

I-Storm ADSL Router

Console

Commands Reference
Manual(v1.01)

A02-RA(Atmos)_ME01

Contents
1. About this Guide

1.1 Introduction
1.2 Scope
1.3 Typographical conventions

2. ATMOS Console commands
2.1 General notes
2.2 event
2.3 restart
2.4 uptime
2.5 version
2.6 <process>, <process> <command>
2.7 . (history mechanism)
2.8 @ commands
2.9 Special-purpose commands
2.10 list
2.11 echo
2.12 tell <process>
2.13 exit, exit!
2.14 debug
2.15 crlf, nocrlf
2.16 bind <process>, unbind
2.17 Commands for the chips process
2.18 cpu
2.19 debug
2.20 exit
2.21 help
2.22 info
2.23 mem
2.24 rb, rh, rw, wb, wh, ww
2.25 steal
2.26 tell

3. Bridge Console commands
3.1 device add
3.2 device delete
3.3 device list

3.4 ethertype
3.5 filter
3.6 filterage
3.7 flush
3.8 info
3.9 interface
3.10 portfilter
3.11 spanning
3.12 status
3.13 version

4. BUN Console commands
4.1 Introduction
4.2 help
4.3 version
4.4 build
4.5 config
4.6 list config
4.7 list devices
4.8 show device
4.9 list classes
4.10 show class
4.11 list ports
4.12 show port
4.13 set port
4.14 list channels
4.15 list all open channels
4.16 show channel
4.17 set channel
4.18 reset port

5. DHCP-client Console commands
5.1 config
5.2 help
5.3 pool
5.4 status
5.5 trace
5.6 DHCP-related IP process commands
5.7 ip device

6. DHCP-server Console commands

6.1 config
6.2 help
6.3 pool
6.4 reset
6.5 status
6.6 trace
6.7 version

7. NAT Console commands 91
7.1 event
7.2 help
7.3 interfaces
7.4 inbound
7.5 info
7.6 protocol
7.7 sessions
7.8 stats
7.9 version
7.10 dump
7.11 fragments
7.12 hashtable

8. PPP Console commands
8.1 Console object types
8.2 Console examples
8.3 <channel> clear
8.4 <channel> disable
8.5 <channel> discard
8.6 <channel> echo
8.7 <channel> echo every
8.8 <channel> enable
8.9 <channel> event
8.10 <channel> hdlc
8.11 <channel> info
8.12 <channel> interface
8.13 <channel> lcpmaxconfigure
8.14 <channel> lcpmaxfailure
8.15 <channel> lcpmaxterminate
8.16 <channel> llc
8.17 <channel> pvc

8.18 <channel> qos
8.19 <channel> remoteip
8.20 <channel> svc
8.21 <channel> theylogin
8.22 <channel> tunnel <n> <tunnel protocol> <dial direction>
8.23 <channel> welogin
8.24 bcp
8.25 interface <n> localip
8.26 interface <n> stats
8.27 user
8.28 version

9. PPTP Console commands
9.1 Console object types
9.2 bind
9.3 <tunnel> connect
9.4 <tunnel> create
9.5 <tunnel> delete
9.6 <tunnel> disconnect
9.7 <tunnel> event
9.8 <tunnel> info
9.9 list
9.10 version

10. TCP/IP Console commands
10.1 Summary
10.2 abort
10.3 arp
10.4 arprouting
10.5 autoloop
10.6 config
10.7 device
10.8 disable
10.9 enable
10.10 errors
10.11 etherfiles
10.12 files
10.13 flush
10.14 get
10.15 help

10.16 ipatm abort
10.17 ipatm arp
10.18 ipatm arpserver
10.19 ipatm files
10.20 ipatm help
10.21 ipatm lifetime
10.22 ipatm pvc
10.23 iphostname
10.24 nat
10.25 noerrors
10.26 norelay
10.27 ping
10.28 portname
10.29 protocols
10.30 relay
10.31 restart
10.32 rip accept
10.33 rip allowed
10.34 rip boot
10.35 rip help
10.36 rip hostroutes
10.37 rip killrelay
10.38 rip poison
10.39 rip relay
10.40 rip relays
10.41 rip rxstatus
10.42 rip send
10.43 rip trigger
10.44 route
10.45 routeflush
10.46 routes
10.47 snmp
10.48 stats
10.49 subnet
10.50 trace
10.51 untrace
10.52 uptime
10.53 version

10.54 ?

11. TFTP Console commands
11.1 connect
11.2 get
11.3 help
11.4 init
11.5 list
11.6 put
11.7 trace
11.8 version

Index

1. About this Guide

1.1 Introduction

This document is a reference guide for professional user to handle ADSL modem well. It
describes the command line interface (CLI) with examples.

1.2 Scope

Commands for legacy drivers (eg. ATM and Ethernet drivers) are not included here.

1.3 Typographical conventions

Throughout this guide, the following typographical conventions are used to denote
important information.

1.3.1 Text conventions

The following text conventions are used:
• Text like this is used to introduce a new term, to indicate menu options or to denote

field and button names in GUI windows and dialogue boxes.
• Text like t his is used to emphasize important points. For example:

‘To keep your changes, you must save your work before quitting.’

• Text like this is used for text that you type as a command or entry to a field in a
dialogue box. Variables to a command are shown in text like this.

• Text like this is used for text that you see on the screen in a terminal window.
Variables to displayed text are shown in text like this.

• <Text like this> in angle brackets is used for denoting command line options.
It indicates a mandatory argument.

• [Text like this] in square brackets is used for denoting command line options.
It indicates an optional argument.

• Text in square brackets is used to indicate keyboard keys. For Example
‘To reboot your computer, press [Ctrl]+[Alt]+[Del].

• Type versus Enter; Type means type the text as shown in the instruction. Enter

means type the text as indicated and then press [Enter].

1.3.2 Notes, Warnings and Cautions

The following symbols are used:
Warning - Indicates a hazard which may endanger equipment or personnel, if

the safety instruction is not observed.
Caution - Indicates a hazard which may cause damage to equipment, if the

safety instruction is not observed.
Note - Indicates general additional information about the operation of the

equipment, including safety information.

2. Console and Telnet commands

2.1 General notes

Apart from the chips commands, the commands are supported by the standard console.
Example output is shown only to clarify the description of the commands; the actual
output is not necessarily in exactly the same format.

2.2 event …

2.2.1 Syntax

event help

event n[ext]

event p[revious]

event r[ecent]

event show

event unshow

2.2.2 Description

The command event show enables display of background output on this console
device.
The command event unshow disables it. By default, the display of background output
is disabled.
The command event recent (or event r) displays the most recent background output
stored in the memory buffer; event previous (or event p) displays the background
output immediately preceding that last displayed; event next (or event n) displays the
background output immediately following that last displayed. Up to 24 lines are
displayed in each case.
For example, after event r, event n will show only new background output that has
arrived since the event r command: repeated typing of event n will let the user keep
up to date with new background output (without any repetitions in the output).
The command event help displays a summary of the options of the event command.

2.3 restart

2.3.1 Syntax

restart

2.3.2 Description

Reboots the ADSL modem.

2.4 uptime

2.4.1 Syntax

uptime

2.4.2 Description

Displays the time for which the system has been up.

2.5 version

2.5.1 Syntax

version

2.5.2 Description

Displays the system type and version.

2.6 <process>, <process> <command>

2.6.1 Syntax

<process> <command>

<process>

home

home <command>

2.6.2 Description

In these commands, <process> can be any of a list of process names known to the
console.
The former variant sends the command as a TELL message to the process.
The latter variant remembers the process name, and sends subsequent commands as
TELL messages to the process, as if they had been preceded by the process name,
until the command home is issued. The prompt is changed to reflect this; moreover,
if a help command with no arguments is issued, it is passed to the process as usual,
but then information about the home command is appended to the process’s output
by the console.

2.6.3 Example

mymachine> isfs version

ISFS v2.07

mymachine> isfs

mymachine isfs> version

ISFS v2.07

mymachine isfs> help

ISFS commands are:

help - this text is displayed

ls - list ISFS files

rm <file> - remove file from ISFS

cat <file> - show file contents

version - displays version number

Use “home” to return to “mymachine>” prompt

mymachine isfs> home

mymachine>

When the console is at the prompt of a particular process, the command home
<command> or home <process> <command> may be used to execute a command
as if the user had typed home followed by <command> or <process> <command>.
However, the console will remain at the same process prompt.
The command home <process> will change the prompt from the current process to a
new process <process>.

2.6.4 Example

mymachine> bridge

mymachine bridge> version

Bridge Version 1.15

mymachine bridge> home version

Modem BD3000 Version 7.0.0.7 (2 Jun 2000)

mymachine bridge> home nat version

NAT Version 2.02

mymachine bridge> home edd

mymachine edd> version

EDD Version 1.03

mymachine edd> home

mymachine>

2.7 . (history mechanism)

2.7.1 Syntax

.

2.7.2 Description

Repeats the previous console command.

2.7.3 Example

mymachine> isfs version

ISFS v2.07

mymachine> .

ISFS v2.07

2.8 @ commands

2.8.1 Syntax

@@<line>

@ <line>

@<process> <line>

@<process>

2.8.2 Description

Lines beginning with the @ character are intercepted by the console even when the
console device is bound to a file.
To bypass this interception and pass a line beginning with @ to a process, the @
must be doubled; the line with one @ removed will be passed on like a normal input
line. (At the time of writing, this is most useful when the device is bound to a slotN
process on a switch; then @ip would refer to the ip process on the switch, but @@ip
would be passed to the slotN process as @ip and forwarded by that to the ATMOS
console on an expansion card, which will interpret it as referring to the ip process on
the expansion card.)
If the @ is followed by a space (or any non-alphanumeric character), the remainder
of the line is treated as a console command, as if the device were not bound.
The @<process> <line> form passes <line> to a file (if any) opened for reading by
the named process.
The @<process> form binds the console device to the named process, in the same
way as bind <process>. (Except that the latter, not being an @ command, will not
work if the console device is bound. More generally, @<process> does the same as
@bind <process>.)

2.8.3 Example

mymachine> @ip

(The ip> prompt does not appear until the Enter key is pressed again.)
ip> device

type dev file IP address

device ether ether //edd mtu 1500 192.168.3.55

ip> @console

mymachine>

2.9 Special-purpose commands

This section lists commands that are normally useful only to developers rather than to
normal users, or else are retained only for consistency with older versions of the software.
They are not described in the output of the help command.

2.10 list

2.10.1 Syntax

list

2.10.2 Description

The list command lists the active console devices (referred to as threads) and files.
For each console device, if it is bound to a file then the list shows which file it is
bound to; if background output is enabled on that device then the list indicates the
fact.
For each file, the list shows the name of the process that opened the file and the
number of read commands outstanding on the file. If the file is bound to a device
then the list shows which device it is bound to; if the file is for foreground output
then the list indicates the fact (with the string FG).

2.10.3 Example

mymachine> list

Threads:

1: ACTIVE, FP 00730520

3: ACTIVE, FP 00719170, Bound 75, events shown

Files:

0: OPEN FP 00718e70, Queue chips, 0 read(s)

1: OPEN FP 00718c30, Queue isfs, 0 read(s)

(some output omitted)
49: OPEN FP 00715af4, Queue ip, 0 read(s), Bound 3, FG

(some output omitted)

75: OPEN FP 00715b38, Queue ip, 1 read(s), Bound 3

(some output omitted)

2.11 echo …

2.11.1 Syntax

echo <text>

2.11.2 Description

Echoes the text. (Not a very useful command.)

2.11.3 Example

mymachine> echo hello world

hello world

2.12 tell <process> …

2.12.1 Syntax

tell <process> <command>

2.12.2 Description

Sends the command as a TELL message to a specific process. Note that for many
processes the tell can be omitted.

2.12.3 Example

mymachine> tell hswctrl portinfo a1

port type vers flags

A1 25Mbps 1QUA mast uni30 ilmi netside tx8khz manconfig

2.13 exit, exit!

2.13.1 Syntax

exit

exit!

2.13.2 Description

Exits from application firmware to the boot ROM. Without the exclamation mark,
the command works only from the serial interface; with the exclamation mark it
works from any console device.

Note - This command is now deprecated and provides no useful output.

2.14 debug

2.14.1 Syntax

debug

2.14.2 Description

Enters the debugger. Only works when issued at the serial interface. (Since the
debugger talks to the serial interface, the debug command would be of little use
elsewhere.)

2.15 crlf, nocrlf

2.15.1 Syntax

crlf

nocrlf

2.15.2 Description

Controls whether line-feed characters written to this console device are output as
carriage-return/line-feed pairs (crlf) or just as single line-feed characters (nocrlf).

2.16 bind <process>, unbind

2.16.1 Syntax

bind <process>

unbind

2.16.2 Description

The former command binds this console device to the specified process – that is,
binds this device to the file, if any, opened for read by that process, and binds every
file opened by the process to this device.
The latter command unbinds this console device – that is, undoes the above bindings.

2.16.3 Example

mymachine> bind ip

ip> @ unbind

mymachine>

2.17 Commands for the chips process

2.18 cpu

2.18.1 Syntax

cpu

2.18.2 Description

Displays the recent CPU utilization as a percentage. This is a fairly crude
measurement: the ATMOS kernel measures the time that the CPU spends in the idle
loop over successive three-second intervals, and the cpu command uses this
measurement from the most recent complete three-second interval.

2.19 debug

2.19.1 Syntax

debug

2.19.2 Description

Enters the ATMOS debugger.

2.20 exit

2.20.1 Syntax

exit

2.20.2 Description

Exits from ATMOS to the boot ROM.
Note - This command is now deprecated and provides no useful output.

2.21 help

2.21.1 Syntax

help

?

help <command>

2.21.2 Description

The help command lists all chips commands. ? is a synonym for this command;
help <command> displays more detailed help on the specified command.
This command is available only if the pre-processor symbol CHIPSHELP is defined.

2.22 info

2.22.1 Syntax

info

2.22.2 Description

Displays system type and version number, and the MAC addresses.

2.23 mem

2.23.1 Syntax

mem

2.23.2 Description

Displays a summary of how much memory is used by each process (distinguishing
between heap and thread stacks, along with some other minor categories), along with
the amount of free heap memory and the size of the largest single free block.

2.24 rb, rh, rw, wb, wh, ww

2.24.1 Syntax

rb <addr>

rh <addr>

rw <addr>

wb <addr> <val>

wh <addr> <val>

ww <addr> <val>

2.24.2 Description

Reads the byte (rb), word (rw) or half-word (rh) at a specified address, or writes a
specified value to the byte (wb), word (ww) or half-word (wh). Addresses and values
are specified in hexadecimal, with an optional 0x prefix.

2.24.3 Example

> rw 1c4b54

word at 0x001C4B54 contains 0x0000337E

> rb 1c4b55

byte at 0x001C4B55 contains 0x33

> wb 1c4b56 0x20

value 0x20 written to byte at 0x001C4B56

> rw 1c4b54

word at 0x001C4B54 contains 0x0020337E

> ww 0x1c4b54 14c44

value 0x00014C44 written to word at 0x001C4B54

>

2.25 steal

2.25.1 Syntax

steal memory use <handle> <amount>

steal memory release <handle>

steal file use <handle> <device>

steal file release <handle>

steal cpu use <percentage>

steal cpu release

steal status [memory] [file] [cpu]

2.25.2 Description

Uses up heap memory, file handles, or CPU cycles. <handle> is a number from 0 to
19, used to identify the resource for a later steal … release command.
This command is intended to help test system behaviour when resources are limited,
and is available only if the pre-processor symbol CHIPS_STEAL is defined.

