

Intel[®] Q965 Express Chipset

Development Kit User Manual

October 2007

Order Number: 315664-002US

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINCEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.

The Intel[®] Q965 Express Chipset may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel[®] Pentium[®] 4 processor supporting HT Technology and a HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/products/ht/Hyperthreading_more.htm for additional information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead. Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All Rights Reserved.

Contents

1.0	Abou	t This Manual	7
	1.1	Content Overview	. 7
	1.2	Text Conventions	
	1.3	Glossary of Terms and Acronyms	8
	1.4	Support Options	
		1.4.1 Electronic Support Systems	
		1.4.2 Additional Technical Support	
	1.5	Product Literature	.11
2.0	Deve	lopment Kit Hardware Features	.12
	2.1	Overview	.12
	2.2	Intel [®] Q965 [®] Express Chipset Development Kit Features Summary	.12
	2.3	Board Layout	.13
		2.3.1 Core Components	.14
		2.3.2 Jumper Settings and Descriptions	
		2.3.3 LED Descriptions	.15
		2.3.4 Header and Connector Descriptions	
		2.3.5 Back Panel Connectors	
		2.3.6 PCI Express* x16 / MEC Slot	
		2.3.7 PCI Express* x1	
		2.3.8 Front Panel Header (Power up & Reset)	
		2.3.9 Front Panel USB Header	
		2.3.10 Front Audio Header 2.3.11 High Definition Audio Header	
		2.3.11 High Definition Addio Header	
		2.3.12 BTX Power connectors	
		2.3.14 Fan Connectors	
	2.4	Thermal Considerations	
~ ~			
3.0		lopment Kit Software and BIOS Features Software Key Features	.26
	3.1 3.2	BIOS Features	
	3.Z	3.2.1 BIOS Overview	
		3.2.2 Resource Configuration	
		3.2.3 System Management BIOS (SMBIOS)	
		3.2.4 Legacy USB Support	
		3.2.5 Boot Options	
		3.2.6 BIOS Security Features	
	3.3	Graphics Drivers	
	3.4	Intel [®] Active Management Technology	
	3.5	Intel [®] Quiet System Technology	
4.0	Setti	ng Up & Configuring the Development Kit	32
4.0	4.1	Overview	
	4.2	Additional Hardware & Software Required	
	4.3	Setting Up the Evaluation Board	
		4.3.1 Memory Configurations	
	4.4	Audio Subsystem Configurations	
		4.4.1 Eight-Channel (7.1) Audio Subsystem	
	4.5	LAN Subsystem Configurations	
		4.5.1 Gigabit LAN Subsystem	
		4.5.2 RJ-45 LAN Connector with Integrated LEDs	
	4.6	Software Kit Installation	

			Operating System	
5.0	Error	Messages and Beep Codes	5	6
	5.1	Speaker		6
	5.2	BIOS Beep Codes		6
	5.3	BIOS Error Messages		6
	5.4	Port 80h POST Codes		7

Figures

1	Dev Kit Board Main Components, Headers and Jumper Locations	14
2	Rear Panel I/O Connectors	
3	BTX Type I Thermal Module Assembly (TMA)	
4	Menu Bar	
5	Development Kit Board	
6	Align the Development Kit Board and SRM	
7	Assembled SRM and board	
8	Align the heatsink with holes on the SRM and board	
9	Tighten the heatsink on the SRM and board	
10	Secure the front side of the heatsink to the SRM	
11	Secure the read end of heatsink to the SRM	
12	Memory Channel and DIMM Configuration	40
13	Dual Channel (Interleaved) Mode Configuration with two DIMMs	
14	Dual Channel (Interleaved) Mode Configuration with three DIMMs	
15	Dual Channel (Interleaved) Mode Configuration with four DIMMs	
16	Single Channel (Asymmetric) Mode Configuration with one DIMM	
17	Single Channel (Asymmetric) Mode Configuration with 3x DIMMs	
18	Back Panel Audio Connector Options for Eight-channel Audio Subsystem	
19	LAN Connector LED locations	45

Tables

1	Glossary of Terms and Acronyms9
2	Intel Literature Centers11
3	Development Kit Features Summary12
4	Core Components
5	Jumper Settings15
6	LED Description
7	Header and Connector Descriptions15
8	Back panel connectors
9	Intel® SDVO to PCI Express* connector mapping for MEC cards
10	PCI Express* (x1) Pinout 20
11	Front Panel Jumper Setting21
12	Front Panel USB Header
13	Front Audio Header 22
14	High Definition Audio Header 22
15	2x12 BTX Power Connector23
16	2x2 Auxiliary 12V Power Connector23
17	SATA Pinout
18	Fan connectors
19	BIOS Setup Program Menu Bar27
20	BIOS Setup Program Function Keys
21	Back panel task (Audio)
22	LAN Connector LED status

23	Beep codes	46
24	Lists of error messages and brief description of each	47
25	Port 80h POST Code Ranges	47
26	Port 80h Progress Code Enumeration	48
27	Typical Port 80h POST Sequence	50

Revision History

Date	Revision	Description	
October 2007	002	Change SDVOB to SDVOC in pins 58, 59, 62 and 63 in Table 9, "Intel® SDVO to PCI Express* connector mapping for MEC cards" on page 18.	
October 2006 001 Initial public release.			

1.0 About This Manual

This user's manual describes the use of the Intel[®] Q965[®] Express Chipset Development Kit. This manual has been written for OEMs, system evaluators, and embedded system developers. All jumpers, headers, LED functions, and their locations on the board, along with subsystem features and POST codes, are defined in this document.

For the latest information about the $Intel^{\ensuremath{\mathbb{R}}}$ Q965 $\ensuremath{^{\ensuremath{\mathbb{R}}}}$ Express Chipset Development Kit reference platform, visit:

http://developer.intel.com/design/intarch/devkit/index.htm

For design documents related to this platform, such as schematics and layout, please contact your Intel Representative.

1.1 Content Overview

Chapter 1: "Development Kit Users Manual Content overview"

This chapter contains a description of conventions used in this manual. The last few sections explain how to obtain literature and contact customer support.

Chapter 2: "Development Kit Hardware Features"

This chapter provides information on the development kit features and the board capability. This includes the information on board component features, jumper settings, pin-out information for connectors and overall development kit board capability.

Chapter 3: "Development Kit Software and BIOS Features"

This chapter provides an overview of development kit software and BIOS features.

Chapter 4: "Development Kit Board Setup"

This chapter provides instructions on how to configure the evaluation board and processor assembly by setting jumpers, connecting peripherals, providing power, and configuring the BIOS.

Chapter 5: "Error Messages and Beep Codes"

This chapter describes the various progress codes that are reported by the BIOS and the corresponding LED Codes.

1.2 Text Conventions

The following notations may be used throughout this manual.

#

The pound symbol (#) appended to a signal name indicates that the signal is active low.

Variables	Variables and correct value	re shown in italics. Variables must be replaced with ues.
Instructions	programmi	mnemonics are shown in uppercase. When you are ng, instructions are not case-sensitive. You may use r-case or lower-case.
Numbers	hexadecima added to nu is shown as represented decimal nu	al numbers are represented by a string of al digits followed by the character H . A zero prefix is umbers that begin with A through F . (For example, FF is $OFFH$.) Decimal and binary numbers are d by their customary notations. (That is, 255 is a mber and 1111 1111 is a binary number.) In some letter B is added for clarity.
Units of Measure	The followin measure:	ng abbreviations are used to represent units of
	А	amps, amperes
	Gbyte	gigabytes
	Kbyte	kilobytes
	К	kilo-ohms
	mA	milliamps, milliamperes
	Mbyte	megabytes
	MHz	megahertz
	ms	milliseconds
	mW	milliwatts
	ns	nanoseconds
	pF	picofarads
	W	watts
	V	volts
	μΑ	microamps, microamperes
	μF	microfarads
	μs	microseconds
	μW	microwatts

Signal Names Signal names are shown in uppercase. When several signals share a common name, an individual signal is represented by the signal name followed by a number, while the group is represented by the signal name followed by a variable (*n*). For example, the lower chip-select signals are named CSO#, CS1#, CS2#, and so on; they are collectively called CS*n*#. A pound symbol (#) appended to a signal name identifies an active-low signal. Port pins are represented by the port abbreviation, a period, and the pin number (e.g., P1.0).

1.3 Glossary of Terms and Acronyms

This section defines conventions and terminology used throughout this document.

