

AMD SimNow™ Simulator

4.4.4

User’s Manual

Revision Date

2.00 September 2008

Advanced Micro Devices, Inc.

One AMD Place

Sunnyvale, CA 94088

simnow@amd.com

AMD

AMD Confidential

© 2004-2008 Advanced Micro Devices, Inc.

The Contents of this document are provided in connection with Advanced

Micro Devices, Inc. (“AMD”) products. AMD makes no representations or

warranties with respect to the accuracy or completeness of the contents of this

publication and reserves the right to make changes to specifications and

product descriptions at any time without notice. No license, whether express,

implied, arising by estoppels or otherwise, to any intellectual property rights is

granted by this publication. Except as set forth in AMD‟s Standard Terms and

Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any

express or implied warranty, relating to its products including, but not limited

to, the implied warranty of merchantability, fitness for a particular purpose, or

infringement of any intellectual property right.

AMD‟s products are not designed, intended, authorized or warranted for use

as components in systems intended for surgical implant into the body, or in

other applications intended to support or sustain life, or in any other

application in which the failure of AMD‟s product could create a situation

where personal injury, death, or severe property or environmental damage

may occur. AMD reserves the right to discontinue or make changes to its

products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof,

SimNow, 3DNow!, AMD-8111, AMD-8131, AMD-8132 and AMD-8151 are trademarks

of Advanced Micro Devices, Inc.

HyperTransport is a trademark of the HyperTransport Technology Consortium.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

PCI-X is a registered trademark of PCI-SIG.

Sysmark is a registered trademark of Business Applications Performance Corp.

MMX is a trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may

be trademarks of their respective companies.

AMD Confidential

User Manual September 12
th
, 2008

Contents iii

Contents

Figures.. ix

Tables ... xi

1 Overview ... 1

2 Installation... 3

2.1 System Requirements.. 3

2.2 Installation Procedure ... 3

2.3 Directory Structure and Executable .. 4

2.4 Setting up Linux for the Simulator ... 4

2.5 Configuration File ... 5

2.6 Updates and Questions .. 6

3 Graphical User Interface ... 7

3.1 Tool Bar Buttons ... 7

3.2 Device Window .. 9

3.2.1 Add a New Device .. 10

3.2.2 Workspace Popup Menu ... 10

3.2.2.1 Add Connection .. 11

3.2.2.2 Configure Device .. 12

3.2.2.3 Disconnect Device ... 12

3.2.2.4 Delete Device .. 13

3.2.3 Example Computer Description .. 13

3.2.4 Device Window – Quick Reference ... 15

3.3 Device Groups .. 15

3.3.1 Terms .. 16

3.3.2 Concept Diagrams ... 17

3.3.3 Working with Device Groups .. 18

3.3.4 Shell Automation Commands for Device Groups 19

3.3.4.1 Device Tree ... 19

3.3.4.2 Enabled vs. Disabled vs. Mixed ... 20

3.3.5 Device Group Examples ... 20

3.3.5.1 Example: 1GB DDR2 memory ... 21

3.3.5.2 Example: Quad-Core Node .. 22

3.3.5.3 Example: SuperIO device ... 24

3.3.6 Creating a Device Group .. 24

3.4 Main Window ... 24

3.4.1 SimStats and Diagnostic Ports .. 24

3.4.2 CPU-Statistics Graphs .. 25

3.4.2.1 Translation Graph... 25

3.4.2.2 Real MIPS Graph ... 25

3.4.2.3 Invalidation Rate Graph .. 26

3.4.2.4 Exception Rate Graph ... 26

3.4.2.5 PIO Rate Graph .. 26

3.4.2.6 MMIO Rate Graph .. 27

AMD Confidential

User Manual September 12
h
, 2008

iv Contents

3.4.3 Simulated Video.. 27

3.4.4 Hard Disk and Floppy Display ... 27

3.4.5 Using Hard Drive, DVD-/CD-ROM and Floppy Images 28

3.4.6 Registry Window .. 28

3.4.7 Help, Problems and Bug Reports .. 29

4 Disk Images .. 31

4.1 Creating A Blank Hard-Drive Image .. 31

5 Running the Simulator .. 35

5.1 Command-Line Arguments .. 35

5.1.1 Open a Simulation Definition File .. 36

5.2 Installing an Operating System ... 38

5.2.1 Assigning Disk-Images ... 38

5.2.2 Run The Simulation .. 40

5.2.3 Interaction with the Simulated Machine ... 41

5.2.4 Simulation Reset ... 41

5.3 Multi-Machine Support ... 41

6 Create a Simulated Computer ... 45

6.1 BSD Files .. 45

6.2 Device Placement.. 45

6.3 Solo.bsd Device Configuration ... 47

6.4 Save and Run .. 48

7 Device Configuration .. 49

7.1 AweSim Processor Device .. 51

7.2 Debugger Device .. 54

7.3 DIMM Device ... 55

7.4 Emerald Graphics Device ... 61

7.5 Matrox MGA-G400 PCI/AGP .. 65

7.6 Super IO Devices: Winbond W83627HF SIO / ITE 8712 SIO 74

7.7 Memory Device .. 77

7.8 PCA9548 SMB Device ... 80

7.9 PCA9556 SMB Device ... 81

7.10 AMD 8th Generation Integrated Northbridge Device 82

7.11 AMD-8111™ Southbridge Devices – IO Hubs .. 86

7.12 PCI BUS Device ... 92

7.13 AMD-8131™ PCI-X
®
 Controller ... 94

7.14 AMD-8132™ PCI-X
®
 Controller ... 95

7.15 PCI-X Test Device .. 97

7.16 AMD-8151™ AGP Bridge Device ... 98

7.17 Raid Device: Compaq SmartArray 5304 .. 100

7.18 SMB Hub Device .. 101

7.19 AT24C Device .. 103

7.20 EXDI Server Device ... 104

7.21 USB Keyboard and USB Mouse Devices ... 105

7.22 XTR Device .. 106

7.22.1 Using XTR .. 107

7.22.1.1 Recoding XTR Trace ... 107

AMD Confidential

User Manual September 12
th
, 2008

Contents v

7.22.1.2 Stop XTR Record ... 107

7.22.1.3 XTR Playback ... 107

7.22.1.4 Stop XTR Playback .. 108

7.22.2 XTR Structure ... 110

7.22.2.1 XML Structure ... 110

7.22.2.2 XTR Binary File Contents ... 112

7.22.3 ModeFlags... 112

7.22.4 Limitations .. 113

7.22.5 Example XTR XML File .. 113

7.23 JumpDrive Device .. 119

7.24 E1000 Network Adapter Device ... 120

7.24.1 Simulated Link Negotiation .. 121

7.24.2 The Mediator Daemon .. 122

7.24.3 MAC Addresses for use with the Adapter .. 123

7.24.4 Example Configurations ... 123

7.24.4.1 Absolute NIC ... 123

7.24.4.2 Client-Server simulated network .. 124

7.24.4.3 Isolated Client-Server simulated network (Same process) ... 124

7.24.5 Visibility Diagram .. 125

7.25 Plug and Play Monitor Device .. 126

7.26 ATI SB400/SB600/SB700 Southbridge Devices.. 128

7.27 ATI RS480/RS780/RD790/RD890 Northbridge Devices 130

7.28 AMD “Istanbul” Device ... 131

7.29 AMD “Sao Paulo” Device .. 132

7.30 AMD “Magny-Cours” Device .. 133

8 PCI Configuration Viewer .. 135

8.1 Scanning PCI Buses .. 136

8.2 Modifying the PCI Configuration contents... 136

9 Logging ... 137

9.1 Message Log ... 137

9.2 Error Log ... 139

9.3 I/O Logging ... 140

10 CPU Debugger .. 143

10.1 Using the CPU Debugger.. 143

10.1.1 Setting a Breakpoint .. 143

10.1.2 Single Stepping the Simulation ... 144

10.1.3 Stepping Over an Instruction .. 144

10.1.4 Skipping an Instruction ... 145

10.1.5 Viewing a Memory Region ... 145

10.1.6 Reading PCI Configuration Registers ... 146

10.1.7 Reading CPU MSR Contents .. 146

10.1.8 Find Pattern in Memory .. 147

10.2 Debugger Command Reference .. 147

11 Debug Interface ... 151

11.1 Kernel Debugger ... 151

11.2 GDB Interface ... 152

AMD Confidential

User Manual September 12
h
, 2008

vi Contents

11.2.1 Simple Approach .. 152

11.2.2 Alternate Approach ... 153

11.2.3 Using Another Port on the Same Machine ... 153

11.2.4 Using Two Separate Machines ... 153

11.3 Linux Host Serial Port Communication .. 153

12 Command API .. 155

13 DiskTool ... 157

13.1 Command-Line Mode ... 157

13.2 GUI Mode ... 158

14 BIOS Developer‟s Quick Start Guide ... 163

14.1 Loading a BIOS Image ... 163

14.2 Changing DRAM Size .. 163

14.3 Changing SPD Data .. 164

14.4 Clearing CMOS .. 165

14.5 Logging PCI Configuration Cycles .. 165

14.6 Logging CPU Cycles .. 166

14.7 Creating a Floppy-Disk Image .. 167

15 Frequently Asked Questions (FAQ) ... 169

A Appendix ... 183

A.1 Format of Floppy and Hard-Drive Images.. 183

A.2 Bill of Material .. 184

A.2.1 Computer Platform Files (BSD) ... 184

A.2.2 Device Files (*.BSL) .. 184

A.2.3 Product Files (*.ID) .. 185

A.2.4 Image Files (*.HDD, *.FDD, *.ROM, *.SPD, *.BIN) 185

A.2.4.1 Hard-Disk Image Files .. 185

A.2.4.2 Memory SPD Files .. 186

A.3 Supported Guest Operating Systems .. 187

A.4 CPUID... 188

A.4.1 CPUID Standard Feature Support (Standard Function 0x01) 188

A.4.2 CPUID AMD Feature Support (Extended Function 0x80000001)......... 189

A.5 Known Issues .. 190

A.5.1 FSAVE/FRSTOR and FSTENV/FLDENV .. 190

A.5.2 Triple Faulting .. 190

A.5.3 Performance-Monitoring Counter Extensions .. 190

A.5.4 Microcode Patching .. 190

A.5.5 Instruction Coherency ... 190

A.6 Instruction Reference .. 192

A.6.1 Notation... 192

A.6.1.1 Mnemonic Syntax ... 192

A.6.1.2 Opcode Syntax .. 194

A.6.2 General Purpose Instructions .. 195

A.6.3 System Instructions ... 223

A.6.3.1 INT – Interrupt to Vector .. 225

A.6.3.2 IRET – Return from Interrupt ... 225

A.6.4 Virtualization Instruction Reference ... 226

AMD Confidential

User Manual September 12
th
, 2008

Contents vii

A.6.5 64-Bit Media Instruction Reference .. 226

A.6.6 3DNow!™ Instruction Set .. 226

A.6.7 Extension to the 3DNow! Instruction Set ... 227

A.6.8 Prescott New Instructions ... 227

A.6.8.1 MONITOR – Setup Monitor Address... 228

A.6.8.2 MWAIT – Monitor Wait ... 229

A.7 Automation Commands .. 230

A.7.1 Shell .. 231

A.7.2 IDE .. 235

A.7.3 USB ... 236

A.7.4 CMOS ... 237

A.7.5 ACPI ... 237

A.7.6 Floppy ... 237

A.7.7 Debug .. 237

A.7.8 AMD-8151™ AGP Bridge ... 238

A.7.9 VGA .. 238

A.7.10 Serial ... 238

A.7.11 HyperTransport™ Technology Configuration 240

A.7.12 8
th

 Generation Northbridge ... 241

A.7.13 DBC .. 241

A.7.14 AMD-8111™ Device .. 241

A.7.15 EHC... 242

A.7.16 Journal ... 242

A.7.17 CPU ... 242

A.7.17.1 Profiling in SimNow™ Technology ... 242

A.7.17.2 CPU Code Generator Commands ... 244

A.7.18 Emerald Graphics.. 244

A.7.19 Matrox MGA-G400 Graphics ... 245

A.7.20 PCI Bus ... 245

A.7.21 SIO .. 245

A.7.22 Memory Device .. 246

A.7.23 Raid ... 247

A.7.24 DIMM ... 248

A.7.25 Keyboard and Mouse .. 249

A.7.26 JumpDrive ... 250

A.7.27 E1000 .. 253

A.7.28 XTR... 253

A.7.29 ATI SB400/SB600/SB700 .. 254

A.7.30 ATI RS480 .. 254

A.7.31 ATI RS780 .. 255

A.7.32 ATI RD790/RD780/RX780 .. 255

A.7.33 ATI RD890S/RD890/RD780S/RX880 ... 255

Index ... 257

AMD Confidential

User Manual September 12
th
, 2008

Figures ix

Figures

Figure 3-1: Main Window (In Simulation) ... 7

Figure 3-2: Device Window.. 9

Figure 3-3: Workspace Popup Menu .. 11

Figure 3-4: Add Connection Dialog of Device Properties Window 12

Figure 3-5: Computer Simulation in “cheetah_1p.bsd” File .. 13

Figure 3-1: Device group: BSD with one machine group and three child devices 17

Figure 7-2: Device group (different conceptual view – devices are inside groups) 17

Figure 7-3: Device Group (2 group devices 1 library device) .. 18

Figure 3-6: Modify Group .. 18

Figure 3-7: Device Group ... 18

Figure 3-8: Example DIMM Device Group.. 21

Figure 3-9: Created DIMM Device Group ... 21

Figure 3-10: Children of DIMM Device Group ... 22

Figure 3-11: Console Window .. 24

Figure 3-12: Progress Meter and Diagnostic Ports ... 25

Figure 3-13: CPU Translation Graph .. 25

Figure 3-14: CPU Real MIPS Graph .. 26

Figure 3-15: CPU Invalidation Graph... 26

Figure 3-16: CPU Exception Rate Graph ... 26

Figure 3-17: CPU PIO Rate Graph ... 27

Figure 3-18: CPU MMIO Rate Graph .. 27

Figure 3-19: Primary, Secondary, and Floppy Displays ... 28

Figure 3-20: Registry Window ... 29

Figure 4-1: DiskTool Dialogue Window .. 32

Figure 4-2: DiskTool Shell Window... 32

Figure 4-3: New Image Size ... 33

Figure 4-4: Create Blank Image .. 33

Figure 4-5: DiskTool Operation Successful ... 34

Figure 5-1: Main Window (No BSD Loaded) .. 35

Figure 5-2: Main Window (BSD Loaded) .. 37

Figure 5-3: Device Window.. 38

Figure 5-4: Installing WindowsXP ... 40

Figure 6-1: Solo.bsd Configuration .. 45

Figure 6-2: Connections Tab of Device Properties Window .. 46

Figure 6-3: PCI Bus Configuration dialog window .. 48

Figure 7-4: AweSim Processor-Type Properties .. 52

Figure 7-5: AweSim Processor Logging Properties Dialog ... 53

Figure 7-6: AMD Opteron™ Processor Virtual Bank-Select Line Configuration 56

Figure 7-7: AMD Athlon™ 64 Processor Bank-Select Line Configuration 56

Figure 7-8: DIMM-Bank Options Properties Dialog .. 58

Figure 7-9: DIMM Module Properties Dialog .. 59

Figure 7-10: Graphics-Device VGA Sub Device Properties Dialog 62

Figure 7-11: Graphics Device Frame Buffer SubDevice Properties 63

AMD Confidential

User Manual September 12
h
, 2008

x Figures

Figure 7-12: Matrox G400 Block Diagram .. 65

Figure 7-13: Matrox G400 Information Property Dialog ... 67

Figure 7-14: Matrox G400 Configuration Properties ... 68

Figure 7-15: Enable Full Hardware Acceleration on WindowsXP guest 73

Figure 7-16: Super IO Properties Dialog: Winbond W83627HF 75

Figure 7-17: Memory Configuration Properties Dialog ... 78

Figure 7-18: PCA9548 SMB Configuration Properties Dialog .. 80

Figure 7-19: PCA9556 SMB Configuration Properties Dialog .. 81

Figure 7-20: Northbridge Logging Capabilities Properties Dialog 83

Figure 7-21: Northbridge HT Link Configuration Properties Dialog 83

Figure 7-22: Northbridge DDR2 Training Properties Dialog ... 84

Figure 7-23: USB Properties Dialog (AMD-8111™ Southbridge) 87

Figure 7-24: CMOS Properties Dialog (AMD-8111™ Southbridge) 88

Figure 7-25: HDD Primary Channel Properties Dialog (AMD-8111 Southbridge) 89

Figure 7-26: Device Options Properties Dialog (AMD-8111 chipset) 90

Figure 7-27: Logging Options Properties Dialog (AMD-8111 chipset) 91

Figure 7-28: PCI Bus Properties Dialog ... 93

Figure 7-29: AMD-8131™ Device Hot Plug Configuration .. 94

Figure 7-30: AMD-8132™ Device Hot Plug Configuration .. 95

Figure 7-31: AMD-8132 Properties Dialog .. 96

Figure 7-32: AMD-8151™ Device Properties Dialog .. 98

Figure 7-33: SMB Hub Properties Dialog .. 102

Figure 7-34: AT24C Device Configuration .. 103

Figure 7-35: Communication via Mediator .. 120

Figure 7-36: Multi-Machine Communication without a Mediator 121

Figure 7-37: Visibility Diagram.. 125

Figure 7-38: Plug and Play Monitor Device Configuration .. 127

Figure 7-39: ATI SB600 SATA Configuration Dialog .. 129

Figure 8-1: PCI Configuration Viewer ... 135

Figure 9-1: Message Log .. 138

Figure 9-2: Error Log .. 139

Figure 9-3: I/O Logging Dialog .. 140

Figure 10-1: CPU Debugger Window .. 143

Figure 13-1: DiskTool Shell Window... 159

Figure 13-2: DiskTool GUI Window .. 160

Figure 13-3: DiskTool Drive Information .. 160

Figure 13-4: DiskTool Progress Window ... 161

Figure 14-1: Memory Configurator .. 164

Figure 14-2: Diagnostics Display ... 165

Figure 14-3: Message Log Window ... 166

Figure 15-1: Console Window .. 230

AMD Confidential

User Manual September 12
th
, 2008

Tables xi

Tables

Table 1-1: Feature Overview Public Release versus Full Release 2

Table 2-1: Software and Hardware Requirements .. 3

Table 3-1: Cheetah_1p.bsd Devices ... 15

Table 3-2: Device Window - Quick Reference ... 15

Table 3-3: Image Types .. 28

Table 5-1: Command-Line Arguments ... 36

Table 5-2: Newmachine Command Arguments ... 42

Table 7-1: Supported Devices ... 50

Table 7-2: Supported Standard VESA Modes .. 63

Table 7-3: Supported Custom VESA Modes .. 64

Table 7-4: Matrox G400 VESA Modes .. 71

Table 7-5: Supported Resolutions in Power Graphics Mode .. 71

Table 7-6: Supported Guest Operating Systems ... 72

Table 7-7: Execution Control Flags .. 112

Table 7-8: Internal Execution Control Flags .. 113

Table 7-9: Mediator Command Line Switches ... 123

Table 7-10: MAC Address Assignments .. 124

Table 7-11: Client-Server: Simulator Server .. 124

Table 7-12: Client-Server: Simulator Client 1 .. 124

Table 7-13: Isolated Client-Server: Simulator Server .. 124

Table 7-14: Isolated Client-Server: Simulator Client 1 .. 125

Table 10-1: Debugger Breakpoint Command Examples .. 144

Table 10-2: Debugger Memory Dump Command Examples ... 146

Table 10-3: Debugger Pacifica Memory Dump Command Examples 146

Table 10-4: MSR Read Examples... 147

Table 10-5: MSR Write Example ... 147

Table 10-6: Find Pattern Example .. 147

Table 10-7: Debugger Commands and Definitions .. 150

Table 15-1: Computer Platform Files (BSD) .. 184

Table 15-2: Product Files .. 185

Table 15-3: Hard-Disk Images .. 186

Table 15-4: Memory SPD Files .. 186

Table 15-5: Supported Guest Operating Systems ... 187

Table 15-6: CPUID Standard Feature implementation ... 189

Table 15-7: CPUID Extended Feature implementation .. 189

Table 15-8: General-Purpose Instruction Reference ... 223

Table 15-9: System Instruction Reference .. 225

Table 15-10: 3DNow!™ Instruction Reference ... 227

Table 15-11: Extension to 3DNow! Instruction Reference .. 227

Table 15-12: Prescott New Instruction Reference .. 228

Table 15-13: CodeGen Command Overview ... 244

Table 15-14: Prefix Sequences (keyboard.text) .. 250

AMD Confidential

User Manual September 12
h
, 2008

xii Figures

AMD Confidential

User Manual September 12
th
, 2008

Chapter 1: Overview 1

1 Overview
The AMD SimNow™ simulator is an AMD64 technology-compatible x86 platform

simulator for AMD's family of processors. It is designed to provide an accurate model of

a computer system from the program, OS, and programmer's point of view. It allows fast

simulation of an entire computer system, plus standard debugging features such as break-

pointing, memory-viewing, and single-stepping. The simulator allows such work as BIOS

and OS development, memory-parameter tuning, and multi-processor system simulation.

Section 2.1, “System Requirements”, on page 3 describes supported host Operating

Systems. Section A.3, “Supported Guest Operating Systems”, on page 186 describes

supported guest Operating Systems.

The simulator has between a 10:1 and 100:1 slowdown rate from the host CPU,

depending on whether the workload is in the CPU core or accessing simulated devices

intensively.

The simulator is designed to create an accurate model of a system from the program‟s

view. Device models contain all the program-visible state but the actual functionality is

abstracted. In many cases only the functionality needed to satisfy the software is

implemented. Software may be run on the simulator in an unmodified form. This includes

BIOS, drivers, O/S, and applications.

The simulator has a concept of time, but it is not a cycle-accurate simulator. The basic

timing mechanism is an instruction; all instructions execute in the same amount of time

and are one tick in length. This "tick" time is scaled and used by the rest of the system.

Long-latency events, like disk or floppy access, have some minimum latency built in

because we found legacy software that relied on the physical latency of these peripherals.

The simulator contains all the classic pieces of a PC system (CPU, memory, Northbridge,

Southbridge, display, IDE drives, floppy, keyboard, and mouse support). Images (hard

disk, DVD/CD-ROM, and floppy) can be created in custom sizes with the DiskTool

program (Section 13, “DiskTool”, on page 157) that is provided with the simulator. A

simulation can be saved at any point in the simulation to a media file, from which the

simulation can be re-run at a later time.

A simple diagnostic port model (known as "Port80" device) displays values written by

the BIOS in a pane of the simulator's main window. Other panes display guest (simulated

machine) and simulator host processor times. The simulator requires several files to be

specified. Binary files containing the BIOS and disk images are stored in the images

directory. The simulator home directory stores “*.bsd” files which contain the

configuration of the system (how models are connected together and their settings) and

the logical state of all the devices in the simulator. When starting a simulation from reset,

the “*.bsd” file is rather small and only contains the configuration information. When the

simulation starts, the simulated memory is allocated. When the simulation is halted and

AMD Confidential

User Manual September 12
h
, 2008

2 Chapter 1: Overview

saved, the “*.bsd” file will have grown significantly, slightly larger than the size of

simulated memory.

The graphics device supplied with the simulator is a 2D and 3D graphics card with linear

frame buffer and DirectX 6 support. AMD currently plans to provide a graphics model

with the simulator which will also have modern 3D hardware acceleration, including

Microsoft® DirectX 9/10 support.

The simulator is available in two versions: Public Release and Full Release. Table 1-1

shows the detailed feature matrix:

Feature Public Release Full Release

DIMM configuration Limited
No 4 Gb limitation of simulated memory
Available devices Limited
Available platform definition files (BSDs) Limited
Devices can be added and removed from platform definition files
Connecting and disconnecting devices
Ships with a variety of different CPU cores (Product Files)
Full product support Limited
Analyzer support

Support of simulated multi-processor systems (up to 16 CPUs) 1

Table 1-1: Feature Overview Public Release versus Full Release

To get more information about how to obtain the full release version of the simulator

please send an email to simnow@amd.com.

1
 Support of up to two cores.

mailto:simnow@amd.com

AMD Confidential

User Manual September 12
th
, 2008

Chapter 2: Installation 3

2 Installation

2.1 System Requirements

The AMD SimNow™ simulator runs on both Linux 64 for AMD systems and

Windows® for 64-bit AMD systems.

The requirements for each system are as follows:

 Linux 64 for AMD64 Windows
®

 XP 64Bit Edition for

AMD64

OS Distribution

Any of the following 64-Bit

Linux distributions for AMD64.

 SuSE 9 Pro and newer

 RedHat 64Bit Enterprise 3

and above

 Fedora Core 2 and newer.

Windows XP x64 Edition or

Windows Server 2003 x64

Edition for AMD64.

Recommended SuSE 9.1 or newer for AMD64. Build 1218 or newer.

Memory

Approx. 64MB of memory, plus

Approx. 150 MB of memory for each simulated processor, plus the

amount of simulated RAM.

Processor AMD Athlon™ 64 or AMD Opteron™.

Hard Disk Space
1 Gigabyte of free hard disk space for the simulator and devices

plus 3 Gigabytes free space for disk file images.

Other Hardware
3.5-inch, 1.44-MB floppy drive.

CD-ROM Drive.

Table 2-1: Software and Hardware Requirements

Running the simulator on a Linux kernel prior to version 2.6.10 may cause the simulator

to malfunction. The bug is in the 64-bit path only, and the symptom is in signals that are

not associated with "system calls" still being treated as "system calls" as they go back to

user space, i.e. in certain cases it tries to restart the "system call" even when it did not

come from a "system call". Updating the Linux kernel to kernel version 2.6.10 or later

resolves this problem.

The simulator may stress the system more than most applications, including the base

operating system. AMD has received reports that the simulator has caused some systems

to crash, and in general this has been traced to unstable hardware. Hardware instability

can also crash applications or operating systems inside the simulator.

2.2 Installation Procedure

Insert the CD-ROM into your system's CD-ROM drive, or download the simulator

program and its data files from http://developer.amd.com/simnow.aspx. Browse to the

root directory of the CD or to the path where the downloaded simulator is stored, and

http://developer.amd.com/simnow.aspx

AMD Confidential

User Manual September 12
h
, 2008

4 Chapter 2: Installation

begin the installation, as follows. To install under Windows, double-click on the self-

extracting executable. To install under Linux, extract the zipped tar file as shown below:

tar –xzf Simnow-Linux64-<version>.tar.gz

2.3 Directory Structure and Executable

After the opening screen and license agreement are displayed, you will be prompted to

choose an installation directory. When you select this, the install program will copy the

executable files and device models to the selected directory and setup the registry entries

necessary to run the simulator.

The install program will create the following subdirectories under the install directory:

1 Under Windows each model is a Windows DLL. Under Linux each model is a Linux library. Each model has a ".bsl"

extension.

2.4 Setting up Linux for the Simulator

Make a file: "/etc/sysctl.conf" (or add to the existing one)

This is here to make sure we get enough "mmap"able virtual address

space, in 4K pages. It defaults to 65536, which is generally

too small.

vm.max_map_count = 1048576

This line doesn't need to be here for newer Linux kernels, but some

early AMD64 Linux kernels would log SEGVs even if a process had a

handler for them, which is what SimNow does.

debug.exception-trace = 0

Example 2-1: Setting up Linux for the Simulator

Then run "sysctl -p", or make sure the boot sequence does this if you don't want to run it

at each reboot.

Newer Linux distributions may set a per-process memory limit by default. SimNow

allocates a large amount of memory that is never touched. This untouched memory will

not be backed by DRAM or swap, but Linux counts it against SimNows process memory

limit when it comes to resource limits.

Contains the simulator’s executable, DiskTool, libraries, and BSD files.

 analyzers Contains CPU analyzers.

 devices Contains the simulator's device models.
1

 help Contains the simulator’s help files.
 icons Contains icons used by the simulator’s GUI components.

 images Contains image files.

 productfile Contains processor-id files.

 reg Contains register script files used to register simulator components.

 devel Contains the Emerald BIOS changes and analyzer header files.

 tools Contains utilities used to prepare images and register components for the simulation.

 doc Contains the latest versions of the simulator documentation.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 2: Installation 5

You can unset the per-process memory limits by running the following commands as

root.

ulimit -m unlimited

ulimit -v unlimited

2.5 Configuration File

The simulator's configuration file is a text file that may be edited and that is stored in

different locations depending on which host OS you are using.

If you are using Windows as host operating system the configuration file is located in:

C:\Documents and Settings\All Users\Application Data\simnowrc

If you are using Linux as host operating system the configuration file is located in:

$HOME/.qt/simnowrc

Here is an example of the contents of this file, with an explanation:

[General]

[UserKeys]

CTL-ESC=Sends a CTL-ESC to the application,1D 01 81 9D

ALT-F4=Sends an ALT-F4 to the application,38 3e be b8

[UserBottons]

BUTTON0=”MyIconPath\MyIcon.png”,“cpu.name”

The configuration file is divided into sections, with each section title enclosed in square

brackets. This particular example includes three sections, named [General], [UserKeys]

and [UserBottons].

All user key definitions are stored in the [UserKeys] section. Each user key definition is

defined by a single line. This example defines two user keys. The string to the left of the

equal sign is the string that will be placed in the menu. To the right of the equal sign are

two strings, separated by a comma. The first string is the text that is displayed when the

user clicks on the "What's This" help button, and the second string is the list of scan codes

that are sent when this menu item is selected.

The two examples shown are merely duplicates of the normal "CTL-ESC" and "ALT-F4"

menu items on the "Special Keyboard" menu.

All user button definitions are stored in the [UserButtons] section. Each user button

definition is defined by a single line. This example defines one user button (BUTTON0).

The string to the left of the equal sign is the path including the file name of the icon that

will be placed in the toolbar menu. To the right of the equal sign is the string that

represents the automation command (please refer to Section A.7, “Automation

AMD Confidential

User Manual September 12
h
, 2008

6 Chapter 2: Installation

Commands”, on page 230) that will be executes when the user clicks on the defined user

button.

Note that minimal parsing of the text is done, so it is important that no spaces exist

around the separating comma.

2.6 Updates and Questions

Please refer to the Release Notes located at "SimNow\docs" to obtain the latest

information about the simulator. If you have any question regarding the simulator please

refer to Section 15, “Frequently Asked Questions (FAQ)”, on page 169 or contact your

AMD account representative.

Appendixes are provided that describe:

 Format of Floppy and Hard-Drive Images, page 183

 Bill of Material, page 184

 Supported Guest Operating Systems, page 186

 CPUID, page 188

 Known Issues, page 190

 Instruction Reference, page 192

 Automation Commands, page 230

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 7

3 Graphical User Interface
The simulator has a cross-platform GUI that uses the Qt toolkit. We welcome bug reports

and usability feedback on the simulator.

Figure 3-1: Main Window (In Simulation)

3.1 Tool Bar Buttons

The Tool Bar shown in Figure 3-1 contains up to eleven control buttons.

The simulation can be started by clicking on the “Play” button ().

The simulation can be stopped by clicking on the “Stop” button (). To reset the entire

simulator, stop the simulation first by clicking on the “Stop” button and then click on the

“Reset” button ().

Numeric Display
Components

Simulation Display
Area

Main Window

Menu Bar

Simulator status

Tool Bar

2D Engine

Color Space

Conversion

(CSC)

Video Scaling

Unit

MAFC Port

Primary CRTC

Programmable

Ultra-pipelined

Floating Point Setup Engine

CPU Graph Area

AMD Confidential

User Manual September 12
h
, 2008

8 Chapter 3: Graphical User Interface

The power-management “Soft Power” button () and “Soft Sleep” button () are

available only on simulated systems that have an Advanced Configuration and Power

Interface (ACPI) BIOS.

Clicking on the “Soft Power” button puts the simulated system in a very low power

consumption mode. The working context can be restored if it is stored on nonvolatile

media. The simulated system appears to be off.

Clicking on the “Soft Sleep” button simulates a power-consumption reduction. The power

consumption is reduced to one of several levels, depending on how the system is to be

used. The lower the level of power consumption, the more time it takes the system to

return to the working state.

To close a previously loaded system simulation definition file click on the “Close BSD”

button (). This button is only enabled when a system definition file has been loaded or

created earlier. Please make sure you save any changes that you make to the system

configuration before clicking on the “Close BSD” button () to close the system

definition file. Otherwise all changes will be lost.

The “Save BSD” button () is only enabled/active when a system definition (BSD file)

has been loaded or created. To save your current system definition click on the “Save

BSD” button () or click on the "File" menu item and select "Save BSD".

To open a system definition file (BSD file) click on the “Open BSD” button () and

select the desired BSD file from the Open File Dialog Window. The "Open BSD" button

is only enabled/active when no other system definition file has been open yet.

To create a blank or new system definition file click on the “New BSD” button (). This

button is disabled when a system definition file has been loaded or created earlier. In this

case you must close your current system definition file, click on the “Close BSD” button

() or click on the "File" menu item and select "Close BSD". Please make sure you save

any changes that have been made to the system definition file before you click on the

“Close BSD” button (). Note, when closing the BSD file all changes will be lost.

If you want to modify the current system definition use the “Show Device Window”

button () to display the current system configuration. The “Show Device Window”

button is disabled when the simulation is currently running. To stop the simulation click

on the “Stop Simulation” button ().

To open the simulator's integrated debugger click on the “Show Debugger” button ().

The “Show Debugger” button is disabled when the simulation is currently running. To

stop the simulation click on the “Stop Simulation” button ().

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 9

Click on the “Best Fit To Window” button () to reduce or enlarge the size of the

simulated display area so that the entire simulated display area will fit into the simulators

main window. If you hold down the CTRL key when clicking on the “best fit” button, it

“locks” into a state where the simulated display area is resized whenever the simulated

graphics display resolution changes. To clear this locked condition, click on the “best fit”

button again.

3.2 Device Window

The Devices Window, shown in Figure 3-2, is opened by selecting “View→Show

Devices” or clicking on the button. In this window, you can create a simulated

computer and modify its properties, BIOS images, memory characteristics, and attached

components.

This section describes the main components of the Device Window and shows how to

build up and configure a simulated computer. It explains the interface using some of the

most-often used simulation components. Please also see the walkthrough of building a

single-processor system in Section 6, “Create a Simulated Computer”, on page 45.

Figure 3-2: Device Window

 Workspace Device List

Represents
Message Routing

Device
Window

System
Configuration

AMD Confidential

User Manual September 12
h
, 2008

10 Chapter 3: Graphical User Interface

The Device Window, shown in Figure 3-2 with the “cheetah1_p.bsd” computer

simulation loaded, graphically depicts a simulated computer system. In the simulator, a

computer system is defined as a collection of device models that communicate with each

other by exchanging messages. The icons in the workspace represent device models; the

lines connecting the icons represent message routing. You can set up and alter the

simulated computer system by using the workspace popup menu (shown in Figure 3-3).

To open the workspace popup menu, right-click on any icon in the workspace area.

The Device List, located on the left side of the Device Window, describes all devices

available in the simulator along with their configuration options. For further information

please refer to Section 7, “Device Configuration”, on page 49.

The Show Deprecated Devices checkbox is not checked by default. This checkbox gives

the user the opportunity to show or hide deprecated devices. It is not recommended to use

deprecated devices in simulation. To show deprecated devices this checkbox must be

checked. The Show Deprecated Devices checkbox does not disable the ability to connect

or create deprecated devices. Also the automation interface of deprecated devices and

loading BSDs which contain deprecated devices are both unaffected.

3.2.1 Add a New Device

You can add devices to the workspace by dragging a new device from the Device List on

the left side of the workspace window to an appropriate location within the workspace on

the right side. Please note that this feature is not supported by the public release version

of the simulator.

Some devices produce additional windows or dialogs when you add them to the

workspace. These windows provide an interface to the device during simulation. For

example, adding the Winbond WB83627HF SIO device (see Section 7.5 on page 65) to

the workspace adds the floppy byte counts numeric window to the Main Window screen.

When you add a device to the workspace, the shell sends a reset message to all of the

devices in the workspace. The global reset is equivalent to power-cycling the simulated

computer system.

3.2.2 Workspace Popup Menu

Changing the system configuration of the simulated system can make the simulation

nonfunctional.

Right-clicking on any icon in the workspace produces a popup menu as shown in Figure

3-3.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 11

Figure 3-3: Workspace Popup Menu

3.2.2.1 Add Connection

Please note that this feature is not supported by the public release version of the

simulator. You can connect a device to another device by holding Shift, left-click, and

drag from one device to the other. You will draw a line from the first device to the

second. Release the mouse button to create the connection. You can also right-click one

device, select "Add Connection", and then click on the device to connect to. Then click

Finish. The connection enables simulator-level message exchanges between the

connected devices. All connections enable bidirectional message transfers.

Some devices contain more than one interface to which a connection can be made. A

multi-interface device routes messages out different interfaces, based on the type of

message being sent. When you make a connection with a multi-interface device, an

interface list dialog appears which enables you to select the appropriate interface. You

must choose an interface on either device, even if one or both of the devices has only one

interface type.

Generally, you shouldn't connect different types of interfaces. For example, interface

Type A of Device 1 should only be connected to interface Type A of Device 2.

Please note that these

features are not supported

by the public release

version of the simulator.

AMD Confidential

User Manual September 12
h
, 2008

12 Chapter 3: Graphical User Interface

Figure 3-4: Add Connection Dialog of Device Properties Window

A device's connection appears in the “Connections” tab of the Device Properties window

for each device, as shown in Figure 3-4.

When you add a connection, the simulator shell sends a reset message to all of the

devices in the workspace. The global reset is equivalent to power-cycling the simulated

computer system.

3.2.2.2 Configure Device

Most devices provide configuration options. Selecting “Configure Device” from the

workspace popup menu produces a dialog window containing options for the specified

device.

Selecting the “Connections” tab in the Device Properties window will display a list of all

connections between the specified device and any other devices in the workspace.

3.2.2.3 Disconnect Device

Please note that this feature is not supported by the public release version of the

simulator. Selecting “Disconnect Device” from the workspace popup menu removes all

connections to the specified device.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 13

3.2.2.4 Delete Device

Please note that this feature is not supported by the public release version of the

simulator. Selecting Delete Device from the workspace popup menu removes all

connections to the specified device, and removes the device from the workspace.

3.2.3 Example Computer Description

In this section we describe the major components of the computer simulation contained in

the “cheetah_1p.bsd” file.

Figure 3-5: Computer Simulation in “cheetah_1p.bsd” File

This computer is a single-processor AMD 8
th

 Generation machine with 256 MB of

memory, a Southbridge that supports two IDE chains, VGA output, and a SuperIO that

supports a keyboard, mouse, and floppy drive. This computer also comes with a USB

JumpDrive and NIC device.

Right-clicking on any icon brings up a Workspace Popup menu (Figure 3-3) that allows

access to the Device Property window, which includes a list of all components that the

selected component is connected to. An example Device Property window is shown in

Figure 3-4. The right-click Workspace Popup menu also allows you to delete or

AMD Confidential

User Manual September 12
h
, 2008

14 Chapter 3: Graphical User Interface

disconnect the selected device from all its connections. Please note that this feature is not

supported by the public release version of the simulator.

Table 3-1 lists each component in the “cheetah_1p.bsd” computer. For more information

about devices and possible device configuration, please refer to Section 7, “Device

Configuration” on page 49.

Symbol Device Short Description

AMD Debugger Standard debugging support.

AweSim Processor Simulated Processor.

DIMM Bank DIMM Memory Modules.

AMD 8
th

 Generation Integrated

Northbridge

Integrated Northbridge treated as a

separate device in simulation.

AMD-8111™ Southbridge

Southbridge supporting Hard drives,

DVD-/CD-ROM drives, Floppy drives,

USB ports, CMOS, and POST ports.

AMD-8132™ PCI-X

Controller

The AMD-8132 PCI-X Controller is a

HyperTransport tunnel that provides

two PCI-X buses and two IOAPICs.

These PCI-X buses may or may not be

configured as hot-plug-capable,

depending on the platform.

Emerald Graphics Device Simulated VGA device.

Matrox G400 Graphics Device Simulated VGA/SVGA device.

PCI Bus

Simulated PCI Bus which can connect

multiple PCI devices (such as bridges

and PCI VGA).

Winbond W83627HF SIO

SuperIO Chip with keyboard, mouse

and floppy.

Memory Device

Device that contains a configurable

BIOS ROM image.

SMB Hub Device

The SMB hub device is used to connect

one SMBus to any of four SMBus

branches.

PCA9548 Device

The PCA9548 is an 8-channel System

Management Bus (SMB) switch.

AT24C Device

The AT24C device is a Serial

EEPROM device.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 15

Symbol Device Short Description

USB JumpDrive

The JumpDrive device allows easy

import and export of data between a

host system and a simulation

environment.

Desktop Network Adapter

The network adapter device models an

Intel Pro/1000 MT Desktop Network

Adapter.

Table 3-1: Cheetah_1p.bsd Devices

3.2.4 Device Window – Quick Reference

Table 3-2 lists common tasks that may be done in the Device Window and describes how

to complete them.

Task Where to Find the Properties

Change CPU Type

Enter the “AweSim properties page→Processor” tab and

select a CPU type. For more information, please refer to

Section 7.1, “AweSim Processor Device, Figure 7-1 ”, on

page 52.

Change Memory type or size
Please refer to Section 14.2, “Changing DRAM Size”, on

page 163.

Change a hard drive or DVD-

/CD-ROM image

Go to the Simulation Display Window “File→Set IDE

{Primary, Secondary} {Master, Slave} Image”, as shown in

Figure 7-22, on page 89,

Or

Go to the “Southbridge Properties page→HDD {Primary,

Secondary} Channel”. If using a DVD-/CD-ROM image,

check the DVD-ROM checkbox, as shown in Figure 7-22,

on page 89.

Change a floppy drive image

Go to the Main Window “File Menu→Set Floppy Image”

Or

Go to the “SIO properties page→Super IO” tab (see Figure

7-13 on page 75).

Change a BIOS image

Go to the “System BIOS Properties page→Memory

Configuration” tab (see Figure 7-14, on page 78). Change

the Init File entry.

Table 3-2: Device Window - Quick Reference

3.3 Device Groups

A platform (*.bsd) consists of devices, and each device is an instance of either a device

library (*.bsl or *.so) or a device group (*.bsg). A device group is an aggregation of

devices into a single composite device that has some customized aspects (includes its

name, icon, ports, initial and default state).

Device groups are a particular class of devices. They have the same properties and

characteristics as traditional devices, but also allow the user to extend and tailor specific

AMD Confidential

User Manual September 12
h
, 2008

16 Chapter 3: Graphical User Interface

device(s) to meet a particular hardware implementation or configuration. Device groups

provide a method that allows the user to group or collect one or more devices, libraries or

groups into one composite device. To the user, the composite device will look and feel no

different than a normal device library and, for the most part, the two should be

indistinguishable.

A device group can consist of one or more child devices, with some optional initialization

state associated with each child device, and those devices can optionally be connected to

each other. It may be helpful to think of a device group as a BSD within a BSD.

However, a device group also has its own identity as a device, and it can support external

connection ports that allow it be connected to other devices in the same manner as a

traditional device library.

3.3.1 Terms

If any of the language and wording used in these Device Groups sections is unclear, it

may help to refer to this list of terms.

Device: A device library or device group (also, a known device or created device).

Device Library: Contains binary implementation of device functionality; has no child

devices; associated with a “*.bsl” Windows or “*.bsl” Linux file.

Device Group: Grouping of one or more devices (libraries and groups) into a single

device; gets its functionality through aggregation of its children, and from its group-

specific properties/aspects; associated with a “*.bsg” file.

Known Device: A device that the shell knows about (i.e., the shell has all the necessary

information to create an instance of this device). Known devices appear in the left hand

pane of the Device Viewer window; and on the console using shell.KnownDevices.

Created Device: An instantiation of a known device. All devices in a BSD are created

devices. Created devices appear in the right hand pane of the Device Viewer window; and

on the console using “shell.CreatedDevices”.

Device grouping tree node relationships: Because of device grouping, created devices

in a BSD are nodes in a tree, with parents and children, siblings, and end/root tree node

relationships.

Device connection relationships: Because of device connections, a sibling device can be

connected to another sibling device at a connection port of each device.

Machine Device Group: Just a device group, but it is special since it is the root node of

a machine tree (it has no parent, it can't be deleted, it has no ports, and it has no sibling

devices); each machine in a BSD has a single machine created device group.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 17

Archive Data or Device State: A known device group has archive data for its child

devices, which specifies the default and initial state for when a known device group is

instantiated as a created device. A known device library also has default and initial state

for when it is instantiated as a created device. When a BSD is saved, each device's current

state (archive data) (which may be different than the original known device's archive

data) is saved to the “*.bsd” file.

3.3.2 Concept Diagrams

A device group is a device with its own identity (name, description, icon, help file, etc).

But it is also like a BSD; in fact, every BSD has a single created device group called the

Machine device. Tthe default user‟s view into SimNow is from the context of looking

inside the Machine device. This encapsulation of devices inside device group‟s results in

a hierarchy tree, with a Machine device group as the root node. In this way, a device

group tree is like a folder/directory tree (folder is to device group as file is to device

library), as demonstrated in Figure 3-6.

Figure 3-6: Device group: BSD with one machine group and three child devices

Any device can also connect to its sibling devices (Figure 3-6 does not depict any port

connections). Figure 3-7 depicts the same example device tree, but with a different

conceptual view - devices are inside groups; arrows represent possible port connections

between sibling devices:

Figure 3-7: Device group (different conceptual view – devices are inside groups)

Machine

Library

Group

Library

Group

Library

Group

Library

y

Library

Library

Machine

Group

Group

Group

Library

Library

Library

Library

Library

Library

AMD Confidential

User Manual September 12
h
, 2008

18 Chapter 3: Graphical User Interface

The previous diagrams show child devices inside device groups. On the standard top

level view (the context of inside the machine device), we would more simply just see

three devices, see Figure 3-8 (arrows represent possible port connections between the

devices).

Figure 3-8: Device Group (2 group devices 1 library device)

3.3.3 Working with Device Groups

From the main SimNow window, “View→Show Devices", opens a device viewer GUI

window for the machine device group. We can also open a device viewer GUI window

that views any device group's children. Right-click the device icon and select "Modify

Group (Show Devices)" from the popup menu. If "Modify Group (Show Devices)" is not

present, then the device the user has clicked on is not a group.

Figure 3-9: Modify Group

Click on "Modify Group (Show Devices)". This will open a separate show device viewer

window.

Figure 3-10: Device Group

If any modifications are done to the device group, then they will be saved with the BSD.

Note that it is possible to modify a device group to a point where its children look

nothing like the original device.

Machine

Device

Device
Device

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 19

3.3.4 Shell Automation Commands for Device Groups

The shell automation commands that are used for a device also work for a device group.

For example, shell.KnownDevices lists all known devices (both device libraries and

device groups). For example, a device group exposes ports and connections, so

“shell.AvailablePorts” and “shell.Connect” etc. work with a device (regardless of

whether it's a group or a library).

3.3.4.1 Device Tree

You can optionally reference a device in the parent and child grouping device tree, using

the syntax separator " -> " between device parent and child, and "-> Machine #1" as

the root device. Here are some examples, using a machine and platform that just has two

"4 core Node" devices...

1 simnow> shell.createddevices

 "4 core Node #0"

 "4 core Node #1"

1 simnow> shell.CreatedDevices "-> Machine #1"

 "4 core Node #0"

 "4 core Node #1"

1 simnow> shell.createddevices "-> Machine #1 -> 4 core Node #0"

Cpu:0 "AweSim Processor #0"

Cpu:1 "AweSim Processor #1"

Cpu:2 "AweSim Processor #2"

Cpu:3 "AweSim Processor #3"

sledgenb:0 "AMD 8th Generation Integrated Northbridge #4"

1 simnow> shell.createddevices "-> Machine #1 -> 4 core Node #1"

Cpu:4 "AweSim Processor #0"

Cpu:5 "AweSim Processor #1"

Cpu:6 "AweSim Processor #2"

Cpu:7 "AweSim Processor #3"

sledgenb:1 "AMD 8th Generation Integrated Northbridge #4"

1 simnow> shell.modules

xtrsvc:0

shell:0

Cpu:0

sledgeldt:0

sledgenb:1

sledgenb:0

Cpu:1

Cpu:2

Cpu:3

sledgeldt:1

Cpu:4

Cpu:5

Cpu:6

Cpu:7

Notice the “shell.modules” list is flat, but the devices are in a tree structure that allows

us to have both a "-> Machine #1 -> 4 core Node #0 -> AweSim Processor #0"

AMD Confidential

User Manual September 12
h
, 2008

20 Chapter 3: Graphical User Interface

and a "-> Machine #1 -> 4 core Node #1 -> AweSim Processor #0". Also notice that our default

view ignores the tree, and just shows us two devices: "4 core Node #0" and "4 core

Node #1".

3.3.4.2 Enabled vs. Disabled vs. Mixed

Shell device commands like “shell.Location” or “shell.AddDevice” have generic

meanings (regardless of whether the device is a group or library). But some are defined

from an aggregation of the children. For example, “shell.GetFastPath” can return

“Enabled”, “Disabled”, or “Mixed” (means some children are "Enabled" and some are

"Disabled").

1 simnow> shell.GetLogIO "4 core Node #0 -> AweSim Processor #0"

PCI: Disabled

IO: Disabled

IOfpdis: Enabled

MEM: Disabled

MEMfpdis: Enabled

GETMEMPTR: Disabled

1 simnow> shell.GetLogIO "4 core Node #0 -> AweSim Processor #1"

PCI: Disabled

IO: Disabled

IOfpdis: Disabled

MEM: Disabled

MEMfpdis: Disabled

GETMEMPTR: Disabled

In this example, all other child devices of "4 core Node #0" are "Disabled" for all log

options.

1 simnow> shell.GetLogIO "4 core Node #0"

PCI: Disabled

IO: Disabled

IOfpdis: Mixed

MEM: Disabled

MEMfpdis: Mixed

GETMEMPTR: Disabled

1 simnow> shell.GetLogIO "-> Machine #1"

PCI: Disabled

IO: Disabled

IOfpdis: Mixed

MEM: Disabled

MEMfpdis: Mixed

GETMEMPTR: Disabled

3.3.5 Device Group Examples

Device groups can be a powerful building block for SimNow users. These next examples

should help give further understanding about device groups, and demonstrate some

practical uses.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 21

3.3.5.1 Example: 1GB DDR2 memory

When you instantiate a “Dimm Bank” known device into a created device, you get its

default state of 8 empty dimm‟s with no configuration. You can then configure the

“Dimm Bank”, such as by opening the device‟s GUI configuration properties to specify

general options (such as max number of dimm‟s), and to configure each dimm (such as

by importing an SPD). You could configure it, for example, to emulate a dimm bank with

2 DDR2 dimm‟s (1GB each).

Device groups offer us a potentially simpler alternative - for the user to instantiate a

preconfigured device group. For example, we could have a device group “Dimm DDR2

1GBx2”, which has (inside it) only one child and default archive data (state) for that

child. The figure below shows that the (theoretical) known device “Dimm DDR2 1GBx2”

has inside it a single child device “Dimm Bank #0” that is configured with two dimm‟s

(type DDR2, 1GB each).

Figure 3-11: Example DIMM Device Group

When the user instantiates this (theoretical) known device “Dimm DDR2 1GBx2” as a

created device, we get a created device “Dimm DDR2 1GBx2 #0” with a child device

“Dimm Bank #0” that is already configured (as DDR2, 2 dimm, 1GB each). Our resulting

main device GUI would look like this:

Figure 3-12: Created DIMM Device Group

The device GUI for the children of “Dimm DDR2 1GBx2 #0” would look like this:

Configured as DDR2,

2 dimm (1GB each)

AMD Confidential

User Manual September 12
h
, 2008

22 Chapter 3: Graphical User Interface

Figure 3-13: Children of DIMM Device Group

If we looked at the options and configuration of the device library “-> Machine #1 ->

Dimm DDR2 1GBx2 #0 -> Dimm Bank #0” (either from the GUI or from the console),

we would see that it is already configured as DDR2 with 2 dimm slots (1GB each).

This example demonstrates a broad concept. An existing device that has a more generic

and abstract definition (such as a non-configured “Dimm Bank”) can be wrapped in a

device group to give it an identity as a particular hardware implementation (such as an

already configured “Dimm DDR2 1GBx2”). More generally, any device can be wrapped

by a device group, to give an alternate default configuration for the device‟s state

(archive data).

3.3.5.2 Example: Quad-Core Node

Next we will consider examples relevant to the ability of a device group to have multiple

child devices, default archive data for each child device, and connections between the

child devices. These next examples are based on a quad-core processor node.

Building a processor node in SimNow has traditionally been a multi-step process. First

the user would add the "AMD 8th Generation Northbridge Device", and then add one

"AweSim Processor" device for each processing core in the node. These devices then

need to be connected together along the respective "CPU Bus" and "Interrupt / IOAPIC"

connection ports. Once the devices are connected, a user would then need to load a

product ID file so that the simulated devices would represent a real and planned piece of

hardware. In summary, building a Quad-core node in SimNow could take as many as 14

individual steps, and these steps would need to be repeated each time a processor node is

to be added.

A device group can both simplify adding a quad-core node, and present the user with a

hierarchical view. So we will give some examples with quad-core processor nodes.

A device group is not required to specify archive data for its child devices. When such a

known device group is instantiated as a created device, it simply lets its children use their

own default and initial configuration state. We can create an abstract or generic “4 core

Node” device group that does not represent a particular hardware implementation (just

like a non-configured “Dimm Bank” does not represent a particular hardware

implementation, until it is configured).

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 23

A device group can optionally specify initial and default archive data (device state) for

each of its child devices. A device group with five children could specify archive data for

0, 1, 2, 3, 4, or all 5 children. We could have an “AMD 4-core CPU xxxx” that specifies

archive data for all five of its children (configured with the (theoretical) product ID file

“amd-xxxx.id”).

This is not the only way we could create a (theoretical) “AMD 4-core CPU xxxx”. A

cleaner idea would be to reuse the non-configured abstract and generic “4 core Node”.

This device group would (externally) be functionally the same as our previous “AMD 4-

core CPU xxxx” example, although it has the additional layer where it cleanly reuses “4

core Node”. We could also reuse “4 core Node” for other device groups that represent a

particular hardware implementation of a 4-core node, such as the (theoretical) “AMD 4-

core CPU yyyy” configured with the (theoretical) product ID file “amd-yyyy.id”. Or a

Configured with product

ID file amd-xxxx.id

Configured with product

ID file amd-xxxx.id

AMD Confidential

User Manual September 12
h
, 2008

24 Chapter 3: Graphical User Interface

“DeerHound RevB QuadCore Socket L1” configured with the product ID file

“Family10hDR-L1_B0.id”.

3.3.5.3 Example: SuperIO device

For SimNow developers, device groups can be a technique for developing SimNow

devices in a layered manner, promoting optimal code reuse. Before device groups were

available, SuperIO devices were written as device libraries. It is cleaner to implement

SuperIO device models with device groups. Typically, SuperIO devices consist of

multiple functional blocks such as a UART, LPT, PS2 controller, Floppy controller etc.

Device groups provide a way to develop each functional block as discrete devices that

can later be grouped to represent a particular SuperIO controller.

3.3.6 Creating a Device Group

In this release of SimNow, the ability to create a device group is not yet exposed.

3.4 Main Window

The AMD SimNow™ Main Window, shown in Figure 3-1, is the main application

window. It contains a Menu Bar with a set of pull down menus, and a Tool Bar, both of

which control many aspects of the simulation environment. The console window, shown

in Figure 3-14, provides a textual interface for status information and command-line style

control, see Section A.7, “Automation Commands”, on page 230.

Figure 3-14: Console Window

3.4.1 SimStats and Diagnostic Ports

The SimStats and Diagnostic Ports numeric displays appear in the Main Window when a

Southbridge device is added to the workspace. The SimStats display shows host and

simulation elapsed time and a simulation MIPS counter that is updated as the simulation

runs. The simulator effectively has a built-in POST card output, ports 80h to 87h and e0h

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 25

to e3h. You can see these codes on the right upper part of the Main Window in the

"Diagnostic Ports" section.

Figure 3-15: Progress Meter and Diagnostic Ports

The simulation counter measures the number of microseconds of simulated time.

However, it is not a performance or cycle-based simulator, so the simulated time is

estimated.

3.4.2 CPU-Statistics Graphs

There are several graphs that can be displayed on the left side of the Main Window. These

graphs can be activated by the “View→CPU Graphs” menu selection.

3.4.2.1 Translation Graph

The Translation Graph updates once a second. Full vertical scale means the address-

Translation cache (tcache) is full. Dark color on the bottom of the graph represents

percent of tcache containing valid translations. Lighter color above the dark color

represents percent of tcache containing invalidated translations. Black color growing

from the top represents the meta data that describes the translations.

