
R

LogiCORE™ IP
Ethernet 1000BASE-X
PCS/PMA or SGMII v9.1

User Guide
UG155 March 24, 2008

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Xilinx is disclosing this Specification to you solely for use in the development of designs to operate on Xilinx FPGAs. Except as stated herein,
none of the Specification may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or
by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of this Specification may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Specification; nor does Xilinx convey any license under its
patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of
the Specification. Xilinx reserves the right to make changes, at any time, to the Specification as deemed desirable in the sole discretion of
Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not
assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN
INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE SPECIFICATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-
PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE SPECIFICATION, EVEN IF
YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE SPECIFICATION, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE SPECIFICATION. YOU ACKNOWLEDGE
THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE SPECIFICATION TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Specification is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring
fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support,
or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Specification in such High-Risk Applications is fully at your risk.

© 2004-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

R

Date
Doc

Version
Revision

09/30/04 1.0 Initial Xilinx release.

04/28/05 2.0 Updated to Xilinx tools 7.1i SP2, support for Virtex-4 Rocket IO.

01/18/06 3.0 Updated to Xilinx tools 8.1i SP1 for 7.0 release, added new chapter for dynamic switching.

07/13/06 4.0 Updated to core version 7.1; Xilinx tools 8.2i.

10/23/06 5.0 Updated to core version 8.0, support for Virtex-5 LXT and Spartan-3A families.

02/15/07 6.0 Updated to core version 8.1, Xilinx tools 9.1i.

08/08/07 7.0 Updated to core version 9.0, Xilinx tools 9.2i.

03/24/08 8.0 Updated to core version 9.1, Xilinx tools 10.1.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com
UG155 March 24, 2008

Schedule of Figures . 9

Schedule of Tables . 13

Preface: About This Guide
Guide Contents. 17
Conventions . 18

Typographical . 18
Online Document . 19

Chapter 1: Introduction
About the Core . 21

Designs Using RocketIO Transceivers . 21
Recommended Design Experience . 21
Additional Core Resources . 21

Related Xilinx Ethernet Products and Services . 22
Specifications . 22

Technical Support . 22
Feedback . 22

Ethernet 1000BASE-X PCS/PMA or SGMII Core . 22
Document . 22

Chapter 2: Core Architecture
System Overview. 23

Ethernet 1000BASE-X PCS/PMA or SGMII Using A RocketIO Transceiver 23
Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface 25

Core Interfaces . 26
Client Side Interface . 31
Physical Side Interface . 36

Chapter 3: Generating and Customizing the Core
GUI Interface . 39

Component Name . 39
Select Standard . 40
Core Functionality . 40
SGMII/Dynamic Standard Switching Elastic Buffer Options . 41
RocketIO Tile Configuration . 43

Parameter Values in the XCO File . 43
Output Generation . 44

Chapter 4: Designing with the Core
Design Overview . 45
Design Guidelines . 50

Generate the Core . 50
Examine the Example Design Provided with the Core . 50

Table of Contents

http://www.xilinx.com

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

R

Implement the Ethernet 1000BASE-X PCS/PMA or SGMII Core
in Your Application . 50

Chapter 5: Using the Client-side GMII Data Path
Designing with the Client-side GMII for the 1000BASE-X Standard. 53

GMII Transmission . 53
GMII Reception . 54
status_vector[4:0] signals . 56
Using the Virtex-II Pro RocketIO Transceiver CRC Functionality 57

Designing with Client-side GMII for the SGMII Standard . 59
Overview . 59
GMII Transmission . 59
GMII Reception . 60

Using the GMII as an Internal Connection . 61
Implementing External GMII . 61

GMII Transmitter Logic . 61
GMII Receiver Logic . 66

Chapter 6: The Ten-Bit Interface
Ten-Bit-Interface Logic . 69

Transmitter Logic . 69
Receiver Logic. 70

Clock Sharing across Multiple Cores with TBI . 77

Chapter 7: 1000BASE-X with RocketIO Transceivers
RocketIO Transceiver Logic . 79

Virtex-II Pro Devices . 79
Virtex-4 FX Devices . 81
Virtex-5 LXT and SXT Devices . 83
Virtex-5 FXT Devices . 85

Clock Sharing Across Multiple Cores with RocketIO . 87
Virtex-II Pro Devices . 87
Virtex-4 FX Devices . 88
Virtex-5 LXT and SXT Devices . 90
Virtex-5 FXT Devices . 92

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO
Transceivers

Receiver Elastic Buffer Implementations . 95
Selecting the Buffer Implementation from the GUI . 95
The Requirement for the FPGA Fabric Rx Elastic Buffer . 96
The RocketIO Rx Elastic Buffer . 97

RocketIO Logic using the RocketIO Rx Elastic Buffer . 98
RocketIO Logic with the Fabric Rx Elastic Buffer . 98

Virtex-II Pro Devices . 98
Virtex-4 Devices for SGMII or Dynamic Standards Switching 101
Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching 103
Virtex-5 FXT Devices for SGMII or Dynamic Standards Switching 105

Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer 107
Virtex-II Pro Devices . 107
Virtex-4 FX Devices . 109

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com
UG155 March 24, 2008

R

Virtex-5 LXT and SXT Devices . 111
Virtex-5 FXT Devices . 113

Chapter 9: Configuration and Status
MDIO Management Interface . 115

MDIO Bus System . 115
MDIO Transactions . 116
MDIO Addressing . 117
Connecting the MDIO to an Internally Integrated STA . 118
Connecting the MDIO to an External STA . 118

Management Registers . 119
1000BASE-X Standard Using the Optional Auto-Negotiation 119
1000BASE-X Standard Without the Optional Auto-Negotiation 129
SGMII Standard Using the Optional Auto-Negotiation. 135
SGMII Standard without the Optional Auto-Negotiation . 145
Both 1000BASE-X and SGMII Standards . 150

Optional Configuration Vector . 151

Chapter 10: Auto-Negotiation
Overview of Operation . 153

1000BASE-X Standard . 153
SGMII Standard . 155

Setting the Configurable Link Timer . 156
1000BASE-X Standard . 156
SGMII Standard . 156
Simulating Auto-Negotiation . 156

Using the Auto-Negotiation Interrupt . 156

Chapter 11: Dynamic Switching of 1000BASE-X and SGMII Standards
Typical Application . 157
Operation of the Core . 158

Selecting the Power-On / Reset Standard . 158
Switching the Standard Using MDIO . 158
Auto-Negotiation State Machine . 158
Setting the Auto-Negotiation Link Timer . 158

Chapter 12: Constraining the Core
Required Constraints . 161

Device, Package, and Speedgrade Selection . 161
I/O Location Constraints . 161
Placement Constraints . 161
Virtex-II Pro RocketIO MGTs for 1000BASE-X Constraints . 161
Virtex-II Pro RocketIO MGTs for SGMII or Dynamic Standards

Switching Constraints . 163
Virtex-4 RocketIO MGTs for 1000BASE-X Constraints . 164
Virtex-4 RocketIO MGTs for SGMII or Dynamic Standards Switching Constraints 166
Virtex-5 RocketIO GTP Transceivers for 1000BASE-X Constraints 166
Virtex-5 RocketIO GTP Transceivers for SGMII or Dynamic Standards

Switching Constraints . 167
Virtex-5 RocketIO GTX Transceivers for 1000BASE-X Constraints 167

http://www.xilinx.com

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

R

Virtex-5 RocketIO GTX Transceivers for SGMII or Dynamic Standards
Switching Constraints . 168

Ten-Bit Interface Constraints . 168
Constraints When Implementing an External GMII . 172
Understanding Timing Reports for Setup/Hold Timing . 176

Chapter 13: Interfacing to Other Cores
Integrating with the 1-Gigabit Ethernet MAC Core . 179

Integration of the 1-Gigabit Ethernet MAC to 1000BASE-X PCS with TBI 179
Integration of the 1-Gigabit Ethernet MAC Using a RocketIO Transceiver 181
Integration of the 1-Gigabit Ethernet MAC to Provide SGMII

(or Dynamic Switching) Functionality . 185
Integrating with the Tri-Mode Ethernet MAC Core . 185

Integration of the Tri-Mode Ethernet MAC to Provide SGMII
(or Dynamic Switching) Functionality with TBI . 185

Integration of the Tri-Mode Ethernet MAC to Provide SGMII
(or Dynamic Switching) Functionality using RocketIO Transceivers 188

Chapter 14: Special Design Considerations
Power Management . 197
Startup Sequencing . 197
Loopback . 197

Core with the TBI . 197
Core with RocketIO Transceiver . 198

Chapter 15: Implementing the Design
Pre-implementation Simulation . 201

Using the Simulation Model . 201
Synthesis . 201

XST - VHDL . 201
XST - Verilog . 202

Implementation . 202
Generating the Xilinx Netlist . 202
Mapping the Design . 202
Placing and Routing the Design . 202
Static Timing Analysis . 203
Generating a Bitstream . 203

Post-Implementation Simulation. 203
Generating a Simulation Model . 203
Using the Model . 203

Other Implementation Information . 204

Appendix A: Core Verification, Compliance, and Interoperability
Verification . 205
Simulation . 205
Hardware Verification . 205

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com
UG155 March 24, 2008

R

Appendix B: Core Latency
Core Latency . 207

Latency for 1000BASE-X PCS with TBI . 207
Latency for 1000BASE-X PCS and PMA Using a RocketIO Transceiver 208
Latency for SGMII . 208

Appendix C: Calculating the DCM Fixed Phase Shift Value
Requirement for DCM Phase Shifting . 209
Finding the Ideal Phase Shift Value for Your System . 209

Appendix D: 1000BASE-X State Machines
Introduction . 211
Start of Frame Encoding . 212

The Even Transmission Case . 212
Reception of the Even Case . 213
The Odd Transmission Case. 213
Reception of the Odd Case . 214
Preamble Shrinkage . 215

End of Frame Encoding . 215
The Even Transmission case . 215
Reception of the Even Case . 216
The Odd Transmission Case. 216
Reception of the Odd Case . 217

Appendix E: Rx Elastic Buffer Specifications
Introduction . 219
Rx Elastic Buffers: Depths and Maximum Frame Sizes . 219

RocketIO Rx Elastic Buffers . 219
SGMII Fabric Rx Elastic Buffer . 222
TBI Rx Elastic Buffer . 223

Clock Correction . 224
Maximum Frame Sizes for Sustained Frame Reception . 226
Jumbo Frame Reception . 226

Appendix F: Debugging Guide
General Checks. 227
Problems with the MDIO . 227
Problems with Data Reception or Transmission . 227
Problems with Auto-Negotiation . 228
Problems in Obtaining a Link (Auto-Negotiation Disabled) 228
Problems with a High Bit Error Rate . 229

Symptoms . 229
Debugging . 229

http://www.xilinx.com

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com
UG155 March 24, 2008

Chapter 2: Core Architecture
Figure 2-1: Functional Block Diagram Using RocketIO Transceiver . 24
Figure 2-2: Functional Block Diagram with a Ten-Bit Interface . 25
Figure 2-3: Component Pinout Using RocketIO Transceiver

with PCS Management Registers . 27
Figure 2-4: Component Pinout Using RocketIO Transceiver

without PCS Management Registers . 28
Figure 2-5: Component Pinout Using the Ten-Bit Interface

with PCS Management Registers . 29
Figure 2-6: Component Pinout Using Ten-Bit Interface

without PCS Management Registers . 30
Figure 2-7: Component Pinout with the Dynamic Switching Logic . 31

Chapter 3: Generating and Customizing the Core
Figure 3-1: Core Customization Screen . 39
Figure 3-2: 1000BASE-X Standard Options Screen. 40
Figure 3-3: SGMII/Dynamic Standard Switching Options Screen . 42
Figure 3-4: RocketIO Tile Configuration Screen . 43

Chapter 4: Designing with the Core
Figure 4-1: 1000BASE-X Standard Using a RocketIO Transceiver . 46
Figure 4-2: Example Design 1000BASE-X Standard Using TBI . 47
Figure 4-3: Example Design Performing the SGMII Standard . 48
Figure 4-4: Example Design Performing the SGMII Standard . 49

Chapter 5: Using the Client-side GMII Data Path
Figure 5-1: GMII Normal Frame Transmission. 53
Figure 5-2: GMII Error Propagation Within a Frame . 54
Figure 5-3: GMII Normal Frame Reception . 54
Figure 5-4: GMII Normal Frame Reception with Carrier Extension. 55
Figure 5-5: GMII Frame Reception with Errors . 55
Figure 5-6: False Carrier Indication . 56
Figure 5-7: status_vector[4:2] timing . 57
Figure 5-8: GMII Frame Transmission with RocketIO Transceiver CRC Logic Enabled 58
Figure 5-9: GMII Frame Reception with the RocketIO Transceiver CRC Logic Enabled 58
Figure 5-10: GMII Frame Transmission at 1 Gbps . 59
Figure 5-11: GMII Data Transmission at 100 Mbps . 59
Figure 5-12: GMII Frame Reception at 1 Gbps . 60
Figure 5-13: GMII Data Reception at 100 Mbps . 60
Figure 5-14: GMII Transmitter Logic . 62
Figure 5-15: External GMII Transmitter Logic for Spartan-3, Spartan-3E and

Spartan-3A Devices . 63
Figure 5-16: External GMII Transmitter Logic for Virtex-4 Devices. 64
Figure 5-17: External GMII Transmitter Logic for Virtex-5 Devices. 65
Figure 5-18: External GMII Receiver Logic . 67

Schedule of Figures

http://www.xilinx.com

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

R

Chapter 6: The Ten-Bit Interface
Figure 6-1: Ten-Bit Interface Transmitter Logic . 70
Figure 6-2: Ten-Bit-Interface Receiver Logic . 71
Figure 6-3: TBI Receiver Logic for Spartan-3, Spartan-3E, and Spartan-3A Devices. 72
Figure 6-4: Ten-Bit Interface Receiver Logic - Virtex-4 Device (Example Design) 73
Figure 6-5: Alternate Ten-Bit Interface Receiver Logic for Virtex-4 Devices 74
Figure 6-6: Ten-Bit Interface Receiver Logic - Virtex-5 Device (Example Design) 75
Figure 6-7: Alternate Ten-Bit Interface Receiver Logic - Virtex-5 Devices . 76
Figure 6-8: Clock Management, Multiple Core Instances with Ten-Bit Interface 77

Chapter 7: 1000BASE-X with RocketIO Transceivers
Figure 7-1: 1000BASE-X Connection to a Virtex-II Pro MGT . 80
Figure 7-2: 1000BASE-X Connection to Virtex-4 MGT . 82
Figure 7-3: 1000BASE-X Connection to Virtex-5 GTP Transceivers . 84
Figure 7-4: 1000BASE-X Connection to Virtex-5 GTX Transceivers . 86
Figure 7-5: Clock Management: Two Core Instances, Virtex-II Pro

MGTs for 1000BASE-X . 87
Figure 7-6: Clock Management - Multiple Core Instances, MGTs for 1000BASE-X 89
Figure 7-7: Clock Management - Multiple Core Instances, Virtex-5 RocketIO GTP

Transceivers for 1000BASE-X . 91
Figure 7-8: Clock Management - Multiple Core Instances, Virtex-5 RocketIO GTX

Transceivers for 1000BASE-X . 93

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO
Transceivers

Figure 8-1: SGMII Implementation using Separate Clock Sources . 96
Figure 8-2: SGMII Implementation using Shared Clock Sources. 97
Figure 8-3: SGMII Connection to a Virtex-II Pro RocketIO Transceiver. 100
Figure 8-4: SGMII Connection to a Virtex-4 MGT . 102
Figure 8-5: SGMII Connection to a Virtex-5 RocketIO GTP Transceiver . 104
Figure 8-6: SGMII Connection to a Virtex-5 RocketIO GTX Transceiver . 106
Figure 8-7: Clock Management with Multiple Core Instances with Virtex-II Pro

RocketIO Transceivers for SGMII . 108
Figure 8-8: Clock Management with Multiple Core Instances with Virtex-4 MGTs for SGMII . 110
Figure 8-9: Clock Management with Multiple Core Instances with Virtex-5 GTP

RocketIO Transceivers for SGMII . 112
Figure 8-10: Clock Management with Multiple Core Instances with Virtex-5 GTX

RocketIO Transceivers for SGMII . 114

Chapter 9: Configuration and Status
Figure 9-1: A Typical MDIO-managed System. 116
Figure 9-2: MDIO Write Transaction . 117
Figure 9-3: MDIO Read Transaction . 117
Figure 9-4: Creating an External MDIO Interface . 119
Figure 9-5: Dynamic Switching (Register 17) . 151

Chapter 10: Auto-Negotiation
Figure 10-1: 1000BASE-X Auto-Negotiation Overview . 153
Figure 10-2: SGMII Auto-Negotiation . 155

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com
UG155 March 24, 2008

R

Chapter 11: Dynamic Switching of 1000BASE-X and SGMII Standards
Figure 11-1: Typical Application for Dynamic Switching . 157

Chapter 12: Constraining the Core
Figure 12-1: Local Clock Place and Route for Top MGT. 164
Figure 12-2: Input TBI timing . 170
Figure 12-3: Input GMII timing . 174
Figure 12-4: Timing Report Setup/Hold Illustration . 177

Chapter 13: Interfacing to Other Cores
Figure 13-1: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS with TBI 180
Figure 13-2: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA

Using a Virtex-II Pro MGT . 181
Figure 13-3: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA

Using a Virtex-4 MGT. 182
Figure 13-4: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA

Using a Virtex-5 GTP Transceiver . 183
Figure 13-5: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA

Using a Virtex-5 GTX Transceiver . 184
Figure 13-6: Tri-Speed Ethernet MAC Extended to use an SGMII with TBI 187
Figure 13-7: Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-II Pro 189
Figure 13-8: Tri-Speed Ethernet MAC Extended to Use an SGMII in Virtex-4 191
Figure 13-9: Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-5 LXT/SXT 193
Figure 13-10: Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-5 FXT 195

Chapter 14: Special Design Considerations
Figure 14-1: Loopback Implementation Using the TBI . 198
Figure 14-2: Loopback Implementation When Using the Core with RocketIO Transceivers 199

Appendix D: 1000BASE-X State Machines
Figure D-1: 1000BASE-X Transmit State Machine Operation (Even Case) . 212
Figure D-2: 1000BASE-X Reception State Machine Operation (Even Case) 213
Figure D-3: 1000BASE-X Transmit State Machine Operation (Odd Case) . 214
Figure D-4: 1000BASE-X Reception State Machine Operation (Odd Case). 214
Figure D-5: 1000BASE-X Transmit State Machine Operation (Even Case) . 215
Figure D-6: 1000BASE-X Reception State Machine Operation (Even Case) 216
Figure D-7: 1000BASE-X Transmit State Machine Operation (Even Case) . 217
Figure D-8: 1000BASE-X Reception State Machine Operation (Odd Case). 217

Appendix E: Rx Elastic Buffer Specifications
Figure E-1: Elastic Buffer Sizes for all RocketIO Transceiver Families . 220
Figure E-2: Elastic Buffer Size for all RocketIO families . 222
Figure E-3: TBI Elastic Buffer Size for All Families. 223

http://www.xilinx.com

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com
UG155 March 24, 2008

Chapter 2: Core Architecture
Table 2-1: GMII Interface Signal Pinout . 32
Table 2-2: Other Common Signals . 33
Table 2-3: Optional MDIO Interface Signal Pinout. 34
Table 2-4: Optional Configuration and Status Vectors . 35
Table 2-5: Optional Auto-Negotiation Interface Signal Pinout. 35
Table 2-6: Optional Dynamic Standard Switching Signals . 36
Table 2-7: Optional RocketIO Transceiver Interface Pinout . 37
Table 2-8: Optional TBI Interface Signal Pinout . 38

Chapter 3: Generating and Customizing the Core
Table 3-1: XCO File Values and Default Values. 44

Chapter 4: Designing with the Core
Table 4-1: Degree of Difficulty for Various Implementations . 51

Chapter 9: Configuration and Status
Table 9-1: Abbreviations and Terms . 116
Table 9-2: MDIO Registers for 1000BASE-X with Auto-Negotiation 119
Table 9-3: Control Register (Register 0) . 120
Table 9-4: Status Register (Register 1) . 122
Table 9-5: PHY Identifier (Registers 2 and 3) . 124
Table 9-6: Auto-Negotiation Advertisement Register (Register 4) 124
Table 9-7: Auto-Negotiation Link Partner Ability Base Register (Register 5) 125
Table 9-8: Auto-Negotiation Expansion Register (Register 6) . 126
Table 9-9: Auto-Negotiation Next Page Transmit (Register 7). 127
Table 9-10: Auto-Negotiation Next Page Receive (Register 8) . 128
Table 9-11: Extended Status Register (Register 15) . 128
Table 9-12: Vendor Specific Register: Auto-Negotiation Interrupt

Control Register (Register 16) . 129
Table 9-13: MDIO Registers for 1000BASE-X without Auto-Negotiation 130
Table 9-14: Control Register (Register 0) . 130
Table 9-15: Status Register (Register 1) . 132
Table 9-16: PHY Identifier (Registers 2 and 3) . 133
Table 9-17: Extended Status (Register 15) . 134
Table 9-18: MDIO Registers for 1000BASE-X with Auto-Negotiation 135
Table 9-19: SGMII Control (Register 0) . 136
Table 9-20: SGMII Status (Register 1). 137

Schedule of Tables

http://www.xilinx.com

www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

R

Table 9-21: PHY Identifier (Registers 2 and 3) . 139
Table 9-22: SGMII Auto-Negotiation Advertisement (Register 4) 139
Table 9-23: SGMII Auto-Negotiation Link Partner Ability Base (Register 5) 140
Table 9-24: SGMII Auto-Negotiation Expansion (Register 6) . 141
Table 9-25: SGMII Auto-Negotiation Next Page Transmit (Register 7). 141
Table 9-26: SGMII Auto-Negotiation Next Page Receive (Register 8) 142
Table 9-27: SGMII Extended Status Register (Register 15) . 143
Table 9-28: SGMII Auto-Negotiation Interrupt Control (Register 16) 144
Table 9-29: MDIO Registers for 1000BASE-X with Auto-Negotiation 145
Table 9-30: SGMII Control (Register 0) . 146
Table 9-31: SGMII Status (Register 1). 147
Table 9-32: PHY Identifier (Registers 2 and 3) . 149
Table 9-33: SGMII Auto-Negotiation Advertisement (Register 4) 149
Table 9-34: SGMII Extended Status Register (Register 15) . 150
Table 9-35: Vendor-specific Register: Standard Selection Register (Register 17) 151
Table 9-36: Optional Configuration and Status Vectors . 152

Chapter 12: Constraining the Core
Table 12-1: Input TBI Timing . 170
Table 12-2: Input GMII Timing . 174

Appendix D: 1000BASE-X State Machines
Table D-1: Defined Ordered Sets . 211

Appendix E: Rx Elastic Buffer Specifications
Table E-1: Maximum Frame Sizes: RocketIO Transceiver Rx Elastic Buffers

(100ppm Clock Tolerance) . 220
Table E-2: Maximum Frame Sizes: Fabric Rx Elastic Buffers

(100ppm Clock Tolerance) . 223
Table E-3: Maximum Frame Size: (Sustained Frame Reception)

Capabilities of the Rx Elastic Buffers . 226

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 17
UG155 March 24, 2008

R

Preface

About This Guide

The LogiCORE™ IP Ethernet 1000BASE-X PCS/PMA or SGMII User Guide provides
information about generating a Xilinx Ethernet 1000BASE-X PCS/PMA or SGMII core,
customizing and simulating the core using the provided example design, and running the
design files through implementation using the Xilinx tools.

Guide Contents
This guide contains the following information.

• Preface, “About This Guide” introduces the organization and purpose of this guide
and defines the conventions used in this document.

• Chapter 1, “Introduction” describes the core and related information, including
recommended design experience, additional documentation resources, technical
support, and submitting feedback to Xilinx.

• Chapter 2, “Core Architecture” provides an overview of the core including all
interfaces and major functional blocks.

• Chapter 3, “Generating and Customizing the Core” describes the Graphical User
Interface (GUI) options used to generate and customize the core.

• Chapter 4, “Designing with the Core” provides general guidelines for creating
designs with the core.

• Chapter 5, “Using the Client-side GMII Data Path” provides general guidelines for
creating designs using client side GMII of the Ethernet 1000BASE-X PCS/PMA or
SGMII core.

• Chapter 6, “The Ten-Bit Interface” provides general design guidelines when using the
Ten-Bit Interface (TBI) as the Physical Side of the core.

• Chapter 7, “1000BASE-X with RocketIO Transceivers” provides general design
guidelines when using the 1000BASE-X standard with the RocketIO™ transceiver as
the physical side of the core.

• Chapter 8, “SGMII / Dynamic Standards Switching with RocketIO Transceivers”
provides general design guidelines when using either the SGMII standard, or the
Dynamic Switching option (between 1000BASE-X and SGMII standards). These
options always use a RocketIO as the physical interface.

• Chapter 9, “Configuration and Status” provides general guidelines for configuring
and monitoring the core, including a detailed description of the management registers
present in the core.

• Chapter 10, “Auto-Negotiation” provides guidelines for Auto-Negotiation function of
the core.

http://www.xilinx.com

18 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Preface: About This Guide
R

• Chapter 11, “Dynamic Switching of 1000BASE-X and SGMII Standards” provides
general guidelines for using the core to perform dynamic standards switching
between 1000BASE-X and SGMII.

• Chapter 12, “Constraining the Core” defines the constraint requirements of the core.

• Chapter 13, “Interfacing to Other Cores” describes additional design considerations
associated with implementing the core with the 1-Gigabit Ethernet MAC and Tri-
Mode Ethernet MAC cores.

• Chapter 14, “Special Design Considerations” describes additional design
considerations associated with implementing the core.

• Chapter 15, “Implementing the Design”describes how to simulate and implement
your design containing the core.

• Appendix A, “Core Verification, Compliance, and Interoperability” describes how the
core was verified.

• Appendix B, “Core Latency” defines the latency of the core.

• Appendix C, “Calculating the DCM Fixed Phase Shift Value” instructs the user about
how to calculate the system timing requirements when using DCMs with the core.

• Appendix D, “1000BASE-X State Machines” serves as a reference for the basic
operation of the 1000BASE-X IEEE 802.3 clause 36 transmitter and receiver state
machines.

• Appendix E, “Rx Elastic Buffer Specifications” describes the depth of the Rx Elastic
Buffers which are available with the core. The size of the buffer is related to the
maximum frame size which the core can accommodate.

• Appendix F, “Debugging Guide” provides information for debugging the core within
a system.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document.

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands you enter in
a syntactical statement ngdbuild design_name

Italic font
References to other manuals See the User Guide for details.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Dark Shading Items that are not supported
or reserved This feature is not supported

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 19
UG155 March 24, 2008

Conventions
R

Online Document
The following conventions are used in this document.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address
0x00112975 returned
45524943h.

A ‘_n’ means the signal is
active low usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

See “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL) Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

20 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Preface: About This Guide
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 21
UG155 March 24, 2008

R

Chapter 1

Introduction

The Ethernet 1000BASE-X PCS/PMA or SGMII core is a fully verified solution that
supports Verilog HDL and VHDL. In addition, the example design provided with the core
supports both Verilog and VHDL.

This chapter introduces the Ethernet 1000BASE-X PCS/PMA or SGMII core and provides
related information, including recommended design experience, additional resources,
technical support, and methods for submitting feedback to Xilinx.

About the Core
The Ethernet 1000BASE-X PCS/PMA or SGMII core is a Xilinx CORE Generator™ IP core,
included in the latest IP Update on the Xilinx IP Center. For detailed information about the
core, see the Ethernet 100BASE-X PCS/PMA product page. For information about system
requirements and licensing options, see Chapter 2, “Licensing the Core,” in the Getting
Started Guide.

Designs Using RocketIO Transceivers
RocketIO transceivers are defined by device family in the following way:

• For Virtex-II Pro and Virtex-4 devices, RocketIO Multi-Gigabit Transceivers (MGT)
• For Virtex-5 LXT and SXT devices, RocketIO GTP transceivers; Virtex-5 FXT devices,

RocketIO GTX transceivers

Recommended Design Experience
Although the Ethernet 1000BASE-X PCS/PMA or SGMII core is a fully-verified solution,
the challenge associated with implementing a complete design varies depending on the
configuration and functionality of the application. For best results, previous experience
building high-performance, pipelined FPGA designs using Xilinx implementation
software and User Constraint Files (UCF) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/DO-DI-GMIITO1GBSXPCS.htm

22 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 1: Introduction
R

Additional Core Resources
For detailed information and updates about the Ethernet 1000BASE-X PCS/PMA or
SGMII core, see the following documents, located on the Xilinx Ethernet 100BASE-X
PCS/PMA product page.

• Ethernet 1000BASE-X PCS/PMA or SGMII Data Sheet
• Ethernet 1000BASE-X PCS/PMA or SGMII Getting Started Guide

After generating the core, the following documents are available in the document
directory:

• Ethernet 1000BASE-X PCS/PMA or SGMII Release Notes
• Ethernet 1000BASE-X PCS/PMA or SGMII User Guide

Related Xilinx Ethernet Products and Services
For information about all Xilinx Ethernet solutions, see
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.
htm.

Specifications
• IEEE 802.3
• Serial-GMII Specification (CISCO SYSTEMS, ENG-46158)

Technical Support
To obtain technical support specific to the Ethernet 1000BASE-X PCS/PMA or SGMII core,
visit www.support.xilinx.com/. Questions are routed to a team of engineers with expertise
using the Ethernet 1000BASE-X PCS/PMA or SGMII core.

Xilinx provides technical support for use of this product as described in the Ethernet
1000BASE-X PCS/PMA or SGMII User Guide and the Ethernet 1000BASE-X PCS/PMA or
SGMII Getting Started Guide. Xilinx cannot guarantee timing, functionality, or support of
this product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Ethernet 1000BASE-X PCS/PMA or
SGMII core and the documentation supplied with the core.

Ethernet 1000BASE-X PCS/PMA or SGMII Core
For comments or suggestions about the core, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Product name
• Core version number
• Explanation of your comments

http://www.xilinx.com/products/ipcenter/DO-DI-GMIITO1GBSXPCS.htm
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm
http://support.xilinx.com/
http://support.xilinx.com/
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 23
UG155 March 24, 2008

Feedback
R

Document
For comments or suggestions about this document, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Document title
• Document number
• Page number(s) to which your comments refer
• Explanation of your comments

http://support.xilinx.com/
http://www.xilinx.com

24 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 1: Introduction
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 23
UG155 March 24, 2008

R

Chapter 2

Core Architecture

This chapter describes the architecture of the Ethernet 1000BASE-X PCS/PMA or SGMII
core, including all interfaces and major functional blocks.

System Overview

Ethernet 1000BASE-X PCS/PMA or SGMII Using A RocketIO Transceiver
The Ethernet 1000BASE-X PCS/PMA or SGMII core provides the functionality to
implement the 1000BASE-X PCS and PMA sub-layers or used to provide a GMII to SGMII
bridge when used with a RocketIO transceiver. RocketIO transceivers are defined in the
following way:

• For Virtex-II Pro and Virtex-4 devices, RocketIO Multi-Gigabit Transceivers (MGT)

• For Virtex-5 LXT and SXT FPGAs, RocketIO GTP transceivers; Virtex-5 FXT FPGA,
RocketIO GTX transceiver

The core interfaces to a RocketIO transceiver, providing some of the PCS layer
functionality such as 8B/10B encoding/decoding, the PMA SERDES, and clock recovery.
Figure 2-1 illustrates the remaining PCS sublayer functionality, and also shows the major
functional blocks of the core.

http://www.xilinx.com

24 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

GMII Block

A client-side GMII is provided with the core, which can be used as an internal interface for
connection to an embedded Media Access Controller (MAC) or other custom logic.
Alternatively, the GMII may be routed to device IOBs to provide an external (off chip)
GMII.

PCS Transmit Engine

The PCS transmit engine converts the GMII data octets into a sequence of ordered sets by
implementing the state diagrams of IEEE 802.3 (figures 36-5 and 36-6). See Appendix D,
“1000BASE-X State Machines.”

PCS Receive Engine and Synchronization

The synchronization process implements the state diagram of IEEE 802.3 (figure 36-9). The
PCS receive engine converts the sequence of ordered sets to GMII data octets by
implementing the state diagrams of IEEE 802.3 (figures 36-7a and 36-7b). See Appendix D,
“1000BASE-X State Machines.”

Optional Auto-Negotiation Block

IEEE 802.3 clause 37 describes the 1000BASE-X Auto-Negotiation function that allows a
device to advertise the modes of operation that it supports to a device at the remote end of
a link segment (link partner), and to detect corresponding operational modes that the link
partner may be advertising.

Auto-Negotiation is controlled and monitored through the PCS Management Registers.
See Chapter 10, “Auto-Negotiation.”

Figure 2-1: Functional Block Diagram Using RocketIO Transceiver

PCS Transmit Engine

PCS Receive Engine
and Synchronization

R
oc

ke
tIO

Tr
an

se
iv

er

Optional PCS
Management

GMII
to MAC

MDIO
Interface

Optional
Auto-Negotiation

To PMD
Sublayer

G
M

II
B

lo
ck

LogiCORE Ethernet 1000BASE-X PCS/PMA or SGMII Core

R
oc

ke
tIO

 I/
F

B
lo

ck

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 25
UG155 March 24, 2008

System Overview
R

Optional PCS Management Registers

Configuration and status of the core, including access to and from the optional Auto-
Negotiation function, uses the 1000BASE-X PCS Management Registers defined in IEEE
802.3 clause 37. These registers are accessed through the serial Management Data
Input/Output Interface (MDIO), defined in IEEE 802.3 clause 22, as if it were an externally
connected PHY.

The PCS Management Registers may be omitted from the core when the core is performing
the 1000BASE-X standard. In this situation, configuration and status of the core is made
possible with the use of an alternative configuration vector and a status signal.

When the core is performing the SGMII standard, the PCS Management Registers become
mandatory and information in the registers takes on a different interpretation. For more
information, see “Management Registers” in Chapter 9.

RocketIO Interface Block

The RocketIO Interface Block enables the core to connect to a Virtex-II Pro, Virtex-4, or
Virtex-5 FPGA RocketIO transceiver.

Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface
The Ethernet 1000BASE-X PCS/PMA or SGMII core, when used with the Ten-Bit Interface
(TBI), allows you to implement only the 1000BASE-X PCS sublayer.

The optional TBI can be used in place of the RocketIO transceiver to provide a parallel
interface for connection to an external PMA SERDES device. In this implementation,
additional logic blocks are required to replace some of the RocketIO transceiver
functionality. These are shown in the surrounded by the dotted line box in Figure 2-2 and
are described in the following sections. The other blocks are described previously in this
document.

Figure 2-2: Functional Block Diagram with a Ten-Bit Interface

PCS Transmit Engine

PCS Receive Engine
and Synchronization

Optional PCS
Management

GMII
to MAC

MDIO
Interface

Optional
Atuo-negotiation

G
M

II
B

lo
ck

8B/10B
Encoder

8B/10B
Decoder

RX
Elastic
Buffer

T
B

I B
lo

ck

 LogiCORE Ethernet 1000BASE-X PCS/PMA or SGMII Core

IO
B

s

TBI
to PMA
Sublayer

http://www.xilinx.com

26 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

8B/10B Encoder

8B10B encoding, as defined in IEEE 802.3 (Tables 36-1a to 36-1e and Table 36-2), is
implemented in a block SelectRAM™, configured as ROM, and used as a large look-up
table.

8B/10B Decoder

8B10B decoding, as defined in IEEE 802.3 (Table 36-1a to 36-1e and Table 36-2), is
implemented in a block SelectRAM, configured as ROM, and used as a large look-up table.

Receiver Elastic Buffer

The Receiver Elastic Buffer enables the 10-bit parallel TBI data, received from the PMA
sublayer synchronously to the TBI receiver clocks, to be transferred onto the cores internal
125 MHz clock domain. It is an asynchronous FIFO implemented in internal RAM. The
Receiver Elastic Buffer attempts to maintain a constant occupancy by inserting or
removing Idle sequences as necessary. This causes no corruption to the frames of data.

TBI Block

The core provides a TBI interface that should be routed to device IOBs to provide an off-
chip TBI.

Core Interfaces
All ports of the core are internal connections in FPGA fabric. An HDL example design
(delivered with the core) connects the core, where appropriate, to a RocketIO transceiver,
and/or add IBUFs, OBUFs, and IOB flip-flops to the external signals of the GMII and TBI.
IOBs are added to the remaining unconnected ports to take the example design through
the Xilinx implementation software.

All clock management logic is placed in this example design, allowing you more flexibility
in implementation (such as designs using multiple cores). This example design is provided
in both VHDL and Verilog. For more information, see the Ethernet 1000BASE-X PCS/PMA
or SGMII Getting Started Guide.

Figure 2-3 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core using
a RocketIO transceiver with the optional PCS Management Registers. The signals shown in
the Auto-Negotiation box included only when the core includes the Auto-Negotiation

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 27
UG155 March 24, 2008

Core Interfaces
R

functionality. For more information, see Chapter 3, “Generating and Customizing the
Core.”

Figure 2-3: Component Pinout Using RocketIO Transceiver
with PCS Management Registers

mdc
mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en mgt_rx_reset
gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

GMII

MDIO

phyad[4:0]

gtx_clk

signal_detect

mdio_out
mdio_tri

rxbufstatus[1:0]
rxchariscomma
rxcharisk

RocketIO Interface

gmii_isolate

link_timer_value[8:0]
an_interrupt

Auto_Negotiation

mgt_tx_reset

rxclkcorcnt[2:0]
rxdata[7:0]
rxdisperr
rxnotintable
rxrundisp
txbuferr

userclk

dcm_locked
userclk2

powerdown
txchardispmode
txchardispval
txcharisk
txdata
enablealign

status_vector[4:0]

http://www.xilinx.com

28 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

Figure 2-4 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core using
a RocketIO transceiver without the optional PCS Management Registers

Figure 2-4: Component Pinout Using RocketIO Transceiver
without PCS Management Registers

mgt_rx_reset

signal_detect

rxbufstatus[1:0]
rxchariscomma
rxcharisk

RocketIO Interface

mgt_tx_reset

rxclkcorcnt[2:0]
rxdata[7:0]
rxdisperr
rxnotintable
rxrundisp
txbuferr

userclk

dcm_locked
userclk2

powerdown
txchardispmode
txchardispval
txcharisk
txdata
enablealign

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en
gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

GMII

gtx_clk

gmii_isolate

configuration_vector[3:0]

MDIO Replacement

status_vector[4:0]

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 29
UG155 March 24, 2008

Core Interfaces
R

Figure 2-5 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core when
using the TBI with optional PCS Management Registers. The signals shown in the Auto-
Negotiation box are included only when the core includes the Auto-Negotiation
functionality (see Chapter 3, “Generating and Customizing the Core”).
).

