

ARM720T_LH79520 – Sharp LH79520 SoC
with ARM720T 32-bit RISC Processor

Summary
Core Reference
CR0162 (v2.0) March 10, 2008

This document provides information on Altium Designer's Wishbone wrapper support
for the discrete Sharp Bluestreak® LH79520 – a fully integrated 32-bit System-on-
Chip (SoC), based on an ARM720T 32-bit RISC processor core.

Altium Designer's ARM720T_LH79520 component is a 32-bit Wishbone-compatible RISC
processor. The ARM720T macrocell within the

physical LH79520 is built around an
ARM7TDMI-S core processor. This
processor is an implementation of the
ARM architecture v4T.

Although placed in an Altium Designer-based FPGA project just like any other 32-bit
processor component, the ARM720T_LH79520 is essentially a Wishbone-compliant wrapper
that allows communication with, and use of, the discrete ARM720T processor encapsulated
within the Sharp Bluestreak LH79520 device. You can think of the wrapper as being the
'means' by which to facilitate use of external memory and peripheral devices – defined within an FPGA – with the discrete
processor.

The ARM720T_LH79520 wrapper can be used in FPGA designs targeting any physical FPGA device – you are not constrained
to a particular vendor or platform.

Features
• 3-stage pipelined RISC processor

• 4GByte address space

• 32-bit ARM instruction set

• Wishbone I/O and memory ports for simplified peripheral connection Code written for the ARM720T is
binary-compatible with other members
of the ARM7 family of processors. It is
also forward-compatible with ARM9,
ARM9E, and ARM10 processor
families.

• Full Viper-based software development tool chain – C compiler/assembler/source-level
debugger/profiler

• C-code compatible with other Altium Designer 8-bit and 32-bit Wishbone-compliant
processors, for easy design migration.

For further information on ARM720T features, refer to the following documents, available from
www.arm.com:

• ARM720T Technical Reference Manual

• ARM7TDMI-S Technical Reference Manual

For further information on LH79520 features, refer to the following documents, available from www.sharpsma.com:

• LH79520 Product Brief

• LH79520 Data Sheet

• LH79520 System-on-Chip User's Guide

Available Devices
From a schematic document, the ARM720T_LH79520 device can be found in the FPGA Processors integrated library (FPGA
Processors.IntLib), located in the \Library\Fpga folder of the installation.

From an OpenBus System document, the ARM720T_LH79520 component can be found in the Processor Wrappers region of
the OpenBus Palette panel.

CR0162 (v2.0) March 10, 2008 1

http://www.arm.com/
http://www.sharpsma.com/

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

RISC Processor Background
RISC, or Reduced Instruction Set Computer, is a term that is conventionally used to describe a type of microprocessor
architecture that employs a small but highly-optimized set of instructions, rather than the large set of more specialized
instructions often found in other types of architectures. This other type of processor is traditionally referred to as CISC, or
Complex Instruction Set Computer.

History
The early RISC processors came from research projects at Stanford and Berkeley universities in the late 1970s and early 1980s.
These processors were designed with a similar philosophy, which has become known as RISC. The basic design architecture of
all RISC processors has generally followed the characteristics that came from these early research projects and which can be
summarized as follows:
• One instruction per clock cycle execution time: RISC processors have a CPI (clock per instruction) of one cycle. This is

due to the optimization of each instruction on the CPU and a technique called pipelining. This technique allows each
instruction to be processed in a set number of stages. This in turn allows for the simultaneous execution of a number of
different instructions, each instruction being at a different stage in the pipeline.

• Load/Store machine with a large number of internal registers: The RISC design philosophy typically uses a large
number (commonly 32) of registers. Most instructions operate on these registers, with access to memory made using a very
limited set of Load and Store instructions. This limits the need for continuous access to slow memory for loading and storing
data.

• Separate Data Memory and Instruction Memory access paths: Different stages of the pipeline perform simultaneous
accesses to memory. This Harvard style of architecture can either be used with two completely different memory spaces, a
single dual-port memory space or, more commonly, a single memory space with separate data and instruction caches for
the two pipeline stages.

Over the last 20-25 years, RISC processors have been steadily improved and optimized. In one sense, the original simplicity of
the RISC architecture has been lost – replaced by super-scalar, multiple-pipelined hardware, often running in the gigahertz
range.

“Soft” FPGA Processors
With the advent of low-cost, high-capacity programmable logic devices, there has been something of a resurgence in the use of
processors with simple RISC architectures. Register-rich FPGAs, with their synchronous design requirements, have found the
ideal match when paired with these simple pipelined processors.

As a result, most 32-bit FPGA soft processors are adopting this approach. They could even be considered as “Retro-
processors”.

Why use “Soft” Processors?
There are a number of benefits to be gained from using soft processors on reconfigurable hardware. The following sections
explore some of the more significant of these benefits in more detail.

Field Reconfigurable Hardware
For certain specific applications, the ability to change the design once it is in the field can be a significant competitive advantage.
Applications in general can benefit from this ability also. It allows commitment to shipping early in the development cycle. It also
allows field testing to be used to help drive the latter part of the design cycle without requiring new “board-spins” based on the
outcome. This is very similar to the way in which alpha, beta, pre-release and release cycles currently drive the closure of
software products.

The ability to update embedded software in a device in the field has long been an advantage enjoyed by designers of
embedded systems. With FPGAs, this has now become a reality for the hardware side of the design. For end-users, this
translates as “Field Upgradeable Hardware”.

Faster Time to Market
FPGAs offer the fastest time to market due to their programmable nature. Design problems, or feature changes, can be made
quickly and simply by changing the FPGA design – with no changes in the board-level design.

2 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Improving and Extending Product Life-Cycles
Fast time to market is usually synonymous with a weaker feature set – a traditional trade-off. With FPGA-based system designs
you can have the best of both worlds. You can get your product to market quickly with a limited feature set, then follow-up with
more extensive features over time, upgrading the product while it is already in the field.

This not only extends product life-cycles but also lowers the risk of entry, allowing new protocols to be added dynamically and
hardware bugs to be fixed without product RMA.

Creating Application-Specific Coprocessors
Algorithms can easily be moved between hardware and software implementations. This allows the design to be initially
implemented in software, later off-loading intensive tasks into dedicated hardware, in order to meet performance objectives.
Again, this can happen even after commitment to the board-level design.

Implementing Multiple Processors within a Single Device
Extra processors can be added within a single FPGA device, simply by modifying the design with which the device is
programmed. Once again, this can be achieved after the board-level design has been finalized and a commitment to production
made.

Lowering System Cost
Processors, peripherals, memory and I/O interfaces can be integrated into a single FPGA device, greatly reducing system
complexity and cost. Once the FPGA-based embedded application moves to 32-bit, cost becomes an even more powerful driver.

As large FPGAs become cheaper, both Hybrids and soft cores move into the same general cost area as dedicated processors.
At the heart of this argument is also the idea that once you have paid for the FPGA, any extra IP that you place in the device is
free functionality.

Avoiding Processor Obsolescence
As products mature, processor supply may become an increasing problem, particularly where the processor is one of many
variants supplied by the semiconductor vendor. Switching to a new processor usually requires design software changes or
logical hardware changes.

With FPGA implementations, the design can be easily moved to a different device with little or no change to the hardware logic
and probably no change to the application software. Peripherals are created dynamically in the hardware, so lack of availability
of specific processor variants is never a problem.