Figure 3-16: CPU Translation Graph

3.4.2.2 Real MIPS Graph

The Real MIPS Graph updates once a second. If this value exceeds what can be displayed

on this graph, the graph line turns red. It shows the instantaneous MIPS, i.e., how many

millions of instructions per host CPU-second at which the simulator is running. A value

of zero will appear as a one-pixel-high horizontal line. Full scale represents 100 MIPS.

Meta Data that
describes the
Translations.

Percent of tcache
containing

Invalidated
Translations.

Percent of tcache
containing Valid
Translations.

Host Seconds shows
the number of user
and system seconds
of host CPU time the
simulator has uses
since it started.

Sim Seconds is the
number of seconds of
simulated time that
has past since the
simulator started.

MIPS are the total
number of simulated
instructions executed
since the simulator
started, divided by
the Hosts Seconds.

MIPS are the
instantaneous value of
the simulators
performance, its
dimension is millions of
simulated instruction
executed per second of
host user and system
CPU time.

These three lines of
four bytes each show
the values written to the
diagnostic programmed
I/O ports. Mostly these
ports are written by the
BIOS and low-level
diagnostic software.

AMD Confidential

User Manual September 12
h
, 2008

26 Chapter 3: Graphical User Interface

Figure 3-17: CPU Real MIPS Graph

3.4.2.3 Invalidation Rate Graph

The Invalidation Rate Graph updates once a second. If this value exceeds what can be

displayed on this graph, the graph line turns red. A rate of zero will appear as a horizontal

line, one pixel high. Full vertical scale represents one invalidatated translation per

thousand simulated instructions. The lower, darker color represents plain invalidations.

The upper, lighter color represents range invalidations. This upper, lighter color is a

minimum of one pixel high, i.e., a value of zero range invalidations still results in a one-

pixel-high line of the lighter color.

Figure 3-18: CPU Invalidation Graph

3.4.2.4 Exception Rate Graph

The Exception Rate Graph updates once a second. If this value exceeds what can be

displayed on this graph, the graph line turns red. A rate of zero appears as a horizontal

line one pixel high. Full vertical scale represents a rate of one exception taken by the

simulator per ten simulated instructions. These exceptions may be internal to the

simulator and not turn into exceptions in the simulated machine. The lower, darker color

represents all such exceptions other than segmentation violation (SEGV) exceptions. The

upper, lighter color represents all the SEGV exceptions. This upper, lighter color is a

minimum of a one-pixel-high line, i.e., a value of zero SEGV exceptions still shows a

one-pixel-high line of the lighter color.

Figure 3-19: CPU Exception Rate Graph

3.4.2.5 PIO Rate Graph

The PIO Rate Graph updates once a second. If the port I/O (PIO) rate exceeds what can

be displayed on this graph, the graph line turns red. A rate of zero will appear as a

horizontal line one pixel high. Full scale represents one PIO per ten simulated

Plain
Invalidations

Range
Invalidations

Exceeds what
can be

displayed.

Million of
Instructions per
Host CPU second.

Exceeds 100
MIPS.

Exceeded
what can be

displayed.

All exceptions other
than segmentation
violations (SEGV).

Segmentation
violations (SEGV).

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 27

instructions. Darker color on the bottom of the graph represents the read PIO's, the lighter

color represents the write PIO‟s.

Figure 3-20: CPU PIO Rate Graph

3.4.2.6 MMIO Rate Graph

The MMIO Rate Graph updates once a second. If the memory-mapped I/O (MMIO) rate

exceeds what can be displayed on this graph, the graph line turns red. A rate of zero will

appear as a horizontal line one pixel high. Full vertical scale represents one MMIO per

ten simulated instructions. Darker color on the bottom of the graph represents the read

MMIO's, the lighter color represents the write MMIO's.

Figure 3-21: CPU MMIO Rate Graph

3.4.3 Simulated Video

The simulated video area of the Main Window depicts the VGA output screen that

appears when a VGA device is added to the workspace. When the mouse focus is over

the video area, the simulator captures host keyboard input, enabling you to type most

keyboard entries on your real keyboard. This is a convenience and may not accurately

position the mouse or grab all keys correctly. For more accurate mouse and keyboard

capture, see “Grab the mouse and keyboard” in Section 5.2.3, “Interaction with the

Simulated Machine”, on page 41.

You can also allow the simulator to take complete control of the mouse and keyboard by

selecting “Special Keyboard→Grab Mouse and keyboard”. To return from this mode,

press and hold Ctrl then Alt, and then release them in reverse order.

3.4.4 Hard Disk and Floppy Display

The IDE Primary byte counts, IDE Secondary byte counts, and Floppy disk byte counts

displays appear when a Southbridge device is added to the workspace.

Exceeded
what can be

displayed.

Write PIO’s.

Read PIO’s.

Exceeded
what can be

displayed.

Read
MMIO’s.

Write
MMIO’s.

AMD Confidential

User Manual September 12
h
, 2008

28 Chapter 3: Graphical User Interface

Figure 3-22: Primary, Secondary, and Floppy Displays

When a disk is accessed in simulation, the status information is updated.

3.4.5 Using Hard Drive, DVD-/CD-ROM and Floppy Images

Section 4 on page 31 describes how to create disk images. To use a disk image created by

DiskTool go to the Main Window File Menu and choose one of the “Set […] Image”

menu items. This brings up an open-file dialog. Select your drive image and click on

„Ok‟. Standard file extensions for disk images are shown in Table 3-3.

Image Type File Extension

Hard Drive Image *.hdd

Floppy Drive Image *.fdd

DVD-/CD-ROM Image *.iso

Generic Image *.img

Table 3-3: Image Types

After an image is selected, any changes to the image are stored in journal form in the

“.BSD” file, unless journaling is disabled in the Southbridge (for hard drive images) or

SuperIO (for floppy drive images) device. If journaling is disabled, changes are stored to

the image file, see also Section 5.2.1, “Assigning Disk-Image”, on page 38.

3.4.6 Registry Window

The Registry Window can be viewed by selecting “View→Show Registry”. The registry

contains information about various simulator configuration items. They are not intended

to be altered by the user, but some can provide useful information. For example, the

Instructions per Microsecond and System Bus Frequency both show the frequency values

the simulator uses for its simulated processors.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 3: Graphical User Interface 29

Figure 3-23: Registry Window

3.4.7 Help, Problems and Bug Reports

The simulator has HTML on-line help and documentation, with "Help" menu entries or

buttons on the dialogs. In the device view, every device has a context menu (right-click)

with "Help" documentation links and "What's this" floater text.

In addition to any other support channel you may have, we encourage feedback on any

problems encountered. Please send an email to simnow.support@amd.com.

mailto:simnow@amd.com

AMD Confidential

User Manual September 12
h
, 2008

30 Chapter 3: Graphical User Interface

AMD Confidential

User Manual September 12
th
, 2008

Chapter 4: Disk Images 31

4 Disk Images
The simulator uses hard-drive images to provide simulated hard disks to the simulated

computer. There are several ways to obtain hard drive-images.

 Install your OS onto a hard drive in a real system, then move it to the secondary

drive in a system and use DiskTool to copy the contents of the drive to an “.hdd”

image file.

 Make a blank hard-drive image and a DVD-/CD-ROM “ISO” image, and install a

fresh operating system onto the hard-drive image. To make the hard drive and

DVD-/CD-ROM images, refer to Section 4.1, "Creating A Blank Hard-Drive

Image" and Section 13, “DiskTool”, on page 157.

 To use a physical DVD-/CD-ROM:

 Click on the button or select “View→Show Devices” to open the Device

Window (Figure 3-2, on page 9).

 Open the Southbridge's properties window by double-clicking on it, and

choose the “HDD Secondary Channel” tab.

 On a Windows host type “\\.\D:” where “D:” is the drive letter for the DVD-

/CD-ROM, and on a Linux host type “/dev/cdrom” in the “Master Drive -

Image Filename” field.

 Check the DVD-ROM check box below the Filename field.

The simulator can access media via the following mechanisms:

 IDE Hard Disk:

 DiskTool IDE hard-disk image, is a flat file consisting of a 512-byte header

(the IDE probe sector) and a raw image of data from the hard disk (if the raw data

is cut off before the end of the disk, the disk-image from there on will just read as

zero).

 IDE DVD-ROM: (The simulator does not simulate DVD-ROM "insert" events)

 DVD-ROM disk image is a flat file of the raw image of a data DVD-/CD-

ROM. These correspond exactly to ISO file images, for example.

 IDE DVD-ROM direct access

 Floppy Disk:

 Floppy-disk image, a flat file of the raw image of a floppy disk.

 Floppy direct access

Please refer to Section 13, “DiskTool”, on page 157 to find out how to set up a Windows

or Linux hard-drive image for the simulator.

4.1 Creating A Blank Hard-Drive Image

To create a hard-drive image use DiskTool. You can start DiskTool by launching

"disktool.exe" in your install directory. For convenience, you can create a desktop

shortcut to launch DiskTool. When you run DiskTool, you will see the DiskTool dialog

AMD Confidential

User Manual September 12
h
, 2008

32 Chapter 4: Disk Images

window, as shown in Figure 4-1. It will also open a shell window, as shown in Figure

4-2, that is used to inform the user about all physical drives which DiskTool has detected.

Figure 4-1: DiskTool Dialogue Window

For information about supported options and modes that DiskTool supports, please refer

to Section 13, “DiskTool”, on page 157.

Figure 4-2 shows the DiskTool shell window.

Figure 4-2: DiskTool Shell Window

AMD Confidential

User Manual September 12
th
, 2008

Chapter 4: Disk Images 33

To create a blank disk image click on the "Create Blank Disk Image" button on the right

side of the DiskTool dialog window (see Figure 4-1). A "Save As" dialog will ask you for

the location and image filename that will be created. Choose the location where you want

to store the blank image file and then enter the image filename. Click on the "Save"

button. An additional dialog, see Figure 4-3, is presented that allows you to select how

large the blank image file should be.

Figure 4-3: New Image Size

Before you start creating a new blank disk image make sure that the image will be large

enough to install Windows or Linux on it. You can enter the image size in MB or in

number of sectors. We recommend an image size of 4-GB. Increase the value of "Image

Size (MB)" to 4096 and then click on the "Ok" button to create the image file. A progress

bar will inform you of the progress being made (see Figure 4-4).

Figure 4-4: Create Blank Image

Once the image is created successfully DiskTool will display a message box, as shown in

Figure 4-5. Click on the "Ok" button.

AMD Confidential

User Manual September 12
h
, 2008

34 Chapter 4: Disk Images

Figure 4-5: DiskTool Operation Successful

To exit DiskTool click on the "Exit" button on the right side of the DiskTool dialog

window (see Figure 4-1).

AMD Confidential

User Manual September 12
th
, 2008

Chapter 5: Running the Simulator 35

5 Running the Simulator
You can start AMD SimNow™ by launching "SimNow.exe" in your install directory. For

convenience, you can create a desktop shortcut to launch the simulator. When you run the

simulator, you will see the simulator's Main Window as shown in Figure 5-1. It will also

open a console window (shown in Figure 3-14) that is used for text interaction.

Figure 5-1: Main Window (No BSD Loaded)

5.1 Command-Line Arguments

This section describes the command-line arguments supported by the simulator. Table

5-1 shows the command-line arguments.

Argument Description

-l <path> Directory to load devices from. If used, it

must be first.

-f <file> Open the .bsd file <file>.

-e <file> Execute commands in <file> on startup.

-i <path> Image search path for loading image files.

-m <path> Mediator connection string for network

adapters to use.

AMD Confidential

User Manual September 12
h
, 2008

36 Chapter 5: Running the Simulator

Argument Description

-n --novga Disable VGA Window.

-c --nogui Disable GUI (console mode).

-d Disable mouse and keyboard inputs to

simulator.

-r --register Register the simulator with the O/S as an

automation server.

-h --help -? Print this help message.

Table 5-1: Command-Line Arguments

For instance, to open the cheetah_1p.bsd when starting the simulator you can enter the

following:

C:\SimNow\simnow –f cheetah_1p.bsd

5.1.1 Open a Simulation Definition File

Click on and select one of the ".bsd" files located in the “\SimNow” directory. The

".bsd" files contain pre-configured simulation definitions designed to model a specific

AMD processor-based computer system. For this example, load the “cheetah_1p.bsd”

file, from in the SimNow directory. Upon loading the BSD file, the Main Window (shown

in Figure 5-2) will be filled with three sections. The left column contains informational

graphs if selected (see Section 3.4.2, “CPU-Statistics Graphs”, on page 25), the top row

contains numeric displays of simulation statistics and disk-drive access information, and

the remainder contains the Simulation Display Area of the simulated machine. The

Simulation Display Area remains blank until the simulated machine is started.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 5: Running the Simulator 37

Figure 5-2: Main Window (BSD Loaded)

You can view the configuration of the simulated machine by clicking on . A window

appears with a graphical representation of the simulated machine, as shown in Figure 5-3.

Simulation Display
Area

Tool Bar

Main Window

Menu Bar

Simulator status

CPU Graph
Area

Numeric Display
Components

AMD Confidential

User Manual September 12
h
, 2008

38 Chapter 5: Running the Simulator

Figure 5-3: Device Window

5.2 Installing an Operating System

This section describes the steps that are necessary to install Windows or Linux using the

simulator. Before you can start installing an operating system make sure you have a blank

hard-drive image available. To create a blank hard-drive image with DiskTool please

follow the steps in Section 4.1, "Creating A Blank Hard-Drive Image", on page 31.

5.2.1 Assigning Disk-Images

Assign a blank hard-drive image by selecting “File→Set IDE Primary Master Image...”.

Open the directory that contains your hard-drive images and choose a blank hard-drive

image that you created earlier (see Section 4.1, "Creating A Blank Hard-Drive Image",

on page 31) or use one of the hard-disk images which come with the simulator (see

Section A.2.4.1, "Hard-Disk Image Files", on page 185) and un-check the "Journal"

check-box (see below "The IDE controller has two important features"), then click on

"Ok".

Assign the first OS installation ISO image to the IDE Secondary Master Channel of the

hard-disk controller by selecting “File→Set IDE Secondary Master Image...“.

If you don't have access to any ISO images you have two options:

AMD Confidential

User Manual September 12
th
, 2008

Chapter 5: Running the Simulator 39

 You can download Linux ISO images from fedora.redhat.com. If you are a

MSDN Subscription member you can also download Windows ISO images from

Microsoft's MSDN Subscription Webpage.

 You can assign a physical host DVD-/CD-ROM drive to the simulators IDE

Secondary Master Channel and use your hosts physical DVD-/CD-ROM drive to

install from a CD or DVD media. Section 4, "Disk Images", on page 31 describes

how to assign a physical DVD-/CD-ROM drive

When the OS installation prompts you, eject the current ISO image using "File→Clear

IDE Secondary Master" and insert the next ISO image using "File→Set IDE Secondary

Master". In case you are using a physical DVD/-CD-ROM drive for the OS installation

eject the media and insert the next media.

The disk-images are now assigned to the device that is connected to the IDE Primary

Master and IDE Secondary Master connector of the hard disk controller, as shown in

Figure 7-22 on page 89.

The IDE controller has two important features:

 All disk devices (Primary Master, etc.) by default have the disk journaling feature

turned on, which allows simulations to write to the disk image during normal

operation and not affect the contents of the real disk image. This is useful for

being able to kill a simulation in the middle, for multiple copies of the simulator

running at the same time, etc. Journal contents are saved in BSD checkpoint files

but lost if you don't save a checkpoint before exiting. To change journal settings

or commit journal contents to the hard disk image, go to the Device View Window,

then the AMD-8111™ Southbridge, then the configuration for the hard disk in

question on either the Primary or Secondary IDE controller. Here you can either

commit the contents of the journal to the hard-disk image or turn off journaling

for the hard disk image in question. Turning off journaling is recommended

during the installation process for an operating system.

 DVD-ROM support is provided through an option in the BSD platform

checkpoint file. To install a DVD-ROM at any hard disk device location

(Secondary Master, Primary Slave, etc.), turn on the „DVD-ROM‟ checkbox. By

default, the Secondary Master in all distributed BSDs has „DVD-ROM‟ checked

and is a DVD-ROM device.

Copying files into the simulator corresponds to putting data into some media on the Host

which will be inserted into the simulation. The choices for doing this are:

 Create an ISO image with the data inside it then get it into your guest OS. Use the

"File→Set IDE Secondary Master Image" item in the Main Window Menu to

insert it into the DVD-ROM simulation, which is by default on the secondary

master position in all BSDs. Finally, mount it in your guest OS.

AMD Confidential

User Manual September 12
h
, 2008

40 Chapter 5: Running the Simulator

 Use a raw floppy-disk image in a manner similar to the above. It's a lot smaller

and a bit more hassle, so we don't recommend it.

 Mount a hard-disk image on the host. (On a Linux host, you can use the

"loopback device").

 Use the JumpDrive USB device to copy files into the simulator and out of the

simulator, see. Section A.7.26, “JumpDrive”, on page 250.

Copying files out of the simulator corresponds to putting some data into some media in

the guest which will then be extracted on the host. To do this, mount a hard-drive image

on the host after placing the data on it in the guest. (On a Linux host, you can use the

"loopback device").

5.2.2 Run The Simulation

Once the disk-images are assigned, the simulation may be started by clicking on the Play

button on the Main Window‟s Tool Bar.

Figure 5-4: Installing WindowsXP

AMD Confidential

User Manual September 12
th
, 2008

Chapter 5: Running the Simulator 41

5.2.3 Interaction with the Simulated Machine

The simulator will boot and the simulated output screen appears in the bottom right

portion of the Main Window, which is the Simulation Display Area. When the focus is on

this portion of the window, most keystrokes and mouse operations are passed through to

the simulated machine. When moving the mouse cursor outside of the Simulation Display

area the Main Window returns the mouse cursor and keyboard control to the host

machine. Some keystrokes, such as ALT-combinations, must be entered using the Special

Keyboard Menu. The simulator superimposes a small square over the screen at the

position of the host mouse. You can also allow the simulator to take complete control of

the mouse and keyboard by selecting “Special Keyboard→Grab Mouse and Keyboard”.

To return from this mode, press and hold Ctrl then Alt, and then release them in reverse

order.

5.2.4 Simulation Reset

To reset the entire simulator, stop the simulation with the "Stop" button (), then press

the "Reset" button (), which is to the right of the "Stop" button. At this point, hard-

drive images may be changed as described in 5.2.1 Assigning Disk-Image on page 38.

5.3 Multi-Machine Support

The multiple machine concept allows the simulator to create multiple simulation

machines within the same process space, and to load and execute these machines

independently.

The default shell provided with the simulator includes three new commands that allow

the user access to the multiple machine functionality.

The „newmachine‟ command creates a new „emtpy‟ simulation machine. The created new

machine is in no way related to the current machine. Tou can load BSDs, edit device

configurations, etc., in the new machine, and they are completely independent of any

other „machine‟ currently loaded.

The leading number before the prompt identifies which machine is currently the active

machine. All subsequent automation commands typed into the console window are

directed to the current machine.

Table 5-2 describes the arguments provided by the newmachine command.

Argument Description

--nogui Disable Graphical User Interface (GUI).

--gui Enable Graphical User Interface (GUI).

-c Enable console mode.

--novga Disable VGA Window.

--vga Enable VGA Window.

-n Disable VGA Window.

-d Disable mouse and keyboard inputs to

AMD Confidential

User Manual September 12
h
, 2008

42 Chapter 5: Running the Simulator

Argument Description

simulator.

+d Enable mouse and keyboard inputs to

simulator.

-i <path> Image search path for loading image files.

-m <path> Mediator connection string for network

adapters to use.

-l <path> Directory to load devices from. If used, it

must be first.

Table 5-2: Newmachine Command Arguments

Usage:

newmachine[[--nogui | -c | --gui] [--novga | -n | --vga]

 [-d | +d] [-i <path>] [-m <path>] [-l <path>]]

The following command creates a new simulation machine:

1 simnow> newmachine

2 simnow>

The „switchmachine n‟ command switches the console window to the machine identified

by „n‟. All subsequent automation commands typed into the console window are directed

to the given machine „n‟.

2 simnow> switchmachine 1

1 simnow>

The „listmachines‟ command lists all machines that currently exist.

2 simnow> listmachines

*2 –-gui -–vga +d

 1 –-gui –-vga +d

2 simnow>

See also Section 5.1, “Command-Line Arguments”, on page 35 for further information

regarding available command-line arguments.

.

To exit a created simulated machine enter „exit‟, as shown in the following example:

1 simnow> exit

+d: Mouse and Keyboard

inputs are enabled.

-d: Mouse and keyboard

inputs are disabled.

VGA Window is enabled.

GUI is enabled (console mode).

* = Specifies current Machine ID.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 5: Running the Simulator 43

2 simnow>

This example exits the simulated machine „1‟.

AMD Confidential

User Manual September 12
h
, 2008

44 Chapter 5: Running the Simulator

This page is intentionally blank.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 6: Create a Simulated Computer 45

6 Create a Simulated Computer
This section describes how to create a simulated computer from scratch. We will build a

computer identical to the “solo.bsd” computer. Please note that this only works if you are

not using the public release version of the simulator. The public release version of the

simulator does not support the necessary features which are required to create a

simulated computer from scratch.

Figure 6-1 shows the layout of the existing “solo.bsd” Device Window. The device

position is not important because the connections between devices are completely

represented by the lines between devices.

Figure 6-1: Solo.bsd Configuration

The thickness of the connection between devices represents the number of existing

connections.

6.1 BSD Files

A BSD file contains the configuration of a computer system (how models are connected

together and their settings), sometimes called a "virtual motherboard description" and a

checkpoint of the state of all devices in the simulator. BSD files are stored in the

simulator‟s home directory. For a list of BSD files provided with the simulator, see

Appendix A.2.1 on page 184.

6.2 Device Placement

To place a device into a simulated computer system:

AMD Confidential

User Manual September 12
h
, 2008

46 Chapter 6: Create a Simulated Computer

1. Open a new simulator instance by launching "SimNow.exe" in your install

directory.

2. Select “File→New BSD“ or click on the button to create a new BSD file.

3. Select “View→Show Devices” or click on the button to show the blank Device

Window.

4. For each item added, click and drag the icon from the device list on the left side

into the workspace area on the right side of the window.

5. Add the Debugger device. This device needs no connections drawn.

6. Add the AweSim Processor and the AMD 8th Generation Integrated Northbridge.

When you add the AweSim Processor, CPU Simulation Stats are added to the

Main Window.

7. Connect the AweSim Processor and the AMD 8th Generation Integrated

Northbridge by shift-click-dragging from one to the other. When the

“Connections” tab of Device Properties Window appears (shown in Figure 6-2),

choose the CPU Bus 0 for both devices, and click on Ok. The connection appears

as a line between the two devices on the Device Window. Then create an

additional connection between the two devices using the Interrupt/IOAPIC Bus on

each device. The Device Window shows only one line for the two connections

between these devices. You can view the connections for each device by right-

clicking on the device and looking at the “Connections” tab in the Device

Properties Window.

Figure 6-2: Connections Tab of Device Properties Window

8. Add the DIMM Device. Connect it to the AMD 8th Generation Integrated

Northbridge, using the Northbridge's Memory Bus and the DIMM‟s Generic Bus.

9. Add the AMD-8151™ AGP Tunnel. This is a HyperTransport™ tunnel and AGP

bridge. Connect it to the Northbridge using each device's HyperTransport Bus 0.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 6: Create a Simulated Computer 47

10. Add the Matrox Millenium G400 Graphics Device. This is the simulated video

device. Connect it to the AMD-8151 AGP Tunnel Device using AMD-8151 AGP

Tunnel AGP Bus and the Graphics Device's AGP or PCI Bus.

11. Add the Southbridge Device. Connect it to AMD-8151 AGP Tunnel using AMD-

8151 AGP Tunnel HyperTransport Bus 1 and HyperTransport Bus 0. Also,

connect AMD-8111™ to the DIMM device using AMD-8111 System

Management Bus 0 and DIMM‟s Generic Bus.

12. Add the Winbond W83627HF SIO device. This is a Super IO device that supports

keyboard, mouse, and floppy disk. Connect it to Southbridge using Winbond's

Generic Bus and Southbridge's LPC Bus.

13. Add the PCI Bus. Connect it to AMD-8111 Southbridge using both devices' PCI

Bus 0.

14. Add the Memory Device. This will contain the System BIOS image. Connect it to

AMD-8111 Southbridge device using AMD-8111 LPC Bus and the Memory

Device's Generic Bus.

6.3 Solo.bsd Device Configuration

To configure each device, right-click on the device and choose Configure Device from

the workspace popup menu (see also Section 7, “Device Configuration”, on page 49).

1. Configure the Matrox Millenium G400 Graphics Device.

 Go to its Configuration tab.

 Choose the BIOS file Images/g400_897-21.bin.

2. Configure the Memory device.

 Go to its Memory Configuration tab.

 Set the base address to fffc0000.

 Set the Size to 8.

 Set the Init File to Images/ASLA00-3.BIN.

 Check the boxes for Read Only, System BIOS ROM, Memory Address

Masking, Memory is non-cacheable.

 Clear the boxes for “Initialized unwritten memory.

3. Configure the PCI device.

 Go to its PCI Bus Configuration tab.

 For the PCI Slot 1, add device ID 4, set Base IRQ Pin to PCIIRQ A, and check

the Enable Slot box.

 For the next three devices, use Device IDs 5, 6, and 7, with PCIIRQs B, C,

and D, in that order. Check their “Enable Slot” boxes as well.

AMD Confidential

User Manual September 12
h
, 2008

48 Chapter 6: Create a Simulated Computer

Figure 6-3: PCI Bus Configuration dialog window

4. Configure the DIMM Memory device.

 Go to the Dimm 0 tab.

 Click Import SPD.

 Open the SPD file Images/simnow_DDR_256M.spd.

5. Configure the AweSim CPU device.

 Go to the Processor Type tab.

 Choose the Ahtlon64-754_SH-C0_(800MHz).id product file, as shown in

Figure 7-1 on page 52.

6.4 Save and Run

The created simulated computer is identical to the “solo.bsd” computer. You can close

the Device Window and save the file from the “File→Save BSD” or by clicking on the

button. All that remains is to set up disk images (see Section 4.1, “Creating A Blank

Hard-Drive Image”, on page 31, Section 5.2.1, “Assigning Disk-Images”, on page 38,

and Section 13, “DiskTool”, on page 157) and run the simulation.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 49

7 Device Configuration
Each section in this chapter provides a description of how to configure device models in

the simulator‟s Device Properties window. These device models include the CPU, CPU

debugger, Northbridge, DIMM memory modules, AMD graphics device, Southbridge,

Super IO, memory device, PCA9548- and PCA9556-SMB, PCI bus, AMD-8131™

PCI-X
®
 device, PCI-X test device, AMD-8132™ PCI-X2 device, Raid device, SMB Hub

device, EXDI server and the USB keyboard and mouse devices. These sections should be

considered as a reference for how to configure a device model and are not intended to

document how to use the model within the simulator.

The full release version of the simulator ships with more devices then the public release

version. Table 7-1 gives an overview of supported devices depending on the simulators

version.

Symbol Device Public Release Full Release

AMD Debugger

AweSim Processor

DIMM Bank

AMD 8

th
 Generation Integrated Northbridge

AMD-8111™ Southbridge

AMD-8131™ PCI-X

®
 Controller

AMD-8132™ PCI-X Controller

AMD-8151™ AGP Bridge Device

AMD Graphics Device

Emerald Graphics Device

Matrox

®
 G400/G450 Graphics Device

PCI Bus

PCI-X Test Device

Winbond W83627HF SIO

Memory Device

SMB Hub Device

PCA9548 Device

PCA9556 Device

AT24C Device

USB JumpDrive

Desktop Network Adapter

EXDI Server

Compaq SmartArray 5304

AMD Confidential

User Manual September 12
h
, 2008

50 Chapter 7: Device Configuration

Symbol Device Public Release Full Release

USB Keyboard

USB Mouse

XTR Device

ITE 8712 SIO

ATI SB400/SB600/SB700

ATI RS480/RD790/RS780/RD890

AMD “Istanbul”/AMD “Sao Paulo”/AMD

“Magny-Cours”

Table 7-1: Supported Devices

To open a Device Property dialog window, open the Device View window “View→Show

Devices” or click on the button. Then Open the workspace popup menu, right-click on

a device in the workspace area and select “Configure Device”.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 51

7.1 AweSim Processor Device

The AweSim processor device provides a simulation of an AMD microprocessor.

Interfaces

Three interfaces are used in the AweSim device:

CPU Bus 0. This interface is used to issue memory and I/O read and write requests, as

well as cache control and input/output signal messages. This interface is generally

connected to the Northbridge device.

Interrupt Bus. This interface is used to communicate interrupt request and acknowledge

messages. This interface is connected to whichever device is used to generate and control

interrupts - typically the Southbridge device.

System Messages Interface. This interface is used by the processor device to output

ASCII and binary log information.

Initialization and Reset State

The processor device's state at initialization is equivalent to an industry-standard x86

processor at initialization. The L1 cache and APIC interfaces are disabled, the debugger

is off, and the L1 cache is configured as two 2-way, 512-line, and 64-byte caches.

When the processor device receives a reset, the device resets its internal state in a manner

consistent with a standard x86 processor. No configuration information is modified.

Contents of a BSD

The BSD file contains the current state of all internal processor registers, state variables,

etc. It also contains all configuration information. Any memory configured locally to the

processor is saved in the BSD.

Configuration Options

The Device Properties Window is used to set various processor identification and

behavior options. Figure 7-1 shows the Processor Type tab for the AweSim processor

device. Here you can specify which member of the AMD microprocessor family should

be simulated. The default is a standard AMD microprocessor. See Section A.2.3, Product

Files (*.ID), on page 185.

Note: The public release version of the simulator doesn't contain any product files!

AMD Confidential

User Manual September 12
h
, 2008

52 Chapter 7: Device Configuration

Figure 7-1: AweSim Processor-Type Properties

Figure 7-2 shows the Logging tab for the AweSim processor device. Here you can

specify the following configuration options:

Check the Log Disassembly check box to log the disassembly of the instructions executed

by the processor model.

Check the Log Register State Changes check box to log all the processor model register

state changes.

Check the Log I/O Read/Writes check box to log all real I/O (not memory I/O) generated

by the processor model.

Check the Log Linear Memory Accesses check box to log all memory accesses based on

linear memory. This logs all 'data' memory accesses generated by the processor model.

This does not log code fetch memory accesses, nor 'physical' memory accesses (for

example, page table access-and dirty-bit updates).

Check the Log Exceptions check box to log all exceptions generated by the processor

model.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 53

Figure 7-2: AweSim Processor Logging Properties Dialog

Log Messages
This device produces log messages to the Message Log Window as specified by the

options in the Message Log Windows (see Section 9 “Logging”, on page 137).

Difference from Real Hardware

While the processor device is a faithful simulation of the software-visible portion of an

AMD microprocessor, it is not a model of the specific AMD microprocessor hardware.

Because of this, the processor device is not equivalent in certain areas. Any issues related

to timing, such as the time to execute a given instruction, will be different. The TLB

models do not exactly match any particular processor, so any software that depends on

exact TLB walking behaviors may not function correctly.

AMD Confidential

User Manual September 12
h
, 2008

54 Chapter 7: Device Configuration

7.2 Debugger Device

The debugger allows debugging tasks such as break-pointing, single-stepping, and other

standard tasks.

Interfaces

The debugger has no interfaces; the debugger is present if it is in the Device Window. To

add the Debugger Device follow these steps:

1. Select “View→Show Devices”.

2. Click and drag the Debugger Device icon from the device list on the left side

into the workspace area on the right side of the Device Window.

3. Add an additional debugger for each processor you wish to debug.

Initialization and Reset State

The debugger initially is disabled and attached to processor 0.

Configuration Options

In the Main Window, select “View→Show Debugger”. Click the Attach button to

configure which processor is being debugged.

To use the CPU Debugger, please refer to Section 10.1, “Using the CPU Debugger”, on

page 143.

Log Messages

This device does not create log messages.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 55

7.3 DIMM Device

The DIMM device provides a simulation model of an array of up to four dual-inline-

memory modules (DIMMs). The model provides RAM storage and serial presence detect

(SPD) ROM access for each DIMM. Bytes 0, 5, 13, and 31 (zero-based) of the SPD data

are used to configure the DIMM model. The remaining SPD entries are available for

BIOS probing, but are not used to configure the DIMM model.

The RAM array for each DIMM is sized based on parameters contained in the SPD array.

SPD array bytes 5 and 31 are used to calculate the size of the DIMM's RAM array. If

byte 0 in the SPD array has a value of zero, then the DIMM device does not respond to

any SMBUS read attempts on the module. This indicates to the reading device that an

SPD ROM is not available on the DIMM module. By appropriately setting bytes 5 and

31, and clearing byte 0, the model simulates a valid DIMM that contains no SPD ROM.

Dual data rate (DDR) DIMMs use bidirectional data strobe signals to latch data on

transfers. The Northbridge device contains Programmable Delay Lines (PDLs) that are

used to delay the Data Qualification Signal (DQS) signals so that the edges are centered

on the valid data window. BIOS algorithms are used to locate the valid data window and

adjust the PDLs accordingly.

Physical DIMMs provide 8 bytes of data per access. On the module, the 8 bytes of data

are stored across several memory devices. The data width of the memory devices on the

DIMM (SPD byte 13) determines how many PDLs are used. DIMMs that use 8-bit or 16-

bit memory devices use one PDL per byte of width (eight total PDLs). DIMMs that use

4-bit devices use one PDL per nibble (16 total PDLs).

The memory controller in the AMD Opteron™ processor includes two DDR channels

that are ganged into a single effective 128-bit interface. Each access to memory hits a pair

of 64-bit DIMMs, where one DIMM supplies the lower 64 bits while the other DIMM

supplies the upper 64 bits. Each DIMM must have the same arrangement in size and

number of banks.

For each valid access to DRAM, the memory controller will assert one of eight bank-

select lines (CS7:0). Each bank-select line selects one “virtual bank.” A virtual bank is

the combination of one bank on the lower DIMM, and the corresponding bank on the

upper DIMM. Row and column addresses select the data offset within the virtual bank.

AMD Confidential

User Manual September 12
h
, 2008

56 Chapter 7: Device Configuration

Figure 7-3: AMD Opteron™ Processor Virtual Bank-Select Line Configuration

Memory controllers in AMD Athlon™ 64 provide eight bank select lines. However, in

this case, each bank-select is routed to only one physical DIMM bank, i.e., the banks are

not ganged.

Figure 7-4: AMD Athlon™ 64 Processor Bank-Select Line Configuration

Configuration of the DIMM Device allows the user to specify SPD data for each

simulated DIMM. The number of DIMMs supported in the DIMM Device model is

dependent on the type of CPU used in the system. If the CPU type is an AMD Opteron

processor, then the DIMM Device will assume a 128-bit memory interface and therefore

allow configuration of up to eight individual DIMMs. If the CPU type is something other

than AMD Opteron, then the DIMM device assumes a 64-bit memory interface and

accepts configuration for only four DIMMs. It isn‟t until the simulation is started that the

DIMM Device can determine what type of CPU is present. For this reason, the DIMM

Device will initially display configuration tabs for 8 DIMMs even when used with a CPU

that is not based on the AMD Opteron processor. After the simulation is started, the

DIMM device will remove and ignore any configuration of DIMMs 4-7 if a processor

other than the AMD Opteron is detected.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 57

Once the simulation is started, the DIMM Device allocates memory arrays to hold the

DRAM data. One array is allocated for each bank or virtual bank. In the case of 64-bit

memory interfaces, memory arrays are allocated to match the size of the physical banks

on each DIMM. If the memory interface is 128 bits, then the memory arrays are sized to

the sum of the physical bank pairs that make up the virtual banks. For example:

Virtual bank0 is the combination of physical bank0 on DIMM0 and physical bank0 on

DIMM1. If physical bank0 on each DIMM is 32MB in size, then the array allocated for

virtual bank0 is sized at 64MB.

Each virtual bank is handled like it is one large bank, rather than two combined smaller

banks. The model does not distinguish between addresses that hit in the upper physical

bank and addresses that hit in the lower physical bank.

Memory read- and write-messages sent to the DIMM Device use the same structure for

both 128-bit and 64-bit interfaces. Each message includes a bank select field, an address

field, and a data size field. The bank select field implements the CS7:0 lines while the

address field specifies the beginning offset within the bank/virtual bank, and the data size

field specifies the size of the datum.

Interfaces

The DIMM device is implemented as a single-interface device. However, the device

accepts two distinct classes of messages: RAM read/write messages, and SMBUS reads

of SPD data. In most system configurations, the DIMM device is connected to a

Northbridge device's DIMM interface as well as a Southbridge device's SMBUS

interface.

Initialization/Reset State

On creation of the DIMM device, all RAM arrays are set to all ones, and SPD ROM

arrays are cleared. Reset initializes the RAM arrays to all ones, but does not alter the SPD

ROM arrays. Configuration options are not affected by reset.

Contents of a BSD

The RAM arrays, SPD ROM arrays, and all configuration option settings are saved in the

BSD.

Configuration Options

AMD Confidential

User Manual September 12
h
, 2008

58 Chapter 7: Device Configuration

Figure 7-5: DIMM-Bank Options Properties Dialog

Figure 7-5 shows the dialog for configuring DIMM-bank options.

The PDL Error Simulation Control section specifies the type of error that the DIMM

device will generate, when a memory read is attempted and when a Northbridge PDL is

set outside the valid response range. These settings apply to all four simulated DIMMs.

If Enable PDL Error Simulation is selected, then the DIMM device monitors PDL

settings for all RAM reads. The 0xFF option specifies that the return data should be

forced to all ones. The Invert option specifies that the return data should be a bitwise

inversion of the valid data.

The SMB Base Address entry selects the 8-bit address that this DIMM device responds to.

The SMB address is used for the reading of DIMM SPD data

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 59

Figure 7-6: DIMM Module Properties Dialog

The two DIMM module configuration dialogs, shown in Figure 7-6, (DIMM0 – DIMM1)

provide module-specific setup options for each simulated DIMM. The two DIMM

module configuration dialogs share the same format.

Note: The public release of the simulator does not support any of the options shown in

Figure 7-6. To change the simulated memory size please use the Memory Configurator,

see Section 14.2, "Changing DRAM Size", on page 163.

AMD Confidential

User Manual September 12
h
, 2008

60 Chapter 7: Device Configuration

The upper part of the dialog lists some summary information. This information, which is

derived from the SPD data, gives a quick indication of the type of device being

simulated.

The center section of the dialog lists all 256 bytes of data held in the simulated SPD

ROM. The list box provides a description of each byte index in the ROM. If a description

is selected, the corresponding data byte is displayed in the text box to the right.

The Import SPD and Export SPD buttons provide the option of loading and saving SPD

ROM data. The file format is an unformatted binary image, with an extension of “*.spd”.

The bottom section of the dialog is used to configure DDR PDL Response ranges for the

simulated DIMM. PDL response ranges can be individually set for each of 16 PDLs.

Adjusting the Low and High value modifies the response range for a particular PDL.

When an appropriate response range is set for one PDL, the same range can be applied to

all 16 PDLs by clicking on the Match PDLs button. The Reset PDLs button sets all 16

PDL response ranges to their maximum range (0 - 255).

Log Messages

This device does not produce log messages.

Difference from Real Hardware

The DIMM device does not simulate timing-related issues except for PDL error

simulation. The performance of real DIMM hardware is highly dependent on timing and

loading issues.

ECC simulation is not provided.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 61

7.4 Emerald Graphics Device

The Emerald graphics device provides an industry-standard PCI/AGP VGA-compatible

video device. The device provides a fully functional set of PCI configuration registers.

The AGP interface is currently somewhat minimal, and is not capable of generating AGP

cycles nor AGP-specific modes at this time.

The Emerald graphics device is comprised of a standard VGA and the Emerald Graphics

sub device. The graphics display engine automatically switches between the Emerald

Graphics sub device and the VGA as necessary to display the selected video modes, with

only one being able to display at a time. The VGA sub device provides an industry-

standard VGA interface used by BIOS and DOS. The Emerald Graphics device provides

an AGP and PCI graphics device interface controllable either by VESA BIOS extensions

or a video driver. In addition to the VGA standard modes, Emerald Graphics supports a

wide range of graphics modes from 320x200 at 16-bit color up to 2048x1536 at 32-bit

color with either the VESA BIOS extensions or a video driver.

Interfaces

The Emerald graphics device has both a PCI slot and an AGP bus connection, only one of

which can be used at any time to connect to PCI slots or AGP bus ports in other devices.

Initialization and Reset State
Upon initial creation, this device initializes the internal registers to VGA standard reset

state, and creates a display window that acts as the VGA display. The Configuration

options are initialized to enable both the VGA and Emerald Graphics. The frame-buffer

size is initialized to 16 Mbytes and the Bios File memory area is initialized to all ones.

A reset will re-load the default PCI configuration registers and place default values in the

Chip and FIFO configuration for the Emerald Graphics device.

Contents of a BSD

The data saved in the BSD depends on the mode the graphics controller was in when the

BSD was saved. If the graphics controller was in VGA mode, the BSD file contains the

contents of all VGA registers, a copy of the 256-Kbyte VGA frame buffer, and all

configuration information. If the graphics controller was in a high-resolution mode (non-

VGA in Windows) the frame buffer, Emerald Graphics registers, and PCI configuration

registers are saved in the BSD. When the BSD file is reloaded, all registers and the frame

buffer are restored, and a display image is captured and displayed in the display window.

Configuration Options

VGA Sub Device Configuration

AMD Confidential

User Manual September 12
h
, 2008

62 Chapter 7: Device Configuration

Figure 7-7: Graphics-Device VGA Sub Device Properties Dialog

In Figure 7-7, the BIOS File option enables you to load different VGA BIOS ROMs into

the device. The VGA ROM is assumed to be a maximum of 32-Kbytes, and is assigned to

ISA bus address 0x000C0000 - 0x000C7FFF, which is the industry-standard location.

This file must be a standard binary file, with the correct header and checksum

information already incorporated.

The VGA enabled checkbox enables or disables the VGA registers. If it is not checked,

the VGA registers are not updated and the display window will not display from the

VGA frame buffer.

Frame Buffer Sub Device Configuration

In Figure 7-8, the Frame Buffer Size (Mbytes) sets the size of the frame-buffer in

megabytes. The value placed in this option is only read at reset. The frame-buffer size

can not be dynamically modified.

The Accelerator Enabled checkbox enables or disables the graphics accelerator. The

accelerator is enabled by default.

The VESA BIOS Extensions Enabled checkbox enables or disables the VESA BIOS

support. The VESA BIOS Extensions are enabled by default.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 63

Figure 7-8: Graphics Device Frame Buffer SubDevice Properties

Difference from Real Hardware

The Emerald Graphics device currently does not simulate any specific graphics hardware,

it simulates something functionally “like” a modern graphics adapter, with only 2D

acceleration implemented at this time. Drivers are Windows only at the moment.

When the VGA display window has the focus, any keyboard messages and mouse-click

messages received by the window are routed via a DEVCWINDOWMSG message

through the simulators I/O subsystem. The keyboard or mouse device accepts these

messages and simulates key-presses and key-releases to match the keys. While certain

key combinations do not result in the generation of keyboard messages by the OS, this

does enable you to use the real keyboard to interact with the simulation in many cases.

Supported VESA BIOS Graphics Modes

Only supports flat and linear frame buffer, with 16-bit/64K (5:6:5) colors and 32-

bit/16.8M (8:8:8:8) colors modes.

Table 7-2 shows the subset of "standard" VESA mode numbers supported.

Mode Number Resolution Color depth

10Eh 320x200 16-bit

111h 640x480 16-bit

114h 800x600 16-bit

117h 1024x768 16-bit

11Ah 1280x1024 16-bit

Table 7-2: Supported Standard VESA Modes

Table 7-3 shows the supported custom VESA mode numbers.

AMD Confidential

User Manual September 12
h
, 2008

64 Chapter 7: Device Configuration

Mode Number Resolution Color depth

140h 320x200 32-bit

141h 640x480 32-bit

142h 800x600 32-bit

143h 1024x768 32-bit

144h 1280x720 16-bit

145h 1280x720 32-bit

146h 1280x960 16-bit

147h 1280x960 32-bit

148h 1280x1024 32-bit

149h 1600x1200 16-bit

14Ah 1600x1200 32-bit

14Bh 1920x1080 16-bit

14Ch 1920x1080 32-bit

14Dh 1920x1200 16-bit

14Eh 1920x1200 32-bit

14Fh 2048x1536 16-bit

150h 2048x1536 32-bit

Table 7-3: Supported Custom VESA Modes

Improve Graphics Performance

When you run Windows in simulation and you open a menu, list box, tool-tips, or other

screen element, the object may open very slow. To disable this option, use the following

steps:

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click Display.

3. Click Effects, clear the Use the following transition effects for menus and

tooltips check box, click ok, and then close Control Panel.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 65

7.5 Matrox MGA-G400 PCI/AGP

The Matrox G400 graphics device provides a high performance PCI/AGP VGA-

compatible video device. The device provides a fully functional set of PCI configuration

registers, and a 2D drawing engine. The AGP interface is currently somewhat minimal,

and is not capable of generating neither AGP cycles nor AGP-specific modes at this time.

High performance device drivers are available for most operating systems (Windows,

Linux, and Solaris). The Matrox G400 supports full acceleration of all GDI and

DirectDraw functions.

Figure 7-9 shows the integrated components of the Matrox G400 graphics device.

Features and components which are currently not supported by the Matrox G400 graphics

device model have a symbol in the following block diagram.

Figure 7-9: Matrox G400 Block Diagram

CPU Graph Area

Floating Point Setup Engine

Ultra-pipelined

Programmable

Unit

MAFC Port

Primary CRTC

(CSC)

Video Scaling

2D Engine

Color Space

Conversion 32bit VGA

CRTC

RAMDAC

Second CRTC

128-bit Frame Buffer Memory

Interface

PCI or AGP

2x/4x Interface

VIP/VMI Port

CODEC Port

Advanced 3D Texturing and

Rendering Engine

16- or 32-Mbytes

SGRAM or SDRAM

Local Frame Buffer Memory

 Not Supported!

High Resolution Color

Monitor

Up to 2056 x 1536 at

32 bpp

AMD Confidential

User Manual September 12
h
, 2008

66 Chapter 7: Device Configuration

Interfaces

The Matrox G400 graphics device has both a PCI bus and an AGP bus connection, only

one of which can be used at any time to connect to PCI bus or AGP bus ports in other

devices.

Initialization and Reset State
Upon initial creation, this device initializes the internal registers to Matrox G400 standard

reset state, and creates a display window that acts as the VGA display. The Configuration

options are initialized to enable both the VGA and Matrox Power Graphics Mode. The

frame-buffer size is initialized to 32 Mbytes and the Bios File memory area is initialized

to all ones.

A reset will re-load the default PCI configuration registers and place default values in the

Chip and FIFO configuration for the Matrox G400 graphics device.

Contents of a BSD

The data saved in the BSD depends on the mode the graphics controller was in when the

BSD was saved. If the graphics controller was in VGA mode, the BSD file contains the

contents of all VGA registers, a copy of the 256-Kbyte VGA frame buffer, and all

configuration information. If the graphics controller was in Matrox Power Graphics

Mode (non-VGA in Windows) the linear frame buffer, Power Graphics registers, and PCI

configuration registers are saved in the BSD. When the BSD file is reloaded, all registers

and the frame buffer are restored, and a display image is captured and displayed in the

display window.

Configuration Options

Figure 7-10 shows the Information tab. The following information describes the active

configuration of the Matrox G400 graphics device.

The Graphics Hardware Model can be set to one of the following models:

 Matrox Millennium G400 PCI

 Matrox Millennium G400 AGP

Currently there is only support for the Matrox G400 chip with SingleHead feature

support available.

The Graphics BIOS version is the version of the BIOS that is assigned and used by the

graphics device. If you flash the BIOS the version number will change. For more

information about flashing the graphics device BIOS see Figure 7-11.

The Graphics Memory section shows information about the current memory

configuration of the graphics device. Currently supported memory configurations are:

 32/16 MB SGRAM with 300 MHz RAMDAC

 32/16 MB SDRAM with 300 MHz RAMDAC

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 67

Figure 7-10: Matrox G400 Information Property Dialog

The Configuration tab displays details about the active configuration of the Matrox G400

graphics device.

If you want to change the active configuration, click on the Configuration Tab (see

Figure 7-11).

AMD Confidential

User Manual September 12
h
, 2008

68 Chapter 7: Device Configuration

Figure 7-11: Matrox G400 Configuration Properties

The BIOS ROM File input field gives you the ability to load different Matrox G400 BIOS

ROMs into the device. This is in particular useful if Matrox releases a new BIOS ROM

file which has improvements or bug fixes.

To check for new Matrox BIOS ROM releases go to

http://www.matrox.com/mga/support/drivers/bios/.

The Matrox G400 ROM has a maximum size of 32-Kbytes, and is assigned to ISA bus

address 0x000C0000 - 0x000C7FFF, which is the industry-standard location.

The Configuration tab lets you choose from six different Matrox G400 graphics adapters.

For instance, if you prefer to use a Matrox Millennium G400, SingleHead, 16 Mbytes of

SDRAM, with a 300 MHz RAMDAC, instead of the default adapter then select this

adapter from the Millennium G400 Adapters list. To apply the new configuration, click

on the „Ok‟ button.

Note if you make any changes in the Configuration tab you must restart or reset your

simulation before the new configuration will take effect!

Difference from Real Hardware

The Matrox G400 graphics device is a faithful simulation of the software-visible portion

of a Matrox G400 adapter; it is not a model of the specific Matrox G400 hardware.

Because of this, the graphics device is not equivalent in certain areas. Any issues related

http://www.matrox.com/mga/support/drivers/bios/

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 69

to timing, such as the vertical retrace time, will be different. Any software that depends

on exact timing behavior may not function correctly.

The following features are only partially implemented. Any software that depends on

these features may not function correctly.

 Translucency / Full Alpha-Blending

 Full Texture Mapping

 Gouraud Shaded Fills (ALPHA, FOG, STENCIL)

 Trapezoids functions

 Bitblts

a. Color Patterning 8x8

b. Expansion (Character Drawing) 1 bpp Planar

 Lines

a. With Line-style

b. With Depth

c. Polyline/Polysegment using Vector Pseudo-DMA Mode

 Image Load (ILOAD)

a. Linear-Color Expansion (Character Drawing) 1 bpp

b. Loading the Texture Color Palette

 Loading any accelerator registers through the Pseudo DMA Window

 ZBuffer Direct Access Procedure when ZBuffer is in AGP Space

 Table-Fog

 Video Scaler

 Texture Unit blending

 Texture Staging

Supported 2D Features

 Bus-Mastering (PCI/AGP)

 Raster Operations: 0, ~(D | S), D & S, D & ~S, ~S, (~D) & S, ~D, D ^ S, ~(D

& S), D & S, ~(D ^ S), D, D | ~S, S, (~D) | S, D | S, 1

 Hardware Clipping

 Software-/Hardware-Cursor

a. Three-Color Cursor

b. XGA Cursor

c. X-Windows Cursor

d. 16-Color Palletized Cursor

 Bitblts

a. Two-Operand

b. Transparent Two-Operand

c. With Expansion (Character Drawing) 1bpp

 Image Load (ILOAD)

a. Two-operand

b. With Expansion (Character Drawing) 1bpp

 Rectangles

AMD Confidential

User Manual September 12
h
, 2008

70 Chapter 7: Device Configuration

a. Patterned Fills

b. Constant Shaded

c. Gouraud Shaded (partially)

d. Texture Mapping (partially)

 Trapezoids

a. Constant Shaded

 Lines

a. Auto-Lines (line open/line close)

b. Solid-Lines (line open/line close)

 8, 15, 16, 24, and 32 Bits Per Pixel video modes

 ILOAD Pseudo- DMA Window Transfers

 Programmable, transparent BLTer

 Linear packed pixel frame buffer

Supported DirectX 6.1 Features

 Alpha Test0

 Alpha Blending Functions

a. Normal-Blending

b. Transparency-Blending

c. Additive-Blending

d. Soft-Additive-Blending

e. Multiplicative-Blending

 Depth Test (Z-Buffer) 15-bit, 16-bit, 24-bit, and 32-bit

 Texel-Width (4-, 8-, 12-, 15-, 16-, and 32-bit

 UV Texture Coordinate support

 DMA-Vertex Engine

Supported Graphics Modes
The Matrox G400 provides three different display modes: text (VGA or SVGA), VGA

graphics, and SVGA graphics. Table 7-4 list all of the display modes which are available

through BIOS calls.

Mode Number Type Organization Resolution No. of colors Supported

0x00 VGA 40x25 Text 360x400 16
0x01 VGA 40x25 Text 360x400 16
0x02 VGA 80x25 Text 720x400 16
0x03 VGA 80x25 Text 720x400 16
0x04 VGA Packed-pixel 2 bpp 320x200 4
0x05 VGA Packed-pixel 2 bpp 320x200 4
0x06 VGA Packed-pixel 1 bpp 640x200 2
0x07 VGA 80x25 Text 720x400 2
0x0D VGA Multi-plane 4 bpp 320x200 16
0x0E VGA Multi-plane 4 bpp 640x200 16
0x0F VGA Multi-plane 1 bpp 640x350 2
0x10 VGA Multi-plane 4 bpp 640x350 16
0x11 VGA Multi-plane 1 bpp 640x480 2
0x12 VGA Multi-plane 4 bpp 640x480 16
0x13 VGA Packed-pixel 8 bpp 320x200 256

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 71

Mode Number Type Organization Resolution No. of colors Supported

0x0108 VGA 80x60 Text 640x480 16
0x0109 VGA 132x25 Text 1056x400 16
0x010A VGA 132x43 Text 1056x350 16
0x010B VGA 132x50 Text 1056x400 16
0x010C VGA 132x60 Text 1056x480 16
0x0100 SVGA Packed-pixel 8 bpp 640x400 256
0x0101 SVGA Packed-pixel 8 bpp 640x480 256
0x0110 SVGA Packed-pixel 16 bpp 640x480 32K
0x0111 SVGA Packed-pixel 16 bpp 640x480 64K
0x0112 SVGA Packed-pixel 16 bpp 640x480 16M
0x0102 SVGA Multi-plane 4 bpp 800x600 16
0x0103 SVGA Packed-pixel 8 bpp 800x600 256
0x0113 SVGA Packed-pixel 16 bpp 800x600 32K
0x0114 SVGA Packed-pixel 16 bpp 800x600 64K
0x0115 SVGA Packed-pixel 32 bpp 800x600 16M
0x0105 SVGA Packed-pixel 8 bpp 1024x768 256
0x0116 SVGA Packed-pixel 16 bpp 1024x768 32K
0x0117 SVGA Packed-pixel 16 bpp 1024x768 64K
0x0118 SVGA Packed-pixel 32 bpp 1024x768 16M
0x0107 SVGA Packed-pixel 8 bpp 1280x1024 256
0x0119 SVGA Packed-pixel 16 bpp 1280x1024 32K
0x011A SVGA Packed-pixel 16 bpp 1280x1024 64K
0x011B SVGA Packed-pixel 32 bpp 1280x1024 16M
0x011C SVGA Packed-pixel 8 bpp 1600x1200 256
0x011D SVGA Packed-pixel 16 bpp 1600x1200 32K
0x011E SVGA Packed-pixel 16 bpp 1600x1200 64K

Table 7-4: Matrox G400 VESA Modes

Memory Interface

The Matrox G400 supports a total of 32 megabytes of SGRAM/SDRAM memory

comprised of one or two banks of 8, 16, or 32 Mbytes each.

In Power Graphics Mode, the resolution depends on the amount of available memory.

Table 7-5 shows the memory configuration for each standard VESA resolution in pixel

depth.

 Single Frame Buffer Mode Single Z-Buffer

No Z Z 16 bits Z 32 bits

Resolution 8-bit 16-bit 24-bit 32-bit 8-bit 16-bit 32-bit 8-bit 16-bit 32-bit

640x480 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

720x480 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

800x600 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

1024x768 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

1152x864 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

1280x1024 8M 8M 8M 8M 8M 8M 8M 8M 8M 10M

1600x1200 8M 8M 8M 8M 8M 8M 16M 16M 16M 16M

1920x1080 8M 8M 8M 8M 8M 8M 16M 16M 16M 16M

1800x1440 8M 8M 8M 16M 8M 16M 16M 16M 16M 16M

1920x1200 8M 8M 8M 8M 8M 8M 16M 16M 16M 16M

2048x1536 8M 8M 16M 16M 16M 16M 32M 16M 32M 32M

Table 7-5: Supported Resolutions in Power Graphics Mode

AMD Confidential

User Manual September 12
h
, 2008

72 Chapter 7: Device Configuration

Supported Guest Operating Systems

Table 7-6 shows all operating systems which are tested and known to work with the

Matrox G400 graphics device model:

Guest Operating System Device Driver Version Known Issues

MS-DOS N/A No known issues.

Windows 2000 5.93.009 No known issues.

Windows XP (32-bit/64-bit) 5.93.009/1.11.00.114SE No known issues.

