

# Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processor and Mobile Intel<sup>®</sup> GME965 Express Chipset

**Development Kit User Manual** 

June 2007

Document Number: 316704-001



INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See <a href="http://www.intel.com/products/processor\_number">http://www.intel.com/products/processor\_number</a> for details.

The Intel<sup>®</sup> Core<sup>TM</sup> 2 Duo processor and Mobile Intel<sup>®</sup> GME965 Express Chipset may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at <a href="http://www.intel.com">http://www.intel.com</a>.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

\*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All Rights Reserved.



## Contents

| 1          | About This Manual                                                                                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2          | Getting Started                                                                                                                                                                                                                                             |
| -          | 2.1Overview152.1.1Development Board Features152.2Included Hardware and Documentation172.3Software Key Features172.3.1AMI BIOS182.4Before You Begin182.5Setting Up the Development Board202.6Configuring the BIOS22                                          |
| 3          | Theory of Operation                                                                                                                                                                                                                                         |
|            | 3.1Block Diagram243.2Mechanical Form Factor243.3Thermal Management253.4System Features and Operation253.4.1Mobile Intel® GME965 GMCH253.4.2ICH8-M273.4.3POST Code Debugger313.5Clock Generation313.6Power Management States313.7Power Measurement Support33 |
| 4          | Hardware Reference                                                                                                                                                                                                                                          |
|            | 4.1Primary Features                                                                                                                                                                                                                                         |
| Appendix A | Heatsink Installation Instructions64                                                                                                                                                                                                                        |



| Figure 1. Development Board Block Diagram<br>Figure 2. Development Board Component Locations<br>Figure 3. Back Panel Connector Locations | 39 |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4. D-Connector to Component Video Cable                                                                                           |    |
| Figure 5. D-Connector to Composite Video Cable                                                                                           |    |
| Figure 6. D-Connector to S-Video Cable                                                                                                   | 43 |
| Figure 7. Configuration Jumper and Switch Locations                                                                                      | 44 |
| Figure 8. LED Locations                                                                                                                  | 48 |
| Figure 9. Heatsink and Backplate                                                                                                         | 64 |
| Figure 10. Backplate Pins                                                                                                                | 65 |
| Figure 11. Applying the Thermal Grease                                                                                                   | 66 |
| Figure 12. Squeezing Activation Arm                                                                                                      | 66 |
| Figure 13. Installing the Heatsink                                                                                                       | 67 |
| Figure 14. Plugging in the Fan                                                                                                           | 68 |
| Figure 15. Completed Assembly                                                                                                            |    |

## **Tables**

| Table 1. Text Conventions                                                  | 7  |
|----------------------------------------------------------------------------|----|
| Table 2. Terms and Acronyms                                                | 8  |
| Table 3. Acronyms                                                          |    |
| Table 4. Intel Literature Centers                                          | 13 |
| Table 5. Related Documents                                                 |    |
| Table 6. Development Board feature Set Summary                             | 15 |
| Table 7. BIOS Location Strapping Options                                   |    |
| Table 8. Primary System Clocks                                             | 31 |
| Table 9. Power Management States                                           |    |
| Table 10. Power Management M-States                                        |    |
| Table 11. Sleep Signals and M-State Definition                             |    |
| Table 12. Development Board Voltage Rails                                  | 34 |
| Table 13. Development Board Component Location Legend                      |    |
| Table 14. Back Panel Connector Definitions                                 |    |
| Table 15. Supported Configuration Jumper/Switch Settings                   |    |
| Table 16. LED Functions                                                    |    |
| Table 17. Expansion Slots and Sockets                                      |    |
| Table 18. PCI Express* (x16) Pinout (J6B2)                                 |    |
| Table 19. ADD2 Slot (J6B2)                                                 | 54 |
| Table 20. MEC Slot (J6B2)                                                  |    |
| Table 21. PCI Express* (x1) Pinout (J6B1, J7B1, J8B4)                      | 60 |
| Table 22. IDE Connector                                                    |    |
| Table 23. SATA Port 0 'Direct Connect' Connector Pinout (J8J1)             |    |
| Table 24. SATA Ports 1 and 2 'Cable Connect' Connector Pinout (J7J3, J7H1) |    |
| Table 25. SATA Power Connection (J7H2)                                     |    |
| Table 26. Fan Connectors (J2B3, J2C1)                                      |    |
| Table 27. Fan Connector (J2F1)                                             |    |
| Table 28. Front Panel Connector                                            |    |
| Table 29. USB Headers                                                      | 63 |



# **Revision History**

| Document<br>Number | Revision<br>Number | Description             | Revision Date |
|--------------------|--------------------|-------------------------|---------------|
| 316704             | 001                | Initial public release. | June 2007     |

§



## 1 About This Manual

This user's manual describes the use of the Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processor and Mobile Intel<sup>®</sup> GME965 Express Chipset development kit. This manual has been written for OEMs, system evaluators, and embedded system developers. This document defines all jumpers, headers, LED functions, and their locations on the development board, along with subsystem features and POST codes. This manual assumes basic familiarity in the fundamental concepts involved with installing and configuring hardware for a personal computer system.

For the latest information about the Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processor and Mobile Intel<sup>®</sup> GME965 Express Chipset Development Kit, visit:

http://developer.intel.com/design/intarch/devkits/index.htm

For design documents related to this platform please visit:

Processor: http://developer.intel.com/design/intarch/core2duo/tech\_docs.htm

<u>Chipset</u>: <u>http://www.intel.com/products/embedded/chipsets.htm</u>

## 1.1 Content Overview

Chapter 1.0, "About This Manual" — This chapter contains a description of conventions used in this manual. The last few sections explain how to obtain literature and contact customer support.

Chapter 2.0, "Getting Started"— Provides complete instructions on how to configure the development board and processor assembly by setting jumpers, connecting peripherals and providing power.

Chapter 3.0, "Theory of Operation" — This chapter provides information on the system design.

Chapter 4.0, "Hardware Reference"— This chapter provides a description of jumper settings and functions, development board debug capabilities, and pinout information for connectors.

Appendix A, "Heatsink Installation Instructions" gives detailed installation instructions for the Intel<sup>®</sup> Core<sup>TM</sup> 2 Duo processor heatsink.

## 1.2 Text Conventions

The notations listed in <u>Table 1</u> may be used throughout this manual.



#### Table 1. Text Conventions

| Notation                                                                                                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                                                                                                              | The pound symbol (#) appended to a signal name indicates that the signal is active low. (e.g., PRSNT1#)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Variables                                                                                                      | Variables are shown in italics. Variables must be replaced with correct values.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Instructions                                                                                                   | Instruction mnemonics are shown in uppercase. When you are programming, instructions are not case-sensitive. You may use either uppercase or lowercase.                                                                                                                                                                                                                                                                                                                                                                                     |
| Numbers                                                                                                        | Hexadecimal numbers are represented by a string of hexadecimal digits followed by the character H. A zero prefix is added to numbers that begin with A through F. (For example, FF is shown as 0FFH.) Decimal and binary numbers are represented by their customary notations. (That is, 255 is a decimal number and 1111 is a binary number. In some cases, the letter B is added for clarity.)                                                                                                                                            |
| Units of Measure                                                                                               | The following abbreviations are used to represent units of measure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A<br>GByte<br>KByte<br>KΩ<br>mA<br>MByte<br>MHz<br>ms<br>mW<br>ns<br>pF<br>W<br>V<br>V<br>μA<br>μF<br>μs<br>μW | amps, amperes<br>gigabytes<br>kilobytes<br>kilo-ohms<br>milliamps, milliamperes<br>megabytes<br>megahertz<br>milliseconds<br>milliwatts<br>nanoseconds<br>picofarads<br>watts<br>volts<br>microamps, microamperes<br>microfarads<br>microseconds<br>microseconds<br>microwatts                                                                                                                                                                                                                                                              |
| Signal Names                                                                                                   | Signal names are shown in uppercase. When several signals share a common name, an individual signal is represented by the signal name followed by a number, while the group is represented by the signal name followed by a variable (n). For example, the lower chip-select signals are named CS0#, CS1#, CS2#, and so on; they are collectively called CSn#. A pound symbol (#) appended to a signal name identifies an active-low signal. Port pins are represented by the port abbreviation, a period, and the pin number (e.g., P1.0). |



## **1.3 Glossary of Terms and Acronyms**

Table 2 defines conventions and terminology used throughout this document.

| Term/Acronym                           | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aggressor                              | A network that transmits a coupled signal to another network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anti-etch                              | Any plane-split, void or cutout in a VCC or GND plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Assisted Gunning<br>Transceiver Logic+ | The front-side bus uses a bus technology called AGTL+, or Assisted<br>Gunning Transceiver Logic. AGTL+ buffers are open-drain, and require<br>pull-up resistors to provide the high logic level and termination. AGTL+<br>output buffers differ from GTL+ buffers with the addition of an active<br>pMOS pull-up transistor to assist the pull-up resistors during the first clock<br>of a low-to-high voltage transition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Asynchronous<br>GTL+                   | The processor does not utilize CMOS voltage levels on any signals that connect to the processor. As a result, legacy input signals such as A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#, and STPCLK# utilize GTL+ input buffers. Legacy output signals (FERR# and IERR#) and non-AGTL+ signals (THERMTRIP# and PROCHOT#) also utilize GTL+ output buffers. All of these signals follow the same DC requirements as AGTL+ signals, however the outputs are not actively driven high (during a logical 0 to 1 transition) by the processor (the major difference between GTL+ and AGTL+). These signals do not have setup or hold time specifications in relation to BCLK[1:0], and are therefore referred to as "Asynchronous GTL+ Signals". However, all of the Asynchronous GTL+ signals are required to be asserted for at least two BCLKs in order for the processor to recognize them. |
| Bus Agent                              | A component or group of components that, when combined, represent a single load on the AGTL+ bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Crosstalk                              | The reception on a victim network of a signal imposed by aggressor network(s) through inductive and capacitive coupling between the networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | Backward Crosstalk - Coupling that creates a signal in a victim network that travels in the opposite direction as the aggressor's signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | Forward Crosstalk - Coupling that creates a signal in a victim network that travels in the same direction as the aggressor's signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | Even Mode Crosstalk - Coupling from a signal or multiple aggressors when all the aggressors switch in the same direction that the victim is switching.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | Odd Mode Crosstalk - Coupling from a signal or multiple aggressors when all the aggressors switch in the opposite direction that the victim is switching.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flight Time                            | Flight time is a term in the timing equation that includes the signal propagation delay, any effects the system has on the $T_{co}$ (time from clock-in to data-out) of the driver, plus any adjustments to the signal at the receiver needed to ensure the setup time of the receiver. More precisely, flight time is defined as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | The time difference between a signal at the input pin of a receiving agent crossing the switching voltage (adjusted to meet the receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Table 2. Terms and Acronyms



| Term/Acronym                 | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | manufacturer's conditions required for AC timing specifications; i.e., ringback, etc.) and the output pin of the driving agent crossing the switching voltage when the driver is driving a test load used to specify the driver's AC timings.                                                                                                                                                                                                                                                              |
|                              | Maximum and Minimum Flight Time - Flight time variations are caused by<br>many different parameters. The more obvious causes include variation of<br>the board dielectric constant, changes in load condition, crosstalk, power<br>noise, variation in termination resistance, and differences in I/O buffer<br>performance as a function of temperature, voltage, and manufacturing<br>process. Some less obvious causes include effects of Simultaneous<br>Switching Output (SSO) and packaging effects. |
|                              | Maximum flight time is the largest acceptable flight time a network will experience under all conditions.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | Minimum flight time is the smallest acceptable flight time a network will experience under all conditions.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Infrared Data<br>Assoc.      | The Infrared Data Association (IrDA) has outlined a specification for serial communication between two devices via a bi-directional infrared data port. The development board has such a port and it is located on the rear of the platform between the two USB connectors.                                                                                                                                                                                                                                |
| IMVP6+                       | The Intel Mobile Voltage Positioning specification for the Intel® Core <sup>™</sup> 2 Duo Processor. It is a DC-DC converter module that supplies the required voltage and current to a single processor.                                                                                                                                                                                                                                                                                                  |
| Inter-Symbol<br>Interference | Inter-symbol interference is the effect of a previous signal (or transition)<br>on the interconnect delay. For example, when a signal is transmitted down<br>a line and the reflections due to the transition have not completely<br>dissipated, the following data transition launched onto the bus is affected.<br>ISI is dependent upon frequency, time delay of the line, and the reflection<br>coefficient at the driver and receiver. ISI may impact both timing and<br>signal integrity.            |
| Media Expansion<br>Card      | The Media Expansion Card (MEC) provides digital display options through the SDVO interface. The MEC card also incorporates video-in via a x1 PCI Express* port.                                                                                                                                                                                                                                                                                                                                            |
| Network                      | The network is the trace of a Printed Circuit Board (PCB) that completes an electrical connection between two or more components.                                                                                                                                                                                                                                                                                                                                                                          |
| Overshoot                    | The maximum voltage observed for a signal at the device pad, measured with respect to VCC.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pad                          | The electrical contact point of a semiconductor die to the package substrate. A pad is only observable in simulations.                                                                                                                                                                                                                                                                                                                                                                                     |
| Pin                          | The contact point of a component package to the traces on a substrate, such as the motherboard. Signal quality and timings may be measured at the pin.                                                                                                                                                                                                                                                                                                                                                     |
| Power-Good                   | "Power-Good," "PWRGOOD," or "CPUPWRGOOD" (an active high signal)<br>indicates that all of the system power supplies and clocks are stable.<br>PWRGOOD should go active at a predetermined time after system<br>voltages are stable and should go inactive as soon as any of these<br>voltages fail their specifications.                                                                                                                                                                                   |
| Ringback                     | The voltage to which a signal changes after reaching its maximum absolute value. Ringback may be caused by reflections, driver oscillations, or other transmission line phenomena.                                                                                                                                                                                                                                                                                                                         |



| Term/Acronym                     | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System Bus                       | The System Bus is the microprocessor bus of the processor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Setup Window                     | The time between the beginning of Setup to Clock (TSU_MIN) and the arrival of a valid clock edge. This window may be different for each type of bus agent in the system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Simultaneous<br>Switching Output | Simultaneous Switching Output (SSO) effects are differences in electrical timing parameters and degradation in signal quality caused by multiple signal outputs simultaneously switching voltage levels in the opposite direction from a single signal or in the same direction. These are called odd mode and even mode switching, respectively. This simultaneous switching of multiple outputs creates higher current swings that may cause additional propagation delay ("push-out") or a decrease in propagation delay ("pull-in"). These SSO effects may impact the setup and/or hold times and are not always taken into account by simulations. System timing budgets should include margin for SSO effects. |
| Stub                             | The branch from the bus trunk terminating at the pad of an agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trunk                            | The main connection, excluding interconnect branches, from one end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| System<br>Management Bus         | A two-wire interface through which various system components may communicate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Undershoot                       | The minimum voltage extending below VSS observed for a signal at the device pad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VCC (CPU core)                   | VCC (CPU core) is the core power for the processor. The system bus is terminated to VCC (CPU core).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Victim                           | A network that receives a coupled crosstalk signal from another network is called the victim network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<u>Table 3</u> defines the acronyms used throughout this document.