2.26 tell

2.26.1 Syntax

tell <process> <command>

2.26.2 Description

Sends the command as a TELL message to a specific process. (The same as the

console tell command.)

3. Bridge Console commands

3.1 device add

3.1.1 Syntax

device add <device>

3.1.2 Description

This command adds a device to the bridge configuration. Attempts to add the bridge
itself or an existing device to the bridge are rejected.
Attempts to add devices which don’t support the Cyan interface are rejected. There
is a limit on the number of devices that can be attached to the bridge. If the device
being added is from a process which supports multiple devices, the /DEVICE
attribute must be specified as part of the device name. The table below shows
devices which may be attached to the bridge, although not all systems may support
all devices.

Device Remarks Source

Edd Ethernet driver bun_ethernet

r1483 RFC1483 protocol (PVC) rfc1483

Ppp Point-to-Point protocol pp

Configuration saving saves this information. See the section entitled Implementation
Constraints in the ATMOS Transparent Bridge Specification, DO-007087-PS, for
details of which devices are added by default.

3.1.3 Example

Simple examples
device add edd

device add ppp/DEVICE=2

Using the BUN RFC1483 driver
This example shows how to add the BUN RFC1483 driver, dynamically from the
console. You need to define and configure a device and a port.
Normally, the RFC1483 BUN device will pass all data straight through, untouched.
This means that even though you have changed your port definition to include the
RFC1483 driver, you can still use other protocols on the same port. In order to
enable RFC1483 encapsulation, the RFC1483 attribute on the channel must be set to
true.
The channel attribute mode dictates the functional behaviour of the driver, in terms
of encapsulation method to use and traffic nature (bridged/routed). The channel

attribute promiscuous selects the promiscuity behaviour of the driver.
The driver requires, at configuration time, to be layered with the BUN utopia and
nec98408 devices, in order to be used. So, for the sake of the following examples,
let's assume that the related BUN port is called rfc_port, and it has been configured
in the following way:
device: rfc_dev = rfc1483, nec98408, utopia

port : rfc_port = rfc_dev/PhysicalPort=0/PortSpeed=59111

If we want to attach the device to the bridge, then the following command must be
issued (all typed on one line):
bridge device add //bun/port=rfc_port/rfc1483=true

/mode=llcbridged/txvci=600/rxvci=600

The above command creates a channel with RFC1483 enabled, and it uses the LLC
encapsulation for bridged traffic. The next command, is the same, however it uses
the VC multiplexing method:
<all typed in one line>

bridge device add //bun/port=rfc_port/rfc1483=true

/mode=vcmuxbridged/txvci=600/rxvci=600

3.1.4 See also

device delete on page 38 and device list on page 39.

3.2 device delete

3.2.1 Syntax

device delete <device>

3.2.2 Description

This command deletes a device from the bridge configuration. The syntax of the
device name is the same as that for the device add command.
Configuration saving saves this information.

3.2.3 Example

device delete r1483

3.2.4 See also

device add on page 36 and device list on page 39.

3.3 device list

3.3.1 Syntax

device list

3.3.2 Description

This command lists all the devices that are currently attached to the bridge. It does
not show the stored configuration (which can be seen with the config print
command).

3.3.3 Example

device list

3.3.4 See also

device add on page 36 and device delete on page 38.

3.4 ethertype

3.4.1 Syntax

ethertype [<port> any|ip|pppoe]

3.4.2 Description

This command enables filtering of Ethernet packets according to the ETHER_TYPE
field in the header. Only packets of the type specified using this command will be

sent on the port specified; packets of all types will always be received.
By default, all bridge ports are set to any, which means that the type of the packet
will never be checked. The meaning of the other options is as follows:

Option Permitted ETHER_TYPE values

ip 0x0800 - IP

0x0806 - ARP

pppoe 0x8863, 0x8864 - PPP Over Ethernet (RFC 2516)

The port is specified as an integer, as displayed by the device list command. When
using this command in the initbridge configuration file, ports are numbered in the
order in which the device add commands are given, starting from 1.
If no arguments are given, the current settings for each port are displayed.

3.4.3 Example

ethertype 2 any

3.5 filter

3.5.1 Syntax

filter

3.5.2 Description

This command shows the current contents of the bridge’s filter table. The MAC
entries for each device are shown in turn together with the time that the MAC
address was last seen by the bridge. The command also shows the current filter
ageing time, in seconds, and the number of creation failures since the system was

started. Creation failures occur when there is no room left in the filter table for a new
entry.

3.5.3 Example

filter

3.6 filterage

3.6.1 Syntax

filterage [<age>]

3.6.2 Description

This command sets, or displays if no arguments are given, the filter table ageing time.
The ageing time is the time after which MAC addresses are removed from the filter
table when there has been no activity. The time is specified in seconds and may be
any integer value in the range 10…100,000 seconds. This value may also be changed
through SNMP. Changing the value of filterage has immediate effect.
Configuration saving saves this information. By default, the filter ageing time is set
to 300 seconds.

3.6.3 Example

filterage

3.7 flush

3.7.1 Syntax

flush [<port>]

3.7.2 Description

This command allows the MAC entries for a specified port, or all ports, to be
removed from the filter table. The port number for a device may be determined using
the device list or status commands. If the port number is omitted, all entries for all
ports are removed from the filter table.

3.7.3 Example

flush

3.8 info

3.8.1 Syntax

info

3.8.2 Description

This command displays build information about the bridge process. The version

command is a synonym for this command.

3.8.3 Example

info

3.9 interface

3.9.1 Syntax

interface [sub-command]

3.9.2 Description

This command accesses the ethernet support library sub-commands for the bridge
itself, not for the devices which are attached to it.
It is not described here.

3.9.3 Example

interface stats

3.10 portfilter

3.10.1 Syntax

portfilter [<source port> all|<destination ports>]

3.10.2 Description

The portfilter command allows control over the bridge’s forwarding and
broadcasting behaviour. By default, when a multicast or an unknown packet is
received on a port (referred to above as the source port), it will be forwarded to all
other bridge ports (referred to above as the destination ports).
Each bridge port may have its behaviour modified separately. The first example
below configures the bridge so that packets arriving on port 2 will only be forwarded
to ports 3, 4 and 5, and packets arriving on port 3 will only be forwarded to port 1.
All other ports retain their default behaviour.
Note that this command does not force packets arriving on the source port to be sent
to all specified destination ports. The bridge retains its learning behaviour, so unicast
packets, once their destination is known to the bridge, will still only be sent to one
port. Note also that the bridge itself (for example when attached to the IP router) will
always forward to all ports, and will always be forwarded to by all ports.
The default behaviour can be restored by calling this command with the argument all,
as shown in the second example.
The ports are specified as integers, as displayed by the device list command. When
using this command in the initbridge configuration file, ports are numbered in the
order in which the device add commands are given, starting from 1.

If no arguments are given, the current settings for each port are displayed.

3.10.3 Example 1

portfilter 2 3 4 5

portfilter 3 1

3.10.4 Example 2:

portfilter 2 all

portfilter 3 all

3.11 spanning

3.11.1 Syntax

spanning [sub-command]

3.11.2 Description

The spanning tree commands are only available if it has been compiled in to the
bridge.
The spanning tree commands are documented in the ATMOS Spanning Tree
Specification, DO-007085-PS.

3.12 status

3.12.1 Syntax

status

3.12.2 Description

This command shows the status of the bridge and its ports. The status information
for a port includes the SNMP type information about time-exceeded packets, packets
discarded, etc. It also includes the broadcast history of the port over the last five
seconds and the high water mark of packets queued on the bridge for this device.

3.12.3 Example

status

3.13 version

3.13.1 Syntax

version

3.13.2 Description

This command displays build information about the bridge process. The info
command is a synonym.

3.13.3 Example

version

4. BUN Console commands

4.1 Introduction

4.1.1 Scope

A description is provided of the use of console commands.
No information on implementing additional commands is given in this chapter:
implementers of new BUN devices may provide access to diagnostic or status
information by implementing attributes to handle these tasks. The standard BUN
console commands may then be used to display or change these settings.
All BUN process commands may be issued by posting TELL messages to the BUN
process. The BUN process does not support the used of STDIN command streams.
(Refer to tell <process> … on page 19 for more information on the TELL command
interface.)
Command parsing is case insensitive. White-space may be used to separate distinct
arguments. Any prefix of the string bun to the command line is ignored.

4.1.2 Build Inclusion

The full BUN console command set is included with all builds that include the BUN
package.
To include the BUN package, add the following directive to the ATMOS SYSTEM
file:
package bun

The directive may be placed anywhere in the SYSTEM file after the inclusion of the
core package (core.pkg).

4.1.3 Compile Time Configuration

Most BUN commands are available irrespective of the compilation options. This
section describes exceptions to this rule.

build
The build command displays the compile-time options, and so will change according
to what compilation options are used…
Any compile option that affects BUN operation should be displayed by this
command.

4.1.4 Command arguments

devicename
The name of a device.
Device names are either implicit (ie.: provided from the compiled-in device code) or

explicit (ie.: from a device: configuration request).
Device names may contain upper or lower case letters, but use case insensitive
matching.

portname
The name of a port. This can take several forms:
• The name given on the port configuration request
• The alias name specified in the port's Alias attribute
• The name as a <class>:<instance> pair. For example, atm:0 to reference the first

port supporting ATM cell traffic.
• The BUN port number. For example, 0 to refer to the first port.
The last option may be dropped in a future software release.
Port names may contain upper or lower case letters, but all name matching is case
insensitive.

channelnumber
The number of a channel. Within a port, each available channel is identified within
BUN by a unique channel number. Channel numbers are positive integers, assigned
from zero upwards.
To determine the channel numbers that are currently in use, use the list channels
command to show all active channels on a port (or ports).
Note that to be uniquely specified, both a port name and channel number must be
given to console commands which display or manipulate channels.

classname
The name of a class.
Class names may contain upper or lower case letters, though class name matching is
always case insensitive.
By default, BUN provides the following class definitions:
• all: All ports in the system
• atm: All ports supporting ATM cell traffic
• adsl: All ports using the ADSL hardware interface
• ethernet: All ports using an ethernet hardware interface
• hdlc: All ports using an HDLC hardware interface
• pci: All ports using a PCI hardware interface
• usb: All ports using a USB hardware interface
A running system may contain additional classes specified via the class
configuration directive (see the commands list classes on page 62 and list config on
page 59).
If necessary, commands may be quoted using angle brackets or double quotes. This
prevents the stripping of white-space from the input line.

For example:
set port atm/usercomment="This is a comment string"

set port atm/usercommand=<An alternative syntax>

Within either form of quoted section, the corresponding close quote character may
be embedded by prefixing with a backslash. So you could write:
set port atm/usercomment=<This is a "cell based" port>

set port atm/usercomment="This is a \"cell based\" port>

Mostly you probably won't need to worry about quotation, but be aware of it's effects
if you do.
The remainder of this section describes the commands themselves.

4.2 help

4.2.1 Syntax

help [<command>]

4.2.2 Description

Display command information.
If used without the optional command name, a summary of the commands available
will be displayed.
If used with a command name, brief usage information will be shown for the
command.

Note: Commands listed but which are not covered by this documentation are

not supported, and may not be present in future software releases.

4.2.3 Examples

help

help set port

Note: This command is not intended to replace this documentation, and

provides only a very basic level of detail.

4.3 version

4.3.1 Syntax

version

4.3.2 Description

Display the BUN software version.

4.3.3 Example

version

4.4 build

4.4.1 Syntax

build

4.4.2 Description

Display information about compile-time build options. For example, if tracing or
debug code has been compiled into the image.

4.4.3 Example

build

4.5 config

4.5.1 Syntax

config <configurationstring>

4.5.2 Description

Issue a configuration request to BUN.
This command can be used to pass arbitrary configuration strings to BUN,
effectively calling bun_ConfigMakeRequest() with the supplied configuration string.
This may be used to create new devices or ports at run time, using the same syntax
as the configuration strings in the SYSTEM file BUN_CONFIG_<n> directives.
This can be particularly useful during the development of new software.

4.5.3 Example

config device : nuclear = detonator, uranium

config port : launch = nuclear/silo=3

This can also be written as simply:
device : nuclear = detonator, uranium

port : launch = nuclear/silo=3

4.6 list config

4.6.1 Syntax

list config

4.6.2 Description

List the configuration requests that have been passed to BUN.
BUN records all configuration requests that are issued, and maintains information
about their parsing. Configuration requests can be in one of three states:
• Completed – the request has completed successfully
• Stalled – the request is stalled, pending creation of a (as yet) non-existent device
• Failed – the request failed

Each request is displayed together with any relevant information. In the case of
failed requests, an error code is given and the point at which parsing of the
configuration string failed is highlighted.
Stalled requests can be unblocked by creating a new device with suitable properties
by using the BUN config console command to issue a device configuration request.
This command is extremely useful for diagnosing problems with device or port
configuration.

4.6.3 Example

list config

4.7 list devices

4.7.1 Syntax

list devices

4.7.2 Description

List all available devices.
This will show all devices, regardless of how they were created. This includes
devices which were compiled into the system (such as the utopia device), and
compound devices which were created by configuration requests (such as the atm25
device, a compound of the utopia and nec98408 devices).

4.7.3 Example

list devices

4.8 show device

4.8.1 Syntax

show device <devicename>

4.8.2 Description

Display information about at device.
This displays information about a device in the following format:
Name:<devicename>
Description<devicedescription>
Contains:<devicelist>
The device name is the root name of the device. This is the same as the name passed
to the show device command.
The device description is a brief string describing the device. For compiled in
devices, this string is provided by the driver code. For compound devices, this string
is the configuration request used to create the device.

The device list shows which driver code is invoked by this device. For a compiled in
device, this will just be the device itself. For a compound device, this will be the list
of devices linked to form the compound driver.

4.8.3 Example

show device utopia

show device atm25

4.9 list classes

4.9.1 Syntax

list classes

4.9.2 Description

List available port classes on the console. The class name is displayed, together with
the necessary attributes for a port to be a member of said class.

4.9.3 Example

list classes

4.10 show class

4.10.1 Syntax

class <classname>

4.10.2 Description

List members of the specified port class.

4.10.3 Example

show class atm

4.11 list ports

4.11.1 Syntax

ports

4.11.2 Description

List all available ports on the console, in the following format:
<portnumber> : <portname>
All BUN console which require a port to be identified can accept either the port
number or port name as an argument. They may also be used as the argument to a
/port= attribute in fopen() strings.

4.11.3 Example

ports

4.12 show port

4.12.1 Syntax

port <portname>

4.12.2 Description

Display detailed information about a port.
This command enumerates all attributes for a port and displays them on the console.
It is useful to determine the properties of a port.

4.12.3 Example

port atm

4.13 set port

4.13.1 Syntax

set port <portname> / <attributelist>

4.13.2 Description

Modify a port attribute.
This command may be used to modify an attribute on a port, overriding any values
specified in the original port configuration request. The effects of changing any such
attributes are device dependent.
This command is intended for development purposes only.

4.13.3 Example

set port atm /usercomment=”An ATM network port”

4.14 list channels

4.14.1 Syntax

list channels [<portname>]

4.14.2 Description

List all open connections on the specified port. If no portname is specified, all
channels on all ports will be displayed.
The channels are shown with their identification number and a selection of useful
attributes. A full attribute list can be obtained via the show channel command.
All channels are shown with the Enabled attribute first, which indicates if the
channel has yet been enabled (connected) by the application code.