The ARM720T_LH79520
Altium Designer's support for the Sharp Bluestreak LH79520 offers you the best of both worlds – allowing you to create designs
that themselves reside within an FPGA device, whilst incorporating the processing power of the ARM720T within the physical
LH79520 device. Your design may simply provide an extension of the ARM720T to external memory and peripheral devices, the
interfacing to which is specified in the design downloaded to the FPGA. Alternatively, you may have a hybrid design, making
use not only of a physical processor (and member of the widely regarded ARM7 family), but also one or more 'soft' processors
defined within your FPGA design and resident on the target FPGA device. Performance critical code might typically be handled
by the physical processor.

The ARM720T is a 32-bit RISC machine that follows the classic RISC architecture previously described. It is a load/store
machine with 31 general purpose registers and 6 status registers.

All instructions are 32-bits wide and most execute in a single clock cycle.

The ARM720T_LH79520 also features a user-definable amount of zero-wait state block RAM, with true dual-port access.

Wishbone Bus Interfaces
The ARM720T_LH79520 uses the Wishbone bus standard. This standard is formally described
as a “System-on-Chip Interconnection Architecture for Portable IP Cores”. The current standard
is the Revision B.3 Specification, a copy of which is included as part of the software installation
and can be found by navigating to the Documentation Library » Designing with
FPGAs section of the Knowledge Center panel.

Remember that the
ARM720T_LH79520 is the
'Wishbone wrapper' placed in your
FPGA design. The actual
ARM720T resides in the physical
LH79520 device – external to the
FPGA device to which that design
is targeted.

The Wishbone standard is not copyrighted and resides in the public domain. It may be freely
copied and distributed by any means. Furthermore, it may be used for the design and production
of integrated circuit components without royalties or other financial obligations.

CR0162 (v2.0) March 10, 2008 3

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Wishbone OpenBUS Processor Wrappers
To normalize access to hardware and peripherals, each of the 32-bit processors supported in Altium Designer has a Wishbone
OpenBUS-based FPGA core that 'wraps' around the processor. This enables peripherals defined in the FPGA to be used
transparently with any type of processor. An FPGA OpenBUS wrapper around discrete, hard-wired peripherals also allows them
to be moved seamlessly between processors.

The OpenBUS wrappers can be implemented in any FPGA and allow the designer to implement FPGA-based portable cores,
taking advantage of the device driver system in Altium Designer for both FPGA-based soft-core peripherals as well as
connections to off-chip discrete peripherals and memory devices.

Processor Abstraction System
Use of OpenBUS wrappers creates a plug-in processor abstraction system that normalizes the interface to interrupt systems
and other hardware specific elements. The system provides an identical interface to the processor's interrupt system, whether
soft or hard-vectored. This allows different processors to be used transparently with identical source code bases.

Design Migration
With each 32-bit processor encased in a Wishbone OpenBUS wrapper, an embedded software design can be seamlessly
moved between soft-core processors, hybrid hard-core processors and discrete processors.

The Wishbone OpenBUS wrapper around the ARM720T_LH79520 processor makes it architecturally similar to the other 32-bit
processors included with Altium Designer, both in terms of its memory map and its pinout. This allows for easy migration from
the ARM720T_LH79520 to any of the following devices:
• TSK3000A – 32-bit RISC processor, device and vendor-independent. (Refer to the TSK3000A 32-bit RISC Processor core

reference).

• PPC405A – 'hard' PowerPC® 32-bit RISC processor immersed on the Xilinx Virtex-II Pro. (Refer to the PPC405A 32-bit
RISC Processor core reference).

• MicroBlaze™ – 32-bit RISC processor targeted to Xilinx FPGA platforms. (Refer to the MicroBlaze 32-bit RISC Processor
core reference).

• Nios® II – 32-bit RISC processor targeted to Altera FPGA platforms. (Refer to the Nios II 32-bit RISC Processor core
reference).

• CoreMP7 – 32-bit RISC processor targeted to Actel FPGA platforms.

• PPC405CR – AMCC® PowerPC 32-bit RISC processor. (Refer to the PPC405CR - AMCC PowerPC 32-bit RISC Processor
core reference).

Altium Designer also features Wishbone-compliant versions of its TSK52x 8-bit processor. These Wishbone variants, along with
true C-code compatibility between these and the ARM720T_LH79520, allow designs to be easily moved between the 8- and 32-
bit worlds.

For further information on the TSK52x, refer to the TSK52x MCU core reference.

4 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Architectural Overview

Symbol

Figure 1. Symbols used for the ARM720T_LH79520 in both schematic (left) and OpenBus System (right).

As can be seen from the schematic symbol in Figure 1, the ARM720T_LH79520 wrapper that is placed in an FPGA design
essentially has three interfaces. The Wishbone External Memory and Peripheral I/O interfaces are identical to those of all other
32-bit processors supported by Altium Designer.

The third interface provides connection to the physical LH79520 itself. More specifically, it caters for:

• Data and Address bus signals to/from the LH79520's External Bus Interface (EBI)

• Control signals from the LH79520's Static Memory Controller (SMC)

• Clock, Reset and Interrupt signals.

The corresponding signals from the physical LH79520 must be hardwired to the desired pins of the physical FPGA device. To
wire from the ARM720T_LH79520 Wishbone wrapper to the physical pins of the FPGA device requires the use of the relevant
port-plugin component (PROCESSOR_ARM7_LH79520). For more information, refer to the section Placing an
ARM720T_LH79520 in an FPGA design.

CR0162 (v2.0) March 10, 2008 5

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Pin Description
The following pin description is for the processor when used on the schematic. In an OpenBus System, although the same
signals are present, the abstract nature of the system hides the pin-level Wishbone interfaces. The interface signals to the
physical processor will be made available as sheet entries, associated with the parent sheet symbol used to reference the
underlying OpenBus System.

Table 1. ARM720T_LH79520 pin description

Name Type Polarity/Bus size Description

Control Signals

CLK_I I Rise External (system) clock. This signal is internally wired to the
ARM7_SYS_CLK output.

RST_I I High External (system) reset. This signal is internally wired to the
ARM7_SYS_RESET output

Interrupt Signals

INT_I I 32 Interrupt lines. The least significant 5 lines are routed through to the
physical device on the PER_INT bus (see Interrupts).

External Memory Interface Signals

ME_STB_O O High Strobe signal. When asserted, indicates the start of a valid Wishbone
data transfer cycle

ME_CYC_O O High Cycle signal. When asserted, indicates the start of a valid Wishbone
bus cycle. This signal remains asserted until the end of the bus
cycle, where such a cycle can include multiple data transfers

ME_ACK_I I High Standard Wishbone device acknowledgement signal. When this
signal goes High, an external Wishbone slave memory device has
finished execution of the requested action and the current bus cycle
is terminated

ME_ADR_O O 32 Standard Wishbone address bus, used to select an address in a
connected Wishbone slave memory device for writing to/reading
from

ME_DAT_I I 32 Data received from an external Wishbone slave memory device

ME_DAT_O O 32 Data to be sent to an external Wishbone slave memory device

ME_SEL_O O 4 Select output, used to determine where data is placed on the
ME_DAT_O line during a Write cycle and from where on the
ME_DAT_I line data is accessed during a Read cycle. Each of the
data ports is 32-bits wide with 8-bit granularity, meaning data
transfers can be 8-, 16- or 32-bit. The four select bits allow targeting
of each of the four active bytes of a port, with bit 0 corresponding to
the low byte (7..0) and bit 3 corresponding to the high byte (31..24)

ME_WE_O O Level Write enable signal. Used to indicate whether the current local bus
cycle is a Read or Write cycle.

