FUJITSU SEMICONDUCTOR

CONTROLLER MANUAL CM26-00301-2E

F2MC-8FX
8-BIT MICROCONTROLLER

PROGRAMMING MANUAL

[o®)
FUJITSU

FZMC-8FX

8-BIT MICROCONTROLLER

PROGRAMMING MANUAL

FUJITSU LIMITED

PREFACE

B Purpose and Audience

The F2MC-8FX is original 8-bit one-chip microcontrollers that support application specific IC
(ASIC). It can be widely applied from household to industrial equipment starting with portable
equipment.

This manual is intended for engineers who actually develop products using the F2MC-8FX
microcontrollers, especially for programmers who prepare programs using the assembly

language for the F2MC-8FX series assembler. It describes various instructions for the FZMC-
8FX.

Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

B Trademark

The company names and brand names herein are the trademarks or registered trademarks of
their respective owners.

B Organization of This Manual
This manual consists of the following six chapters:
CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU
This chapter outlines the F2MC-8FX CPU and explains its configuration by example.
CHAPTER 2 MEMORY SPACE

This chapter explains the F2MC-8FX CPU memory space.
CHAPTER 3 REGISTERS

This chapter explains the F2MC-8FX dedicated registers and general-purpose registers.
CHAPTER 4 INTERRUPT PROCESSING

This chapter explains the functions and operation of F2MC-8FX interrupt processing.
CHAPTER 5 CPU SOFTWARE ARCHITECTURE

This chapter explains the instructions for the F2MC-8FX CPU.
CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

This chapter explains each execution instruction, used in the assembler, in reference format.
APPENDIX

The appendix contains instruction and bus operation lists and an instruction map.

« The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

« Theinformation, such as descriptions of function and application circuit examples, in this document are presented solely for
the purpose of reference to show examples of operations and uses of FUJTSU semiconductor device; FUJTSU does not
warrant proper operation of the device with respect to use based on such information. When you develop equipment
incorporating the device based on such information, you must assume any responsibility arising out of such use of the
information. FUJITSU assumes no liability for any damages whatsoever arising out of the use of the information.

* Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJTSU or any
third party or does FUJITSU warrant non-infringement of any third-party's intellectual property right or other right by using
such information. FUJITSU assumes no liability for any infringement of the intellectual property rights or other rights of third
parties which would result from the use of information contained herein.

» The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is
secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or
other loss (i.e., huclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,
medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e.,
submersible repeater and artificial satellite).

Please note that FUJITSU will not be liable against you and/or any third party for any claims or damages arising in connection
with above-mentioned uses of the products.

* Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

» Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

* The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright© 2004-2008 FUJITSU LIMITED All rights reserved.

CONTENTS

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU 1
1.1 OULIINE OF FPMC-8FX CPUovieieeeee ettt ettt n ettt en e 2
1.2 Configuration Example of Device USing FZMC-8FX CPUccooveviveeeeiereeseereseeeesesesessenseseenenenens 3

CHAPTER 2 MEMORY SPACE ... 5
2.1 CPU MEIMOIY SPACE ..iiiiiiiiiiei ittt et ettt s e e e e et e e e e e e e et r s e et et b e e e e et ee et s e e e e e e tb s s e e e eesbaaneeeeeeebannaeeaees 6
2.2 Memory SPace and AGAIESSING ...cceeieiiiiitiiii et e e ettt e e e e e e e e e s s abbbb b e e e e aeaaaasesaaannnbbesaeeeaaaaaaeaaas 7

221 (DL E= U = R PP UPPPPPTTRPPPPPPN 9
2.2.2 e LoTo | 2= 1o g I T SO PPTPTRPPINY 11
2.2.3 Arrangement of 16-bit Data in MemOrY SPACEcoiiiiiiiiiiiiiiiieieeee e 13

CHAPTER 3 REGISTERS ..ot 15
B.1 FPMC-8FX REGISIEISoovviveieeeeseeeeeeeseseeeeeesesaeees e ses s ses s s nes s enssestenenestessnseansasneetasenenassensneneneans 16
3.2 Program Counter (PC) and Stack POINtEr (SP)ccooiiiiiieeeeeeris st e e e e e e 17
3.3 Accumulator (A) and Temporary ACCUMUIALOT (T) ..veueeeeiiiiiiiiiiiiiiie et e e e 18

3.3.1 How To Use The Temporary ACCUMUIALOT (T) oovcuvrrrieiirireeeeeeiiisiieeieeree e e e e e e s s snnnrneeeeeeeeaeeeeeennnns 20
3.3.2 Byte Data Transfer and Operation of Accumulator (A) and Temporary Accumulator (T) 21
3.4 Program STATUS (PS) ...ttt e oottt ettt e e e e e e e s s e n bbb bt et e e e aae e e e e e e nnnbbrbereeaaaaaaaaean 23
3.5 Index Register (IX) and Extra POINTEr (EP)coooieiiiiiiiiiee et e e e e e e e e 26
3.6 LS 5] (T = 7= TN 27
3.7 (DT To g =T T | T PR T PO PPPPPTPT 28

CHAPTER 4 INTERRUPT PROCESSING ...t 29
4.1 Outline of INtErrUPt OPEIALIONeeeiiieieeei i e e s e e e e e e e s s s r e e e e eeeeeessnnsnnsrnreeeeees 30
4.2 Interrupt Enable/Disable and Interrupt Priority FUNCLIONSoooiiiiiiiiiicrcrr e 32
4.3 Creating an Interrupt ProCeSSiNg PrOGIaMeeiiiiiiiiiiiiiiiiiie it e ettt e e e e e e e e s eaabeereeeeeeas 34
4.4 L]] L=) (= (8o PSR 36
4.5 LS ET = SO o 1T = 11 o] o SN 37

CHAPTER 5 CPU SOFTWARE ARCHITECTURE ..., 39
5.1 Types Of ADAreSSING MOAEScueiiiiiiiiiee ettt e e e e e e st e e e e e e e e e e e annabbnbeeaeeeas 40
5.2 S =T o= | 1S € (1 o 1o T S 43

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONScoeviviiiiis 47
6.1 ADDC (ADD Byte Data of Accumulator and Temporary Accumulator with Carry to Accumulator)

48
6.2 ADDC (ADD Byte Data of Accumulator and Memory with Carry to Accumulator)coccocueeneee. 50
6.3 ADDCW (ADD Word Data of Accumulator and Temporary Accumulator with Carry to Accumulator)

52
6.4 AND (AND Byte Data of Accumulator and Temporary Accumulator to Accumulator) 54
6.5 AND (AND Byte Data of Accumulator and Memory to AcCumulator)occcciieiiieiieieeennnniie 56
6.6 ANDW (AND Word Data of Accumulator and Temporary Accumulator to Accumulator) 58

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45

6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53

BBC (BranCh if Bit IS ClEAI)ceiiiiiiiiiiiitie ittt e ettt e e e e e e e e e e s e e e e e e aaeaeaeas 60

