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Abstract

We describe a technique called lookaside caching that combines the
strengths of distributed file systems and portable storage devices,
while negating their weaknesses. In spite of its simplicity, this tech-
nique proves to be powerful and versatile. By unifying distributed
storage and portable storage into a single abstraction, lookaside
caching allows users to treat devices they carry as merely perfor-
mance and availability assists for distant file servers. Careless use
of portable storage has no catastrophic consequences.

1 Introduction

Floppy disks were the sole means of sharing data
across users and computers in the early days of per-
sonal computing. Although they were trivial to use,
considerable discipline and foresight was required of
users to ensure data consistency and availability, and to
avoid data loss — if you did not have the right floppy
at the right place and time, you were in trouble! These
limitations were overcome by the emergence of dis-
tributed file systems such as NFS [17], Netware [8],
LanManager [24], and AFS [7]. In such a system, re-
sponsibility for data management is delegated to the
distributed file system and its operational staff.

Personal storage has come full circle in the recent
past. There has been explosive growth in the avail-
ability of USB- and Firewire-connected storage de-
vices such as flash memory keychains and portable disk
drives. Although very different from floppy disks in
capacity, data transfer rate, form factor, and longevity,
their usage model is no different. In other words, they
are just glorified floppy disks and suffer from the same
limitations mentioned above. Why then are portable
storage devices in such demand today? Is there a way
to use them that avoids the messy mistakes of the past,
where a user was often awash in floppy disks trying to
figure out which one had the latest version of a specific
file? If loss, theft or destruction of a portable storage
device occurs, how can one prevent catastrophic data
loss? Since human attention grows ever more scarce,
can we reduce the data management demands on atten-
tion and discipline in the use of portable devices?

We focus on these and related questions in this pa-
per. We describe a technique called lookaside caching

that combines the strengths of distributed file sys-
tems and portable storage devices, while negating their
weaknesses. In spite of its simplicity, this technique
proves to be powerful and versatile. By unifying “stor-
age in the cloud” (distributed storage) and ‘“‘storage in
the hand” (portable storage) into a single abstraction,
lookaside caching allows users to treat devices they
carry as merely performance and availability assists for
distant file servers. Careless use of portable storage has
no catastrophic consequences.

Lookaside caching has very different goals and de-
sign philosophy from a PersonalRAID system [18], the
only previous research that we are aware of on us-
age models for portable storage devices. Our starting
point is the well-entrenched base of distributed file sys-
tems in existence today. We assume that these are suc-
cessful because they offer genuine value to their users.
Hence, our goal is to integrate portable storage devices
into such a system in a manner that is minimally dis-
ruptive of its existing usage model. In addition, we
make no changes to the native file system format of
a portable storage device; all we require is that the de-
vice be mountable as a local file system at any client of
the distributed file system. In contrast, PersonalRAID
takes a much richer view of the role of portable storage
devices. It views them as first-class citizens rather than
as adjuncts to a distributed file system. It also uses a
customized storage layout on the devices. Our design
and implementation are much simpler, but also more
limited in functionality.

We begin in Section 2 by examining the strengths
and weaknesses of portable storage and distributed file
systems. In Sections 3 and 4, we describe the design
and implementation of lookaside caching. We quantify
the performance benefit of lookaside caching in Sec-
tion 5, using three different benchmarks. We explore
broader use of lookaside caching in Section 6, and con-
clude in Section 7 with a summary.



2 Background

To understand the continuing popularity of portable
storage, it is useful to review the strengths and weak-
nesses of portable storage and distributed file systems.
While there is considerable variation in the designs of
distributed file systems, there is also a substantial de-
gree of commonality across them. Our discussion be-
low focuses on these common themes.

Performance: A portable storage device offers uni-
form performance at all locations, independent of fac-
tors such as network connectivity, initial cache state,
and temporal locality of references. Except for a few
devices such as floppy disks, the access times and band-
widths of portable devices are comparable to those of
local disks. In contrast, the performance of a dis-
tributed file system is highly variable. With a warm
client cache and good locality, performance can match
local storage. With a cold cache, poor connectivity and
low locality, performance can be intolerably slow.

Availability: If you have a portable storage device
in hand, you can access its data. Short of device fail-
ure, which is very rare, no other common failures pre-
vent data access. In contrast, distributed file systems
are susceptible to network failure, server failure, and a
wide range of operator errors.

Robustness: A portable storage device can easily
be lost, stolen or damaged. Data on the device be-
comes permanently inaccessible after such an event.
In contrast, data in a distributed file system continues
to be accessible even if a particular client that uses it
is lost, stolen or damaged. For added robustness, the
operational staff of a distributed file system perform
regular backups and typically keep some of the back-
ups off site to allow recovery after catastrophic site
failure. Backups also help recovery from user error:
if a user accidentally deletes a critical file, he can re-
cover a backed-up version of it. In principle, a highly
disciplined user could implement a careful regimen of
backup of portable storage to improve robustness. In
practice, few users are sufficiently disciplined and well-
organized to do this. It is much simpler for professional
staff to regularly back up a few file servers, thus bene-
fiting all users.