4.14.3 Examples:

list channels 0

list channels atm:0

4.15 list all open channels

4.15.1 Syntax

list all open channels [<portname>]

4.15.2 Description

This command is similar to the list channels command. The list channels command
shows channels which are either enabled or open. The list all open channels
command only shows channels which are open.
If no portname is specified, all channels on all ports will be displayed.
The channels are shown with their identification number and a selection of useful
attributes. A full attribute list can be obtained via the show channel command.

4.16 show channel

4.16.1 Syntax

show channel <portname> <channelnumber>

4.16.2 Description

Display information about the specified channel. The channel identification number
may be obtained from the list channels command. All attribute values for the
channel are displayed on the console.
Note that you must specify both a port name and channel number. Channel numbers
are only unique within a given port.

Also note that, unlike the old ATM driver, the channel number is not the same as the
receive VCI number.
It is also possible to display channels that are not currently opened by an application.
The bun.active attribute will return true if a channel is currently open, else false.
Note that a channel handle may be closed and then re-opened by an application at
any time – be cautious when using this command.

4.16.3 Example

show channel atm 0

4.17 set channel

4.17.1 Syntax

set channel <portname> <channelnumber> / <attributelist>

4.17.2 Description

Modify attributes on the specified channel.
This command allows you to change the attribute values for a given channel. The

effect of any changes will be device dependent.
Use this command with extreme caution. The same warnings about an application
closing and reopening a channel handle apply as they do for the show channel
command. Also beware that the application will not be explicitly notified of any
changes made, though if it queries its own attribute data it will pick up any changes
that have been made.
This command is intended for development purposes only.

4.17.3 Example

set channel atm 27 /txvci=32/rxvci=32/pcr=1234

4.18 reset port

4.18.1 Syntax

reset port <portname>

4.18.2 Description

Re-initialise port hardware.
This may be used to request that a device re-initialise the underlying hardware. Not
all devices implement this command.
This command is primarily intended for use during test and development of new
hardware devices.

4.18.3 Example

reset port 3

5. DHCP-client Console commands

5.1 config

5.1.1 Syntax

dhcpclient config

5.1.2 Description

This command displays the current configuration of the DHCP client, including
selected DHCP options.

5.1.3 Example

bd3000> dhcpclient config

DHCP client configuration file: ‘//isfs/dhclient.conf’

timeout 60;

retry 60;

reboot 10;

backoff-cutoff 40;

interface “ethernet” {

send dhcp-lease-time 5000;

send dhcp-client-identifier “Galapagos”;

}

5.2 help

5.2.1 Syntax

dhcpclient help <command|all>

5.2.2 Description

This command provides help on the various console commands provided by the
ATMOS DHCP client. Specifying the command name gives detailed help, and
specifying the argument all gives detailed help on all commands.

5.2.3 Example

bd3000> dhcpclient help

Help is available on the following commands:

Config help

pool status

trace untrace

5.3 pool

5.3.1 Syntax

dhcpclient pool [verbose]

5.3.2 Description

This command displays the state of the memory pool being used by the DHCP client.
Should the client ever run out of memory, use of this command is helpful in
determining the optimum memory pool size for the client. For example, supporting
DHCP client functionality on several interfaces simultaneously will require
proportionately more memory. The default pool size specified in the system file
dhcpclient is 40000 bytes.
The verbose option lists all allocated and freed memory chunks.

5.3.3 Example

bd3000> dhcpclient pool

DHCP Client Memory Pool Status

total pool size 39968

free 21392

allocated 18576

mean alloc chunk 67

max free chunk 13904

5.4 status

5.4.1 Syntax

dhcpclient status [all]

5.4.2 Description

This command provides DHCP status information for the active bound lease
associated with each valid interface in turn, including IP address, time until lease
renewal, subnet mask and DHCP server address. Including the all option shows, for
each valid interface, the active lease, leases which are being, or have been offered to
the interface, and any leases which are still being held by the client which are not
currently active (since a single interface can only have one active lease at a time).

5.4.3 Example

bd3000> dhcpclient status

DHCP Client Lease Status (active lease only)

Interface 'ethernet'

Status | Server ID | IP address | Subnet mask | Renewal

----------+-----------------+----------------+-----------------+-----------

ACTIVE | 192.168.219.151 | 192.168.219.1 | 255.255.255.0 | 31 seconds

5.5 trace

5.5.1 Syntax

dhcpclient trace <trace option>

5.5.2 Description

This command enables or disables tracing for the DHCP client. If no arguments are
given the command lists the current tracing options enabled.
The following trace options are available:

Option Description
lease Report changes in lease status (any interface)

bootp Report changes in lease status (any interface)

error Report all errors (fatal events)

Warn Report “warn” level events (important events)

Note Report “note” level events (minor/frequent events)

All All trace options

Tracing options are disabled by using the untrace command with the option names
to be disabled.
Saving configuration does not preserve the current tracing options that are enabled.
By default tracing of error, warn and note are enabled.

5.5.3 Example

bd3000> dhcpclient trace

No tracing options currently enabled.

bd3000> dhcpclient trace error warn note

Currently tracing: error warn note

5.6 DHCP-related IP process commands

The following commands are not provided by the DHCP client process but by the IP
process ip (For more information, see DO-007285-PS, ATMOS TCP/IP Functional
Specification.)

5.7 ip device

5.7.1 Syntax

ip device add <i/f> <type> <file> [mtu <size>] [<IP address>|dhcp]

ip device

5.7.2 Description

The ip device add command adds an interface to the configuration of the IP stack.
The last parameter of the command would normally the IP address of the interface;
use of the string dhcp causes the IP address to be discovered by the DHCP client
software. Note that using the flag dhcp on an interface precludes running a DHCP
server on that interface!
The ip device command lists the current configuration of any devices attached to the
IP stack. A device configured to use DHCP will show dhcp in the IP address column,
followed by the actual IP address discovered and bound by DHCP, if any.
For interfaces configured to use DHCP, saving configuration only marks the
interface as using DHCP; it does not save the actual IP address discovered by DHCP,
which must be renewed.
A useful method of automatically configuring suitable IP devices is to put a device
add statement into the file //isfs/resolve and downloading it upon booting the image.

5.7.3 Example

bd3000> ip device add ethernet ether //edd dhcp

…DHCP then discovers the IP address for the interface…
bd3000> ip device

type dev file IP address

device ethernet ether //edd mtu 1500dhcp

6. DHCP-server Console
commands

This chapter describes the DHCP-server Console commands.

6.1 config

6.1.1 Syntax

dhcpserver config [add <text>|confirm|delete|flush]

6.1.2 Description

This command displays or edits the current configuration of the DHCP server. To
display current configuration, provide no arguments to the command.
• Use o f the add option adds the line <text> to the configuration file.
• Use o f t he confirm option re-parses the configuration file, confirming the changes

made if the parse is successful.
• Use o f t he delete option deletes the last line from the configuration file.
• Use o f t he flush argument deletes the whole configuration.

Following any change to the configuration file, it is necessary to confirm the
changes, issue a flashfs update command to commit the change to FLASH, and then
restart the system before the changes can take effect.

6.1.3 Example

bd3000> dhcpserver config

Current DHCP server configuration

allow unknown-clients;

allow bootp;

subnet 192.168.219.0 netmask 255.255.255.0 {

range 192.168.219.10 192.168.219.30;

max-lease-time 5000;

}

bd3000> dhcpserver config flush

Configuration file flushed.

bd3000> dhcpserver config

Current DHCP server configuration

(Issue "dhcpserver config confirm" followed by "flashfs update" to confirm

new configuration)

bd3000>

6.2 help

6.2.1 Syntax

dhcpserver help <command|all>

6.2.2 Description

This command provides help on the various console commands provided by the
ATMOS DHCP server. Specifying a command name gives detailed help on the
command. Specifying all gives detailed help on all available commands.

6.2.3 Example

bd3000> dhcpserver help

Help is available on the following commands:

config help

pool status

trace untrace

6.3 pool

6.3.1 Syntax

dhcpserver pool [verbose]

6.3.2 Description

This command gives a summary of DHCP server memory usage. The verbose option
shows the entire memory allocation/free list.

6.3.3 Example

bd3000> dhcpserver pool

DHCP Server Memory Pool Status

total pool size

79968

free

52448

allocated

27520

mean alloc chunk

59

max free chunk

30416

6.4 reset

6.4.1 Syntax

dhcpserver reset

6.4.2 Description

This command prompts the server to do a warm reset of itself. This has the effect of

bringing the server back up as if the system had been rebooted, except that the lease
database is preserved in SDRAM between resets.
Please note, however, you should still save the configuration file to FLASH if you
want the configuration to be preserved upon rebooting the whole system.
The advantage of this command is that it allows configuration changes that have
been confirmed (using config confirm) to take effect immediately, rather than having
to do a flashfs update and restart.
This command is also convenient for defining subnet topologies for IP interfaces that
have been added dynamically.

6.4.3 Example

bd3000> dhcpserver reset

dhcpserver: Reset request acknowledged. Reset imminent.

6.5 status

6.5.1 Syntax

dhcpserver status

6.5.2 Description

This command provides a summary of all leases known to the server on each
interface in turn. It also shows remaining available IP addresses (i.e. those with no
specified lease time, or client identifier).

6.5.3 Example

bd3000> dhcpserver status

DHCP Server Lease Status

Interface “ethernet”

IP address | Client UID/hw addr | Expiry

---------------+-----------------------+-----------------

192.168.219.1 | 01:00:20:af:20:6f:59 | 11 hours

192.168.219.2 | 01:00:20:af:11:2a:ac | 8 hours

192.168.219.3 | Myclient | 140 seconds

192.168.219.4 | 00:20:af:20:00:2b | 2 days

192.168.219.5 | <unknown> | Never

192.168.219.6 | <unknown> | Never

192.168.219.7 | <unknown> | Never

192.168.219.8 | <unknown> | Expired

192.168.219.9 | <unknown> | Expired

192.168.219.10 | Foobarbozzle | Expired

6.6 trace

6.6.1 Syntax

dhcpserver trace <trace option>

6.6.2 Description

This command enables or disables tracing for the DHCP server. If no arguments are
given, the command lists the current tracing options enabled.
The following trace options are available:

Option Description

lease Report changes in lease status (any device)

bootp Report any BOOTP interoperation/emulation

error Report all errors (fatal events)

warn Report all warnings

note Report “note” level events (minor events)

all All trace options

Tracing options are disabled by using the untrace command in the same way.
Saving configuration does not preserve the current tracing options that are enabled.
By default, only tracing of error is enabled.

6.6.3 Example

bd3000> dhcpserver trace

No tracing options currently enabled.

bd3000> dhcpserver trace error warn note

Currently tracing: error warn note

6.7 version

6.7.1 Syntax

dhcpserver version

6.7.2 Description

This command displays the current version number of the ATMOS DHCP software.

6.7.3 Example

bd3000> dhcpserver version

ATMOS DHCP Version 1.07

bd3000>

7. NAT Console commands

This chapter describes the NAT (Network Address Translation) Console
commands.

7.1 event

7.1.1 Syntax

nat event [n]

7.1.2 Description

This command displays or sets the current level of event tracing in the NAT process.
Larger values of n result in more verbose trace output. For example:

Event level Output

1 Only show fatal errors, eg. lack of system resources

2 Only show important information and problems

3 Show the creation of new sessions

4 Show trace output for discarded packets

5 Show trace output for all packets

All trace messages are printed as background output, and therefore will not be
displayed asynchronously on the console unless the event show command has been
issued.

7.1.3 Example

bd3000> nat event

Event level: 1

bd3000> nat event 2

7.2 help

7.2.1 Syntax

nat help [command]

7.2.2 Description

Lists the commands provided by the NAT console interface. If an optional command
name is supplied, help on that command’s usage is displayed.

7.3 interfaces

7.3.1 Syntax

nat interfaces

7.3.2 Description

The nat interfaces command displays the IP router ports on which NAT is currently
enabled. For each of these, a status and IP address is listed. The IP address is
discovered automatically from the IP stack.
The status shows the user whether NAT is currently operational on that interface
(enabled), or whether NAT is still waiting to find out the interface’s IP address (not
ready).

7.3.3 Example

bd3000> nat interfaces

Name Status IP address

Ethernet enabled 194.129.40.2

pppnot ready –

7.4 inbound

7.4.1 Syntax

nat inbound list

nat inbound add <i/f> <port>/<proto> <new IP> [quiet]

nat inbound delete <#>

nat inbound flush

7.4.2 Description

This command enables the user to list or to set up a series of rules, to determine what
happens to incoming traffic. By default all incoming packets, other that packets
arriving in response to outgoing traffic, will be rejected.
The nat inbound add command allows packets arriving on a specific port and IP
protocol to be forwarded to a machine on the private network.
• <i/f> is an interface name as shown by the nat interface list command;
• <port> is the destination UDP or TCP port number to match in the incoming

traffic;
• <proto> is the IP protocol, either udp or tcp;
• <new IP> is the new IP address on the private network which the packet’s

destination IP address should be translated to.
If a rule is added for an interface on which NAT is not enabled, the rule is added
anyway but a warning is printed to alert the user to this fact. quiet is a special option
which should not normally be issued at the console, and causes this warning to be
suppressed. The quiet option is automatically added by NAT to when writing its
configuration to flash; this is because when a system boots, the NAT process reads in
these rules before IP has registered any interfaces.
nat inbound list shows the current rules for inbound traffic, including all the
arguments passed to the nat inbound add command.
nat inbound delete removes a rule, where <#> is the rule number as shown by the nat
inbound list command.
nat inbound flush removes all the rules.

7.4.3 Example

bd3000> nat inbound add ethernet 80/TCP 192.168.219.38

bd3000> nat inbound list

Interface Port/Proto New IP address

1 ethernet 80/tcp 192.168.219.38

2 r1483 21/tcp 192.168.219.40

bd3000> nat inbound delete 2

7.5 info

7.5.1 Syntax

nat info

7.5.2 Description

This command displays the values of various parameters which are defined in the
module file, for example the session table size and the session timeouts. NAT’s
current memory usage is also displayed.

7.5.3 Example

bd3000> nat info

Interface table size 1 (116 bytes)

Session table size per interface: 128 (6656 bytes)

Total: 6656 bytes

Hash table size per interface: 128 (512 bytes)

Total: 512 bytes

Fragment table size per interface: 32 (640 bytes)

Total: 640 bytes

Max queued buffers: 16

Fragment timeout: 30

Support for incoming fragments: enabled

Support for outgoing fragments: enabled

Session timeouts:

ICMP query: 10

UDP: 30

TCP (established): 300

TCP (other): 15

Initial port number: 10000

7.6 protocol

7.6.1 Syntax

nat protocols

7.6.2 Description

The nat protocols command lists the application level gateways (ALGs) provided in
the current image in order to support particular higher-level protocols, and the port
or ports which each ALG monitors.

7.6.3 Example

bd3000> nat protocols

Name Port/IP protocol

ftp 21/tcp

7.7 sessions

7.7.1 Syntax

nat sessions <i/f> [all | summary]

7.7.2 Description

The nat sessions command displays a list of currently active NAT sessions on the
interface <i/f>. In this context, a session is a pair of source IP addresses and port
numbers (and corresponding new port number) that NAT regards as one side of an
active connection. For each TCP or UDP session active, the source and destination
IP address and port number, and the local port number and the age of the session, are
printed.
The all option causes the sessions command to print out information on every
session, including sessions which have timed out. Normally the sessions command
only shows active sessions (those which have not timed out).
The summary command does not show detailed information on each session, but
only prints out the total number of active, timed out and available sessions.