Windows Server 2003 (32-bit/64-bit)) 5.93.009/1.11.00.114SE No known issues.

Windows Vista Beta 2 Build 5308 (32-bit/64-bit) N/A (VESA only) No known issues.

Linux (32-bit/64-bit), RedHat/SuSE/SuSE Xen Standard MGA Driver No known issues.

Solaris 10 for AMD64 XF86 MGA Solaris No known issues.

Table 7-6: Supported Guest Operating Systems

Improve Graphics Performance

When you run Windows in simulation and you open a menu, list box, tool-tips, or other

screen element, the object may open slowly. To disable this option, use the following

steps:

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click Display.

3. Click Effects, clear the Use the following transition effects for menus and tool

tips check box, click ok, and then close Control Panel.

Or:

1. Right click on My Computer and select Properties.

2. Click on Advanced, Performance, and then on Settings….

3. Select the Adjust For Best Performance option.

4. Click on Apply.

Also make sure you have installed the Matrox G400 graphics device drivers. You can

download the latest Matrox Millennium G400 graphic device drivers for Windows and

Linux at http://www.matrox.com/mga/support/drivers/latest/home.cfm.

Enabling Graphics Hardware Acceleration on Windows Server Operating Systems

Graphics Hardware Acceleration and DirectX are disabled by default on a Windows

Server configuration to ensure maximum stability and uptime. But if you need to improve

the graphics performance the following steps will guide you through on how you can

enable hardware acceleration.

1. Right-click the desktop, and then click Properties on the menu.

2. Click the Settings tab, and then click on Advanced.

3. Click the Troubleshoot tab.

4. Move the Hardware Acceleration slider across to full (see Figure 7-12).

5. Click Ok, and then click Close.

http://www.matrox.com/mga/support/drivers/latest/home.cfm

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 73

Figure 7-12: Enable Full Hardware Acceleration on WindowsXP guest

Enabling Hardware Cursor Support

Please follow the following steps to enable native hardware cursor support on Windows

platforms:

1. Install latest Matrox G400 drivers.

2. Reboot computer.

3. Right click on “My Computer” and select “Properties”.

4. Click on “Advanced‟, “Performance”, and then on “Settings…”.

5. Uncheck “Show shadows under mouse pointer” checkbox.

6. Click on “Apply”

AMD Confidential

User Manual September 12
h
, 2008

74 Chapter 7: Device Configuration

7.6 Super IO Devices: Winbond W83627HF SIO / ITE 8712 SIO

Device models of the Super IO device contain the keyboard, PS/2 mouse, floppy, COM1,

COM2, LPT1, IR, fan, GPIO, MIDI, and joystick devices, as well as PCI support and

control information. The COM1 and COM2 devices create named-pipes "SimNow.Com1"

and "SimNow.Com2” and send all serial communication through these.

Interfaces
The Super IO device model has a single interface connection, and is connected to the

LPC connection of the Southbridge device.

Initialization and Reset State

The following conditions represent the keyboard and/or mouse during initialization and

reset state:

 A20 and reset released.

 Mouse scaling set to 1.

 Mouse resolution set to 4.

 Stream mode off.

 Mouse sample rate set to 100.

 All sticky keys released.

 Keyboard output port set to 0xDF.

The floppy is initialized with no drive image present. Reset clears the controller to an idle

state. If an image is loaded, reset does not unload the image.

COM1 and COM2 are initialized with 9600 Baud, no parity, 8-bit words, 1 stop bit, and

interrupts off.

The parallel port initializes with the data and control ports set to zero. Reset clears these

ports to their initial values.

The following devices have no functionality behind them at this time, with the exception

of their configuration registers. These registers are initialized and reset to the values

specified in the Super I/O specification:

 IR

 GPIO

 MIDI

 Joystick

 Fan

Contents of a BSD

 Keyboard and Mouse

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 75

 Floppy

 COM1 and COM2

 LPT1

 IR

 GPIO

 MIDI

 Joystick

 Fan

All devices store their current state in the BSD files, as well as any data that may be

buffered at the time of the save. Register content is also saved for all devices.

Configuration Options

The Super I/Os have the capability of setting device breakpoints on an event basis. In this

case, the event is the sequence of writes to access the Super I/O's device configuration

registers. Selecting the PNP Lock/Unlock Registers option in Figure 7-13 activates the

breakpoint anytime the lock and unlock sequence is hit. The other option is to set

breakpoints to trigger whenever any of the device configuration registers are accessed.

Figure 7-13: Super IO Properties Dialog: Winbond W83627HF

AMD Confidential

User Manual September 12
h
, 2008

76 Chapter 7: Device Configuration

Floppy Configuration Options

The floppy is capable of reading disk images of real floppies created with the DiskTool

Utility, described in Section 13, on page 157. To use an image, first create an image file

with DiskTool and then specify the floppy image file in the Super I/O configuration

dialog page.

Difference from Real Hardware

Keyboard, Mouse, Floppy, COM1 and COM2 differ from real hardware. Baud rate,

parity, and stop bits are ignored. Communication is always available. Baud rate timing is

approximate. Modem status and line status always show the device is ready.

The default values of the control registers are read-writable or read only as defined by the

appropriate Super IO specification.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 77

7.7 Memory Device

The memory device enables you to add memory devices to the system. You can

configure the memory device for emulation of ROM or dynamic memory. You specify

the total memory size and the beginning address to which the device should respond.

The memory device can also be configured as a LPC flash device. It currently models

2Mb (SST49LF020A), 4Mb (SST49LF040A), 8Mb (SST49LF080A) and 16Mb

(SST49LF160C) flash memory devices. Note that we support two command sequences

used generally by flash memory - SST and ATMEL. User should configure the flash

memory to the appropriate command sequence to get desired results. The SST49LF160C

device uses the ATMEL command sequence while

SST49LF020A/SST49LF040A/SST49LF080A use the SST command sequence.

Interfaces

The memory device has a general-purpose interface that you can connect to any other

type of port. No selection is necessary when connecting this memory device to another

device.

Initialization and Reset State

The default state of the device is a RAM memory device that is at a base address of

0x00000000 and a size of 4 Gigabytes. The memory has no default content. When an

initialization file is specified, the memory device's contents contain the data from that

binary file.

After a reset, the memory device reverts back to the initialization file contents.

Contents of a BSD

The contents of memory, as well as all configuration information, are stored in the BSD.

Configuration Options

The first field of the Memory Configuration tab, shown in Figure 7-14, is the base

address of the device in a hexadecimal value.

The second field is the total size of the memory device, given in decimal value for the

number of 32-Kbyte blocks you would like created (32-Kbyte blocks are used because

non-initialized memory is dynamically allocated when addressed in 32-Kbyte chunks).

The third field is the name of the binary file you use to initialize the memory contents.

The device initializes memory for the content length of the file. If you specify a 512-

Kbyte ROM and use a 256-Kbyte image file, the first 256 Kbytes are initialized. The Init

File selection comes with a browse button for easier selection.

Selecting the Read-Only option turns the memory device into a ROM. Writes to the

device are ignored when the Read-Only option is selected.

AMD Confidential

User Manual September 12
h
, 2008

78 Chapter 7: Device Configuration

Selecting the System BIOS ROM option tells the memory device it is the system BIOS.

The memory device only responds to memory address ranges accompanied by a chip-

select that is generated by the Southbridge device.

Selecting Flash Mode option tells the memory device that it is configured as a flash

memory device. There are two command sequences supported by our flash memory

device - SST and ATMEL, which can be selected by the drop down below.

Selecting the Memory Address Masking option indicates that the address received by the

memory device is masked by a bit mask with the same number of bits as the size of the

memory device (e.g., a 256-Kbyte ROM uses an 18-bit mask, or it is masked by

0x003FFFF). This enables the ROM to be remapped dynamically into different memory

address ranges in conjunction with the aforementioned chip-select.

Selecting the Initialized unwritten memory to (hex): option initializes otherwise not

initialized memory, with a separate field for specifying the byte to use for initialization.

Selecting the Memory is non-cacheable option tells the system if the memory described

by the device is non-cacheable.

Figure 7-14: Memory Configuration Properties Dialog

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 79

Difference from Real Hardware

The memory device differs in that it is a generic memory model. When configured as a

BIOS ROM, it does not contain flash-specific information that a modern flash ROM

contains (for programming information purposes).

AMD Confidential

User Manual September 12
h
, 2008

80 Chapter 7: Device Configuration

7.8 PCA9548 SMB Device

The PCA9548 is an 8-channel System Management Bus (SMB) switch.

Interface

The PCA9548 has one input port and eight output ports, as well as a programmable

interface that directs the switch which output port to forward messages to.

Initialization and Reset State

The PCA9548 has the input value specified in its configuration dialog window.

Contents of a BSD

The PCA9548 saves its SMB base address and input pin value.

Configuration Options

Figure 7-15: PCA9548 SMB Configuration Properties Dialog

The PCA9548 allows you to set its SMB base address.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 81

7.9 PCA9556 SMB Device

The PCA9556 is a registered System Management Bus (SMB) interface. When queried

from its SMB base address, it returns the value of its input pins.

Interfaces

The PCA9556 has one output port.

Initialization and Reset State

The PCA9556 has the input value specified in its configuration dialog window.

Contents of a BSD

The PCA9556 saves its SMB base address and input pin value.

Configuration Options

Figure 7-16: PCA9556 SMB Configuration Properties Dialog

The PCA9556 allows you to set its SMB base address and input pin values.

AMD Confidential

User Manual September 12
h
, 2008

82 Chapter 7: Device Configuration

7.10 AMD 8th Generation Integrated Northbridge Device

The AMD 8th Generation Integrated Northbridge device supports the AMD 8th

generation family of processors - AMD Athlon™ 64 and AMD Opteron™ processors.

Although the physical processor chip has a Northbridge built in, for simulation purposes,

the Northbridge is considered as a separate unit. Features include HyperTransport™

technology (for coherent and non-coherent connections) and a memory controller. The

integrated debugging functions of the 8
th

 generation processors are not included.

Interface

The Northbridge device has several connection points. It has multiple HyperTransport

bus ports that connects to the other AMD 8th Generation Integrated Northbridge devices,

or to HyperTransport link-capable devices (e.g., AMD-8131 PCI-X device). These ports

are mutually exclusive, and should be connected to only one other device. The

Northbridge also has a memory bus to the DIMM devices. The CPU bus gives connection

points for the CPU. The final port is a system-message bus port for connection with a

Log device. A 940-pin 8
th

 generation processor part (AMD Opteron) has three

HyperTransport ports; a 754-pin 8
th

 generation processor part (AMD Athlon 64) has one

HyperTransport port.

Initialization and Reset State

When first initialized, the Northbridge device is in the default state. This is described in

detail in the 8
th

 generation processor PCI register specification.

When reset, the Northbridge device takes on all default register values.

Contents of a BSD

The BSD file contains the contents of all Northbridge registers. It also saves the contents

of any tables and the states of all internal devices (the memory controller,

HyperTransport table contents, etc.). When the BSD file is read in, all tables are filled

with past data, and all states are restored to their saved states.

Configuration Options

Figure 7-17 and Figure 7-18 show configuration options for the Northbridge.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 83

Figure 7-17: Northbridge Logging Capabilities Properties Dialog

If Log PCI Configuration Cycles is selected, the device will produce log messages

whenever PCI configuration registers are accessed.

If Log HyperTransport Message Routing is selected, the device will log HyperTransport

messages.

Figure 7-18: Northbridge HT Link Configuration Properties Dialog

If the DDR DRAM Controller is selected, the device will support DDR DRAM. In order

to use DDR2 DRAM select the DDR2 DRAM Controller.

AMD Confidential

User Manual September 12
h
, 2008

84 Chapter 7: Device Configuration

Each HyperTransport link can be enabled separately. Each link can be 8- or 16-bits wide.

Only the 940-pin AMD Opteron processor can have three links; a 754-pin AMD Athlon

64 has one HyperTransport port.

Figure 7-19: Northbridge DDR2 Training Properties Dialog

When the DDR2 DRAM Controller is selected and DDR2 DRAM is being used you can

manually modify these values to verify the correctness of the DDR2 training algorithmn.

The DDR2 Training Properties Dialog contains the lowest and highest values that the

BIOS can program into these registers. While these registers are programmed out of

bounds DRAM access will be corrupted.

Note the DDR2 Training Properties Dialog is only useful for BIOS developer and the

values should only be modified and used by BIOS developers.

Log Messages
If Log PCI Configuration Cycles is selected, the device produces log messages whenever

the PCI configuration data register (0xCFC) is accessed. Log files can get very large.

Reads from this I/O-mapped register produce PCI CONFIG READ messages, and writes

to the register produce PCI CONFIG WRITE messages. The formats of the PCI CONFIG

READ and PCI CONFIG WRITE messages are as follows:

PCI CONFIG READ Bus a, Device b, Function c, Register d, Data e

PCI CONFIG WRITE Bus a, Device b, Function c, Register d, Data e

where a, b, c, d, and e are all hexadecimal numbers.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 85

The data value, e, is always one byte (two hex digits) in width. The device will log

multiple messages for PCI configuration accesses that are greater than one byte in width.

For example, a dword read of 0x11223344 from PCI configuration register 0x40 of

device 7, function 1 on bus 0 would produce the following log messages:

PCI CONFIG READ Bus 0, Device 7, Function 1, Register 40, Data 44

PCI CONFIG READ Bus 0, Device 7, Function 1, Register 41, Data 33

PCI CONFIG READ Bus 0, Device 7, Function 1, Register 42, Data 22

PCI CONFIG READ Bus 0, Device 7, Function 1, Register 43, Data 11

Differences from Real Hardware

The Northbridge device differs from the real hardware in that the simulator does not

support the debug hardware registers. The device also does not support memory-

interleaving by node, though this will change in the near future. The device will differ in

those things that are of a timing-related nature, such as setting of bus speeds. Full probe

transactions are not modeled. Registers that deal with items outside of the testing of

transfer protocols at the register level are not functional (buffer count registers, etc.).

They are present and read/write able, but do not effect the simulation.

AMD Confidential

User Manual September 12
h
, 2008

86 Chapter 7: Device Configuration

7.11 AMD-8111™ Southbridge Devices – IO Hubs

The Southbridge devices provide the basic I/O Southbridge functionality of the system.

Features include a PIO-mode IDE controller, register set for the USB controller(s), an

LPC/ISA bridge, a system-management bus controller, IOAPIC bus bridge if applicable,

and legacy AT devices (PIC, PIT, CMOS, timer, and DMA controller). The legacies AT

devices have the standard behavior and IO addresses unless otherwise noted.

Interfaces

The Southbridge devices have several connection points. Possible connection points

include a PCI bus, a SMB bus, a LPC bus, an INT/IOAPIC bus for interrupt signaling,

and ISA and HyperTransport ports depending on the device type. The PCI bus acts as a

host bus (AMD-8111). The SMB connects to devices such as the DIMM or the SMB hub.

The LPC bus provides connectivity to devices such as Super IO's and BIOS ROMs. A

HyperTransport port is used for main connectivity for the AMD-8111 device to the reset

of the system.

Initialization and Reset State
When first initialized, the Southbridge devices are in the default state. This is described in

detail in the respective datasheets. The legacy CMOS sub device initializes to all zeroes.

When reset, a Southbridge device takes on all default register values as above. The

exception to this is that the CMOS contents remain the same.

Contents of a BSD

The BSD file contains the contents of all registers. It also saves the contents of any

buffers, and states of all internal devices (HDD controllers, PIT, PIC, etc.). When the

BSD file is read in, all buffers are filled with past data, and all states are restored to their

saved states.

Common Configuration Options

The USB dialogue window, shown in Figure 7-20, gives the user the ability to enable or

disable USB ports of the USB controller. USB devices which are connected to disabled

USB ports won't be identified and detected by an operating system.

For instance, in Figure 7-20 the USB Port 0 is disabled and USB Port 1 and 2 are

enabled.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 87

Figure 7-20: USB Properties Dialog (AMD-8111™ Southbridge)

The CMOS dialogue window, shown in Figure 7-21, gives the user the ability to change

the contents of CMOS. When first created, the CMOS contains all zeroes to force a

CMOS checksum error, resulting in the default settings being loaded by BIOS. The

alternative to this is loading a binary file containing the CMOS desired data. The user can

create this file by entering changes and using the save feature to create the binary file.

AMD Confidential

User Manual September 12
h
, 2008

88 Chapter 7: Device Configuration

Figure 7-21: CMOS Properties Dialog (AMD-8111™ Southbridge)

The Primary HDD Channel and Secondary HDD Channel tabs, shown in Figure 7-22,

contain the same information for each hard drive channel. The user has two options for

drive simulation: an image of a hard drive created with DiskTool (see Section 13 on page

157), or use of a real hard disk. Using a real drive requires Windows® 2000 and a drive

that is able to be isolated (locked) from the rest of the system. You cannot use the drive(s)

that the OS and/or the simulator reside on. To use a drive image, enter a file name in the

Image Filename field. A browse window is activated by pressing the right-most button.

All disk devices (Primary Master, etc.) by default have the disk journaling feature turned

on, which allows simulations to write to the disk image during normal operation and not

affect the contents of the real disk image. This is useful for being able to kill a simulation

in the middle, for multiple copies of the simulator running at the same time, etc. Journal

contents are saved in BSD checkpoint files but lost if you don't save a checkpoint before

exiting. To change journal settings or commit journal contents to the hard disk image, go

to the Device View Window, then the AMD-8111 Southbridge, then the configuration for

the hard disk in question on either the Primary or Secondary IDE controller. Here you can

either commit the contents of the journal to the hard-disk image or turn off journaling for

the hard disk image in question.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 89

Turning off journaling is recommended during the installation process for an operating

system.

Figure 7-22: HDD Primary Channel Properties Dialog (AMD-8111 Southbridge)

Device Options

The AMD-8111 device has specific configuration requirements that relate to device

option type and HyperTransport information.

The Default Base Unit ID is a way of telling the device of the strapping option for ID

selection.

The Generate HT Messages for Interrupts selection specifies whether interrupts go out

the HyperTransport port in a HyperTransport format, or out the INT/IOAPIC bus as a

classic interrupt pin.

AMD Confidential

User Manual September 12
h
, 2008

90 Chapter 7: Device Configuration

Figure 7-23: Device Options Properties Dialog (AMD-8111 chipset)

Log Messages

The AMD-8111 device produces log messages to the Message Log Window as specified

by the options in the Logging Option tab, shown in Figure 7-24. The device can log I/O-

mapped Transactions, Memory-mapped Transactions, and SMI and SCI assertions.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 91

Figure 7-24: Logging Options Properties Dialog (AMD-8111 chipset)

Differences from Real Hardware

The AMD-8111 Southbridge device differs from other devices mainly in those items that

deal with real-time operation. Those items cannot be modeled in the current simulator.

The model does not include any of the power-management registers. The functionality of

the USB 2.0 controller is also absent (PCI registers and memory-mapped registers are the

only portion present).

For experimental purposes, the AMD-8111 Southbridge device supports an optional

IOMMU (based on IOMMU spec. 1.2) that can be enabled and disabled via the

automation command "8111.SetIOMMU 0|1". The addition of this block to the device

model does not reflect any real or planned hardware. When enabled, the AMD-8111

device‟s IOMMU PCI registers live in a capability block of the PCI Bridge. When

enabled, the AMD-8111 device‟s IOMMU delivers interrupts via PCIINTD. The AMD-

8111 device doesn't support PCI Express. This limits the number of distinct requester

ID's available (Three requester ID's: legacy LPC, legacy PCI, internal IDE controller).

There are no SimNow PCI models that implement MSI. This means the only APIC-style

interrupts the IOMMU can intercept are from a single requester ID, the AMD-8111

device‟s internal IOAPIC.

AMD Confidential

User Manual September 12
h
, 2008

92 Chapter 7: Device Configuration

7.12 PCI BUS Device

The PCI Bus device enables you to add PCI devices to the system. You can configure the

PCI Bus device to provide any number of PCI slots for one to six connections. You

configure each PCI slot on the PCI Bus by setting its device number and base IRQ-

routing pin.

Interfaces

The PCI Bus device has two types of interfaces, a bus interface and one or more slot

interfaces. The bus interface connects to a device that provides a PCI bus, such as a

Northbridge. Each PCI-slot interface is capable of connecting to a PCI device, such as a

PCI video controller.

The PCI bus behaves somewhat differently than other AMD SimNow devices. First, the

connection points are not all centered in the middle of the icon; instead each connection

point has a discrete location around the perimeter of the icon to provide a visual

indication that each PCI device is connected to a different PCI slot. Second, the

connection points are exclusive; that is, only one device can connect to each connection

point on the PCI bus, because in a real system one cannot install two PCI cards into a

single PCI slot. It is planned that these new behaviors will be used in other devices when

required.

Initialization and Reset State

The default state of the device has all slots disabled. This is because each platform

configures its PCI Buses in specific ways that make it impossible to provide a generic

default.

Since the PCI Bus device does not include any state that is altered during the course of a

simulation, after a reset, the PCI Bus device remains unchanged

Contents of a BSD

The configuration of the PCI bus, including which slots are enabled, the device ID for

each slot and the base IRQ-routing pin for each slot, and the connection points, are saved

in the BSD.

Configuration Options

Figure 7-25 shows the PCI-Bus configuration options.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 93

Figure 7-25: PCI Bus Properties Dialog

The first field is the Device ID of the slot. This value may range from zero to 31. The

second field is the Base IRQ Pin for the slot. You can choose from pin A, B, C, or D.

The third field is an Enable Slot. By default, all slots are disabled. One cannot disable a

slot that has a device connected to it.

Differences from Real Hardware

The PCI Bus device differs from other devices in that it is a generic model. We do not

simulate PCI down to a clock-accurate level, so devices do not arbitrate for bus

ownership or insert wait states, for example.

AMD Confidential

User Manual September 12
h
, 2008

94 Chapter 7: Device Configuration

7.13 AMD-8131™ PCI-X® Controller

The AMD-8131 PCI-X Controller is a HyperTransport tunnel that provides two PCI-X

buses and two IOAPICs. These PCI-X buses may or may not be configured as hot-plug-

capable, depending on the platform.

Interfaces

The AMD-8131 has two types of interfaces, HyperTransport and PCI buses. It has two

HyperTransport links, HT0 and HT1, that can connected to other non-coherent

HyperTransport link-capable devices. The PCI bus interfaces in the AMD-8131 must be

connected to a PCI bus device, which provides the Slot interfaces with which to connect

devices for simulation.

Initialization and Reset State

When first initialized, the AMD-8131 tunnel is in its default state. This is described in

detail in the AMD-8131 datasheets. Each bridge defaults with hot-plug functionality

disabled.

When reset, the AMD-8131 takes on all default register values.

Contents of a BSD

The entire configuration of the AMD-8131 device, including all state and registers for its

sub devices, is saved in the BSD.

Configuration Options

The only configuration options for AMD-8131 are to enable or disable hot-plug for each

of its PCI-X bridges, as shown in Figure 7-26. You cannot enable or disable hot-plug

after a simulation has already begun.

Figure 7-26: AMD-8131™ Device Hot Plug Configuration

Differences from Real Hardware

Clock-sensitive functionality, like setting bus speeds, is not supported. Neither are system

errors or power management.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 95

7.14 AMD-8132™ PCI-X® Controller

The AMD-8132 PCI-X Controller is a HyperTransport tunnel that provides two PCI-X

buses and two IOAPICs. These PCI-X buses may or may not be configured as hot-plug-

capable, depending on the platform.

Interface
AMD-8132 has two types of interfaces, HyperTransport and PCI buses. It has two

HyperTransport links, HT0 and HT1, that can connect to other HyperTransport link-

capable devices. Either HyperTransport link can be set to be the upstream

HyperTransport link. The PCI bus interfaces in the AMD-8132 must be connected to a

PCI Bus device, which provides the Slot interfaces with which to connect devices for

simulation.

Initialization and Reset State

When first initialized, AMD-8132 device is in its default state. This is described in detail

in the AMD-8132 datasheet. Each bridge defaults with hot-plug functionality disabled.

When reset, AMD-8132 takes on all default register values.

Contents of a BSD

The entire configuration of the AMD-8132 chipset, including all state and registers for its

sub devices, is saved in the BSD.

Configuration Options

The Hot Plug tab options for AMD-8132 are to enable or disable hot-plug for each of its

PCI-X bridges, as shown in Figure 7-27. You cannot enable or disable hot-plug after a

simulation has already begun.

Figure 7-27: AMD-8132™ Device Hot Plug Configuration

Figure 7-28 shows the HT Link Configuration options.

AMD Confidential

User Manual September 12
h
, 2008

96 Chapter 7: Device Configuration

Figure 7-28: AMD-8132 Properties Dialog

The Upstream HyperTransport Link selection, shown in Figure 7-28, specifies the

HyperTransport Bus that will be used as a upstream link.

Differences from Real Hardware

Clock-sensitive functionality, like setting bus speed, is not supported. Neither are system

errors, nor power management.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 97

7.15 PCI-X Test Device

This PCI-X Test Device model provides a simulation of a generic PCI-X device. Its main

purpose is to provide BIOS programmers with a tool to test the PCI-X configuration

cycle. This device is implemented as a single-function device.

Interface

The interface varies from system to system. In the AMD Athlon 64 or AMD Opteron

processor-based system configurations, it can be connected to AMD-8131 PCI-X or

AMD-8111 Southbridge devices.

Initialization and Reset State

At creation and reset states, the PCI-X device registers have the default hard-coded

values. By default, the PCI-X device is set to have no I/O, memory-space and interrupt

capability. The PCI-X device has a default Device ID and Vendor ID. At reset, the device

configuration does not change and the values from the device configuration will be

eventually read into the PCI-X registers when the configured system is restarted.

Contents of a BSD

PCI-X register and interrupt signals are saved in the BSD.

Differences from Real Hardware

This is a generic PCI-X device. It doesn't have real a memory buffer and I/O buffer. For

memory and I/O space transaction, if the transaction belongs to this device's memory or

I/O address range, the PCI-X device simply outputs a message to the Log Window which

identifies its memory or I/O cycle.

Interrupt can be de-asserted by doing an I/O transaction. Interrupts can also be de-

asserted manually by using the debugger.

AMD Confidential

User Manual September 12
h
, 2008

98 Chapter 7: Device Configuration

7.16 AMD-8151™ AGP Bridge Device

The AMD-8151 AGP Bridge Device tunnel is a HyperTransport tunnel that provides an

AGP bridge. In general, AMD-8151 would be connected in a non-coherent

HyperTransport chain between the host bridge and the Southbridge.

Interface

The AMD-8151 has three types of interfaces, HyperTransport, AGP, and INT/IOAPIC

buses. The AMD-8151 has two HyperTransport links, HT0 and HT1, that can connect to

other non-coherent HyperTransport link-capable devices. HT0 should be connected to the

upstream link (the one closest to the host bridge) and HyperTransport1 should be

connected to the downstream link. The AGP interface should be connected to an AGP

graphics device. The INT_IOAPIC bus should be connected to the Southbridge; it routes

interrupt signals from the AGP bus to the Southbridge.

Initialization and Reset State

When first initialized or reset, the AMD-8151 registers are set to their default state. This

is described in detail in the AMD-8151 datasheet.

Contents of a BSD

The current state of all PCI configuration registers and any internal state variables are

saved in the BSD.

Configuration Options

The AMD-8151 device allows you to set its Revision number as shown in Figure 7-29.

Figure 7-29: AMD-8151™ Device Properties Dialog

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 99

Differences from Real Hardware

Clock-sensitive functionality, like setting bus speeds, is not supported. The

HyperTransport bus protocol is not simulated.

AMD Confidential

User Manual September 12
h
, 2008

100 Chapter 7: Device Configuration

7.17 Raid Device: Compaq SmartArray 5304

The RAID device uses disk images, which are accessed as simulated volumes by the

RAID controller. Storage devices like ATA HDD and RAID are implemented with

concepts like disk-block cache, journaling, file, and memory stores. This page describes

journaling in more detail.

A simulated volume in the RAID device is represented by an image file and one or more

optional journals. The combination of an image and zero or more optional journals is

used to hold the contents of a simulated volume. While creating a volume assign a disk-

image file to it (e.g., “raid.image 0 imagefilename”). One or more additional journals can

be added to the image file. The image file uses a data block to store the data, and the

journal files use sparse indexing to hold just the blocks that have been changed. Not only

does journaling provide an efficient way to access the data blocks in the simulated

volume, but it also gives the user the flexibility to change the data-block size.

Journals can be created either in-memory or as file, depending on the use of

“addjournal” command. RAID device supports multi-level journaling; i.e., for a created

volume, the user can add multiple journals (however, one cannot add a journal after an

in-memory journal). Conceptually, the disk image is equivalent to the image and fixed-

journal pair.

Journals grow in size as the volumes associated with them are accessed (writes of data-

blocks which haven‟t been written before). File-based journals are preferred over in-

memory Journaling if a large number of writes are going to be made to the simulated

volume.

The journal architecture is index-based, consisting of super blocks, index blocks, and data

blocks. This provides a hierarchical indexing mechanism, in which data blocks are

accessed by their LBA (logical block address).

Several performance mechanisms are implemented in the RAID device, including Disk

Block Cache and Last Sector Hit, which can be viewed at any time using the “raid.status

–v” command.

AMD tested the RAID device both on SUSE Linux-64 and a 32-bit version of Windows

2003 Enterprise Server, using stock drivers to drive this model. This model emulates

devices at the volume level, so that the files used to represent the data correspond to

logical volumes, not disks. This model associates one logical volume with one image file.

The model does not represent the timing of any real system, because data becomes

available almost immediately.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 101

7.18 SMB Hub Device

The SMB hub device is used to connect one SMBus to any of four SMBus branches. The

device is programmed via read-byte and write-byte commands on the SMBus where the

7-bit address field is 0x18.

The SMB hub device models the combination of two physical devices manufactured by

Philips Semiconductors: the PCA9516 5-channel I
2
C hub, and the PCA9556 Octal

SMBus and I
2
C registered interface. In the simulator‟s device model the two devices are

configurable via GPIO x enables segment x, as shown in Figure 7-30.

Interface

The SMB hub has five SMBus interfaces. SMB0 can be connected within the SMB hub

to any of the four other SMBuses (SMB[1..3]). Typically, SMB0 is connected to a

SMBus connection on a Southbridge device, and the other SMBus ports are connected to

other devices in the system.

Initialization and Reset State

When first initialized or reset the SMB hub registers are set to their default state. The

internal registers and their default states are described in the PCA9556 data sheet.

Contents of a BSD

The current state of all internal registers and any internal state variables are saved in the

BSD.

Configuration Options

The SMB Hub device allows you to enable up to eight GPIO segments (GPIO0 – GPIO7)

to connect SMB devices to SMB hub device, as shown in Figure 7-30.

AMD Confidential

User Manual September 12
h
, 2008

102 Chapter 7: Device Configuration

Figure 7-30: SMB Hub Properties Dialog

Differences from Real Hardware

This device model is the combination of two physical devices connected in a specific

way. The model attempts to match the functionality of the physical devices from a

programmer's perspective. The SMBus protocol is not modeled. Also, the SMBus address

of the PCA9556 is programmable based on pin-strapping, whereas this model has a fixed

SMBus base address.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 103

7.19 AT24C Device

The AT24C device is a Serial EEPROM device. It can be configured to store 16, 32, or

64Kb of EEPROM. The device has an SMB bus interface for access to its internal

registers. It is typically used to store platform specific configuration data.

Interface

The AT24C device has a SMB interface. For example, this device can be connected to a

PCA9548 or PCA9556 device (see Section 7.8, "PCA9548 SMB Device", on page 80 or

Section 7.9, "PCA9556 SMB Device", on page 81).

Contents of a BSD

The current state of all internal registers and any internal state variables are saved in the

BSD.

Configuration Options

The AT24C device can be configure to store an AT24C16A (16Kb), AT24C32A (32Kb),

or AT24C64A (64Kb), 2-Wire Bus serial EEPROM.

Figure 7-31: AT24C Device Configuration

AMD Confidential

User Manual September 12
h
, 2008

104 Chapter 7: Device Configuration

7.20 EXDI Server Device

This interface, and the instructions contained herein, applies only to the Windows

operating system-hosted version of the simulator.

The simulator provides a special device known as the EXDI Server Device. This device

can be added to any BSD. When a BSD containing the EXDI Server Device is loaded, the

EXtended Debugging Interface becomes available. This allows client debugging

software, such as CmdeXdi and the Windows kernel debugger, to interact with the

platform being simulated, as if it were a real hardware platform.

The installation of the simulator should provide all the COM registration hooks that are

required. If it does not, here are the steps to manually register the EXDI server:

1. Open a command window (run cmd.exe).

2. Change the current directory to the location where the simulator was installed.

3. Execute the command [Regsvr32 exdi64ps.dll]. You should get a message box

indicating that registration was successful.

4. Execute the command [Regrgs exdiamdserver.rgs MODULE="path and file name

of exdi64ps.dll, usually C:\SimNow\exdi64ps.dll"].

When running the Windows kernel debugger, you must provide command line

information that tells the debugger how to attach to the EXDI Server. The command line

for this is:

kd -kx exdi:clsid={F65E71B3-FEDC-4FA7-A818-5959CD30DD41}

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 105

7.21 USB Keyboard and USB Mouse Devices

USB legacy emulation is not yet supported by the simulator model. USB 2.0 support is

very limited, only basic PCI configuration and memory read and write functionality is

available.

By default, the simulator uses the keyboard device model to send user‟s keystrokes to the

simulation. For example, when the user presses Enter with the host mouse on the graphics

display window, the simulator sends the internal command, keyboard.key 0x10 0x80, to

its command interpreter. If the user has a USB keyboard or mouse in his simulation, he

can redirect the simulator to use these USB devices for keyboard and mouse input. He

does this by modifying the following simulator registry keys: Gui_Key_Device=usbkey

and Gui_Mouse_Device=usbmouse (from the top-level View→Registry). With these

changes, when the user presses the Enter key in simulation, the simulator will send the

internal command, usbkey.key 0x10 0x80 to its command interpreter. When the user

moves the mouse around the simulator display, the simulator will send commands, such

as usbmouse.mousemouve 10 10 to the interpreter.

AMD Confidential

User Manual September 12
h
, 2008

106 Chapter 7: Device Configuration

7.22 XTR Device

XTR is a trace record and playback mechanism that is instrumental for applications that

are not dependent on the specific version of the CPU. An XTR trace contains the

interaction of the processor with the rest of the system in an XML based log file. The

XTR trace file can be played back and could be used to simulate behavior of one or more

devices within a system, which in turn may be used to analyze the CPU's performance or

to perform conformance analysis between various revs and models of the CPU. XTR may

also be used in studies where the behavior of some devices needed but the use of an

actual device or its software model is either difficult of impossible due to various

constraints.

XTR has two files, a binary file which has the memory dump of the system and an XML

based text file which contains the log of the events or messages that go in and out a non-

coherent port of the Northbridge, including the DMA signals from devices on the (host‟s)

secondary bus to the DIMM. XTR playback mechanism essentially replaces all the

devices including the Northbridge and downwards and feeds the processor with the data

present in the XTR XML file. The structure of both binary file and XML file is discussed

below.

XTR can be used both in uni-processor (XTR-UP) and multi-processor (XTR-MP)

configurations. However, currently only XTR-UP is supported while XTR-MP is under

development.

There are two modes of XTR, XTR Record and XTR Playback. The simulator supports

both modes and one mode does not necessitate the other. The simulator could be used to

record XTR traces only or playback XTR traces generated from other sources as far as

the XTR specification is followed correctly (see Section 7.22.4, “Limitations”, on page

113).

An XTR XML file contains Initialization Data, Events and Instructions. XTR

Initialization data stores the state of CPU just before XTR recording is initiated. This data

is used to initialize the CPU and memory parameters during Playback (the memory itself

is initialized from the contents of the binary file). Any register that does not have

corresponding initialization data in XTR XML file will be initialized with zero. XTR

events fall into two categories:

 Dormant Events, which record an event occurrence but do not trigger an event

during playback.

 Active events that are recorded in XTR file and are actively triggered during

playback.

IOR, IOW, MEMR, MEMW, RDMSR are examples of dormant events and INTR, APIC,

DMAW, EOT are examples of Active events. XTR Instructions are commands that are

injected in the XTR trace to give special instructions during XTR playback. FJMP (Force

Jump) is an XTR Instruction.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 107

7.22.1 Using XTR

No special setup for XTR Record is required; XTR can be recorded by using the

appropriate automation commands as described in Section A.7.28, “XTR”, on page 253.

The XTR XML file can easily exceed five Gbytes in size. Please make sure you have

enough physical storage before you start XTR Record.

7.22.1.1 Recoding XTR Trace

To record XTR, please enter the following commands in the simulator‟s console window:

1 simnow> xtrsvc.xtrfile <filename.xml>

1 simnow> xtrsvc.xtrenable 1

1 simnow> go [or hit Run on the shell]

7.22.1.2 Stop XTR Record

To stop XTR record, please enter the following commands in the simulator‟s console

window:

1 simnow> stop [Stop the simulation]

1 simnow> xtrsvc.xtrenable 0

7.22.1.3 XTR Playback

For XTR Playback, XTR Northbridge (XTRNB) replaces all the devices including any

other Northbridge in the system. Hence for UP-XTR Playback, only AweSim and

XTRNB are required. Please refer to Section 7.22.1.3, “XTR Playback”, on page 107, on

how to connect AweSim and the XTRNB device. It is recommended to also include the

Debugger device for debugging or logging needs.

To playback XTR, please enter the following commands in the simulator‟s console

window:

new

adddevice "Debugger"

adddevice "Awesim Processor"

cpu.type K8

cpu.setname Athlon64

cpu.setnumcores 1

cpu.forcefinegrainedevents 1

cpu.SetStartUpFID 12

adddevice xtrnb

connect "Awesim Processor #0" "CPU Bus 0" "xtrnb #2" "CPU Bus 0"

connect "Awesim Processor #0" "Interrupt / IOAPIC Bus" "xtrnb #2"

"Interrupt / IOAPIC Bus"

cpu.type K8

modifyregistry "System Bus Frequency" "100"

xtrnb.xtrfile <filename.xml>

xtrnb.debug 1

xtrnb.xtrlogfile <filename-playback.log>

SetLogFile <filename.log>

SetLogFileEnabled 1

SetErrorLogFile <filename.errlog>

AMD Confidential

User Manual September 12
h
, 2008

108 Chapter 7: Device Configuration

SetErrorLogFileEnabled 1

go [or hit Run on the shell]

7.22.1.4 Stop XTR Playback

XTR Playback will stop automatically when End Of Trace (EOT) event is reached. It

could also be stopped prematurely by clicking on the stop button or by executing the stop

automation command.

Initialization and Reset State

XTR Record does not have any special Initialization or Reset state.

Init from BSD

The BSD contents of XTRNB are loaded. The XTR XML file is skipped the number of

lines to the last event read and the system prepares itself for playback.

Init from Automation Script

The CPU is initialized from the initialization data in XML and the system prepares itself

for playback. This method does not support persistent storage of XTR state to be replayed

later.

Reset

The XTR file handle is closed. All the queued events are flushed. Simulated DIMM

memory is flushed and unallocated.

Contents of a BSD

XTR Record contains xtrsvc, which is described below, in addition to modules in the

simulation. For XTR Playback, the BSD is composed of following modules:

shell:0 : The shell under which a simulation is executed.

xtrsvc:0 : XTR service which facilitates execution of XTR Playback.

Debug:0 : The SimNow Debugger.

Cpu:0 : AweSim CPU Module. There might be more CPUs for XTR-MP.

xtrnb:0 : XTR Northbridge.

In persisted BSD, XTRNB, which is only used during XTR Playback, saves and restores

events that have been queued but not triggered yet, DIMM image and internal states of

the XTRNB. Complete XTR Playback setup also includes AweSim and optionally the

AMD Debugger. Please refer to the documentation of AweSim and AMD Debugger for

their respective contents in the BSD file.

XTR Record does not store any contents in the persistent BSD file.

Log Messages

Messages are logged only by XTRNB, which is only used during XTR Playback. Some

of the following may only be logged when xtrnb.debug is set to enable. Some of the Log

messages are:

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 109

XTRNB: Attempting to allocate large buffer of size 1074503680

Logged during XTR initialization phase just before XTR tries to allocate memory to

simulate DIMM.

XTRNB: Sending APIC initialization data to CPU0

Logged during XTR initialization phase just before APIC memory is initialized.

XTRNB: Write to TSC ignored. Please use M00000010 for writes to TSC

Logged during XTR initialization phase.

XTRNB: CPU0 rejected Initialization SREG XXXXXXXXXX with zeros

Logged during XTR initialization phase and displayed if the initialization data is invalid

for the SREG. This may or may not be an error in the initialization data.

XTRNB: CPU0 rejected Initialization of SREG XXXXXXXXX with specific value

Logged during XTR initialization phase

XTRNB: Skipping write to μCode patch MSR C0010020

Logged during XTR initialization phase

XTRNB: Processing GETMEMPTR request for XXXXXXXXXXX:...Denied

Logged during XTR execution phase where XXXXXX is the physical address of page

requested. The request may be denied if it is requested for a MMIO region.

** DEVMC_READMEM [800000007F1CAD00/296]: 55 8B EC 51 56 8B 75 0C
** DEVMC_WRITEMEM [400000007F294FD4/523]: A9 17 53 80

Logged during XTR execution phase. 800000007F1CAD00 is the address 296 is the

instruction count. The data following the ":" is the data that returned and received to and

from the CPU. This message is logged for a READ/WRITE MEMORY request but no

record is present in XTR XML file for this read. The data is hence served and written

from and to backing store (whose contents were originally initialized from the XTR

binary file)

XTRNB: Ir A03E w/event time = 326, Consume time = 597, CPU ICount = 99: 01 00
XTRNB: Iw A03E w/event time = 345, Consume time = 616, CPU ICount = 118: 00 00
XTRNB: Ia D1 w/event time = 326462, Consume time = 326462, CPU ICount = 326235

Logged during XTR execution phase when IOR/IOW message is received by XTRNB.

A03E is the address of IOR/IOW and the data after the ":" is the data that is returned and

received to and from the CPU. „Ia‟ is for Interrupt Acknowledgement and D1 is the

vector.

XTRNB: Time Resync - Adjusting time by -271...

Logged during execution when there is a timing discrepancy detected between an event

in XTR XML and that received from the CPU. XTRNB adjusts to this discrepancy. In

ideal environment this should not occur.

XTRNB: Queuing event CPU0[DMAW] for time 8403

Logged during execution when a DMAW event is queued so that it could be triggered at

a later point. 8403 is the time when this event should be triggered.

AMD Confidential

User Manual September 12
h
, 2008

110 Chapter 7: Device Configuration

XTRNB: Setting event trigger delay for CPU0[DMAW] to 1205

Logged during execution. DMAW event is setup to be triggered at a later point. 1205 is

the difference between NOW and event time.

XTRNB: Processing queued event CPU0[DMAW] ICount=8403 ShellICount=8403.

Logged during execution. Trigger for event setup earlier is invoked. CPU0 and DMAW

could have different values depending on which CPU it is (MP-XTR only) and which

event is processed.

Interfaces
XTRNB has eight CPU interfaces and an IO Interrupt / APIC interface to connect to the

AweSim‟s CPU Bus and IO Interrupt / APIC interface respectively. For XTR-UP, only

one CPU interface may be used.

7.22.2 XTR Structure

7.22.2.1 XML Structure

XTR is a text file that contains XML elements for initialization elements, events and

instructions. The XML schema or DTD is not formally defined. XTR XML contains an

Initialization section followed by events and instruction sections. Last event in the XML

must be an EOT event indicating the end of trace. Some XTR elements are explained

below. Please refer to Section 7.22.5, “Example XTR XML File”, on page 113, or the

exact and complete structure of the XTR XML.

All values in the XML are in hexadecimal except for ICount and Length values which are

always in decimal. Exceptions will be stated as necessary.

<Init Device="DIMM" Type="MEMI" Size="536870912" />

Memory initialization (MEMI) information from and for the DIMM device. The value for

"Size" attribute the size of DIMM in bytes in decimal (base 10). Note that this does not

require that XTR playback to have a DIMM device

<Init Device="MEM" Type="MEMI"
File="c:\simnow\xtr\DivergenceAt324303\test_snapshot_3dmarkwof_0.bin" />

Memory initialization file. File path may be relative to the current path.

<Init Device="CPU0" Type="CPU" Item="ICount" Data="227"/>

Initial instruction count in decimal. Different CPUs can have different initial ICounts.

<Init Device="CPU0" Type="CPU" Item="ModeFlags" Data="00000001"/>

The upper 32 bit of ModeFlags must contain Execution Control flags. Please refer to

Section 7.22.3, “ModeFlags”, on page 112 for more information.

<Init Device="CPU0" Type="SREG" Item="TSC" Data="0000000000000000"/>

The initialization information for MSRs. Note that initialization information for TSC will

be ignored. Please use M00000010 for writes to TSC

<Init Device="CPU0" Type="APIC" Length="1024" >

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 111

.

.

.
</Init>

APIC initialization information.

<INSTR Device="CPU0" Type="FJMP" ICount="6778" JMP="1" RIP="f86b0619" />

An FJMP Instruction. RIP is optional and is only used to double check whether if the

FJMP is taken at the correct instruction. JMP attribute can have the following values:

JMP=0: Force Do-not-take-jump for this instruction

JMP=1: Force Take-jump for this instruction

<Event Device="CPU0" Type="IOW" ICount="6817" Address="a038" Size="2">
<Data Length="2" Value="40af" />
</Event>

Defines an IOR or IOW dormant event.

<Event Device="CPU0" Type="DMAW" ICount="8403" Address="000000000c254340"
Length="64">
<Data Length="64"
Value="6d00005f5e5bc3909ac04600b7c04600d4c04600eec0460008c1460022c146003cc146
002fc2460067c2460085c24600a3c24600909090909090909090909090" />
</Event>

Defines a DMAW event.

<Event Device="CPU0" Type="PIN" ICount="325496" Name="INTR" Level="A" />

Defines an INTR PIN event. Level="A" for Asserted or "D" for Deasserted. Name could

be INTR, RESET, A20M, NMI, PAUSE, SMI, and <Unknown>.

<Event Device="TO_DO_IN_NB" Type="APIC" ICount="325496" Name="EXTINT"
DestinationMode="F" DeliveryMode="07" Level="F" TriggerMode="F" Vector="00"
Destination="00" />

Defines an APIC Event. Name could be EOI, INIT, STARTUP, SMI, NMI, INTR,

REMOTE READ, EXTINT, LPARB, and Unknown. Device can be the name of the

device that issues the interrupt. Current XTR implementation ignores the name of the

device.

<Event Device="CPU0" Type="INTACK" ICount="325496" Vector="00000000000000d1" />

Defines an INTACK cycle event.

<Event Device="XTR" Type="EOT" ICount="400001" />
Defines an End of Trace (EOT) event.

<Event Device="CPU0" Type="RDMSR" ICount="1404861740" Address="00000010"
Data="0000000053BC7D2C" />
Defines a RDMSR event.

<Event Device="CPU0" Type="MEMR" ICount="3133971257"
Address="00000000000A88B2" Size="1">
 <Data Length="1" Value="FF" />
</Event>

AMD Confidential

User Manual September 12
h
, 2008

112 Chapter 7: Device Configuration

<Event Device="CPU0" Type="MEMW" ICount="3133971259"
Address="00000000000A88B2" Size="1">
 <Data Length="1" Value="01" />
</Event>

Defines a Memory Read or Memory Write event. MEMR and MEMW are recorded for

MMIO ranges.

7.22.2.2 XTR Binary File Contents

XTR Binary file contains the memory image of the system just before the XTR Record

started. The binary file contains multiple records where each record contains has the

following structure:

Physical Address Of the Page: 8 bytes

Count of Bytes in this Page: 4 Bytes

Data Of the Page: Count of Bytes earlier

Currently XTR only supports page size of 4096 bytes. Both the DIMM and MMIO may

be present in the XTR Binary file. The last record in the binary file must have a count of

zero to indicate end of memory image.

7.22.3 ModeFlags

ModeFlags defines some of the states of the CPU that are important for execution. The

upper 32 bits store the Execution Control flags e.g. HLT and <ignore interrupts for 1

instruction when we change stack segment>. The lower 32 bits is redundant from other

initialization values in the XTR initialization but is there to maintain code consistency.

Table 7-7 shows the Execution Control Flags (upper 32 bit):

Execution Control Flag Value Description

BIUI_LOCK 0x00000001 Bus is locked
BIUI_RESET 0x00000002 Processor RESET pin.

BIUI_INIT 0x00000004 INIT pin

BIUI_INTR 0x00000008 Interrupt

BIUI_NMI 0x00000010 NMI

BIUI_SMI 0x00000020 SMI

BIUI_IGNNE 0x00000040 Floating point IGNNE

BIUI_A20M 0x00000080 A20Mask

BIUI_PAUSE 0x00000100 PAUSE

BIUI_HOLD 0x00000200 HOLD

BIUI_UNUSED 0x00000400 Unused

BIUI_STOP 0x00000800 Pseudo pin that stops simulation

Table 7-7: Execution Control Flags

Table 7-8 shows other internal execution control flags. Some flags may be AweSim

specific.

Execution Control Flag Value Description

ECF_SMCRESTART 0x00001000 SMC detected in current translation (restart required).

ECF_GENEXCEPTION 0x00002000 SVM virtual interrupt pending

ECF_VINTR 0x00004000 INIT pin

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 113

Execution Control Flag Value Description

ECF_UNUSED 0x00008000 Unused

ECF_HALT 0x00010000 We are in a HALT

ECF_SHUTDOWN 0x00020000 We are in a SHUTDOWN

ECF_FPUHANG 0x00040000 FPU freeze

ECF_APICHOLD 0x00080000 APIC freeze

ECF_IGNOREINTR 0x00100000 Ignore INTR for one instruction

ECF_TRAP 0x00200000 EFlags.TF bit

ECF_EXECBP 0x00400000 User execution breakpoints exist

ECF_LATCHEDSMI 0x00800000 A latched SMI was seen

ECF_STACKEDSMI 0x01000000 A latched SMI from within an SMI

ECF_LATCHEDNMI 0x02000000 A latched NMI was seen

ECF_SMIEDGE 0x04000000 An SMI edge has been detected

ECF_NMIEDGE 0x08000000 An NMI edge has been detected

ECF_APICMSGPENDING 0x10000000 An APIC message is waiting to be handled

ECF_APICACTPENDING 0x20000000 Any other APIC activity is pending

ECF_DR7CODEBREAKS 0x40000000 DR7 has code breakpoints enabled

ECF_LASTWASIO 0x80000000 Set if previous. instruction did I/O

Table 7-8: Internal Execution Control Flags

7.22.4 Limitations

 Any line in XTR XML file cannot be greater than 255 characters.

 Comment start tag "<!--" should start on a new line and end tag "-->" should be

last characters on a line.

 The XML attributes are case sensitive but the values are not.

 XTR cannot be used to playback BIOS bring-ups.

 Currently XTR does not support Pacifica platform.

 Currently XTR traces recorded off SimNow cannot be played back in other XTR

playback environments.

 Although not needed, XTR traces recorded by SimNow might contain data

written by the CPU, e.g. IOW.