Sharing/Collaboration: The existence of a com-
mon name space simplifies sharing of data and collab-
oration between the users of a distributed file system.
This is much harder if done by physical transfers of de-
vices. If one is restricted to sharing through physical

devices, a system such as PersonalRAID can be valu-
able in managing complexity.

Consistency: Without explicit user effort, a dis-
tributed file system presents the latest version of a file
when it is accessed. In contrast, a portable device has
to be explicitly kept up to date. When multiple users
can update a file, it is easy to get into situations where
a portable device has stale data without its owner being
aware of this fact.

Capacity: Any portable storage device has finite
capacity. In contrast, the client of a distributed file
system can access virtually unlimited amounts of data
spread across multiple file servers. Since local storage
on the client is merely a cache of server data, its size
only limits working set size rather than total data size.

Security: The privacy and integrity of data on
portable storage devices relies primarily on physical se-
curity. A further level of safety can be provided by
encrypting the data on the device, and by requiring a
password to mount it. These can be valuable as a sec-
ond layer of defense in case physical security fails. De-
nial of service is impossible if a user has a portable
storage device in hand. In contrast, the security of data
in a distributed file system is based on more fragile as-
sumptions. Denial of service may be possible through
network attacks. Privacy depends on encryption of
network traffic. Fine-grain protection of data through
mechanisms such as access control lists is possible, but
relies on secure authentication using a mechanism such
as Kerberos [19].

Ubiquity: A distributed file system requires oper-
ating system support. In addition, it may require en-
vironmental support such as Kerberos authentication
and specific firewall configuration. Unless a user is
at a client that meets all of these requirements, he
cannot access his data in a distributed file system.
In contrast, portable storage only depends on widely-
supported low-level hardware and software interfaces.
If a user sits down at a random machine, he can be
much more confident of accessing data from portable
storage in his possession than from a remote file server.

3 Lookaside Caching

Our goal is to exploit the performance and avail-
ability advantages of portable storage to improve these
same attributes in a distributed file system. The result-
ing design should preserve all other characteristics of
the underlying distributed file system. In particular,



there should be no compromise of robustness, consis-
tency or security. There should also be no added com-
plexity in sharing and collaboration. Finally, the design
should be tolerant of human error: improper use of the
portable storage device (such as using the wrong de-
vice or forgetting to copy the latest version of a file to
it) should not hurt correctness.

Lookaside caching is an extension of AFS2-style
whole-file caching [7] that meets the above goals. It is
based on the observation that virtually all distributed
file system protocols provide separate remote proce-
dure calls (RPCs) for access of meta-data and access of
data content. Lookaside caching extends the definition
of meta-data to include a cryptographic hash of data
content. This extension only increases the size of meta-
data by a modest amount: just 20 bytes if SHA-1 [11]
is used as the hash. Since hash size does not depend on
file length, it costs very little to obtain and cache hash
information even for many large files. Using POSIX
terminology, caching the results of “1s -1R” of a large
tree is feasible on a small client, even if there is not
enough cache space for the contents of all the files in
the tree. This continues to be true even if one augments
stat information for each file or directory in the tree
with its SHA-1 hash.

Once a client possesses valid meta-data for an ob-
ject, it can use the hash to redirect the fetch of data
content. If a mounted portable storage device has a file
with matching length and hash, the client can obtain the
contents of the file from the device rather than from the
file server. Whether it is beneficial to do this depends,
of course, on factors such as file size, network band-
width, and device transfer rate. The important point is
that possession of the hash gives a degree of freedom
that clients of a distributed file system do not possess
today.

Since lookaside caching treats the hash as part of
the meta-data, there is no compromise in consistency.
The underlying cache coherence protocol of the dis-
tributed file system determines how closely client state
tracks server state. There is no degradation in the ac-
curacy of this tracking if the hash is used to redirect
access of data content. To ensure no compromise in se-
curity, the file server should return a null hash for any
object on which the client only has permission to read
the meta-data.

Lookaside caching can be viewed as a degenerate
case of the use of file recipes, as described by Tolia et

al. [22]. In that work, a recipe is an XML description of
file content that enables block-level reassembly of the
file from content-addressable storage. One can view
the hash of a file as the smallest possible recipe for it.
The implementation using recipes is considerably more
complex than our support for lookaside caching. In re-
turn for this complexity, synthesis from recipes may
succeed in many situations where lookaside fails.

4 Prototype Implementation

We have implemented lookaside caching in the
Coda file system on Linux. The user-level implemen-
tation of Coda client cache manager and server code
greatly simplified our effort since no kernel changes
were needed. The implementation consists of four
parts: a small change to the client-server protocol; a
quick index check (the “lookaside”) in the code path
for handling a cache miss; a tool for generating looka-
side indexes; and a set of user commands to include or
exclude specific lookaside devices.

The protocol change replaces two RPCs,
ViceGetAttr() and ViceValidateAttrs()
with the extended calls ViceGetAttrPlusSHA()
and ViceValidateAttrsPlusSHA() that have an
extra parameter for the SHA-1 hash of the file.
ViceGetAttr() is used to obtain meta-data for a
file or directory, while ViceValidateAttrs() is
used to revalidate cached meta-data for a collection
of files or directories when connectivity is restored to
a server. Our implementation preserves compatibility
with legacy servers. If a client connects to a server that
has not been upgraded to support lookaside caching, it
falls back to using the original RPCs mentioned above.