Table 1. Glossary of Terms and Acronyms (Sheet 1 of 3)

Term	Description
ADD2 Card	Advanced Digital Display Card – second Generation. This card provides digital display options for an Intel Graphics Controller. It plugs into an x16 PCI Express* connector but uses the multiplexed SDVO interface. This Advanced Digital Display Card will not work with an Intel Graphics Controller that supports DVO and ADD cards.
ACPI	Advanced Configuration and Power Interface
ASF	Alert Standard Format
BLT	Block Level Transfer
Core	The internal base logic in the (G)MCH
CRT	Cathode Ray Tube
DBI	Dynamic Bus Inversion
DDR2	A second generation Double Data Rate SDRAM memory technology.
DMI	Direct Media Interface
DVI	Digital Video Interface. Specification that defines the connector and interface for digital displays.
FSB	Front Side Bus. FSB is synonymous with Host or processor bus.
Full Reset	Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN# and PWROK are asserted.
GMCH	Graphics Memory Controller Hub component that contains the processor interface, DRAM controller, x16 PCI Express* Graphics port (typically, the external graphics interface), and integrated graphics device (IGD). It communicates with the I/O controller hub (ICH8DO*) and other I/O controller hubs over the DMI interconnect. In this document GMCH refers to the 82Q965 GMCH component.
GMA 3000	Intel® Graphic Media Accelerator 3000
Host	This term is used synonymously with processor.
IDER	IDE Redirect
INTx	An interrupt request signal where "x" stands for interrupts A, B, C, and D
Intel® 64 Architecture	Intel® 64 Architecture ¹ (Formerly known as Intel® EM64T) enables the processor to access larger amounts of virtual and physical memory.
Intel® Advanced Digital Media Boost	128-bit SSE instructions are now issued one per clock cycle effectively doubling their speed of execution over previous generation processors. This benefits a broad range of applications including video, audio, encryption, engineering and scientific with improved performance.
Intel® AMT	Intel [®] Active Management Technology
Intel® Advanced Smart Cache	The shared L2 cache is allocated to each processor core based on workload up to the full amount of total cache. This is more efficient than today's dual-core processor. Sharing the cache significantly reduces the time needed to retrieve frequently used data improving performance.
Intel® DVO	Digital Video Out port. Term used for the first generation of Intel Graphics Controller's digital display channels. Digital display data is provided in a parallel format. This interface is not electrically compatible with the 2 nd generation digital display channel discussed in this document – SDVO.
Intel® ICH8DO	Eighth generation I/O Controller Hub component that contains additional functionality compared to previous ICHs. The I/O Controller Hub component contains the primary PCI interface, LPC interface, USB2, SATA, and other I/O functions. It communicates with the (G)MCH over a proprietary interconnect called DMI.
Intel® QST	Intel [®] Quiet System Technology
Intel® Smart Memory Access	Optimizes functions for reducing wait time, moving data and accelerating out-of-order execution, keep the pipeline full improving instruction throughput and performance.

Table 1.Glossary of Terms and Acronyms (Sheet 2 of 3)

Term	Description
Intel [®] VT	Intel® Virtualization Technology. Intel® VT allows one hardware platform to function as multiple "virtual" platforms. For businesses, Intel VT Technology ¹ (Intel [®] VT) offers improved manageability, limiting downtime and maintaining worker productivity by isolating computing activities into separate partitions.
Intel® Wide Dynamic Execution	Improves execution speed and efficiency, delivering more instructions per clock cycle. Each core can complete up to four full instructions simultaneously.
IGD	Internal Graphics Device.
LCD	Liquid Crystal Display.
LVDS	Low Voltage Differential Signaling. A high speed, low power data transmission standard used for display connections to LCD panels.
MEBx	Management Engine BIOS Extensions
MEC	Media Expansion Card – Provides digital display options for an Intel Graphics Controller that supports MEC cards. Plugs into an x16 PCI Express connector but utilizes the multiplexed SDVO interface. Adds Video In capabilities to platform. Will not work with an Intel Graphics Controller that supports DVO and ADD cards. Will function as an ADD2 card in an ADD2 supported system, but Video In capabilities will not work.
PCI Express* Graphics	PCI Express* Graphics is a high-speed serial interface whose configuration is software compatible with the existing PCI specifications. The specific PCI Express* implementation intended for connecting the (G)MCH to an external Graphics Controller is a x16 link and replaces AGP.
PECI	Platform Environmental Control Interface
Primary PCI	The Primary PCI is the physical PCI bus that is driven directly by the ICH8DO component. Communication between Primary PCI and the (G)MCH occurs over DMI. Note that the Primary PCI bus is not PCI Bus 0 from a configuration standpoint.
Processor	Intel® Core™2 Duo processor E6400
QST	Quiet System Technology
SATA	Serial ATA Specification
SCI	System Control Interrupt. SCI is used in ACPI protocol.
SDVO	Serial Digital Video Out (SDVO). SDVO is a digital display channel that serially transmits digital display data to an external SDVO device. The SDVO device accepts this serialized format and then translates the data into the appropriate display format (i.e., TMDS, LVDS and TV-Out). This interface is not electrically compatible with the previous digital display channel - DVO. For the 82Q965 GMCH, it will be multiplexed on a portion of the x16 graphics PCI Express* interface.
SDVO Device	Third party codec that uses SDVO as an input. May have a variety of output formats, including DVI, LVDS, HDMI, TV-out, etc.
SERR	System Error. An indication that an unrecoverable error has occurred on an I/O bus.
SMI	System Management Interrupt. SMI is used to indicate any of several system conditions (such as, thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity).
SOL	Serial Over LAN
SPI	Serial Peripheral Interface
SST	Simple Serial Transport

Table 1.Glossary of Terms and Acronyms (Sheet 3 of 3)

Term	Description
Rank	A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a DIMM.
UMA	Unified Memory Architecture. Describes an IGD using system memory for its frame buffers.

Note: 1.

Intel[®] Virtualization Technology (Intel[®] VT), and Intel[®] 64 Architecture require a computer system with a processor, chipset, BIOS, enabling software and/or operating system, device drivers and applications designed for these features. Performance will vary depending on your configuration. Contact your vendor for more information.

1.4 Support Options

1.4.1 Electronic Support Systems

Intel's site on the World Wide Web (<u>http://www.intel.com/</u>) provides up-to-date technical information and product support. This information is available 24 hours per day, 7 days per week, providing technical information whenever you need it.

1.4.2 Additional Technical Support

If additional technical support is required, please contact your field sales representative or local distributor.

1.5 **Product Literature**

Product literature can be ordered from the following Intel literature centers:

Table 2.Intel Literature Centers

Location	Telephone Number
U.S. and Canada	1-800-548-4725
U.S. (from overseas)	708-296-9333
Europe (U.K.)	44(0)1793-431155
Germany	44(0)1793-421333
France	44(0)1793-421777
Japan (fax only)	81(0)120-47-88-32

2.0 Development Kit Hardware Features

2.1 Overview

This chapter provides information on the development kit features and the board capability. For detailed platform features please refer to the Platform Design Guide for or datasheet for the chipset and the *Intel[®] Core™2 Duo processor Thermal and Mechanical Design Guidelines*.

2.2 Intel[®] Q965[®] Express Chipset Development Kit Features Summary

This section summarizes the development kit features.

Table 3.Development Kit Features Summary (Sheet 1 of 2)

Form Factor	4 Layer μBTX (10.5 inches x 10.4 inches)
Processor	Intel [®] Core [™] 2 Duo processor E6400 Supports 1066 MHz front side bus 2M Shared L2 Cache Supports Intel [®] 64 Architecture Supports Intel [®] Wide Dynamic Execution, Intel [®] Smart Memory Access, Intel Advanced Smart Cache, Intel [®] Advanced Digital Media Boost, Intel [®] Virtualization Technology
Memory	DDR2 dual-channel system memory interface Four 240-pin DDR2 SDRAM DIMM sockets (two per channel) supporting dual channel interleaved mode Support for 533MHz, 667MHz, 800MHz unbuffered, non-ECC DDR2 SDRAM modules Supports 128 MB to 8 GB of system memory 256 Mbit, 512 Mbit, or 1 Gbit Technology
Chipset	Intel [®] Q965 Express Chipset, consisting of: Intel [®] 82Q965 Graphics Memory Controller Hub ((G)MCH) Intel [®] 82801GB I/O Controller Hub (ICH8DO)
Video	Option of either using integrated graphics system or external PCI Express* graphics: Intel [®] GMA3000 integrated graphics subsystem Supports ADD2 and Intel [®] Media Expansion Card (MEC, also known as ADD2+) for additional digital display such as DVI, LVDS, etc. depending on the media expansion card features. Supports external PCI Express* (x16) graphics card
Audio	Intel [®] High Definition Audio subsystem: 8-channel (7.1) audio subsystem and two S/PDIF digital audio outputs using the ADI audio codec.
Legacy I/O Control	Port Angeles 3.0 Super I/O controller for diskette drive, serial, parallel, and PS/2* ports.

