
2CW4 6CW4 13CW4

RCA MUVISi@P

HGH-MUTRIODES

FOR TVAND FM TUNER DESIGNS

RADIO CORPORATION OF AMERICA ELECTRON TUBE DIVISION HARRISON, N. J.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

> 2CW4, 6CW4, 13CW4 11-62 Supersedes 2CW4, 6CW4 issue dated 7-62

1

RCA-2CW4, 6CW4, 13CW4 High-Mu Nuvistor Triodes

RCA-2CW4, 6CW4, and 13CW4 are high-mu triodes of the nuvistor type, intended for use as grounded-cathode, neutralized rf-amplifier tubes. The 2CW4 and 6CW4 are particularly useful in whf tuners of television and FM receivers. The 13CW4 is designed especially for use in antennaplex and

antenna-system booster amplifiers. In these applications the tubes provide exceptional performance in fringe areas and other locations where signal levels are extremely weak. These nuvistor triodes feature excellent signal power gain and a noise factor significantly better than tubes currently in use in such applications.

The high-gain and low-noise capabilities of these tubes are achieved by very high transconductance and excellent transconductance-to-plate-current ratio (12500 micromhos at a plate current of 7.2 milliamperes and a plate voltage of 70 volts).

The 2CW4, 6CW4, and 13CW4 nuvistor triodes, because of their unique design, offer these additional advantages: extreme reliability; exceptional uniformity of characteristics from tube to tube; very small size; and low heater-power and plate-power requirements. All metal-and-ceramic construction insures ruggedness and long-term stability.

These nuvistors utilize the RCA Dark Heater to insure long life and dependable performance. The heater of the 2CW4 has controlled warm-up time for use in series heater-string arrangements.

GENERAL DATA

Electrical:

Heater, for Unipotential Cathode: Voltage (ac or dc)		6CW4 6.3 ±10%	-	volts
Current	$0.45 \pm 6\%$	0.135	0.060	amp
Warm-up Time (Average)				seconds
Direct Interelectrode Capacitances (
Grid to plate			0.92	рf
Grid to cathode, shell, and heater				pf
Plate to cathode, shell, and heate	т		1.8	pf
Plate to cathode			0.18	pf
Heater to cathode			1.6	pf
			· - -	F –
Characteristics, Class A ₁ Amplifier:				
Plate Supply Voltage			110	volts
Grid Supply Voltage			0	volts
Cathode Resistor			130	ohms
Amplification Factor			65	
Plate Resistance (Approx.)			6600	ohms
Transconductance			9800	µumhos
Plate Current				ma
Grid Voltage (Approx.) for plate cur				volts

2CW4, 6CW4, 13CW4

8.4					
Me	ch.	a n	10	- a	
1.10	U 10	ÇA I I			

Operating Position	0.8"
Maximum Diameter	
Envelope	
Base Medium Ceramic-Wafer Twelvar 5-1	
Maximum Ratings, Design-Maximum Values:	
PLATE SUPPLY, VOLTAGE	300 [•] max. volts
PLATE VOLTAGE	135 max. volts
GRID VOLTAGE:	
Negative-bias value	55 max. volts
Peak positive value	0 max. volts
PLATE DISSIPATION:	
With a minimum series plate-circuit resistance	
of 5000 ohms	
For lower values of series plate-circuit resistance .	See Fig.1 and
	ating Considerations
CATHODE CURRENT	15 max. ma
Heater negative with respect to cathode	100 max. volts
Heater positive with respect to cathode	100 max. volts
Typical Operation:	
Plate Voltage	70 volts
Grid Supply Voltage	0 volts
	47000 ohms
Amplification Factor	68
Plate Resistance (Approx.)	5440 ohms
Transconductance	12500 μ mhos
Plate Current	7.2 ma
Maximum Circuit Values:	
· · · · · · · · · · · · · · · · · · ·	
Grid-Circuit Resistance:*	

For fixed-bias operation	•					•					•		0.5	max.	megohm
For cathode-bias operation.	•	•	•	•	•	•	•	•	•	•	•	٠	2.2	max.	megohms

• A plate supply voltage of 300 volts may be used provided sufficient plate-circuit resistance and agc voltage are used to limit the voltage at the plate of the tube to 135 volts under conditions of maximum rated plate dissipation (1.5 watts).

★ For operation at metal-shell temperatures up to 135° C.

OPERATING CONSIDERATIONS

The base pins of the 2CW4, 6CW4, and 13CW4 fit the Cinch Manufacturing Co. socket No.133 65 10 001 and the Industrial Electronic Hardware Co. socket Nos.Nu 5044 and Nu 5060, or their equivalents.

In some previous publications reference has been made to a JEDEC No.E5-65 socket. This number is not a socket designation but is a base designation which defines the JEDEC Medium Ceramic-Wafer Twelvar 5-pin base used in nuvistor tubes.

Use of Plate-Dissipation Rating Chart

The Plate-Dissipation Rating Chart shown in Fig. 1 presents graphically the maximum rated plate dissipation of the 2CW4, 6CW4, and 13CW4 for various minimum

values of series plate-circuit resistance. The region of permissible operation is bounded by the lines representing plate dissipation = 1.5 watts, plate voltage = 135 volts, and plate current = 15 milliamperes. In class A1 amplifier service, because no grid current flows, the plate current rating is equivalent to the cathode current rating.

To determine the required minimum series plate-circuit resistance for a given set of operating conditions:

1. From Fig.2, Average Plate Characteristics, select the desired operating conditions.

2. From Fig.l determine the corresponding maximum plate dissipation and required minimum value of series plate-circuit resistance.

Example: (a) From Fig.2 — for a plate voltage of 130 volts and a grid voltage of -1 volt, the corresponding plate current is 10.5 milliamperes.