7.7.3 Example

bd3000> nat sessions ppp

Proto Age NAT port Private address/port Public address/port

TCP 34 1024 192.168.219.38/3562 194.129.50.6/21

TCP 10 1025 192.168.219.64/2135 185.45.30.30/80

Total:

2 sessions active

101 sessions timed out

126 sessions available

7.8 stats

7.8.1 Syntax

nat stats <i/f> [reset]

7.8.2 Description

This command displays various statistics gathered by NAT on the interface <i/f>.
These are cumulative totals since power on, or since the reset keyword was given.

The nat stats command does not provide the total number of packets or bytes
transferred, as this information is normally available from the device driver on the
interface which NAT is filtering.

7.8.3 Example

bd3000> nat stats ethernet

Outgoing TCP sessions created: 456

Outgoing UDP sessions created: 123

Outgoing ICMP query sessions: 12

Outgoing ICMP errors: 0

Incoming ICMP errors: 6

Incoming connections refused: 2

Sessions deleted early: 0

Fragments currently queued: 0

7.9 version

7.9.1 Syntax

nat version

7.9.2 Description

This command displays NAT’s internal version number.

7.9.3 Example

bd3000> nat version

NAT Version 1.00

7.10 dump

7.10.1 Syntax

nat dump on|off

7.10.2 Description

This command is only available in debug builds.
nat dump causes a detailed dump of the information in each packet’s header to be
printed both before and after translation. This command is provided for debug
purposes.

7.10.3 Example

bd3000> nat dump on

7.11 fragments

7.11.1 Syntax

nat fragments <i/f name>

7.11.2 Description

This command is only available in debug builds.
nat fragments prints information on the queues in which NAT holds fragmented IP
datagrams, displaying the IP datagram identifier, the number of fragments queued
and a NAT session pointer for each queue. This command is provided for debug
purposes only.

7.11.3 Example

bd3000> nat fragments ether

7.12 hashtable

7.12.1 Syntax

nat hashtable <i/f name>

7.12.2 Description

This command is only available in debug builds.
nat hashtable prints the number of sessions linked to each entry in the hashtable used
to look up outgoing packet on the given interface. This command is provided for
debug purposes only.

7.12.3 Example

bd3000> nat hashtable ethernet

Linked sessions

0 1

1 0

2 1

3 2

8. PPP Console commands

This chapter describes the PPP Console commands.

8.1 Console object types

The ppp process presents its setup in terms of a number of distinct object types:
• The upper limit on the number of each of these objects permitted in a system is
configured using the config resource console command.

• The current state of each object is saved by config save.

8.1.1 Channels

The ppp process provides a number of PPP connection channels. A channel is a
single PPP connection. Channels are numbered from 1. Many ppp console
commands affect only a single channel. The command is prefixed with the channel
number.

8.1.2 Users

A user is a user name and password. All users must have distinct names. The user
console command controls these.

8.1.3 Tunnels

A tunnel is a PPTP or L2TP connection. Tunnels are numbered from 1. PPP
channels must be associated with a tunnel to be involved in PPP tunnelling. The
tunnel console command provides control of these.

8.1.4 Interfaces

An interface is an internal MAC (Ethernet) device. PPP channels must be associated
with an interface to be involved with bridging or routing.

8.1.5 Interface 1 and Channel 1

Interface 1 has some special functions associated with it, allowing dynamic IP
address assignment to be performed. Channel 1 is by default associated with
Interface 1. These two should be used only for IP dial-out functions, and for this
function should be attached to the router interface named ppp_device. The dial-out
example in the following section makes this clearer. These specializations have been
made to make the configuration of an IP dial-out simpler.

8.2 Console examples

8.2.1 Simple test

The simplest thing you can do to test ATMOS PPP, between two PPP channels in a
single ATMOS system, is to create a PVC in the switch to which the test box is
connected, between two VCIs (say 32 and 33 here) on the connected switch port.
Type the following:

pvccreate a1 32 a1 33

(at the switch console, if it is a Virata Switch)

ppp event 5

(at the console of the PPP ATMOS system)

ppp 1 pvc 32

ppp 2 pvc 33

ppp 1 enable

ppp 2 enable

(they should now swap packets and synchronise)

ppp 1 status

This should show that the two ends are connected. No data will be exchanged.

8.2.2 IP dial-out over PPP

To perform a dial-out over a PVC, operate as follows:
First set up a router device for PPP to use. No IP address should be specified, so that
the device is created but not enabled. The device name ppp_device should be used.
ip device add ppp_device ether //ppp/DEVICE=1

ppp 1 pvc <whatever>

ppp 1 welogin <name> <password>

ppp 1 enable

If the configuration is saved at this point, the dial-in will be attempted automatically.

8.2.3 IP dial-in server setup

To create a system which can accept dial-in connections over PVCs, type the
following:

Note – For a complex setup such as this, it may be more convenient to create it

on another system using a text editor, then TFTP the setup into the ATMOS
system.
Note – Assume that 8 dial-in PVCs are being created, numbered 32 to 39.

These will be created as channels 2 to 9. A single IP subnet will be created,
attached to a port of the router via interface 3. The IP subnet 192.168.200.0 will
be used, with channel n assigning address 192.168.200.n to the far end. The
server interface will take address 192.168.200.99.

ip device add ppp_device3 ether //ppp/DEVICE=3

192.168.220.99

Further IP setup may be needed, for instance to route the result to some other device
such as the Ethernet port.)
ppp interface 3 localip 192.168.220.99

ppp 2 pvc 32 listen

ppp 2 interface 3

ppp 2 remoteip 192.168.200.2

ppp 2 enable

(and the corresponding setup for each of the channels 3 to 8 as well)
Clients can now dial in to this server, be allocated IP addresses and traffic will be
sent to and from the router.

8.2.4 Remote Bridging

To create a system where two bridges are connected by a PVC, do the following at
each end: (In this example, interface 2 is attached to the bridge in ATMOS (interface
1 is reserved for routed traffic).)
bridge device add ppp/DEVICE=2

(Attach interface 2 to the bridge.)
ppp 1 pvc 32 mac

ppp 1 interface 2

ppp 1 enable

If required, multiple interfaces can be attached to the bridge of a single ATMOS
system so that a single master site is bridged to several satellites. Each incoming
bridging PPP channel should be attached to a distinct interface. Each interface must
be independently attached to the bridge.

8.3 <channel> clear

8.3.1 Syntax

<channel> clear

8.3.2 Description

Clear all aspects of this channel back to their default settings. If there is an active
connection, it is torn down.

8.4 <channel> disable

8.4.1 Syntax

<channel> disable

8.4.2 Description

Clear the enable flag for a PPP channel. This is the default setting. Disabling does
not remove other configured information about this channel.
In the PPP state machine, this sets the PPP link to closed. If it is already closed, there
is no effect.
Configuration saving saves this information. By default, all channels are disabled.

8.5 <channel> discard

8.5.1 Syntax

<channel> discard [<size>]

8.5.2 Description

Discard is a PPP LCP packet type, which is like the Echo packet type but does not
generate a return. This can be used for more careful tests of data transfer on the link,
for instance at sizes near the negotiated MRU.
This command sends an LCP Discard packet, of the specified size. If no size is given,
a minimal sized packet is sent.
Arrival of a Discard packet is logged locally as a level 2 event.
The link must be up and operational in order to do the discard test.

8.6 <channel> echo

8.6.1 Syntax

<channel> echo [<size>]

8.6.2 Description

Echo is an LCP packet, which is used to test an established PPP link. It solicits a
ping-like reply from the far end.
This command sends an LCP Echo packet, of the specified size. If no size is given, a
minimal sized packet is sent. If a size greater than the remote Maximum Receive
Unit size is specified, the value is reduced to the remote MRU before sending.
The command waits for 1 second for a reply packet to arrive, and prints whether the
reply arrived. If a reply arrives subsequent to this, it is logged as a level 2 event.
The link must be up and operational in order to do the echo test.

8.7 <channel> echo every

8.7.1 Syntax

<channel> echo every <seconds>

8.7.2 Description

Echo is an LCP packet, which is used to test an established PPP link. It solicits a
ping-like reply from the far end.
This command sets a channel to confirm the continued presence of an open PPP
connection by sending an LCP echo every few seconds, and requiring an echo reply.
The number of seconds between echo requests is specified as a parameter.
If 0 is specified, the function is disabled. Use the info all command to read the
current state on a channel.
Configuration saving saves this information. By default, the function is disabled.

8.8 <channel> enable

8.8.1 Syntax

<channel> enable

8.8.2 Description

Set the enable flag for a PPP channel. By default, this is disabled.
In the PPP state machine, this flag sets the PPP link to open. If it is already open,
there is no effect.
Configuration saving saves this information. By default, all channels are disabled.

8.9 <channel> event

8.9.1 Syntax

<channel> event [<n>]

8.9.2 Description

Read or set the overall trace output level.
Configuration saving does not save this value. The default event level is 1.
The event levels are shown in the table below:

Level Description

1 Only very serious errors reported

2 Definite protocol errors or very significant events reported.

3 Links going up/down reported.

4 Every packet and significant state change is reported.

5 Every packet sent/received is disassembled, and hex dumped.

8.10 <channel> hdlc

8.10.1 Syntax

<channel> hdlc [1|0]

8.10.2 Description

If 1, use an HDLC header on the front of transmitted packets and require one on
received ones. This consists of two bytes, FF-03, and assists in interoperability with
some other (non-standard) implementations. If 0, disable this.
Call with no argument to find the current setting.
The default value is 0 (disabled).
Configuration saving saves this information.
If not set, and a packet is received with an HDLC header, the channel goes into a
learned HDLC mode and sends packets with the HDLC header. Thus, interoperation
with HDLC-using equipment should not normally require any configuration.

Learning occurs in this direction only.
Setting hdlc to 0 clears this learned state. Configuration saving does not save the
learned state.

8.11 <channel> info

8.11.1 Syntax

<channel> info [all]

8.11.2 Description

Provide information about the current settings of this channel. This includes all
configured state, and also current protocol information.
Specifying all prints out more information.
info and status are synonyms.

8.12 <channel> interface

8.12.1 Syntax

<channel> interface <n>

8.12.2 Description

Logically associate the specified channel with the specified interface.
Interface 1 is always the router port. It should be used for any PPP channel over
which IPCP communication with the local system’s IP router is desired. Other
interfaces can be created for bridging. A single PPP channel can only be associated
with a single interface, or a single tunnel.
Use info to find the current setting.
Calling with n=0 removes any association. This is the default state.
Configuration saving saves this information.

8.13 <channel> lcpmaxconfigure

8.13.1 Syntax

<channel> lcpmaxconfigure [<n>]

8.13.2 Description

Set the Max-Configure parameter for LCP, as described in Section 4.6 of RFC1661.
This is the maximum number of Configure Requests that will be sent without reply,
before assuming that the peer is unable to respond.
Call with no argument to find the current setting.
The default value is 10.
Configuration saving saves this information.

8.14 <channel> lcpmaxfailure

8.14.1 Syntax

<channel> lcpmaxfailure [<n>]

8.14.2 Description

Set the Max-Failure parameter for LCP, as described in Section 4.6 of RFC1661.
This is the maximum number of consecutive Configure Naks that will be sent before
assuming that parameter negotiation is not converging.
Call with no argument to find the current setting.
The default value is 5.
Configuration saving saves this information.

8.15 <channel> lcpmaxterminate

8.15.1 Syntax

<channel> lcpmaxterminate [<n>]

8.15.2 Description

Set the Max-Terminate parameter for LCP, as described in Section 4.6 of RFC1661.
This is the maximum number of Terminate Requests that will be sent without reply,
before assuming that the peer is unable to respond.
Call with no argument to find the current setting.
The default value is 2.
Configuration saving saves this information.

8.16 <channel> llc

8.16.1 Syntax

<channel> llc [1|0]

8.16.2 Description

If 1, use an LLC header on the front of transmitted packets and require one on
received ones. This consists of four bytes, FE-FE-03-CF, and is required for PPP
Over AAL5 (RFC 2364 p4) when using LLC encapsulated PPP. If 0, disable this.
Call with no argument to find the current setting.
The default value is 0 (disabled).
Configuration saving saves this information.
If not set, and a packet is received with an LLC header, the channel goes into a
learned LLC mode and sends packets with the LLC header. Thus, interoperation
with LLC-using equipment should not normally require any configuration. Learning
occurs in this direction only. Setting hdlc to 0 clears this learned state. Configuration
saving does not save the learned state.

8.17 <channel> pvc

8.17.1 Syntax

<channel> pvc [[<port>] <vpi>] <vci> [ip|mac] [listen]

<channel> pvc none

8.17.2 Description

Attach an ATM PVC to the given PPP channel. The port can be specified (only for a
multi-port device), and the VPI (default is 0), and the VCI.
The allowable range of port, VPI, VCI depends on the ATM driver. Normal limits
are 0 only for port, 0 only for VPI, 1 to 1023 for VCI.
If a single argument none is supplied, any current connection is torn down. This is
equivalent to svc none on the channel.
In the PPP state machine, providing a link of this form causes the link to be up. Note
that enable must also be used, to allow the link to become operational.
The ip or mac indicates which form of data is transported over the connection: one of
IP data (controlled by the IPCP protocol), or MAC data (for BCP). If neither is
provided, ip is assumed.
If the channel is not linked to an interface, and the channel is for IP data, the channel
is linked to interface 1. If the channel is not linked to an interface, and the channel is
for MAC data, the channel is linked to interface 2.
Providing a PVC setting unsets any SVC setting. See <channel> svc on page 128.
It is possible for a PVC to become down in the PPP state machine even though the
PVC is still there, for instance due to an authentication failure. If in this state, an
incoming packet will cause the PPP state machine to go up.
If the listen option is specified then this is the server end of a PVC. It will not send
out PPP Configure Requests until it first receives a packet over the PVC. When a
connection is torn down it goes returns to this state.
Use the info command to read this information.
Configuration saving saves this information. By default, a channel has no connection
information.

8.17.3 Example

ppp 3 pvc 3 32

set channel 3 to be (VPI=3, VCI=32)

ppp 4 pvc

read PVC settings for channel 4

ppp 5 pvc 0

remove any PVC settings from channel 5

8.18 <channel> qos

8.18.1 Syntax

<channel> qos [cbr|ubr] [pcr <pcr-tx> [<pcr-rx>]]

8.18.2 Description

Specify that the VC for a PPP channel should be Constant Bit Rate or Unspecified
Bit Rate, and (optionally for UBR) give a Peak Cell Rate for the connection. If two
values are specified then they are the transmit and receive PCRs respectively.
If called while not attached to a VC then the settings are saved for use when a VC is
created.
If the channel is already attached to a VC then it is closed, and re-opened with the
new values. If it cannot be reopened, it remains closed.
Configuration saving saves this information. By default, channels are established
UBR.

8.18.3 Example

For example, to set channel 3 to be CBR limited at 10000 cells/sec, enter:
ppp 3 qos cbr pcr 10000

8.19 <channel> remoteip

8.19.1 Syntax

<channel> remoteip [<ipaddress>]

8.19.2 Description

If a PPP link is established using IPCP, this call causes the channel to provide the
given IP address to the remote end of the connection. PPP will refuse to complete the
connection if the other end will not accept this.
This is normally used for channels on which the remote party dials in, to allocate the
IP address to that remote party.
Call with no argument to find the current setting.
Call with 0.0.0.0 to remove any setting. This is the default state.
Configuration saving saves this information.