BBS (Branch if Bit IS SEL)uueeieiiiiiiiee ittt ettt e e e st e e e e eb b e e e e nbeeas 62
BC (Branch relative if C=1)/BLO (Branch if LOWEN)cooviiiiiiiiiiiiiiiiiiis e e e e e e ee e 64
BGE (Branch Great or Equal: relative if larger than or equal to Zero)ccccccoiiiiiiiiiiiiiiiininnnnenn, 66
BLT (Branch Less Than zero: relative if < ZEr0)ccuueeeeiiiiieeeeiee e 68
BN (BranCh relative if N = L) .oouuuiiiiiiis oot s s e s e e e e e e e e e e e e e e e e e e e aaeeteernrranrananan 70
BNZ (Branch relative if Z = 0)/BNE (Branch if Not EquAal)oooiiiiiiiiiiiii e 72
BNC (Branch relative if C = 0)/BHS (Branch if Higher or Same)ccccccoiiiiiiiniiieee e 74
BP (Branch relative if N = 0: PLUS) ..o s e e e e e e e e e e e e e e e e e eeveaaea e nenennanas 76
BZ (Branch relative if Z = 1)/BEQ (Branch if EQUAl)cooiiiiiiiiiiiiiiiee e 78
CALL (CALL SUDIOULING) .eiiiittiiiee ettt ettt ettt ettt ettt ettt e e e s sttt e e e s snbe et e e e anbbeee e e e sabbeeeeeanes 80
CALLYV (CALL VeCtored SUDIOULINE)ceiiiiiieieieiieiiiiiiisss s e s eeaae e n s s e e s e e e e e aaaaeas 82
CLRB (Clear direCt MemOrY Bit)oooiiiiiiiiiiei ettt e e e e e e e e e s nanb e e e eeeeas 84
CLRC (Clear Carry flag)oocuueeeeiiiiiiee ettt e ettt e e s st e e e e sbb e e e e e s abbeeeeeaanes 86
CLRI (CLeaR INterrupt flag)cccoeeeieiiiiee s e e e e e e et e e e e e e e e aaaaas 88
CMP (CoMPare Byte Data of Accumulator and Temporary ACCUmMUIAtOr)ccccceevviiiiiiiiiiieeenennn. 90
CMP (CoMPare Byte Data of Accumulator and MEmMOIY)coooiiiiiieeiiiiiieeen i 92
CMP (CoMPare Byte Data of Immediate Data and MemOry)coooviiiiiiiiiiiieere e 94
CMPW (CoMPare Word Data of Accumulator and Temporary Accumulator)ccooovcvvviieeeeeennn. 96
DAA (Decimal Adjust for AdditioN)cc.uviiiiiirieee e e e e e e e e e e e 98
DAS (Decimal Adjust for SUDLFACLION)cccooiiiiiiiiiie s e e e e e e e e e e e e e ee e e rennanas 100
DEC (DECrement Byte Data of General-purpose REQISIEr)ocoeiiiiiiiiiiiiiieiieeee e 102
DECW (DECrement Word Data of ACCUMUIALOr)ccviiiiiiiiiiieee e e e 104
DECW (DECrement Word Data of EXtra POINTEI)coiviiviiiiieeiisis s e e e e e e e e 106
DECW (DECrement Word Data of Index POINtEr)uiiiiiiiiiiiiiii e 108
DECW (DECrement Word Data of Stack POINLEI)cc.vvviiiiiiiieeee e 110
(D] AV A (AT L= [T [=T) PSS 112
INC (INCrement Byte Data of General-purpose RegISter)ooiiuuiiiiiiiiiiaiee e 114
INCW (INCrement Word Data of ACCUMUIALON)uviiiiiiiiiee i e e e e e r e e e e e e 116
INCW (INCrement Word Data of EXtra POINIEN)ccooeeiiiiiiiiieeeeeeeeee s 118
INCW (INCrement Word Data of INdeX REGISIEI)uuiiiiiiiiieiiiiiiiiee e 120
INCW (INCrement Word Data of Stack POINtEI)uuuiiiiiiiiee i e e e 122
JMP (JuMP to address pointed by ACCUMUIALON)ccoeiiiiiiiiiii e 124
JMP (JUMP t0 effeCtiVe AQArESS)eeiiiiiiiiiii et e e e e e e e e e aneaees 126
MOV (MOVE Byte Data from Temporary Accumulator to Address Pointed by Accumulator) 128
MOV (MOVE Byte Data from Memory to ACCUMUIALON)uuuuuuiiiiiiieieee e e e eeeeeeeececeee e 130
MOV (MOVE Immediate Byte Data to MEMOIY)oooiiiiiiiiiieiiieiae e a s 132
MOV (MOVE Byte Data from Accumulator t0 MEMOIY)uvveiieieeiiiiiiciiiieeiee e e e e e e s e srrrrrrreeee e e e 134
MOVW (MOVE Word Data from Temporary Accumulator to Address Pointed by Accumulator)

136
MOVW (MOVE Word Data from Memory t0 ACCUMUIATON)coiiiiiiiiiiiiiiiiieiee e 138
MOVW (MOVE Word Data from Extra Pointer to AcCumuUIator)ccccvvveeierieeeeiiiiiiieieeeeee e 140
MOVW (MOVE Word Data from Index Register to Accumulator)ccceeeeeeiiiiieicvceeeeeeeiiieen 142
MOVW (MOVE Word Data from Program Status Register to Accumulator)cccccceeeeeieiennnnnnn. 144
MOVW (MOVE Word Data from Program Counter to ACCUMUIALON)ccvvvvveeerriiiiiiiiiniieireeeeeenenn 146
MOVW (MOVE Word Data from Stack Pointer to AcCumulator)cccoooeveiiiieiieiiiieieceeeeeeeeeveiiees 148
MOVW (MOVE Word Data from Accumulator t0 MEMOIY)coooiiiiiiiiiiiiiiiiieiee e 150
MOVW (MOVE Word Data from Accumulator to Extra POINtEr)ccccvvviiiiiiieeeee e 152