7.22.5 Example XTR XML File
<?xml version="1.0" encoding="utf-8" ?>
<AmdEventTrace version="1.0">
<Init Device="DIMM" Type="MEMI" Size="536870912" />
<Init Device="MEM" Type="MEMI" File="xtr1.bin" />
<Init Device="CPU0" Type="CPU" Item="ICount" Data="227" />
<Init Device="CPU0" Type="CPU" Item="RIP" Data="0000000082D6A8E4" />
<Init Device="CPU0" Type="CPU" Item="RAX" Data="0000000000628E01" />
<Init Device="CPU0" Type="CPU" Item="RBX" Data="000000000B0BE41C" />
<Init Device="CPU0" Type="CPU" Item="RCX" Data="000000000B080E20" />
<Init Device="CPU0" Type="CPU" Item="RDX" Data="0000000000000080" />
<Init Device="CPU0" Type="CPU" Item="RSI" Data="0000000000C8FA38" />
<Init Device="CPU0" Type="CPU" Item="RDI" Data="000000000B09A6B8" />
<Init Device="CPU0" Type="CPU" Item="RBP" Data="000000000B0BEFE0" />
<Init Device="CPU0" Type="CPU" Item="RSP" Data="00000000B043ADCC" />
<Init Device="CPU0" Type="CPU" Item="R8" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="R9" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="R10" Data="0000000000000000" />

<Init Device="CPU0" Type="CPU" Item="R11" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="R12" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="R13" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="R14" Data="0000000000000000" />

AMD Confidential

User Manual September 12
h
, 2008

114 Chapter 7: Device Configuration

<Init Device="CPU0" Type="CPU" Item="R15" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="ModeFlags" Data="00000001" />
<Init Device="CPU0" Type="CPU" Item="EFlags" Data="0000000000000002" />
<Init Device="CPU0" Type="CPU" Item="ES" Data="00000023" />
<Init Device="CPU0" Type="CPU" Item="ESBase" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="ESLimit" Data="00000000FFFFFFFF" />
<Init Device="CPU0" Type="CPU" Item="ESFlags" Data="00000CF3" />
<Init Device="CPU0" Type="CPU" Item="CS" Data="00000008" />
<Init Device="CPU0" Type="CPU" Item="CSBase" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="CSLimit" Data="00000000FFFFFFFF" />
<Init Device="CPU0" Type="CPU" Item="CSFlags" Data="00000C9B" />
<Init Device="CPU0" Type="CPU" Item="SS" Data="00000010" />
<Init Device="CPU0" Type="CPU" Item="SSBase" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="SSLimit" Data="00000000FFFFFFFF" />
<Init Device="CPU0" Type="CPU" Item="SSFlags" Data="00000C93" />
<Init Device="CPU0" Type="CPU" Item="DS" Data="00000023" />
<Init Device="CPU0" Type="CPU" Item="DSBase" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="DSLimit" Data="00000000FFFFFFFF" />
<Init Device="CPU0" Type="CPU" Item="DSFlags" Data="00000CF3" />
<Init Device="CPU0" Type="CPU" Item="FS" Data="00000038" />
<Init Device="CPU0" Type="CPU" Item="FSBase" Data="000000007FFDE000" />
<Init Device="CPU0" Type="CPU" Item="FSLimit" Data="0000000000000FFF" />
<Init Device="CPU0" Type="CPU" Item="FSFlags" Data="000004F3" />

<Init Device="CPU0" Type="CPU" Item="GS" Data="00000000" />
<Init Device="CPU0" Type="CPU" Item="GSBase" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="GSLimit" Data="000000000000FFFF" />
<Init Device="CPU0" Type="CPU" Item="GSFlags" Data="00000000" />
<Init Device="CPU0" Type="CPU" Item="LDTR" Data="00000000" />
<Init Device="CPU0" Type="CPU" Item="LDTBase" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="LDTLimit" Data="000000000000FFFF" />
<Init Device="CPU0" Type="CPU" Item="LDTFlags" Data="00000000" />
<Init Device="CPU0" Type="CPU" Item="TR" Data="00000028" />
<Init Device="CPU0" Type="CPU" Item="TSSBase" Data="0000000080042000" />
<Init Device="CPU0" Type="CPU" Item="TSSLimit" Data="00000000000020AB" />
<Init Device="CPU0" Type="CPU" Item="TSSFlags" Data="00000089" />
<Init Device="CPU0" Type="CPU" Item="IDTBase" Data="000000008003F400" />
<Init Device="CPU0" Type="CPU" Item="IDTLimit" Data="00000000000007FF" />
<Init Device="CPU0" Type="CPU" Item="GDTBase" Data="000000008003F000" />
<Init Device="CPU0" Type="CPU" Item="GDTLimit" Data="00000000000003FF" />
<Init Device="CPU0" Type="CPU" Item="DR0" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="DR1" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="DR2" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="DR3" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="DR6" Data="00000000FFFF0FF0" />
<Init Device="CPU0" Type="CPU" Item="DR7" Data="0000000000000400" />
<Init Device="CPU0" Type="CPU" Item="CR0" Data="0000000080010031" />
<Init Device="CPU0" Type="CPU" Item="CR2" Data="000000000000000C" />
<Init Device="CPU0" Type="CPU" Item="CR3" Data="000000000043D000" />
<Init Device="CPU0" Type="CPU" Item="CR4" Data="00000000000006D9" />
<Init Device="CPU0" Type="CPU" Item="CR8" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="TSC" Data="00000000000000E3" />
<Init Device="CPU0" Type="SREG" Item="M00000010" Data="00000000000000E3" />
<Init Device="CPU0" Type="SREG" Item="MC0010111" Data="0000000001000000" />
<Init Device="CPU0" Type="SREG" Item="MC0000080" Data="00000000" />
<Init Device="CPU0" Type="SREG" Item="MC0000100" Data="000000007FFDE000" />
<Init Device="CPU0" Type="SREG" Item="MC0000101" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0000102" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0011004" Data="000000008001350C" />
<Init Device="CPU0" Type="SREG" Item="M000000FE" Data="0000000000000508" />
<Init Device="CPU0" Type="CPU" Item="FCW" Data="0000107F" />
<Init Device="CPU0" Type="CPU" Item="FSW" Data="00000020" />
<Init Device="CPU0" Type="CPU" Item="FTW" Data="0000FFFF" />
<Init Device="CPU0" Type="CPU" Item="FDS" Data="00000000" />
<Init Device="CPU0" Type="CPU" Item="FCS" Data="00000000" />
<Init Device="CPU0" Type="CPU" Item="FIP" Data="0000000000000000" />
<Init Device="CPU0" Type="CPU" Item="FOP" Data="00000000" />

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 115

<Init Device="CPU0" Type="CPU" Item="FP0" Data="00000000000000000000" />
<Init Device="CPU0" Type="CPU" Item="FP1" Data="00000000000000000000" />
<Init Device="CPU0" Type="CPU" Item="FP2" Data="3ffee6455d0000000000" />
<Init Device="CPU0" Type="CPU" Item="FP3" Data="3ffdb139430000000000" />
<Init Device="CPU0" Type="CPU" Item="FP4" Data="4005c45c6d0000000000" />
<Init Device="CPU0" Type="CPU" Item="FP5" Data="4004ccf8aa0000000000" />
<Init Device="CPU0" Type="CPU" Item="FP6" Data="40018ac7100000000000" />
<Init Device="CPU0" Type="CPU" Item="FP7" Data="40068d00470000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0000081" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0000082" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0000083" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000001B" Data="00000000FEE00900" />
<Init Device="CPU0" Type="SREG" Item="M00000200" Data="0000000000000006" />
<Init Device="CPU0" Type="SREG" Item="M00000202" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000204" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000206" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000208" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000020A" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000020C" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000020E" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000201" Data="000000FF80000800" />
<Init Device="CPU0" Type="SREG" Item="M00000203" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000205" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="M00000207" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000209" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000020B" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000020D" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000020F" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000250" Data="1E1E1E1E1E1E1E1E" />
<Init Device="CPU0" Type="SREG" Item="M00000258" Data="1E1E1E1E1E1E1E1E" />
<Init Device="CPU0" Type="SREG" Item="M00000259" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000268" Data="1515151515151515" />
<Init Device="CPU0" Type="SREG" Item="M00000269" Data="1010101010101010" />
<Init Device="CPU0" Type="SREG" Item="M0000026A" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000026B" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000026C" Data="0404040404040404" />
<Init Device="CPU0" Type="SREG" Item="M0000026D" Data="0404040404040404" />
<Init Device="CPU0" Type="SREG" Item="M0000026E" Data="1010101010101010" />
<Init Device="CPU0" Type="SREG" Item="M0000026F" Data="1010101010101010" />
<Init Device="CPU0" Type="SREG" Item="M000002FF" Data="0000000000000C00" />
<Init Device="CPU0" Type="SREG" Item="M00000400" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000405" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000408" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M0000040C" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000410" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M000001D9" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M000001DB" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M000001DC" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M000001DD" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M000001DE" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000277" Data="0007010600070106" />
<Init Device="CPU0" Type="SREG" Item="M00000174" Data="0000000000000008" />
<Init Device="CPU0" Type="SREG" Item="M00000175" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="M00000176" Data="000000008052D480" />
<Init Device="CPU0" Type="CPU" Item="MXCSR" Data="0000000000001F80" />
<Init Device="CPU0" Type="CPU" Item="XMM00" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM00" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM01" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM02" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM03" Data="00000000000000000000000000000000"
/>

AMD Confidential

User Manual September 12
h
, 2008

116 Chapter 7: Device Configuration

<Init Device="CPU0" Type="CPU" Item="XMM04" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM05" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM06" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM07" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM08" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM09" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM10" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM11" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM12" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM13" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM14" Data="00000000000000000000000000000000"
/>
<Init Device="CPU0" Type="CPU" Item="XMM15" Data="00000000000000000000000000000000"

/>
<Init Device="CPU0" Type="SREG" Item="MC0010010" Data="0000000000160601" />
<Init Device="CPU0" Type="SREG" Item="MC0010015" Data="000000000A000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010016" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010017" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010018" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010019" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC001001A" Data="0000000080000000" />
<Init Device="CPU0" Type="SREG" Item="MC001001D" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010030" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010031" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010032" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010033" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010034" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010035" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010112" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0010113" Data="0000000000000001" />
<Init Device="CPU0" Type="SREG" Item="MC0011020" Data="0000000000000000" />
<Init Device="CPU0" Type="SREG" Item="MC0011023" Data="0000000000000000" />
<Init Device="CPU0" Type="APIC" Length="1024">
<Data Length="16" Value="00000000000000000000000010000400" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="0000000000000000ffffffffff000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000010000000000" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000000000000000000000000000000" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 117

<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
</Init>
<!-- Trace started on instruction 227 -->

<Event Device="CPU0" Type="IOR" ICount="326" Address="a03e" Size="2">
<Data Length="2" Value="0100" />

</Event>
<Event Device="CPU0" Type="IOW" ICount="345" Address="a03c" Size="2">

<Data Length="2" Value="0000" />
</Event>

<Event Device="CPU0" Type="IOW" ICount="364" Address="a03e" Size="2">
<Data Length="2" Value="1100" />

</Event>
<Event Device="CPU0" Type="IOR" ICount="588" Address="a037" Size="1">

<Data Length="1" Value="0c" />
</Event>
<INSTR Device="CPU0" Type="FJMP" ICount="6778" JMP="1" RIP="f86b0619" />
<INSTR Device="CPU0" Type="FJMP" ICount="6797" JMP="1" RIP="f86b0619" />
<Event Device="CPU0" Type="IOW" ICount="6817" Address="a038" Size="2">

<Data Length="2" Value="40af" />
</Event>
<INSTR Device="CPU0" Type="FJMP" ICount="7081" JMP="1" RIP="f86b0317" />
<INSTR Device="CPU0" Type="FJMP" ICount="7099" JMP="1" RIP="f86b0317" />
<Event Device="CPU0" Type="IOR" ICount="7110" Address="a037" Size="1">

<Data Length="1" Value="0d" />
</Event>
<Event Device="CPU0" Type="IOR" ICount="7121" Address="a037" Size="1">

AMD Confidential

User Manual September 12
h
, 2008

118 Chapter 7: Device Configuration

<Data Length="1" Value="0d" />
</Event>
<Event Device="CPU0" Type="IOR" ICount="7137" Address="a03e" Size="2">

<Data Length="2" Value="0000" />
</Event>
<Event Device="CPU0" Type="IOW" ICount="7198" Address="a03c" Size="2">

<Data Length="2" Value="5fc0" />
</Event>
<Event Device="CPU0" Type="DMAW" ICount="8403" Address="000000000c254340" Length="64">

<Data Length="64"
Value="6d00005f5e5bc3909ac04600b7c04600d4c04600eec0460008c1460022c146003cc14600
2fc2460067c2460085c24600a3c24600909090909090909090909090" />
</Event>
<Event Device="CPU0" Type="DMAW" ICount="18228" Address="000000000e67dc00"
Length="64">

<Data Length="64"
Value="00005f5e5d5b64890d0000000081c414040000c218008bff293b47003b3b47003b3b4700
4d3b47004d3b47004d3b4700568bf18b460c85c0c706f4eb5b007406" />
</Event>
<Event Device="CPU0" Type="DMAW" ICount="23921" Address="000000000c254340"
Length="64">

<Data Length="64"
Value="6d00005f5e5bc3909ac04600b7c04600d4c04600eec0460008c1460022c146003cc14600

2fc2460067c2460085c24600a3c24600909090909090909090909090" />
</Event>
<Event Device="CPU0" Type="PIN" ICount="326462" Name="INTR" Level="A" />
<Event Device="TO_DO_IN_NB" Type="APIC" ICount="326462" Name="EXTINT"
DestinationMode="F" DeliveryMode="07" Level="F" TriggerMode="F" Vector="00" Destination="00" />
<Event Device="CPU0" Type="PIN" ICount="326462" Name="INTR" Level="D" />
<Event Device="CPU0" Type="INTACK" ICount="326462" Vector="00000000000000d1" />
<Event Device="CPU0" Type="IOW" ICount="326532" Address="70" Size="1">

<Data Length="1" Value="0c" />
</Event>
<Event Device="CPU0" Type="IOR" ICount="326536" Address="71" Size="1">

<Data Length="1" Value="c0" />
</Event>
<Event Device="CPU0" Type="IOW" ICount="326541" Address="70" Size="1">

<Data Length="1" Value="0c" />
</Event>
<Event Device="CPU0" Type="IOR" ICount="326545" Address="71" Size="1">

<Data Length="1" Value="00" />
</Event>
<Event Device="XTR" Type="EOT" ICount="400967" />
</AmdEventTrace>

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 119

7.23 JumpDrive Device

The purpose of the JumpDrive device is to allow easy import and export of data between

a host system and a simulation environment. You can import files from the host system

on to the JumpDrive, where they will be accessible by the simulated operating system.

Data can also be exported from the JumpDrive back to the host system after the

simulation ended.

The image file used by the JumpDrive is very different from any other image files that

the simulator supports. The only image files that can be loaded are those image files that

are saved by the JumpDrive itself.

Section A.7.26, “JumpDrive”, on page 250 describes the JumpDrives automation

commands.

Interface

The JumpDrive device has an USB interface that can connect to any USB controller, e.g.,

you can connect the JumpDrive device to the AMD-8111 I/O Hub.

Initialization and Reset State

The JumpDrives initialized state is all zero. There is no partition table or any other

structure defined. It is totally blank. The default size is 64 Mbytes. The JumpDrive is not

modified after a reset.

Contents of a BSD

The JumpDrive device saves its entire state, including the contents of its memory, to the

BSD. Any data that exists on the JumpDrive device will be restored when the BSD is

reloaded.

Configuration Options

Most of the automation commands will return an error if the JumpDrive is "plugged into"

the simulated computer, i.e., if the JumpDrive device is connected to a USB controller.

The device must be "not connected", i.e., unplugged, to issue commands that alter the

JumpDrive image.

AMD Confidential

User Manual September 12
h
, 2008

120 Chapter 7: Device Configuration

7.24 E1000 Network Adapter Device

The network adapter device models an Intel Pro/1000 MT Desktop Network Adapter.

The adapter depends heavily on MAC address assignment in order to determine how

visible it is to real network resources or other simulator network sessions. The adapter

model requires a separate mediator process to bridge access to the real network. This

device provides a list of automation commands that can be used to configure the adapter

model, see Section A.7, “Automation Commands”, on page 230.

To model network workloads the following are typically required:

1. One or more BSDs with a NIC device included in each BSD.

2. A mediator process running remotely or locally.

The mediator is a background daemon task, whose purpose is to bridge the NIC model to

the real network or other SimNow BSDs. The level of network visibility for each

simulator session depends on the format of the MAC address that is used for the

simulated NIC model.

Figure 7-32 shows depicts four simulator sessions communicating via a mediator.

Figure 7-32: Communication via Mediator

Mediator

Simulator 4

Simulator

1

Simulator

2

Simulator

3

Host: “theclient1” Host: “theclient2”

External Network

HostName: “thehost”

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 121

Alternatively a multi-machine approach can be used in which multiple BSD‟s are loaded

in the same process space. This architecture allows the simulator sessions to pass packets

back and forth without the need for a mediator. Running without a mediator isolates the

simulator sessions from the real network. For more information on running multiple

simulator instances in the same process, see Section 5.3, Multi-Machine Support, on page

41.

Figure 7-33 illustrates multi-machine communication of simulator sessions without a

mediator.

Figure 7-33: Multi-Machine Communication without a Mediator

7.24.1 Simulated Link Negotiation

A link will appear connected in the guest system when one of the following occurs:

 A mediator connection has been established.

 There is at least one other NIC BSD running in the same process, and are aware

of each other.

When a new mediator connection string has been specified, a one-shot link negotiation

will take place within the simulator. Depending on whether a connection was made with

the mediator, the link will appear to be connected or disconnected on the guest. If the

mediator was killed and has since been restarted, then the user will need to perform a

“linkConnect auto”, to restart link negotiation.

Similarly, in a multi-machine setup, the first simulator session will also need to perform a

“linkConnect auto” to ensure that the initial guest sees that other simulator peers have

been connected.

When neither of the above conditions is met, the link appears disconnected in the guest.

It may be necessary to re-start link negotiation via “linkConnect auto”. This will cause

Simulator Process

BSD #1 (Machine 1)

02:02:02:02:02:02
10.0.0.1

BSD #2 (Machine 2)

04:00:00:00:0:04
10.0.0.2

BSD #3 (Machine 3)

06:00:00:00:00:06
10.0.0.3

AMD Confidential

User Manual September 12
h
, 2008

122 Chapter 7: Device Configuration

the NIC model to retry a mediator connection or search for any simulator peers, running

in the same process.

7.24.2 The Mediator Daemon

The mediator provides several services for the simulator session:

 Access to real network resources (DHCP servers, etc.). Note that the mediator

will need to be run with supervisor privileges in order to snoop network traffic on

its host.

 Bridge communication to other simulator sessions.

 Group individual sessions into domains so that identical BSD‟s (with identical

MAC/IP pairs) can be run simultaneously in separate domains.

 Provides an optional gateway to block broadcast traffic and to perform Network

Address Translation (NAT) on identical BSD‟s in different domains.

The mediator can route traffic to and from the real network. This operation requires low-

level kernel actions, so the mediator must be run by a supervisor with sufficient OS

privileges. Users may want to have one machine on the subnet dedicated to running the

mediator in this mode. Client machines that connect to the mediator will not require

supervisor privileges.

The mediator is capable of grouping certain simulator sessions into domains. Domains

isolate groups of simulator sessions from each other. This can be useful when the user

wants to run replicated groups of BSD‟s simultaneously. The user need to ensure that

each group of BSD‟s are using unique domains in the mediator by passing an appropriate

connect string to the mediator or supplying it on the command line using the “-m” option,

see Section 5.1, Command-Line Arguments, on page 35.

The mediator can provide one or more gateways to isolate broadcast traffic from your

simulation environment. A gateway will perform NAT in order to ensure that BSD‟s in

different domains get their packets routed appropriately. The simulator sessions using the

mediator‟s gateway can continue to access network resources, but are essentially hidden

from the real network.

Table 7-9 shows command line switches that the mediator accepts:

Switch Description

-p portNum Dictates what port number the mediator will be listening on for

incoming traffic. It specifies the base port address used by the

mediator, and port usage is based off of this number. The

mediator's listening thread uses portNum + 4.

-l Lists possible host adapters that the mediator can use to snoop real

network traffic.

-s Tells the mediator to snoop real network traffic. Requires

supervisor privileges.

-d DeviceNum Tells the mediator which host adapter to use when snooping real

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 123

network traffic. This device number will need to be one listed

using the “-l” command.

-v[v][v] Turns on verbose output. The verbosity level gets noisier with the

number of “v” on the command line.

-m XX:XX Denotes the two high bytes used to classify the simulator‟s MAC

addresses. By default these values are FA:CD, but can be

configured to avoid collisions with real hardware.

Table 7-9: Mediator Command Line Switches

7.24.3 MAC Addresses for use with the Adapter

The MAC address that the simulated adapter is using determines the level of visibility

that the model will have with other simulator sessions and with the real network. The

mediator routes packets to simulator sessions that have “FA:CD” in the high two bytes of

the MAC address. The simulator sessions that have anything other than “FA:CD” can

only communicate with other simulator sessions in the same process space using a

“multi-machine” approach.

MAC Address beginning with “FA:CD” and having a third byte between 0x00 and 0x20,

are classified as “absolute”. Simulated adapters using this class of MAC Address are

logically equivalent to plugging a real computer into a real network. These sessions can

see real network traffic and are visible to all simulator sessions running via the mediator.

In addition, all broadcast traffic, including ARP‟s are routed to this class of MAC

addresses. Allocations of “absolute” MAC addresses need to be coordinated such that

they are not replicated on the same host subnet.

MAC addresses beginning with “FA:CD” and having a third byte between 0x21 and 0x80

are classified as “fixed”. The simulator adapters using this class of MAC address can

access the real network, but cannot be seen by other simulator sessions outside of its

domain. This class of MAC address allows a user to simultaneously run identical BSD‟s

using unique domains. This class of MAC addresses will not receive broadcast traffic

such as ARP‟s. Allocations of “fixed” MAC addresses need to be coordinated such that

they are not replicated in the same mediator domain.

7.24.4 Example Configurations

MAC address assignment was designed to satisfy many usability needs. Table 7-10

shows a list of possible usage models for the simulator and MAC Address assignments.

7.24.4.1 Absolute NIC

This configuration mimics plugging in a physical computer into whatever network your

mediator is running on. The user must select a MAC Address that is not duplicated

anywhere else on the mediator‟s subnet. All broadcast and targeted network traffic will

be routed to a simulator session using this classification of MAC Address. This provides

maximum visibility for the simulator session.

Example MAC: FA:CD:00:00:00:01

IP Address: Any. Can be a static IP address assigned by your sys admin, or a

AMD Confidential

User Manual September 12
h
, 2008

124 Chapter 7: Device Configuration

DHCP acquired address.

Visibility: Can be seen by external network and all simulator sessions

running anywhere on the network.

Mediator String: “Hostname”

Table 7-10: MAC Address Assignments

7.24.4.2 Client-Server simulated network

This configuration uses “fixed” MAC addresses to allow this domain to be replicated in

the mediator space, without colliding with one another. To allow real network access, we

will also run the mediator with a gateway at IP address 192.168.0.1.

Example MAC: FA:CD:21:00:00:01

IP Address: Static IP address 192.168.0.2

Visibility: Accesses the real network via the mediator‟s gateway. External

network hosts can not directly communicate with this client.

Mediator String: mydomain@hostname

 Table 7-11: Client-Server: Simulator Server

Example MAC: FA:CD:22:00:00:02

IP Address: Static IP address 192.168.0.3

Visibility: Accesses the real network via the mediator‟s gateway. External

network hosts can not directly communicate with this client.

Mediator String: mydomain@hostname

Table 7-12: Client-Server: Simulator Client 1

The BSD‟s that contain the server and client can be run simultaneously on the same

network without any collisions. They will require the user to input different domains in

the mediator connection string, see also Section 5.1, Command-Line Arguments, on page

35 (-m option).

7.24.4.3 Isolated Client-Server simulated network (Same process)

This type of setup isolates the simulator sessions from the real network, only allowing

visibility to other simulator sessions in the same process. A mediator is not required for

this type of setup.

Example MAC: 02:00::00:00:00:01

IP Address: Static IP address 192.168.0.1

Visibility: Can only communicate with BSD‟s in the same simulator process

using multiple machines.

Mediator String: N/A

Table 7-13: Isolated Client-Server: Simulator Server

Example MAC: 02:00::00:00:00:02

IP Address: Static IP address 192.168.0.2

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 125

Visibility: Can only communicate with BSD‟s in the same simulator process

using multiple machines.

Mediator String: N/A

Table 7-14: Isolated Client-Server: Simulator Client 1

7.24.5 Visibility Diagram

Figure 7-34 depicts the mediator routing packets to and from several simulator sessions

in different domains. The session running BSD #3 is using an absolute MAC address, and

therefore is globally visible. This session is no different than any other machine running

on the external network. All simulator sessions, connected to any mediator, will be able

to see this machine.

Notice also that domains one and two are using identical BSDs that are running

simultaneously. To prevent collisions on the external network, the mediator will not route

broadcast packets to these sessions as they are using a fixed MAC classification. The

gateway will be able to do network address translation (NAT) for each BSD in each

domain to make sure that there are no collisions between the two domains.

Figure 7-34: Visibility Diagram

AMD Confidential

User Manual September 12
h
, 2008

126 Chapter 7: Device Configuration

7.25 Plug and Play Monitor Device

The Plug and Play Monitor device (PnP Monitor) conforms to the VESA Plug and Play

Monitor specification and therefore supports the DDC2B standard. DDC (Display Data

Channel) is the Plug and Play standard for monitors. DDC monitors are designed to meet

the VESA (Video Electronic Standards Association) standard that defines the DDC

implementation. If the video card also supports the DDC standard it gets from the PnP

monitor device all the information about its features and makes consequently an

automatic configuration for the best refresh values depending on the selected resolution.

The Plug and Play monitor device supports the DDC1 and DDC2B standards. DDC1 is

primitive and a point to point interface. The monitor is always put at transmit-only mode

(DDC1). The monitor will continuously transmit data until the monitor will be turned off

or switched to the bi-directional mode (DDC2). In DDC2 mode the I
2
C protocol is being

used for data transfers.

Interface

The Plug and Play Monitor device model has a VGA and DVI interface connection.

Connections can be only made to the VGA or DVI interface. It can be connected to the

VGA or DVI connection of a video card device.

Contents of a BSD

The current state of all internal registers and any internal state variables are saved in the

BSD.

Initialization and Reset State

When first initialized or reset the Plug and Play Monitors DDC registers are set to their

default state. After initialization the monitor device will operate in DDC1 mode. The

device will remain in the DDC1 mode until there is a valid HIGH to LOW transition on

the SCL pin, when it will switch to DDC2B mode.

Differences from Real Hardware

The model attempts to match the functionality of the physical devices from a

programmer's perspective. Upon power-up, a “real” Plug and Play monitor will output

valid data only after it has been initialized. During initialization, data will not be available

until after the first nine clock cycles are sent to the device. This Plug and Play monitor

device model does not simulate this behaviour. It will always output valid data.

The Page Write, Acknowedge Polling, and the Write Protection feature are currently not

supported.

Configuration Options

The Plug and Play Monitor device gives you the opportunity to choose from different

Plug and Play Monitor device models, as shown in Figure 7-35.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 127

Figure 7-35: Plug and Play Monitor Device Configuration

AMD Confidential

User Manual September 12
h
, 2008

128 Chapter 7: Device Configuration

7.26 ATI SB400/SB600/SB700 Southbridge Devices

The ATI Southbridge devices provide the basic I/O Southbridge functionality of the

system. Features include 4 or 6 SATA ports, a PIO-mode IDE controller supporting 1 or

2 channels, fully functinoal USB 1.1 Controller supporting legacy emulation, an

LPC/ISA bridge, an SMB 2.0 compliant controller, an IOAPIC controller, HPET timer,

and legacy AT devices (8259 PIC, 8254 PIT, CMOS, and DMA controller). The legacy

AT devices have the standard behavior and IO addresses unless otherwise noted.

Interface

The Southbridge devices have several connection points. Possible connection points

include a PCI bus, an SMB bus, an LPC bus, and an upstream PCI-E link. The PCI bus

acts as a host bus, and should connect to a "PCI Bus Device". The SMB connects to

devices such as the DIMM, an SMB hub device, or another SMB compatible endpoint.

The LPC bus provides connectivity to devices such as Super IO chips and BIOS ROMs.

The PCI-E port is used for connectivity upstream to a compatible Northbridge Device.

See Section 7.27, "ATI RS480/RS780/RD790/RD890 Northbridge Devices", on page 130

for more information.

Initialization and Reset State

When first initialized, the Southbridge devices are in the default state. This is described in

detail in the respective datasheets. The legacy CMOS sub device initializes to all zeroes.

When reset, a Southbridge device takes on all default register values as above. The

exception to this is that the CMOS contents remain the same.

Contents of a BSD
The BSD file contains the contents of all registers. It also saves the contents of any

buffers, and states of all internal devices (HDD controllers, PIT, PIC, etc.). When the

BSD file is read in, all buffers are filled with past data, and all states are restored to their

saved states.

Configuration Options
These Southbridge devices share many configuration properties with the AMD-8111

Southbridge. For more information please refer to Section 7.11, “AMD-8111™

Southbridge Devices – IO Hubs”, on page 86.

Addittionaly these SouthBridge devices contain a SATA configuration page to attatch

images to the individual SATA ports.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 129

Figure 7-36: ATI SB600 SATA Configuration Dialog

Log Messages
These SouthBridge devices have the ability to log messages to the Message Log Window

as specified by the options in the Logging Option tab. These devices can log I/O-mapped

Transactions, Memory-mapped Transactions, and SMI and SCI assertions.

Difference from Real Hardware
These Southbridge devices differ from other devices mainly in those items that deal with

real-time operation. Those items cannot be modeled in the current simulator. The

functionality of the USB 2.0 controller is also absent (PCI registers and memory-mapped

registers are the only portion present). Hardware supporting HD Audio is also not

modelled in SimNow.

AMD Confidential

User Manual September 12
h
, 2008

130 Chapter 7: Device Configuration

7.27 ATI RS480/RS780/RD790/RD890 Northbridge Devices

The ATI RS480/RD790/RS780 feature set includes an upstream HyperTransport CPU

interface, a PCI-E interface, and an A-Link PCI-E dowstream interface to the

SouthBridge. Depending on the part and the platform, each device may have some

number of available PCI-E slots to connect with endpoint devices.

Interface
These Northbridge devices provide an upstream HyperTransport interface for

communication with the Host. The Downstream link is a 2x or 4x PCI-E link used for

communication with a SouthBridge device. Several PCI-E slot interfaces are also

available. The number of slots varies by part and platform specifications.

Contents of a BSD
The current state of all PCI configuration registers and any internal state variables are

saved in the BSD.

Configuration Options
No configuration options currently.

Log Messages

No logging is provided, other than the global options provided by each device. See

Section 9.3, “I/O Logging”, on page 140 for more information.

Difference from Real Hardware
The ATI RS480 and ATI RS780 device models do not simulate their integrated graphics

processors. The RS780 model does not simulate the integrated HD Audio device.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 131

7.28 AMD “Istanbul” Device

The AMD "Istnabul" device is a 6 core processor node, suitable for an L1 socket. It

emulates a planned product that derives from a revision of the AMD Family10h product

line. The device iteself is composed of 6 individual AweSim Processor Devices that are

connected to a single “AMD 8th Generation Integrated Northbridge Device”.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

AMD “Istanbul” Device has several connection ports. It has 4 HyperTransport links split

to form 8 sub-links. Each sub-link can connect to a coherent HyperTransport device (such

as another AMD “Istanbul” Device) or a non-Coherent HyperTransport device (such as

AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and should be

connected to only one other device. AMD “Istanbul” Device also exposes two DRAM

channel interfaces "DCT0" and "DCT1" to interface with system memory.

Contents of a BSD

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Configuration Options

See the following sections:

- Section 3.3, "Working with Device Groups", on page 18

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Log Messages

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Difference from Real Hardware

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

AMD Confidential

User Manual September 12
h
, 2008

132 Chapter 7: Device Configuration

7.29 AMD “Sao Paulo” Device

The AMD "Sao Paulo" device is a 8 core processor node, suitable for a G34 socket. It

emulates a planned product that derives from a revision of the AMD Family10h product

line. The device iteself is composed of 8 individual AweSim Processor Devices that are

connected to a single “AMD 8th Generation Integrated Northbridge Device”.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

"Sao Paulo" has several connection ports. It has 4 HyperTransport links split to form 8

sub-links. Each sub-link can connect to a coherent HyperTransport device (such as

another AMD “Istanbul” Device) or a non-Coherent HyperTransport device (such as

AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and should be

connected to only one other device. "Sao Paulo" also exposes two DRAM channel

interfaces "DCT0" and "DCT1" to interface with system memory.

Contents of a BSD

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Configuration Options

See the following sections:

- Section 3.3, "Working with Device Groups", on page 18

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Log Messages

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Difference from Real Hardware

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

AMD Confidential

User Manual September 12
th
, 2008

Chapter 7: Device Configuration 133

7.30 AMD “Magny-Cours” Device

The AMD "Magny-Cours" device is a 12 core processor node, suitable for a G34 socket.

It emulates a planned product that derives from a revision of the AMD Family10h

product line. The device iteself is composed of 12 individual AweSim Processor Devices

that are connected to dual AMD 8th Generation Integrated Northbridge Devices.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

"Magny-Cours" has several connection ports. It has 4 HyperTransport links split to form

8 sub-links. Each sub-link can connect to a coherent HyperTransport device (such as

another AMD “Istanbul” Device) or a non-Coherent HyperTransport device (such as

AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and should be

connected to only one other device. "Magny-Cours" also exposes four DRAM channel

interfaces "DCT0", "DCT1", "DCT2" and "DCT3" to interface with system memory.

Contents of a BSD

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Configuration Options

See the following sections:

- Section 3.3, "Working with Device Groups", on page 18

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Log Messages

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

Difference from Real Hardware

See the following sections:

- Section 7.1, “AweSim Processor Device”, on page 51

- Section 7.10, “AMD 8th Generation Integrated Northbridge Device”, on page 82

AMD Confidential

User Manual September 12
h
, 2008

134 Chapter 7: Device Configuration

This page is intentionally blank.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 8: PCI Configuration Viewer 135

8 PCI Configuration Viewer
The PCI Config Viewer can be used to scan PCI buses and report information about the

configuration-space settings for each PCI device.

Figure 8-1: PCI Configuration Viewer

PCI bus

number

PCI
configuration-

space

The columns

show the low
nibble (0-Fh)

of the PCI

configuration-

space register

The rows

show the high

nibble (00-
F0h) of the

PCI

configuration-

space register

PCI

device

number

PCI
function

number

List of all PCI

devices

AMD Confidential

User Manual September 12
h
, 2008

136 Chapter 8: PCI Configuration Viewer

8.1 Scanning PCI Buses

To view the PCI Config Viewer Dialog select the "View→Show PCI Config Viewer”

entry from the Main Window menu. To scan a PCI bus, you must first load a bsd file that

contains a CPU device. The dialog should look like the one shown in Figure 8-1.

8.2 Modifying the PCI Configuration contents

To modify the PCI configuration registers of a specific PCI device, select a device listed

in the PCI Config Viewers list box. The PCI Config Viewer shows the contents of all PCI

configuration registers of the selected device. To modify a certain byte of a PCI

configuration register, click on the desired hex value and enter a new hex value. To apply

the changes, click on the „Apply Register Modifications‟ button.

Read-only bits cannot be modified using the PCI Config Viewer. Modified values appear

in red in the PCI configuration register list until you click on the „Apply Register

Modifications‟ button or close the PCI Config Viewer dialog.

To change the byte view of the PCI configuration registers to a dword view, check the

„DWORD PCI Access‟ check box.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 9: Logging 137

9 Logging
The simulator provides support for three types of logging:

 A message log that can provide detailed text data from simulator devices and

modules.

 An error log that provides text messages in response to critical errors or

unexpected conditions.

 I/O Logging that provides detailed information about PCI Configuration, I/O and

Memory Space accesses.

9.1 Message Log

The simulator shell provides an interface that loaded modules (devices and extensions)

may use to report status and events. The messages may be displayed in a window, written

to a file, or both. The information log may be enabled and disabled on a module-specific

basis.

The informational log is controlled via the "Message Log Window" dialog box. To view

this dialog, select the "View→Message Log" entry from the Main Window shell menu.

A sample of this dialog is shown in Figure 9-1:

AMD Confidential

User Manual September 12
h
, 2008

138 Chapter 9: Logging

Figure 9-1: Message Log

The left-hand window lists all of the currently loaded modules. The user may individually

enable or disable logging from a given module by using the checkbox next to the

module's name. In addition, the user may configure module-specific logging options by

double-clicking on the module name.

The top-right window contains three checkboxes which allow the user to control whether

messages are displayed in the log window, written to a file, or logged to the AMD

SimNow console. The bottom right window is used to display the informational message

if the "Log to Window" option is selected.

To open the log file the first time a simulation is started, check the "Log To File" box is

checked. The log file will remain open until one of the following events occurs:

 The BSD is closed or the simulator program terminates.

 The simulation is stared with the "Log To File" box unchecked.

 The simulation is started with a new log-file name specified.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 9: Logging 139

9.2 Error Log

The simulator provides an interface that loaded modules may use to report critical errors

or unexpected conditions. The messages are always written to a file, and the most-recent

messages may be displayed in a window. The error log may not be disabled.

The most-recent error log entries may be viewed by selecting the "View→Error Log"

entry from the Main Window menu, shown in Figure 9-2.

The error log file is enabled by checking the "Log to File" check box in the Message log

dialog (Figure 9-2) and setting a filename for the error log. This file is created (or

truncated to zero length if it already exists) and opened whenever a BSD file is opened or

a new BSD is created. The error log is closed whenever the BSD is closed.

Figure 9-2: Error Log

AMD Confidential

User Manual September 12
h
, 2008

140 Chapter 9: Logging

9.3 I/O Logging

This is a generic feature available on all devices for logging slave accesses (i.e. accesses

responded to by this device). Several categories of generic I/O logging are available.

Logging is performed to the I/O loggers (see Section 9.1, "Message Log", on page 137)

of names similar to the device you are enabling the logging for.

Caveat: Currently, devices which route to other devices may appear as if they are

responding to the messages themselves, so bridge devices will likely log

everything that is behind them.

Figure 9-3: I/O Logging Dialog

Log PCI Config Space Accesses

Checking this will log PCI Config Space accesses made to the device.

Log I/O Space Accesses

Checking this will log I/O Space accesses made to the device. These are the accesses

made with the x86 IO read/write instructions.

Disable Fastpath I/O when Logging

This item, checked by default, disables the Fastpath I/O mechanism when I/O Space

Accesses logging is enabled. If this is unchecked, accesses may not appear in the log.

Log Memory Space Accesses

Checking this will log Memory Space accesses made to the device. These are the

accesses corresponding to standard x86 move, read and write instructions to memory.

Disable Fastpath Memory when Logging

AMD Confidential

User Manual September 12
th
, 2008

Chapter 9: Logging 141

This item, checked by default, disables the Fastpath Memory mechanism when Memory

Space Accesses logging is enabled. If this is unchecked, accesses may not appear in the

log.

WARNING: Un-checking this item may lead to significantly compromised performance

of SimNow if large numbers of accesses are being made to the device in question. For

example, logging all accesses to the DIMM device would make SimNow extremely slow.

Log Fastpath Memory Requests when Logging

This item, when combined with un-checking Disable Fastpath Memory when Logging,

will log both memory space accesses and Fastpath Memory requests themselves.

What is then logged are slow-path Memory Space Accesses and Fastpath Memory handle

requests. Actual calls to Fastpath Memory, i.e. usage of Fastpath Memory handles, are

not logged.

AMD Confidential

User Manual September 12
h
, 2008

142 Chapter 9: Logging

This page is intentionally blank.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 10: CPU Debugger 143

10 CPU Debugger

10.1 Using the CPU Debugger

The CPU Debugger provides a list of commands and their descriptions when the “?”

command is typed in the bottom line of the debug window, shown in Figure 10-1.

Figure 10-1: CPU Debugger Window

10.1.1 Setting a Breakpoint

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View→Show Debugger”) or click on . The

simulation will pause and the Debugger Window will appear.

3. The bottom pane in the CPU Debugger Window is the debugger command line.

Enter a BX, BM, or BI on the debugger command line to setup and enable a

breakpoint. The BX, BM, and BI commands specify breakpoints on execution,

data access, or I/O access, respectively. Each of these commands requires an

CPU Registers

Disassembly

Memory Dump

Memory Dump

in ASCII

Information

and Message

Output

Command Line

Instruction

Opcode

cs:[r][e]ip

Memory Dump

Address

CPU Attach Button

AMD Confidential

User Manual September 12
h
, 2008

144 Chapter 10: CPU Debugger

address parameter that specifies a linear address associated with the breakpoint.

An optional parameter can be used to specify the pass count, i.e., the number of

times the breakpoint should be hit before breaking into the debugger. In addition,

the BM and BI commands accept an optional parameter that specifies whether to

break on a read/input, or write/output transaction to the specified address.

Examples of each command are shown in Table 10-1.

4. After setting up and enabling the breakpoint(s), enter G on the command line to

resume CPU execution. This will execute the debugger's Go command, returning

the CPU to continuous execution. If a breakpoint is hit, the simulation will pause,

and the debugger will gain attention.

Command Description

BX 1234abcd
Break on the next execution of the instruction located

at linear address, 0x1234ABCD.

BX 1234ABCD 2
Break on the third execution of the instruction located

at linear address, 0x1234ABCD.

BM abcd1234 r 3
Break on the fourth read of the memory location,

0xABCD1234 (linear).

BM abcd1234 3
Break on the fourth access (read or write) of the

memory location, 0xABCD1234 (linear).
BI 80 w 3 Break on the fourth write to I/O address, 0x80.

Table 10-1: Debugger Breakpoint Command Examples

10.1.2 Single Stepping the Simulation

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View→Show Debugger”) or click on . The

simulation will pause and the Debugger Window will appear. .

3. The bottom pane in the Debugger Window is the debugger command line. When

the Debugger Window has attention, enter T on the debugger command line. The

debugger Trace command will execute, causing the CPU device to execute one

instruction, and then return attention to the debugger.

4. The debugger will repeat the last entered command, if you just type Enter on the

command line. So, you can repeatedly step instructions by entering T once, then

repeatedly hitting the Enter key.

5. The simulation can be returned to continuous execution by entering G). This

executes the debugger's Go command.

10.1.3 Stepping Over an Instruction

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View→Show Debugger”) or click on . The

simulation will pause and the Debugger Window will appear.

3. When the Debugger Window has attention, enter P on the debugger command

line. The debugger Pretty Trace command will execute, causing the CPU device

to execute up to the next instruction in linear order (i.e., step over calls, interrupts,

repeated instructions, and loops). This is distinguished from the T command,

AMD Confidential

User Manual September 12
th
, 2008

Chapter 10: CPU Debugger 145

which will step into calls, interrupts, etc., executing the next instruction regardless

of its type.

4. The debugger will repeat the last entered command, if you just type Enter in the

command edit window. So, you can repeatedly execute the pretty trace command

by entering P once, then repeatedly hitting the Enter key.

5. The simulation can be returned to continuous execution by entering G. This

executes the debugger's Go command.

10.1.4 Skipping an Instruction

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Setup a breakpoint to break at the instruction that you want to step over (see

Section 10.1.1, “Setting a Breakpoint”, on page 143). Execute to the breakpoint.

3. Determine the EIP of the next instruction after the one to be skipped. This can

easily be determined by viewing the disassembly listing in the debugger. The top

line in the disassembly listing is the instruction pointed to by the current EIP (the

instruction that you wish to skip).

4. Use the debugger's R command to change the value in the EIP register. This can

be done by typing R EIP = new_value on the debugger command line. In this

case, new_value is the linear address of the instruction that follows the one that

you want to skip.

5. Enter G on the debugger command line. This will execute the debugger's Go

command. CPU execution will resume.

10.1.5 Viewing a Memory Region

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View→Show Debugger”) or click on . The

simulation will pause and the Debugger Window will appear.

3. When the Debugger Window has attention, use the debugger's DB, DW, DD, or

DQ command to display the contents of a memory region in the debugger. The

second letter of the command specifies the display format for the dump. The DB

command displays byte format, DW displays word format, DD displays dword

format, and DQ displays qword format. Each of these commands requires a

second parameter that specifies the beginning address (in hex) of the memory

dump. A linear address can be specified by adding a „,L‟ suffix to the address.

Similarly, a physical address can be specified by adding a „,P‟ suffix to the

address. Examples of the memory-dump commands are shown in Table 10-2.

4. After the first memory range is displayed, you can repeatedly hit Enter to advance

the display to the next sequential memory block.

Command Description

DB 010,p
Dump memory in byte format, starting at physical

address, 0x00000010.

DW abcd1234,L
Dump memory in word format, starting at linear

address, 0xABCD1234.

DQ c001c0de,L
Dump memory in quad word format, starting at linear

address, 0xC001C0DE.

AMD Confidential

User Manual September 12
h
, 2008

146 Chapter 10: CPU Debugger

Table 10-2: Debugger Memory Dump Command Examples

When using Pacifica Virtualization Technology in simulation, the user can tell the

debugger to access memory for either the guest or the host. If multiple guests are running

under a hypervisor, the debugger will acess memory for the last guest that has run. The

user can further qualify an input address using the 'G' (Guest) and 'H' (Host) specifiers.

For example:

Command Description

Dd c001c0de,HL
Dump the SVM host linear memory starting at address

0xC001C0DE.

Dd c001c0de,GL
Dump the last SVM guest linear memory starting at

address 0xC001C0DE.

Dd c001c0de,HP
Dump the SVM host physical memory starting at

address 0xC001C0DE.

Dd c001c0de,GP
Dump the last SVM guest physical memory starting at

address 0xC001C0DE.

Table 10-3: Debugger Pacifica Memory Dump Command Examples

If the user omits the 'G' or the 'H' specifier, the debugger will access memory from the

perspective of the attatched CPU's current state.

10.1.6 Reading PCI Configuration Registers

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View→Show Debugger”) or click on . The

simulation will pause and the Debugger Window will appear.

3. Use the debugger's S command to view the PCI configuration register contents for

a particular PCI function. The S command takes three hex parameters: bus,

device, function. If the specified bus, device, and function exist in the simulated

system, the debugger will display all 256 bytes of configuration data.

10.1.7 Reading CPU MSR Contents

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View→Show Debugger”) or click on . The

simulation will pause and the Debugger Window will appear.

3. Use the debugger's R command to view the contents of an MSR. This can be

accomplished by typing R Maddress on the debugger command line. In this case,

address is the 32-bit address (in hex) of the MSR. All leading zeros must be typed

in the address. Examples of MSR reads are shown in Table 10-4:

Command Description

R M00000250
Displays the contents of the MSR with an address of

0x0250.

R MC001001A
Displays the contents of the MSR with an address of

0xC001001A.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 10: CPU Debugger 147

Table 10-4: MSR Read Examples

4. MSR registers can be modified by adding a "= Value" suffix on the above

command syntax. Value will be assigned to the MSR register only if the value

does not modify any reserved bits in the MSR. If an attempt is made to modify

any reserved bits, the MSR write is ignored. An example MSR write is shown in

Table 10-5:

5. This command may not allow access to all MSRs that are supported by the CPU

model. To view a list of all registers supported by the R command, enter R? on the

debugger command line.

Command Description

R MC001001A = 0000000004000000

Assigns a value of

0x0000000004000000 to the MSR

with an address of 0xC001001A.

Table 10-5: MSR Write Example

10.1.8 Find Pattern in Memory

The find pattern command q1 and qa can be used to search for a specific pattern in

memory, The pattern that is searched for can either be an ASCII string or a binary

pattern. If the search is for an ASCII string the noncase option (see Table 10-7,

"Debugger Commands and Definitions", on page 150) can be used to match any

character.

Command Description

q1 0x1000,L 0x2000 "PCI"

Finds the first occurrence of ASCII

pattern "PCI" in the given memory

range, 0x1000 - 0x2000.

qa noncase 0x1000,L 0x2000 "PCI"

Same as above but finds all occurrence

of the ASCII pattern "PCI" using the

none case-sensitive search algorithm.

qa 0xF0000,P 0xFFFF 0x55 0xAA

Finds all occurrences of the binary-

pattern 0x55 0xAA in the given memory

range, starting at physical address

0xF0000 and ends at 0xF0000+0xFFFF.

Table 10-6: Find Pattern Example

10.2 Debugger Command Reference

The CPU Debugger Window consists of five areas, as shown in Figure 10-1. The top-

most area displays the current CPU integer registers in 16-, 32-, or 64-bit mode,

depending on the current mode of the CPU. The next area displays a disassembly of the

next six instructions, starting at the current CS:[R|E]IP. The next area displays 128 bytes

of memory, as bytes, words, dwords, or qwords. The address, size, and physical or virtual

attributes are based on the most recent D command. The next area is a general message

window where messages and information are displayed. The bottom area is the command

area, where debugger commands are entered.

AMD Confidential

User Manual September 12
h
, 2008

148 Chapter 10: CPU Debugger

Table 10-7 lists the debugger commands and their definitions.

Debugger Command Definition
? Displays an abbreviated list of the available

commands and their syntax.
<blank line>

Repeat of previous command.

*<automation command>

Execute an automation command.

#P <Path> [;<Path>

Sets the file search path.

#L <Symbol File> [Load
Address]

Loads the named symbol file, optionally

offsetting each address by the given load offset.

When the load is completed, the module name

attached to this group of symbols is displayed.

Supported symbol file extentsions are "*.TXT",

"*.SYMTEXT", and Linux "symbol.map" file

("*.MAP").
#M Displays a list of the symbol modules currently

loaded.
#U <Module Name> Unloads the named symbol module that had

previously been loaded with the #l command.
#? <Symbol> Displays all symbols that contain the given

string.
#! <Address> Displays the symbol that most closes matches

the given address.
bc {* | list }

Clears one or all breakpoints.

bd {* | list } Disables one or all breakpoints.
be {* | list } Enables one or all breakpoints.
bf <vector> <Pass count>

Creates and enables a breakpoint for the

indicated CPU exception. Sets the pass count to

[count], or 0 if not specified.
bh <vector> <Pass count>

Creates and enables a breakpoint for the

indicated hardware interrupt. Sets the pass

count to [count], or 0 if not specified.
bi <address> [r | w] <Pass
count> [v[b|w|d] <data>]

Creates and enables a breakpoint for the

indicated I/O address. Sets the pass count to

[count], or 0 if not specified. Defaults to

read/write, but can be set to read-only or write-

only using the [r] or [w] options. [v] enables the

data <data> check capability for [b]yte, [w]ord,

or [d]ouble word I/O accesses. For example, “bi

80 w vb c0” stands for break when byte 0xC0 is

written to I/O port 0x80.
bl [* | list] Display the settings of one or all breakpoints.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 10: CPU Debugger 149

Debugger Command Definition
bm <address> [r | w] <Pass
count> [v[b|w|d] <data>]

Creates and enables a breakpoint for the

indicated memory address. Sets the pass count

to [count], or 0 if not specified. Defaults to read

or write, but can be set to read-only or write-

only using the [r] or [w] options. [v] enables the

data <data> check capability for [b]yte, [w]ord,

or [d]ouble word memory accesses. For

example, “bm 1000 w vb c0” stands for break

when byte 0xC0 is written to memory address

0x1000.
bs <Vector> <Pass count>

Creates and enables a breakpoint for the

indicated software interrupt vector. Sets the

pass count to [count], or 0 if not specified.
bx <address> <Pass count>

Creates and enables a breakpoint for the

indicated code fetch address. Sets the pass

count to [count], or 0 if not specified. Sets the

pass count to [count], or 0 if not specified.
c[r|w] <Bus> <Dev> <Func>

<Off> [data]
Performs a PCI configuration [r]ead or [w]rite.

d[b|w|d|q] <address

range>[,[l|p]

Displays the contents of [p]hysical (default) or

[l]inear memory as [b]ytes, [w]ords, [d]ouble

words, or [q]uad words, or in the previous

format if not specified.
e[b|w|d|q] <address> <data

...>[,[l|p]

Allows the modification of [p]hysical (default)

or [l]inear memory, in [b]ytes, [w]ords,

[d]ouble words, or [q]uad words, or in the

previous format, if not specified. Data values

are entered immediately after the address,

separated by spaces.
f[b|w|d|q] <address range>
<value> [,[l|p]

Fills the given [p]hysical (default) or [l]inear

memory-range with the indicated value.

g [address]

Begins or will resume CPU execution, setting a

temporary execution breakpoint on the given

address.
h [on | off | clear |
<value>]

Controls history-trace collection. [ON] enables

trace collection and clears the current trace

buffer; [OFF] disables trace collection, and

[CLEAR] clears the current trace buffer.

Specifying no arguments, or a value,

disassembles the most recent <value>

instructions executed.
i[b|w|d] <port>

Input a [b]yte, [w]ord, or [d]ouble word from

the indicated port.
o[b|w|d] <port> <data>

Output a [b]yte, [w]ord, or [d]ouble word to the

indicated port.

AMD Confidential

User Manual September 12
h
, 2008

150 Chapter 10: CPU Debugger

Debugger Command Definition
p Similar to the t command, single steps the

simulation one instruction, unless the current

instruction is a call, software interrupt, or

repeated string instruction, in which case this

command sets a temporary execution

breakpoint at the instruction sequentially

following the current instruction, and starts

simulation.
r [regname[= <value>]]

Displays, and optionally alters, the contents of

various CPU registers. For a list of register

names that are supported, type R?. Normally,

the display is in the current CPU mode. To

force 16-bit, 32-bit, or 64-bit register display,

type R16, R32, or R64 respectively.
R16

Display 16-bit registers (until the next

instruction).
R32

Display 32-bit registers (until the next

instruction).
R64

Display 64-bit registers (until the next

instruction).
s <Bus> <Device> <Function> Displays the PCI configuration registers

associated with the given Bus, Device, and

Function number.
t [count]

Executes [count] instructions. The default value

for [count] is 1.
u [address range]

Disassembles instructions starting, at the given

address and continuing for [length] instructions.

Instructions are disassembled using the current

CPU execution mode.
v Displays the version number information for the

attached processor device.
q<a|1> [noncase]

<StartAddress>[,[l|p]]
<[[L]Length] | [EndAddress]>
<Pattern>

Search physical (default) or linear Memory for

pattern and display all or only first

occurrence(s).

Table 10-7: Debugger Commands and Definitions

In general, address and count values can be specified as constants (hex for addresses,

ports, and values; decimal for counts and lengths), or as register names. For addresses,

the CS:, DS:, ES:, FS:, GS:, and SS: prefixes are also allowed.

Address values may be suffixed by „,L‟ to specify a linear address (the default) or „,P‟ to

specify a physical address. Addresses may also be specified by their symbol name.

Precede the symbol name with a # character to distinguish it from a hex constant.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 11: Debug Interface 151

11 Debug Interface
The simualtor supports Linux and Windows

®
 based debugging. It is recommended to use

the GDB interface to debug on Linux based hosts. The kernel debugger interface can be

used to debug on Windows based hosts.

11.1 Kernel Debugger

This only applies to the Windows
®
 version of the simulator and not to the Linux version.

The simulator can interact with the kernel debugger through:

 EXDI interface (see Section 7.20, "EXDI Server Device", on page 104).

 Serial port connection.

The serial ports can be configured so that any data read from or written to the simulated

serial ports is made available to the host machine. The serial ports can each be configured

to do this using either a named-pipe, or the actual serial port hardware.

The automation commands "GetCommPort" and "SetCommPort" are used for this

purpose, see Section A.7.10, “Serial”, on page 238.

Use the serial ports "SetCommPort" command to set the simulated serial port to use a

specific COM port. For example, to set the second serial port in the simulation to use

COM4 for its communication, you would type

Serial:1.SetCommPort COM4 57600

The simulator will program the appropriate COM port (COM4 in the above example) to

57600 baud, 8 bits, no parity, 1 stop bit, no flow control.

All characters transmitted by the simulation through the serial port (second serial port in

the above example) will be sent out to the given COM port (COM4 in the above

example). In the same manner, all data received by the simulator through the given COM

port (COM4 in the above example) will appear as received data in the simulated COM

port.

To set the simulated serial port (COM1) to use a named-pipe you would type

Serial:1.SetCommPort pipe

The simulator will program the appropriate COM port (COM1 in the above example) to

use the named-pipe “\\.\pipe\SimNow.Com1” on the host to transfer data between host

and the simulated machine.

AMD Confidential

User Manual September 12
h
, 2008

152 Chapter 11: Debug Interface

The pipe is not created until the first “go” command will be executed. This can be

achieved by clicking on the “go” button followed by a click on the “stop” button. This

command sequence will setup the named-pipe.

If you try to connect the kernel debugger without setting up the named-pipe as described

the kernel debugger will return an error message.

In case you have difficulties to establish a connection, or the connection is unstable, or

KD has difficulties to stay in sync with the simulated OS. You can set a multiplier to

delay the baud rate. The baud rate is normally modeled based on the time elapsed on the

simulated system. The simulated system may be running at 1/100 of normal time which

will give longer time delays than the kernel debugger can tolerate. Consequently we

provide a way to speed up the modeled baud rate by up to 100 times. For example to

delay the baud rate by 1/100th of normal you would use the following automation

command:

Serial:1.SetMultiplier 1

By default, the multiplier is 100 which means the modeled rate is unchanged. The user

may set it in the range 1 to 100. When set to 1, the modeled rate is 100 times faster than

the baud rate, so the system delays will be that much shorter. See also Section A.7.10,

“Serial”, on page 238.

The following command will connect the kernel debugger to the simulator using a pipe as

communication channel:

C:\Program Files\Debugging Tools for Windows 64-bit\kd –k

com:pipe,port=\\.\pipe\SimNow.Com1

We recommend not starting the kernel debugger too early. To achieve best results launch

the kernel debugger after the O/S kernel has loaded and it is trying to establish a

connection with the kernel debugger.

11.2 GDB Interface

Getting the gdb interface in the simulator to work involves a sequence of commands in

both the simulator and gdb. The current implementation requires the simulator to be

started and told to be ready for gdb to connect and then having gdb connect. As long as

the gdb command, "target remote ..." is issued last, the interface should be established.

It has been observed that after shutting down the simulator, the port used by the gdb

interface may not become immediately available for reuse. If this happens just shut down

both the simualtor and gdb and start again and the problem should go away.

11.2.1 Simple Approach

This assumes you are running the simulator and gdb on the same machine.

 Start the simualtor

AMD Confidential

User Manual September 12
th
, 2008

Chapter 11: Debug Interface 153

 Run the following automation command:
1 simnow> shell.gdb <ENTER>

 Start gdb
gdb> set architecture i386:x86-64 <ENTER>

gdb> target remote:2222 <ENTER>

11.2.2 Alternate Approach

This assumes you are running the simualtor and gdb on the same machine.

 Start the simulator

 Run the following automation command:
 1 simnow> shell.gdb <ENTER>

 Add the following to your .gdbinit file
define simnow

 set architecture i386:x86-64

 target remote:2222

end

 Start gdb
gdb> simnow <ENTER>

11.2.3 Using Another Port on the Same Machine

The simualtor defaults to using port 2222 but can be directed to use another port.

 Start the simulator

 Run the following automation command:
1 simnow> shell.gdb 2233 <ENTER>

 Start gdb
gdb> set architecture i386:x86-64 <ENTER>

gdb> target remote:2233 <ENTER>

11.2.4 Using Two Separate Machines

 Start the simualtor on simnow-host

 Run the following automation command:
1 simnow> shell.gdb <ENTER>

 Start gdb on gdb-host
gdb> set architecture i386:x86-64 <ENTER>

gdb> target remote simnow-host:2222 <ENTER>

11.3 Linux Host Serial Port Communication

When running the simulator on a Linux host, the serial port is able to communicate with

external host applications via either a named-pipe or the host serial port. If the user has

configuired named-pipe communication, the simualtor will set up an input pipe and an

AMD Confidential

User Manual September 12
h
, 2008

154 Chapter 11: Debug Interface

output pipe at "~./simnow/comX/simnow_in" and

"~./simnow/comX/simnow_out". External applications should read data from the

simulation using the simnow_out named-pipe. Conversely, external applications should

send serial data to the simulation using the simnow_in pipe.

Note that it is not possible for two simualtor sessions to communicate with each other on

the same host using named-pipes. This is an issue that will be fixed in a future version of

the simulator.

When the simaultor serial port has been configuired to use the host serial port, the

simualtor will open "/dev/ttyS0" or "/dev/ttyS1" (depending on wether it is COM1

or COM2). Note that the user will need to be running the simulator with root privelages

to avoid an access denied error when the simualtor attempts to open the device. The

simulator can communicate with external applications, such as a kernel debugger in this

mode.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 12: Command API 155

12 Command API
The CMDAPI (cmdapi.dll) gives Windows users a way to script the simulator using any

scripting language that can interface with the Microsoft Component Object Model

(COM). It gives you the opportunity to create scripts that instantiate a simulator object.

You can use this instantiated object to execute any of the SimNow™ automation

commands, see Section A.7, “Automation Commands”, on page 230.

CMDAPI is installed and registered whenever a SimNow release package has been

installed successfully.

After instantiating a SimNow.Command object, you can use the following methods to

execute automation commands, and retrieve status.

Exec
The Exec method executes the automation command that arg1 contains.

bool Exec(arg1, arg2);

Parameters

arg1

A string that contains the SimNow automation command to execute. For

example, "debug:0.execcmd t".

arg2

An input string buffer in which SimNow is to place the response from the

command in arg1.

Return Value

Returns true if command completed successfully; otherwise it returns false.

GetLastError
The GetLastError method returns the last error code. If Exec returns false

you can call GetLastError to retrieve the error code.

void GetLastError(arg1);

Parameters

arg1

An input string buffer, in which SimNow will place the last error that was

recorded from the automation interface.

The Perl code in Example 12-1 shows how to instantiate a SimNow.Command object and

how to interact with the SimNow™ CMDAPI interface.

#!perl -w

AMD Confidential

User Manual September 12
h
, 2008

156 Chapter 12: Command API

use Win32::OLE;

use Win32::OLE::Variant;

$Win32::OLE::Warn = 3;

$cmd = Win32::OLE->new('SimNow.Command')

 or die "Cannot open SimNow.Command\n";

$MyResponse = Variant(VT_BSTR | VT_BYREF, "");

do {

 print "simnow> ";

 $CmdLine = <>;

 chomp($CmdLine);

 if ($CmdLine)

 {

 if ($cmd->Exec($CmdLine, $MyResponse))

 {

 print "$MyResponse\n";

 }

 else

 {

 $cmd->GetLastError($MyResponse);

 print "Cannot Exec: $MyResponse\n";

 }

 }

} while ($CmdLine);

print "\ndone\n";
Example 12-1: Perl Sample CMDAPI Source Code

AMD Confidential

User Manual September 12
th
, 2008

Chapter 13: DiskTool 157

13 DiskTool
Use the DiskTool utility to create hard-disk images. DiskTool copies, byte-for-byte, the

contents of a secondary hard disk into an .hdd file. This .hdd file can be loaded as a disk

image in the simulator.