The lookaside occurs just before the execution of
the ViceFetch() RPC to fetch file contents. Before
network communication is attempted, the client con-
sults one or more lookaside indexes to see if a local file
with identical SHA-1 value exists. Trusting in the colli-
sion resistance of SHA-1 [10], a copy operation on the
local file can then be a substitute for the RPC. To de-
tect version skew between the local file and its index,
the SHA-1 hash of the local file is re-computed. In case
of a mismatch, the local file substitution is suppressed
and the cache miss is serviced by contacting the file
server. Coda’s consistency model is not compromised,
although some small amount amount of work is wasted
on the lookaside path.

The index generation tool walks the file tree rooted



cfs 1lka --clear | exclude all indexes

cfs lka +dbl include index dbl

cfs 1lka -dbil exclude index dbl

cfs lka --1list | print lookaside statistics

Figure 1. Lookaside Commands on Client

at a specified pathname. It computes the SHA-1 hash
of each file and enters the filename-hash pair into
the index file, which is similar to a Berkeley DB
database [13]. The tool is flexible regarding the lo-
cation of the tree being indexed: it can be local, on a
mounted storage device, or even on a nearby NFS or
Samba server. For a removable device such as a USB
storage keychain or a DVD, the index is typically lo-
cated right on the device. This yields a self-describing
storage device that can be used anywhere. Note that an
index captures the values in a tree at one point in time.
No attempt is made to track updates made to the tree
after the index is created. The tool must be re-run to
reflect those updates. Thus, a lookaside index is best
viewed as a collection of hints [21].

Dynamic inclusion or exclusion of lookaside de-
vices is done through user-level commands. Figure 1
lists the relevant commands on a client. Note that mul-
tiple lookaside devices can be in use at the same time.
The devices are searched in order of inclusion.

5 Evaluation

How much of a performance win can lookaside
caching provide? The answer clearly depends on the
workload, on network quality, and on the overlap be-
tween data on the lookaside device and data accessed
from the distributed file system. To obtain a quan-
titative understanding of this relationship, we have
conducted controlled experiments using three different
benchmarks: a kernel compile benchmark, a virtual
machine migration benchmark, and single-user trace
replay benchmark. The rest of this section presents our
benchmarks, experimental setups, and results.

5.1 Kernel Compile

5.1.1 Benchmark Description

Our first benchmark models a nomadic software de-
veloper who does work at different locations such as
his home, his office, and a satellite office. Network
connection quality to his file server may vary across
these locations. The developer carries a version of his

Kernel Size | Files | Bytes | Release | Days
Version | (MB) | Same | Same Date | Stale
2.4.18 | 118.0 | 100% | 100% | 02/25/02 0
2417 | 1162 | 90% | 79% | 12/21/01 66
2413 | 1126 | 74% | 52% | 10/23/01 | 125
249 108.0 | 53% | 30% | 08/16/01 | 193
2.4.0 953 | 28% | 13% | 01/04/01 | 417

This table shows key characteristics of the Linux kernel ver-
sions used in our compilation benchmark. In our experiments,
the kernel being compiled was always version 2.4.18. The
kernel on the lookaside device varied across the versions
listed above. The second column gives the size of the source
tree of a version. The third column shows what fraction of the
files in that version remain the same in version 2.4.18. The
number of bytes in those files, relative to total release size, is
given in the fourth column. The last column gives the differ-
ence between the release date of a version and the release
date of version 2.4.18.

Figure 2. Linux Kernel Source Trees

source code on a lookaside device. This version may
have some stale files because of server updates by other
members of the development team.

We use version 2.4 of the Linux kernel as the source
tree in our benchmark. Figure 2 shows the measured
degree of commonality across five different minor ver-
sions of the 2.4 kernel, obtained from the FTP site
ftp.kernel.org. This data shows that there is a
substantial degree of commonality even across releases
that are many weeks apart. Our experiments only use
five versions of Linux, but Figure 3 confirms that com-
monality across minor versions exists for all of Linux
2.4. Although we do not show the corresponding fig-
ure, we have also confirmed the existence of substantial
commonality across Linux 2.2 versions.

5.1.2 Experimental Setup

Figure 4 shows the experimental setup we used
for our evaluation. The client was a 3.0 GHz Pen-
tium 4 (with Hyper-Threading) with 2 GB of SDRAM.
The file server was a 2.0 GHz Pentium 4 (without
Hyper-Threading) with 1 GB of SDRAM. Both the
machines ran Red Hat 9.0 Linux and Coda 6.0.2, and
were connected by 100 Mb/s Ethernet. The client file
cache size was large enough to prevent eviction during
the experiments, and the client was operated in write-
disconnected mode. We ensured that the client file
cache was always cold at the start of an experiment.
To discount the effect of a cold I/O buffer cache on the
server, a warming run was done prior to each set of ex-
periments.
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Each curve above corresponds to one minor version of the
Linux 2.4 kernel. That curve represents the measured com-
monality between the minor version and all previous minor
versions. The horizontal axis shows the set of possible minor
versions. The vertical axis shows the percentage of data in
common. The rightmost point on each curve corresponds to
100% because each minor version overlaps 100% with itself.