Figure 2-5: Component Pinout Using the Ten-Bit Interface
with PCS Management Registers

mdc
mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en

tx_code_group[9:0]

rx_code_group0[9:0]

gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

pma_rx_clk0

GMII

MDIO

phyad[4:0]

gtx_clk signal_detect

mdio_out
mdio_tri

loc_ref
ewrap

pma_rx_clk1

en_cdet

rx_code_group1[9:0]

Ten-Bit Interface (TBI)

gmii_isolate

link_timer_value[8:0]
an_interrupt

Auto_Negotiation
status_vector[4:0]

http://www.xilinx.com

30 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

Figure 2-6 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core when
using a TBI without the optional PCS Management Registers.

Figure 2-6: Component Pinout Using Ten-Bit Interface
without PCS Management Registers

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en

tx_code_group[9:0]

rx_code_group0[9:0]

gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

pma_rx_clk0

GMII

gtx_clk signal_detect

loc_ref
ewrap

pma_rx_clk1

en_cdet

rx_code_group1[9:0]

Ten-Bit Interface (TBI)

gmii_isolate

configuration_vector[3:0]

MDIO Replacement

status_vector[4:0]

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 31
UG155 March 24, 2008

Core Interfaces
R

Figure 2-7 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core using
the optional dynamic switching logic (between 1000BASE-X and SGMII standards). This
mode is shown used with a RocketIO transceiver interface. For more information, see
Chapter 11, “Dynamic Switching of 1000BASE-X and SGMII Standards.”

Client Side Interface

GMII Pinout

Table 2-1 describes the GMII-side interface signals of the core common to all
parameterizations of the core. These are typically attached to an Ethernet MAC, either off-
chip or internally integrated. The HDL example design delivered with the core connects
these signals to IOBs to provide a place-and-route example.

For more information, see “Designing with the Client-side GMII for the 1000BASE-X
Standard” in Chapter 5.

Figure 2-7: Component Pinout with the Dynamic Switching Logic

mdc
mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en mgt_rx_reset
gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

GMII

MDIO

phyad[4:0]

gtx_clk

signal_detect

mdio_out
mdio_tri

rxbufstatus[1:0]
rxchariscomma
rxcharisk

RocketIO Interface

gmii_isolate

link_timer_basex[8:0]
an_interrupt

Auto_Negotiation

mgt_tx_reset

rxclkcorcnt[2:0]
rxdata[7:0]
rxdisperr
rxnotintable
rxrundisp
txbuferr

userclk

dcm_locked
userclk2

powerdown
txchardispmode
txchardispval
txcharisk
txdata
enablealign

link_timer_sgmii[8:0]
basex_or_sgmii status_vector[4:0]

http://www.xilinx.com

32 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

Table 2-1: GMII Interface Signal Pinout

Signal Direction Description

gmii_txd[7:0]1

1. When the Transmitter Elastic Buffer is present these signals are synchronous to gmii_tx_clk. When the
Transmitter Elastic Buffer is omitted, see Note 2.

Input GMII Transmit data from MAC.

gmii_tx_en1 Input GMII Transmit control signal from MAC.

gmii_tx_er1 Input GMII Transmit control signal from MAC.

gmii_rxd[7:0]2

2. These signals are synchronous to the core’s internal 125 MHz reference clock. This is userclk2 when the
core is used with the RocketIO transceiver; gtx_clk when the core is used with TBI.

Output GMII Received data to MAC.

gmii_rx_dv2 Output GMII Received control signal to MAC.

gmii_rx_er2 Output GMII Received control signal to MAC.

gmii_isolate2 Output IOB Tri-state control for GMII Isolation. Only of use
when implementing an External GMII as illustrated by
the example design HDL.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 33
UG155 March 24, 2008

Core Interfaces
R

Common Signal Pinout

Table 2-2 describes the remaining signals common to all parameterizations of the core.

Table 2-2: Other Common Signals

Signal Direction Description

reset Input Asynchronous reset for the entire core. Active High. Clock
domain is not applicable.

signal_detect Input Signal direct from PMD sublayer indicating the presence
of light detected at the optical receiver. If set to ’1,’
indicates that the optical receiver has detected light. If set
to ’0,’ this indicates the absence of light.

If unused this signal should be set to ’1’to enable correct
operation the core. Clock domain is not applicable.

status_vector[4:0]1

1. These signals are synchronous to the core’s internal 125 MHz reference clock. This is userclk2 when the
core is used with the RocketIO transceiver; this is gtx_clk when the core is used with TBI.

Output Bit[0]: Link Status

Indicates the status of the link.

• When high, the link is valid: synchronization of the link
has been obtained and Auto-Negotiation (if present and
enabled) has successfully completed.

• When low, a valid link has not been established. Either
link synchronization has failed or Auto-Negotiation (if
present and enabled) has failed to complete.

• When auto-negotiation is enabled this signal is identical
to Status Register Bit 1.2: Link Status.

• When auto-negotiation is disabled this signal is identical
to status_vector Bit[1].

Bit[1]: Link Synchronization

Indicates the state of the synchronization state machine
(IEEE802.3 figure 36-9) which is based on the reception of
valid 8B10B code groups. This signal is similar to Bit[0]
(Link Status), but is NOT qualified with Auto-Negotiation.

• When high, link synchronization has been obtained and
in the synchronization state machine, sync_status =
OK.

• When low, synchronization has failed.

Bit[2]: RUDI(/C/)

The core is receiving /C/ ordered sets (Auto-Negotiation
Configuration sequences).

Bit[3]: RUDI(/I/)

The core is receiving /I/ ordered sets (Idles).

Bit[4]: RUDI(INVALID)

The core has received invalid data whilst receiving/C/ or
/I/ ordered set. See “status_vector[4:0] signals” in
Chapter 5 for more information.

http://www.xilinx.com

34 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

MDIO Management Interface Pinout (Optional)

Table 2-3 describes the optional MDIO interface signals of the core used to access the PCS
Management Registers. These signals are typically connected to the MDIO port of a MAC
device, either off-chip or to an internally integrated MAC core. For more information, see
“Management Registers” in Chapter 9.

Table 2-3: Optional MDIO Interface Signal Pinout

Signal Direction
Clock

Domain
Description

mdc Input N/A Management clock (<= 2.5 MHz).

mdio__in1

1. These signals can be connected to a Tri-state buffer to create a bidirectional mdio signal suitable for
connection to an external MDIO controller (for example, an Ethernet MAC).

Input mdc Input data signal for communication with
MDIO controller (for example, an Ethernet
MAC). Tie high if unused.

mdio_out1 Output mdc Output data signal for communication with
MDIO controller (for example, an Ethernet
MAC).

mdio_tri1 Output mdc Tri-state control for MDIO signals; ‘0’ signals
that the value on mdio_out should be asserted
onto the MDIO interface.

phyad[4:0] Input N/A Physical Address of the PCS Management
register set. It is expected that this signal will be
tied off to a logical value.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 35
UG155 March 24, 2008

Core Interfaces
R

Configuration Vector (Optional)

Table 2-4 shows the alternative to the optional MDIO Management Interface, the
configuration vector. See “Optional Configuration Vector” in Chapter 9.

Auto-Negotiation Signal Pinout

Table 2-5 describes the signals present when the optional Auto-Negotiation functionality is
present. For more information, see Chapter 10, “Auto-Negotiation.”

Table 2-4: Optional Configuration and Status Vectors

Signal Direction Description

configuration_vector[3:0]1

1. This signal is synchronous to the core’s internal 125 MHz reference clock. This is userclk2 when the
core is used with the RocketIO transceiver; this is gtx_clk when the core is used with TBI.

Input Bit[0]: Reserved (currently unused)

Bit[1]: Loopback Control

• When the core with RocketIO transceiver is
used, the core is placed in internal loopback
mode.

• With the TBI version, Bit 1 is connected to
ewrap. When set to ‘1,’ this indicates to the
external PMA module to enter loopback mode.

Bit[2]: Power Down

• When the RocketIO transceiver is used (when
set to ‘1’), the MGT is placed in a low power
state. A reset must be applied to clear.

• With the TBI version this bit is unused.

Bit[3]: Isolate

When set to ‘1,’ the GMII should be electrically
isolated. When set to ‘0,’ normal operation is
enabled.

Table 2-5: Optional Auto-Negotiation Interface Signal Pinout

Signal Direction Description

link_timer_value[8:0]1

1. These signals are synchronous to the core’s internal 125 MHz reference clock. This is userclk2 when the
core is used with the RocketIO transceiver; this is gtx_clk when the core is used with TBI.

Input Used to configure the duration of the Auto-
Negotiation Link Timer period. The duration of this
timer is set to the binary number input into this port
multiplied by 4096 clock periods of the 125 MHz
reference clock (8 ns). It is expected that this signal
will be tied off to a logical value.

This port is replaced when using the dynamic
switching mode.

an_interrupt1 Output Active high interrupt to signal the completion of an
Auto-Negotiation cycle. This interrupt can be
enabled/disabled and cleared by writing to the
appropriate PCS Management Register.

http://www.xilinx.com

36 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

Dynamic Switching Signal Pinout

Table 2-6 describes the signals present when the optional Dynamic Switching mode
(between 1000BASE-X and SGMII standards) is selected. In this case, the MDIO (Table 2-3)
and RocketIO transceiver (Table 2-7) interfaces are always present.

Physical Side Interface

1000BASE-X PCS with PMA Using RocketIO Transceiver Signal Pinout
(Optional)

Table 2-7 describes the optional interface to the RocketIO transceiver. The core is connected
to a RocketIO transceiver in the appropriate HDL example design delivered with the core.
For more information, see:

• Chapter 7, “1000BASE-X with RocketIO Transceivers”

• Chapter 8, “SGMII / Dynamic Standards Switching with RocketIO Transceivers”

Table 2-6: Optional Dynamic Standard Switching Signals

Signal Direction Description

link_timer_basex[8:0]1

1. Clock domain is userclk2.

Input Used to configure the duration of the Auto-
Negotiation Link Timer period when performing
the 1000BASE-X standard. The duration of this
timer is set to the binary number input into this port
multiplied by 4096 clock periods of the 125 MHz
reference clock (8 ns). It is expected that this signal
will be tied off to a logical value.

link_timer_sgmii[8:0]1 Input Used to configure the duration of the Auto-
Negotiation Link Timer period when performing
the SGMII standard. The duration of this timer is set
to the binary number input into this port multiplied
by 4096 clock periods of the 125 MHz reference
clock (8 ns). It is expected that this signal will be tied
off to a logical value.

basex_or_sgmii1 Input Used as the reset default to select the standard. It is
expected that this signal will be tied off to a logical
value.

‘0’ signals that the core will come out of reset
operating as 1000BASE-X.

‘1’ signals that the core will come out of reset
operating as SGMII.

Note: The standard can be set following reset
through the MDIO Management.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 37
UG155 March 24, 2008

Core Interfaces
R

Table 2-7: Optional RocketIO Transceiver Interface Pinout

Signal Direction Description

mgt_rx_reset1

1. When the core is used with a RocketIO transceiver, userclk2 is used as the 125 MHz reference clock
for the entire core.

Output Reset signal issued by the core to the RocketIO
transceiver receiver path. Connect to RXRESET signal
of RocketIO transceiver.

mgt_tx_reset1 Output Reset signal issued by the core to the RocketIO
transceiver transmitter path. Connect to TXRESET
signal of RocketIO transceiver.

userclk Input Also connected to TXUSRCLK and RXUSRCLK of the
RocketIO transceiver. Clock domain is not applicable.

userclk2 Input Also connected to TXUSRCLK2 and RXUSRCLK2 of
the RocketIO transceiver. Clock domain is not
applicable.

dcm_locked Input A DCM may be used to derive userclk and userclk2.
This is implemented in the HDL design example
delivered with the core. The core will use this input to
hold the RocketIO transceiver in reset until the DCM
obtains lock. Clock domain is not applicable.

rxbufstatus[1:0]1 Input Connect to RocketIO signal of the same name.

rxchariscomma1 Input Connects to RocketIO signal of the same name.

rxcharisk1 Input Connects to RocketIO signal of the same name.

rxclkcorcnt[2:0]1 Input Connect to RocketIO signal of the same name.

rxdata[7:0]1 Input Connect to RocketIO signal of the same name.

rxdisperr1 Input Connects to RocketIO signal of the same name.

rxnotintable1 Input Connects to RocketIO signal of the same name.

rxrundisp1 Input Connects to RocketIO signal of the same name.

txbuferr1 Input Connects to RocketIO signal of the same name.

powerdown1 Output Connects to RocketIO signal of the same name.

txchardispmode1 Output Connects to RocketIO signal of the same name.

txchardispval1 Output Connects to RocketIO signal of the same name.

txcharisk1 Output Connects to RocketIO signal of the same name.

txdata[7:0]1 Output Connect to RocketIO signal of the same name.

enablealign1 Output Allows the transceivers to serially realign to a comma
character. Connects to ENMCOMMAALIGN and
ENPCOMMAALIGN of the RocketIO.

http://www.xilinx.com

38 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 2: Core Architecture
R

1000BASE-X PCS with TBI Pinout

Table 2-8 describes the optional TBI signals, used as an alternative to the RocketIO receiver
interface. The appropriate HDL example design delivered with the core connects these
signals to IOBs to provide an external TBI suitable for connection to an off-chip PMA
SERDES device. When the core is used with the TBI, gtx_clk is used as the 125 MHz
reference clock for the entire core. For more information, see Chapter 6, “The Ten-Bit
Interface.”

Table 2-8: Optional TBI Interface Signal Pinout

Signal Direction Clock Domain Description

gtx_clk Input N/A Clock signal at 125 MHz. Tolerance
must be within IEEE 802.3
specification.

tx_code_group[9:0] Output gtx_clk 10-bit parallel transmit data to PMA
Sublayer (SERDES).

loc_ref Output N/A Causes the PMA sublayer clock
recovery unit to lock to pma_tx_clk.
This signal is currently tied to Ground.

ewrap Output gtx_clk When ’1,’ this indicates to the external
PMA SERDES device to enter loopback
mode. When ’0,’ this indicates normal
operation

rx_code_group0[9:0] Input pma_rx_clk0 10-bit parallel received data from PMA
Sublayer (SERDES). This is
synchronous to pma_rx_clk0.

rx_code_group1[9:0] Input pma_rx_clk1 10-bit parallel received data from PMA
Sublayer (SERDES). This is
synchronous to pma_rx_clk1.

pma_rx_clk0 Input N/A Received clock signal from PMA
Sublayer (SERDES) at 62.5 MHz.

pma_rx_clk1 Input N/A Received clock signal from PMA
Sublayer (SERDES) at 62.5 MHz. This
is 180 degrees out of phase with
pma_rx_clk0.

en_cdet Output gtx_clk Enables the PMA Sublayer to perform
comma realignment. This is driven
from the PCS Receive Engine during
the Loss-Of-Sync state.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 39
UG155 March 24, 2008

R

Chapter 3

Generating and Customizing the Core

The Ethernet 1000BASE-X PCS/PMA or SGMII core is generated using the CORE
Generator. This chapter describes the GUI options used to generate and customize the core.

GUI Interface
Figure 3-1 displays the Ethernet 1000BASE-X PCS/PMA or SGMII customization screen,
used to set core parameters and options. For help starting and using CORE Generator on
your system, see the documentation included with ISE™, including the CORE Generator
Guide, at www.xilinx.com/support/software_manuals.htm.

Component Name
The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_.”

Figure 3-1: Core Customization Screen

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

40 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 3: Generating and Customizing the Core
R

Select Standard
Select from the following standards for the core:

• 1000BASE-X. 1000BASE-X Physical Coding Sublayer (PCS) functionality is designed
to the IEEE 802.3 specification. Depending on the choice of physical interface, the
functionality may be extended to include the 1000BASE-X Physical Medium
Attachment (PMA) sublayer. Default setting.

• SGMII. Provides the functionality to provide a Gigabit Media Independent Interface
(GMII) to Serial-GMII (SGMII) bridge, as defined in the Serial-GMII Specification
(Cisco Systems, ENG-46158). SGMII may be used to replace GMII at a much lower pin
count and for this reason often favored by PCB designers.

• Both (a combination of 1000BASE-X and SGMII). Combining the 1000BASE-X and
SGMII standards lets you dynamically configure the core to switch between
1000BASE-X and SGMII standards. The core can be switched by writing through the
MDIO Management Interface. For more information, see Chapter 9, “Configuration
and Status.”

Core Functionality
Figure 3-2 displays the Ethernet 1000BASE-X PCS/PMA or SGMII functionality screen.

Figure 3-2: 1000BASE-X Standard Options Screen

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 41
UG155 March 24, 2008

GUI Interface
R

Physical Interface

Depending on the target architecture, two physical interface options are available for the
core.

• RocketIO. Uses a RocketIO transceiver specific to the selected device family to extend
the 1000BASE-X functionality to include both PCS and PMA sub-layers. For this
reason, it is available only for Virtex-II Pro, Virtex-4 FX, Virtex-5 LXT, Virtex-5 SXT,
and Virtex-5 FXT devices. For additional information, see “RocketIO Transceiver
Logic” in Chapter 7.

• Ten Bit Interface (TBI). Available in all supported families and provides 1000BASE-X
or SGMII functionality with a parallel TBI used to interface to an external SERDES.
For more information, see “Ten-Bit-Interface Logic” in Chapter 6. Default setting.

MDIO Management Interface

Select this option to include the MDIO Management Interface to access the PCS
Configuration Registers. See “MDIO Management Interface” in Chapter 9.

If this option is not selected, the core is generated with a replacement configuration vector.
See “Optional Configuration Vector” in Chapter 9. The Management Interface is selected
by default.

Auto-Negotiation

Select this option to include Auto-Negotiation functionality with the core, available only if
the core includes the optional Management Interface. For more information, see Chapter
10, “Auto-Negotiation.” The default is to include Auto-Negotiation.

RocketIO Transceiver CRC Logic

This option is visible in the GUI only when a Virtex-II Pro device family is selected, and
then only when the RocketIO Interface is selected with the 1000BASE-X standard.

Select this option to use the built-in CRC functionality of the Virtex-II Pro RocketIO
transceiver. See Chapter 5, “Using the Virtex-II Pro RocketIO Transceiver CRC
Functionality.” This option is disabled (not displayed) by default.

SGMII/Dynamic Standard Switching Elastic Buffer Options
The SGMII/Dynamic Standard Switching Options screen, used to customize the Ethernet
1000BASE-X PCS/PMA or SGMII core, is only displayed if either SGMII or Both is selected
in the Select Standard section of the initial customization screen, and only if RocketIO is
selected as the Physical Standard.

http://www.xilinx.com

42 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 3: Generating and Customizing the Core
R

This screen lets you select the Receiver Elastic Buffer type to be used with the core. Before
selecting this option, see “Receiver Elastic Buffer Implementations” in Chapter 8.

Figure 3-3: SGMII/Dynamic Standard Switching Options Screen

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 43
UG155 March 24, 2008

Parameter Values in the XCO File
R

RocketIO Tile Configuration
The RocketIO Tile Configuration screen is only displayed if the RocketIO interface is used
with the Virtex-4 or Virtex-5 device families.

RocketIO transceivers for Virtex-4 FX and Virtex-5 device families are available in tiles,
each tile consisting of a pair of transceivers. The RocketIO Tile Selection has no effect on the
functionality of the core netlist, but determines the functionality of the example design
delivered with the core.

Depending on the option selected, the example design instantiates a single core netlist and
does one of the following:

• MGT A (0). Connects to RocketIO transceiver A

• MGT B (1). Connects to RocketIO transceiver B

• Both MGTs. Two instantiations of the core are created in the example design and
connected to both RocketIO transceiver A and B.

Parameter Values in the XCO File
XCO file parameters are used to run the CORE Generator from the command line. XCO file
parameter names and their values are similar to the names and values shown in the GUI,
except that underscore characters (_) may be used instead of spaces. The text in an XCO file
is not case sensitive.

Figure 3-4: RocketIO Tile Configuration Screen

http://www.xilinx.com

44 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 3: Generating and Customizing the Core
R

Table 3-1 describes the XCO file parameters, values and summarizes the GUI defaults. The
following is an example of the CSET parameters in an XCO file:

CSET component_name=gig_eth_pcs_pma_v9_1
CSET standard=1000BASEX
CSET physical_interface=TBI
CSET management_interface=true
CSET auto_negotiation=true
CSET mgt_crc_enabled=false
CSET sgmii_mode=10_100_1000
CSET rocketio_tile=A

Output Generation
The files output by the CORE Generator are placed in the CORE Generator project
directory and include the following:

• The netlist file for the core

• Supporting CORE Generator files

• Release notes and documentation

• Subdirectories containing an HDL example design

• Scripts to run the core through the back-end tools and simulate the core using either
Mentor Graphics® ModelSim®, Cadence® IUS, and Synopsys® simulators

See the Ethernet 1000BASE-X PCS/PMA or SGMII Getting Started Guide for a complete
description of the CORE Generator output files, simulation requirements, and detailed
information about the HDL example design.

Table 3-1: XCO File Values and Default Values

Parameter XCO File Values
Default GUI

Setting

component_name ASCII text starting with a letter and based upon
the following character set: a..z, 0..9 and _

gig_eth_pcs
_pma_v9_1

standard One of the following keywords: 1000BASEX,
SGMII, Both

1000BASEX

physical_interface One of the following keywords: TBI, RocketIO TBI

management_interface One of the following keywords: true, false true

auto_negotiation One of the following keywords: true, false true

mgt_crc_enabled One of the following keywords: true, false false

sgmii_mode One of the following keywords: 10_100_1000,
100_1000

• 10_100_1000 corresponds to “10/100/1000
Mbps (clock tolerance compliant with
Ethernet specification)“

• 100_1000 corresponds to “10/100/1000
Mbps (restricted tolerance for clocks) OR
100/1000 Mbps“

10_100_1000

rocketio_tile One of the following keywords: A, B, Both A

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 45
UG155 March 24, 2008

R

Chapter 4

Designing with the Core

This chapter provides information about creating your own designs using the Ethernet
1000BASE-X PCS/PMA or SGMII core. Design guidelines, as well as the variety of
implementations presented, are based on the example design delivered with the core. See
the Xilinx Ethernet 1000BASE-X PCS/PMA or SGMII Getting Started Guide for information
about the example design delivered with the core.

Note that not all implementations require all of the design steps defined in this chapter.
Carefully follow the provided logic design guidelines to ensure success.

Design Overview
An HDL example design built around the core is provided through the CORE Generator
and allows for a demonstration of core functionality using either a simulation package or
in hardware if placed on a suitable board. Four implementations of the core, based on the
provided example design, are illustrated in the following sections.

• “1000BASE-X Standard Using RocketIO Transceiver Example Design”

• “1000BASE-X Standard with TBI Example Design”

• “SGMII Standard Using a RocketIO Transceiver Example Design”

• “SGMII Standard with TBI Transceiver Example Design”

http://www.xilinx.com

46 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 4: Designing with the Core
R

1000BASE-X Standard Using RocketIO Transceiver Example Design

Figure 4-1 illustrates the example design in 1000BASE-X mode using the Virtex-II Pro or
Virtex-4 MGT, Virtex-5 GTP or Virtex-5 GTX transceiver. As illustrated, the example is split
between two hierarchical layers. The block level is designed so that it can be instantiated
directly into your design and performs the following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a RocketIO transceiver

The top level of the example design creates a specific example that can be simulated,
synthesized, implemented, and if required, placed on a suitable board and demonstrated
in hardware. The top level of the example design performs the following functions:

• Instantiates the block level from HDL

• Derives the clock management logic for RocketIO and the core

• Implements an external GMII

Figure 4-1: 1000BASE-X Standard Using a RocketIO Transceiver

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

Connect to

Client MA

PMA

(Connect to

Optical

ansceiver)

component_name_block

component_name_example_design

Tx

Elastic

Buffer

Transceiver

Clock
Management

Logic

RocketIO

Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 47
UG155 March 24, 2008

Design Overview
R

1000BASE-X Standard with TBI Example Design

Figure 4-2 illustrates the example design in 1000BASE-X mode using a TBI. As illustrated,
the example is split between two hierarchical layers. The block level is designed so that it
can be instantiated directly into customer designs and performs the following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to device IOBs, creating an external
TBI. See Chapter 6, “The Ten-Bit Interface.”

The top level of the example design creates a specific example that can be simulated,
synthesized, implemented, and if required, placed on a suitable board and demonstrated
in hardware. The top level of the example design performs the following functions:

• Instantiates the block level from HDL

• Derives the clock management logic for the core

• Implements an external GMII

Figure 4-2: Example Design 1000BASE-X Standard Using TBI

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

Out

TBI

IOBs
Out

IOBs
In

(DDR)

component_name_example_design

component_name_block

Tx
Elastic
Buffer

Clock
Management

Logic

Connect to
Client MAC

TBI
(Connect to
SERDES)

IOBs

In

http://www.xilinx.com

48 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 4: Designing with the Core
R

SGMII Standard Using a RocketIO Transceiver Example Design

Figure 4-3 illustrates the example design in SGMII mode using the Virtex-II Pro or Virtex-
4 MGT, Virtex-5 GTP or Virtex-5 GTX transceiver. This is also the example design created
when the Dynamic Switching capability between SGMII and 1000BASE-X standards is
present. As illustrated, the example is split between two hierarchical layers. The block level
is designed so that it can be instantiated directly into customer designs and performs the
following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a RocketIO transceiver

• Connects the client side GMII of the core to an SGMII Adaptation Module, which
provides the functionality to operate at speeds of 1 Gbps, 100 Mbps and 10 Mbps

The top level of the example design creates a specific example which can be simulated,
synthesized and implemented. The top level of the example design performs the following
functions:

• Instantiates the block level from HDL

• Derives the clock management logic for RocketIO and the core

• Implements an external GMII-style interface

Figure 4-3: Example Design Performing the SGMII Standard

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style
8-bit I/F

Serial GMII
(SGMII)

SGMII
Adaptation

Module

Clock
Management

Logic

Transceiver

Fabric
Rx

Elastic
Buffer

RocketIO

component_name_example_design

component_name_block

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 49
UG155 March 24, 2008

Design Overview
R

SGMII Standard with TBI Transceiver Example Design

Figure 4-3 illustrates the example design with the SGMII standard using a TBI. This is also
the example design created when the Dynamic Switching capability between SGMII and
1000BASE-X standards is present. As illustrated, the example is split between two
hierarchical layers. The block level is designed so that it can be instantiated directly into
customer designs and performs the following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to device IOBs, creating an external
TBI. See Chapter 6, “The Ten-Bit Interface.”

• Connects the client side GMII of the core to an SGMII Adaptation Module, which
provides the functionality to operate at speeds of 1 Gbps, 100 Mbps and 10 Mbps

The top level of the example design creates a specific example which can be simulated,
synthesized and implemented. The top level of the example design performs the following
functions:

• Instantiates the block level from HDL

• Derives the clock management logic for the core

• Implements an external GMII-style interface

Figure 4-4: Example Design Performing the SGMII Standard

Ethernet
1000BASE-X

PCS/PMA
Core

GMII

IOBs
In

IOBs
Out

GMII-style
8-bit I/F

SGMII
Adaptation

Module

Clock
Management

Logic

component_name_example_design

component_name_block

TBI

IOBs
Out

IOBs
In

(DDR)

TBI
(Connect to
SERDES)

http://www.xilinx.com

50 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 4: Designing with the Core
R

Design Guidelines

Generate the Core
Generate the core using the CORE Generator, as described in Chapter 3, “Generating and
Customizing the Core.”

Examine the Example Design Provided with the Core
Before implementing the core in your application, examine the example design provided
with the core to identify the steps that can be performed:

• Edit the HDL top level of the example design file to change the clocking scheme, add
or remove IOBs as required, and replace the GMII IOB logic with user-specific
application logic (for example, an Ethernet MAC).

• Synthesize the entire design.

The Xilinx Synthesis Tool (XST) script and Project file in the /implement/vhdl (or
/implement/verilog) directory may be adapted to include any added user’s HDL
files.

• Run the implement script in the /implement directory to create a top-level netlist for
the design.

The script may also run the Xilinx tools map, par, and bitgen to create a bitstream
that can be downloaded to a Xilinx device. SimPrim-based simulation models for the
entire design are also produced by the implement scripts.

• Simulate the entire design using the demonstration test bench provided in
/test/vhdl (or /test/verilog) as a template.

• Download the bitstream to a target device.

Implement the Ethernet 1000BASE-X PCS/PMA or SGMII Core
in Your Application

Before implementing your application, examine the example design delivered with the
core for information about the following:

• Instantiating the core from HDL

• Connecting the physical-side interface of the core (RocketIO transceiver or TBI)

• Deriving the clock management logic

It is expected that the block level module from the example design will be instantiated
directly into customer designs rather than the core netlist itself. The block level contains
the core and a completed physical interface.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 51
UG155 March 24, 2008

Design Guidelines
R

Write an HDL Application

After reviewing the example design delivered with the core, write an HDL application that
uses single or multiple instances of the block level module for the Ethernet 1000BASE-X
PCS/PMA or SGMII core. Client-side interfaces and operation of the core are described in
Chapter 5, “Using the Client-side GMII Data Path.” See the following information for
additional details:

• Using the Ethernet 1000BASE-X PCS/PMA or SGMII core in conjunction with the
1-Gigabit Ethernet MAC core in “Integrating with the 1-Gigabit Ethernet MAC Core,”
page 179.

• Using the Ethernet 1000BASE-X PCS/PMA or SGMII core in conjunction with the Tri-
Mode Ethernet MAC core in “Integrating with the Tri-Mode Ethernet MAC Core,”
page 185.

Synthesize your Design

Synthesize your entire design using the desired synthesis tool. The Ethernet 1000BASE-X
PCS/PMA or SGMII core is pre-synthesized and delivered as an NGC netlist—for this
reason, it appears as a black box to synthesis tools.

Create a Bitstream

Run the Xilinx tools map, par, and bitgen to create a bitstream that can be downloaded to
a Xilinx device. The UCF produced by the CORE Generator should be used as the basis for
the user UCF and care must be taken to constrain the design correctly. See Chapter 12,
“Constraining the Core” for more information.

Simulate and Download your Design

After creating a bitstream that can be downloaded to a Xilinx device, simulate the entire
design and download it to the desired device.

Know the Degree of Difficulty

An Ethernet 1000BASE-X PCS/PMA or SGMII core is challenging to implement in any
technology and as such, all Ethernet 1000BASE-X PCS/PMA or SGMII core applications
require careful attention to system performance requirements. Pipelining, logic mapping,
placement constraints, and logic duplication are all methods that help boost system
performance.

Review Table 4-1 to determine the relative level of difficulty associated with different
designs. This relates to meeting the core’s required system clock frequency of 125 MHz.

Table 4-1: Degree of Difficulty for Various Implementations

Device Family Difficulty

Virtex-II Easy

Virtex-II Pro Easy

Virtex-4 Easy

Virtex-5 Easy

Spartan™-3 Difficult

http://www.xilinx.com

52 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 4: Designing with the Core
R

Keep it Registered

To simplify timing and to increase system performance in an FPGA design, keep all inputs
and outputs registered between the user application and the core. All inputs and outputs
from the user application should come from, or connect to, a flip-flop. While registering
signals may not be possible for all paths, it simplifies timing analysis and makes it easier
for the Xilinx tools to place and route the design.

Recognize Timing Critical Signals

The UCF provided with the example design for the core identifies the critical signals and
the timing constraints that should be applied. See Chapter 12, “Constraining the Core”for
more information.

Use Supported Design Flows

The core is pre-synthesized and is delivered as an NGC netlist. The example
implementation scripts provided currently uses ISE 10.1 as the synthesis tool for the HDL
example design delivered with the core. Other synthesis tools may be used for the user
application logic. The core will always be unknown to the synthesis tool and should
appear as a black box. Post synthesis, only ISE 10.1i tools are supported.

Make Only Allowed Modifications

The Ethernet 1000BASE-X PCS/PMA or SGMII core should not be modified. Modifications
may have adverse effects on system timing and protocol compliance. Supported user
configurations of the Ethernet 1000BASE-X PCS/PMA or SGMII core can only be made by
the selecting the options from within CORE Generator when the core is generated. See
Chapter 3, “Generating and Customizing the Core.”

Spartan-3E Difficult

Spartan-3A Difficult

Table 4-1: Degree of Difficulty for Various Implementations

Device Family Difficulty

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 53
UG155 March 24, 2008

R

Chapter 5

Using the Client-side GMII Data Path

This chapter provides general guidelines for creating designs using client-side GMII of the
Ethernet 1000BASE-X PCS/PMA or SGMII core.

Designing with the Client-side GMII for the 1000BASE-X Standard
It is not within the scope of this document to define the Gigabit Media Independent
Interface (GMII)— see clause 35 of the IEEE 802.3 specification for information about the
GMII. Timing diagrams and descriptions are provided only as an informational guide.

GMII Transmission
This section includes figures that illustrate GMII transmission. In these figures the clock is
not labeled. The source of this clock signal varies, depending on the options selected when
the core is generated. For more information on clocking, see Chapters 6, 7 and 8.

Normal Frame Transmission

Normal outbound frame transfer timing is illustrated in Figure 5-1. This figure shows that
an Ethernet frame is proceeded by an 8-byte preamble field (inclusive of the Start of Frame
Delimiter (SFD)), and completed with a 4-byte Frame Check Sequence (FCS) field. This
frame is created by the MAC connected to the other end of the GMII. The PCS logic itself
does not recognize the different fields within a frame and will treat any value placed on
gmii_txd[7:0] within the gmii_tx_en assertion window as data.

Figure 5-1: GMII Normal Frame Transmission

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble FCS

S
F

D

http://www.xilinx.com

54 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

Error Propagation

A corrupted frame transfer is illustrated in Figure 5-2. An error may be injected into the
frame by asserting gmii_tx_er at any point during the gmii_tx_en assertion window.
The core ensures that all errors are propagated through both transmit and receive paths so
that the error is eventually detected by the link partner.

GMII Reception
This section includes figures that illustrate GMII reception. In these figures the clock is not
labelled. The source of this clock signal will vary, depending on the options used when the
core is generated. For more information on clocking, see Chapters 6, 7 and 8.

Normal Frame Reception

The timing of normal inbound frame transfer is illustrated in Figure 5-3. This shows that
Ethernet frame reception is proceeded by a preamble field. The IEEE 802.3 specification
(see clause 35) allows for up to all of the seven preamble bytes that proceed the Start of
Frame Delimiter (SFD) to be lost in the network. The SFD will always be present in well-
formed frames.

Figure 5-2: GMII Error Propagation Within a Frame

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble FCS

S
F

D

Figure 5-3: GMII Normal Frame Reception

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 55
UG155 March 24, 2008

Designing with the Client-side GMII for the 1000BASE-X Standard
R

Normal Frame Reception with Extension Field

In accordance with the IEEE 802.3, clause 36, state machines for the 1000BASE-X PCS,
gmii_rx_er may be driven high following reception of the end frame in conjunction with
gmii_rxd[7:0] containing the hexadecimal value of 0x0F to signal carrier extension.
This is illustrated in Figure 5-4. See Appendix D, “1000BASE-X State Machines” for more
information.

This is not an error condition and may occur even for full-duplex frames.

Frame Reception with Errors

The signal gmii_rx_er when asserted within the assertion window signals that a frame
was received with a detected error (Figure 5-5). In addition, a late error may also be
detected during the Carrier Extension interval. This is indicated by gmii_rxd[7:0]
containing the hexadecimal value 0x1F, also illustrated in Figure 5-5.

Figure 5-4: GMII Normal Frame Reception with Carrier Extension

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D 0x0F

Figure 5-5: GMII Frame Reception with Errors

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D 0x0F 0x0F

0x1F

error during frame error during extension

http://www.xilinx.com

56 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

False Carrier

Figure 5-6 illustrates the GMII signaling for a False Carrier condition. False Carrier is
asserted by the core in response to certain error conditions, such as a frame with a
corrupted start code, or for random noise.

status_vector[4:0] signals

Bit[0]: Link Status

This signal indicates the status of the link. This information is duplicated in the optional
PCS Management Registers, if present (“Status Register (Register 1),”bit 1.2). However,
this would always serve a useful function as a Link Status LED.

When high, the link is valid: synchronization of the link has been obtained and Auto-
Negotiation (if present and enabled) has completed.

When low, a valid link has not been established. Either link synchronization has failed or
Auto-Negotiation (if present and enabled) has failed to complete.

Note: this bit is identical to the SYNC_ACQUIRED_STATUS port which was present in previous
versions of the core.

Bit[1]: Link Synchronization

This signal indicates the state of the synchronization state machine (IEEE802.3 figure 36-9).
This signal is similar to Bit[0] (Link Status), but is NOT qualified with Auto-Negotiation.

When high, link synchronization has been obtained.

When low, synchronization has failed.

Figure 5-6: False Carrier Indication

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

False Carrier Indication

0x0E

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 57
UG155 March 24, 2008

Designing with the Client-side GMII for the 1000BASE-X Standard
R

Bits[4:2]: Code Group Reception Indicators

These signals indicate the reception of particular types of group, as defined below.
Figure 5-7 illustrates the timing of these signals, showing that they are aligned with the
code groups themselves, as they appear on the output gmii_rxd[7:0] port.

Bit[2]: RUDI(/C/)

The core is receiving /C/ ordered sets (Auto-Negotiation Configuration sequences) as
defined in IEEE802.3 clause 36.2.4.10.

Bit[3]: RUDI(/I/)

The core is receiving /I/ ordered sets (Idles) as defined in IEEE802.3 clause 36.2.4.12.

Bit[4]: RUDI(INVALID)

The core has received invalid data whilst receiving/C/ or /I/ ordered set as defined in
IEEE802.3 clause 36.2.5.1.6. This may be caused, for example, by bit errors occurring in any
clock cycle of the /C/ or /I/ ordered set: Figure 5-7 illustrates an error occurring in the
second clock cycle of an /I/ idle sequence.

