ix: gridconnect.

DSTni-EX User Guide

Section Five

Part Number 900-335
Revision A 3/04

Copyright & Trademark

© 2003 Lantronix, Inc. All rights reserved.

Lantronix and the Lantronix logo, and combinations thereof are registered trademarks of
Lantronix, Inc. DSTni is a registered trademark of Lantronix, Inc. Ethernet is a registered
trademark of Xerox Corporation. All other product names, company names, logos or other
designations mentioned herein are trademarks of their respective owners.

* Am186 is a trademark of Advanced Micro Devices, Inc.
* Ethernet is a registered trademark of Xerox Corporation.
* SPl is a trademark of Motorola, Inc.

No part of this guide may be reproduced or transmitted in any form for any purpose other than
the purchaser's personal use, without the express written permission of Lantronix, Inc.

Lantronix

15353 Barranca Parkway
Irvine, CA 92618, USA
Phone: 949-453-3990
Fax: 949-453-3995

Technical Support
Phone: 630-245-1445
Fax: 630-245-1717

Master Distributor

Grid Connect

1841 Centre Point Circle, Suite 143
Naperville, IL 60563

Phone: 630-245-1445
www.gridconnect.com

Am186 is a trademark of Advanced Micro Devices, Inc.
Ethernet is a registered trademark of Xerox Corporation.
SPIl is a trademark of Motorola, Inc.

REV Changes Released Date

A Reformat. Add changes from Design 3-24-04
Spec. 1.1

http://www.gridconnect.com/

Warranty

Lantronix warrants each Lantronix product to be free from defects in material and workmanship
for a period specified on the product warranty registration card after the date of shipment.
During this period, if a customer is unable to resolve a product problem with Lantronix Technical
Support, a Return Material Authorization (RMA) will be issued. Following receipt of an RMA
number, the customer shall return the product to Lantronix, freight prepaid. Upon verification of
warranty, Lantronix will -- at its option -- repair or replace the product and return it to the
customer freight prepaid. If the product is not under warranty, the customer may have Lantronix
repair the unit on a fee basis or return it. No services are handled at the customer's site under
this warranty. This warranty is voided if the customer uses the product in an unauthorized or
improper way, or in an environment for which it was not designed.

Lantronix warrants the media containing its software product to be free from defects and
warrants that the software will operate substantially according to Lantronix specifications for a
period of 60 DAYS after the date of shipment. The customer will ship defective media to
Lantronix. Lantronix will ship the replacement media to the customer.

* * * *

In no event will Lantronix be responsible to the user in contract, in tort (including negligence),
strict liability or otherwise for any special, indirect, incidental or consequential damage or loss of
equipment, plant or power system, cost of capital, loss of profits or revenues, cost of
replacement power, additional expenses in the use of existing software, hardware, equipment or
facilities, or claims against the user by its employees or customers resulting from the use of the
information, recommendations, descriptions and safety notations supplied by Lantronix.
Lantronix liability is limited (at its election) to:

refund of buyer's purchase price for such affected products (without interest)
repair or replacement of such products, provided that the buyer follows the above procedures.

There are no understandings, agreements, representations or warranties, express or implied,
including warranties of merchantability or fitness for a particular purpose, other than those
specifically set out above or by any existing contract between the parties. Any such contract
states the entire obligation of Lantronix. The contents of this document shall not become part of
or modify any prior or existing agreement, commitment or relationship.

For details on the Lantronix warranty replacement policy, go to our web site at
http://www.lantronix.com/support/warranty/index.html

http://www.lantronix.com/support/warranty/index.html

Contents

Copyright & Trademark i
Warranty ii
Contents iii
List of Tables iv
List of Figures Vi
1: About This User Guide 1
Intended Audience 2
Conventions 2
Navigating Online 2
Organization 3
2. SPI Controller 4
Theory of Operation 4
SPI Background 4
DSTni SPI Controller 4
SPI Controller Register Summary 5
SPI Controller Register Definitions 6
SPI_DATA Register 6
CTL Register 7
SPI_STAT Register 8
SPI_SSEL Register 9
DVD_CNTR_LO Register 10
DVD_CNTR_HI 10

3: I’C Controller 11
Features 11
Block Diagram 12
Theory of Operation 12
I°C Background 12
I°C Controller 13
Operating Modes 13
Bus Clock Considerations 21
Programmer’s Reference 22
I°C Controller Register Summary 22
I°C Controller Register Definitions 23
Slave Address Register 23
Data Register 24
Control Register 25
Status Register 26
Clock Control Register 28
Extended Slave Address Register 29
Software Reset Register 29
4: USB Controller 30
Features 30
Theory of Operation 31
USB Background 31
USB Interrupt 31
USB Core 31
USB Hardware/Software Interface 32
USB Transaction 37
USB Register Summary 38
USB Register Definitions 39
Interrupt Status Register 39
Error Register 41
Status Register 43
Address Register 45
Frame Number Registers 46
Token Register 47
Endpoint Control Registers 49

Host Mode Operation 50

Sample Host Mode Operations 51
USB Pull-up/Pull-down Resistors 53
USB Interface Signals 54
5: CAN Controllers 55
CANBUS Background 56
Data Exchanges and Communication 56
Arbitration and Error Checking 56
CANBUS Speed and Length 57
Features 57
Theory of Operation 58
CAN Register Summaries 58
Register Summary 58
Detailed CAN Register Map 60
CAN Register Definitions 63
TX Message Registers 63
Tx Message Registers 64
RX Message Registers 66
Rx Message Registers 67
Error Count and Status Registers 70
Interrupt Flags 72
Interrupt Enable Registers 73
CAN Operating Mode 74
CAN Configuration Registers 75
Acceptance Filter and Acceptance Code Mask 78
CANbus Analysis 81
CAN Bus Interface 84
Interface Connections 84
List of Tables
Table 2-1. SPI Controller Register SUMMArYcccuviiiiiiiiii e 5
Table 2-2. SPI_DATA REGISIENcoiiiiiiiii e 6
Table 2-3. SPI_DATA Register Definitions.............cooiiiiiiiiiiiie e 6
Table 2-4. CTL REGISIEIt et e e e e e e e e e e e e e raeeeeesanes 7
Table 2-5. CTL Register Definitionscueeiiiiiiieiiie e 7
Table 2-6. SPI_STAT REGISIE......cii it e et e e e e e nneeeeens 8
Table 2-7. SPI_STAT Register Definitionsocoiiiiiiii e 8
Table 2-8. SPI_SSEL REGISIEN.......oiiiiiii i 9
Table 2-9. SPI_SSEL Register Definitionsccoiiiiiiiiiiii e 9
Table 2-10. BCNT Bit SEtiNgSueieiiiiiiiiiiie et 9
Table 2-11. DVD_CNTR _LO REGISENccoiiiiiiiiiee ettt e 10
Table 2-12. DVD_CNTR_LO Register Definitions.........cc..vvveiiiiiiiiiiiiiiee e 10
Table 2-13. DVD_CNTR_HI REGISIEN........cciitiiiiiiiiit ittt 10
Table 2-14. DVD_CNTR_HI Register Definitionscccviiiiiiiiiee e 10
Table 3-1. Master Transmit Status Codes...........coooi i 14
Table 3-2. Codes After Servicing Interrupts (Master Transmit)cococceeiiiiiiini e 15
Table 3-3. Status Codes After Each Data Byte Transmitscccoceiriiiiiiiiiiii e 16
Table 3-4. Master Receive Status COAES..........uueiiiiiiiiiiiiii e 17
Table 3-5. Codes After Servicing Interrupt (Master Receive).........cccccooeeviiviiiiiiiiiiciiiiee e 18
Table 3-6. Codes After Receiving Each Data Byte............cccoeeiieiiiiiiiieiiiiciieee e 19
Table 3-7. I°C Controller RegiSter SUMMAIYooivoeveeeeeeeeeeeeeeeeeeeeesese e seeseeesen s 22
Table 3-8. Slave Address REGISLEN.........co it e e 23
Table 3-9. Address Register Definitions...........cooiiiiiii i 23
Table 3-10. Data REGISIENcooiiiiiiiii e 24
Table 3-11. Data Register Definitionscooiiiiiiiiiii e 24
Table 3-12. CONtrol REGISTENuiiiiiiie e e 25
Table 3-13. Control Register Definitionsooiiiiiiiiiiiee e 25
Table 3-14. Status REGISTENooiiieee et e e e e e 26
Table 3-15. Status Register Definitions.............uviiiiiiiiiie e 27
Table 3-16. STAtUS COUESceeiiiiiieiiie et e e et e et e e e e nnee e e e enneeeeanneeen 27

Table 3-17

. Clock Control REGISIENeiieiiiee et e

Table 3-18. Clock Control Register Definitions

Table 3-19. Extended Slave Address Register

Table 3-20. Extended Slave Address Register Definitions............ccccoviiiiicni e 29
Table 3-21. Software Reset REGISIEroooiiiiiiiii e 29
Table 3-22. Software Reset Register Definitions............ccocoiiiiiiiiiiii e 29
Table 4-1. USB Data Dir€CHONc.ciiiiiiiiiiiii ettt 34
Table 4-2. 16-Bit USB AQAIESScoiiuiiiiieiiii ettt 34
Table 4-3. 16-Bit USB Address Definitionsccccviiiiiiiiiiiic e 34
Table 4-4. BDT Data Used by USB Controller and MiCroproCessor.........c..cccueeeviveeernceeeesineennn 35
Table 4-5. USB Buffer Descriptor FOrmMatoooiiiiiiiiii e 35
Table 4-6. USB Buffer Descriptor Format Definitions.............coceiiiiiiiiiic e 36
Table 4-7. USB RegiSter SUMMATYcoiuiiiiiiiiiiiiiie ettt
Table 4-8. Interrupt Status Register

Table 4-9. 16- Interrupt Status Register Definitionscccccooeiiiiiiiie e, 39
Table 4-10. Error Interrupt Status RegIStercoooiiiiiiiiiiie e 41
Table 4-11. 16- Error Interrupt Status Register Definitionscccccoveiiveiiiie i 41
Table 4-12. StatuS REGISTET ...c.o i e e e seeeas 43
Table 4-13. Status Register Definitions............coeiiiiiii e 43
Table 4-14. ADAress REGISTEr ... et e e eeaa e e 45
Table 4-15. 16- Address Register Definitions...........cccooiiiiiiiiiiiiii e 45
Table 4-16. Frame Number ReGISIer...........ooiiiiiiiii e 46
Table 4-17. Frame Number Register Definitionscc..vvveiiiiiiiiiiiiiee e 46
Table 4-18. TOKEN REGISTEN.......ooc it e e e e e e e e e e snnr e e e e aaeeeans 48
Table 4-19. Token Register DefinitioNScceeiiiiiiie e 48
Table 4-20. Valid PID TOKENScooiiiiiiiiiiee ettt e e 48
Table 4-21. Endpoint Control REGISIErSco.eeiiiiiiieeee e 49
Table 4-22. Endpoint Control Register Definitionsoooiiiiiiie e 49
Table 4-23. Endpoint Control Register Definitionscccooiiiiiiiiiiiiiiee e 50
Table 5-1. Bit Rates for Different Cable Lengths............ccccoiiiiiiiiiiii e 57
Table 5-2. CAN 1/O AQAIESSoiiiiiiiiieetee ettt ettt 58
Table 5-3. CAN Channel Register SUMMAIYc.cooiiiiiiiiiiie et 58
Table 5-4. Detailed CAN ReGiIStEr Mapeeiiiiiiiieeiii et e e 60
Table 5-5. TXMessage_0:1D28 ...t e e e e e e e e e e e 64
Table 5-6. TXMeSSage_0:IDT2......oo it 64
Table 5-7. TxMessage_0:Data 55cooiiiiiiiiii e 64
Table 5-8. TxMessage_0:Data 39........ccooiiiiiiiiiiii e 64
Table 5-9. TxMessage_0:Data 23cooouiiiiiiiiiii e 64
Table 5-10. TXMeSSage_0:Data 7cooiiiiiiiiiii e 64
Table 5-11. TXMessage _O:RTR ...t e e e e e e e e e e e 64
Table 5-12. TxMessage _0:Ctrl FIAQSccooeiuiiiiiiie et 65
Table 5-13. TxMessage_0 Register Definitions.ooceeriiiiiriniii e 65
Table 5-14. RXMeSSage:ID28ottt e e e e e e e 67
Table 5-15. Rx Message: ID28 Register Definitions............ccoooiiiiiiiiiiiie e 67
Table 5-16. RXMESSAGEID T2 ..ottt 67
Table 5-17. Rx Message: ID12 Register Definitions...........ccoooiiiiiiiiiiiieeeee e 67
Table 5-18. Rx Message: Data 55........coooiiiiiiii e 67
Table 5-19. Rx Message: Data 55 Register Definitions.............ccccoviiiieiiiiiiiic e 67
Table 5-20. RX Message: Data 39.......coooiiiiiiiiececce s 68
Table 5-21. Rx Message: Data 39 Register Definitions.ccccviiiiiiriiee e 68
Table 5-22. Rx Message: Data 23.........coo et e e e e 68
Table 5-23. Rx Message: Data 23 Register Definitions...........cccccovviiiiniiic e 68
Table 5-24. RX MeSSage: Data 7..... ...ttt a e e e e e e e 68
Table 5-25. Rx Message: Data 7 Register Definitions............ccoccoiiiiinii 68
Table 5-26. RXMeESSage: RTR......ooi e 69
Table 5-27. Rx Message: RTR Register Definitions............cccoooviiiiiiiiiiiiiiiiee e 69
Table 5-28. RX Message: MSG FIags.ccooioiiieeeeee et 69
Table 5-29. Rx Message: Msg Flags Register Definitions...........ccocccveeiiiiiiic i, 69
Table 5-30. TX/RX Error COUNTccuiiiiiiiiee it 70
Table 5-31. TX\Rx Error Count Register Definitionscccooveiiiiiinii e, 70
Table 5-32. EFrOr StAtUSeeiiiiiiiie et 70
Table 5-33. Error Status Register Definitions ... 70

Table 5-34.
Table 5-35.
Table 5-36.
Table 5-37.
Table 5-38.
Table 5-39.
Table 5-40.
Table 5-41.
Table 5-42.
Table 5-43.
Table 5-44.
Table 5-45.
Table 5-46.
Table 5-47.

Tx/Rx Message Level REGISIENc.eeiiiiiiiieeee e 7

Tx/Rx Message Level Register Definitions.............ccccveiiiireniii e 71
INEEITUPE FIaGS ettt e e e e ee s 72
Interrupt Flag Definitionsooi e 72
Interrupt Enable ReGIStersccuuviiiiiiiiie e 73
Interrupt Enable Register Definitions.cooiiiiiiiiiiiii e 73
Interrupt Enable RegIStErsSccooeieieeeeeeeeeee e 74
Interrupt Enable Register Definitions............ccccoviiiiieiiiiie e 74
Bit Rate DivisSor RegiSter 75
Bit Rate Divisor Register Definitionsccceviiiiiiiiie e 75
Configuration REGISTENcooiiiiiii e
Configuration Register Definitions............ooooiiiiiiiii e
Acceptance Filter Enable Register

Acceptance Filter Enable Register Definitionsccccoovieiiiiiinieieee 78

Table 5-48. Acceptance Mask 0 ReGISTEN ... 78
Table 5-49. Acceptance Mask 0 Register Definitions............coooiiiiiiiiiiiiiiiiieee e 78
Table 5-50. Acceptance Mask Register: ID 12.... ... 79
Table 5-51. Acceptance Mask Register: ID12 Definitionsccccccieviieniie e 79
Table 5-52. Acceptance Mask Register: Data 55...........ccoviiiiiiiiiiii e 79
Table 5-53. Acceptance Mask Register: Data 55 Definitionscccoccveeiiiieeiiiii e 79
Table 5-54. Acceptance Code ReGISErocuiiiiiiiiiiii e 80
Table 5-55. Acceptance Code Register Definitions...........cccoiiiiiiiiiiii e, 80
Table 5-56. Acceptance Mask Register: ID12..........cooiuiiiiiie et 80
Table 5-57. Acceptance Mask Register: ID12 Definitionsccveevieeiiiiiiiiiiie e 80
Table 5-58. Acceptance Mask Register: Data 55...........c.ooeiiiiiiiiiie e 80
Table 5-59. Acceptance Mask Register: Data 55 Definitionscccoeceeeiiieeeiicie e 80
Table 5-60. Arbitration Lost Capture RegiSter...........cooviiiiiiiiiiiiii e 81
Table 5-61. Arbitration Lost Capture Register Definitionscccocvvviiiiicinic e, 81
Table 5-62. Error Capture REGISTENcocuiiiiiiii e 82
Table 5-63. Error Capture Register Definitionscocoeiiiiiiiiiiii e 82
Table 5-64. Frame Reference RegiSter.........c.uvviiiii oot 83
Table 5-65. Error Capture Register Definitionsccveiiiiiiiiiiiiiiee e 83
List of Figures

Figure 3-1. DSTni I°C Controller Block Diagramooeoeiiiic e 12
Figure 4-1. Buffer DescCriptor TabIecooiiiiiiiiie e 33
Figure 4-2. USB ToKen TranSaCioNcccoiuuiiiiiiiiei ettt 37
Figure 3. Enable Host Mode and Configure a Target Device..........cccceevieeiicciiieeei e 51
Figure 4. Full-Speed Bulk Data Transfers to a Target Device.........ccccccvveeiicciiieeie e 52
Figure 4-5. Pull-up/Pull-down USB..........cooiiiiiiie e e 53
Figure 5-1. TX Message Routing

Figure 5-2. RX Message Routing

Figure 5-3. CAN Operating Mode

Figure 5-4. Bit Time, Time Quanta, and Sample Point Relationshipsccccccoviiiiiiinnne. 77
Figure 5-5. CAN BUS INtEITACEeviiiiiiiie e 84
Figure 5-6. CAN CONNECION.........uiiiiie ettt e et e e e e et e e e e e e et e e e e e e e s ensaeaeeaaeeseensnnneeeas 84

Figure 5-7.
Figure 5-8.

POWET TOr CANoeeeeeieeeeeeeeeeeeeeeeeeeteteeaeeeeetasaeasaeaerarsasasssrssssssssssssssssssssssssssssssnssnsnnnes 85
CAN Transceiver and Isolation CirCUitScccooevieiiiiii e 86

vi

mailto:sales@lantronix.com
mailto:eu_sales@lantronix.com
mailto:eu_sales@lantronix.com
mailto:asiapacsales@lantronix.com
mailto:eu_sales@lantronix.com

1: About This User Guide

This User Guide describes the technical features and programming interfaces of the Lantronix
DSTni-EX chip (hereafter referred to as “DSTni").