iv

6.54 MOVW (MOVE Immediate Word Data to Extra POINtEr)cccuuiiiiiiiiiiiiiiieeee e 154
6.55 MOVW (MOVE Word Data from Accumulator to Index RegiSter)cccccovviiiieiiiiiee e, 156
6.56 MOVW (MOVE Immediate Word Data to IndexX RegQISter)ccccvviiiiiiiiiiiiii e 158
6.57 MOVW (MOVE Word data from Accumulator to Program Status Register)cccccccveiiiiiiiiinnne. 160
6.58 MOVW (MOVE Immediate Word Data to Stack POINE)coccviiiiiiiiiiieiie e 162
6.59 MOVW (MOVE Word data from Accumulator to Stack Pointer)cccovvviriiiiiiiicccesee e 164
6.60 MULU (MULLIPLY UNSIGNEA) ..ottt ettt ettt e e e e e e e e s et b s e e eeaaaaeeeasannnnnnes 166
6.61 NOP (NOOPEIALION)eeiiiiiiiiiieiiittiete e ittt e sttt e e ettt e e s bbbt e e s s st et e e e e e bbb e e e e anbbae e e e annbeeeeeeanbneeeeannnes 168
6.62 OR (OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)cccceeee.n.. 170
6.63 OR (OR Byte Data of Accumulator and Memory t0 ACCUMUIALON)cooeriiiiiiiiiiiiiiieiee e 172
6.64 ORW (OR Word Data of Accumulator and Temporary Accumulator to Accumulator) 174
6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)cccccovvvivvviveivviivniniienenn, 176
6.66 POPW (POP Word Data of Intherent Register from Stack Memory)occcouuiiiiiieieiiniiiiniiieeee 178
6.67 RET (RETUIN from SUDIOULING)oiiiiiiiiiie ittt e et e e e e e 180
6.68 RETI (RETUIM frOmM INLEITUDL) ...uiiiiii e s eeeeaeenernrnnn e aeeeeas 182
6.69 ROLC (Rotate Byte Data of Accumulator with Carry to Left) ... 184
6.70 RORC (Rotate Byte Data of Accumulator with Carry to Right) ..o 186
6.71 SUBC (SUBtract Byte Data of Accumulator from Temporary Accumulator with Carry to Accumulator)
188
6.72 SUBC (SUBtract Byte Data of Memory from Accumulator with Carry to Accumulator) 190
6.73 SUBCW (SUBtract Word Data of Accumulator from Temporary Accumulator with Carry to Accumulator)
192
6.74 SETB (Set DIreCt MEMOTY Bil) ...ccccciiiiiiiiie s e e e e e e e e et e e e e e a e as 194
6.75 SETC (SET Carry flag)cueeeeiiiiiiieiiiiiiiie sttt ettt e e s s e e e s st e e s et eaesantreeeeasnraeeeeanees 196
6.76 SETI (SET INtErrupt flag)cccoceieiieiiieiie e s s e e e e e e e e s e s e e e e e e e e e e e s e e e snnrnnnnes 198
6.77 SWAP (SWAP Byte Data Accumulator "H" and Accumulator "L")ccooeiiiiiirieeeee e, 200
6.78 XCH (eXCHange Byte Data Accumulator "L" and Temporary Accumulator "L")ccccuviiiineeen. 202
6.79 XCHW (eXCHange Word Data Accumulator and EXtrapointer)ccccccccviviiiiiiniiieieeieeeee e s sssienns 204
6.80 XCHW (eXCHange Word Data Accumulator and Index Register)cccccvvvriiriieiiievviiniiciieeeeen, 206
6.81 XCHW (eXCHange Word Data Accumulator and Program COUNtEr)cccuvviiiieeieeeneniiiiiiieeee. 208
6.82 XCHW (eXCHange Word Data Accumulator and Stack Pointer)cccccoovciiiiiiiiieeee e, 210
6.83 XCHW (eXCHange Word Data Accumulator and Temporary Accumulator)ccccccvvvvneiiiiennnnnn. 212
6.84 XOR (eXclusive OR Byte Data of Accumulator and Temporary Accumulator to Accumulator) 214
6.85 XOR (eXclusive OR Byte Data of Accumulator and Memory to Accumulator)ccccoeeeivvvnnee. 216
6.86 XORW (eXclusive OR Word Data of Accumulator and Temporary Accumulator to Accmulator)
218
N e = N1 P 221
APPENDIX A INSIFUCHION LIS ...ttt ettt ettt et e e e e e e e s e e abb bbb e e e e e e aaaeeesaaannnbbnnbeeeaaaaens 222
Al F2MC-8FX CPU INSHUCHON OVEIVIBWoovviiveiriieaeiseiseissisisessessssssesssssesssesss s 223
N O T o =1 = 11 o] 1= S PUSTR 226
A3 FIag Change TabIe ... ettt e e e et e e e e e e e e e e e e e anebeeees 233
APPENDIX B BUS OPEIatiOn LISTcciiiiiiiiiiiiiiiiieie e i e e e s s e s ss st e e e e e e e e s e s st e e e e eaeeessessnnnnsannneeeeeeeeesannn 240
APPENDIX C INSEIUCHION MAP .. .cciiiiieiiiiieieieee et s st e s e e e e e e e e e e e e et et e et et aeaeae s eatn e e e s e seeeeaaeaeaaaaaeaaanenes 251
LN I 253

Vi

Main changes in this edition

Page Changes (For details, refer to main body.)

11 2.2.2 Program Area
Table 2.2-2 CALLV Jump Address Table
("FFC84" —> " FFCOy ")

53 Execution example : ADDCW A
(NzvC="1010" — NzZVC ="0000")

147 Execution example : MOVW A, PC
(A="FO63" > A="F062")
(PC="F063" — PC="F062")

176 6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
(" Transfer the word value from the memory indicated by SPto dr. Then, subtract 2 fromthe value of SP." —
" Subtract 2 from the value of SP. Then, transfer the word value from the memory indicated by SPto dr. ")
6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
B PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
("((SP)) <-- (dr) (Word transfer) " — " (SP) « (SP) - 2 (Word subtraction) ")
(" (SP) <-- (SP) - 2 (Word subtraction) " — " ((SP)) « (dr) (Word transfer) ")

226 A.2 Operation List
("((IX)+off) <--d8" — " ((IX)+off) « d8")

232 Table A.2-4 Operation List (for Other Instructions)

("(SP) « (SP)-2,((SP)) « (A)
(A) < ((SP)),
(SP) « (SP)+2
(SP) « (SP)-2,
((SP)) « (IX)
(IX) « ((SP)),
(SP) « (SP)+2
No operation
(C) «0
C) «1
() «<0
(1) «1") isadded.

The vertical lines marked in the |eft side of the page show the changes.

Vi

viii

CHAPTER 1
OUTLINE AND
CONFIGURATION EXAMPLE

OF F2MC-8FX CPU

This chapter outlines the FPMC-8FX CPU and explains
its configuration by example.

1.2 Configuration Example of Device Using FMC-8FX CPU

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F?MC-8FX CPU

1.1 Outline of FAMC-8FX CPU

The F2MC-8FX CPU is a high-performance 8-bit CPU designed for the embedded control
of various industrial and OA equipment.

B Outline of FAMC-8FX CPU

The FPMC-8FX CPU is a high-performance 8-bit CPU designed for the control of various industrial and
OA equipment. It is especialy intended for applications requiring low voltages and low power
consumption. This 8-bit CPU can perform 16-bit data operations and transfer and is suitable for

applications requiring 16-hit control data. The FAMC-8FX CPU is upper compatibility CPU of the FPMC-
8L CPU, and the instruction cycle number is shortened, the division instruction is strengthened, and a direct
areais enhanced.
W F’MC-8FX CPU Features
The FPMC-8FX CPU features are as follows:
e Minimum instruction execution time: 100 ns
* Memory: 64 Kbytes
« Instruction configuration suitable for controller
Data type: bit, byte, word
Addressing modes: 9 types
High code efficiency
16-bit data operation: Operations between accumulator (A) and temporary accumulator (T)
Bit instruction: set, reset, check
Multiplication/division instruction: 8 x 8 = 16 bits, 16/16 = 16 bits
e Interrupt priorities: 4 levels

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F?MC-8FX CPU

1.2 Configuration Example of Device Using F°MC-8FX CPU

The CPU, ROM, RAM and various resources for each FPMC-8FX device are designed in
modules. The change in memory size and replacement of resources facilitate
manufacturing of products for various applications.

B Configuration Example of Device Using FPMC-8FX CPU
Figure 1.2-1 shows a configuration example of adevice using the F°MC-8FX CPU.

Figure 1.2-1 Configuration Example of Device Using F°MC-8FX CPU

n | \]
u R ; . Timer/counter u
C AT nan
c : : L : | | ©
] % IXEP Serial port _§]
2 PC | SP S
2 | n
. S| | oDn m A/D converter | 2 u
. S| | eeeen e = Pins inh t
Common pins L] |5 RP. ' CCR x ol | ins inheren
o | | T & L PWM | & to the product
I I R 3 o | [
= AU = 2
< N
] E Vel L RAM £l
3] 2
[] 5 F“MC-8FX CPU .E]
] = ROM]
Clock generator
] — Interrupt controller u
u |]

F°MC-8FX Device

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F?MC-8FX CPU

CHAPTER 2

MEMORY SPACE

This chapter explains the F2MC-8FX CPU memory space.