Using the Virtex-II Pro RocketIO Transceiver CRC Functionality
When the core is generated with the Virtex-II Pro RocketIO transceiver, the CRC
functionality of the RocketIO transceiver may be enabled. When the core is generated in
this mode (see “RocketIO Transceiver CRC Logic” in Chapter 3), the core ensures that the
/K28.5/ characters are left-justified in the RocketIO transceiver internal two-byte data
path. This is done by ensuring that the /K28.5/ is strobed into the RocketIO transceiver on
the rising edge of TXUSRCLK2 only when TXUSRCLK is high. For more information, see the
Virtex-II Pro RocketIO Transceiver User Guide.

Caution! Do not use the Virtex-II Pro RocketIO CRC functionality when using the SGMII
standard.

GMII Transmission

The timing of normal outbound frame transfer with the RocketIO transceiver CRC
functionality is illustrated in Figure 5-8. This figure shows that an Ethernet frame can be
completed by allowing the RocketIO transceiver to create the Frame Check Sequence field
(FCS) using the in-built CRC logic. For this to be successful, four place-holder bytes must

Figure 5-7: status_vector[4:2] timing

gmii_rxd[7:0]
/I2/ /I2/ /I2/D0 /I2/D1/C1/D0 D1/C2/D0 D1/C1/D0 D1/C2/ K

status_vector[2]
“RUDI(/C/)”

status_vector[3]
“RUDI(/I/)”

status_vector[4]
“RUDI(INVALID)”

http://www.xilinx.com

58 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

be included in the frame supplied to the core. The RocketIO transceiver will replace these
four bytes with the calculated CRC value.

GMII Reception

The timing of normal inbound frame transfer with RocketIO transceiver CRC functionality
is illustrated in Figure 5-9. The RocketIO transceiver calculates the CRC value of the
received frame and checks it against that contained in the frames FCS field. The RocketIO
transceiver will assert RXCHECKINGCRC and RXCRCERR signals, as defined in the Virtex-II
Pro RocketIO Transceiver User Guide. Figure 5-9 illustrates a frame received with a correct
FCS field since RXCRCERR is not asserted.

Please note that RXCHECKINGCRC and RXCRCERR are obtained directly from the output of
the RocketIO transceiver. The core receiver behavior is unchanged.

Figure 5-8: GMII Frame Transmission with RocketIO Transceiver CRC Logic
Enabled

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble

4 place holder bytes

S
F

D

Figure 5-9: GMII Frame Reception with the RocketIO Transceiver CRC Logic
Enabled

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D

RXCHECKINGCRC

RXCRCERR

3 clock periods

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 59
UG155 March 24, 2008

Designing with Client-side GMII for the SGMII Standard
R

Designing with Client-side GMII for the SGMII Standard

Overview
When the core is generated for the SGMII standard, changes are made to the core that affect
the PCS Management Registers and the Auto-Negotiation function (see “Select Standard”
in Chapter 3). However, the data path through both transmitter and receiver sections of the
core remains unchanged.

GMII Transmission

1 Gigabit per Second Frame Transmission

The timing of normal outbound frame transfer is illustrated in Figure 5-10. At 1 Gbps
speed, the operation of the transmitter GMII signals remains identical to that described in
“Designing with the Client-side GMII for the 1000BASE-X Standard.”

100 Megabit per Second Frame Transmission

The operation of the core remains unchanged. It is the responsibility of the client logic (for
example, an Ethernet MAC) to enter data at the correct rate. When operating at a speed of
100 Mbps, every byte of the MAC frame (from preamble field to the Frame Check
Sequence field, inclusive) should each be repeated for 10 clock periods to achieve the
desired bit rate, as illustrated in Figure 5-11. It is also the responsibility of the client logic to
ensure that the interframe gap period is legal for the current speed of operation.

Figure 5-10: GMII Frame Transmission at 1 Gbps

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble FCS
S

F
D

D
O

D
1

userclk2

Figure 5-11: GMII Data Transmission at 100 Mbps

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble SFD D0 D1

10 clock periods

userclk2

http://www.xilinx.com

60 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

10 Megabit per Second Frame Transmission

The operation of the core remains unchanged. It is the responsibility of the client logic (for
example, an Ethernet MAC), to enter data at the correct rate. When operating at a speed of
10 Mbps, every byte of the MAC frame (from destination address to the frame check
sequence field, inclusive) should each be repeated for 100 clock periods to achieve the
desired bit rate. It is also the responsibility of the client logic to ensure that the interframe
gap period is legal for the current speed of operation.

GMII Reception

1 Gigabit per Second Frame Reception

The timing of normal inbound frame transfer is illustrated in Figure 5-12. At 1 Gbps speed,
the operation of the receiver GMII signals remains identical to that described in
“Designing with the Client-side GMII for the 1000BASE-X Standard” in Chapter 5.

100 Megabit per Second Frame Reception

The operation of the core remains unchanged. When operating at a speed of 100 Mbps,
every byte of the MAC frame (from destination address to the frame check sequence field,
inclusive) is repeated for 10 clock periods to achieve the desired bit rate. See Figure 5-13. It
is the responsibility of the client logic, for example an Ethernet MAC, to sample this data
correctly.

Figure 5-12: GMII Frame Reception at 1 Gbps

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D
D

0

D
1

userclk2

Figure 5-13: GMII Data Reception at 100 Mbps

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble SFD D0 D1

10 clock periods

userclk2

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 61
UG155 March 24, 2008

Using the GMII as an Internal Connection
R

10 Megabit per Second Frame Reception

The operation of the core remains unchanged. When operating at a speed of 10 Mbps,
every byte of the MAC frame (from destination address to the frame check sequence field,
inclusive) is repeated for 100 clock periods to achieve the desired bit rate. It is the
responsibility of the client logic (for example, an Ethernet MAC) to sample this data
correctly.

Using the GMII as an Internal Connection
The client-side GMII of the core may be used to connect to an internally integrated Media
Access Controller. For details, see “Integrating with the 1-Gigabit Ethernet MAC Core,”
page 179 and “Integrating with the Tri-Mode Ethernet MAC Core,” page 185.

Implementing External GMII

GMII Transmitter Logic
When implementing an external GMII, the GMII transmitter signals will be synchronous to
their own clock domain. The core must be used with a Transmitter Elastic Buffer to transfer
these GMII transmitter signals onto the cores internal 125 MHz reference clock (gtx_clk
when using the TBI; userclk2 when using the RocketIO transceiver). A Transmitter
Elastic Buffer is provided for the 1000BASE-X standard by the example design provided
with the core. See the Ethernet 1000BASE-X PCS/PMA or SGMII Getting Started Guide for
more information.

http://www.xilinx.com

62 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

Virtex-II Pro and Virtex-II Devices

Figure 5-14 illustrates how to create an external GMII transmitter in a Virtex-II family
device. The signal names and logic shown on the figure exactly match those delivered with
the example design.

Figure 5-14 shows that the input transmitter signals are registered in device IOBs before
presenting them to the FPGA fabric. This logic achieves the required setup and hold times.

Figure 5-14: GMII Transmitter Logic

gmii_tx_clk
IBUFG

IOB LOGIC

IPAD
gmii_tx_clk_ibufg

gmii_txd[0]
IBUF

gmii_txd_ibuf[0]
D Q

gmii_tx_en
gmii_tx_en_ibuf

gmii_tx_er
gmii_tx_er_ibuf

gmii_txd[0]

gmii_tx_en

gmii_tx_er

BUFG

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

IBUF

IBUF

D Q

D Q

gmii_tx_clk_bufg

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

Transmitter
Elastic
Buffer

userclk2 (if RocketIO is used)
gtx_clk (if TBI is used)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 63
UG155 March 24, 2008

Implementing External GMII
R

Spartan-3, Spartan-3E and Spartan-3A Devices

The logic described previously for Virtex-II and Virtex-II Pro devices does not meet the
input setup and hold requirements for GMII with Spartan-3, Spartan-3E, and Spartan-3A
devices. A DCM must be used on the gmii_tx_clk clock path, as illustrated in
Figure 5-15. This is performed by the top-level example design delivered with the core (all
signal names and logic match Figure 5-15). This DCM circuitry may optionally be used in
other families.

Phase-shifting may then be applied to the DCM to fine-tune the setup and hold times at the
GMII IOB input flip-flops. The fixed phase shift is applied to the DCM with the example
UCF for the example design. See “Constraints When Implementing an External GMII” in
Chapter 12.

Figure 5-15: External GMII Transmitter Logic for Spartan-3, Spartan-3E and Spartan-3A Devices

gmii_txd[0]
IBUF

gmii_txd_ibuf[0]
D Q

gmii_tx_en
gmii_tx_en_ibuf

gmii_tx_er
gmii_tx_er_ibuf

gmii_txd[0]

gmii_tx_en

gmii_tx_er

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

IBUF

IBUF

D Q

D Q

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

Transmitter
Elastic
Buffer

userclk2 (if RocketIO is used)
gtx_clk (if TBI is used)

gmii_tx_clk
IBUFG

IOB LOGIC

IPAD
gmii_tx_clk_ibufg

BUFG

gmii_tx_clk_bufg

DCM

CLKIN CLK0

FB

http://www.xilinx.com

64 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

Virtex-4 Devices

The logic described previously for Virtex-II and Virtex-II Pro devices does not meet the
input setup and hold requirements for GMII with Virtex-4 devices. Two possible solutions
are:

1. A DCM may be used on the gmii_tx_clk clock path for the Spartan-3 family, as
illustrated in Figure 5-15.

2. Input Delay Elements may be used on the GMII data path, as illustrated in Figure 5-16.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the
GMII IOB input flip-flops. The delay is applied to the IODELAY element using
constraints in the UCF; these can be edited if desired. See “Constraints When
Implementing an External GMII” in Chapter 12 for more information.

Figure 5-16: External GMII Transmitter Logic for Virtex-4 Devices

gmii_tx_clk
IBUFG

IOB LOGIC

IPAD

gmii_txd[0]
IBUF

D Q

gmii_tx_en

gmii_tx_er

gmii_txd[0]

gmii_tx_en

gmii_tx_er

BUFG

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

IBUF

IBUF

D Q

D Q

gmii_tx_clk_bufg

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

Transmitter
Elastic
Buffer

userclk2 (if RocketIO is used)
gtx_clk (if TBI is used)

IDELAY

IDELAY

IDELAY

IDELAY

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 65
UG155 March 24, 2008

Implementing External GMII
R

Virtex-5 Devices

Figure 5-17 illustrates how to create an external GMII transmitter in a Virtex-5 family
device. The signal names and logic shown on the figure exactly match those delivered with
the example design.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the GMII
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See “Constraints When Implementing an External
GMII” in Chapter 12 for more information.

Figure 5-17: External GMII Transmitter Logic for Virtex-5 Devices

gmii_tx_clk
IBUFG

IOB LOGIC

IPAD

gmii_txd[0]
IBUF

D Q

gmii_tx_en

gmii_tx_er

gmii_txd[0]

gmii_tx_en

gmii_tx_er

BUFG

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

IBUF

IBUF

D Q

D Q

gmii_tx_clk_bufg

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

Transmitter
Elastic
Buffer

userclk2 (if RocketIO is used)
gtx_clk (if TBI is used)

IODELAY

IODELAY

IODELAY

IODELAY

http://www.xilinx.com

66 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

GMII Receiver Logic
Figure 5-18 illustrates an external GMII receiver created in a Virtex-II family device. The
signal names and logic shown in the figure exactly match those delivered with the example
design when the GMII is selected. If other families are selected, equivalent primitives and
logic specific to that family is automatically used in the example design.

Figure 5-18 also shows that the output receiver signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the receiver GMII clock is
also shown. This uses an IOB output Double-Data-Rate (DDR) register so that the clock
signal produced incurs exactly the same delay as the data and control signals. This clock
signal, gmii_rx_clk, is inverted so that the rising edge of gmii_rx_clk occurs in the
center of the data valid window, which maximizes setup and hold times across the
interface. All receiver logic is synchronous to a single clock domain.

The clock name varies depending on the CORE Generator options. When used with the
RocketIO transceiver, the clock name is userclk2; when used with the TBI, the clock
name is gtx_clk. For more information on clocking, see Chapters 6, 7 and 8.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 67
UG155 March 24, 2008

Implementing External GMII
R

Figure 5-18: External GMII Receiver Logic

IOB LOGIC

OBUFT

FDDRRSE

OPAD

DQ '0'

'1'

gmii_rxd_obuf[0]
OPAD

OPAD

OPAD

OBUFT

OBUFT

OBUFT

DQ

DQ

DQ

DQ

gmii_rx_dv_obuf

gmii_rx_er_obuf

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rx_clk
gmii_rx_clk_obuf

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

gmii_isolate

userclk2 (if RocketIO is used)
gtx_clk (if TBI is used)

http://www.xilinx.com

68 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 5: Using the Client-side GMII Data Path
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 69
UG155 March 24, 2008

R

Chapter 6

The Ten-Bit Interface

This chapter provides general guidelines for creating 1000BASE-X, SGMII or Dynamic
Standards Switching designs using the Ten-Bit Interface (TBI). An explanation of the TBI
logic in all supported device families is provided, as well as examples in which multiple
instantiations of the core are required. Whenever possible, clock sharing should occur to
save device resources.

Ten-Bit-Interface Logic
The example design delivered with the core is split between two hierarchical layers, as
illustrated in Figure 4-2. The block level is designed so that it can be instantiated directly
into customer designs and provides the following functionality:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to device IOBs, creating an external
TBI

The TBI logic implemented in the block level is illustrated in all the figures in this chapter.

Transmitter Logic
Figure 6-1 illustrates the use of the physical transmitter interface of the core to create an
external TBI in a Virtex-II family device. The signal names and logic shown exactly match
those delivered with the example design when TBI is chosen. If other families are chosen,
equivalent primitives and logic specific to that family will automatically be used in the
example design.

Figure 6-1 shows that the output transmitter data path signals are registered in device IOBs
before driving them to the device pads. The logic required to forward the transmitter clock
is also shown. The logic uses an IOB output Double-Data-Rate (DDR) register so that the
clock signal produced incurs exactly the same delay as the data and control signals. This
clock signal, pma_tx_clk, is inverted with respect to gtx_clk so that the rising edge of
pma_tx_clk occurs in the center of the data valid window to maximize setup and hold
times across the interface.

http://www.xilinx.com

70 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 6: The Ten-Bit Interface
R

Receiver Logic

Virtex-II and Virtex-II Pro Devices

Figure 6-2 illustrates an external receiver TBI in Virtex-II devices. The signal names and
logic displayed precisely match those delivered with the example design when the TBI is
chosen.

Figure 6-2 shows that the input receiver signals are registered in device IOB Double-Data
Rate (DDR) input registers, alternatively on the rising edges of both pma_rx_clk0_bufg
and pma_rx_clk1_bufg (pma_rx_clk0 and pma_rx_clk1 are 180 degrees out of
phase with each other). This splits the input TBI data bus, rx_code_group[9:0], up into
two buses: rx_code_group0_reg[9:0] and rx_code_group1_reg[9:0],

Figure 6-1: Ten-Bit Interface Transmitter Logic

IPAD

IBUFG

IOB LOGIC

gtx_clk gtx_clk_ibufg
(125 MHz)

BUFG

gtx_clk_bufg

pma_tx_clk
OBUF

FDDRRSE

IOB LOGIC

OPAD

D Q

D Q

pma_tx_clk_obuf

'0'

'1'

D Q
tx_code_group[0]

OBUF

OPAD
tx_code_group_reg[0]

D Q
tx_code_group[9]

OBUF

OPAD
tx_code_group_reg[9]

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

tx_code_group_int[0]

tx_code_group_int[9]

gtx_clk

tx_code_group[0]

tx_code_group[9]

component_name_block (Block Level from example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 71
UG155 March 24, 2008

Ten-Bit-Interface Logic
R

synchronous to pma_rx_clk0_bufg and pma_rx_clk1_bufg, respectively. These
busses are then immediately registered inside the core on their respective clock.

Figure 6-2: Ten-Bit-Interface Receiver Logic

component_name_block (Block Level from example design)

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

rx_code_group_ibuf[0]

DQ

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk0_ibufg

DQ

pma_rx_clk1
IBUFG

IOB LOGIC

IPAD

BUFG

pma_rx_clk1_ibufgpma_rx_clk1

rx_code_group0[0]

rx_code_group1[0] rx_code_group1_reg[0]

rx_code_group0_reg[0]

pma_rx_clk0_bufg
(62.5 MHz)

pma_rx_clk1_bufg
(62.5 MHz)

http://www.xilinx.com

72 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 6: The Ten-Bit Interface
R

Spartan-3, Spartan-3E and Spartan-3A Devices

The logic described previously for Virtex-II and Virtex-II Pro devices does not meet the
input setup and hold requirements for TBI with Spartan-3, Spartan-3E and Spartan-3A
devices. A DCM must be used on both the pma_rx_clk0 and pma_rx_clk1 clock paths
(see Figure 6-3). This is performed by the example design delivered with the core (all signal
names and logic match Figure 6-3).

Phase shifting may then be applied to the DCM to fine-tune the setup and hold times at the
TBI IOB input flip-flops. Fixed phase shift is applied to the DCM using constraints in the
example UCF for the example design. See “Constraints When Implementing an External
GMII” in Chapter 12 for more information.

Figure 6-3: TBI Receiver Logic for Spartan-3, Spartan-3E, and Spartan-3A Devices

component_name_block (Block Level from example design)

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

rx_code_group_ibuf[0]

DQ

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

DQ

pma_rx_clk1
IBUFG

IOB LOGIC

IPAD

BUFG

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0] rx_code_group1_reg[0]

rx_code_group0_reg[0]

DCM

CLKINCLK0

FB

DCM

CLKINCLK0

FB

pma_rx_clk0_bufg
(62.5 MHz)

pma_rx_clk1_bufg
(62.5 MHz)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 73
UG155 March 24, 2008

Ten-Bit-Interface Logic
R

Virtex-4 Devices

Method 1

The Virtex-4 FPGA logic used by the example design delivered with the core is illustrated
in Figure 6-4. This shows a Virtex-4 device IDDR primitive used with the DDR_CLK_EDGE
attribute set to SAME_EDGE (see the Virtex-4 FPGA User Guide). This uses local inversion of
pma_rx_clk0 within the IOB logic to receive the rx_code_group[9:0] data bus on
both the rising and falling edges of pma_rx_clk0. The SAME_EDGE attribute causes the
IDDR to output both Q1 and Q2 data on the rising edge of pma_rx_clk0.

For this reason, pma_rx_clk0 can be routed to both pma_rx_clk0 and pma_rx_clk1
clock inputs of the core as illustrated.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other since the falling edge of pma_rx_clk0 is used in place
of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the case.

The IDELAY elements can be adjusted to fine-tune the setup and hold times at the TBI IOB
input flip-flops. The delay is applied to the IDELAY elements using constraints in the UCF;
these can be edited if desired. See “Ten-Bit Interface Constraints” in Chapter 12 for more
information.

Figure 6-4: Ten-Bit Interface Receiver Logic - Virtex-4 Device (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]

IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]
rx_code_group1_reg[0]

rx_code_group0_reg[0]
IDDR

Q1

D
Q2

C

IDELAY

IDELAY

http://www.xilinx.com

74 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 6: The Ten-Bit Interface
R

Method 2

This logic from method 1 relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other since the falling edge of pma_rx_clk0 is used in
place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case. If not, then the logic of Figure 6-5 illustrates an alternative implementation where
both pma_rx_clk0 and pma_rx_clk1 are used as intended. Each bit of
rx_code_group[9:0] must be routed to two separate device pads.

Figure 6-5: Alternate Ten-Bit Interface Receiver Logic for Virtex-4 Devices

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

rx_code_group0_reg[0]
DQ

pma_rx_clk1
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

IOB LOGIC

rx_code_group1_reg[0]
DQ

rx_code_group[0]

pma_rx_clk0_bufg
(62.5 MHz)

pma_rx_clk1_bufg
(62.5 MHz)

BUFG

IDELAY

IDELAY

IDELAY

IDELAY

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 75
UG155 March 24, 2008

Ten-Bit-Interface Logic
R

Virtex-5 Devices

Method 1

The Virtex-5 FPGA logic used by the example design delivered with the core is illustrated
in Figure 6-6. This shows a Virtex-5 device IDDR primitive used with the DDR_CLK_EDGE
attribute set to SAME_EDGE (see the Virtex-5 FPGA User Guide). This uses local inversion of
pma_rx_clk0 within the IOB logic to receive the rx_code_group[9:0] data bus on
both the rising and falling edges of pma_rx_clk0. The SAME_EDGE attribute causes the
IDDR to output both Q1 and Q2 data on the rising edge of pma_rx_clk0.

For this reason, pma_rx_clk0 can be routed to both pma_rx_clk0 and pma_rx_clk1
clock inputs of the core as illustrated.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other because the falling edge of pma_rx_clk0 is used in
place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the TBI
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See “Ten-Bit Interface Constraints” in Chapter 12 for
more information.

Figure 6-6: Ten-Bit Interface Receiver Logic - Virtex-5 Device (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]

IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]
rx_code_group1_reg[0]

rx_code_group0_reg[0]
IDDR

Q1

D
Q2

C

IODELAY

IODELAY

http://www.xilinx.com

76 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 6: The Ten-Bit Interface
R

Method 2

This logic from method 1 relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other because the falling edge of pma_rx_clk0 is used in
place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case. If not, the logic of Figure 6-7 illustrates an alternate implementation where both
pma_rx_clk0 and pma_rx_clk1 are used as intended. Each bit of
rx_code_group[9:0] must be routed to two separate device pads. The IODELAY
elements shown on Figure 6-7 can be used to compensate for any bus skew that has
resulted.

Figure 6-7: Alternate Ten-Bit Interface Receiver Logic - Virtex-5 Devices

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

rx_code_group0_reg[0]
DQ

pma_rx_clk1
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

IOB LOGIC

rx_code_group1_reg[0]
DQ

rx_code_group[0]

pma_rx_clk0_bufg
(62.5 MHz)

pma_rx_clk1_bufg
(62.5 MHz)

BUFG

IODELAY

IODELAY

IODELAY

IODELAY

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 77
UG155 March 24, 2008

Clock Sharing across Multiple Cores with TBI
R

Clock Sharing across Multiple Cores with TBI
Figure 6-8 illustrates sharing clock resources across multiple instantiations of the core
when using the TBI. gtx_clk may be shared between multiple cores, resulting in a
common clock domain across the device.

The receiver clocks pma_rx_clk0 and pma_rx_clk1 cannot be shared. Each core will be
provided with its own versions of these clocks from its externally connected SERDES.
Figure 6-8 illustrates the receiver clock logic used for the Virtex-II family. See “Receiver
Logic,” page 70, for a description of the clock logic for other device families.

Figure 6-8 illustrates only two cores. However, more can be added using the same
principle. This is done by instantiating the cores using the block level (from the example
design) and sharing gtx_clk across all instantiations.

Figure 6-8: Clock Management, Multiple Core Instances with Ten-Bit Interface

Block Level

IBUFGBUFG

pma_rx_clk0#1

Ethernet 1000BASE-X
PCS/PMA

 or SGMII Core

pma_rx_clk0

IBUFGBUFG

pma_rx_clk1#1pma_rx_clk1

Customer Design

gtx_clk

IBUFGBUFG

pma_rx_clk0#2

Ethernet 1000BASE-X
PCS/PMA

 or SGMII Core

pma_rx_clk0

IBUFGBUFG

pma_rx_clk1#2pma_rx_clk1

gtx_clk

BUFGIBUFG

gtx_clk
(125MHz)

Block Level

http://www.xilinx.com

78 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 6: The Ten-Bit Interface
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 79
UG155 March 24, 2008

R

Chapter 7

1000BASE-X with RocketIO
Transceivers

This chapter provides general guidelines for creating 1000BASE-X designs that use
RocketIO transceivers for Virtex-II Pro, Virtex-4, and Virtex-5 devices. Information about
RocketIO transceiver and core logic in all supported device families is provided, as well as
information about designs requiring multiple instantiations of the core. Note that clock
sharing should occur whenever possible to save device resources.

RocketIO Transceiver Logic
The example is split between two discrete hierarchical layers, as illustrated in Figure 4-1.
The block level is designed so that it can be instantiated directly into customer designs and
provides the following functionality:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a Virtex-II Pro, Virtex-4, or Virtex-5
RocketIO transceiver

The logic implemented in the block level is illustrated in all the figures in this chapter.

Virtex-II Pro Devices
The core is designed for seamless integration with the Virtex-II Pro RocketIO Multi-Gigabit
Transceiver (MGT). Figure 7-1 illustrates the connections and logic required between the
core and the MGT—the signal names and logic in the figure precisely match those
delivered with the example design when an MGT is used.

Some modifications can be made to the MGT. For example, REFCLK may be used instead of
BREFCLK. See the RocketIO Transceiver User Guide (UG024) for details.

The placement of the flip-flop that connects to ENMCOMMAALIGN and ENPCOMMAALIGGN is
important (see Figure 7-1). For detailed information, see “Virtex-II Pro RocketIO MGTs for
1000BASE-X Constraints,” and the RocketIO Transceiver User Guide.

Note: The brefclk differential pair applied to the MGT is of frequency 62.5 MHz.

http://www.xilinx.com

80 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Figure 7-1: 1000BASE-X Connection to a Virtex-II Pro MGT

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-II Pro
RocketIO

(GT_ETHERNET_1)

BREFCLK2

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

DCM

CLKIN CLK0

FB

BUFG

CLK2X180
BUFG

userclk (62.5MHz)

userclk2 (125MHz)

IPAD
IBUFGDS

IOB LOGIC

brefclkp

IPAD
brefclkn

brefclk (62.5MHz)

dcm_locked

LOCKED

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxdisperr

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

mgt_tx_reset

mgt_rx_reset RXRESET

TXRESET

RXBUFSTATUS[1:0]

RXCHARISCOMMA

RXCHARISK

RXCLKCORCNT[2:0]

RXDATA[7:0]

RXDISPERR

LOOPBACK[1:0]

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

BREFCLK

REFCLK2

REFCLK

REFCLKSEL

NC

NC

NC

GND

ENPCOMMAALIGN

ENMCOMMAALIGN
D Q

RXRECCLK

RXPOLARITY

TXPOLARITY

TXFORCECRCERR

TXINHIBIT

GND

GND

component_name_block
(Block Level from
example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 81
UG155 March 24, 2008

RocketIO Transceiver Logic
R

Virtex-4 FX Devices
The core is designed to integrate with the Virtex-4 RocketIO MGT. Figure 7-2 illustrates the
connections and logic required between the core and MGT—the signal names and logic in
the figure precisely match those delivered with the example design when an MGT is used.

Note: A small logic shim (included in the block-level wrapper) is required to convert between the
port differences between the Virtex-II Pro and Virtex-4 RocketIO transceivers.

The MGT clock distribution in Virtex-4 devices is column-based and consists of multiple
MGT tiles (each tile contains two MGTs). For this reason, the MGT wrapper delivered with
the core always contains two MGT instantiations, even if only a single MGT is in use.
Figure 7-2 illustrates a single MGT tile for clarity.

A GT11CLK_MGT primitive is also instantiated to derive the reference clocks required by
the MGT column-based tiles. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide
(UG076) for information about layout and clock distribution.

The 250 MHz reference clock from the GT11CLK_MGT primitive is routed to the MGT,
configured to internally synthesize a 125 MHz clock. This is output on the TXOUTCLK1
port of the MGT and after placed onto global clock routing, can be used by all core logic.
This clock is input back into the MGT on the user interface clock ports rxusrclk2 and
txusrclk2. With the attribute settings applied to the MGT from the example design, the
txusrclk and rxusrclk ports are derived internally within the MGT using the internal
clock dividers and do not need to be provided from the FPGA fabric.

The Virtex-4 FX MGTs require the inclusion of a calibration block in the fabric logic; the
example design provided with the core instantiates calibration blocks as required.
Calibration blocks require a clock source of between 25 to 50 MHz that is shared with the
Dynamic Reconfiguration Port (DRP) of the MGT, which is named dclk in the example
design. See Xilinx Answer Record 22477 for more information.

Figure 7-2 also illustrates the TX_SIGNAL_DETECT and RX_SIGNAL_DETECT ports of the
calibration block, which should be driven to indicate whether or not dynamic data is being
transmitted and received through the MGT (see Virtex-4 Errata). However,
RX_SIGNAL_DETECT is connected to the signal_detect port of the example design.
signal_detect is intended to be connected to the optical transceiver to indicate the
presence of light. When light is detected, the optical transceiver provides dynamic data to
the Rx ports of the MGT. When no light is detected, the calibration block switches the MGT
into loopback to force dynamic data through the MGT receiver path.

Caution! signal_detect is an optional port in the IEEE 802.3 specification. If this is not
used, the RX_SIGNAL_DETECT port of the calibration block must be driven by an alternative
method. Please refer to XAPP732 for more information.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=22477
http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&sSecondaryNavPick=REFERENCE&category=-1210882&sGlobalNavPick=PRODUCTS&BV_SessionID=@@@@1931102828.1183695341@@@@&BV_EngineID=ccceaddlgidjjhecefeceihdffhdfkf.0

82 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Figure 7-2: 1000BASE-X Connection to Virtex-4 MGT

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-4
GT11

RocketIO
(used)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

userclk2 (125MHz)

IPAD

IPAD
brefclkn
(250 MHz)

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR

RXCHARISCOMMA

RXCHARISK

RXSTATUS[5:0]

RXDATA[7:0]

RXRUNDISP

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

ENPCOMMAALIGN

ENMCOMMAALIGN

BUFG

Virtex-4
GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

RXDISPERRrxdisperr

LOGIC
SHIM

Cal Block v1.4.1

brefclkp
(250 MHz)

REFCLK1

synclk1

'0'

'0'

TXOUTCLK1

DCLK

DCLK

component_name_block
(Block Level from
example design)

TX_SIGNAL_DETECT

RX_SIGNAL_DETECT
'1'

signal_detect

dclk

BUFG

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 83
UG155 March 24, 2008

RocketIO Transceiver Logic
R

Virtex-5 LXT and SXT Devices
The core is designed to integrate with the Virtex-5 RocketIO GTP transceiver. Figure 7-3
illustrates the connections and logic required between the core and the GTP transceiver—
the signal names and logic in the figure precisely match those delivered with the example
design when a GTP transceiver is used.

Note: A small logic shim (included in the block-level wrapper) is required to convert between the
port differences between the Virtex-II Pro and Virtex-5 GTP transceiver.

A GTP tile consists of a pair of transceivers. For this reason, the GTP transceiver wrapper
delivered with the core always contains two GTP instantiations, even if only a single GTP
transceiver tile is in use. Figure 7-3 illustrates a single GTP transceiver tile.

The 125 MHz differential reference clock is routed directly to the GTP transceiver. The GTP
transceiver is configured to output a version of this clock on the REFCLKOUT port and after
placement onto global clock routing, can be used by all core logic. This clock is input back
into the GTP transceiver on the user interface clock ports rxusrclk, rxusrclk2,
txusrclk, and txusrclk2.

See also “Virtex-5 RocketIO GTP Transceivers for 1000BASE-X Constraints,” page 166.

Virtex-5 RocketIO GTP Wizard

The two wrapper files immediately around the GTP transceiver pair,
rocketio_wrapper_gtp_tile and rocketio_wrapper_gtp (see Figure 7-3), are
generated from the RocketIO GTP Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. Note that this core targets production silicon.

The CORE Generator log file (XCO file) which was created when the RocketIO GTP Wizard
project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
rocketio_wrapper_gtp.xco

This file can be used as an input to the CORE Generator to regenerate the RocketIO
wrapper files. The XCO file itself contains a list of all of the GTP Wizard attributes which
were used. For further information, please refer to the Virtex-5 RocketIO GTP Wizard Getting
Started Guide (UG188) and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

84 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Figure 7-3: 1000BASE-X Connection to Virtex-5 GTP Transceivers

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-5
GTP

RocketIO
(0)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR0

RXCHARISCOMMA0

RXCHARISK0

RXCLKCORCNT[2:0]

RXDATA[07:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA[07:0]

RXENMCOMMAALIGN0

RXENPCOMMAALIGN0

RXDISPERR0rxdisperr
LOGIC
SHIM

CLKIN

REFCLKOUT

component_name_block
(Block Level from
example design)

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

userclk2 (125MHz)

BUFG

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 85
UG155 March 24, 2008

RocketIO Transceiver Logic
R

Virtex-5 FXT Devices
The core is designed to integrate with the Virtex-5 RocketIO GTX transceiver. Figure 7-4
illustrates the connections and logic required between the core and the GTX transceiver—
the signal names and logic in the figure precisely match those delivered with the example
design when a GTX transceiver is used.

Note: A small logic shim (included in the block-level wrapper) is required to convert between the
port differences between the Virtex-II Pro and Virtex-5 GTX transceiver.

A GTX tile consists of a pair of transceivers. For this reason, the GTX transceiver wrapper
delivered with the core always contains two GTX instantiations, even if only a single GTX
transceiver tile is in use. Figure 7-4 illustrates a single GTX transceiver tile.

The 125 MHz differential reference clock is routed directly to the GTX transceiver. The GTX
transceiver is configured to output a version of this clock on the REFCLKOUT port: this is
then routed to a DCM.

From the DCM, the CLK0 port (125MHz) is placed onto global clock routing and can be
used as the 125MHz clock source for all core logic: this clock is also input back into the GTX
transceiver on the user interface clock ports rxusrclk2 and txusrclk2.

From the DCM, the CLKDV port (62.5MHz) is placed onto global clock routing and is input
back into the GTX transceiver on the user interface clock ports rxusrclk and txusrclk.

See also “Virtex-5 RocketIO GTX Transceivers for 1000BASE-X Constraints,” page 167.

Virtex-5 RocketIO GTX Wizard

The two wrapper files immediately around the GTX transceiver pair,
rocketio_wrapper_gtx_tile and rocketio_wrapper_gtx (see Figure 7-4), are
generated from the RocketIO GTX Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. Note that this core targets production silicon.

The CORE Generator log file (XCO file) which was created when the RocketIO GTX Wizard
project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
rocketio_wrapper_gtx.xco

This file can be used as an input to the CORE Generator to regenerate the RocketIO
wrapper files. The XCO file itself contains a list of all of the GTX Wizard attributes which
were used. For further information, please refer to the Virtex-5 RocketIO GTX Wizard
Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

86 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Figure 7-4: 1000BASE-X Connection to Virtex-5 GTX Transceivers

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-5
GTP

RocketIO
(0)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR0

RXCHARISCOMMA0

RXCHARISK0

RXCLKCORCNT[2:0]

RXDATA[07:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA[07:0]

RXENMCOMMAALIGN0

RXENPCOMMAALIGN0

RXDISPERR0rxdisperr
LOGIC
SHIM

CLKIN

REFCLKOUT

component_name_block
(Block Level from
example design)

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

userclk2
(125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG

userclk
(62.5MHz)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 87
UG155 March 24, 2008

Clock Sharing Across Multiple Cores with RocketIO
R

Clock Sharing Across Multiple Cores with RocketIO

Virtex-II Pro Devices
Figure 7-5 illustrates sharing clock resources across two instantiations of the core on the
same half of the device when using the core with the Virtex-II Pro MGT. Note that more can
be added by instantiating the cores using the block level (from the example design) and
continuing to share userclk, userclk2, and brefclk across all instantiations. For each
core, userclk and userclk2 must always be derived from the brefclk or refclk used
by that core.

When using the fixed routing resources of brefclk, MGTs along the top edge of the
device must use a separate brefclk routing resource to those along the bottom edge of
the device. For more information, see the Virtex-II Pro RocketIO Transceiver User Guide
(UG024). Each brefclk domain must use its own DCM to derive its version of userclk
and userclk2.

Figure 7-5: Clock Management: Two Core Instances, Virtex-II Pro
MGTs for 1000BASE-X

DCM

CLKIN CLK0

CLK2X180FB

BUFG

BUFG

IBUFGDS

TXUSRCLK

BREFCLK

TXUSRCLK2
RXUSRCLK
RXUSRCLK2

GT_ETHERNET_1

brefclk (62.5MHz)

userclk (62.5 MHz)

userclk2 (125 MHz)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

Customer Design

userclk
userclk2

TXUSRCLK

BREFCLK

TXUSRCLK2
RXUSRCLK
RXUSRCLK2

GT_ETHERNET_1Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

IPAD
brefclkp

IPAD
brefclkn

component_name_block
(Block Level)

component_name_block
(Block Level)

http://www.xilinx.com

88 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Virtex-4 FX Devices
Figure 7-6 illustrates sharing clock resources across multiple instantiations of the core
when using MGTs. Note that the example design, when using the Virtex-4 family, can be
generated to connect either a single instance of the core, or connect a pair of core instances
to the transceiver pair present in an MGT tile. Figure 7-6 shows two instantiations of the
block level, where each block contains a pair of cores, subsequently illustrating clock
sharing between four cores in total.

More cores can be added by continuing to instantiate extra block-level modules. Share
clocks only between the MGTs in a single column. For each column, use a single
brefclk_p and brefclk_n differential clock pair and connect this to a GT11CLK_MGT
primitive. The clock output from this primitive should be shared across all used RocketIO
tiles in the column. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide (UG076)
for more information.

To provide the 125 MHz clock for all core instances, select a TXOUTCLK1 port from any
MGT. This can be routed onto global clock routing using a BUFG as illustrated, and shared
between all cores and MGTs in the column. Although not illustrated in Figure 7-6, dclk
(the clock used for the calibration blocks and for the Dynamic Reconfiguration Port (DRP)
of the MGTs) can also be shared.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 89
UG155 March 24, 2008

Clock Sharing Across Multiple Cores with RocketIO
R

Figure 7-6: Clock Management - Multiple Core Instances, MGTs for 1000BASE-X

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

IPAD

brefclkp
(250MHz)

IPAD
brefclkn
(250MHz)

Virtex-4
GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXOUTCLK1

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

NC

userclk2
(125 MHz)

BUFG

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1
(250MHz)

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXOUTCLK1

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

NC

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

component_name_block
(Block Level)

NC

http://www.xilinx.com

90 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Virtex-5 LXT and SXT Devices
Figure 7-7 illustrates sharing clock resources across multiple instantiations of the core
when using Virtex-5 RocketIO GTP transceivers.

The example design can be generated to connect either a single instance of the core or
connect a pair of core instances to the transceiver pair present in a GTP tile. Figure 7-7
illustrates two instantiations of the block level, and each block level contains a pair of
cores, consequently illustrating clock sharing between a total of four cores.

Additional cores can be added by continuing to instantiate extra block level modules.
Share the brefclk_p and brefclk_n differential clock pair. See the Virtex-5 RocketIO
GTP Transceiver User Guide (UG196) for more information.