Figure 3. Commonality Across Linux 2.4 Versions

Lookaside
Device Client

NISTNet Router =
File Server

Figure 4. Experimental Setup

All experiments were run at four different band-
width settings: 100 Mb/s, 10 Mb/s, 1 Mb/s and 100
Kb/s. We used a NISTNet network router [12] to con-
trol bandwidth. The router is simply a standard PC with
two network interfaces running Red Hat 7.2 Linux and
release 2.0.12 of the NISTNet software. No extra la-
tency was added at 100 Mb/s and 10 Mb/s. For 1 Mb/s
and 100 Kb/s, we configured NISTNet to add round trip
latencies of 10 ms and 100 ms respectively.

The lookaside device used in our experiments was
a 512 MB Hi-Speed USB flash memory keychain.
The manufacturer of this device quotes a nominal read
bandwidth of 48 Mb/s, and a nominal write bandwidth
of 36 Mb/s. We conducted a set of tests on our client to
verify these figures. Figure 5 presents our results. For
all file sizes ranging from 4 KB to 100 MB, the mea-
sured read and write bandwidths were much lower than
the manufacturer’s figures.

Measured Data Rate
File Size || Read (Mb/s) | Write (Mb/s)
4 KB 6.3 7.4
16 KB 6.3 12.5
64 KB 16.7 25.0
256 KB 25.0 22.2
1 MB 28.6 25.8
10 MB 29.3 26.4
100 MB 294 26.5

This tables displays the measured read and write bandwidths
for different file sizes on the portable storage device used in
our experiments. To discount caching effects, we unmounted
and remounted the device before each trial. For the same rea-
son, all writes were performed in synchronous mode. Every
data point is the mean of three trials; the standard deviation
observed was negligible.

Figure 5. Portable Storage Device Performance

5.1.3 Results

The performance metric in this benchmark is the
elapsed time to compile the 2.4.18 kernel. This directly
corresponds to the performance perceived by our hy-
pothetical software developer. Although the kernel be-
ing compiled was always version 2.4.18 in our exper-
iments, we varied the contents of the portable storage
device to explore the effects of using stale lookaside
data. The portable storage device was unmounted be-
tween each experiment run to discount the effect of the
buffer cache.

Figure 6 presents our results. For each portable de-
vice state shown in that figure, the corresponding “Files
Same” and “Bytes Same” columns of Figure 2 bound
the usefulness of lookaside caching. The “Days Stale”
column indicates the staleness of device state relative
to the kernel being compiled.

At the lowest bandwidth (100 Kb/s), the win due
to lookaside caching is impressive: over 90% with an
up-to-date device (improving from 9348.8 seconds to
884.9 seconds), and a non-trivial 10.6% (from 9348.8
seconds to 8356.7 seconds) with data that is over a year
old (version 2.4.0)! Data that is over two months old
(version 2.4.17) is still able to give a win of 67.8%
(from 9348.8 seconds to 3011.2 seconds).

At a bandwidth of 1 Mb/s, the wins are still im-
pressive. They range from 63% (from 1148.3 seconds
to 424.8 seconds) with an up-to-date portable device,
down to 4.7% (1148.3 seconds to 1094.3 seconds) with
the oldest device state. A device that is stale by one ver-
sion (2.4.17) still gives a win of 52.7% (1148.3 seconds



Lookaside Device State
Bandwidth | No Device 2.4.18 2.4.17 2.4.13 2.4.9 2.4.0
100 Mb/s 287.7 (5.6) 292.7 6.4) 324.7 (16.4) 346.4 6.9 362.7 3.4 358.1 7.1
[-1.7%] [-12.9%] [-20.4%] [-26.1%] [-24.5%]
10 Mb/s 388.4 (129 | 282.9 8.3) 364.8 (12.4) 402.7 2.3) 4109 2.1 421.1 12.8)
[27.1%)] [6.1%] [-3.7%] [-5.8%] [-8.4%]
1 Mb/s 1148.3 6.9) | 424.8 3.1) 543.6 (11.5) 835.8 371 1012.4 (12.0) 1094.3 (5.4
[63.0%] [52.7%] [27.2%] [11.8%] [4.7%]
100 Kb/s || 9348.8 (84.3) | 884.9 (12.0) | 3011.2 (167.6) | 5824.0 (221.6) | 7616.0 (130.0) | 8356.7 (226.9)
[90.5%] [67.8%] [37.7%] [18.5%] [10.6%]

These results show the time (in seconds) taken to compile the Linux 2.4.18 kernel. The column labeled “No Device” shows the
time taken for the compile when no portable device was present and all data had to be fetched over the network. The column
labeled “2.4.18” shows the results when all of the required data was present on the storage device and only meta-data (i.e. stat
information) was fetched across the network. The rest of the columns show the cases where the lookaside device had versions
of the Linux kernel older than 2.4.18. Each data point is the mean of three trials; standard deviations are in parentheses. The
numbers in square brackets give the “win” for each case: that is, the percentage improvement over the “no device” case.