8.20 <channel> svc

8.20.1 Syntax

<channel> svc listen [ip|mac]

<channel> svc addr <addr> [ip|mac]

<channel> svc none

8.20.2 Description

Specify that the VC for a PPP channel should be an SVC (i.e. created by signalling).
This can either be by listening for an incoming call, or by making an outgoing call to
a specified ATM address.
The outgoing call or listen occurs immediately. If the call fails it will be retried after
a few seconds. In the PPP state machine, providing a connection of this form causes
the channel to be up or down. Note that enable must also be used, to allow the link to
become operational.
Outgoing and incoming UNI signalling calls are identified by a BLLI value that
identifies PPP. (Note: A BLLI of length 3 bytes is used, hex values 6B, 78. C0.)
If the channel is already attached to an SVC or PVC then it is closed, and re-opened
with the new settings. If it cannot, it remains closed.
If a single argument none is supplied, any current connection is torn down. This is
equivalent to pvc none on the channel.
The ip or mac option indicates which form of data is transported over the connection:
one of IP data (controlled by the IPCP protocol), or MAC data (for BCP). If neither
is provided, ip is assumed.
Providing an SVC setting unsets any PVC settting. (See the command, <channel>
pvc on page 124.)
Configuration saving saves this information. By default a channel has no connection
information.

8.20.3 Example

ppp 3 svc 47.00.83.01.03.00.00.00.00.00.00.00.00.00.00.20.2b.00.03.0b.00

ppp 4 svc listen

(listen for incoming call)
ppp 7 svc none

(tear down connection, remove setting)

8.21 <channel> theylogin

8.21.1 Syntax

<channel> theylogin pap|chap|none

8.21.2 Description

This command describes how we require the far end to log in on this channel.
Requiring the other end to log in most frequently happens when they dial us (rather
than the other way round), so this is likely to be one of several channels which are
set using svc listen. Because of this, exact names and passwords are not attached to
individual channels but are matched to particular users, as defined using the user
command.

This command specifies that when using this channel, the user must log on using the
specified protocol, and that they must provide any name/password combination
which has been defined for that protocol, using the user command.
To remove this information on a channel, call theylogin with a single argument of
none.
Configuration saving saves this information. By default, no login is required.

8.22 <channel> tunnel <n> <tunnel protocol> <dial direction>

8.22.1 Syntax

<channel> tunnel <n> <tunnel protocol> <dial direction>

8.22.2 Description

Logically associate the specified channel with the specified PPTP tunnel.
A single PPP channel can only be associated with a single interface, or a single
tunnel.
Use info to find the current setting.
Calling with n=0 removes any association. This is the default state.
Configuration saving saves this information.
The possible tunnel protocols are: pptp and l2tp.
The dial direction may be: in or out for dial-in or dial-out respectively.

8.22.3 Example

ppp 3 tunnel 1 pptp out

8.23 <channel> welogin

8.23.1 Syntax

<channel> welogin <name> <password> [pap|chap]

<channel> welogin none

8.23.2 Description

This command describes how we should log in to the far end when a connection is
established. A name and password are supplied, and whether these should be used
with the PAP or CHAP authentication protocol. CHAP is the default.
To remove this information on a channel, call welogin with a single argument of
none.
If chap is specified, we will also log in using pap if the other end prefers this. If pap
is specified we will only log in using pap.
Configuration saving saves this information. By default, no login is performed.

8.24 bcp

8.24.1 Syntax

bcp stp|nostp

8.24.2 Description

This command describes parameters for BCP, the Bridge Control Protocol, which is
used to transport MAC (Ethernet) packets over the PPP link. See the section entitled
Standards Conformance in the ATMOS PPP Functional Specification,
DO-007078-PS for a definition of the BCP option settings which are not
controllable.
If stp is specified, the Spanning Tree Protocol is in use by the Bridges, to control
bridge loops. In this case STP frames should be carried over any links using BCP.
If nostp is specified, STP frames should not be carried.
Configuration saving saves this information. By default, STP is not supported.

8.25 interface <n> localip

8.25.1 Syntax

interface <n> localip <address>

8.25.2 Description

This command describes parameters for IPCP, the IP Control Protocol, when
providing the server end of an IPCP connection. The server knows its own IP
address (and may allocate an IP address to the remote end). This command tells the
PPP process, for a particular interface, the local IP address to be associated with the
local end.
For interface 1, this should be the same IP address as possessed by the device
ppp_device in the IP stack. See the IP dial-in server setup on page 108 for more
information.
If PPP channels are now associated with this interface, remote users can dial in to
those channels and will be connected to the IP stack. They can be allocated IP
addresses, see the command <channel> remoteip on page 127.
Call with 0.0.0.0 to remove any IP address setting. This is the default state.
Configuration saving saves this information.

8.26 interface <n> stats

8.26.1 Syntax

interface <n> stats

8.26.2 Description

The interface is regarded by the operating system as an Ethernet-like device which

can be attached to the bridge or router, like other Ethernet devices in ATMOS. It also
provides an ifEntry to SNMP providing basic information about traffic through the
interface.
This command shows the basic information about byte and packet traffic through the
interface, in SNMP terms.

8.27 user

8.27.1 Syntax

user add <name> [pwd <passwd> [pap|chap]]

user [<name>]

user delete <name>|all

8.27.2 Description

This command stores information about a particular login name/password
combination. This is referred to as a user, regardless of whether it represents an
individual.
When user is called on its own, information about all existing users is listed. When
user <name> is called with no further arguments, details of that user alone are
printed. Passwords are not shown.
Use user delete to delete an individual user by name, or to delete all users.
Use user add <name> to create a new user or update an existing one. The password
is stored, and the authentication protocol which must be used for this user.
If a user is deleted or changed, existing sessions are not affected.
Configuration saving saves this information.

8.28 version

8.28.1 Syntax

version

8.28.2 Description

Provide the version number for the source of the ppp process.

9. PPTP Console commands

This chapter describes the PPTP (Point-to-Point Tunnelling Protocol)
Console commands.

9.1 Console object types

The PPTP process provides a number of PPTP connection tunnels. A tunnel consists of a
control connection between the local PAC and a PNS, and a data connection (known as a
call) through which a number of PPP connections or channels may be multiplexed.
The upper limits of several parameters may be configured using the config resource
console command. These are listed in the section entitled Resources and limits in the
ATMOS PPTP Functional Specification, DO-007352-PS.
The current state of each tunnel is saved by config save.

9.1.1 Console examples

These examples are for configuration of the PPTP Access Concentrator (PAC).
Obviously the PPP client or server and the PNS must also be configured.

Dial-Out

The PPTP module uses functionality provided by the PPP module. Configure PPP
channel 2 for an outgoing PPTP connection, using PPTP tunnel 1, and using PVC
800.
ppp 2 pvc 800

ppp 2 interface 0

ppp 2 tunnel 1 pptp out

ppp 2 enable

Next, configure the PPTP module to bind to an Ethernet interface with an IP address
of, for example 192.168.10.1, and set up tunnel 1 to listen (waiting for the PNS to
initiate the connection):
pptp bind 192.168.10.1

pptp 1 create listen

Dial-In

The PPTP module uses functionality provided by the PPP module. Configure PPP
channel 2 for an incoming PPTP connection, using PPTP tunnel 1, and using PVC
800.
ppp 2 pvc 800 listen

ppp 2 interface 0

ppp 2 tunnel 1 pptp in

ppp 2 enable

Next, configure the PPTP module to bind to an Ethernet interface with an IP address,
for example 192.168.10.1, and set up tunnel 1 with the PAC initiating the connection:
to a PNS with IP address, for example, 192.168.10.2
pptp 1 bind 192.168.10.1

pptp 1 create 192.168.10.2

The rest of this section details the individual console commands provided.

9.2 bind

9.2.1 Syntax:

bind <ipaddress>|any|none

9.2.2 Description:

Specify which local interface to bind a listener to for incoming control connections.
If ipaddress is specified, PPTP will listen on port 1723 on that interface only for
incoming control connections. Typically this will be the IP address of the local side
network interface.
If any is specified, PPTP will accept control connections on any interface.
If none is specified, no incoming control connections will be accepted; in this case,
tunnels may only be established via the local create and connect commands.
Configuration saving saves this information. The default is none.

9.2.3 Example

To listen for incoming control connections on local interface 192.168.1.1 only, enter:
pptp bind 192.168.1.1

9.2.5 Notes

An incoming connection can only be accepted if the listener has a free tunnel object
allocated to it. (Such objects are allocated with the <tunnel> create listen command.)
The tunnel object used will be freed for use again when the tunnel is closed by either
end.

9.3 <tunnel> connect

9.3.1 Syntax

<tunnel> connect

9.3.2 Description:

Explicitly connect a tunnel (that was created using create <ipaddress>) to the
remote PNS that create specified, establishing the control connection.

9.3.3 Example

To connect tunnel 1 to configured PNS, enter:
pptp 1 connect

9.3.5 Notes

This command is meaningless if applied to a tunnel object that is allocated to the
listener (as created with the <tunnel> create listen command); in this case it will

produce an error message.

9.4 <tunnel> create

9.4.1 Syntax

<tunnel> create <ipaddress>|listen

9.4.2 Description:

Create a tunnel object.
If ipaddress is specified, the tunnel is associated with a remote PNS at that IP
address. The control connection is not actually established until use of the tunnel is
requested by PPP, or an explicit connect is issued.
If listen is specified, the tunnel is allocated for use by an incoming control
connection from a remote PNS. At least one such tunnel must exist if any incoming
connections are to be accepted at all.
Incoming connections are mapped to the first available listening tunnel object. It is
not currently possible to use properties of the incoming connection (such as its IP
address, or information supplied in the fields of the PPTP control messages) to map
the connection to a specific tunnel.
Configuration saving saves this information. By default, no tunnels are created.

9.4.3 Example

To connect Tunnel 1 to PNS at 192.168.1.2, enter:
ptp 1 create 192.168.1.2

9.5 <tunnel> delete

9.5.1 Syntax

<tunnel> delete

9.5.2 Description

Delete a tunnel object (the opposite of create). If the tunnel is currently connected,
any active data connections across the tunnel are terminated and the control
connection is closed.

9.5.3 Example

To delete Tunnel 1, enter:
pptp 1 delete

9.6 <tunnel> disconnect

9.6.1 Syntax

<tunnel> disconnect

9.6.2 Description

Explicitly disconnect a tunnel (the opposite of connect). All data connections across
the tunnel are terminated and the control connection is closed.
If the tunnel object is associated with a particular remote PNS (as created with
<tunnel> create <ipaddress>), it may be reconnected later, either explicitly with
another connect command, or implicitly by PPP requesting to use it.
If the tunnel object is allocated to the listener (as created with <tunnel> create
listen), it is freed for use by future incoming connections.

9.6.3 Example

To disconnect Tunnel 1, enter:
pptp 1 disconnect

9.7 <tunnel> event

9.7.1 Syntax

<tunnel> event [<n>]

9.7.2 Description

Read or set the trace output level for a tunnel.
Configuration saving does not save this value. The default event level is 1; only very
serious errors are reported.
The Event levels are listed in the table below:

Level Description

1 Only very serious errors reported (default)

2 Definite protocol errors or very significant events reported.

3 Channels going up/down reported.

4 Every packet and significant state change is reported.

5 Every packet sent/received is disassembled, and hex dumped.

9.8 <tunnel> info

9.8.1 Syntax

<tunnel> info [all]

9.8.2 Description

Provide information about the current settings of this tunnel. This includes all
configured state, and also current protocol information.
Specifying all prints out more information.
info and status are synonyms.

9.9 list

9.9.1 Syntax

list

9.9.2 Description

Lists all currently created tunnel objects and the IP address of the remote PNS
associated with each one.

9.10 version

9.10.1 Syntax

version

9.10.2 Description

Provide the version number for the source of the pptp process.

10.TCP/IP Console
commands

This chapter describes the TCP/IP Console commands.

10.1 Summary

The table below shows the commands that can be issued to the IP process in TELL
messages or on the console to its stdin stream (after typing @ip, for example). It shows
which are mentioned in the ip help output, and which set some configuration that is saved
in flash memory.

Command Shown by Help Saved in configuration

abort
arp —

arprouting —

autoloop ●

Config ●
device ● ●

disable ●
enable ● —

errors
etherfiles

files
flush
get —

help ●
ipatm ● ●

iphostname ●

noerrors
norelay ●

ping
portname ●

protocols
relay ●

restart

rip ●

route ● ●

routeflush ●

routes ●

snmp ●

stats ●

subnet ●

trace – —

untrace – —

uptime

version ●

? ●

The key for the above table is shown below:
Symbol Description

● Yes

— May be inserted explicitly in //isfs/resolve (Eg. for debugging purposes),

but not saved by ipconfig save.

Two obsolescent commands are not shown in the table above nor in the fuller descriptions
below; they are supported only for consistency with older versions of the software:

Command Description
devices Lists devices; equivalent to device with no parameters.

subnets Lists subnets; equivalent to subnet with no parameters.

The hidden commands that are not shown in the ip help output are generally either
commands that are useful for debugging rather than for use by the end-user or commands
of limited utility that are supported mainly for consistency with earlier versions of the
software; it may be unwise to rely on their working in the same way in later versions of the
software.
There are also some obsolescent features that are supported only for commands presented
to standard input (at the ip> prompt), not for commands in TELL messages (such as
commands at the mymachine ip> prompt).
These are the processing of multiple commands on a line, separated by a semi-colon “;”;
comments, starting with “#”; definition of macros with the syntax var=value, used as
$var within commands; and the env command to list macros. These features are not
discussed further in this document.

10.2 abort

10.2.1 Syntax

abort <assoc>

10.2.2 Description

Aborts an IP association; <assoc> is the number of the association as shown by the
files command. Currently (ATMOS IP version 1.29) this seems to be unreliable on
UDP associations and can cause a crash (possibly because of lax error-handling by
the application that opened the file); it is reliable on TCP associations.
The abort command is hidden, not shown by ip help; it is probably useful, if at all,
for debugging and troubleshooting.

10.2.3 Example

mymachine> ip abort 3

10.3 arp

10.3.1 Syntax

arp add <i/f> <IP address> <MAC address>

arp delete <i/f> <IP address>

arp flush

arp [list]

arp help [all|<cmd>]

10.3.2 Description

Allows display and manipulation of the ARP table: the list of IP addresses and
corresponding MAC addresses obtained by ARP (see the ATMOS TCP/IP
Functional Specification, DO-007285-PS) on Ethernet-like interfaces. Normally
there is no need to add entries to the table with arp add, since they should be
discovered by the ARP protocol. Displaying the table with arp list (or just arp) is
sometimes useful, and deleting an entry with arp delete, or the whole table with arp
flush, can sometimes speed up recovery from temporary problems if something
unusual has happened.
Entries added with arp add do not time out like those discovered by use of the ARP
protocol, but they are deleted by arp flush and will not survive a restart (they are not
saved by configuration saving).
Note that the ARP table is used only for destinations on directly connected
Ethernet-like networks, not for those reached through routers (although the ARP
table may be used to discover the MAC address of the router).

10.3.3 Example

mymachine> ip arp add ether 192.168.50.1 8:0:20:19:9A:D9

mymachine> ip arp

arp add flane 192.168.2.63 00:20:2b:e0:03:87 # 8m58s

arp add flane 192.168.2.108 00:20:2b:03:0a:72 # 7m02s

arp add flane 192.168.2.109 00:20:2b:03:08:b1 # 2m24s

arp add flane 192.168.2.156 00:20:2b:03:09:c4 # 1m01s

arp add ether 192.168.50.1 08:00:20:19:9a:d9 # forever

arp add ether 192.168.50.57 00:20:af:2e:fa:3c # 3m25s

mymachine> ip arp delete flane 192.168.2.109

mymachine> ip arp list

arp add flane 192.168.2.63 00:20:2b:e0:03:87 # 8m46s

arp add flane 192.168.2.108 00:20:2b:03:0a:72 # 6m50s

arp add flane 192.168.2.156 00:20:2b:03:09:c4 # 49s

arp add ether 192.168.50.1 08:00:20:19:9a:d9 # forever

arp add ether 192.168.50.57 00:20:af:2e:fa:3c # 3m13s

mymachine> ip arp flush

mymachine> ip arp

flane ARP table is empty

ether ARP table is empty

mymachine> ip arp

arp add flane 192.168.2.108 00:20:2b:03:0a:72 # 10m58s

ether ARP table is empty

(The last example shows that the MAC address for 192.168.2.108 has been
automatically added again, having been discovered by means of the ARP protocol.)