2.1 CPU Memory Space
2.2 Memory Space and Addressing

CHAPTER 2 MEMORY SPACE

2.1 CPU Memory Space

All of the data, program, and I/O areas managed by the F2MC-8FX CPU are assigned to

the 64 Kbyte memory space of the FMC-8FX CPU. The CPU can access each resource
by indicating its address on the 16-bit address bus.

B CPU Memory Space
Figure 2.1-1 shows the address configuration of the F2MC-8FX memory space.

The I/O area is located close to the least significant address, and the data area is arranged right above it.
The data area can be divided into the register bank, stack and direct areas for each application. In contrast
to the 1/0O area, the program area is located close to the most significant address. The reset, interrupt reset
vector and vector call instruction tables are arranged in the highest part.

Figure 2.1-1 F°MC-8FX Memory Space

FFFFH
Program area
Data area
0000H Vo

CHAPTER 2 MEMORY SPACE

2.2 Memory Space and Addressing

In addressing by the F2MC-8FX CPU, the applicable addressing mode related to memory
access may change according to the address.

Therefore, the use of the proper addressing mode increases the code efficiency of
instructions.

B Memory Space and Addressing
The FAMC-8FX CPU has the followi ng addressing modes related to memory access. ([] indicates one
byte):
* Direct addressing: Specify the lower 8 bits of the address using the operand. The accesses of operand
address 00 to 7F are always 0000y to 007Fy. The accesses of operand address
804 to FF are mapped to 0080y to 047Fy by setting of direct bank pointer (DP).
[Structure] [« OP code —] [« lower 8 bits —] ([« if operand available —)]
« Extended addressing: Specify al 16 bits using the operand.
[Structure] [« OP code —] [« upper 8 bits —] [« lower 8 bits —)]

« Bit direct addressing: Specify the lower 8 bits of the address using the operand. The accesses of operand
address 00 to 7F are always 0000y to 007Fy. The accesses of operand address

804 to FFy are mapped to 0080y to 047Fy by setting of direct bank pointer (DP).
The bit positions are included in the OP code.
[Structure] [« OP code: bit —] [« lower 8 bits —]

» Indexed addressing: Add the 8 bits of the operand to the index register (1X) together with the sign and
use the result as the address.

[Structure] [« OP code —] [« 8 offset bits —] ([« if operand available —])
» Pointer addressing: Use the contents of the extra pointer (EP) directly as the address.
[Structure] [« OP code —]

* Genera-purposeregister addressing: Specify the general-purpose registers. The register numbers are
included in the OP code.

[Structure] [« OP code: register —]
* Immediate addressing:Use one byte following the OP code as data.
[Structure] [« OP code —] [« Immediate data —]

e Vector addressing: Read the data from a table corresponding to the table number. The table numbers
are included in the OP code.

[Structure] [« OP code: table —]

« Relative addressing: Calculate the address relatively to the contents of the current PC. This addressing
mode is used during the execution of the relative jump and bit check instructions.

[Structure] [« OP code; table —] [« 8 hit relative value —]
Figure 2.2-1 shows the memory space accessible by each addressing mode.

CHAPTER 2 MEMORY SPACE

Figure 2.2-1 Memory Space and Addressing

FFFFH
FFDOH
FFCOH

047FH
0200H

0100H

0000~

Interrupt vector

Program area

””” N7

External area

I/0O area

: Direct addressing

: Extended addressing
: Bit direct addressing
: Index addressing

: Pointer addressing

: Immediate addressing
: Vector addressing
: Relative addressing

©EO®WOS

S

: General-purpose register addressing

Vo +127 bytes

-128 bytes

CHAPTER 2 MEMORY SPACE

2.2.1 Data Area

The F2MC-8FX CPU data area can be divided into the following three for each purpose:
» General-purpose register bank area

o Stack area

» Direct area

B General-Purpose Register Bank Area

The general-purpose register bank areain the F2MC-8FX CPU is assigned to 0100y to O1FF. The general-

purpose register numbers are converted to the actual addresses according to the conversion rule shown in
Figure 2.2-2 by using the register bank pointer (RP) and the lower 3 bits of the OP code.

Figure 2.2-2 Conversion Rule for Actual Addresses of General-purpose Register Bank Area

RP Lower bits of OP code
"g" "g" 0" mg" "o" "0" vor "1" |R4 R3 R2 R1 RO b2 bl b0

[e O A

Transaction address |A15 A14 A13 A12A11 A0 A9 A8 A7 A6 A5 A4 A3 A2 A1 AO

B Stack Area

The stack area in the FPMC-8FX CPU is used as the saving area for return addresses and dedicated
registers when the subroutine call instruction is executed and when an interrupt occurs. Before pushing data
into the stack area, decrease the contents of the 16-hit stack pointer (SP) by 2 and then write the data to be
saved to the address indicated by the SP. To pop data off the stack area, return data from the address
indicated by the SP and then increase the contents of the SP by 2. This shows that the most recently pushed
datain the stack is stored at the address indicated by the SP. Figure 2.2-3 and Figure 2.2-4 give examples of
saving datain the stack area and returning data fromit.

CHAPTER 2

MEMORY SPACE

Figure 2.2-3 Example of Saving Data in Stack Area

Before execution MEMORY After execution MEMORY
PUSHW A
SP‘ 1235+ .—> 67+ | 1235H SP‘ 1233H 674 | 1235H
1234+ CDH | 1234+
A | ABCDH A | ABCDH
| ABCDH | D ABCDs ||
1232H 1232H

Figure 2.2-4 Example of Returning Data from Stack Area

Before execution = MEMORY POPW IX After execution MEMORY
sp\ 5678H 567BH sp\ 567AH }_L 567BH
567AH 567AH
FEH | 5678H FEn | 678H

H Direct Area

10

The direct areain the FPMC-8FX CPU is located at the lower side of the memory space or the 1152 bytes
from 0000y to 047F and is mainly accessed by direct addressing and bit direct addressing. The area that

can be used at a time by direct addressing and bit direct addressing is 256 bytes. 128 bytes of 0000y to
007F can be used at any time as a direct area. 0080 to 047F is a direct bank of 128 bytes x 8 and can

use one direct bank as a direct area by setting the direct bank pointer (DP). Conversion from the operand
address of direct addressing and hit direct addressing to the real address is done by the conversion rule
shown in Table 2.2-1 by using DP.

Accessto it is obtained by the 2-byte instruction.
The /O control registers and part of RAM that are frequently accessed are arranged in this direct area.

Table 2.2-1 Conversion Rule for Actual Address of Direct Addressing and Bit Direct

Addressing
Operand address Direct bank pointer (DP) Actual address
00 to 7Fy 0000y, to 007F
- olo——— | 0080y to O0FF,
001 0100y to 017Fy
010 0180y to O1FFy
60, 10 FF, 011 0200 to 027F
100 0280y, to 02FF,
101 0300y to 037F
110 0380y to O3FFy
111 0400y, to 047F

CHAPTER 2 MEMORY SPACE

2.2.2 Program Area

The program area in the F2MC-8FX CPU includes the following two:
* Vector call instruction table
* Reset and interrupt vector table

B Vector Call Instruction Table
FFCOy to FFCFy of the memory space is used as the vector call instruction table. The vector call

instruction for the FAM C-8FX CPU provides access to this area according to the vector numbers included
in the OP code and makes a subroutine call using the data written there as the jump address. Table 2.2-2
indicates the correspondence of the vector numbers with the jJump address table.