#### Table 3. Acronyms

| Acronym | Definition                                            |
|---------|-------------------------------------------------------|
| AC      | Audio Codec                                           |
| ACPI    | Advanced Configuration and Power Interface            |
| ADD2    | Advanced Digital Display 2                            |
| ADD2N   | Advanced Digital Display 2 Normal                     |
| AGTL    | Assisted Gunning Transceiver Logic                    |
| AMC     | Audio/Modem Codec.                                    |
| ASF     | Alert Standard Format                                 |
| AMI     | American Megatrends Inc. (BIOS developer)             |
| АТА     | Advanced Technology Attachment (disk drive interface) |
| ATX     | Advance Technology Extended (motherboard form factor) |
| BGA     | Ball Grid Array                                       |



| Acronym | Definition                                          |
|---------|-----------------------------------------------------|
| BIOS    | Basic Input/Output System                           |
| CK-SSCD | Spread Spectrum Differential Clock                  |
| СМС     | Common Mode Choke                                   |
| CMOS    | Complementary Metal-Oxide-Semiconductor             |
| CPU     | Central Processing Unit (processor)                 |
| DDR     | Double Data Rate                                    |
| DMI     | Direct Memory Interface                             |
| ECC     | Error Correcting Code                               |
| EEPROM  | Electrically Erasable Programmable Read-Only Memory |
| EHCI    | Enhanced Host Controller Interface                  |
| EMA     | Extended Media Access                               |
| EMI     | Electro Magnetic Interference                       |
| ESD     | Electrostatic Discharge                             |
| EV      | Engineering Validation                              |
| EVMC    | Electrical Validation Margining Card                |
| FCBGA   | Flip Chip Ball Grid Array                           |
| FCPGA   | Flip Chip Pin Grid Array                            |
| FIFO    | First In First Out - describes a type of buffer     |
| FS      | Full-speed. Refers to USB                           |
| FSB     | Front Side Bus                                      |
| FWH     | Firmware Hub                                        |
| GMCH    | Graphics Memory Controller Hub                      |
| HDA     | High Definition Audio                               |
| HDMI    | High Definition Media Interface                     |
| HS      | High-speed. Refers to USB                           |
| ICH     | I/O Controller Hub                                  |
| IDE     | Integrated Drive Electronics                        |
| IMVP    | Intel Mobile Voltage Positioning                    |
| IP/IPv6 | Internet Protocol/Internet Protocol version 6       |
| IrDA    | Infrared Data Association                           |
| ISI     | Inter-Symbol Interference                           |
| КВС     | Keyboard Controller                                 |
| LAI     | Logic Analyzer Interface                            |
| LAN     | Local Area Network                                  |
| LED     | Light Emitting Diode                                |



| Acronym | Definition                                                  |
|---------|-------------------------------------------------------------|
| LOM     | LAN on Motherboard                                          |
| LPC     | Low Pin Count                                               |
| LS      | Low-speed. Refers to USB                                    |
| LVDS    | Low Voltage Differential Signaling                          |
| mBGA    | Mini Ball Grid Array                                        |
| MC      | Modem Codec                                                 |
| MEC     | Media Expansion Card                                        |
| MHz     | Mega-Hertz                                                  |
| OEM     | Original Equipment Manufacturer                             |
| PCIe    | PCI Express*                                                |
| PCM     | Pulse Code Modulation                                       |
| POST    | Power On Self Test                                          |
| PLC     | Platform LAN Connect                                        |
| RAID    | Redundant Array of Inexpensive Disks                        |
| RTC     | Real Time Clock                                             |
| SATA    | Serial ATA                                                  |
| SIO     | Super Input/Output                                          |
| SKU     | StockKeeping Unit                                           |
| SMBus   | System Management Bus                                       |
| SODIMM  | Small Outline Dual In-line Memory Module                    |
| SPD     | Serial Presence Detect                                      |
| SPI     | Serial Peripheral Interface                                 |
| SPWG    | Standard Panels Working Group - <u>http://www.spwg.org/</u> |
| SSO     | Simultaneous Switching Output                               |
| STR     | Suspend To RAM                                              |
| тсо     | Total Cost of Ownership                                     |
| ТСР     | Transmission Control Protocol                               |
| TDM     | Time Division Multiplexed                                   |
| TDR     | Time Domain Reflectometry                                   |
| μBGA    | Micro Ball Grid Array                                       |
| UDP     | User Datagram Protocol                                      |
| UHCI    | Universal Host Controller Interface                         |
| USB     | Universal Serial Bus                                        |
| VGA     | Video Graphics Adapter                                      |
| VID     | Voltage Identification                                      |



| Acronym | Definition          |
|---------|---------------------|
| VREG    | Voltage Regulator   |
| XDP     | eXtended Debug Port |

## 1.4 Support Options

#### 1.4.1 Electronic Support Systems

Intel's web site (<u>http://www.intel.com/</u>) provides up-to-date technical information and product support. This information is available 24 hours per day, 7 days per week, providing technical information whenever you need it.

### 1.4.2 Additional Technical Support

If you require additional technical support, please contact your Intel Representative or local distributor.

## 1.5 **Product Literature**

In order to order hard copies of product literature the following instructions should be followed:

1. Determine the SKU Number

If you do not know the SKU # of the document you are ordering, please select the back button to view the document again. The SKU # is the first 6 digits of the number on the PDF file, such as: 12345612.pdf or at the bottom of the download page for that document.

2. Call, Mail or Email a request

**Call:** To place an order for a publication or text in hardcopy or CD form, please contact our Intel® Literature Fulfillment Centers listed in <u>Table 4</u>.

#### Table 4. Intel Literature Centers

| Location        | Telephone Number |  |
|-----------------|------------------|--|
| U.S. and Canada | 1-800-548-4725   |  |
| International   | 1-303-675-2148   |  |
| Fax             | 1-303-675-2120   |  |

Mail a request to:



Intel Literature Fulfilment Center P.O. Box 5937 Denver, Colorado 80217-9808 USA

#### Email a request to: <a href="mailto:intelsupport@hibbertgroup.com">intelsupport@hibbertgroup.com</a>

Please make sure to include in your mailed/emailed request:

SKU # Company Name Your Name (first, last) Full mailing address Daytime Phone Number in case of questions

*Note:* Please be aware not all documents are available in all media types. Some may only be available as a download.

## 1.6 Related Documents

<u>Table 5</u> provides a summary of publicly available documents related to this development kit. For additional documentation, please contact your Intel Representative.

#### Table 5. Related Documents

| Document Title                                                                                                                                                                                                                                                                                  | Location                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Intel <sup>®</sup> Core <sup>™</sup> 2 Duo Processor for Mobile<br>Intel <sup>®</sup> 965 Express Chipset Family<br>Datasheet                                                                                                                                                                   | http://www.intel.com/design/mobile/datashts/316<br>745.htm    |
| Mobile Intel <sup>®</sup> 965 Express Chipset Family Datasheet                                                                                                                                                                                                                                  | http://www.intel.com/design/mobile/datashts/316<br>273.htm    |
| Intel <sup>®</sup> I/O Controller Hub 8 (ICH8) Family<br>Datasheet                                                                                                                                                                                                                              | http://www.intel.com/design/chipsets/datashts/3<br>13056.htm  |
| Intel® Centrino® Pro processor technology<br>and Intel® Centrino® Duo processor<br>technology Design Guide For Intel®<br>Core™2 Duo Mobile Processor, Mobile<br>Intel® 965 Express Chipset Family and<br>Intel® 82801HBM ICH8M & Intel®<br>82801HEM ICH8M-E I/O Controller Hub<br>Based Systems | Contact your Intel representative for access to this document |
| Intel <sup>®</sup> Core <sup>™</sup> 2 Duo Mobile Processor,<br>Mobile Intel <sup>®</sup> 965 Express Chipset Family<br>and ICH8M I/O Controller Hub Schematics                                                                                                                                 | Contact your Intel representative for access to this document |



# 2 Getting Started

This chapter identifies the development kit's key components, features and specifications. It also details basic development board setup and operation.

## 2.1 Overview

The development board consists of a baseboard populated with the Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processor, the Mobile Intel<sup>®</sup> GME965 Express Chipset, other system board components and peripheral connectors.

*Note:* The development board is shipped as an open system allowing for maximum flexibility in changing hardware configuration and peripherals. Since the board is not in a protective chassis, take extra precaution when handling and operating the system.

### 2.1.1 Development Board Features

Features of the development board are summarized in <u>Table 6</u>.

|        |           | Development Board<br>Implementation                                                           | Comments                                                                               |
|--------|-----------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|        | Processor | Intel <sup>®</sup> Core <sup>™</sup> 2 Duo processor with<br>4 MByte L2 Cache on 65nm process | 478 pin Flip Chip Pin Grid Array (Micro-<br>FCPGA) package                             |
|        |           | FSB 533/667/800 MHz support                                                                   |                                                                                        |
| F      | Chipset   | Mobile Intel <sup>®</sup> GME965 Express<br>Chipset (GMCH)                                    | 1299-pin Micro-FCBGA Package                                                           |
| E<br>A | Chipset   | Intel <sup>®</sup> I/O Controller Hub 8-M<br>Enhanced (ICH8M-E)                               | 676-pin BGA Package                                                                    |
| T<br>U | Memory    | Two DDR2 RAM SO-DIMM slots.                                                                   | Maximum 4GB of DDR2 Memory (RAM)<br>using 1Gb technology and stacked SO-<br>DIMMs.     |
| R<br>E |           |                                                                                               | Supports DDR2 frequency of 533 or 667MHz                                               |
|        |           | One PCI Express* Graphics Slot                                                                | The Mobile Intel <sup>®</sup> GME965 Express Chipset                                   |
|        |           | One dual channel LVDS Connector                                                               | (GMCH) has 2 video pipes which allows support of dual independent display.             |
|        | Video     | One VGA Connector                                                                             | 18-bpp and 24-bpp LVDS panel support                                                   |
|        |           | One TV D-Connector supporting S-<br>Video, Composite video and<br>Component video             | Support for two SDVO channels via x16<br>PCIe connector (through ADD2 or MEC<br>cards) |
|        | PCI       | One 5V PCI slot                                                                               | PCI revision 2.3 compliant (33MHz)                                                     |

#### Table 6. Development Board feature Set Summary

#### Getting Started



|             |                                   | Development Board                                                                                              | Comments                                                                                                                                                      |
|-------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                   | Three x1 connectors                                                                                            | Revision 1.1 compliant                                                                                                                                        |
| F<br>E<br>A | PCI Express*                      | One x16 connector                                                                                              | There are Five x1 PCI Express* slots but<br>slots 2 and 4 are not intended for use with<br>PCI Express* add-in cards. Only slots 1, 3<br>and 5 are supported. |
| T<br>U      | On-Board LAN                      | 10/100/1000 Mbps connectivity<br>from the Intel <sup>®</sup> 82566MM Gigabit<br>Platform LAN Connect component | The 82566MM is connected to the ICH via the ICH's GLCI and LCI interfaces.                                                                                    |
| R           | SPI                               | Two 16Mbit devices                                                                                             |                                                                                                                                                               |
| E           | ATA/Storage                       | PATA 33/66/100                                                                                                 | 1 Channel                                                                                                                                                     |
|             | , in your age                     | 3 SATA Ports                                                                                                   | 2 Cable Connector and 1 Direct Connect<br>Connector. RAID 0/1 support.                                                                                        |
|             | USB                               | 10 USB 2.0/1.1 Ports                                                                                           | Five ports provided on rear-panel, four<br>provided via headers (J6H3, J6H3) and<br>one via the PCI Express* docking<br>connector                             |
|             | LPC                               | One LPC slot                                                                                                   | Includes sideband headers                                                                                                                                     |
|             | BIOS                              | AMI BIOS installed in an 8Mb FWH                                                                               | 40-pin TSOP socket                                                                                                                                            |
|             | SMC/KBC                           | Hitachi H8S/2104 micro-controller<br>Two PS/2 ports<br>One scan matrix keyboard<br>connector                   | ACPI compliant                                                                                                                                                |
|             | Clocks                            | CK-505 clock synthesizer and DB800M clock buffer                                                               |                                                                                                                                                               |
|             | Super I/O                         | SMSC SIO1007-JV                                                                                                | Supports IrDA and UART serial interfaces                                                                                                                      |
|             | RTC                               | Battery-backed Real Time Clock                                                                                 |                                                                                                                                                               |
|             | Thermal<br>Monitoring             | Processor temperature sensor                                                                                   |                                                                                                                                                               |
|             | Processor<br>Voltage<br>Regulator | IMVP-6+ for processor core                                                                                     |                                                                                                                                                               |
|             |                                   | Desktop Mode                                                                                                   | ATX Power Supply                                                                                                                                              |
|             | Power Supply                      | Mobile Mode                                                                                                    | Battery Pack (smart battery support)<br>AC Mobile Brick                                                                                                       |
|             | Debug<br>Interfaces               | Port 80 display                                                                                                | Through Add-in card. Four seven-segment displays                                                                                                              |
|             | Interraces                        | Extended Debug Port (XDP)                                                                                      | XDP connector                                                                                                                                                 |
|             | Intel <sup>®</sup> AMT            | Intel <sup>®</sup> Active Management                                                                           | Supported on the development board with                                                                                                                       |



|                     | Development Board<br>Implementation | Comments                              |
|---------------------|-------------------------------------|---------------------------------------|
|                     | ACPI Compliant                      | S0 – Power On                         |
|                     |                                     | S3 – Suspend to RAM                   |
|                     |                                     | S4 – Suspend to Disk                  |
| Power<br>Management |                                     | S5 – Soft Off                         |
|                     |                                     | M0 – All Wells powered                |
|                     |                                     | M1 – Main Well down. Only ME power on |
|                     |                                     | M-off – ME powered off                |
| Form Factor         | ATX 2.2 like form factor            | 10 layer board - 12" x 10.2"          |

*Note:* Review the document provided with the Development Kit titled "Important Safety and Regulatory Information". This document contains safety warnings and cautions that must be observed when using this development kit.

## 2.2 Included Hardware and Documentation

The following hardware and documentation is included in the development kit:

- One development board
- One Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processor with 4 MB L2 Cache on 65nm process in the 478 pin Flip-Chip Pin Grid Array (Micro-FCPGA) package (Installed)
- One Firmware Hub (FWH) (Installed)
- One GMCH (GME965) heatsink (Installed)
- One Type 2032, socketed 3 V lithium coin cell battery (Installed)
- One 256 MByte DDR2 SODIMM (200 Pin)
- One CPU thermal solution and CPU back plate (included in kit box not populated on board)
- One cable kit
- One Development Kit User's Manual
- One Port 80 add-in card

## 2.3 Software Key Features

The driver CD included in the kit contains all of the software drivers necessary for basic system functionality under the following operating systems: Windows\* XP/XP Embedded, Vista and Linux\*.