10.4 arprouting

10.4.1 Syntax

arprouting [on]|off [<i/f>]

10.4.2 Description

The arprouting command was intended to control whether a router would perform
proxy ARP on an Ethernet-like interface; that is, reply with its own MAC address to
an ARP request for any IP address that it would route to. However, it is not
supported and is believed currently (ATMOS IP version 1.29) not to work correctly;
the command is hidden, not shown by ip help.

10.5 autoloop

10.5.1 Syntax

autoloop [on|off]

10.5.2 Description

Displays or sets the autoloop setting. This has effect only when a loopback device is
configured (see device on page 162): in that case, it controls whether datagrams
addressed to the machine’s own IP addresses (and not just the loopback addresses
127.*.*.*) will be looped back.
Configuration saving saves this information. By default, autoloop is disabled.
The autoloop command is hidden, not shown by ip help.

10.5.3 Example

mymachine> ip autoloop

autoloop off

mymachine> ip device

type dev file IP address

device ether ether //edd mtu 1500 192.168.2.1

device loop loop - mtu 2048 127.0.0.1

mymachine> ip ping 127.0.0.1

ip: ping - reply received from 127.0.0.1

mymachine> ip ping 192.168.2.1

ip: ping - transmit error: Host is down (rc=62)

mymachine> ip autoloop on

mymachine> ip ping 192.168.2.1

ip: ping - reply received from 192.168.2.1

10.6 config

10.6.1 Syntax

config [save]

10.6.2 Description

Displays the IP configuration (not including the snmp configuration), or saves it in
flash memory.
The functionality of the config command is also accessible in the standard way
through the config process (eg. config print ip), if that process is present. However,
when accessed through the config process, the snmp configuration is included.

10.6.3 Example

mymachine> ip config

device add ether ether //edd mtu 1500 192.168.2.1

device add flane ether //lec1 mtu 1500 192.168.55.1

subnet add flane.home . 192.168.55.0 ff:ff:ff:00

subnet add ether.home . 192.168.2.0 ff:ff:ff:00

rip send ether 2

rip send flane 2

rip accept ether 1 2

rip accept flane 1 2

autoloop on

route add default 0.0.0.0 192.168.2.7 00:00:00:00 2 # MAN

relay ether ether

relay ether flane

relay flane flane

ipatm lifetime 60

IP host table:

Port table:

router 520/UDP

snmp 161/UDP

tftp 69/UDP

telnet 23/TCP

mymachine> ip config save

Updating flash filing system ...

done

ip: configuration saved

10.7 device

10.7.1 Syntax

device [list]

device add <i/f> <type> [<file>] [mtu <size>] [<IP address>]

device delete <i/f>

device flush

10.7.2 Description

Displays the interfaces that IP is configured to use (device list), or adds an interface
to the configuration (device add), or deletes an interface (device delete), or deletes all
interfaces (device flush), from the configuration.
The options used with this command are described below:
• <i/f> is an arbitrary label for the interface, which is used in referring to it in

subsequent commands. (It is often chosen to be the same as <type>, though this is
perhaps slightly confusing.)

• <type> specifies the class of interface: Ethernet-like, IP-over-ATM, PPTP or
loopback.
The supported values for <type> are shown in the table below:

Class <Type> Default file

Ethernet ether value of

ETHERNET_DEVICE_NAME

(defined in system file)

 flane //lec1

 bridge //bridge

IP-over-ATM atm //q93b

 atmpvc //bun

//atm

Point-to-point PTP None

 PPP //ppp/DEVICE=1

Loopback loop -

A default file for the Ethernet class can be defined in the system file, as follows:

config.h ETHERNET_DEVICE_NAME “s//edd”

If a default file is not defined, the name ether is not supported. However, it is still
possible to define devices of type ether with an explicit filename.
The class IP-over-ATM includes both SVC-based and PVC-based IP-over-ATM;
the decision whether to use SVCs or PVCs is made at initialization, by testing the
interface colors of the file if it supports the Indigo interface, then SVCs are used,
and otherwise PVCs.

• <file> specifies the file name that will be opened to access the underlying device.
The device can be any of the following:
•Ethernet
•IP-over-ATM
•PTP
• Loopback

The device must provide the colored interface appropriate for that type of device.
For a loopback interface, <file> is not used, and can just be specified as “-” or
omitted altogether.
Note that several different values of <type> specify the same class of interface;
they differ in that each implies a different default value for <file>. As a result, for
the most common interface configurations, <file> can be omitted, and one need
only specify the appropriate value of <type>.

• <mtu> specifies the MTU (maximum transmission unit); that is, the size of the
largest datagram (excluding media-specific headers) that IP will attempt to send
through the interface. The value specified will be ignored if it is larger than the
maximum supported by the interface class, which is currently 1500, unless the
IP-over-ATM MTU value has been changed in the TCP/IP build-time
configuration system file. Normally, there is no point in setting the MTU less than
this, so the <mtu> option is of little use.

• <IP address> is the IP address that this system uses on the interface; if it is not
specified, the interface will be disabled until an IP address is supplied with the ip
enable command.
For a loopback interface, the address should be set to 127.0.0.1. (All addresses of
the form 127.*.*.* will then be recognized as loopback addresses, as is normal
practice.)
For non-loopback interfaces, the subnet mask for the local network will be
assumed to be ff:ff:ff:00 (eg. a class C network); if the correct subnet mask is other
than this then it will need to be set with the subnet command (see subnet on page
211).
If there is a DHCP client in the system, the address can be set to DHCP. This

setting means that the IP address should be learned by DHCP. For example:
ip device add ether ether dhcp

Note that DHCP is not supported on all interface types. For more information,
refer to ip device on page 80.

If the IP process is given a command line (a little-used feature of ATMOS!) then
each argument will be treated as a possible Ethernet-like file to open, given names
ether1, ether2, and so on.
For example, if the IP process is defined in the system file as:
Process ip is tcp_ip/ip //bridge //lec1

(and //bridge and //lec1 can be opened), then the equivalents of the commands:
device add ether1 ether //bridge

device add ether2 ether //lec1

will be processed, in addition to the others above.
Configuration saving saves the interface configuration.

10.7.3 Example

mymachine> ip device

type dev file IP address

device ether ether //edd mtu 1500 192.168.2.1

device flane ether //lec1 mtu 1500 192.168.55.1

mymachine> ip device add loop loop 127.0.0.1

mymachine> ip device delete flane

mymachine> ip device

type dev file IP address

device ether ether //edd mtu 1500 192.168.2.1

device flane ether //lec1 mtu 1500 192.168.55.1

device loop loop - mtu 2048 127.0.0.1

10.8 disable

10.8.1 Syntax

disable [<i/f>]

10.8.2 Description

Disables all interfaces, or just a specified interface.

10.8.3 Example

mymachine> ip disable flane

mymachine> ip device

type dev file IP address

device ether ether //edd mtu 1500 192.168.2.1

device flane ether //lec1 mtu 1500 192.168.55.1

DISABLED

10.9 enable

10.9.1 Syntax

enable [<i/f> [mtu <size>] [<IP address>]]

10.9.2 Description

Enables all interfaces, or just a specified interface. Can also be used to set the MTU
and IP address on an interface when enabling it (or change them on an interface that
is already enabled); see device on page 162 for details on the interfaces.
Configuration saving saves the MTU and IP addresses, but not the disabled/enabled
state.

10.9.3 Example

mymachine> ip enable flane 192.168.56.3

ip/flane: IP address 192.168.56.3

mymachine> ip device

type dev file IP address

device ether ether //edd mtu 1500 192.168.2.1

device flane ether //lec1 mtu 1500 192.168.56.3

10.10 errors

10.10.1Syntax

errors

10.10.2Description

Turns on tracing of various unusual events; equivalent to trace errors.
The errors command is hidden, not shown by ip help.

10.10.3Example

mymachine> ip errors

ip: currently tracing errors

10.11 etherfiles

10.11.1Syntax

etherfiles

10.11.2Description

Lists the file names for the underlying devices for all Ethernet-like interfaces.

The etherfiles command is hidden, not shown by ip help.

10.11.3Example

mymachine> ip etherfiles

ether: //edd

flane: //lec1

atm: (no ethernet device)

10.12 files

10.12.1Syntax

files [full]

files <assoc>

10.12.2Description

Lists the files (associations) that other applications (or, internally, RIP) have opened
on //ip. More detailed information on an association can be displayed by specifying
the association number, or on all associations by specifying full.
The information for each association may include an interface name (ether or flane
in the example below). This can be either the interface last used to send a packet on
the association or, for a new association, the interface that is expected to be used for
packets to the remote host. This interface can change over the lifetime of an
association; in particular, for a UDP association not bound to a specific remote host
it may change each time a packet is sent to a different destination. (In other cases it
will normally change only as a result of routing changes.)
The files command is hidden, not shown by ip help.

10.12.3Example

mymachine> ip files

1: rw+ ether 192.168.2.1 TCP port telnet (23) Established to 192.168.2.2

port 1071 1 rx requests

2: rw+ ether <noaddr> UDP port snmp (161) 3 rx requests

3: rw+ <unset> <noaddr> UDP port tftp (69) 4 rx requests

4: rw+ <unset> <noaddr> UDP port router (520) 2 rx requests

5: w flane <noaddr> UDP port router (520)

6: rw+ <unset> <noaddr> UDP port 2050 4 rx requests

7: rw+ <unset> <noaddr> UDP port 2051 4 rx requests

8: rw+ <unset> <noaddr> UDP port 2052 4 rx requests

9: rw+ <unset> <noaddr> UDP port 2053 4 rx requests

mymachine> ip files 3

3: rw+ <unset> <noaddr> UDP port tftp (69) 4 rx requests

//ip/TYPE=UDP/LPORT=69/TIMEOUT_CONX=1000/TIMEOUT_LISTEN=0/TIMEOUT_IDLE=0/RETRY_CONX=2/TOS
=routine/DELAY=normal/THROUGHPUT=normal/RELIABILITY=normal/BUFFERRX=off/BUFFER_TXSIZE=-1/
BUFFER_RXSIZE=-1/FRAGMENT=on/TTL=60/OPTIONS=off/CHECKSUM=on/TIMEOUT_USER=540000

10.13 flush

10.13.1Syntax

flush <assoc>

10.13.2Description

Given an association number (see files on page 170) that corresponds to a TCP
association, this does a TCP push (see RFC 793), which, roughly speaking, causes
the data sent so far to be delivered as quickly as possible to the recipient, without
waiting to be buffered with subsequent data.
The flush command is hidden, not shown by ip help; it is of little or no use.

10.14 get

10.14.1Syntax

get <file>

10.14.2Description

Reads and executes commands from a file. The commands in the file are in the same
format as those documented in this chapter, with no ip prefix. They can contain
comments, introduced by the “#” character.
The get command is hidden, not shown by ip help.

10.14.3Example

mymachine> ip get //isfs/cmdfile

10.15 help

10.15.1Syntax

help

help <cmd>

help all

10.15.2Description

Displays a summary of available commands, more detailed information on a
particular command, or more detailed information on all commands.
(As described in Summary on page 152, some commands are hidden and are not
displayed by help or help all; help is still available on these using the help <cmd>
form if you know the name of the command.)

10.15.3Example

mymachine> ip help

Commands are:

? arp config device

disable enable help ipatm

nat norelay ping relay

rip route routes snmp

stats subnet version

‘.’ repeats the last command

Type "ip help all" or "ip help <command>" for more details

mymachine> ip help arp

arp Syntax

arp <cmd> - execute arp subcommand

arp help - list subcommands available

10.16 ipatm abort

10.16.1Syntax

ipatm abort <n>

10.16.2Description

Closes an IP-over-ATM SVC; the number <n> is as displayed by ipatm files. If
there is still traffic being sent to the destination concerned, IP will soon open a new
SVC to the destination.

10.16.3Example

mymachine> ip ipatm abort 14

10.17 ipatm arp

10.17.1Syntax

ipatm arp [list]

10.17.2Description

Lists the cached mappings from IP addresses to ATM addresses; only relevant when
using IP-over-ATM with SVCs. (The list parameter is optional and makes no
difference to the behaviour.)

10.17.3Example

mymachine> ip ipatm arp

192.168.5.72 47.00.83.10.a2.b1.00.00.00.00.00.00.00.00.20.2b.01.00.07.00

192.168.5.33 47.00.83.10.a4.00.00.00.00.00.00.00.00.00.20.2b.01.00.19.00

192.168.5.111 47.00.83.10.e2.00.00.00.20.2b.01.01.a8.00.20.2b.01.01.a8.00

10.18 ipatm arpserver

10.18.1Syntax

ipatm arpserver [<i/f> [<ATM address>|here]]

10.18.2Description

Displays or sets the ATMARP server used for an interface, which must be an
IP-over-ATM interface using SVCs. The interface name is optional when displaying:
if omitted, the ATMARP servers for all such interfaces are listed. (Since currently
there can only be one such interface, this behaviour is present only for possible
consistency with future versions.)
The parameter here causes no ATMARP server to be used; only the local ATMARP
cache will be consulted when setting up an SVC. This will normally be used when
this machine is the ATMARP server for the local network.
Configuration saving saves this information.

10.18.3Example

mymachine> ip ipatm arpserver

ipatm arpserver atm here

mymachine> ip ipatm arpserver atm

47.0.83.10.a2.0.0.0.0.0.0.0.0.0.20.2b.4.3.8.0

mymachine> ip ipatm arpserver atm

ipatm arpserver atm

47.00.83.10.a2.00.00.00.00.00.00.00.00.00.20.2b.04.03.08.00

10.19 ipatm files

10.19.1Syntax

ipatm files

10.19.2Description

Lists the IP-over-ATM connections, listens, and slots for available connections.

10.19.3Example

mymachine> ip ipatm files

i/f atm 0 transmissions queued, 6 free connections, 4

listeners

0: on atm Connected to 192.168.220.48, idle 0ms

1: on atm Listening, (in use)

2: on atm Listening, (in use)

3: on atm Listening, (in use)

4: on atm Listening, (in use)

5: on atm Idle

6: on atm Idle

7: on atm Idle

8: on atm Idle

9: on atm Idle

10: on atm Idle

10.20 ipatm help

10.20.1Syntax

ipatm help [<cmd>|all]

10.20.2Description

Displays help on ipatm subcommands.

10.20.3Example

mymachine> ip ipatm help

Commands are:

? abort arp arpserver

files help lifetime pvc

Use "ip ipatm help all" or "ip ipatm help <command>" for

syntax

mymachine> ip ipatm help arp

arp Syntax

ipatm arp [list] - list ARP cache entries

10.21 ipatm lifetime

10.21.1Syntax

ipatm lifetime <secs>

10.21.2Description

Displays or sets idle time-out for IP-over-ATM SVCs: if there is no traffic on an
SVC for this period, then it will be disconnected. (It might be disconnected before
this period in order to make room for new connections.)
There is no way to disable the time-out, but ip ipatm lifetime 999999 will have much
the same effect.
Configuration saving saves this information.
The default lifetime is 60 seconds.