To provide the 125 MHz clock for all core instances, select a REFCLKOUT port from any
GTP transceiver. This can be routed onto global clock routing using a BUFG as illustrated
and shared between all cores and GTP transceivers.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 91
UG155 March 24, 2008

Clock Sharing Across Multiple Cores with RocketIO
R

Figure 7-7: Clock Management - Multiple Core Instances, Virtex-5 RocketIO GTP
Transceivers for 1000BASE-X

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

CLKIN

rocketio_wrapper_gtp_tile

Virtex-5
GTP

RocketIO
(1)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

userclk2
(125 MHz)

BUFG

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

clkin
(125MHz)

REFCLKOUT

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

Virtex-5
GTP

RocketIO
(1)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

REFCLKOUT

component_name_block
(Block Level)

NC

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

CLKIN

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

rocketio_wrapper_gtp

http://www.xilinx.com

92 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

Virtex-5 FXT Devices
Figure 7-8 illustrates sharing clock resources across multiple instantiations of the core
when using Virtex-5 RocketIO GTX transceivers.

The example design can be generated to connect either a single instance of the core or
connect a pair of core instances to the transceiver pair present in a GTX tile. Figure 7-8
illustrates two instantiations of the block level, and each block level contains a pair of
cores, consequently illustrating clock sharing between a total of four cores.

Additional cores can be added by continuing to instantiate extra block level modules.
Share the brefclk_p and brefclk_n differential clock pair. See the Virtex-5 RocketIO
GTX Transceiver User Guide for more information.

To provide the FPGA fabric clocks for all core instances, select a REFCLKOUT port from any
GTX transceiver and route this to a single DCM. The CLK0 (125MHz) and CLKDV
(62.5MHz) outputs from this DCM, placed onto global clock routing using a BUFGs, can be
shared across all core instances and GTX transceivers as illustrated.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 93
UG155 March 24, 2008

Clock Sharing Across Multiple Cores with RocketIO
R

Figure 7-8: Clock Management - Multiple Core Instances, Virtex-5 RocketIO GTX
Transceivers for 1000BASE-X

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

CLKIN

rocketio_wrapper_gtp_tile

Virtex-5
GTP

RocketIO
(1)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

clkin
(125MHz)

REFCLKOUT

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

Virtex-5
GTP

RocketIO
(1)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

REFCLKOUT

component_name_block
(Block Level)

NC

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

CLKIN

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

rocketio_wrapper_gtp

userclk2 (125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV
BUFG

userclk (62.5MHz)

http://www.xilinx.com

94 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 7: 1000BASE-X with RocketIO Transceivers
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 95
UG155 March 24, 2008

R

Chapter 8

SGMII / Dynamic Standards Switching
with RocketIO Transceivers

This chapter provides general guidelines for creating SGMII designs, and designs capable
of switching between 1000BASE-X and SGMII standards (Dynamic Standards Switching),
using a RocketIO transceiver. Throughout this chapter, any reference to SGMII also applies
to the Dynamic Standards Switching implementation.

The chapter begins with an explanation of the two Receiver Elastic Buffer
implementations: one implementation uses the buffer present in the RocketIO transceivers,
and the other uses a larger buffer, implemented in the FPGA fabric.

After selecting the Rx Elastic Buffer implementation type, an explanation of the RocketIO
transceiver and core logic in all supported device families is provided in the following
sections:

• “RocketIO Logic using the RocketIO Rx Elastic Buffer,” page 98

• “RocketIO Logic with the Fabric Rx Elastic Buffer,” page 98

Instances where multiple instantiations of the core are required when using the fabric
Receiver Elastic Buffer are then presented. Clock sharing should occur whenever possible
to save device resources.

Receiver Elastic Buffer Implementations

Selecting the Buffer Implementation from the GUI
The GUI provides two SGMII Capability options:

• 10/100/1000 Mbps (clock tolerance compliant with Ethernet specification)

• 10/100/1000 Mbps (restricted tolerance for clocks) OR 100/1000 Mbps

The first option, 10/100/1000 Mbps (clock tolerance compliant with Ethernet
specification) is the default and provides the implementation using the Receiver Elastic
Buffer in FPGA fabric. This alternative Receiver Elastic Buffer uses a single block RAM to
create a buffer twice as large as the one present in the RocketIO transceiver, for this reason
consuming extra logic resources. However, this default mode is reliable for all
implementations using standard Ethernet frame sizes. Further consideration must be
made for jumbo frames.

The second option, 10/100/1000 Mbps (restricted tolerance for clocks) or 100/1000 Mbps,
uses the receiver elastic buffer present in the RocketIOs. This is half the size and can
potentially underflow or overflow during SGMII frame reception at 10 Mbps operation

http://www.xilinx.com

96 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

(see the next section). However, there are logical implementations where this can be
reliable and has the benefit of lower logic utilization.

The Requirement for the FPGA Fabric Rx Elastic Buffer
Figure 8-1 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Separate oscillator sources are used for the
FPGA and the external PHY. The Ethernet specification uses clock sources with a tolerance
of 100ppm. In Figure 8-1, the clock source for the PHY is slightly faster than the clock
source to the FPGA. For this reason, during frame reception, the receiver elastic buffer
(shown here as implemented in the RocketIO) starts to fill.

Following frame reception, in the interframe gap period, idles are removed from the
received data stream to return the Rx Elastic Buffer to half-full occupancy. This is
performed by the clock correction circuitry (see the RocketIO User Guide for the targeted
device).

Analysis

Assuming separate clock sources, each of tolerance 100 ppm, the maximum frequency
difference between the two devices can be 200 ppm. It can be shown that this translates
into a full clock period difference every 5000 clock periods.

Relating this to an Ethernet frame, there will be a single byte of difference every 5000 bytes
of received frame data, and this will cause the Rx Elastic Buffer to either fill or empty by an
occupancy of one.

The maximum Ethernet frame size (non-jumbo) is 1522 bytes for a VLAN frame.

• At 1 Gbps operation, this translates into 1522 clock cycles.

• At 100 Mbps operation, this translates into 15220 clock cycles (as each byte is repeated
10 times).

• At 10 Mbps operation, this translates into 152200 clock cycles (as each byte is repeated
100 times).

Figure 8-1: SGMII Implementation using Separate Clock Sources

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE
RocketIO

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

Twisted
Copper

Pair

SGMII Link

10 BASE-T
100BASE-T
1000BASE-T

PHY

FPGA

125MHz +100ppm125MHz -100ppm

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 97
UG155 March 24, 2008

Receiver Elastic Buffer Implementations
R

Considering the 10 Mbps case, we would need 152200/5000 = 31 FIFO entries in the Elastic
Buffer above and below the half way point to guarantee that the buffer will not under or
overflow during frame reception. This assumes that frame reception begins when the
buffer is exactly half full.

The size of the Rx Elastic Buffer in the RocketIOs is 64 entries. However, we cannot assume
that the buffer is exactly half full at the start of frame reception. Additionally, the
underflow and overflow thresholds are not exact (see Appendix E, “Rx Elastic Buffer
Specifications” for more information).

To guarantee reliable SGMII operation at 10 Mbps (non-jumbo frames), the RocketIO
Elastic Buffer must be bypassed and a larger buffer implemented in the FPGA fabric. The
fabric buffer, provided by the example design, is twice the size of the RocketIO alternative.
This has been proven to cope with standard (none jumbo) Ethernet frames at all three
SGMII speeds.

Appendix E, “Rx Elastic Buffer Specifications” provides further information about all Rx
Elastic Buffers used by the core. Information about the reception of jumbo frames is also
provided.

The RocketIO Rx Elastic Buffer
The Elastic Buffer in the RocketIO can be used reliably when the following conditions are
met:

• 10 Mbps operation is not required (for example, when connecting the core to the
Xilinx 1-Gigabit Ethernet MAC to provide only 1 Gbps operation). Both 1 Gbps and
100 Mbps operation can be guaranteed.

• When the clocks are closely related (see the following section).

If there is any doubt, select the FPGA fabric Rx Elastic Buffer Implementation.

http://www.xilinx.com

98 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

Closely Related Clock Sources

Case 1

Figure 8-2 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. A common oscillator source is used for both
the FPGA and the external PHY.

If the PHY device sources the receiver SGMII stream synchronously from the shared
oscillator (check PHY data sheet), the RocketIO will receive data at exactly the same rate as
that used by the core. The receiver elastic buffer will neither empty nor fill, having the
same frequency clock on either side.

In this situation, the receiver elastic buffer will not under or overflow, and the elastic buffer
implementation in the RocketIO should be used to save logic resources.

Case 2

Consider again the case illustrated in Figure 8-1 with the following exception: assume that
the clock sources used are both 50 ppm. Now the maximum frequency difference between
the two devices is 100 ppm. It can be shown that this translates into a full clock period
difference every 10000 clock periods, resulting in a requirement for 16 FIFO entries above
and below the half-full point. This provides reliable operation with the RocketIO Rx Elastic
Buffers. Again, however, check the PHY data sheet to ensure that the PHY device sources
the receiver SGMII stream synchronously to its reference oscillator.

RocketIO Logic using the RocketIO Rx Elastic Buffer
When the RocketIO Rx Elastic Buffer implementation is selected, the connections between
the core and the RocketIO as well as all clock circuitry in the system are identical to the
1000BASE-X implementation. For a detailed explanation, see Chapter 7, “1000BASE-X
with RocketIO Transceivers.”

Figure 8-2: SGMII Implementation using Shared Clock Sources

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE
RocketIO

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

Twisted
Copper

Pair

SGMII Link

10 BASE-T
100BASE-T
1000BASE-T

PHY

FPGA

125MHz -100ppm

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 99
UG155 March 24, 2008

RocketIO Logic with the Fabric Rx Elastic Buffer
R

RocketIO Logic with the Fabric Rx Elastic Buffer
The example design delivered with the core is split between two hierarchical layers, as
illustrated in Figure 4-3. The block level is designed so to be instantiated directly into
customer designs and provides the following functionality:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a Virtex-II Pro, Virtex-4 or Virtex-5
RocketIO transceiver via the fabric Rx Elastic Buffer

The logic implemented in the block level is illustrated in all figures throughout the
remainder of this chapter.

Virtex-II Pro Devices
The core is designed for connection to a Virtex-II Pro MGT. The connections and logic
required between the core and RocketIO transceiver are illustrated in Figure 8-3–the signal
names and logic in the figure precisely match those delivered with the example design
when an MGT transceiver is used.
Some modifications may be made to the MGT. For example, REFCLK may be used instead
of BREFCLK. See the Virtex-II Pro RocketIO Transceiver User Guide (UG024) for details.
Figure 8-3 shows that the Rx Elastic Buffer is implemented in the FPGA fabric between the
MGT transceiver and the core. This replaces the Rx Elastic Buffer in the MGT (which is
bypassed).
This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the MGT. It is able to cope with larger frame sizes before clock
tolerances accumulate and result in emptying or filling of the buffer. This is necessary to
guarantee SGMII operation at 10 Mbps, where each frame size is effectively 100 times
larger than the same frame would be at 1 Gbps because each byte is repeated 100 times (see
“Designing with Client-side GMII for the SGMII Standard,” page 59).
In bypassing the MGT Rx Elastic Buffer, data is clocked out of the MGT synchronously to
rxrecclk. This must be placed on constrained local clock routing for reliable operation.
See “Virtex-II Pro RocketIO MGTs for SGMII or Dynamic Standards Switching
Constraints,” page 163 for constraint details. This methodology is also described in
XAPP763.

Note: The brefclk differential pair applied to the MGT is of frequency 62.5 MHz.

http://www.xilinx.com

100 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

Figure 8-3: SGMII Connection to a Virtex-II Pro RocketIO Transceiver

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-II Pro
RocketIO

(GT_CUSTOM)

BREFCLK2

TXUSRCLK

TXUSRCLK2

userclk

userclk2

dcm_locked

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

LOOPBACK[1:0]

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

BREFCLK

REFCLK2

REFCLK

REFCLKSEL

NC

NC

NC

GND

ENPCOMMAALIGN

ENMCOMMAALIGN
D Q

RXRECCLK

RXPOLARITY

TXPOLARITY

TXFORCECRCERR

TXINHIBIT
GND

GND

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxdisperr

mgt_tx_reset

mgt_rx_reset RXRESET

TXRESET

RXCHARISCOMMA[1:0]

RXCHARISK[1:0]

RXDATA[15:0]

RXDISPERR[1:0]

RXUSRCLK

RXUSRCLK2

FPGA
fabric

Rx
Elastic
Buffer

local
clock

routing

DCM

CLKIN CLK0

FB

BUFG

CLK2X180
BUFG

userclk (62.5MHz)

userclk2 (125MHz)

IPAD
IBUFGDS

IOB LOGIC

brefclkp

IPAD
brefclkn

brefclk (62.5MHz)

LOCKED component_name_block
(Block Level from
example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 101
UG155 March 24, 2008

RocketIO Logic with the Fabric Rx Elastic Buffer
R

Virtex-4 Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-4 MGT. The connections and logic
required between the core and MGT transceiver are illustrated in Figure 8-4–the signal
names and logic in the figure precisely match those delivered with the example design
when an MGT transceiver is used.

Note: A small logic shim (included in the “block” level wrapper) is required to convert between the
port differences between the Virtex-II Pro and Virtex-4 MGTs. This is not illustrated in Figure 8-4.

The MGT clock distribution in Virtex-4 devices is column-based and consists of multiple
MGT tiles (that contain two MGTs each). For this reason, the MGT transceiver wrapper
delivered with the core always contains two MGT instantiations, even if only a single MGT
is in use. Figure 8-4 illustrates only a single MGT for clarity.

A GT11CLK_MGT primitive is also instantiated to derive the reference clocks required by
the MGT column-based tiles. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide
(UG076) for more information about layout and clock distribution.

The 250 MHz reference clock from the GT11CLK_MGT primitive is routed to the MGT,
which is configured to internally synthesize a 125 MHz clock. This is output on the
TXOUTCLK1 port of the MGT and once placed onto global clock routing, can be used by all
core logic. This clock is input back into the MGT on the user interface clock port
txusrclk2. With the attribute settings applied to the MGT from the example design, the
txusrclk port is derived internally within the MGT using the internal clock dividers and
does not need to be provided from the FPGA fabric.

It can be seen from Figure 8-4 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the MGT and the core. This replaces the Rx Elastic Buffer in the MGT (which is
bypassed).

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the MGT. It is able to cope with larger frame sizes before clock
tolerances accumulate and result in emptying or filling of the buffer. This is necessary to
guarantee SGMII operation at 10 Mbps where each frame size is effectively 100 times larger
than the same frame would be at 1 Gbps because each byte is repeated 100 times (see
“Designing with Client-side GMII for the SGMII Standard,” page 59).

In bypassing the MGT Rx Elastic Buffer, data is clocked out of the MGT synchronously to
rxrecclk1. This clock can be placed on a BUFR component and is used to synchronize
the transfer of data between the MGT and the Elastic Buffer, as illustrated in Figure 8-4. See
also “Virtex-4 RocketIO MGTs for SGMII or Dynamic Standards Switching Constraints,”
page 166.

The MGT transceivers require a calibration block to be included in the fabric logic. The
example design provided with the core instantiates calibration blocks as required.
Calibration blocks require a clock source of between 25 to 50 MHz, which is shared with
the Dynamic Reconfiguration Port (DRP) of the MGT, named dclk in the example design.
See Xilinx Answer Record 22477 for more information.

Figure 8-4 also illustrates the TX_SIGNAL_DETECT and RX_SIGNAL_DETECT ports of the
calibration block, which should be driven to indicate whether or not dynamic data is being
transmitted and received through the MGT (see Virtex-4 Errata). However,
RX_SIGNAL_DETECT is connected to the signal_detect port of the example design.
signal_detect is intended to indicate to the core that valid data is being received. When
not asserted, the calibration block will switch the MGT into loopback to force dynamic data
through the MGT receiver path.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&sSecondaryNavPick=REFERENCE&category=-1210882&sGlobalNavPick=PRODUCTS&BV_SessionID=@@@@1931102828.1183695341@@@@&BV_EngineID=ccceaddlgidjjhecefeceihdffhdfkf.0
http://www.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=22477

102 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

Caution! The PHY connected via SGMII may always provide dynamic SGMII data (when
powered up). If not, and if signal_detect is not present, the RX_SIGNAL_DETECT port of the
calibration block must be driven by an alternative method. See XAPP732 for more information.

Figure 8-4: SGMII Connection to a Virtex-4 MGT

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-4
GT11

RocketIO
(used)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

IPAD

IPAD
brefclkn
(250 MHz)

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA[1:0]

RXCHARISK[1:0]

RXDATA[15:0]

RXRUNDISP[1:0]

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

ENPCOMMAALIGN

ENMCOMMAALIGN

Virtex-4
GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

RXDISPERR[1:0]rxdisperr

brefclkp
(250 MHz)

REFCLK1

synclk1

'0'

TXOUTCLK1

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE[1:0]rxnotintable

BUFR

RXRECCLK1

'0'

userclk2 (125MHz)

BUFG

component_name_block
(Block Level from
example design)

Cal Block v1.4.1

DCLK

DCLK

TX_SIGNAL_DETECT

RX_SIGNAL_DETECT
'1'

signal_detect

dclk

BUFG

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 103
UG155 March 24, 2008

RocketIO Logic with the Fabric Rx Elastic Buffer
R

Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-5 RocketIO GTP transceiver. The
connections and logic required between the core and GTP transceiver are illustrated in
Figure 8-5–the signal names and logic in the figure precisely match those delivered with
the example design when a GTP transceiver is used.

Note: A small logic shim (included in the block” level wrapper) is required to convert between the
port differences between the Virtex-II Pro and Virtex-5 RocketIO GTP transceiver. This is not
illustrated in Figure 8-5.

A GTP tile consists of a pair of transceivers. For this reason, the GTP transceiver wrapper
delivered with the core will always contain two GTP transceiver instantiations, even if
only a single GTP is in use. Figure 8-5 illustrates only a single GTP transceiver for clarity.

The 125 MHz differential reference clock is routed to the GTP transceiver, which is
configured to output a version of this clock on the REFCLKOUT port, and once placed onto
global clock routing can be used by all core logic. This clock is input back into the GTP
transceiver on the user interface clock port txusrclk and txusrclk2.

It can be seen from Figure 8-5 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTP transceiver and the core; this replaces the Rx Elastic Buffer in the GTP
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTP transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see “Designing with Client-side GMII for the SGMII Standard,” page 59).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTP
transceiver synchronously to rxrecclk0. This clock can be placed on a BUFR component
and is used to synchronize the transfer of data between the GTP and the Elastic Buffer, as
illustrated in Figure 8-5. See also “Virtex-5 RocketIO GTP Transceivers for SGMII or
Dynamic Standards Switching Constraints,” page 167.

Virtex-5 RocketIO GTP Wizard

The two wrapper files immediately around the GTP transceiver pair,
rocketio_wrapper_gtp_tile and rocketio_wrapper_gtp (see Figure 8-5), are
generated from the RocketIO GTP Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. Note that this core targets production silicon.

The CORE Generator log file (XCO file) which was created when the RocketIO GTP Wizard
project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
rocketio_wrapper_gtp.xco

This file can be used as an input to the CORE Generator to regenerate the RocketIO
wrapper files. The XCO file itself contains a list of all of the GTP Wizard attributes which
were used. For further information, please refer to the Virtex-5 RocketIO GTP Wizard Getting
Started Guide (UG188) and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

104 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

.

Figure 8-5: SGMII Connection to a Virtex-5 RocketIO GTP Transceiver

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-5
GTP

RocketIO
(used)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA0

RXCHARISK0

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA[07:0]

RXENPCOMMAALIGN0

RXENMCOMMAALIGN0

RXDISPERR0rxdisperr

CLKIN

REFCLKOUT

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE0rxnotintable

BUFR

RXRECCLK0

userclk2 (125MHz)

BUFG

component_name_block
(Block Level from
example design)

RXUSRCLK0

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

rocketio_wrapper_gtp_tile
rocketio_wrapper_gtp

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 105
UG155 March 24, 2008

RocketIO Logic with the Fabric Rx Elastic Buffer
R

Virtex-5 FXT Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-5 RocketIO GTX transceiver. The
connections and logic required between the core and GTX transceiver are illustrated in
Figure 8-6–the signal names and logic in the figure precisely match those delivered with
the example design when a GTX transceiver is used.

Note: A small logic shim (included in the block” level wrapper) is required to convert between the
port differences between the Virtex-II Pro and Virtex-5 RocketIO GTX transceiver. This is not
illustrated in Figure 8-6.

A GTX tile consists of a pair of transceivers. For this reason, the GTX transceiver wrapper
delivered with the core will always contain two GTX transceiver instantiations, even if
only a single GTX is in use. Figure 8-6 illustrates only a single GTX transceiver for clarity.

The 125 MHz differential reference clock is routed directly to the GTX transceiver. The GTX
transceiver is configured to output a version of this clock on the REFCLKOUT port: this is
then routed to a DCM.

From the DCM, the CLK0 port (125MHz) is placed onto global clock routing and can be
used as the 125MHz clock source for all core logic: this clock is also input back into the GTX
transceiver on the user interface clock port txusrclk2.

From the DCM, the CLKDV port (62.5MHz) is placed onto global clock routing and is input
back into the GTX transceiver on the user interface clock port txusrclk.

It can be seen from Figure 8-6 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTX transceiver and the core; this replaces the Rx Elastic Buffer in the GTX
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTX transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see “Designing with Client-side GMII for the SGMII Standard,” page 59).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTX
transceiver synchronously to rxrecclk0 (62.5MHz) on a 16-bit interface. This clock can
be placed on a BUFR component and is used to synchronize the transfer of data between
the GTX and the Elastic Buffer, as illustrated in Figure 8-6. See also “Virtex-5 RocketIO GTX
Transceivers for SGMII or Dynamic Standards Switching Constraints,” page 168.

Virtex-5 RocketIO GTX Wizard

The two wrapper files immediately around the GTX transceiver pair,
rocketio_wrapper_gtx_tile and rocketio_wrapper_gtx (see Figure 8-6), are
generated from the RocketIO GTP Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. Note that this core targets production silicon.

The CORE Generator log file (XCO file) which was created when the RocketIO GTX Wizard
project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
rocketio_wrapper_gtx.xco

This file can be used as an input to the CORE Generator to regenerate the RocketIO
wrapper files. The XCO file itself contains a list of all of the GTX Wizard attributes which
were used. For further information, please refer to the Virtex-5 RocketIO GTX Wizard

http://www.xilinx.com

106 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

.

Figure 8-6: SGMII Connection to a Virtex-5 RocketIO GTX Transceiver

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-5
GTP

RocketIO
(used)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA0

RXCHARISK0

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA[07:0]

RXENPCOMMAALIGN0

RXENMCOMMAALIGN0

RXDISPERR0rxdisperr

CLKIN

REFCLKOUT

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE0rxnotintable

BUFR

RXRECCLK0

component_name_block
(Block Level from
example design)

RXUSRCLK0

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

rocketio_wrapper_gtp_tile
rocketio_wrapper_gtp

userclk2
(125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG

userclk
(62.5MHz)

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 107
UG155 March 24, 2008

Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer
R

Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer

Virtex-II Pro Devices
Figure 8-7 illustrates sharing clock resources across multiple instantiations of the core on
the same half of the device when using the core with the RocketIO MGT. Figure 8-7
illustrates only two cores; however, more can be added by instantiating the cores using the
block level (from the example design) and sharing userclk, userclk2, and brefclk
across all instantiations. For each core, userclk and userclk2 must always be derived
from the brefclk or refclk used by that core.

Each MGT instantiated has its own independent clock domain synchronous to RXRECCLK
which is placed on local clock routing. Each local clock domain must have area constraints
added to place it in the region of the MGT. See “Virtex-II Pro RocketIO MGTs for SGMII or
Dynamic Standards Switching Constraints,” page 163.

When using the fixed routing resources of brefclk, MGTs along the top edge of the
device must use a separate brefclk routing resource to those along the bottom edge of

http://www.xilinx.com

108 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

the device. For more information, see the Virtex-II Pro RocketIO Transceiver User Guide. Each
brefclk domain must use its own DCM to derive its version of userclk and userclk2.

Figure 8-7: Clock Management with Multiple Core Instances with Virtex-II Pro
RocketIO Transceivers for SGMII

DCM

CLKIN CLK0

CLK2X180FB

BUFG

BUFG

IBUFGDS

TXUSRCLK
BREFCLK

TXUSRCLK2

RXUSRCLK
RXUSRCLK2

GT_CUSTOM

brefclk (62.5MHz)

userclk (62.5 MHz)

userclk2
(125 MHz)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

TXUSRCLK

BREFCLK

TXUSRCLK2

RXUSRCLK
RXUSRCLK2

GT_CUSTOM

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk

userclk2

IPAD
brefclkp

IPAD
brefclkn

FPGA
fabric

Rx
Elastic
Buffer RXRECCLK

FPGA
fabric

Rx
Elastic
Buffer RXRECCLK

component_name_block
(Block Level)

component_name_block
(Block Level)

local
clock

routing

local
clock

routing

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 109
UG155 March 24, 2008

Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer
R

Virtex-4 FX Devices
Figure 8-8 illustrates sharing clock resources across multiple instantiations of the core
when using the Virtex-4 RocketIO MGT. Note that the example design, when using the
Virtex-4 family, can be generated to connect either a single instance of the core, or connect
a pair of core instances to the transceiver pair present in a MGT tile. Figure 8-8 illustrates
two instantiations of the block level, and each block level contains a pair of cores,
illustrating clock sharing between four cores.

More cores can be added by continuing to instantiate extra block level modules. Share
clocks only between the MGTs in a single column. For each column, use a single
brefclk_p and brefclk_n differential clock pair and connect this to a GT11CLK_MGT
primitive. The clock output from this primitive should be shared across all used MGT tiles
in the column. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide for more
information.

To provide the 125 MHz clock for all core instances, select a TXOUTCLK1 port from any
MGT. This can be routed onto global clock routing using a BUFG as illustrated, and shared
between all cores and MGTs in the column.

Each MGT and core pair instantiated has its own independent clock domain synchronous
to RXRECCLK1 which is placed on regional clock routing using a BUFR, as illustrated in
Figure 8-8–these cannot be shared across multiple MGTs. Although not illustrated in
Figure 8-8, dclk (the clock used for the calibration blocks and for the Dynamic
Reconfiguration Port (DRP) of the MGTs) can also be shared.

http://www.xilinx.com

110 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

Figure 8-8: Clock Management with Multiple Core Instances with Virtex-4 MGTs for
SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

IPAD

brefclkp
(250MHz)

IPAD
brefclkn
(250MHz)

Virtex-4
GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

NC

userclk2
(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1
(250MHz)

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

BUFG

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

NC

userclk2
(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

NC

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 111
UG155 March 24, 2008

Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer
R

Virtex-5 LXT and SXT Devices
Figure 8-9 illustrates sharing clock resources across multiple instantiations of the core
when using the Virtex-5 RocketIO GTP transceiver. The example design can be generated
to connect either a single instance of the core, or connect a pair of core instances to the
transceiver pair present in a GTP transceiver tile. Figure 8-9 illustrates two instantiations of
the block level, and each block level contains a pair of cores. Figure 8-9 illustrates clock
sharing between four cores.

More cores can be added by instantiating extra block level modules. Share the brefclk_p
and brefclk_n differential clock pairs. See the Virtex-5 RocketIO GTP Transceiver User
Guide for more information.

To provide the 125 MHz clock for all core instances, select a REFCLKOUT port from any
GTP transceiver. This can be routed onto global clock routing using a BUFG as illustrated
and shared between all cores and GTP transceivers in the column.

Each GTP and core pair instantiated has its own independent clock domains synchronous
to RXRECCLK0 and RXRECCLK1. These are placed on regional clock routing using a BUFR,
as illustrated in Figure 8-9, and cannot be shared across multiple GTP transceivers.

http://www.xilinx.com

112 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

.

Figure 8-9: Clock Management with Multiple Core Instances with Virtex-5 GTP
RocketIO Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

userclk2
(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTP
RocketIO

(1)

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

BUFG

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

userclk2
(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTP
RocketIO

(1)

CLKIN

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

CLKIN

NC

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

rocketio_wrapper_gtp

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 113
UG155 March 24, 2008

Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer
R

Virtex-5 FXT Devices
Figure 8-9 illustrates sharing clock resources across multiple instantiations of the core
when using the Virtex-5 RocketIO GTX transceiver. The example design can be generated
to connect either a single instance of the core, or connect a pair of core instances to the
transceiver pair present in a GTX transceiver tile. Figure 8-9 illustrates two instantiations
of the block level, and each block level contains a pair of cores. Figure 8-9 illustrates clock
sharing between four cores.

More cores can be added by instantiating extra block level modules. Share the brefclk_p
and brefclk_n differential clock pairs. See the Virtex-5 RocketIO GTX Transceiver User
Guide for more information.

To provide the FPGA fabric clocks for all core instances, select a REFCLKOUT port from any
GTX transceiver and route this to a single DCM. The CLK0 (125MHz) and CLKDV
(62.5MHz) outputs from this DCM, placed onto global clock routing using a BUFGs, can be
shared across all core instances and GTX transceivers as illustrated.

Each GTX and core pair instantiated has its own independent clock domains synchronous
to RXRECCLK0 and RXRECCLK1. These are placed on regional clock routing using a BUFR,
as illustrated in Figure 8-9, and cannot be shared across multiple GTX transceivers.

http://www.xilinx.com

114 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 8: SGMII / Dynamic Standards Switching with RocketIO Transceivers
R

.

Figure 8-10: Clock Management with Multiple Core Instances with Virtex-5 GTX
RocketIO Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTP
RocketIO

(1)

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

component_name_block
(Block Level)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

Virtex-5
GTP

RocketIO
(0)

Ethernet 1000BASE-X
PCS/PMA or
SGMII core

userclk
userclk2

userclk2
(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTP
RocketIO

(1)

CLKIN

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

CLKIN

NC

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

rocketio_wrapper_gtp

userclk2 (125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV
BUFG

userclk (62.5MHz)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 115
UG155 March 24, 2008

R

Chapter 9

Configuration and Status

This chapter provides general guidelines for configuring and monitoring the Ethernet
1000BASE-X PCS/PMA or SGMII core, including a detailed description of the core
management registers. It also describes Configuration Vector and status signals, an
alternative to using the optional MDIO Management Interface.

MDIO Management Interface
When the optional MDIO Management Interface is selected, configuration and status of
the core is achieved by the Management Registers accessed through the serial
Management Data Input/Output Interface (MDIO). See “MDIO Management Interface” in
Chapter 3 for more information.

MDIO Bus System
The MDIO interface for 1 Gbps operation (and slower speeds) is defined in IEEE 802.3,
clause 22. This two-wire interface consists of a clock (MDC) and a shared serial data line
(MDIO). The maximum permitted frequency of MDC is set at 2.5 MHz.

Figure 9-1 illustrates an example MDIO bus system.

An Ethernet MAC is shown as the MDIO bus master (the Station Management (STA)
entity).

Two PHY devices are shown connected to the same bus, both of which are MDIO slaves
(MDIO Managed Device (MMD) entities).

http://www.xilinx.com

116 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

.

The MDIO bus system is a standardized interface for accessing the configuration and
status registers of Ethernet PHY devices. In the example illustrated, the Management Host
Bus I/F of the Ethernet MAC is able to access the configuration and status registers of two
PHY devices via the MDIO bus.

MDIO Transactions
All transactions, read or write, are initiated by the MDIO master. All MDIO slave devices,
when addressed, must respond. MDIO transactions take the form of an MDIO frame,
containing fields for transaction type, address and data. This MDIO frame is transferred
across the MDIO wire synchronously to MDC. The abbreviations are used in this section
are explained in Table 9-1.

Figure 9-1: A Typical MDIO-managed System

Configuration
Registers 0 to 31
(REGAD)

MDIO slave

UG194_5_01_011906

PHY1 (MMD)

Physical
Address
(PHYAD)
= 1

Configuration
Registers 0 to 31
(REGAD)

MDIO slave

PHY2 (MMD)

Physical
Address
(PHYAD)
= 2

MDIO
master

MAC (STA)

MDC
MDIO

Host
Bus I/F

Table 9-1: Abbreviations and Terms

Abbreviation Term

PRE Preamble

ST Start of frame

OP Operation code

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 117
UG155 March 24, 2008

MDIO Management Interface
R

Write Transaction

Figure 9-2 shows a write transaction across the MDIO, defined as OP=”01.” The addressed
PHY device (with physical address PHYAD) takes the 16-bit word in the Data field and
writes it to the register at REGAD.

Read Transaction

Figure 9-3 shows a read transaction, defined as OP=”10.” The addressed PHY device (with
physical address PHYAD) takes control of the MDIO wire during the turnaround cycle and
then returns the 16-bit word from the register at REGAD

MDIO Addressing
MDIO Addresses consists of two stages: Physical Address (PHYAD) and Register Address
(REGAD).

Physical Address (PHYAD)

As shown in Figure 9-1, two PHY devices are attached to the MDIO bus. Each of these has
a different physical address. To address the intended PHY, its physical address should be

PHYAD Physical address

REGAD Register address

TA Turnaround

Table 9-1: Abbreviations and Terms (Continued)

Abbreviation Term

Figure 9-2: MDIO Write Transaction

Z1 1 1 0 0 1 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 1 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PHYAD REGAD TA 16-bit WRITE DATA

STA drives MDIO

Figure 9-3: MDIO Read Transaction

Z1 1 1 0 1 0 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 Z 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PRTAD REGAD TA 16-bit READ DATA

STA drives MDIO Addressed MMD drives MDIO

http://www.xilinx.com

118 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

known by the MDIO master (in this case an Ethernet MAC), and placed into the PHYAD
field of the MDIO frame (see “MDIO Transactions”).

The PHYAD field for an MDIO frame is a 5-bit binary value capable of addressing 32
unique addresses. However, every MDIO slave must respond to physical address 0. This
requirement dictates that the physical address for any particular PHY must not be set to 0
to avoid MDIO contention. Physical Addresses 1 through to 31 can be used to connect up
to 31 PHY devices onto a single MDIO bus.

Physical Address 0 can be used to write a single command that is obeyed by all attached
PHYs, such as a reset or power-down command.

Register Address (REGAD)

Having targeted a particular PHY using PHYAD, the individual configuration or status
register within that particular PHY must now be addressed. This is achieved by placing the
individual register address into the REGAD field of the MDIO frame (see “MDIO
Transactions”).

The REGAD field for an MDIO frame is a 5-bit binary value capable of addressing 32
unique addresses. The first 16 of these (registers 0 to 15) are defined by the IEEE 802.3. The
remaining 16 (registers 16 to 31) are reserved for PHY vendors own register definitions.

For details of the register map of PHY layer devices and a more extensive description of the
operation of the MDIO Interface, see IEEE 802.3-2002.

Connecting the MDIO to an Internally Integrated STA
The MDIO ports of the Ethernet 1000BASE-X PCS/PMA or SGMII core can be connected to
the MDIO ports of an internally integrated Station Management (STA) entity, such as the
MDIO port of the 1-Gigabit Ethernet MAC core (see “Integrating with the 1-Gigabit
Ethernet MAC Core,” page 179) or the Tri-Mode Ethernet MAC core (see “Integrating with
the Tri-Mode Ethernet MAC Core,” page 185).

Connecting the MDIO to an External STA
Figure 9-4 shows the MDIO ports of the Ethernet 1000BASE-X PCS/PMA or SGMII core
connected to the MDIO of an external STA entity. In this situation, mdio_in, mdio_out,
and mdio_tri must be connected to a Tri-State buffer to create a bidirectional wire, mdio.
This Tri-State buffer can either be external to the FPGA, or internally integrated by using an
IOB IOBUF component with an appropriate SelectIO™ standard suitable for the external
PHY.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 119
UG155 March 24, 2008

Management Registers
R

.

Management Registers
The contents of the Management Registers can be accessed using the REGAD field of the
MDIO frame. Contents will vary depending on the CORE Generator options, and are
defined in the following sections in this guide.

• 1000BASE-X Standard Using the Optional Auto-Negotiation

• 1000BASE-X Standard Without the Optional Auto-Negotiation

• SGMII Standard Using the Optional Auto-Negotiation

• SGMII Standard without the Optional Auto-Negotiation

• Both 1000BASE-X and SGMII Standards

1000BASE-X Standard Using the Optional Auto-Negotiation
More information on the 1000BASE-X PCS Registers can be found in clause 37 and clause
22 of the IEEE 802.3 specification. Registers at undefined addresses are read-only and
return 0s.

Figure 9-4: Creating an External MDIO Interface

IBUF

IOB LOGIC

IPAD
O I

O

I IO

T

IOPAD

IOB LOGIC

IOBUF

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

mdc

mdio_tri

mdio_out

mdio_in

mdc

mdio

Table 9-2: MDIO Registers for 1000BASE-X with Auto-Negotiation

Register Address Register Name

0 Control Register

1 Status Register

http://www.xilinx.com

120 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 0: Control Register

2,3 PHY Identifier

4 Auto-Negotiation Advertisement Register

5 Auto-Negotiation Link Partner Ability Base Register

6 Auto-Negotiation Expansion Register

7 Auto-Negotiation Next Page Transmit Register

8 Auto-Negotiation Next Page Receive Register

15 Extended Status Register

16 Vendor Specific: Auto-Negotiation Interrupt Control

Table 9-2: MDIO Registers for 1000BASE-X with Auto-Negotiation (Continued)

Register Address Register Name

MDIO Register 0: Control Register

Table 9-3: Control Register (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset 1 = Core Reset

0 = Normal Operation

Read/write

Self clearing

0

0.14 Loopback 1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a RocketIO
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is
connected to ewrap. When set to ‘1,’
indicates to the external PMA
module to enter loopback mode.

See “Loopback,” page 197.

Read/write 0

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 121
UG155 March 24, 2008

Management Registers
R

0.13 Speed
Selection
(LSB)

Always returns a 0 for this bit.
Together with bit 0.6, speed selection
of 1000 Mbps is identified

Returns 0 0

0.12 Auto-
Negotiation
Enable

1 = Enable Auto-Negotiation
Process

0 = Disable Auto-Negotiation
Process

Read/write 1

0.11 Power Down 1 = Power down

0 = Normal operation

With the PMA option, when set to ’1’
the RocketIO transceiver is placed in
a low-power state. This bit requires a
reset (see bit 0.15) to clear.

With the TBI version this register bit
has no effect.