**Note:** While every care was taken to ensure the latest versions of drivers were provided on the enclosed CD at time of publication, newer revisions may be available. Updated drivers for Intel components can be found at: <a href="http://developer.intel.com/design/intarch/software/index.htm">http://developer.intel.com/design/intarch/software/index.htm</a>

For all third-party components, please contact the appropriate vendor for updated drivers.

**Note:** Software in the kit is provided free by the vendor and is only licensed for evaluation purposes. Refer to the documentation in your evaluation kit for further details on any terms and conditions that may be applicable to the granted licenses. Customers using the tools that work with Microsoft\* products must license those products. Any targets created by those tools should also have appropriate licenses. Software included in the kit is subject to change.

Refer to <u>http://developer.intel.com/design/intarch/devkits</u> for details on additional software from other third-party vendors.

#### 2.3.1 AMI BIOS

This development kit ships with AMI\* BIOS pre-boot firmware from AMI\* preinstalled. AMI\* BIOS provides an industry-standard BIOS platform to run most standard operating systems, including Windows\* XP/XP Embedded, Linux\*, and others.

The AMI\* BIOS Application Kit (available through AMI\*) includes complete source code, a reference manual, and a Windows-based expert system, BIOStart\*, to enable easy and rapid configuration of customized firmware for your system.

The following features of AMI\* BIOS are enabled in the development board:

- DDR2 SDRAM detection, configuration, and initialization
- Mobile Intel<sup>®</sup> GME965 Express Chipset configuration
- POST codes displayed to port 80h
- PCI/PCI Express\* device enumeration and configuration
- Integrated video configuration and initialization
- Super I/O configuration
- CPU microcode update
- Active Management Technology
- RAID 0/1 Support

## 2.4 Before You Begin

The following additional hardware may be necessary to successfully set up and operate the development board.



**VGA Monitor**: Any standard VGA or multi-resolution monitor may be used. The setup instructions in this chapter assume the use of a standard VGA monitor, TV, or flat panel monitor.

Keyboard: The development board can support either a PS/2 or USB style keyboard.

Mouse: The development board can support either a PS/2 or USB style mouse.

**Hard Drives and Optical Disc Drives**: Up to Three SATA drives and two IDE devices (master and slave) may be connected to the development board. An optical disc drive may be used to load the OS. All these storage devices may be attached to the board simultaneously.

**Video Adapter**: Integrated video is output from the VGA connector on the back panel of the development board. Alternately, a standard PCI Express\* video adapter, ADD2 card or MEC video adapter may be used for additional display flexibility. Please contact the respective vendors for drivers and necessary software for adapters not provided with this development kit. Check the BIOS and the graphics driver, where appropriate, for the proper video output settings.

*Note:* The enclosed driver CD includes drivers necessary for LAN, Integrated graphics, and system INF utilities.

**Network Adapter:** A Gigabit network interface is provided on the development board. The network interface will not be operational until after all the necessary drivers have been installed. A standard PCI/PCI Express\* adapter may be used in conjunction with, or in place of, the onboard network adapter. Please contact the respective vendors for drivers and necessary software for adapters not provided with this development kit.

You must supply appropriate network cables to utilize the LAN connector or any other installed network cards.

**Power Supply**: The development board has the option to be powered from two different power sources: an ATX power supply or AC to DC adapter. The development board contains all of the voltage regulators necessary to power the system.

There are two main supported power supply configurations, Desktop and Mobile. The Desktop solution consists of only using the ATX power supply. The Mobile solution consists of only using the AC to DC adapter.

- *Warning:* The power supply cord is the main disconnect device to mains (AC power). The socket outlet shall be installed near the equipment and shall be readily accessible.
  - *Note:* Desktop peripherals, including add-in cards, will not work in mobile power mode. If desktop peripherals are used, the development board must be powered using desktop power mode.

If using an ATX power supply, select a power supply that complies with the "ATX12V" 1.1 specification. For more information, refer to <u>http://www.formfactors.org</u>.

*Note:* If the power button on the ATX power supply is used to shut down the system, wait at least five seconds before turning the system on again to avoid damaging the system.



**Other Devices and Adapters:** The development board functions much like a standard desktop computer motherboard. Most PC-compatible peripherals can be attached and configured to work with the development board.

## 2.5 Setting Up the Development Board

Once the necessary hardware (described in <u>Section 2.4</u>) has been gathered, follow the steps below to set up the development board.

*Note:* To locate items discussed in the procedure below, please refer to Chapter 4.

1. Create a safe work environment.

Ensure a static-free work environment before removing any components from their anti-static packaging. The development board is susceptible to electrostatic discharge (ESD) damage, and such damage may cause product failure or unpredictable operation. A flame retardant work surface must also be used.

- *Caution:* It is recommended that an ESD wrist strap be used when handling the development board.
- Inspect the contents of your kit. Check for damage that may have occurred during shipment. Contact your sales representative if any items are missing or damaged.
- *Caution:* Since the development board is not in a protective chassis, use caution when connecting cables to this product.
- *Caution:* Standby voltage is constantly applied to the development board. Remove power before any hardware (peripherals, keyboards, mice, monitors, accessories, add-in cards, etc) is added or removed from the board.
- **Note:** The development board is a standard ATX form factor. An ATX chassis may be used if a protected environment is desired. If a chassis is not used, standoffs must be used to elevate the development board off the working surface to protect the memory and board components from any accidental contact to metal objects.
- 3. Check the jumper default position setting. Refer to Figure 7 for jumper location. Jumper J5H2 is used to clear the CMOS memory. Make sure this jumper is set to 1-x for normal operation.
- 4. Be sure to populate the following hardware on your development board:
  - One Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processor
  - One processor thermal solution
  - One 256 MByte DDR2 667 SODIMM (200-pin) into connector J5P1.



- *Note:* Ensure that the processor has been locked into the socket by turning the socket screw fully clockwise.
- *Note:* For proper installation of the CPU thermal solution, please refer to Appendix A
- 5. Connect a SATA or IDE hard disk drive.
- 6. Connect any additional storage devices to the development board.
- Connect the keyboard and mouse. Connect a PS/2-style or USB mouse and keyboard (see Figure 3 on page 38 for connector locations).
- *Note:* J1A1 (on the baseboard) is a stacked PS/2 connector. The bottom connector is for the keyboard and the top is for the mouse.
- 8. Connect an Ethernet cable (optional).
- 9. Connect the monitor through the VGA connector.
- 10. Connect the power supply.

Connect an appropriate power supply to the development board. Make sure the power supply is not plugged into an electrical outlet (turned off). After connecting the power supply board connectors, plug the power supply cord into an electrical outlet.

11. Power up the development board.

Power and Reset are implemented on the development board through buttons located on SW1C1 and SW1C2, respectively. See <u>Figure 7</u> for switch locations. Turn on the power to the monitor and development board. Ensure that the fansink on the processor is operating.

- *Note:* The power button may have to be pressed twice to turn the power on.
- 12. Install operating system and necessary drivers.
  - Depending on the operating system chosen, all necessary drivers for components included in this development kit can be found on the enclosed CD. Please see <u>Section 2.3</u> for information on obtaining updated drivers.

## 2.6 Configuring the BIOS

AMI\* BIOS is pre-loaded on the development board. The default BIOS settings may need to be modified to enable/disable various features of the development board. The BIOS settings are configured through a menu-driven user interface which is accessible during the Power On Self Test (POST). The Delete key on the attached keyboard should be pressed during POST to enter the interface. For AMI BIOS POST codes, visit:

http://www.ami.com

For BIOS Updates please contact your Intel Sales Representative.

Theory of Operation



# *3 Theory of Operation*

## 3.1 Block Diagram

#### Figure 1. Development Board Block Diagram



## 3.2 Mechanical Form Factor

The development board conforms to the ATX form factor. For extra protection in a development environment, you may want to install the development board in an ATX



chassis. Internal and rear panel system I/O connectors are described in <u>Section 3.4</u>. An overview of connector and slot locations is provided in <u>Chapter 4</u>.

## 3.3 Thermal Management

The objective of thermal management is to ensure that the temperature of each component is maintained within specified functional limits. The functional temperature limit is the range within which the electrical circuits can be expected to meet their specified performance requirements. Operation outside the functional limit can degrade system performance and cause reliability problems.

The development kit is shipped with a heatsink thermal solution for installation on the processor. This thermal solution has been tested in an open-air environment at room temperature and is sufficient for development purposes. The designer must ensure that adequate thermal management is provided for if the system is used in other environments or enclosures.

## 3.4 System Features and Operation

The following section provide a detailed view of the system features and operation of the development board.

## 3.4.1 Mobile Intel<sup>®</sup> GME965 GMCH

The Mobile Intel<sup>®</sup> GME965 Express Chipset GMCH provides the processor interface optimized for Intel<sup>®</sup> Core<sup>™</sup> 2 Duo processors, system memory interface, DMI and internal graphics. It provides flexibility and scalability in graphics and memory subsystem performance. The following list describes the development board's implementation of the Mobile Intel<sup>®</sup> GME965 Express Chipset GMCH features.

A list of features follows:

- 1299-ball Micro-FCBGA package
- 533/667/800 MHz Front Side Bus
- 36-bit host bus addressing
- System memory controller (DDR2 implemented)
  - Supports Dual Channel and Single Channel operation
  - o Two 200-pin SODIMM slots
  - o DDR2 533/667
- Direct Media Interface (DMI)
- Integrated graphics based on the Intel Graphics Media Accelerator X3100
  - Directly supports on-board VGA, TV D-Connector and LVDS interfaces.



- SDVO interface via PCI Express\* x16 connector provides maximum display flexibility
  - Can drive up to two display outputs

#### 3.4.1.1 System Memory

The development board supports DDR2 533/667 main memory. Two 200-pin SODIMM connectors (one per channel) on the development board support unbuffered, non-ECC, single and double-sided DDR2 533/667 MHz SODIMMs. These SODIMMs provide the ability to use up to 1 Gbit technology for a maximum of 4 GBytes system memory.

- *Note:* Memory that utilizes 128 MBit technology is not supported on the Mobile Intel<sup>®</sup> GME965 Express Chipset.
- *Note:* The SODIMM connectors are on the back side of the development board.
- *Caution:* Standby voltage may be applied to the SODIMM sockets when the system is in the S3, S4 and S5 states. Therefore, do not insert or remove SODIMMs unless the system is unplugged.

#### 3.4.1.2 DMI

The Mobile Intel<sup>®</sup> GME965 Express Chipset GMCH's Direct Media Interface (DMI) provides high-speed bi-directional chip-to-chip interconnect for communication with the ICH8-M.

#### 3.4.1.3 Advanced Graphics and Display Interfaces

The development board has five options for displaying video: VGA, LVDS, TV-Out, SDVO, or PCI Express\* Graphics. SDVO and PCI Express\* Graphics are multiplexed on the same pins within the Mobile Intel<sup>®</sup> GME965 Express Chipset. The development board contains one SDVO/PCI Express\* Graphics Slot (J6B2) for a PCI Express\* compatible graphics card or an SDVO compatible graphics card, one LVDS connector (J6F1), one TV-Out connector (J2A1), and one 15-pin VGA connector (J2A2).

#### 3.4.1.3.1 VGA Connector

A standard 15 pin D-Sub connector on the rear panel provides access to the analog output of the Mobile Intel<sup>®</sup> GME965 Express Chipset. This can be connected to any capable analog CRT or flat panel display with compatible input.

When used in conjunction with the other display options, the displays can operate in Dual Independent mode. This allows unique content to appear on each display at unique refresh rates and timings.

#### 3.4.1.3.2 LVDS Flat Panel Interface

The development board provides one 50-pin LVDS video interface connector. The interface is compliant with the SPWG 3.5 (for 18-bpp panels) and proposed SPWG 4.0 (for 24-bpp panels) standards.



#### 3.4.1.4 PCI Express x16 Slot

The development board provides access to one x16 PCI Express\* connector. Any industry standard x1 or x16 PCI Express\* video adapter may be used with this interface. Additionally, any industry standard non-graphics x1, x4 or x8 adapter may also be used. x2 adapters are not part of the PCI Express\* specification but x2 non-graphics devices are also supported.

**Note:** The AMI BIOS that is included with the development board is configured to allow x2, x4 and x8 non-graphics support through the x16 PCI Express\* connector. If the user wishes to use another BIOS on the development board then the BIOS may need to be modified to support this feature.

#### 3.4.2 ICH8-M

The ICH8-M is a highly integrated multifunctional I/O controller hub that provides the interface to the system peripherals and integrates many of the functions needed in today's PC platforms. The following sections describe the development board implementation of the ICH8-M features, which are listed below:

- Three PCI Express\* (x1) connectors
- One PCI connectors
- LPC interface
- System Bus Management
- ACPI\* 3.0 compliant
- Real Time Clock
- 676-ball mBGA package
- Three SATA drive connectors
- One IDE connector
- Ten Universal Serial Bus (USB) 2.0 ports (five ports provided on rear-panel, four provided via headers (J6H3, J6H4) and one on the docking connector.

#### 3.4.2.1 PCI Express\* Slots

The development board has three x1 PCI Express\* slots for add-in cards. The PCI Express\* interface is compliant to the PCI Express\* Rev. 1.1 Specification.

**Note:** There are actually Five x1 PCI Express\* slots but slots 2 and 4 are not intended for use with PCI Express\* add-in cards. Only slots 1, 3 and 5 are supported.

#### 3.4.2.2 PCI Slots

The development board has one 5V PCI slot for add-in cards. The PCI bus is compliant to the PCI Rev. 2.3 Specification at 32-bit/33 MHz



#### 3.4.2.3 On-Board LAN

The development board has one RJ-45 interface – at connector J5A1 - through which 10/100/1000 ethernet is available. The ethernet MAC is located in the ICH8-M and the PHY is located externally in the 82566MM LAN Connect Interface (LCI) device. The 82566MM is connected to the ICH8-M via two interfaces: LCI for 10/100 Mbps traffic and GLCI (Gigabit LCI) for 1000Mbps traffic. Intel<sup>®</sup> Active Management Technology is optionally supported through these components.

Information on Intel<sup>®</sup> Active Management Technology can be found at: <u>http://www.intel.com/technology/manage/iamt/</u>

*Note:* Further details on the location of the RJ-45 interface can be found in <u>Section 4.2</u>.

#### 3.4.2.4 High Definition Audio

Intel<sup>®</sup> High Definition Audio is not supported on the development board.

#### 3.4.2.5 ATA/ Storage

The development board has one parallel ATA IDE connector and three serial ATA connectors.

The parallel ATA IDE Connector is a standard 40-pin connector at J7J4. This connector supports up to two Ultra ATA/100 hard drives; one master and one slave.

There are three SATA connectors on the development board – one 'Direct Connect' connector and two 'Cable Connect' connectors. The 'Direct Connect' connector, located at J8J1, provides both signaling and power while the 'Cable Connect' connectors, located at J7H1 and J7J3, only provides signals (the user typically uses an ATX power supply for the drive power). A green LED at location CR6J1 indicates activity on the ATA channel.