Figure 6. Time for Compiling Linux Kernel 2.4.18

to 543.6 seconds).

On a slow LAN (10 Mb/s), lookaside caching con-
tinues to give a strong win if the portable device has
current data: 27.1% (388.4 seconds to 282.9 seconds).
The win drops to 6.1% (388.4 seconds to 364.8 sec-
onds) when the portable device is one version old
(2.4.17). When the version is older than 2.4.17, the cost
of failed lookasides exceeds the benefits of successful
ones. This yields an overall loss rather than a win (rep-
resented as a negative win in Figure 6). The worst loss
at 10 Mb/s is 8.4% (388.4 seconds to 421.1 seconds).

Only on a fast LAN (100 Mb/s) does the overhead
of lookaside caching exceed its benefit for all device
states. The loss ranges from a trivial 1.7% (287.7 sec-
onds to 292.7 seconds) with current device state to a
substantial 24.5% (287.7 seconds to 358.1 seconds)
with the oldest device state. Since the client cache man-
ager already monitors bandwidth to servers, it would
be simple to suppress lookaside at high bandwidths.
Although we have not yet implemented this simple
change, we are confident that it can result in a system
that almost never loses due to lookaside caching.

5.2 Internet Suspend/Resume

5.2.1 Benchmark Description

Our second benchmark is based on the applica-
tion that forced us to rethink the relationship between
portable storage and distributed file systems. Infernet
Suspend/Resume (ISR) is a thick-client mechanism that
allows a user to suspend work on one machine, travel to
another location, and resume work on another machine
there [9]. The user-visible state at resume is exactly
what it was at suspend. ISR is implemented by layer-
ing a virtual machine (VM) on a distributed file system.
The ISR prototype layers VMware on Coda, and repre-
sents VM state as a tree of 256 KB files.

A key ISR challenge is large VM state, typically
many tens of GB. When a user resumes on a machine
with a cold file cache, misses on the 256 KB files
can result in significant performance degradation. This
overhead can be substantial at resume sites with poor
connectivity to the file server that holds VM state. If a
user is willing to carry a portable storage device with
him, part of the VM state can be copied to the device at



suspend.! Lookaside caching can then reduce the per-
formance overhead of cache misses at the resume site.

A different use of lookaside caching for ISR is
based on the observation that there is often substantial
commonality in VM state across users. For example,
the installed code for applications such as Microsoft
Office is likely to be the same for all users running
the identical software release of those applications [3].
Since this code does not change until a software up-
grade (typically many months apart), it would be sim-
ple to distribute copies of the relevant 256 KB files on
DVD or CD-ROM media at likely resume sites.

Notice that lookaside caching is tolerant of human
error in both of the above contexts. If the user inserts
the wrong USB storage keychain into his machine at
resume, stale data on it will be ignored. Similarly, use
of the wrong DVD or CD-ROM does not hurt correct-
ness. In both cases, the user sees slower performance
but is otherwise unaffected.

Since ISR is intended for interactive work-
loads typical of laptop environments, we created
a benchmark called the Common Desktop Appli-
cation (CDA) that models an interactive Windows
user. CDA uses Visual Basic scripting to drive
Microsoft Office applications such as Word, Excel,
Powerpoint, Access, and Internet Explorer. It con-
sists of a total of 113 independently-timed operations
such as find-and-replace, open-document, and
worksheet-sort. Actions such as keystrokes, object
selection, or mouse-clicks are not timed.

5.2.2 Experimental Setup

Our experimental infrastructure consists of
2.0 GHz Pentium 4 clients connected to a 1.2 GHz
Pentium III Xeon server through 100 Mb/s Ethernet.
All machines have 1 GB of RAM, and run Red Hat
7.3 Linux. Clients use VMware Workstation 3.1 and
have an 8 GB Coda file cache. The VM is configured
to have 256 MB of RAM and 4 GB of disk, and runs
Windows XP as the guest OS. As in the previous
benchmark, we use the NISTNet network emulator to
control bandwidth.

5.2.3 Results

From a user’s perspective, the key performance
metrics of ISR can be characterized by two questions:

'Writing the entire VM state to the portable device may take too long for a user in
a hurry to leave. In contrast, propagating updates to a file server can continue after the
user leaves.

e How slow is the resume step?
This speed is determined by the time to fetch and
decompress the physical memory image of the
VM that was saved at suspend. This is the smallest
part of total VM state that must be present to begin
execution. The rest of the state can be demand-
fetched after execution resumes. We refer to the
delay between the resume command and the ear-
liest possible user interaction as Resume Latency.

o After resume, how much is work slowed?

The user may suffer performance delays after re-
sume due to file cache misses triggered by his
VM interactions. The metric we use to reflect the
user’s experience is the total time to perform all
the operations in the CDA benchmark (this ex-
cludes user think time). We refer to this metric
as Total Operation Latency.