DiskTool runs in two modes, GUI mode, and command-line mode. Double-clicking on

the DiskTool icon, or running DiskTool from the command line with no command line

options, starts DiskTool in GUI mode. If you run DiskTool from the command line and

include any command-line parameters, DiskTool runs in command line mode. To get a

list of the command-line options, run "DiskTool -help".

13.1 Command-Line Mode

The functions recognized by the DiskTool command line include:

Option:

G = Copy a physical device to the given image file.

Syntax:

{/G|-G} <DeviceName> <ImageName> [ImageSize]

[ImageSize] = # of sectors of data to copy from the device to the image file

 0 = All sectors (this is the default value)

 1 = All data to the end of physical partition 1

 2 = All data to the end of physical partition 2

 3 = All data to the end of physical partition 3

 4 = All data to the end of physical partition 4

 <Any Other Valid Number> = The number of sectors specified

Example:

disktool –g /dev/hd0 image.hdd 102400

This command reads the first 102400 sectors from device /dev/hd0 and places

them in the image file, image.hdd.

Option:

P = Put the image file <ImageName> to physical device <DeviceName>.

Syntax:

{/P|-P} <DeviceName> <ImageName>

Example:

disktool –p /dev/hd0 image.hdd

This command reads image file image.hdd and writes data to physical device

/dev/hd0.

AMD Confidential

User Manual September 12
h
, 2008

158 Chapter 13: DiskTool

Option:

E = Erase (Write zeros to all blocks) physical device.

Syntax:

{/E|-E} <DeviceName>

Example:

disktool –e /dev/hd0

This command writes zeros to all sectors on device /dev/hd0.

Option:

N = Create a new blank image file that represents a freshly formatted device.

Syntax:

{/N|-N} <ImageName> <ImageSize>

Example:

disktool –n image.hdd 102400

This command creates an image file named image.hdd that represents a physical

hard-disk drive containing 102400 sectors (each sector is 512 bytes).

13.2 GUI Mode

The DiskTool GUI window is shown in Figure 13-2. DiskTool will only display floppy

drives, and DVD/CD and HDD drives that are connected to either the primary or the

secondary IDE controller. It will not display external USB or firewire drives, drives

attached to SCSI controllers, etc.

DiskTool displays the names of these devices in the Physical Drives list box, using

names appropriate for the host operating system. When running under Windows, the

Physical Drives list box will show you the physical drives, and in parenthesis, the logical

drive letters that are associated with the partitions on that drive. Selecting any of these

physical devices causes DiskTool to display information about that device in the lower

Drive Information list box.

DiskTool also displays information about all identified devices in a shell window. The

DiskTool shell window is shown in Figure 13-1.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 13: DiskTool 159

Figure 13-1: DiskTool Shell Window

DiskTool will only copy drives - not partitions, although it does have the ability to stop

copying at the end of a given partition. So, for example, you can copy the contents of a

drive starting at the beginning of the drive and ending at the end of the 2nd partition, but

you can not copy only the 2nd partition.

LINUX Note: The list box always shows /dev/fd0 and /dev/fd1. If you click on one of

these and the physical device does not actually exist, the GUI will hang for a short time,

and will then display information in the lower list box indicating that a 4Kb media is

installed in this device DiskTool only recognizes device names /dev/hda through

/dev/hdz. In addition, it looks for the file /proc/ide/hd?/media, and uses the information in

that file to determine whether the device is a hard drive or a DVD/CD drive. If the file

does not exist, or if its contents cannot be parsed, the device will not be listed.

The buttons on the right side of the DiskTool Window correspond to the four command

line options listed above. In addition, there are About and Exit buttons that perform the

obvious function.

When creating a new blank image, or when getting an image from a physical device to an

image file, an additional dialog is presented that allows you to select how large the new

image file should be. The options in this dialog mirrors the [Image Size] options for the

equivalent command line-commands.

After launching DiskTool, you are presented with the interface, shown in Figure 13-2.

AMD Confidential

User Manual September 12
h
, 2008

160 Chapter 13: DiskTool

Figure 13-2: DiskTool GUI Window

You may select any physical drive in your system, including floppy drives. Selecting a

drive updates the Drive Information list box as shown in Figure 13-3.

Note: DiskTool does not support Serial ATA (SATA) drives!

Figure 13-3: DiskTool Drive Information

AMD Confidential

User Manual September 12
th
, 2008

Chapter 13: DiskTool 161

When a drive is selected, you have the option to get an image from the drive, put an

image onto the drive, or erase the contents of the drive.

If you erase the contents of the drive, a dialog will ask for confirmation that you actually

wish to permanently destroy the contents of that hard disk.

In case DiskTool displays an “Operation failed!” message box, DiskTool was unable to

lock or unlock the drive. This can happen if, for example, any files or explorer windows

are open on any of the partitions on the selected drive.

For example, if the drive that DiskTool is trying to access has partitions for C: and D:,

and an explorer window is open on any path within D:, then DiskTool won‟t be able to

lock or unlock that drive, and DiskTool will display an “Operation failed!” message box.

If you put an image onto the drive, a dialog will again ask for confirmation that you

actually wish to permanently destroy the contents of that hard disk. Then a dialog

prompts for the location of the image file that should be placed on that hard disk. A

progress bar (Figure 13-4) will inform you of the progress being made.

If you get an image from a drive, a dialog window will prompt for the path of file that

will store the disk image. A progress bar will inform you of the progress being made.

Figure 13-4: DiskTool Progress Window

AMD Confidential

User Manual September 12
h
, 2008

162 Chapter 13: DiskTool

This page is intentionally blank.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 14: BIOS Developer‟s Quick Start Guide 163

14 BIOS Developer’s Quick Start Guide
This section provides you with instructions on how to perform common tasks within the

simulation environment. The tasks described in this section are likely to be of particular

interest to BIOS developers. However, developers of other types of software will benefit

as well, especially from tasks like logging CPU cycles and using the debugger.

14.1 Loading a BIOS Image

1. Move the BIOS ROM image into your Images directory.

2. Use “View→Show Devices” to show the Devices Window, shown in Figure 3-2

on page 9.

3. Right-click on the system-BIOS memory device icon in the Device Window and

select the “Configure Device” option on the Workspace Popup Menu (Figure 3-3

on page 11).

4. Choose the “Memory Configuration” tab.

5. Enter the appropriate base address and size for your BIOS ROM.

6. Browse for your BIOS ROM image file. The browser will only show files that

have a ROM or BIN filename extension.

7. Select the read-only option, unless the BIOS code will modify its image within

the device.

8. For most BIOS ROM select the system BIOS ROM, memory-address masking,

and memory is non-cacheable options.

9. Click OK to close the configuration dialog and accept the changes.

14.2 Changing DRAM Size

There are two ways to configure the simulated memory size. For generic memory size

configuration in powers of two you can use the Memory Configurator, see Figure 14-1

and for specific or non-symmetric DIMM configurations please follow the steps on page

164.

To open the Memory Configurator dialog click on the main menu item View and then

choose Show Memory Configurator (View→Show Memory Configurator).

The Memory Configurator populates each DIMM device with two DIMMs of all

identical size and type. It accounts for DDR and DDR2 and registered or unregistered

memory types as required. The SPD files are loaded using the default path for SPD files

“./Images/<spdfile>”.

Please be advised that memory configurations that are too large will slow down the

simulation significantly and may also confuse some BIOS's.

Note: The public release of the simulator supports only up to four GB of simulated

memory.

AMD Confidential

User Manual September 12
h
, 2008

164 Chapter 14: BIOS Developer‟s Quick Start Guide

Figure 14-1: Memory Configurator

Note: The public release of the simulator supports no specific or non-symmetric DIMM

configurations. To change the simulated memory size please use the Memory

Configurator.

If you want specific or non-symmetric DIMM configurations please follow these steps:

1. Use “View→Show Devices” to show the Devices Window.

2. Right-click on the DIMM-memory device icon in the Device Window and select

the “Configure Device” option on the Workspace Popup Menu (Figure 3-3 on

page 11).

3. Select the tab for the DIMM slot that you wish to alter.

4. Click the Import SPD button and browse for an appropriate SPD file. The SPD

files should be stored in the Images directory. The SPD filename should give an

indication of the size of the DIMM that it represents.

5. A DIMM can be eliminated from the system, by changing the contents of SPD

byte 0 (Number of SPD Bytes Used) to zero.

6. Click OK to close the configuration property sheet and accept the changes.

14.3 Changing SPD Data

Any byte of SPD data can be altered in order to model DIMM configurations that do not

currently exist. The process for modifying a SPD data byte is as follows:

1. Use “View→Show Devices” to show the Devices Window.

2. Right-click on the DIMM Memory device icon in the Device Window and select

the “Configure Device” option on the Workspace Popup Menu (Figure 3-3 on

page 11).

AMD Confidential

User Manual September 12
th
, 2008

Chapter 14: BIOS Developer‟s Quick Start Guide 165

3. Select the tab for the DIMM slot that you wish to alter.

4. Select an SPD byte description from the large list box. The corresponding data

byte will be shown as two hex digits in the small edit box to the right of the list

box.

5. Type a new hex value in the edit box.

6. Optionally, the altered SPD data can be saved to a file by clicking the Export SPD

button.

7. Click OK to close the configuration property sheet and accept the changes.

If the contents of SPD byte 0 (Number of SPD Bytes Used) is set to zero, the DIMM will

not respond to any SMBUS accesses. This allows simulation of a DIMM module that

does not include an SPD ROM.

14.4 Clearing CMOS

View the Devices Window and double-click on the Southbridge. Choose the “CMOS”

tab.

1. Save the current CMOS to disk and call it “blank.cmos”.

2. Open the file in Notepad and change all the data fields from their current values to

the desired fill pattern (usually 0x00 or 0xFF; do not include the h character in the

file). Save the file. These first three steps are needed only once.

3. Reload the file into the simulator whenever you wish to clear CMOS.

4. View the Diagnostic Port Output in the Main Window, as shown in Figure 14-2.

Figure 14-2: Diagnostics Display

The Diagnostic Display displays data written to three I/O address ranges, 0x80-0x83,

0x84-0x87, 0xE0-0xE3. Currently, the Diagnostic Display is implemented only for

Southbridge device. If the system configuration includes a Southbridge device, then the

Diagnostic Display will be displayed.

14.5 Logging PCI Configuration Cycles

Northbridge devices can be configured to produce PCI configuration-cycle log messages.

Complete the following steps to enable and capture of these log messages.

1. Open the Device Window from the Main Window Menu (“View→Show

Devices”). Double-click on the Northbridge device. This will bring up the device

Properties Window. Click on Logging Capabilities that will display the logging

options. Select Log PCI Configuration Cycle to and then click OK to accept the

configuration.

2. Select "View→Log Window" from the Main Window Menu. This will bring up a

Message Log dialog box similar to the one shown in Figure 14-3.

AMD Confidential

User Manual September 12
h
, 2008

166 Chapter 14: BIOS Developer‟s Quick Start Guide

3. Log messages will only be captured from devices that have a check beside their

name. If the Northbridge device does not have a check, then check it by clicking

its check box.

4. Select whether to send log messages to the window, and/or to a file. If logging to

a file, enter a filename for the log file.

5. Execute the simulation, and the requested information will be logged.

Figure 14-3: Message Log Window

14.6 Logging CPU Cycles

Setting up the simulator to log CPU cycles requires most of the steps detailed in Section

14.5, “Logging PCI Configuration Cycles”. However, in this case, the messages from the

CPU are captured. The steps are:

1. Open the Device Window (“View→Show Devices”). Double-click on the CPU

device. This will bring up the device Properties Window that will list available

logging options. Select the desired logging options. Click OK to accept the

configuration. See Section 7.1, “AweSim Processor Device”, on page 51 to obtain

detailed information about CPU Logging options.

2. Select "View→Log Window" from the Main Window Menu. This will bring up a

Message Log dialog box similar to the one shown in Figure 14-3.

3. Log messages will only be captured from devices that have a check beside their

name. If the CPU device does not have a check, then check it by clicking its check

box.

4. Repeat the steps here.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 14: BIOS Developer‟s Quick Start Guide 167

14.7 Creating a Floppy-Disk Image

Use the DiskTool utility to create a floppy-disk image file suitable for loading into the

simulator. DiskTool is located in the “SimNow\Tools" directory. To create an image of a

physical floppy disk, see Section 13, “DiskTool”, on page 157.

When the image has been created, it can be loaded into the simulation as described in

Section 5.1.1, “Open a Simulation Definition”, on page 36.

AMD Confidential

User Manual September 12
h
, 2008

168 Chapter 14: BIOS Developer‟s Quick Start Guide

This page is intentionally blank.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 15: Frequently Asked Questions (FAQ) 169

15 Frequently Asked Questions (FAQ)
Why is the mouse cursor very difficult to control inside the simulated display area?

The mouse on the Host and in the Guest do not track each other very well in general. We

provide another mouse mode to help with this. Click on the menu item "Special

Keyboard→Grab Mouse and Keyboard", see Section 3.3, “Device Groups

A platform (*.bsd) consists of devices, and each device is an instance of either a device

library (*.bsl or *.so) or a device group (*.bsg). A device group is an aggregation of

devices into a single composite device that has some customized aspects (includes its

name, icon, ports, initial and default state).

Device groups are a particular class of devices. They have the same properties and

characteristics as traditional devices, but also allow the user to extend and tailor specific

device(s) to meet a particular hardware implementation or configuration. Device groups

provide a method that allows the user to group or collect one or more devices, libraries or

groups into one composite device. To the user, the composite device will look and feel no

different than a normal device library and, for the most part, the two should be

indistinguishable.

A device group can consist of one or more child devices, with some optional initialization

state associated with each child device, and those devices can optionally be connected to

each other. It may be helpful to think of a device group as a BSD within a BSD.

However, a device group also has its own identity as a device, and it can support external

connection ports that allow it be connected to other devices in the same manner as a

traditional device library.

15.1.1 Terms

If any of the language and wording used in these Device Groups sections is unclear, it

may help to refer to this list of terms.

Device: A device library or device group (also, a known device or created device).

Device Library: Contains binary implementation of device functionality; has no child

devices; associated with a “*.bsl” Windows or “*.bsl” Linux file.

Device Group: Grouping of one or more devices (libraries and groups) into a single

device; gets its functionality through aggregation of its children, and from its group-

specific properties/aspects; associated with a “*.bsg” file.

Known Device: A device that the shell knows about (i.e., the shell has all the necessary

information to create an instance of this device). Known devices appear in the left hand

pane of the Device Viewer window; and on the console using shell.KnownDevices.

Created Device: An instantiation of a known device. All devices in a BSD are created

devices. Created devices appear in the right hand pane of the Device Viewer window; and

on the console using “shell.CreatedDevices”.

AMD Confidential

User Manual September 12
h
, 2008

170 Chapter 15: Frequently Asked Questions (FAQ)

Device grouping tree node relationships: Because of device grouping, created devices

in a BSD are nodes in a tree, with parents and children, siblings, and end/root tree node

relationships.

Device connection relationships: Because of device connections, a sibling device can be

connected to another sibling device at a connection port of each device.

Machine Device Group: Just a device group, but it is special since it is the root node of

a machine tree (it has no parent, it can't be deleted, it has no ports, and it has no sibling

devices); each machine in a BSD has a single machine created device group.

Archive Data or Device State: A known device group has archive data for its child

devices, which specifies the default and initial state for when a known device group is

instantiated as a created device. A known device library also has default and initial state

for when it is instantiated as a created device. When a BSD is saved, each device's current

state (archive data) (which may be different than the original known device's archive

data) is saved to the “*.bsd” file.

15.1.2 Concept Diagrams

A device group is a device with its own identity (name, description, icon, help file, etc).

But it is also like a BSD; in fact, every BSD has a single created device group called the

Machine device. Tthe default user‟s view into SimNow is from the context of looking

inside the Machine device. This encapsulation of devices inside device group‟s results in

a hierarchy tree, with a Machine device group as the root node. In this way, a device

group tree is like a folder/directory tree (folder is to device group as file is to device

library), as demonstrated in Figure 3-6.

Figure 3-6: Device group: BSD with one machine group and three child devices

Any device can also connect to its sibling devices (Figure 3-6 does not depict any port

connections). Figure 3-7 depicts the same example device tree, but with a different

conceptual view - devices are inside groups; arrows represent possible port connections

between sibling devices:

AMD Confidential

User Manual September 12
th
, 2008

Chapter 15: Frequently Asked Questions (FAQ) 171

Figure 3-7: Device group (different conceptual view – devices are inside groups)

The previous diagrams show child devices inside device groups. On the standard top

level view (the context of inside the machine device), we would more simply just see

three devices, see Figure 3-8 (arrows represent possible port connections between the

devices).

Figure 3-8: Device Group (2 group devices 1 library device)

15.1.3 Working with Device Groups

From the main SimNow window, “View→Show Devices", opens a device viewer GUI

window for the machine device group. We can also open a device viewer GUI window

that views any device group's children. Right-click the device icon and select "Modify

Group (Show Devices)" from the popup menu. If "Modify Group (Show Devices)" is not

present, then the device the user has clicked on is not a group.

Figure 3-9: Modify Group

AMD Confidential

User Manual September 12
h
, 2008

172 Chapter 15: Frequently Asked Questions (FAQ)

Click on "Modify Group (Show Devices)". This will open a separate show device viewer

window.

Figure 3-10: Device Group

If any modifications are done to the device group, then they will be saved with the BSD.

Note that it is possible to modify a device group to a point where its children look

nothing like the original device.

15.1.4 Shell Automation Commands for Device Groups

The shell automation commands that are used for a device also work for a device group.

For example, shell.KnownDevices lists all known devices (both device libraries and

device groups). For example, a device group exposes ports and connections, so

“shell.AvailablePorts” and “shell.Connect” etc. work with a device (regardless of

whether it's a group or a library).

15.1.4.1 Device Tree

You can optionally reference a device in the parent and child grouping device tree, using

the syntax separator " -> " between device parent and child, and "-> Machine #1" as

the root device. Here are some examples, using a machine and platform that just has two

"4 core Node" devices...

1 simnow> shell.createddevices

 "4 core Node #0"

 "4 core Node #1"

1 simnow> shell.CreatedDevices "-> Machine #1"

 "4 core Node #0"

 "4 core Node #1"

1 simnow> shell.createddevices "-> Machine #1 -> 4 core Node #0"

Cpu:0 "AweSim Processor #0"

Cpu:1 "AweSim Processor #1"

Cpu:2 "AweSim Processor #2"

Cpu:3 "AweSim Processor #3"

sledgenb:0 "AMD 8th Generation Integrated Northbridge #4"

1 simnow> shell.createddevices "-> Machine #1 -> 4 core Node #1"

Cpu:4 "AweSim Processor #0"

Cpu:5 "AweSim Processor #1"

Cpu:6 "AweSim Processor #2"

Cpu:7 "AweSim Processor #3"

sledgenb:1 "AMD 8th Generation Integrated Northbridge #4"

AMD Confidential

User Manual September 12
th
, 2008

Chapter 15: Frequently Asked Questions (FAQ) 173

1 simnow> shell.modules

xtrsvc:0

shell:0

Cpu:0

sledgeldt:0

sledgenb:1

sledgenb:0

Cpu:1

Cpu:2

Cpu:3

sledgeldt:1

Cpu:4

Cpu:5

Cpu:6

Cpu:7

Notice the “shell.modules” list is flat, but the devices are in a tree structure that allows

us to have both a "-> Machine #1 -> 4 core Node #0 -> AweSim Processor #0"

and a "-> Machine #1 -> 4 core Node #1 -> AweSim Processor #0". Also notice that our default

view ignores the tree, and just shows us two devices: "4 core Node #0" and "4 core

Node #1".

15.1.4.2 Enabled vs. Disabled vs. Mixed

Shell device commands like “shell.Location” or “shell.AddDevice” have generic

meanings (regardless of whether the device is a group or library). But some are defined

from an aggregation of the children. For example, “shell.GetFastPath” can return

“Enabled”, “Disabled”, or “Mixed” (means some children are "Enabled" and some are

"Disabled").

1 simnow> shell.GetLogIO "4 core Node #0 -> AweSim Processor #0"

PCI: Disabled

IO: Disabled

IOfpdis: Enabled

MEM: Disabled

MEMfpdis: Enabled

GETMEMPTR: Disabled

1 simnow> shell.GetLogIO "4 core Node #0 -> AweSim Processor #1"

PCI: Disabled

IO: Disabled

IOfpdis: Disabled

MEM: Disabled

MEMfpdis: Disabled

GETMEMPTR: Disabled

In this example, all other child devices of "4 core Node #0" are "Disabled" for all log

options.

1 simnow> shell.GetLogIO "4 core Node #0"

PCI: Disabled

IO: Disabled

AMD Confidential

User Manual September 12
h
, 2008

174 Chapter 15: Frequently Asked Questions (FAQ)

IOfpdis: Mixed

MEM: Disabled

MEMfpdis: Mixed

GETMEMPTR: Disabled

1 simnow> shell.GetLogIO "-> Machine #1"

PCI: Disabled

IO: Disabled

IOfpdis: Mixed

MEM: Disabled

MEMfpdis: Mixed

GETMEMPTR: Disabled

15.1.5 Device Group Examples

Device groups can be a powerful building block for SimNow users. These next examples

should help give further understanding about device groups, and demonstrate some

practical uses.

15.1.5.1 Example: 1GB DDR2 memory

When you instantiate a “Dimm Bank” known device into a created device, you get its

default state of 8 empty dimm‟s with no configuration. You can then configure the

“Dimm Bank”, such as by opening the device‟s GUI configuration properties to specify

general options (such as max number of dimm‟s), and to configure each dimm (such as

by importing an SPD). You could configure it, for example, to emulate a dimm bank with

2 DDR2 dimm‟s (1GB each).

Device groups offer us a potentially simpler alternative - for the user to instantiate a

preconfigured device group. For example, we could have a device group “Dimm DDR2

1GBx2”, which has (inside it) only one child and default archive data (state) for that

child. The figure below shows that the (theoretical) known device “Dimm DDR2 1GBx2”

has inside it a single child device “Dimm Bank #0” that is configured with two dimm‟s

(type DDR2, 1GB each).

Figure 3-11: Example DIMM Device Group

When the user instantiates this (theoretical) known device “Dimm DDR2 1GBx2” as a

created device, we get a created device “Dimm DDR2 1GBx2 #0” with a child device

“Dimm Bank #0” that is already configured (as DDR2, 2 dimm, 1GB each). Our resulting

main device GUI would look like this:

AMD Confidential

User Manual September 12
th
, 2008

Chapter 15: Frequently Asked Questions (FAQ) 175

Figure 3-12: Created DIMM Device Group

The device GUI for the children of “Dimm DDR2 1GBx2 #0” would look like this:

Figure 3-13: Children of DIMM Device Group

If we looked at the options and configuration of the device library “-> Machine #1 ->

Dimm DDR2 1GBx2 #0 -> Dimm Bank #0” (either from the GUI or from the console),

we would see that it is already configured as DDR2 with 2 dimm slots (1GB each).

This example demonstrates a broad concept. An existing device that has a more generic

and abstract definition (such as a non-configured “Dimm Bank”) can be wrapped in a

device group to give it an identity as a particular hardware implementation (such as an

already configured “Dimm DDR2 1GBx2”). More generally, any device can be wrapped

by a device group, to give an alternate default configuration for the device‟s state

(archive data).

15.1.5.2 Example: Quad-Core Node

Next we will consider examples relevant to the ability of a device group to have multiple

child devices, default archive data for each child device, and connections between the

child devices. These next examples are based on a quad-core processor node.

Building a processor node in SimNow has traditionally been a multi-step process. First

the user would add the "AMD 8th Generation Northbridge Device", and then add one

"AweSim Processor" device for each processing core in the node. These devices then

need to be connected together along the respective "CPU Bus" and "Interrupt / IOAPIC"

AMD Confidential

User Manual September 12
h
, 2008

176 Chapter 15: Frequently Asked Questions (FAQ)

connection ports. Once the devices are connected, a user would then need to load a

product ID file so that the simulated devices would represent a real and planned piece of

hardware. In summary, building a Quad-core node in SimNow could take as many as 14

individual steps, and these steps would need to be repeated each time a processor node is

to be added.

A device group can both simplify adding a quad-core node, and present the user with a

hierarchical view. So we will give some examples with quad-core processor nodes.

A device group is not required to specify archive data for its child devices. When such a

known device group is instantiated as a created device, it simply lets its children use their

own default and initial configuration state. We can create an abstract or generic “4 core

Node” device group that does not represent a particular hardware implementation (just

like a non-configured “Dimm Bank” does not represent a particular hardware

implementation, until it is configured).

A device group can optionally specify initial and default archive data (device state) for

each of its child devices. A device group with five children could specify archive data for

0, 1, 2, 3, 4, or all 5 children. We could have an “AMD 4-core CPU xxxx” that specifies

archive data for all five of its children (configured with the (theoretical) product ID file

“amd-xxxx.id”).

AMD Confidential

User Manual September 12
th
, 2008

Chapter 15: Frequently Asked Questions (FAQ) 177

This is not the only way we could create a (theoretical) “AMD 4-core CPU xxxx”. A

cleaner idea would be to reuse the non-configured abstract and generic “4 core Node”.

This device group would (externally) be functionally the same as our previous “AMD 4-

core CPU xxxx” example, although it has the additional layer where it cleanly reuses “4

core Node”. We could also reuse “4 core Node” for other device groups that represent a

particular hardware implementation of a 4-core node, such as the (theoretical) “AMD 4-

core CPU yyyy” configured with the (theoretical) product ID file “amd-yyyy.id”. Or a

“DeerHound RevB QuadCore Socket L1” configured with the product ID file

“Family10hDR-L1_B0.id”.

15.1.5.3 Example: SuperIO device

For SimNow developers, device groups can be a technique for developing SimNow

devices in a layered manner, promoting optimal code reuse. Before device groups were

available, SuperIO devices were written as device libraries. It is cleaner to implement

SuperIO device models with device groups. Typically, SuperIO devices consist of

multiple functional blocks such as a UART, LPT, PS2 controller, Floppy controller etc.

Device groups provide a way to develop each functional block as discrete devices that

can later be grouped to represent a particular SuperIO controller.

15.1.6 Creating a Device Group

In this release of SimNow, the ability to create a device group is not yet exposed.

Main Window”, on page 15.

Please note that this mode has interaction issues with the Exceed X-server on Windows if

you're running a Linux hosted version of the simulator and displaying it over a network

to a Windows PC desktop.

Why does the on-line help not work on Linux?

Quit any local Mozilla browsers before clicking on the on-line help menu items or

buttons in the simulator.

What is SimNow™ software?

See Section 1, “Overview”, on page 1.

Is SimNow faster than my old Vax 780?

See Section 1, “Overview”, on page 1.

What is a "BSD" file?

See Section 6.1, “BSD Files”, on page 45.

AMD Confidential

User Manual September 12
h
, 2008

178 Chapter 15: Frequently Asked Questions (FAQ)

What do you need to run the simulator?

See Section 2, “Installation”, on page 3.

What generic BSD files are provided with the simulator?

See Section A.2.1, “Computer Platform Files”, on page 184.

How do I load a BSD file?

See Section 5.1.1, “Open a Simulation Definition File”, on page 36.

How do I Start, Stop, Reset, Press Soft Sleep, or Press Soft Power for simulations?

See Section 3.1, “Tool Bar Buttons”, on page 7.

What kind of hardware does the simulator require?

See Section 2.1, “System Requirements”, on page 3.

What host operating systems can the simulator be run on?

See Section 2.1, “System Requirements”, on page 3.

What Guest operating systems are supported?

See Section A.3, “Supported Guest Operating Systems”, on page 186.

What devices are supported?

See Section 7, “Device Configuration”, on page 49.

What about graphics/video adapter?

See Section 1, “Overview”, on page 1 and Section 7.4, “Emerald Graphics Device on

page 61.

What about networking?

See Section 7.24, “E1000 Network Adapter Device”, on page 120.

How does the simulator access media? What are Hard Disk, DVD-/ CD-ROM Disk, or

Floppy Disk images?

See Section 4, “Disk Images”, on page 31.

How do I create Disk images? What is DiskTool?

See Section 4, “Disk Images”, on page 31.

How do I attach to a Hard Disk, DVD-/CD-ROM Disk, or Floppy Disk image?

All three kinds of images, including blank Hard Disk images of the desired size, can be

created on both Windows 64 Beta and Linux-64 Hosts with our DiskTool program

provided in the simulator release package.

AMD Confidential

User Manual September 12
th
, 2008

Chapter 15: Frequently Asked Questions (FAQ) 179

The usage is relatively self-explanatory from its GUI, and it can also be run from the

command-line. Check out the command-line options via "DiskTool -h".

So, this file allows you to save a running simulation to a file. At any later time, you can

open this file in SimNow to restore the simulation to the same point where you left off.

How do I access the integrated Debugger?

See Section 10, “CPU Debugger”, on page 143.

How do I copy files into the simulator?

See Section 5.2.1, “Assigning Disk-Image”, on page 38.

How do I copy files out of the simulator?

See Section 5.2.1, “Assigning Disk-Image”, on page 38.

Where can I find the POST codes/Diagnostic port values of the simulation?

See Section 3.4.1, “SimStats and Diagnostic Ports”, on page 24.

How do I edit device configurations in SimNow?

See Section 3.2, “Device Window”, on page 9.

How do I change a BIOS in a BSD?

See Section 7.7, “Memory Device - Configuration Options”, on page 77.

How do I change the amount of system RAM installed in a BSD?

See Section 7.3, “DIMM Device”, on page 55.

How do I change the processor type of a processor in a BSD?

See Section 7.1, “AweSim Processor Device - Configuration Options”, on page 51.

How do I enable or disable IDE Hard Disk image journaling?

See Section 5.2.1, “Assigning Disk-Image”, on page 38 or A.7.2 IDE on page 235.

Why does Windows Server 2003 crash?

See Section A.3, “Supported Guest Operating Systems”, on page 187.

DiskTool displays an “Operation failed!” message box.

See Section 13.2, “GUI Mode”, on page 158.

Why doesn’t the simulator work on Linux kernels prior to version 2.6.10?

See Section 2.1, “System Requirements”, on page 3.

Why is the graphics performance in simulation so slow?

See Section 7.4, “Emerald Graphics Device - Improve Graphics Performance”, on page

64.

AMD Confidential

User Manual September 12
h
, 2008

180 Chapter 15: Frequently Asked Questions (FAQ)

Why doesn’t the simulated Operating System correctly recognize the DVD/CD after I

changed the DVD/CD image?

When changing DVD/CD images clear the old image, allow the simulation to run for a

couple of seconds, and then set the new image. This gives the Operating System a chance

to see that the DVD-/CD-ROM is "not ready", and it more correctly detects that the

DVD/CD image has changed. For example:

<press "Stop" button>
1 simnow>ide:1.image 0 off

<press "go" button>

<wait 5 seconds>

<press "Stop" button>
1 simnow>ide:1.image 0 c:\fc3-x86_64-disc2.iso

The serial connection to Microsoft’s KLernel Debugger seems to be unstable. What

can I do?

See Section 11.1, "Kernel Debugger", on page 151.

How can I obtain the full release version of the simulator?

See Section 1, “Overview”, on page 1.

Why doesn’t the OS find a connected USB device?

The USB port may not be soft-enabled. For example to soft-enable USB port:

1 simnow> usb:0.Port enable 0

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 181

A Appendix

A.1 Format of Floppy and Hard-Drive Images

The floppy-disk format assumes a standard 1.44 Mbyte floppy disk, consisting of 80

cylinders, 2 heads, and eighteen 512-byte sectors per head (36 sectors per cylinder). The

image file consists simply of each sector, starting with the first sector of the first cylinder

on the first head, and proceeding sequentially through the last sector of the last cylinder

on the second head. The total size of the image file is identical to the total capacity of a

1.44 Mbyte floppy disk, or 1,474,560 bytes.

The hard-disk image is formatted in a similar fashion, with the exception that the total

number of cylinders, heads, and sectors per head varies. Because of this, the hard-disk

image file contains a 512-byte header before the raw data. This 512-byte header is

identical to the information provided by the drive in response to the ATA command

"IDENTIFY". Following the 512-byte header is the data for each sector from the device.

As with the floppy, the data starts with the first sector of the first cylinder on the first

head. Unlike floppies, however, the image file may end before the last sector of the last

cylinder on the last head. If an attempt is made by the simulator, to access data on the

drive image that is beyond the end of the available data (but still within the bounds

defined by the geometry of the device), the simulator will extend the image file

dynamically.

The BSD file contains the contents of all Viper Plus registers. It also saves the contents of

any buffers and the states of all internal devices (HDD controllers, PIT, PIC, etc.). When

the BSD file is read in, all buffers are filled with past data, and all states are restored to

their saved states.

The symbol files that the debugger uses are in a simple text format. Each line contains an

address, length, and symbol name. Any line that starts with a semicolon is considered a

comment. Following is a sample file:

; SimNow Debugger Symbol File Format

;
; Address Length Symbolic Name
004011f0 3f _main

00401a3c 0 _GetModuleHandleA@4
00401a42 0 _GetCommandLineA@0

The address value may be an absolute address or a module-relative address. For the latter

case, the load address may be specified when the symbols are loaded into the debugger

with the "load_symbols" command (see Section 10.2, “Debugger Command Reference”,

on page 147).

AMD Confidential

User Manual September 12
h
, 2008

182 Appendix A

A.2 Bill of Material

A.2.1 Computer Platform Files (BSD)

This section gives a brief description of the computer platform description (BSD) files,

devices, and disk- and ROM-image files that come with AMD SimNow™ Platform

Simulator.

Note: The public release version of the simulator comes only with the following computer

platform description files, the "Cheetah_1p_emerald.bsd" and

"Cheetah_1p_jh_emerald.bsd". Public release version 4.4.2 and above contain one

additional computer platform description file, the “vp_bd_phase_1.bsd”, see Table 15-1.

File name

CPUs

Cores

per CPU

PCI

Buses
Southbridge SIO

Graphic

Type

Solo1 1 1 1 AMD-8111 W83627HF AGP

Fuge 8 1 4 AMD-8111 W83627HF PCI

Melody_1p 1 1 1 AMD-8111 W83627HF PCI

Melody_1p_jh 1 2 4 AMD-8111 W83627HF PCI

Melody_2p 2 1 4 AMD-8111 W83627HF PCI

Melody_2p_jh 2 2 4 AMD-8111 W83627HF PCI

Quartet 4 1 4 AMD-8111 W83627HF PCI

Serenade_1p-ami 1 1 3 AMD-8111 W83627HF PCI

Serenade-ami 2 2 3 AMD-8111 W83627HF PCI

Family10h_1p 1 4 3 AMD-8111 W83627HF PCI

Family10h_2p 2 4 3 AMD-8111 W83627HF PCI

Warthog2_Family10h 4 4 2 AMD-8111 W83627HF PCI

Cat2_Family11h 2 1 1 SB600
SMSC KBC

1100
PCI

Warthog2 4 1 1 AMD-8111 W83627HF PCI

Cheetah_1p_emerald 1 1 3 AMD-8111 W83627HF PCI

Cheetah_1p_jh_emerald 1 2 3 AMD-8111 W83627HF PCI

Cheetah_2p_emerald 2 1 3 AMD-8111 W83627HF PCI

Cheetah_2p_jh_emerald 2 2 3 AMD-8111 W83627HF PCI

Vp_bd_phase1 1 1 3 AMD-8111 W83627HF PCI

Vp_bd_phase2 1 4 3 AMD-8111 W83627HF PCI

Sahara_Family10h 1 4 1 SB400 ITE8712SIO PCI

Shiner_family10h 1 4 1 SB700 ITE8712SIO PCI

Dune 1 1 1 SB400 ITE8712SIO PCI

Table 15-1: Computer Platform Files (BSD)

A.2.2 Device Files (*.BSL)

Please see Section 7, “Device Configuration”, on page 49 for device listings and

descriptions.

1
 This is the recommended default uniprocessor platform.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 183

A.2.3 Product Files (*.ID)

A product file configures the CPU and Northbridge to represent and behave as an actual

AMD product. A product file will set the CPUID Family Model and Stepping, the

BrandID, the MANID, and fuses.

Note: The public release version of the simulator doesn't contain any product files!

Product File CPU Type # CPU Cores PIN Rev.
AMD

Virtualization

Athlon64-754_SH-C0_(800MHz).id AMD Athlon64 1 754 C0
Athlon64-754_SH-CG_(800MHz).id AMD Athlon64 1 754 CG
Athlon64-754_SH-D0_(800MHz).id AMD Athlon64 1 754 D0
Athlon64-754_SH-E0_(800MHz).id AMD Athlon64 1 754 E0
Athlon64-939_JH-E0_(800MHz x2).id AMD Athlon64 2 939 E0
Athlon64-939_SH-CG_(800MHz).id AMD Athlon64 1 939 CG
Athlon64-939_SH-D0_(800MHz).id AMD Athlon64 1 939 D0
Athlon64-939_SH-E0_(800MHz).id AMD Athlon64 1 939 E0
Athlon64-AM2_JH-F2G_(800MHz x2).id AMD Athlon64 2 AM2 F2G
Athlon64-AM2_JH-F0_(800MHz).id AMD Athlon64 1 AM2 F0
Athlon64-S1_JH-F2G_(800MHz x2).id AMD Athlon64 2 S1 F2G
Athlon64-S1_SH-F0_(800MHz).id AMD Athlon64 1 S1 F0
Opteron-940_JH-E0_(800MHz x2).id AMD Opteron 2 940 E0
Opteron-940_SH-B3_(800MHz).id AMD Opteron 1 940 B3
Opteron-940_SH-C0_(800MHz).id AMD Opteron 1 940 C0
Opteron-940_SH-CG_(800MHz).id AMD Opteron 1 940 CG
Opteron-940_SH-D0_(800MHz).id AMD Opteron 1 940 D0
Opteron-940_SH-E0_(800MHz).id AMD Opteron 1 940 E0
Opteron-L1_JH-F0_(800Mhz x2).id AMD Opteron 2 L1 F0
Opteron-L1_JH-F2G_(800Mhz x2).id AMD Opteron 2 L1 F2G
Opteron-L1_SH-F0_(800Mhz).id AMD Opteron 1 L1 F0
Family10hDR-L1_A0.id Family 10h 4 L1 A0
Family10hDR-L1_B0.id Family 10h 4 L1 B0
Family10hDR-L1_C0.id Family 10h 4 L1 C0
Family10hDR-AM2_B0.id Family 10h 4 AM2 B0
Family10hBL-AM3_C2A.id Family 10h 4 AM3 C2A
Family10hHY-G3M_D0A.id Family 10h 12 or 8 G34 D0A
Family10hHY-G3S_D0A.id Family 10h 6 or 4 G34 D0A
Family10hHY-L1_D0A.id Family 10h 6 L1 D0A
Family11h-S1_A0.id Family 11h 2 S1 A0
Family11h-S1_B0.id Family 11h 2 S1 B0

Table 15-2: Product Files

A.2.4 Image Files (*.HDD, *.FDD, *.ROM, *.SPD, *.BIN)

An image file is an exact representation of a media including the contents and the logical

format.

A.2.4.1 Hard-Disk Image Files

Table 15-3 shows hard-disk image files present in the simulator. These images can be

found in the simulators "/image" folder (see Section 2.3, "Directory Structure and

Executable", on page 4).

AMD Confidential

User Manual September 12
h
, 2008

184 Appendix A

File name Description

Bare-4gig.hdd 4-GB bare hard disk image.

Bare-8gig.hdd 8-GB bare hard disk image.

Table 15-3: Hard-Disk Images

A.2.4.2 Memory SPD Files

When a computer is booted (started), serial presence detect (SPD) is information stored in

an electrically erasable programmable read-only memory (EEPROM) chip on memory

module that tells the BIOS the memory module's size, data width, and speed. The BIOS

uses this information to configure the memory properly for maximum reliability and

performance.

File name Description Present in Public Release

simnow_DDR_32M.spd 32MB DDR memory
simnow_DDR_64M.spd 64MB DDR memory
simnow_DDR_128M.spd 128MB DDR memory
simnow_DDR_256M.spd 256MB DDR memory
simnow_DDR_512M.spd 512MB DDR memory
simnow_DDR_1G.spd 1024MB DDR memory
simnow_DDR_2G.spd 2048MB DDR memory
simnow_DDR_4G.spd 4096MB DDR memory
simnow_DDR_32M_Reg.spd 32MB registered DDR memory
simnow_DDR_64M_Reg.spd 64MB registered DDR memory
simnow_DDR_128M_Reg.spd 128MB registered DDR memory
simnow_DDR_256M_Reg.spd 256MB registered DDR memory
simnow_DDR_512M_Reg.spd 512MB registered DDR memory
simnow_DDR_1G_Reg.spd 1024MB registered DDR memory
simnow_DDR_2G_Reg.spd 2048MB registered DDR memory
simnow_DDR_4G_Reg.spd 4096MB registered DDR memory
simnow_DDR2_128M.spd 128MB DDR2 memory
simnow_DDR2_256M.spd 256MB DDR2 memory
simnow_DDR2_512M.spd 512MB DDR2 memory
simnow_DDR2_1G.spd 1024MB DDR2 memory
simnow_DDR2_2G.spd 2048MB DDR2 memory
simnow_DDR2_4G.spd 4096MB DDR2 memory
simnow_DDR2_8G.spd 8192MB DDR2 memory
simnow_DDR2_16G.spd 16384MB DDR2 memory
simnow_DDR2_128M_Reg.spd 128MB registered DDR2 memory
simnow_DDR2_256M_Reg.spd 256MB registered DDR2 memory
simnow_DDR2_512M_Reg.spd 512MB registered DDR2 memory
simnow_DDR2_1G_Reg.spd 1024MB registered DDR2 memory
simnow_DDR2_2G_Reg.spd 2048MB registered DDR2 memory
simnow_DDR2_4G_Reg.spd 4096MB registered DDR2 memory
simnow_DDR2_8G_Reg.spd 8192MB registered DDR2 memory
simnow_DDR2_16G_Reg.spd 16384MB registered DDR2 memory
IBM_512_Reg.spd 512MB registered DDR memory
Smart_DDR_128_2_133.spd 128MB DDR memory

Table 15-4: Memory SPD Files

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 185

In order to use unbuffered DDR/DDR2 memory we recommend using the

“simnow_DDRx_yyyy_.spd” SPD files. To use buffered DDR/DDR2 memory use the

“simnow_DDRx_yyyy_reg.spd” SPD files (for DDR2 x = 2 and yyyy = size in Mbytes).

A.3 Supported Guest Operating Systems

Table 15-5 lists the guest OS compatibility matrix.

Operating System Known Issues

Windows 2000 UP No known issues.

Windows XP (32-Bit) UP No known issues.

Windows XP (32 Bit) MP No known issues.

Windows XP (64-Bit) UP No known issues.

Windows Server 2003 (32-Bit) UP No known issues.

Windows Server 2003 (64-Bit) UP No known issues.

Windows Server 2003 (64-Bit) MP No known issues.

Windows Vista (32-Bit/64-Bit) UP/MP No known issues.

Windows Server 2008 No known issues.

MS-DOS No known issues.

Linux (32-bit/64-bit), RedHat/SuSE, UP/MP Kernel versions 2.4 and 2.6 are all known to work.

SUSE LiveCD 9.1

Hangs during PCMCIA probe when the VESA

BIOS Extension is enabled and the active VESA

Mode is not 1024x768.

SUSE LiveCD 9.2 No known issues.

SUSE LiveCD 9.3
No support for initial graphical setup screen. Setup

screen will appear in text mode.

SUSE 10.1 No known issues.

Red Hat Enterprise Linux 4 No known issues.

Solaris x86 No known issues.

Solaris 10 for AMD64 No known issues.

Table 15-5: Supported Guest Operating Systems

The simulator has recently (but not specifically tested for this release):

 Successfully completed a 64-bit SpecJBB run on a simulated 4-processor

machine. The simulator has also successfully completed the entire SPECint2000

and SPECfp2000 suite.

 Successfully completed an in-memory run of TPC-C on a simulated multi-

processor system, as well as parts of TPC-C on a simulated RAID device.

 Successfully completed Sysmark® 2004's Office Productivity section and parts of

Internet Content Creation.

AMD Confidential

User Manual September 12
h
, 2008

186 Appendix A

A.4 CPUID

This section is an overview of the CPUID feature implementation in the AweSim CPU

processor model.

A.4.1 CPUID Standard Feature Support (Standard
Function 0x01)

Table 15-6 shows the standard feature bits returned by the AweSim CPU processor

model and which features are fully () or only partially () implemented and

supported. A indicates that the returned feature bit is zero and this feature is not

implemented and not supported.

Feature
7

th

Generation

8
th

Generation

(Base)

8
th

Generation

Pre.-Rev. F

8
th

 Generation

Rev. F

Floating-Point Unit
Virtual Mode Extensions
Debugging Extensions

1

Page-Size Extension
Time Stamp Counter
AMD Model-Specific Registers
Physical-Address Extensions
Machine Check Exception
CMPXCHG8B Instruction
APIC
SYSENTER and SYSEXIT
Memory Type Range Registers
Page Global Extension
Machine Check Architecture
Conditional Move Instruction
Page Attribute Table
Page Size Extensions (PSE-36)
CFLUSH Instruction
MMX™ Instructions
FXSAVE/FXRSTOR
SSE
SSE2
Hyper Threading
 SSE3/PNI
Monitor/MWAIT

1
 Only read and write to debug registers is supported, side affects are not implemented.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 187

Table 15-6: CPUID Standard Feature implementation

A.4.2 CPUID AMD Feature Support (Extended Function
0x80000001)

Table 15-7 shows the extended feature bits returned by the AweSim CPU processor

model and which features are fully () or only partially () implemented and

supported. A indicates that the returned feature bit is zero and this feature is not

implemented and not supported.

Feature
7

th

Generation

8
th

Generation

 (Base)

8
th

Generation

Pre.-Rev. F

8
th

Generation

Rev. F

Floating-Point Unit
Virtual Mode Extensions
Debugging Extensions

1

Page-Size Extension
Time Stamp Counter
AMD Model-Specific Registers
Page Address Extensions
Machine Check Exception
CMPXCHG8B Instruction
APIC
SYSCALL and SYSRET
Memory Type Range Registers
Page Global Extension
Machine Check Architecture
Conditional Move Instruction
Page Attribute Table
Page Size Extensions (PSE-36)
No-execute page protection
SEM

2

AMD extensions to MMX™
MMX™
FXSAVE/FXRSTOR
Fast FXSAVE/FXRSTOR
1 GB Paging feature
RDTSCP
Long Mode

2

AMD Extensions to 3DNow!™
3DNow! Instructions
Virtualization Technology

Table 15-7: CPUID Extended Feature implementation

1
 Only read and write to debug registers is supported, side effects are not implemented.

2
 Controlled by FUSE state.

AMD Confidential

User Manual September 12
h
, 2008

188 Appendix A

A.5 Known Issues

A.5.1 FSAVE/FRSTOR and FSTENV/FLDENV

When the simulator is executing FSAVE/FRSTOR and FSTENV/FLDENV in real-mode

it is using the 16-bit protected-mode memory format.

A.5.2 Triple Faulting

If the processor encounters an exception while trying to invoke the double fault (#DF)

exception handler, a triple fault exception occurs. This can rarely occur, but is possible.

For example, if the invocation of a double fault exception causes the stack to overflow,

then this would cause a triple fault. When this happens, the CPU will triple fault and

cause a shutdown-cycle to occur. This special cycle should be interpreted by the

motherboard hardware, which then pulls RESET, which ultimately resets the CPU and

the computer.

However, the simulator does not simulate triple faults. In case a triple fault occurs, the

simulator stops the simulation. The simulation cannot be restarted until a reset is asserted

but the simulation state can be inspected with the simulator‟s debugger.

A.5.3 Performance-Monitoring Counter Extensions

Setting CR4.PCE (bit 8) to 1 allows software running at any privilege level to use the

RDPMC instruction. Software uses the RDPMC instruction to read the four performance-

monitoring MSRs, PerfCTR[3:0]. Clearing PCE to 0 allows only the most-privileged

software (CPL=0) to use the RDPMC instruction.

The simulator does support the RDPMC instruction but there is no logic behind the

simulated performance counter MSRs.

A.5.4 Microcode Patching

Microcode patches do not affect the simulated machine behavior. This may have

unintended consequences.

A.5.5 Instruction Coherency

Instruction coherency does not work when code pages have multiple virtual-mappings.

Here is an example that would not work right:

1. There is an x86 physical page that has code on it.

2. This page is mapped by two different virtual addresses, A and B

3. There is a store to virtual page A

4. We execute code from page B

5. We store again to A, modifying some of the x86 code that we executed in step 4

6. We execute the code from step 4 again

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 189

The code we execute in step 6 will probably be the old code because our page-based

coherency mechanism depends on the software TLB to write protect pages which have

x86 code that has been translated. However, this mechanism protects physical pages

through the virtual mapping mechanism and this mechanism only knows about one

virtual address mapping, not all possible mappings of any code page.

AMD Confidential

User Manual September 12
h
, 2008

190 Appendix A

A.6 Instruction Reference

This section specifies the hexadecimal and/or binary encodings for the opcodes that

SimNow does (), does not () or does partially () simulate when simulating an

AMD 8
th

 Generation CPU, Rev. F.

A.6.1 Notation

A.6.1.1 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the

instruction can take. Figure A-1 shows an example of a syntax in which the instruction

takes two operands. In most instruction that take two operands, the first (left-most)

operand is both a source operand (the first source operand) and the destination operand.

The second (right-most) operand serves only as a source, not a destination.

Figure A-1: Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination

operands:

 cReg – Control Register.

 dReg – Debug register.

 imm8 – Byte (8-Bit) immediate.

 imm16 – Word (16-Bit) immediate.

 imm16/32 – Word (16-bit) or doubleword (32-bit) immediate.

 imm32 – Doubleword (32-bit) immediate.

 imm32/64 – Doubleword (32-bit) or quadword (64-bit) immediate.

 imm64 – Quadword (64-bit) immediate.

 mem – An operand of unspecified size in memory.

 mem8 – Byte (8-bit) operand in memory.

 mem16 – Word (16-bit) operand in memory.

 mem16/32 – Word (16-bit) or doubleword (32-bit) operand in memory.

 mem32 – Doubleword (32-bit) operand in memory.

 mem32/48 – Doubleword (32-bit) or 48-bit operand in memory.

 mem48 – 48-bit operand in memory.

 mem64 – Quadword (64-bit) operand in memory.

 mem16:16 – Two sequential word (16-bit) operands in memory.

 mem16:32 – A doubleword (32-bit) operand followed by a word (16-bit) operand

in memory.

 mem32real – Single precision (32-bit) floating-point operand in memory.

Mnemonic

First Operand and

Destination Operand

Second Source Operand

ADDPD xmm1, xmm2/mem128

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 191

 mem32int – Doubleword (32-bit) integer operand in memory.

 mem64real – Double-precision (64-bit) floating-point operand in memory.

 mem64int – Quadword (64-bit) integer operand in memory.

 mem80real – Double-extended-precision (80-bit) floating-point operand in

memory.

 mem80dec – 80-bit packed BCD operand in memory, containing 18 4-bit BCD

digits.

 mem2env – 16-bit x87 control word or x87 status word.

 mem14/28env – 14-byte or 28-byte x87 environment. The x87 environment

consists of the x87 control word, x87 status word, x87 tag word, last non-control

instruction pointer, last data pointer, and opcode of the last non-control instruction

completed.

 mem94/108env – 94-byte or 108-byte x87 environment and register stack.

 mem512env – 512-byte environment for 128-bit media, 64-bit media, and x87

instructions.

 mmx – Quadword (64-bit) operand in an MMX™ register.

 mmx1 – Quadword (64-bit) operand in an MMX register, specified as the left-

most (first) operand in the instruction syntax.

 mmx2 - Quadword (64-bit) operand in an MMX register, specified as the right-

most (second) operand in the instruction syntax.

 mmx/mem32 – Doubleword (32-bit) operand in an MMX register or memory.

 mmx/mem64 – Quadword (64-bit) operand in an MMX register or memory.

 mmx1/mem64 - Quadword (64-bit) operand in an MMX register or memory,

specified as the left-most (first) operand in the instruction syntax.

 mmx2/mem64 - Quadword (64-bit) operand in an MMX register or memory,

specified as the right-most (second) operand in the instruction syntax.

 moffset – Memory offset of unspecified size.

 moffset8 – Operand in memory located at the specified byte (8-bit) offset from the

instruction pointer.

 moffset16 - Operand in memory located at the specified word (16-bit) offset from

the instruction pointer.

 moffset32 - Operand in memory located at the specified doubleword (32-bit)

offset from the instruction pointer.

 pntr16:16 – Far pointer with 16-bit selector and 16-bit offset.

 pntr16:32 - Far pointer with 16-bit selector and 32-bit offset.

 reg – Operand of unspecified size in a GPR register.

 reg8 – Byte (8-bit) operand in a GPR register.

 reg16 – Word (16-bit) operand in a GPR register.

 reg16/32 - Word (16-bit) or doubleword (32-bit) operand in a GPR register.

 reg32 – Doubleword (32-bit) operand in a GPR register.

 reg64 - Quadword (64-bit) operand in a GPR register.

 reg/mem8 – Byte (8-bit) operand in a GPR register or memory.

 reg/mem16 – Word (16-bit) operand in a GPR register or memory.

 reg/mem32 – Doubleword (32-bit) operand in a GPR register or memory.

AMD Confidential

User Manual September 12
h
, 2008

192 Appendix A

 reg/mem64 – Quadword (64-bit) operand in a GPR register or memory.

 rel8off – Relative address in the current code segment, in 8-bit offset range.

 rel16off - Relative address in the current code segment, in 16-bit offset range.

 rel32off - Relative address in the current code segment, in 32-bit offset range.

 segReg or sReg – Word (16-bit) operand in a segment register.

 ST(0) – x87 stack register 0.

 ST(i) – x87 stack register i, where i is between 0 and 7.

 xmm – Double quadword (128-bit) operand in an XMM register.

 xmm1 – Double quadword (128-bit) operand in an XMM register, specified as the

left-most (first) operand in the instruction syntax..

 xmm2 – Double quadword (128-bit) operand in an XMM register, specified as the

right-most (second) operand in the instruction syntax.

 xmm/mem64 – Quadword (64-bit) operand in a 128-bit XMM register or memory.

 xmm/mem128 – Double quadword (128-bit) operand in a 128-bit operand in an

XMM register or memory.

 xmm1/mem128 – Double quadword (128-bit) operand in a 128-bit operand in an

XMM register or memory, specified as the left-most (first) operand in the

instruction syntax..

 xmm2/mem128 – Double quadword (128-bit) operand in a 128-bit operand in an

XMM register or memory, specified as the right-most (second) operand in the

instruction syntax.

A.6.1.2 Opcode Syntax

In addition to the notation shown in above in “Mnemonic Syntax” on page 192, the

following notation indicates the size and type of operands in the syntax of instruction

syntax.

 /digit – Indicates that the ModRM byte specifies only one register or memory

(r/m) operand. The digit is specified by the ModRM reg field and is used as an

instruction-opcode extension. Valid digit values range from 0 to 7.

 /r – Indicates that the ModRM byte specifies both a register and operand and a

reg/mem (register or memory) operand.

 cb, cw, cd ,cp – Specified a code-offset value and possibly a new code-segment

register value. The value following the opcode is either one byte (cb), two bytes

(cw), four bytes (cd), or six bytes (cp).

 ib, iw, id – Specifies an immediate-operand value. The opcode determines

whether the value is signed or unsigned. The value following the opcode,

ModRM, or SIB byte is either one byte (ib), two bytes (iw), or four bytes (id).

Word and doubleword values start wit the low-order byte.

 +rb, +rw, +rd, +rq – Specifies a register value that is added to the hexadecimal

byte on the left, forming a one-byte opcode. The result is an instruction that

operates on the register specified by the register code. Valid register-code values

are shown in “AMD x86-64 Architecture: Programmer‟s Manual, Volume 3”.

 m64 – Specifies a quadword (64-bit) operand in memory.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 193

 +i – Specifies an x87 floating-point stack operand, ST(i). The value is used only

with x87 floating-point instructions. It is added to the hexadecimal byte on the

left, forming a one-byte opcode. Valid values range from 0 to 7.

A.6.2 General Purpose Instructions

This chapter describes the function, mnemonic syntax, and opcodes that the simulator

simulates. General-purpose instructions are used in basic software execution. Most of

these instructions load, store, or operate on data location in the general-purpose registers

(GPRs), in memory, or in both. The remaining instructions are used to alter the sequential

flow of the program by branching to other locations within the program, or to entirely

different programs.