DSTni is an Application Specific Integrated Circuit (ASIC)-based single-chip solution (SCS) that
integrates the leading-edge functionalities needed to develop low-cost, high-performance device
server products. On a single chip, the DSTni integrates an x186 microprocessor, 16K-byte
ROM, 256K-byte SRAM, programmable input/output (I/O), and serial, Ethernet, and Universal
Serial Bus (USB) connectivity — key ingredients for device- server solutions. Although DSTni
embeds multiple functions onto a single chip, it can be easily customized, based on the
comprehensive feature set designed into the chip.

Providing a complete device server solution on a single chip enables system designers to build
affordable, full-function solutions that provide the highest level of performance in both
processing power and peripheral systems, while reducing the number of total system
components. The advantages gained from this synergy include:

¢ Simplifying system design and increased reliability.

¢ Minimizing marketing and administration costs by eliminating the need to source
products from multiple vendors.

¢ Eliminating the compatibility and reliability problems that occur when combining
separate subsystems.

¢ Dramatically reducing implementation costs.

¢ Increasing performance and functionality, while maintaining quality and cost
effectiveness.

¢ Streamlining development by reducing programming effort and debugging time.
¢ Enabling solution providers to bring their products to market faster.

These advantages make DSTni the ideal solution for designs requiring x86 compatibility;
increased performance; serial, programmable 1/O, Ethernet, and USB communications; and a
glueless bus interface.

Intended Audience

This User Guide is intended for use by hardware and software engineers, programmers, and
designers who understand the basic operating principles of microprocessors and their systems
and are considering designing systems that utilize DSTni.

Conventions

This User Guide uses the following conventions to alert you to information of special interest.
The symbols # and n are used throughout this Guide to denote active LOW signals.

Notes: Notes are information requiring attention.
Navigating Online

The electronic Portable Document Format (PDF) version of this User Guide contains hyperlinks.
Clicking one of these hyper links moves you to that location in this User Guide. The PDF file
was created with Bookmarks and active links for the Table of Contents, Tables, Figures and
cross-references.

Organization

This User Guide contains information essential for system architects and design engineers. The
information in this User Guide is organized into the following chapters and appendixes.

¢ Section 1. Introduction
Describes the DSTni architecture, design benefits, theory of operations, ball
assignments, packaging, and electrical specifications. This chapter includes a
DSTni block diagram.

¢ Section 2: Microprocessor
Describes the DSTni microprocessor and its control registers.

¢ Section 2: SODRAM
Describes the DSTni SDRAM and the registers associated with it.

¢ Section 3: Serial Ports
Describes the DSTni serial ports and the registers associated with them.

¢ Section 3: Programmable Input/Output
Describes DSTni’s Programmable Input/ Output (PIO) functions and the
registers associated with them.

¢ Section 3: Timers
Describes the DSTni timers.
¢ Section 4: Ethernet Controllers
Describes the DSTni Ethernet controllers.
¢ Section 4: Ethernet PHY
Describes the DSTni Ethernet physical layer core.
¢ Section 5: SPI Controller
Describes the DSTni Serial Peripheral Interface (SPI) controller.
¢ Section 5: 12C Controller
Describes the DSTni I°C controller.
¢ Section 5: USB Controller
Describes the DSTni USB controller.
¢ Section 5: CAN Controllers
Describes the DSTni Controller Area Network (CAN) bus controllers.
¢ Section 6: Interrupt Controller
Describes the DSTni interrupt controller.
¢ Section 6: Miscellaneous Registers
Describes DSTni registers not covered in other chapters of this Guide.
¢ Section 6: Debugging In-circuit Emulator (Delce)
¢ Section 6: Packaging and Electrical
Describes DSTni’s packaging and electrical characteristics.
¢ Section 6: Applications
Describes DSTni’s packaging and electrical characteristics.
¢ Section 6: Instruction Clocks
Describes the DSThni instruction clocks.
¢ Section 6: DSTni Sample Code

¢ Section 6: Baud Rate Calculations
Provides baud rate calculation tables.

2. SPI Controller

This chapter describes the DSTni Serial Peripheral Interface (SPI) controller. Topics include:

¢ Theory of Operation on page 4
¢ SPI Controller Register Summary on page 5
¢ SPI Controller Register Definitions on page 6

Theory of Operation

SPI Background

SPl is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of
programmed length (one to eight bits) to be shifted into and out of the device at a
programmable bit-transfer rate.

SPlis an industry-standard communications interface that does not have specifications or a
standards organizing group. As a result, there are no licensing requirements. Because of its
simplicity, SPI is commonly used in embedded systems. Many semiconductor manufacturers
sell a variety of sensor, conversion, and control devices that use SPI.

DSTni SPI Controller

The DSTni SPI controller is located at base 1/0 address B800h. It shares an interrupt with the
I°C controller and connects to interrupt 2. The SPI controller is enabled using the DSTni
Configuration register. If set to 1, the SPI controller is enabled on serial port 3. This bit can
reset to 1 with an external pull-up resistor. Normally it resets to 0 on reset or power-up.

The SPI bus is a 3-wire bus serial bus that links a serial shift register between a master device
and a slave device. This design supports both master and slave operations. Typically, master
and slave devices have an 8-bit shift register, for a combined register of 16 bits. During an SPI
transfer, the master and slave shift registers by eight bits and exchange their 8-bit register
values, starting with the most-significant bit.

The SPI interface is software configurable. The clock polarity, clock phase, SLVSEL polarity,
clock frequency in master mode, and number of bits to be transferred are all software
programmable. SPI supports multiple slaves on a single 3-wire bus by using separate Slave
Select signals to enable the desired slave. Multiple masters are also fully supported and some
support is provided for detecting collisions when multiple masters attempt to transfer at the
same time.

A Wired-OR mode is provided which allows multiple masters to collide on the bus without risk of
damage. In this mode, an external pull-up resistor is required on the Master Out Slave In
(MOSI)) and Master In Slave Out (MISO) pins. The wired-OR mode also allows the SPI bus to
operate as a 2-wire bus by connecting the MOSI and MISO pins to form a single bi-directional
data pin. Generally, pull-ups are recommended on all of the external SPI signals to ensure they
are held in a valid state, even when the SPI interface is disabled. For some device connections,
the ALT mode bit will swap the TX and RX pins.

The SPI controller has an enhanced mode called AUTODRV. This mode is valid in master
mode. In this mode, the SLVSEL pin is driven active when data is written to the data register.
After the last bit of data is shifted out, the SLVSEL goes inactive and an interrupt is generated.
The INVCS bit can generate either a positive or negative true SLVSEL pin.

When operating as a slave, the SPI clock signal (SCLK) must be slower than 1/8th of the CPU
clock (1/16th is recommended).

Note: The SPI is fully synchronous to the CLK signal. As a result, SCLK is sampled and then
operated on. This results in a delay of 3 to 4 clocks, which may violate the SPI specification if
SCLK is faster than 1/8th of the CPU clock. In master mode, the SPI operates exactly on the
proper edges, since the SPI controller is generating SCLK.

The SPI controller uses a 16-bit counter that is continually reloaded from DVD_CNTR_HI and
DVD_CNTR_LO. The counter divides the CPU clock by this divider and uses the result to
generate SCLK.

The SPI interface includes the internal interrupt connection, SPI interrupt.
¢ In SPI master mode, an SPI interrupt occurs when the Transmit Holding register is
empty.

¢ In SPI slave mode, an SPI interrupt occurs when the SLVSEL pin transitions from active
to inactive.

A familiar Interrupt Control register is provided for the SPI interrupt. The interrupt has a two
CPU clock delay from SLVSEL in slave mode because of synchronization registers.

SPI Controller Register Summary

Table 2-1. SPI Controller Register Summary

Hex Address |Mnemonic Register Description
B800 SPI_DATA Data register 6
B802 CTL Control register 7
B804 SPI_STAT Status register 8
B806 SPI_SSEL Slave Select Bit Count register 9
B808 DVD_CNTR_LO |DVD Counter Low Byte register 10
B80A DVD_CNTR_HI DVD Counter High Byte register 10

SPI Controller Register Definitions

SPI_DATA Register
SPI_DATA is the SPI Controller Data register.

Table 2-2. SPI_DATA Register

BIT 15 14 13 12 11 10
OFFSET B800
FIELD " DATA[7:0]
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW RW | RW R RW | RW RW RW RW | RW RW RW | RW | RW | RW | RW | RW
W
Table 2-3. SPI_DATA Register Definitions
Bits Field Name Description
15:8 i Reserved
Always returns zero.
7:0 DATA[7:0] Data
The location where the CPU reads data from or writes data for the SPI interface.

CTL Register
CTL is the SPI Controller Control register.

Table 2-4. CTL Register

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2
OFFSET B802
FIELD >
o | & w |
" 1o 8| ao| O z
c|5/s| %8828
/x| Z2|a|lo|=2|=2|<
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW RW | RW | RW | RW R RW|RW | RW|RW | RW | RW | RW | RW | RW | RW | RW
W
Table 2-5. CTL Register Definitions
Bits Field Name Description |
15:8 1 Reserved
Always returns zero.
7 IRQENB Interrupt Request Enable
1 = enable the SPI to generate interrupts.
0 = disable the SPI from generating interrupts (default).
6 Autodrv
1 = enabled. Autodrv generates the sequence of selecting the serial device (CS)
AUTODRV and transferring data to it and then deselecting the device with no CPU

interaction. The transfer is started by writing to the data register.
0 = disabled (default).

5 Invert Chip Select
INVCS 1 =inverted CS.
0 = normal (default).
4 PHASE Phase Select

Selects the operating mode for the SPI interface. The two modes select where
the opposite edge D-Flip-Flop is placed.

1 = the negative edge flop is inserted into the shift_out path to hold the data for an
extra 2 clock.

0 = a negative edge flop is inserted into the shift_in path (default).

3 CKPOL Clock Polarity

Controls the polarity of the SCLK (SPI clock).

1 = SCLK idles HIGH.

0 = SCLK idles LOW (default).

2 WOR Wire-O

HIGH = WOR bit configures the SPI bus to operate as an Open-Drain. This
prevents SPI bus conflicts when there are multiple bus masters.

LOW = WOR bit does not configure the SPI bus to operate as an Open-Drain.
1 MSTN Master Enable

Selects master or slave mode for the SPI interface.

1 = master mode.

0 = slave mode (default).

0 ALT Alternate I/O Pinouts

Enable alternate 1/O pinouts.

1 = alternate 1/O.

0 = normal (default).

SPI_STAT Register
To clear a bit in the SPI_STAT register, write a 1 to that bit.

Table 2-6. SPI_STAT Register

BT 15 14 13 |12 11 10 9 8 7 |
OFFSET B804
FIELD >
o
m |
m % m 5| 4
g =~ e 13
x le) O = %)
=@ o0 (0] o] o]ololo]o|] o | o [olo]o]o|lo]o
RW RW|RW|RW | RW | RW | RW | RW | RW RW RW RW | RW | RW | RW R R

Table 2-7. SPI_STAT Register Definitions

Bits Field Name Description |
15:8 1 Reserved

Always returns zero.
7 IRQ Interrupt Request

1 = indicates the end of a master mode transfer, or that SLVSEL_N input has
gone HIGH on a slave transfer.

0 = indicates no end of a master mode transfer, or that SLVSEL_N input has not
gone HIGH on a slave transfer (default).

It takes two CPU clocks after SLVSEL_n changes to see the interrupt.

6 OVERRUN Overrun

1 = SPIDAT register is written to while an SPI transfer is in progress or
SLVSEL_N goes active in master mode.

0 = SPIDAT register has not been written to or SLVSEL_N has not gone active in
master mode (default).

5 COL Collision

1 = a master mode collision has occurred between multiple SPI masters (SLVSEL
is active while MSTEN=1).

0 = a master mode collision has not occurred (default).

4:2 " Reserved

1 TXRUN Transmitter Running

1 = master mode operation underway.

0 = idle (default).

0 SLVSEL SLVSEL Pin

Corresponds to the SLVSEL (MSCS*) pin on SPI core (pin is normally inverted at
the I/O pin).

SPI_SSEL Register
SPI_SSEL is the Slave Select Bit Count register.

Table 2-8. SPI_SSEL Register

BIT 15 14 13 12 11 10 9 8 7 6
OFFSET B806
FIELD
I BCNT[2:0] 1

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW RW | RW | RW | RW RW RW | RW | RW | RW | RW | RW RW RW | RW | RW

2| o| SELECTO

Table 2-9. SPI_SSEL Register Definitions

Bits Field Name Description |
15:8 " Reserved

Always returns zero.
7:6 BCNT[2:0] Bit Shift Count

Controls the number of bits shifted between the master and slave device during a
transfer, when this device is the master. See Table 2-10.

5:1 " Reserved
Always returns zero.
0 SELECTO SelectO Signal

This bit is the select output for master mode.

1 = this bit drives the SLVSEL pin active.

0 = this bit inactivates SLVSEL (default).

This bit is not used with Autodrv. If using Autodrv, leave this bit set to 0. The
INVCS is used to invert the SLVSEL for active LOW devices.

Table 2-10. BCNT Bit Settings

BCNT[2:0] Number of Bits Shifted
Bit [2] Bit [1] Bit [0]
8 (default)
1

gy e lle] iy el Ne)
2| OO0 —-|O
N[OOI WIN

DVD_CNTR_LO Register
DVD_CNTR_LO is the DVD Counter Low Byte register.

Table 2-11. DVD_CNTR_LO Register

BIT 15 _ 11

OFFSET B808

FIELD i DVDCNT[7:0]

RESET ololo]o 0 [oJ]o]Jo]loJo|Jo]Jo|lo]o]o]o
RW RW [RW [RW | RW | RW |RW | RW | RW [RW | RW | RW | RW | RW | RW | RW | RW

Table 2-12. DVD_CNTR_LO Register Definitions

Bits Field Name Description

15:8 1 Reserved
Always returns zero.
7:0 DVDCNT[7:0] Divisor Select

Selects the SPI clock rate during master mode. DVD_CNTR_HI and this byte
generate a 16-bit divisor that generates the SPI clock.

DVD_CNTR_HI
DVD_CNTR_HlI is the DVD Counter High Byte register.

Table 2-13. DVD_CNTR_HI Register

BIT 15 14 13 12 11 10

OFFSET B8OA

FIELD i DVDCNT[15:8]

S50 o0 (o | oo | o] oo f]ololoJoJolo]of]olo
RW RW | RW [RW | RW | RW RwW RwW RW | RW | RW [RW | RW | RW | RW | RW | RW

Table 2-14. DVD_CNTR_HI Register Definitions

Bits Field Name Description |
15:8 I Reserved

Always returns zero.
7:0 DVDCNT[15:8] Divisor Select

Selects the SPI clock rate during master mode. DVD_CNTR_LO and this byte
generate a 16-bit divisor that generates the SPI clock.

10

3: 1°C Controller

This chapter describes the DSTni I°C controller. Topics include:

Features

*

L BR JER 2BE JER 2R 4

L K 2R JBR 2R 4

L K 2R JBR 2R 4

Features on page 11

Block Diagram on page 12

Theory of Operation on page 12
Programmer’s Reference on page 22

I°C Controller Register Summary on page 22
I°C Controller Register Definitions on page 23

Master or slave operation

Multmaster operation

Software selectable acknowledge bit

Arbitration-lost interrupt with automatic mode switching from master to slave

Calling address identification interrupt with automatic mode switching from master to
slave

START and STOP signal generation/detection
Repeated START signal generation
Acknowledge bit generation/detection

Bus busy detection

100 KHz to 400 KHz operation

11

Block Diagram
Figure 3-1 shows a block diagram of the DSTni I°C controller.

Figure 3-1. DSTni I°C Controller Block Diagram

12C Bus Controller SCL

Address

12C Master!

|

|

|

|

|

Drata !
Slave I
|

|

|

|

|

|

|

|

|

|

|

[

} MicroGoniroller
Cantral | ntarface

I

|

|

|

|

|

Microcantrallar

mterface

Theory of Operation

I°C Background

2 : . oo : .
The I”C bus is a popular serial, two-wire interface used in many systems because of its low
overhead. Capable of 100 KHz operation, each device connected to the bus is software
addressable by a unique address, with a simple master/slave protocol.

The IC bus consists of two wires, serial data (SDA), and a serial clock (SCL), which carry
information between the devices connected to the bus. This two-wire interface minimizes
interconnections, so integrated circuits have fewer pins, and the number of traces required on
printed circuit boards is reduced.

The number of devices connected to the same bus is limited only by a maximum bus
capacitance of 400 pF. Both the SDA and SCL lines are bidirectional, connected to a positive
supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. The output
stages of devices connected to the bus must have an open-drain or open-collector to perform
the wired-AND function.

Each device on the bus has a unique address and can operate as either a transmitter or
receiver. In addition, devices can also be configured as masters or slaves.

¢ A master is the device that initiates a data transfer on the bus and generates the clock
signals to permit that transfer.
¢ Any other device that is being addressed is considered a slave.
The I°C protocol defines an arbitration procedure to ensure that if more than one master
simultaneously tries to control the bus, only one is allowed to do so and the message is not
corrupted. The arbitration and clock synchronization procedures defined in the 1’c specification
are supported by the DSTni I°C controller.

12

12C Controller

The I°C controller base address is DO00Oh and shares INT2 with the SPI controller. The I°C bus
interface requires two bi-directional buffers with open collector (or open drain) outputs and
Schmitt inputs.

Operating Modes
The following sections describe the possible 1°C operating modes:

¢ Master Transmit Mode, page 13
¢ Master Receive Mode, page 16
¢ Slave Transmit Mode, page 19
¢ Slave Receive Mode, page 20

Master Transmit Mode
In master transmit mode, the I°C controller transmits a number of bytes to a slave receiver.

To enter the master transmit mode, set the STA bit to one. The following actions occur:

1. The DATA register loads either a 7-bit slave address or the first part of a 10-bit slave
address, with the least-significant bits cleared to zero, to specify transmit mode.

The M IC tests the I°C bus and sends a START condition when the bus is free.

The IFLG bit is set and the status code in the Status register becomes 08h.

The IFLG bit clears to zero to prompt the transfer to continue.

After the 7-bit slave address (or the first part of a 10-bit address) and the write bit are sent,
the IFLG is set again.

During this sequence, a number of status codes are possible in the Status register (see Table
3-1).