Read/ write 0

0.10 Isolate 1 = Electrically Isolate PHY from
GMII

0 = Normal operation

Read/write 1

0.9 Restart Auto-
Negotiation

1 = Restart Auto-Negotiation
Process

0 = Normal Operation

Read/write

Self clearing

0

0.8 Duplex Mode Always returns a ‘1’ for this bit to
signal Full-Duplex Mode.

Returns 1 1

0.7 Collision Test Always returns a ‘0’ for this bit to
disable COL test.

Returns 0 0

0.6 Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed
selection of 1000 Mbps is identified.

Returns 1 1

0.5 Unidirectiona
l Enable

Enable transmit regardless of
whether a valid link has been
established.

Read/ write 0

0.4:0 Reserved Always return 0s, writes ignored. Returns 0s 00000

Table 9-3: Control Register (Register 0) (Continued)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

122 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 1: Status Register

MDIO Register 1: Status Register

Table 9-4: Status Register (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4 Always returns a ‘0’ as 100BASE-T4 is not
supported.

Returns 0 0

1.14 100BASE-X Full
Duplex

Always returns a ‘0’ as 100BASE-X full
duplex is not supported.

Returns 0 0

1.13 100BASE-X Half
Duplex

Always returns a ‘0’ as 100BASE-X half
duplex is not supported.

Returns 0 0

1.12 10 Mbps Full Duplex Always returns a ‘0’ as 10 Mbps full
duplex is not supported.

Returns 0 0

1.11 10 Mbps Half Duplex Always returns a ‘0’ as 10 Mbps half
duplex is not supported

Returns 0 0

1.10 100BASE-T2 Full
Duplex

Always returns a ‘0’ as 100BASE-T2 full
duplex is not supported.

Returns 0 0

1.9 100BASE-T2 Half
Duplex

Always returns a ‘0’ as 100BASE-T2 Half
Duplex is not supported.

Returns 0 0

1.8 Extended Status Always returns a ‘1’ to indicate the
presence of the Extended Register
(Register 15).

Returns 1 1

1.7 Unidirectional
Ability

Always returns a ‘1,’ writes ignored Returns 1 1

1.6 MF Preamble
Suppression

Always returns a ‘1’ to indicate that
Management Frame Preamble
Suppression is supported.

Returns 1 1

1.5 Auto- Negotiation
Complete

1 = Auto-Negotiation process completed

0 = Auto-Negotiation process not
completed

Read only 0

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1

100B
A

S
E

-T
2 F

U
LL D

U
P

LE
X

9 8

E
X

T
E

N
D

E
D

 S
TAT

U
S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 123
UG155 March 24, 2008

Management Registers
R

Registers 2 and 3: PHY Identifiers

1.4 Remote Fault 1 = Remote fault condition detected

0 = No remote fault condition detected

Read only

Self-
clearing
on read

0

1.3 Auto- Negotiation
Ability

Always returns a ‘1’ for this bit to indicate
that the PHY is capable of Auto-
Negotiation.

Returns 1 1

1.2 Link Status1 1 = Link is up

0 = Link is down

Latches '0' if Link Status goes down.
Clears to current Link Status on read.

See table note for Link Status behavior.

Read only

Self
clearing
on read

0

1.1 Jabber Detect Always returns a ‘0’ for this bit since
Jabber Detect is not supported.

Returns 0 0

1.0 Extended Capability Always returns a ‘0’ for this bit since no
extended register set is supported.

Returns 0 0

1.When high, the link is valid: synchronization of the link has been obtained and Auto-Negotiation (if present and enabled)
has completed.
When low, a valid link has not been established. Either link synchronization has failed or Auto-Negotiation (if present and
enabled) has failed to complete.

Regardless of whether Auto-Negotiation is enabled or disabled, there can be some delay to the deassertion of this signal
following the loss of synchronization of a previously successful link. This is due to the Auto-Negotiation state machine which
requires that synchronization is lost for an entire link timer duration before changing state. For more information, see the 802.3
specification.

Table 9-4: Status Register (Register 1) (Continued)

Bit(s) Name Description Attributes
Default
Value

Registers 2 and 3: PHY Identifiers

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

http://www.xilinx.com

124 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 4: Auto-Negotiation Advertisement

Table 9-5: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0 Organizationally Unique
Identifier

Always return 0s returns 0s 0000000000000000

3.15:10 Organizationally Unique
Identifier

Always return 0s returns 0s 000000

3.9:4 Manufacturer’s model
number

Always return 0s returns 0s 000000

3.3:0 Revision Number Always return 0s returns 0s 0000

MDIO Register 4: Auto-Negotiation Advertisement

Table 9-6: Auto-Negotiation Advertisement Register (Register 4)

Bit(s) Name Description Attributes
Default
Value

4.15 Next Page 1 = Next Page functionality is advertised

0 = Next Page functionality is not
advertised

read/write 0

4.14 Reserved Always returns ‘0,’ writes ignored returns 0 0

4.13:12 Remote
Fault

00 = No Error

01 = Offline

10 = Link Failure

11 = Auto-Negotiation Error

read/write

self clearing to 00
after auto-
negotiation

00

4.11:9 Reserved Always return 0s, writes ignored returns 0 0

4.8:7 Pause 00 = No PAUSE

01 = Symmetric PAUSE

10 = Asymmetric PAUSE towards link
partner

11 = Both Symmetric PAUSE and
Asymmetric PAUSE towards link partner

read/write 11

N
E

X
T

 PA
G

E

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

R
E

M
O

T
E

 FA
U

LT

H
A

LF
 D

U
P

LE
X

15 14 13 12 11 7 6 5 0

Reg 4

R
E

S
E

R
V

E
D

9 8

PA
U

S
E

4

F
U

LL D
U

P
LE

X

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 125
UG155 March 24, 2008

Management Registers
R

Register 5: Auto-Negotiation Link Partner Base

4.6 Half
Duplex

Always returns a ‘0’ for this bit since Half
Duplex Mode is not supported

returns 0 0

4.5 Full
Duplex

1 = Full Duplex Mode is advertised

0 = Full Duplex Mode is not advertised

read/write 1

4.4:0 Reserved Always return 0s , writes ignored returns 0s 00000

Table 9-6: Auto-Negotiation Advertisement Register (Register 4) (Continued)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 5: Auto-Negotiation Link Partner Base

Table 9-7: Auto-Negotiation Link Partner Ability Base Register (Register 5)

Bit(s) Name Description Attributes
Default
Value

5.15 Next Page 1 = Next Page functionality is supported

0 = Next Page functionality is not supported

read only 0

5.14 Acknowle
dge

Used by Auto-Negotiation function to indicate
reception of a link partner’s base or next page

read only 0

5.13:12 Remote
Fault

00 = No Error

01 = Offline

10 = Link Failure

11 = Auto-Negotiation Error

read only 00

5.11:9 Reserved Always return 0s returns 0s 000

5.8:7 Pause 00 = No PAUSE

01 = Symmetric PAUSE

10 = Asymmetric PAUSE towards link partner

11 = Both Symmetric PAUSE and Asymmetric
PAUSE supported

read only 00

N
E

X
T

 PA
G

E

A
C

K
N

O
W

LE
D

G
E

R
E

S
E

R
V

E
D

R
E

M
O

T
E

 FA
U

LT

H
A

LF
 D

U
P

LE
X

15 14 13 12 11 7 6 5 0

Reg 5

R
E

S
E

R
V

E
D

9 8

PA
U

S
E

4

F
U

LL D
U

P
LE

X

http://www.xilinx.com

126 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 6: Auto-Negotiation Expansion

Register 7: Next Page Transmit

5.6 Half
Duplex

1 = Half Duplex Mode is supported

0 = Half Duplex Mode is not supported

read only 0

5.5 Full
Duplex

1 = Full Duplex Mode is supported

0 = Full Duplex Mode is not supported

read only 0

5.4:0 Reserved Always return 0s returns 0s 00000

Table 9-7: Auto-Negotiation Link Partner Ability Base Register (Register 5)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 6: Auto-Negotiation Expansion

Table 9-8: Auto-Negotiation Expansion Register (Register 6)

Bit(s) Name Description Attributes Default Value

6.15:3 Reserved Always returns 0s returns 0s 0000000000000

6.2 Next Page
Able

Always returns a ‘1’ for this bit
since the device is Next Page Able

returns 1 1

6.1 Page
Received

1 = A new page has been received

0 = A new page has not been
received

read only

self clearing on
read

0

6.0 Reserved Always returns 0s returns 0s 0000000

N
E

X
T

 PA
G

E
 A

B
LE

PA
G

E
 R

E
C

E
IV

E
D

R
E

S
E

R
V

E
D

15 0

Reg 6

R
E

S
E

R
V

E
D

3 2 1

MDIO Register 7: Next Page Transmit

N
E

X
T

 PA
G

E

R
E

S
E

R
V

E
D

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 7

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 127
UG155 March 24, 2008

Management Registers
R

Register 8: Next Page Receive

Table 9-9: Auto-Negotiation Next Page Transmit (Register 7)

Bit(s) Name Description Attributes Default Value

7.15 Next Page 1 = Additional Next Page(s) will follow

0 = Last page

read/

write

0

7.14 Reserved Always returns ‘0’ returns 0 0

7.13 Message
Page

1 = Message Page

0 = Unformatted Page

read/

write

1

7.12 Acknowled
ge 2

1 = Comply with message

0 = Cannot comply with message

read/

write

0

7.11 Toggle Value toggles between subsequent Next
Pages

read only 0

7.10:0 Message /
Unformatte
d Code
Field

Message Code Field or Unformatted Page
Encoding as dictated by 7.13

read/

write

00000000001

(Null
Message

Code)

MDIO Register 8: Next Page Receive

Table 9-10: Auto-Negotiation Next Page Receive (Register 8)

Bit(s) Name Description Attributes Default Value

8.15 Next Page 1 = Additional Next Page(s) will
follow

0 = Last page

read only 0

8.14 Acknowledge Used by Auto-Negotiation function
to indicate reception of a link
partner’s base or next page

read only 0

8.13 Message Page 1 = Message Page

0 = Unformatted Page

read only 0

N
E

X
T

 PA
G

E

A
C

K
N

O
W

LE
D

G
E

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 8

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

128 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 15: Extended Status

8.12 Acknowledge 2 1 = Comply with message

0 = Cannot comply with message

read only 0

8.11 Toggle Value toggles between subsequent
Next Pages

read only 0

8.10:0 Message /
Unformatted
Code Field

Message Code Field or Unformatted
Page Encoding as dictated by 8.13

read only 00000000000

Table 9-10: Auto-Negotiation Next Page Receive (Register 8) (Continued)

Bit(s) Name Description Attributes Default Value

MDIO Register 15: Extended Status Register

Table 9-11: Extended Status Register (Register 15)

Bit(s) Name Description Attributes Default Value

15.15 1000BASE-X
Full Duplex

Always returns a ‘1’ for this bit since
1000BASE-X Full Duplex is
supported

returns 1 1

15.14 1000BASE-X
Half Duplex

Always returns a ‘0’ for this bit since
1000BASE-X Half Duplex is not
supported

returns 0 0

15.13 1000BASE-T
Full Duplex

Always returns a ‘0’ for this bit since
1000BASE-T Full Duplex is not
supported

returns 0 0

15.12 1000BASE-T
Half Duplex

Always returns a ‘0’ for this bit since
1000BASE-T Half Duplex is not
supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 000000000000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 129
UG155 March 24, 2008

Management Registers
R

Register 16: Vendor-Specific Auto-Negotiation Interrupt Control

1000BASE-X Standard Without the Optional Auto-Negotiation
It is not the intention of this document to fully describe the 1000BASE-X PCS Registers. See
clauses 37 and 22 of the IEEE 802.3 Specification for further information.

Registers at undefined addresses are read-only and return 0s.

MDIO Register 16: Vendor Specific Auto-Negotiation Interrupt Control

Table 9-12: Vendor Specific Register: Auto-Negotiation Interrupt Control Register
(Register 16)

Bit(s) Name Description Attributes Default Value

16.15:2 Reserved Always return 0s returns 0s 00000000000000

16.1 Interrupt
Status

1 = Interrupt is asserted

0 = Interrupt is not asserted

If the interrupt is enabled, this bit is
asserted on the completion of an
Auto-Negotiation cycle; it is only
cleared by writing ‘0’ to this bit.

If the Interrupt is disabled, the bit is
set to ‘0.’

NOTE: the an_interrupt port of
the core is wired to this bit.

read/

write

0

16.0 Interrupt
Enable

1 = Interrupt enabled

0 = Interrupt disabled

read/

write

1

15 0

Reg 16

R
E

S
E

R
V

E
D

12
IN

T
E

R
R

U
P

T
 S

TAT
U

S

IN
T

E
R

R
U

P
T

 E
N

A
B

LE

Table 9-13: MDIO Registers for 1000BASE-X without Auto-Negotiation

Register Address Register Name

0 Control Register

1 Status Register

2,3 PHY Identifier

15 Extended Status Register

http://www.xilinx.com

130 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 0: Control Register

MDIO Register 0: Control Register

Table 9-14: Control Register (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset 1 = PCS/PMA reset

0 = Normal Operation

read/write

self clearing

0

0.14 Loopback 1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a RocketIO transceiver,
the core is placed in internal loopback
mode.

With the TBI version, Bit 1 is connected to
ewrap. When set to ‘1’ indicates to the
external PMA module to enter loopback
mode.

See “Loopback,” page 197.

read/write 0

0.13 Speed
Selection
(LSB)

Always returns a 0 for this bit. Together
with bit 0.6, speed selection of 1000 Mbps
is identified.

returns 0 0

0.12 Auto-
Negotiation
Enable

Ignore this bit because Auto-Negotiation
is not included.

read/ write 1

0.11 Power Down 1 = Power down

0 = Normal operation

With the PMA option, when set to ’1’ the
RocketIO transceiver is placed in a low-
power state. This bit requires a reset (see
bit 0.15) to clear.

With the TBI version this register bit has
no effect.

read/ write 0

0.10 Isolate 1 = Electrically Isolate PHY from GMII

0 = Normal operation

read/write 1

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 131
UG155 March 24, 2008

Management Registers
R

Register 1: Status Register

0.9 Restart Auto-
Negotiation

Ignore this bit because Auto-Negotiation
is not included.

read/ write 0

0.8 Duplex Mode Always returns a ‘1’ for this bit to signal
Full-Duplex Mode.

returns 1 1

0.7 Collision Test Always returns a ‘0’ for this bit to disable
COL test.

returns 0 0

0.6 Speed
Selection(MS
B)

Always returns a ‘1’ for this bit. Together
with bit 0.13, speed selection of 1000
Mbps is identified

returns 1 1

0.5 Unidirectiona
l Enable

Ignore this bit because Auto-Negotiation
is not included.

read/ write 0

0.4:0 Reserved Always return 0s , writes ignored. returns 0s 00000

Table 9-14: Control Register (Register 0) (Continued)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 1: Status Register

Table 9-15: Status Register (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4 Always returns a ‘0’ for this bit since
100BASE-T4 is not supported

returns 0 0

1.14 100BASE-X Full
Duplex

Always returns a ‘0’ for this bit since
100BASE-X Full Duplex is not supported

returns 0 0

1.13 100BASE-X Half
Duplex

Always returns a ‘0’ for this bit since
100BASE-X Half Duplex is not supported

returns 0 0

1.12 10 Mbps Full Duplex Always returns a ‘0’ for this bit since 10
Mbps Full Duplex is not supported

returns 0 0

1.11 10 Mbps Half Duplex Always returns a ‘0’ for this bit since 10
Mbps Half Duplex is not supported

returns 0 0

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1

100B
A

S
E

-T
2 F

U
LL D

U
P

LE
X

9 8

E
X

T
E

N
D

E
D

 S
TAT

U
S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

132 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

1.10 100BASE-T2 Full
Duplex

Always returns a ‘0’ for this bit since
100BASE-T2 Full Duplex is not supported

returns 0 0

1.9 100BASE-T2 Half
Duplex

Always returns a ‘0’ for this bit since
100BASE-T2 Half Duplex is not supported

returns 0 0

1.8 Extended Status Always returns a ‘1’ for this bit to indicate
the presence of the Extended Register
(Register 15)

returns 1 1

1.7 Unidirectional Ability Always returns 1, writes ignored returns 1 1

1.6 MF Preamble
Suppression

Always returns a ‘1’ for this bit to indicate
that Management Frame Preamble
Suppression is supported

returns 1 1

1.5 Auto- Negotiation
Complete

Ignore this bit because Auto-Negotiation
is not included.

returns 1 1

1.4 Remote Fault Always returns a ‘0’ for this bit because
Auto-Negotiation is not included.

returns 0 0

1.3 Auto- Negotiation
Ability

Ignore this bit because Auto-Negotiation
is not included.

returns 0 0

1.2 Link Status1 1 = Link is up

0 = Link is down

Latches '0' if Link Status goes down.
Clears to current Link Status on read.

See table note for Link Status behavior.

read only

self
clearing
on read

0

1.1 Jabber Detect Always returns a ‘0’ for this bit since
Jabber Detect is not supported

returns 0 0

1.0 Extended Capability Always returns a ‘0’ for this bit since no
extended register set is supported

returns 0 0

1. When high, the link is valid: synchronization of the link has been obtained and Auto-Negotiation (if present and enabled) has
completed.
When low, a valid link has not been established. Either link synchronization has failed or Auto-Negotiation (if present and
enabled) has failed to complete.
Regardless of whether Auto-Negotiation is enabled or disabled, there can be some delay to the deassertion of this signal
following the loss of synchronization of a previously successful link. This is due to the Auto-Negotiation state machine which
requires that synchronization is lost for an entire link timer duration before changing state. For more information, see the 802.3
specification.

Table 9-15: Status Register (Register 1) (Continued)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 133
UG155 March 24, 2008

Management Registers
R

Registers 2 and 3: Phy Identifier

Register 15: Extended Status

MDIO Registers 2 and 3: PHY Identifier

Table 9-16: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0 Organizationally Unique
Identifier

Always return
0s

returns 0s 0000000000000000

3.15:10 Organizationally Unique
Identifier

Always return
0s

returns 0s 000000

3.9:4 Manufacturer’s model
number

Always return
0s

returns 0s 000000

3.3:0 Revision Number Always return
0s

returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

MDIO Register 15: Extended Status

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

134 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Table 9-17: Extended Status (Register 15)

Bit(s) Name Description Attributes
Default
Value

15.15 1000BASE-X Full
Duplex

Always returns a ‘1’ since 1000BASE-
X Full Duplex is supported

returns 1 1

15.14 1000BASE-X Half
Duplex

Always returns a ‘0’ since 1000BASE-
X Half Duplex is not supported

returns 0 0

15.13 1000BASE-T Full
Duplex

Always returns a ‘0’ since 1000BASE-
T Full Duplex is not supported

returns 0 0

15.12 1000BASE-T Half
Duplex

Always returns a ‘0’ since 1000BASE-
T Half Duplex is not supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 0000000000
00

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 135
UG155 March 24, 2008

Management Registers
R

SGMII Standard Using the Optional Auto-Negotiation
The registers provided for SGMII operation in this core are adaptations of those defined in
IEEE 802.3 clauses 37 and 22. In an SGMII implementation, two different types of links
exist. They are the SGMII link between the MAC and PHY (SGMII link) and the link across
the Ethernet Medium itself (Medium). See Figure 10-2.

Information regarding the state of both of these links is contained within the following
registers. Where applicable, the abbreviations SGMII link and Medium are used in the
register descriptions. Registers at undefined addresses are read-only and return 0s.

Register 0: SGMII Control

Table 9-18: MDIO Registers for 1000BASE-X with Auto-Negotiation

Register Address Register Name

0 SGMII Control Register

1 SGMII Status Register

2,3 PHY Identifier

4 SGMII Auto-Negotiation Advertisement Register

5 SGMII Auto-Negotiation Link Partner Ability Base Register

6 SGMII Auto-Negotiation Expansion Register

7 SGMII Auto-Negotiation Next Page Transmit Register

8 SGMII Auto-Negotiation Next Page Receive Register

15 SGMII Extended Status Register

16 SGMII Vendor Specific: Auto-Negotiation Interrupt Control

MDIO Register 0: SGMII Control

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

136 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Table 9-19: SGMII Control (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset 1 = Core Reset

0 = Normal Operation

read/write

self clearing

0

0.14 Loopback 1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a RocketIO
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is
connected to ewrap. When set to ‘1’
indicates to the external PMA
module to enter loopback mode.

See “Loopback,” page 197.

read/write 0

0.13 Speed
Selection
(LSB)

Always returns a ‘0’ for this bit.
Together with bit 0.6, speed selection
of 1000 Mbps is identified

returns 0 0

0.12 Auto-
Negotiation
Enable

1 = Enable SGMII Auto-Negotiation
Process

0 = Disable SGMII Auto-Negotiation
Process

read/write 1

0.11 Power Down 1 = Power down

0 = Normal operation

With the PMA option, when set to ’1’
the RocketIO transceiver is placed in
a low-power state. This bit requires a
reset (see bit 0.15) to clear.

With the TBI version this register bit
has no effect.

read/ write 0

0.10 Isolate 1 = Electrically Isolate SGMII logic
from GMII

0 = Normal operation

read/write 1

0.9 Restart Auto-
Negotiation

1 = Restart Auto-Negotiation
Process across SGMII link

0 = Normal Operation

read/write

self clearing

0

0.8 Duplex Mode Always returns a ‘1’ for this bit to
signal Full-Duplex Mode

returns 1 1

0.7 Collision Test Always returns a ‘0’ for this bit to
disable COL test

returns 0 0

0.6 Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed
selection of 1000 Mbps is identified

returns 1 1

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 137
UG155 March 24, 2008

Management Registers
R

Register 1: SGMII Status

0.5 Unidirectiona
l Enable

Enable transmit regardless of
whether a valid link has been
established

read/ write 0

0.4:0 Reserved Always return 0s , writes ignored returns 0s 00000

Table 9-19: SGMII Control (Register 0) (Continued)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 1: SGMII Status

Table 9-20: SGMII Status (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4 Always returns a ‘0’ for this bit because
100BASE-T4 is not supported

returns 0 0

1.14 100BASE-X Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Full Duplex is not supported

returns 0 0

1.13 100BASE-X Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Half Duplex is not supported

returns 0 0

1.12 10 Mbps Full Duplex Always returns a ‘0’ for this bit because 10
Mbps Full Duplex is not supported

returns 0 0

1.11 10 Mbps Half Duplex Always returns a ‘0’ for this bit because 10
Mbps Half Duplex is not supported

returns 0 0

1.10 100BASE-T2 Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Full Duplex is not supported

returns 0 0

1.9 100BASE-T2 Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Half Duplex is not
supported

returns 0 0

1.8 Extended Status Always returns a ‘1’ for this bit to indicate
the presence of the Extended Register
(Register 15)

returns 1 1

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1
100B

A
S

E
-T

2 F
U

LL D
U

P
LE

X

9 8
E

X
T

E
N

D
E

D
 S

TAT
U

S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

138 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

1.7 Unidirectional
Ability

Always returns ‘1,’ writes ignored returns 1 1

1.6 MF Preamble
Suppression

Always returns a ‘1’ for this bit to indicate
that Management Frame Preamble
Suppression is supported

returns 1 1

1.5 Auto- Negotiation
Complete

1 = Auto-Negotiation process completed
across SGMII link

0 = Auto-Negotiation process not
completed across SGMII link

read only 0

1.4 Remote Fault 1 = A fault on the Medium has been
detected

0 = No fault of the Medium has been
detected

read only

self
clearing
on read

0

1.3 Auto- Negotiation
Ability

Always returns a ‘1’ for this bit to indicate
that the SGMII core is capable of Auto-
Negotiation

returns 1 1

1.2 SGMII Link Status1 1 = SGMII Link is up

0 = SGMII Link is down

Latches '0' if SGMII Link Status goes
down. Clears to current SGMII Link
Status on read.

See table note for SGMII Link Status
behavior.

read only

self
clearing
on read

0

1.1 Jabber Detect Always returns a ‘0’ for this bit since
Jabber Detect is not supported

returns 0 0

1.0 Extended Capability Always returns a ‘0’ for this bit because no
extended register set is supported

returns 0 0

1. When high, the link is valid: synchronization of the SGMII link has been obtained and SGMII Auto-Negotiation (if present and
enabled) has completed.
When low, a valid link has not been established. Either SGMII link synchronization has failed or SGMII Auto-Negotiation (if
present and enabled) has failed to complete.
Regardless of whether SGMII Auto-Negotiation is enabled or disabled, there can be some delay to the deassertion of this signal
following the loss of synchronization of a previously successful SGMII link. This is due to the Auto-Negotiation state machine
which requires that synchronization is lost for an entire link timer duration before changing state. For more information, see
the 802.3 specification.

Table 9-20: SGMII Status (Register 1) (Continued)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 139
UG155 March 24, 2008

Management Registers
R

Registers 2 and 3: PHY Identifier

Register 4: SGMII Auto-Negotiation Advertisement

MDIO Registers 2 and 3: PHY Identifier

Table 9-21: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0 Organizationally Unique
Identifier

Always return 0s returns 0s 0000000000000000

3.15:10 Organizationally Unique
Identifier

Always return 0s returns 0s 000000

3.9:4 Manufacturer’s model
number

Always return 0s returns 0s 000000

3.3:0 Revision Number Always return 0s returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

MDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 9-22: SGMII Auto-Negotiation Advertisement (Register 4)

Bit(s) Name Description Attributes Default Value

4.15:0 All bits SGMII defined value sent from
the MAC to the PHY

read only 0000000000000001

LO
G

IC
 0's

15 0

Reg 4

1

LO
G

IC
 1

http://www.xilinx.com

140 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 5: SGMII Auto-Negotiation Link Partner Ability

The Auto-Negotiation Ability Base Register (Register 5) contains information related to the
status of the link between the PHY and its physical link partner across the Medium.

MDIO Register 5: SGMII Auto-Negotiation Link Partner Ability

Table 9-23: SGMII Auto-Negotiation Link Partner Ability Base (Register 5)

Bit(s) Name Description Attributes
Default
Value

5.15 PHY Link
Status

This refers to the link status of the PHY with its
link partner across the Medium.

1 = Link Up

0 = Link Down

read only 1

5.14 Acknowle
dge

Used by Auto-Negotiation function to indicate
reception of a link partner’s base or next page

read only 0

5.13 Reserved Always returns ‘0,’ writes ignored returns 0 0

5.12 Duplex
Mode

1= Full Duplex

0 = Half Duplex

read only 0

5.11:10 Speed 11 = Reserved

10 = 1 Gbps

01 = 100 Mbps

00 = 10 Mbps

read only 00

5.9:1 Reserved Always return 0s returns 0s 000000000

5:0 Reserved Always returns ‘1’ returns 1 1

P
H

Y
 LIN

K
 S

TAT
U

S

A
C

K
N

O
W

LE
D

G
E

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

15 14 13 12 11 0

Reg 5

D
U

P
LE

X
 M

O
D

E

9 110

S
P

E
E

D

R
E

S
E

R
V

E
D

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 141
UG155 March 24, 2008

Management Registers
R

Register 6: SGMII Auto-Negotiation Expansion

Register 7: SGMII Auto-Negotiation Next Page Transmit

MDIO Register 6: SGMII Auto-Negotiation Expansion

Table 9-24: SGMII Auto-Negotiation Expansion (Register 6)

Bit(s) Name Description Attributes Default Value

6.15:3 Reserved Always return 0s returns 0s 0000000000000

6.2 Next Page
Able

Always returns a ‘1’ for this bit
since the device is Next Page Able

returns 1 1

6.1 Page
Received

1 = A new page has been received

0 = A new page has not been
received

read only

self clearing on
read

0

6.0 Reserved Always return 0s returns 0s 0000000

N
E

X
T

 PA
G

E
 A

B
LE

PA
G

E
 R

E
C

E
IV

E
D

R
E

S
E

R
V

E
D

15 0

Reg 6

R
E

S
E

R
V

E
D

3 2 1

MDIO Register 7: SGMII Auto-Negotiation Next Page Transmit

Table 9-25: SGMII Auto-Negotiation Next Page Transmit (Register 7)

Bit(s) Name Description Attributes Default Value

7.15 Next Page 1 = Additional Next Page(s) will follow

0 = Last page

read/

write

0

7.14 Reserved Always returns ‘0’ returns 0 0

7.13 Message
Page

1 = Message Page

0 = Unformatted Page

read/

write

1

N
E

X
T

 PA
G

E

R
E

S
E

R
V

E
D

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 7

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

142 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 8: SGMII Next Page Receive

7.12 Acknowled
ge 2

1 = Comply with message

0 = Cannot comply with message

read/

write

0

7.11 Toggle Value toggles between subsequent Next
Pages

read only 0

7.10:0 Message /
Unformatte
d Code
Field

Message Code Field or Unformatted Page
Encoding as dictated by 7.13

read/

write

00000000001

(Null
Message

Code)

Table 9-25: SGMII Auto-Negotiation Next Page Transmit (Register 7)

Bit(s) Name Description Attributes Default Value

MDIO Register 8: SGMII Next Page Receive

Table 9-26: SGMII Auto-Negotiation Next Page Receive (Register 8)

Bit(s) Name Description Attributes Default Value

8.15 Next Page 1 = Additional Next Page(s) will
follow

0 = Last page

read only 0

8.14 Acknowledge Used by Auto-Negotiation function
to indicate reception of a link
partner’s base or next page

read only 0

8.13 Message Page 1 = Message Page

0 = Unformatted Page

read only 0

8.12 Acknowledge 2 1 = Comply with message

0 = Cannot comply with message

read only 0

8.11 Toggle Value toggles between subsequent
Next Pages

read only 0

8.10:0 Message /
Unformatted
Code Field

Message Code Field or Unformatted
Page Encoding as dictated by 8.13

read only 00000000000

N
E

X
T

 PA
G

E

A
C

K
N

O
W

LE
D

G
E

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 8

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2
10

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 143
UG155 March 24, 2008

Management Registers
R

Register 15: SGMII Extended Status

MDIO Register 15: SGMII Extended Status

Table 9-27: SGMII Extended Status Register (Register 15)

Bit(s) Name Description Attributes Default Value

15.15 1000BASE-X
Full Duplex

Always returns a ‘1’ for this bit since
1000BASE-X Full Duplex is
supported

returns 1 1

15.14 1000BASE-X
Half Duplex

Always returns a ‘0’ for this bit since
1000BASE-X Half Duplex is not
supported

returns 0 0

15.13 1000BASE-T
Full Duplex

Always returns a ‘0’ for this bit since
1000BASE-T Full Duplex is not
supported

returns 0 0

15.12 1000BASE-T
Half Duplex

Always returns a ‘0’ for this bit since
1000BASE-T Half Duplex is not
supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 000000000000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

144 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 16: SGMII Auto-Negotiation Interrupt Control

MDIO Register 16: SGMII Auto-Negotiation Interrupt Control

Table 9-28: SGMII Auto-Negotiation Interrupt Control (Register 16)

Bit(s) Name Description Attributes Default Value

16.15:2 Reserved Always return 0s returns 0s 00000000000000

16.1 Interrupt
Status

1 = Interrupt is asserted

0 = Interrupt is not asserted

If the interrupt is enabled, this bit is
asserted on completion of an Auto-
Negotiation cycle across the SGMII
link; it is only cleared by writing ‘0’
to this bit.

If the Interrupt is disabled, the bit is
set to ‘0.’

NOTE: The an_interrupt port of the
core is wired to this bit.

read/

write

0

16.0 Interrupt
Enable

1 = Interrupt enabled

0 = Interrupt disabled

read/

write

1

15 0

Reg 16

R
E

S
E

R
V

E
D

12
IN

T
E

R
R

U
P

T
 S

TAT
U

S

IN
T

E
R

R
U

P
T

 E
N

A
B

LE

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 145
UG155 March 24, 2008

Management Registers
R

SGMII Standard without the Optional Auto-Negotiation
The Registers provided for SGMII operation in this core are adaptations of those defined in
IEEE 802.3 clauses 37 and 22. In an SGMII implementation, two different types of links
exist. They are the SGMII link between the MAC and PHY (SGMII link) and the link across
the Ethernet Medium itself (Medium). See Figure 10-2. Information about the state of the
SGMII link is available in registers that follow.

The state of the link across the Ethernet Medium itself is not directly available when SGMII
Auto-Negotiation is not present. For this reason, the status of the link and the results of the
PHYs Auto-Negotiation (for example, Speed and Duplex mode) must be obtained directly
from the management interface of connected PHY module. Registers at undefined
addresses are read-only and return 0s.

Register 0: SGMII Control

Table 9-29: MDIO Registers for 1000BASE-X with Auto-Negotiation

Register Address Register Name

0 SGMII Control Register

1 SGMII Status Register

2,3 PHY Identifier

4 SGMII Auto-Negotiation Advertisement Register

15 SGMII Extended Status Register

MDIO Register 0: SGMII Control

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

146 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Table 9-30: SGMII Control (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset 1 = Core Reset

0 = Normal Operation

read/write

self clearing

0

0.14 Loopback 1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a RocketIO
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is
connected to ewrap. When set to ‘1’
indicates to the external PMA
module to enter loopback mode.

See “Loopback,” page 197.

read/write 0

0.13 Speed
Selection
(LSB)

Always returns a ‘0’ for this bit.
Together with bit 0.6, speed selection
of 1000 Mbps is identified

returns 0 0

0.12 Auto-
Negotiation
Enable

1 = Enable SGMII Auto-Negotiation
Process

0 = Disable SGMII Auto-Negotiation
Process

read/write 1

0.11 Power Down 1 = Power down

0 = Normal operation

With the PMA option, when set to ’1’
the RocketIO transceiver is placed in
a low-power state. This bit requires a
reset (see bit 0.15) to clear.

With the TBI version this register bit
has no effect.

read/ write 0

0.10 Isolate 1 = Electrically Isolate SGMII logic
from GMII

0 = Normal operation

read/write 1

0.9 Restart Auto-
Negotiation

1 = Restart Auto-Negotiation
Process across SGMII link

0 = Normal Operation

read/write

self clearing

0

0.8 Duplex Mode Always returns a ‘1’ for this bit to
signal Full-Duplex Mode

returns 1 1

0.7 Collision Test Always returns a ‘0’ for this bit to
disable COL test

returns 0 0

0.6 Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed
selection of 1000 Mbps is identified

returns 1 1

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 147
UG155 March 24, 2008

Management Registers
R

Register 1: SGMII Status

0.5 Unidirectiona
l Enable

Enable transmit regardless of
whether a valid link has been
established

read/ write 0

0.4:0 Reserved Always return 0s , writes ignored returns 0s 00000

Table 9-30: SGMII Control (Register 0) (Continued)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 1: SGMII Status

Table 9-31: SGMII Status (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4 Always returns a ‘0’ for this bit because
100BASE-T4 is not supported

returns 0 0

1.14 100BASE-X Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Full Duplex is not supported

returns 0 0

1.13 100BASE-X Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Half Duplex is not supported

returns 0 0

1.12 10 Mbps Full Duplex Always returns a ‘0’ for this bit because 10
Mbps Full Duplex is not supported

returns 0 0

1.11 10 Mbps Half Duplex Always returns a ‘0’ for this bit because 10
Mbps Half Duplex is not supported

returns 0 0

1.10 100BASE-T2 Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Full Duplex is not supported

returns 0 0

1.9 100BASE-T2 Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Half Duplex is not
supported

returns 0 0

1.8 Extended Status Always returns a ‘1’ for this bit to indicate
the presence of the Extended Register
(Register 15)

returns 1 1

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1
100B

A
S

E
-T

2 F
U

LL D
U

P
LE

X

9 8
E

X
T

E
N

D
E

D
 S

TAT
U

S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

148 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

1.7 Unidirectional
Ability

Always returns ‘1,’ writes ignored returns 1 1

1.6 MF Preamble
Suppression

Always returns a ‘1’ for this bit to indicate
that Management Frame Preamble
Suppression is supported

returns 1 1

1.5 Auto- Negotiation
Complete

Ignore this bit because Auto-Negotiation
is not included.

returns 1 0

1.4 Remote Fault Ignore this bit because Auto-Negotiation
is not included

returns 0 0

1.3 Auto- Negotiation
Ability

Ignore this bit because Auto-Negotiation
is not included

returns 0 0

1.2 SGMII Link Status1 1 = SGMII Link is up

0 = SGMII Link is down

Latches '0' if SGMII Link Status goes
down. Clears to current SGMII Link
Status on read.

See table note for SGMII Link Status
behavior.

read only

self
clearing
on read

0

1.1 Jabber Detect Always returns a ‘0’ for this bit since
Jabber Detect is not supported

returns 0 0

1.0 Extended Capability Always returns a ‘0’ for this bit because no
extended register set is supported

returns 0 0

1. When high, the link is valid: synchronization of the SGMII link has been obtained and SGMII Auto-Negotiation (if present and
enabled) has completed.
When low, a valid link has not been established. Either SGMII link synchronization has failed or SGMII Auto-Negotiation (if
present and enabled) has failed to complete.
Regardless of whether SGMII Auto-Negotiation is enabled or disabled, there can be some delay to the deassertion of this signal
following the loss of synchronization of a previously successful SGMII link. This is due to the Auto-Negotiation state machine
which requires that synchronization is lost for an entire link timer duration before changing state. For more information, see
the 802.3 specification.

Table 9-31: SGMII Status (Register 1) (Continued)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 149
UG155 March 24, 2008

Management Registers
R

Registers 2 and 3: PHY Identifier

Register 4: SGMII Auto-Negotiation Advertisement

MDIO Registers 2 and 3: PHY Identifier

Table 9-32: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0 Organizationally Unique
Identifier

Always return 0s returns 0s 0000000000000000

3.15:10 Organizationally Unique
Identifier

Always return 0s returns 0s 000000

3.9:4 Manufacturer’s model
number

Always return 0s returns 0s 000000

3.3:0 Revision Number Always return 0s returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

MDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 9-33: SGMII Auto-Negotiation Advertisement (Register 4)

Bit(s) Name Description Attributes Default Value

4.15:0 All bits Ignore this register because
Auto-Negotiation is not
included

read only 0000000000000001

LO
G

IC
 0's

15 0

Reg 4

1

LO
G

IC
 1

http://www.xilinx.com

150 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

Register 15: SGMII Extended Status

Both 1000BASE-X and SGMII Standards
Table 9-35 describes register 17, the vendor-specific Standard Selection Register. This
register is only present when the core is generated with the capability to dynamically
switch between 1000BASE-X and SGMII standards. See “Select Standard” in Chapter 3.