Instruction

Supported
Mnemonic Opcode Description

AAA 37 Create an unpacked BCD number.
AAD D5 Adjust two BCD digits in AL and AH.
AAM D4

Create a pair of unpacked BCD values
in AH and AL.

AAS 3F
Create an unpacked BCD number from
the contents of the AL register.

ADC AL,imm8 14 ib Add imm8 to AL + CF.
ADC AL,imm16 14 iw Add imm16 to AX + CF.
ADC EAX,imm32 15 id Add imm32 to EAX + CF.
ADC RAX,imm32 15 id Add sign-ext. imm32 to RAX + CF.
ADC reg/mem8,imm8 80 /2 ib Add imm8 to reg/mem8 + CF.
ADC reg/mem16,imm16 81 /2 iw Add imm16 to reg/mem16 + CF.
ADC reg/mem32,imm32 81 /2 id Add imm32 to reg/mem32 + CF.
ADC reg/mem64,imm32 81 /2 id

Add sign-ext. imm32 to reg/mem64 +
CF.

ADC reg/mem16,imm8 83 /2 ib Add sign-ext. imm8 to reg/mem16 + CF.
ADC reg/mem32,imm8 83 /2 ib Add sign-ext. imm8 to reg/mem32 + CF.
ADC reg/mem64,imm8 83 /2 ib Add sign-ext. imm8 to reg/mem64 + CF.
ADC reg/mem8,reg8 10 /r Add reg8 to reg/mem8 + CF.
ADC reg/mem16,reg16 11 /r Add reg16 to reg/mem16 + CF.
ADC reg/mem32,reg32 11 /r Add reg32 to reg/mem32 + CF.
ADC reg/mem64,reg64 11 /r Add reg64 to reg/mem64 + CF.
ADC reg8,reg/mem8 12 /r Add reg/mem8 to reg8 + CF.
ADC reg16,reg/mem16 13 /r Add reg/mem16 to reg16 + CF.
ADC reg32,reg/mem32 13 /r Add reg/mem32 to reg32 + CF.
ADC reg64,reg/mem64 13 /r Add reg/mem64 to reg64 + CF.
ADD AL,imm8 04 ib Add imm8 to AL.
ADD AX,imm16 05 iw Add imm16 to AX.
ADD EAX,imm32 05 id ADD imm32 to EAX.
ADD RAX,imm64 05 id ADD imm64 to RAX.
ADD reg/mem8,imm8 80 /0 ib Add imm8 to reg/mem8.
ADD reg/mem16,imm16 81 /0 iw Add imm16 to reg/mem16.
ADD reg/mem32,imm32 81 /0 id Add imm32 to reg/mem32.
ADD reg/mem64,imm32 81 /0 id Add sign-ext. imm32 to reg/mem64.
ADD reg/mem16,imm8 83 /0 ib Add sign-ext. imm8 to reg/mem16.
ADD reg/mem32,imm8 83 /0 ib Add sign-ext. imm8 to reg/mem32.
ADD reg/mem64,imm8 83 /0 ib Add sign-ext. imm8 to reg/mem64.
ADD reg/mem8,reg8 00 /r Add reg8 to reg/mem8.
ADD reg/mem16,reg16 01 /r Add reg16 to reg/mem16.
ADD reg/mem32,reg32 01 /r Add reg32 to reg/mem32.

AMD Confidential

User Manual September 12
h
, 2008

194 Appendix A

Instruction
Supported

Mnemonic Opcode Description

ADD reg/mem64,reg64 01 /r Add reg64 to reg/mem64.
ADD reg8,reg/mem8 02 /r Add reg/mem8 to reg8.
ADD reg16,reg/mem16 03 /r Add reg/mem16 to reg16.
ADD reg32,reg/mem32 03 /r Add reg/mem32 to reg32.
ADD reg64,reg/mem64 03 /r Add reg/mem64 to reg64.

AND AL,imm8 24 ib
AND the contents of AL with an
immediate 8-bit value and store the
result in AL.

AND AX,imm16 25 iw
AND the contents of AX with an
immediate 16-bit value and store the
result in AX.

AND EAX,imm32 25 id
AND the contents of EAX with an
immediate 32-bit value and store the
result in EAX.

AND RAX,imm32 25 id
AND the contents of RAX with a sign-
extended immediate 32-bit value and
store the result in RAX.

AND reg/mem8,imm8 80 /4 ib
AND the contents of reg/mem8 with

imm8.

AND reg/mem16,imm16 81 /4 iw
AND the contents of reg/mem16 with
imm16.

AND reg/mem32,imm32 81 /4 id
AND the contents of reg/mem32 with
imm32.

AND reg/mem64,imm32 81 /4 id
AND the contents of reg/mem64 with a
sign-extended imm32.

AND reg/mem16,imm8 83 /4 ib
AND the contents of reg/mem16 with a
sign-extended 8-bit value.

AND reg/mem32,imm8 83 /4 ib
AND the contents of reg/mem32 with a
sign-extended 8-bit value.

AND reg/mem64,imm8 83 /4 ib
AND the contents of reg/mem64 with a
sign-extended 8-bit value.

AND reg/mem8,reg8 20 /r
AND the contents of an 8-bit register
or memory location with the contents
of an 8-bit register.

AND reg/mem16,reg16 21 /r
AND the contents of a 16-bit register
or memory location with the contents
of a 16-bit register.

AND reg/mem32,reg32 21 /r
AND the contents of a 32-bit register
or memory location with the contents

of a 32-bit register.

AND reg/mem64,reg64 21 /r
AND the contents of a 16-bit register
or memory location with the contents
of a 16-bit register.

AND reg8,reg/mem8 22 /r
AND the contents of an 8-bit register
with the contents of an 8-bit memory
location or register.

AND reg16,reg/mem16 23 /r
AND the contents of a 16-bit register
with the contents of a 16-bit memory
location or register.

AND reg32,reg/mem32 23 /r
AND the contents of a 32-bit register
with the contents of a 32-bit memory
location or register.

AND reg64,reg/mem64 23 /r
AND the contents of a 64-bit register
with the contents of a 64-bit memory
location or register.

BOUND reg16,mem16&mem16 62 /r
Test whether a 16-bit array index is
within the bounds specified by the
two 16-bit values in mem16&mem16.

BOUND reg32,mem32&mem32 62 /r
Test whether a 32-bit array index is
within the bounds specified by the

two 32-bit values in mem32&mem32.

BSF reg16,reg/mmem8 0F BC /r
Bit scan forward on the contents of
reg/mem16.

BSF reg32,reg/mmem32 0F BC /r
Bit scan forward on the contents of
reg/mem32.

BSF reg64,reg/mmem64 0F BC /r
Bit scan forward on the contents of
reg/mem64.

BSR reg16,reg/mmem8 0F BD /r
Bit scan reverse on the contents of
reg/mem16.

BSR reg32,reg/mmem32 0F BD /r
Bit scan reverse on the contents of
reg/mem32.

BSR reg64,reg/mmem64 0F BD /r
Bit scan reverse on the contents of
reg/mem64.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 195

Instruction
Supported

Mnemonic Opcode Description

BSWAP reg32 0F C8 +rd Reverse the byte order of reg32.
BSWAP reg64 0F C8 +rd Reverse the byte order of reg64.
BT reg/mem16,reg16 0F A3 /r

Copy the value of the selected bit to
the carry flag.

BT reg/mem32,reg32 0F A3 /r
Copy the value of the selected bit to
the carry flag.

BT reg/mem64,reg64 0F A3 /r
Copy the value of the selected bit to
the carry flag.

BT reg/mem16,imm8 0F BA /4 ib
Copy the value of the selected bit to
the carry flag.

BT reg/mem32,imm8 0F BA /4 ib
Copy the value of the selected bit to
the carry flag.

BT reg/mem64,imm8 0F BA /4 ib
Copy the value of the selected bit to
the carry flag.

BTC mem/mem16,reg16 0F BB /r
Copy the value of the selected bit to
the carry flag, and then complement
the selected bit.

BTC mem/mem32,reg32 0F BB /r
Copy the value of the selected bit to
the carry flag, and then complement
the selected bit.

BTC mem/mem64,reg64 0F BB /r
Copy the value of the selected bit to
the carry flag, and then complement
the selected bit.

BTC reg/mem16,imm8 0F BA /7 ib
Copy the value of the selected bit to
the carry flag, and then complement
the selected bit.

BTC reg/mem32,imm8 0F BA /7 ib
Copy the value of the selected bit to
the carry flag, and then complement
the selected bit.

BTC reg/mem64,imm8 0F BA /7 ib
Copy the value of the selected bit to
the carry flag, and then complement
the selected bit.

BTR reg/mem16,reg16 0F B3 /r
Copy the value of the selected bit to
the carry flag, and then clear the
selected bit.

BTR reg/mem32,reg32 0F B3 /r
Copy the value of the selected bit to
the carry flag, and then clear the
selected bit.

BTR reg/mem64,reg64 0F B3 /r
Copy the value of the selected bit to
the carry flag, and then clear the
selected bit.

BTR reg/mem16,imm8 0F BA /6 ib
Copy the value of the selected bit to
the carry flag, and then clear the
selected bit.

BTR reg/mem32,imm8 0F BA /6 ib
Copy the value of the selected bit to
the carry flag, and then clear the
selected bit.

BTR reg/mem64,imm64 0F BA /6 ib
Copy the value of the selected bit to
the carry flag, and then clear the
selected bit.

BTS reg/mem16,reg16 0F AB /r
Copy the value of the selected bit to
the carry flag, and then set the
selected bit.

BTS reg/mem32,reg32 0F AB /r
Copy the value of the selected bit to
the carry flag, and then set the
selected bit.

BTS reg/mem64,reg64 0F AB /r
Copy the value of the selected bit to
the carry flag, and then set the
selected bit.

BTS reg/mem16,imm8 0F BA /5 ib
Copy the value of the selected bit to
the carry flag, and then set the
selected bit.

BTS reg/mem32,imm8 0F BA /5 ib
Copy the value of the selected bit to
the carry flag, and then set the
selected bit.

BTS reg/mem64,imm8 0F BA /5 ib
Copy the value of the selected bit to
the carry flag, and then set the
selected bit.

CALL rel16off E8 iw
Near call with the target specified
by a 16-bit relative displacement.

CALL rel32off E8 id
Near call with the target specified
by a 32-bit relative displacement.

CALL reg/mem16 FF /2
Near call with the target specified
by reg/mem16.

AMD Confidential

User Manual September 12
h
, 2008

196 Appendix A

Instruction
Supported

Mnemonic Opcode Description

CALL reg/mem32 FF /2
Near call with the target specified
by reg/mem32.

CALL reg/mem64 FF /2
Near call with the target specified
by reg/mem64.

CALL FAR pntr16:16 9A cd
Far call direct, with the target
specified by a far pointer contained
in the instruction.

CALL FAR pntr16:32 9A cp
Far call direct, with the target
specified by a far pointer contained
in the instruction.

CALL FAR mem16:16 FF /3
Far call indirect, with the target
specified by a far pointer in memory.

CALL FAR mem16:32 FF /3
Far call indirect, with the target
specified by a far pointer in memory.

CBW 98 Sign-extend AL into AX.
CWDE 98 Sign-extend AX into EAX.
CDQE 98 Sign-extend EAX into RAX.
CWD 99 Sign-extend AX into DX:AX.
CDQ 99 Sign-extend EAX into EDX:EAX.
CQO 99 Sign-extend RAX into RDX:RAX.
CLC F8 Clear the carry flag (CF) to zero.
CLD FC

Clear the direction flag (DF) to
zero.

CFLUSH mem8 0F AE /7 Flush cache line containing mem8.
CMC F5 Complement the carry flag (CF).
CMOVO reg16,reg/mem16 0F 40 /r Move if overflow (OF = 1).
CMOVO reg32,reg/mem32 0F 40 /r Move if overflow (OF = 1).
CMOVO reg64,reg/mem64 0F 40 /r Move if overflow (OF = 1).
CMOVNO reg16,reg/mem16 0F 41 /r Move if not overflow (OF = 0).
CMOVNO reg32,reg/mem32 0F 41 /r Move if not overflow (OF = 0).
CMOVNO reg64,reg/mem64 0F 41 /r Move if not overflow (OF = 0).
CMOVB reg16,reg/mem16 0F 42 /r Move if below (CF = 1).
CMOVB reg32,reg/mem32 0F 42 /r Move if below (CF = 1).
CMOVB reg64,reg/mem64 0F 42 /r Move if below (CF = 1).
CMOVC reg16,reg/mem16 0F 42 /r Move if carry (CF = 1).
CMOVC reg32,reg/mem32 0F 42 /r Move if carry (CF = 1).
CMOVC reg64,reg/mem64 0F 42 /r Move if carry (CF = 1).
CMOVNAE reg16,reg/mem16 0F 42 /r Move if not above or equal (CF = 1).
CMOVNAE reg32,reg/mem32 0F 42 /r Move if not above or equal (CF = 1).
CMOVNAE reg64,reg/mem64 0F 42 /r Move if not above or equal (CF = 1).
CMOVNB reg16,reg/mem16 0F 43 /r Move if not below (CF = 0).
CMOVNB reg32,reg/mem32 0F 43 /r Move if not below (CF = 0).
CMOVNB reg64,reg/mem64 0F 43 /r Move if not below (CF = 0).
CMOVNC reg16,reg/mem16 0F 43 /r Move if not carry (CF = 0).
CMOVNC reg32,reg/mem32 0F 43 /r Move if not carry (CF = 0).
CMOVNC reg64,reg/mem64 0F 43 /r Move if not carry (CF = 0).
CMOVAE reg16,reg/mem16 0F 43 /r Move if above or equal (CF = 0).
CMOVAE reg32,reg/mem32 0F 43 /r Move if above or equal (CF = 0).
CMOVAE reg64,reg/mem64 0F 43 /r Move if above or equal (CF = 0).
CMOVZ reg16,reg/mem16 0F 44 /r Move if zero (ZF = 1).
CMOVZ reg32,reg/mem32 0F 44 /r Move if zero (ZF = 1).
CMOVZ reg64,reg/mem64 0F 44 /r Move if zero (ZF = 1).
CMOVE reg16,reg/mem16 0F 44 /r Move if equal (ZF = 1).
CMOVE reg32,reg/mem32 0F 44 /r Move if equal (ZF = 1).
CMOVE reg64,reg/mem64 0F 44 /r Move if equal (ZF = 1).
CMOVNZ reg16,reg/mem16 0F 45 /r Move if not zero (ZF = 0).
CMOVNZ reg32,reg/mem32 0F 45 /r Move if not zero (ZF = 0).

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 197

Instruction
Supported

Mnemonic Opcode Description

CMOVNZ reg64,reg/mem64 0F 45 /r Move if not zero (ZF = 0).
CMOVNE reg16,reg/mem16 0F 45 /r Move if not equal (ZF = 0).
CMOVNE reg32,reg/mem32 0F 45 /r Move if not equal (ZF = 0).
CMOVNE reg64,reg/mem64 0F 45 /r Move if not equal (ZF = 0).
CMOVBE reg16,reg/mem16 0F 46 /r

Move if below or equal (CF = 1 or ZF
= 1).

CMOVBE reg32,reg/mem32 0F 46 /r
Move if below or equal (CF = 1 or ZF
= 1).

CMOVBE reg64,reg/mem64 0F 46 /r
Move if below or equal (CF = 1 or ZF
= 1).

CMOVNA reg16,reg/mem16 0F 46 /r Move if not above (CF = 1 or ZF = 1).
CMOVNA reg32,reg/mem32 0F 46 /r Move if not above (CF = 1 or ZF = 1).
CMOVNA reg64,reg/mem64 0F 46 /r Move if not above (CF = 1 or ZF = 1).
CMOVNBE reg16,reg/mem16 0F 47 /r

Move if not below or equal (CF = 0 or
ZF = 0).

CMOVNBE reg32,reg/mem32 0F 47 /r
Move if not below or equal (CF = 0 or
ZF = 0).

CMOVNBE reg64,reg/mem64 0F 47 /r
Move if not below or equal (CF = 0 or
ZF = 0).

CMOVA reg16,reg/mem16 0F 47 /r Move if above (CF = 1 or ZF = 0).
CMOVA reg32,reg/mem32 0F 47 /r Move if above (CF = 1 or ZF = 0).
CMOVA reg64,reg/mem64 0F 47 /r Move if above (CF = 1 or ZF = 0).
CMOVS reg16,reg/mem16 0F 48 /r Move if sign (SF = 1).
CMOVS reg32,reg/mem32 0F 48 /r Move if sign (SF = 1).
CMOVS reg64,reg/mem64 0F 48 /r Move if sign (SF = 1).
CMOVNS reg16,reg/mem16 0F 49 /r Move if not sign (SF = 0).
CMOVNS reg32,reg/mem32 0F 49 /r Move if not sign (SF = 0).
CMOVNS reg64,reg/mem64 0F 49 /r Move if not sign (SF = 0).
CMOVP reg16,reg/mem16 0F 4A /r Move if parity (PF = 1).
CMOVP reg32,reg/mem32 0F 4A /r Move if parity (PF = 1).
CMOVP reg64,reg/mem64 0F 4A /r Move if parity (PF = 1).
CMOVPE reg16,reg/mem16 0F 4A /r Move if parity even (PF = 1).
CMOVPE reg32,reg/mem32 0F 4A /r Move if parity even (PF = 1).
CMOVPE reg64,reg/mem64 0F 4A /r Move if parity even (PF = 1).
CMOVNP reg16,reg/mem16 0F 4B /r Move if not parity (PF = 0).
CMOVNP reg32,reg/mem32 0F 4B /r Move if not parity (PF = 0).
CMOVNP reg64,reg/mem64 0F 4B /r Move if not parity (PF = 0).
CMOVPO reg16,reg/mem16 0F 4B /r Move if parity odd (PF = 0).
CMOVPO reg32,reg/mem32 0F 4B /r Move if parity odd (PF = 0).
CMOVPO reg64,reg/mem64 0F 4B /r Move if parity odd (PF = 0).
CMOVL reg16,reg/mem16 0F 4C /r Move if less (SF <> OF).
CMOVL reg32,reg/mem32 0F 4C /r Move if less (SF <> OF).
CMOVL reg64,reg/mem64 0F 4C /r Move if less (SF <> OF).
CMOVNGE reg16,reg/mem16 0F 4C /r

Move if not greater or equal (SF <>
OF).

CMOVNGE reg32,reg/mem32 0F 4C /r
Move if not greater or equal (SF <>
OF).

CMOVNGE reg64,reg/mem64 0F 4C /r
Move if not greater or equal (SF <>
OF).

CMOVNL reg16,reg/mem16 0F 4D /r Move if not less (SF = OF).
CMOVNL reg32,reg/mem32 0F 4D /r Move if not less (SF = OF).
CMOVNL reg64,reg/mem64 0F 4D /r Move if not less (SF = OF).
CMOVGE reg16,reg/mem16 0F 4D /r Move if greater or equal (SF = OF).
CMOVGE reg32,reg/mem32 0F 4D /r Move if greater or equal (SF = OF).
CMOVGE reg64,reg/mem64 0F 4D /r Move if greater or equal (SF = OF).
CMOVLE reg16,reg/mem16 0F 4E /r

Move if less or equal (ZF = 1 or SF
<> OF).

CMOVLE reg32,reg/mem32 0F 4E /r
Move if less or equal (ZF = 1 or SF
<> OF).

AMD Confidential

User Manual September 12
h
, 2008

198 Appendix A

Instruction
Supported

Mnemonic Opcode Description

CMOVLE reg64,reg/mem64 0F 4E /r
Move if less or equal (ZF = 1 or SF
<> OF).

CMOVNG reg16,reg/mem16 0F 4E /r
Move if less not greater (ZF = 1 or
SF <> OF).

CMOVNG reg32,reg/mem32 0F 4E /r
Move if less not greater (ZF = 1 or
SF <> OF).

CMOVNG reg64,reg/mem64 0F 4E /r
Move if less not greater (ZF = 1 or
SF <> OF).

CMOVNLE reg16,reg/mem16 0F 4F /r
Move if not less or equal (ZF = 0 or
SF = OF).

CMOVNLE reg32,reg/mem32 0F 4F /r
Move if not less or equal (ZF = 0 or
SF = OF).

CMOVNLE reg64,reg/mem64 0F 4F /r
Move if not less or equal (ZF = 0 or
SF = OF).

CMOVG reg16,reg/mem16 0F 4F /r Move if greater (ZF = 0 or SF = OF).
CMOVG reg32,reg/mem32 0F 4F /r Move if greater (ZF = 0 or SF = OF).
CMOVG reg64,reg/mem64 0F 4F /r Move if greater (ZF = 0 or SF = OF).
CMP AL,imm8 3C ib

Compare an 8-bit immediate value with
the contents of the AL register.

CMP AX,imm16 3D iw
Compare a 16-bit immediate value with
the contents of the AX register.

CMP EAX,imm32 3D id
Compare a 32-bit immediate value with
the contents of the EAX register.

CMP RAX,imm32 3D id
Compare a 32-bit immediate value with
the contents of the RAX register.

CMP reg/mem8,imm8 80 /7 ib
Compare an 8-bit value with the
contents of an 8-bit register or
memory operand.

CMP reg/mem16,imm16 81 /7 iw
Compare a 16-bit value with the
contents of a 16-bit register or
memory operand.

CMP reg/mem32,imm32 81 /7 id
Compare a 32-bit value with the
contents of a 32-bit register or
memory operand.

CMP reg/mem64,imm32 81 /7 id
Compare a 32-bit signed immediate
value with the contents of a 64-bit
register or memory operand.

CMP reg/mem16,imm8 83 /7 ib
Compare an 8-bit signed immediate
value with the contents of a 16-bit
register or memory operand.

CMP reg/mem32,imm8 83 /7 id
Compare an 8-bit signed immediate
value with the contents of a 32-bit
register or memory operand.

CMP reg/mem64,imm8 83 /7 id
Compare an 8-bit signed immediate
value with the contents of a 64-bit
register or memory operand.

CMP reg/mem8,reg8 38 /r
Compare the contents of an 8-bit
register or memory operand with the
contents of an 8-bit register.

CMP reg/mem16,reg16 39 /r
Compare the contents of a 16-bit
register or memory operand with the
contents of a 16-bit register.

CMP reg/mem32,reg32 39 /r
Compare the contents of a 32-bit
register or memory operand with the
contents of a 32-bit register.

CMP reg/mem64,reg64 39 /r
Compare the contents of a 64-bit
register or memory operand with the
contents of a 64-bit register.

CMP reg8,reg/mem8 3A /r
Compare the contents of an 8-bit
register with the contents of an 8-
bit register or memory operand.

CMP reg16,reg/mem16 3B /r
Compare the contents of a 16-bit
register with the contents of a 16-
bit register or memory operand.

CMP reg32,reg/mem32 3B /r
Compare the contents of a 32-bit
register with the contents of a 32-
bit register or memory operand.

CMP reg64,reg/mem64 3B /r
Compare the contents of a 64-bit
register with the contents of a 64-
bit register or memory operand.

CMPS mem8,mem8 A6
Compare the byte at DS:rSI with the
byte at ES:rDI and then increment or
decrement rSI and rDI.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 199

Instruction
Supported

Mnemonic Opcode Description

CMPS mem16,mem16 A7
Compare the word at DS:rSI with the
word at ES:rDI and then increment or
decrement rSI and rDI.

CMPS mem32,mem32 A7
Compare the doubleword at DS:rSI with
the doubleword at ES:rDI and then
increment or decrement rSI and rDI.

CMPS mem64,mem64 A7
Compare the quadword at DS:rSI with
the quadword at ES:rDI and then
increment or decrement rSI and rDI.

CMPSB A6
Compare the byte at DS:rSI with the
byte at ES:rDI and then increment or
decrement rSI and rDI.

CMPSW A7
Compare the word at DS:rSI with the
word at ES:rDI and then increment or
decrement rSI and rDI.

CMPSD A7
Compare the doubleword at DS:rSI with
the doubleword at ES:rDI and then
increment or decrement rSI and rDI.

CMPSQ A7
Compare the quadword at DS:rSI with
the quadword at ES:rDI and then

increment or decrement rSI and rDI.

CMPXCHG reg/mem8,reg8 0F B0 /r

Compare AL register with an 8-bit
register or memory location. If
equal, copy the second operand to the
first operand. Otherwise, copy the
first operand to AL.

CMPXCHG reg/mem16,reg16 0F B1 /r

Compare AX register with a 16-bit
register or memory location. If
equal, copy the second operand to the
first operand. Otherwise, copy the
first operand to AX.

CMPXCHG reg/mem32,reg32 0F B1 /r

Compare EAX register with a 32-bit
register or memory location. If
equal, copy the second operand to the
first operand. Otherwise, copy the
first operand to EAX.

CMPXCHG reg/mem64,reg64 0F B1 /r

Compare RAX register with a 64-bit
register or memory location. If
equal, copy the second operand to the
first operand. Otherwise, copy the
first operand to RAX.

CMPXCHG8B 0F C7 /1 m64

Compare EDX:EAX register to 64-bit
memory location. If equal, set the
zero flag (ZF) to 1 and copy the
ECX:EBX register to the memory
location. Otherwise, copy the memory
location to EDX:EAX and clear the
zero flag.

CPUID 0F A2
Executes the CPUID function whose
number is in the EAX register.

DAA 27 Decimal adjust AL.
DAS 2F Decimal adjusts AL after subtraction.
DEC reg/mem8 FE /1

Decrement the contents of an 8-bit
register or memory location by 1.

DEC reg/mem16 FF /1
Decrement the contents of a 16-bit
register or memory location by 1.

DEC reg/mem32 FF /1
Decrement the contents of a 32-bit
register or memory location by 1.

DEC reg/mem64 FF /1
Decrement the contents of a 64-bit
register or memory location by 1.

DEC reg16 48 +rw
Decrement the contents of a 16-bit
register by 1.

DEC reg32 48 +rd
Decrement the contents of a 32-bit
register by 1.

DIV reg/mem8 F6 /6

Perform unsigned division of AX by
the contents of an 8-bit register or
memory location and store the
quotient in AL and the remainder in
AH.

DIV reg/mem16 F7 /6

Perform unsigned division of DX:AX by
the contents of a 16-bit register or
memory location and store the
quotient in AX and the remainder in
DX.

AMD Confidential

User Manual September 12
h
, 2008

200 Appendix A

Instruction
Supported

Mnemonic Opcode Description

DIV reg/mem32 F7 /6

Perform unsigned division of EDX:EAX
by the contents of a 32-bit register
or memory location and store the
quotient in EAX and the remainder in
EDX.

DIV reg/mem64 F7 /6

Perform unsigned division of RDX:RAX
by the contents of a 64-bit register
or memory location and store the
quotient in RAX and the remainder in
RDX.

ENTER imm16,0 CB iw 00 Create a procedure stack frame.
ENTER imm16,1 CB iw 01

Create a nested stack frame for a
procedure.

ENTER imm16,imm8 CB iw ib
Create a nested stack frame for a
procedure.

IDIV reg/mem8 F6 /7

Perform signed division of AX by the
contents of an 8-bit register or
memory location and store the
quotient in AL and the remainder in
AH.

IDIV reg/mem16 F7 /7

Perform signed division of DX:AX by
the contents of a 16-bit register or
memory location and store the
quotient in AX and the remainder in
DX.

IDIV reg/mem32 F7 /7

Perform signed division of EDX:EAX by
the contents of a 32-bit register or
memory location and store the
quotient in EAX and the remainder in
EDX.

IDIV reg/mem64 F7 /7

Perform signed division of RDX:RAX by
the contents of a 64-bit register or
memory location and store the
quotient in RAX and the remainder in
RDX.

IMUL reg/mem8 F6 /5

Multiply the contents of AL by the
contents of an 8-bit memory or
register operand and put the signed
result in AX.

IMUL reg/mem16 F7 /5

Multiply the contents of AX by the
contents of a 16-bit memory or

register operand and put the signed
result in DX:AX.

IMUL reg/mem32 F7 /5

Multiply the contents of EAX by the
contents of a 32-bit memory or
register operand and put the signed
result in EDX:EAX.

IMUL reg/mem64 F7 /5

Multiply the contents of RAX by the
contents of a 64-bit memory or
register operand and put the signed
result in RDX:RAX.

IMUL reg16,reg/mem16 OF AF /r

Multiply the contents of a 16-bit
destination register by the contents
of a 16-bit register or memory
operand and put the signed result the
16-bit destination register.

IMUL reg32,reg/mem32 OF AF /r

Multiply the contents of a 32-bit
destination register by the contents
of a 32-bit register or memory
operand and put the signed result the
32-bit destination register.

IMUL reg64,reg/mem64 OF AF /r

Multiply the contents of a 64-bit

destination register by the contents
of a 64-bit register or memory
operand and put the signed result the
64-bit destination register.

IMUL reg16,reg/mem16,imm8 6B /r ib

Multiply the contents of a 16-bit
register or memory operand by a sign-
extended immediate byte and put the
signed result in the 16-bit
destination register.

IMUL reg32,reg/mem32,imm8 6B /r ib

Multiply the contents of a 32-bit
register or memory operand by a sign-
extended immediate byte and put the
signed result in the 32-bit
destination register.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 201

Instruction
Supported

Mnemonic Opcode Description

IMUL reg64,reg/mem64,imm8 6B /r ib

Multiply the contents of a 64-bit
register or memory operand by a sign-
extended immediate byte and put the
signed result in the 64-bit
destination register.

IMUL reg16,reg/mem16,imm16 69 /r iw

Multiply the contents of a 16-bit
register or memory operand by a sign-
extended immediate word and put the
signed result in the 16-bit
destination register.

IMUL reg32,reg/mem32,imm32 69 /r id

Multiply the contents of a 32-bit
register or memory operand by a sign-
extended immediate double and put the
signed result in the 32-bit
destination register.

IMUL reg64,reg/mem64,imm32 69 /r id

Multiply the contents of a 64-bit
register or memory operand by a sign-
extended immediate double and put the
signed result in the 64-bit
destination register.

IN AL,imm8 E4 ib
Input a byte from the port at the
address specified by imm8 and put it
into the AL register.

IN AX,imm8 E5 ib
Input a word from the port at the
address specified by imm8 and put it
into the AX register.

IN EAX,imm8 E5 ib
Input a doubleword from the port at
the address specified by imm8 and put
it into the EAX register.

IN AL,DX EC
Input a byte from the port at the
address specified by the DX register
and put it into the AL register.

IN AX,DX ED
Input a word from the port at the
address specified by the DX register
and put it into the AX register.

IN EAX,EDX ED

Input a doubleword from the port at
the address specified by the EDX
register and put it into the EAX
register.

INC reg/mem8 FE /0
Increment the contents of an 8-bit
register or memory location by 1.

INC reg/mem16 FF /0
Increment the contents of a 16-bit

register or memory location by 1.

INC reg/mem32 FF /0
Increment the contents of a 32-bit
register or memory location by 1.

INC reg/mem64 FF /0
Increment the contents of a 64-bit
register or memory location by 1.

INC reg16 40 +rw
Increment the contents of a 16-bit
register by 1.

INC reg32 40 +rd
Increment the contents of a 32-bit
register by 1.

INS mem8,DX 6C

Input a byte from the port specified
by DX, put it into the memory
location specified in ES:rDI, and
then increment or decrement rDI.

INS mem16,DX 6D

Input a word from the port specified
by DX, put it into the memory
location specified in ES:rDI, and
then increment or decrement rDI.

INS mem32,DX 6D

Input a doubleword from the port
specified by DX, put it into the
memory location specified in ES:rDI,
and then increment or decrement rDI.

INSB 6C

Input a byte from the port specified
by DX, put it into the memory
location specified in ES:rDI, and
then increment or decrement rDI.

INSW 6D

Input a word from the port specified
by DX, put it into the memory
location specified in ES:rDI, and
then increment or decrement rDI.

INSD 6D

Input a doubleword from the port
specified by DX, put it into the
memory location specified in ES:rDI,
and then increment or decrement rDI.

INT imm8 CD ib
Calls interrupt service routine
specified by interrupt vector imm8.

AMD Confidential

User Manual September 12
h
, 2008

202 Appendix A

Instruction
Supported

Mnemonic Opcode Description

INTO CE
Calls overflow exception if the
overflow flag is set.

JO rel8off 80 cb Jump if overflow (OF = 1).
JO rel16off 0F 80 cw Jump if overflow (OF = 1).
JO rel32off 0F 80 cd Jump if overflow (OF = 1).
JNO rel8off 71 cb Jump if not overflow (OF = 0)
JNO rel16off 0F 81 cw Jump if not overflow (OF = 0)
JNO rel32off 0F 81 cd Jump if not overflow (OF = 0)
JB rel8off 72 cb Jump if below (CF = 1).
JB rel16off 0F 82 cw Jump if below (CF = 1).
JB rel32off 0F 82 cd Jump if below (CF = 1).
JC rel8off 72 cb Jump if carry (CF =1).
JC rel16off 0F 82 cw Jump if carry (CF =1).
JC rel32off 0F 82 cd Jump if carry (CF =1).
JNAE rel8off 72 cb Jump if not above or equal (CF =1).
JNAE rel16off 0F 82 cw Jump if not above or equal (CF =1).
JNAE rel32off 0F 82 cd Jump if not above or equal (CF =1).
JNB rel8off 73 cb Jump if not below (CF = 0).
JNB rel16off 0F 83 cw Jump if not below (CF = 0).
JNB rel32off 0F 83 cd Jump if not below (CF = 0).
JNC rel8off 73 cb Jump if not carry (CF = 0).
JNC rel16off 0F 83 cw Jump if not carry (CF = 0).
JNC rel32off 0F 83 cd Jump if not carry (CF = 0).
JAE rel8off 73 cb Jump if above or equal (CF = 0).
JAE rel16off 0F 83 cw Jump if above or equal (CF = 0).
JAE rel32off 0F 83 cd Jump if above or equal (CF = 0).
JZ rel8off 74 cb Jump if zero (ZF =1).
JZ rel16off 0F 84 cw Jump if zero (ZF =1).
JZ rel32off 0F 84 cd Jump if zero (ZF =1).
JE rel8off 74 cb Jump if equal (ZF =1).
JE rel16off 0F 84 cw Jump if equal (ZF =1).
JE rel32off 0F 84 cd Jump if equal (ZF =1).
JNZ rel8off 75 cb Jump if not zero (ZF = 0).
JNZ rel16off 0F 85 cw Jump if not zero (ZF = 0).
JNZ rel32off 0F 85 cd Jump if not zero (ZF = 0).
JNE rel8off 75 cb Jump if not equal (ZF = 0).
JNE rel16off 0F 85 cw Jump if not equal (ZF = 0).
JNE rel32off 0F 85 cd Jump if not equal (ZF = 0).
JBE rel8off 76 cb

Jump if below or equal (CF = 1 or ZF
= 1).

JBE rel16off 0F 86 cw
Jump if below or equal (CF = 1 or ZF
= 1).

JBE rel32off 0F 86 cd
Jump if below or equal (CF = 1 or ZF
= 1).

JNA rel8off 76 cb Jump if not above (CF = 1 or ZF = 1).
JNA rel16off 0F 86 cw Jump if not above (CF = 1 or ZF = 1).
JNA rel32off 0F 86 cd Jump if not above (CF = 1 or ZF = 1).
JNBE rel8off 77 cb

Jump if not below or equal (CF = 0 or
ZF = 0).

JNBE rel16off 0F 87 cw
Jump if not below or equal (CF = 0 or
ZF = 0).

JNBE rel32off 0F 87 cd
Jump if not below or equal (CF = 0 or
ZF = 0).

JA rel8off 77 cb Jump if above (CF = 0 or ZF = 0).
JA rel16off 0F 87 cw Jump if above (CF = 0 or ZF = 0).
JA rel32off 0F 87 cd Jump if above (CF = 0 or ZF = 0).

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 203

Instruction
Supported

Mnemonic Opcode Description

JS rel8off 78 cb Jump if sign (SF = 1).
JS rel16off 0F 88 cw Jump if sign (SF = 1).
JS rel32off 0F 88 cd Jump if sign (SF = 1).
JNS rel8off 79 cb Jump if not sign (SF = 0).
JNS rel16off 0F 89 cw Jump if not sign (SF = 0).
JNS rel32off 0F 89 cd Jump if not sign (SF = 0).
JP rel8off 7A cb Jump if parity (PF = 1).
JP rel16off 0F 8A cw Jump if parity (PF = 1).
JP rel32off 0F 8A cd Jump if parity (PF = 1).
JPE rel8off 7A cb Jump if parity even (PF = 1).
JPE rel16off 0F 8A cw Jump if parity even (PF = 1).
JPE rel32off 0F 8A cd Jump if parity even (PF = 1).
JNP rel8off 7B cb Jump if not parity (PF = 0).
JNP rel16off 0F 8B cw Jump if not parity (PF = 0).
JNP rel32off 0F 8B cd Jump if not parity (PF = 0).
JPO rel8off 7B cb Jump if parity odd (PF = 0).
JPO rel16off 0F 8B cw Jump if parity odd (PF = 0).
JPO rel32off 0F 8B cd Jump if parity odd (PF = 0).
JL rel8off 7C cb Jump if less (SF <> OF).
JL rel16off 0F 8C cw Jump if less (SF <> OF).
JL rel32off 0F 8C cd Jump if less (SF <> OF).
JNGE rel8off 7C cb

Jump if not greater or equal (SF <>
OF).

JNGE rel16off 0F 8C cw
Jump if not greater or equal (SF <>
OF).

JNGE rel32off 0F 8C cd
Jump if not greater or equal (SF <>
OF).

JNL rel8off 7D cb Jump if not less (SF = OF).
JNL rel16off 0F 8D cw Jump if not less (SF = OF).
JNL rel32off 0F 8D cd Jump if not less (SF = OF).
JGE rel8off 7D cb Jump if greater or equal (SF = OF).
JGE rel16off 0F 8D cw Jump if greater or equal (SF = OF).
JGE rel32off 0F 8D cd Jump if greater or equal (SF = OF).
JLE rel8off 7E cb

Jump if less or equal (ZF = 1 or SF
<> OF).

JLE rel16off 0F 8R cw
Jump if less or equal (ZF = 1 or SF
<> OF).

JLE rel32off 0F 8R cd
Jump if less or equal (ZF = 1 or SF
<> OF).

JNG rel8off 7E cb
Jump if not greater (ZF = 1 or SF <>
OF).

JNG rel16off 0F 8E cw
Jump if not greater (ZF = 1 or SF <>
OF).

JNG rel32off 0F 8E cd
Jump if not greater (ZF = 1 or SF <>
OF).

JNLE rel8off 7F cb
Jump if not less or equal (ZF = 0 or
SF = OF).

JNLE rel16off 0F 8F cw
Jump if not less or equal (ZF = 0 or
SF = OF).

JNLE rel32off 0F 8F cd
Jump if not less or equal (ZF = 0 or

SF = OF).
JG rel8off 7F cb Jump if greater (ZF = 0 or SF = OF).
JG rel16off 0F 8F cw Jump if greater (ZF = 0 or SF = OF).
JG rel32off 0F 8F cd Jump if greater (ZF = 0 or SF = OF).
JCXZ rel8off E3 cb

Jump short if the 16-bit count
register (CX) is zero.

JCXZ rel16off E3 cb
Jump short if the 32-bit count
register (ECX) is zero.

JCXZ rel32off E3 cb
Jump short if the 32-bit count
register (RCX) is zero.

JMP rel8off EB cb
Short jump with the target specified
by an 8-bit signed displacement.

AMD Confidential

User Manual September 12
h
, 2008

204 Appendix A

Instruction
Supported

Mnemonic Opcode Description

JMP rel16off E9 cw
Short jump with the target specified
by a 16-bit signed displacement.

JMP rel32off E9 cd
Short jump with the target specified
by a 32-bit signed displacement.

JMP reg/mem16 FF /4
Near jump with the target specified
reg/mem16.

JMP reg/mem32 FF /4
Near jump with the target specified
reg/mem32.

JMP reg/mem64 FF /4
Near jump with the target specified
reg/mem64.

JMP FAR pntr16:16 EA cd
Far jump direct, with the target
specified by a far pointer contained
in the instruction.

JMP FAR pntr16:32 EA cp
Far jump direct, with the target
specified by a far pointer contained
in the instruction.

JMP FAR mem16:16 FF /5
Far jump indirect, with the target
specified by a far pointer in memory.

JMP FAR mem16:32 FF /5
Far jump indirect, with the target
specified by a far pointer in memory.

LAHF 9F
Load the SF, ZF, AF, PF, and CF flags
into the AH register.

LDS reg16,mem16:16 C5 /r
Load DS:reg16 with a far pointer from
memory.

LDS reg32,mem16:32 C5 /r
Load DS:reg32 with a far pointer from
memory.

LES reg16,mem16:16 C4 /r
Load ES:reg16 with a far pointer from
memory.

LES reg32,mem16:32 C4 /r
Load ES:reg32 with a far pointer from
memory.

LFS reg16,mem16:16 0F B4 /r
Load FS:reg16 with a far pointer from
memory.

LFS reg32,mem16:32 0F B4 /r
Load FS:reg32 with a far pointer from
memory.

LGS reg16,mem16:16 0F B5 /r
Load GS:reg16 with a far pointer from
memory.

LGS reg32,mem16:32 0F B5 /r
Load GS:reg32 with a far pointer from
memory.

LSS reg16,mem16:16 0F B2 /r
Load SS:reg16 with a far pointer from
memory.

LSS reg32,mem16:32 0F B2 /r
Load SS:reg32 with a far pointer from
memory.

LEA reg16,mem 8D /r
Store effective address in a 16-bit
register.

LEA reg32,mem 8D /r
Store effective address in a 32-bit
register.

LEA reg64,mem 8D /r
Store effective address in a 64-bit
register.

LEAVE C9
Set the stack pointer SP to the value
in the BP register and pop BP.

LEAVE C9
Set the stack pointer ESP to the
value in the EBP register and pop
EBP.

LEAVE C9
Set the stack pointer RSP to the
value in the RBP register and pop
RBP.

LFENCE 0F AE E8
Force strong ordering of (serialize)
load operations.

LODS mem8 AC
Load byte at DS:rSI into AL and then
increment or decrement rSI.

LODS mem16 AD
Load word at DS:rSI into AX and then
increment or decrement rSI.

LODS mem32 AD
Load doubleword at DS:rSI into EAX
and then increment or decrement rSI.

LODS mem64 AD
Load quadword at DS:rSI into RAX and
then increment or decrement rSI.

LODSB AC
Load byte at DS:rSI into AL and then
increment or decrement rSI.

LODSW AD
Load word at DS:rSI into AX and then
increment or decrement rSI.

LODSD AD
Load doubleword at DS:rSI into EAX
and then increment or decrement rSI.

LODSQ AD
Load quadword at DS:rSI into RAX and
then increment or decrement rSI.

LOOP rel8off E2 cb
Decrement rCX and then jump short if
rCX is not 0.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 205

Instruction
Supported

Mnemonic Opcode Description

LOOPE rel8off E1 cb
Decrement rCX and then jump short if
rCX is not 0 and ZF is 1.

LOOPNE rel8off E0 cb
Decrement rCX and then jump short if
rCX is not 0 and ZF is 0.

LOOPNZ rel8off E0 cb
Decrement rCX and then jump short if
rCX is not 0 and ZF is 0.

LOOPZ rel8off E1 cb
Decrement rCX and then jump short if
rCX is not 0 and ZF is 1.

MFENCE 0F AE F0
Force strong ordering of (serialized)
load and store operations.

MOV reg/mem8,reg8 88 /r
Move the contents of an 8-bit
register to an 8-bit destination
register or memory operand.

MOV reg/mem16,reg16 89 /r
Move the contents of a 16-bit
register to a 16-bit destination
register or memory operand.

MOV reg/mem32,reg32 89 /r
Move the contents of a 32-bit
register to a 32-bit destination
register or memory operand.

MOV reg/mem64,reg64 89 /r
Move the contents of a 64-bit
register to a 64-bit destination
register or memory operand.

MOV reg8,reg/mem8 8A /r
Move the contents of an 8-bit
register or memory operand to an 8-
bit destination register.

MOV reg16,reg/mem16 8B /r
Move the contents of a 16-bit
register or memory operand to a 16-
bit destination register.

MOV reg32,reg/mem32 8B /r
Move the contents of a 32-bit
register or memory operand to a 32-
bit destination register.

MOV reg64,reg/mem64 8B /r
Move the contents of a 64-bit
register or memory operand to a 64-
bit destination register.

MOV reg16/32/64/mem16,segReg 8C /r

Move the contents of a segment
register to a 16-bit, 32-bit, or 64-
bit destination register or to a 16-
bit memory operand.

MOV segReg,reg/mem16 8E /r
Move the contents of a 16-bit
register or memory operand to a
segment register.

MOV AL,moffset8 A0
Move 8-bit data at a specified memory
offset to the AL register.

MOV AX,moffset16 A1
Move 16-bit data at a specified
memory offset to the AX register.

MOV EAX,moffset32 A1
Move 32-bit data at a specified
memory offset to the EAX register.

MOV RAX,moffset64 A1
Move 64-bit data at a specified
memory offset to the RAX register.

MOV moffset8,AL A2
Move the contents of the AL register
to an 8-bit memory offset.

MOV moffset16,AX A3
Move the contents of the AX register
to a 16-bit memory offset.

MOV moffset32,EAX A3
Move the contents of the EAX register
to a 32-bit memory offset.

MOV moffset64,RAX A3
Move the contents of the RAX register
to a 64-bit memory offset.

MOV reg8,imm8 B0 +rb
Move an 8-bit immediate value into an
8-bit register.

MOV reg16,imm16 B8 +rw
Move a 16-bit immediate value into a
16-bit register.

MOV reg32,imm32 B8 +rd
Move a 32-bit immediate value into a
32-bit register.

MOV reg64,imm64 B8 +rq
Move a 64-bit immediate value into a
64-bit register.

MOV reg/mem8,imm8 C6 /0
Move an 8-bit immediate value to an
8-bit register or memory operand.

MOV reg/mem16,imm16 C7 /0
Move a 16-bit immediate value to a
16-bit register or memory operand.

MOV reg/mem32,imm32 C7 /0
Move a 32-bit immediate value to a
32-bit register or memory operand.

MOV reg/mem64,imm64 C7 /0
Move a 64-bit immediate value to a
64-bit register or memory operand.

MOVD xmm,reg/mem32 66 0F 6E /r
Move 32-bit value from a general-
purpose register or 32-bit memory
location to an XMM register.

AMD Confidential

User Manual September 12
h
, 2008

206 Appendix A

Instruction
Supported

Mnemonic Opcode Description

MOVD xmm,reg/mem64 66 0F 6E /r
Move 64-bit value from a general-
purpose register or 64-bit memory
location to an XMM register.

MOVD reg/mem32,xmm 66 0F 7E /r
Move 32-bit value from an XMM
register to a 32-bit general-purpose
register or memory location.

MOVD reg/mem64,xmm 66 0F 7E /r
Move 64-bit value from an XMM
register to a 64-bit general-purpose
register or memory location.

MOVD mmx,reg/mem32 0F 6E /r
Move 32-bit value from a general-
purpose register or 32-bit memory
location to an MMX register.

MOVD mmx,reg/mem64 0F 6E /r
Move 64-bit value from a general-
purpose register or 64-bit memory
location to an MMX register.

MOVD reg/mem32,mmx 0F 7E /r
Move 32-bit value from an MMX
register to a 32-bit general-purpose
register or memory location.

MOVD reg/mem64,mmx 0F 7E /r
Move 64-bit value from an MMX
register to a 64-bit general-purpose

register or memory location.

MOVMSKPD reg32,xmm 66 0F 50 /r
Move sign bits 127 and 63 in an XMM
register t0 a 32-bit general purpose-
register.

MOVMSKPS reg32,xmm 0F 50 /r
Move sign bits 127, 95, 63, 31 in an
XMM register to a 32-bit general-
purpose register.

MOVNTI mem32,reg32 0F C3 /r
Stores a 32-bit general-purpose
register value into a 32-bit memory
location, minimizing cache pollution.

MOVNTI mem64,reg64 0F C3 /r
Stores a 64-bit general-purpose
register value into a 64-bit memory
location, minimizing cache pollution.

MOVS mem8,mem8 A4
Move byte at DS:rSI to ES:rDI, and
then increment or decrement rSI and
rDI.

MOVS mem16,mem16 A5
Move word at DS:rSI to ES:rDI, and
then increment or decrement rSI and
rDI.

MOVS mem32,mem32 A5
Move doubleword at DS:rSI to ES:rDI,
and then increment or decrement rSI
and rDI.

MOVS mem64,mem64 A5
Move quadword at DS:rSI to ES:rDI,
and then increment or decrement rSI
and rDI.

MOVSB A4
Move byte at DS:rSI to ES:rDI, and
then increment or decrement rSI and
rDI.

MOVSW A5
Move word at DS:rSI to ES:rDI, and
then increment or decrement rSI and
rDI.

MOVSD A5
Move doubleword at DS:rSI to ES:rDI,
and then increment or decrement rSI
and rDI.

MOVSQ A5
Move quadword at DS:rSI to ES:rDI,
and then increment or decrement rSI
and rDI.

MOVSX reg16,reg/mem8 0F BE /r
Move the contents of an 8-bit
register or memory location to a 16-
bit register with sign extension.

MOVSX reg32,reg/mem8 0F BE /r
Move the contents of an 8-bit
register or memory location to a 32-
bit register with sign extension.

MOVSX reg64,reg/mem8 0F BE /r
Move the contents of an 8-bit
register or memory location to a 64-
bit register with sign extension.

MOVSX reg32,reg/mem16 0F BF /r
Move the contents of a 16-bit
register or memory location to a 32-
bit register with sign extension.

MOVSX reg64,reg/mem16 0F BF /r
Move the contents of a 16-bit
register or memory location to a 64-
bit register with sign extension.

MOVSXD reg64,reg/mem32 63 /r
Move the contents of a 32-bit
register or memory operand to a 64-
bit register with sign extension.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 207

Instruction
Supported

Mnemonic Opcode Description

MOVZX reg16,reg/mem8 0F B6 /r
Move the contents of an 8-bit
register or memory operand to a 16-
bit register with zero-extension.

MOVZX reg32,reg/mem8 0F B6 /r
Move the contents of an 8-bit
register or memory operand to a 32-
bit register with zero-extension.

MOVZX reg64,reg/mem8 0F B6 /r
Move the contents of an 8-bit
register or memory operand to a 64-
bit register with zero-extension.

MOVZX reg32,reg/mem16 0F B7 /r
Move the contents of a 16-bit
register or memory operand to a 32-
bit register with zero-extension.

MOVZX reg64,reg/mem16 0F B7 /r
Move the contents of a 16-bit
register or memory operand to a 64-
bit register with zero-extension.

MUL reg/mem8 F6 /4

Multiplies an 8-bit register or
memory operand by the contents of the
AL register and stores the result in
the AX register.

MUL reg/mem16 F7 /4

Multiplies a 16-bit register or

memory operand by the contents of the
AX register and stores the result in
the DX:AX register.

MUL reg/mem32 F7 /4

Multiplies a 32-bit register or
memory operand by the contents of the
EAX register and stores the result in
the EDX:EAX register.

MUL reg/mem64 F7 /4

Multiplies a 64-bit register or
memory operand by the contents of the
RAX register and stores the result in
the RDX:RAX register.

NEG reg/mem8 F6 /3
Performs a tow’s complement negation
on an 8-bit register or memory
operand.

NEG reg/mem16 F7 /3
Performs a tow’s complement negation
on a 16-bit register or memory
operand.

NEG reg/mem32 F7 /3
Performs a tow’s complement negation
on a 32-bit register or memory
operand.

NEG reg/mem64 F7 /3

Performs a tow’s complement negation

on a 64-bit register or memory
operand.

NOP 90 Performs no operation.
NOT reg/mem8 F6 /2

Complements the bits in an 8-bit
register or memory operand.

NOT reg/mem16 F7 /2
Complements the bits in a 16-bit
register or memory operand.

NOT reg/mem32 F7 /2
Complements the bits in a 32-bit
register or memory operand.

NOT reg/mem64 F7 /2
Complements the bits in a 64-bit
register or memory operand.

OR AL,imm8 0C ib
OR the contents of AL with an
immediate 8-bit value.

OR AX,imm16 0D iw
OR the contents of AX with an
immediate 16-bit value.

OR EAX,imm32 0D id
OR the contents of EAX with an
immediate 32-bit value.

OR RAX,imm64 0D id
OR the contents of RAX with an
immediate 64-bit value.

OR reg/mem8,imm8 80 /1 ib
OR the contents of an 8-bit register
or memory operand and an immediate 8-

bit value.

OR reg/mem16,imm16 81 /1 iw
OR the contents of a 16-bit register
or memory operand and an immediate
16-bit value.

OR reg/mem32,imm32 81 /1 id
OR the contents of a 32-bit register
or memory operand and an immediate
32-bit value.

OR reg/mem64,imm32 81 /1 id
OR the contents of a 64-bit register
or memory operand and a sign-extended
immediate 32-bit value.

OR reg/mem16,imm8 83 /1 ib
OR the contents of a 16-bit register
or memory operand and a sign-extended
immediate 8-bit value.

AMD Confidential

User Manual September 12
h
, 2008

208 Appendix A

Instruction
Supported

Mnemonic Opcode Description

OR reg/mem32,imm8 83 /1 ib
OR the contents of a 32-bit register
or memory operand and a sign-extended
immediate 8-bit value.

OR reg/mem64,imm8 83 /1 ib
OR the contents of a 64-bit register
or memory operand and a sign-extended
immediate 8-bit value.

OR reg/mem8,reg8 08 /r
OR the contents of an 8-bit register
or memory operand with the contents
of an 8-bit register.

OR reg/mem16,reg16 09 /r
OR the contents of a 16-bit register
or memory operand with the contents
of a 16-bit register.

OR reg/mem32,reg32 09 /r
OR the contents of a 32-bit register
or memory operand with the contents
of a 32-bit register.

OR reg/mem64,reg64 09 /r
OR the contents of a 64-bit register
or memory operand with the contents
of a 64-bit register.

OR reg8,reg/mem8 0A /r
OR the contents of an 8-bit register
with the contents of an 8-bit

register or memory operand.

OR reg16,reg/mem16 0B /r
OR the contents of a 16-bit register
with the contents of a 16-bit
register or memory operand.

OR reg32,reg/mem32 0B /r
OR the contents of a 32-bit register
with the contents of a 32-bit
register or memory operand.

OR reg64,reg/mem64 0B /r
OR the contents of a 64-bit register
with the contents of a 64-bit
register or memory operand.

OUT imm8,AL E6 ib
Output the byte in the AL register to
the port specified by an 8-bit
immediate value.

OUT imm8,AX E7 ib
Output the word in the AX register to
the port specified by an 8-bit
immediate value.

OUT imm8,EAX E7 ib
Output the doubleword in the EAX
register to the port specified by an
8-bit immediate value.

OUT DX,AL EE
Output the byte in the AL register to
the output port specified in DX.

OUT DX,AX EE
Output the word in the AX register to
the output port specified in DX.

OUT DX,EAX EE
Output the doubleword in the EAX
register to the output port specified
in DX.

OUTS DX,mem8 6E
Output the byte in DS:rSI to the port
specified in DX, and then increment
or decrement rSI.

OUTS DX,mem16 6F
Output the word in DS:rSI to the port
specified in DX, and then increment
or decrement rSI.

OUTS DX,mem32 6F
Output the doubleword in DS:rSI to
the port specified in DX, and then
increment or decrement rSI.

OUTSB 6E
Output the byte in DS:rSI to the port
specified in DX, and then increment
or decrement rSI.

OUTSW 6F
Output the word in DS:rSI to the port
specified in DX, and then increment
or decrement rSI.

OUTSD 6F
Output the doubleword in DS:rSI to
the port specified in DX, and then
increment or decrement rSI.

POP reg/mem16 8F /0
Pop the top of the stack into a 16-
bit register or memory location.

POP reg/mem32 8F /0
Pop the top of the stack into a 32-
bit register or memory location.

POP reg/mem64 8F /0
Pop the top of the stack into a 64-
bit register or memory location.

POP reg16 58 +rw
Pop the top of the stack into a 16-
bit register.

POP reg32 58 +rd
Pop the top of the stack into a 32-
bit register.

POP reg64 58 +rq
Pop the top of the stack into a 64-
bit register.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 209

Instruction
Supported

Mnemonic Opcode Description

POP DS 1F
Pop the top of the stack into the DS
register.

POP ES 07
Pop the top of the stack into the ES
register.

POP SS 17
Pop the top of the stack into the SS
register.

POP FS 0F A1
Pop the top of the stack into the FS
register.

POP GS 0F A9
Pop the top of the stack into the GS
register.

POPA 61
Pop the DI, SI, BP, SP, BX, DX, CX,
and AX registers.