Table 3.Development Kit Features Summary (Sheet 2 of 2)

Form Factor	4 Layer μBTX (10.5 inches x 10.4 inches)		
Peripheral Interfaces	Six SATA 1.5/3.0 Gb/s ports. Ten Universal Serial Bus (USB) 2.0 ports – Three front panel headers for support of six front panel ports and four back panel ports Three 1394a PCI controller – 2 front headers for support of two ports and one back panel port (Disabled in this Development Kit) PS/2-style keyboard and PS/2 mouse (6-pin mini-DIN) connectors One VGA connector provides access to integrated graphics. Six analog audio connectors (Line-in, Line-out, MIC-in, Surround L/R, Surround L/R Rear, Center) and two digital audio connectors driven by Intel High Definition Audio. One parallel port. One diskette drive interface		
LAN Support	Gigabit (10/100/1000 Mbits/s) LAN subsystem using the Intel® 82566DM Gigabit Ethernet Controller		
BIOS	Support for Advanced configuration and power interface (ACPI), plug and play, and SMBIOS. AMI system BIOS.		
Expansion Capabilities	One PCI bus connectors One PCI Express* x16 bus add-in card connector Two PCI Express* x1 bus add-in card connectors		
Additional Features	Trusted Platform Module (TPM) 1.2 support Manageability Engine (ME) support. ME Enabled LED (red-blink) Intel [®] Active Management Technology (Intel [®] AMT) with System Defense support Intel [®] Quiet System Technology (Intel [®] QST) support Intel [®] Matrix Storage technology with RAID 0,1,5, 10 support Piezo speaker for BIOS POST codes PORT 80 Display Thermal Diode header BIOS configuration jumper Clear CMOS header Force On header XDP-SSA connector Internal I/O headers • 2x5 Front Panel I/O header • 1x2 Chassis intrusion header • 3 four-wire fan headers • 2x5 Serial port header • 2x8 High Definition audio header • 2x8 High Definition audio header • 20-pin LPC header		

2.3 Board Layout

Figure 1 shows the location of the major components, headers and jumpers.

Figure 1. Dev Kit Board Main Components, Headers and Jumper Locations

2.3.1 Core Components

Table 4.Core Components

Reference Designator	Component Description
J1PR	LGA775 processor socket
U1UB	Intel [®] Q965 (G)MCH
U1LB	Intel [®] ICH8DO
U1LN	Intel [®] 82566DM Gb LAN chip
U1CK	Clock Generator CK505
U1LH	Super I/O (Port Angles)
U1AU	Audio Codec
U2LB	Primary SPI Flash (stuffed with 16 Mb)

Note:

There will be 2 SPI footprints on the board. Firmware Hub will not be supported. The primary SPI flash footprint is at XU3LB and stuffed with a 16 Mb (2 MB) SPI flash (U2LB). The secondary SPI flash footprint is at XU5LB and unstuffed.

2.3.2 Jumper Settings and Descriptions

Table 5.Jumper Settings

Jumper	Default	Description	Notes
J7LB	1-2	BIOS Config/Recovery	1-2 = Normal 2-3 = Config Mode Off = Recovery
J6LB	1-2	Clear CMOS	1-2 = Normal 2-3 = Clear CMOS
J8LH	1-2	Power-On Forcing	1-2 = Normal2-3 = Force On (Sets CPU presence bit; may not always force board power on)

2.3.3 LED Descriptions

Power LEDs are on the board to indicate when standby and core power is being applied to the planes. When on, they indicate that no devices should be inserted or removed. Please refer to Figure 2 for the LED locations.

Caution: Inserting or removing devices when the Standby Power LEDs are on could result in device or board damage.

Table 6. LED Description

LED	Description	Notes
CR5BV	5-Volt Standby Power Display LED	Green
DS1EV	Port 80 Display – Right	
DS2EV	Port 80 Display - Left	
CR7BV	ME Enabled LED	Red Blink

2.3.4 Header and Connector Descriptions

Table 7.Header and Connector Descriptions (Sheet 1 of 2)

Header	Description	Notes
J5LB	Intruder Header	
J7LH	Serial Port Header	
J3AU	ATAPI CD Header	
J7AU	High Definition Media Interface Header	
J8AU	Front Panel Audio Header	
J28LB	Front Panel Header	
J3TH	CPU Fan	
J4TH	Chassis Fan	
J5TH	Chassis Fan	
J2BV	2x12 Standard Power Connector	
J1BV	2x2 12V Power Connector	
J29LB	Power LED header	
J24LB	SATA connector	SATA HDD port 0

Header	Description	Notes
J22LB	SATA connector	SATA HDD port 1
J23LB	SATA connector	SATA HDD port 2
J21LB	SATA connector	SATA HDD port 3
J19LB	SATA connector	SATA HDD port 4
J20LB	SATA connector	SATA HDD port 5
J1MY	DIMM connector	Channel A DIMM 0
J2MY	DIMM connector	Channel A DIMM 1
J3MY	DIMM connector	Channel B DIMM 0
J4MY	DIMM connector	Channel B DIMM 1
J4LH	Floppy connector	
J6UB	X16 PCI Express* Graphics slot	For Graphics cards
J11LB	X1 PCI Express slot	PCI Express* port 4
J12LB	X1 PCI Express slot	PCI Express* port 5
J13LB	PCI slot	
J14LB	USB Front Panel Header	
J15LB	USB Front Panel Header	
J16LB	USB Front Panel Header	
J1TM	LPC BUS Header (TPM)	In order to Plug a TPM module into this header, you must first disable onboard TPM
J1FW	1394a Front Panel Header	Disabled
J2FW	1394a Front Panel Header	Disabled
J9LB	Power Button	
J8LB	Reset Button	
J2BC	XDP_SSA	This is reserved by Intel for debugging purpose. Located at the back of the board

Table 7. Header and Connector Descriptions (Sheet 2 of 2)

2.3.5 Back Panel Connectors

Figure 2 shows the location of the back panel connectors for boards equipped with the 8-channel (7.1) audio subsystem. The back panel connectors are color-coded. The figure legend lists the colors used (when applicable).

Figure 2. Rear Panel I/O Connectors

Table 8.Back panel connectors

Callouts from Figure 2.2	Designator	Description
А	J5LH	PS/2 mouse port [Green]
В	J5LH	PS/2 keyboard port [Purple]
С	J1AU	S/PDIF Digital audio output
D	J2AU	S/PDIF Digital audio input
E	J6LH	Parallel port [Burgundy]
F	J4UB	VGA Port
G	J17LB	Back Panel USB Ports 1 and 2 Overlapping with 1394(J3FW)
Н	JA1LN	RJ45 LAN connector
I	J3FW	1394 Port present but disabled
J	J5AU	Rear Speaker Out
К	J5AU	Side Speaker Out
L	J18LB	Back Panel USB Ports 3 and 4. Overlapping with LAN MagJack (JA1LN)
М	J5AU	Center channel and Subwoofer audio out
N	J4AU	MIC In
0	J4AU	Audio Line In
Р	J4AU	Audio Line Out (Front Speaker Out)

2.3.6 PCI Express* x16 / MEC Slot

The PCI Express* x16 slot is following the industry PCI Express* x16 connector standard. Table 2.7 shows the signals for PCI Express* x16 or MEC (SDVO).

Pin Number	Side B		Side A	
	PCI Express* Function	SDVO/MEC Function	PCI Express* Function	SDVO/MEC Function
1	12 V	12 V	PRSNT1#	NC
2	12 V	12 V	12V	12V
3	RSVD	RSVD	12V	12V
4	GND	GND	GND	GND
5	SMCLK	NC	JTAG2 (TCK)	NC
6	SMDAT	NC	JTAG3 (TDI)	JTAG3 (TDI)
7	GND	GND	JTAG4 (TDO)	JTAG4 (TDO)
8	3.3 V	3.3 V	JTAG5 (TMS)	NC
9	JTAG1 (TRST#)	NC	3.3 V	3.3 V
10	3.3 Vaux	3.3 Vaux	3.3 V	3.3 V
11	WAKE#	WAKE#	PERST#	PERST#
		Кеу		
12	RSVD	RSVD	GND	GND
13	GND	GND	REFCLK+	REFCLK+
14	PETO+(or PETp0)	PETO+(or PETpO)	REFCLK-	REFCLK-
15	PETO-(or PETn0)	PETO- (or PETnO)	GND	GND
16	GND	GND	PER0+(or PERp0)	PER0+(or PERp0)
17	PRSNT2#	SDVO_CtrlClk	PER0-(or PERn0)	PERO-(or PERnO)
18	GND	GND	GND	GND
	1	End of x1 Connec	tor	
19	PET1+(or PETp1)	NC	RSVD	RSVD
20	PET1-(or PETn1)	NC	GND	GND
21	GND	GND	PER1+(or PERp1)	NC
22	GND	GND	PER1-(or PERn1)	NC
23	PET2+(or PETp2)	NC	GND	GND
24	PET2-(or PETn2)	NC	GND	GND
25	GND	GND	PER2+(or PERp2)	NC
26	GND	GND	PER2-(or PERn2)	NC
27	PET3+(or PETp3)	NC	GND	GND
28	PET3-(or PETn3)	NC	GND	GND
29	GND	GND	PER3+(or PERp3)	NC
30	RSVD	RSVD	PER3-(or PERn3)	NC
31	PRSNT2#	SDVO_CtrlData	GND	GND
32	GND	GND	RSVD	RSVD
	1	End of x4 Connec	tor	1
33	PET4+(or PETp4)	NC	RSVD	RSVD

