

Intelligent SFP Bi-Directional Transceiver Module for Fast Ethernet, ATM, SONET OC-3/SDH STM-1

FEATURES

- RoHS compliant
- Digital Diagnostic SFF-8472, Rev. 9.5 MSA compliant
- Simplex LC connector with 1550nm Transmitter and 1310nm Receiver
- Single + 3.3V power supply and TTL logic interface
- Bellcore GR-468 compliant
- Laser class 1 product which comply with the requirements of IEC 60825-1 and IEC 60825-2

Description

The SPBD-155xxxxx series are hot pluggable 3.3V Small-Form-Factor (SFP) Bi-Directional transceiver module designed expressly for high-speed communication applications that require rates of up to 155Mbit/sec. It is compliant with the Fast Ethernet, ATM, SONET OC-3/SDH STM-1 standards, as well as the SFP Multisource Agreement (MSA).

The SPBD-155xxxx transceivers provide with the LC receptacle that is compatible with the industry standard LC connector. The transceiver is also compatible with industry standard RFT connector and cage. It also includes a LOS (Loss Of Signal) circuit that provides a TTL logic-high output when an unusable optical signal level is detected.

The module includes 1550nm un-cool FP laser, InGaAs PIN, Preamplifer and WDM filter in a high-integrated optical assembly for high-density system application. The SFP Bi-Directional transceiver can upgrade transmission capacity very convenient without installing new fibers.

Application

- TTC TS-1000
- ITU-T G.985
- IEEE 802.3ah 100BASE-BX/ Fast Ethernet
- SONET OC-3/SDH STM-1
- FTTx WDM Broadband Access
- Switch to switch/backbone interface

Performance

• SPBD-155F4J1RD data link up to 15km in 9/125um single mode fiber.

1. Absolute Maximum Ratings

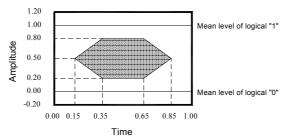
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Storage Temperature	Ts	-40		85	°C	
Storage Ambient Humidity	HA	5		95	%	
Power Supply Voltage	Vcc	0		5	V	
Signal Input Voltage		-0.3		Vcc+0.3	V	
Optical Input Power (Peak)				+4	dBm	

2. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Case Temperature	Тс	-5		75	°C	Note (1)
Ambient Humidity	HA	5		85	%	Non-condensing
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Supply Current	Icc			300	mA	
Power Supply Noise Rejection				100	mVp-p	100Hz to 1MHz
Data Rate		10		155.52	Mbps	
Transmission Distance				15	km	

Note (1). Measured on topside of case front center.

3. Specification of Transmitter


Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Average Launched Power	Po	-14		-8	dBm	Note (1)
Optical Extinction Ratio	ER	10			dB	
Center Wavelength	λς	1480	1520	1580	nm	FP Laser
Spectrum Width (RMS)	σ			3	nm	
Transmitter OFF Output Power	P _{Off}			-45	dBm	
Optical Rise/Fall Time	t _r /t _f			1.3	ns	Note (2)
Total Jitter	TJ			1	ns	Note (3)
Optical Return Loss Tolerance	ORLT			14	dB	
Relative Intensity Noise	RIN			-116	dB/Hz	
Dispersion Penalty	TDP			1	dB	
Output Eye Mask	Compliant with Bellcore TR-NWT-000253 and ITU recommendation G.957					Note (4)

Note (1). Launched power (avg.) is power coupled into a single mode fiber.

Note (2). These are unfiltered 20-80% values.

Note (3). Measure at 2²³-1 NRZ PRBS pattern.

Note (4). Eye Mask definition

Optical Pulse Mask with Bessel Filter Specified in ITU-T G.957

Revision: S1 04/11/2007 www.deltaww.com

DELTA ELECTRONICS, INC.