Portable storage can improve both resume latency
and total operation latency. Figure 7 presents our re-
sults for the case where a USB flash memory keychain
is updated at suspend with the minimal state needed
for resume. This is a single 41 MB file correspond-
ing to the compressed physical memory image of the
suspended virtual machine. Comparing the second and
third columns of this figure, we see that the effect of
lookaside caching is noticeable below 100 Mb/s, and is
dramatic at 100 Kb/s. A resume time of just 12 seconds
rather than 317 seconds (at 1 Mb/s) or 4301 seconds (at
100 Kb/s) can make a world of a difference to a user
with a few minutes of time in a coffee shop or a wait-
ing room. Even at 10 Mb/s, resume latency is a factor
of 3 faster (12 seconds rather than 39 seconds). The
user only pays a small price for these substantial gains:
he has to carry a portable storage device, and has to
wait for the device to be updated at suspend. With a
Hi-Speed USB device this wait is just a few seconds.

To explore the impact of lookaside caching on total
operation latency, we constructed a DVD with the VM
state captured after installation of Windows XP and the
Microsoft Office suite, but before any user-specific or
benchmark-specific customizations. We used this DVD
as a lookaside device after resume. In a real-life de-
ployment, we expect that an entity such as the comput-
ing services organization of a company, university or
ISP would create a set of VM installation images and
matching DVDs for its clientele. Distributing DVDs
to each ISR site does not compromise ease of manage-
ment because misplaced or missing DVDs do not hurt



No With
Lookaside | Lookaside Win

100 Mb/s 14 0.5 1322 | 7.1%
10 Mb/s 39 0.4 12 0.5) | 69.2%
1 Mb/s 317 0.3) 12 0.3) | 96.2%
100 Kb/s 4301 (0.6) 12 ©.1) | 99.7%

This table shows the resume latency (in seconds) for the CDA
benchmark at different bandwidths, with and without looka-
side to a USB flash memory keychain. Each data point is the
mean of three trials; standard deviations are in parentheses.

Figure 7. Resume Latency

No With
Lookaside | Lookaside Win

100 Mb/s 173 ) 161 28) | 6.9%
10 Mb/s 370 (14 212 (12) | 42.7%
1 Mb/s 2688 (39) 1032 31 | 61.6%
100 Kb/s | 30531 (1490) | 9530 (141) | 68.8%

This table gives the total operation latency (in seconds) for
the CDA benchmark at different bandwidths, with and with-
out lookaside to a DVD. Each data point is the mean of three
trials, with standard deviation in parentheses. Approximately
50% of the client cache misses were satisfied by lookaside on
the DVD. The files on the DVD correspond to the image of a
freshly-installed virtual machine, prior to user customization.

Figure 8. Total Operation Latency

correctness. A concerned user could, of course, carry
his own DVD.

Figure 8 shows that lookaside caching reduces to-
tal operation latency at all bandwidths, with the reduc-
tion being most noticeable at low bandwidths. Fig-
ure 12 shows the distribution of slowdown for indi-
vidual operations in the benchmark. We define slow-
down as (Tgw — TNoISR)/TNoISR- With Tgw being
the benchmark running time at the given bandwidth
and TSR its running time in VMware without ISR.
The figure confirms that lookaside caching reduces the
number of operations with very large slowdowns.

5.3 Trace Replay

5.3.1 Benchmark Description

Finally, we used the trace replay benchmark de-
scribed by Flinn et al. [6] in their evaluation of data
staging. This benchmark consists of four traces that
were obtained from single-user workstations and that
range in collection duration from slightly less than 8

Number of | Length | Update | Working

Trace | Operations | (Hours) Ops. | Set (MB)
purcell 87739 27.66 6% 252
messiaen 44027 21.27 2% 227
robin 37504 15.46 7% 85
berlioz 17917 7.85 8% 57

This table summarizes the file system traces used for the
benchmark described in Section 5.3. “Update Ops.” only refer
to the percentage of operations that change the file system
state such as mkdir, close-after-write, etc. but not individual
reads and writes. The working set is the size of the data ac-
cessed during trace execution.

Figure 9. Trace Statistics

hours to slightly more than a day. Figure 9 summa-
rizes the attributes of these traces. To ensure a heavy
workload, we replayed these traces as fast as possible,
without any filtering or think delays.

5.3.2 Experimental Setup

The experimental setup used was the same as that
described in Section 5.1.2.

5.3.3 Results

The performance metric in this benchmark is the
time taken for trace replay completion. Although no
think time is included, trace replay time is still a good
indicator of performance seen by the user.

To evaluate the performance in relation to the
portable device state, we varied the amount of data
found on the device. This was done by examining the
pre-trace snapshots of the traced file systems and then
selecting a subset of the trace’s working set. For each
trace, we began by randomly selecting 33% of the files
from the pre-trace snapshot as the initial portable de-
vice state. Files were again randomly added to raise
the percentage to 66% and then finally 100%. How-
ever, these percentages do not necessarily mean that
the data from every file present on the portable stor-
age device was used during the benchmark. The snap-
shot creation tool also creates files that might be over-
written, unlinked, or simply stat-ed. Therefore, while
these files might be present on the portable device, they
would not be read from it during trace replay.