10.21.3Example

mymachine> ip ipatm lifetime

Idle lifetime for connections: 1m

mymachine> ip ipatm lifetime 90

Idle lifetime for connections: 1m30s

10.22 ipatm pvc

10.22.1Syntax

ipatm pvc

ipatm pvc add <i/f> <port> [<vpi>/]<vci> [pcr <pcr>]

[remoteip <IP address>]

ipatm pvc delete <port> [<vpi>/]<vci>

ipatm pvc flush

10.22.2Description

The table below describes the use of each of the four commands given above:
Command Description

ipatm pvc Lists configured PVCs for use by IP-over-ATM.

ipatm pvc add Configures a PVC.

ipatm pvc delete Deletes a PVC.

ipatm pvc flush Deletes all PVCs.

The options which can be used by the commands are described below:
• <i/f> – is the name of an interface configured for IP-over-ATM using PVCs.
• <vpi> – is the VPI to use for the PVC. The range of possible VPIs depends on the

system.
• <vci> – is the VCI to use for the PVC. The range of possible VCIs depends on the

system.
• <IP address> – is the IP address of the machine at the other end of the PVC. If it is

not specified, ATMOS TCP/IP will use Inverse ATMARP (RFC 1577) to
determine the IP address; if it is specified, then Inverse ATMARP will not be used.

• <pcr> – is the peak cell rate, in cells per second. The default is 60000.
• <port> – is the port name: it must be specified. If the device has only one ATM

port, then the port name can be omitted.
Configuration saving saves any PVC configuration information. (See config on page
160.)

10.22.3Example

For example, if you have defined an IPOA device, as follows:
myswitch> ip device add ipoa atm

The following commands can be used to create and configure PVCs.
The label ipoa is used to refer to the device:
myswitch> ip ipatm pvc add ipoa a3 60

myswitch> ip ipatm pvc add ipoa b1 61 pcr 50000

myswitch> ip ipatm pvc add ipoa b1 62 remoteip

192.168.4.32

myswitch> ip ipatm pvc

ipatm pvc ipoa a3 0/60 pcr 60000

ipatm pvc ipoa b1 0/61 pcr 50000

ipatm pvc ipoa b1 0/62 pcr 60000 remoteip 192.168.4.32

10.23 iphostname

10.23.1Syntax

iphostname add <IP address> <name>

iphostname flush

iphostname list

iphostname help [all|<cmd>]

10.23.2Description

Sets up a mapping between an IP address and a symbolic name; deletes all such
mappings; lists the mappings; or displays help on the iphostname command.
The symbolic names can be used in most IP commands where an IP address is
required, and as values of the attributes LHOST and RHOST (described in the
ATMOS TCP/IP Functional Specification, DO-007285-PS). They are also displayed
and returned as attribute values in place of numerical addresses, when a suitable
mapping exists. The Damson interface (described in the ATMOS TCP/IP Functional
Specification, DO-007285-PS) allows other processes to query the mapping.
The iphostname command is hidden, not shown by ip help.
Configuration saving saves this information.

10.24 nat

10.24.1Syntax

ip nat add|delete <i/f name>

10.24.2Description

This command adds or removes NAT functionality from the named interface. The
interface name is the name as listed by the ip device command. NAT should always
be enabled only on the interface connecting to the public network, not the interface
connecting to the private network.

10.24.3Example

bd3000> ip nat add ether

nat: Interface “ether” added

nat: Interface “ether” now enabled

nat: Interface “ether” IP address is 192.168.200.90

bd3000>ip nat delete ether

nat: Interface “ether” deleted by IP

10.25 noerrors

10.25.1Syntax

noerrors

10.25.2Description

Undoes the effect of the errors command; equivalent to untrace errors.
The noerrors command is hidden, not shown by ip help.

10.25.3Example

mymachine> ip noerrors

ip: currently tracing nothing

10.26 norelay

10.26.1Syntax

norelay [all | <i/f> [<i/f>] [forward]]

10.26.2Description

Turns off forwarding between interfaces; see the relay command for more details.
The command norelay with no parameters is equivalent to norelay all: it turns off all
forwarding.
Configuration saving saves this information.

10.26.3Example

mymachine> ip relay

relay ether ether

relay ether flane

relay flane flane

mymachine> ip norelay ether flane forward

relay ether ether

relay flane ether forward

relay flane flane

10.27 ping

10.27.1Syntax

ping <IP address> [<ttl> [<size>]]

10.27.2Description

Sends an ICMP Echo message to the specified IP address.
• <ttl> (default 30) is the TTL (time-to-live) to use. A crude traceroute functionality

can be obtained by repeating the ping. command with increasing TTL values,
starting with 1.

• <size> (default 56) is the data size of the Echo message. This does not include the
IP header (20 bytes) and the ICMP header (8 bytes).

ATMOS TCP/IP waits 10 seconds for a reply to the message; if none arrives, it
reports the lack of a reply (and returns the TELL message, or redisplays the prompt).
Any reply arriving after this time-out will be reported as a background message.
(Whereas a reply arriving before the time-out expires is, of course, reported in the
foreground.)
A reply is an ICMP Echo Reply message, or an ICMP error message reporting
destination unreachable, time exceeded, or (as should never happen) a parameter
problem. ICMP redirect and source quench messages are reported, but ATMOS
TCP/IP continues to wait for a final reply or time-out.

10.27.3Example

mymachine> ip ping 192.168.4.13 1

ip: ping - 192.168.1.9 reports time-to-live exceeded

mymachine> ip ping 192.168.4.13 2

ip: ping - reply received from 192.168.4.13

mymachine> ip ping 192.168.77.77

ip: ping - no reply received

10.28 portname

10.28.1Syntax

portname add <name> <number>[/<protocol>]

portname flush

portname list

portname read <file>

portname help [all|<cmd>]

10.28.2Description

Sets up a mapping between a UDP or TCP port and a symbolic name; deletes all
such mappings; lists the mappings; reads the mappings from a file; or displays help
on the “portname” command.
The symbolic names can be used as values of the attributes LPORT and RPORT
(described in the ATMOS TCP/IP Functional Specification, DO-007285-PS)

provided the protocol type (UDP or TCP) is appropriate. They are also displayed in
place of port numbers, when a suitable mapping exists. The Damson interface
(described in the ATMOS TCP/IP Functional Specification, DO-007285-PS) allows
other processes to query the mapping.
<protocol> should be either UDP or TCP; it can be omitted, but that is not very
useful.
For portname read, the file is in the same format as //isfs/services (described in the
ATMOS TCP/IP Functional Specification, DO-007285-PS), which is the same as the
output from portname list.
The portname command is hidden, not shown by ip help.
Configuration saving saves this information.

10.28.3Example

mymachine> ip portname flush

mymachine> ip portname add someport 105/tcp

mymachine> ip portname list

someport 105/TCP

mymachine> ip portname read //isfs/services

mymachine> ip portname list

router 520/UDP

snmp 161/UDP

tftp 69/UDP

telnet 23/TCP

someport 105/TCP

10.29 protocols

10.29.1Syntax

protocols

10.29.2Description

Displays information on the protocols supported by ATMOS TCP/IP. The output
will always be the same for a given version of ATMOS TCP/IP.
The protocols command is hidden, not shown by ip help.

10.29.3Example

mymachine> ip protocols

RAW - IP ID -1, CL protocol

ICMP - IP ID 1, CL protocol

TCP - IP ID 6, CO protocol

UDP - IP ID 17, CL protocol

10.30 relay

10.30.1Syntax

relay

relay all | <i/f> [<i/f>] [forward]

10.30.2Description

Displays or sets what forwarding ATMOS TCP/IP will do between interfaces. The
combinations of setting forwarding can be a bit confusing; they behave as follows:

Command Description

relay all Enables forwarding from every interface to every non-loopback

interface.

relay if1 Enables forwarding from if1 to every non-loopback interface, and

from every interface to if1.

relay if1 forward Enables forwarding from if1 to every non-loopback interface.

relay if1 if2 Enables forwarding from if1 to if2 and from if2 to if1.

relay if1 if2 forward Enables forwarding from if1 to if2.

Note – Don’t confuse the forward keyword, which indicates one-way relaying,

with the term forwarding!)
To disable forwarding, use the norelay command. (See norelay on page 185.)
Configuration saving saves this information.
By default all forwarding is disabled.

10.30.3Example

mymachine> ip relay

No relaying is being performed

mymachine> ip relay ether flane forward

relay ether flane forward

mymachine> ip relay ether forward

relay ether ether

relay ether flane forward

mymachine> ip relay ether flane

relay ether ether

relay ether flane

mymachine> ip relay all

relay ether ether

relay ether flane

relay flane flane

10.31 restart

10.31.1Syntax

restart

10.31.2Description

Reboots the system.
This command is deprecated. To reboot the system, use the restart command from
the ATMOS console.

10.31.3Example

mymachine> ip restart

10.32 rip accept

10.32.1Syntax

rip accept [all|<i/f>] [none|<version>*]

10.32.2Description

Controls for which version or versions of RIP (RIP version 1, RFC 1058, or RIP
version 2, RFC 1723) ATMOS TCP/IP will accept incoming information on each
interface.
Configuration saving saves this information.
By default, both RIP versions are accepted on all interfaces (rip accept all 1 2).

10.32.3Example

mymachine> ip rip accept all 1 2

mymachine> ip rip accept ether 2

mymachine> ip rip allowed

rip send ether none

rip send flane none

rip accept ether 2

rip accept flane 1 2

10.32.4See also

rip allowed on page 194, rip send on page 203.

10.33 rip allowed

10.33.1Syntax

rip allowed

10.33.2Description

Displays the RIP versions that will be accepted and sent on each interface.

10.33.3Example

mymachine> ip rip allowed

rip send ether 2

rip send flane 2

rip accept ether 1 2

rip accept flane 1 2

10.34 rip boot

10.34.1Syntax

rip boot

10.34.2Description

Broadcasts a request for RIP information from other machines. ATMOS TCP/IP
does this automatically when it first starts up, and the routing information should be
kept up to date by regular broadcasts from the other machines, so this command is
normally of little use.

10.34.3Example

mymachine> ip rip boot

10.35 rip help

10.35.1Syntax

rip help [<cmd>|all]

10.35.2Description

Displays help on rip subcommands.

10.35.3Example

mymachine> ip rip help

Commands are:

? accept allowed boot

help hostroutes killrelay poison

relay relays rxstatus send

trigger

Use the command:
ip rip help all

or
ip rip help <command>

for syntax information
mymachine> ip rip help boot

boot Syntax

rip boot - broadcast RIP request for routes

10.36 rip hostroutes

10.36.1Syntax

rip hostroutes [off]

10.36.2Description

Sets or clears the hostroutes flag; ATMOS TCP/IP will accept RIP routes to
individual hosts only if this flag is on. If the flag is off, then RIP version 1 routes that
appear to be to individual hosts will be treated as if they were to the network
containing the host; RIP version 2 routes to individual hosts will be ignored. (The
reason for this difference is that RIP version 1 does not allow specification of subnet
masks; a RIP version 1 route that appears to be to an individual host might in fact be
to a subnet, and treating it as a route to the whole network may be the best way to
make use of the information.)
To see the state of the flag without changing it, use the config command.
Configuration saving saves this information.
By default the hostroutes flag is off.

10.36.3Example

mymachine> ip rip hostroutes off

10.37 rip killrelay

10.37.1Syntax

rip killrelay <relay>

10.37.2Description

Deletes a RIP relay. See the rip relay command for more information on RIP relays.

10.38 rip poison

10.38.1Syntax

rip poison [off]

10.38.2Description

Sets or clears the poisoned reverse flag. If this flag is on, ATMOS TCP/IP performs
poisoned reverse as defined in RFC 1058; see that RFC for discussion of when this
is a good thing.
To see the state of the flag without changing it, use the config command.
Configuration saving saves this information.
By default the poisoned reverse flag is off.

10.38.3Example

mymachine> ip rip poison

10.39 rip relay

10.39.1Syntax

rip relay <RIP version> <name> [<i/f> [<timeout>]]

10.39.2Description

Configures a RIP relay. RIP relays were designed as a means of using RIP on a
non-broadcast medium (currently, only IP-over-ATM); on such an interface,
ATMOS TCP/IP will send RIP information individually to each configured RIP
relay, instead of broadcasting it.

Note – RIP relay is currently unsupported. Furthermore, configuration saving

does not save the RIP relay configuration. On a non-broadcast medium,
therefore, it is preferable to use static (manually configured) routes.

10.40 rip relays

10.40.1Syntax

rip relays

10.40.2Description

Displays the configured RIP relays. See rip relay for information on RIP relays.

10.41 rip rxstatus

10.41.1Syntax

rip rxstatus

10.41.2Description

Displays the status of the RIP packet reception mechanism. This command is of little
or no use except for debugging.

10.41.3Example

mymachine> ip rip rxstatus

RIP has 2 reading threads and 1 worker

The worker is waiting for something to do

The readers have filled 0/6 buffers and have 4 available

Maximum work queue size was 0

Receiver 0 has 1 buffer and is not waiting for the worker

Receiver 1 has 1 buffer and is not waiting for the worker

10.42 rip send

10.42.1Syntax

rip send [all|<i/f>] [none|<version>*]

10.42.2Description

Controls which version or versions of RIP (RIP version 1, RFC 1058, or RIP version
2, RFC 1723) ATMOS TCP/IP will use to broadcast routing information on each
interface. If both versions are specified, routing information is broadcast in duplicate,
once using each version.
Specifying all affects all interfaces except the loopback interface (if any).
Configuration saving saves this information.
By default RIP version 2 only is used on all non-loopback interfaces (rip send all2).

10.42.3Example

mymachine> ip rip send all 2

mymachine> ip rip send ether 1

mymachine> ip rip allowed

rip send ether 1

rip send flane 2

rip accept ether 1 2

rip accept flane 1 2

10.43 rip trigger

10.43.1Syntax

rip trigger

10.43.2Description

Triggers broadcast of routing information. Normally the routing information is
broadcast every 30 seconds; rip trigger causes it to be sent almost immediately
rather than waiting for the next time it is due. This command is normally of little use.

10.43.3Example

mymachine> ip rip trigger

10.44 route

10.44.1Syntax

route

route add <name> <dest> <relay> [<mask> [<cost> [<timeout>]]]

route delete <name>

route flush

10.44.2Description

Lists routes; adds or deletes a static route; or deletes all routes.

• <name> is an arbitrary name specified to route add that can be used to delete the
route using route delete.

• <dest> is the IP address of the network being routed to (only those bits of <dest>
corresponding to bits set in <mask> are relevant).

• <relay> is the IP address of the next-hop gateway for the route.
• <mask> (default ff:ff:ff:00) is the subnet mask of the network being routed to,

specified as four hexadecimal numbers separated by colons. For example:
• 0:0:0:0 is a default route (matches everything without a more specific route)
• ff:ff:ff:0 would match a Class C network.
• ff:ff:ff:ff is a route to a single host.
(Note: the default is not always sensible; in particular, if <dest> is 0.0.0.0 then it
would be better for the mask to default to 0:0:0:0. This may change in future
versions.)

• <cost> (default 1) is the number of hops counted as the cost of the route, which
may affect the choice of route when the route is competing with routes acquired
from RIP. (But note that using a mixture of RIP and static routing is not advised.)

• <timeout> (default 0, meaning that the route does not time out) is the number of
seconds that the route will remain in the routing table.

Note – The routing table does not contain routes to the directly connected

networks, without going through a gateway. ATMOS TCP/IP routes packets to
such destinations by using the information in the device and subnet tables
instead.