The development board also supports 'ATA swap' capability for both the parallel IDE channel and the serial ATA channels. A device can be powered down by software and the port can then be disabled, allowing removal and insertion of a new device. The parallel IDE device should be powered from the power connector, J4J2, on the development board to utilize the hot swap feature. This feature requires customer-developed software support.

*Note:* Desktop hard drives must be powered using the external ATX power supply, not the onboard power supply.

The Mobile Intel<sup>®</sup> GME965 Express Chipset includes Intel<sup>®</sup> Matrix Storage Technology, providing greater performance and reliability through features such as Native Command Queuing (NCQ) and RAID 0/1. For more information about Intel<sup>®</sup> Matrix Storage Technology, refer to Intel's website at:

http://www.intel.com/design/chipsets/matrixstorage\_sb.htm

#### 3.4.2.6 USB Connectors

The ICH8-M provides a total of ten USB 2.0 ports. Three ports are routed to a triplestack USB connector at J3A1. Two ports are routed to a combination RJ-45/dual USB



connector at J5A1. Four ports are routed to USB front panel headers at J6H3 and J6H4. The last is routed to the PCI-Express\* docking connector at J9C1.

There are Five UHCI Host Controllers and two EHCI Host Controllers. Each UHCI Host Controller includes a root hub with two separate USB ports each, for a total of ten legacy USB ports. The first EHCI Host Controller includes a root hub that supports up to six USB 2.0 ports and the second EHCI Host Controller includes a root hub that supports up to four USB 2.0 ports.

The connection to either the UHCI or EHCI controllers is dynamic and dependant on the particular USB device. As such, all ports support High Speed, Full Speed, and Low Speed (HS/FS/LS).

#### 3.4.2.7 LPC Super I/O (SIO)/LPC Slot

An SMSC SIO1007-JV serves as the SIO on the development board. Shunting the jumper at J7D1 to the 2-3 positions can disable the SIO by holding it in reset. This allows other SIO solutions to be tested in the LPC slot at J8E1. A sideband header is provided at J9G1 for this purpose. This sideband header also has signals for LPC power management. Information on this header is on sheet 44 of the development board schematics.

#### 3.4.2.8 Serial, IrDA

The SMSC SIO incorporates a serial port, and IrDA (Infrared), as well as general purpose IOs (GPIO). The Serial Port connector is provided at J2A2, and the IrDA transceiver is located at U4A1. The IrDA transceiver on the development board supports SIR (slow IR), FIR (Fast IR) and CIR (Consumer IR). The option to select between these is supported through software.

#### 3.4.2.9 BIOS Firmware Hub (FWH)

An 8-Mbit Flash device used on the development board to store system and video. The reference designator location of the FWH device is U8G1. The BIOS can be upgraded using an MS-DOS\* based utility called FWHFlash and is addressable on the LPC bus off of the ICH8-M. FWHFlash is available on request from your Intel representative.

#### 3.4.2.10 SPI

The Serial Peripheral Interface on ICH8-M is used to support two compatible flash devices at locations U7E1 and U6D2. By default, the SPI flash is used to store configuration data for the LAN controller. Optionally it may be used for BIOS and AMT firmware storage.

It is necessary to set certain strapping options to enable either a FWH-based or SPIbased BIOS. Optionally, it is also possible to direct BIOS access to the PCI interface. <u>Table 7</u> describes these strapping options.



#### Table 7. BIOS Location Strapping Options

| ICH8-N         |   |               |
|----------------|---|---------------|
| GNT#0 SPI_CS1# |   | BIOS Location |
| 0              | 1 | SPI           |
| 1              | 0 | PCI           |
| 1 1            |   | LPC (Default) |

*Note:* GNT#0 is configurable via jumper J8E2. Further details on its location can be found in <u>Section 4.3</u>. SPI\_CS1# is configurable via stuffing option R7U12. By default R7U12 is not stuffed resulting in a SPI\_CS1# strapping value of 1.

#### 3.4.2.11 System Management Controller (SMC)/Keyboard Controller

The Hitachi\* H8S/2104RV serves as both SMC and KBC for the development board. The SMC/KBC controller supports two PS/2 ports, battery monitoring and charging, EMA support, wake/runtime SCI events, and power sequencing control. The two PS/2 ports on the development board are for legacy keyboard and mouse. The keyboard plugs into the bottom jack and the mouse plugs into the top jack at J1A1. Scan matrix keyboards can be supported via an optional connector at J9E1.

#### 3.4.2.12 Clocks

The development board uses a CK-505 clock synthesizer and DB800 clock buffer compatible solution. The FSB frequency is determined from decoding the processor BSEL[2:0] pin settings. This pin settings may be strapped using the jumpers at J1G2, J1G5 and J1G8. Refer to Figure 7 and Table 15 for further information on these jumpers.

#### 3.4.2.13 Real Time Clock

An on-board battery at BT5H1 maintains power to the real time clock (RTC) when in a mechanical off state. A CR2032 battery is installed on the development board.

*Warning:* Risk of explosion if the lithium battery is replaced by an incorrect type. Dispose of used batteries according to the vendor's instructions.

#### 3.4.2.14 Thermal Monitoring

The processor has a thermal diode for temperature monitoring. The SMC throttles the processor if it becomes hot. If the temperature of the processor rises too high, the SMC alternately blinks the CAPS lock and NUM lock LEDs on the development board, and the development board shuts down.

A 3-pin fan header J3C1 is provided to support Tachometer output measurement for GMCH. The development board supports PWM based speed control. As part of the thermal measurement, the speed of the fan is varied based on the temperature measurement.



#### 3.4.3 POST Code Debugger

A Port 80-83 Add-in card can be plugged into to the development board at the TPM header (J9A1). This card decodes the LPC bus BIOS POST codes and displays them on four 7-segment LED displays.

For AMI\* BIOS POST codes, please visit: <u>http://www.ami.com</u>

## 3.5 Clock Generation

The development board uses a CK-505 and DB800 compatible solution. The FSB frequency is determined from decoding the processor BSEL[2:0] pin settings.

The clock generator provides Processor, GMCH, ICH8-M, PCI, PCI Express\*, SATA, and USB reference clocks. Clocking for DDR2 is provided by the GMCH.

#### Table 8. Primary System Clocks

| Clock Name           | Speed                                                                         |
|----------------------|-------------------------------------------------------------------------------|
| CPU                  | 133 MHz @ 533 FSB Speed<br>166 MHz @ 667 FSB Speed<br>200 MHz @ 800 FSB Speed |
| DDR2                 | 133 MHz @ 533 Memory Speed<br>166 MHz @ 667 Memory Speed                      |
| PCI Express* and DMI | 100 MHz                                                                       |
| SATA                 | 100MHz                                                                        |
| PCI                  | 33MHz                                                                         |
| USB                  | 48MHz                                                                         |
| Super I/O            | 14MHz                                                                         |

## **3.6 Power Management States**

<u>Table 9</u> and <u>Table 10</u> lists the power management states that have been defined for the baseboard.

The Manageability Engine (ME) operates at various power levels, called M-states. M0 is the highest power state, followed by M1 and M-off. The Manageability Engine provides some of the functionality required to implement Intel<sup>®</sup> Active Management Technology (iAMT) on the development board. Further information on iAMT can be found here: <u>http://www.intel.com/technology/manage/iamt/</u>

#### Table 9. Power Management States

| State    | Description           |
|----------|-----------------------|
| G0/S0/C0 | Full on               |
| G0/S0/C2 | STPCLK# signal active |



| State    | Description                                        |  |  |
|----------|----------------------------------------------------|--|--|
| G0/S0/C3 | Deep Sleep: DPSLP# signal active                   |  |  |
| G0/S0/C4 | Deeper Sleep: DPRSLP# signal active                |  |  |
| G1/S3    | Suspend To RAM (all switched rails are turned off) |  |  |
| G1/S4    | Suspend To Disk                                    |  |  |
| G2/S5    | Soft Off                                           |  |  |
| G3       | Mechanical Off                                     |  |  |

#### Table 10. Power Management M-States

| M-<br>State | Description                                                             | Main<br>System | Memory<br>Subsystem <sup>1</sup> | Manageability<br>Subsystem <sup>2</sup> | Clocks                                                |
|-------------|-------------------------------------------------------------------------|----------------|----------------------------------|-----------------------------------------|-------------------------------------------------------|
| MO          | Full on. All<br>manageability<br>functions<br>supported                 | Powered        | Powered and active               | Powered                                 | Powered                                               |
| M1          | Manageability<br>functions that only<br>require memory<br>are supported | Off            | Powered - Self<br>refresh.       | Powered                                 | Only<br>BCLK pair<br>to MCH is<br>active <sup>3</sup> |
| M-off       | Manageability is<br>disabled                                            | Off            | Off                              | Off                                     | Off                                                   |

#### NOTES:

- 1. Memory subsystem is the memory and memory-related power supplies to the MCH.
- 2. Manageability Subsystem includes manageability functions in the chipset, SPI flash, and LAN devices.
- 3. In M1 the clock is powered, however only the BCLK pair to the MCH is active. Everything besides the PLL in the clock chip is disabled and powered down.
- **Note:** While in an M-state other than M-off, the traditional hardware definition of the S-State as defined by the SLP signals is overridden by the ICH8M. This allows devices controlled by SLP\_S3# and SLP\_S4#, such as system memory, to be available to the Manageability system as needed. Even though the SLP signals may be driven differently in M-States, the S-State information is retained in the ICH8M for transition to M-off. S4\_STATE# is the new signal to indicate S4 transition.

Table 11 provides a truth table of the SLP signals in various system states and M-States. The ICH8M provides all of the SLP signals shown in the table below.



|       |              | Signal                                                                   |      |      |      |        |
|-------|--------------|--------------------------------------------------------------------------|------|------|------|--------|
|       |              | SLP_S3#         SLP_S4#         SLP_S5#         S4_STATE#         SLP_M# |      |      |      | SLP_M# |
|       | S0/M0        | High                                                                     | High | High | High | High   |
|       | S3/M1        | Low                                                                      | High | High | High | High   |
|       | S4/M1        | Low                                                                      | High | High | Low  | High   |
|       | S5/M1        | Low                                                                      | High | Low  | Low  | High   |
|       | S3/M-off     | Low                                                                      | High | High | High | Low    |
| State | S4/M-off     | Low                                                                      | Low  | High | Low  | Low    |
|       | S5/M-off     | Low                                                                      | Low  | Low  | Low  | Low    |
|       | S0 (Non-AMT) | High                                                                     | High | High | High | High   |
|       | S3 (Non-AMT) | Low                                                                      | High | High | High | Low    |
|       | S4 (Non-AMT) | Low                                                                      | Low  | High | Low  | Low    |
|       | S5 (Non-AMT) | Low                                                                      | Low  | Low  | Low  | Low    |

#### Table 11. Sleep Signals and M-State Definition

## 3.7 **Power Measurement Support**

Power measurement resistors are provided on the development board to measure the power of most subsystems. All power measurement resistors have a tolerance of 1%. The value of these power measurement resistors are  $0.002\Omega$  by default. Power on a particular subsystem is calculated using the following formula:

$$P = \frac{V^2}{R}$$

R = value of the sense resistor (typically 0.002 $\Omega$ )

V = the voltage difference measured across the sense resistor

Use of an oscilloscope or high precision digital multi-meter tool such as the Agilent\* 34401A digital multi-meter is recommended. Meters such as this have  $6\frac{1}{2}$  digits of accuracy and can provide a much greater accuracy in power measurement than a common  $3\frac{1}{2}$  digit multi-meter.

<u>Table 12</u> summarizes all the power measurement resistors located on the development board. All resistors are 0.002  $\Omega$  unless otherwise noted. Reference designators marked with an asterisk are "not stuffed" on the development board.



#### Table 12. Development Board Voltage Rails

|                          | 1                | _                 | •               | -                       |
|--------------------------|------------------|-------------------|-----------------|-------------------------|
| Component<br>/ Interface | Voltage<br>Plane | Supply            | Rail            | Reference<br>Designator |
| CPU VR                   | 5V               | +V5S              | +V5S_IMVP6      | R1B1                    |
| CPU VR                   | Battery          | +VBAT             | +VDC_PHASE      | R2P12                   |
| CPU VR                   | Variable         | 6208_1_PHASE_LOUT | +VCC_CORE       | R3D1                    |
| CPU VR                   | Variable         | 6208_2_PHASE_LOUT | +VCC_CORE       | R2D1                    |
| CPU VR                   | Variable         | 6208_3_PHASE_LOUT | +VCC_CORE       | R2D2                    |
| CPU                      | 1.05V            | +V1.05S           | +V1.05S_CPU     | R3T2* and R3R7*         |
| CPU                      | 1.5V             | +V1.5S            | +VCCA_PROC      | R3U1 (0.01Ω)            |
| GMCH VR                  | Battery          | +VBATA            | 1.5S_VIN        | R5V3                    |
| GMCH VR                  | Battery          | +VBATA            | VGMCH_IN        | R5F16                   |
| GMCH VR                  | 5 V              | +V5S              | +V5S_GVR        | R3F12                   |
| GMCH VR                  | Battery          | +VBAT             | GVR_VBAT        | R3V2                    |
| GMCH VR                  | 3.3V             | V3.3S_TVDAC_R2    | +V3.3S_TVDAC    | R3E2 (0.01Ω)            |
| GMCH VR                  | Battery          | +VBATA            | V1.25M_VIN      | R4V4                    |
| GMCH VR                  | 1.05 V           | +V1.05OUT         | +V1.05M         | R4F13 (0.01Ω)           |
| GMCH                     | 1.05V            | +V1.05S           | +VCC_GMCH       | R6E1                    |
| GMCH                     | VCCP<br>(1.05V)  | +V1.05S           | +VCCP_GMCH      | R5U26                   |
| GMCH                     | 1.05V            | +V1.05S           | +VCC_PEG        | R6T14                   |
| GMCH                     | 1.25S            | +V1.25S           | +VCC_PEG        | R6T13*                  |
| GMCH                     | 1.05V            | +V1.05S           | +VCC_DMI        | R6T11                   |
| GMCH                     | 1.25S            | +V1.25S           | +VCC_DMI        | R6E2*                   |
| GMCH                     | 1.05V            | +V1.05M           | +VCC_AXM        | R6R1                    |
| GMCH                     | V_GFX<br>(1.05S) | +VCC_GFXCORE      | +VCC_GFX        | R3F8                    |
| GMCH                     | 1.25V            | +V1.25S           | +V1.25S_PEGPLL  | R5E3                    |
| GMCH                     | 1.25V            | +V1.25M           | +V1.25M_A_SM_CK | R5P5                    |
| GMCH                     | 1.25V            | +V1.25S           | +V1.25S_DMI     | R6D5                    |
| GMCH                     | 1.25V            | +V1.25S           | +V1.25S_MCH_PLL | R5U24                   |
| GMCH                     | 1.25V            | +V1.25M           | V1.25M_MCH_PLL2 | R4D6                    |
| GMCH                     | 1.25V            | +V1.25M           | +V1.25M_A_SM    | R4R2                    |
| GMCH                     | 1.25V            | +V1.25M           | +V1.25M_AXD     | R4C27                   |
| GMCH                     | 1.25V            | +V1.25S           | +V1.25S_AXF     | R4F9                    |
| GMCH                     | 1.5V             | +V1.5S            | TVDAC_FB        | R5U8                    |