0 = Read
1 = Write

ME_CLK_O O Rise External (system) clock signal (identical to CLK_I), made available
for connecting to the CLK_I input of a slave memory device. Though
not part of the standard Wishbone interface, this signal is provided
for convenience when wiring your design

ME_RST_O O High Reset signal made available for connection to the RST_I input of a
slave memory device. This signal goes High when an external reset
is issued to the processor on its RST_I pin. When this signal goes
Low, the reset cycle has completed and the processor is active
again. Though not part of the standard Wishbone interface, this
signal is provided for convenience when wiring your design

6 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Name Type Polarity/Bus size Description

Peripheral I/O Interface Signals

IO_STB_O O High Strobe signal. When asserted, indicates the start of a valid Wishbone
data transfer cycle

IO_CYC_O O High Cycle signal. When asserted, indicates the start of a valid Wishbone
bus cycle. This signal remains asserted until the end of the bus
cycle, where such a cycle can include multiple data transfers

IO_ACK_I I High Standard Wishbone device acknowledgement signal. When this
signal goes High, an external Wishbone slave peripheral device has
finished execution of the requested action and the current bus cycle
is terminated

IO_ADR_O O 24 Standard Wishbone address bus, used to select an internal register
of a connected Wishbone slave peripheral device for writing
to/reading from

IO_DAT_I I 32 Data received from an external Wishbone slave peripheral device

IO_DAT_O O 32 Data to be sent to an external Wishbone slave peripheral device

IO_SEL_O O 4 Select output, used to determine where data is placed on the
IO_DAT_O line during a Write cycle and from where on the
IO_DAT_I line data is accessed during a Read cycle. Each of the
data ports is 32-bits wide with 8-bit granularity, meaning data
transfers can be 8-, 16- or 32-bit. The four select bits allow targeting
of each of the four active bytes of a port, with bit 0 corresponding to
the low byte (7..0) and bit 3 corresponding to the high byte (31..24)

IO_WE_O O Level Write enable signal. Used to indicate whether the current local bus
cycle is a Read or Write cycle.

0 = Read
1 = Write

IO_CLK_O O Rise External (system) clock signal (identical to CLK_I), made available
for connecting to the CLK_I input of a slave peripheral device.
Though not part of the standard Wishbone interface, this signal is
provided for convenience when wiring your design

IO_RST_O O High Reset signal made available for connection to the RST_I input of a
slave peripheral device. This signal goes High when an external
reset is issued to the processor on its RST_I pin. When this signal
goes Low, the reset cycle has completed and the processor is active
again. Though not part of the standard Wishbone interface, this
signal is provided for convenience when wiring your design

Physical LH79520 Interface Signals

PER_DATA IO 32 Data Bus

PER_ADDR I 26 Address Bus

PER_WEB I 4/Low Static Memory Controller Byte Lane Enable/Byte Write Enable.
These 4 control bits are used to configure the width of the data
transfer between the LH79520'S Static Memory Controller and the
external memory/peripheral. Data transfers can be 8-, 16- or 32-bit.
The four select bits allow targeting of each of the four active byte
lanes, with bit 0 corresponding to the low byte (7..0) and bit 3
corresponding to the high byte (31..24)

PER_WE I Low Static Memory Controller Write Enable. Used to control whether
external memory/peripheral is being read or written.
0 = Write
1 = Read

PER_CS I 6/Low Static Memory Controller Chip Select. These 6 bits are used to
enable six independently configurable banks of external memory.

PER_OE I Low Static Memory Controller Output Enable

CR0162 (v2.0) March 10, 2008 7

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Name Type Polarity/Bus size Description

PER_RESET I Low Reset signal from the LH79520.

ARM7_SYS_RESE
T

O Low Reset signal to the LH79520 (internally connected from the RST_I
line).

PER_CLK I Rise Clock signal from the LH79520

ARM7_SYS_CLK O Rise External Clock signal to the LH79520 (internally connected from the
CLK_I line).

PER_READY O Low Static Memory Controller External Wait Control

PER_INT O 5/High External Interrupt lines. These lines appear as interrupts 0 to 4 when
handled by the physical device's Vectored Interrupt Controller (see
Interrupts).

Configuring the Processor
The architecture of the ARM720T_LH79520 can be configured after placement on the schematic sheet, or OpenBus System
document, using the Configure (32-bit Processors) dialog (Figure 2). Access to this dialog depends on the document in which
you are working:
• In the Schematic document – simply right-click over the device and choose the command to configure the processor from

the context menu that appears. Alternatively, click on the Configure button, available in the Component Properties dialog for
the device.

• In the OpenBus System document – access the dialog by right-clicking over the component and choosing the command to
configure the processor from the menu that appears. Alternatively, double-click on the component to access the dialog
directly.

Figure 2. Options to configure the architecture of the ARM720T_LH79520.

The drop-down field at the top-right of the dialog enables you to choose the type of processor you want to work with. As the
pinouts for the Wishbone interfaces between the 32-bit processors are the same, you can easily change the processor used in
your design without having to extensively rewire the external interfaces.

As you select the processor type, the Configure (32-bit Processors) dialog will change accordingly to reflect the architectural
options available. The symbol on the schematic will also change to reflect the type of processor and configuration options
chosen.

For the ARM720T_LH79520, a single architectural option is available that allows you to define the size of the internal memory
for the processor. This memory, also referred to as ‘Low’ or ‘Boot’ memory is implemented using true dual port FPGA Block
RAM and will contain the boot part of a software application and the interrupt and exception handlers.

8 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Speed-critical (or latency-sensitive) parts of an application should also be placed in this memory space.

The following memory sizes are available to choose from:
• 1KB (256 x 32-bit Words)

• 2KB (512 x 32-bit Words)

• 4KB (1K x 32-bit Words)

• 8KB (2K x 32-bit Words)

• 16KB (4K x 32-bit Words)

• 32KB (8K x 32-bit Words)

• 64KB (16K x 32-bit Words)

• 128KB (32K x 32-bit Words)

• 256KB (64K x 32-bit Words)

• 512KB (128K x 32-bit Words)

• 1MB (256K x 32-bit Words)

When the component is placed on a schematic sheet, your configuration choice
will be reflected in the Current Configuration region of the processor’s
schematic symbol (Figure 3).
Note: There are no options to remove MDU or Debug Hardware for the
ARM720T_LH79520. These architectural features are permanently installed in
the actual ARM720T within the physical LH79520 device.

For further information with respect to real-time debugging of the processor, refer
to the On-Chip Debugging section of this reference.

Figure 3. Current configuration settings for the
processor.

CR0162 (v2.0) March 10, 2008 9

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Memory & I/O Management
The ARM720T_LH79520 uses 32-bit address buses providing a 4GByte linear address space. All memory access is in 32-bit
words, which creates a physical address bus of 30-bits.

Memory space is broken into seven main areas, as illustrated in Figure 4. Memory and peripheral I/O devices placed and wired
within the FPGA design are mapped into the External Static Memory regions of this space. Further information can be found in
the section – Division of Memory Space.

Before detailing the mapping of memory and peripheral devices into the
processor's address space, it is worthwhile discussing the difficulties
involved in this mapping, and the solution that Altium Designer brings to
the problem.

0000_0000h

1FFF_FFFFh
2000_0000h

FFFF_EFFFh

FFFF_FFFFh

FFFF_F000h

Advanced High-Performance Bus
Peripherals

RESERVED

External Static Memory

Figure 4. Memory organization in the
ARM720T_LH79520.