When this Register is configured to perform the 1000BASE-X standard, Registers 0 to 16
should be interpreted as per “1000BASE-X Standard Using the Optional Auto-
Negotiation,” or “1000BASE-X Standard Without the Optional Auto-Negotiation.”

When this Register is configured to perform the SGMII standard, Registers 0 to 16 should
be interpreted as per “SGMII Standard Using the Optional Auto-Negotiation,” or “SGMII
Standard without the Optional Auto-Negotiation.” This register may be written to at any
time. See Chapter 11, “Dynamic Switching of 1000BASE-X and SGMII Standards” for more
information.

MDIO Register 15: SGMII Extended Status

Table 9-34: SGMII Extended Status Register (Register 15)

Bit(s) Name Description Attributes Default Value

15.15 1000BASE-X
Full Duplex

Always returns a ‘1’ for this bit since
1000BASE-X Full Duplex is
supported

returns 1 1

15.14 1000BASE-X
Half Duplex

Always returns a ‘0’ for this bit since
1000BASE-X Half Duplex is not
supported

returns 0 0

15.13 1000BASE-T
Full Duplex

Always returns a ‘0’ for this bit since
1000BASE-T Full Duplex is not
supported

returns 0 0

15.12 1000BASE-T
Half Duplex

Always returns a ‘0’ for this bit since
1000BASE-T Half Duplex is not
supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 000000000000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 151
UG155 March 24, 2008

Optional Configuration Vector
R

Register 17: Vendor-specific Standard Selection Register

Optional Configuration Vector
If “MDIO Management Interface” is omitted, relevant configuration signals are brought
out of the core. These signals are bundled into the CONFIGURATION_VECTOR signal as
defined in Table 9-36.

Figure 9-5: Dynamic Switching (Register 17)

Table 9-35: Vendor-specific Register: Standard Selection Register (Register 17)

Bit(s) Name Description Attributes Default Value

17.15:1 Reserved Always return 0s Returns 0s 000000000000000

16.0 Standard 0 = Core will perform the
1000BASE-X standard. Registers 0
to 16 will behave as per
“1000BASE-X Standard Using the
Optional Auto-Negotiation”

1= Core will perform the SGMII
standard. Registers 0 to 16 will
behave as per “SGMII Standard
Using the Optional Auto-
Negotiation”.

read/write Determined by the
basex_or_sgmii

port

15 0

Reg 17

R
E

S
E

R
V

E
D

1
B

A
S

E
X

 O
R

 S
G

M
II

http://www.xilinx.com

152 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 9: Configuration and Status
R

These signals may be changed by the user application at any time. The Clock Domain
heading denotes the clock domain the configuration signal is registered in before use by
the core. It is not necessary to drive the signal from this clock domain.

Table 9-36: Optional Configuration and Status Vectors

Signal Direction
Clock

Domain
Description

configuration_vector
[3:0]

Input See
note 1

Bit[0]: Reserved (currently unused)

Bit[1]: Loopback Control

• When used with a RocketIO transceiver, the
core is placed in internal loopback mode.

• With the TBI version, Bit 1 is connected to
ewrap. When set to ‘1,’ this indicates to the
external PMA module to enter loopback mode.
See “Loopback,” page 197.

Bit[2]: Power Down

• When a RocketIO transceiver is used, a
setting of ‘1’ places the RocketIO in a low-
power state. A reset must be applied to clear.

• With the TBI version, this bit is unused.

Bit[3]: Isolate

• When set to ‘1,’ the GMII should be
electrically isolated.

• When set to ‘0,’ normal operation is enabled.

1. Signals are synchronous to the core’s internal 125 MHz reference clock; this is userclk2 when used
with a RocketIO transceiver; gtx_clk when used with TBI.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 153
UG155 March 24, 2008

R

Chapter 10

Auto-Negotiation

This chapter provides general guidelines for using the Auto-Negotiation function of the
Ethernet 1000BASE-X PCS/PMA or SGMII core. Auto-Negotiation is controlled and
monitored through the PCS Management Registers and is only available when the optional
MDIO Management Interface is present. For more information, see Chapter 9,
“Configuration and Status.”

Overview of Operation
For either standard, when considering Auto-Negotiation between two connected devices,
it must be remembered that:

• Auto-Negotiation must be either enabled in both devices, or:

• Auto-Negotiation must be disabled in both devices.

1000BASE-X Standard

IEEE 802.3 clause 37 describes the 1000BASE-X Auto-Negotiation function that allows a
device to advertise the modes of operation that it supports to a device at the remote end of

Figure 10-1: 1000BASE-X Auto-Negotiation Overview

Ethernet 1000BASE-X
PCS/PMA or SGMII

Core

Virtex-II Pro Device

Ethernet
Media
Access

Controller

PowerPC

MDIO

CoreConnect

an_interrupt

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

Link Partner

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

Optical
Fibre

http://www.xilinx.com

154 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 10: Auto-Negotiation
R

a link segment (the link partner) and to detect corresponding operational modes that the
link partner advertises. Figure 10-1 illustrates the operation of 1000BASE-X Auto-
Negotiation.

The following describes typical operation when Auto-Negotiation is enabled.

1. Auto-Negotiation starts automatically when any of the following conditions are met.

♦ Power-up/reset

♦ Upon loss of synchronization

♦ The link partner initiates Auto-Negotiation

♦ An Auto-Negotiation Restart is requested (See “Control Register (Register 0),”
page 120.)

2. During Auto-Negotiation, the contents of the Auto-Negotiation Advertisement
Register are transferred to the link partner.

This register is writable through the MDIO, therefore enabling software control of the
systems advertised abilities. See “Auto-Negotiation Advertisement Register (Register
4),” page 124 for more information.

Information provided in this register includes:

♦ Fault Condition signaling

♦ Duplex Mode

♦ Flow Control capabilities for the attached MAC.

3. The advertised abilities of the Link Partner are simultaneously transferred into the
Auto-Negotiation Link Partner Ability Base Register.

This register contains the same information as in the Auto-Negotiation Advertisement
Register. See “Auto-Negotiation Link Partner Ability Base Register (Register 5),” page
125 for more information.

4. Under normal conditions, this completes the Auto-Negotiation information exchange.

It is now the responsibility of system management (for example, software running on
an embedded PowerPCTM or MicroBlazeTM) to complete the cycle. The results of the
Auto-Negotiation should be read from Auto-Negotiation Link Partner Ability Base
Register. Other networking components, such as an attached Ethernet MAC, should be
configured accordingly. See “Auto-Negotiation Link Partner Ability Base Register
(Register 5)” for more information.

There are two methods that a host processor uses to learn of the competition of an
Auto-Negotiation cycle:

♦ Polling the Auto-Negotiation completion bit 1.5 in the Status Register (Register 1).

♦ Using the Auto-Negotiation interrupt port of the core (see “Using the Auto-
Negotiation Interrupt,” page 156).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 155
UG155 March 24, 2008

Overview of Operation
R

SGMII Standard
Figure 10-2 illustrates the operation of SGMII Auto-Negotiation. Additional information
about SGMII Standard Auto-Negotiation is provided in the following sections.

The SGMII capable PHY has two distinctive sides to Auto-Negotiation.

• The PHY performs Auto-Negotiation with its link partner using the relevant Auto-
Negotiation standard for the chosen medium (BASE-T Auto-Negotiation is illustrated
in Figure 10-2, using a twisted copper pair as its medium). This resolves the
operational speed and duplex mode with the link partner.

• The PHY then passes the results of the Auto-Negotiation process with the link partner
to the Ethernet 1000BASE-X PCS/PMA or SGMII core (in SGMII mode), by leveraging
the 1000BASE-X Auto-Negotiation specification described in “1000BASE-X Auto-
Negotiation Overview,” page 153. This transfers the results of the Link Partner Auto-
Negotiation across the SGMII and is the only Auto-Negotiation observed by the core.

This SGMII Auto-Negotiation function, summarized previously, leverages the 1000BASE-
X PCS/PMA Auto-Negotiation function but contains two differences.

• The duration of the Link Timer of the SGMII Auto-Negotiation is shrunk from 10 ms
to 1.6 ms so that the entire Auto-Negotiation cycle is much faster. See “Setting the
Configurable Link Timer,” page 156.

• The information exchanged is different and now contains speed resolution in addition
to duplex mode. See “MDIO Register 5: SGMII Auto-Negotiation Link Partner
Ability,” page 140.

There are no other differences and dealing with the results of Auto-Negotiation can be
handled as described previously in “1000BASE-X Auto-Negotiation Overview.”

Figure 10-2: SGMII Auto-Negotiation

Ethernet 1000BASE-X
PCS/PMA or SGMII

Core

Virtex-II Pro Device

Ethernet
Media
Access

Controller

PowerPC

MDIO

CoreConnect

an_interrupt

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

SGMII capable
BASE-T PHY

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

SGMII
link

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

SGMII side BASE-T side
Medium
(Twisted
Copper

Pair)

Link Partner

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

http://www.xilinx.com

156 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 10: Auto-Negotiation
R

Setting the Configurable Link Timer
The optional Auto-Negotiation function has a Link Timer (link_timer[8:0]) port. This
port sets the period of the Auto-Negotiation Link Timer. This port should be permanently
tied to a logical binary value, and a binary value should be placed on this port. The
duration of the timer is approximately equal to the binary value multiplied by 32.768
microseconds (4,96 clock periods of the 125 MHz clock provided to the core). See “Auto-
Negotiation Signal Pinout” in Chapter 2.

Note: See Chapter 11, “Dynamic Switching of 1000BASE-X and SGMII Standards” for details of
programming the Auto-Negotiation Link Timer when performing dynamic switching between
1000BASE-X and SGMI Standards.

The accuracy of this Link Timer is within the following range.

+0 to -32.768 microseconds

1000BASE-X Standard
The Link-Timer is defined as having a duration somewhere between 10 and 20
milliseconds. The example design delivered with the core sets the binary value as follows:

100111101 = 317 decimal

This corresponds to a duration of between 10.354 and 10.387 milliseconds.

SGMII Standard
The Link-Timer is defined as having a duration of 1.6 milliseconds. The example design
delivered with the core sets the binary value to

000110010 = 50 decimal

This corresponds to a duration of between 1.606 and 1.638 milliseconds.

Simulating Auto-Negotiation
Auto-Negotiation requires a minimum of three link timer periods for completion. If
simulating the Auto-Negotiation procedure, setting the link_timer[8:0] port to a low
value will greatly reduce the simulation time required to complete Auto-Negotiation.

Using the Auto-Negotiation Interrupt
The Auto-Negotiation function has an an_interrupt port. This is designed to be used
with common micro-processor bus architectures (for example, the CoreConnect bus
interfacing to MicroBlaze or the Virtex-II Pro embedded IBM PowerPC). For more
information, see “Auto-Negotiation Signal Pinout” in Chapter 2.

The operation of this port is enabled or disabled and cleared via the MDIO Register 16, the
Vendor-specific Auto-Negotiation Interrupt Control Register.

• When disabled, this port is permanently tied to logic 0.

• When enabled, this port will be set to logic 1 following the completion of an Auto-
Negotiation cycle. It will remain high until it is cleared by writing 0 to bit 16.1
(Interrupt Status bit) of the “MDIO Register 16: Vendor Specific Auto-Negotiation
Interrupt Control,” page 129.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 157
UG155 March 24, 2008

R

Chapter 11

Dynamic Switching of 1000BASE-X and
SGMII Standards

This chapter provides general guidelines for using the core to perform dynamic standards
switching between 1000BASE-X and SGMII. The core will only provide this capability if
generated with the appropriate option, as described in Chapter 3, “Generating and
Customizing the Core.”

Typical Application
Figure 11-1 illustrates a typical application for the Ethernet 1000BASE-X PCS/PMA or
SGMII core with the ability to dynamically switch between 1000BASE-X and SGMII
standards.

The FPGA is shown connected to an external, off-the-shelf PHY with the ability to perform
both BASE-X and BASE-T standards.

• The core must operate in 1000BASE-X mode to use the optical fibre

• The core must operate in SGMII mode to provide BASE-T functionality and use the
twisted copper pair.

The GMII of the Ethernet 1000BASE-X PCS/PMA or SGMII core is shown connected to an
embedded Ethernet Media Access Controller (MAC), for example the Tri-Mode Ethernet
MAC core from Xilinx.

Figure 11-1: Typical Application for Dynamic Switching

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

Virtex-II Pro Device

RocketIO
User Logic

(Ethernet
Media
Access

Controller)

Internal
GMII

RocketIO
Interface

TXP/TXN

RXP/RXN

Twisted
Copper

Pair

1000BASE-X
or
SGMII

1000BASE-X

10 BASE-T
100BASE-T
1000BASE-T

Optical
Fibre

http://www.xilinx.com

158 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 11: Dynamic Switching of 1000BASE-X and SGMII Standards
R

Operation of the Core

Selecting the Power-On / Reset Standard
The external port of the core, basex_or_sgmii (see “Dynamic Switching Signal Pinout”
in Chapter 2), will select the default standard of the core as follows:

• Tie to logic ‘0’ in the core instantiation. The core powers-up and comes out of a reset
cycle operating in the 1000BASE-X standard.

• Tie to logic ‘1’ in the core instantiation. The core powers-up and comes out of a reset
cycle operating in the SGMII standard.

The basex_or_sgmii port of the core could be dynamically driven. In this configura-
tion, it is possible to drive a logical value onto the port, followed by a core reset cycle to
switch the core to the desired standard. However, it is expected that the standard will be
switched through the MDIO Management Registers.

Switching the Standard Using MDIO
The 1000BASE-X or SGMII standard of the core can be switched at any time by writing to
the “Vendor-specific Register: Standard Selection Register (Register 17).” Following
completion of this write, the MDIO Management Registers will immediately switch.

• Core set to 1000BASE-X standard. Management Registers 0 through 16 should be
interpreted according to “1000BASE-X Standard Using the Optional Auto-
Negotiation,” page 119.

• Core set to SGMII standard. Management Registers 0 through 16 should be
interpreted according to “SGMII Standard Using the Optional Auto-Negotiation,”
page 135.

Auto-Negotiation State Machine
• Core set to the 1000BASE-X standard. The Auto-Negotiation state machine operates as

described in “1000BASE-X Standard,” page 156.

• Core set to perform the SGMII standard. The Auto-Negotiation state machine
operates as described in “SGMII Standard,” page 156.

• Standard is switched during an Auto-Negotiation sequence. The Auto-Negotiation
state machine will not immediately switch standards, but attempt to continue to
completion at the original standard.

• Switching the standard using MDIO. This does not cause Auto-Negotiation to
automatically restart. Xilinx recommends that after switching to a new standard using
a MDIO write, immediately perform the following:

♦ If you have switched to the 1000BASE-X standard, reprogram the Auto-
Negotiation Advertisement Register (Register 4) to the desired settings.

♦ For either standard, restart the Auto-Negotiation sequence by writing to bit 0.9 of
the MDIO Control Register (Register 0).

Setting the Auto-Negotiation Link Timer
As described in “Auto-Negotiation” in Chapter 10, the duration of the Auto-Negotiation
Link Timer differs with the 1000BASE-X and the SGMII standards. To provide configurable
link timer durations for both standards, the following ports are available. These ports

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 159
UG155 March 24, 2008

Operation of the Core
R

replace the link_timer_value[8:0] port that is used when the core is generated for a
single standard.

• link_timer_basex[8:0] The value placed on this port is sampled at the
beginning of the Auto-Negotiation cycle by the Link Timer when the core is set to
perform the 1000BASE-X standard.

• link_timer_sgmii[8:0] The value placed on this port is sampled at the
beginning of the Auto-Negotiation cycle by the Link Timer when the core is set to
perform the SGMII standard.

Both ports follow the same rules that are described in “Setting the Configurable Link
Timer,” page 156.

http://www.xilinx.com

160 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 11: Dynamic Switching of 1000BASE-X and SGMII Standards
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 161
UG155 March 24, 2008

R

Chapter 12

Constraining the Core

This chapter defines the constraint requirements of the Ethernet 1000BASE-X PCS/PMA or
SGMII core. An example UCF is provided with the HDL example design for the core to
implement the constraints defined in this chapter.

See the Ethernet 1000BASE-X PCS/PMA or SGMII Getting Started Guide for a complete
description of the CORE Generator output files and for details on the HDL example
design.

Required Constraints

Device, Package, and Speedgrade Selection
The Ethernet 1000BASE-X PCS/PMA or SGMII core can be implemented in Virtex-II,
Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN and
Spartan-3 DSP devices. When selecting a device, be aware of the following considerations:

• Device must be large enough to accommodate the core

• Device must contain a sufficient number of IOBs

• –4 speed grade for Virtex-II, Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN and
Spartan-3A DSP devices

• –5 speed grade for Virtex-II Pro FPGA

• –10 speed grade for Virtex-4 FPGA

• -1 speed grade for Virtex-5 FPGA

• The RocketIO transceiver is only supported in Virtex-II Pro, Virtex-4 FX, Virtex-5 LXT,
Virtex-5 SXT, and Virtex-5 FXT FPGAs

I/O Location Constraints
No specific I/O location constraints required.

Placement Constraints
No specific placement constraints required.

Virtex-II Pro RocketIO MGTs for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the descriptions in
the following sections to serve as examples. These should be studied in conjunction with

http://www.xilinx.com

162 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

the HDL source code for the example design and with the information contained in
Chapter 7, “1000BASE-X with RocketIO Transceivers.”

Clock Period Constraints

The clock provided to userclk must be constrained for a clock frequency of 62.5 MHz.
The clock provided to userclk2 must be constrained for a clock frequency of 125 MHz.
The following UCF syntax shows the necessary constraints being applied to the example
design.

##
PCS/PMA Clock period Constraints: please do not relax
##
NET "brefclk_ibufg" TNM_NET = "brefclk";
TIMESPEC "ts_brefclk" = PERIOD "brefclk" 16 ns HIGH 50 %;

NET "rocketio/rxrecclk" TNM_NET = "rxrecclk";
TIMESPEC "ts_rxrecclk" = PERIOD "rxrecclk" 16 ns;

NET "clk0" TNM_NET = "clk0";
TIMESPEC "ts_clk0" = PERIOD "clk0" "ts_brefclk";

NET "clk2x180" TNM_NET = "clk_tx";
TIMESPEC "ts_tx_clk" = PERIOD "clk_tx" "ts_brefclk"/2 PHASE + 4 nS HIGH
50 %;

Setting MGT Attributes

MGT attributes can be set by either of these methods:

• Directly from HDL source code during MGT instantiation (see the HDL source code
for the example design)

• From the UCF

Attributes set from a UCF take priority. The UCF for the example design defines some
user-modifiable attributes as illustrated in the following example. All attributes used in the
example design UCF are based on the GT_ETHERNET_1 defaults.

##
Rocket I/O constraints:
please refer to Rocket I/O documentation
##
INST "rocketio/mgt" TX_CRC_USE = FALSE;
INST "rocketio/mgt" RX_CRC_USE = FALSE;
INST "rocketio/mgt" REF_CLK_V_SEL = 1;
INST "rocketio/mgt" TERMINATION_IMP = 50;
INST "rocketio/mgt" TX_DIFF_CTRL = 500;
INST "rocketio/mgt" TX_PREEMPHASIS = 0;

MGT Transceiver Placement Constraints

The following UCF syntax illustrates the MGT transceiver placement for the example
design. Special attention must be made to the placement of the SERDES alignment flip-flop
as described in the RocketIO Transceiver User Guide (Chapter 2, SERDES Alignment, Ports, and
Attributes, ENPCOMMAALIGN, ENMCOMMAALIGN). This is the single flip-flop
illustrated in Figure 7-1.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 163
UG155 March 24, 2008

Required Constraints
R

##
Rocket I/O placement:
##

Place the Rocket I/O
INST "rocketio/mgt" LOC = "GT_X0Y1";

Locate the SERDES alignment logic near the Rocket I/O.
Please Refer to the Rocket I/O User Guide (Chapter 2,
SERDES Alignment, Ports and Attributes, ENPCOMMAALIGN,
ENMCOMMAALIGN).
The following lock constraints are intended as an
example of SERDES alignment logic placement in a
XC2VP7 device when using GT_X0Y1. Please change the
targeted slices appropriately for other combinations.
INST "rocketio/serdes_alignment" LOC = SLICE_X15Y72;

Virtex-II Pro RocketIO MGTs for SGMII or Dynamic Standards Switching
Constraints

All of the constraints documented in “Virtex-II Pro RocketIO MGTs for 1000BASE-X
Constraints” apply. In addition, if the FPGA Fabric Rx Elastic Buffer is selected, area
placement constraints are required to ensure that the correct local clock routing paths are
used for rxrecclk. This is described in XAPP763 and in the remainder of this section.

With the MGT Rx Elastic Buffer bypassed, rxrecclk clock is provided by the MGT to the
FPGA fabric for the recovered receiver data signals leaving the transceiver. This data is
then written into the replacement Rx Elastic Buffer implemented in the FPGA fabric. See
Chapter 8, “Virtex-II Pro Devices” for more information about this logic.

For correct operation, rxrecclk must be placed on specific clock routing in the vicinity of
the MGT from which the clock signal originates. This is the MGT local clock route, a 5 x 12
Configurable Logic Block (CLB) array which is next to every MGT on the top of the device,
or a 5 x 11 CLB array next to every MGT on the bottom of the device. Each array provides
a minimum of 440 flip-flops plus two block SelectRAMTMs; more than adequate for the
fabric Rx Elastic Buffer requirements. A CLB array for the top of the device is illustrated in
Figure 12-1. This figure represents the view of this placement as seen in FPGA Editor.

The following UCF syntax shows an example of defining an AREA_GROUP for the
rxrecclk local clock route for all of the synchronous elements used in the example
design. Because the block RAM is not included in the AREA_GROUP, a separate location
constraint needs to be applied to the block RAM used.

##
Fabric Rx Elastic Buffer Placement: #
##

Constrain the slice area to be near the RocketIO
TIMEGRP "rxrecclk" AREA_GROUP = "local_clk";
AREA_GROUP "local_clk" RANGE = SLICE_X6Y56:SLICE_X15Y79;

Constrain the block RAM used for the fabric Rx Elastic
Buffer to be near the RocketIO
INST "rocketio/clock_correction/dual_port_block_ram" LOC =
RAMB16_X1Y8;

http://www.xilinx.com

164 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

Virtex-4 RocketIO MGTs for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples and should be studied in conjunction with the HDL
source code for the example design. See also “Virtex-4 FX Devices” in Chapter 7.

Clock Period Constraints

The clock txoutclk is provided by the MGT for use in the FPGA fabric. It is connected to
global clock routing to produce the usrclk2 signal. This is the main 125 MHz clock used
by all core logic and must be constrained.

DCLK is a clock with a frequency between 25 and 50 MHz, which must be provided to the
Dynamic Reconfiguration Port and to the calibration block of the MGT. In the example
design, this is constrained to 50 MHz.

Figure 12-1: Local Clock Place and Route for Top MGT

Legend:
Green - Vertical
Long Line

Orange - VFULLHEX

Red - HFULLHEX

Yellow - BRAM/
Multiplier/Slices/
MGT

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 165
UG155 March 24, 2008

Required Constraints
R

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "userclk2" TNM_NET = "userclk2";
TIMESPEC "TS_userclk2" = PERIOD "userclk2" 8 ns HIGH 50 %;

NET "dclk" TNM_NET = "dclk";
TIMESPEC "TS_dclk" = PERIOD "dclk" 20 ns HIGH 50 %;

Setting MGT Transceiver Attributes

The Virtex-4 MGT device has many attributes. These attributes are set directly from HDL
source code for the transceiver wrapper file delivered with the example design. These are
in the file transceiver.vhd (for VHDL design entry) or transciever.v (for Verilog
design entry). See the Ethernet 1000BASE-X PCS/PMA or SGMII Getting Started Guide for a
detailed description of the example design provided with the core.

This HDL transceiver wrapper file was initially created using Architecture Wizard. See the
Virtex-4 FPGA RocketIO Multi-Gigabit Transceiver User Guide (UG076) for a description of
available attributes.

MGT Placement Constraints

The following UCF syntax illustrates the MGT placement contraints for the example
design. Because Virtex-4 MGTs are always available in pairs, two MGTs are always
instantiated in the example design, even if one is inactive.

#***
Example Rocket I/O placement *
#***
Lock down the REFCLK pins:
NET brefclk_p LOC = F26;
NET brefclk_n LOC = G26;

Lock down the GT11 pair and GT11 clock module
INST "core_wrapper/rocketio/GT11_1000X_A" LOC = GT11_X0Y5;
INST "core_wrapper/rocketio/GT11_1000X_B" LOC = GT11_X0Y4;
INST "GT11CLK_MGT_INST" LOC = GT11CLK_X0Y3;

Lock down the RocketIO pins:
NET "rxp0" LOC = J26;
NET "rxn0" LOC = K26;
NET "txp0" LOC = M26;
NET "txn0" LOC = N26;
NET "rxp1" LOC = U26;
NET "rxn1" LOC = V26;
NET "txp1" LOC = P26;
NET "txn1" LOC = R26;

http://www.xilinx.com

166 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

Virtex-4 RocketIO MGTs for SGMII or Dynamic Standards Switching
Constraints

All the constraints described in the section “Virtex-4 RocketIO MGTs for 1000BASE-X
Constraints.” In addition, if the FPGA Fabric Rx Elastic Buffer is selected, an extra clock
period constraint of 16 ns is required for rxrecclk1.

With the MGT Rx Elastic Buffer bypassed, rxrecclk1 is provided by the MGT to the
FPGA fabric for the recovered receiver data signals leaving the transceiver. This data is
then written into the replacement Rx Elastic Buffer implemented in the FPGA fabric. See
“Virtex-4 Devices for SGMII or Dynamic Standards Switching,” page 101.

The following UCF syntax shows the necessary constraint being applied to GT11 A.

#***
PCS/PMA Clock period Constraints for the GT11 A *
recovered clock: please do not relax *
#***

NET "core_wrapper/rocketio/rxrecclk10" TNM_NET = "rxrecclk10";
TIMESPEC "ts_rxrecclk10" = PERIOD "rxrecclk10" 16 ns;

Virtex-5 RocketIO GTP Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also “Virtex-5 LXT and SXT Devices” in Chapter 7.

Clock Period Constraints

The clkin clock is provided to the GTP transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The refclkout clock is provided by the GTP for use in the FPGA fabric, which is then
connected to global clock routing to produce the usrclk2 signal. This is the main 125
MHz clock used by all core logic and must be constrained.

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "*clkin" TNM_NET = "clkin";
TIMESPEC "TS_clkin" = PERIOD "clkin" 8 ns HIGH 50 %;

NET "*refclkout" TNM_NET = "refclkout";
TIMESPEC "TS_refclkout" = PERIOD "refclkout" 8 ns HIGH 50 %;

Setting GTP Transceiver Attributes

The Virtex-5 GTP transceiver has many attributes that are set directly from HDL source
code for the transceiver wrapper file delivered with the example design. These can be
found in the rocketio_wrapper_gtp_tile.vhd file (for VHDL design entry) or the
rocketio_wrapper_gtp_tile.v file (for Verilog design entry): these files were
generated using the GTP Transceiver Wizard - to change the attributes, re-run the Wizard.
See “Virtex-5 RocketIO GTP Wizard” in Chapter 7.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 167
UG155 March 24, 2008

Required Constraints
R

Virtex-5 RocketIO GTP Transceivers for SGMII or Dynamic Standards
Switching Constraints

If the core is generated to use the GTP Rx Elastic Buffer, all of the constraints apply, as
defined in “Clock Period Constraints,” page 166. However, if the FPGA Fabric Rx Elastic
Buffer is selected, an extra clock period constraint of 8 ns is required for rxrecclk: with
the GTP Rx Elastic Buffer bypassed, rxrecclk is provided by the GTP transceiver to the
FPGA fabric for the recovered receiver data signals leaving the transceiver. This data is
then written into the replacement Rx Elastic Buffer implemented in the FPGA fabric. See
“Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching,” page 103 for
more information about this logic.

The following UCF syntax shows the necessary constraint being applied to the rxrecclk
signal sourced from GTP 0.

#***
PCS/PMA Clock period Constraints for the GTP 0 *
recovered clock: please do not relax *
#***

NET "core_wrapper/rocketio/rxrecclk0" TNM_NET = "rxrecclk0";
TIMESPEC "ts_rxrecclk0" = PERIOD "rxrecclk0" 8 ns;

Setting GTP Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the
Virtex-5 GTP transceiver which are set directly from HDL source code do differ from the
standard case. These can be found in the rocketio_wrapper_gtp_tile.vhd file (for
VHDL design entry) or the rocketio_wrapper_gtp_tile.v file (for Verilog design
entry): these files were generated using the GTP RocketIO Wizard - to change the
attributes, re-run the Wizard. See “Virtex-5 RocketIO GTP Wizard” in Chapter 8.

Virtex-5 RocketIO GTX Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also “Virtex-5 FXT Devices” in Chapter 7.

Clock Period Constraints

The clkin clock is provided to the GTX transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The refclkout clock is provided by the GTX for use in the FPGA fabric–this is the main
125MHz clock reference source for the FPGA fabric and should be constrained. This is then
connected to a DCM. The ports CLK0 (125MHz) and CLKDV (62.5MHz) of this DCM are
then placed onto global clock routing to produce the usrclk2 and usrclk clock signals
respectively. The Xilinx tools will trace the refclkout constraint through the DCM and
automatically generate clock period constraints for the DCM output clocks. So constraints
usrclk2 and usrclk do not need to be manually applied.

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

http://www.xilinx.com

168 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

NET "*clkin" TNM_NET = "clkin";
TIMESPEC "TS_clkin" = PERIOD "clkin" 8 ns HIGH 50 %;

NET "*refclkout" TNM_NET = "refclkout";
TIMESPEC "TS_refclkout" = PERIOD "refclkout" 8 ns HIGH 50 %;

Setting GTX Transceiver Attributes

The Virtex-5 GTX transceiver has many attributes that are set directly from HDL source
code for the transceiver wrapper file delivered with the example design. These can be
found in the rocketio_wrapper_gtx_tile.vhd file (for VHDL design entry) or the
rocketio_wrapper_gtx_tile.v file (for Verilog design entry): these files were
generated using the GTX Transceiver Wizard - to change the attributes, re-run the Wizard.
See “Virtex-5 RocketIO GTX Wizard” in Chapter 7.

Virtex-5 RocketIO GTX Transceivers for SGMII or Dynamic Standards
Switching Constraints

If the core is generated to use the GTX Rx Elastic Buffer, then all of the constraints
documented in “Clock Period Constraints,” page 167, apply.

However, if the FPGA Fabric Rx Elastic Buffer is selected, then an extra clock period
constraint of 16 ns is required for rxrecclk: with the GTX Rx Elastic Buffer bypassed,
rxrecclk is provided by the GTX transceiver to the FPGA fabric for the recovered
receiver data signals leaving the transceiver. This data is then written into the replacement
Rx Elastic Buffer implemented in the FPGA fabric. See “Virtex-5 FXT Devices for SGMII or
Dynamic Standards Switching,” page 105 for more information about this logic.

The following UCF syntax shows the necessary constraint being applied to the rxrecclk
signal sourced from GTX 0.

#***
PCS/PMA Clock period Constraints for the GTP/X 0 *
recovered clock: please do not relax *
#***

NET "core_wrapper/rocketio/rxrecclk0" TNM_NET = "rxrecclk0";
TIMESPEC "ts_rxrecclk0" = PERIOD "rxrecclk0" 16 ns;

Setting GTX Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the
Virtex-5 GTX transceiver which are set directly from HDL source code do differ from the
standard case. These can be found in the rocketio_wrapper_gtx_tile.vhd file (for
VHDL design entry) or the rocketio_wrapper_gtx_tile.v file (for Verilog design
entry): these files were generated using the GTX RocketIO Wizard - to change the
attributes, re-run the Wizard. See “Virtex-5 RocketIO GTX Wizard” in Chapter 8.

Ten-Bit Interface Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from this UCF have been copied into the
descriptions in this section to serve as examples, and should be studied with the HDL
source code for the example design. See also Chapter 6, “The Ten-Bit Interface.”

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 169
UG155 March 24, 2008

Required Constraints
R

Clock Period Constraints

The clocks provided to pma_rx_clk0 and pma_rx_clk1 must be constrained for a clock
frequency of 62.5 MHz. The clock provided to gtx_clk must be constrained for a clock
frequency of 125 MHz. The following UCF syntax shows the constraints being applied to
the example design.

##
TBI Clock period Constraints: please do not relax
##
NET "pma_rx_clk0" TNM_NET = "pma_rx_clk0";
TIMESPEC "ts_pma_rx_clk0" = PERIOD "pma_rx_clk0" 16000 ps HIGH 50 %;

NET "pma_rx_clk1" TNM_NET = "pma_rx_clk1";
TIMESPEC "ts_pma_rx_clk1" = PERIOD "pma_rx_clk1" 16000 ps HIGH 50 %;

NET "gtx_clk_bufg" TNM_NET = "clk_tx";
TIMESPEC "ts_tx_clk" = PERIOD "clk_tx" 8000 ps HIGH 50 %;

Period constraints should be applied to cover signals in to and out of the block memory
based 8B/10B encoder and decoder.

Constrain between flip-flops and the Block Memory for the 8B10B
encoder and decoder
INST "gig_eth_pcs_pma_core/BU2/U0/PCS_OUTPUT/DECODER/LOOK_UP_TABLE"
TNM = "codec8b10b";
INST "gig_eth_pcs_pma_core/BU2/U0/PCS_OUTPUT/ENCODER/LOOK_UP_TABLE"
TNM = "codec8b10b";
TIMESPEC "ts_ffs_to_codec8b10b" = FROM FFS TO "codec8b10b" 8000 ps;
TIMESPEC "ts_codec8b10b_to_ffs" = FROM "codec8b10b" TO FFS 8000 ps;

Ten-Bit Interface IOB Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design. Constraints are set to ensure that these are placed in IOBs.

INST "tx_code_group_reg*" IOB = true;
INST "ewrap_reg" IOB = true;
INST "en_cdet_reg" IOB = true;
INST "rx_code_group0_reg*" IOB = true;
INST "rx_code_group1_reg*" IOB = true;

Note: For Virtex-4 and Virtex-5 devices, the example design will directly instantiate IOB DDR
components and the previous constraints are not included.

The Ten-Bit Interface (TBI) is a 3.3 volt signal level interface. The 3.3 volt LVTTL SelectIO
standard is the default for Virtex-II devices. The following constraints may safely be
added. The 3.3 volt LVTTL SelectIO standard is not the default for other families. Use the
following constraints and take into account the device IO Banking rules when fixing PADs.

INST "tx_code_group<?>" IOSTANDARD = LVTTL;
INST "pma_tx_clk" IOSTANDARD = LVTTL;

INST "rx_code_group<?>" IOSTANDARD = LVTTL;
INST "pma_rx_clk0" IOSTANDARD = LVTTL;

INST "loc_ref" IOSTANDARD = LVTTL;
INST "ewrap" IOSTANDARD = LVTTL;
INST "en_cdet" IOSTANDARD = LVTTL;

http://www.xilinx.com

170 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

In addition, the example design provides pad locking on the TBI for several families. This
is included as a guideline only, and there are no specific I/O location constraints for this
core.

TBI Input Setup/Hold Timing

Input TBI Timing Specification

Figure 12-2 and Table 12-1 illustrate the setup and hold time window for the input TBI
signals. These specify the worst-case data valid window presented to the FPGA device
pins. There is only a 2 ns data valid window of guaranteed data presented across the TBI
input bus. This must be correctly sampled by the FPGA devices.

Virtex-II, and Virtex-II Pro Devices

Figure 6-2 illustrates the TBI input logic provided by the example design for the Virtex-II
and Virtex-II Pro family. Although not illustrated, these families have input delay elements
(always of a fixed delay). These are also automatically inserted by the Xilinx tools and are
set to provide a zero-hold time. These input delays automatically meet input setup and
hold timing on the TBI without any specific constraints.

Spartan-3, Spartan-3E, and Spartan-3A Devices

Figure 6-3, page 72 illustrates the TBI input logic provided by the example design for the
Spartan-3 class family. DCMs are used on the pma_rx_clk0 and pma_rx_clk1 clock
paths as illustrated. Phase-shifting is then applied to the DCMs to align the resultant clocks
so that they correctly sample the 2 ns. TBI data valid window at the input DDR flip-flops.

The fixed phase shift is applied to the DCMs using the following UCF syntax.

INST "core_wrapper/tbi_rx_clk0_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "core_wrapper/tbi_rx_clk0_dcm" PHASE_SHIFT = -10;
INST "core_wrapper/tbi_rx_clk0_dcm" DESKEW_ADJUST = 0;

Figure 12-2: Input TBI timing

Table 12-1: Input TBI Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

rx_code_group[9:0]

PMA_RX_CLK0

tSETUP

tHOLD

PMA_RX_CLK1

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 171
UG155 March 24, 2008

Required Constraints
R

INST "core_wrapper/tbi_rx_clk1_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "core_wrapper/tbi_rx_clk1_dcm" PHASE_SHIFT = -10;
INST "core_wrapper/tbi_rx_clk1_dcm" DESKEW_ADJUST = 0;

The values of PHASE_SHIFT are preconfigured in the example designs to meet the setup
and hold constraints for the example TBI pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the datasheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift values. Appendix C,
“Calculating the DCM Fixed Phase Shift Value” describes a more accurate method for
fixing the phase shift by using hardware measurement of a unique PCB design.

Virtex-4 Devices

Figure 6-4, page 73 illustrates the TBI input logic provided by the example design for the
Virtex-4 family. IDELAY elements are instantiated on the TBI data input path as illustrated:
the number of tap delays is currently set to zero. This can be modified in the UCF file, if
desired, to de-skew the bus for PCB routing.

A fixed tap delay is applied to delay the pma_rx_clk0 clock so that it correctly samples
the TBI data at the IOB IDDR register, thereby meeting TBI setup and hold timing.

The tap delays are applied using the following UCF syntax.