| Component<br>/ Interface | Voltage<br>Plane | Supply             | Rail                       | Reference<br>Designator |
|--------------------------|------------------|--------------------|----------------------------|-------------------------|
| GMCH                     | 1.8V             | +V1.8              | +V1.8_GMCH                 | R5D1                    |
| GMCH                     | 1.8V             | +V1.8_GMCH         | +V1.8_SM_CK                | R5D2                    |
| GMCH                     | 1.8V             | +V1.8              | +V1.8_TXLVDS               | R5U25                   |
| GMCH                     | 1.8V             | +V1.8              | +V1.8_DLVDS                | R5E5                    |
| GMCH                     | 3.3V             | +V3.3S             | +V3.3S_HV                  | R5U2                    |
| GMCH                     | 3.3V             | +V3.3S             | +V3.3S_SYNC                | R5F9                    |
| GMCH                     | 3.3V             | +VCCA_TVDAC        | +V3.3S_DAC_BG              | R5U19 (0.03Ω)           |
| GMCH                     | 3.3V             | +V3.3S             | +V3.3S_PEG_BG              | R6E3                    |
| PCI-E Gfx                | 3.3V             | +V3.3S             | +V3.3S_PEG                 | R6C1                    |
| PCI-E Gfx                | 3.3V             | +V3.3              | +V3.3S_PEG                 | R6P2*                   |
| PCI-E Gfx                | Battery          | +VBATS             | +V12S_PEG                  | R6N9                    |
| PCI-E Gfx                | Battery          | +VBAT_S4           | +V12S_PEG                  | R6N5*                   |
| ICH                      | 1.05V            | +V1.05S            | +V1.05S_ICH                | R7F12                   |
| ICH                      | 1.05V            | +V1.05S            | +V1.05S_ICH_IO             | R6V11                   |
| ICH                      | 1.25V            | +V1.25S            | +V1.25S_DMI_ICH            | R6G3                    |
| ICH                      | 1.5V             | +V1.5S             | +V1.5S_PCIE_ICH            | R6F13                   |
| ICH                      | 1.5V             | +V1.5S             | +V1.5S_SATA_ICH            | R8G2                    |
| ICH                      | 1.5V             | +V1.5S             | +V1.5S_USB_ICH             | R8F7                    |
| ICH                      | 1.5V             | +V1.5S             | +V1.5S_APLL_ICH            | R8G2                    |
| ICH                      | 3.3V             | +V3.3S             | +V3.3S_DMI_ICH             | R6G4                    |
| ICH                      | 3.3V             | +V3.3S             | +V3.3S_GLAN_ICH            | R6F2                    |
| ICH                      | 3.3V             | +V3.3M             | +V3.3M_ICH                 | R7U3                    |
| ICH                      | 3.3V             | +V3.3A             | +V3.3A_ICH                 | R6V12                   |
| ICH                      | 3.3V             | +V3.3A             | +V3.3A_USB_ICH             | R8F4                    |
| ICH                      | 3.3V             | +V3.3S             | +V3.3S_IDE_ICH             | R8G1                    |
| ICH                      | 3.3V             | +V3.3S             | +V3.3S_VCCPCORE_ICH        | R8V14                   |
| ICH                      | 3.3V             | +V3.3M             | +V3.3M_VCCPAUX             | R7F1                    |
| ICH                      | 3.3V             | +V3.3S             | +V3.3S_PCI_ICH             | R8F5                    |
| ICH                      | 3.3V             | +V3.3S             | +V3.3S_SATA_ICH            | R8G7                    |
| ICH                      | 3.3V             | +V3.3S_1.5S_HDA_IO | +V3.3S_1.5S_HDA_IO_IC<br>H | R7V4 (0.022Ω)           |
| Memory                   | Battery          | +VBATA             | 1.8_VIN                    | R5N13                   |
| Memory                   | 0.9 V            | +V0.9              | +V0.9_R                    | R4B13                   |
| Memory                   | 1.8V             | +V1.8              | +V1.8_DIMM0                | R5C2                    |



| Component<br>/ Interface | Voltage<br>Plane | Supply        | Rail               | Reference<br>Designator |
|--------------------------|------------------|---------------|--------------------|-------------------------|
| Memory                   | 1.8V             | +V1.8         | +V1.8_DIMM1        | R5B10                   |
| Memory                   | 3.3V             | +V3.3M        | +V3.3M_DIMM0       | R4C1 (0.022Ω)           |
| Memory                   | 3.3V             | +V3.3M        | +V3.3M_DIMM1       | R4B26 (0.022Ω)          |
| LAN                      | 3.3V             | +V3.3M_LAN_SW | +V3.3M_LAN         | R6A23                   |
| LAN                      | 1.8V             | +V1.8_LAN     | +V1.8_LAN_M        | R6M1                    |
| LAN                      | 1V               | +V1.0_LAN_M   | +V1.0_LAN_M_IN     | R6M3                    |
| PCI                      | 3.3V             | +V3.3S        | +V3.3S_PCI         | R9D2                    |
| PCI                      | 3.3V             | +V3.3         | +V3.3_PCISLT3      | R8C5*                   |
| PCI                      | 3.3V             | +V3.3S_PCI    | +V3.3_PCISLT3      | R9D3                    |
| PCI                      | 5V               | +V5S          | +V5S_PCI           | R9B1                    |
| PCI                      | 5V               | +V5           | +V5_PCISLT3        | R8B3*                   |
| PCI                      | 5V               | +V5S_PCI      | +V5_PCISLT3        | R9B2                    |
| PCI                      | 5V               | +V5           | +V5_PCI            | R9A11*                  |
| PCI                      | 12V              | +V12S         | +V12S_PCI          | R8B1                    |
| PCI-E                    | 12V              | +V12S         | +V12S_PCIESLOT1    | R7N11                   |
| PCI-E                    | 12V              | +V12S         | +V12S_PCIESLOT2    | R7C20                   |
| PCI-E                    | 12V              | +V12S         | +V12S_PCIESLOT3    | R8B2                    |
| PCI-E                    | 12V              | +V12S         | +V12S_PCIESLOT4    | R8C7                    |
| PCI-E                    | 12V              | +V12S         | +V12S_PCIESLOT5    | R7N9                    |
| PCI-E                    | 3.3V             | +V3.3S        | +V3.3S_PCIESLOT1   | R7N10                   |
| PCI-E                    | 3.3V             | +V3.3S        | +V3.3S_PCIESLOT2   | R7R1                    |
| PCI-E                    | 3.3V             | +V3.3S        | +V3.3S_PCIESLOT3   | R7N5                    |
| PCI-E                    | 3.3V             | +V3.3S        | +V3.3S_PCIESLOT4   | R8D2                    |
| PCI-E                    | 3.3V             | +V3.3S        | +V3.3S_PCIESLOT5   | R7N8                    |
| Audio                    | 3.3 V            | +V3.3S        | +V3.3S_1.5S_HDA_IO | R7W5                    |
| Audio                    | 1.5 V            | +V1.5S        | +V3.3S_1.5S_HDA_IO | R7H6*                   |
| Audio                    | 1.5 V            | +V1.5A_HDA_IO | +V3.3A_1.5A_HDA_IO | R8E8*                   |
| Audio                    | 3.3 V            | +V3.3A        | +V3.3A_1.5A_HDA_IO | R8E7                    |
| Panel Bklt               | 5V               | +V5S          | +V5S_LVDS_BKLT     | R6U8                    |
| Panel Bklt               | Battery          | +VBAT         | +VCC_LVDS_BKLT     | R6F1                    |
| Panel LVDS               | 3.3V             | +V3.3S        | +V3.3S_L           | R6U13                   |
| Panel LVDS               | 5V               | +V5S          | +V3.3S_L           | R6U16*                  |
| Panel LVDS               | 3.3V             | +V3.3S        | +V3.3S_LVDS_DDC    | R6F9                    |



| Component<br>/ Interface | Voltage<br>Plane | Supply             | Rail                | Reference<br>Designator |
|--------------------------|------------------|--------------------|---------------------|-------------------------|
| Panel LVDS               | 5V               | +V5S               | +V3.3S_LVDS_DDC     | R6U9*                   |
| CK505                    | 3.3V             | +V3.3M_CK505       | VDD_CK505           | R5G11                   |
| CK505                    | 3.3V             | +V3.3S             | +V3.3S_DB800        | R7C10                   |
| CK505                    | 0.9V             | IO_VOUT_D          | +VDDIO_CLK          | R5V11                   |
| LPC                      | 3.3V             | +V3.3              | +V3.3_LPCSLOT       | R8F2                    |
| LPC                      | 5V               | +V5                | +V5_LPCSLOT         | R8E2                    |
| ТРМ                      | 5V               | +V5                | V5_R1_TPM           | R9M7                    |
| ТРМ                      | 3.3V             | +V3.3S             | V3.3S_R1_TPM        | R9M8                    |
| ТРМ                      | 3.3V             | +V3.3A             | V3.3A_R1_TPM        | R9A8                    |
| SMC                      | 3.3V             | +V3.3A             | +V3.3A_KBC          | R8H1                    |
| PS2                      | 5V               | +V5                | +V5_PS2             | R1A1                    |
| SIO                      | 3.3V             | +V3.3S             | +V3.3S_SIO          | R7E1                    |
| IR                       | 3.3V             | +V3.3S             | +V3.3S_IR           | R4M3                    |
| FWH                      | 3.3V             | +V3.3S             | +V3.3S_FWH          | R8V17                   |
| USB                      | 5V               | +V5A               | +V5A_USBPWR_IN1     | R5W9                    |
| USB                      | 5V               | +V5A               | +V5A_USBPWR_IN2     | R7H7                    |
| USB                      | 5V               | +V5A               | +V5A_USBPWR_IN3     | R3B5                    |
| IDE                      | 5V               | +V5S               | +V5S_PATA           | R5Y6                    |
| IDE                      | 12V              | +V12S              | +V12S_PATA          | R3Y2                    |
| SPI                      | 3.3V             | +V3.3M             | +V3.3M_SPI          | R6D8                    |
| SATA                     | 3.3V             | +V3.3S             | +V3.3S_SATA_P0      | R8Y2                    |
| SATA                     | 5V               | +V5S               | +V5S_SATA_P0        | R8H6                    |
| SATA                     | 12V              | +V12S              | +V12S_SATA_P0       | R8W11                   |
| SATA                     | 3.3V             | +V3.3S             | +V3.3S_SATA_P1      | R7H9                    |
| SATA                     | 5V               | +V5S               | +V5S_SATA_P1        | R8H7                    |
| SATA                     | 12V              | +V12S              | +V12S_SATA_P1       | R8H2                    |
| System                   | Battery          | +VCHGR_OUT         | +VBS                | R1W15 (0.02Ω)           |
| System                   | Battery          | +V_BC_OUT          | +VBS                | R2H5 (0.005Ω)           |
| System                   | Battery          | +VBATA             | 51120DRVH1_+VBATA   | R3H20                   |
| System                   | Battery          | +VBATA             | 51120DRVH2_+VBATA_Q | R3H5                    |
| System                   | 3.3V             | 51120VBST2_LR      | +V3.3A_MBL          | R3G3                    |
| System                   | 5V               | '51120_+V5A_MBL_QL | +V5A_MBL            | R3J1                    |
| System                   | 1.25V            | +V1.25M_OUT        | +V1.25M             | R4V2                    |
| System                   | 1.5V             | +V1.5S             | +V1.5S_SW           | R5G23                   |



| Component<br>/ Interface | Voltage<br>Plane | Supply       | Rail       | Reference<br>Designator |
|--------------------------|------------------|--------------|------------|-------------------------|
| System                   | ATX              | +V5A         | +V5_ATX    | R4J1*                   |
| System                   | ATX              | +V3.3A       | +V3.3_ATX  | R4W23*                  |
| System                   | ATX              | +V12_ATX     | +VBATA     | R4Y1                    |
| System                   | ATX              | -V12_ATX     | -V12A      | R4Y2                    |
| System                   | ATX              | +V5SB_ATX    | +V5SB_ATXA | R5H17                   |
| System                   | +VAC_B<br>RCK    | +VAC_BRCK_IN | NEG_SENSE  | R1G8                    |

§


# 4 Hardware Reference

This section provides reference information on the hardware, including locations of development board components, connector pinout information and jumper settings.

# 4.1 **Primary Features**

<u>Figure 2</u> shows the major components of the development board and <u>Table 13</u> gives a brief description of each component.

#### Figure 2. Development Board Component Locations





| []                      |                                      |  |
|-------------------------|--------------------------------------|--|
| Reference<br>Designator | Function                             |  |
| BT5H1                   | CMOS Battery                         |  |
| J1C1                    | Reserved                             |  |
| J1D1                    | XDP Connector                        |  |
| J1F4                    | CPU FSB Sideband Signals             |  |
| J1G1                    | Reserved                             |  |
| J1G3                    | Reserved                             |  |
| J1G4                    | Reserved                             |  |
| J1G6                    | AC Brick Connector                   |  |
| J1G7                    | Battery Connector B                  |  |
| J1H1                    | Battery Connector A                  |  |
| J2B3                    | CPU Fan Connector                    |  |
| J2F1                    | Reserved                             |  |
| J2F2                    | Reserved                             |  |
| J2G2                    | Reserved                             |  |
| J3C1                    | GMCH Fan Connector                   |  |
| J3J4                    | Reserved                             |  |
| J4J1                    | ATX Power Connector                  |  |
| J4J2                    | PATA Power Connector                 |  |
| J6B1                    | PCI Express Slot 1                   |  |
| J6B2                    | PCI Express x16 Graphics Port        |  |
| J6C2                    | HDA Header for External HDMI Support |  |
| J6C3                    | Reserved                             |  |
| J6F1                    | LVDS Connector                       |  |
| J6H3                    | USB Ports 7 and 8                    |  |
| J6H4                    | USB Ports 2 and 4                    |  |
| J6H5                    | Front Panel Header                   |  |
| J6J1                    | Reserved                             |  |
| J7B1                    | PCI Express Slot 5                   |  |
| J7D2                    | Reserved                             |  |
| J7H1                    | SATA Port 2, Cable Connect           |  |
| J7H2                    | SATA Power Connector                 |  |
| J7J3                    | SATA Port 1, Cable Connect           |  |

## Table 13. Development Board Component Location Legend



| Reference<br>Designator | Function                                                                |  |
|-------------------------|-------------------------------------------------------------------------|--|
| 3734                    | PATA Connector                                                          |  |
| J8A1                    | Reserved                                                                |  |
| J8A2                    | Reserved                                                                |  |
| J8B3                    | PCI Slot 3                                                              |  |
| J8B4                    | PCI Express Slot 3                                                      |  |
| J8D1                    | PCI Express Slot 4                                                      |  |
| J8E1                    | LPC Slot                                                                |  |
| J8G2                    | Extended Mobile Access Header                                           |  |
| J8J1                    | SATA Port 0, Direct Connect                                             |  |
| J9A1                    | Trusted Platform Module Header                                          |  |
| J9C1                    | PCI Express Docking Interface                                           |  |
| J9E1                    | Scan Matrix Key Board Connector                                         |  |
| J9E2                    | HDA Header for MDC Interposer                                           |  |
| J9E3                    | LPC Hot Docking Connector                                               |  |
| J9E4                    | HDA Header for MDC Interposer                                           |  |
| J9G1                    | LPC Side Band Header                                                    |  |
| S9B1                    | PCI-Edge Connector                                                      |  |
| U2E1                    | Intel <sup>®</sup> Core <sup>™</sup> 2 Duo processor                    |  |
| U5E1                    | Mobile Intel <sup>®</sup> GME965 Express Graphics Memory Controller Hub |  |
| U6A1                    | 82566MM Gigabit Ethernet Phy                                            |  |
| U6D2                    | 16Mb SPI Flash                                                          |  |
| U6H2                    | CK505 Clock Synthesizer                                                 |  |
| U7C2                    | DB800 Clock Buffer                                                      |  |
| U7E1                    | 16Mb SPI Flash                                                          |  |
| U7E6                    | Super I/O                                                               |  |
| U7F1                    | Intel <sup>®</sup> I/O Controller Hub 8-M (ICH8-M)                      |  |
| U8G1                    | Firmware Hub                                                            |  |
| U9G2                    | H8S/2104 KSC                                                            |  |

# 4.2 Back Panel Connectors

This section describes the panel connectors on the development board. Figure 3 shows these connectors.