Table 2.2-2 CALLV Jump Address Table

CALLV Jump address table
#k Upper address Lower address
#0 FFCO4 FFC1,
#1 FFC2, FFC3y
#2 FFC4, FFC5,,
#3 FFC6, FFC74
#4 FFC8, FFC9,
#5 FFCAL FFCB
#6 FFCCy FFCDy
#7 FFCEL FFCFy

B Reset and Interrupt Vector Table
FFCCy to FFFF of the memory space is used as the table indicating the starting address of an interrupt or

reset Table 2.2-3 indicates the correspondence between the interrupt numbers or resets and the reference
table.

11

2.2.2 Program Area
Table 2.2-2 CALLV Jump Address Table
(" FFC8H " → " FFC9H ")

CHAPTER 2 MEMORY SPACE

Table 2.2-3 Reset and Interrupt Vector Table

Interrupt No. Table address Interrupt No. Table address
Upper data Lower data Upper data Lower data
Reset FFFE, FFFFy #11 FFE4,, FFE5,
FFFCy FFFDy #12 FFE2, FFE3,
#0 FFFA FFFB, #13 FFEOy FFE1,
#1 FFF84 FFF94 #14 FFDEy FFDFy4
#2 FFF6, FFF74 #15 FFDCy FFDDy,
#3 FFF4, FFF5, #16 FFDA, FFDBy
#4 FFF2, FFF3, #17 FFD8,, FFD9,
#5 FFFOy FFF1y #18 FFD6y FFD74
#6 FFFE, FFFFy #19 FFDA4,, FFD5,
#7 FFECy FFFDy #20 FFD2, FFD3,
#8 FFEAL FFFB #21 FFDO FFD1,
#9 FFES, FFF9y #22 FFCEy FFCF4
#10 FFE6 FFE7, #23 FFCCy FFCDy,

12

FFFCH: Reserved
FFFDy: Mode

Note: The actual number varies according to the product.
Use the interrupt number #22 and #23 exclusively for vector call instruction, CALLV #6 and

CALLV #7

CHAPTER 2 MEMORY SPACE

2.2.3 Arrangement of 16-bit Data in Memory Space

The FPMC-8FX CPU can perform 16-bit data transfer and arithmetic operation though it
is an 8-bit CPU. Arrangement of 16-bit data in the memory space is shown below.

B Arrangement of 16-bit Data in Memory Space

As shown in Figure 2.2-5, the FPMC-8FX CPU treats 16-bit data in the memory as upper data if it is
written at the first location having alower address and as lower dataif it iswritten at the next location after

that.
Figure 2.2-5 Arrangement of 16-bit Data in Memory
Before execution MEMORY After execution MEMORY
MOVW ABCDH, A
ABCFH ABCFH
ABCEH 341 | ABCEH
A | 1234H A 1234H
ABCDH 1214 | ABCDH
ABCCH ABCCH

As when 16 bits are specified by the operand during the execution of an instruction, bytes are assumed to
be upper and lower in the order of their proximity to the OP code. This applies when the operand indicates
the memory address and 16-bit immediate data as shown in Figure 2.2-6.

Figure 2.2-6 Arrangement of 16-bit Data during Instruction Execution

[Example]
MOV A, 5678H ; Extended address
MOVWA, #1234H ; 16-bit immediate data

Q Assembled

XXXXH XX XX ; Extended address
XXXXH 60 5678 ; 16-bit immediate data
XXXXH E41234
XXXXH XX

The same may also apply to data saved in the stack by interrupts.

13

CHAPTER 2 MEMORY SPACE

14

CHAPTER 3

REGISTERS

This chapter explains the FMC-8FX dedicated registers
and general-purpose registers.

3.1 F2MC-8FX Registers

3.2 Program Counter (PC) and Stack Pointer (SP)
3.3 Accumulator (A) and Temporary Accumulator (T)
3.4 Program Status (PS)

3.5 Index Register (1X) and Extra Pointer (EP)

3.6 Register Banks

3.7 Direct Banks

15

CHAPTER 3 REGISTERS

3.1 F?°MC-8FX Registers

In the F?MC-8FX series, there are two types of registers: dedicated registers in the CPU,
and general-purpose registers in memory.

B F2MC-8FX Dedicated Registers

The dedicated register existsin the CPU as a dedicated hardware resource whose application is restricted to
the CPU architecture.

The dedicated register is composed of seven types of 16-bit registers. Some of these registers can be
operated with only the lower 8 hits.

Figure 3.1-1 shows the configuration of seven dedicated registers.

Figure 3.1-1 Configuration of Dedicated Registers

Initial value
FFFDH

0000H

0000H

0000H

0000H

0000H

RP :00000
DP :000

<— 16 bits —

PC Program counter: indicates the location of the stored instructions
A Accumulator: temporarily stores the result of operations and transfer
T Temporary accumulator: performs operations with the accumulator
IX Index register: indicates address indexes
EP Extra pointer: indicates memory addresses
Sp Stack pointer: indicates the current location of the top of the stack

RP |DP|CCR | Program status: stores register bank pointers, direct bank pointer

CCRr:IL1,0=110 v

Other flags=0 PS

and condition codes

B F2MC-8FX General-Purpose Registers
The general-purpose register is as follows:
* Register bank: 8-bit length: stores data

16

CHAPTER 3 REGISTERS

3.2 Program Counter (PC) and Stack Pointer (SP)

The program counter (PC) and stack pointer (SP) are application-specific registers
existing in the CPU.

The program counter (PC) indicates the address of the location at which the instruction
currently being executed is stored.

The stack pointer (SP) holds the addresses of the data location to be referenced by the
interrupt and stack push/pop instructions. The value of the current stack pointer (SP)
indicates the address at which the last data pushed onto the stack is stored.

B Program Counter (PC)
Figure 3.2-1 shows the operation of the program counter (PC).

Figure 3.2-1 Program Counter Operation

Before execution MEMORY After execution MEMORY
PC 1234H PC 1235H
L 1235H| XXu
. 1234
12341 O0H | Instruction "NOP" executed " 00H

B Stack Pointer (SP)
Figure 3.2-2 shows the operation of the stack pointer (SP).

Figure 3.2-2 Stack Pointer Operation

Before execution MEMORY After execution MEMORY
A | 1234n S679H| XXH A | 1234n 5679H | XXH
5678H| XX 5678 XXH
sp| se78n | i sp| 5676 H
5677H 56774 | 32H
5676H 5676H| 12H
PUSHW A

17

CHAPTER 3 REGISTERS

3.3 Accumulator (A) and Temporary Accumulator (T)

The accumulator (A) and temporary accumulator (T) are application-specific registers

existing in the CPU.

The accumulator (A) is used as the area where the results of operations are temporarily

stored.

The temporary accumulator (T) is used as the area where the old data is temporarily
saved for data transfer to the accumulator (A) or the operand for operations.

B Accumulator (A)

For 16-bit operation all 16 bits are used as shown in Figure 3.3-1. For 8-bit operation only the lower 8 bits

are used as shown in Figure 3.3-2.