Table 9. Intel® SDVO to PCI Express* connector mapping for MEC cards (Sheet 1 of 3)

Table 9. Intel® SDVO to PCI Express* connector mapping for MEC cards (Sheet 2 of 3)

Pin Number	S	ide B		Side A
34	PET4-(or PETn4)	NC	GND	GND
35	GND	GND	PER4+(or PERp4)	NC
36	GND	GND	PER4-(or PERn4)	NC
37	PET5+(or PETp5)	NC	GND	GND
38	PET5-(or PETn5)	NC	GND	GND
39	GND	GND	PER5+(or PERp5)	NC
40	GND	GND	PER5-(or PERn5)	NC
41	PET6+(or PETp6)	NC	GND	GND
42	PET6-(or PETn6)	NC	GND	GND
43	GND	GND	PER6+(or PERp6)	NC
44	GND	GND	PER6-(or PERn6)	NC
45	PET7+(or PETp7)	NC	GND	GND
46	PET7-(or PETn7)	NC	GND	GND
47	GND	GND	PER7+(or PERp7)	NC
48	PRSNT2#	ADD2+_Enable	PER7-(or PERn7)	NC
49	GND	GND	GND	GND
		End of x8 Conne	ector	
50	PET8+(or PETp8)	SDVOC_Clk+	RSVD	RSVD
51	PET8-(or PETn8)	SDVOC_CIk-	GND	GND
52	GND	GND	PER8+(or PERp8)	NC
53	GND	GND	PER8-(or PERn8)	NC
54	PET9+(or PETp9)	SDVOC_Blue+	GND	GND
55	PET9-(or PETn9)	SDVOC_Blue-	GND	GND
56	GND	GND	PER9+(or PERp9)	NC
57	GND	GND	PER9-(or PERn9)	NC
58	PET10+(or PETp10)	SDVOC_Green+	GND	GND
59	PET10-(or PETn10)	SDVOC_Green-	GND	GND
60	GND	GND	PER10+(or PERp10)	NC
61	GND	GND	PER10-(or PERn10)	NC
62	PET11+(or PETp11)	SDVOC_Red+	GND	GND
63	PET11-(or PETn11)	SDVOC_Red-	GND	GND
64	GND	GND	PER11+(or PERp11)	NC
65	GND	GND	PER11-(or PERn11)	NC
66	PET12+(or PETp12)	SDVOB_CIk+	GND	GND
67	PET12-(or PETn12)	SDVOB_CIk-	GND	GND
68	GND	GND	PER12+(or PERp12)	NC

Table 9. Intel® SDVO to PCI Express* connector mapping for MEC cards (Sheet 3 of 3)

Pin Number	Side B			Side A
69	GND	GND	PER12-(or PERn12)	NC
70	PET13+(or PETp13)	SDVOB_Blue+	GND	GND
71	PET13-(or PETn13)	SDVOB_Blue-	GND	GND
72	GND	GND	PER13+(or PERp13)	NC
73	GND	GND	PER13-(or PERn13)	NC
74	PET14+(or PETp14)	SDVOB_Green+	GND	GND
75	PET14-(or PETn14)	SDVOB_Green-	GND	GND
76	GND	GND	PER14+(or PERp14)	NC
77	GND	GND	PER14-(or PERn14)	NC
78	PET15+(or PETp15)	SDVOB_Red+	GND	GND
79	PET15-(or PETn15)	SDVOB_Red-	GND	GND
80	GND	GND	PER15+(or PERp15)	NC
81	PRSNT2#	NC	PER15-(or PERn15)	NC
82	RSVD	RSVD	GND	GND
Note: End of x16 Connector				

2.3.7 PCI Express* x1

The PCI Express* x1 connectors allow the use of any industry standard PCI Express* device. The pin configuration of the connectors is given below:

Table 10.PCI Express* (x1) Pinout

Pin Number	Side B	Side A	
1	12 V	PRSNT1#	
2	12 V	12V	
3	12 V	12V	
4	GND	GND	
5	SMCLK	JTAG2	
6	SMDAT	JTAG3	
7	GND	JTAG4	
8	3.3 V	JTAG5	
9	JTAG1	3.3 V	
10	3.3 Vaux	3.3 V	
11	WAKE#	PWRGD	
Кеу			
12	RSVD	GND	
13	GND	REFCLK+	

Table 10. PCI Express* (x1) Pinout

Pin Number	Side B	Side A		
14	HSOP0	REFCLK-		
15	HSON0	GND		
16	GND	HSIP1		
17	PRSNT2#	HSIN1		
18	GND	GND		
Note: End of x1 (: End of x1 Connector			

2.3.8 Front Panel Header (Power up & Reset)

This development kit board use front panel header (J28LB) for powering-up and board reset. Refer to Table 11 for the front panel header lists.

The front panel header is a 2x5 header, designated as J28LB. The following table outlines the pin out and functionality of this header:

Table 11.Front Panel Jumper Setting

Pin	Signal Name	Description
1	HDD LED Anode	HDD LED Anode
2	Green Power LED	
3	HDD LED Cathode	HDD LED Cathode
4	Yellow Power LED	
5	Ground	
6	Switch On	
7	Reset	
8	Ground	
9	Power	VCC
10	KEY	No pin

2.3.9 Front Panel USB Header

The front panel USB header is a 2x5 header, designated as J14LB, J15LB or J16LB. The following table outlines the pin out and functionality of this header:

Table 12. Front Panel USB Header (Sheet 1 of 2)

Pin	Signal names	Description
1	VREG_FP_USBPWR	Front panel USB power (Ports 0,1) [+5 V or +5 V Dual] Note
2	VREG_FP_USBPWR	Front panel USB power (Ports 0,1) [+5 V or +5 V Dual]
3	USB_FP_P0	Front panel USB Port 0 negative signal
4	USB_FP_P1	Front panel USB Port 1 negative signal
5	USB_FP_P0+	Front panel USB Port 0 positive signal
6	USB_FP_P1+	Front panel USB Port 1 positive signal
7	Ground	

Table 12.Front Panel USB Header (Sheet 2 of 2)

Pin	Signal names	Description
8	Ground	
9	Кеу	
10	USB_FP_OC0	Front panel USB over current signal (Ports 0,1)

Note:

+5 V Dual switches between +5 V and +5 V Standby depending on the current board state.

2.3.10 Front Audio Header

The front panel Audio header is a 2x7 header, designated as J8AU. The following table outlines the pin out and functionality of this header:

Table 13.Front Audio Header

Pin	Signal Name	Description
1	AUD_PORT_1_R	Port 1 Audio Right
2	GND	Ground
3	AUD_PORT_1_L	Port 1 Audio Left
4	AUD_FP_PWR	Front Panel Audio Power
5	AUD_PORT_2_R	Port 2 Audio Right
6	AUD_FP_RET_R	Front Panel Audio Return Right
7	AUD_FP_JS	Front Panel Jack Sense
8	No Connect	Key Pin
9	AUD_PORT_2_L	Port 2 Audio Left
10	AUD_FP_RET_L	Front Panel Audio Return Left
11	AUD_VOL_UP	Audio Volume Up
12	AUD_VOL_MUTE	Audio Mute
13	AUD_VOL_DWN	Audio Volume Down
14	GND	Ground

2.3.11 High Definition Audio Header

The High Definition Audio header is a 2x8 header, designated as J7AU. The following table outlines the pin out and functionality of this header:

Table 14. High Definition Audio Header (Sheet 1 of 2)

Pin	Signal Name	Description
1	AUD_LINK_BCLK_HDR	
2	GND	Ground
3	AUD_LINK_RST_HDR	
4	VCC3	Power
5	AUD_LINK_SYNC_HDR	
6	GND	Ground
7	AUD_LINK_SDO_HDR	

•		
Pin	Signal Name	Description
8	VCC3	Power
9	AUD_LINK_SDI0	
10	+12V	Power
11	AUD_LINK_SDI1	
12	KEY	No Connect
13	TP_AUD_LINK_SDO_1_HDR	
14	V_3P3_STBY\G	3.3V Standby
15	AUD_LINK_SDI2_R	
16	GND	Ground

Table 14. High Definition Audio Header (Sheet 2 of 2)

2.3.12 BTX Power Connectors

Table 15.2x12 BTX Power Connector

Pin	Signal Name	Pin	Signal Name
1	+3.3V	13	GND
2	+3.3V	14	PS_ON#
3	GND	15	GND
4	+5V	16	GND
5	GND	17	GND
6	+5V	18	-5V
7	GND	19	+5V
8	PWDGD	20	+5V
9	5 VSB	21	-5V
10	+12V	22	+5V
11	+3.3V	23	+5V
12	-12V	24	GND

Table 16. 2x2 Auxiliary 12V Power Connector

Pin	Signal Name
1	GND
2	GND
3	+12V
4	+12V

2.3.13 SATA Pinout

Table 17. SATA Pinout

Signal Name
GND
ТХР
TXN
GND
RXN
RXP
GND

2.3.14 Fan Connectors

Table 18. Fan connectors

Pin	Signal Name
1	GND
2	+12V
3	RPM
4	Control

2.4 Thermal Considerations

The development kit is shipped with a BTX TYPE I heatsink/fan thermal solution for installation on the processor. BTX systems are designed so that all the high power components are in-line and can be cooled using a single, continuous airflow stream. The BTX Thermal Module Assembly (TMA) provides airflow to the central processing unit (microprocessor) and its voltage regulation (VR), which is located at the front of the system, and then to the memory controller (G)MCH, Input/Output controller (ICH), and the add-in card (AIC) in the first slot position. This same airflow supply pattern is available in all BTX system designs.