Advanced Peripheral Bus
Peripherals

SDRAM

External Static Memory

Internal Static Memory

FFFB_FFFFh
FFFC_0000h

7FFF_FFFFh
8000_0000h

5FFF_FFFFh
6000_0000h

3FFF_FFFFh
4000_0000h

Defining the Memory Map
An area that can be difficult to manage in an embedded software
development project is the mapping of memory and peripherals into the
processor’s address space.

The memory map, as it is often called, is essentially the bridge between
the hardware and software projects – the hardware team allocating each
of the various memory and peripheral devices their own chunk of the
processor’s address space, the software team then writing their code to
access the memory and peripherals at the given locations.

To help manage the process of allocating devices into the space there are
a number of features available to both the hardware designer and the
embedded software developer in Altium Designer.

This discussion is based around the ARM720T_LH79520 processor,
however the overall approach can be applied to any of the 32-bit
processors available in Altium Designer.

Building the Bridge between the Hardware and Software
Defining the memory map on the hardware (FPGA project) side is
essentially a 3 stage process:

• Place the peripheral or memory

• Define its addressing requirements (this is most easily done using a Wishbone Interconnect device)

• Bring that definition into the processor’s configuration, which can then be accessed by the embedded tools

Figures 5 and 6 show examples of memory and peripheral devices mapped into the addressable memory and IO ranges for the
ARM720T_LH79520 respectively.

10 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Figure 5. Memory devices mapped into banks 0- 4 (cs0-cs4) of the ARM720T_LH79520's addressable External Static Memory.

Figure 6. Peripheral devices mapped into bank 5 (cs5) of the ARM720T_LH79520's addressable External Static Memory.

CR0162 (v2.0) March 10, 2008 11

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

The adjacent flow chart shows the process that was followed to build this memory map in a
schematic-based FPGA design. This flow chart is only a guide, during the course of development it
is likely that you will jump back and forth through this process as you build up the design.

Place Processor

Place Interconnect

Configure Processor
to see Peripherals

(import settings from
Interconnect)

Peripheral memory
map ready for

embedded project
(repeat process for

memory)

 (peripheral n)
 (peripheral 2)

Place peripheral
component on

document
 (peripheral 1)

 (Setup Pn)

(Setup P2)

Configure
Interconnect

 (Setup P1)

The flow of connecting and
mapping the peripherals (or
memory) to the processor in
a schematic-based or
OpenBus System-based
FPGA design.

Dedicated System Interconnect Components
This process of being able to quickly build up the design and resolve the processor to memory &
peripheral interface is possible because of specialized interconnection components. On the
schematic, these are the Wishbone Interconnect and the Wishbone Multi-Master. In an
OpenBus System, these are the Interconnect and Arbiter components.

These components solve the common system interconnect issues that face the designer, these
being:

• Interfacing multiple peripheral and memory blocks to a processor (handled by the Interconnect
component)

• Allowing two or more system components, that must each be able to control the bus, to share
access to a common resource (provided by the Wishbone Multi-Master/Arbiter components)

Use of the Wishbone Interconnection Architecture for all parts of the system connecting to the
processor, contributes to the system’s ‘building block’ behavior. The Wishbone standard resolves
data exchange between system components – supporting popular data transfer bus protocols, while
defining clocking, handshaking and decoding requirements (amongst others).

With the lower-level physical interface requirements being resolved by the Wishbone interface, the
other challenge is the structural aspects of the system – defining where components sit address
space, providing address decoding, and allocating and interfacing interrupts to the processor.

For more information on the schematic-based Wishbone Interconnect and Wishbone Multi-
Master components, refer to the CR0150 WB_INTERCON Configurable Wishbone Interconnect
and CR0168 WB_MULTIMASTER Configurable Wishbone Multi-Master core references,
respectively.

For more information on the OpenBus System-based Interconnect and Arbiter components,
refer to the documents TR0170 OpenBus Interconnect Component Reference and TR0171
OpenBus Arbiter Component Reference, respectively.

Configuring the Processor
Each configurable component has its own configuration dialog, including the different processors.
The processor has separate commands and dialogs to configure memory and peripherals, but it
does support mapping peripherals into memory space (and the memory into peripheral space), if
required.
An important feature to point out is the Import from Schematic (or Import from OpenBus) button
in the processor’s Configure dialogs, clicking this will read in the settings from the Interconnects
attached to the processor. This lets you quickly build the memory map, as shown in the figure
earlier. You now have the memory map defined in the hardware, this data is stored with the
processor component.

The processor’s Configure dialogs include options to generate assembler and C hardware description files that can be included
in your embedded project, simplifying the task of declaring peripheral and memory structures in your embedded code. You can
also ‘pull’ the memory map configurations directly into the embedded project by enabling the Automatically import when
compiling FPGA project option in the Configure Memory tab of the Options for Embedded Project dialog.

For more information on mapping physical memory devices and I/O peripherals into the processor's address space, refer to
the application note Allocating Address Space in a 32-bit Processor.

Division of Memory Space
As illustrated previously (Figure 4), the ARM720T_LH79520's 4GB address space is divided into seven distinct areas (or
ranges). Memory and peripheral devices defined within the FPGA design are mapped into the External Static Memory regions of
this map.

The External Static Memory region of the processor's address space runs between 4000_0000h and 5FFF_FFFFh. Within this
region, the processor provides for seven independent banks of external memory. Each bank can be up to 64MBytes in size and
access to a bank is controlled through the use of a select signal (cs0-cs6):

12 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

• cs0 (Bank 0) – 4000_0000h to 43FF_FFFFh

• cs1 (Bank 1) – 4400_0000h to 47FF_FFFFh
The bank select signals
arrive at the processor's
wrapper component in
the FPGA on the
PER_CS bus.

• cs2 (Bank 2) – 4800_0000h to 4BFF_FFFFh

• cs3 (Bank 3) – 4C00_0000h to 4FFF_FFFFh

• cs4 (Bank 4) – 5000_0000h to 53FF_FFFFh

• cs5 (Bank 5) – 5400_0000h to 57FF_FFFFh

• cs6 (Bank 6) – 5800_0000h to 5BFF_FFFFh

The block of addresses between 5C00_0000h and 5FFF_FFFFh are RESERVED. Software should not access this range of
addresses as doing so will not generate a data abort.

In addition, the lowest bank of external memory – Bank 0 – is mirrored to the lowest page (512MBytes) of the processor's
address space, in the range 0000_0000h to 1FFF_FFFFh. This occurs by default after a reset is issued and ensures that
exception vectors are correctly placed at addresses 0000_0000h to 0000_001Ch.

Of the seven banks of external memory available, six (cs0-cs5) are used by the ARM720T_LH79520 wrapper when mapping
external devices defined in the FPGA.

When configuring the processor's memory from within the FPGA design, the External Static Memory is simplified by dividing it
into three regions:

• Peripheral I/O – Bank 5

• External Memory – Banks 1-4

• Internal Memory – Bank 0.

Figure 7 summarizes how these three regions correspond (or are mapped into) the External Static Memory regions of the
processor's full address space.

Figure 7. How FPGA-based memory and peripherals map into the physical LH79520's address space.

Internal Memory
The internal "Low" or "Boot" RAM is built using true dual-port FPGA block RAM memory. As such, it can be read or written on
both sides, simultaneously, in a single cycle.

This memory still has the standard limitation of load delay slots, because the load from memory happens further down the
pipeline, after the Execute stage. As a result, any operation that requires loaded data in the cycle immediately after the load will
cause the processor to insert a load stall, holding the first half of the pipeline for one cycle while the data becomes available.