Figure 10 presents our results. The baseline for
comparison, shown in column 3 of the figure, was the
time taken for trace replay when no lookaside device
was present. At the lowest bandwidth (100 Kb/s), the
win due to lookaside caching with an up-to-date device
was impressive: ranging from 83% for the Berlioz trace
(improving from 1281.2 seconds to 216.8 seconds) to




Lookaside Device State
Trace Bandwidth | No Device 100% 66% 33%
100 Mb/s 50.1 2.6) 53.1 4 50.5 3.1 48.8 (1.9
Purcell 10 Mb/s 61.2 2.0) 55.0 6.5) 56.5 (2.9 56.6 (4.6)
1 Mb/s 292.8 4.1 | 178.4 3.1 223.5(1.8) 254.2 2.0
100 Kb/s || 2828.7 (28.0) | 1343.0 (0.7) | 2072.1 (30.8) | 2404.6 (16.3)
100 Mb/s 26.4 (1.6) 31.8 (0.9 29.8 (0.9 27.9 0.8)
Messiaen 10 Mb/s 36.3 (0.5) 34.1 0.7 36.7 (1.5) 37.8 (0.5
1 Mb/s 2189 a2 | 117.8 0.9 157.0 (0.6) 184.8 (1.3)
100 Kb/s || 2327.3 14.8) | 903.8 1.4) | 1439.8 6.3) | 1856.6 (89.2)
100 Mb/s 30.0 1.6) 34.3 3.1 33.1 12 30.6 2.1
Robin 10 Mb/s 37.3 .6) 33.3 3.8 33.8 2.5) 37.7 4.5)
1 Mb/s 229.1 34 | 104.1 1.3) 143.2 3.3 186.7 2.5
100 Kb/s | 2713.3 (1.5) | 750.4 (5.4) | 1347.6 29.6) | 2033.4 (124.6)
100 Mb/s 8.2 (0.3) 8.9 (0.2) 9.0 0.3) 8.8 (0.2)
Berlioz 10 Mb/s 12.9 (0.8) 9.3 (0.3) 9.9 (0.4 12.0 (1.6)
1 Mb/s 94.0 (0.3) 30.2 (0.6) 50.8 (0.3) 71.6 (0.5)
100 Kb/s || 1281.2 (54.6) | 216.8 (0.5) 524.4 04) | 1090.5 (52.6)

The above results show how long it took for each trace to complete at different portable device states as well as different bandwidth
settings. The column labeled “No Device” shows the time taken for trace execution when no portable device was present and all
data had to be fetched over the network. The column labeled 100% shows the results when all of the required data was present on
the storage device and only meta-data (i.e. stat information) was fetched across the network. The rest of the columns show the
cases where the lookaside device had varying fractions of the working set. Each data point is the mean of three trials; standard

deviations are in parentheses.
Figure 10. Time for Trace Replay

53% for the Purcell trace (improving from 2828.7 sec-
onds to 1343.0 seconds). Even with devices that only
had 33% of the data, we were still able to get wins rang-
ing from 25% for the Robin trace to 15% for the Berlioz
and Purcell traces.

At a bandwidth of 1 Mb/s, the wins still remain sub-
stantial. For an up-to-date device, they range from 68%
for the Berlioz trace (improving from 94.0 seconds to
30.2 seconds) to 39% for the Purcell trace (improving
from 292.8 seconds to 178.4 seconds). Even when the
device contain less useful data, the wins still range from
24% to 46% when the device has 66% of the snapshot
and from 13% to 24% when the device has 33% of the
snapshot.

On a slow LAN (10 Mb/s) the wins can be strong
for an up-to-date device: ranging from 28% for the
Berlioz trace (improving from 12.9 seconds to 9.3 sec-
onds) to 6% for Messiaen (improving from 36.3 sec-
onds to 34.1 seconds). Wins tend to tail off beyond
this point as the device contains lesser fractions of the
working set but it is important to note that performance
is never significantly below that of the baseline.

Only on a fast LAN (100 Mb/s) does the overhead
of lookaside caching begin to dominate. For an up-to-

date device, the traces show a loss ranging from 6%
for Purcell (changing from 50.1 seconds to 53.1 sec-
onds) to a loss of 20% for Messiaen (changing from
26.4 seconds to 31.8 seconds). While the percentages
might be high, the absolute difference in number of sec-
onds is not and might be imperceptible to the user. It
is also interesting to note that the loss decreases when
there are fewer files on the portable storage device.
For example, the loss for the Robin trace drops from
14% when the device is up-to-date (difference of 4.3
seconds) to 2% when the device has 33% of the files
present in the snapshot (difference of 0.6 seconds). As
mentioned earlier in Section 5.1.3, the system should
suppress lookaside in such scenarios.

Even with 100% success in lookaside caching, the
100 Kb/s numbers for all of the traces are substantially
greater than the corresponding 100 Mb/s numbers. This
is due to the large number of meta-data accesses, each
incurring RPC latency.