The route command (with no parameters) displays the routing table. It adds a
comment to each route with the following information:
• How the route was obtained; one of:

• MAN – configured by the route command
• RIP – obtained from RIP
• ICMP – obtained from an ICMP redirect message
• SNMP – configured by SNMP network management;

• The time-out, if the route is not permanent;
• The original time-out, if the route is not permanent;
• The name of the interface (if known) that will be used for the route;
• An asterisk (“*”) if the route was added recently and RIP has not yet processed the

change (the asterisk should disappear within 30 seconds, when RIP next considers
broadcasting routing information).

Configuration saving saves this information. (Only the routes configured by the
route command are saved or displayed by config.)

10.44.3Example

mymachine> ip route add default 0.0.0.0 192.168.2.3 0:0:0:0

mymachine> ip route add testnet1 192.168.101.0 192.168.2.34

mymachine> ip route add testnet2 192.168.102.0 192.168.2.34 ff:ff:ff:0 1 60

mymachine> ip route

route add testnet2 192.168.102.0 192.168.2.34 ff:ff:ff:00 1 # MAN 58s/1m via

ether *

route add testnet1 192.168.101.0 192.168.2.34 ff:ff:ff:00 1 # MAN via

ether

route add default 0.0.0.0 192.168.2.3 00:00:00:00 1 # MAN via

ether

10.45 routeflush

10.45.1Syntax

routeflush [<i/f>] [all]

10.45.2Description

Removes routes from the route table. If an interface (<i/f>) is specified, only routes
through the named interface are removed. If all is not specified, only host routes
(those with a mask of ff:ff:ff:ff) are removed.
The routeflush command is hidden, not shown by ip help.
Configuration saving saves this information.

10.45.3Example

mymachine> ip routeflush ether all

mymachine> ip routeflush

10.46 routes

10.46.1Syntax

routes

10.46.2Description

Lists routes. (The same as route, with no parameters.)

10.46.3Example

mymachine> ip routes

route add testnet1 192.168.101.0 192.168.2.34 ff:ff:ff:00 1 # MAN via

ether

route add default 0.0.0.0 192.168.2.3 00:00:00:00 1 # MAN via

ether

10.47 snmp

10.47.1Syntax

snmp access [read|write|delete|flush] <parameters>

snmp config [save]

snmp help [<cmd>|all]

snmp trap [add|delete|flush|list] <parameters>

snmp version

10.47.2Description

Manages the list of SNMP community names (also used as passwords by other
applications, such as telnet) and the list of SNMP trap destinations. (See the ATMOS
TCP/IP Functional Specification, DO-007285-PS for information about the interface
to this information.)
The syntax of the commands is documented in the ATMOS SNMP Functional
Specification, DO-007285-PS.
The snmp version command displays the version number of ATMOS SNMP. Note,

the version number returned is the internal version number of Virata’s code, not the
version of the SNMP protocol supported, which is SNMP v1.

Note – In standard ATMOS systems the console is configured to allow the

commands to be accessed by typing just snmp … instead of ip snmp … at the
command line.

10.48 stats

10.48.1Syntax

stats arp|icmp|ip|raw|tcp|udp [reset]

stats help [<cmd>|all]

10.48.2Description

Displays or clears a subset of IP statistics.

10.48.3Example

mymachine> ip stats udp

ip: UDP receptions delivered to users: 0

ip: UDP receptions with no users: 170

ip: Otherwise discarded UDP receptions: 0

ip: Transmitted UDP packets: 35

mymachine> ip stats udp reset

mymachine> ip stats udp

ip: UDP receptions delivered to users: 0

ip: UDP receptions with no users: 0

ip: Otherwise discarded UDP receptions: 0

ip: Transmitted UDP packets: 0

10.49 subnet

10.49.1Syntax

subnet

subnet add <name> <i/f> <IP address> <mask>

subnet delete <name>

subnet flush

10.49.2Description

Lists defined subnets; defines a subnet; deletes a subnet definition; or deletes all
subnet definitions.
• <name> is a label, that can be specified by subnet add and later used by subnet

delete to delete the subnet.
• <i/f> is not used, but is present for historical reasons and must be specified as

either “.” or a valid interface name.
• <IP address> is the IP address of the subnet being defined (only those bits of

<dest> corresponding to bits set in <mask> are relevant).
• <mask> is the subnet mask of the subnet being defined, specified as four

hexadecimal numbers separated by colons.
A subnet is defined automatically for each interface, with a name formed by
appending .home to the device name.
The only significant use for the subnet command is to change the masks for these
automatic subnets, if the default masks (see the command device on page 162) are
not correct. (Subnet definitions for other subnets can also be useful in conjunction
with RIP version 1, which does not communicate subnet masks, but this is not very
common.)
Configuration saving saves this information.

10.49.3Example

mymachine> ip device

type dev file IP address

device ether ether //edd mtu 1500 192.168.2.1

device flane ether //lec1 mtu 1500 192.168.55.1

mymachine> ip subnet

subnet flane.home . 192.168.55.0 ff:ff:ff:00 flane

subnet ether.home . 192.168.2.0 ff:ff:ff:00 ether

mymachine> ip subnet add flane.home . 192.168.55.1 ff:ff:fc:0

mymachine> ip subnet

subnet flane.home . 192.168.52.0 ff:ff:fc:00 flane

subnet ether.home . 192.168.2.0 ff:ff:ff:00 ether

10.50 trace

10.50.1Syntax

trace [<option>]

10.50.2Description

Turns on an IP tracing option, or lists the available options. Note that tracing
messages are written to background output, so with the standard console one must
use the event commands to see them.
An option can be:
• One of various keywords. The details of just what tracing messages are enabled by

each keyword are not documented here; examine the source code for more
information.

• An association number (see the command files on page 170). For a TCP association
this turns on detailed tracing of events (including all packet transmission and
reception) on that association; for a UDP association it has no effect. The files
command shows (by appending TRACE) whether each association has tracing
enabled.

• An interface name (see the command device on page 162). This turns on tracing of
every packet sent or received through the interface (one line per packet). The
device command shows (by appending TRACE) whether each interface has
tracing enabled.

• ip. This turns on tracing for all interfaces.
• all. This turns on all tracing.

Note – trace does not display which associations and interfaces are being

traced; one must use the files and device commands for that.
The trace command is hidden, not shown by ip help. It is useful mainly for
debugging and troubleshooting.

10.50.3Example

mymachine> ip trace

ip: try trace - <assoc no> <i/f name> all ip errors resolve ipatm atmarp

iploop arp ipether icmp udp tcp tcphdr tcpstate routes riptx riprx names

ip: currently tracing nothing

mymachine> ip trace tcp

ip: currently tracing tcp

10.51 untrace

10.51.1Syntax

untrace [<option>]

10.51.2Description

Turns off IP tracing options. The syntax is the same as for trace; in particular,
untrace all turns off all tracing.
The trace command is hidden, not shown by ip help.

10.52 uptime

10.52.1Syntax

uptime

10.52.2Description

Displays the time for which the ATMOS system has been running.
This command is deprecated. To display this information, use the uptime command
from the ATMOS console.

10.52.3Example

mymachine> ip uptime

up 8 hours 33 minutes

10.53 version

10.53.1Syntax

version

10.53.2Description

Displays the version of the IP module, ATM address, and MAC address.
(An obsolescent option ip still exists, but version ip now displays misleading
information and should not be used.)

10.53.3Example

mymachine> ip version

IP version 1.54

ATM address:

47.00.83.10.a2.b2.c2.00.00.00.00.00.00.00.20.2b.00.00.38.00

MAC address: 0:20:2b:0:0:38

10.54 ?

10.54.1Syntax

?

? <cmd>

? all

10.54.2Description

The ? command is simply a synonym for the help command, and behaves in the
same way.

11.TFTP Console commands

11.1 connect

11.1.1 Syntax

connect <node_name> || <ipaddr>

11.1.2 Scope:

Client mode only.

11.1.3 Description

The connect command is used to specify the remote host name or IP address that will
be used in subsequent client mode transfers.
Either a host name may be entered, searched for in the ipaddresses configuration file,
or an IP address in the form abc.def.ghi.jkl. If the host name is not recognised or the
IP address does not convert correctly, an error is signalled.
The non-appearance of an error message after the command does not signify that the
remote host is accessible, only that the syntax of the command was appropriate.
This command is required before a client mode user first attempts to put or get a file,
but need not be issued again unless its desired to change the remote machine name or
address.

11.1.4 Example

connect 192.168.200.10

11.2 get

11.2.1 Syntax

get <remote_file> [local_file]

11.2.2 Scope:

Client mode only.

11.2.3 Description

The get command requests TFTP to retrieve a file from the remote host previously
specified using the connect command.
Only files that fit within the file storage area within the session data (currently 8K)
can be retrieved. This means that it not possible to initiate a software update from the
client.
By default the file is named locally as the remote filename but by specifying a
second filename an implicit rename is performed.

11.2.4 Example

get ipaddresses

11.3 help

11.3.1 Syntax

help

11.3.2 Description

The help command displays the help text which lists the (commonly used) TFTP
commands. The init command is not listed in the help text.
The trace command has a large number of optional parameters and detail on this
command may be displayed by typing trace help.
If the software build supports client mode operation, these commands will be
displayed in the help text.

11.3.3 Example

help

11.4 init

11.4.1 Syntax

init

11.4.2 Description

The init command causes all sessions to be initialised to an idle state. This command
can be used during testing but is not required in normal operation. The command
does not appear in the help text.

11.4.3 Example

init

11.5 list

11.5.1 Syntax

list

11.5.2 Description

The list command displays the status of any active sessions. This command is
primarily intended for use during debug.

11.5.3 Example

list

11.6 put

11.6.1 Syntax

put [local_file] <remote_file>

11.6.2 Scope:

Client mode only.

11.6.3 Description

The put command requests TFTP to transmit a file to the remote host previously
specified using the connect command.
By default, the file is named remotely as the local filename but by specifying a
second filename, an implicit rename is performed.

11.6.4 Example

put ipaddresses

11.7 trace

11.7.1 Syntax

trace <help> || <-*> || <+event1> <-event2>

11.7.2 Description

The trace command allows the user to examine the currently set trace types or
add/subtract trace types. Trace help lists all the available tracing types.
If the trace command is used with no parameters, the currently set trace types are
displayed.

11.7.3 Example

trace +tmr_exp

11.8 version

11.8.1 Syntax

version

11.8.2 Description

The version command displays software version information about the process.
The version number, which is displayed in the form a.bc, is defined in the module
file as an integer abc.

11.8.3 Example

version

Index
Symbols
. (history mechanism 13
<process>, <process> <command> 11
? (IP) 218
@ commands 14

A
abort (IP) 155
Adobe Acrobat 4
arp (IP) 156
arprouting (IP) 158
autoloop (IP) 159

B
bcp (PPP) 133
bind (PPTP) 142
bind <process> 23
build (Bun) 57

C
Caution symbol 3
<channel> disable (PPP) 111
<channel> discard (PPP) 112
<channel> echo (PPP) 113
<channel> echo every (PPP) 114
<channel> enable (PPP) 115
<channel> event (PPP) 116
<channel> hdlc (PPP) 117
<channel> info (PPP) 118
<channel> interface (PPP) 119
<channel> lcpmaxconfigure (PPP) 120
<channel> lcpmaxfailure (PPP) 121
<channel> lcpmaxterminate (PPP) 122
<channel> llc (PPP) 123
<channel> pvc (PPP) 124

<channel> qos (PPP) 126
<channel> remoteip (PPP) 127
<channel> svc (PPP) 128
<channel> theylogin (PPP) 130
<channel> tunnel <n> <tunnel protocol> <dial direction> (PPP) 131
<channel> welogin (PPP) 132
channelnumber 53
class definitions 53
config (Bun) 58
config (DHCPClient) 74
config (DHCPServer) 82
config (IP) 160
conventions
typographical 2
cpu (ATMOS) 25
crlf (ATMOS) 22

D
debug 21, 26

device (IP) 162
device add (Bridge) 36
device delete (Bridge) 38
device list (Bridge) 39
disable (IP) 166
dump (Nat) 102

E
echo 18
enable (IP) 167
errors (IP) 168
etherfiles (IP) 169
ethertype (Bridge) 40
event 7
event (Nat) 92
exit 20, 27

exit! 20

F

Feedback 4
files (IP) 170
filter (Bridge) 41
filterage (Bridge) 42
flush (Bridge) 43
flush (IP) 171
fragments (Nat) 103

G
get (IP) 172
get (TFTP) 221

H
hashtable (Nat) 104
help 28
help (Bun) 55
help (DHCPClient) 75
help (DHCPServer) 84
help (IP) 173
help (Nat) 93
help (TFTP) 222

I
inbound (Nat) 95
info 29
info (Bridge) 44
info (Nat) 97
init (TFTP) 223
interface (Bridge) 45
interface <n> localip (PPP) 134
interface <n> stats (PPP) 135
interfaces (Nat) 94
Internet Explorer 4
ip device (DHCPClient) 80
ipatm abort (IP) 174
ipatm arp (IP) 175
ipatm arpserver (IP) 176
ipatm files (IP) 177

ipatm help (IP) 178
ipatm lifetime (IP) 179
ipatm pvc (IP) 180
iphostname (IP) 182

L
list 17
list (PPTP) 149
list (TFTP) 224
list all open channels (Bun) 68
list channels (Bun) 67
list classes (Bun) 62
list config (Bun) 59
list devices (Bun) 60
list ports (Bun) 64

M
mem 30

N
nat (IP) 183
NetScape Navigator 4
nocrlf 22
noerrors (IP) 184
norelay (IP) 185
Note symbol 3

P
ping (IP) 186
pool (DHCPClient) 76
pool (DHCPServer) 85
portfilter (Bridge) 46
portname 53
portname (IP) 187
protocol (Nat) 98
protocols (IP) 189
put (TFTP) 225

R

rb 31
relay (IP) 190
reset (DHCPServer) 86
reset port (Bun) 71
restart 8
restart (IP) 192
rh 31
rip accept (IP) 193
rip allowed (IP) 194
rip boot (IP) 195
rip help (IP) 196
rip hostroutes (IP) 197
rip killrelay (IP) 198
rip poison (IP) 199
rip relay (IP) 200
rip relays (IP) 201
rip rxstatus (IP) 202
rip send (IP) 203
rip trigger (IP) 204
route (IP) 205
routeflush (IP) 207
routes (IP) 208
rw 31

S
sessions (Nat) 99
set channel (Bun) 70
set port (Bun) 66
show channel (Bun) 69
show class (Bun) 63
show device (Bun) 61
show port (Bun) 65
snmp (IP) 209
spanning (Bridge) 48
stats (IP) 210
stats (Nat) 100
status (Bridge) 49
status (DHCPClient) 77

status (DHCPServer) 87
steal 32
subnet (IP) 211
Symbols, used in this guide 3

T
tell 33
tell <process> 19
trace (DHCPClient) 78
trace (DHCPServer) 88
trace (IP) 213
trace (TFTP) 226
<tunnel> connect (PPTP) 143
<tunnel> create (PPTP) 144
<tunnel> delete (PPTP) 145
<tunnel> disconnect (PPTP) 146
<tunnel> event (PPTP) 147
<tunnel> info (PPTP) 148
typographical conventions 2

U
unbind 23
untrace (IP) 215
uptime 9
uptime (IP) 216
user (PPP) 136

V
version 10
version (Bridge) 50
version (Bun) 56
version (DHCPServer) 89
version (IP) 217
version (Nat) 101
version (PPP) 137
version (PPTP) 150
version (TFTP) 227

W

Warning symbol 3
wb 31
wh 31
ww 31