POPAD 61
Pop the EDI, ESI, EBP, ESP, EBX, EDX,
ECX, and EAX registers.

POPF 9D
Pop a word from the stack into the
FLAGS register.

POPFD 9D
Pop a doubleword from the stack into
the EFLAGS register.

POPFQ 9D
Pop a quadword from the stack into
the RFLAGS register.

PREFETCH mem8 0F 0D /0
Prefetch processor cache line into L1
data cache.

PREFETCHW mem8 0F 0D /1
Prefetch processor cache line into L1
data cache and mark it modified.

PREFETCHNTA mem8 0F 18 /0
Move data closer to the processor
using the NTA reference.

PREFETCHT0 mem8 0F 18 /1
Move data closer to the processor
using the T0 reference.

PREFETCHT1 mem8 0F 18 /2
Move data closer to the processor
using the T1 reference.

PREFETCHT2 mem8 0F 18 /3
Move data closer to the processor
using the T2 reference.

PUSH reg/mem16 FF /6
Push the contents of a 16-bit
register or memory operand onto the
stack.

PUSH reg/mem32 FF /6
Push the contents of a 32-bit
register or memory operand onto the
stack.

PUSH reg/mem64 FF /6
Push the contents of a 64-bit
register or memory operand onto the
stack.

PUSH reg16 50 +rw
Push the contents of a 16-bit
register onto the stack.

PUSH reg32 50 +rd
Push the contents of a 32-bit
register onto the stack.

PUSH reg64 50 +rq
Push the contents of a 64-bit
register onto the stack.

PUSH imm8 6A
Push an 8-bit immediate value (sign-
extended to 16, 32, or 64 bits) onto
the stack.

PUSH imm16 68
Push a 16-=bit immediate value onto
the stack.

PUSH imm32 68
Push the contents of a 32-bit
register onto the stack.

PUSH imm64 68
Push the contents of a 64-bit
register onto the stack.

PUSH CS 0E Push the CS selector onto the stack.
PUSH SS 16 Push the SS selector onto the stack.
PUSH DS 1E Push the DS selector onto the stack.
PUSH ES 06 Push the ES selector onto the stack.
PUSH FS 0F A0 Push the FS selector onto the stack.
PUSH GS 0F A8 Push the GS selector onto the stack.
PUSHF 9C Push the FLAGS word onto the stack.
PUSHFD 9C Push the EFLAGS word onto the stack.
PUSHFQ 9C Push the RFLAGS word onto the stack.

RCL reg/mem8,1 D0 /2
Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
memory location left 1 bit.

RCL reg/mem8,CL D2 /2

Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
memory location left the number of
bits specified in the CL register.

AMD Confidential

User Manual September 12
h
, 2008

210 Appendix A

Instruction
Supported

Mnemonic Opcode Description

RCL reg/mem8,imm8 C0 /2 ib

Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
memory location left the number of
bits specified by an 8-bit immediate
value.

RCL reg/mem16,1 D1 /2
Rotate the 17 bits consisting of the
carry flag and a 16-bit register or
memory location left 1 bit.

RCL reg/mem16,CL D3 /2

Rotate the 17 bits consisting of the
carry flag and a 16-bit register or
memory location left the number of
bits specified in the CL register.

RCL reg/mem16,imm8 C1 /2 ib

Rotate the 17 bits consisting of the
carry flag and a 16-bit register or
memory location left the number of
bits specified by an 8-bit immediate
value.

RCL reg/mem32,1 D1 /2
Rotate the 33 bits consisting of the
carry flag and a 32-bit register or
memory location left 1 bit.

RCL reg/mem32,CL D3 /2

Rotate the 33 bits consisting of the
carry flag and a 32-bit register or
memory location left the number of
bits specified in the CL register.

RCL reg/mem32,imm8 C1 /2 ib

Rotate the 33 bits consisting of the
carry flag and a 32-bit register or
memory location left the number of
bits specified by an 8-bit immediate
value.

RCL reg/mem64,1 D1 /2
Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
memory location left 1 bit.

RCL reg/mem64,CL D3 /2

Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
memory location left the number of
bits specified in the CL register.

RCL reg/mem64,imm8 C1 /2 ib

Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
memory location left the number of
bits specified by an 8-bit immediate
value.

RCR reg/mem8,1 D0 /3
Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
memory location right 1 bit.

RCR reg/mem8,CL D2 /3

Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
memory location right the number of
bits specified in the CL register.

RCR reg/mem8,imm8 C0 /3 ib

Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
memory location right the number of
bits specified by an 8-bit immediate
value.

RCR reg/mem16,1 D1 /3
Rotate the 17 bits consisting of the
carry flag and a 16-bit register or
memory location right 1 bit.

RCR reg/mem16,CL D3 /3

Rotate the 17 bits consisting of the
carry flag and a 16-bit register or
memory location right the number of
bits specified in the CL register.

RCR reg/mem16,imm8 C1 /3 ib

Rotate the 17 bits consisting of the
carry flag and a 16-bit register or
memory location right the number of
bits specified by an 8-bit immediate
value.

RCR reg/mem32,1 D1 /3
Rotate the 33 bits consisting of the
carry flag and a 32-bit register or
memory location right 1 bit.

RCR reg/mem32,CL D3 /3

Rotate the 33 bits consisting of the
carry flag and a 32-bit register or
memory location right the number of
bits specified in the CL register.

RCR reg/mem32,imm8 C1 /3 ib

Rotate the 33 bits consisting of the
carry flag and a 32-bit register or
memory location right the number of
bits specified by an 8-bit immediate
value.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 211

Instruction
Supported

Mnemonic Opcode Description
RCL reg/mem64,1

RCR

D1 /3
Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
memory location right 1 bit.

RCR reg/mem64,CL D3 /3

Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
memory location right the number of
bits specified in the CL register.

RCR reg/mem64,imm8 C1 /3 ib

Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
memory location right the number of
bits specified by an 8-bit immediate
value.

RET C3 Near return to the calling procedure.

RET imm16 C2 iw
Near return to the calling procedure
and then pop of the specified number
of bytes from the stack.

RETF CB Far return to the calling procedure.

RETF imm16 CA iw

Far return to the calling procedure

and then pop of the specified number
of bytes from the stack.

ROL reg/imm8,1 D0 /0
Rotate an 8-bit register or memory
operand left 1 bit.

ROL reg/mem8,CL D2 /0
Rotate an 8-bit register or memory
operand left the number of bits
specified in the CL register.

ROL reg/mem8,imm8 C0 /0 ib

Rotate an 8-bit register or memory
operand left the number of bits
specified by an 8-bit immediate
value.

ROL reg/imm16,1 D1 /0
Rotate a 16-bit register or memory
operand left 1 bit.

ROL reg/mem16,CL D3 /0
Rotate a 16-bit register or memory
operand left the number of bits
specified in the CL register.

ROL reg/mem16,imm8 C1 /0 ib

Rotate a 16-bit register or memory
operand left the number of bits
specified by an 8-bit immediate
value.

ROL reg/imm32,1 D1 /0
Rotate a 32-bit register or memory
operand left 1 bit.

ROL reg/mem32,CL D3 /0
Rotate a 32-bit register or memory
operand left the number of bits
specified in the CL register.

ROL reg/mem32,imm8 C1 /0 ib

Rotate a 32-bit register or memory
operand left the number of bits
specified by an 8-bit immediate
value.

ROL reg/imm64,1 D1 /0
Rotate a 64-bit register or memory
operand left 1 bit.

ROL reg/mem64,CL D3 /0
Rotate a 64-bit register or memory
operand left the number of bits
specified in the CL register.

ROL reg/mem64,imm8 C1 /0 ib

Rotate a 64-bit register or memory
operand left the number of bits
specified by an 8-bit immediate
value.

ROR reg/imm8,1 D0 /0
Rotate an 8-bit register or memory
operand right 1 bit.

ROR reg/mem8,CL D2 /0
Rotate an 8-bit register or memory
operand right the number of bits
specified in the CL register.

ROR reg/mem8,imm8 C0 /0 ib

Rotate an 8-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

ROR reg/imm16,1 D1 /0
Rotate a 16-bit register or memory
operand left 1 bit.

ROR reg/mem16,CL D3 /0
Rotate a 16-bit register or memory
operand right the number of bits
specified in the CL register.

ROR reg/mem16,imm8 C1 /0 ib

Rotate a 16-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

AMD Confidential

User Manual September 12
h
, 2008

212 Appendix A

Instruction
Supported

Mnemonic Opcode Description

ROR reg/imm32,1 D1 /0
Rotate a 32-bit register or memory
operand left 1 bit.

ROR reg/mem32,CL D3 /0
Rotate a 32-bit register or memory
operand right the number of bits
specified in the CL register.

ROR reg/mem32,imm8 C1 /0 ib

Rotate a 32-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

ROR reg/imm64,1 D1 /0
Rotate a 64-bit register or memory
operand right 1 bit.

ROR reg/mem64,CL D3 /0
Rotate a 64-bit register or memory
operand right the number of bits
specified in the CL register.

ROR reg/mem64,imm8 C1 /0 ib

Rotate a 64-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

SAHF 9E

Loads the sign flag, the zero flag,
the auxiliary flag, the parity flag,

and the carry flag from the AH
register into the lower 8 bits of the
EFLAGS register.

SAL reg/mem8,1 D0 /4
Shift an 8-bit register or memory
location left 1 bit.

SAL reg/mem8,CL D2 /4
Shift an 8-bit register or memory
location left the number of bits
specified in the CL register.

SAL reg/mem8,imm8 C0 /4 ib

Shift an 8-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SAL reg/mem16,1 D1 /4
Shift a 16-bit register or memory
location left 1 bit.

SAL reg/mem16,CL D3 /4
Shift a 16-bit register or memory
location left the number of bits
specified in the CL register.

SAL reg/mem16,imm8 C1 /4 ib

Shift a 16-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SAL reg/mem32,1 D1 /4
Shift a 32-bit register or memory
location left 1 bit.

SAL reg/mem32,CL D3 /4
Shift a 32-bit register or memory
location left the number of bits
specified in the CL register.

SAL reg/mem32,imm8 C1 /4 ib

Shift a 32-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SAL reg/mem64,1 D1 /4
Shift a 64-bit register or memory
location left 1 bit.

SAL reg/mem64,CL D3 /4
Shift a 64-bit register or memory
location left the number of bits
specified in the CL register.

SAL reg/mem64,imm8 C1 /4 ib

Shift a 64-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem8,1 D0 /4
Shift an 8-bit register or memory
location left 1 bit.

SHL reg/mem8,CL D2 /4
Shift an 8-bit register or memory
location left the number of bits

specified in the CL register.

SHL reg/mem8,imm8 C0 /4 ib

Shift an 8-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem16,1 D1 /4
Shift a 16-bit register or memory
location left 1 bit.

SHL reg/mem16,CL D3 /4
Shift a 16-bit register or memory
location left the number of bits
specified in the CL register.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 213

Instruction
Supported

Mnemonic Opcode Description

SHL reg/mem16,imm8 C1 /4 ib

Shift a 16-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem32,1 D1 /4
Shift a 32-bit register or memory
location left 1 bit.

SHL reg/mem32,CL D3 /4
Shift a 32-bit register or memory
location left the number of bits
specified in the CL register.

SHL reg/mem32,imm8 C1 /4 ib

Shift a 32-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem64,1 D1 /4
Shift a 64-bit register or memory
location left 1 bit.

SHL reg/mem64,CL D3 /4
Shift a 64-bit register or memory
location left the number of bits
specified in the CL register.

SHL reg/mem64,imm8 C1 /4 ib

Shift a 64-bit register or memory
location left the number of bits

specified by an 8-bit immediate
value.

SAR reg/mem8,1 D0 /7
Shift a signed 8-bit register or
memory operand right 1 bit.

SAR reg/mem8,CL D2 /7
Shift a signed 8-bit register or
memory operand right the number of
bits specified in the CL register.

SAR reg/mem8,imm8 C0 /7 ib

Shift a signed 8-bit register or
memory location right the number of
bits specified by an 8-bit immediate
value.

SAR reg/mem16,1 D1 /7
Shift a signed 16-bit register or
memory operand right 1 bit.

SAR reg/mem16,CL D3 /7
Shift a signed 16-bit register or
memory operand right the number of
bits specified in the CL register.

SAR reg/mem16,imm8 C1 /7 ib

Shift a signed 16-bit register or
memory location right the number of
bits specified by an 8-bit immediate
value.

SAR reg/mem32,1 D1 /7
Shift a signed 32-bit register or
memory location right 1 bit.

SAR reg/mem32,CL D3 /7
Shift a signed 32-bit register or
memory operand right the number of
bits specified in the CL register.

SAR reg/mem32,imm8 C1 /7 ib

Shift a signed 32-bit register or
memory operand right the number of
bits specified by an 8-bit immediate
value.

SAR reg/mem64,1 D1 /7
Shift a signed 64-bit register or
memory operand left 1 bit.

SAR reg/mem64,CL D3 /7
Shift a signed 64-bit register or
memory operand right the number of
bits specified in the CL register.

SAR reg/mem64,imm8 C1 /7 ib

Shift a signed 64-bit register or
memory operand right the number of
bits specified by an 8-bit immediate
value.

SBB AL,imm8 1C ib
Subtract an immediate 8-bit value
from the AL register with borrow.

SBB AX,imm16 1D iw
Subtract an immediate 16-bit value
from the AX register with borrow.

SBB EAX,imm32 1D id
Subtract an immediate 32-bit value
from the EAX register with borrow.

SBB RAX,imm32 1D id
Subtract an immediate 32-bit value
from the RAX register with borrow.

SBB reg/mem8,imm8 80 /3 ib
Subtract an immediate 8-bit value
from an 8-bit register or memory
location with borrow.

SBB reg/mem16,imm16 80 /3 iw
Subtract an immediate 16-bit value
from a 16-bit register or memory
location with borrow.

SBB reg/mem32,imm32 81 /3 id
Subtract an immediate 32-bit value
from a 32-bit register or memory
location with borrow.

AMD Confidential

User Manual September 12
h
, 2008

214 Appendix A

Instruction
Supported

Mnemonic Opcode Description

SBB reg/mem64,imm32 81 /3 id
Subtract a sign-extended immediate
32-bit value from a 64-bit register
or memory location with borrow.

SBB reg/mem16,imm8 83 /3 ib

Subtract a sign-extended 8-bit
immediate value from a 16-bit
register or memory location with
borrow.

SBB reg/mem32,imm8 83 /3 ib

Subtract a sign-extended 8-bit
immediate value from a 32-bit
register or memory location with
borrow.

SBB reg/mem64,imm8 83 /3 ib

Subtract a sign-extended 8-bit
immediate value from a 64-bit
register or memory location with
borrow.

SBB reg/mem8,reg8 18 /r
Subtract the contents of an 8-bit
register from an 8-bit register or
memory location with borrow.

SBB reg/mem16,reg16 19 /r
Subtract the contents of a 16-bit
register from a 16-bit register or

memory location with borrow.

SBB reg/mem32,reg32 19 /r
Subtract the contents of a 32-bit
register from a 32-bit register or
memory location with borrow.

SBB reg/mem64,reg64 19 /r
Subtract the contents of a 64-bit
register from a 64-bit register or
memory location with borrow.

SBB reg8,reg/mem8 1A /r

Subtract the contents of an 8-bit
register or memory location from the
contents of an 8-bit register with
borrow.

SBB reg16,reg/mem16 1B /r

Subtract the contents of a 16-bit
register or memory location from the
contents of a 16-bit register with
borrow.

SBB reg32,reg/mem32 1B /r

Subtract the contents of a 32-bit
register or memory location from the
contents of a 32-bit register with
borrow.

SBB reg64,reg/mem64 1B /r

Subtract the contents of a 64-bit
register or memory location from the
contents of a 64-bit register with

borrow.

SCAS mem8 AE
Compare the contents of the AL
register with the byte at ES:rDI, and
then increment or decrement rDI.

SCAS mem16 AF
Compare the contents of the AX
register with the word at ES:rDI, and
then increment or decrement rDI.

SCAS mem32 AF

Compare the contents of the EAX
register with the doubleword at
ES:rDI, and then increment or
decrement rDI.

SCAS mem64 AF
Compare the contents of the RAX
register with the quadword at ES:rDI,
and then increment or decrement rDI.

SCASB AE
Compare the contents of the AL
register with the byte at ES:rDI, and
then increment or decrement rDI.

SCASW AF
Compare the contents of the AX
register with the word at ES:rDI, and
then increment or decrement rDI.

SCASD AF

Compare the contents of the EAX

register with the doubleword at
ES:rDI, and then increment or
decrement rDI.

SCASQ AF
Compare the contents of the RAX
register with the quadword at ES:rDI,
and then increment or decrement rDI.

SETO reg/mem8 0F 90 Set byte if overflow (OF = 1).
SETNO reg/mem8 0F 91 Set byte if not overflow (OF = 0).
SETB reg/mem8 0F 92 Set byte if below (CF = 1).
SETC reg/mem8 0F 92 Set byte if carry (CF = 1).
SETNAE reg/mem8 0F 92

Set byte if not above or equal (CF =
1).

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 215

Instruction
Supported

Mnemonic Opcode Description

SETNB reg/mem8 0F 93 Set byte if not below (CF = 0).
SETNC reg/mem8 0F 93 Set byte if not carry (CF = 0).
SETAE reg/mem8 0F 93 Set byte if above or equal (CF = 0).
SETZ reg/mem8 0F 94 Set byte if zero (ZF = 1).
SETE reg/mem8 0F 94 Set byte if equal (ZF = 1).
SETNZ reg/mem8 0F 95 Set byte if not zero (ZF = 0).
SETNE reg/mem8 0F 95 Set byte if not equal (ZF = 0).
SETBE reg/mem8 0F 96

Set byte if below or equal (CF = 1 or
ZF = 1).

SETNA reg/mem8 0F 96
Set byte if not above (CF = 1 or ZF =
1).

SETNBE reg/mem8 0F 97
Set byte if not below or equal (CF =
0 and ZF = 0).

SETA reg/mem8 0F 97
Set byte if above (CF = 0 and ZF =
0).

SETS reg/mem8 0F 98 Set byte if sign (SF = 1).
SETNS reg/mem8 0F 99 Set byte if not sign (SF = 0).
SETP reg/mem8 0F 9A Set byte if parity (PF = 1).
SETPE reg/mem8 0F 9A Set byte if parity even (PF = 1).
SETNP reg/mem8 0F 9B Set byte if not parity (PF = 0).
SETPO reg/mem8 0F 9B Set byte if parity odd (PF = 0).
SETL reg/mem8 0F 9C Set byte if less (SF <> OF).
SETNGE reg/mem8 0F 9C

Set byte if not greater or equal (SF
<> OF).

SETNL reg/mem8 0F 9D Set byte if not less (SF =OF).
SETGE reg/mem8 0F 9D

Set byte if greater or equal (SF =
OF).

SETLE reg/mem8 0F 9E
Set byte if less or equal (ZF = 1 or
SF <> OF).

SETNG reg/mem8 0F 9E
Set byte if not greater (ZF = 1 or SF
<> OF).

SETNLE reg/mem8 0F 9F
Set byte if not less or equal (ZF = 0
and SF = OF).

SETG reg/mem8 0F 9F
Set byte if greater (ZF = 0 and SF =

OF).

SFENCE 0F AE F8
Force strong ordering of (serialized)
store operations.

SHL reg/mem8,1 D0 /4
Shift an 8-bit register or memory
location left 1 bit.

SHL reg/mem8,CL D2 /4
Shift an 8-bit register or memory
location left the number of bits
specified in the CL register.

SHL reg/mem8,imm8 C0 /4 ib

Shift an 8-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem16,1 D1 /4
Shift a 16-bit register or memory
location left 1 bit.

SHL reg/mem16,CL D3 /4
Shift a 16-bit register or memory
location left the number of bits
specified in the CL register.

SHL reg/mem16,imm8 C1 /4 ib

Shift a 16-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem32,1 D1 /4
Shift a 32-bit register or memory
location left 1 bit.

SHL reg/mem32,CL D3 /4
Shift a 32-bit register or memory
location left the number of bits
specified in the CL register.

SHL reg/mem32,imm8 C1 /4 ib

Shift a 32-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHL reg/mem64,1 D1 /4
Shift a 64-bit register or memory
location left 1 bit.

SHL reg/mem64,CL D3 /4
Shift a 64-bit register or memory
location left the number of bits
specified in the CL register.

AMD Confidential

User Manual September 12
h
, 2008

216 Appendix A

Instruction
Supported

Mnemonic Opcode Description

SHL reg/mem64,imm8 C1 /4 ib

Shift a 64-bit register or memory
location left the number of bits
specified by an 8-bit immediate
value.

SHLD reg/mem16,reg16,imm8 0F A4 /r ib

Shift bits of a 16-bit destination
register or memory operand to the
left the number of bits specified in
an 8-bit immediate value, while
shifting in bits from the second
operand.

SHLD reg/mem16,reg16,CL 0F A5 /r

Shift bits of a 16-bit destination
register or memory operand to the
left the number of bits specified in
the CL register, while shifting in
bits from the second operand.

SHLD reg/mem32,reg32,imm8 0F A4 /r ib

Shift bits of a 32-bit destination
register or memory operand to the
left the number of bits specified in
an 8-bit immediate value, while
shifting in bits from the second

operand.

SHLD reg/me326,reg32,CL 0F A5 /r

Shift bits of a 32-bit destination
register or memory operand to the
left the number of bits specified in
the CL register, while shifting in
bits from the second operand.

SHLD reg/mem64,reg64,imm8 0F A4 /r ib

Shift bits of a 64-bit destination
register or memory operand to the
left the number of bits specified in
an 8-bit immediate value, while
shifting in bits from the second
operand.

SHLD reg/mem16,reg16,CL 0F A5 /r

Shift bits of a 64-bit destination
register or memory operand to the
left the number of bits specified in
the CL register, while shifting in
bits from the second operand.

SHR reg/mem8,1 D0 /5
Shift an 8-bit register or memory
operand right 1 bit.

SHR reg/mem8,CL D2 /5
Shift an 8-bit register or memory
operand right the number of bits
specified in the CL register.

SHR reg/mem8,imm8 C0 /5 ib

Shift an 8-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

SHR reg/mem16,1 D1 /5
Shift a 16-bit register or memory
operand right 1 bit.

SHR reg/mem16,CL D3 /5
Shift a 16-bit register or memory
operand right the number of bits
specified in the CL register.

SHR reg/mem16,imm8 C1 /5 ib

Shift a 16-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

SHR reg/mem32,1 D1 /5
Shift a 32-bit register or memory
operand right 1 bit.

SHR reg/mem32,CL D3 /5
Shift a 32-bit register or memory
operand right the number of bits
specified in the CL register.

SHR reg/mem32,imm8 C1 /5 ib

Shift a 32-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

SHR reg/mem64,1 D1 /5
Shift a 64-bit register or memory
operand left 1 bit.

SHR reg/mem64,CL D3 /5
Shift a 64-bit register or memory
operand right the number of bits
specified in the CL register.

SHR reg/mem64,imm8 C1 /5 ib

Shift a 64-bit register or memory
operand right the number of bits
specified by an 8-bit immediate
value.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 217

Instruction
Supported

Mnemonic Opcode Description

SHRD reg/mem16,reg16,imm8 0F AC /r ib

Shift bits of a 16-bit destination
register or memory operand to the
right the number of bits specified in
an 8-bit immediate value, while
shifting in bits from the second
operand.

SHRD reg/mem16,reg16,CL 0F AD /r

Shift bits of a 16-bit destination
register or memory operand to the
right the number of bits specified in
the CL register, while shifting in
bits from the second operand.

SHRD reg/mem32,reg32,imm8 0F AC /r ib

Shift bits of a 32-bit destination
register or memory operand to the
right the number of bits specified in
an 8-bit immediate value, while
shifting in bits from the second
operand.

SHRD reg/me326,reg32,CL 0F AD /r

Shift bits of a 32-bit destination
register or memory operand to the
right the number of bits specified in

the CL register, while shifting in
bits from the second operand.

SHRD reg/mem64,reg64,imm8 0F AC /r ib

Shift bits of a 64-bit destination
register or memory operand to the
right the number of bits specified in
an 8-bit immediate value, while
shifting in bits from the second
operand.

SHRD reg/mem16,reg16,CL 0F AD /r

Shift bits of a 64-bit destination
register or memory operand to the
right the number of bits specified in
the CL register, while shifting in
bits from the second operand.

STC F9 Set the carry flag (CF) to 1.
STD FD Set the direction flag (DF) to 1.

STOS reg8 AA
Store the contents of the AL register
to ES:rDI, and then increment or
decrement rDI.

STOS reg16 AB
Store the contents of the AX register
to ES:rDI, and then increment or
decrement rDI.

STOS reg32 AB
Store the contents of the EAX
register to ES:rDI, and then
increment or decrement rDI.

STOS reg64 AB
Store the contents of the RAX
register to ES:rDI, and then
increment or decrement rDI.

STOSB AA
Store the contents of the AL register
to ES:rDI, and then increment or
decrement rDI.

STOSW AB
Store the contents of the AX register
to ES:rDI, and then increment or
decrement rDI.

STOSD AB
Store the contents of the EAX
register to ES:rDI, and then
increment or decrement rDI.

STOSQ AB
Store the contents of the RAX
register to ES:rDI, and then
increment or decrement rDI.

SUB AL,imm8 2C ib
Subtract an immediate 8-bit value
from the AL register and store the
result in AL.

SUB AX,imm16 2D iw
Subtract an immediate 16-bit value
from the AX register and store the
result in AX.

SUB EAX,imm32 2D id
Subtract an immediate 32-bit value
from the EAX register and store the
result in EAX.

SUB RAX,imm32 2D id
Subtract a sign-extended immediate
32-bit value from the RAX register
and store the result in RAX.

SUB reg/mem8,imm8 80 /5 ib
Subtract an immediate 8-bit value
from an 8-bit destination register or
memory location.

AMD Confidential

User Manual September 12
h
, 2008

218 Appendix A

Instruction
Supported

Mnemonic Opcode Description

SUB reg/mem16,imm16 81 /5 iw
Subtract an immediate 16-bit value
from a 16-bit destination register or
memory location.

SUB reg/mem32,imm32 81 /5 id
Subtract an immediate 32-bit value
from a 32-bit destination register or
memory location.

SUB reg/mem64,imm32 81 /5 id

Subtract a sign-extended immediate
32-bit value from a 64-bit
destination register or memory
location.

SUB reg/mem16,imm8 83 /5 ib
Subtract a sign-extended immediate 8-
bit value from a 16-bit register or
memory location.

SUB reg/mem32,imm8 83 /5 ib
Subtract a sign-extended immediate 8-
bit value from a 32-bit register or
memory location.

SUB reg/mem64,imm8 83 /5 ib
Subtract a sign-extended immediate 8-
bit value from a 64-bit register or
memory location.

SUB reg/mem8,reg8 28 /r

Subtract the contents of an 8-bit

register from an 8-bit destination
register or memory location.

SUB reg/mem16,reg16 29 /r
Subtract the contents of a 16-bit
register from a 16-bit destination
register or memory location.

SUB reg/mem32,reg32 29 /r
Subtract the contents of a 32-bit
register from a 32-bit destination
register or memory location.

SUB reg/mem64,reg64 29 /r
Subtract the contents of a 64-bit
register from a 64-bit destination
register or memory location.

SUB reg8,reg/mem8 2A /r
Subtract the contents of an 8-bit
register or memory operand from an 8-
bit destination register.

SUB reg16,reg/mem16 2B /r
Subtract the contents of a 16-bit
register or memory operand from a 16-
bit destination register.

SUB reg32,reg/mem32 2B /r
Subtract the contents of a 32-bit
register or memory operand from a 32-
bit destination register.

SUB reg64,reg/mem64 2B /r
Subtract the contents of a 64-bit
register or memory operand from a 64-
bit destination register.

TEST AL,imm8 AB ib
AND an immediate 8-bit value with the
contents of the AL register and set
rFLAGS to reflect the result.

TEST AX,imm16 A9 iw
AND an immediate 16-bit value with
the contents of the AX register and
set rFLAGS to reflect the result.

TEST EAX,imm32 A9 id
AND an immediate 32-bit value with
the contents of the EAX register and
set rFLAGS to reflect the result.

TEST RAX,imm32 A9 id

AND a sign-extened immediate 32-bit
value with the contents of the RAX
register and set rFLAGS to reflect
the result.

TEST reg/mem8,imm8 F6 /0 ib

AND an immediate 8-bit value with the
contents of an 8-bit register or
memory operand and set rFLAGS to
reflect the result.

TEST reg/mem16,imm16 F7 /0 iw

AND an immediate 16-bit value with
the contents of a 16-bit register or
memory operand and set rFLAGS to

reflect the result.

TEST reg/mem32,imm32 F7 /0 id

AND an immediate 32-bit value with
the contents of a 32-bit register or
memory operand and set rFLAGS to
reflect the result.

TEST reg/mem64,imm32 F7 /0 id

AND a sign-extened immediate 32-bit
value with the contents of a 64-bit
register or memory operand and set
rFLAGS to reflect the result.

TEST reg/mem8,reg8 84 /r

AND the contents of an 8-bit register
with the contents of an 8-bit
register or memory operand and set
rFLAGS to reflect the result.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 219

Instruction
Supported

Mnemonic Opcode Description

TEST reg/mem16,reg16 85 /r

AND the contents of a 16-bit register
with the contents of a 16-bit
register or memory operand and set
rFLAGS to reflect the result.

TEST reg/mem32,reg32 85 /r

AND the contents of a 32-bit register
with the contents of a 32-bit
register or memory operand and set
rFLAGS to reflect the result.

TEST reg/mem64,reg64 85 /r

AND the contents of a 64-bit register
with the contents of a 64-bit
register or memory operand and set
rFLAGS to reflect the result.

XADD reg/mem8,reg8 0F C0 /r

Exchange the contents of an 8-bit
register with the contents of 8-bit
destination register or memory
operand and load their sum into the
destination.

XADD reg/mem16,reg16 0F C1 /r

Exchange the contents of a 16-bit
register with the contents of 16-bit
destination register or memory

operand and load their sum into the
destination.

XADD reg/mem32,reg32 0F C1 /r

Exchange the contents of a 32-bit
register with the contents of 32-bit
destination register or memory
operand and load their sum into the
destination.

XADD reg/mem64,reg64 0F C1 /r

Exchange the contents of a 64-bit
register with the contents of 64-bit
destination register or memory
operand and load their sum into the
destination.

XCHG AX,reg16 90 +rw
Exchange the contents of AX register
with the contents of a 16-bit
register.

XCHG reg16,AX 90 +rw
Exchange the contents of a 16-bit
register with the contents of the AX
register.

XCHG AX,reg32 90 +rd
Exchange the contents of EAX register
with the contents of a 32-bit
register.

XCHG reg32,AX 90 +rd
Exchange the contents of a 32-bit
register with the contents of the EAX
register.

XCHG RAX,reg64 90 +rq
Exchange the contents of RAX register
with the contents of a 64-bit
register.

XCHG reg64,RAX 90 +rq
Exchange the contents of a 64-bit
register with the contents of the RAX
register.

XCHG reg/mem8,reg8 86 /r
Exchange the contents of an 8-bit
register with the contents of an 8-
bit register or memory operand.

XCHG reg8,reg/mem8 86 /r
Exchange the contents of an 8-bit
register or memory operand with the
contents of an 8-bit register.

XCHG reg/mem16,reg16 87 /r
Exchange the contents of a 16-bit
register with the contents of a 16-
bit register or memory operand.

XCHG reg16,reg/mem16 87 /r
Exchange the contents of a 16-bit
register or memory operand with the
contents of a 16-bit register.

XCHG reg/mem32,reg32 87 /r

Exchange the contents of a 32-bit

register with the contents of a 32-
bit register or memory operand.

XCHG reg32,reg/mem32 87 /r
Exchange the contents of a 32-bit
register or memory operand with the
contents of a 32-bit register.

XCHG reg/mem64,reg64 87 /r
Exchange the contents of a 64-bit
register with the contents of a 64-
bit register or memory operand.

XCHG reg64,reg/mem64 87 /r
Exchange the contents of a 64-bit
register or memory operand with the
contents of a 64-bit register.

XLAT mem8 D7
Set AL to the contents of DS:[rBX +
unsigned AL].

AMD Confidential

User Manual September 12
h
, 2008

220 Appendix A

Instruction
Supported

Mnemonic Opcode Description

XLATB D7
Set AL to the contents of DS:[rBX +
unsigned AL].

XOR AL,imm8 34 ib
XOR the contents of AL with an
immediate 8-bit operand and store the
result in AL.

XOR AX,imm16 35 iw
XOR the contents of AX with an
immediate 16-bit operand and store
the result in AX.

XOR EAX,imm32 35 id
XOR the contents of EAX with an
immediate 32-bit operand and store
the result in EAX.

XOR RAX,imm32 35 id
XOR the contents of RAX with a sign-
extended immediate 32-bit operand and
store the result in AX.

XOR reg/mem8,imm8 80 /6 ib

XOR the contents of an 8-bit
destination register or memory
operand with an 8-bit immediate value
and store the result in the
destination.

XOR reg/mem16,imm16 81 /6 iw

XOR the contents of a 16-bit

destination register or memory
operand with a 16-bit immediate value
and store the result in the
destination.

XOR reg/mem32,imm32 81 /6 id

XOR the contents of a 32-bit
destination register or memory
operand with a 32-bit immediate value
and store the result in the
destination.

XOR reg/mem64,imm32 81 /6 id

XOR the contents of a 64-bit
destination register or memory
operand with a sign-extended 32-bit
immediate value and store the result
in the destination.

XOR reg/mem16,imm8 83 /6 ib

XOR the contents of a 16-bit
destination register or memory
operand with a sign-extended 8-bit
immediate value and store the result
in the destination.

XOR reg/mem32,imm8 83 /6 ib

XOR the contents of a 32-bit
destination register or memory
operand with a sign-extended 8-bit
immediate value and store the result
in the destination.

XOR reg/mem64,imm8 83 /6 ib

XOR the contents of a 64-bit
destination register or memory
operand with a sign-extended 8-bit
immediate value and store the result
in the destination.

XOR reg/mem8,reg8 30 /r

XOR the contents of an 8-bit
destination register or memory
operand with the contents of an 8-bit
register and store the result in the
destination.

XOR reg/mem16,reg16 31 /r

XOR the contents of a 16-bit
destination register or memory
operand with the contents of a 16-bit
register and store the result in the
destination.

XOR reg/mem32,reg32 31 /r

XOR the contents of a 32-bit
destination register or memory
operand with the contents of a 32-bit
register and store the result in the

destination.

XOR reg/mem64,reg64 31 /r

XOR the contents of a 64-bit
destination register or memory
operand with the contents of a 64-bit
register and store the result in the
destination.

XOR reg8,reg/mem8 32 /r

XOR the contents of an 8-bit
destination register with the
contents of an 8-bit register or
memory operand and store the result
in the destination.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 221

Instruction
Supported

Mnemonic Opcode Description

XOR reg16,reg/mem16 33 /r

XOR the contents of a 16-bit
destination register with the
contents of a 16-bit register or
memory operand and store the result
in the destination.

XOR reg32,reg/mem32 33 /r

XOR the contents of a 32-bit
destination register with the
contents of a 32-bit register or
memory operand and store the result
in the destination.

XOR reg64,reg/mem64 33 /r

XOR the contents of a 64-bit
destination register with the
contents of a 64-bit register or
memory operand and store the result
in the destination.

Table 15-8: General-Purpose Instruction Reference

A.6.3 System Instructions

This chapter describes the function, mnemonic syntax and opcodes that the simulator

simulates. The system instructions are used to establish the operating mode, access

processor resources, handle program and system errors, and manage memory. Many of

these instructions can only be executed by privileged software, such as the operating

system kernel and interrupt handlers, that run at the highest privilege level. Only system

instructions can access certain processor resources, such as the control registers, model-

specific register, and debug registers.

Instruction

Supported
Mnemonic Opcode Description

ARPL reg/mem16,reg16 63 /r

Adjust the RPL of a destination segment
selector to a level not less than the RPL of
the segment selector specifies in the 16-bit
source register.

1

CLI FA Clear the interrupt flag (IF) to zero.
CLTS 0F 06

Clear the task-switched (TS) flag in CR0 to
0.

HLT F4 Halt instruction execution.
INT 3 CC Trap to debugger at interrupt 3.

2

INVD 0F 08
Flush internal caches and trigger external
cache flushes.

INVLPG mem8 0F 01 /7
Invalidate the TLB entry for the page
containing a specified memory location.

IRET CF Return from interrupt (16-bit operand size). 3

IRETD CF Return from interrupt (32-bit operand size). 3

IRETQ CF Return from interrupt (64-bit operand size). 3

LAR reg16,reg/mem16 0F 02 /r

Reads the GDT/LDT descriptor referenced by
the 16-bit source operand masks the
attributes with FF00h and saves the result
in the 16-bit destination register.

LAR reg32,reg/mem16 0F 02 /r

Reads the GDT/LDT descriptor referenced by
the 16-bit source operand masks the
attributes with 00FFFF00h and saves the
result in the 32-bit destination register.

1
 In 64-bit mode, this opcode (0x63) is used for the MOVSXD instruction.

2
 See Section A.6.3.1, “INT – Interrupt to Vector”, on page 203.

3
 See Section A.6.3.2, “IRET – Return from Interrupt”, on page 203.

AMD Confidential

User Manual September 12
h
, 2008

222 Appendix A

Instruction
Supported

Mnemonic Opcode Description

LAR reg64,reg/mem16 0F 02 /r

Reads the GDT/LDT descriptor referenced by
the 16-bit source operand, masks the
attributes with 00FFFF00h and saves the
result in the 64-bit destination register.

LGDT mem16:32 0F 01 /2
Loads mem16:32 into the global descriptor
table register.

LGDT mem16:64 0F 01 /2
Loads mem16:64 into the global descriptor
table register.

LIDT mem16:32 0F 01 /3
Loads mem16:32 into the interrupt descriptor
table register.

LIDT mem16:64 0F 01 /3
Loads mem16:64 into the interrupt descriptor
table register.

LLDT reg/mem16 0F 00 /2
Load the 16-bit segment selector into the
local descriptor table register and load the
LDT descriptor from the GDT.

LMSW reg/mem16 0F 01 /6
Loads the lower 4 bits of the source into
the lower 4 bits of CR0.

LSL reg16,reg/mem16 0F 03 /r
Loads a 16-bit general-purpose register with
the segment limit or a selector specified in
a 16-bit memory or register operand.

LSL reg32,reg/mem16 0F 03 /r
Loads a 32-bit general-purpose register with
the segment limit or a selector specified in
a 16-bit memory or register operand.

LSL reg64,reg/mem16 0F 03 /r
Loads a 64-bit general-purpose register with
the segment limit or a selector specified in
a 16-bit memory or register operand.

LTR reg/mem16 0F 00 /3
Load the 16-bit segment selector into the
task register and load the TSS descriptor
from the GDT.

MOV CRn,reg32 0F 22 /r
Move the contents of a 32-bit register to
CRn.

MOV CRn,reg64 0F 22 /r
Move the contents of a 64-bit register to
CRn.

MOV reg32,CRn 0F 20 /r
Move the contents of CRn to a 32-bit
register.

MOV reg64,CRn 0F 20 /r
Move the contents of CRn to a 64-bit
register.

MOV DRn,reg32 0F 21 /r
Move the contents of a 32-bit register to
DRn.

MOV DRn,reg64 0F 21 /r
Move the contents of a 64-bit register to
DRn.

MOV reg32,DRn 0F 23 /r
Move the contents of DRn to a 32-bit
register.

MOV reg64,DRn 0F 23 /r
Move the contents of DRn to a 64-bit
register.

RDMSR 0F 32 Copy MSR specified by ECX into EDX:EAX.
RDPMC 0F 33

Copy the performance monitor counter
specified by ECX into EDX:EAX.

RDTSC 0F 31 Copy the time-stamp counter into EDX:EAX.
RSM 0F AA Resume operation of an interrupted program.
SGDT mem16:32 0F 01 /0

Store global descriptor table register to
memory.

SGDT mem16:64 0F 01 /0
Store global descriptor table register to
memory.

SIDT mem16:32 0F 01 /1
Store interrupt descriptor table register to
memory.

SIDT mem16:64 0F 01 /1
Store interrupt descriptor table register to
memory.

SLDT reg16 0F 00 /0
Store the segment selector from the local
descriptor table register to a 16-bit
register.

SLDT reg32 0F 00 /0
Store the segment selector from the local
descriptor table register to a 32-bit
register.

SLDT reg64 0F 00 /0
Store the segment selector from the local
descriptor table register to a 64-bit
register.

SLDT mem16 0F 00 /0
Store the segment selector from the local
descriptor table register to a 16-bit memory
location.

SMSW reg16 0F 01 /4
Store the low 16 bits of CR0 to a 16-bit
register.

SMSW reg32 0F 01 /4
Store the low 32 bits of CR0 to a 32-bit
register.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 223

Instruction
Supported

Mnemonic Opcode Description

SMSW reg64 0F 01 /4
Store the entire 64 bits of CR0 to a 64-bit
register.

SMSW mem16 0F 01 /4 Store the low 16 bits of CR0 to memory.
STI FB Set interrupt flag (IF) to 1.

STR reg16 0F 00 /1
Store the segment selector from the task
register to a 16-bit general-purpose
register.

STR reg32 0F 00 /1
Store the segment selector from the task
register to a 32-bit general-purpose
register.

STR reg64 0F 00 /1
Store the segment selector from the task
register to a 64-bit general-purpose
register.

STR mem16 0F 00 /1
Store the segment selector from the task
register to a 16-bit memory location.

SWAPGS 0F 01 F8 Exchange GS base with KernelGSBase MSR.
SYSCALL 0F 05 Call operating system.
SYSENTER 0F 34 Call operating system.
SYSEXIT 0F 35 Return from operating system.
SYSRET 0F 07 Return from operating system.
UD2 0F 08 Raise an invalid opcode exception.
VERR reg/mem16 0F 00 /4

Set the zero flag (ZF) to 1 if the segment
selected can be read.

VERW 0F 00 /5
Set the zero flag (ZF) to 1 if the segment
selected can be written.

WBINVD 0F 09
Write modified cache lines to main memory,
invalidate internal caches, and trigger
external cache flushes.

WRMSR 0F 30 Write EDX:EAX to the MSR specified by ECX.

Table 15-9: System Instruction Reference

A.6.3.1 INT – Interrupt to Vector

Opcode Instruction Description
CD INT imm8 Interrupt to Vector.
CC INT 3 Interrupt to Debug Vector.

 Interrupt to task-gate is not implemented. An attempt to execute an interrupt to

task-gate results in a „FeatureNotImplemented‟ exception and the simulation will

be stopped.

 When delivering an exception in an attempt to deliver a hardware interrupt the

simulation will not push the resume-flag (RF) onto the stack.

 Always clears VM, NT, TF, and RF bits in rFLAGS.

A.6.3.2 IRET – Return from Interrupt

Opcode Instruction Description

CF
IRET, IRETD,

IRETQ
Return from interrupt

The simulator does not support nested task-switching using the rFLAGS nested-task bit

(NT) and the TSS back-link field. An interrupt return (IRET) to the previous task (nested-

task) will result in a „FeatureNotImplemented‟ exception and the simulation will be

stopped.

AMD Confidential

User Manual September 12
h
, 2008

224 Appendix A

A.6.4 Virtualization Instruction Reference

For more information on Virtualization Technology, see AMD Publication #33047,

AMD64 Virtualization Technology.

Instruction

Supported
Mnemonic Opcode Description

CLGI 0F 01 DD Clear Global Interrupt Flag.

INVLPGA 0F 01 DF
Invalidates the TLB mapping for the
virtual page specified in rAX and the
ASID specified in ECX.

MOV reg32,CR8 F0 20 /r
Alternate notation for move from CR8 to
register.

MOV reg64,CR8 F0 20 /r
Alternate notation for move register to
CR8.

MOV CR8,reg32 F0 22 /r
Alternate notation for move from CR8 to
register.

MOV CR8,reg64 F0 22 /r
Alternate notation for move register to
CR8.

SKINIT 0F 01 DE
Secure initialization and jump, with
attestation.

STGI 0F 01 DC Set Global Interrupt Flag.
VMLOAD 0F 01 DA Load State from VMCB.
VMCALL 0F 01 D9 Call VMM.
VMRUN 0F 01 D8 Run Virtual Machine.
VMSAVE 0F 01 DB Save State to VMCB.

A.6.5 64-Bit Media Instruction Reference

These instructions described in this section operate on data located in the 64-bit MMX

registers. Most of the instructions operate in parallel on sets of packed elements called

vectors, although some operate on scalars. The instructions define both integer and

floating-point operations, and include the legacy MMX instructions and the AMD

extensions to the MMX instruction set.

Instruction

Supported
Mnemonic Opcode Description

CVTPD2PI mmx,xmm2/m128 66 0F 2D /r

Converts packed double-precision
floating-point values in an XMM
register or 128-bit memory location to
packed doubleword integers values in
the destination MMX™ register.

CVTPI2PD xmm,mmx/m64 66 0F 2A /r

Converts two packed doubleword integer
values in a MMX™ register or 64-bit
memory location to two packed double-
precision floating-point values in the
destination XMM register.

CVTPI2PS mmx,xmm2/m128 0F 2A /r

Converts packed doubleword integer
values in a MMX™ register or 64-bit
memory location to single-precision
floating-point values in the
destination XMM register.

A.6.6 3DNow!™ Instruction Set

This chapter describes the 3DNow! Instruction Set that the simulator supports and

simulates. 3DNow! Technology is a group of new instructions that opens the traditional

processing bottlenecks for floating-point-intensive and multimedia applications.

Instruction

Supported
Mnemonic Opcode Description

FEMMS 0F 0E
Fast Enter/Exit of the MMX or
floating-point state.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 225

Instruction
Supported

Mnemonic Opcode Description

PAVGUSB mmreg1,mmreg2/m64 0F 0F /BF
Average of unsigned packed 8-bit
values.

PF2ID mmreg1,mmreg2/m64 0F 0F /1D
Converts packed floating-point
operand or packed 32-bit integer.

PFACC mmreg1,mmreg2/m64 0F 0F /AE Floating-point accumulate.
PFADD mmreg1,mmreg2/m64 0F 0F /9E Packed, floating-point addition.
PFCMPEQ mmreg1,mmreg2/m64 0F 0F /B0

Packed floating-point comparison,
equal to.

PFCMPPGE mmreg1,mmreg2/m64 0F 0F /90
Packed floating-point comparison,
greater than or equal to.

PFCMPGT mmreg1,mmreg2/m64 0F 0F /A0
Packed floating-point comparison,
greater than.

PFMAX mmreg1,mmreg2/m64 0F 0F /A4 Packed floating-point maximum.
PFMIN mmreg1,mmreg2/m64 0F 0F /94 Packed floating-point minimum.
PFMUL mmreg1,mmreg2/m64 0F 0F /B4

Packed floating-point
multiplication.

PFRCP mmreg1,mmreg2/m64 0F 0F /96 Packed floating-point approximation.
PFRCPIT1 mmreg1,mmreg2/m64 0F 0F /A6

Packed floating-point reciprocal,
first iteration step.

PFRCPIT2 mmreg1,mmreg2/m64 0F 0F /B6
Packed floating-point reciprocal,
second iteration step.

PFRSQIT1 mmreg1,mmreg2/m64 0F 0F /A7
Packed floating-point reciprocal,
square root, first iteration step.

PFRSQRT mmreg1,mmreg2/m64 0F 0F /97
Packed floating-point reciprocal,
square root approximation.

PFSUB mmreg1,mmreg2/m64 0F 0F /9A Packed, floating-point subtraction.
PFSUBR mmreg1,mmreg2/m64 0F 0F /AA

Packed, floating-point reverse
subtraction.

PI2FD mmreg1,mmreg2/m64 0F 0F /0D
Packed 32-bit integer to floating-
point conversion.

PMULHRW mmreg1,mmreg2/m64 0F 0F /B7
Multiply signed packed 16-bit values
with rounding and store the high 16
bits.

PREFETCH/PREFETCHW 0F 0D
Prefetch processor cache line into
L1 data cache (Dcache).

Table 15-10: 3DNow!™ Instruction Reference

A.6.7 Extension to the 3DNow! Instruction Set

This section describes the five new DSP instructions added to the 3DNow! Instruction

set.

Instruction

Supported
Mnemonic Opcode Description

PF2IW mmreg1,mmreg2/m64 0F 0F /1C
Packed floating-point to integer
word conversion with sign extend.

PFNACC mmreg1,mmreg2/m64 0F 0F /8A
Packed floating-point negative
accumulate.

PFPNACC mmreg1,mmreg2/m64 0F 0F /8E
Packed floating-point mixed
positive-negative accumulate.

PI2FW mmreg1,mmreg2/m64 0F 0F /0C
Packed 16-bit integer to floating-
point conversion.

PSWAPD mmreg1,mmreg2/m64 0F 0F /BB Packed swap double word.

Table 15-11: Extension to 3DNow! Instruction Reference

A.6.8 Prescott New Instructions

Prescott New Instruction technology for the x64 architecture is a set of 13 new

instructions that accelerate performance of Streaming SIMD Extension technology,

Streaming SIMD Extension 2 technology, and x87-FP math capabilities. The new

technology is compatible with existing software and should run correctly, without

modification. The thirteen new instructions are summarized in the following section. For

detailed information on each instruction refer to a complete Instruction Set Reference.

AMD Confidential

User Manual September 12
h
, 2008

226 Appendix A

Instruction

Supported
Mnemonic Opcode Description

ADDSUBPD xmm1,xmm2/m128 66 0F D0 /r
Add/Subtract packed double-precision
floating-point number from XMM2/Mem
to XMM1.

ADDSUBPS xmm1,xmm2/m128 F2 0F D0 /r
Add/Subtract packed single-precision
floating-point number from XMM2/Mem
to XMM1.

FISTTP m16int DF /1
Store ST as a signed integer
(truncate) in m16int and pop ST.

FISTTP m32int DB /1
Store ST as a signed integer
(truncate) in m32int and pop ST.

FISTTP m64int DD /1
Store ST as a signed integer
(truncate) in m16int and pop ST.

HADDPD xmm1,xmm2/m128 66 0F 7C /r
Add horizontally packed double-
precision floating-point numbers
from XMM2/Mem to XMM1.

HADDPS xmm1,xmm2/m128 F2 0F 7C /r
Add horizontally packed single-
precision floating-point numbers
from XMM2/Mem to XMM1.

HSUBPD xmm1,xmm2/m128 66 0F 7D /r
Subtract horizontally packed double-
precision floating-point numbers
from XMM2/Mem to XMM1.

HSUBPS xmm1,xmm2/m128 F2 0F 7D /r
Subtract horizontally packed single-
precision floating-point numbers
from XMM2/Mem to XMM1.

LDDQU xmm,m128 F2 0F F0 /r
Load 128 bits from Memory to XMM
register.

MONITOR EAX,ECX,EDX 0F 01 C8

Sets up a linear address range to be
monitored by hardware and activates
the monitor. The address range
should be of a write-back memory
caching type.

1

MOVDDUP xmm1,xmm2/m64 F2 0F 12 /r

Move 64 bits representing the lower
double-precision data element from
XMM2/Mem to XMM1 register and
duplicate.

MOVSHDUP xmm1,xmm2/m128 F3 0F 16 /r

Move 128 bits representing packed
single-precision data elements from
XMM2/Mem to XMM1 register and
duplicate high.

MOVSLDUP xmm1,xmm2/m128 F3 0F 12 /r

Move 128 bits representing packed

single-precision data elements from
XMM2/Mem to XMM1 register and
duplicate low.

MWAIT EAX,ECX 0F 01 C9

A hint that allows the processor to
stop instruction execution and enter
an implementation–dependent
optimized state until occurrence of
a class events.

2

Table 15-12: Prescott New Instruction Reference

A.6.8.1 MONITOR – Setup Monitor Address

Opcode Instruction Description
0F 01 C8 MONITOR Setup Monitor Address.

The simulator does not recognize this instruction. Therefore the simulator generates an

invalid-opcode exception.

1
 See Section A.6.8.1, “MONITOR – Setup Monitor Address”, on page 206.

2
 See Section A.6.8.2, “MWAIT – Monitor Wait”, on page 207.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 227

A.6.8.2 MWAIT – Monitor Wait

Opcode Instruction Description
0F 01 C9 MWAIT Monitor Wait.

The simulator does not recognize this instruction. Therefore the simulator generates an

invalid-opcode exception.

AMD Confidential

User Manual September 12
h
, 2008

228 Appendix A

A.7 Automation Commands

The simulator can be controlled externally through a scripting interface by issuing

automation commands. These commands are directed toward either the shell, or toward

any device that is part of the currently loaded BSD. Automation commands are plain

ASCII text, and are sent to the simulator‟s automation interface. The method for sending

automation commands to the interface, and for retrieving the response, is host dependent

on the host OS.

Figure 15-1 shows the simulators Console Window. The Console Window is the user

interface to the simulators automation interface. All automation commands can be send

from the Console Window to the simulators automation interface, as explained in the

following sections.

Figure 15-1: Console Window

The automation commands are sent to a specific device by starting the command with the

name of the device, followed by a period. For example, to send the Modules command to

the shell device, you would use:

1 simnow> shell.modules

If more than one device exists in the currently loaded BSD (for example, most BSDs

include two IDE controllers), you identify the specific device by following the device

name with a colon, and then the number of the device you are interested in. For example,

to send the DVDROMStatus command to the second IDE controller, you would use:

1 simnow> ide:1.DVDROMStatus 0

Omitting the colon and the device number causes the simulator to assume device 0. The

following two commands are equivalent:

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 229

1 simnow> ide:0.DVDROMStatus 0

1 simnow> ide.DVDROMStatus 0

In addition to the commands supported by the various devices, detailed below, all devices

support the usage and ausage command. These commands return a brief description of

each of the commands supported by a specific device. For example, to get a non-

alphabetic ordered list of the commands supported by the shell, you could send the

command:

1 simnow> shell.usage

To get an alphabetic ordered list of the commands supported by the shell, please use the

ausage command as shown here:

1 simnow> shell.ausage

To get an overview of all automation commands which are not attached to any specific

device enter:

1 simnow> help

Automation Command Description
exec <file> Execute automation commands in [file].

usage
List shell automation commands, same as

“shell.usage”.

newmachine

Create a new SimNow machine, and make that

machine the “current” machine for subsequent

commands.

switchmachine <n>
Switches the “current” machine to the machine

identified by „n‟ the given number.

listmachines Lists the SimNow machines that currently exist.

exit Quits the current SimNow machine.

quit Exits the current SimNow machine.

?
Displays all automation commands which are

not attached to any specific device.

help The same as „?‟.

A.7.1 Shell

To list all registered shell commands enter

1 simnow> shell.usage

Automation Command Description

ECHO <Value>
Displays value to the standard output device (by

default, the screen).

Exit
Closes all open GUI components and exits the

simulator.

AMD Confidential

User Manual September 12
h
, 2008

230 Appendix A

Automation Command Description
Quit See Exit.

Go
Starts the simulation, see also Section 3.1, “Tool

Bar Buttons”, on page 7.

Stop

Stops the simulation, see also Section 3.1, “Tool

Bar Buttons”, on page 7. The Stop command

does not return until the simulation has in fact

stopped or the stop has failed.

Close Closes a BSD file that was previously opened.

Open <FileName> Opens a BSD file.

Modules Lists all loaded modules.

Running
Shell.running returns „No‟ if simulation is

currently not running; otherwise it returns „Yes‟.

Save [<Filename>]
Saves the current system configuration to a file.

Default is “simnow.bsd”

RunTimeDuration <time>
Runs the simualtion for the given number of

microseconds and then stops the simulation.

GetRunTimeDuration Returns the run time duration in nanoseconds.

ModifyRegistry <key> <value>
ModifyKey modifies and updates the given

registry key with the given value.

LogConsoleEnabled

Shell.LogConsoleEnabled returns „disabled‟ if

console logging is disabled; otherwise it returns

„enabled‟.

SetLogConsoleEnabled <0|1>

Enables or disables logging.

Shell.SetLogConsoleEnabled 1 enables logging

and Shell.SetLogConsoleEnabled 0 disables

logging.

LogWndEnabled
Returns the Log Window status. The status is

„enabled‟ or „disabled‟.

SetLogWndEnabled <0|1>
Sets the Log Window status to „enabled‟ or

„disabled‟.

LogFile
Returns the current Log file name. Default is

„simnow.log‟.

SetLogFile <filename> Sets the Log file name.

LogFileEnabled
Returns „enabled‟ if file logging is enabled

otherwise it returns „disabled‟.

SetLogFileEnabled <0|1>
Enables or disabled file logging. 0 disables file

logging, 1 enables file logging.

LogDevice <Device Name> <0 | 1>
Enabled (1) or disables (0) device logging for

<device>.

LoggingEnabled <Device Name>

Returns the logging status of device <Device

Name>. This automation command returns

enabled or disabled.

ErrorLogFile
Returns the current Error Log file name. Default

is „simnow.errlog‟.