Note: In 10-bit addressing, after the first part of a 10-bit address and the write bit transmit
successfully, the status code is 18h or 20h.

aorwd

13

Table 3-1. Master Transmit Status Codes

Code I°C State Microprocessor Response Next I°C Action
18h Addr + W transmitted, 7-bit address:
ACK received Write byte to DATA, clear IFLG Transmit data byte, receive
ACK
OR
Set STA, clear IFLG Transmit repeated START
OR
Set STP, clear IFLG Transmit STOP
OR
Set STA & STP, clear IFLG Transmit STOP, then START
10-bit address:
Write extended address byte to Transmit extended address byte
DATA, clear IFLG
20h Addr + W transmitted, Same as code 18h Same as code 18h
ACK not received
38h Arbitration lost Clear IFLG Return to idle
OR
Set STA, clearlFLG Transmit START when bus is free
68h Arbitration lost, Clear IFLG, AAK=0 Receive data byte, transmit not ACK
SLA + W received,
ACK transmitted OR
Clear IFLG, AAK=1 Receive data byte, transmit ACK
78h Arbitration lost, Same as code 68h Same as code 68h
general call addr
received, ACK
transmitted
BOh Arbitration lost, SLA + R | Write byte to DATA, clear IFLG, Transmit last byte, receive ACK

received, ACK
transmitted

AAK=0
OR

Write byte to DATA, clear IFLG,
AAK=1

Transmit data byte, receive ACK

14

Servicing the Interrupt

After servicing this interrupt, and transmitting the second part of the address, the Status register
contains one of the codes in Table 3-2.

Note: If a repeated START condition transmits, the status code is 10h instead of 08h.

Table 3-2. Codes After Servicing Interrupts (Master Transmit)

Code I°C State Microprocessor Response Next I°C Action |
38h Arbitration lost Clear IFLG Return to idle
OR
Set STA, clear IFLG Transmit START when bus free
68h Arbitration lost, Clear IFLG, AAK=0 Receive data byte, transmit not ACK
SLA + W received,
ACK transmitted OR
Clear IFLG, AAK=1 Receive data byte, transmit ACK
BOh Arbitration lost, Write byte to DATA, Clear IFLG, Transmit data byte, receive ACK
SLA + R received, AAK=0
ACK transmitted
OR
Write byte to DATA, Clear IFLG, Transmit data byte, receive ACK
AAK=1
DOh Second Address byte + | Write byte to DATA, clear IFLG Transmit data byte, receive ACK
W, transmitted ACK
received OR
Set STA, clear IFLG Transmit repeated START
OR
Set STP, clear IFLG Transmit STOP
OR
Set STA & STP, clear IFLG Transmit STOP, then START
D8h Second Address byte + | Same as code DOh Same as code DOh
W, transmitted ACK
received

15

Transmitting Each Data Byte

After each data byte transmits, the IFLG is set, and one of the three status codes in Table 3-3 is
in the Status register.

Table 3-3. Status Codes After Each Data Byte Transmits

Code I°C State Microprocessor Response Next I°C Action |
28h Data byte transmitted, Write byte to DAT, clear IFLG Transmit data byte, receive ACK
ACK received
OR
Set STA, clear IFLG Transmit repeated START
OR
Set STP, clear IFLG Transmit STOP
OR
Set STA and STP, clear IFLG Transmit START then STOP
30h Data byte transmitted, Same as code 28h Same as code 28h
ACK not received
38h Arbitration lost Clear IFLG Return to idle
OR
Set STA, clear IFLG Transmit START when bus free

All Bytes Transmit Completely
When all bytes transmit completely, set the STP bit by writing a 1 to this bit in the Control
register. The I°C controller:

¢ Transmits a STOP condition

¢ Clears the STP bit

¢ Returns to the idle state

Master Receive Mode
In master receive mode, the I°C controller receives a number of bytes from a slave transmitter.

After the START condition transmits:

1. The IFLG bit is set and status code 08h is in the Status register.

2. The Data register has the slave address (or the first part of a 10-bit slave address), with the
least-significant bits set to 1 to signify a read.

3. The IFLG bit is 0 and prompts the transfer to continue.

4. When the 7-bit slave address (or the first part of a 10-bit address) and the read bit transmit,
the IFLG bit is set again.

A number of status codes are possible in the Status register, as shown in Table 3-4.

Note: In 10-bit addressing, after the first part of a 10-bit address and the read bit successfully
transmit, the status code is 40h or 48h. If a repeated START condition transmits, the status
code is 10h instead of 08h.

16

Table 3-4. Master Receive Status Codes

Code I°C State Microprocessor Response Next I°C Action
40h Addr + W transmitted, 7-bit address:
ACK received Clear IFLG, AAK=0 Transmit data byte, receive not ACK
OR
Receive data byte, transmit ACK
Clear IFLG, AAK=1
10-bit address:
Write extended address byte to Transmit extended address byte
DATA, clear IFLG
48h Addr + W transmitted, 7-bit address:
ACK not received Set STA, clear IFLG Transmit repeated START
OR
Transmit STOP
Set STP, clear IFLG
OR
Set STA & STP, clear IFLG Transmit STOP and START
10-bit address:
Write extended address byte to Transmit extended address byte
DATA, clear IFLG
38h Arbitration lost Clear IFLG Return to idle
OR
Set STA, clearlFLG Transmit START when bus is free
68h Arbitration lost, Clear IFLG, AAK=0 Receive data byte, transmit not ACK
SLA + W received,
ACK transmitted OR
Clear IFLG, AAK=1 Receive data byte, transmit ACK
78h Arbitration lost, Same as code 68h Same as code 68h
general call addr
received, ACK
transmitted
BOh Arbitration lost, SLA + R | Write byte to DATA, clear IFLG, Transmit last byte, receive ACK

received, ACK
transmitted

AAK=0
OR

Write byte to DATA, clear IFLG,
AAK=1

Transmit data byte, receive ACK

17

Servicing the Interrupt

After servicing this interrupt and transmitting the second part of the address, the Status register

contains one of the codes in Table 3-5.

Table 3-5. Codes After Servicing Interrupt (Master Receive)

I°C State

Next I°C Action

Microprocessor Response

38h Arbitration lost Clear IFLG Return to idle
OR
Set STA, clear IFLG Transmit START when bus free
68h Arbitration lost, Clear IFLG, AAK=0 Receive data byte, transmit not ACK
SLA + W received,
ACK transmitted OR
Clear IFLG, AAK=1 Receive data byte, transmit ACK
78h Arbitration lost, Write byte to DATA, Clear IFLG, Transmit data byte, receive ACK
SLA + R received, AAK=0
ACK transmitted
OR
Write byte to DATA, Clear IFLG, Transmit data byte, receive ACK
AAK=1
BOh Arbitration lost Clear IFLG Return to idle
OR
Set STA, clear IFLG Transmit START when bus free
EOh Second Address byte + | Clear IFLG, AAK=0 Receive data byte, transmit not ACK
R transmitted, ACK
received OR
Clear IFLG, AAK=1 Receive data byte, transmit ACK
E8h Second Address byte + | Clear IFLG, AAK=0 Receive data byte, transmit not ACK

R transmitted, ACK not

received

OR

Clear IFLG, AAK=1

Receive data byte, transmit ACK

18

Receiving Each Data Byte

After receiving each data byte, the IFLG is set and one of three status codes in Table 3-6 is in
the Status register.

When all bytes are received, set the STP bit by writing a 1 to it in the Control register. The I°Cc
controller:

¢ Transmits a STOP condition
¢ Clears the STP bit
¢ Returns to the idle state

Table 3-6. Codes After Receiving Each Data Byte

Code I°C State Microprocessor Response Next I°C Action
50h Data byte received, Read DATA, clear IFLG, AAK=0 Receive data byte, transmit not ACK
ACK transmitted
OR
Read DATA, clear IFLG, AAK=1 Receive data byte, transmit ACK
58h Data byte received, Not | Read DATA, set STA, clear IFLG | Transmit repeated START
ACK transmitted
OR

Read DATA, set STP, clear IFLG | Transmit STOP

OR
Read DATA, set STA & STP, clear | Transmit STOP then START
IFLG
38h Arbitration lost in not Clear IFLG Return to idle
ACK bit
OR
Set STA, clear IFLG Transmit START when bus free

Slave Transmit Mode
In the slave transmit mode, a number of bytes are transmitted to a master receiver.

The I°C controller enters slave transmit mode when it receives its own slave address and a read
bit after a START condition. The I°C controller then transmits an acknowledge bit and sets the
IFLG bit in the Control register. The Status register contains the status code A8h.

Note: If the I°C controller has an extended slave address (signified by FOh - F7h in the Slave
Address register), it transmits an acknowledge after receiving the first address byte, but does
not generate an interrupt; the IFLG is not set and the status does not change. Only after
receiving the second address byte does The I°C controller generate an interrupt and set the
IFLG bit and status code as described above.

The I°C controller can also enter slave transmit mode directly from a master mode if arbitration
is lost in master mode during address transmission, and both the slave address and read bit are
received. The status code in the Status register is BOh.

After the 1°C controller enters slave transmit mode:

1. The Data register loads the data byte to be transmitted, then IFLG clears.
2. The I°C controller transmits the byte.
3. The I°C controller receives or does not receive an acknowledge.

If the 1°C controller receives an acknowledge:

19

The IFLG is set and the Status register contains B8h.

After the last transmission byte loads in the Data register, clear
AAK when IFLG clears.

After the last byte is transmitted, the IFLG is set and the Status
register contains C8h.

The I°C controller returns to the idle state and the AAK bit must be
set to 1 before slave mode can be entered again.

If the 1°C controller does not receive an acknowledge:

The IFLG is set.
The Status register contains COh.
The I°C controller returns to the idle state.

4. If the I°C detects a STOP condition after an acknowledge bit, it returns to the idle state.

Slave Receive Mode
In slave receive mode, a number of data bytes are received from a master transmitter.

The I°C controller enters slave receive mode when it receives its own slave address and write
bit (least-significant bit = 0) after a START condition. The I°C controller then transmits an
acknowledge bit and sets the IFLG bit in the Control register. The Status register status code is
60h.

The I°C controller also enters slave receive mode when it receives the general call address 00h
(if the GCE bit in the Slave Address register is set). The status code is 70h.

Note: If the I°C controller has an extended slave address (signified by FOh - F7h in the Slave
Address register), it transmits an acknowledge after receiving the first address byte, but does
not generate an interrupt; the IFLG is not set and the status does not change. Only after
receiving the second address byte does the I°C controller generate an interrupt and set the
IFLG bit and the status code as described above.

The I°C controller also enters slave transmit mode directly from a master mode if arbitration is
lost during address transmission, and both the slave address and write bit (or general call
address if bit GCE in the Slave Address register is set to one) are received. The status code in
the Status register is 68h if the slave address is received or 78h if the general call address is
received. The IFLG bit must clear to 0 to allow the data transfer to continue.

If the AAK bit in the Control register is set to 1:

1. Receiving each byte transmits an acknowledge bit (LOW level on SDA) and sets the IFLG
bit.

2. The Status register contains status code 80h (or 90h if slave receive mode was entered
with the general call address).

3. The received data byte can be read from the Data register and the IFLG bit must clear to
allow the transfer to continue.

4. When the STOP condition or repeated START condition is detected after the acknowledge
bit, the IFLG bit is set and the Status register contains status code AOh.

If the AAK bit clears to zero during a transfer, the I°C controller transfers a not acknowledge bit
(high level on SDA) after the next byte is received and sets the IFLG bit. The Status register
contains status code 88h (or 98h if slave receive mode was entered with the general call
address). When the IFLG bit clears to zero, the I°C controller returns to the idle state.

20

Bus Clock Considerations

Bus Clock Speed

The I°C bus can be defined for bus clock speeds up to 100 Kb/s and up to 400 Kb/s in fast
mode.

To detect START and STOP conditions on the bus, the M I°C must sample the I°C bus at least
10 times faster than the fastest master bus clock on the bus. The sampling frequency must be
at least 1 MHz (4 MHz in fast-mode) to guarantee correct operation with other bus masters.

The CLK input clock frequency and the value in CCR bits 2 - 0 determine the I°C sampling
frequency. When the I°C controller is in the master mode, it determines the frequency of the
CLK input and the values in bits [2:0] and [6:3] of the Clock Control register (see Clock Control
Register on page 28).
Clock Synchronization
If another device on the I°C bus drives the clock line when the 1°C controller is in master mode,
the I°C controller synchronizes its clock to the I°C bus clock.

¢ The device that generates the shortest high clock period determines the high period of

the clock.

¢ The device that generates the longest LOW clock period determines the LOW period of
the clock.

When the I°C controller is in master mode and is communicating with a slow slave, the slave
can stretch each bit period by holding the SCL line LOW until it is ready for the next bit. When
the I°C controller is in slave mode, it holds the SCL line LOW after each byte transfers until the
IFLG clears in the Control register.

Bus Arbitration

In master mode, the 1°C controller checks that each logical 1 transmitted appears on the I°C bus
as a logical 1. If another device on the bus overrules and pulls the SDA line LOW, arbitration is
lost.

If arbitration is lost:

¢ While a data byte or Not-Acknowledge bit is being transmitted, the I°C controller returns
to the idle state.

¢ During the transmission of an address, the I°C controller switches to slave mode so that
it can recognize its own slave address or the general call address.

21

Resetting the I°C Controller
There are two ways to reset the I°C controller.

¢ Using the RSTIN# pin
¢ Writing to the Software Reset register

Using the RSTIN# pin reset method:

¢ Clears the Address, Extended Slave Address, Data, and Control registers to 00h.
¢ Sets the Status register to F8h.
¢ Sets the Clock Control register to 00h.

Writing any value to the Software Reset register:

¢ Sets the I°C controller back to idle.
¢ Sets the STP, STA, and IFLG bits of the Control register to 0.

Programmer’s Reference

1°C Control

The DSTni I°C controller base address is DOOOh. The controller shares interrupt 2 with the SPI

controller. The I°C bus interface requires two bidirectional buffers, with open collector (or open
drain) outputs and Schmitt inputs.

ler Register Summary

The A[2:0] address lines of the microprocessor interface provide access to the 8-bit registers in
Table 3-7.

On a hardware reset:

¢ Address, Extended Slave Address, Data, and Control register clear to 00h.
¢ The Status register is set to F8h.
¢ The Clock Control register is set to 00h.
On a software reset, the STP, STA and IFLG bits of the Control register are set to zero.

Table 3-7. I°C Controller Register Summary

A[2:0] Bits Hex Mnemonic Register Description

A0 |Offset

0 0 0 D000 |ADDR Slave Address register 23
0 0 1 D002 |DATA Data register 24
0 1 0 D004 |CNTR Control register 25
0 1 1 D006 |STAT Status register 26
0 1 1 D007 |CCR Clock Control register 28
1 0 0 D008 |XADDR Extended Slave Address register 29
1 1 1 DOOE |SRST Software Reset register 29

22

I°C Controller Register Definitions

Slave Address Register

Table 3-8. Slave Address Register

BIT 7 6 5 | 4 3 | 2 1| 0
OFFSET 5000
EXTENDED
ADDRESS o
o)
©
C
L
&
©
1 1 1 1 0 SLAX9 | SLAX8 §
®
(@]
®
)
C
(0]
o
SLA6 SLA5 | SLA4 | SLA3 | SLA2 | SLA1 SLAO GCE
0 0 0 0 0 0 0 0
RW RW RW RW RW RW RW RW

Bits Field Name

7:1 SLAG6 — SLAO

Table 3-9. Address Register Definitions

Description

Slave Address

For 7-bit addressing, these bits are the 7-bit address of the I°C controller in slave
mode. When the 1°C controller receives this address after a START condition, it
generates an interrupt and enters slave mode. (SLAG corresponds to the first bit
received from the I°C bus.)

For 10-bit addressing, when the address received starts with FOh-F7h, the 1’C
controller recognizes the correspondence to SLAX9 and SLAX8 of an extended
address, and sends an ACK. (The device does not generate an interrupt at this
point.) After receiving the next address byte, the I°C controller generates an
interrupt and enters slave mode.

0 GCE

General Call Address Enable

1 = 1°C controller recognizes the general-call address at 00h (7-bit addressing).
0 = I°C controller does not recognize the general-call address at 00h (7-bit
addressing).

23

Data Register
The Data register contains the transmission data/slave address or the receipt data byte.
¢ Intransmit mode, the byte is sent most-significant bits first.
¢ Inreceive mode, the first bit received is placed in the register's most-significant bits.

After each byte transmits, the Data register contains the byte present on the bus; therefore, if
arbitration is lost, the Data register has the correct receive byte.

Table 3-10. Data Register

BIT

OFFSET D002

FIELD
Transmission Data/Slave Address or Receipt Data Byte

RESET 0 0 0 0 0 0 0 0
RW RW RW RW RW RwW RW RwW RwW

Table 3-11. Data Register Definitions

Bits Field Name Description
7:0 SLAG — SLAO Transmission Data/Slave Address or Receipt Data Byte

24

Control Register

Table 3-12. Control Register

BIT
OFFSET

FIELD

RESET
RW

Table 3-13. Control Register Definitions

Bits Field Name Description |
7 IEN Extended Slave Address

| = interrupt line (INTR) goes HIGH when the IFLG bit is set.

0 = interrupt line remains LOW (default).

6 ENAB Extended Slave Address

1 = I°C Controller responds to calls to its slave address and to the general call
address if the GCE bit in the ADDR register is set.

0 = I°C bus inputs ISDA/ISCL are ignored and the | 2C controller will not respond
to any address on the bus (default).

5 STA Start Condition

1 = 12C controller enters master mode and transmits a START condition on the
bus when the bus is free. If the I°C controller is already in master mode and one
or more bytes have been transmitted, a repeated START condition is sent. If the
I°C controller is being accessed in slave mode, the | %C controller completes the
data transfer in slave mode and enters master mode when the bus is released.
The STA bit is cleared automatically after a START condition has been sent.

0 = no effect.

4 STP Stop Condltlon

1 and I°C controller i |s in slave mode in master mode = a stop condition is
transmltted on the 1°C bus.

0 and I°C controller is in slave mode = I°C controller behaves as if a STOP
condition has been received, but no STOP condition will be transmitted on the I1°C
bus. If both STA and STP bits are set, the I°C controller transmits the STOP
condition (if in master mode), then transmits the START condition.

0 = no effect.

The STP bit is cleared automatically.

3 IFLG I°C State

1 = an I°C state has been entered. The only state that does not set IFLG is state
F8h. See the Status register.

1 and IEN bit is set = interrupt Ilne goes HIGH. When IFLG is set by the °’C
controller, the low period of the | %C bus clock line (SCL) is stretched and the data
transfer is suspended.

0 = interrupt line goes LOW and the I°C clock line is released.