Other than this single limitation, the RAM block is as fast as the internal processor registers themselves.

CR0162 (v2.0) March 10, 2008 13

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

The size of the RAM can vary between 1KB and 16MB, dependent on the availability of embedded block RAM in the target
FPGA device used. Memory size is configured in the Internal Processor Memory region of the Configure (32-bit Processors)
dialog (see the section Configuring the Processor).

Covering the processor's address space between 0000_0000h and 00FF_FFFFh, it will contain the reset and interrupt vectors,
as well as any speed or latency-sensitive code or data.

External Memory
Memory devices defined in the FPGA design are mapped into banks 1-4 of the processor's External Static Memory. Providing
for 256MB (64MB per bank), it covers the address space between 4400_0000h and 53FF_FFFFh.

The physical LH79520 device's External Bus Interface (EBI) provides a 26-bit address bus. In order to work with the wrapper's
Wishbone External Memory interface, which has 32-bit addressing, this 24-bit address is converted to a 32-bit address internal
to the wrapper.

The first part of the conversion involves the use of the value on the PER_WEB bus to evaluate the last two bits of the external
memory address as follows:

When PER_WEB = 0000, EXTMEMLow2Bits = "00"

When PER_WEB = 1100, EXTMEMLow2Bits = "00"

When PER_WEB = 0011, EXTMEMLow2Bits = "10"

When PER_WEB = 1110, EXTMEMLow2Bits = "00"

When PER_WEB = 1101, EXTMEMLow2Bits = "01"

When PER_WEB = 1011, EXTMEMLow2Bits = "10"

When PER_WEB = 0111, EXTMEMLow2Bits = "11"

The full address sent out on the ME_ADR_O bus is then determined, dependent on the memory bank being addressed, as
follows:

PER_CS(1) = 0 : ME_ADR_O = "010001" & PER_ADDR(25..2) & EXTMEMLow2Bits

PER_CS(2) = 0 : ME_ADR_O = "010010" & PER_ADDR(25..2) & EXTMEMLow2Bits

PER_CS(3) = 0 : ME_ADR_O = "010011" & PER_ADDR(25..2) & EXTMEMLow2Bits

PER_CS(4) = 0 : ME_ADR_O = "010100" & PER_ADDR(25..2) & EXTMEMLow2Bits

PER_CS(5) = 0 : ME_ADR_O = "00" & PER_ADDR(23..2) & EXTMEMLow2Bits

External Memory Interface Time-out
A simple time-out mechanism for the interface handles the case when attempting to access an address that does not exist, or if
the addressed target slave device is not operating correctly. This mechanism ensures that the processor will not be ‘locked’
indefinitely, waiting for an acknowledgement on its ME_ACK_I input.

After the ME_STB_O output is taken High a timer built-in to Altium Designer's ARM720T_LH79520 wrapper is started and the
physical ARM720T processor, which normally times out after 16 cycles, is requested to wait. If, after 4096 cycles of the external
clock signal (CLK_I), an acknowledge signal fails to appear from the addressed slave memory device, the wait request to the
ARM720T is dropped, the processor times out normally and the current data transfer cycle is forcibly terminated.

The ACK_O signal from a slave device should not be used as a ‘long delay’ hand-shaking mechanism. Where such a
mechanism needs to be implemented, either use polling or interrupts.

Peripheral I/O
The processor's Wishbone Peripheral I/O Interface is a one-way Wishbone Master, handling I/O in a very similar way to external
memory. The port can be used to communicate with any Wishbone Slave peripheral device.

Devices are mapped into bank 5 of the processor's External Static Memory and covers the address space between 5400_0000h
and 54FF_FFFFh. This address space of 16MB allows a physical address bus size of 24 bits.

Peripheral I/O Interface Time-out
A simple time-out mechanism for the interface handles the case when attempting to access an address that does not exist, or if
the addressed target slave device is not operating correctly. This mechanism ensures that the processor will not be ‘locked’
indefinitely, waiting for an acknowledgement on its IO_ACK_I input.

After the IO_STB_O output is taken High a timer built-in to Altium Designer's ARM720T_LH79520 wrapper is started and the
physical ARM720T processor, which normally times out after 16 cycles, is requested to wait. If, after 4096 cycles of the external

14 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

clock signal (CLK_I), an acknowledge signal fails to appear from the addressed slave peripheral device, the wait request to the
ARM720T is dropped, the processor times out normally and the current data transfer cycle is forcibly terminated.

The ACK_O signal from a slave peripheral should not be used as a ‘long delay’ hand-shaking mechanism. Where such a
mechanism needs to be implemented, either use polling or interrupts.

For more information on connection of slave physical memory and peripheral I/O devices to the processor's Wishbone
interfaces, refer to the application note Connecting Memory and Peripheral Devices to a 32-bit Processor.

Data Organization
Data organization refers to the ordering of the data during transfers. There are two general types of ordering:
• BIG ENDIAN – the most significant portion of an operand is stored at the lower address

• LITTLE ENDIAN – the most significant portion of an operand is stored at the higher address.

The ARM720T_LH79520 supports both of these, but is left in its default Little Endian mode after a reset. To use Big Endian data,
you would need to configure the processor accordingly. Refer to the ARM720T Technical Reference Manual for further
information.

Words, Half-Words and Bytes
The ARM720T_LH79520 operates on the following data sizes:

• 32-bit words

• 16-bit half-words

• 8-bit bytes.

There are dedicated load and store instructions for these three data types.

Figure 8 shows how these different sizes of data are organized relative to each other over an 8-byte memory range in the
ARM720T_LH79520.

Word-1 Word-0

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

Half-3 Half-2 Half-1 Half-0

15 8 7 0 15 8 7 0 15 8 7 0 15 8 7 0

Byte-7 Byte-6 Byte-5 Byte-4 Byte-3 Byte-2 Byte-1 Byte-0

7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0

Figure 8. Organization of data types for the ARM720T_LH79520 (Little Endian).

Physical Interface to Memory and Peripherals
The ARM720T_LH79520's physical interface to the outside world is always 32 bits wide. Since the addressing has a byte-level
resolution, this means that up to four "packets" of data (bytes) can be loaded or stored during a single memory access. To
accommodate this requirement all memory accesses (8-bit, 16-bit and 32-bit) are handled in a specific way.

Each 32-bit read and write can be considered as a read or write through four "byte-lanes". These byte-lanes are marked as valid
by the corresponding bits in the PER_WEB[3..0] and subsequent SEL_O[3..0] signal of the relevant Wishbone interface
(External Memory or Peripheral I/O). Each of these bits will be active if the byte data in that lane is valid. This allows a single
byte to be written to 32-bit wide memory without needing to use a slower read-modify-write cycle.

The instructions of the ARM720T_LH79520 require that all 32-bit load/store operations be aligned on 4-byte boundaries and all
16-bit load/store operations be aligned on 2-byte boundaries. Byte operations (8-bit) can be to any address.

To complete a byte load or store, the ARM720T_LH79520 will position the byte data in the correct byte-lane and set the
PER_WEB/SEL_O signal for that lane active. The memory hardware must then only enable writing on the relevant 8-bits of data
from the 32-bit word.

When reading, the ARM720T_LH79520 will put the relevant 8- or 16-bit value into the LSB's of the 32-bit word. What happens
with the remaining bits depends on the operation:

CR0162 (v2.0) March 10, 2008 15

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

• for an unsigned read, the processor will pad-out the remaining 24 or 16 bits respectively with zeroes

• for a byte load/store, the processor will sign-extend from bit 8

• for a half-word load/store, the processor will sign-extend from bit 16.