The Thermal Module Assembly (TMA) consists of 4 main parts:

- The 92mm four-wire fan
- The plastic duct assembly (black)
- The heatsink (copper and aluminum)
- The metal retention clip (for holding the heatsink to the plastic duct assembly)

Figure 3. BTX Type I Thermal Module Assembly (TMA)

3.0 Development Kit Software and BIOS Features

This chapter provides an overview of development kit software and BIOS features.

3.1 Software Key Features

The software in the kit was chosen to facilitate development of real-time applications based on the components used in the evaluation board. The driver CD included in the kit contains all of the software drivers necessary for basic system functionality under the following operating systems Windows 2000/XP/XP Embedded, and Linux.

Note: While every care was taken to ensure the latest version of drivers were provided on the enclosed CD at time of publication, newer versions may be available. Updated drivers for Intel components can be found at: http://developer.intel.com/design/intarch/software/driver/index.htm#q965.

For all third party components, please contact the appropriate vendor for updated drivers.

Note: Software in the kit is provided free by the vendor and is only licensed for evaluation purposes.

Refer to the documentation in the evaluation kit for further details on any terms and conditions that may be applicable to the granted licenses. Customers using the tools that work with Microsoft* products must license those products. Any targets created by those tools should also have appropriate licenses. Software included in the kit is subject to change. Refer to http://developer.intel.com/design/intarch/devkit for details on additional software from other third-party vendors.

BIOS Features

3.2.1 BIOS Overview

This development kit ships pre-installed with Intel BIOS. The BIOS provides an industry-standard BIOS platform to run most standard operating systems, including Windows* 2000/XP/XP Embedded, Linux*, WEPOS and others.

The BIOS is stored in a 16 Mb SPI flash at the primary SPI flash footprint at XU3LB and can be updated using a BIOS flash programming tool. FWH will not be supported

The BIOS displays a message during POST identifying the type of BIOS and a revision code. The BIOS Setup program can be used to view and change the BIOS settings for the computer. The BIOS Setup program is accessed by pressing the <DELETE > key after the Power-On Self-Test (POST) memory test begins and before the screen goes black before booting any device. The menu bar is shown below.

Figure 4. Menu Bar

<MAIN> - <ADVANCED> - <PCIPnP> - <BOOT> - <SECURITY> - <CHIPSET> - <EXIT>

Table 19 lists the BIOS setup program menu features.

Table 19. BIOS Setup Program Menu Bar

Main	ADVANCED	PCIPnP	BOOT	SECURITY	CHIPSET	EXIT
Displays processor and memory configurations	Configures advanced features and settings	Setup for PCI and PCI Express*	Selects boot options and configurations	Sets passwords and security features	Configures different major components	Saves or discard changes to setup program options

Table 20. BIOS Setup Program Function Keys

BIOS Setup Program Function Key	Description	
< or >	Selects a different menu screen (moves the cursor left or right)	
^ or	Selects an item (moves the cursor up or down)	
Tab	Selects a field (not implemented)	
Enter	Executes command or selects the submenu	
F9	Load the optimal default configuration values for the current menu	
F10	Save the current values and exits the BIOS setup program	
ESC	Exits the menu	

3.2.2 Resource Configuration

3.2.2.1 PCI Auto Configuration

When a PCI card is added and the system is turned on, the BIOS automatically configures interrupts, the I/O space, and other system resources. Any interrupts set to AVAILABLE in Setup are considered to be available for use by add-in card. There is one 32/33 PCI add-in card socket on the board.

3.2.2.2 SATA Drive Configuration

If you select AUTO in the BIOS Setup program, the BIOS automatically sets up the SATA drive configuration with independent I/O channel support. The interface also supports second-generation Serial ATA drives. The BIOS determines the capabilities of each drive and configures them to optimize capacity and performance.

To take advantage of the high capacities typically available today, hard drives are automatically configured for Logical Block Addressing (LBA) and to PIO Mode 3 or 4, depending on the capability of the drive. You can override the auto-configuration options by specifying MANUAL CONFIGURATION in the BIOS setup program.

Note: This board only supports Serial ATA drives.

3.2.3 System Management BIOS (SMBIOS)

SMBIOS is a Desktop Management Interface (DMI) compliant method for managing computers in a managed network. The main component of SMBIOS is the Management Information Format (MIF) database, which contains information about the computing system and its components.

Using SMBIOS, a system administrator can obtain the system types, capabilities, operational status, and installation dates for system components. The MIF database defines the data and provides the method for accessing this information. The BIOS enables applications such as third-party management software to use SMBIOS. The BIOS stores and reports the following SMBIOS information:

- BIOS data, such as the BIOS revision level
- Fixed-system data, such as peripherals, serial numbers, and asset tags
- Resource data, such as memory size, cache size, and processor clock frequency
- Dynamic data, such as event detection and error logging

Non-Plug and play operating systems such as Microsoft Windows NT*, require an additional interface for obtaining the SMBIOS information. The BIOS supports an SMBIOS table interface for such operating systems. Using this support, an SMBIOS service-level application running on a non-Plug and Play operating system can obtain the SMBIOS information.

3.2.4 Legacy USB Support

Legacy USB support enables USB devices to be used even when the operating system's USB drivers are not yet available. Legacy USB support is used to access the BIOS Setup program, and to install an operating system that supports USB.

Legacy USB support operates as follows:

- 1. When you apply power to the computer, legacy support is disabled.
- 2. POST begins.
- 3. Legacy USB support is enabled by the BIOS allowing you to use a USB keyboard to enter and configure the BIOS Setup program and the maintenance menu.
- 4. POST completes.
- 5. The operating system loads. While the operating system is loading, USB keyboards and mice are recognized and may be used to configure the operating system.

After the operating system loads the USB drivers, all legacy and non-legacy USB devices are recognized by the operating system, and Legacy USB support from the BIOS is no longer used.

To install an operating system that supports USB, follow the operating system's installation instructions.

3.2.5 Boot Options

In the BIOS Setup program, the user can choose to boot from a diskette drive, hard drive, CD-ROM, or from the network. The default setting is for the Hard Drive to be the first, and the CD-ROM to be the second. There is no third or fourth boot option.

3.2.5.1 CD-ROM Boot

Booting from CD-ROM is supported in compliance to the El Torito bootable CD-ROM format specification. Under the Boot menu in the BIOS Setup program, CD-ROM is listed as a boot device. Boot devices are defined in priority order. Accordingly, if there is not a bootable CD in the CD-ROM drive, the system will attempt to boot from the next defined drive.

3.2.5.2 Network Boot

The network can be selected as a boot device. This selection allows booting from the on-board LAN or a network add-in card with a remote boot ROM installed. In order to boot from the LAN you will have to enter the BIOS and select LAN boot as your first boot device.

3.2.5.3 Booting without Attached Devices

For use in embedded applications, the BIOS has been designed so that after passing the POST, the operating system loader is invoked even if the following devices are not present:

- Video adapter
- Keyboard
- Mouse

3.2.5.4 Changing the Boot Device

Pressing the <Delete> key during POST causes the BIOS menu to be displayed. Using your arrow keys move over to <BOOT> and then arrow down to <Boot Device Priority> and then select which device you would like to boot first and second.

Note: Please follow the instructions on the right side of the BIOS screen to navigate and change BIOS settings.

3.2.6 BIOS Security Features

The BIOS includes security features that restrict access to the BIOS Setup program and who can boot the computer. A supervisor password and a user password can be set for the BIOS Setup program and for booting the computer, with the following restrictions:

- The supervisor password gives unrestricted access to view and change all the Setup options in the BIOS Setup program. This is the supervisor mode.
- The user password gives restricted access to view and change Setup options in the BIOS Setup program. This is the user mode.
- If only the supervisor password is set, pressing the <Enter> key at the password prompt of the BIOS Setup program allows the user restricted access to Setup.
- If both the supervisor and user passwords are set, users can enter either the supervisor password or the user password to access Setup. Users have access to Setup respective to which password is entered. Setting the user password restricts who can boot the computer. The password prompt will be displayed before the computer is booted. If only the supervisor password is set, the computer boots without asking for a password. If both passwords are set, the user can enter either password to boot the computer.