25

Bits Field Name Description |
2 AAK Acknowledge
1= send Acknowledge (LOW level on SDA) during acknowledge clock pulse on
the 1°C bus if:
—The entire 7-bit slave address or the first or second bytes of a 10-bit slave
address are received.
— The general call address is received and the GCE bit in the ADDR register is
set to one.
— A data byte is received in master or slave mode.
0 in slave transmitter mode = send Not Acknowledge (HIGH level on SDA) when
a data byte is received in master or slave mode. After this byte transmits, the I°C
controller enters state C8h and returns to idle state. The 1°C controller does not
respond as a slave unless AAK is set.
1:0 " Reserved

Status Register

The Status register is a Read Only register that contains a 5-bit status code in the five most-
significant bits. The three least-significant bits are always zero. This register can contain any of
the 31 status codes in Table 3-16. When this register contains the status code F8h:

¢ No relevant status information is available.

¢ No interrupt is generated.

¢ The IFLG bit in the Control register is not set.
All other status codes correspond to a defined state of the I°C controller, as described in Table
3-16.

When entering each of these states, the corresponding status code appears in this register and
the IFLG bit in the Control register is set. When the IFLG bit clears, the status code returns to
F8h

If an illegal condition occurs on the I°C bus, the bus enters the bus error state (status code 00h).
To recover from this state, set the STP bit in the Control register and clear the IFLG bit. The I°C
controller then returns to the idle state. No STOP condition transmits on the 1°C bus.

Note: The STP and STA bits can be set to 1 at the same time to recover from the bus error,
causing the I°C controller to send a START.

Table 3-14. Status Register

BIT
OFFSET

FIELD
STATUS CODE

=S1=) 0 0 0 0 0 0 0 0
RW R R R R R R R R

26

Table 3-15. Status Register Definitions

Bits Field Name Description
73 STATUS CODE Status Code

Five-bit status code. See Table 3-16.
2:0 1" Reserved

Table 3-16. Status Codes

Code Description

00h Bus error

08h START condition sent

10h Repeated START condition sent

18h Address + write bit sent, ACK received

20h Address + write bit sent ACK not received

28h Data byte sent in master mode, ACK received

30h Data byte sent in master mode, ACK not received

38h Arbitration lost in address or data byte

40h Address + read bit sent, ACK received

48h Address + read bit sent, ACK not received

50h Data byte received in master mode, ACK sent

58h Data byte received in master mode, no ACK sent

60h Slave address + write bit received, ACK sent

68h Arbitration lost in address as master, slave address + write bit received, ACK sent
70h General Call address received, ACK sent

78h Arbitration lost in address as master, General Call address received, ACK sent
80h Data byte received after slave address received, ACK sent
88h Data byte received after slave address received, no ACK sent
90h Data byte received after General Call received, ACK sent

98h Data byte received after General Call received, ACK not sent
AOh STOP or repeated START condition received in slave mode
A8h Slave address + read bit received, ACK sent

BOh Arbitration lost in address as master, slave address + read bit received, ACK sent
B8h Data byte sent in slave mode, ACK received

COh Data byte sent in slave mode, ACK not received

C8h Last byte sent in slave mode, ACK received

DOh Second Address byte + write bit sent, ACK received

D8h Second Address byte + write bit sent, ACK not received

EOh Second address byte + read bit transmitted, ACK received
E8h Second Address byte + read bit sent, ACK not received

F8h No relevant status information IFLG=0

27

Clock Control Register
The Clock Control register is a Write Only register that contains seven least-significant bits.
These least-significant bits control the frequency:
Atwhich the I°C bus is sampled.
¢ Of the I°C clock line (SCL) when the I°C controller is in master mode.

The CPU clock frequency (of CLK) is first divided by a factor of 2", where N is the value defined
by bits 2 — 0 of the Clock Control register. The output of this clock divider is FO. FO is then
divided by a further factor of M+1, where M is the value defined by bits [6:3] of the Clock Control
register. The output of this clock divider is F1.

The I°C bus is sampled by the I°C controller at the frequency defined by FO.
Fsamp = FO = CLK / 2"

The I°C controller OSCL output frequency, in master mode, is F1/10:
FOSCL=F1/10=CLK/ (2" (M + 1) 10)

Using two separately programmable dividers allows the master mode output frequency to be set
independently of the frequency at which the I°C bus is sampled. This is particularly useful in
multi-master systems, because the frequency at which the I°C bus is sampled must be at least
10 times the frequency of the fastest master on the bus to ensure that START and STOP
conditions are always detected. By using two programmable clock divider stages, a high
sampling frequency can be ensured, while allowing the master mode output to be set to a lower
frequency.

Table 3-17. Clock Control Register

BIT
OFFSET

FIELD

RESET
RW

Table 3-18. Clock Control Register Definitions

Bits Field Name Description \
7 1" Reserved
6:3 M6 — M3 M Value
These bits define the M value used in the calculations above.
2:0 N2 — NO N Value

These bits define the N value used in the calculations above

28

Extended Slave Address Register

Table 3-19. Extended Slave Address Register

BIT
OFFSET

FIELD

RESET
RW

Table 3-20. Extended Slave Address Register Definitions

Bits Field Name Description

7 SLAX7 Extended slave address.
6 SLAX6 Extended slave address.
5 SLAX5 Extended slave address.
4 SLAX4 Extended slave address.
3 SLAX3 Extended slave address.
2 SLAX2 Extended slave address.
1 SLAX1 Extended slave address.
0 SLAXO0 Extended slave address.

Software Reset Register

Table 3-21. Software Reset Register

BIT
OFFSET

FIELD

=S1=)
RW

Table 3-22. Software Reset Register Definitions

Bits Field Name Description

7 HRST Hardware Reset to I°C Controller

1 = causes the 1°C controller to reset the same as a hardware reset. The
hardware reset is self-clearing.

0 = only the I°C controller Control register is cleared.

6:0 " Reserved

29

4: USB Controller

This chapter describes the DSTni Universal Serial Bus (USB) controller. Topics include:

¢ Features on page 30

Theory of Operation on page 31

USB Register Summary on page 38

USB Register Definitions on page 39

Host Mode Operation on page 50

Sample Host Mode Operations on page 51
USB Pull-up/Pull-down Resistors on page 53
USB Interface Signals on page 54

L BR R JBE JEE 2R 2R 4

Features

Fully USB 1.1-compliant device

8 bidirectional endpoints

DMA or FIFO data-stream interface
Host-mode logic for emulating a PC host
Supports embedded host controller

L IR R JEE 2R 2

30

Theory of Operation

USB Background

USB is a serial bus operating at 12 Mb/s. USB provides an expandable, hot-pluggable Plug-
and-Play serial interface that ensures a standard, low-cost socket for adding external peripheral
devices.

USB allows the connection of up to 127 devices. Devices suitable for USB range from simple
input devices such as keyboards, mice, and joysticks, to advanced devices such as printers,
scanners, storage devices, modems, and video-conferencing cameras.

Version 1.1 of the USB specification provides for peripheral speeds of up to 1.5 Mbps for low-
speed devices and up to 12 Mbps for full-speed devices.

USB Interrupt
The DSTni USB interrupt is located at base input/output (1/0O) of 9800h. It is logically ORed with
external interrupt 3.

USB Core
The USB core has three functional blocks.

¢ Serial Interface Engine (SIE)
¢ Microprocessor Interface
¢ Digital Phase-Locked Loop Logic

Serial Interface Engine
The USB Serial Interface Engine (USB SIE) has two major sections: Tx Logic and Rx Logic.
Tx Logic formats and transmits data packets that the microprocessor builds in memory. These
packets are converted from a parallel-to-serial data stream. Tx Logic performs all the necessary
USB data formatting, including:

¢ NRZl encoding

¢ Bit-stuff

¢ Cyclic Redundancy Check (CRC) computation

¢ Addition of SYNC field and EOP
The Rx Logic receives USB data and stores the packets in memory so the microprocessor can
process them. Serial USB data converts to a byte-wide parallel data stream and is stored in
system memory. The receive logic:

¢ Decodes an NRZ USB serial data stream

¢ Performs bit-stuff removal

¢ Performs CRC check, PID check, and other USB protocol-layer checks

31

Microprocessor Interface
The USB microprocessor interface is made up of a slave interface and a master interface.

¢ The slave interface consists of a number of USB control and configuration registers.
USB internal registers can be accessed using a simple microprocessor interface.

¢ The master interface is the integrated DMA controller that transfers packet data to and
from memory. The DMA controller facilitates USB endpoint data transfer efficiently,
while limiting microprocessor involvement.

Digital Phase Lock Loop Logic

The USB Digital Phase Lock Loop (DPLL) maintains a 12 MHz clock source that is locked to the
USB data steam. The DPLL requires a 48 MHz clock to 4x oversample the USB data stream
and detect transitions. These transitions are used to synthesize a nominally 12 MHz USB clock.

The DPLL also detects single-ended zeros, end-of-packet strobes, and NRZI decoding of the
serial data stream for the Rx Logic. All DPLL outputs are synchronized to the 12 MHz clock to
connect seamlessly to the USB core.

USB Hardware/Software Interface

The USB block combines hardware and software to efficiently implement USB target
applications. While the USB SIE handles the low-level USB Protocol Layer, the CPU handles
the higher level USB Device Framework, buffer management, and peripheral dependent
functions.

The hardware/software interface of the USB provides both a slave interface and a master
interface.

¢ The slave interface consists of the Control Registers Block (CRB), which configure the
USB and provide status and interrupts to the microprocessor.

¢ The master interface is the USB integrated DMA controller, which interrogates the
Buffer Descriptor Table (BDT), and transfers USB data to or from system memory. The
Buffer Descriptor Table (BDT) allows the microprocessor and USB to efficiently manage
multiple endpoints with very little CPU overhead.

Buffer Descriptor Table

The USB uses a Buffer Descriptor Table (BDT) in system memory to manage USB endpoint
communications efficiently. The BDT resides on a 256-byte boundary in system memory and is
pointed to by the BDT Page register.

Every endpoint direction requires two 4-byte Buffer Descriptor entries. Therefore, a system with
16 fully bidirectional endpoints requires 256 bytes of system memory to implement the BDT.
The two Buffer Descriptor (BD) entries allow for an EVEN BD and ODD BD entry for each
endpoint direction. This allows the microprocessor to process one BD while the USB processes
the other BD. Double buffering BDs in this way lets the USB easily transfer data at the
maximum throughput provided by USB.

32

Figure 4-1. Buffer Descriptor Table

SYSTEM MEMORY

B S T

- - E BOT Pagg
[E7 7ome rea [oror | W [onn] 00— T

Start of Bulffer
Butter
Merony
Erd of Buffer
R SN

The microprocessor manages buffers intelligently for the USB by updating the BDT as
necessary. This allows the USB to handle data transmission and reception efficiently while the
microprocessor performs communication-overhead processing and other function-dependent
applications. Because the microprocessor and the USB share buffers, DSTni uses a simple
semaphore mechanism to distinguish who is allowed to update the BDT and buffers in system
memory.

The semaphore bit, also known as the OWN bit, is set to 0 when the microprocessor owns the
BD entry. The microprocessor has read and write access to the BD entry and the buffer in
system memory when the OWN bit is 0.

When the OWN bit is set to 1, the USB owns the BD entry and the buffer in system memory.
The USB has full read and write access and the microprocessor should not modify the BD or its
corresponding data buffer. The BD also contains indirect address pointers to where the actual
buffer resides in system memory.

Rx vs. Tx as a Target Device or Host

The USB core can function as either a USB target device (function) or a USB host, and can
switch operating modes between host and target device under software control. In either mode,
the USB core uses the same data paths and buffer descriptors for transmitting and receiving
data. Consequently, in this section and the rest of this chapter, the following terms are used to
describe the direction of the data transfer between the USB and the USB device.

¢ Rx (orreceive) describes transfers that move data from the USB to memory.

¢ Tx (or transmit) describes transfers that move data from memory to the USB.

Table 4-1 shows how the data direction corresponds to the USB token type in host and target
device applications

33

Table 4-1. USB Data Direction

Rx TX
Device OUT or SETUP |IN
Host IN OUT or SETUP

Addressing BDT Entries

Before describing how to access endpoint data via the USB or microprocessor, it is important to
understand the BDT addressing mechanism. The BDT occupies up to 256 bytes of system
memory. Sixteen bidirectional endpoints can be supported with a full BDT of 256 bytes. Eight
bytes are needed for each USB endpoint direction. Applications with less than 16 endpoints
require less Random Access Memory (RAM) to implement the BDT.

The BDT Page register points to the starting location of the BDT. The BDT must reside on a
256-byte boundary in system memory. All enabled TX and RX endpoint BD entries are indexed
into the BDT for easy access via the USB or microprocessor.

When the USB receives a USB token on an enabled endpoint, it uses its integrated DMA
controller to interrogate the BDT. The USB reads the corresponding endpoint BD entry to
determine if it owns the BD and corresponding buffer in system memory. To compute the entry
point in to the BDT, the BDT_PAGE register is concatenated with the current endpoint and the
TX and ODD fields to form the following 16- bit address.

Table 4-2. 16-Bit USB Address

BDT_PAGE REGISTER END_POINT ¢ 8 "
= (@]
| RESET Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW RW | RW R RW | RW RW RW | RW |RW | RW | RW | RW | RW | RW | RW | RW

Table 4-3. 16-Bit USB Address Definitions

Bits Field Name Description

15:8 BDT_PAGE Register in the Control Block
REGISTER

74 END_POINT Endpoint Field from the USB Token

3 X Transmit
Shows whether the USB core is transmitting or receiving data.
1 = USB core is transmitting data.
0 = USB core is receiving data.

2 ODD Bit That the USB SIE Maintains
This bit corresponds to the buffer currently in use. Buffers are used in a ping-pong
fashion.

1:0 " Reserved

Buffer Descriptor Formats

Buffer Descriptors (BDs) provide endpoint buffer control information for the USB and
microprocessor. BDs have different meanings based on which unit is reading the descriptor in
memory.

The USB controller and microprocessor use the data stored in the BDs to determine the items in
Table 4-4.

34

Table 4-4. BDT Data Used by USB Controller and Microprocessor

USB Controller Determines... Microprocessor Determines...
Who owns the buffer in system memory Who owns the buffer in system memory
Data0 or Data1 PID Data0 or Data1 PID

Release Own upon packet completion
No address increment (FIFO Mode)
Data Toggle Synchronization enable
Amount of data to be transmitted or received Amount of data transmitted or received
Where the buffer resides in system memory Where the buffer resides in system memory

Table 4-5 shows the USB BD format.

Table 4-5. USB Buffer Descriptor Format

OWN DATAO0/1 USB_OWN | NINC DTS RSVD 0 0
0
BC[7:0]
0 | BCH9 | BCH8
Low Byte ADDR[7:0]
Byte 2 ADDR[15:8]
Byte 3 ADDR[23:16]
Byte 4 ADDR[31:24]

35

Bits

Table 4-6. USB Buffer Descriptor Format Definitions

Field Name
OWN

Description

BD Owner

Specifies which unit has exclusive access to the BD.

0 = microprocessor has exclusive and entire BD access; USB ignores all other
fields in the BD

1 = USB has exclusive BD access SIE writes a 0 to this bit when it completes a
token, except when KEEP=1. This byte must always be the last byte the
microprocessor updates when it initializes a BD. After the BD is assigned to the
USB, the microprocessor must not change it.

DATAO0/1

DATAO/1 Transmit or Receive

Transmission or reception of a DATAO or DATA1 field.
0 = transmission or reception of a DATAO field.

1 = transmission or reception of a DATA1 field.

The USB does not change this value.

USB_OWN

USB Ownership

1 = once the OWN bit is set, the USB owns it forever.

0 = USB can release the BD when a token is processed.

Typically, this bit is set to 1 with ISO endpoints that feed a FIFO. The

microprocessor is not informed of the token processing. Instead, the process is

a simple data transfer to or from the FIFO.

When this bit is set to1:

» The NINC bit is usually set to prevent the address from incrementing.

» The USB does not change this bit; otherwise the USB writes bit 3 of the
current token PID back to the BD.

NINC

No Increment Bit

Disables DMA engine address incrementation, forcing the DMA engine to read
or write from the same address. This is useful for endpoints when data must be
read from or written to a single location such as a FIFO. Typically, this bit is set
with the USB_OWN bit for ISO endpoints that interface with a FIFO. If
USB_OWN-=1, the USB does not change this bit; otherwise, the USB writes bit
2 of the current token PID to the BD.

DTS

Data Toggle Synchronization

0 = USB cannot perform Data Toggle Synchronization.

1 = USB can perform Data Toggle Synchronization.

If USB_OWN-=1, the USB does not change this bit; otherwise, the USB writes
bit 1 of the current token PID to the BD.

1:0

BCH[9:8]

Byte Count High Bits

Represent the high-order bits of the 10-bit byte count. The USB SIE changes
this field after completing an RX transfer with the byte count of the data
received.

7:0

BCL

Byte Count Low Bits

Represent the low-order byte of the 10-bit byte count. BCH and BCL together
form the 10-bit byte count. This represents the number of bytes to transmit for
a TX transfer or receive during an RX transfer. Valid byte counts are 0 to 1023.
The USB SIE changes this field after completing an RX transfer with the actual
byte count of the data received.

7:0

(Bytes 4
through 2 and
Low Byte)

ADDR[31:0]

Address Bits

Represent the 32-bit buffer address in system memory. DSTni only uses the
lower 24 bits to form the address where the buffer resides in system memory.
This is the address that the USB DMA engine uses when it reads or writes
data. The USB does not change these bits.

36

USB Transaction
When the USB transmits or receives data:

1.
2.

The USB uses the address generation in Table 4-5 to compute the BDT address.

After reading the BDT, if the OWN bit equals 1, the SIE DMAs the data to or from the buffer
indicated by the BD’s ADDR field.

When the TOKEN is complete, the USB updates the BDT and changes the OWN bit to O if
KEEP is 0.

The USB updates the STAT register and sets the TOK_DNE interrupt.

When the microprocessor processes the TOK_DNE interrupt:

The microprocessor reads the status register for the information it needs to process the
endpoint

The microprocessor allocates a new BD, so the endpoint can transmit or receive additional
USB data, then processes the last BD.

Figure 4-2 shows a time line for processing a typical USB token.