Figure 3.3-1 Accumulator (A) Operation (16-bit Operation)

Before execution

A 1234H

T 5678H

cr[1

ADDCW A

After execution

68ADH

5678H

cp@

Figure 3.3-2 Accumulator (A) Operation (8-bit Operation)

Before execution

A 1234H
T 5678H
CF| 1

ADDC A

After execution

12ADH

5678H

CF 0

B Temporary Accumulator (T)

When 16-hit data is transferred to the accumulator (A), al the old 16-bit data in the accumulator is
transferred to the temporary accumulator (T) as shown in Figure 3.3-3. When 8-bit data is transferred to the
accumulator, old 8-bit data stored in the lower 8 bits of the accumulator is transferred to the lower 8 bits of
the temporary accumulator as shown in Figure 3.3-4. Although al 16-bits are used as the operand for 16-bit
operations as shown in Figure 3.3-5, only the lower 8 bits are used for 8-bit operations as shown in Figure

3.3-6.

18

CHAPTER 3 REGISTERS

Figure 3.3-3 Data Transfer between Accumulator (A) and Temporary Accumulator (T) (16-bit Transfer)

A

T

Before execution

5678H

XXXXH

L

After execution

A

1234H

T

5678H

MOVW A, #1234H

Figure 3.3-4 Data Transfer between Accumulator (A) and Temporary Accumulator (T) (8-bit Transfer)

A

T

Before execution

5678H

XXXXH

S

MOV A, #12H

After execution

A

5612H

T

XX78H

Figure 3.3-5 Operations between Accumulator (A) and Temporary Accumulator (T) (16-bit Operations)

A

T

1234H+5678H+1
Before execution \ After execution
1234H + / > A 68ADH
5678H T 5678H
ADDCW A
CF| 1 CF| O

Figure 3.3-6 Operations between Accumulator (A) and Temporary Accumu

A

T

34H+78H+1
Before execution J\
1234H + /
5678H
ADDC A
CH 1

After execution

A| 12ADwH
T 5678H
CF 0

lator (T) (8-bit Operations)

19

CHAPTER 3 REGISTERS

3

3.1

How To Use The Temporary Accumulator (T)

The F2MC-8FX CPU has a special-purpose register called a temporary accumulator. This
section described the operation of this register.

B How to Use the Temporary Accumulator (T)

20

The FAMC-8FX CPU has various binary operation instructions, some data transfer instructions and the
temporary accumulator (T) for 16-bit data operation. Although there is no instruction for direct data
transfer to the temporary accumulator, the value of the original accumulator is transferred to the temporary
accumulator before executing the instruction for data transfer to the accumulator. Therefore, to perform
operations between the accumulator and temporary accumulator, execute operations after carrying out the
instruction for data transfer to the accumulator twice. Since data is not automatically transferred by all
instructions to the temporary accumulator, see the columns of TL and TH in the instruction list for details
of actual data transfer instructions. An example of addition with carry of 16-bit data stored at addresses
1280y and 0042, is shown below.

MOVW A, 0042H - @D
MOVW A, 1280H - @
ADDCW A - B

Figure 3.3-7 shows the operation for the accumulator and temporary accumulator when the above example
is executed.

Figure 3.3-7 Operation of Accumulator (A) and Temporary Accumulator (T) in Word Data Processing

Before execution

Last result

1281H
1280H

0043+
0042+

Al XXXXH —>A 12344 — A 5678 TF»A 68ACH
T XXXXH L%T XXXXH L%T 12344 - CH O| T 1234u
RAM RAM RAM RAM
78+ ®|) 12810 784 | | (@ 12811 | 78 @) 1281n| 78
561 12801 | 56+ J L/ 12804 | 56w 12801 | 56H
34H l 0043H| 34H 0043H| 34H 0043n| 34n
12+ J 0042+ 12+ 0042+ | 12+ 0042+ | 12+

CHAPTER 3 REGISTERS

3.3.2 Byte Data Transfer and Operation of Accumulator (A)
and Temporary Accumulator (T)

When data transfer to the accumulator (A) is performed byte-by-byte, the transfer data
is stored in the AL. Automatic data transfer to the temporary accumulator (T) is also
performed byte-by-byte and only the contents of the original AL are stored in the TL.
Neither the upper 8 bits of the accumulator nor the temporary accumulator are affected
by the transfer. Only the lower 8 bits are used for byte operation between the
accumulator and temporary accumulator. None of the upper 8 bits of the accumulator or
temporary accumulator are affected by the operation.

B Example of Operation of Accumulator (A) and Temporary Accumulator (T) in Byte Data
Processing

An example of addition with carry of 8-bit data stored at addresses 1280 and 0042 is shown below.

MOV A, 0042H - @
MOV A, 1280H -)
ADDC A - ©)

Figure 3.3-8 shows the operation of the accumulator and temporary accumulator when the above example
is executed.

Figure 3.3-8 Operation of Accumulator and Temporary Accumulator in Byte Data Processing

Before execution Last result
Al ABXXn LHA ABEFH —>A| AB56H T T+ —A| AB6H
T CDXXH —>T| CDXXn L%T CDEFn ' CF1 | T| CDEF#

RAM RAM RAM RAM
® (@
12801 | 56H [1280H| 56H [1280H | 56H ® 1280H | 56H

00421 | EFH 0042+ EFH 0042H| EFH 0042+H| EFH

*1 The TH does not change when there is automatic data transfer to the temporary accumulator.

*2 The AH is not changed by the result of the addition of the AL, TL, and CF.

21

CHAPTER 3 REGISTERS

B Direct Data Transfer from Temporary Accumulator (T)

The temporary accumulator (T) is basically temporary storage for the accumulator (A). Therefore, data
from the temporary accumulator cannot be transferred directly to memory. However, as an exception, using
the accumulator as a pointer enabling saving of the contents of the temporary accumulator in memory. An

example of this case is shown below.

Figure 3.3-9 Direct Data Transfer from Temporary Accumulator (T)

[Example] MOVW @A, T
Before execution After execution
Al 1234H Al 1234n
T| CDEFH T| CDEFH
RAM RAM
12351 | XXH 1235H| EFH
1234n | XXH ‘{ 1234H| CDH

22

CHAPTER 3 REGISTERS

3.4 Program Status (PS)

The program status (PS) is a 16-bit application-specific register existing in the CPU.

In upper byte of program status (PS), the upper 5-bit is the register bank pointer (RP)
and lower 3-bit is the direct bank pointer (DP). The lower byte of program status (PS) is
the condition code register (CCR). The upper byte of program status (PS), i.e. RP and
DP, is mapped to address 00784. So it is possible to make read and write accesses to

them by an access to address 0078,.

B Structure of Program Status (PS)
Figure 3.4-1 shows the structure of the program status.

The register bank pointer (RP) indicates the address of the register bank currently in use. The relationship
between the contents of the register bank pointer and actual addressesis as shown in Figure 3.4-2.

DP shows the memory area (direct bank) used for direct addressing and bit direct addressing. Conversion
from the operand address of direct addressing and bit direct addressing to the real address follows the
conversion rule shown in Table 3.4-1 by using DP.

The condition code register (CCR) has bits for indicating the result of operations and the content of transfer
data and bits for controlling the operation of the CPU in the event of an interrupt.