#### Figure 3. Back Panel Connector Locations



#### Table 14. Back Panel Connector Definitions

| Item | Description        | Ref<br>Des | Item | Description   | Ref Des |
|------|--------------------|------------|------|---------------|---------|
| 1    | PS/2 Mouse         | J1A1       | 5    | RJ-45 LAN     | J5A1    |
| 2    | TV-Out D-Connector | J2A1       | 6    | PS/2 Keyboard | J1A1    |
| 3    | Serial Port        | J2A2       | 7    | VGA           | J2A2    |
| 4    | 3 USB Ports        | J3A1       | 8    | 2 USB Ports   | J5A1    |

## 4.2.1 TV-Out D-Connector

The TV-Out D-connector supplies the necessary signals to support the Composite, S-Video, and Component TV standards. Component video (Figure 4) and Composite video (Figure 5) is connected to the development board using D-connector to Component Video cable (with three RCA receptacles at one end and D-mating connector on other end). S-video (Figure 6) is connected to development board using D-connector to S-Video cable (with 4-pin DIN connector one end and D-mating connector on other end).



#### Figure 4. D-Connector to Component Video Cable



## Figure 5. D-Connector to Composite Video Cable



#### Figure 6. D-Connector to S-Video Cable



# 4.3 Configuration Settings

*Note:* Do not move jumpers with the power on. Always turn off the power and unplug the power cord from the computer before changing jumper settings. Failure to do so may cause damage to the development board.

Figure 7 shows the location of the configuration jumpers and switches.

<u>Table 15</u> summarizes the jumpers and switches and gives their default and optional settings.



The unsupported jumpers must remain in their default position or the operation of the development board is unpredictable. The development board is shipped with the jumpers and switches shunted in the default locations.



## Figure 7. Configuration Jumper and Switch Locations

Table 15. Supported Configuration Jumper/Switch Settings

| Reference<br>Designator | Function     | Default Setting                    | Optional Setting                                    |
|-------------------------|--------------|------------------------------------|-----------------------------------------------------|
| J1G2                    | BSEL0        | 1-2: Processor BSEL Select         | 2-3: Tied to logic high<br>Empty: Tied to logic low |
| J1G5                    | BSEL1        | 1-2: Processor BSEL Select         | 2-3: Tied to logic low<br>Empty: Tied to logic high |
| J1G8                    | BSEL2        | 1-2: Processor BSEL Select         | 2-3: Tied to logic low<br>Empty: Tied to logic high |
| ]1]1                    | Reserved     | OUT<br>Do not alter jumper setting |                                                     |
| J1J2                    | Reserved     | OUT<br>Do not alter jumper setting |                                                     |
| J2B2                    | CPU VID Code | OUT 15-16: Activate Override       |                                                     |



| Reference<br>Designator | Function                       | Default Setting                                                              | Optional Setting                                                                                                                              |
|-------------------------|--------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Override                       |                                                                              | For each VID signal<br>IN: Tied to logic low<br>OUT: Tied to logic high                                                                       |
|                         |                                |                                                                              | 13 and 14 = VID0<br>11 and 12 = VID1<br>9 and 10 = VID2<br>7 and 8 = VID3<br>5 and 6 = VID4<br>3 and 4 = VID5<br>1 and 2 = VID6               |
| J2F3                    | Reserved                       | Do not alte                                                                  | OUT<br>er jumper setting                                                                                                                      |
| J2G1                    | GFX VID Code                   | OUT                                                                          | 1-2: Activate Override                                                                                                                        |
|                         | Override                       |                                                                              | For each VID signal<br>IN: Tied to logic low<br>OUT: Tied to logic high                                                                       |
|                         |                                |                                                                              | 3 and 4 = VID0<br>5 and 6 = VID1<br>7 and 8 = VID2<br>9 and 10 = VID3<br>11 and 12 = VID4<br>13 and 14 = VR_ENABLE<br>15 and 16 = No Function |
| J2H1                    | Force<br>Shutdown              | OUT: Normal Operation                                                        | IN: Force the board to shutdown                                                                                                               |
| J2H2                    | Reserved                       | Do not alte                                                                  | OUT<br>er jumper setting                                                                                                                      |
| J2H3                    | Reserved                       | Do not alte                                                                  | OUT<br>er jumper setting                                                                                                                      |
| J2J1                    | Reserved                       | Do not alte                                                                  | OUT<br>er jumper setting                                                                                                                      |
| J2J2                    | Reserved                       | Do not alte                                                                  | OUT<br>er jumper setting                                                                                                                      |
| J2J3                    | Reserved                       | OUT<br>Do not alter jumper setting                                           |                                                                                                                                               |
| ]2]4                    | Reserved                       | OUT<br>Do not alter jumper setting                                           |                                                                                                                                               |
| J2J5                    | Reserved                       | OUT<br>Do not alter jumper setting                                           |                                                                                                                                               |
| J2J6                    | Reserved                       | OUT<br>Do not alter jumper setting                                           |                                                                                                                                               |
| J3B2                    | Thermal<br>Diode<br>Connection | 1-2 and 3-4: Normal operation OUT: Disconnect CPU the diode from thermal set |                                                                                                                                               |
| J3G1                    | Power On<br>Latch              | OUT: Normal operation                                                        | IN: Latch the power on                                                                                                                        |



| Reference<br>Designator | Function                  | Default Setting                                                      | Optional Setting                                     |
|-------------------------|---------------------------|----------------------------------------------------------------------|------------------------------------------------------|
| J3J1                    | Reserved                  | OUT<br>Do not alter jumper setting                                   |                                                      |
| 3332                    | Reserved                  | OUT<br>Do not alter jumper setting                                   |                                                      |
| 3333                    | Reserved                  | Do not alte                                                          | OUT<br>er jumper setting                             |
| J4H1                    | ME G3 to M1               | OUT: Normal operation                                                | IN: Jump power state from G3 to M1                   |
| J5H1                    | Reserved                  | Do not alte                                                          | OUT<br>er jumper setting                             |
| J5H2                    | Clear CMOS                | OUT: Normal operation                                                | IN: Clear CMOS                                       |
| J6G1                    | Reserved                  | Do not alte                                                          | OUT<br>er jumper setting                             |
| J6H2                    | Reserved                  | Do not alte                                                          | IN<br>er jumper setting                              |
| J7D1                    | Super IO<br>Reset         | 1-2: Normal operation                                                | 2-3: Hold Super IO in reset                          |
| J7J1                    | Reserved                  | OUT<br>Do not alter jumper setting                                   |                                                      |
| 3732                    | SATA Power<br>Enable      | IN: (SATA Port-1) Hot<br>Plug/Removal Supported                      | OUT: (SATA Port-1) Hot<br>Plug/Removal not Supported |
|                         |                           | (SATA Port -2) Device not<br>connected through cable                 | (SATA Port -2) Device<br>connected through cable     |
| J8B1                    | Remote H8<br>Programming  | 1-2: Normal operation                                                | 2-3: Program H8                                      |
| J8B2                    | Remote H8<br>Programming  | 1-2: Normal operation                                                | 2-3: Program H8                                      |
| J8E2                    | Boot BIOS<br>Location     | OUT: Normal operation.<br>Boot through LPC (If<br>R7U12 is NO STUFF) | IN: PCI or SPI (Depends on<br>R7U12 stuffing)        |
| J8F1                    | Reserved                  | Do not alte                                                          | OUT<br>er jumper setting                             |
| J8F2                    | BIOS<br>Recovery          | OUT: Normal operation                                                | IN: BIOS recovery                                    |
| J8G1                    | Reserved                  | Do not alte                                                          | OUT<br>er jumper setting                             |
| J9F1                    | H8 Reset                  | 1-2: Normal operation                                                | 2-3: Hold H8 in reset                                |
| J9F2                    | LAN Enable                | 1-2: LAN Enable                                                      | 2-3: LAN Disable                                     |
| J9G2                    | Boot Block<br>Programming | IN: Normal operation                                                 | OUT: Program H8                                      |
| J9H1                    | Virtual<br>Docking        | OUT: Normal operation                                                | IN: Virtual docking enabled                          |
| J9H2                    | 1Hz clock and             | OUT: Normal operation, clock                                         | IN: Clock disabled, enable H8                        |



| Reference<br>Designator | Function                 | Default Setting                                          | Optional Setting                    |
|-------------------------|--------------------------|----------------------------------------------------------|-------------------------------------|
|                         | H8<br>Programming<br>NMI | enabled                                                  | programming                         |
| J9H3                    | KBC Disable              | OUT: Normal operation,<br>Keyboard Controller<br>enabled | IN: Keyboard Controller<br>disabled |
| J9H4                    | SMC MD0                  | IN: Normal operation.<br>External programming<br>allowed | OUT: No external programming        |
| J9H5                    | SATA Device<br>Detect    | IN: SATA device present                                  | OUT: SATA device not present        |
| J9H6                    | SMC MD2                  | OUT: Normal operation                                    | IN: Advanced single chip mode       |
| J9H7                    | SMC MD1                  | IN: Normal operation.<br>External programming<br>allowed | OUT: No external programming        |
| J9H8                    | Lid Position             | OUT: Lid Open                                            | IN: Lid Closed                      |
| J9H9                    | Virtual<br>Battery       | OUT: Normal operation                                    | IN: Virtual battery mode            |
| SW1C1                   | Power Button             | N/A                                                      | N/A                                 |
| SW1C2                   | Reset Button             | N/A                                                      | N/A                                 |
| SW8E1                   | Net Detect               | N/A                                                      | N/A                                 |
| SW9H1                   | Virtual<br>Docking       | 1-2: Normal operation                                    | 2-3: Virtual docking enabled        |
| SW9H2                   | Virtual<br>Battery       | 1-2: Normal operation                                    | 2-3: Virtual battery mode           |
| SW9J1                   | Lid Position             | OUT: Lid Open                                            | IN: Lid Closed                      |

**Note:** A jumper consists of two or more pins mounted on the motherboard. When a jumper cap is placed over two pins, it is designated as IN. When there are more than two pins on the jumper, the pins to be shorted are indicated as 1-2 (to short pin 1 to pin 2), or 2-3 (to short pin 2 to pin 3). When no jumper cap is to be placed on the jumper, it is designated as OUT. When a switch is designated as 1-2 the switch slide is positioned such that pins 1 and 2 are shorted together.

# 4.4 Power On and Reset Buttons

The development board has two push buttons that implement POWER and RESET functionality. The POWER button releases power to the entire development board, causing the board to boot. The RESET button will force all systems to warm reset. The two buttons are located near the CPU close to the edge of the development board. The POWER button is located at SW1C1 and the RESET button is located at SW1C2.

*Note:* If the development board is powered from an external ATX power supply (not a power brick), the Power button may need to be pressed twice to turn on the system.



The development board has a number of LEDs. These LEDs provide status for various functions on the development board. Figure 8 indicates the location of the LEDs and Table 16 describes their function.

#### Figure 8. LED Locations



#### Table 16. LED Functions

| Function             | Reference<br>Designator |
|----------------------|-------------------------|
| Keyboard Number Lock | CR9G1                   |
| Keyboard Scroll Lock | CR9G2                   |
| Keyboard Caps Lock   | CR9G3                   |
| System State S0      | CR5H5                   |
| System State S3      | CR3G2                   |
| System State S4      | CR5H3                   |
| System State S5      | CR5H4                   |
| ATA Activity         | CR6J1                   |



| Function          | Reference<br>Designator |
|-------------------|-------------------------|
| VID 0             | CR1B1                   |
| VID 1             | CR1B2                   |
| VID 2             | CR1B3                   |
| VID 3             | CR1B4                   |
| VID 4             | CR1B5                   |
| VID 5             | CR1B6                   |
| VID 6             | CR1B7                   |
| M0/M1             | CR4H1                   |
| System Power Good | CR5J1                   |
| Reserved          | CR8G1                   |

# 4.6 Other Headers, Slots and Sockets

## 4.6.1 H8 Programming Headers

The microcontroller firmware for system management/keyboard/mouse control can be upgraded in two ways. The user can either use a special DOS\* utility known as KSCFlash (in-circuit) or use an external computer connected (remote) to the system via the serial port on the development board. KSCFlash is available on request from your Intel representative.

If the user chooses to use an external computer connected to the system via the serial port, there are four jumpers that must be set correctly first. Please refer to <u>Table 15</u> for a summary of these jumpers and refer to <u>Figure 7</u> for the location of each jumper.

Required Hardware: one Null Modem Cable and a Host Unit with a serial COM port (System used to flash the development board)

Here is the sequence of events necessary to program the H8 via the serial port.

- 1. Extract all files (keep them in the same folder) to a single directory of your choice on the host machine or on a floppy disk.
- 2. Connect a NULL modem cable to the serial ports of each platform (host and unit to be flashed).
- 3. With the development board powered off, move the following jumpers to the programming stuffing option.
  - a. J9G2 (remove) (default: 1-2), Sets SMC\_INIT\_CLK high.
  - b. J8B1 (2-3) (default: 1-2), link the Host Unit to on-board H8.
  - c. J8B2 (2-3) (default: 1-2), link the Host Unit to on-board H8.