Figure 4-2. USB Token Transaction

- = USB Host = Function

USB_RST SOF

Interrupt Generated Interrupt Generated

ACK

TOK_DNE

Interrupt Generated

|- R

TOK_DNE

Interrupt Generated

ACK

TOK_DNE
Interrupt Generated

USB Register Summary

Table 4-7. USB Register Summary

Mnemonic Register Description
00 INT_STAT Bits for each interrupt source in the USB. 39
02 ERR_STAT Bits for each error source in the USB. 41
04 STAT Transaction status in the USB. 43
06 ADDR USB address that the USB decodes in 45
peripheral mode.
08 FRM_NUM Contains the 11-bit frame number. 46
0A TOKEN Perf_orms USB transactions during host mode. 47
Dedicated to host mode.
0D 1 Reserved i
OE 1 Reserved 1
OF 1 Reserved i
10 1" Reserved "
11 ENDPT1 Endpoint control 1 bit 49
12 ENDPT2 Endpoint control 2 bit 49
13 ENDPT3 Endpoint control 3 bit 49
14 ENDPT4 Endpoint control 4 bit 49
15 ENDPT5 Endpoint control 5 bit 49
16 ENDPT6 Endpoint control 6 bit 49
17 ENDPT7 Endpoint control 7 bit 49

38

USB Register Definitions

The following sections provide the USB register definitions. In these sections:

¢ The register mnemonic is provided for reference purposes.
¢ The register address shown is the address location of the register in the CRB.
¢ The initialization value shown is the register’s initialization value at reset.

Interrupt Status Register

The Interrupt Status register contains bits for each of the interrupt sources in the USB. Each bit
is qualified with its respective interrupt enable bits. All bits of the register are logically OR’ed
together to form a single interrupt source for the microprocessor. Once an interrupt bit has
been set, it can only be cleared by writing a one to the respective interrupt bit.

The Interrupt Mask contains enable bits for each of the interrupt sources within the USB.
Setting any of these bits will enable the respective interrupt source in the register. This register
contains the hex value 0000 after a reset (all interrupts disabled).

Table 4-8. Interrupt Status Register

BIT 15 14 13 12 11 10 9
OFFSET 00h
FIELD Interrupt Mask Interrupt Status
T | Y e >c<) % T | Y e >c<) %
Jlo |2]la|O0|F ||| s |0|2|a|0|F|&|x
i < | 2| w [e [- Z | 2 | W [e [
< [n L X L e o < [n L X L e o
= = w | O O o (%) = = w | O O o (%)
w |l < | |®n|F|®o|Ww|D|n|<|x|®|F|»n|W]|>D
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW RW [RW | RW | RW | RW | RW | RW | RW | RW [RW | RW | RW | RW | RW | RW | RW
Table 4-9. 16- Interrupt Status Register Definitions
Bits Field Name Description |
15 STALL Enable/Disable STALL Interrupt

1 = enable the STALL interrupt.

0 = disable the STALL interrupt (default).

14 ATTACH Enable/Disable ATTACH Interrupt

1 = enable the ATTACH interrupt.

0 = disable the ATTACH interrupt (default).
13 RESUME Enable/Disable RESUME Interrupt

1 = enable the RESUME interrupt.

0 = disable the RESUME interrupt (default).
12 SLEEP Enable/Disable SLEEP Interrupt

1 = enable the SLEEP interrupt.

0 = disable the SLEEP interrupt (default).

11 TOK_DNE Enable/Disable TOK_DNE Interrupt

1 = enable the TOK_DNE interrupt.

0 = disable the TOK_DNE interrupt (default).
10 SOF_TOK Enable/Disable SOF_TOK Interrupt

1 = enable the SOF_TOK interrupt.

0 = disable the SOF_TOK interrupt (default).
9 ERROR Enable/Disable ERROR Interrupt

1 = enable the ERROR interrupt.

0 = disable the ERROR interrupt (default).

39

Bits
8

Field Name
USB_RST

Description

Enable/Disable USB_RST Interrupt

1 = enable the USB_RST interrupt.

0 = disable the USB_RST interrupt (default).

STALL

Stall

Used in target and host modes.

« In target mode, it asserts when the SIE sends a stall handshake.

* In host mode, it is set if the USB detects a stall acknowledge during the
handshake phase of a USB transaction.

This interrupt is useful if the last USB transaction completed successfully or

stalled.

ATTACH

Detect Attach of a USB Peripheral

1 = USB detects an attach of a USB peripheral.

Only valid if HOST_MODE_EN is true. This interrupt signals a peripheral is now
present and must be configured. The ATTACH interrupt asserts if there are no
transitions on the USB for 2.5us and the current bus state is not SEO.

0 = USB does not detect an attached USB peripheral.

RESUME

Resume
This bit is set when the device can resume operation.

SLEEP

Sleep Timer

1 = USB detects constant idle on the USB bus signals for 3 ms.
Activity on the USB bus resets the sleep timer.

0 = USB does not detect constant idle.

TOK_DNE

Token Processing

1 = the current token being processed is complete. The microprocessor should
read the STAT register immediately to determine the endpoint and BD used for
this token. Clearing this bit (by writing a 1) clears the STAT register or loads the
STAT holding register into the STAT register.

0 = token processing is not occurring or has not been completed.

SOF_TOK

Start-of-Frame Token
1 = USB receives a Start-of-Frame (SOF) token.
0 = USB has not received a Start-of-Frame (SOF) token.

ERROR

Error Condition

1 = an error condition occurred in the ERR_STAT register. The microprocessor
must read the ERR_STAT register to determine the source of the error.

0 = an error condition did not occur.

USB_RST

USB Reset

1 = USB decodes a valid USB reset. The microprocessor writes 00h in the
address register and enables endpoint 0.

USB_RST is set when a USB reset is detected for 2.5 microseconds. It is not
asserted again until the USB reset condition is removed and reasserted.

0 = USB is not decoding a valid USB reset.

40

Error Register

The Error register contains bits for each of the error sources in the USB. Each of these bits is
qualified with its respective error enable bits. The result is OR’ed together and sent to the
ERROR bit of the Interrupt Status register. Once an interrupt bit has been set it may only be
cleared by writing a one to the respective interrupt bit. Each bit is set as soon as the error
condition is detected. Therefore, the interrupt typically will not correspond with the end of a
token being processed. The Error register contains enable bits for each of the error interrupt
sources within the USB. Setting any of these bits enables the respective error interrupt source
in the ERROR register. This register contains the hex value 0000 after a reset (all errors
disabled).

Table 4-10. Error Interrupt Status Register

BIT 15 14 13]12 11 10 9
OFFSET 02h
FIELD Error Mask Error Status
[[
e x
i v | ¥ 0| Qx| & v | g o | o |
w |/ | WU|lwm|]oew|=|w|Z|Ww| /M| |lW|Wwm|oe|=|n]|tk
n < | o|lz|loO0 | Q| W | »n < | o|lz|o | | W
E = = i x x o = = = i x x o
o O | m| o]l o]0 || m O | m|aol| o] O | &
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW R R R R R R R R R R R R R R R R
W W W W W W W w W W W W W W W w

Table 4-11. 16- Error Interrupt Status Register Definitions

Bits Field Name Description |
15 BITSERR Enable/Disable BITSERR Interrupt

1 = enable the BITSERR interrupt.

0 = disable the BITSERR interrupt (default).

14 1" Reserved

13 DMAERR Enable/Disable DMAERR Interrupt

1 = enable the DMAERR interrupt.

0 = disable the DMAERR interrupt (default).
12 BTOERR Enable/Disable BTOERR Interrupt

1 = enable the BTOERR interrupt.

0 = disable the BTOERR interrupt (default).
11 DFN8 Enable/Disable DFN8 Interrupt

1 = enable the DFN8 interrupt.

0 = disable the DFN8 interrupt (default).

10 CRC16 Enable/Disable CRC16 Interrupt

1 = enable the CRC16 interrupt.

0 = disable the CRC16 interrupt (default).

9 CRC5\EOF Enable/Disable CRC5/EOF Interrupt

1 = enable the CRC5/EOF interrupt.

0 = disable the CRC5/EOQF interrupt (default).
8 PID_ERR Enable/Disable PID_ERR Interrupt

1 = enable the PID_ERR interrupt.

0 = disable the PID_ERR interrupt (default).
7 BITSERR Bit Stuff Error

1 = a bit stuff error has been detected. If this bit is set, the corresponding packet
will be rejected due to a bit stuff error.

0 = a bit stuff error has not been detected (default).
6 i Reserved

41

Bits
5

Field Name
DMAERR

Description |
1 = USB requests a DMA access to read a new BDT, but is not given the bus
before USB needs to receive or transmit data.

« If processing a TX transfer, this causes a transmit data underflow condition.

« If processing an Rx transfer, this causes a receive data overflow condition.

This interrupt is useful for developing device-arbitration hardware for the
microprocessor and USB to minimize bus request and bus grant latency.

OR

1 = a data packet to or from the host is larger than the buffer size allocated in the
BDT. The data packet is truncated as it is placed into buffer memory.

BTOERR

1 = a bus turnaround time-out error occurred.

0 = a bus turnaround time-out error has not occurred.

The USB uses a bus-turnaround timer to track the elapsed time between the
token and data phases of a SETUP or OUT TOKEN or the data and handshake
phases of a IN TOKEN. If more that 16-bit times are counted from the previous
EOP before a transition from IDLE, a bus turnaround time-out error occurs.

DFN8

Data Field Received Not 8 Bits
The USB Specification 1.0 states that the data field must be an integral number of
bytes. If the data field is not an integral number of bytes, this bit is set.

CRC16

CRC16 Failure
1 = data packet is rejected due to a CRC16 error.
0 = data packet is not rejected due to a CRC16 error.

CRC5\EOF

Error interrupt with two functions.

* USB is in peripheral mode (HOST_MODE_EN=0): this interrupt detects a CRC5
error in the token packets generated by the host. If set, the token packet is
rejected due to a CRC5 error.

* USB is in host mode (HOST_MODE_EN=1): this interrupt detects End-of-Frame
(EOF) error conditions. This occurs when the USB transmits or receives data
and the SOF counter is zero. In this mode, this interrupt is useful for developing
USB packet-scheduling software to ensure that no USB transactions cross the
start of the next frame.

PID_ERR

PID check field failed.

42

Status Register

The Status register reports the transaction status within the USB. When the microprocessor has
received a TOK_DNE interrupt, the Status register should be read to determine the status of the
previous endpoint communication. The data in the status register is valid when the TOK_DNE
interrupt bit is asserted.

The Status register is actually a read window into a status FIFO maintained by the USB. When
the USB uses a BD, it updates the status register. If another USB transaction is performed
before the TOK_DNE interrupt is serviced the USB will store the status of the next transaction in
the STAT FIFO. Therefore, the Status register is actually a four byte FIFO which allows the
microprocessor to process one transaction while the SIE is processing the next. Clearing the
TOK_DNE bit in the Interrupt Status register causes the SIE to update the Status register with
the contents of the next STAT value. If the data in the STAT holding register is valid, the SIE
will immediately reassert the TOK_DNE interrupt.

Table 4-12. Status Register

BIT 15 14 13 12 11 10 9
OFFSET 04h
FIELD Control Status
o
E 5 i ENDP /i
58 |5 | w5
- 2Z (23 S| 2 g
K Q Ww| =>4 [a
B o |XO @ 8 @ a % e a
Blo|FFle| T || 0]|> k| O
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW R R R R R R R R R R R R R R R R
Table 4-13. Status Register Definitions
Bits Field Name Description |
15 JSTATE Live USB Differential Receiver JSTATE Signal
The polarity of this signal is effected by the current state of LS_EN (see the
Address register on page 45).
14 SEO Live USB Single Ended Zero Signal
13 TXDSUSPEND TXD_SUSPEND and TOKEN BUSY
TOKENBUSY Dual-use control signal for accessing TXD_SUSPEND when the USB is a target

and Token Busy when the USB is in host mode.

The TXD Suspend bit informs the processor that the SIE has disable packet
transmission and reception. This bit is set by the SIE when a Setup Token is
received allowing software to dequeue any pending packet transactions in the
BDT before resuming token processing. Clearing this bit lets the SIE continue
token processing.

The Token Busy bit informs the host processor that the USB is busy executing a
USB token and no more token commands should be written to the Token
Register. Software should check this bit before writing any tokens to the Token
Register to ensure that token commands are not lost.

43

Bits Field Name Description |

12 RESET USB Reset Signal
1 = enables the USB to generate USB reset signaling. This allows the USB to
reset USB peripherals. This control signal is only valid in host mode, (i.e.,
HOST_MDOE_EN=1). Software must set RESET to 1 for the required amount of
time and then clear it to 0 to end reset signaling. For more information about
RESET signaling, see Section 7.1.4.3 of the USB specification version 1.0.

11 HOSTMODE EN Host Mode Enable (valid for host mode only)
1 = enables the USB to operate in host mode. In host mode, the USB performs
USB transactions under the programmed control of the host processor.
0 = USB not enabled for host mode.

10 RESUME Resume Signaling
1 = allows the USB to execute resume signaling. This lets the USB perform
remote wake-up. Software must set RESUME to 1 for the required amount of time
and then clear it to 0. If the HOST_MODE_EN bit is set, the USB appends a Low
Speed End-of -packet to the Resume signaling when the RESUME bit is cleared.
For more information about RESUME signaling, see Section 7.1.4.5 of the USB
specification version 1.0.
0 = prevents the USB from executing resume signaling.

9 ODD_RST BDT PDD Reset
1 = resets all the BDT ODD ping/pong bits to 0, which then specifies the EVEN
BDT bank.
0 = does not reset the BDT ODD ping/pong bits.

8 USB _EN USB Enable
1 = enables the USB to operate, clearing it will disable the USB. It causes the SIE
to reset all of its ODD bits to the BDTs. Therefore, setting this bit resets much of
the logic in the SIE. When host mode is enabled clearing this bit causes the SIE
to stop sending SOF tokens.

74 ENDP Encode Endpoint
Encode the endpoint address receiving or transmitting the previous token. This
lets the microprocessor determine which BDT entry is updated by the last USB
transaction. These four bits correspond to the endpoint address 3:0, respectively.

3 X Last Transaction Transmit/Receive
1 = last BDT updated is a transmit (TX) transfer.
0 = last transaction is a receive (RX) data transfer.

2 ODD ODD Bank of BDT
Last buffer descriptor updated is in the odd bank of the BDT.

1:0 7 Reserved

44

Address Register

The Address register contains the unique USB address that the USB decodes in peripheral
mode (HOST_MODE_EN=0). In host mode (HOST_MODE_EN=1), the USB transmits this
address with a TOKEN packet. This enables the USB to uniquely address any USB peripheral.
In either mode the USB_EN bit in the Control register must be set. The register resets to 00h
after the reset input activates or the USB decodes a USB reset signal. This action initializes the
address register to decode address 00h, in keeping with the USB specification.

Note: The Buffer Descriptor Table Page register contains part of the 24 bit address used to
compute the address where the current Buffer Descriptor Table (BDT) resides in system
memory.

Table 4-14. Address Register

BIT 15 14 13 12 11 10
OFFSET 06h
FIELD BDT Page Register Address Register
il
BDT_BA[15:8] I ADDR[6:0]
%
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW R R R R R R R R R R R R R R R R

Table 4-15. 16- Address Register Definitions

Bits Field Name Description

15:8 BDT_BA BDT Base Address

This 8-bit value is the most-significant bits of the BDT base address, which
defines where the Buffer Descriptor Table resides at in system memory. The 16-
bit BDT base address is always aligned on 256-byte boundaries in memory.

7 LSEN Low Speed Enable (valid for host mode only)

Tell the USB that the next token command written to the token register must be
performed at low speed. This lets the USB perform the necessary preamble
required for low-speed data transmissions.

6:0 ADDR[6:0] USB Address

Defines the USB address that the USB decodes in peripheral mode or transmits
in host mode.

45

Frame Number Registers

The Frame Number registers contain the 11-bit frame number. The current frame number is
updated in these registers when a SOF_TOKEN is received.

Table 4-16. Frame Number Register

BIT 15 14 13 |12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET - o8
FIELD i FRM[10:0]
=338 0 | 0 [0 |00 0] O 0O JoJ]o] o] JoJ]o] o J o] o
RW RIR|R|R|R|R]| R R|IR|R|R|R|R|RJ|R|R

Table 4-17. Frame Number Register Definitions

Bits Field Name Description

15:11 i Reserved
10:0 FRM[10:0] Frame Number
The 11 bits of the Frame Number.

46

Token Register

The Token register performs USB transactions when in host mode (HOST_MODE_EN=1).
When the host microprocessor wants to execute a USB transaction to a peripheral, it writes the
TOKEN type and endpoint to this register. After this register is written, the USB begins the
specified USB transaction to the address contained in the Address register.

The host microprocessor must always check that the TOKEN_BUSY bit in the control register is
not set before performing a write to the Token register. This ensures that token commands are
not overwritten before they execute.

The Address register is also used when performing a token command and therefore must also
be written before the Token register. The Address register is used to correctly select the USB
peripheral address that will be transmitted by the token command.

The SOF Threshold register is used only in host mode. When host mode is enabled, the 14-bit
SOF counter counts the interval between SOF frames. The SOF must be transmitted every 1us
so the SOF counter is loaded with a value of 12000. When the SOF counter reaches zero, a
Start-of-Frame (SOF) token is transmitted. The SOF Threshold register programs the number of
USB byte times before the SOF to stop initiating token packet transactions. This register must
be set to a value that ensures that other packets are not actively being transmitted when the
SOF timer counts to zero. When the SOF counter reaches the threshold value, token
transmission stops until after the SOF has been transmitted. The value programmed into the
Threshold register must reserve enough time to ensure that the worst case transaction will
complete. In general, the worst case transaction is a IN token, followed by a data packet from
the target, followed by the response from the host. The actual time required is a function of the
maximum packet size on the bus. Typical values for the SOF threshold are:

¢ 64 byte packets=74
¢ 32 byte packets=42
¢ 16 byte packets=26
¢ 8 byte packets=18

47

Table 4-18. Token Register

BIT 14 13 12 11 10 9
OFFSET 0Ah
FIELD SOF Threshold Register Token Register
CNT[7:0] TOKEN_PID TOKEN_ENDPT
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW R/ R/ R/ R/ R/ R/ R/ R/ R/ R/ R/ R/ R/ R/ R/ R/
W W W W w W W wW W W W W w W W wW

Table 4-19. Token Register Definitions

Bits Field Name Description

15:8 CNT[7:0] SOF Count Threshold
Represent the SOF count threshold, in byte times.
74 TOKEN_PID Token Type
The token type that the SUB executes (see Table 4-20).
3:0 TOKEN_ENDPT Endpoint for Token Command
Determines the endpoint address for the token command. The 4-bit value that is
written must be for a valid endpoint.