6 Broader Uses of Lookaside Caching

Although motivated by portable storage, lookaside
caching has the potential to be applied in many other
contexts. Any source of data that is hash-addressable



No With
Lookaside | Lookaside Win
100 Mb/s 173 ) 103 3.9) | 40.1%
10 Mb/s 370 (14) 163 2.9) | 55.9%
1 Mb/s 2688 (39) 899 (26.4) | 66.6%
100 Kb/s | 30531 (1490) | 8567 (463.9) | 71.9%

This table gives the total operation latency (in seconds) for the
CDA benchmark of Section 5.2 at different bandwidths, with
and without lookaside to a LAN-attached CAS provider. The
CAS provider contains the same state as the DVD used for
the results of Figure 8. Each data point is the mean of three
trials, with standard deviation in parentheses.

Figure 11. Off-machine Lookaside

can be used for lookaside. Distributed hash tables
(DHTs) are one such source. There is growing interest
in DHTs such as Pastry [16], Chord [20], Tapestry [23]
and CAN [15]. There is also growing interest in
planetary-scale services such as PlanetLab [14] and lo-
gistical storage such as the Internet Backplane Proto-
col [2]. Finally, hash-addressable storage hardware
is now available [5]. Together, these trends suggest
that Content-Addressable Storage (CAS) will become
a widely-supported service in the future.

Lookaside caching enables a conventional dis-
tributed file system based on the client-server model
to take advantage of the geographical distribution and
replication of data offered by CAS providers. As with
portable storage, there is no compromise of the consis-
tency model. Lookaside to a CAS provider improves
performance without any negative consequences.

We have recently extended the prototype imple-
mentation described in Section 4 to support off-
machine CAS providers. Experiments with this ex-
tended prototype confirm its performance benefits. For
the ISR benchmark described in Section 5.2, Fig-
ure 11 shows the performance benefit of using a LAN-
attached CAS provider with same contents as the DVD
of Figure 8. Since the CAS provider is on a faster ma-
chine than the file server, Figure 11 shows a substantial
benefit even at 100 Mb/s.

Another potential application of lookaside caching
is in implementing a form of cooperative caching [1,
4]. A collection of distributed file system clients
with mutual trust (typically at one location) can ex-
port each other’s file caches as CAS providers. No
protocol is needed to maintain mutual cache consis-
tency; divergent caches may, at worst, reduce looka-
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side performance improvement. This form of cooper-
ative caching can be especially valuable in situations
where the clients have LAN connectivity to each other,
but poor connectivity to a distant file server. The heavy
price of a cache miss on a large file is then borne only
by the first client to access the file. Misses elsewhere
are serviced at LAN speeds, provided the file has not
been replaced in the first client’s cache.

7 Conclusion

“Sneakernet,” the informal term for manual trans-
port of data, is alive and well today in spite of advances
in networking and distributed file systems. Early in this
paper, we examined why this is the case. Carrying your
data on a portable storage device gives you full confi-
dence that you will be to access that data anywhere,
regardless of network quality, network or server out-
ages, and machine configuration. Unfortunately, this
confidence comes at a high price. Remembering to
carry the right device, ensuring that data on it is cur-
rent, tracking updates by collaborators, and guarding
against loss, theft and damage are all burdens borne by
the user. Most harried mobile users would gladly del-
egate these chores if only they could be confident that
they would have good access to their critical data at all
times and places.

Lookaside caching suggests a way of achieving this
goal. Let the true home of your data be in a distributed
file system. Make a copy of your critical data on a
portable storage device. If you find yourself needing
to access the data in a desperate situation, just use the
device directly — you are no worse off than if you
were relying on sneakernet. In all other situations,
use the device for lookaside caching. On a slow net-
work or with a heavily loaded server, you will benefit
from improved performance. With network or server
outages, you will benefit from improved availability if
your distributed file system supports disconnected op-
eration and if you have hoarded all your meta-data.

Notice that you make the decision to use the de-
vice directly or via lookaside caching at the point of
use, not a priori. This preserves maximum flexibility
up front, when there may be uncertainty about the ex-
act future locations where you will need to access the
data. Lookaside caching thus integrates portable stor-
age devices and distributed file systems in a manner
that combines their strengths. It preserves the intrinsic
advantages of performance, availability and ubiquity



possessed by portable devices, while simultaneously
preserving the consistency, robustness and ease of shar-
ing/collaboration provided by distributed file systems.

One can envision many extensions to lookaside
caching. For example, the client cache manager could
track portable device state and update stale files auto-
matically. This would require a binding between the
name space on the device and the name space of the dis-
tributed file system. With this change, a portable device
effectively becomes an extension of the client’s cache.
Another extension would be to support lookaside on in-
dividual blocks of a file rather than a whole-file basis.
While this is conceptually more general, it is not clear
how useful it would be in practice because parts of files
would be missing if the portable device were to be used
directly rather than via lookaside.

Overall, we believe that the current design of looka-
side caching represents a sweet spot in the space of de-
sign tradeoffs. It is conceptually simple, easy to im-
plement, and tolerant of human error. It provides good
performance and availability benefits without compro-
mising the strengths of portable storage devices or dis-
tributed file systems. A user no longer has to choose be-
tween distributed and portable storage. You can cache
as well as carry!
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These figures compares the distribution of slowdown for the operations of the CDA benchmark without lookaside caching to their

slowdowns with lookaside caching to a DVD.
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Figure 12. Impact of Lookaside Caching on Slowdown of CDA Benchmark Operations





