Inserting Sources into a Project
	3.6.3 [Project] Window
	3.6.4 Opening and Closing a Project
	3.6.5 Files in the Work Space Folder

	3.7 Source Editor
	3.7.1 Creating a New Source or Header File
	3.7.2 Loading and Saving Files
	3.7.3 Edit Function
	3.7.4 Tag Jump Function
	3.7.5 Printing

	3.8 Build Task
	3.8.1 Preparing a Build Task
	3.8.2 Building an Executable Object
	3.8.3 Debugging
	3.8.4 Executing Other Tools

	3.9 Tool Option Settings
	3.9.1 Assembler Options
	3.9.2 Linker Options
	3.9.3 Debugger Options
	3.9.4 HEX Converter Options

	3.10 Work Bench Options
	3.11 Short-Cut Key List
	3.12 Error Messages
	3.13 Precautions

	㐀 䄀猀猀攀洀戀氀攀爀 
	4.1 Functions
	4.2 Input/Output Files
	4.2.1 Input File
	4.2.2 Output Files

	4.3 Starting Method
	4.4 Messages
	4.5 Grammar of Assembly Source
	4.5.1 Statements
	4.5.2 Instructions (Mnemonics and Pseudo-instructions)
	4.5.3 Symbols (Labels)
	4.5.4 Comments
	4.5.5 Blank Lines
	4.5.6 Register Names
	4.5.7 Numerical Notations
	4.5.8 Operators
	4.5.9 Location Counter Symbol "$"
	4.5.10 Optimization Branch Instructions for Old Preprocessor

	4.6 Section Management
	4.6.1 Definition of Sections
	4.6.2 Absolute and Relocatable Sections
	4.6.3 Sample Definition of Sections

	4.7 Assembler Pseudo-Instructions
	4.7.1 Include Instruction (#include)
	4.7.2 Define Instruction (#define)
	4.7.3 Numeric Define Instruction (#defnum)
	4.7.4 Macro Instructions (#macro ... #endm)
	㐀⸀㜀⸀㔀 䌀漀渀搀椀琀椀漀渀愀氀 䄀猀猀攀洀戀氀礀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⌀椀昀搀攀昀 ⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀Ⰰ ⌀椀昀渀搀攀昀⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀⤀  
	4.7.6 Section Defining Pseudo-Instructions (.code, .data, .bss)
	4.7.7 Location Defining Pseudo-Instruction (.org, .align)
	4.7.8 Absolute Assembling Pseudo-Instruction (.abs)
	4.7.9 Symbol Defining Pseudo-Instruction (.set)
	4.7.10 Data Defining Pseudo-Instruction (.codeword, .word)
	4.7.11 Area Securing Pseudo-Instructions (.comm, .lcomm)
	4.7.12 Global Declaration Pseudo-Instruction (.global)
	4.7.13 List Control Pseudo-Instructions (.list, .nolist)
	4.7.14 Source Debugging Information Pseudo-Instructions (.stabs, .stabn)
	4.7.15 Comment Adding Function
	4.7.16 Priority of Pseudo-Instructions

	4.8 Relocatable List File
	4.9 Sample Executions
	4.10 Error/Warning Messages
	4.10.1 Errors
	4.10.2 Warning

	4.11 Precautions

	㔀 䰀椀渀欀攀爀 
	5.1 Functions
	5.2 Input/Output Files
	5.2.1 Input Files
	5.2.2 Output Files

	5.3 Starting Method
	5.4 Messages
	5.5 Linker Command File
	5.6 Link Map File
	5.7 Symbol File
	5.8 Absolute List File
	5.9 Cross Reference File
	5.10 Linking
	5.11 Branch Optimization Function
	5.12 Error/Warning Messages
	5.12.1 Errors
	5.12.2 Warning

	5.13 Precautions

	㘀 䠀攀砀 䌀漀渀瘀攀爀琀攀爀  
	6.1 Functions
	6.2 Input/Output Files
	6.2.1 Input Files
	6.2.2 Output Files