Table 4-20. Valid PID Tokens

Token_PID Token Type Description

0001 OUT Token USB performs an OUT (TX) transaction.
1001 IN Token USB performs an IN (RX) transaction.
1101 SETUP Token USB performs a SETUP (TX).

48

Endpoint Control Registers

The Endpoint Control registers contain the endpoint control bits for the 16 endpoints available
on USB for a decoded address. These four bits define all the control necessary for any one
endpoint. Endpoint 0 (ENDPTO) is associated with control pipe 0, which is required by USB for
all functions. Therefore, after receiving a USB_RST interrupt, the microprocessor sets ENDPTO
to contain ODh.

Table 4-21. Endpoint Control Registers
BIT 7 6 5 | 4 3 2 1 0

OFFSET 11h through 7h
[an]
2
o 2 3 z z

= -

FIELDS = 9, n) Y u, = I
! > = > x = n
A [9 o, N @, ~
o w o o o o o
T 4 w w | w w
0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W

Table 4-22. Endpoint Control Register Definitions

Description |
Host-Mode-Only Bit
A host-mode-only bit that is present only in the Control register for endpoint 0
(endpt0_rg).
1 = host can communicate to a directly connected low-speed device.
0 = host produces the PRE_PID, then switches to low-speed signaling to send a
token to a low-speed device. This is required to communicate with a low-speed
device through a hub.
Host-Mode-Only Bit
A host-mode-only bit that is present only in the control register for endpoint 0
(endpt0_rg).
1 = prevent host retrying NAK’ed transactions. When a transaction is NAK'ed, the
NAK PID updates the BDT PID field and the token-done interrupt is set.
(Required setting when host tries to poll an interrupt endpoint.)
0 = NAK'ed transactions are retried in hardware.

1" Reserved
EP_CTL_DIS Endpoint Enable
EP RX EN Defines whether an endpoint is enabled and the direction of the endpoint. Table
EP TX EN 4-23 shows the enable/direction control values.

EP_STALL

Bits Field Name

7 HOST_WO_HUB

6 RETRY_DIS

=IN[W| (O

Endpoint Stalled

This bit has priority over all control bits in the Endpoint Enable register; however,
it is only valid if EP_IN_EN=1 or EP_OUT_EN=1. Any access to this endpoint
causes the USB to return a STALL handshake. After an endpoint stalls, it requires
intervention from the host controller.

Endpoint Handshaking

1 = defines whether the endpoint performs handshaking during a transaction to
this endpoint

This bit is generally set, unless it is an isochronous endpoint.

0 EP_HSHK

49

Table 4-23. Endpoint Control Register Definitions

EP_CTL DIS EP_RX EN EP_TX EN Endpoint Enable / Direction Control

1

Disable endpoint.

1

Enable endpoint for TX transfer only.

1

Enable endpoint for RX transfer only.

Enable endpoint for RX and TX transfers.

Al alal o
__\OAOI

Enable endpoint for RX and TX and control (SETUP)
transfers.

Host Mode Operation

A unique feature of the USB core is its host mode logic. This logic lets devices such as digital
cameras and palmtop computers work as a USB host controller. Host mode lets a peripheral
such as a digital camera connect directly to a USB-compliant printer. Digital photos can then be
easily printed without having to upload them to a PC. Similarly, with palmtop computer
applications, a USB-compliant keyboard/mouse can connect to the palmtop computer for easy
interaction.

Host mode is designed for handheld-portable devices, allowing easy connection to simple
Human Interface Device (HID)-class devices such as printers and keyboards. It is not intended
to perform the functions of full Open Host Controller Interface (OHCI)- or Universal Host
Controller Interface (UHCI)-compatible host controllers found on PC motherboards.

Host mode allows bulk, isochronous, interrupt and control transfers. Bulk data transfers are
performed at nearly the full USB bus bandwidth. Support is provided for ISO transfers; however,
the number of ISO streams that can be practically supported depends on the interrupt latency of
the microprocessor servicing the token-done interrupts from the SIE. Custom drivers must be
written to support host mode. The USB is not supported by Windows 98 as a USB host
controller.

The USB core can operate as either a target device or in host mode. It cannot operate in both
modes simultaneously.

To enable host mode, set the HOST_MODE_EN bit in the Status register (see Status Register
on page 43). Host mode also uses the following registers:

¢ Token Register on page 47
¢ SOF Threshold register on page 47
During host mode, only endpoint zero is used. Software must disable all other endpoints.

50

Sample Host Mode Operations

Figure 3. Enable Host Mode and Configure a Target Device

‘\\I

_\, Pull-down resistors enabled.,
Enable Host Mode (CTL[HGST_MDDE_EN]=] J. pu_]_]_up resistors disabled.

S0F generation begins,
S0OF counter loaded with 12,004,

N/

Signaled by USB Target pull-up
resistor changing DPLUS 0 or
DMINUS 0 to 1 (5EO to J or K state).

Wait for ATTACH Interrupt

s

Enable RESET (CTL[RESET]=1) for 10ms

Host Controller (USB) sends a SETUP token with a
GET_DEVICE_DESCRIFTOR packet.

iz)

~

IM token issued.

N2 L AN A

/’

/’- After the data is received, is device type cmnpatihlh
with the application?

o /

Yes

/’_Sem:l another SETUP token with a SET_ADDRES_S\’
command. followed by a SET_CONFIGURATION
command. __/J

-

USE data can be sent or received from the USB

target device.

~
e _/

51

Figure 4. Full-Speed Bulk Data Transfers to a Target Device

/'_Comple[e all steps to attach and configure the ™
target device.

e | _/

(r Write the ADDR register with the address of the ™
target device. Typically there is only one other
device on the USB bus in host mode.so expect the
\,_ address to be 0x01 andto remain constant. S

/Set up the EVEN TX EPO BDT to transfer up to I
64 bytes.

e _/
I
fr‘r'-r"rite the TOKEN register with an OUT token to I

the desired endpoint. This triggers the USB transmit
state machines to transmit the TOKEN and DATA.
. | /
7 Set up the Odd TX EPO BDT to transfer up to 64 N
bytes.

. S/

1

/— Write the TOKEN register with an OUT token, :L.*sm\I
in step 4. (Two tokens can be queued at a time to
double-buffer packets for maximum throughput.)

o | S/

/Wuit for the TOK_DNE interrupt. This indicates

Pending packet must be'
dequeued and the error
condition in the target
device cleared.

Target has detached
and host mode should
be exited.

STALL RESET
Interrupt Interrupt
Occurs Oceurs

that one of the BDTs was released to the CPU and

that the transfer has completed. _)

TOK_DNE Interrupt Occurs

The BDTs can be examined and the next data
packet queued by returning to step 2.

52

Target Device
Asserts NAKs

USB retries the transfer
indefinitely without processor
intervention unless the RETRY _
DIS retry disable bitis set in

the EPO control register.

USB Pull-up/Pull-down Resistors

USB uses pull-up or pull-down resistors to determine when an attach or detach event occurs on
the bus. Host mode complicates the resistors, since it requires devices to operate as either a
USB target device or a USB host. Figure 4-5 shows the two resistor combinations required for
USB targets and hosts.

Normally, the USB operates in normal mode with HOST_MODE_EN=0. This mode enables
resistor R1 and disables the R2 resistors. When the device connects to a PC host, the host
recognizes that DPLUS is pulled up, indicating that a full-speed device is attached.

When the device is in host mode (HOST_MODE_EN=1), the R2 resistors are enabled and the
R1 resistor is disabled. When a USB target connects to the USB, the R1 in the target causes
the DPLUS signal (or DMINUS for a low-speed device) to go HIGH, activating the ATTACH
interrupt.

Figure 4-5. Pull-up/Pull-down USB

b WIEE
LIS B Connecior
H1=184
l T OHINUS

2 DRIMNLS

DPLLIS

AT = 15

HLE | ML

53

USB Interface Signals

Clock (CLK)

USP Speed
(SPEED)

USB Suspend
(SUSPND)

USB Output Enable
(USBOE)

USB Data Plus
Output (DPO)

USB Data Minus
Output (DMO)

USB Receive Data
(RCV)

USB End Of Packet
(EOP)

USB Single Ended
Zero (SEOQ)

HOST Mode Enable
(HOST_MODE)

The clock input is required to be connected to a 12 MHz signal that is derived
from the USB signals.

The USB speed indicator is used by external USB transceiver logic to
determine which speed interface the USB is implementing.

1 = USB is operating at full speed.

0 = USB is a low-speed device.

The USB suspend signal is used by external logic to determine when the USB
is in suspend mode. This is useful when external logic must enter a low-power
mode during suspend.

1 = USB is suspended.
0 = USB is operational.

The USB output enable signal is designed to be connected to the tri-state
control of USB transceivers.

1 = USB core drives serial data on to the USB.

The USB data plus output signal transmits the NRZI-encoded serial data to
the D+ side of the USB.

The USB data minus output signal transmits the NRZI-encoded serial data to
the D- side of the USB.

Connects the USB receive data input to a NRZ serial data stream decoded
from the USB D+ and D- signals. Typically, this signal connects to DATAOUT
output from the digital phase lock loop. The USB core assumes that this input
signal is synchronous to the CLK signal.

The USB end-of-packet input should be active when a end of packet condition
is decoded on the USB D+ and D- signals. Typically, this signal connects to
EOP output from the digital phase lock loop. The USB core assumes that this
input signal is synchronous to the CLK signal.

The USB single-ended zero input should be active when a single-ended zero
condition decodes on the USB D+ and D- signals. Typically this signal
connects to SEO output from the digital phase lock loop. The USB core
assumes that this input signal is synchronous to the CLK signal.

The HOST Mode Enable signal provides external programmable control of
Host Mode functions. This typically includes the pull-up/pull-down resisters
necessary to implement a USB target peripheral or a USB Host controller. For
more information on the requisite pull-up/pull-down control see USB Pull-
up/Pull-down Resistors on page 53.

54

5: CAN Controllers

This chapter describes the DSTni CAN controller. Topics include:

¢ CANBUS Background on page 56
Features on page 57

Theory of Operation on page 58

CAN Register Summaries on page 58
CAN Register Definitions on page 63
¢ CAN Bus Interface on page 84

This chapter assumes you have a working knowledge of the CAN bus protocols. Discussions
involving CANBUS beyond the scope of DSTni are not covered in this chapter. For more
information about CANBUS, and the higher level protocols that use it as a physical transport
medium, visit the CAN Automation Web site at

http://www.can-cia.de. Bosch is the originator of the CAN bus and can be contacted at
http://www.bosch.com.

® ¢ 0o

55

CANBUS Background

CAN is a fast and highly reliable, multicast/multimaster, prioritized serial communications
protocol that is designed to provide reliable and cost-effective links. CAN uses a twisted-pair
cable to communicate at speeds of up to 1 MB/s with up to 127 nodes. It was originally
developed to simplify wiring in automobiles. Today, it is often used in automotive and industrial-
control applications.

Data Exchanges and Communication

A CAN message contains an identifier field, a data field and error, acknowledgement, and cyclic
Redundancy check (CRC) fields.

¢ The identifier field consists of 11 bits for CAN 2.0A or 29 bits for CAN 2.0B.
¢ The size of the data field is variable, from zero to 8 bytes.

When data transmits over a CAN network, no individual nodes are addressed. Instead, the
message is assigned an identifier that uniquely identifies its data content.

The identifier defines not only the message content, but also the message priority. Any node
can access the bus. After successful arbitration by one node, all other nodes on the bus
become receivers. After receiving the message correctly, these nodes perform an acceptance
test to determine if the data is relevant to that particular node. Therefore, it is not only possible
to perform communication on a peer-to-peer basis, where a single node accepts the message; it
is also possible to perform broadcast and synchronized communications, whereby multiple
nodes can accept the same message that is sent in a single transmission.

Arbitration and Error Checking

CAN employs the Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
mechanism to arbitrate access to the bus. Unlike other bus systems, CAN does not use
acknowledgement messages, which cost bandwidth on the bus. All nodes check each frame for
errors. Any node in the system that detects an error immediately signals this to the transmitter.
By having all nodes check for errors in transmitted frames, CAN provides high network data
security.

CANBUS error checking includes:

¢ CRCerrors

¢ Acknowledgement errors
¢ Frame errors

¢ Biterrors

¢ Bit stuffing errors

The concept of bit stuffing involves inserting a bit of opposite polarity when more than five
consecutive bits have the same polarity. If an error is detected by any of the other nodes,
regardless of whether the message was meant for it or not, the current transmission aborts by
transmission of an active error frame. An active error frame consists of six consecutive
dominant bits and prevents other nodes from accepting the erroneous message. The active
error frame violates bit stuffing and can also corrupt the fixed form of the frame, causing other
nodes to transmit their own active error frames. After an active error frame, the transmitting
node retransmits the frame automatically within a fixed period of time.

56

CANBUS Speed and Length
Table 7-1 shows the relationship between the bit rate and cable length.

Table 5-1. Bit Rates for Different Cable Lengths

Bit Rate Cable Length

10 KB/s 6.7 km
20 KB/s 3.3km
50 KB/s 1.3 km
125 KB/s 530 m
250 KB/s 270 m
500 KB/s 130 m
1 MB/s 40 m

Features

¢ Three programmable acceptance filters

Message filter covers: ID, IDE, RTR, 16 DATA bits
Each filter has its own enable flag

¢ Transmit Path

Three Tx message holding registers with internal priority arbiter
Message abort command

¢ Receive FIFO

Four message deep receive FIFO
FIFO status indicator

¢ Bus coupler
Intel style interface module
Full synchronous zero wait-states interface
Status and configuration interface

*

Programmable Interrupt Controller
¢ Listen only mode
¢ CANbus analysis functions

Arbitration lost capture
Error event capture
Actual frame reference pointer

¢ Programmable CANbus physical layer interface

57

Theory of Operation

The CAN controller appears to the microprocessor as an 1/O device. Each peripheral has 256
bytes of 1/0 address space allocated to it. CANO and CAN1 share Interrupt 6.

Table 5-2. CAN I/O Address

| CAN Controller | Base Address]
CANO A800h
CAN1 A900h

CAN Register Summaries

DSTni contains two independent CAN channels. Operation and access to each device,
however, is the same. The only difference is the starting I/O base address for each channel, as
shown in Table 5-2.

Both CAN channels have their registers located and fixed in the internal I/O space of the DSTni
chip. Both are implemented as true 16-bit devices. Therefore, all accesses made to the CAN
channel registers must be 16-bit I/0O-type accesses in the I/O space. Byte accesses result in
erroneous operation.

Each CAN channel has 62, 16-bit registers. These registers allow for configuration, control,
status, and operational data. Table 5-3 the 16-bit register mapping for both CAN channels of
these registers. The hex offsets shown in the table are offset from the base addresses in Table
5-2.

Register Summary

Table 5-3. CAN Channel Register Summary

Hex Offset Register

00 TxMessage 0: 1D, 1D28-13

02 1D12-00

04 TxMessage 0: Data, D55-48, D63-56

06 D39-32, D47-40

08 D23-16, D31-24

0A D07-00, D15-08

0C TxMessage 0: RTR, IDE, DLC_3-0

OE TxMessage 0: Control Flags, TXAbort, TRX
10 TxMessage 1: 1D, 1D28-13

12 1D12-00

14 TxMessage 1: Data, D55-48, D63-56

16 D39-32, D47-40

18 D23-16, D31-24

1A D07-00, D15-08

1C TxMessage 1: RTR, IDE, DLC 3-0

1E TxMessage_1: Control Flags, TXAbort, TRX
20 TxMessage 2: ID, ID28-13

22 ID12-00

24 TxMessage 2: Data, D55-48, D63-56

26 D39-32, D47-40

28 D23-16, D31-24

2A D07-00, D15-08

2C TxMessage 2: RTR, IDE, DLC 3-0

2E TxMessage_ 2: Control Flags, TXAbort, TRX

58

Hex Offset Register

30 RxMessage: ID, 1D28-13

32 ID12-00

34 RxMessage: Data, D55-48, D63-56

36 D39-32, D47-40

38 D23-16, D31-24

3A D07-00, D15-08

3C RxMessage: RTR, IDE, DLC_3-0,AFI_2-0

3E RxMessage: Control Flags, Fifo_Lvl_2-0, MsgAval
40 Transmitter and Receive Error Counter

42 Error Status

44 Message Level Threshold

46 Interrupts Flags

48 Interrupt Enable Register

4A CAN mode, Loop_Back, Passive, Run

4C CAN Bit Rate Div., cfg_bitrate 10-0

4E CAN tsegs

50 Acceptance Filter Enable Register, AFE_2-0
52 Acceptance Mask Register 0 (AMRO0), ID28-13
54 ID12-00, IDE, RTR

56 D55-48, D63-56

58 Acceptance Code Register 0 (ACRO0), ID28-13
5A ID12-00, IDE, RTR

5C D55-48, D63-56

5E Acceptance Mask Register 1 (AMR1), ID28-13
60 ID12-00, IDE, RTR

62 D55-48, D63-56

64 Acceptance Code Register 1 (ACR1), ID28-13
66 ID12-00, IDE, RTR

68 D55-48, D63-56

6A Acceptance Mask Register 2 (AMR2), ID28-13
6C ID12-00, IDE, RTR

6E D55-48, D63-56

70 Acceptance Code Register 2 (ACR2), 1D28-13
72 ID12-00, IDE, RTR

74 D55-48, D63-56

76 Arbitration Lost Capture Register (ALCR)

78 Error Capture Register (ECR)

59

Detailed CAN Register Map

Table 5-4. Detailed CAN Register Map

i

i

i

eial 9sd| ova| ¥eal 8odl 0 01d| x| €ial 9sd| ova| ¥eal sodl 0 01d xu4 cial 9sd| ovq| ¥zd| sod 0 O1a XL
vial | sd vwa sza| eod| 1 To1d woawxd vial - | zsd| 1va| seal 60dl 1 o1a| woawxy vial | zsdl 1vd szdl e0d 1 O1d] HoavxL
sial = |esd zva 9zalorazoial = |cial = |esdleval 9ealora zoia = | sial S |ssd zval 9zalora zotd S
orall ooal esd eval zza| 1ia € o1al = |9ial ooal esdl eval 2z2al Lia €07l = | 9vall ooal esd eval zza| Lia € o1d T
s1all woal ood vval gzal zva 3al = | zial woal ood| v¥al szalzvd 3al = | zial woal ood vval gzal zva 3al T
gLal zoal 1od svd eza eral ¥y | sial zoal voq| sval 6zal eral w1yl | eial zoall 1od| svd ezd €va WLy
6Lall coal zod oval oea| via = |ewal coall zod| oval oed via =~ | eial co0all zod| o oed vid h
ozall voal €od zval Lea| sia = |ozal voall €od| 2¥a| 1eq sia =~ | ozal voall eoq| 2+ 1eq s h
\zall soal sva zed oval oo = | 1zal soall eral zed| 9vdl ood h vzall soal sval zeal oral coa h
zzall oal 6va eeal z1al voa = = |zzal 9oal 6val eea| 21d tog = | zeal 9oall 6va| e z1a o =
¢zall 2oal osa veal sral zoa = |¢zal Loall osdl vea| s1al zod =~ | ezal co0all osq| ved| s1d zod h
| S S S S = =
veall soal 1sa sed 61al €oa veall goall 1sq| sedl 61d €0a veall soal 1sa sed 61al €oa
N = = = = = =
il zal 60al zsd 9eq| ozal voal = | gzal 60al zsd| 9eq| ozal voal = = | gzal e0all zsd| 9¢d| ozd vod = =
ot = = = = = =
A ozall ovall esal 2eq| 1za sod = |ozalorall esql 2eq| 1zd soq = = | 9zal oiall esq| zeqd| 1z sod = =
< = = = = = =
Bl ,zal L1al vsal 8ed| zzal goq = | szal viall vsa| seq| zza goq = | szal vral vsa| sed| zza 9o = =
e} = = = = = =
il czall zial ssal eeal €za o = |szal ziall sea| eeq| €za o = | szal ziall ssa| eeq| €zal zod = =
S | S S s |s|sS| = |28 & |s|s|s|s|s| = |28 & |s|=|s|=|s| = |2¢
T M S s s |= s
o = = =
. 5 B 5 B 53
< w o N < © 0] © [&] (0] o N < © o © (6] (0] o N <t © o) © O (0]
R RRIRIRIRB IR R OIxOIX O IX X IX X ¥ € R K f € ¥ |€
IO o