Peripheral I/O
For memory I/O the process described happens transparently, because memory devices are always seen by the processor as
32 bits wide. Even when connecting to small 8- or 16-bit physical memories, the interfacing Memory Controller device will, as far
as the processor is concerned, make the memory look like it is 32 bits wide.

For peripheral devices, the process is not so simple. 32-bit wide peripheral devices behave like memory devices, although they
may or may not support individual byte-lanes. These devices should therefore be accessed using the 32-bit LW and SW
instructions. For C-code, this means declaring the interface to the device as 32 bits wide, for example:
#define Port32 (*(volatile unsigned int*) Port32_Address)

This will result in the software using LW and SW instructions to access the device.

If the 32-bit peripheral does support byte-lanes (i.e. it has a SEL_I[3..0] input), then smaller accesses can be performed using
the 8-bit LBU and SB or 16-bit LHU and SH instructions.

For smaller devices, there needs to be translation of the 8- or 16-bit values into the relevant byte-lanes in the processor. This is
automatically handled by the Wishbone Interconnect device if it is used to access slave peripheral I/O devices. There is,
however, some hardware penalty for this since it requires an extra 4:1 8-bit multiplexer for 8-bit devices or a 2:1 16-bit
multiplexer for 16-bit devices.

16-bit peripheral devices should be accessed using the 16-bit LHU and SH instructions. For C-code, this means declaring the
interface to the device as 16 bits wide, for example:
#define Port16 (*(volatile unsigned short*) Port16_Address)

This will result in the software using LHU and SH instructions to access the device.

8-bit peripheral devices should be accessed using the 8-bit LBU and SB instructions. For C-code, this means declaring the
interface to the device as 8 bits wide, for example:
#define Port8 (*(volatile unsigned char*) Port8_Address)

This will result in the software using LBU and SB instructions to access the device.

There are some trade-offs that may need to be considered when deciding whether to use 8-, 16- or 32-bit wide devices. It may
require significantly less hardware to implement a single 32-bit wide I/O port than it would to implement four separate 8-bit ports.
If however, the natural format of the data packets is 8-bits and hardware size is not a constraint, then it may be better to use 8-
bit ports since there will be no need to use software to break up a 32-bit value into smaller components.

If you are only accessing 8-bits at any one time, then software may also execute faster when using 8-bit wide peripherals, since
there is need for extra instructions to extract the 8-bit values from the 32-bit values.

16 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Hardware Description
For detailed information about the hardware and functionality of the ARM720T_LH79520 processor, including internal registers,
refer to the following reference guide, available from the ARM website:

• ARM720T Technical Reference Manual

Clocking
The signal ARM7_SYS_CLK sent from the processor wrapper to the physical processor itself is simply the internally-routed
CLK_I signal. On the physical device side, the ARM7_SYS_CLK signal (arriving as CLKIN) is fed into a PLL. The physical
device generates the CLKOUT signal, which is then sent back into the FPGA (arriving at the wrapper as PER_CLK), where it is
used to correctly clock signals to/from the wrapper.

ARM7_SYS_CLK – and therefore CLK_I – must be 100MHz, in order for the PLL to achieve stable locking.

Reset
The signal ARM7_SYS_RESET sent from the processor wrapper to the physical processor itself (arriving as nRESETIN) is
simply the internally-routed RST_I signal. A system reset of the FPGA can therefore also be used to reset the physical
processor as well.

Conversely, the physical processor can issue a reset of the system, the required signal of which (nRESETOUT) is passed into
the FPGA, ultimately arriving at the wrapper on the PER_RESET line.

Interrupts
Although the ARM720T_LH79520 wrapper has provision for 32 interrupt lines, the physical LH79520 device supports only 8
external interrupts. Of these, we use only 5. The least significant 5 lines of the INT_I bus are connected through to the PER_INT
bus.

These external interrupts are handled by a Vectored Interrupt Controller (VIC) – part of the physical LH79520 device, but
external to the ARM720T processor itself. They appear as interrupts 0 to 4. The Interrupt Controller combines these signals into
a single signal sent to the processor's Noncritical interrupt input.

Interrupts generated by Altium Designer Wishbone peripherals have positive polarity and are level sensitive. You will need to
load the least significant 10 bits of the LH79520's Interrupt Configuration Register (IntConfig) with 0101010101 to ensure
that these signals are set to trigger on a High level.

The pins to which these external interrupts enter the LH79520 device are multiplexed. Depending on the configuration of the
pins, they are either set for use as external interrupts or for some other usage. After a reset, the pins associated with
external interrupts 3 and 4 are, by default, configured to be used as interrupts. However, the pins associated with interrupts
0-2 require to be configured as such. This is done by setting bits 2-4 of the LH79520's Miscellaneous Pin Multiplexing
Register (MiscMux) High.

Detailed information on the operation of the LH79520's Interrupt Controller can be found in the Exceptions and Interrupts
section of the LH79520 System-on-Chip User's Guide. For information on pin configuration, refer to the section I/O Control
and Multiplexing.

CR0162 (v2.0) March 10, 2008 17

http://www.arm.com/

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Wishbone Communications
The following sections detail the standard handshaking that takes place when the processor communicates to a slave peripheral
or memory device connected to the relevant Wishbone interface port. Both of the ARM720T_LH79520's Wishbone ports can be
configured for 8-, 16- or 32-bit data transfer, depending on the width of the data bus supported by the connected slave device.
Configuration is achieved using the relevant IO_SEL_O or ME_SEL_O output, which defines where on the corresponding
DAT_O and DAT_I lines the data appears when writing and reading respectively.

Writing to a Slave Wishbone Peripheral Device
Data is written from the host processor (Wishbone Master) to a Wishbone-compliant peripheral device (Wishbone Slave) in
accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as
follows:

• The host presents an address on its IO_ADR_O output for the register it wants to write to and valid data on its IO_DAT_O
output. It then asserts its IO_WE_O output to specify a Write cycle

• The host defines where the data will be sent on the IO_DAT_O line using its IO_SEL_O signal

• The slave device receives the address at its ADR_I input and prepares to receive the data

• The host asserts its IO_STB_O and IO_CYC_O outputs, indicating that the transfer is to begin. The slave device, monitoring
its STB_I and CYC_I inputs, reacts to this assertion by latching the data appearing at its DAT_I input into the requested
register and asserting its ACK_O signal – to indicate to the host that the data has been received

• The host, monitoring its IO_ACK_I input, responds by negating the IO_STB_O and IO_CYC_O signals. At the same time,
the slave device negates the ACK_O signal and the data transfer cycle is naturally terminated.

Reading from a Slave Wishbone Peripheral Device
Data is read by the host processor (Wishbone Master) from a Wishbone-compliant peripheral device (Wishbone Slave) in
accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as
follows:

• The host presents an address on its IO_ADR_O output for the register it wishes to read. It then negates its IO_WE_O output
to specify a Read cycle

• The host defines where it expects the data to appear on its IO_DAT_I line using its IO_SEL_O signal

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the selected register

• The host asserts its IO_STB_O and IO_CYC_O outputs, indicating that the transfer is to begin. The slave device, monitoring
its STB_I and CYC_I inputs, reacts to this assertion by presenting the valid data from the requested register at its DAT_O
output and asserting its ACK_O signal – to indicate to the host that valid data is present

• The host, monitoring its IO_ACK_I input, responds by latching the data appearing at its IO_DAT_I input and negating the
IO_STB_O and IO_CYC_O signals. At the same time, the slave device negates the ACK_O signal and the data transfer
cycle is naturally terminated.