	6.3 Starting Method
	6.4 Messages
	6.5 Output Hex Files
	6.5.1 Hex File Configuration
	6.5.2 Motorola-S Format
	6.5.3 Intel-HEX Format
	6.5.4 Conversion Range

	6.6 Error/Warning Messages
	6.6.1 Errors
	6.6.2 Warning

	6.7 Precautions

	㜀 䐀椀猀愀猀猀攀洀戀氀攀爀  
	7.1 Functions
	7.2 Input/Output Files
	7.2.1 Input Files
	7.2.2 Output Files

	7.3 Starting Method
	7.4 Messages
	7.5 Disassembling Output
	7.6 Error/Warning Messages
	7.6.1 Errors
	7.6.2 Warning

	㠀 䐀攀戀甀最最攀爀  
	8.1 Features
	8.2 Input/Output Files
	8.2.1 Input Files
	8.2.2 Output Files

	8.3 Starting Method
	8.3.1 Start-up Format
	8.3.2 Start-up Options
	8.3.3 Start-up Messages
	8.3.4 Hardware Check at Start-up
	8.3.5 Method of Termination

	8.4 Windows
	8.4.1 Basic Structure of Window
	8.4.2 [Command] Window
	8.4.3 [Source] Window
	8.4.4 [Data] Window
	8.4.5 [Register] Window
	8.4.6 [Trace] Window

	8.5 Tool Bar
	8.5.1 Tool Bar Structure
	8.5.2 [Key Break] Button
	8.5.3 [Load File] and [Load Option] Buttons
	8.5.4 [Source], [Mix], and [Unassemble] Buttons
	㠀⸀㔀⸀㔀 嬀䜀漀崀Ⰰ 嬀䜀漀 琀漀 䌀甀爀猀漀爀崀Ⰰ 嬀䜀漀 昀爀漀洀 刀攀猀攀琀崀Ⰰ 嬀匀琀攀瀀崀Ⰰ 嬀一攀砀琀崀Ⰰ 愀渀搀 嬀刀攀猀攀琀崀 䈀甀琀琀漀渀猀 
	8.5.6 [Break] Button
	8.5.7 [Help] Button

	8.6 Menu
	8.6.1 Menu Structure
	8.6.2 [File] Menu
	8.6.3 [Run] Menu
	8.6.4 [Break] Menu
	8.6.5 [Trace] Menu
	8.6.6 [View] Menu
	8.6.7 [Option] Menu
	8.6.8 [Windows] Menu
	8.6.9 [Help] Menu

	8.7 Method for Executing Commands
	8.7.1 Entering Commands from Keyboard
	8.7.2 Executing from Menu or Tool Bar
	8.7.3 Executing from a Command File
	8.7.4 Log File

	8.8 Debug Functions
	8.8.1 Loading Program and Data Files
	8.8.2 Source Display and Symbolic Debugging Function
	8.8.3 Displaying and Modifying Program, Data, Option Data and Register
	8.8.4 Executing Program
	8.8.5 Break Functions
	8.8.6 Trace Functions
	8.8.7 Operation of Flash Memory
	8.8.8 Coverage

	8.9 Command Reference
	8.9.1 Command List
	8.9.2 Reference for Each Command
	8.9.3 Program Memory Operation
	a / as (assemble mnemonic)
	pe (program memory enter)
	pf (program memory fill)
	pm (program memory move)

	8.9.4 Data Memory Operation
	dd (data memory dump)
	de (data memory enter)
	df (data memory fill)
	dm (data memory move)
	dw (data memory watch)