4. Specification of Receiver

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Input Optical Wavelength	λın	1260		1360	nm	PIN-PD
Receiver Sensitivity	P _{IN}			-31	dBm	Note (1)
Input Saturation Power (Overload)	P _{SAT}	-3			dBm	
LOS-Deassert Power	P _A	-		-31	dBm	
LOS-Assert Power	P _D	-44			dBm	Note (2)
LOS Hysteresis	P _A -P _D	0.5	2	5	dB	
Optical Reflectance				-14	dB	Note (3)
Output Data Rise/Fall time	t _r /t _f			1.5	ns	Note (4)
S/X Endurance				10	dB	Note (5)
Optical Isolation		25			dB	Note (6)

Note (1). Measured with 1520nm, ER=10dB; BER =<10⁻¹⁰@PRBS= 2^{23} -1 NRZ

- Note (2). When LOS asserted, the data output is Low-level (fixed)
- Note (3). When the terminal is viewed from the optical path, the reflection toward the optical path of the optical signal with a central wavelength of 1260nm to 1360nm transmitted to terminal.

Note (4). These are 20%~80% values

- Note (5). X=10 MHz, Rectangular BER =10⁻¹⁰
- Note (6). Receiver isolation between 1480nm ~1580nm

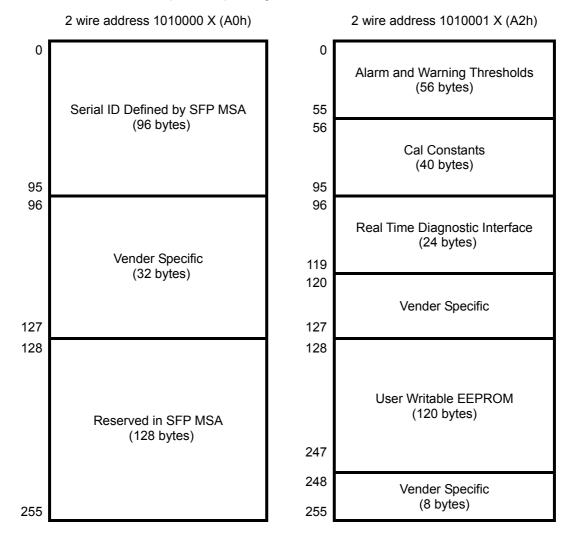
5. Electrical Interface Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitter						L
Total Supply Current	I _{CC}			Α	mA	Note (1)
Differential Data Input Swing	Vdt	500		2400	mV _{p-p}	
Differential line input Impedance	R _{IN}	80	100	120	Ohm	
Transmitter Disable Input-High	V _{DISH}	2		V _{CC}	V	Note (2)
Transmitter Disable Input-Low	V _{DISL}	0		0.8	V	
Transmitter Fault Output-High	V _{TXFH}	2		V _{CC} +0.3	V	
Transmitter Fault Output-Low	V _{TXFL}	0		0.8	V	
Transmitter Fault Pull up Resistor	R _{TX_FAULT}	4.7		10	kΩ	Note (3)
Receiver						
Total Supply Current	I _{CC}			В	mA	Note (1)
Differential Data Output Swing	Vdr	400		2000	mV _{p-p}	Note (4)
LOS Output Voltage-High	V _{LOSH}	2		V _{CC} +0.3	V	
LOS Output Voltage-Low	V _{LOSL}	0		0.8	V	
Receiver LOS Load	R _{RXLOS}	4.7		10	kΩ	Note (3)

Note (1). A (TX)+ B (RX) = 300mA

(A: Not include termination circuit; B: using a resister of 150Ω between Data-output and ground)

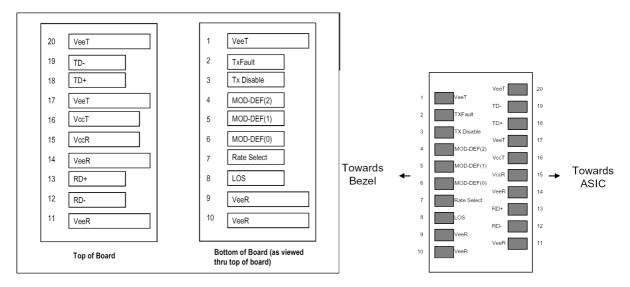
Note (2). There is an internal 4.7 to $10k\Omega$ pull-up resistor to VccT.