Figure 3.4-1 Structure of Program Status (PS)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
PS RP DP H{ I |ILO,L1|N|Z |V |C

- I\ AN _J

RP DP CCR

Figure 3.4-2 Conversion Rule for Actual Address of General-purpose Register Area

RP Lower bits of OP code

"0" "Q" "0" "0" "0 "mog" "1" | R4 R3 R2 R1 RO/ b2 bl bO
| |

g g
| |] Lol
Transaction address |[A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 Al A0

23

CHAPTER 3 REGISTERS

Table 3.4-1 Conversion Rule for Actual Address of Direct Addressing and Bit
Direct Addressing

Operand address Direct bank pointer (DP) Actual address
004 to 7Fy 0000, to 007F,
000 0080, to O0OFFy
001 0100 to 017F
010 0180, to O1FFy
011 0200 to 027F
80 to FFy
100 0280y to 02FF4
101 0300, to 037F
110 0380y to 03FF
111 0400 to 047F

B Program Status (PS) Flags
The program status flags are explained below.

24

H flag

Thisflagis 1 if acarry from bit 3 to bit 4 or a borrow from bit 4 to bit 3 is generated as the result of an
operation, and it is O in other cases. Because it is used for decimal compensation instructions, it cannot
be guaranteed if it is used for applications other than addition or subtraction.

| flag

Aninterrupt is enabled when thisflag is 1 and is disabled when it is 0. It is set to O at reset which results
in the interrupt disabled state.

IL1,1LO

These bits indicate the level of the currently-enabled interrupt. The interrupt is processed only when an
interrupt request with a value less than that indicated by these bitsisissued.

IL1 ILO Interrupt level High and low
0 0 0 Highest
0 1 1
1 0 2
1 1 3 Lowest
« Nflag
Thisflag is 1 when the most significant bit is 1 and is O when it is 0 as the result of an operation.
« Zflag

Thisflag is 1 when the most significant bit is0 and is 0 in other cases as the result of an operation.
V flag

CHAPTER 3 REGISTERS

Thisflag is 1 when atwo’s complement overflow occurs and is O when one does not as the result of an
operation.

+ Cflag
This flag is 1 when a carry or a borrow, from bit 7 in byte mode and from bit 15 in word mode, is
generated as the result of an operation but O in other cases. The shifted-out value is provided by the shift
instruction.
B Access to Register Bank Pointer and Direct Bank Pointer

The upper byte of program status (PS), i.e. register bank pointer (RP) and direct bank pointer (DP), is
mapped to address 0078. So it is possible to make read and write accesses to them by an access to address
0078y, besides using instructions that have accessto PS (MOVW A, PSor MOVW PS, A).

25

CHAPTER 3 REGISTERS

3.5 Index Register (1X) and Extra Pointer (EP)

The index register (IX) and extra pointer (EP) are 16-bit application-specific registers
existing in the CPU.

The index register (IX) adds an 8-bit offset value with its sign to generate the address
stored by the operand.

The extra pointer (EP) indicates the address stored by the operand.

B Index Register (IX)
Figure 3.5-1 indicates the operation of the index register.

Figure 3.5-1 Operation of Index Register (1X)

Before execution MEMORY After execution MEMORY
A | XXXXH 56CFH A | 1234H 56CFH
56CEH | 34n 56CEH| 34H
IX| 5678+ IX| 5678H
56CDH | 12H 56CDH| 12H
56CCH 56CCH
MOVW A, @IX+55H 5678H+0055H
H = 56CDH
B Extra Pointer (EP)
Figure 3.5-2 shows the operation of the extra pointer.
Figure 3.5-2 Operation of the Extra Pointer (EP)
Before execution MEMORY After execution MEMORY
A | XXXXH 5679H | 34H A | 1234+ 5679H| 34H
5678H | 12H 5678H| 124
EP| 5678+ EP| 5678+
S677H 5677H
5676H 5676H
MOVW A, @EP

26

3.6 Register Banks

CHAPTER 3 REGISTERS

The register bank register is an 8-bit general-purpose register existing in memory.

There are eight registers per bank of which there can be 32 altogether. The current bank
Is indicated by the register bank pointer (RP).

B Register Bank Register

Figure 3.6-1 shows the configuration of the register bank.

Figure 3.6-1 Configuration of Register Bank

Address = 0100H + 8 * (RP)

—Ro

R1
R2
R3
R4
R5
R6

R7

Memory area

} Maximum of 32 banks

27

CHAPTER 3 REGISTERS

3.7 Direct Banks

The direct bank is in 0080 to 047Fy of direct area, and composed of 128 bytes x 8

banks. The access that uses direct addressing and bit direct addressing in operand
address 80y to FF can be extended to 8 direct banks according to the value of the

direct bank pointer (DP). The current bank is indicated by the direct bank pointer (DP).

B Direct Bank
Figure 3.7-1 shows the configuration of a direct bank.
The access that uses direct addressing and bit direct addressing in operand address 80y to FFy can be

extended to 8 direct banks according to the value of the direct bank pointer (DP). The access that uses
direct addressing and bit direct addressing in operand address 00 to 7F, is not affected by the value of the

direct bank pointer (DP). This accessis directed to fixed direct area 0000 to 007F.

Figure 3.7-1 Configuration of Direct Bank

28

Memory
/ Direct bank 7 047Fy

Direct addressing / (bP=111) 04004
and /,/ /,/ ! :
Operand address Sy i |

In bit direct addressing ! // Direct bank 1 017Fy Direct area

Ll (DP=001) 0100y,

PP /! Direct bank 0 OOFF

804 L (DP=000) 0080y

P - - 007Fy

oy | Fixed direct area 0000},

CHAPTER 4

INTERRUPT PROCESSING

This chapter explains the functions and operation of
F2MC-8FX interrupt processing.

4.1 Outline of Interrupt Operation

4.2 Interrupt Enable/Disable and Interrupt Priority Functions
4.3 Creating an Interrupt Processing Program

4.4 Multiple Interrupt

4.5 Reset Operation

29

CHAPTER 4 INTERRUPT PROCESSING

4.

1 Outline of Interrupt Operation

F°MC-8FX series interrupts have the following features:

Four interrupt priority levels

All maskable features

Vector jump feature by which the program jumps to address mentioned in the
interrupt vector.

B Outline of Interrupt Operation

30

In the FPMC-8FX series, interrupts are transferred and processed according to the following procedure:

1.
2.

An interrupt source occurs in resources.

Refer to interrupt enable bits in resources. If an interrupt is enabled, interrupt requests are issued from
resources to the interrupt controller.

As soon as an interrupt request is received, the interrupt controller decides the priorities of the interrupt
requested and then transfers the interrupt level corresponding to the interrupts applicable to the CPU.

The CPU compares the interrupt levels requested by the interrupt controller with the IL bit in the
program status register.

In the comparison, the CPU checks the contents of the | flag in the same program status register only if
the priority is higher than the current interrupt processing level.

In the check in 5., the CPU sets the contents of the IL bit to the requested level only if the | flag is
enabled for interrupts, processes interrupts as soon as the instruction currently being executed is
completed and then transfers control to the interrupt processing routine.

The CPU clears the interrupt source caused in 1. using software in the user’s interrupt processing
routine to terminate the processing of interrupts.

CHAPTER 4 INTERRUPT PROCESSING

Figure 4.1-1 shows the flow diagram of F2MC-8FX interrupt operation.