#---
To Adjust TBI Rx Input Setup/Hold Timing -
#---
INST "core_wrapper/delay_pma_rx_clk" IOBDELAY_VALUE = "40";
INST "core_wrapper/tbi_rx_data_bus[9].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[8].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[7].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[6].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[5].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[4].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[3].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[2].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[1].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";
INST "core_wrapper/tbi_rx_data_bus[0].delay_tbi_rx_data"
IOBDELAY_VALUE = "0";

The value of IOBDELAY_VALUE for the pma_rx_clk0 clock is preconfigured in the
example designs to meet the setup and hold constraints for the example TBI pinout in the
particular device. The setup/hold timing which is achieved after place-and-route is
reported in the datasheet section of the TRCE report (created by the implement script). See
“Understanding Timing Reports for Setup/Hold Timing.”

http://www.xilinx.com

172 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

Virtex-5 Devices

Figure 6-6, page 75 illustrates the TBI input logic provided by the example design for the
Virtex-5 family. IODELAY elements are instantiated on the TBI data input path as
illustrated: the number of tap delays is currently set to zero. This can be modified in the
UCF file, if desired, to de-skew the bus for PCB routing. A fixed tap delay is applied to
delay the pma_rx_clk0 clock so that it correctly samples the TBI data at the IOB IDDR
register, thereby meeting TBI setup and hold timing.

The tap delays are applied using the following UCF syntax.

#---
To Adjust TBI Rx Input Setup/Hold Timing
#---
INST "core_wrapper/delay_pma_rx_clk" IDELAY_VALUE = "63";
INST "core_wrapper/tbi_rx_data_bus[9].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[8].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[7].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[6].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[5].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[4].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[3].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[2].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[1].delay_tbi_rx_data" IDELAY_VALUE
= "0";
INST "core_wrapper/tbi_rx_data_bus[0].delay_tbi_rx_data" IDELAY_VALUE
= "0";

The value of IDELAY_VALUE for the pma_rx_clk0 clock is preconfigured in the example
designs to meet the setup and hold constraints for the example TBI pinout in the particular
device. The setup/hold timing which is achieved after place-and-route is reported in the
datasheet section of the TRCE report (created by the implement script). See
“Understanding Timing Reports for Setup/Hold Timing.”

Constraints When Implementing an External GMII
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from this UCF have been copied into the
following examples, and should be studied in conjunction with the HDL source code for
the example design. See also the section, “Implementing External GMII,” page 61.

Clock Period Constraints

When implementing an external GMII, the Transmitter Elastic Buffer delivered with the
example design (or similar logic) must be used. The input transmitter GMII signals are
then synchronous to their own clock domain (gmii_tx_clk is used in the example
design). This clock must be constrained for a clock frequency of 125 MHz. The following
UCF syntax shows the necessary constraints being applied to the example design.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 173
UG155 March 24, 2008

Required Constraints
R

##
GMII Clock period Constraints: please do not relax
##
NET "gmii_tx_clk_bufg" TNM_NET = "gmii_tx_clk";
TIMESPEC "ts_gmii_tx_clk" = PERIOD "gmii_tx_clk" 8000 ps HIGH 50 %;

GMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design. Constraints are set to ensure that these are placed in IOBs.

##
GMII Transmitter Constraints: place flip-flops in IOB
##
INST "gmii_txd*" IOB = true;
INST "gmii_tx_en" IOB = true;
INST "gmii_tx_er" IOB = true;

##
GMII Receiver Constraints: place flip-flops in IOB
##
INST "gmii_rxd_obuf*" IOB = true;
INST "gmii_rx_dv_obuf" IOB = true;
INST "gmii_rx_er_obuf" IOB = true;

The GMII is a 3.3 volt signal level interface. The 3.3 volt LVTTL SelectIO standard is the
default for Virtex-II devices. The following constraints may be safely added. The 3.3 volt
LVTTL SelectIO standard is not the default for other families. Use the following constraints
and take into account the device IO Banking rules when fixing PADs.

INST "gmii_txd<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en" IOSTANDARD = LVTTL;
INST "gmii_tx_er" IOSTANDARD = LVTTL;

INST "gmii_rxd<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv" IOSTANDARD = LVTTL;
INST "gmii_rx_er" IOSTANDARD = LVTTL;

INST "gmii_tx_clk" IOSTANDARD = LVTTL;
INST "gmii_rx_clk" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the GMII for several families.
This is a provided as a guideline only; there are no specific I/O location constraints for this
core.

http://www.xilinx.com

174 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

GMII Input Setup/Hold Timing

Input GMII timing specification

Figure 12-3 and Table 12-2 illustrate the setup and hold time window for the input GMII
signals. These are the worst-case data valid window presented to the FPGA device pins.

Observe that there is, in total, a 2 ns data valid window of guaranteed data which is
presented across the GMII input bus. This must be correctly sampled by the FPGA devices.

Virtex-II, and Virtex-II Pro devices

Figure 5-14 illustrates the GMII input logic which is provided by the example design for
the Virtex-II and Virtex-II Pro family. Although not illustrated, these families have input
delay elements (which are always of a fixed delay). These are also automatically inserted
by the Xilinx tools and are set to provide a zero-hold time.

These input delays will automatically meet input setup and hold timing on the GMII
without any specific constraints.

Spartan-3, Spartan-3E, and Spartan-3A devices

Figure 5-15 illustrates the GMII input logic which is provided by the example design for
the Spartan-3 class family. A DCM must be used on the gmii_tx_clk clock path as
illustrated. Phase-shifting is then applied to the DCM to align the resultant clock so that it
will correctly sample the 2ns GMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST "gmii_tx_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "gmii_tx_dcm" PHASE_SHIFT = -20;
INST "gmii_tx_dcm" DESKEW_ADJUST = 0;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold

Figure 12-3: Input GMII timing

Table 12-2: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

GMII_TXD[7:0],
GMII_TX_EN,
GMII_TX_ER

GMII_TX_CLK

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 175
UG155 March 24, 2008

Required Constraints
R

timing which is achieved after place-and-route is reported in the datasheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix C,
“Calculating the DCM Fixed Phase Shift Value” describes a more accurate method for
fixing the phase shift by using hardware measurement of a unique PCB design.

Virtex-4 devices

Figure 5-16 illustrates the GMII input logic provided by the example design for the Virtex-
4 family. IODELAY elements are instantiated on the GMII data input path as illustrated:
the number of tap delays is currently set to zero. This can be modified in the UCF file, if
desired, to de-skew the bus for PCB routing.

A fixed tap delay is applied to delay the gmii_tx_clk clock so that it correctly samples
the GMII data at the IOB flip-flop, thereby meeting GMII setup and hold timing.

The tap delays are applied using the following UCF syntax.

#---
To Adjust GMII Tx Input Setup/Hold Timing -
#---
INST "delay_gmii_tx_en" IOBDELAY_VALUE = "53";
INST "delay_gmii_tx_er" IOBDELAY_VALUE = "53";

INST "gmii_data_bus[7].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[6].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[5].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[4].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[3].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[2].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[1].delay_gmii_txd" IOBDELAY_VALUE = "53";
INST "gmii_data_bus[0].delay_gmii_txd" IOBDELAY_VALUE = "53";

The value of IOBDELAY_VALUE for the gmii_tx_clk clock is preconfigured in the
example designs to meet the setup and hold constraints for the example GMII pinout in the
particular device. The setup/hold timing which is achieved after place-and-route is
reported in the datasheet section of the TRCE report (created by the implement script). See
“Understanding Timing Reports for Setup/Hold Timing.”

Virtex-5 devices

Figure 5-17 illustrates the GMII input logic provided by the example design for the Virtex-
5 family. IODELAY elements are instantiated on the GMII data input path as illustrated:
the number of tap delays is currently set to zero. This can be modified in the UCF file, if
desired, to de-skew the bus for PCB routing.

A fixed tap delay is applied to delay the gmii_tx_clk clock so that it correctly samples
the GMII data at the IOB flip-flop, thereby meeting GMII setup and hold timing.

The tap delays are applied using the following UCF syntax.

#---
To Adjust GMII Tx Input Setup/Hold Timing -
#---
INST "delay_gmii_tx_en" IDELAY_VALUE = "33";
INST "delay_gmii_tx_er" IDELAY_VALUE = "33";

INST "gmii_data_bus[7].delay_gmii_txd" IDELAY_VALUE = "33";

http://www.xilinx.com

176 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

INST "gmii_data_bus[6].delay_gmii_txd" IDELAY_VALUE = "33";
INST "gmii_data_bus[5].delay_gmii_txd" IDELAY_VALUE = "33";
INST "gmii_data_bus[4].delay_gmii_txd" IDELAY_VALUE = "33";
INST "gmii_data_bus[3].delay_gmii_txd" IDELAY_VALUE = "33";
INST "gmii_data_bus[2].delay_gmii_txd" IDELAY_VALUE = "33";
INST "gmii_data_bus[1].delay_gmii_txd" IDELAY_VALUE = "33";
INST "gmii_data_bus[0].delay_gmii_txd" IDELAY_VALUE = "33";

The value of IDELAY_VALUE for the gmii_tx_clk clock is preconfigured in the example
designs to meet the setup and hold constraints for the example GMII pinout in the
particular device. The setup/hold timing which is achieved after place-and-route is
reported in the datasheet section of the TRCE report (created by the implement script). See
“Understanding Timing Reports for Setup/Hold Timing.”

Understanding Timing Reports for Setup/Hold Timing

Devices Other Than Virtex-4 or Virtex-5

Setup and Hold results for the TBI or GMII input busses for the following devices are
defined in the Data Sheet Report section of the Timing Report: Virtex-II, Virtex-II Pro,
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP. The results are self-
explanatory and show an obvious correlation and relationship to Figure 12-2 and
Figure 12-3.

The following example shows the GMII report from a Virtex-II device. The implementation
requires 1.531 ns of setup (this is less than the 2 ns required, to allow for slack). The
implementation requires -0.125 ns of hold (this is less than the 0 ns required, to allow for
slack).

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_tx_clk
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
gmii_tx_en | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_tx_er | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<0> | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<1> | 1.525(R)| -0.135(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<2> | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<3> | 1.525(R)| -0.135(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<4> | 1.515(R)| -0.125(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<5> | 1.515(R)| -0.125(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<6> | 1.520(R)| -0.130(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<7> | 1.520(R)| -0.130(R)|gmii_tx_clk_bufg | 0.000|
------------+------------+------------+------------------+--------+

Virtex-4 or Virtex-5 Devices

Setup and hold results for the TBI or GMII input busses can be found in the data sheet
report section of the Timing Report. Note that initially, the results do not indicate an
obvious relationship to Figure 12-2 and Figure 12-3. The following example shows the
GMII report from a Virtex-4 device.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 177
UG155 March 24, 2008

Required Constraints
R

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_tx_clk
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
gmii_tx_en | -6.501(R)| 7.875(R)|gmii_tx_clk_bufg | 0.000|
gmii_tx_er | -6.504(R)| 7.878(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<0> | -6.506(R)| 7.880(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<1> | -6.521(R)| 7.893(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<2> | -6.518(R)| 7.890(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<3> | -6.515(R)| 7.889(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<4> | -6.521(R)| 7.894(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<5> | -6.520(R)| 7.895(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<6> | -6.514(R)| 7.889(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<7> | -6.513(R)| 7.889(R)|gmii_tx_clk_bufg | 0.000|
------------+------------+------------+------------------+--------+

The implementation requires -6.501 ns of setup. Figure 12-4 illustrates that this represents
a figure of 1.499 ns relative to the following rising edge of the clock (because the IDELAY
has acted to delay the clock by an entire period when measured from the input flip-flop).
This is less than the 2 ns required, and so there is slack.

The implementation requires 7.893 ns of hold. Figure 12-4 illustrates that this represents a
figure of -0.107 ns relative to the following rising edge of the clock (because the IDELAY
has acted to delay the clock by an entire period when measured from the input flip-flop).
This is less than the 0 ns required, and so there is slack.

Figure 12-4: Timing Report Setup/Hold Illustration

tSETUP

tHOLD

GMII_TXD[7:0],
GMII_TX_EN,
GMII_TX_ER

GMII_TX_CLK

8 ns

-6.501 ns

= 8 - 6.501
= 1.499 ns

8 ns

7.893 ns

= 7.893 - 8
= -0.107 ns

http://www.xilinx.com

178 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 12: Constraining the Core
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 179
UG155 March 24, 2008

R

Chapter 13

Interfacing to Other Cores

This chapter describes some additional design considerations associated with
implementing the Ethernet 1000BASE-X PCS/PMA or SGMII core with other cores.

• 1-Gigabit Ethernet MAC

• Tri-Mode Ethernet MAC

Integrating with the 1-Gigabit Ethernet MAC Core
The 1000BASE-X PCS/PMA or SGMII core can be integrated in a single device with the
1-Gigabit Ethernet MAC core to extend the system functionality to include the MAC
sublayer. This core supports full-duplex operation at 1 Gigabit per second.

A description of and instructions for obtaining the newest 1-Gigabit Ethernet MAC core
are located on the 1-Gigabit Ethernet MAC product page:

www.xilinx.com/systemio/gmac/index.htm

Integration of the 1-Gigabit Ethernet MAC to 1000BASE-X PCS with TBI
Figure 13-1 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode with
the parallel TBI) to the 1-Gigabit Ethernet MAC core.

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the 1-Gigabit Ethernet MAC core, allowing the MAC
to access the embedded configuration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA,
the entire GMII is synchronous to a single clock domain. Therefore, gtx_clk is used
as the 125 MHz reference clock for both cores, and the transmitter and receiver logic of
the 1-Gigabit Ethernet MAC core operates in the same clock domain.

http://www.xilinx.com/systemio/gmac/index.htm
http://www.xilinx.com

180 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

Figure 13-1: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS with TBI

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

gtx_clk

TBI

IPAD

IBUFG

IOB LOGIC

gtx_clk
gtx_clk_bufg (125 MHz)

BUFG

component_name_block
(Block Level from example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 181
UG155 March 24, 2008

Integrating with the 1-Gigabit Ethernet MAC Core
R

Integration of the 1-Gigabit Ethernet MAC Using a RocketIO Transceiver

Virtex-II Pro Devices

Figure 13-2 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the 1-Gigabit Ethernet MAC core.

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

Figure 13-2: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and
PMA Using a Virtex-II Pro MGT

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-II Pro
RocketIO

(GT_ETHERNET_1)

brefclk

txusrclk

txusrclk2

rxusrclk

rxusrclk2

no
connection

userclk

userclk2

RocketIO I/F

DCM

CLKIN CLK0

FB

BUFG

CLK2X180
BUFG

userclk (62.5MHz)

userclk2 (125MHz)

IPAD
IBUFGDS

IOB LOGIC

brefclkp

IPAD
brefclkn

brefclk (62.5MHz)

component_name_block
(Block Level from example design)

http://www.xilinx.com

182 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the 1-Gigabit Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the MGT, the entire GMII is
synchronous to a single-clock domain. Therefore, userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the 1-Gigabit
Ethernet MAC core now operate in the same clock domain.

Virtex-4 Devices

Figure 13-2 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the 1-Gigabit Ethernet MAC core.

Figure 13-3: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and
PMA Using a Virtex-4 MGT

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-4
GT11

RocketIO

no
connection

userclk

userclk2

RocketIO I/F

IPAD

IPAD
brefclkn
(250 MHz)

Virtex-4
GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

brefclkp
(250 MHz)

REFCLK1

userclk2
(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1
(250MHz

‘0’

‘0’

BUFG

TXOUTCLK1

component_name_block
(Block Level from example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 183
UG155 March 24, 2008

Integrating with the 1-Gigabit Ethernet MAC Core
R

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the 1-Gigabit Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the MGT, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the 1-Gigabit
Ethernet MAC core now operate in the same clock domain.

Virtex-5 LXT and SXT Devices

Figure 13-4 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the 1-Gigabit Ethernet MAC core.

Figure 13-4: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and
PMA Using a Virtex-5 GTP Transceiver

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-5
GTP

RocketIO

no
connection

userclk
userclk2

RocketIO I/F

CLKIN

userclk2
(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

BUFG

REFCLKOUT

component_name_block
(Block Level from example design)

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

http://www.xilinx.com

184 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the 1-Gigabit Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the GTP transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the 1-Gigabit
Ethernet MAC core now operate in the same clock domain.

Virtex-5 FXT Devices

Figure 13-5 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the 1-Gigabit Ethernet MAC core.

Figure 13-5: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and
PMA Using a Virtex-5 GTX Transceiver

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-5
GTX

RocketIO

no
connection

userclk
userclk2

RocketIO I/F

CLKIN

userclk2 (125MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

component_name_block
(Block Level from example design)

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

DCM

CLKIN CLK0

FB

BUFG

CLKDV
BUFG userclk (62.5MHz)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 185
UG155 March 24, 2008

Integrating with the Tri-Mode Ethernet MAC Core
R

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the 1-Gigabit Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the GTX transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the 1-Gigabit
Ethernet MAC core now operate in the same clock domain.

Integration of the 1-Gigabit Ethernet MAC to Provide SGMII (or Dynamic
Switching) Functionality

The connections required to provide SGMII functionality are identical to the connections
required for either “Integration of the 1-Gigabit Ethernet MAC to 1000BASE-X PCS with
TBI” or “Integration of the 1-Gigabit Ethernet MAC Using a RocketIO Transceiver”,
depending upon the chosen physical interface. The only difference is that the Ethernet
1000BASE-X PCS/PMA or SGMII core is generated with the SGMII or Dynamic switching
option.

Note: When operating at 1 Gbps speed only, the Rx Elastic Buffer internal to the GTP transceiver
should be used to save device resources. Additionally, when operating at 1 Gbps only, the SGMII
Adaptation Module instantiated from within the block level of the example design is not required and
can optionally be removed.

Integrating with the Tri-Mode Ethernet MAC Core
The 1000BASE-X PCS/PMA or SGMII core can be integrated in a single device with the Tri-
Mode Ethernet MAC core to extend the system functionality to include the MAC sub-layer.
This core provides support for operation at 10 Mbps, 100 Mbps, and 1 Gbps.

A description of the latest available IP update containing the Tri-Mode Ethernet MAC core
and instructions can be found in the Tri-Mode Ethernet MAC product Web page:

www.xilinx.com/systemio/temac/index.htm

Caution! The Tri-Mode Ethernet MAC should always be configured for full-duplex operation
when used with an SGMII. This constraint is due to the increased latency introduced by the
SGMII logic. Without full-duplex operation, frame collisions could be undetected and the MAC
response will not be timely.

Integration of the Tri-Mode Ethernet MAC to Provide SGMII (or Dynamic
Switching) Functionality with TBI

Figure 13-7 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
TBI) to the Tri-Mode Ethernet MAC core. The following is a description of the functionality.

• The SGMII Adaptation module, provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

http://www.xilinx.com/systemio/temac/index.htm
http://www.xilinx.com

186 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the Tri-Speed Ethernet MAC core, allowing the MAC
to access the embedded configuration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer in the core, the entire GMII (transmitter and receiver
paths) is synchronous to a single clock domain. Therefore, the txcoreclk and
rxcoreclk inputs of the Tri-Speed Ethernet MAC core can always be driven from
the same clock source.

Figure 13-7 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 187
UG155 March 24, 2008

Integrating with the Tri-Mode Ethernet MAC Core
R

Figure 13-6: Tri-Speed Ethernet MAC Extended to use an SGMII with TBI

Tri-Speed
Ethernet

MAC
 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

gtx_clk

gmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

component_name_block
(Block Level from example design)

IPAD

IBUFG

IOB LOGIC

gtx_clk
BUFG

TBI

http://www.xilinx.com

188 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

Integration of the Tri-Mode Ethernet MAC to Provide SGMII (or Dynamic
Switching) Functionality using RocketIO Transceivers

Virtex-II Pro Devices

Figure 13-7 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Virtex-II Pro MGT) to the Tri-Mode Ethernet MAC core. The following is a description of
the functionality.

• The SGMII Adaptation module, provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the Tri-Speed Ethernet MAC core, allowing the MAC
to access the embedded configuration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore, the txcoreclk and rxcoreclk
inputs of the Tri-Speed Ethernet MAC core can always be driven from the same clock
source.

Figure 13-7 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 189
UG155 March 24, 2008

Integrating with the Tri-Mode Ethernet MAC Core
R

Figure 13-7: Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-II Pro

Tri-Speed
Ethernet

MAC
 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-II Pro
RocketIO

(GT_CUSTOM)

brefclk

txusrclk

txusrclk2

no
connection

userclk

userclk2

RocketIO I/F

DCM

CLKIN CLK0

FB

BUFG

CLK2X180

BUFG

userclk (62.5MHz)

userclk2 (125MHz)

IPAD
IBUFGDS

IOB LOGIC

brefclkp

IPAD
brefclkn

brefclk (62.5MHz)

gmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

component_name_block
(Block Level from example design)

http://www.xilinx.com

190 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

Virtex-4 Devices

Figure 13-8 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Virtex-4 MGT) to the Tri-Mode Ethernet MAC core.

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, when generated to the SGMII standard can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore the txcoreclk and rxcoreclk
inputs of the Tri-Speed Ethernet MAC core can always be driven from the same clock
source. The entire design is synchronous to the 125 MHz reference clock derived from
the CLK2X180 output of the DCM.

Figure 13-8 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 191
UG155 March 24, 2008

Integrating with the Tri-Mode Ethernet MAC Core
R

Figure 13-8: Tri-Speed Ethernet MAC Extended to Use an SGMII in Virtex-4

Tri-Speed
Ethernet

MAC
 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-4
GT11

RocketIO
(used)

IPAD

brefclkp
(250MHz)

IPAD
brefclkn
(250MHz)

Virtex-4
GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

REFCLK1

TXUSRCLK

TXUSRCLK2

userclk2
(125 MHz)

synclk1
(250MHz)

userclk

‘0’

BUFG

TXOUTCLK1

component_name_block
(Block Level from example design)

http://www.xilinx.com

192 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

Virtex-5 LXT and SXT Devices

Figure 13-9 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Virtex-5 GTP) to the Tri-Mode Ethernet MAC core.

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore the txcoreclk and rxcoreclk
inputs of the Tri-Speed Ethernet MAC core can always be driven from the same clock
source. The entire design is synchronous to the 125 MHz reference clock derived from
the CLK2X180 output of the DCM.

Figure 13-9 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 193
UG155 March 24, 2008

Integrating with the Tri-Mode Ethernet MAC Core
R

Figure 13-9: Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-5 LXT/SXT

Tri-Speed
Ethernet

MAC
 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-5
GTP

RocketIO

CLKIN

TXUSRCLK0

TXUSRCLK20

userclk2
(125 MHz)

userclk

BUFG

REFCLKOUT

component_name_block
(Block Level from example design)

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

http://www.xilinx.com

194 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

Virtex-5 FXT Devices

Figure 13-10 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Virtex-5 GTX) to the Tri-Mode Ethernet MAC core.

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore the txcoreclk and rxcoreclk
inputs of the Tri-Speed Ethernet MAC core can always be driven from the same clock
source. The entire design is synchronous to the 125 MHz reference clock derived from
the CLK2X180 output of the DCM.

Figure 13-10 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 195
UG155 March 24, 2008

Integrating with the Tri-Mode Ethernet MAC Core
R

Figure 13-10: Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-5 FXT

Tri-Speed
Ethernet

MAC
 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-5
GTP

RocketIO

CLKIN

TXUSRCLK0

TXUSRCLK20

userclk

REFCLKOUT

component_name_block
(Block Level from example design)

clkin
(125MHz)

IBUFGDS
IPAD
brefclkp

IPAD
brefclkn

userclk2 (125MHz)
DCM

CLKIN CLK0

FB

BUFG

CLKDV
BUFG userclk (62.5MHz)

http://www.xilinx.com

196 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 13: Interfacing to Other Cores
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 197
UG155 March 24, 2008

R

Chapter 14

Special Design Considerations

This chapter describes the unique design considerations associated with implementing the
Ethernet 1000BASE-X PCS/PMA or SGMII core.

Power Management
No power management considerations are recommended for the Ethernet 1000BASE-X
PCS/PMA or SGMII core when using it with the TBI. When using the Ethernet 1000BASE-
X PCS/PMA or SGMII core with the Virtex-II Pro, the RocketIO transceiver may be placed
in a low-power state in either of the following ways:

• Writing to the PCS Configuration Register 0 (if using the core with the optional
Management Interface). The low-power state can only be removed by issuing the core
with a reset. This reset can be achieved either by writing to the software reset bit in the
PCS Configuration Register 0, or by driving the core reset port.

• Asserting the Power Down bit in the configuration_vector (if using the core
without the optional Management Interface). The low-power state can only be
removed by issuing the core with a reset by driving the reset port of the core.

Startup Sequencing
IEEE 802.3 clause 22.2.4.1.6 states that by default, a PHY should power-up in an isolate
state (electrically isolated from the GMII).

• If you are using the core with the optional Management Interface, it is necessary to
write to the PCS Configuration Register 0 to take the core out of the isolate state.

• If using the core without the optional Management interface, it is the responsibility of
the client to ensure that the isolate input signal in the configuration_vector is
asserted at power-on.

Loopback
This section details the implementation of the loopback feature. Loopback mode is enabled
or disabled by either the “MDIO Management Interface,” page 115, or by the “Optional
Configuration Vector,” page 151.

Core with the TBI
There is no physical loopback path in the core. Placing the core into loopback has the effect
of asserting logic 1 on the ewrap signal of the TBI (see “1000BASE-X PCS with TBI Pinout,”

http://www.xilinx.com

198 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 14: Special Design Considerations
R

page 38). This instructs the attached PMA SERDES device to enter loopback mode as
illustrated in Figure 14-1.

Core with RocketIO Transceiver
The loopback path is implemented in the core as illustrated in Figure 14-2. When placed
into loopback, the data is routed from the transmitter path to the receiver path at the last
possible point in the core. This point is immediately before the RocketIO interface. When
placed in loopback, the core creates a constant stream of Idle code groups that are
transmitted through the MGT or GTP transceiver in accordance with the IEEE 802.3
specification.

Earlier versions (before v5.0) of the core implemented loopback differently. The serial
loopback feature of the RocketIO transceiver was used by driving the LOOPBACK[1:0]
port of the RocketIO (MGT or GTP) transceiver. This is no longer the case, and the
loopback[1:0] output port of the core is now permanently set to logic “00.” However,
for debugging purposes, the LOOPBACK[1:0] input port of the RocketIO transceiver may
be directly driven by the user logic to place it in either parallel or serial loopback mode.

Figure 14-1: Loopback Implementation Using the TBI

Ethernet 1000BASE-X
PCS/PMA or SGMII

Core

1000BASE-X PMA
SERDES

Tx

Rx

TBI

FPGA

Loopback occurs in
external SERDES

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 199
UG155 March 24, 2008

Loopback
R

Figure 14-2: Loopback Implementation When Using the Core with RocketIO
Transceivers

Ethernet 1000BASE-X
PCS/PMA or SGMII Core

RocketIO
Transceiver

Tx

Rx

FPGA

Loopback occurs in core

PCS Tx Engine

PCS Rx Engine

Idle Stream

loopback control

http://www.xilinx.com

200 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 14: Special Design Considerations
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 201
UG155 March 24, 2008

R

Chapter 15

Implementing the Design

This chapter describes how to simulate and implement your design containing the
Ethernet 1000BASE-X PCS/PMA or SGMII core.

Pre-implementation Simulation
A functional model of the Ethernet 1000BASE-X PCS/PMA or SGMII core netlist is
generated by the CORE Generator to allow simulation of the core in the design-phase of
the project.

Using the Simulation Model
For information about setting up your simulator to use the pre-implemented model, please
consult the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

The model is provided in the CORE Generator project directory.

VHDL Design Entry

<component_name>.vhd

Verilog Design Entry

<component_name>.v

This model can be compiled along with the user’s code to simulate the overall system.

Synthesis

XST - VHDL
In the CORE Generator project directory, there is a <component_name>.vho file that is a
component and instantiation template for the core. Use this to help instance the Ethernet
1000BASE-X PCS/PMA or SGMII core into your VHDL source.

After the entire design is complete, create the following:

• An XST project file top_level_module_name.prj listing all the user source code
files

• An XST script file top_level_module_name.scr containing your required
synthesis options.

To synthesize the design, run

$ xst -ifn top_level_module_name.scr

http://www.xilinx.com

202 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 15: Implementing the Design
R

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

XST - Verilog
There is a module declaration for the Ethernet 1000BASE-X PCS/PMA or SGMII core in the
CORE Generator project directory:

<component_name>/implement/<component_name>_mod.v

Use this module to help instance the Ethernet 1000BASE-X PCS/PMA or SGMII core into
your Verilog source.

After the entire design is complete, do the following:

• Generate an XST project file top_level_module_name.prj listing all user source
code files.

Make sure to include the following as the first two files in the project list.

%XILINX%/verilog/src/iSE/unisim_comp.v

and

<component_name>/implement/component_name_mod.v

• Generate an XST script file top_level_module_name.scr containing your
required synthesis options.

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

Implementation

Generating the Xilinx Netlist
To generate the Xilinx netlist, the ngdbuild tools is used to translate and merge the
individual design netlists into a single design database—the NGD file. Also merged at this
stage is the UCF for the design. An example of the ngdbuild command is:

$ ngdbuild -sd path_to_core_netlist -sd path_to_user_synth_results \

-uc top_level_module_name.ucf top_level_module_name

Mapping the Design
To map the logic gates of the user design netlist into the CLBs and IOBs of the FPGA, run
the map command. The map command writes out a physical design to an NCD file. An
example of the map command is:

$ map -o top_level_module_name_map.ncd top_level_module_name.ngd \

top_level_module_name.pcf

Placing and Routing the Design
The par command must be executed to place and route the user’s design logic
components (mapped physical logic cells) within an NCD file, in accordance with the

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 203
UG155 March 24, 2008

Post-Implementation Simulation
R

layout and timing requirements specified within the PCF file. The par command outputs
the placed and routed physical design to an NCD file.

An example of the par command is:

$ par top_level_module_name_map.ncd top_level_module_name.ncd \

top_level_module_name.pcf

Static Timing Analysis
The trce command must be executed to evaluate timing closure on a design and create a
Timing Report file (TWR) that is derived from static timing analysis of the Physical Design
file (NCD). The analysis is typically based on constraints included in the optional PCF file.

An example of the trce command is:

$ trce -o top_level_module_name.twr top_level_module_name.ncd \

top_level_module_name.pcf

Generating a Bitstream
The bitgen command must be executed to create the configuration bitstream (BIT) file
based on the contents of a physical implementation file (NCD). The BIT file defines the
behavior of the programmed FPGA.

An example of the bitgen command is:

$ bitgen -w top_level_module_name.ncd

Post-Implementation Simulation
The purpose of post-implementation simulation is to verify that the design as
implemented in the FPGA works as expected.

Generating a Simulation Model
To generate a chip-level simulation netlist for your design, the netgen command must be
run.

VHDL

$ netgen -sim -ofmt vhdl -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.vhd

Verilog

$ netgen -sim -ofmt verilog -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.v

Using the Model
For information about setting up your simulator to use the pre-implemented model, please
consult the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

http://www.xilinx.com

204 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Chapter 15: Implementing the Design
R

In addition, use the following guidlines to determine the simulator type required:

Virtex-5 Devices

Virtex-5 device designs incorporating a RocketIO transceiver require either a Verilog LRM-
IEEE 1364-2005 encryption-compliant simulator or a SWIFT-compliant simulator.

• For a Verilog LRM-IEEE 1364-2005 encryption-compliant simulator, ModelSim v6.3c
is currently supported.

• For a SWIFT-compliant simulator, Cadence IUS v6.1 and Synopsys Synopsys VCS
2006.06-SP1 are currently supported.

Virtex-4 and Virtex-II Pro Devices

Virtex-4 and Virtex-II Pro device designs incorporating a RocketIO transceiver require a
SWIFT-compliant simulator. ModelSim, Cadence IUS, and Synopsys are currently
supported using the versions defined above.

Other Implementation Information
For more information about using the Xilinx implementation tool flow, including
command line switches and options, consult the software manuals provided with the
Xilinx ISE software.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 205
UG155 March 24, 2008

R

Appendix A

Core Verification, Compliance, and
Interoperability

Verification
The Ethernet 1000BASE-X PCS/PMA or SGMII core has been verified with extensive
simulation and hardware verification.

Simulation
A highly parameterizable transaction based test bench was used to test the core. Testing
included the following:

• Register Access

• Loss of Synchronization

• Auto-Negotiation and error handling

• Frame Transmission and error handling

• Frame Reception and error handling

• Clock Compensation in the Elastic Buffers

Hardware Verification
The core has been tested in a variety of hardware test platforms at Xilinx to represent
different parameterizations, including the following:

• The core with RocketIO transceiver and performing the 1000BASE-X standard was
tested with the 1-Gigabit Ethernet MAC core from Xilinx.

This follows the architecture shown in Figure 13-2. A test platform was built around
these cores, including a back-end FIFO capable of performing a simple ping function,
and a test pattern generator. Software running on the embedded PowerPC was used to
provide access to all configuration and status registers. Version 3.0 of this core was
taken to the University of New Hampshire Interoperability Lab (UNH IOL) where
conformance and interoperability testing was performed.

• The core with RocketIO transceiver (all supported families) and performing the
SGMII standard was tested with the Tri-speed Ethernet MAC core from Xilinx.

This was connected to an external PHY capable of performing 10BASE-T, 100BASE-T
and 1000BASE-T. The system was tested at all three speeds, following the architecture
shown in Figure 13-7 and included the PowerPC based test platform.

http://www.xilinx.com

206 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix A: Core Verification, Compliance, and Interoperability
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 207
UG155 March 24, 2008

R

Appendix B

Core Latency

Core Latency
The standalone core does not meet all the latency requirements specified in IEEE 802.3 due
to the latency of the Elastic Buffers in both TBI and RocketIO transceiver versions.
However, the core may be used for backplane and other applications where strict
adherence to the IEEE latency specification is not required.

Where strict adherence to the IEEE 802.3 specification is required, the core may be used
with an Ethernet MAC core that is within the IEEE specified latency for a MAC sublayer.
For example, when the core is connected to the Xilinx 1-Gigabit Ethernet MAC core, the
system as a whole is compliant with the overall IEEE 802.3 latency specifications.

Latency for 1000BASE-X PCS with TBI
The following measurements are for the core only, and do not include any IOB registers or
the Transmitter Elastic Buffer added in the example design.

Transmit Path Latency

As measured from a data octet input into gmii_txd[7:0] of the transmitter side GMII
until that data appears on tx_code_group[9:0] on the TBI interface, the latency
through the core in the transmit direction is 5 clock periods of gtx_clk.

Receive Path Latency

Measured from a data octet input into the core on rx_code_group0[9:0] or
rx_code_group1[9:0] from the TBI interface (until that data appears on
gmii_rxd[7:0] of the receiver side GMII), the latency through the core in the receive
direction is equal to 16 clock periods of gtx_clk, plus an additional number of clock
cycles equal to the current value of the Receiver Elastic Buffer.

The Receiver Elastic Buffer is 32 words deep. The nominal occupancy will be at half-full,
thereby creating a nominal latency through the receiver side of the core equal to 16 + 16= 32
clock cycles of gtx_clk.

http://www.xilinx.com

208 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix B: Core Latency
R

Latency for 1000BASE-X PCS and PMA Using a RocketIO Transceiver
These measurements are for the core only–they do not include the latency through the
Virtex-II Pro or Virtex-4 MGT, Virtex-5 GTP transceiver, or the Transmitter Elastic Buffer
added in the example design.

Transmit Path Latency

As measured from a data octet input into gmii_txd[7:0] of the transmitter side GMII
(until that data appears on txdata[7:0] on the MGT interface), the latency through the
core in the transmit direction is 4 clock periods of userclk2.

Receive Path Latency

As measured from a data octet input into the core on rxdata[7:0] from the MGT
interface (until that data appears on gmii_rxd[7:0] of the receiver side GMII), the
latency through the core in the receive direction is 6 clock periods of userclk2.

Latency for SGMII
When performing the SGMII standard, the core latency figures are identical to the Latency
for 1000BASE-X PCS and PMA using the MGT. Again these figures do not include the
latency through the MGT or any Elastic Buffers added in the example design.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 209
UG155 March 24, 2008

R

Appendix C

Calculating the DCM Fixed Phase Shift
Value

Requirement for DCM Phase Shifting
A DCM is used in the clock path to meet the input setup and hold requirements when
using the core with a TBI (see Chapter 6, “The Ten-Bit Interface”) and with an external
GMII implementation in Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN and Spartan-3A
DSP devices (see “Spartan-3, Spartan-3E and Spartan-3A Devices,” page 63).

In these cases, a fixed phase shift offset is applied to the DCM to skew the clock. This will
initiate a static alignment by using the clock DCM to shift the internal version of the clock
so that its edges are centered on the data eye at the IOB DDR flip-flops. The ability to shift
the internal clock in small increments is critical for sampling high-speed source
synchronous signals such as TBI and GMII. For statically aligned systems, the DCM output
clock phase offset (as set by the phase shift value) is a critical part of the system, as is the
requirement that the PCB is designed with precise delay and impedance-matching for all
the GMII/TBI data bus and control signals.

Determine the best DCM setting (phase shift) to ensure that the target system has the
maximum system margin required to perform across voltage, temperature, and process
(multiple chips) variations. Testing the system to determine the best DCM phase shift
setting has the added advantage of providing a benchmark of the system margin based on
the UI (unit interval or bit time).

System margin is defined as:

System Margin (ps) = UI(ps) * (working phase shift range/128)

Finding the Ideal Phase Shift Value for Your System
Xilinx cannot recommend a singular phase shift value that is effective across all hardware
platforms. Xilinx does not recommend attempting to determine the phase shift setting
empirically. In addition to the clock-to-data phase relationship, other factors such as
package flight time (package skew) and clock routing delays (internal to the device) affect
the clock-to-data relationship at the sample point (in the IOB) and are difficult to
characterize.

Xilinx recommends extensive investigation of the phase shift setting during hardware
integration and debugging. The phase shift settings provided in the example design UCF is
a placeholder, and works successfully in back-annotated simulation of the example design.

Perform a complete sweep of phase shift settings during your initial system test. Use only
positive (0 to 255) phase shift settings, and use a test range that covers a range of no less
than 128, corresponding to a total 180 degrees of clock offset. This does not imply that 128

http://www.xilinx.com

210 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix C: Calculating the DCM Fixed Phase Shift Value
R

phase shift values must be tested; increments of 4 (52, 56, 60, etc.) correspond to roughly
one DCM tap, and consequently provide an appropriate step size. It is not necessary to
characterize areas outside the working phase shift range.

At the edge of the operating phase shift range, system behavior changes dramatically. In
eight phase shift settings or fewer, the system can transition from no errors to exhibiting
errors. Checking the operational edge at a step size of two (on more than one board) refines
the typical operational phase shift range. Once the range is determined, choose the average
of the high and low working phase shift values as the default. During the production test,
Xilinx recommends that you re-examine the working range at corner case operating
conditions to determine whether any adjustments to the final phase shift setting are
needed.