	8.9.5 Command to Display Option Information
	od (option data dump)

	8.9.6 Register Operation
	rd (register display)
	rs (register set)

	8.9.7 Program Execution
	g (go)
	gr (go after reset CPU)
	s (step)
	n (next)

	8.9.8 CPU Reset
	rst (reset CPU)

	8.9.9 Break
	bp (break point set)
	bc / bpc (break point clear)
	bd (data break)
	bdc (data break clear)
	br (register break)
	brc (register break clear)
	bs (sequential break)
	bsc (sequential break clear)
	bsp (break stack pointer)
	bl (break point list)
	bac (break all clear)

	8.9.10 Program Display
	u (unassemble)
	sc (source code)
	m (mix)

	8.9.11 Symbol Information
	sy (symbol list)

	8.9.12 Load File
	lf (load file)
	lo (load option)

	8.9.13 Flash Memory Operation
	lfl (load from flash memory)
	sfl (save to flash memory)
	efl (erase flash memory)

	8.9.14 Trace
	tm (trace mode)
	td (trace data display)
	ts (trace search)
	tf (trace file)

	8.9.15 Coverage
	cv (coverage)
	cvc (coverage clear)

	8.9.16 Command File
	com (execute command file)
	cmw (execute command file with wait)
	rec (record commands to a file)

	8.9.17 log
	log (log)

	8.9.18 Map Information
	ma (map information)

	8.9.19 Mode Setting
	md (mode)

	8.9.20 FPGA Operation
	xfer/xfers (xilinx fpga data erase)
	xfwr/xfwrs (xilinx fpga data write)
	xfcp/xfcps (xilinx fpga data compare)
	xdp/xdps (xilinx fpga data dump)

	8.9.21 Quit
	q (quit)

	8.9.22 Help
	? (help)

	8.10 Sratus/Error/Warning Messages

	9 Function Option Generator
	9.1 Outline of the Function Option Generator winfog
	9.2 Input/output Files
	9.3 Using winfog
	9.3.1 Starting Up
	9.3.2 Window
	9.3.3 Menus and Toolbar Buttons
	9.3.4 Operation Procedure

	9.4 Error Messages
	9.5 Example Output Files

	10 Segment Option Generator
	10.1 Outline of Segment Option Generator winsog
	10.2 Input/output Files
	10.3 Using winsog
	10.3.1 Starting Up
	10.3.2 Window
	10.3.3 Menus and Toolbar Buttons
	10.3.4 Option Selection Buttons
	10.3.5 Operation Procedure

	10.4 Error Messages
	10.5 Example Output Files

	11 Melody Assembler
	11.1 Outline of the Melody Assembler winmla
	11.2 Input/output Files
	11.3 Using winmla
	11.3.1 Starting Up
	11.3.2 Window
	11.3.3 Menus and Toolbar Buttons
	11.3.4 Operation Procedure

	11.4 Melody Data
	11.4.1 Outline of Melody Data
	11.4.2 Melody Data Creation Procedure
	11.4.3 Method of Creating Melody Data
	11.4.4 Description of Melody Data
	11.4.5 Precautions

	11.5 Error Messages
	11.6 Error Symbols
	11.7 Sample Files

	12 Mask Data Checker
	12.1 Outline of the Mask Data Checker winmdc
	12.2 Input/Output Files
	12.3 Using winmdc
	12.3.1 Starting Up
	12.3.2 Menus and Toolbar Buttons
	12.3.3 Operation Procedure

	12.4 Error Messages
	12.5 Example Output File

	Quick Reference
	S1C63000
Core
CPU
	Memory
Map
	Registers
	Instruction
List
	Symbols
in
the
Instruction
List
	4- bit data transfer
	Arithmetic operation
	Logic operation
	Shift and rotate
	8/ 16- bit transfer and operation
	Stack operation
	Branch
control
	System control

	Development
Tools
	Software
Development
Flowchart
	Work
Bench
wb63
	Assembler
as63
	Linker
lk63
	HEX
Converter
hx63
	Disassembler
ds63
	Debugger
db63
	Function
Option
Generator
winfog
	Segment
Option
Generator
winsog
	Melody
Assembler
winmla
	Mask
Data
Checker
winmdc