SetErrorLogFile <filename> Sets the Error Log file name.

ErrorLogFileEnabled
Returns „enabled‟ if error file logging is enabled

otherwise it returns „disabled‟.

SetErrorLogFileEnabled <0|1>
Enables or disabled error file logging. 0 disables

error file logging; 1 enables error file logging.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 231

Automation Command Description
Memdump <FileName> Set the memory dump file name.

Reset
Resets the simulation, see also Section 3.1,

“Tool Bar Buttons”, on page 7.

CreatedDevices Lists all created devices.

AddDevice <Device Name> [<x> <y>]]

Creates a device and adds the device to the

device window at position (x, y). „x‟ and „y‟ are

pixel coordinates inside the device window.

Connections <Device Name> Lists all connections that a device has.

Connect <Device Name1> [connect point1]

[Device Name2] [connect point2]

Connects „Device Name1‟ and „Device Name2‟

using „connect point1‟ and „connect point2‟.

AvailablePorts <Device Name> Lists available ports of device „Device Name‟.

Disconnect <Device Name>
Disconnects all connections of device „Device

Name‟.

DeleteDevice <Device Name>
Deletes device „Device Name‟ from simulated

system and removes it from device window.

KnownDevices

Lists all devices that are known by the

simulator. These devices are stored in

„devices\‟.

MoveDevice <Device Name> <x> <y>

Moves the specified device „Device Name‟ to

x/y coordinates in device window. This

command only work when GUI mode is active.

New Creates a new BSD file.

Location

Returns the location/postion (x, y) of the device

<Device Name> in the device window. 'x' and

'y' are pixel coordinates inside the device

window. For example, Location "USB

JumpDrive" returns "USB JumpDrive" 152 382

where 152 is the 'x' coordinate and 382 is the 'y'

coordinate.

DumpRegistry
Displays all information stored in SimNow‟s

registry.

SetMPQuantum <time (nanoseconds)>

Sets the time in nanoseconds for a CPU before

switching to next CPU in a MP system.

Modifying the MP Quantum might have a huge

impact on the simulated MP system.

GetMPQuantum
Returns the current MP Quantum value (see also

SetMPQuantum).

GDB -d [[udp|tcp][::] [<port>]]

Sets up the simulators gdb interface. The default

protocol is tcp and the default port is 2222. If

you don't define any parameters the default

protocol and port will be used. You can override

tcp with udp. The following example shows

how to override the default protocol and port

parameters: "shell.gdb udp::2233".

The host parameter [::] can't be changed it is

always set to localhost. For more information

please refer to Section 11.2, "GDB Interface",

on page 152.

AMD Confidential

User Manual September 12
h
, 2008

232 Appendix A

Automation Command Description
Swap {X86Sim Processor | AweSim

Processor}

Switches CPU model from X86Sim to AweSim

or the other way around.

HasModule <module>
Returns „true‟ if module is present; otherwise it

returns „false‟.

GetDisplayIndex

Returns the 0 based index of which VGA device

is currently being displayed in the GUI. Only

useful if more than one VGA device is active

within a BSD file.

SetDisplayIndex <n>

Sets the 0 based index of which VGA devices

output is to be displayed in the GUI. Only

useful if more than one VGA device is active

within a BSD file.

Wait Provides a "WAIT UNTIL STOPPED" feature.

NGo Provides a non-blocking "GO" command.

DisplayScreenShot <index> <filename>

<format>

“DisplayScreenShot” takes a screen shot. This

command supports multiple displays Index is a

number that identifies the desired display. An

Index of 0 means that a screen shot from display

0 will be taken. Filename is the name of the

snapshot file. The file name includes the full

pathname for the file, any valid path drive

names („C:‟) or server names (\\servername\)

can be used. If a pathname is not given the

current default path is used. Format must be one

of the formats that GetScreenShotFormats

returns (e.g., BMP or PNG).

GetScreenShotFormats
This command gives the list of supported

formats that can be used.

LogConsoleStdErr
“LogConsoleStdErr” reports if stderr logging is

currently enabled.

SetLogConsoleStdErr <0 | 1>

"SetLogConsoleStderr" cause console logging

to go to stderr (1) or stdout (0). The default is

the current behavior of logging to stderr.

ForceSingleStep <0 | 1> Enabled (1) or disables (0) single stepping.

XTRInstDmpFile <FileName> Dumps instruction to file <FileName>.

LogIO <device> | <all> <feature> | reset <0

| 1>

Enables (1) or disables (0) IO logging <feature>

for <device> or <all> devices. Supported IO

logging features are: PCI, IO, IOfpdis, MEM,

MEMfpdis and GETMEMPTR. The reset

options sets the selected <feature> on <device>

or <all> devices to its default value.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 233

Automation Command Description

GetLogIO <device>

Returns IO logging status of <device>. For

example, GetLogIO "USB Jumpdrive" returns

the following information:

PCI: Disabled

IO: Disabled

IOfpdis: Enabled

MEM: Disabled

MEMfpdis: Enabled

GETMEMPTR: Disabled

Fastpath <device> | <all> <i | m>
Enables the IO <i> or MEM <m> fastpath for

the given <device> or <all> devices.

GetFastpath <device> | all <i | m>

Returns enabled or disabled depending on if

fastpath is enabled or disabled for the given

<device> or all devices. The <i> option returns

the IO fastpath status. The <m> option returns

the MEM fastpath status.

SetVGAQuantum <time>

Sets the quantum value for the VGA signature

mechanism. If the VGA signature matches with

any of the preset golden VGA signatures the

simulation stops.

GetVGAQuantum
Returns the quantum value for the VGA

signature mechanism.

GenerateVGASignature <index>

Returns the VGA signature for the present

screenshot. It is an MD5 sum generated from

the contes of the present screen.

SetGoldenVGASignature <index>
Sets golden signature(s) needed for comparision

by the VGA signature mechanism.

EnableVGASignature <0 | 1>
Enables (1) or disables (0) the VGA signature

mechansim.

SetSyncQuantum <time (nanoseconds)>
Applies the MP Quantum <time> across all

machines (see also SetMPQuantum).

GetSyncQuantum

Returns the MP Quantum value in nanoseconds

set via SetSyncQuantum (see also

GetMPQuantum).

A.7.2 IDE

1 simnow> ide.usage

Automation Command Description

Image {master|slave|0|1} <filename>
Creates a volume for the given disk image (For

e.g. „ide.image 0 i:\c0d0.img‟).

GetImage {master|slave|0|1} Displays the disk image for the given volume.

Journal {master|slave|0|1} {off|on|0|1}

Turns journaling on or off for specified drive.

For instance, „ide.journal master on‟ turns on

journaling for master drive.

AMD Confidential

User Manual September 12
h
, 2008

234 Appendix A

Automation Command Description

JournalStatus {master|slave|0|1}
Returns enabled or disabled if journaling is

enabled or disabled for specified drive.

JournalSize {master|slave|0|1} Returns the journal size for specified dirve.

JournalSave {master|slave|0|1} <filename>
Saves the contents of the primary or slave disk

journal to a file.

JournalLoad {master|slave|0|1} <filename>
Loads the contents of the primary of slave disk

journal from a file.

JournalCommit {master|slave|0|1}

Commits the contents of the disk journal on the

master or slave drive to the disk image that

drive represents.

JournalClear {master|slave|0|1}
Clears the journal - discards any changes made

to the drive.

JournalDebug {master|slave|0|1}
This may no longer do anything - it originally

enabled a debug verification mode.

DVDROMStatus {master|slave|0|1}
Displays the status for the DVD-ROM device or

a particular volume.

SetDVDROM {master|slave|0|1}

{off|on|0|1}
Sets master or slave to DVD-ROM device.

Eject {master|slave|0|1} {off|<filename>}

This command is valid only for drives

configured as ATAPI. The command will set

the "Media Ejected" flag to true, and will

optionally set a new image file to [File]. Us the

special name "off" (without the quotes) if you

want to leave the drive without an image file

(i.e. empty) after the eject.

DMADelay {master|slave|0|1} <usec delay>
Sets the DMA delay for specified drive (master

or slave) to „usec delay‟.

Noise {off|on|0|1} Turn on to print debug messages.

SetImageType {master|slave|0|1} {ID,

RAW, AUTO}

This command is used to tell SimNow which

type of hard disk image is used. ID indicates

that the hard disk image contains an ID block.

RAW indicates that the hard disk image is a

sector-by-sector copy (identical to the source).

AUTO indicates that SimNow will try to

identify the used type of hard disk image

automatically.

GetImageType {master|slave|0|1}
Returns the current image type setting, ID,

RAW or AUTO. See SetImageType.

A.7.3 USB

1 simnow> usb.usage

Automation Command Description

log (enable|disable) {mifsopt}

Enables or disables Memory (m), Interrupt (i),

Frame (f), StateChange (s), PCI Config (p),

Transfer (t), or/and IO (o) logging.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 235

A.7.4 CMOS

1 simnow> cmos.usage

Automation Command Description

Load <filepath>
Loads CMOS data stored at „filepath‟. For

example „cmos.load c:\cmos.dat‟.

Save <filepath>
Saves CMOS data to „filepath‟, e.g. „cmos.save

c:\cmos.dat‟

SetTime <seconds> <minutes> <hours>

<days since Sunday> <day of the month>

<months since January> <years since 1900>

Sets CMOS Time to specified time. For instance

„cmos.SetTime 00 00 12 00 31 12 14‟ sets the

CMOS time to Sunday December 31th, 2004, at

12:00:00.

GetByte <addr>
Returns byte in CMOS that is stored at address

„addr‟.

SetByte <addr> <data>
Sets byte in CMOS at address „addr‟ to value

stored in „data‟.

GetData Dumps complete CMOS.

GetRamSize Returns the CMOS RAM size in bytes.

ClearTo <value> Sets entire CMOS to specified value „value‟.

A.7.5 ACPI

1 simnow> acpi.usage

Automation Command Description
PowerButton Triggers PowerButton ACPI message.

SleepButton Triggers SleepButton ACPI message.

A.7.6 Floppy

1 simnow> floppy.usage

Automation Command Description

SetFloppy <A/B(0|1)> <filename>
Assigns a floppy image file „filename‟ to drive

„A‟ or „B‟.

GetFloppy <A/B(0|1)>
Returns the assigned floppy image file of drive

„A‟ or „B‟

EjectFloppy <A/B(0|1)>
The command will set the "Media Ejected" flag

of drive „A‟ or „B‟.

A.7.7 Debug

1 simnow> debug.usage

Automation Command Description

Enable
Enables the Debugger and opens a debug dialog window, if GUI

is enabled.

AMD Confidential

User Manual September 12
h
, 2008

236 Appendix A

Disable
Disables the Debugger and closes debug dialog window, if GUI

is enabled.

Attach <Processor Num> Attaches debugger to specified processor.

ExecCmd <Command>
Executes the debug command specified in „command‟, see

Section 10.2, “Debugger Command Reference”, on page 147.

MemDump Dumps 128-bytes of memory.

DisDump Dumps disassembly.

RegDump Dumps all CPU registers.

MsgDump Dumps debug messages.

WhichProc
Returns the processor number which the debugger is currently

attached to.

EnableStatus
Returns „enabled‟ if debugger is enabled, „disabled‟ if debugger

is disabled.

GetConfig Displays the current configuration.

A.7.8 AMD-8151™ AGP Bridge

1 simnow> amd8151.usage

Automation Command Description

SetRev <Rev>
Sets the internal Chip revision number of the AMD-8151 AGP

device, value must be between 1 and 255.

GetRev
Gets the internal Chip revision number of the AMD-8151 AGP

device.

A.7.9 VGA

1 simnow> vga.usage

Automation Command Description
Bios <filename> Loads the specified BIOS file.

GetBios Returns the active BIOS file name.

VGA (0|1) 1 enables the VGA, 0 disables it.

GetVGA
Returns current status of the VGA registers, true if enabled and

false if disabled.

GetConfig Displays VGA configuration.

A.7.10 Serial

1 simnow> serial.usage

Previous versions of the simulator always used only the named-pipe format. Because of

this, the named-pipe was created as soon as the BSD was loaded. Because the new

version allows you to dynamically alter the communications method, the transport is not

created until you hit "go" for the first time (or after making any change to the transport

method). What this means is that if you are using a named-pipe, you will have to press

"go" before the named-pipe is actually created

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 237

Automation Command Description
SetLoopback (0|1) 0 disables loop back, 1 enables loop back.

GetLoopback
Returns „true‟ if loop back is enabled; otherwise it returns

„false‟.

GetCommPort
1

Returns information regarding how the simulated serial port is

configured.

The result will be either:

 \\.\pipe\SimNow.COMn

This indicates that data is being transported through a

named-pipe with the given name. The "n" will be either 1

for the first serial port, or 2 for the second serial port.

 \\.\COMn 57600

This indicates that data is being transported through the

given serial port on the host machine using a baud rate of

57600.

 none

This indicates that data written to the simulated serial port

is discarded, and no data is ever received.

1
 This only applies to the Windows® version of the simulator and not to the Linux version.

AMD Confidential

User Manual September 12
h
, 2008

238 Appendix A

Automation Command Description

SetCommPort
1
 <none | pipe

| COMn BAUD>

Sets the mode of communication you want to use with the

simulated serial port.

 pipe

Tells the simulator to use a named-pipe as the method of

transport for serial data to/from the simulated machine.

The pipe name will be of the form

"\\.\pipe\SimNow.COMn", where "n" will be 1 for serial

port 1 and 2 for serial port 2. The name is not user

configurable.

 COMn

Tells the simulator to use one of the host serial ports

(identified by "n") as the transport for data to and from the

simulated machine. "n" can be any value between 1 and

255, and must be an actual COM port that is present on the

host system. Regardless of the configuration of the

simulated COM port, the host COM ports baud rate is

configured depending on the BAUD parameter, with 8 bit

data, no parity, 1 stop bit. “BAUD” can be one of the

following values (1200, 2400, 4800, 9600, 14400, 38400,

56000, 57600 or 115200). See also Section 11.1, "Kernel

Debugger", on page 151.

 none

Tells the simulator to discard any written data, and always

return "receiver empty" on reads.

SetMultiplier nMultiplier

Use the SetMultiplier automation command to specify the baud

rate delay time used to make the serial based communication to

Microsoft‟s kernel debugger in some cases much more stable. A

valid nMultiplier value must be in the range of “nMultiplier>=1

and nMultiplier<=100”. For example to delay the baud rate by

1/00th of normal you would enter “SetMultiplier 1”. The default

for nMultiplier is 100.

GetMultiplier Returns the current value of “nMultiplier”.

A.7.11 HyperTransport™ Technology Configuration

1 simnow> sledgeldt.usage

Automation Command Description

Link (0|1|2) (0|1)

Enables or disables link 0, 1 or 2. For example

„sledgeldt.link 0 1‟ enables link 0 and „sledgeldt.link 0

0‟ disables link0.

LinkStatus (0|1|2) Returns the link status of link 0, 1 or 2.

LinkWidth (0|1|2) (8|16) Sets link width to 8 or 16 bit of link 0, 1 or 2.

GetLinkWidth (0|1|2) Returns link width in bits of link 0, 1 or 2.

GetConfig Displays LDT configuration.

LogDMA (0|1) Enables (1) or disables (0) DMA logging.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 239

DMALogStatus
Returns „enabled‟ if logging is enabled otherwise it

returns „disabled‟.

A.7.12 8th Generation Northbridge

1 simnow> sledgenb.usage

Automation Command Description
LogHT (0|1) Enables (1) or disables (0) logging.

HTLogStatus
Returns „enabled‟ if logging is enabled otherwise it

returns „disabled‟.
LogPCIConfig (0|1) Enables (1) or disables (0) PCI Config logging.

PCILogStatus
Returns „enabled‟ if PCI Config logging is enabled

otherwise it returns „disabled‟.
GetConfig Displays Northbridge logging configuration.
ProductFile <FileName> Loads the specified product file “FileName”.

A.7.13 DBC

1 simnow> dbc.usage

Automation Command Description

GetParam
Returns disk block cache parameters (size, depth and

bits).

SetParam <size> <depth> <bits> Sets disk block cache parameters.

A.7.14 AMD-8111™ Device

1 simnow> 8111.usage

Automation Command Description

BaseID (00|01)

This specifies the HyperTransport™ protocol base unit

ID. The IC's logic uses this value to determine the unit

IDs for HyperTransport request and response packets.

The Base ID must be 00 or 01.

GetBaseID Returns the HyperTransport base unit ID (BUID).

HtInterrupts (0|1) Enables (1) or disables (0) HyperTransport interrupts.

HtIntStatus
Returns „enabled‟ if HyperTransport interrupts are

enabled; otherwise it returns „disabled‟.

IoLog (0|1) Enables (1) or disables (0) IO logging.

IoLogStatus
Returns „enabled‟ if IO Logging is enabled; otherwise it

returns „disabled‟.

MemLog (0|1) Enables (1) or disables (0) IO logging.

MemLogStatus
Returns „enabled‟ if Memory Logging is enabled;

otherwise it returns „disabled‟.

SmiSciLog (0|1) Enables (1) or disables (0) IO logging.

SmiSciLogStatus
Returns „enabled‟ if SMI SCI Logging is enabled;

otherwise it returns „disabled‟.

AMD Confidential

User Manual September 12
h
, 2008

240 Appendix A

GetConfig Displays the current AMD-8111 configuration.

A.7.15 EHC

1 simnow> ehc.usage

Automation Command Description

log (enable | disable) {mp}
Enables or disables Memory (m) and PCI Configuration

(p) logging.

A.7.16 Journal

1 simnow> journal.usage

Automation Command Description

GetParam
Returns „Super Block Size‟, „Index Block Size‟, „Index

Levels‟, „Disk Block Size‟ and „Maximum Disk Size‟.

SetParam <Super Block Size>

<Index Block Size> <Index

Levels> [<Disk Block Size>]

Sets journal parameters.

A.7.17 CPU

1 simnow> cpu.usage

Automation Command Description
LoadAnalyzer <analyzer_file>

[<args>]

Loads the analyzer „analyzer_file‟ with specified

arguments „args‟).

ShowAnalyzers Shows all loaded analyzers.

EnableAnalyzer <num> <0|1> Enables (1) or disables (0) analyzer specified by „num‟.

UnloadAnalyzer <num> Unloads analyzer specified by „num‟.

MCAFault <bank>

<GenerateMCAFault(0|1)> <Status

Reg> <Address Reg>

Causes a generic MCA fault if GenerateMCAFault is

true (1) at specified Bank, AddressReg and status.

ProductFile <FileName>
Use product file to set fuses and configure CPU and

Northbridge.

CodeGen <command> <args>

Sets or disables and enables code generator settings and

options. Command must be one of the commands shown

in Table 15-13. Args depends on the command

parameter, see Table 15-13.

DumpProfile [<blocks-to-dump>]

This command is limited to showing a profile of blocks,

without symbols, based on the current epoch. For more

information please refer to Section A.7.17.1, “Profiling

in SimNow”.

A.7.17.1 Profiling in SimNow™ Technology

Here is an example use of the profiling command and its output:

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 241

1 simnow> dumpprofile 3

34962861.000000 instructions executed since the last epoch

Executed 3571672 times

 CS.D=0 LongBit=0 physical_addr=00000000000e41de eip=00000000000041de

 00000000000041de: cmp [04f0h],aah

 00000000000041e3: jnz $-05h

 0000000000000000: This block's execution was 20.431234 percent of

the total since the last epoch.

Executed 229430 times

 CS.D=0 LongBit=0 physical_addr=000000000002fd99 eip=000000000000fd99

 000000000000fd99: lodsb ds:[esi]

 000000000000fd9b: add ah,al

 000000000000fd9d: loop $-04h

 0000000000000020: This block's execution was 1.968632 percent of

the total since the last epoch.

Executed 178599 times

 CS.D=0 LongBit=0 physical_addr=00000000000274b2 eip=00000000000074b2

 00000000000074b2: mov ax,[5724h]

 00000000000074b5: cmp ax,[371ah]

 00000000000074b9: jbe $+61h

 0000000000000040: This block's execution was 1.532475 percent of

the total since the last epoch.

The simulator contains a code profiling facility that is accessed through the dumpprofile

automation command. There is no graphical user interface to the profiling facility at this

time. Profiling in the simulator has some limitations and features not present in most

systems. The limitations are that no symbolic information is present in the output and that

only execution since the beginning of the last epoch (see the last paragraph for an

explanation of an epoch) is measured. The feature which is most unusual is that the user

can ask for a profile at any time, there is no profiling mechanism that needs to be enabled

before execution takes place. Another feature is that all code in the system is profiled,

even code executed with interrupts off, and code in all modes (16 bit mode, 32-bit legacy

mode, 32-bit compatibility mode, long mode, SMM mode, etc.) is measured equally.

This profiling mechanism is non-intrusive, no x86 interrupts are taken and profiling does

not affect the target machine's selection of code paths at all.

The dumpprofile command by itself causes all profile blocks to be displayed. This output

can be quite voluminous. The user can select just the most frequently executing blocks by

using an optional numeric argument. For example, "dumpprofile 10" will dump the ten

most frequently executing blocks. Blocks are ordered by their frequency of execution, not

weighted by the number of instructions in a block. Therefore, a short block executing 100

times will be displayed before a long block executing 99 times. In this example, the short

block represents fewer total instructions executed. The sense of time that the simulator

uses is quite simple, each instruction takes one "instruction count", with REP instructions

taking one extra count per iteration. Therefore, profiles from the simulator can differ

substantially from those obtained from other tools.

AMD Confidential

User Manual September 12
h
, 2008

242 Appendix A

The simulator works by translating guest x86 instructions to long-mode user-mode

instructions which it then executes. These translated instructions are grouped into blocks

called translations. These translations exist in a translation buffer, which is typically

about 64 MB. When the translation buffer is full and space for another translation is

needed, the simulator disposes of the contents of the translation buffer and starts a new

epoch. An epoch, in SimNow terms, is the period of execution between the flushing of

the translation cache. It is only the period from the start of the current epoch to the

issuance of the dumpprofile command that the profile will cover.

A.7.17.2 CPU Code Generator Commands

Table 15-13 describes all available Code Generator commands and their arguments.

command args Description

Help None
Displays an overview of all available

commands.

param None
Displays the current state of the

configurable code generator parameters.

param parameter
Displays the current value of <parameter>,

e.g., “cpu.codegen param FastFloat”.

param parameter value

Sets the current value of <parameter> to

<value>. For example, “cpu.codegen param

FastFloat 0” disables ”FastFloat”.

enable Boolean Parameter

Changes the current value of one boolean

parameter to true. For example,

“cpu.codegen enable FastFloat” enables

“FastFloat”.

disable Boolean Parameter

Changes the current value of one boolean

parameter to false. For example,

“cpu.codegen disable FastFloat” disables

“FastFloat”.

optimize accuracy
Changes several parameters to the

conservative setting.

optimize speed
Changes several parameters to the default

aggressive setting.

Table 15-13: CodeGen Command Overview

A.7.18 Emerald Graphics

1 simnow> emerald.usage

Automation Command Description

FrameBufSize <size>

FrameBufSize sets the size of the frame buffer in

Megabytes. The size must be a power of 2. The value

placed in this option is only read at reset. The frame

buffer size can not be dynamically modified.

FrameBufGetSize Returns the size of the frame buffer in Megabytes.

Accel (0|1)
Enables (1) or disables (0) the Accelerator used by the

Video driver.

GetAccel
Returns true if Accelerator is enabled; otherwise it

returns false.

VBE (0|1) Enables (1) or disables (0) VESA BIOS Extensions.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 243

Automation Command Description

GetVBE
Returns true if VESA BIOS Extensions is enabled;

otherwise it returns false.

A.7.19 Matrox MGA-G400 Graphics

1 simnow> mgag400.usage

Automation Command Description

SetTexmap (0 | 1)
Enables (1) or disables (0) the texture units. By default

the texture units are disabled.

SetCardType CARDID
Sets the MGA-G400 type to CARDID. Valid values for

CARDID are: 6648, 888, 6616, and 824.

GetCardType Returns the current CARDID value.

A.7.20 PCI Bus

1 simnow> pcibus.usage

Automation Command Description
DeviceID <SlotID> <DeviceID> Sets the DeviceID to „DeviceID‟ on slot „SlotID‟.

GetDeviceID <SlotID> Returns the DeviceID of specified slot „SlotID‟.

BaseIRQ <SlotID> (a|b|c|d) Sets the Base IRQ of slot „SlotID‟ to A, B, C or D.

GetBaseIRQ <SlotID> Returns the Base IRQ of slot „SlotID‟.

Slot <SlotID> (0|1) Enables (1) or disables (0) slot wit specified „SlotID‟.

SlotStatus <SlotID>
Returns enabled if slot „SlotID‟ is enabled, otherwise it

returns disabled.

GetConfig Displays PCI Bus configuration information.

A.7.21 SIO

1 simnow> sio.usage

Automation Command Description

BreakOnLock (0|1)

The Lock (1) or Unlock (0) Registers option activates

the breakpoint anytime the lock or unlock sequence is

hit.

GetLockStatus
Returns enabled if BreakOnLock is enabled; otherwise it

returns disabled.

BreakOnRead (0|1)
Enable (1) or disable (0) breakpoints whenever any of

the device configuration registers is read.

GetReadStatus
Returns enabled if BreakOnRead is enabled; otherwise it

returns disabled.

BreakOnWrite (0|1)
Enable (1) or disable (0) breakpoints whenever any of

the device configuration registers is modified.

GetWriteStatus
Returns enabled if BreakOnWrite is enabled; otherwise

it returns disabled.

GetConfig Displays SIO configuration information.

AMD Confidential

User Manual September 12
h
, 2008

244 Appendix A

A.7.22 Memory Device

1 simnow> memdevice.usage

Automation Command Description

Save <filename>
Creates file „filename‟ and saves the contents of the

currently loaded ROM „to filename‟.

Load <filename>
Loads the specified MemDevice „filename‟ to defined

address „BaseAddress‟.

BaseAddress <value> „Value‟ is the base address of the device in hex.

GetBaseAddress Returns the base address of the device in hex.

SizeInBlocks <value>

„Value‟ is the total size of the memory device, given in

decimal value for the number of 32-Kbyte blocks (32-

Kbyte blocks are used because not initialized memory is

dynamically allocated when addressed in 32-Kbyte

chunks).

GetSizeInBlocks
Returns the number of 32-Kbyte blocks allocated by this

device.

InitFile <filename>

„filename‟ is the name of the binary file that is used to

initialize the memory contents. Note that the device

initializes memory for the content length of the file. If

you specify a 512-Kbyte ROM and use a 256-Kbyte

image file, the first 256 Kbytes are initialized.

GetInitFile
Returns the path and name of the init file (see above

InitFile).

ReadOnly <0|1>

Turns (1) the memory device into a ROM. Writes to the

device are ignored when the read-only option is

selected.

GetReadOnly
Returns true if memory is read-only otherwise it returns

false.

SystemBios <0|1> Tells (1) the memory device that it is the system BIOS.

GetSystemBios
Returns true if memory is used as a System BIOS

otherwise it returns false.

MemAddrMask <0|1>

Enables (1) or disables (0) memory-address masking. If

enabled (1) it indicates that the address received by the

memory device is masked by a bit mask with the same

number of bits as the size of the memory device (e.g., a

256-Kbyte ROM uses an 18-bit mask, or it is masked by

0x003FFFF). This enables the ROM to be remapped

dynamically into different memory address ranges in

conjunction with the aforementioned chip select.

GetAddrMask
Returns true if memory-address masking is enabled

otherwise it returns false.

InitValEnable <0|1>

Enables (1) or disables (0) the initialized unwritten

memory option. If enabled the memory is initialized

using a specified byte (see below InitVal) otherwise the

memory is not initialized.

InitVal <hex value>
Sets byte initializer for memory that needs to be

initialized.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 245

Automation Command Description

InitValStatus
Displays information if the initializer is used and if the

memory initialization is activated.

DisableCache < 0 | 1 >
Sets memory region to cacheable (0) or non-cacheable

(1).

GetCacheDisabled Returns true if non-cacheable otherwise it returns false.

GetConfig Displays Memory configuration information.

FlashMode < 0 | 1 >
Enables (1) or disables (0) this device to be used as a

flash ROM.

FlashUpdateFile < 0 | 1 >
Enables (1) or disbales (0) writes to the flash ROM to

update the ROM image.

ncHTMode < 0 | 1 >
Enables (1) or disables (0) decoding of HyperTransport

messages.

ForceInitFile <filename>

The ForceInitFile command allows the user to change

the BIOS ROM path once the simulation has already

started. This is legitimate only when the new BIOS

ROM is a byte-for-byte copy of the initial BIOS ROM

that simulation began with (i.e., same file, different

path).

GetCommandSequence
Prints which of the two command sequences the flash

device is programmed to.

CommandSequence < 0 | 1 >
0-SST, 1-ATMEL. Allows to set the command sequence

to SST or ATMEL.

GetFlashMode
Tells you if the device is configured to act as a flash

memory.

FlashMode < 0 | 1 >
Allows the user to set the memory device as flash

memory.

A.7.23 Raid

1 simnow> raid.usage

Automation Command Description
Noise [{enable|disable}] Enable to print debug messages; otherwise disable.

RomImage <File name>

Allows a boot ROM image to be supported - at the

moment the emulation does not work with any known

ROM images.

SetVolume <Vol #> <Image file> [

<Journal file>]

This was the original way to setup the image and journal

files - rather than having two separate commands.

DeleteVolume <Vol #>
Undoes the Image or Journal commands and puts the

volume back in an unintialized state.

Sync
This command flushes the in-memory caches out to the

files.

Type {5304|5312}

This was supposed to allow support for both the 5304

(default) and 5312 cards - the 5312 support is not well

tested.

Image <Vol #> <Image file>
Creates a volume for the give disk image (For e.g.,

raid.image 0 i:\c0d0.img).

GetImage <Vol #> Displays the disk image for the given volume.

AMD Confidential

User Manual September 12
h
, 2008

246 Appendix A

Automation Command Description
Journal <Vol #> {0|1} Enables (1) or disables journaling for specified volume.

AddJournal <Vol #> [<Journal

file>]

Creates a journal for the given volume number (For file-

based journal: raid.addjournal 0 i:\c0d0j1.jrn; for in-

memory journal: raid.addjournal 0).

ResizeJournal <Vol #> [<Old

Journal> <New Journal>]

Resizes the journal for the given volume to the new

journal parameters.

Commit <Vol #>
Commit copies back the modified data blocks from the

journal to the disk image and clears the journals.

Clear <Vol #>
Clears the volume - discards any changes made to the

volume.

Flatten <Vol #> Deletes the journal added last for that particular volume.

Status [<Vol #>] [-v | -r]

Displays the status for the RAID device or a particular

volume. -v option displays details regarding the

statistics of performance meters implemented in the

RAID device, while -r option resets the performance

counters.

SetDBC <Entries> <Depth>

<Block Size>

Set the parameters for disk block cache (For e.g.,

raid.setdbc 32768 5 512.

SetJournalParameters <Super Block

Size> <Index Block Size> <Index

Levels> <DiskBlock Size>

Set the Journal Parameters (For e.g.,

raid.setjournalparameters 8192 512 3 512).

GetJournalParameters Displays the Journal parameters.

A.7.24 DIMM

1 simnow> dimm.usage

Automation Command Description

PdlErrorSim (0|1)

Enables (1) or disables (0) the PDL Error Simulation. If

enabled then the DIMM device monitors PDL settings

for all RAM reads.

GetPdlErrorSim
Returns enabled if PdlErrorSim is enabled; otherwise it

returns disabled.

OutOfRangeResp (0xFF | invert)

The „Out of Range Response‟ selection specifies how

the data should be altered if a PDL is out of range. The

0xFF option specifies that the return data should be

forced to all ones. The Invert option specifies that the

return data should be a bitwise inversion of the valid

data.

GetOutOfRangeResp Returns the specified options set by OutOfRangeResp.

SMBBaseAddr <addr>

The SMB Base Address entry selects the 8-bit address

that this DIMM device responds to. The SMB address is

used for the reading of DIMM SPD data.

GetSMBBase Returns the specified SMB Base address.

ImportSPD <DimmNo> <fullpath>

ImportSPD provides the option of loading SPD ROM

data to DimmNo from the file specified by “fullpath”.

The file format is an unformatted binary image, with an

extension of “.spd”.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 247

Automation Command Description

ExportSPD <DimmNo> <fullpath>

ExportSPD provides the option of saving SPD ROM

data from DimmNo to the file specified by “fullpath”.

The file format is an unformatted binary image, with an

extension of ”.spd”.

ResetPDLs <DimmNo>
ResetPDL sets all 16 PDL response ranges to their

maximum range (0 - 255).
PDLRespRange <DimmNo>

<PDLNo> <High> <Low>

Sets the PDL Response Rage of memory module

„DimmNo‟ and PDL „PDLNo‟ to „High‟ and „Low‟.

GetPDLRespRange <DimmNo>

<PDLNo>

Returns the PDL response range of memory module

„DimmNo‟ and PDL „PDLNo‟.

GetPDLData <DimmNo> Lists the PDL data of memory module „DimmNo‟.

GetConfig

Displays DIMM configuration details, like

„PdlRespRange‟, „MBBaseAddr‟, „OutOfRangeResp‟

and „PdlErrorSim‟.

GetMaxDimms
Returns the maximum number of DIMMs that can be

simulated.

SetMaxDimms <num>
Sets the maximum number of DIMMs that can be

simulated.

GetDimmDescription <DimmNo>

Returns a short description of the memory module

„DimmNo‟. It displays memory type, total size, number

of banks and device data width in bits.

GetDimmType <DimmNo> Returns the DIMM type of memory module „DimmNo‟.

GetDimmSize <DimmNo> Returns the DIMM size of memory module „DimmNo‟.

GetDimmBanks <DimmNo>
Returns the DIMM banks of memory module

„DimmNo‟.

GetDimmWidth <DimmNo>
Returns the DIMM width of memory module

„DimmNo‟.

GetSpdData <DimmNo> Returns SPD data of memory module „DimmNo‟.

DeleteDimm <DimmNo>
Deletes memory module „DimmNo‟ from current

configuration.

GetSpdDataByte <DimmNo>

<Addr>

Returns a specific SPD data byte stored at <Addr> on

Dimm <DimmNo>.

SetSpdDataByte <DimmNo>

<Addr> <Data>

Sets the SPD data byte <Data> at SPD-Address <Addr>

on DIMM <DimmNo>.

A.7.25 Keyboard and Mouse

By default the GUI uses keyboard.key and keyboard.mousemove commands to send input

to the simulator. These can be overridden using the Gui_Key_Device and

Gui_Mouse_Device registry keys. For example, if you connect a USB keyboard device to

the simulation, you can have keystrokes use the USB keyboard rather than the old

keyboard.

1 simnow> keyboard.usage

Automation Command Description

Key <XX> [XX...]

Forwards the specified key to the simulated system.

E.g., the following command forwards the ENTER

keystroke to the simulated system: keyboard.key 1C.

AMD Confidential

User Manual September 12
h
, 2008

248 Appendix A

MouseMove <DeltaX> <DeltaY>
Moves the mouse cursor to relative position DeltaX and

DeltaY.

MouseLeftDown Generates a left-mouse-button-down event.

MouseRightDown Generates a right-mouse-button-down event.

MouseLeftUp Generates a left-mouse-button-up event.

MouseRightUp Generates a right-mouse-button-up event.

MouseMoveAbs <X> <Y> Moves the mouse cursor to absolute x-y position.

Log enable|disable id Enables or disables logging.

Text

This command injects keyboard input from the

command line. It takes basic text such as 'keyboard.text

"dir\r"'. This command can handle more complex

sequences with other '\' prefixed strings (see Table

15-14).

Table 15-14 shows the currently defined prefix sequences:

Prefix Action Prefix Action
\r <RETURN> \{f8} <FUNCTION KEY 8>

\t <TAB> \{f9} <FUNCTION KEY 9>

\\ <BACKSLASH> \{f10} <FUNCTION KEY 10>

\” <DOUBLE QUOTE> \{tab} <TAB>

\’ <SINGLE QUOTE> \{del} <DELETE>

\{esc} <ESCAPE> \{up} <UP ARROW>

\{f1} <FUNCTION KEY 1> \{down} <DOWN ARROW>

\{f2} <FUNCTION KEY 2> \{left} <LEFT ARROW>

\{f3} <FUNCTION KEY 3> \{right} <RIGHT ARROW>

\{f4} <FUNCTION KEY 4> \{ctrl-m} <CONTROL make>

\{f5} <FUNCTION KEY 5> \{ctrl-b} <CONTROL BRAKE>

\{f6} <FUNCTION KEY 6> \{alt-m} <ALT MAKE>

\{f7} <FUNCTION KEY 7> \{alt-b} <ALT BRAKE>

Table 15-14: Prefix Sequences (keyboard.text)

A.7.26 JumpDrive

1 simnow> jumpdrive.usage

Automation Command Description

LoadImage <HostFileName>
Loads the contents of the specified image

file <HostFileName> to the memory.

SaveImage <HostFileName>

Saves the contents of the memory to an

image file on the host specified by

<HostFileName>.

ImportFile <HostFileName> <ImageFileName>

Imports the requested file into the image

<ImageFileName> using the given host

file name <HostFileName>.

ExportFile <ImageFileName> <HostFileName>

Exports the requested file from the image

<ImageFileName> to the given host file

name <HostFileName>.

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 249

Automation Command Description

Initialize <SizeInMB>

Initialize the jump drive image with a

single partition of the requested size

specified by <SizeInMB>. The JumpDrive

supports image-sizes from 64-Mbytes to

8192-Mbytes (8-Gbytes).

ImportDir <HostPathName> <ImagePathName>

Imports a directory from the host system

into the jump drive. The host path name

<HostPathName> can contain wildcards in

the last element. If the last element of the

<HostPathName> does not contain

wildcards, and points to a directory, then

“*” is assumed. The image path name

<ImagePathName> must be the name of a

directory. If it does not exist, it will be

created.

ExportDir < ImagePathName> <HostPathName>

Exports a directory from the jump drive to

the host system. The image path name

<ImagePathName> can contain wildcards

in the last element. If the last element of

the <ImagePathName> does not contain

wildcards, and points to a directory, then

“*” is assumed. The host path name

<HostPathName> must be the name of a

directory. If it does not exist, it will be

created.

Dir <ImagePathName>
Shows the contents of the directory path

given by <ImagePathName>.

Free
Shows the amount of free space on the

JumpDrive device.

Size <Size in MB>

This command is identical to the Initialize

command, only it does not create a FAT32

partition on the drive. It simply sets the

physical size of the device. Any formatting

or initialization will still need to be done

(presumably by the simulated operating

system).

To initialize the JumpDrive, and copy data to it:

1 simnow>jumpdrive.initialize 64

This creates a 64-Mbyte FAT32 partition on the JumpDrive.

The following example copies the file “C:\test.bin“ to the JumpDrive and places it in the

“\tmp“ directory. If the “\tmp“ directory does not exits on the JumpDrive, it is created

automatically.

1 simnow>jumpdrive.importfile c:\test.bin \tmp\test.bin
62.99 Mbytes Available

AMD Confidential

User Manual September 12
h
, 2008

250 Appendix A

1 simnow>

This copies all files from “C:\tmp“ into the root of the JumpDrive. Any subdirectories are

also copied.

1 simnow>jumpdrive.importdir c:\tmp \

Importing c:\tmp\test.bin ---> \test1.bin
62.89 Mbytes Available

This example shows how to import all “*.exe” files from “C:\tmp” into the root of the

JumpDrive.

1 simnow>jumpdrive.importdir c:\tmp*.exe \

Importing c:\tmp\app1.exe ---> \app1.exe
Importing c:\tmp\app2.exe ---> \app2.exe

62.60 Mbytes Available

This example shows how to export the “app1.exe” file from the root of the JumpDrive

into “C:\tmp” on the host.

1 simnow>jumpdrive.exportfile \app1.exe c:\tmp\
Exporting \app1.exe ---> c:\tmp\app1.exe

To find out what is already stored in the root of the JumpDrive device, enter the

following:

1 simnow> jumpdrive.dir \

Directory of: \

 <DIR> tmp
 103936 test.bin
 103936 app1.exe

 103936 app2.exe

62.60 Mbytes Available

To get information about how much space is left on the JumpDrive device, enter the

following:

1 simnow>jumpdrive.free

62.60 Mbytes Available

To save the contents of the JumpDrive to the image file “C:\test.img” on the host‟s hard-

disk, enter

1 simnow>jumpdrive.saveimage c:\test.img

This example shows how to load the saved JumpDrive image “C:\test.img” from the

host‟s hard-disk into the JumpDrive

1 simnow>jumpdrive.loadimage c:\test.img

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 251

A.7.27 E1000

The NIC device provides the following automation commands that can be used to

configure the device.

1 simnow> e1000.usage

Automation Command Description

log enable|disable cmoidtr

Enables or disables message logging for

PCI Config (c), MMIO (m), I/O (o),

Unmasked Interrupts (i), MDI (d), Frame

Transfers (t), or Frame Receptions (r).

logStatus Displays the current log-status.

setMediatorHost [domain@]hostname[:port]

Sets the mediator connect string. The

domain string and the port number are

optional. The default domain string is null.

The default port is 8196. The hostname is

the host in which the mediator is running.

getMediatorHost
Outputs the current mediator connect

string.

setMACAddress XX:XX:XX:XX:XX:XX
Sets the MAC Address to be used by the

adapter.

getMACAddress
Retrieves the MAC Address being used by

the adapter.

linkConnect auto|down
Restarts link negotiation (auto) for the

adapter, or forces a link disconnect (down).

tune {intthrtl|rxdelay|txdelay} value

Sets certain synthetic delay- and throttle-

values which gives the user the opportunity

to change the default settings to get

optimal results. intthrt sets the interrupt

throttle rate to value. rxdelay sets the

amount of link idle time required before

generating an rx interrupt to value. txdelay

sets the amount of link idle time required

before generating an tx interrupt to value.

getTuneValues
Displays the values set by using the

automation command tune.

A.7.28 XTR

1 simnow> xtrnb.usage

Automation Command Description

xtrfile <filename.xml>
Sets XTR–XML file to use during

playback.

debug <0|1>
Enables (1) or Disables (0) extended debug

information for XTR Playback.

AMD Confidential

User Manual September 12
h
, 2008

252 Appendix A

Automation Command Description

xtrlogfile <filename.log>

Sets name of the log file where XTR

messages should be logged. This is

optional and if not used the log is directed

to the simulators log.

status Displays the status of XTR playback

1 simnow> xtrsvc.usage

Automation Command Description

xtrenable <0|1>
Enables (1) or Disables (0) XTR Record.
All other values are invalid.

xtrfile <filename.xml> Sets the XTR-XML file for XTR Record.

XTRMemBits n
Sets number of bits for memory address
bits to scan. n= 16, 32 or 48. Default is 32.

Xtrstatus Displays the status of XTR Record.

A.7.29 ATI SB400/SB600/SB700

1 simnow> sb600.usage

Automation Command Description
HtInterrupts (0|1) Enables (1) or disables (0) HyperTransport interrupts.

HtIntStatus
Returns „enabled‟ if HyperTransport interrupts are

enabled; otherwise it returns „disabled‟.

IoLog (0|1) Enables (1) or disables (0) IO logging.

IoLogStatus
Returns „enabled‟ if IO Logging is enabled; otherwise it

returns „disabled‟.

MemLog (0|1) Enables (1) or disables (0) IO logging.

MemLogStatus
Returns „enabled‟ if Memory Logging is enabled;

otherwise it returns „disabled‟.

SmiSciLog (0|1) Enables (1) or disables (0) IO logging.

SmiSciLogStatus
Returns „enabled‟ if SMI SCI Logging is enabled;

otherwise it returns „disabled‟.

Version Displays the binary revision of the RD790 model.

SetPciIrqMap {BasePciIrq(0-3)}

{ChipPciIrq(0-7)}

Depending on platform configuration, it maps base

PCIIRQ#A/B/C/D (0-3) from PCI bridge to ATI chip

internal PCIIRQ#A/B/C/D/E/F/G/H (0-7).

GetPciIrqMap {BasePciIrq(0-3)}

Returns the ATI chip internal

PCIIRQ#A/B/C/D/E/F/G/H (0-7) which the specific

base PCIIRQ#A/B/C/D(0-3) is mapped to.

GetPciIrqTotal Returns the total number of chip internal PCIIRQs.

A.7.30 ATI RS480

1 simnow> rs780.usage

AMD Confidential

User Manual September 12
th
, 2008

Appendix A 253

Automation Command Description

SetRev <rev >
Sets the internal chip revision number of

RS480 device to <rev>.

GetRev
Displays the internal chip revision number

of the RS480 device.

A.7.31 ATI RS780

1 simnow> rs780.usage

Automation Command Description

SetRev <rev >
Sets the internal chip revision number of

RS780 device to <rev>.

GetRev
Displays the internal chip revision number

of the RS780 device.

Version
Displays the binary revision of the RS780

model.

A.7.32 ATI RD790/RD780/RX780

1 simnow> rd790.usage

Automation Command Description

SetRev <rev >
Sets the internal chip revision number of

RD790 device to <rev>.

GetRev
Displays the internal chip revision number

of the RD790 device.

Version
Displays the binary revision of the RD790

model.

SetPackageType <RD790 | RX780> Sets package type to RD790 or RX780.

GetPackageType Displays current package type.

A.7.33 ATI RD890S/RD890/RD780S/RX880

1 simnow> rd890.usage

Automation Command Description

SetRev <rev >
Sets the internal chip revision number to

<rev>.

GetRev Displays the internal chip revision number.

Version Displays the binary revision.

SetPackageType <RD890S | RD890 | RD870S |

RX880>

Sets package type to RD890S, RD890,

RD870S, or RX880.

GetPackageType Displays current package type.

AMD Confidential

User Manual September 12
h
, 2008

254 Appendix A

AMD Confidential

User Manual September 12
th
, 2008

Index 255

Index

*

*.ROM .. 186

*.SPD .. 186

A

A20 ... 74

ACPI ... 8

Address-Translation Cache............................... 25

AGP .. 61, 65

AMD 3DNow!™ Technology 226

AMD 8th Generation Integrated Northbridge .. 82

AMD-8111™ Device 86

AMD-8132™ PCI-X® Controller 14, 95

AMD-8151™ Device 98

AT24C Device .. 14, 103

B

Base Address .. 163

Baud Rate ... 76

BIOS ROM ... 163

BSD file .. 36, 45

C

Checkpoint.. 45

Chip-Select ... 78

Clearing CMOS .. 165

CMOS ... 87, 165

Code Generator ... 244

Code Pages ... 190

COM1 ... 74

COM2 ... 74

Commit ... 39, 88

Configuration File .. 5

Console Window .. 24

CPUID .. 188

CR4.PCE .. 190

Create Device Connection 11

Creating Floppy-Disk Image 167

Cycle-Accurate ... 1

D

Debug

Find Pattern.. 147

Read/Write MSRs 146

Reading CPU MSRs 146

Reading PCI Configuration Registers 146

Set Breakpoint ... 143

Single-Stepping ... 144

Skip Instruction .. 145

Stepping Over .. 144

View Memory .. 145

Deprecated Devices .. 10

Device ID..93

Device List ..10

Devices Window.. 9

DHCP ...122

Diagnostic Ports ..24

DIMM ...55

Disable USB Port..86

Disk Journaling ... 39, 88

DiskTool ...157

Double Fault ...190

DVD-/CD-ROM ...31

E

ECC ..60

EOT ..108

Error Log ..139

EXDI ..104

F

Fan ..74

FAQ ..177

Flash-ROM ...79

FLDENV ..190

Floppy-Disk ..40

Frame-Buffer ..62

FRSTOR ...190

FSAVE ...190

FSTENV ...190

G

Gateways ..122

GDB ..152

GPIO ...74

Graphics .. 2, 61, 65

H

Host Operating Systems 3

HyperTransport™ Technology

Coherent ...82

Link ..84

Link-capable devices82

Messages ..83

Non-Coherent ..82

Tunnel .. 14, 95

Upstream Link ...96

I

Insert CD-ROM ..39

INT/IOAPIC ...86

IR 74

IRQ-Routing Pin ...92

AMD Confidential

User Manual September 12
h
, 2008

256 Index

J

Journaling ... 88, 89

Journals ... 100

Joystick ... 74

K

Kernel Debugger 104, 151

L

Linux

Loopback Device ... 40

Log

CPU Cycles.. 166

Dissassembly ... 52

Exceptions ... 52

I/O Logging ... 140

I/O Read/Writes ... 52

Linear Memory Accesses 52

Register State Changes 52

LPC/ISA Bridge ... 86

LPT1 ... 74

M

MAC Address ... 123

Mediator Daemon ... 122

Memory Configurator 163

Message Log... 137

Microcode Patching .. 190

Microsoft DirectX 9 ... 2

MIDI ... 74

MIPS... 25

Modify PCI Configuration Space 136

Mouse Cursor ... 169

Multiple Virtual-Mappings 190

N

Named-Pipe 151, 152, 153, 154, 238, 239, 240

Nested-Task .. 225

P

Pacifica Virtualization Technology 146

Partition .. 159

PCI-X ... 94

PCI-X Configuration Cycle 97

PDL .. 55

Enable Error Simulation 58

Error Simulation Control 58

Reset .. 60

Performance-Monitoring Counter 225

Physical Drives ... 158

Play ... 7

PnP Monitor ... 126

DDC ... 126

VESA ... 126

POST .. 24

Prescott New Instruction227

PS/2 mouse ...74

R

RAID ..100

RAM

Memory Device ...77

Size ..164

RDPMC ..190

Reset ...7, 41

ROM ...77

S

Scripting ...230

SEGV ..4, 26

SEM ..189

Shell ..230

SimStats ..24

Single-Stepping See Debug

Slowdown .. 1

SMB .. 14, 80, 81

Hub .. 14, 101

SMB Base Address ...58

Soft Power ... 8

Soft Sleep... 8

Solo.bsd ..45

SPD ...164

Export ..60

Import ..60

SPD Data ..164

Stepping Over See Debug

Stop .. 7

Stop XTR ..107

Super IO..74

SVGA ... 61, 65

Switching CD Images180

System Requirements .. 3

T

TCache ..25

TLB ..53

Triple Fault ...190

TSS ...225

U

Usage Command...231

User Defined Keys... 5

V

VGA ... 61, 65

Virtual-Address Space 4

W

Winbond W83627HF74

Workspace ..10

AMD Confidential

User Manual September 12
th
, 2008

Index 257

X

XTR .. 106

Playback... 107

Recording ...107

Stop Recording ..107

XVGA .. 61, 65

	Figures
	Tables
	Overview
	Installation
	System Requirements
	Installation Procedure
	Directory Structure and Executable
	Setting up Linux for the Simulator
	Configuration File
	Updates and Questions

	Graphical User Interface
	Tool Bar Buttons
	Device Window
	Add a New Device
	Workspace Popup Menu
	Add Connection
	Configure Device
	Disconnect Device
	Delete Device

	Example Computer Description
	Device Window – Quick Reference

	Device Groups
	Terms
	Concept Diagrams
	Working with Device Groups
	Shell Automation Commands for Device Groups
	Device Tree
	Enabled vs. Disabled vs. Mixed

	Device Group Examples
	Example: 1GB DDR2 memory
	Example: Quad-Core Node
	Example: SuperIO device

	Creating a Device Group

	Main Window
	SimStats and Diagnostic Ports
	CPU-Statistics Graphs
	Translation Graph
	Real MIPS Graph
	Invalidation Rate Graph
	Exception Rate Graph
	PIO Rate Graph
	MMIO Rate Graph

	Simulated Video
	Hard Disk and Floppy Display
	Using Hard Drive, DVD-/CD-ROM and Floppy Images
	Registry Window
	Help, Problems and Bug Reports

	Disk Images
	Creating A Blank Hard-Drive Image

	Running the Simulator
	Command-Line Arguments
	Open a Simulation Definition File

	Installing an Operating System
	Assigning Disk-Images
	Run The Simulation
	Interaction with the Simulated Machine
	Simulation Reset

	Multi-Machine Support

	Create a Simulated Computer
	BSD Files
	Device Placement
	Solo.bsd Device Configuration
	Save and Run

	Device Configuration
	AweSim Processor Device
	Debugger Device
	DIMM Device
	Emerald Graphics Device
	Matrox MGA-G400 PCI/AGP
	Super IO Devices: Winbond W83627HF SIO / ITE 8712 SIO
	Memory Device
	PCA9548 SMB Device
	PCA9556 SMB Device
	AMD 8th Generation Integrated Northbridge Device
	AMD-8111™ Southbridge Devices – IO Hubs
	PCI BUS Device
	AMD-8131™ PCI-X® Controller
	AMD-8132™ PCI-X® Controller
	PCI-X Test Device
	AMD-8151™ AGP Bridge Device
	Raid Device: Compaq SmartArray 5304
	SMB Hub Device
	AT24C Device
	EXDI Server Device
	USB Keyboard and USB Mouse Devices
	XTR Device
	Using XTR
	Recoding XTR Trace
	Stop XTR Record
	XTR Playback
	Stop XTR Playback

	XTR Structure
	XML Structure
	XTR Binary File Contents

	ModeFlags
	Limitations
	Example XTR XML File

	JumpDrive Device
	E1000 Network Adapter Device
	Simulated Link Negotiation
	The Mediator Daemon
	MAC Addresses for use with the Adapter
	Example Configurations
	Absolute NIC
	Client-Server simulated network
	Isolated Client-Server simulated network (Same process)

	Visibility Diagram

	Plug and Play Monitor Device
	ATI SB400/SB600/SB700 Southbridge Devices
	ATI RS480/RS780/RD790/RD890 Northbridge Devices
	AMD “Istanbul” Device
	AMD “Sao Paulo” Device
	AMD “Magny-Cours” Device

	PCI Configuration Viewer
	Scanning PCI Buses
	Modifying the PCI Configuration contents

	Logging
	Message Log
	Error Log
	I/O Logging

	CPU Debugger
	Using the CPU Debugger
	Setting a Breakpoint
	Single Stepping the Simulation
	Stepping Over an Instruction
	Skipping an Instruction
	Viewing a Memory Region
	Reading PCI Configuration Registers
	Reading CPU MSR Contents
	Find Pattern in Memory

	Debugger Command Reference

	Debug Interface
	Kernel Debugger
	GDB Interface
	Simple Approach
	Alternate Approach
	Using Another Port on the Same Machine
	Using Two Separate Machines

	Linux Host Serial Port Communication

	Command API
	DiskTool
	Command-Line Mode
	GUI Mode

	BIOS Developer’s Quick Start Guide
	Loading a BIOS Image
	Changing DRAM Size
	Changing SPD Data
	Clearing CMOS
	Logging PCI Configuration Cycles
	Logging CPU Cycles
	Creating a Floppy-Disk Image

	Frequently Asked Questions (FAQ)
	Terms
	Concept Diagrams
	Working with Device Groups
	Shell Automation Commands for Device Groups
	Device Tree
	Enabled vs. Disabled vs. Mixed

	Device Group Examples
	Example: 1GB DDR2 memory
	Example: Quad-Core Node
	Example: SuperIO device

	Creating a Device Group

	Appendix
	Format of Floppy and Hard-Drive Images
	Bill of Material
	Computer Platform Files (BSD)
	Device Files (*.BSL)
	Product Files (*.ID)
	Image Files (*.HDD, *.FDD, *.ROM, *.SPD, *.BIN)
	Hard-Disk Image Files
	Memory SPD Files

	Supported Guest Operating Systems
	CPUID
	CPUID Standard Feature Support (Standard Function 0x01)
	CPUID AMD Feature Support (Extended Function 0x80000001)

	Known Issues
	FSAVE/FRSTOR and FSTENV/FLDENV
	Triple Faulting
	Performance-Monitoring Counter Extensions
	Microcode Patching
	Instruction Coherency

	Instruction Reference
	Notation
	Mnemonic Syntax
	Opcode Syntax

	General Purpose Instructions
	System Instructions
	INT – Interrupt to Vector
	IRET – Return from Interrupt

	Virtualization Instruction Reference
	64-Bit Media Instruction Reference
	3DNow!™ Instruction Set
	Extension to the 3DNow! Instruction Set
	Prescott New Instructions
	MONITOR – Setup Monitor Address
	MWAIT – Monitor Wait

	Automation Commands
	Shell
	IDE
	USB
	CMOS
	ACPI
	Floppy
	Debug
	AMD-8151™ AGP Bridge
	VGA
	Serial
	HyperTransport™ Technology Configuration
	8th Generation Northbridge
	DBC
	AMD-8111™ Device
	EHC
	Journal
	CPU
	Profiling in SimNow™ Technology
	CPU Code Generator Commands

	Emerald Graphics
	Matrox MGA-G400 Graphics
	PCI Bus
	SIO
	Memory Device
	Raid
	DIMM
	Keyboard and Mouse
	JumpDrive
	E1000
	XTR
	ATI SB400/SB600/SB700
	ATI RS480
	ATI RS780
	ATI RD790/RD780/RX780
	ATI RD890S/RD890/RD780S/RX880

	Index