(b) From Fig.1 — the plate dissipation for a plate voltage of 130 volts and a plate current of 10.5 milliamperes is approximately 1.37 watts. The required minimum series plate-circuit resistance for this plate dissipation is 3700 ohms.

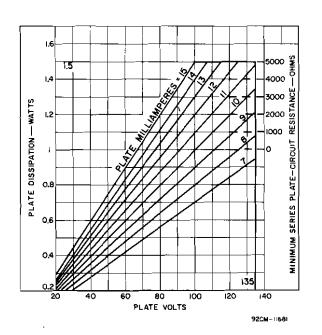
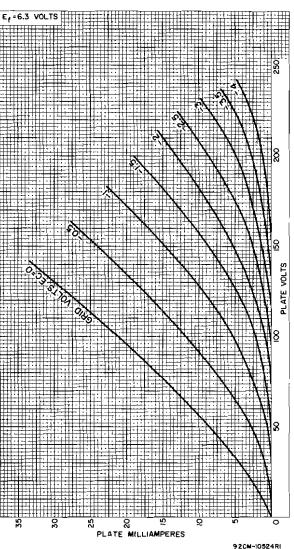
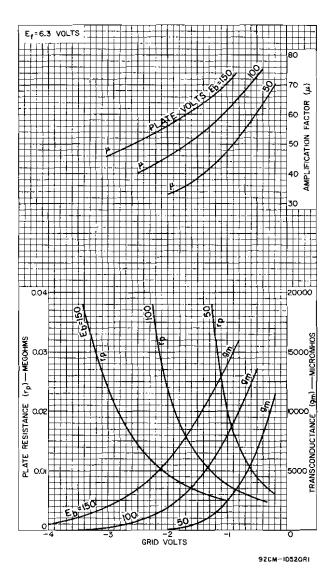
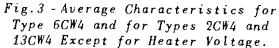
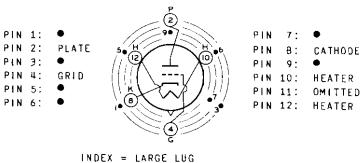
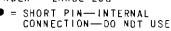
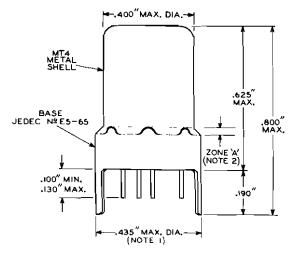


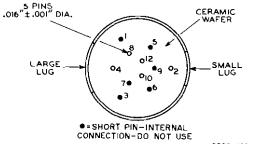
Fig.1 - Plate-Dissipation Rating Chart for Types 2CW4, 6CW4, and 13CW4.

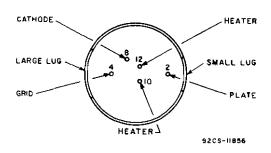

Fig. 2 - Average Plate Characteristics for Type 6CW4 and for Types 2CW4 and 13CW4 Except for Heater Voltage.

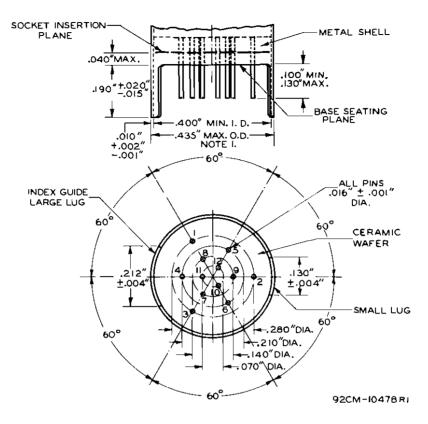

2CW4, 6CW4, 13CW4


BASING DIAGRAM (Bottom View)



DIMENSIONAL OUTLINE





9205-10970R2

NOTE 1: MAXIMUM 0.0. OF 0.440" IS PERMITTED ALONG 0.190" LUG LENGTH. NOTE 2: SHELL TEMPERATURE SHOULD BE MEASURED IN ZONE 'A'.

ARRANGEMENT OF BASE PINS

MEDIUM CERAMIC-WAFER TWELVAR BASE

.

,

JEDEC No.	NAME	PINS
E12-64	12-Pin Base	1,2,3,4,5,6,7,8, 9,10,11,12
E5-65	5-Pin Base	2,4,8,10,12, (Note 2)

Note 1: Maximum O.D. of 0,440" is permitted along the 0.190" lug length.

Note 2: Pins 1,3,5,6,7, and 9 are of a length such that their ends do not touch the socket insertion plane. Pin 11 is omitted.

PIN-ALIGNMENT GAUGE

FIN-ALIUNMENI DAUGE Base-pin positions and lug positions shall be held to tolerances such that entire length of pins and lugs will without undue force pass into and disengage from flat-plate gauge having thickness of 0.25° and twelve holes of $0.0350^{\circ} \pm 0.0005^{\circ}$ diameter located on four concentric circles as follows: Three holes located on $0.2800^{\circ} \pm 0.0005^{\circ}$, three holes located on $0.2100^{\circ} \pm 0.0005^{\circ}$, three holes located on $0.1400^{\circ} \pm 0.0005^{\circ}$, three holes located on $0.0700^{\circ} \pm 0.0005^{\circ}$ diameter circles at specified angles with a tolerance of $\pm 0.08^{\circ}$ for each angle. In addition, gauge provides for two curved slots with chordal lengths of $0.2270^{\circ} \pm 0.0005^{\circ}$ diameter circle concentric with pin circles at $1800^{\circ} \pm 0.08^{\circ}$ and having a width of $0.0230^{\circ} \pm 0.0005^{\circ}$.

,