You can use the FPGA Editor to generate the required test file set instead of resorting to
multiple PAR runs. Performing the test on design files that differ only in phase shift setting
prevents other variables from affecting the test results. FPGA Editor operations can even
be scripted further, reducing the effort needed to perform this characterization.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 211
UG155 March 24, 2008

R

Appendix D

1000BASE-X State Machines

This appendix is intended to serve as a reference for the basic operation of the
1000BASE-X IEEE 802.3 clause 36 transmitter and receiver state machines.

Introduction
Table D-1 illustrates the Ordered Sets defined in IEEE 802.3 clause 36. These code group
characters are inserted by the PCS Transmit Engine into the transmitted data stream,
encapsulating the Ethernet frames indicated via the GMII transmit signals.

The PCS Receive Engine performs the opposite function; it uses the Ordered Sets to detect
the Ethernet frames and from them creates the GMII receive signals.

Cross reference Table D-1 with the remainder of this Appendix. See IEEE 802.3 clause 36
for further information on these Orders Sets.

Table D-1: Defined Ordered Sets

Code Ordered_Set No. of Code-Groups Encoding

/C/ Configuration Alternating /C1/ and /C2/

/C1/ Configuration 1 4 /K28.5/D21.5/Config_Reg1

/C2/ Configuration 2 4 /K28.5/D2.2/Config_Reg1

/I/ IDLE Correcting /I1/,

Preserving /I2/

/I1/ IDLE_1 2 /K28.5/D5.6/

/I2/ IDLE_2 2 /K28.5/D16.2/

Encapsulation

/R/ Carrier_Extend 1 /K23.7/

/S/ Start_of_Packet 1 /K27.7/

/T/ End_of_Packet 1 /K29.7/

/V/ Error_Propagation 1 /K30.7/

1. Two data code-groups representing the Config_Reg value (contains Auto-Negotiation information)

http://www.xilinx.com

212 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix D: 1000BASE-X State Machines
R

Start of Frame Encoding

The Even Transmission Case
Figure D-1 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine. This stream is transmitted out of the core, either
serially using the RocketIO transceiver or in parallel across the TBI.

It is important to note that the encoding of Idle periods /I2/ is constructed from a couple
of code groups—the /K28.5/ character (considered the even position) and the /D16.2/
character (considered the odd position). In this example, the assertion of the gmii_tx_en
signal of the GMII occurs in the even position. In response, the state machines insert a Start
of Packet code group /S/ following the Idle (in the even position). This is inserted in place
of the first byte of the frame preamble field.

Figure D-1: 1000BASE-X Transmit State Machine Operation (Even Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble

S
F

D
PCS Transmit Engine Encoding

preamble

S
F

Dtx_code_group I2 I2 I2 S

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 213
UG155 March 24, 2008

Start of Frame Encoding
R

Reception of the Even Case
Figure D-2 illustrates the reception of the in-bound code-group stream, received either
serially using the RocketIO transceiver, or in parallel across the TBI, and translation of this
code-group stream into the receiver GMII. This is performed by the PCS Receive Engine.

The Start of Packet code group /S/ is replaced with a preamble byte. This results in the
restoration of the full preamble field.

The Odd Transmission Case
Figure D-3 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine; this stream is transmitted out of the core, either
serially using the RocketIO transceiver, or in parallel across the TBI.

In this example, the assertion of the gmii_tx_en signal of the GMII occurs in the odd
position; in response, the state machines are unable to immediately insert a Start-Of-Packet
code group /S/ as the Idle character must first be completed. The Start of Packet code
group /S/ is therefore inserted (in the even position) after completing the Idle. This results
in the /D16.2/ character of the Idle /I2/ sequence being inserted in place of the first byte
of the preamble field, and the Start-Of-Packet /S/ being inserted in place of the second
byte of preamble as illustrated.

Figure D-2: 1000BASE-X Reception State Machine Operation (Even Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble

S
F

D

preamble

S
F

Drx_code_group I2 I2 I2 S

PCS Receive Engine Decoding

http://www.xilinx.com

214 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix D: 1000BASE-X State Machines
R

Reception of the Odd Case
Figure D-4 illustrates the reception of the in-bound code-group stream, received either
serially using the RocketIO transceiver, or in parallel across the TBI, and translation of this
code-group stream into the receiver GMII. This is performed by the PCS Receive Engine.

Note that the Start of Packet code group /S/ is again replaced with a preamble byte.
However, the first preamble byte of the original transmit GMII (see Figure D-3) frame
(which was replaced with the /D16.2/ character to complete the Idle sequence), has not
been replaced. This has resulted in a single byte of preamble loss across the system.

Figure D-3: 1000BASE-X Transmit State Machine Operation (Odd Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble

S
F

D

preamble

S
F

Dtx_code_group I2 I2 I2 S

PCS Transmit Engine Encoding

Figure D-4: 1000BASE-X Reception State Machine Operation (Odd Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble

S
F

D

preamble

S
F

Drx_code_group I2 I2 I2 S

PCS Receive Engine Decoding

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 215
UG155 March 24, 2008

End of Frame Encoding
R

Preamble Shrinkage
As previously described, a single byte of preamble can be lost across the 1000BASE-X
system (the actual loss occurs in the 1000BASE-X PCS transmitter state machine).

• There is no specific statement for this preamble loss in the IEEE 802.3-2002
specification; the preamble loss falls out as a consequence of the state machines (see
figures 36-5 and 36-6 in the IEEE 802.3-2002 specification).

• IEEE 802.3ah-2004 does, however, specifically state in clause 65.1.3.2.1:

“NOTE 1 – The 1000BASE-X PCS transmit function replaces the first octet of preamble
with the /S/ code-group or it discards the first octet and replaces the second octet of
preamble with the /S/ code-group. This decision is based upon the even or odd
alignment of the PCS’s transmit state diagram (see Figure 36-5).“

End of Frame Encoding

The Even Transmission case
Figure D-5 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine. This stream is transmitted out of the core, either
serially using the RocketIO transceiver or in parallel across the TBI.

In response to the deassertion of gmii_tx_en, an End of Packet code group /T/ is
immediately inserted. The even and odd alignment described in “Start of Frame
Encoding” persists throughout the Ethernet frame. If the /T/ character occurs in the even
position (the frame contained an even number of bytes starting from the /S/ character),
then this is followed with a single Carrier Extend code group /R/. This allows the /K28.5/
character of the following Idle code group to be aligned to the even position.

Note: The first Idle to follow the frame termination sequence will be a /I1/ if the frame ended with
positive running disparity or a /I2/ if the frame ended with negative running disparity. This is illustrated
as the shaded code group.

Figure D-5: 1000BASE-X Transmit State Machine Operation (Even Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

FCS

FCS I2 I2 I2T R I1/I2tx_code_group

PCS Transmit Engine Encoding

http://www.xilinx.com

216 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix D: 1000BASE-X State Machines
R

Reception of the Even Case
Figure D-6 illustrates the reception of the in-bound code-group stream, received either
serially using the RocketIO transceiver, or in parallel across the TBI, and translation of this
code-group stream into the receiver GMII. This is performed by the PCS Receive Engine.

The Odd Transmission Case
Figure D-7 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine; this stream is transmitted out of the core, either
serially using the RocketIO transceiver, or in parallel across the TBI.

In response to the deassertion of gmii_tx_en, an End of Packet code group /T/ is
immediately inserted. Note that the even and odd alignment described in “Start of Frame
Encoding” persists throughout the Ethernet frame. If the /T/ character occurs in the odd
position (the frame contained an odd number of bytes starting from the /S/ character),
then this is followed with two Carrier Extend code groups /R/. This allows the /K28.5/
character of the following Idle code group to be aligned to the even position.

Figure D-6: 1000BASE-X Reception State Machine Operation (Even Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

FCS

FCS I2 I2 I2T R I1/I2rx_code_group

PCS Receive Engine Decoding

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 217
UG155 March 24, 2008

End of Frame Encoding
R

Note: The first Idle to follow the frame termination sequence will be a /I1/ if the frame ended with
positive running disparity or a /I2/ if the frame ended with negative running disparity. This is illustrated
as the shaded code group.

Reception of the Odd Case
Figure D-8 illustrates the reception of the in-bound code-group stream, received either
serially using the RocketIO transceiver, or in parallel across the TBI, and translation of this
code-group stream into the receiver GMII. This is performed by the PCS Receive Engine.

Note that, as defined in IEEE 802.3 figure 36-7b, the combined /T/R/R/ sequence results
in the GMII encoding of Frame Extension. This occurs even in full-duplex mode.

Figure D-7: 1000BASE-X Transmit State Machine Operation (Even Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

FCS

FCS I2 I2 I2T R I1/I2Rtx_code_group

PCS Transmit Engine Encoding

Figure D-8: 1000BASE-X Reception State Machine Operation (Odd Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

FCS

rx_code_group FCS I2 I2 I2T R I1/I2R

0x0F

PCS Receive Engine Decoding

http://www.xilinx.com

218 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix D: 1000BASE-X State Machines
R

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 219
UG155 March 24, 2008

R

Appendix E

Rx Elastic Buffer Specifications

This appendix is intended to serve as a reference for the Rx Elastic Buffer sizes used in the
core, and the related maximum frame sizes that can be used without causing a buffer
underflow or overflow error.

Throughout this appendix, all analyses are based on 100 ppm clock tolerances on both
sides of the elastic buffer (200 ppm total difference). This corresponds to the Ethernet clock
tolerance specification.

Introduction
The need for an Rx Elastic Buffer is illustrated in “The Requirement for the FPGA Fabric Rx
Elastic Buffer” in Chapter 8. The analysis included in this chapter shows that for standard
Ethernet clock tolerances (100 ppm) there can be a maximum difference of one clock edge
every 5000 clock periods of the nominal 125 MHz clock frequency.

This slight difference in clock frequency on either side of the buffer will accumulate and
either start to fill or empty the Rx Elastic Buffer over time. The Rx Elastic buffer copes with
this by performing clock correction during the interframe gaps by either inserting or
removing Idle characters. The Rx Elastic Buffer will always attempt to restore the buffer
occupancy to the half full level during an interframe gap. See “Clock Correction,” page
224.

Rx Elastic Buffers: Depths and Maximum Frame Sizes

RocketIO Rx Elastic Buffers
Figure E-1 illustrates the RocketIO transceiver Rx Elastic Buffer depths and thresholds in
Virtex-II Pro, Virtex-4 FX, Virtex-5 LXT, SXT and FXT families. Each FIFO word
corresponds to a single character of data (equivalent to a single byte of data following
8B10B decoding).

http://www.xilinx.com

220 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix E: Rx Elastic Buffer Specifications
R

Virtex-II Pro and Virtex-5 Devices

Consider the Virtex-II Pro and Virtex-5 FPGA example, where the shaded area represents
the usable buffer availability for the duration of frame reception.

• If the buffer is filling during frame reception, there are 52-34 = 18 FIFO locations
available before the buffer reaches the overflow mark.

• If the buffer is emptying during reception, then there are 30-12 = 18 FIFO locations
available before the buffer reaches the underflow mark.

This analysis assumes that the buffer is approximately at the half-full level at the start of
the frame reception. As illustrated, there are two locations of uncertainty, above and below
the exact half-full mark of 32, resulting from the clock correction decision, and is based
across an asynchronous boundary.

Because there is a worst-case scenario of one clock edge difference every 5000 clock
periods, the maximum number of clock cycles (bytes) that can exist in a single frame
passing through the buffer before an error occurs is:

5000 x 18 = 90000 bytes

Table E-1 translates this into maximum frame size at different Ethernet speeds. At SGMII
speeds lower than 1 Gbps, performance is diminished because bytes are repeated multiple
times (see “Designing with Client-side GMII for the SGMII Standard” in Chapter 5).

Figure E-1: Elastic Buffer Sizes for all RocketIO Transceiver Families

64 34

52 - Overflow Mark

12 - Underflow Mark

64

57 - Overflow Mark

16 - Underflow Mark

CLK_COR_MAX_LAT + 2

CLK_COR_MIN_LAT - 230

Virtex-II Pro/Virtex-5
RocketIO Transceiver

Rx Elastic Buffer

Virtex-4 FX
RocketIO Transceiver

Rx Elastic Buffer

Table E-1: Maximum Frame Sizes: RocketIO Transceiver Rx Elastic Buffers
(100ppm Clock Tolerance)

Standard / Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 90000

SGMII (1 Gbps) 90000

SGMII (100 Mbps) 9000

SGMII (10 Mbps) 900

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 221
UG155 March 24, 2008

Rx Elastic Buffers: Depths and Maximum Frame Sizes
R

Virtex-4 FX

Consider the Virtex-4 FX case also illustrated in Figure E-1. The thresholds are different to
that of the Virtex-II Pro/Virtex-5 case, but the overall size of the buffer is the same. Instead
of the half full point, there are configurable clock correction thresholds. During the
interframe gap, clock correction will attempt to restore the occupancy to within these two
thresholds.

However, by setting both CLK_COR_MAX_LAT and CLK_COR_MIN_LAT thresholds to the
same value, symmetrically between overflow and underflow marks, it is possible to obtain
the same figures as per the Virtex-II Pro/Virtex-5 analysis. For this reason, by adjusting the
threshold attributes accordingly, Table E-1 is also applicable.

http://www.xilinx.com

222 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix E: Rx Elastic Buffer Specifications
R

SGMII Fabric Rx Elastic Buffer
Figure E-2 illustrates the alternative FPGA fabric Rx Elastic Buffer depth and thresholds in
Virtex-II Pro, Virtex-4 FX and Virtex-5 LXT device families. Each FIFO word corresponds to
a single character of data (equivalent to a single byte of data following 8B10B decoding).
This buffer can optionally be used to replace the Rx Elastic Buffers of the RocketIO (see
“Receiver Elastic Buffer Implementations” in Chapter 8).

The shaded area of Figure E-2 represents the usable buffer availability for the duration of
frame reception.

• If the buffer is filling during frame reception, there are 122-66 = 56 FIFO locations
available before the buffer reaches the overflow mark.

• If the buffer is emptying during reception, then there are 62-6 = 56 FIFO locations
available before the buffer reaches the underflow mark.

Note that this analysis assumes the buffer is approximately at the half-full level at the start
of the frame reception. As illustrated, there are two locations of uncertainty, above and
below the exact half-full mark of 64. This is as a result of the clock correction decision, and
is based across an asynchronous boundary.

Because there is a worst-case scenario of one clock edge difference every 5000 clock
periods, the maximum number of clock cycles (bytes) that can exist in a single frame
passing through the buffer before an error occurs is:

5000 x 56 = 280000 bytes

Table E-2 translates this into maximum frame size at different Ethernet speeds. At SGMII
speeds lower than 1 Gbps, performance is diminished because bytes are repeated multiple
times (see “Designing with Client-side GMII for the SGMII Standard” in Chapter 5).

Figure E-2: Elastic Buffer Size for all RocketIO families

128
66

122 - Overflow Mark

6 - Underflow Mark

SGMII FPGA Fabric
 Rx Elastic Buffer

62

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 223
UG155 March 24, 2008

Rx Elastic Buffers: Depths and Maximum Frame Sizes
R

TBI Rx Elastic Buffer

For SGMII / Dynamic Switching

The Rx Elastic Buffer used for the SGMII or Dynamic Standards Switching is identical to
the method use in “SGMII Fabric Rx Elastic Buffer.”

For 1000BASE-X

Figure E-3 illustrates the Rx Elastic Buffer depth and thresholds when using the Ten-Bit-
Interface with the 1000BASE-X standard. This buffer is intentionally smaller than the
equivalent buffer for SGMII/Dynamic Switching; because a larger size is not required, the
buffer is kept smaller to save logic and keep latency low. Each FIFO word corresponds to a
single character of data (equivalent to a single byte of data following 8B10B decoding).

The shaded area of Figure E-3 represents the usable buffer availability for the duration of
frame reception.

• If the buffer is filling during frame reception, then there are 30-18 = 12 FIFO locations
available before the buffer reaches the overflow mark.

• If the buffer is emptying during reception, then there are 14-2 = 12 FIFO locations
available before the buffer reaches the underflow mark.

Table E-2: Maximum Frame Sizes: Fabric Rx Elastic Buffers
(100ppm Clock Tolerance)

Standard / Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 280000

SGMII (1 Gbps) 280000

SGMII (100 Mbps) 28000

SGMII (10 Mbps) 2800

Figure E-3: TBI Elastic Buffer Size for All Families

32
18

30 - Overflow Mark

2 - Underflow Mark

TBI
 Rx Elastic Buffer

14

http://www.xilinx.com

224 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix E: Rx Elastic Buffer Specifications
R

Note that this analysis assumes that the buffer is approximately at the half-full level at the
start of the frame reception. As illustrated, there are two locations of uncertainty above and
below the exact half-full mark of 16. This is as a result of the clock correction decision, and
is based across an asynchronous boundary.

Since there is a worst-case scenario of 1 clock edge difference every 5000 clock periods, the
maximum number of clock cycles (bytes) that can exist in a single frame passing through
the buffer before an error occurs is:

5000 x 12 = 60000 bytes

This translates into a maximum frame size of 60000 bytes.

Clock Correction
The calculations in all previous sections assumes that the Rx Elastic Buffers are restored to
approximately half occupancy at the start of each frame. This is achieved by the elastic
buffer performing clock correction during the interframe gaps either by inserting or
removing Idle characters as required.

• If the Rx Elastic Buffer is emptying during frame reception, there are no restrictions on
the number of Idle characters that can be inserted due to clock correction. The
occupancy will be restored to half full and the assumption holds true.

• If the Rx Elastic Buffer is filling during frame reception, Idle characters need to be
removed. Restrictions that need to be considered are described in the following
sections.

Idle Character Removal at 1Gbps (1000BASE-X and SGMII)

The minimum number of clock cycles that may be presented to an Ethernet receiver,
according to the IEEE 802.3 specification, is 64-bit times at any Ethernet speed. At 1 Gbps
1000BASE-X and SGMII, this corresponds to 8 bytes (8 clock cycles) of interframe gap.
However, an interframe gap consists of a variety of code groups, namely /T/, /R/, /I1/
and /I2/ characters (please refer to Appendix D, “1000BASE-X State Machines”). Of these,
only /I2/ can be used as clock correction characters.

In a minimum interframe gap at 1 Gbps, we can only assume that two /I2/ characters are
available for removal. This corresponds to 4 bytes of data.

Looking at this from another perspective, 4 bytes of data will need to be removed in an
elastic buffer (which is filling during frame reception) for a frame which is 5000 x 4 = 20000
bytes in length. So if the frame being received is 20000 bytes in length or shorter, at 1 Gbps,
we can assume that the occupancy of the elastic buffer will always self correct to half full
before the start of the subsequent frame.

For frames which are longer than 20000 bytes, the assumption that the elastic buffer will be
restored to half full occupancy does not hold true. For example, for a long stream of 250000
byte frames, each separated by a minimum interframe gap, the Rx Elastic Buffer will
eventually fill and overflow. This is despite the 250000 byte frame length being less than
the maximum frame size calculated in the “Rx Elastic Buffers: Depths and Maximum
Frame Sizes” section.

However, since the legal maximum frame size for Ethernet frames is 1522 bytes (for a
VLAN frame), idle character removal restrictions are not usually an issue.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 225
UG155 March 24, 2008

Clock Correction
R

Idle Character Removal at 100 Mbps (SGMII)

At SGMII, 100 Mbps, each byte is repeated 10 times. This also applies to the interframe gap
period. For this reason, the minimum of 8 bytes for the 1 Gbps case corresponds to a
minimum of 80 bytes for the 100 Mbps case.

Additionally, the majority of characters in this 80-byte interframe-gap period are going to
be the /I2/ clock correction characters. Because of the clock correction circuitry design, a
minimum of 20 /I2/ code groups will be available for removal. This translates into 40
bytes, giving a maximum run size of 40 x 5000 = 200000 bytes. Because each byte at 100
Mbps is repeated ten times, this corresponds to an Ethernet frame size of 20000 bytes, the
same size as the 1 Gbps case.

So in summary, at 100Mbps, for any frame size of 20000 bytes or less, it can still be assumed
that the Elastic Buffer will return to half full occupancy before the start of the next frame.
However, a frame size of 20000 is larger than can be received in the RocketIO Elastic Buffer
(see “Rx Elastic Buffers: Depths and Maximum Frame Sizes”). Only the SGMII fabric Rx
Elastic buffer is large enough.

Idle Character Removal at 10 Mbps (SGMII)

Using a similar argument to the 100 Mbps case, it can be shown that clock correction
circuitry can also cope with a frame size up to 20000 bytes. However, this is larger than the
maximum frame size for any Elastic Buffer provided with the core (see “Rx Elastic Buffers:
Depths and Maximum Frame Sizes”).

http://www.xilinx.com

226 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix E: Rx Elastic Buffer Specifications
R

Maximum Frame Sizes for Sustained Frame Reception
Sustained frame reception refers to the maximum size of frames which can be
continuously received when each frame is separated by a minimum interframe gap.

The size of frames that can be reliably received is dependent on the two considerations
previously introduced in this appendix:

• The size of the Elastic Buffer, see“Rx Elastic Buffers: Depths and Maximum Frame
Sizes”

• The number of clock correction characters present in a minimum interframe gap, (see
“Clock Correction”)

Table E-3 summarizes the maximum frame sizes for sustained frame reception when used
with the different Rx Elastic Buffers provided with the core. All frame sizes are provided in
bytes.

Jumbo Frame Reception
A jumbo frame is an Ethernet frame which is deliberately larger than the maximum sized
Ethernet frame allowed in the IEEE 802.3 specification. The size of jumbo frames that can
be reliably received is identical to the frame sizes defined in “Maximum Frame Sizes for
Sustained Frame Reception,” page 226.

Table E-3: Maximum Frame Size: (Sustained Frame Reception) Capabilities of the Rx Elastic Buffers

Ethernet Standard and
Speed

Rx Elastic Buffer Type

TBI RocketIO SGMII Fabric Buffer

1000BASE-X (1 Gbps) 20000 (limited by clock
correction)

20000 (limited by clock
correction)

20000 (limited by clock
correction)

SGMII 1 Gbps 20000 (limited by clock
correction)

20000 (limited by clock
correction)

20000 (limited by clock
correction)

SGMII 100 Mbps 20000 (limited by clock
correction)

9000 (limited by buffer
size)

20000 (limited by clock
correction)

SGMII 10 Mbps 2800 (limited by buffer
size)

900 (limited by buffer
size)

2800 (limited by buffer
size)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 227
UG155 March 24, 2008

R

Appendix F

Debugging Guide

This appendix provides assistance for debugging the core within a system. For additional
help, contact Xilinx by submitting a WebCase at support.xilinx.com/.

General Checks
• Ensure that all the timing constraints for the core were met during Place and Route.

• Does it work in timing simulation? If problems are seen in hardware but not in timing
simulation, this could indicate a PCB issue.

• Ensure that all clock sources are clean. If using DCMs in the design, ensure that all
DCMs have obtained lock by monitoring the LOCKED port.

Problems with the MDIO
• Ensure that the MDIO is driven properly. See “MDIO Management Interface,” page

115 for detailed information about performing MDIO transactions.

• Check that the mdc clock is running and that the frequency is 2.5 MHz or less.

• Read from a configuration register that does not have all 0s as a default. If all 0s are
read back, the read was unsuccessful. Check that the PHYAD field placed into the
MDIO frame matches the value placed on the phyad[4:0] port of the core.

Problems with Data Reception or Transmission
When no data is being received or transmitted:

• Ensure that a valid link has been established between the core and its link partner,
either by Auto-Negotiation or Manual Configuration: status_vector[0] and
status_vector[1] should both be high. If no link has been established, see the
topics discussed in the next section.

♦ “Problems with Auto-Negotiation”

♦ “Problems in Obtaining a Link (Auto-Negotiation Disabled)”

Note: Transmission through the core is not allowed unless a link has been established. This
behavior can be overridden by setting the Unidirectional Enable bit.

• Ensure that the Isolate state has been disabled.

By default, the Isolate state is enabled after power-up. For an external GMII, the PHY
will be electrically isolated from the GMII; for an internal GMII, it will behave as if it is
isolated. This results in no data transfer across the GMII. See “Startup Sequencing,”
page 197 for more information.

http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com

228 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix F: Debugging Guide
R

If data is being transmitted and received between the core and its link partner, but with a
high rate of packet loss, see “Problems with a High Bit Error Rate.”

Problems with Auto-Negotiation
Determine whether Auto-Negotiation has completed successfully by doing one of the
following.

• Poll the Auto-Negotiation completion bit 1.5 in “Status Register (Register 1)”

• Use the Auto-Negotiation interrupt port of the core (see “Using the Auto-Negotiation
Interrupt,” page 156)

If Auto-Negotiation is not completing:

1. Ensure that Auto-Negotiation is enabled in both the core and in the link partner (the
device or test equipment connected to the core). Auto-Negotiation cannot complete
successfully unless both devices are configured to perform Auto-Negotiation.

The Auto-Negotiation procedure requires that the Auto-Negotiation handshaking
protocol between the core and its link partner, which lasts for several link timer
periods, occur without a bit error. A detected bit error will cause Auto-Negotiation to
go back to the beginning and restart. Therefore, a link with an exceptionally high bit
error rate may not be capable of completing Auto-Negotiation, or may lead to a long
Auto-Negotiation period caused by the numerous Auto-Negotiation restarts. If this
appears to be the case, try the next step and see “Problems with a High Bit Error Rate.”

2. Try disabling Auto-Negotiation in both the core and the link partner and see if both
devices report a valid link and are able to pass traffic. If they do, it proves that the core
and link partner are otherwise configured correctly. If they do not pass traffic, see the
next section, “Problems in Obtaining a Link (Auto-Negotiation Disabled).”

Problems in Obtaining a Link (Auto-Negotiation Disabled)
Determine whether the device has successfully obtained a link with its link partner by
doing the following:

• Reading bit 1.2, Link Status, in “Status Register (Register 1)” when using the optional
MDIO management interface (or look at status_vector[1]).

• Monitoring the state of sync_acquired_status. If this is logic ‘1,’ then
synchronization, and therefore a link, has been established.

If the devices have failed to form a link then do the following:

• Ensure that Auto-Negotiation is disabled in both the core and in the link partner (the
device or test equipment connected to the core).

• Monitor the state of the signal_detect signal input to the core. This should either
be:

♦ connected to an optical module to detect the presence of light. Logic ‘1’ indicates
that the optical module is correctly detecting light; logic ‘0’ indicates a fault.
Therefore, ensure that this is driven with the correct polarity.

♦ Signal must be tied to logic ‘1’ (if not connected to an optical module).

Note: When signal_detect is set to logic ‘0,’ this forces the receiver synchronization state
machine of the core to remain in the loss of sync state.

♦ See the following section, “Problems with a High Bit Error Rate.”

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v9.1 www.xilinx.com 229
UG155 March 24, 2008

Problems with a High Bit Error Rate
R

RocketIO Transceiver Specific

When using a RocketIO transceiver, perform these additional checks:

• Ensure that the polarities of the TXN/TXP and RXN/RXP lines are not reversed. If they
are, this can be easily fixed by using the TXPOLARITY and RXPOLARITY ports of the
RocketIO.

• For Virtex-II Pro, ensure that the REF_CLK_V_SEL attribute matches the REFCLK or
BREFCLK port that the clock source to which it is connected.

• Check that the RocketIO is not being held in reset by monitoring the mgt_tx_reset
and mgt_rx_reset signals between the core and the RocketIO. If these are asserted
then:

♦ In Virtex-II Pro, this indicates that the DCM has not obtained lock.

♦ In Virtex-4 and Virtex-5 this indicates that the PMA PLL circuitry in the RocketIO
has not obtained lock.

• Monitor the RXBUFSTATUS[1] signal (Virtex-II Pro) or the RXBUFERR signal (Virtex-4
and Virtex-5) when Auto-Negotiation is disabled. If this is being asserted, the Elastic
Buffer in the receiver path of the RocketIO is either under or overflowing. This
indicates a clock correction problem caused by differences between the transmitting
and receiving ends. Check all clock management circuitry and clock frequencies
applied to the core and to the RocketIO.

Problems with a High Bit Error Rate

Symptoms
The severity of a high-bit error rate can vary and cause any of the following symptoms:

• Failure to complete Auto-Negotiation when Auto-Negotiation is enabled.

• Failure to obtain a link when Auto-Negotiation is disabled in both the core and the
link partner.

• High proportion of lost packets when passed between two connected devices that are
capable of obtaining a link through Auto-Negotiation or otherwise. This can usually
be accurately measured if the Ethernet MAC attached to the core contains statistic
counters.

Note: All bit errors detected by the 1000BASE-X PCS/PMA logic during frame reception will
show up as Frame Check Sequence Errors in an attached Ethernet MAC.

Debugging
• Compare the problem across several devices or PCBs to ensure that the problem is not

a one-off case.

• Try using an alternative link partner or test equipment and then compare results.

• Try putting the core into loopback (both by placing the core into internal loopback,
and by looping back the optical cable) and compare the behavior. The core should
always be capable of Auto-Negotiating with itself and looping back with itself from
transmitter to receiver so direct comparisons can be made. If the core exhibits correct
operation when placed into internal loopback, but not when loopback is performed
via an optical cable, this may indicate a faulty optical module or a PCB problem.

• Try swapping the optical module on a misperforming device and repeat the tests.

http://www.xilinx.com

230 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
UG155 March 24, 2008

Appendix F: Debugging Guide
R

RocketIO Transceiver Specific Checks

Perform these additional checks when using a RocketIO transceiver:

• Directly monitor the following ports of the RocketIO by attaching error counters to
them, or by triggering on them using Chipscope or an external logic analyzer.

RXDISPERR

RXNOTINTABLE

These signals should not be asserted over the duration of a few seconds, minutes or
even hours. If they are frequently asserted, it may indicate a problem with the
RocketIO. Consult Answer Record 19699 for debugging RocketIO issues.

• Place the RocketIO into parallel or serial loopback.

♦ If the core exhibits correct operation in RocketIO serial loopback, but not when
loopback is performed via an optical cable, it may indicate a faulty optical
module.

♦ If the core exhibits correct operation in RocketIO parallel loopback but not in
serial loopback, this may indicate a RocketIO problem. See Answer Record 19699
for details.

• A mild form of bit error rate may be solved by adjusting the transmitter
TX_PREEMPHASIS, TX_DIFF_CTRL and TERMINATION_IMP attributes of the
RocketIO.

• For Virtex-II Pro RocketIO only, check that the SERDES alignment logic is properly
constrained to be placed near the RocketIO. See the Virtex-II Pro RocketIO Transceiver
User Guide for more information. This constraint is not automatically adjusted for
different RocketIO locations.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=19699
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=19699

	LogiCORE™ IP Ethernet 1000BASE-X PCS/PMA or SGMII v9.1
	About This Guide
	Guide Contents
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Designs Using RocketIO Transceivers

	Recommended Design Experience
	Additional Core Resources
	Related Xilinx Ethernet Products and Services
	Specifications

	Technical Support
	Feedback
	Ethernet 1000BASE-X PCS/PMA or SGMII Core
	Document

	Core Architecture
	System Overview
	Ethernet 1000BASE-X PCS/PMA or SGMII Using A RocketIO Transceiver
	Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface

	Core Interfaces
	Client Side Interface
	Physical Side Interface

	Generating and Customizing the Core
	GUI Interface
	Component Name
	Select Standard
	Core Functionality
	SGMII/Dynamic Standard Switching Elastic Buffer Options
	RocketIO Tile Configuration

	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	Design Overview
	Design Guidelines
	Generate the Core
	Examine the Example Design Provided with the Core
	Implement the Ethernet 1000BASE-X PCS/PMA or SGMII Core in Your Application

	Using the Client-side GMII Data Path
	Designing with the Client-side GMII for the 1000BASE-X Standard
	GMII Transmission
	GMII Reception
	status_vector[4:0] signals
	Using the Virtex-II Pro RocketIO Transceiver CRC Functionality

	Designing with Client-side GMII for the SGMII Standard
	Overview
	GMII Transmission
	GMII Reception

	Using the GMII as an Internal Connection
	Implementing External GMII
	GMII Transmitter Logic
	GMII Receiver Logic

	The Ten-Bit Interface
	Ten-Bit-Interface Logic
	Transmitter Logic
	Receiver Logic

	Clock Sharing across Multiple Cores with TBI

	1000BASE-X with RocketIO Transceivers
	RocketIO Transceiver Logic
	Virtex-II Pro Devices
	Virtex-4 FX Devices
	Virtex-5 LXT and SXT Devices
	Virtex-5 FXT Devices

	Clock Sharing Across Multiple Cores with RocketIO
	Virtex-II Pro Devices
	Virtex-4 FX Devices
	Virtex-5 LXT and SXT Devices
	Virtex-5 FXT Devices

	SGMII / Dynamic Standards Switching with RocketIO Transceivers
	Receiver Elastic Buffer Implementations
	Selecting the Buffer Implementation from the GUI
	The Requirement for the FPGA Fabric Rx Elastic Buffer
	The RocketIO Rx Elastic Buffer

	RocketIO Logic using the RocketIO Rx Elastic Buffer
	RocketIO Logic with the Fabric Rx Elastic Buffer
	Virtex-II Pro Devices
	Virtex-4 Devices for SGMII or Dynamic Standards Switching
	Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching
	Virtex-5 FXT Devices for SGMII or Dynamic Standards Switching

	Clock Sharing - Multiple Cores with RocketIO, Fabric Elastic Buffer
	Virtex-II Pro Devices
	Virtex-4 FX Devices
	Virtex-5 LXT and SXT Devices
	Virtex-5 FXT Devices

	Configuration and Status
	MDIO Management Interface
	MDIO Bus System
	MDIO Transactions
	MDIO Addressing
	Connecting the MDIO to an Internally Integrated STA
	Connecting the MDIO to an External STA

	Management Registers
	1000BASE-X Standard Using the Optional Auto-Negotiation
	1000BASE-X Standard Without the Optional Auto-Negotiation
	SGMII Standard Using the Optional Auto-Negotiation
	SGMII Standard without the Optional Auto-Negotiation
	Both 1000BASE-X and SGMII Standards

	Optional Configuration Vector

	Auto-Negotiation
	Overview of Operation
	1000BASE-X Standard
	SGMII Standard

	Setting the Configurable Link Timer
	1000BASE-X Standard
	SGMII Standard
	Simulating Auto-Negotiation

	Using the Auto-Negotiation Interrupt

	Dynamic Switching of 1000BASE-X and SGMII Standards
	Typical Application
	Operation of the Core
	Selecting the Power-On / Reset Standard
	Switching the Standard Using MDIO
	Auto-Negotiation State Machine
	Setting the Auto-Negotiation Link Timer

	Constraining the Core
	Required Constraints
	Device, Package, and Speedgrade Selection
	I/O Location Constraints
	Placement Constraints
	Virtex-II Pro RocketIO MGTs for 1000BASE-X Constraints
	Virtex-II Pro RocketIO MGTs for SGMII or Dynamic Standards Switching Constraints
	Virtex-4 RocketIO MGTs for 1000BASE-X Constraints
	Virtex-4 RocketIO MGTs for SGMII or Dynamic Standards Switching Constraints
	Virtex-5 RocketIO GTP Transceivers for 1000BASE-X Constraints
	Virtex-5 RocketIO GTP Transceivers for SGMII or Dynamic Standards Switching Constraints
	Virtex-5 RocketIO GTX Transceivers for 1000BASE-X Constraints
	Virtex-5 RocketIO GTX Transceivers for SGMII or Dynamic Standards Switching Constraints
	Ten-Bit Interface Constraints
	Constraints When Implementing an External GMII
	Understanding Timing Reports for Setup/Hold Timing

	Interfacing to Other Cores
	Integrating with the 1-Gigabit Ethernet MAC Core
	Integration of the 1-Gigabit Ethernet MAC to 1000BASE-X PCS with TBI
	Integration of the 1-Gigabit Ethernet MAC Using a RocketIO Transceiver
	Integration of the 1-Gigabit Ethernet MAC to Provide SGMII (or Dynamic Switching) Functionality

	Integrating with the Tri-Mode Ethernet MAC Core
	Integration of the Tri-Mode Ethernet MAC to Provide SGMII (or Dynamic Switching) Functionality with TBI
	Integration of the Tri-Mode Ethernet MAC to Provide SGMII (or Dynamic Switching) Functionality using RocketIO Transceivers

	Special Design Considerations
	Power Management
	Startup Sequencing
	Loopback
	Core with the TBI
	Core with RocketIO Transceiver

	Implementing the Design
	Pre-implementation Simulation
	Using the Simulation Model

	Synthesis
	XST - VHDL
	XST - Verilog

	Implementation
	Generating the Xilinx Netlist
	Mapping the Design
	Placing and Routing the Design
	Static Timing Analysis
	Generating a Bitstream

	Post-Implementation Simulation
	Generating a Simulation Model
	Using the Model

	Other Implementation Information

	Core Verification, Compliance, and Interoperability
	Verification
	Simulation
	Hardware Verification

	Core Latency
	Core Latency
	Latency for 1000BASE-X PCS with TBI
	Latency for 1000BASE-X PCS and PMA Using a RocketIO Transceiver
	Latency for SGMII

	Calculating the DCM Fixed Phase Shift Value
	Requirement for DCM Phase Shifting
	Finding the Ideal Phase Shift Value for Your System

	1000BASE-X State Machines
	Introduction
	Start of Frame Encoding
	The Even Transmission Case
	Reception of the Even Case
	The Odd Transmission Case
	Reception of the Odd Case
	Preamble Shrinkage

	End of Frame Encoding
	The Even Transmission case
	Reception of the Even Case
	The Odd Transmission Case
	Reception of the Odd Case

	Rx Elastic Buffer Specifications
	Introduction
	Rx Elastic Buffers: Depths and Maximum Frame Sizes
	RocketIO Rx Elastic Buffers
	SGMII Fabric Rx Elastic Buffer
	TBI Rx Elastic Buffer

	Clock Correction
	Maximum Frame Sizes for Sustained Frame Reception
	Jumbo Frame Reception

	Debugging Guide
	General Checks
	Problems with the MDIO
	Problems with Data Reception or Transmission
	Problems with Auto-Negotiation
	Problems in Obtaining a Link (Auto-Negotiation Disabled)
	Problems with a High Bit Error Rate
	Symptoms
	Debugging