- d. J9H2 (1-2) (default: 1-X), disable 1 Hz Clock.
- 4. Attach an ATX power supply or AC to DC adapter to the system and power up the development board.
- 5. From the directory where you extracted the files, run the "kscflash ksc.bin / remote" command to program the H8 via the serial port.
- 6. Follow the instructions the flash utility provides.
- 7. With the development board powered off, return the jumpers to their default setting.

*Note:* Make sure the development board is not powered on, and the power supply is disconnected before moving any of the jumpers.

## 4.6.2 Expansion Slots and Sockets

Following is a list of the slots and sockets available for attaching additional devices. Refer to  $\underline{Figure 2}$  for locations.

#### Table 17. Expansion Slots and Sockets

| Reference<br>Designator | Slot/Socket Description                           | Detail   |
|-------------------------|---------------------------------------------------|----------|
| U2E1                    | 478 Pin Grid Array (Micro-FCPGA) Processor Socket |          |
| J5P1                    | DDR2 - Channel 0 - SODIMM slot                    |          |
| J5N1                    | DDR2 - Channel 1 - SODIMM slot                    |          |
| J8F1                    | LVDS Graphics Interface                           |          |
| J6B2                    | PCI Express* (x16)                                | Table 18 |
| J6B2                    | ADD2 Slot                                         | Table 19 |
| J6B2                    | Media Expansion Card Slot                         | Table 20 |
| J8B4                    | PCI Express* (x1) Slot 3                          | Table 21 |
| J7B1                    | PCI Express* (x1) Slot 5                          | Table 21 |
| J6B1                    | PCI Express* (x1) Slot 1                          | Table 21 |
| J8B3                    | PCI 2.3 Slot 3                                    |          |
| J7J4                    | IDE Interface Connector                           | Table 22 |
| J8J1                    | SATA 'Direct Connect' Connector                   | Table 23 |
| J7J3, J7H1              | SATA 'Cable Connect' Connector                    | Table 24 |
| J6H3                    | SATA Desk Top Power Connector                     | Table 25 |
| U8G1                    | Intel Firmware Hub Socket                         |          |
| BT5H1                   | Battery                                           |          |
| J2B3, J2C1              | Fan Connectors                                    | Table 26 |
| J2F1                    | Fan Connector                                     | Table 27 |



| Reference<br>Designator | Slot/Socket Description | Detail   |
|-------------------------|-------------------------|----------|
| J6H5                    | Front Panel Header      | Table 28 |
| J6H3, J6H4              | USB Header              | Table 29 |

## 4.6.2.1 478 Pin Grid Array (Micro-FCPGA) Socket

The pin locking mechanism on the CPU socket is released by rotating the screw on the socket 180 degrees counter-clockwise. CPU pins are keyed so as to only allow insertion in one orientation. DO NOT FORCE CPU into socket. Once the CPU is properly seated into the socket, turn the screw 180 degrees clock-wise to secure the CPU in the socket. Note that the slot on the screw aligns with the lock and unlock legend on the case of the CPU socket.

- *Caution:* Please refer to the heatsink installation instructions in Appendix A prior to inserting the heatsink as the CPU and socket can be easily damaged.
- *Caution:* Only insert Intel<sup>®</sup> Core<sup>™</sup> 2 Duo Mobile processors that are intended for operation with the Mobile Intel<sup>®</sup> 965 Express Chipset Family into the development board. These processors have a pinout known as Socket-P. Earlier Intel<sup>®</sup> Core<sup>™</sup> 2 Duo Mobile processors that have a pinout known as Socket-M are mechanically compatible with the processor socket but not electrically compatible. Insertion of these processors will cause damage to the processor and the development board.

## 4.6.2.2 PCI Express\* (x16)

The development board has one x16 lane PCI Express\* Graphics slot and supports either x1, x2, x4, x8 or x16 modes. The slot is wired "lane reversed" which connects the Mobile Intel<sup>®</sup> GME965 Express Chipset lanes 0 through 15 to lanes 15 through 0 on the slot. The Mobile Intel<sup>®</sup> GME965 Express Chipset will internally un-reverse this wiring since its CFG9 power-on strap is tied low.

| Pin | Description | Pin | Description   |
|-----|-------------|-----|---------------|
| A1  | PRSNT1#     | B1  | +12V          |
| A2  | +12V        | B2  | +12V          |
| A3  | +12V        | B3  | +12V          |
| A4  | GND         | B4  | GND           |
| A5  | JTAG2 (TCK) | B5  | SMCLK         |
| A6  | JTAG3 (TDI) | B6  | SMDAT         |
| A7  | JTAG4 (TDO) | B7  | GND           |
| A8  | JTAG5 (TMS) | B8  | +3.3V         |
| A9  | +3.3V       | B9  | JTAG1 (TRST#) |
| A10 | +3.3V       | B10 | +3.3VAUX      |

## Table 18. PCI Express\* (x16) Pinout (J6B2)



| Pin                                     | Description | Pin      | Description |  |  |  |
|-----------------------------------------|-------------|----------|-------------|--|--|--|
| A11                                     | PERST#      | B11      | WAKE#       |  |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Key         |          |             |  |  |  |
| A12                                     | GND         | ,<br>B12 | RSVD        |  |  |  |
| A13                                     | REFCLK+     | B13      | GND         |  |  |  |
| A14                                     | REFCLK-     | B14      | LANE 0 (T+) |  |  |  |
| A15                                     | GND         | B15      | LANE 0 (T-) |  |  |  |
| A16                                     | LANE 0 (R+) | B16      | GND         |  |  |  |
| A17                                     | LANE 0 (R-) | B17      | PRSNT2*     |  |  |  |
| A18                                     | GND         | B18      | GND         |  |  |  |
|                                         | End of x1   | Connec   | tor         |  |  |  |
| A19                                     | RSVD        | B19      | LANE 1 (T+) |  |  |  |
| A20                                     | GND         | B20      | LANE 1 (T-) |  |  |  |
| A21                                     | LANE 1 (R+) | B21      | GND         |  |  |  |
| A22                                     | LANE 1 (R-) | B22      | GND         |  |  |  |
| A23                                     | GND         | B23      | LANE 2 (T+) |  |  |  |
| A24                                     | GND         | B24      | LANE 2 (T-) |  |  |  |
| A25                                     | LANE 2 (R+) | B25      | GND         |  |  |  |
| A26                                     | LANE 2 (R-) | B26      | GND         |  |  |  |
| A27                                     | GND         | B27      | LANE 3 (T+) |  |  |  |
| A28                                     | GND         | B28      | LANE 3 (T-) |  |  |  |
| A29                                     | LANE 3 (R+) | B29      | GND         |  |  |  |
| A30                                     | LANE 3 (R-) | B30      | RSVD        |  |  |  |
| A31                                     | GND         | B31      | PRSNT2#     |  |  |  |
| A32                                     | RSVD        | B32      | GND         |  |  |  |
|                                         | End of x4   | Connec   | tor         |  |  |  |
| A33                                     | RSVD        | B33      | LANE 4 (T+) |  |  |  |
| A34                                     | GND         | B34      | LANE 4 (T-) |  |  |  |
| A35                                     | LANE 4 (R+) | B35      | GND         |  |  |  |
| A36                                     | LANE 4 (R-) | B36      | GND         |  |  |  |
| A37                                     | GND         | B37      | LANE 5 (T+) |  |  |  |
| A38                                     | GND         | B38      | LANE 5 (T-) |  |  |  |
| A39                                     | LANE 5 (R+) | B39      | GND         |  |  |  |
| A40                                     | LANE 5 (R-) | B40      | GND         |  |  |  |
| A41                                     | GND         | B41      | LANE 6 (T+) |  |  |  |
| A42                                     | GND         | B42      | LANE 6 (T-) |  |  |  |



| Pin | Description  | Pin     | Description  |
|-----|--------------|---------|--------------|
| A43 | LANE 6 (R+)  | B43     | GND          |
| A44 | LANE 6 (R-)  | B44     | GND          |
| A45 | GND          | B45     | LANE 7 (T+)  |
| A46 | GND          | B46     | LANE 7 (T-)  |
| A47 | LANE 7 (R+)  | B47     | GND          |
| A48 | LANE 7 (R-)  | B48     | PRSNT#2      |
| A49 | GND          | B49     | GND          |
|     | End of x8    | Connect | tor          |
| A50 | RSVD         | B50     | LANE 8 (T+)  |
| A51 | GND          | B51     | LANE 8 (T-)  |
| A52 | LANE 8 (R+)  | B52     | GND          |
| A53 | LANE 8 (R-)  | B53     | GND          |
| A54 | GND          | B54     | LANE 9 (T+)  |
| A55 | GND          | B55     | LANE 9 (T-)  |
| A56 | LANE 9 (R+)  | B56     | GND          |
| A57 | LANE 9 (R-)  | B57     | GND          |
| A58 | GND          | B58     | LANE 10 (T+) |
| A59 | GND          | B59     | LANE 10 (T-) |
| A60 | LANE 10 (R+) | B60     | GND          |
| A61 | LANE 10 (R-) | B61     | GND          |
| A62 | GND          | B62     | LANE 11 (T+) |
| A63 | GND          | B63     | LANE 11 (T-) |
| A64 | LANE 11 (R+) | B64     | GND          |
| A65 | LANE 11 (R-) | B65     | GND          |
| A66 | GND          | B66     | LANE 12 (T+) |
| A67 | GND          | B67     | LANE 12 (T-) |
| A68 | LANE 12 (R+) | B68     | GND          |
| A69 | LANE 12 (R-) | B69     | GND          |
| A70 | GND          | B70     | LANE 13 (T+) |
| A71 | GND          | B71     | LANE 13 (T-) |
| A72 | LANE 13 (R+) | B72     | GND          |
| A73 | LANE 13 (R-) | B73     | GND          |
| A74 | GND          | B74     | LANE 14 (T+) |
| A75 | GND          | B75     | LANE 14 (T-) |
| A76 | LANE 14 (R+) | B76     | GND          |
|     |              |         |              |



| Pin | Description  | Pin | Description  |
|-----|--------------|-----|--------------|
| A77 | LANE 14 (R-) | B77 | GND          |
| A78 | GND          | B78 | LANE 15 (T+) |
| A79 | GND          | B79 | LANE 15 (T-) |
| A80 | LANE 15 (R+) | B80 | GND          |
| A81 | LANE 15 (R-) | B81 | PRST2#       |
| A82 | GND          | B82 | RSVD         |

## 4.6.2.3 ADD2/Media Expansion Card (MEC) Slot

When not being used for PCI Express\*, the x16 slot can be used for Serial Digital Video Out (SDVO). An ADD2N card can be inserted into the SDVO slot to enable the use of third party vendor transmitters to output video formats such as DVI, TV, LVDS and HDMI. Table 19 describes the ADD2N interface pin-out.

The SDVO interface will also support a Media Expansion Card (MEC), which provide TV Capture over the PCI Express\* x1 port in addition to the standard ADD2 card video out capabilities. Table 20 describes the MEC interface pin-out.

#### Table 19. ADD2 Slot (J6B2)

| Pin | Description   | Pin | Description  |
|-----|---------------|-----|--------------|
| A1  | N/C           | B1  | 12 V         |
| A2  | 12 V          | B2  | 12 V         |
| A3  | 12 V          | B3  | Reserved     |
| A4  | GND           | B4  | GND          |
| A5  | N/C           | B5  | N/C          |
| A6  | TDI           | B6  | N/C          |
| A7  | TDO           | B7  | GND          |
| A8  | N/C           | B8  | 3.3 V        |
| A9  | 3.3 V         | B9  | N/C          |
| A10 | 3.3 V         | B10 | N/C          |
| A11 | RESET         | B11 | N/C          |
|     | K             | еу  |              |
| A12 | GND           | B12 | Reserved     |
| A13 | N/C           | B13 | GND          |
| A14 | N/C           | B14 | SDVOB_Red+   |
| A15 | GND           | B15 | SDVOB_Red-   |
| A16 | SDVO_TVClkIn+ | B16 | GND          |
| A17 | SDVO_TVClkIn- | B17 | SDVO_CtrlClk |
|     |               |     |              |



| Pin | Description | Pin     | Description   |  |
|-----|-------------|---------|---------------|--|
|     | -           |         |               |  |
| A18 | GND         | B18     | GND           |  |
|     | End of x1   | Connect |               |  |
| A19 | Reserved    | B19     | SDVO_Green+   |  |
| A20 | GND         | B20     | SDVO_Green-   |  |
| A21 | SDVOB_Int+  | B21     | GND           |  |
| A22 | SDVOB_Int-  | B22     | GND           |  |
| A23 | GND         | B23     | SDVOB_Blue+   |  |
| A24 | GND         | B24     | SDVOB_Blue-   |  |
| A25 | SDVO_Stall+ | B25     | GND           |  |
| A26 | SDVO_Stall- | B26     | GND           |  |
| A27 | GND         | B27     | SDVOB_Clk+    |  |
| A28 | GND         | B28     | SDVOB_Clk-    |  |
| A29 | N/C         | B29     | GND           |  |
| A30 | N/C         | B30     | Reserved      |  |
| A31 | GND         | B31     | SDVO_CtrlData |  |
| A32 | Reserved    | B32     | GND           |  |
|     | End of x4   | Connect | or            |  |
| A33 | Reserved    | B33     | SDVOC_Red+    |  |
| A34 | GND         | B34     | SDVOC_Red-    |  |
| A35 | N/C         | B35     | GND           |  |
| A36 | N/C         | B36     | GND           |  |
| A37 | GND         | B37     | SDVOC_Green+  |  |
| A38 | GND         | B38     | SDVOC_Green-  |  |
| A39 | SDVOC_Int+  | B39     | GND           |  |
| A40 | SDVOC_Int-  | B40     | GND           |  |
| A41 | GND         | B41     | SDVOC_Blue+   |  |
| A42 | GND         | B42     | SDVOC_Blue-   |  |
| A43 | N/C         | B43     | GND           |  |
| A44 | N/C         | B44     | GND           |  |
| A45 | GND         | B45     | SDVOC_Clk+    |  |
| A46 | GND         | B46     | SDVOC_Clk-    |  |
| A47 | N/C         | B47     | GND           |  |
| A48 | N/C         | B48     | N/C           |  |
| A49 | GND         | B49     | GND           |  |
|     | End of x8   | Connect | 1             |  |
|     |             |         |               |  |



| Pin | Description | Pin | Description |
|-----|-------------|-----|-------------|
| A50 | Reserved    | B50 | N/C         |
| A51 | GND         | B51 | N/C         |
| A52 | N/C         | B52 | GND         |
| A53 | N/C         | B53 | GND         |
| A54 | GND         | B54 | N/C         |
| A55 | GND         | B55 | N/C         |
| A56 | N/C         | B56 | GND         |
| A57 | N/C         | B57 | GND         |
| A58 | GND         | B58 | N/C         |
| A59 | GND         | B59 | N/C         |
| A60 | N/C         | B60 | GND         |
| A61 | N/C         | B61 | GND         |
| A62 | GND         | B62 | N/C         |
| A63 | GND         | B63 | N/C         |
| A64 | N/C         | B64 | GND         |
| A65 | N/C         | B65 | GND         |
| A66 | GND         | B66 | N/C         |
| A67 | GND         | B67 | N/C         |
| A68 | N/C         | B68 | GND         |
| A69 | N/C         | B69 | GND         |
| A70 | GND         | B70 | N/C         |
| A71 | GND         | B71 | N/C         |
| A72 | N/C         | B72 | GND         |
| A73 | N/C         | B73 | GND         |
| A74 | GND         | B74 | N/C         |
| A75 | GND         | B75 | N/C         |
| A76 | N/C         | B76 | GND         |
| A77 | N/C         | B77 | GND         |
| A78 | GND         | B78 | N/C         |
| A79 | GND         | B79 | N/C         |
| A80 | N/C         | B80 | GND         |
| A81 | N/C         | B81 | N/C         |
| A82 | GND         | B82 | Reserved    |