For enhanced security, use different passwords for the supervisor and user passwords. Valid password characters are A-Z, a-z, and 0-9. Passwords may be up to 16 characters in length.

3.3 Graphics Drivers

The Intel[®] Q965 Express Chipset will work with the Intel[®] GMA3000 Extreme graphics driver or the Intel[®] Embedded Graphics Driver (IEGD).

IEGD is created specifically for embedded platforms, offering an adaptable alternative to drivers designed for the desktop market segments. IEGD offers Intel's embedded customers extended life support that correlates with the extended life support of Embedded IA-32 silicon products. IEGD differentiates itself through its configurability and support of unique embedded market segment requirements, including an unprecedented support of advanced display combinations, non-standard display dimensions, and embedded operating systems such as Microsoft* XP Embedded and WePOS.The Intel[®] Graphics Media Accelerator (GMA) is designed for mainstream desktop usage models focusing on 3D performance and ease of use.

When working with external graphics drivers, the internal graphics will automatically disable. When a discrete graphics card is plugged into to the graphics port (PEG), the integrated graphics will be disabled. Note that this does not apply to an ADD2 card, which is intended to work in conjunction with integrated graphics.

IEGD allows support of external discrete graphics cards in conjunction with integrated graphics when a discrete graphics card is plugged into the PCI Express* x1 or PCI at the ICH. If you have a discrete graphics card plugged into the PCI Express*, it will work in conjunction with the integrated graphics. Note that GMA drivers will not support this, only the IEGD drivers.

3.4 Intel[®] Active Management Technology

Intel[®] Active Management Technology (AMT) offers tamper-resistant and persistent management capabilities. Specifically, Intel AMT is a hardware-based solution that offers encrypted and persistent asset management and remote diagnostics and/or recovery capabilities for networked platforms. With Intel AMT, IT organizations can easily get accurate platform information, and can perform remote updating, diagnostics, debugging, and repair of a system, regardless of the state of the operating system and the power state of the system. Intel AMT enables IT organizations to discover, heal, and protect all of their computing assets, regardless of system state in the manner described below.

- (1) Discovering hardware and software computing assets:
 - Intel AMT stores hardware and software asset information in non-volatile memory and allows IT to read the asset information anytime, even if the PC is off.
 - Users cannot remove or prevent IT organization access to the information because it does not rely on software agents.
- (2) Healing systems remotely, regardless of the operating system or system state:
 - Intel AMT provides out-of-band diagnostics and recovery capabilities for IT organizations to remotely diagnose and repair PCs after software, operating system, or hardware failures.
 - Alerting and event logging help IT organizations detect and diagnose problems quickly to reduce end-user downtime.
- (3) Protecting the enterprise against malicious software attacks:
- Intel AMT helps IT organizations keep software versions and virus protection consistent and up-to-date across the enterprise.
- Version information is stored in non-volatile memory for access anytime by thirdparty software to check and, if necessary, wake a system to perform off-hours updates.

(4) The key features of Intel AMT include:

• Secure Out of Band (OOB) system management that allows remote management of PCs regardless of system power or operating system state.

- SSL3.1/TLS encryption
- HTTP authentication
- TCP/IP
- HTTP web GUI
- XML/SOAP API
- Remote troubleshooting and recovery that can significantly reduce desk-side visits and potentially increase efficiency of IT technical staff.
 - System event log
 - IDE-Redirection or PXE boot; Network drive or remote CD boot
 - Serial over LAN
 - OOB diagnostics
 - Remote control
 - Remote BIOS update
- · Proactive alerting that decreases downtime and minimizes time to repair.
 - Programmable policies
 - Operating system lock-up alert
 - Boot failure alert
 - Hardware failure alerts
- Third-party non-volatile storage that prevents users from removing critical inventory, remote control, or virus protection agents.
- Nonvolatile storage for agents
- Tamper-resistant
- Remote hardware and software asset tracking that eliminates time-consuming manual inventory tracking, which also reduces asset accounting costs.
 - E-Asset Tag
 - HW/SW inventory

For details of the AMT configurations, please contact your nearest Intel representatives for the Intel^ ${\ensuremath{^{\oplus}}}$ AMT OEM Bring up Guide.

3.5 Intel[®] Quiet System Technology

Intel[®] ICH8 incorporated a new integrated Intel[®] Quiet System Technology (Intel QST) interface to provide a low cost solution for a better system thermal/acoustic management solution. Intel QST architecture consists of a Simple Serial Transfer (SST) bus, Platform Environment Control Interface (PECI), four TACH pins and three Pulse Width Modulation (PWM) output pins to monitor, control and manage the system target temperature through a sets of thermal sensors.

 QST is run by the manageability engine (ME) residing in MCH and requires SPI flash to host the QST firmware.

Detailed of the QST configurations, please contact your nearest Intel representatives for the QST OEM Bring up Guide.

4.0 Setting Up & Configuring the Development Kit

This chapter identifies the evaluation kit basic board's set up and operation. Please refer to Chapter 2.0 for the board layout, jumper setting location and the component reference designator.

4.1 Overview

The following hardware is included in the development kit:

- One Intel® Q965 Express Chipset Development Kit reference board.
- One Intel® Core[™]2 Duo processor E6400 2.13GHz
- One BTX Type I Thermal Module Assembly (TMA) CPU fan heatsink
- One Support and Retention Module (SRM) heatsink mounting plate
- Two 512 Mbyte DDR2 667MHz unbuffered DIMMs
- One Pre-programmed and installed 2 MB SPI Flash

Figure 5. Development Kit Board

4.2 Additional Hardware & Software Required

Before you set up and configure your evaluation board, you may want to gather some additional hardware and software.

VGA or LCD Monitor

You can use any standard VGA or multi-resolution LCD monitor. The setup instructions in this chapter assume that you are using a standard VGA monitor.

Keyboard

You will need a PS/2 style or USB keyboard.

Mouse

You will need a PS/2 style or USB mouse.

Hard Drives, Floppy Drives, and SATA or USB Optical Disk Drives

You can connect up to six SATA drives to the evaluation board. A floppy drive or compact disc drive may be used to load the OS. No drives or cables are included in the kit; the user must provide them as necessary. All the storage devices may be attached to the board simultaneously.

Video Adapter

Integrated video is provided via the back panel of the system board. Alternately, users can choose to use any standard external PCI Express* x16 graphics card or MEC. It is user responsibility to install the appropriate drivers and correctly configure any software for video adapters used. Check the BIOS for the proper video settings.

Power Supply

The evaluation board is recommended to power up using a standard desktop BTX/ATX 12 V Rev 2.2 power supply that support enhanced BTX system thermal performance. It is recommended the power supply have a minimum of 500 W output and active PFC (power factor correction). The power supply selected must also provide an auxiliary 2x2 12 V connector.

Other Devices and Adapters

The evaluation board functions much like a standard desktop computer motherboard. Most PC-compatible peripherals can be attached and configured to work with the evaluation board.

4.3 Setting Up the Evaluation Board

Once the hardware described in Section 4.2 is gathered, follow the steps below to set up the evaluation board. This manual assumes you are familiar with the basic concepts involved with installing and configuring hardware for a personal computer system.

- *Note:* To locate items discussed in the procedure below, please refer to Chapter 3.0.
 - 1. Create a safe work environment.
 - Make sure you are in a static-free environment before removing any components from their anti-static packaging. The evaluation board is susceptible to electrostatic discharge damage, and such damage may cause product failure or unpredictable operation.

Inspect the contents of your kit.

- 3. Check for damage that may have occurred during shipment. Contact your sales representative if any items are missing or damaged.
- *Caution:* Connecting the wrong cable or reversing the cable can damage the evaluation board and may damage the device being connected. Since the board is not in a protective chassis, use caution when connecting cables to this product.
- *Caution:* Standby voltage is constantly applied to the board. Therefore, do not insert or remove any hardware unless the system is unplugged.
- *Note:* The evaluation board is a µBTX form factor. A µBTX chassis may be used if a protected environment is desired.
 - 4. Check the jumper settings (refer to Chapter 3.0). Jumper **J6LB** is used to clear the CMOS memory. Make sure this jumper is set for normal operation.
 - 5. Insert the processor (enclosed in the kit is Intel[®] Core[™]2 Duo processor E6400) into the LGA775 socket
 - 6. Attach the BTX Thermal Module Assembly (TMA) over the processor to the Support and Retention Module (SRM) by following procedures described below.
 - 7. Place the uBTX board on the Support and Retention Module (SRM) so that the holes A, B, C and D on the PCB line up with the corresponding locations on the SRM (see Figure 6).

Figure 6. Align the Development Kit Board and SRM

The board and SRM assembly should look like the figure below.