60

1

=~
=

13 ‘ 12 | 11

14

15

Register

cLal 9sd| ovd| vza| sod| 0 01a [eAYBS| 0 U0 U8 X} (Jels Jous O [9As| XY a|qeus i uny| 0 eyenq 6y spow obps| 0 34V
vial — | Zsdl wwa Szal e0dl L 07a = LU0 ue Xyl L TIesTuous| L e Xy = anissed| | eleliq Bjo epow sidwes | 34y
sial = |ssal zra 9z ovd 2 o1a S Z W0 19 X)) 96916x1| 0 |9A9[xJ| sSO| gJe| ssO| gJe| yoeg doom g ejesq By L mIsTByo| 2734V
orall ooal 6sal eva 2za| L1a € 01a = €U0 19 X) 96916xy| | o8| XJ| PEeoj JAQ| PEeo| JAQ = ¢ eenq 6jo VMBS
/1all roal ood v¥a szq zial 3al = A LEIRERR! = = IO X INOTX = ¥ ejemq 650 yejses-oine|
g1all zoal 19d| s¥a| 62a €1.A] HLY| O IAT Ojd G O U Xj h h Jous g Joue h G ojenq by h h
eLal €oall zoq| ovd oed via VAT ol 9 U0 e h = Jous ynys| Jous ymys 9 eleng B0 - h
ozall voall €9a| ¥al 1eq sia ZInTopd /o Tiex h h Iou8 T30 Joue oe| L oenq 6o h h
vzall soal 8¥qd zedl 9ial ood 0 14v| - 0 U0 J9 XJ - = Jousa™wioy| Jous”wioy h g oleng B| o LBesy Bl
zzal| 9oall evdl eedl 21dl Lodl L 14V = [RUCISERE = = JouJ8 010 JOMB 01D = 6 oreq by VTLBesy B
ceall Loal osdl veal s1al zod zZ 14V B AR VY B B yosng po sng B oL elenmq By gz LBesy By
veall soall 1sal cea| 61a coa - €TI0 4o X = - onwx Xy onwx xy - ¢ 1Bosy B
gzall eoall zsa| 9eqd| oza voa = ¥ U0 4o X = = X XX xS = 0 gbosy B =
ozal oial €sal zed| vza soal = = G o I8 X = = wx x| znwx xy = V gBesi B
szal vial vsa| sed zzd 9oal = = 9 U0 Ue X = = Pswxy Bswox| = Z gbosy B =
gzal ziall ssal eed| €zdl 204 = = JARUE I = = Bsw i Bsw ™ = = Bswum g =
@
- _ @ 2
B |s|s|s|s|s| = |2, &5 . x: |& . 5 S o8
S 35 5= SO o ogso |23 z 82 |(z§ 8585
(1] = £ S o = = =
M W_H ol w0 _VIAW x [%M mA.VB%D %m EES X
o N < o [e0] © [8] (0] o (9\] < o 0] © (8] (] o
(2] o [s2] (+2) ™ ™ 2] ™ < < < < < < < < n
x x X x x b3 X b3 x P X P x X X X X
o o o o o o o o o o o o o o o o o

61

14

15

Register

mn

i

n

i

n

i

cLal 9sal eial 9sdl e¢Lal 9sdl eial 9sdl ¢ial 9sdl eial 96dl 0 W swel 0 HQ Swel 0 NG Swely
vial d1d| 26dl vial d1d 26d] vidl d1d| 26A0 vial d1d| 2sd] vidl W1d 26A) vLAl H1d| 2SA] L NG Swell |G swell |G swely
glal 3al ssal sial 3al ssal sial 3al 8sa skal 3al esal sial 3aAl 8sA SiAI 3AIl 8SA| ¢ WA Swell g UG Swell g g swely
9lall oodl esal 9ial ooal 6sal 9iLadl oodl 6sa 9Lal oodll 6sal 9iLal 0odl 6sd] 9.4l 00dll 60| € WA Swel ¢ g ewell ¢ g Bwely
21al Loal osal ziai toal oodl <ial Loal oea sial roal oedl Ziai Lodl 09dl <2idl Lodll 09d| ¥ WA Swes uq ewesl Hq ewely
gLal zoal Leal sial zoal rodl siLdl zodl L9a sLal zodll Lodl 8iLal zodl L9d] 8.dll 20dll L9d| S WA Swel G UG Swell G) Swely
6Lal codl zod| eial €oal zodl eLdl €odl zeal elal coall zed| eLal €odl zed eLdl codll zod - SPON XY 8PO XU
ozal vodl €9dl ozal vodl €9d] ozdl vodl €9a 0zadl vodll €9d| ozal vodl €9d] o0zdl ¥odll £9d h PO X1| ©PON XN
Lzal sodl sval ieall soal syal izdl sodl 8ya lzal sodll sval izdl sodl 8¥A lzdl SOAll 8¥Al O Jo4 Swell O jos Swell O jou Swely
Zeal 9odl eval zzal 9odl 6val zzdl 9o0dl 6¥a zzdl 9odll 6l zzdl 904l 6¥A] <ZzdAl| 90all 6¥A| | Jo4 Swely | jos Swely | jos swely
€zal Lodl osal e€zall loal osdl <€zdl lodl osal <zal lodll oAl <€zal L0dl 0SA| €zdl| L0All 0GA| Z so4 ewel| g jes ewel g jos ewely
vzal sodl Lsdl +veal godl Lsdl vzdl sodl LSA vzdl godll LsaAl tzal 804l LSA] ¥zdll 80dll LAl € Jo4 Swely ¢ jes swely ¢ jes swely
Gzdl eo0dll zed|l Sezall 60dll ¢sdl Szdl 604l ¢sAl Szall 60dll zsal Szdll 604l 25A] Szdl| 60dll ZSA| ¥ Jo4 Bwely ¢ jos Swely ¢ jos swely
gzal oval €sal 9zal oiral €sal 9zal oLal €sal 9zal oiall €sal 9zal oiral €sa] 9zadl orail £sd = 0 opoo 19 g XU
lzal vial veal Zezal veal ysal zzal veal ysal zzal veal vsal zzal veal ysal zzal vial ysd = L opoo L9 g Xy
gzal zial ssal sezal zial ssal 8zadl zidl ssal szal ciall ssal 8zal zidl ssa szadl ziail ssd = Z epoo g pul ynmis

(0] [0] (0] [0] (0] [0]

g o g o 2 s g 3 5 g

E 8= |=|8 8= |=|8 8= |=|8 8 = |=If 8 =|=|f 2=|=|5 &8 28 058

535 58 355 L 555 L £:28 525 |EsB

o8 Q00 [l) Q00 [) Q00 = 0 ® O Em© O S oo

<= <O <= <O <= <O <J0 wox LYo

(9\] < © [e0) @ (6] (] o [9V] < «© 0] © (8] ()] o N <+ O|© [e0] ©

n [Te] wn o] n 9] 0 [{e] © © © © © [{e] © N~ N~ N~ O~ N~ N~

X x x x X x X X X x X x X X X x X X | X x x

o o o o o o o o o o o o o o o o o o —|O o o

62

CAN Register Definitions

TX Message Registers

To avoid priority inversion issues in the transmit path, three transmit buffers are available with a
built-in priority arbiter. When a message is transmitted, the priority arbiter evaluates all pending
messages and selects the one with the highest priority. The message priority is re-evaluated
after each message abort event such as arbitration loss.

Figure 5-1. TX Message Routing

uP Bus > TxMessage 0 >
PRIORITY
> TxMessage 0 » ARBITER | | CANModule [> CANBUS
> TxMessage 0 >

Sending a Message
The following sequence describes how to send a message.

1. Write message into one of the Transmit Message Holding registers TxMessage0/1/2).

2. Request transmission by setting the respective TRX flag. This flag remains set as long as
the message holding registers contains this message. The content of the message buffer
must not be changed while the TRX flag is set.

The TRX flags remain set as long as the message transmit request is pending.

The successful transfer of a message is indicated by the respective tx_xfer interrupt and by
releasing the TRX flag. Depending on the tx_level configuration settings, an additional
interrupt source tx_msg is available to indicate that the Message Holding registers are
empty or below a certain level.

Removing a Message from a Transmit Holding Register

A message can be removed from one of the three Transmit Holding registers (TxMessage0/1/2)
by setting the TxAbort flag. Use following procedure to remove the contents of a particular
TxMessage buffer:

5. Set TxAbort to request the message removal.

6. This flag remains set as long as the message abort request is pending. It is cleared when
either the message won arbitration (tx_xmit interrupt active) or the message was removed
(tx_xmit interrupt inactive).

63

Tx Message Registers

Table 5-5 shows TxMessage_0 registers. The registers for TxMessage 1 and TxMessage 2
are identical except for the offsets.

Table 5-5. TxMessage 0:1D28

64

Table 5-12. TxMessage_0:Ctrl Flags

BIT| 15| 14 13 | 12 | 11
OFFSET
FIELD

o
m

1 1 1 1 1 n mn m n n mn n n n TRX

Tx Abort

Table 5-13. TxMessage_0 Register Definitions

Field Name Description
ID_28:1D_0 Message Identifier for Both Standard and Extended Messages
Standard messages use ID_28 .. ID_18
D _63:D 0 Message Data
Byte 1is D_63, D_56; Byte 2 is D_55, D_48; and so on.
RTR Remote Bit
IDE Extended Identifier Bit
DLC_3:DLC_O Data Length Code
Invalid values are transmitted as they are, but only in 8 data bytes.
TxAbort Transmit Abort

Set this flag to request the removal of the pending message in Tx message buffer. This
occurs the next time when an arbitration loss occurred. The flag is cleared when the
message either was removed or won arbitration. The TRX flag is released at the same time.

TRX Message Transmit Request

1 = starts a message-transmit request. Note: The Tx message buffer must not be changed
while TRX is * 1’ ! When the whole message is successfully transmitted, TRX goes LOW.
0 = do not start a message-transmit request.

65

RX Message Registers

A 4-message-deep FIFO stores the incoming messages. Status flags indicate how many
messages are stored. Additional flags determine from which acceptance filter the actual

message is coming from.

Figure 5-2. RX Message Routing

«— CANBUS

uP Bus<+— 2 > ‘:) 2
(@) (@) (@] o
§ g g g MESSAGE
% g é) é) FILTERS CAN Module
X X > >
¥ x|

To read received messages:
1. Wait for rx_msg interrupt.
2. MessageReadlLoop:

¢ read message

¢ acknowledge ‘ message read’ by writing a * 1’ to MsgAv register
¢ read MsgAv; reading a ‘ 1" means a new message is available

¢ IF MsgAv=1 THEN jump to MessageReadLoop

3. Acknowledge rx_msg interrupt by writing a ‘ 1’ to this register location.

66

Rx Message Registers
The following table shows RxMessage registers. See the complete register table at the start of

this section.
Table 5-14. RxMessage:ID28
BIT 15 1413 12|1n]w] 9|8]7[e6]5]a]s]2]1]o
OFFSET 30h
FIELD ID28 | ID27 | ID26 | ID25 | ID24 | ID23 | ID22 | ID21 [ID20 [ID19 | ID18 | ID17 | ID16 | ID15 | ID14 | ID13
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RIW RW|RW|RW|RW|RW|RW|RW|[RW|RW|RW|RW|RW|RW]|RW|RW|RW

Table 5-15. Rx Message: ID28 Register Definitions

Field Name 'Description
15:0 ID[28:13] Message Identifier for Both Standard and Extended Messages
Standard messages use ID_28 .. ID_18; ID-17 set to ‘1’.

Table 5-16. RxMessage:ID12

BIT 15 J1a[13[12]nfw]o s8] 765]a]sz]2]1]o
OFFSET 32h
FIELD D12 [ID11 [ID10 | ID09 | 1D08 | IDO7 | 1D06 | 1DO5 | 1D04 | 1D03 | ID02 | IDO1 | 1D0O i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RIW RW | RW |[RW|RW|RW|RW|RW|RW|RW|RW]|RW|RW]|RW]|RW|RW][RW

Table 5-17. Rx Message: ID12 Register Definitions

Field Name 'Description
15:3 ID[12:00] Message Identifier for Both Standard and Extended Messages
2:0 1 Reserved

Table 5-18. Rx Message: Data 55
BIT | 15 |14 |13 [12|11 [1w0] o] 8|7 |6 5] a4]3][2]1]o0

OFFSET 34h

FIELD D55 | D54 | D53 | D52 | D51 | D50 | D49 | D48 | D63 | D62 | D61 | D60 | D59 | D58 | D57 | D56
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/IW RW | RW |RW|RW]|RW]|RW]|RW]|RW]|RW]|RW]|RW]|RW]|RW]|RW]|RW]| RW

Table 5-19. Rx Message: Data 55 Register Definitions

Field Name 'Description
15:0 D[55:56] Message Data
Byte 1is D_63, D_56; Byte 2is D_55, D_48; and so on.

67

BIT

OFFSET \
FIELD |
|
|

N=N1=)
R/W

15:0

Table 5-20. Rx Message: Data 39

15 14 [13121]10] 9|8 [7]6 5] a]3]2]1]o0
36h

D39 | D38 | D37 | D36 | D35 | D34 | D33 | D32 | D47 | D46 | D45 | D44 | D43 | D42 | D41 | D40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RW|RW [RW [RW]| RW [RW| RW [RW [RW| RW [RW]| RW [RW| RW | RW [RW

Table 5-21. Rx Message: Data 39 Register Definitions

D[39:40]

Field Name

'Description

Message Data

Table 5-22. Rx Message: Data 23

BIT

15 a1]12[uu]w] o8][7]|6]|]s5]4a]3]2]1]o

OFFSET

FIELD

N=N1=)

R/W

38h
D23 | D22 | D21 | D20 | D19 | D18 | D17 | D16 | D31 | D30 | D29 | D28 | D27 | D26 | D25 | D24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW | RW | RW | RW | RW | RW | RW | R'W | RW | R'W | RIW | RIW | R'W | R'W | R/W | RIW

15:0

Table 5-23. Rx Message: Data 23 Register Definitions

Field Name
D[23:24]

Description
Message Data

Table 5-24. Rx Message: Data 7

BIT

OFFSET

RESET

|
|
FIELD |
|
|

R/W

15 1413 12]nnfw] 9|8]7][6]5]a]s]2]1]o
3Ah

D07 | D06 | D05 | D04 | D03 | D02 | DO1 | DOO | D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RW [RW [RW [RW [RW | RW [RW [RW | RW [RW | RW [RW | RW | RW | RW | RW

15:0

Table 5-25. Rx Message: Data 7 Register Definitions

Field Name
D[07:08]

Description
Message Data

68

BIT
OFFSET
FIELD

RESET
R/W

Table 5-26. RxMessage: RTR

15 14 [13]12]uu] 0| 9 [8 [7[s6[5] 4] 3 | 2 | 1 [o
3C
T AFIL 2[AFL 1] AFIO ! RTR| IDE [DLC 3| DLC 2 [DLC 1] DLC 0
0 JoJ]o]J]o]o 0 0 0 0]0] o0 0 0 0 0 0
RW [RW|RW |[RW|[RW| RW [RW | RW [RW[RW[RW|RW | RW | RW | RW | RW

Table 5-27. Rx Message: RTR Register Definitions

Field Name 'Description
15:11 1" Reserved
10:8 AFI[2:0] Acceptance Filter Indicator
Indicates which acceptance filter(s) accepted the incoming message. If
more than one filter accepted the message, more than one bit is set.
7:6 1 Reserved
5 RTR Remote Bit
4 IDE Extended Identifier Bit
3 DLC[3:0] Data Length Code
Invalid values are transmitted as they are.
Table 5-28. Rx Message: Msg Flags
BIT 1514131209 8 [7]6]5]a] 3] 2 | 1]o
OFFSET 3E
FIELD i I
N ~ o —
L |e |8 g
[<
g |& |& g
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW |R/W |R/W|R/W|RW|RW|RW| R/W R R R/W R/W R/W R/W | RIW

Table 5-29. Rx Message: Msg Flags Register Definitions

Field Name 'Description

15:8 1 Reserved

7:5 Rx_Fifo[2:0]: Rx FIFO Status
These two Read Only flags indicate how many messages are
waiting in the queue.
000 = empty
001 = 1/4 full
010 = 1/2 full
011 = 3/4 full
100 = full
Other values are not applicable.

4:1 1 Reserved

0 Msg Avail Message Available
MsgAval goes HIGH when a new message is available. Writing a 1’ clears
this flag and indicates that the message has been read. If another message
is available, this flag is not cleared and the new message from RxMsg1
buffer is accessible.