Note (3). Pull up to V_{CC} on host Board.

Note (4). Internally AC coupled with LVPECL output, but requires a 1000hm differential termination at or internal to Serializer/ Deserializer.

6. Enhanced Digital Diagnostic Interface

The memory map in the following describes an extension to the memory map defined in SFP MSA. The enhanced interface uses the two wire serial bus address 1010001X(A2h) to provide diagnostic information about the module's present operating conditions.


7. Digital Diagnostic Monitor Accuracy

Parameter	Accuracy	Unit	Calibration	Note
Transceiver Internal Temperature	± 3°C	°C	Internal	Tc=-5~+75℃
Power Supply Internal Voltage	± 3%	V	Internal	Vcc=3.3V±5%
TX Bias Current	± 10%	mA	Internal	Specified by nominal bias value
TX Optical Power	\pm 3dB	dBm	Internal	-14 to -8dBm
RX Optical Power	\pm 3dB	dBm	Internal	-31 to -8dBm

Note. Temperature and Voltage is measured internal to the transceiver.

8. Pin Description

SFP Transceiver Electrical Pad Layout

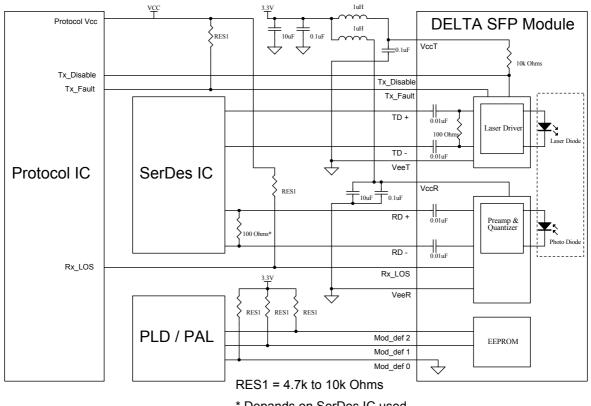
Host Board Connector Pad Layout

Pin Function Definitions

Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note (1)
2	TX Fault	Transmitter Fault Indication	3	Note (2)
3	TX Disable	Transmitter Disable	3	Note (3)
4	MOD-DEF2	Module Definition 2	3	Note (4), 2 wire serial ID interface
5	MOD-DEF1	Module Definition 1	3	Note (4), 2 wire serial ID interface
6	MOD-DEF0	Module Definition 0	3	Note (4), Grounded in Module
7	Rate Select	Not Connect	3	Function not available
8	LOS	Loss of Signal	3	Note (5)
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note (6)
13	RD+	Received Data Out	3	Note (6)
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	Note (7)
16	VccT	Transmitter Power	2	Note (7)
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note (8)
19	TD-	Inv. Transmit Data In	3	Note (8)
20	VeeT	Transmitter Ground	1	

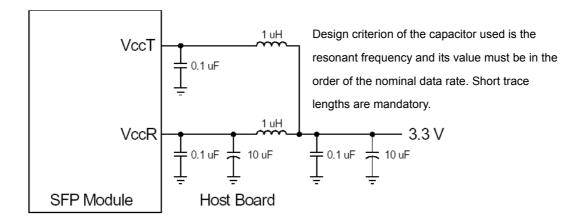
Plug Seq.: Pin engagement sequence during hot plugging.