Figure 7. Assembled SRM and board

Place the heatsink on top of the processor. The heatsink should align with the holes on the SRM and board as shown below in Figure 7. Please clean the surface of the processor with isopropyl alcohol before attaching the heatsink.

Figure 8. Align the heatsink with holes on the SRM and board

Use two 6-32 screws to partially tighten the rear end of the heatsink to the board and the SRM as shown in Figure 9. The screw uses the threaded holes of the SRM for retention.

Figure 9. Tighten the heatsink on the SRM and board

Use two 6-32 nuts and two bolts to secure the front side of the heatsink to the SRM. The screw can be dropped from the top and use a nut at the bottom or the screw can be inserted from the base of the SRM into the heatsink (based on the accessibility of the system).

Figure 10. Secure the front side of the heatsink to the SRM

Tighten the screws at the rear end of the heatsink as shown in the figure below.

Figure 11. Secure the read end of heatsink to the SRM

Note:

Please make sure all the screws are tightened before using the system.

- 8. Plug the processor heat sink fan into J3TH.
- 9. Connect the SATA drive through SATA cable into J24LB (SATA 0). Connect a power cable to the SATA drive.
- 10. (Optional) Plug the floppy disk drive through the ribbon cable into J4LH. Connect a power cable to the floppy drive.
- 11. Insert the two DDR2 memory (enclosed in the kit are two 512 Mbyte DDR2 667MHz unbuffered DIMMs) into slots J1MY and J3MY. Optional to insert DDR2 memory into slots J2MY and J4MY.
- 12. Insert a USB CD or DVD into one of the USB ports (J17LB) at the back panel. Optional to plug a SATA CD or DVD into J22LB.
- 13. Connect a PS/2 Keyboard into J5LH (purple connector) at the back panel. Optional to connect a USB keyboard into J17LB.
- 14. Connect a PS/2 Mouse into J5LH (green connector) or a USB Mouse into one of the USB ports (J17LB) at the back panel.
- 15. Optional to connect a PCI Express x16 graphics card into J6UB. Optional to install a MEC card into J6UB.
- 16. Plug the front panel header cable into J28LB.
- 17. Plug the monitor into the VGA connector J4UB or Plug the monitor into the add in graphics card's video connector.
- 18. Optional to connect the audio speakers to J4AU and J5AU (Please refer to Chapter 2.0 for details).

- 19. Optional to connect an Ethernet cable to LAN MagJack connector at J18LB.
- 20. Connect a standard recommended BTX power supply to the board. Plug the BTX 2x12 connector into J2BV power supply header. Plug the BTX 2x2 12V connector into J1BV.
- 21. Press the J9LB Power Button to power up the board. Turn on the power to the monitor and evaluation board. Ensure that the fan sink on the processor is operating.

4.3.1 Memory Configurations

The Intel Q965 MCH supports two types of memory organization:

Dual channel (Interleaved) mode. This mode offers the highest throughput for real world applications. Dual channel mode is enabled when the installed memory capacities of both DIMM channels are equal. Technology and device width can vary from one channel to the other but the installed memory capacity for each channel must be equal. If different speeds DIMMs are used between channels, the slowest memory timing will be used.

Single channel (Asymmetric) mode. This mode is equivalent to single channel bandwidth operation for real world applications. This mode is used when only a single DIMM is installed or the memory capacities are unequal. Technology and device width can vary from one channel to the other. If different speeds DIMMs are used between channels, the slowest memory timing will be used.

Figure 12. Memory Channel and DIMM Configuration

4.3.1.1 Dual Channel (Interleaved) Mode Configurations

Figure 13 shows a dual channel configuration using two DIMMs. In this example, the DIMM 0 sockets of both channels are populated with identical DIMMs.

Figure 13. Dual Channel (Interleaved) Mode Configuration with two DIMMs

Figure 14 shows a dual channel configuration using three DIMMs. In this example, the combined capacity of the two DIMMs in Channel A equal the capacity of the single DIMM in the DIMM 0 socket of Channel B.

Figure 14. Dual Channel (Interleaved) Mode Configuration with three DIMMs

Figure 15 shows a dual channel configuration using four DIMMs. In this example, the combined capacity of the 2x DIMMs in Channel A equals the combined capacity of the 2x DIMMs in Channel B. Also, the DIMMs are matched between DIMM 0 and DIMM 1 of both channels.

4.3.1.2 Single Channel (Asymmetric) Mode Configurations

Figure 16 shows a single channel configuration using 1x DIMM. In this example, only the DIMM 0 socket of Channel A is populated. Channel B is not populated.

Figure 16. Single Channel (Asymmetric) Mode Configuration with one DIMM

Figure 17 shows a single channel configuration using 3x DIMMs. In this example, the combined capacity of the 2x DIMMs in Channel A does not equal the capacity of the single DIMM in the DIMM 0 socket of Channel B.

Figure 17. Single Channel (Asymmetric) Mode Configuration with 3x DIMMs

4.4 Audio Subsystem Configurations

The board supports the Intel[®] High Definition Audio subsystem based on the ADI1988A or 1988B audio codec. The ADI1988 series provides eight channels of DAC (Digital to Analog Converter) that simultaneously support 7.1 sound playback.

The board contains audio connectors on the back panel and two channels of independent stereo sound output at the side of the board. The functions of the back panel audio connectors are dependent on the eight-channel audio subsystem, as described in Chapter 2.0.

For more information such as specification, schematic, layout and driver on the ADI1988 audio codec, please refer to the ADI website at <u>www.adi.com</u>

4.4.1 Eight-Channel (7.1) Audio Subsystem

Figure 18 shows the back panel audio connector for the eight-Channel (7.1) Audio Subsystem. The eight-channel (7.1) audio subsystem includes the following:

- Intel[®] 82801G I/O Controller Hub (ICH8DO)
- ADI1988 audio codec

Figure 18. Back Panel Audio Connector Options for Eight-channel Audio Subsystem

Table 21 describes the lists of back panel task.

Table 21. Back panel task (Audio)

Symbols	Task
С	S/PDIF Out
D	S/PDIF In
K (Gray)	Side Speaker Out
J (Black)	Rear Speaker Out
M (Orange)	Center channel and Subwoofer audio out
O (Light Blue)	Audio Line In
P (Green)	Audio Line Out (Front Speaker Out)
N (Pink)	Mic In

4.5 LAN Subsystem Configurations

The LAN subsystem consists of the following:

- Physical layer interface device. The development kit include the following LAN devices:
 - Intel[®] 82566DM for Gigabit (10/100/1000 Mbits/sec) Ethernet LAN connectivity.
- RJ-45 LAN connector with integrated status LEDs.

4.5.1 Gigabit LAN Subsystem

The Gigabit (10/100/1000 Mbits/sec) LAN subsystem includes the Intel® 82566DM controller and a RJ-45 LAN connector with integrated status LEDs.

The Intel[®] 82566DM Gigabit Ethernet Controller supports the following features:

- PCI Express* link
- 10/100/1000 IEEE 802.3 compliant
- Compliant to IEEE 802.3x flow control support
- TCP, IP, UDP checksum offload
- Transmit TCP segmentation
- Advanced packet filtering
- · Full device driver compatibility
- PCI Express* Power Management Support
- Jumbo frame support
- Intel[®] Active Management Technology
- Alert Standard Format (ASF) 2.0

4.5.2 RJ-45 LAN Connector with Integrated LEDs

Two LEDs are built into the RJ-45 LAN connector as shown in Figure 19. Table 22 describes the LED states when the board is powered up and the Gigabit LAN subsystem is operating.

Figure 19. LAN Connector LED locations

Table 22. LAN Connector LED status

LED	Color	LED State	Condition
		Off	LAN link is not established.
Left	Left Green	On	LAN link is established.
		Blinking	LAN activity is occurring.
	N/A	Off	10 Mbits/sec data rate is selected
Right	Green	On	100 Mbits/sec data rate is selected
5	Yellow	On	1000 Mbits/sec data rate is selected

4.6 Software Kit Installation

4.6.1 Installation of a new Operating System

The user will required to install a new operating system on a SATA hard disk using an optical drive or loading an image to the hard disk.

4.6.2 Drivers Installation

Once the image is loaded onto the platform and the clean build of OS is done,

Install all the relevant drivers:

- Intel $\ensuremath{^{\ensuremath{\mathbb{R}}}}$ Chipset Software Installation Utility Chipset INF files needs to be installed first
- Intel[®] Embedded Graphics Drivers or Intel[®] Graphics Media Accelerator Drivers
- Intel[®] PRO Network Connections LAN Driver
- Others optional HECI driver, AMT Serial Over LAN, Intel[®] Management Engine Interface Driver (QST), Intel Matrix Storage Manager

After installation, go to device manager and make sure there are no "!" (Yellow bangs) on the devices.

5.0 Error Messages and Beep Codes

This chapter describes the various progress codes that are reported by the BIOS and the corresponding LED Codes.