#### Table 20. MEC Slot (J6B2)

| Pin | Description | Pin     | Description    |
|-----|-------------|---------|----------------|
| A1  | N/C         | B1      | 12 V           |
| A2  | 12 V        | B2      | 12 V           |
| A3  | 12 V        | B3      | Reserved       |
| A4  | GND         | B4      | GND            |
| A5  | N/C         | B5      | N/C            |
| A6  | N/C         | B6      | N/C            |
| A7  | N/C         | B7      | GND            |
| A8  | N/C         | B8      | 3.3 V          |
| A9  | 3.3 V       | B9      | N/C            |
| A10 | 3.3 V       | B10     | +3.3VA         |
| A11 | RESET       | B11     | WAKE#          |
|     | ĸ           | еу      |                |
| A12 | GND         | B12     | Reserved       |
| A13 | REFCLK+     | B13     | GND            |
| A14 | REFCLK-     | B14     | Lane 0 (T+)    |
| A15 | GND         | B15     | Lane 0 (T-)    |
| A16 | Lane 0 (R+) | B16     | GND            |
| A17 | Lane 0 (R-) | B17     | SDVO_CtrlClk   |
| A18 | GND         | B18     | GND            |
|     | End of x1   | Connect | or             |
| A19 | Reserved    | B19     | N/C            |
| A20 | GND         | B20     | N/C            |
| A21 | N/C         | B21     | GND            |
| A22 | N/C         | B22     | GND            |
| A23 | GND         | B23     | N/C            |
| A24 | GND         | B24     | N/C            |
| A25 | N/C         | B25     | GND            |
| A26 | N/C         | B26     | GND            |
| A27 | GND         | B27     | N/C            |
| A28 | GND         | B28     | N/C            |
| A29 | N/C         | B29     | GND            |
| A30 | N/C         | B30     | Reserved       |
| A31 | GND         | B31     | SDVOB_CtrlData |
| A32 | Reserved    | B32     | GND            |



| Pin | Description | Pin     | Description  |
|-----|-------------|---------|--------------|
|     | End of x4   | Connect | or           |
| A33 | Reserved    | B33     | N/C          |
| A34 | GND         | B34     | N/C          |
| A35 | N/C         | B35     | GND          |
| A36 | N/C         | B36     | GND          |
| A37 | GND         | B37     | N/C          |
| A38 | GND         | B38     | N/C          |
| A39 | N/C         | B39     | GND          |
| A40 | N/C         | B40     | GND          |
| A41 | GND         | B41     | N/C          |
| A42 | GND         | B42     | N/C          |
| A43 | N/C         | B43     | GND          |
| A44 | N/C         | B44     | GND          |
| A45 | GND         | B45     | N/C          |
| A46 | GND         | B46     | N/C          |
| A47 | N/C         | B47     | GND          |
| A48 | N/C         | B48     | MEC_Enable   |
| A49 | GND         | B49     | GND          |
|     | End of x8   | Connect | or           |
| A50 | Reserved    | B50     | SDVOC_CLK+   |
| A51 | GND         | B51     | SDVOC_CLK-   |
| A52 | N/C         | B52     | GND          |
| A53 | N/C         | B53     | GND          |
| A54 | GND         | B54     | SDVOC_Blue+  |
| A55 | GND         | B55     | SDVOC_Blue-  |
| A56 | N/C         | B56     | GND          |
| A57 | N/C         | B57     | GND          |
| A58 | GND         | B58     | SDVOC_Green+ |
| A59 | GND         | B59     | SDVOC_Green- |
| A60 | SDVOC_Int+  | B60     | GND          |
| A61 | SDVOC_Int-  | B61     | GND          |
| A62 | GND         | B62     | SDVOC_Red+   |
| A63 | GND         | B63     | SDVOC_Red-   |
| A64 | N/C         | B64     | GND          |
| A65 | N/C         | B65     | GND          |



| Pin | Description   | Pin | Description  |
|-----|---------------|-----|--------------|
| A66 | GND           | B66 | SDVOB_Clk+   |
| A67 | GND           | B67 | SDVOB_Clk-   |
| A68 | N/C           | B68 | GND          |
| A69 | N/C           | B69 | GND          |
| A70 | GND           | B70 | SDVOB_Blue+  |
| A71 | GND           | B71 | SDVOB_Blue-  |
| A72 | SDVO_Stall+   | B72 | GND          |
| A73 | SDVO_Stall-   | B73 | GND          |
| A74 | GND           | B74 | SDVOB_Green+ |
| A75 | GND           | B75 | SDVOB_Green- |
| A76 | SDVOB_Int+    | B76 | GND          |
| A77 | SDVOB_Int-    | B77 | GND          |
| A78 | GND           | B78 | SDVOB_Red+   |
| A79 | GND           | B79 | SDVOB_Red-   |
| A80 | SDVO_TVClkIn+ | B80 | GND          |
| A81 | SDVO_TVClkIn- | B81 | N/C          |
| A82 | GND           | B82 | Reserved     |

## 4.6.2.4 PCI Express\* (x1)

The three PCI Express\* x1 connectors allow the use of any industry standard PCI Express\* device. The pin configuration of the connectors is given below.

## Table 21. PCI Express\* (x1) Pinout (J6B1, J7B1, J8B4)

| Pin | Description | Pin | Description   |
|-----|-------------|-----|---------------|
| A1  | PRSNT1#     | B1  | +12V          |
| A2  | +12V        | B2  | +12V          |
| A3  | +12V        | B3  | +12V          |
| A4  | GND         | B4  | GND           |
| A5  | JTAG2 (TCK) | B5  | SMCLK         |
| A6  | JTAG3 (TDI) | B6  | SMDAT         |
| A7  | JTAG4 (TDO) | B7  | GND           |
| A8  | JTAG5 (TMS) | B8  | +3.3V         |
| A9  | +3.3V       | B9  | JTAG1 (TRST#) |
| A10 | +3.3V       | B10 | +3.3VAUX      |
| A11 | PERST#      | B11 | WAKE#         |



| Pin | Description | Pin | Description |
|-----|-------------|-----|-------------|
|     | k           | (ey |             |
| A12 | GND         | B12 | RSVD        |
| A13 | REFCLK+     | B13 | GND         |
| A14 | REFCLK-     | B14 | LANE 0 (T+) |
| A15 | GND         | B15 | LANE 0 (T-) |
| A16 | LANE 0 (R+) | B16 | GND         |
| A17 | LANE 0 (R-) | B17 | PRSNT2*     |
| A18 | GND         | B18 | GND         |

## 4.6.2.5 IDE Connector

The IDE interface can support up to two devices, a master and a slave. Ensure that the jumpers on the devices are properly selected for the given configuration. Mobile devices with an IDE interface will require an adapter to connect to this port.

#### Table 22. IDE Connector

| Pin | Signal        | Pin | Signal        |
|-----|---------------|-----|---------------|
| 1   | Reset         | 2   | Ground        |
| 3   | Data 7        | 4   | Data 8        |
| 5   | Data 6        | 6   | Data 9        |
| 7   | Data 5        | 8   | Data 10       |
| 9   | Data 4        | 10  | Data 11       |
| 11  | Data 3        | 12  | Data 12       |
| 13  | Data 2        | 14  | Data 13       |
| 15  | Data 1        | 16  | Data 14       |
| 17  | Data 0        | 18  | Data 15       |
| 19  | Ground        | 20  | Кеу           |
| 21  | DDRQ          | 22  | Ground        |
| 23  | I/O Write     | 24  | Ground        |
| 25  | I/O Read      | 26  | Ground        |
| 27  | I/O HRDY      | 28  | Cable Select  |
| 29  | DDACK         | 30  | Ground        |
| 31  | IRQ           | 32  | No Connect    |
| 33  | Address 1     | 34  | DMA66_Detect  |
| 35  | Address 0     | 36  | Address 2     |
| 37  | Chip Select 1 | 38  | Chip Select 3 |
| 39  | Activity      | 40  | Ground        |



## 4.6.2.6 SATA Pinout

Up to three SATA devices may be supported by the SATA connectors on the development board. <u>Table 23</u> describes the SATA 'Direct Connect' connector and <u>Table 24</u> describes the SATA 'Cable Connect' connectors.

Table 23. SATA Port 0 'Direct Connect' Connector Pinout (J8J1)

| Pin            | Signal |
|----------------|--------|
| 2              | ТХ     |
| 3              | TX#    |
| 5              | RX#    |
| 6              | RX     |
| 8, 9, 10       | +3.3V  |
| 14, 15, 16     | +5V    |
| 20, 21, 22     | +12V   |
| 1, 4, 7, 11    | GND    |
| 12, 13, 17, 19 | GND    |

#### Table 24. SATA Ports 1 and 2 'Cable Connect' Connector Pinout (J7J3, J7H1)

| Pin     | Signal |
|---------|--------|
| 2       | ТХ     |
| 3       | TX#    |
| 5       | RX#    |
| 6       | RX     |
| 1, 4, 7 | GND    |

Table 25. SATA Power Connection (J7H2)

| Pin            | Signal |
|----------------|--------|
| 1, 3           | +3.3V  |
| 3, 4           | +5V    |
| 5              | +12V   |
| 6, 7, 8, 9, 10 | GND    |

## 4.6.2.7 Fan Connectors

The development board implements three fan connectors. The connectors at J2B3 and J2C1 have a speed controlled power supply. The connector at J2F1 has a fixed power supply.



Connector J2B3 is used to power the CPU fan. Connectors J2C1 and J2F1 are not used in the default operation of the development board.

Table 26. Fan Connectors (J2B3, J2C1)

| Pin | Signal |
|-----|--------|
| 1   | +V     |
| 2   | ТАСН   |
| 3   | GND    |

#### Table 27. Fan Connector (J2F1)

| Pin | Signal |
|-----|--------|
| 1   | +5V    |
| 2   | NC     |
| 3   | GND    |

## 4.6.2.8 Front Panel Header (J6H5)

The front panel header allows connection of the LEDs and switches typically found in an ATX chassis to the development board.

### Table 28. Front Panel Connector

| Pin | Signal      | Definition                                      |
|-----|-------------|-------------------------------------------------|
| 1   | FRONT1      | 5 volt front panel LED supply                   |
| 2   | FRONT2      | 5 volt front panel LED supply                   |
| 3   | ATA_LED#    | Indicates PATA or SATA activity –<br>Active Low |
| 4   | GND         | Ground                                          |
| 5   | GND         | Ground                                          |
| 6   | PWR_CONN_D  | System Power – Active Low                       |
| 7   | RST_PUSH#_D | System Reset – Active Low                       |
| 8   | GND         | Ground                                          |
| 9   | +V5         | 5 volt supply                                   |
| 10  | N/C         | No Connect                                      |
| 11  | N/C         | No Connect                                      |
| 12  | GND         | Ground                                          |
| 13  | GND         | Ground                                          |
| 14  | N/C         | No Connect                                      |
| 15  | Reserved    |                                                 |



| 16 | +V5 | 5 volt supply |
|----|-----|---------------|

## 4.6.2.9 USB Headers (J6H3, J6H4)

The USB headers implement 4 additional USB ports on the development board. Connector J6H3 implements ports 7 and 8 and connector J6H4 implements ports 2 and 4.

#### Table 29. USB Headers

| Pin | Signal        | Definition         |
|-----|---------------|--------------------|
| 1   | +V5A_L_USBPWR | 5 volt – Always On |
| 2   | +V5A_L_USBPWR | 5 volt – Always On |
| 3   | USB_PNx       | Data- (USB Port x) |
| 4   | USB_PNy       | Data- (USB Port y) |
| 5   | USB_PPx       | Data+ (USB Port x) |
| 6   | USB_PPy       | Data+ (USB Port y) |
| 7   | GND           | Ground             |
| 8   | GND           | Ground             |
| 9   | N/C           | No Connect         |
| 10  | N/C           | No Connect         |

§



# Appendix A. Heatsink Installation Instructions

It is necessary for the Intel<sup>®</sup> Core<sup>TM</sup> 2 Duo processor to have a thermal solution attached to it in order to keep it within its operating temperature.

*Caution:* An ESD wrist strap must be used when handling the board and installing the heatsink/fan assembly.

A heatsink is included in the kit. To install the heatsink:

1. Remove the heatsink from its package and separate the fan heatsink portion from the heatsink backplate.

#### Figure 9. Heatsink and Backplate



- 2. Examine the base of the heatsink, where contact with the processor die is made. This surface should be clean of all materials and greases. Wipe the bottom surface clean with isopropyl alcohol.
- 3. Place the backplate on the underside of the development board so that the pins protrude through the holes in the development board around the processor.



#### Figure 10. Backplate Pins



- 4. Clean the die of the processor with isopropyl alcohol before the heatsink is attached to the processor. This ensures that the surface of the die is clean.
- 5. Remove the tube of thermal grease from the package and use it to coat the exposed die of the CPU with the thermal grease.



#### Figure 11. Applying the Thermal Grease



6. Pick up the heatsink and squeeze the activation arm until it comes in contact with the base plate that is attached to the heatsink base. This will cause the springs on the heatsink attachment mechanism to compress.

## Figure 12. Squeezing Activation Arm





7. While keeping the activation arm compressed, place the heatsink over the pins of the heatsink backplate. Lower the heatsink until the lugs have inserted into the base of the heatsink. Slide the heatsink over the lugs on the backplate pins so that the base is directly over the processor die and the pins on the backplate have travelled the entire length of the channel in the heatsink base. Slowly let go of the activation arm until the base of the heatsink makes contact with the processor die. The heatsink base should be flat on top of the processor die.

#### Figure 13. Installing the Heatsink



- 8. Plug the fan connector for the heatsink onto the CPU fan header (J2B3) on the motherboard.
- **Note:** The CPU fan header (J2B3) is a 3-pin connector. This is a change from the Mobile Intel® 945GM Express Chipset Development Kit which has a 2-pin CPU fan header. As a result, it is not possible to use the heatsink from the Intel® 945GM Express Chipset Development Kit even though the heatsink and backplate are mechanically compatible.

Hardware Reference



## Figure 14. Plugging in the Fan



Figure 15. Completed Assembly