Notes:

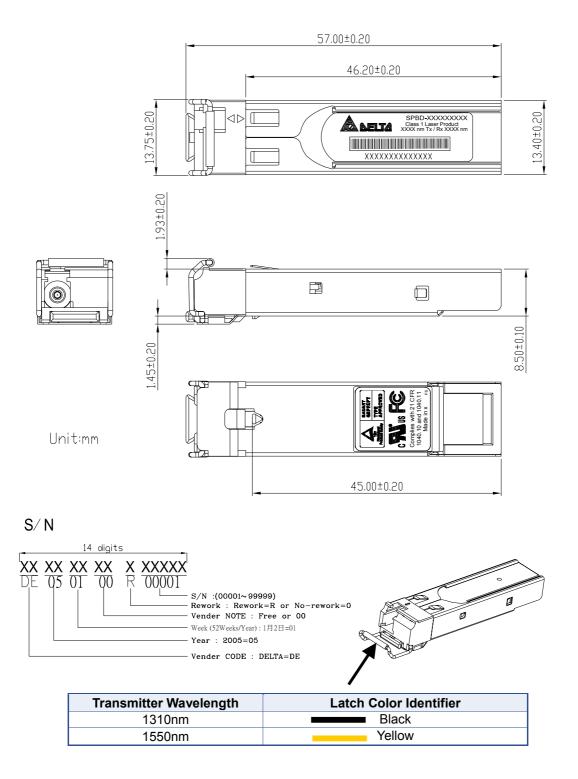

- 1) Circuit ground is internally isolated from frame (chassis) ground. Tx GND and Rx GND may be internally isolated within the TRx module.
- 2) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K~10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT+0.3V. The output indicates Low when the transmitter is operating normally, and High with a laser fault including laser end-of-life. In the low state, the output will be pulled to less than 0.8V.
- 3) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 10 \text{ K} \Omega$ resistor. Its states are:

Low (0 – 0.8V):	Transmitter on
(>0.8, < 2.0V):	Undefined
High (2.0 – 3.465V):	Transmitter Disabled
Open:	Transmitter Disabled

- 4) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7K 10KΩresistor on the host board. The pull-up voltage shall be VccT or VccR.
 Mod-Def 0 is grounded by the module to indicate that the module is present
 Mod-Def 1 is the clock line of two-wire serial interface for serial ID
 Mod-Def 2 is the data line of two-wire serial interface for serial ID
- 5) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10KΩ resistor. Pull up voltage between 2.0V and VccR+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity. Low indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 400 and 2000 mV differential (200 1000 mV single ended) when properly terminated.
- 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Recommended host board power supply filtering is shown below page. Inductors with DC resistance of less than 1 Ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value.
- 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 2400 mV (250 1200 mV single-ended), though it is recommended that values between 500 and 1200 mV differential (250 600 mV single-ended) be used for best EMI performance.



9. Recommend Interface Circuit


Recommended Host Board Supply Filtering Network

7

Revision: S1 04/11/2007

10. Outline Dimensions

11. Regulatory Compliance

Feature	Test Method	Reference	Performance	
Electrostatic Discharge	Human Body Model	MIL-STD-883E Method 3015.7		
(ESD) to the Electrical	(HBM)	EIA-JESD22-A114		
Pins	Machine Model (MM)	EIA-JESD22-A115	(1) Satisfied with	
Electrostatic Discharge	Contact Discharge	IEC/EN 61000-4-2	electrical	
(ESD) to the Simplex Receptacle	Air Discharge	IEC/EN 61000-4-2	characteristics of product spec.	
Radio Frequency Electromagnetic Field Immunity		IEC/EN 61000-4-3	(2) No physical damage	
Electromagnetic Interference (EMI)		FCC Part 15 Class B EN 55022 Class B (CISPR 22A)		
Lasar Fue Osfahr	FDA/CDRH	FDA 21CFR 1040.10, 1040.11	CDRH File # 0420993	
Laser Eye Safety	TUV	IEC/EN 60825-1 IEC/EN 60825-2	TUV Certificate # R50032471	
Component Recognition	TUV	IEC/EN 60950		
	UL/CSA	UL 60950	UL File # E239394	

Appendix A. Document Revision

Version No.	Date	Description
S0	2006-09-05	Preliminary datasheet
S1	2007-04-11	Change the Receiver Differential Data Output Swing from CML to LVPECL output