The LED codes are 8-bit quantities and can be used as Port 80 codes if the platform supports Port 80 capturing device. The higher nibble alone is used for a 4-bit LED.

The Status code driver is responsible for translating the Standard Progress/Error code into a one-byte value. The particular enumeration scheme is set up so that the Port 80 code values will typically increase during the boot process. The early codes are for subsystems closer to the processor and the later codes are for peripherals.

Typically, the order of initialization is Processor -> Memory -> Busses -> Output/Input Devices -> Boot Devices

or

Processor -> Memory -> Recovery -> Busses -> Output/Input Devices -> Boot Devices

The sequence of POST is platform-specific.

5.1 Speaker

The board-mounted speaker provides audible error code (beep code) information during POST. For information about the location of the onboard speaker refer to Figure 1.

5.2 BIOS Beep Codes

Whenever a recoverable error occurs during POST, the BIOS "beep" as described in the following table, Table 23.

Table 23. Beep codes

Туре	Pattern	Frequency
Memory error	Three long beeps	1280 Hz
Thermal warning	Four alternating beeps: High tone, low tone, high tone, low tone	High tone: 2000 Hz Low tone: 1600 Hz

5.3 BIOS Error Messages

Table below show the lists of BIOS error messages and brief description of each.

Table 24. Lists of error messages and brief description of each

Error Message	Explanation
CMOS Battery low	The battery may be losing power. Replace the battery soon.
CMOS Checksum Bad	The CMOS checksum is incorrect. CMOS memory may have been corrupted. Run Setup to reset values.
Memory Size Decreased	Memory size has decreased since the last boot. If no memory was removed, then memory may be bad.
No Boot device available	System did not find a device to boot.

5.4 Port 80h POST Codes

During the POST, the BIOS generates diagnostic progress codes (POST-codes) to I/O port 80h. If the POST fails, execution stops and the last POST code generated is left at port 80h. This code is useful for determining the point where an error occurred.

The following tables provide information about the POST codes generated by the BIOS:

- Table 25 lists the Port 80h POST code ranges
- Table 26 lists the Port 80h Progress Code Enumeration
- Table 27 lists the Port 80h POST sequence

Table 25. Port 80h POST Code Ranges

Range	Subsystem
0x00 – 0x0F	Debug codes: Can be used by any PEIM/driver for debug. Blocked on production builds per DFT rule. Not covered in the EPS.
0x10 – 0x1F	Host Processors: 0x1F is unrecoverable CPU error.
0x20 – 0x2F	Memory/Chipset: 0x2F is no memory detected or no useful memory detected.
0x30 – 0x3F	Recovery: 0x3F indicated recovery failure.
0x40 – 0x4F	Reserved for future.
0x50 – 0x5F	IO Busses: PCI, USB, ISA, ATA etc. 0x5F is unrecoverable error. Start with PCI.
0x60 – 0x6F	Reserved for future (for new busses).
0x70 – 0x7F	Output Devices: All output consoles. 0x7F is unrecoverable error.
0x80 – 0x8F	Reserved for future (new output console codes).
0x90 – 0x9F	Input devices: Keyboard/Mouse. 0x9F is unrecoverable error.
0xA0 – 0xAF	Reserved for future (new input console codes).
0xB0 – 0xBF	Boot Devices: Includes Fixed media and removable media. Not that critical since consoles should be up at this point. 0xBF is unrecoverable error.
0xC0-0xCF	Reserved for future.
0xD0-0xDF	Boot Device Selection.
OxEO – OxFF	0xF0 – 0xFF: 0xFF processor exception. 0xE0- 0xEE: Miscellaneous codes. See below. 0xEF boot/S3: resume failure.

Table 26. Port 80h Progress Code Enumeration

Port 80 code	Progress Code Enumeration
	HOST PROCESSOR:
0x10	Power-on initialization of the host processor (Boot Strap Processor)
0x11	Host processor Cache initialization (including APs)
0x12	Starting Application processor initialization
0x13	SMM initialization

Port 80 code	Progress Code Enumeration	
Chipset		
0x21	Initializing a chipset component	
	Memory	
0x22	Reading SPD from memory DIMMs	
0x23	Detecting presence of memory DIMMs	
0x24	Programming timing parameters in the memory controller and the DIMMs	
0x25	Configuring memory	
0x26	Optimizing memory settings	
0x27	Initializing memory, such as ECC init	
0x28	Testing memory	
	PCI Bus	
0x50	Enumerating PCI busses	
0x51	Allocating resources to PCI bus	
0x52	Hot Plug PCI controller initialization	
0x53-0x57	Reserved for PCI Bus	
	USB	
0x58	Resetting USB bus	
0x59	Reserved for USB	
ATA/ATAPI/SATA:		
0x5A	Resetting PATA/SATA bus and all devices	
0x5B	Reserved for ATA	
SMBUS		
0x5C	Resetting SMBUS	
0x5D	Reserved for SMBUS	
LOCAL CONSOLE:		

Port 80 code	Progress Code Enumeration		
0x70	Resetting the VGA controller		
0x71	Disabling the VGA controller		
0x72	Enabling the VGA controller		
	Remote Console		
0x78	Resetting the console controller		
0x79	Disabling the console controller		
0x7A	Enabling the console controller		
	Keyboard (PS2 or USB)		
0x90	Resetting keyboard		
0x9	Disabling the keyboard		
0x9	Detecting the presence of the keyboard		
0x9	Enabling the keyboard		
0x9	Clearing keyboard input buffer		
0x9	Instructing keyboard controller to run Self Test (PS2 only)		
	Mouse (PS2 OR USB)		
0x98	Resetting mouse		
0x99	Detecting mouse		
0x9A	Detecting presence of mouse		
0x9B	Enabling mouse		
	Fixed Media		
0xB0	Resetting fixed media		
0xB1	Disabling fixed media		
0xB2	Detecting presence of a fixed media (IDE hard drive detection etc.)		
0xB3	Enabling/configuring a fixed media		
	Removable Media		
0xB8	Resetting removable media		
0xB9	Disabling removable media		
OxBA	Detecting presence of a removable media (IDE, CDROM detection etc.)		
0xBC	Enabling/configuring a removable media		
	BDS		
OxDy	Trying boot selection y (y=0 to 15)		
PEI Core			
0xE0	Started dispatching PEIMs (emitted on first report of EFI_SW_PC_INIT_BEGIN EFI_SW_PEI_PC_HANDOFF_TO_NEXT		
0xE2	Permanent memory found.		
OxE1,OxE3	Reserved for PEI/PEIMs		

Port 80 code	Progress Code Enumeration		
	DXE Core		
0xE4	Entered DXE phase		
0xE5	Started dispatching drivers		
0xE5	Started connecting drivers		
DXE Drivers			
0xE7	Waiting for user input		
0xE8	Checking password		
0xE9	Entering BIOS setup		
OxEA	TBD – Flash Update		
OxEB	Calling Legacy Option ROMs		
OxEE	TBD – Calling Int 19. One beep unless silent boot is enabled.		
OxEF	TBD – Unrecoverable Boot failure/S3 resume failure		
	RUNTIME PHASE/EFI OS BOOT		
0xF4	Entering Sleep state		
0xF5	Exiting Sleep state		
0xF8	EFI boot service ExitBootServices () has been called		
0xF9	EFI runtime service SetVirtualAddressMap () has been called		
OxFA	EFI runtime service ResetSystem () has been called		
PEIMS/RECOVERY			
0x30	Crisis Recovery has initiated per User request		

Port 80 code	Progress Code Enumeration
0x31	Crisis Recovery has initiated by software (corrupt flash)
0x34	Loading recovery capsule
0x35	Handing off control to the recovery capsule
0x3F	Unable to recover

Table 27. Typical Port 80h POST Sequence (Sheet 1 of 2)

Port 80 code	Progress Code Enumeration
0x21	Initializing a chipset component
0x22	Reading SPD from memory DIMMs
0x23	Detecting presence of memory DIMMs
0x25	Configuring memory
0x28	Testing memory
0x34	Loading recovery capsule

Table 27. Typical Port 80h POST Sequence (Sheet 2 of 2)

Port 80 code	Progress Code Enumeration
0xE4	Entered DXE phase
0x12	Starting Application processor initialization
0x13	SMM initialization
0x50	Enumerating PCI busses
0x51	Allocating resources to PCI bus
0x92	Detecting the presence of the keyboard
0x90	Resetting keyboard
0x94	Clearing keyboard input buffer
0x95	Keyboard Self Test
OxEB	Calling Video BIOS
0x58	Resetting USB bus
0x5A	Resetting PATA/SATA bus and all devices
0x92	Detecting the presence of the keyboard
0x90	Resetting keyboard
0x94	Clearing keyboard input buffer
0x5A	Resetting PATA/SATA bus and all devices
0x28	Testing memory
0x90	Resetting keyboard
0x94	Clearing keyboard input buffer
0xE7	Waiting for user input
0x01	Int 0x19
0x00	Ready to boot.