Writing to a Slave Wishbone Memory Device
Data is written from the host processor (Wishbone Master) to a Wishbone-compliant memory device or memory controller
(Wishbone Slave) in accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can
be summarized as follows:

• The host presents an address on its ME_ADR_O output for the address in memory that it wants to write to and valid data on
its ME_DAT_O output. It then asserts its ME_WE_O output to specify a Write cycle

• The host defines where the data will be sent on the ME_DAT_O line using its ME_SEL_O signal

• The slave device receives the address at its ADR_I input and prepares to receive the data

• The host asserts its ME_STB_O and ME_CYC_O outputs, indicating that the transfer is to begin. The slave device,
monitoring its STB_I and CYC_I inputs, reacts to this assertion by storing the data appearing at its DAT_I input at the
requested address and asserting its ACK_O signal – to indicate to the host that the data has been received

• The host, monitoring its ME_ACK_I input, responds by negating the ME_STB_O and ME_CYC_O signals. At the same time,
the slave device negates the ACK_O signal and the data transfer cycle is naturally terminated.

18 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Reading from a Slave Wishbone Memory Device
Data is read by the host processor (Wishbone Master) from a Wishbone-compliant memory device or memory controller
(Wishbone Slave) in accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can
be summarized as follows:

• The host presents an address on its ME_ADR_O output for the address in memory that it wishes to read. It then negates its
ME_WE_O output to specify a Read cycle

• The host defines where it expects the data to appear on its ME_DAT_I line using its ME_SEL_O signal

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the selected memory
location

• The host asserts its ME_STB_O and ME_CYC_O outputs, indicating that the transfer is to begin. The slave device,
monitoring its STB_I and CYC_I inputs, reacts to this assertion by presenting the valid data from the requested memory
location at its DAT_O output and asserting its ACK_O signal – to indicate to the host that valid data is present

• The host, monitoring its ME_ACK_I input, responds by latching the data appearing at its ME_DAT_I input and negating the
ME_STB_O and ME_CYC_O signals. At the same time, the slave device negates the ACK_O signal and the data transfer
cycle is naturally terminated.

Wishbone Timing
Figure 9 shows the signal timing for a standard single Wishbone Write Cycle (left) and Read Cycle (right), respectively. The
timing diagrams are presented assuming point-to-point connection of the Master and Slave interfaces, with only signals on the
Master side of the interface shown. Note that cycle speed can be throttled by the Slave device inserting wait states (represented
as WSS on the diagrams) before asserting its acknowledgement line (ACK_I input at the Master side).

Figure 9. Timing diagrams for single Wishbone Write (left) and Read (right) cycles

CR0162 (v2.0) March 10, 2008 19

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Placing an ARM720T_LH79520 in an FPGA design
How the ARM720T_LH79520 is placed and wired within an FPGA design depends on the method used to build that design. The
main processor-based system can be defined purely on the schematic sheet, or it can be contained as a separate OpenBus
System, which is then referenced from the top-level schematic. The following sections take a look at using the processor in both
of these design arenas.

Design using a Schematic only
The partial circuit of Figure 10 shows an example of how an ARM720T_LH79520 is used within a schematic-based FPGA
design, making peripheral devices and memory (not shown) available to the physical processor.

Figure 10. Wiring up the ARM720T_LH79520 wrapper in a schematic-based FPGA design.

Memory and peripheral I/O devices are wired to the wrapper's Wishbone External Memory and Peripheral I/O interfaces in the
same way as for any other 32-bit processor.

The signals in the wrapper's external interface – the interface to the physical processor itself – must be wired to ports that are
mapped accordingly to the required pins of the physical FPGA device in which the FPGA design will be programmed. You must
ensure that the relevant signals from the discrete processor device are wired to these FPGA device pins.

20 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Design Featuring an OpenBus System
Figure 11 illustrates identical use of the ARM720T_LH79520 within a design where the main processor system has been
defined as an OpenBus System. Peripherals (and memory) are connected to the processor through an Interconnect component.
The OpenBus System environment is a much more abstract and intuitive place to create a design, where the interfaces are
reduced to single ports and connection is made courtesy of single links.

Figure 11. Wiring up the ARM720T_LH79520 wrapper as part of an OpenBus System.

Much of the configuration is handled for you, with each peripheral added as a slave to the Interconnect component by virtue of
its link. The Interconnect contains information regarding each peripheral's address bus size and a default decoder address width.
All that is really needed is specification of the base address for each peripheral – where in the ARM720T_LH79520's address
space these devices are to be mapped.
An OpenBus System is defined on an OpenBus System Document (*.OpenBus). This document is referenced from the FPGA
design's top-level schematic sheet through a sheet symbol. Figure 12 illustrates the interface circuitry between the
ARM720T_LH79520's physical processor interface and the physical pins of the target FPGA device – represented by the
PROCESSOR_ARM7_LH79520 port component.

CR0162 (v2.0) March 10, 2008 21

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Figure 12. Wiring the OpenBus System-based ARM720T_LH79520 to the physical pins of the FPGA device.

For more information on the concepts and workings of the OpenBus System, refer to the article AR0144 Streamlining
Processor-based FPGA design with the OpenBus System.

Facilitating Communications
The host computer is connected to the ARM720T_LH79520 using the IEEE 1149.1 (JTAG) standard interface. You must ensure
that the physical JTAG lines are appropriately routed between the physical devices on your board.

Verification that the JTAG signals are indeed propagating through the intended physical devices as required is obtained by the
respective physical devices appearing on the Hard Devices chain within the Devices view (View » Devices View). Figure 13
illustrates this for a board containing a Sharp LH79520 and a Xilinx Spartan 3 FPGA (XC321000-4FG456C).

Figure 13. Detected physical devices appearing in the Hard Devices JTAG chain.

22 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

As the physical ARM720T processor does not reside within an FPGA, communications between the host computer and the
ARM720T are carried out through the Hard Devices JTAG chain. This is a departure from the normal way of communicating with
FPGA-based, debug-enabled devices, such as the 'soft' processors and virtual instruments, whereby communication is carried
out through the Soft Devices JTAG chain, and in accordance with the Nexus 5001 standard.

For further information on the JTAG communications, refer to the article AR0130 PC to NanoBoard Communications.

Additional 'Soft' Devices in Your Design
If your design incorporates FPGA-based 'soft' processors and virtual instruments, in addition to the discrete ARM720T
processor, these devices will appear in the Soft Devices chain of the Devices view. The Soft Devices chain is determined when
the design has been implemented within the target FPGA device. It is not a physical chain, in the sense that you can see no
external wiring – the connections required between the Nexus-enabled devices are made internal to the FPGA itself. Figure 14
shows an example of devices presented in this chain.

Figure 14. Nexus-enabled processor (TSK3000A) and virtual instruments appearing in the Soft Devices chain.

Enabling the Soft Devices JTAG Chain
In order to communicate with soft devices in a design (processors and/or virtual instruments) you must enable the Soft Devices
JTAG chain within the design. This is done by placing a JTAG Port (NEXUS_JTAG_CONNECTOR) and corresponding Soft Nexus-
Chain Connector (NEXUS_JTAG_PORT) on the top schematic sheet of the design, as shown in Figure 15.

If your design incorporates just the
discrete ARM720T_LH79520, with
no additional 'soft' devices, then
these Nexus JTAG devices are not
required.

Figure 15. Implementing the soft devices chain within the design.