69

Error Count and Status Registers

Table 5-30. Tx/Rx Error Count
Nl 15 | 14|13 1211w]o9o]]8] 7|6 |5]| a]3]2]1]o0
OFFSET 40h
SISWl RE7 | RE6 | RE5 | RE4 | RE3 | RE2 | RE1 | REO | TE7 | TE6 | TE5 | TE4 | TE3 | TE2 | TE1 | TEO
RESET S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S RW [RW [RW [RW [RW [RW | RW [RW [RW | RW | RW | RW | RW | RW | RIW | RIW

Table 5-31. Tx\Rx Error Count Register Definitions

15:8 RE[7:0] Rx_er_cnt Bits

The receiver error counter according to the Bosch CAN specification. When
in bus off, this counter counts the idle states.

7:0 TE[7:0] Tx_er_cnt Bits

The transmitter error counter according to the Bosch CAN specification.
When it is greater than 255 (dec), it is fixed at 255.

Table 5-32. Error Status

BIT 15 141312 fw]9o 8] 7]6][5]a]3]2]1]o0
OFFSET 42h

FIELD i RX96 | TX96 | ES1 [ESO
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |0 Table

RIW R| R|R|R|R|R|R|R|R|R|R|R|R|R|RI[R 5-33.
Error

Status Register Definitions

Field Name 'Description

15:4 1 Reserved
3 RX96 Rxgte96 or rx > 96
The receiver error counter is greater than or equal to 96 (dec).
2 TX96 Tx96 or tx > 96
The transmitter error counter is greater than or equal to 96 (dec).
1:0 ES[1:0] ES1-0 Error_stat

Error state of the CAN node:

00 = error active (normal operation).
01 = error passive.

1x = bus off.

70

Table 5-34. Tx/Rx Message Level Register

Ol 15 | 14| 3|12 9|87]6]|5]a[3]2]1]o0

OFFSET 44h

FIELD 1 RL1 | RLO | TL1 | TLO

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W R/'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | R'W | RIW

Table 5-35. Tx/Rx Message Level Register Definitions

Bits Field Name Description

15:4 i Reserved

3:1 RL[1:0] rx_level[1:0]

Sets the rx_msg interrupt threshold:

0 = at least 1 message in receive FIFO

1 = at least 2 messages in receive FIFO.
2 = at least 3 messages in receive FIFO.
3 = at least 4 messages in receive FIFO.
1:0 TL[1:0] tx_level[1:0]

Sets the tx_msg interrupt threshold:

0 = all tx buffers are empty.

1 = minimum 2 empty buffers.

2 = minimum 1 empty buffer.

3 = not applicable.

71

Interrupt Flags

The following flags are set on internal events (they activate an interrupt line when enabled).
They are cleared by writing a * 1’ to the appropriate flag. Acknowledging the tx_msg interrupt
also acknowledges all tx_xmit interrupt sources. Acknowledging one of the tx_xmit interrupt

sources also acknowledges the tx_msg interrupt.

Note: The reset value of this register’s bits is indeterminate.

Table 5-36. Interrupt Flags

14]13[12]unfwo] o[8[7]6[5]a]s3]2]1]o
OFFSET 46h
FIELD » a e
o [ElE|e | |8 |8 8|8 x|el|d |8
2] = = p= o w I w | 4 > | e I
= < < < [[- I w |) [[
JlelrlRlglg|Blelels|2lE |2
= = ~ = m o e < % o ¥ |O <
RW | RW|RW|RW/|RW|RW|RW|RW|RW|RW/|RW]|RW|RW]|RW/|RW
Table 5-37. Interrupt Flag Definitions
Field Name Description
RX_MSG Rx Message
Depending on rx_level, at least one message is available.
14 TX_MSG Tx Message
Depending on rx_level, at least one message is empty.
13 TX_XMIT2 Tx Xmit 2
Indicates that the message was successfully sent.
12 TX_XMIT1 Tx Xmit 1
Indicates that the message was successfully sent.
11 TX_XMITO Tx Xmit 0
Indicates that the message was successfully sent.
10 BUS_OFF Bus Off State
CAN has reached the bus off state.
9 CRC_ERR CRC Error
CRC error occurred while sending or receiving a message.
8 FORM_ERR Format Error
Format error occurred while sending or receiving a
message.
7 ACK_ERR Acknowledgement Error
Acknowledgement error occurred while sending or receiving
a message.
6 STUF_ERR Stuffing Error
Stuffing error occurred while sending or receiving a
message.
5 BIT_ERR Bit Error
Bit error occurred while sending or receiving a message.
4 RX_OVR Receiver Overrun
A new message arrived while the receive buffer is full. This
Flag is set if either the incoming message overwrites an
existing one or is discarded.
3 OVR_LOAD Overload Condition
An overload condition has occurred.
2 ARB_LOSS Arbitration Loss
Arbitration was lost while sending a message.
1:.0 i Reserved

72

Interrupt Enable Registers

All interrupt sources are grouped into three groups (traffic, error and diagnostics interrupts). To
enable a particular interrupt, set its enable flag to “ 1’ .

Table 5-38. Interrupt Enable Registers

BIT 14 1312 un|w0] 9o [8] 7|65 [4a]3]2]1]o0
OFFSET 48h
FIELD
& o a) %)
o |E|E (B |t |8 |5 |8 |8 ||« |3 |8 @
2} = = = (e} 18| | L | o > —] Il P4
= < < X I I = I w I) [| i
R R |8 g B2 5|55 |8 .
™ ™ ™ = m o e < () m ¥ |O < Z
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW |RW | RW|RW|RW|RW|RW|RW|RW|RW|RW]|RW|RW|RW|RW
Table 5-39. Interrupt Enable Register Definitions
Field Name | Description
15 RX_MSG Rx Message —intl_n group (traffic interrupts)

1 = enable flag set.

0 = enable flag not set.

14 TX_MSG Tx Message — intl_n group (traffic interrupts)
1 = enable flag set.

0 = enable flag not set.

13 TX_XMIT2 Tx Xmit 2 —intl_n group (traffic interrupts)

1 = enable flag set.

0 = enable flag not set.

12 TX_XMIT1 Tx Xmit 1 —intl_n group (traffic interrupts)

1 = enable flag set.

0 = enable flag not set.

11 TX_XMITO Tx Xmit 0 —intl_n group (traffic interrupts)

1 = enable flag set.

0 = enable flag not set.

10 BUS_OFF Bus Off State — int2_n group (error interrupts)
1 = enable flag set.

0 = enable flag not set.

9 CRC_ERR CRC Error —int2_n group (error interrupts)

1 = enable flag set.

0 = enable flag not set.

8 FORM_ERR Format Error —int2_n group (error interrupts)
1 = enable flag set.

0 = enable flag not set.

7 ACK_ERR Acknowledgement Error —int2_n group (error interrupts)
1 = enable flag set.

0 = enable flag not set.

6 STUF_ERR Stuffing Error —int2_n group (error interrupts)
1 = enable flag set.

0 = enable flag not set.

5 BIT_ERR Bit Error —int2_n group (error interrupts)

1 = enable flag set.

0 = enable flag not set.

4 RX_OVR Receiver Overrun —intl_n group (traffic interrupts)
1 = enable flag set.

0 = enable flag not set.

73

Bits Field Name | Description

3 OVR_LOAD Overload Condition—int3n group (diagnostic interrupts)
1 = enable flag set.

0 = enable flag not set.

2 ARB_LOSS Arbitration Loss— int3n group (diagnostic interrupts)
1 = enable flag set.

0 = enable flag not set.

1 " Reserved

0 INT_ENB General Interrupt Enable

1 = enable flag set.

0 = enable flag not set.

CAN Operating Mode

The CAN modules can be used in different operating modes. By disabling transmitting data, it is
possible to us the CAN in listen only mode enabling features such as automatic bit rate
detection. The two modules can be used in an on-chip loop-back mode.

Gl 15 | 4 (13 |12[11]1w0] 98 [7 |6]|5]4a]3]2]1]o0
OFFSET 4Ah

FIELD

mn

LOOP_BACK

o| PASSIVE
©| RUN

0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW | RW |RW|RW|RW]|RW]|RW|RW|RW|RW]|RW]|RW]|RW]|RW]|RW]| RW

Table 5-40. Interrupt Enable Registers

Table 5-41. Interrupt Enable Register Definitions

Bits Field Name | Description
15:3 1 Reserved
2 LOOP_BACK Internal Loopback Mode

1 = a-c Internal loopback.

0 = a-b; c-d (default)

1 PASSIVE Active/Passive

Output is held at * R’ level. The CAN module is only listening.
1 = CAN is passive.

0 = CAN is active.

0 RUN Run Mode

1 = places the CAN controller in run mode. Reads ‘ 1’ when
running .

0 = places the CAN controller in stop mode. Reads ‘ 0’ when
stopped.

74

Figure 5-3. CAN Operating Mode

DSTni

CAN Module 1 |——¢ — = CAN Port 1

CAN Module 2 - CAN Port 2

Note: The Loopback Mode register in CAN module 2 is not functional. For proper operation in
loopback mode, the configuration of both CAN modules must be the same.

CAN Configuration Registers
The following registers set bit rate and other configuration parameters.

Table 5-42. Bit Rate Divisor Register

N
N
N
N
<]

Ol 15 [14 | 13121110 9[8[7] 6|5]

OFFSET 4Ch
n ¥ |2 |2 |2 |2 |2 |2 |8 |& g | &

m m m m m [an] [an] m m [an] [a]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RW | RW/|RW/|RW/|RW/|RW|RW|RW|RW/|RW|RW|RW]|RW]|RW]|RW]|RW

Table 5-43. Bit Rate Divisor Register Definitions

Field Name | Description
15:11 " Reserved
10:0 BR[10:0] Configuration Bit Rate

Prescaler for generating the time quantum:
00000000000 = maximum speed (1 TQ = 1 clock cycle)
00000000001 = 1 TQ = 2 clock cycles

75

BIT
OFFSET

FIELD

Table 5-44. Configuration Register

15 14132 nnfw] 9 [8]7[6]5s5]a]s3]2]1]o
4Eh
0]] 8|8
(%] 4 = =
EI ~ - o . ~ - o mn o CFG_SJw1 | o
x o o o << <! ! = b= O
= %) %) 0 (%) (%) () %) o) <]
() e e [[i [[< %) w
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW |RW|RW|RW/|RW|RW|RW|RW]|RW|RW]|RW|RW]|RW]|RW]|RW]|RW
Table 5-45. Configuration Register Definitions
Bits Field Name | Description
15 OVR_MSG Overwrite Last Message
1= when FIFO is full and a new message arrives it overwrites the
message in RxMsg3 buffer.
0 = under the same conditions, a new message is discarded and
no rx_msg flag is set (default).
14:12 TS[2_2:2_0] Cfg_tseg2
Length -1 of the second time segment. Cfg_tseg2=0 is not allowed;
cfg_tseg2=1 is only allowed in direct sampling mode. See Figure
5-4.
11:8 TS[1_3:1_0] Cfg_tsegl
Length - 1 of the first time segment (bit timing). It includes the
propagation time segment. Cfg_tseg1=0 and cfg_tseg1=1 are not
allowed. See Figure 5-4..
7:5 1 Reserved
4 AUTO_RES Auto Restart
1 = after bus off, the CAN is restarting automatically after 128
groups of 11 recessive bits.
0 = after bus off, the CAN must be started manually (default).
Synchronization jump width - 1. sjwtseg1 < and sjwiseg2 <
1 SAMP_MOD Sampling Mode
1 = three sampling points with majority decision are used.
0 = one sampling point is used in the receiver path.
0 EDGE_MOD Edge Mode
1 = both edges are used.
0 = edge from ‘ R’ to ‘ D’ is used for synchronization (default).

76

The following relations exist for bit time, time quanta, time segments %2, and the data sampling
point.

Figure 5-4. Bit Time, Time Quanta, and Sample Point Relationships
Bit Time

1 tseg1 + 1 tseg2 + 1

time quanta (TQ) L Sample Point

Bittime = (1+ (tseg1 + 1) + (tseg2 + 1)) x timequanta
timequanta = (bitrate +1) / o
e.g., for 1Mbps with f,x = 8Mhz, set bitrate = 0, tseg1 = 3 and tseg2 = 2

Observe the following conditions when setting tseg1 and tseg2:

tseg1=0 and tseg1=1 are not allowed
tseg2=0 is not allowed; tseg2=1 is only allowed in direct sampling mode.

77

Acceptance Filter and Acceptance Code Mask

Three programmable Acceptance Mask and Acceptance Code register (AMR/ACR) pairs filter
incoming messages. The acceptance mask register (AMR) defines whether the incoming bit is
checked against the acceptance code register (ACR).

Table 5-46. Acceptance Filter Enable Register

Ol 15 | 14| 3|12 9|87]6]|5]a[3]2]1]o0
OFFSET 50h

FIELD

1

o| AFE2
o| AFE1
o| AFEO

RW | RW |RW/|RW/|RW/|RW|RW|RW|RW|RW|RW|RW]|RW]|RW]|RW]|RW

Table 5-47. Acceptance Filter Enable Register Definitions

Field Name | Description

" Reserved

2:0 AFE[2:0] Acceptance Filter Enable

Each Acceptance Mask register can be enabled with this flag.

1 = acceptance filter is enabled.

0 = acceptance filter is disabled.

If all three message filters are disabled, no messages are received.
To receive all messages, one message filter must be enabled and
programmed with all its fields as “don’ t care.”

The following tables show the Acceptance Mask Register for AMRO and the Acceptance Code
Register ACRO. The registers for AMR1/ACR1 and AMR2/ACR?2 are identical except for the
offsets. See the complete register table at the start of this section.

Table 5-48. Acceptance Mask 0 Register

BIT B|12]ufw]|9[8]7]6]5s5]a[3]2]1]o
OFFSET 52h
FIELD
© Te) < [s2] N -~ o D [o0] N~ © (o] < [a2]
AN N AN AN AN N N ~— ~— ~— ~— ~— ~— ~—
o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW | RW | RW [RW |RW [RW [RW | RW [RW | RW | RW | RW | RW | RIW

Table 5-49. Acceptance Mask 0 Register Definitions

Field Name | Description
15:0 ID[28:13] Incoming Bit Check
1 = incoming bit is “don’ t care.”
0 = incoming bit is checked against the respective ACR. If the
incoming bit and the respective ACR are not the same, the
message is discarded.

78

Table 5-50. Acceptance Mask Register: ID 12

BIT B |12]ufw]| 9|87]6]|]5]a[s3]2]1]o
OFFSET 54h
FIELD
21831 8| 5|18 |8 | 3| 8| 8|35 |8 | w | & |m
(@] [a] o o o o o o o o o o [
0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW | RW | RW [RW |RW [RW [RW | RW [RW | RW | RW | RW | RW | RIW

Table 5-51. Acceptance Mask Register: ID12 Definitions

Bits Field Name | Description

15:3 ID[28:13] Message Data

2 IDE Extended Identifier Bit
1 RTR Remote Bit

0 1 Reserved

Table 5-52. Acceptance Mask Register: Data 55

Ol 15 [14 | 13121109 |87]6]|5]4a[3]2]1]o0
OFFSET 56h

FIELD

0 <t [92] N ~ o (o] [e0] ™ o -~ o (o] [o0] N~ ©

[Te) Te) Yo} Te) Te) o) < < [{e] © © © o) [Te) [Te) o)

[m] [a) [a) [a) [a) [a) [a) [a) [a) [a) [a) [a) [a) [m) [m) [a)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sl RW [RW [RW [RW [RW [RW | RW [RW | RW | RW | RW | RW | RW | RW | RW | RIW

Table 5-53. Acceptance Mask Register: Data 55 Definitions

Field Name | Description
15:0 D[55:56] Message Data

79

Table 5-54. Acceptance Code Register

BIT 13121]10] 9|8 [7]6]|5]4a[3]2]1]o0
OFFSET 58h
8a|la|a|la|la|la|la|lalalalala|a|a

o
o
o
o
o
o
o
o
o
o
o
o
o
o

W | RIWW | RIW | R

=

R W | RWW | RIW | RIW | RIW

=

W | R

=

W | RW | RW | RW/|RW]|R

=
=
=

Table 5-55. Acceptance Code Register Definitions

Field Name | Description
15:0 ID[28:13] Incoming Bit Check
1 = incoming bit is “don’ t care.”
0 = incoming bit is checked against the respective ACR. If the
incoming bit and the respective ACR are not the same, the
message is discarded.

Table 5-56. Acceptance Mask Register: ID12

BIT B |12]uf1w]| 9|87]6]5]a[3]2]1]o
OFFSET 5Ah
FIELD

o (2] [e0] N~ © e} < [s2] N -~ o [h'd
-— o o o o o o o o o o L = /]
o o o o o o o o o o o o [
0 0 0 0 0 0 0 0 0 0 0 0 0 0
RW |[RW | RW |[RW |RW|RW | RW|RW|RW|RW | RW | RW | RW | RW

Table 5-57. Acceptance Mask Register: ID12 Definitions

Field Name | Description
15:3 ID[12:0] Message Data
2 IDE Extended Identifier Bit
1 RTR Remote Bit
0 " Reserved

Table 5-58. Acceptance Mask Register: Data 55

Nl 15 [14 | 3] 1211w 9|87]6]|5]a[3]2]1]o
OFFSET 5Ch

FIELD

0 < [92] o ~ o (o] [o0] ™ o -~ o (o] [o0] N~ ©

[Te) Te) Yo} Yo} Te) o) < <t © [{e] © © o) [Te] [Te] o)

[m) [a) [a) [a) [a) [a) [a) [a) [a) [a) [a) [a) [a) [m) [m) [a)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S RW [RW [RW [RW [RW [RW [RW [RW [RW [RW | RW [RW | RW | RW | RW | RiW

Table 5-59. Acceptance Mask Register: Data 55 Definitions

Field Name | Description
15:0 D[55:56] Message Data

80

CANbus Analysis

Three additional registers are provided for advanced analysis of a CAN system. These registers
include arbitration lost and error capture registers, as well as a CANbus frame reference
register that contains information about the CANbus state and the physical Rx and TX pins.
Arbitration Lost Capture Register

The Arbitration Lost Capture register captures the most recent arbitration loss event with the
frame reference pointer.

Table 5-60. Arbitration Lost Capture Register

Nl 15 [14 | 13|12 9|87]6]|5]a[3]2]1]o

OFFSET 76h
FIELD

7 n ol sl ol al<lo

< [} N - o [as] [as] [as] [as] [as] 1]

o o o o o 14 14 14 o o 4

L L L L L L L L ' ' L

0 0] o0 |0 |0]|] 0|0 0| O0]O0O|O0]| 0] 0| o0]O0]oO

RW [RW [RW | RW [RW [RW | RW [RW | RW | RW | RW | RW | RW | RW | RW | RW

Table 5-61. Arbit