These devices can be found in the FPGA NB2DSK01 Port-Plugin (FPGA NB2DSK01 Port-Plugin.IntLib) and FPGA
Generic (FPGA Generic.IntLib) integrated libraries respectively, both of which are located in the \Library\Fpga folder of
the installation.

Downloading Your Design
Download of a design which incorporates a discrete processor such as the ARM720T_LH79520 is performed in two stages:

• Download of the FPGA design to the target physical FPGA device. This includes downloading the respective embedded
code to any 'soft' processors used within the design. Click on the FPGA device in the Hard Devices chain to access the
process flow required to facilitate this part of the download, as illustrated in the following image. The standard process flow is
followed when programming the FPGA device – Compile, Synthesize, Build and Program.

CR0162 (v2.0) March 10, 2008 23

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

• Download of the embedded code targeted to the discrete ARM720T device. Click on the LH79520 device in the Hard
Devices chain to access the process flow required to download the embedded software to the processor, as illustrated below.
Notice that the process flow consist of compilation and download only.

On-Chip Debugging
To facilitate real-time debugging of the processor, the ARM720T_LH79520 includes On-Chip Debug hardware that can be
accessed using the standard JTAG interface.

With this hardware, the following set of additional functional features are provided:

• Reset, Go, Halt processor control

• Single or multi-step debugging

• Read-write access for internal processor registers

• Read-write access for memory and I/O space

• Unlimited software breakpoints.

Accessing the Debug Environment You can have multiple debug
sessions running simultaneously
– one per embedded software
project associated with a
processor in the design.

To start a debug session for the
embedded code running in a
'soft' processor in the design,
simply right-click on the icon for
that processor, in the Soft
Devices region of the view, and
choose the Debug command
from the menu.

Debugging of the embedded code within an ARM720T_LH79520 processor is carried out by
starting a debug session. Prior to starting the session, you must ensure that the FPGA design has
been downloaded to the target FPGA device and the embedded code has been downloaded to the
physical ARM720T device (see Downloading your design).

To start a debug session for the embedded code running in the ARM720T_LH79520, simply right-
click on the icon for the physical device in the Hard Devices region of the Devices view, and
choose the Debug command from the pop-up menu that appears.

The embedded project for the software running in the processor will initially be recompiled and the
debug session will commence. The relevant source code document (either Assembly or C) will be
opened and the current execution point will be set to the first line of executable code (see Figure
16).

24 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Figure 16. Starting an embedded code debug session.

The debug environment offers the full suite of tools you would expect to see in order to efficiently debug the embedded code.
These features include:

• Setting Breakpoints

• Adding Watches
• Stepping into and over at both the source (*.C) and instruction (*.asm) level

• Reset, Run and Halt code execution

• Run to cursor
All of these and other feature commands can be accessed from the Debug menu or the associated Debug toolbar.

Various workspace panels are accessible in the debug environment, allowing you to view/control code-specific features, such as
Breakpoints, Watches and Local variables, as well as information specific to the processor in which the code is running, such as
memory spaces and registers.
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by clicking on the Embedded
button at the bottom of the application window and choosing the required panel from the subsequent pop-up menu.

CR0162 (v2.0) March 10, 2008 25

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Figure 17. Workspace panels offering code-specific information and controls

Figure 18. Workspace panels offering information specific to the parent processor.

Full-feature debugging is of course enjoyed at the source code level – from within the source
code file itself. To a lesser extent, debugging can also be carried out from a dedicated debug
panel for the processor. To access1 this panel, first double-click on the icon representing the
physical LH79520 device, in the Hard Devices region of the view. The Instrument Rack –
Hard Devices panel will appear, with the ARM720T_LH79520 device added to the rack (Figure
19).

Any 'soft' core processor that you
have included in the design will
appear, when double-clicked, as an
Instrument in the Instrument Rack
– Soft Devices panel (along with
any other Nexus-enabled devices).

1 The debug panels for each of the debug-enabled processors are standard panels and, as such, can be readily accessed from the View »
Workspace Panels » Instruments sub menu, or by clicking on the Instruments button at the bottom of the application window and choosing
the required panel – for the processor you wish to debug – from the subsequent pop-up menu.

26 CR0162 (v2.0) March 10, 2008

 ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Figure 19. Accessing debug features from the processor's instrument panel

The Nexus Debugger button provides access to the associated debug panel (Figure 20), which in turn allows you to interrogate
and to a lighter extent control, debugging of the processor and its embedded code, notably with respect to the registers and
memory.

One key feature of the debug panel is that it enables you to specify (and therefore change) the embedded code (HEX file) that is
downloaded to the processor, quickly and efficiently.

Figure 20. Processor debugging using the associated processor debug panel.

For more information on the content and use of processor debug panels, press F1 when the cursor is over one of these
panels.

For further information regarding the use of the embedded tools for the ARM720T_LH79520, see the Using the ARM
Embedded Tools guide.

For comprehensive information with respect to the embedded tools available for the ARM720T_LH79520, see the ARM
Embedded Tools Reference.

CR0162 (v2.0) March 10, 2008 27

ARM720T_LH79520 – Sharp LH79520 SoC with ARM720T 32-bit RISC Processor

Instruction Set
The ARM7TDMI-S core processor – on which the ARM720T is based – is an implementation of the ARM architecture v4T. For
an overview of the ARM instructions available for this processor, refer to the following documents, available from the ARM
website:

• ARM720T Technical Reference Manual

• ARM Instruction Set Quick Reference Card

For detailed information with respect to the ARM instruction set, including instruction encoding and an alphabetical listing of all
instructions by mnemonic, refer to a printed publication such as the ARM Architecture Reference Manual.

Revision History

Date Version No. Revision

19-Oct-2007 1.0 Initial release

10-Mar-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

28 CR0162 (v2.0) March 10, 2008

http://www.arm.com/

	Features
	Available Devices
	 RISC Processor Background
	History
	“Soft” FPGA Processors
	Why use “Soft” Processors?
	Field Reconfigurable Hardware
	Faster Time to Market
	Improving and Extending Product Life-Cycles
	Creating Application-Specific Coprocessors
	Implementing Multiple Processors within a Single Device
	Lowering System Cost
	Avoiding Processor Obsolescence

	The ARM720T_LH79520
	Wishbone Bus Interfaces
	Wishbone OpenBUS Processor Wrappers
	Processor Abstraction System
	Design Migration

	 Architectural Overview
	Symbol
	Pin Description
	Configuring the Processor

	 Memory & I/O Management
	Defining the Memory Map
	Building the Bridge between the Hardware and Software
	Dedicated System Interconnect Components
	Configuring the Processor

	Division of Memory Space
	Internal Memory
	External Memory
	External Memory Interface Time-out

	Peripheral I/O
	Peripheral I/O Interface Time-out

	Data Organization
	Words, Half-Words and Bytes
	Physical Interface to Memory and Peripherals
	Peripheral I/O

	 Hardware Description
	Clocking
	Reset
	Interrupts

	 Wishbone Communications
	Writing to a Slave Wishbone Peripheral Device
	Reading from a Slave Wishbone Peripheral Device
	Writing to a Slave Wishbone Memory Device
	Reading from a Slave Wishbone Memory Device
	Wishbone Timing

	 Placing an ARM720T_LH79520 in an FPGA design
	Design using a Schematic only
	 Design Featuring an OpenBus System
	Facilitating Communications
	Additional 'Soft' Devices in Your Design
	Enabling the Soft Devices JTAG Chain

	Downloading Your Design

	On-Chip Debugging
	Accessing the Debug Environment

	 Instruction Set
	Revision History