Figure 4.1-1 Outline of F2MC-8FX Interrupt Operation

(%) 2
2 F"MC-8FX CPU | IL
E
g ® @
£
Check [—Comparator
®F
Peripheral S
©
IS,
o
Interrupt request| | _ %
enable bit AND @ » =
> Interrupt request| |]
@ | |flag —
1 Peripheral Interrupt
controller

31

CHAPTER 4 INTERRUPT PROCESSING

4.2 Interrupt Enable/Disable and Interrupt Priority Functions

In the F’MC-8FX series, interrupt requests are transferred to the CPU using the three
types of enable/disable functions listed below.

* Request enable check by interrupt enable flags in resources

* Checking the level using the interrupt level determination function

* Interrupt start check by the | flag in the CPU

Interrupts generated in resources are transferred to the CPU with the priority levels
determined by the interrupt priority function.

B Interrupt Enable/Disable Functions
» Request enable check by interrupt enable flags in resources

Thisisafunction to enable/disable arequest at the interrupt source. If interrupt enable flags in resources
are enabled, interrupt request signals are sent from resources to the interrupt controller. This function is
used for controlling the presence or absence of an interrupt, resource-by-resource. It is very useful
because when software is described for each resource operation, interrupts in another resource do not

need to be checked for whether they are enabled or disabled.
» Checking the level using the interrupt level determination function

This function determines the interrupt level. The interrupt levels corresponding to interrupts generated
in resources are compared with the IL bit in the CPU. If the value is less than the IL bit, a decision is
made to issue an interrupt request. This function is able to assign priorities if there are two or more

interrupts.
» Interrupt start check by the | flag in the CPU

The | flag enables or disables the entire interrupt. If an interrupt request is issued and the | flag in the
CPU is set to interrupt enable, the CPU temporarily suspends the flow of instruction execution to

process interrupts. Thisfunction is able to temporarily disable the entire interrupt.

B Interrupt Requests in Resources

As shown in Figure 4.2-1, interrupts generated in resources are converted by the corresponding interrupt

level registersin theinterrupt controller into the values set by software and then transferred to the CPU.
Theinterrupt level isdefined as high if its numerical value islower, and low if it is higher.

32

CHAPTER 4 INTERRUPT PROCESSING

Figure 4.2-1 Relationship between Interrupt Request and Interrupt Level in Resources

To CPU Interrupt level register

Resource #1

1H
Interrupt
request F/F 2H
Resource #2 OH
Resource #n 3H
Interrupt controller

33

CHAPTER 4 INTERRUPT PROCESSING

4.3 Creating an Interrupt Processing Program

In the F2MC-8FX series, basically, interrupt requests from resources are issued by
hardware and cleared by software.

B Creating an Interrupt Processing Program
Theinterrupt processing control flow is as follows:

1. Initialize resources before operation.
2. Wait until an interrupt occurs.

3. Inthe event of an interrupt, if the interrupt can be accepted, perform interrupt processing to branch to
the interrupt processing routine.

4. Firdt, set software so as to clear the interrupt source at the beginning of the interrupt processing routine.
This is done so that the resource causing an interrupt can regenerate the interrupt during the interrupt
processing program.

5. Next, perform interrupt processing to transfer the necessary data.

6. Usetheinterrupt release instruction to release the interrupt from interrupt processing.

7. Then, continue to execute the main program until an interrupt recurs. The typical interrupt processing
flow is shown in Figure 4.3-1.

The numbersin the figure correspond to the numbers above.

Figure 4.3-1 Interrupt Processing Flow

Interrupt processing program

Main program Set he interrupt level
to the IL bit.

@ Clear the interrupt source: To accept a multiple interrupts

@ Initialize the from the same resource.

Set the interrupt request from (|2) resource.

the resource in hardware and
issue an interrupt request.

— Prevent multiple
interrupts of the
same level.

® Interrupt processing program: Transfer the actual
’ processing data.

@
m Release the interrupt from the interrupt processing.

The time to transfer control to the interrupt processing routine after the occurrence of an interrupt 3 in
Figure 4.3-1) is 9 instruction cycles. An interrupt can only be processed in the last cycle of each instruction.
The time shown in Figure 4.3-2 is required to transfer control to the interrupt processing routine after an
interrupt occurs.

The longest cycle (17 + 9 = 26 instruction cycles) is required when an interrupt request is issued
immediately after starting the execution of the DIVU instruction.

34

CHAPTER 4 INTERRUPT PROCESSING

Figure 4.3-2 Interrupt Response Time

CPU operation > «<— Normal __o. Interrupt
instruction execution handling

>

—

< Interrupt processing program

D o
'
'

:eSampIe wait (a) > 9 instruction
cycles (b)

Interrupt wait time —

T Interrupt request issued

Note: It will take (a) + (b) instruction cycles to transfer control to
the interrupt processing routine after an interrupt occurs.

—

<—> |ndicates the last instruction cycle
in which an interrupt is sampled.

35

CHAPTER 4 INTERRUPT PROCESSING

4.4 Multiple Interrupt

The F2MC-8FX CPU can have a maximum of four levels as maskable interrupts. These
can be used to assign priorities to interrupts from resources.

B Multiple Interrupt
A specific exampleis given below.

» When giving priority over the A/D converter to the timer interrupt

START MOV ADIL, #2 Set the interrupt level of the A/D converter to 2.
MOV TMIL, #1 Set the interrupt level of thetimer to 1. ADIL and
TMIL arelL bitsin the interrupt controller.
CALL STAD Start the A/D converter.
CALL STTM Start the timer.

When the above program is started, interrupts are generated from the A/D converter and timer after an
elapsed time. In this case, when the timer interrupt occurs while processing the A/D converter interrupt, it
will be processed through the sequence shown in Figure 4.4-1.

Figure 4.4-1 Example of Multiple Interrupt

Main program))))
: A/D converter interrupt processing Process the timer interrupt.

| IL=2 =
Initialize the resource. @ | . . IL=1
| @ Timer interrupt
The A/D converter @ | occurs. @ Process the timer interrupt.

Suspended

Resumed ® Release the timer interrupt.
| Process the A/D N

| converter interrupt.
@ Release the timer interrupt.

interrupt occurs.

The main program
is resumed.

When starting processing of an A/D converter interrupt, the IL bit in the PS register of the CPU is
automatically the same as the value of request (2 here). Therefore, when alevel 1 or O interrupt request is
issued during the processing of an A/D converter interrupt, the processing proceeds without disabling the
A/D converter interrupt request. When temporarily disabling interrupts lower in priority than this interrupt
during A/D converter interrupt processing, disable the | flag in the PS register of the CPU for the interrupts
or set the IL bit to O.

When control is returned to the interrupted routine by the release instruction after completion of each
interrupt processing routine, the PS register is set to the value saved in the stack. Consequently, the IL bit
takes on the value before interruption.

For actual coding, refer to the Hardware Manual for each device to check the addresses of the interrupt
controller and each resource and the interrupts to be supported.

36

CHAPTER 4 INTERRUPT PROCESSING

4.5 Reset Operation

In the F2MC-8FX series, when a reset occurs, the flag of program status is 0 and the IL
bit is set to 11. When cleared, the reset operation is executed from the starting address
written to set vectors (FFFEy, FFFFR).

B Reset Operation
A reset affects:

Accumulator, temporary accumulator: Initializes to 0000y

Stack pointer: Initializes to 00004

Extra pointer, index register: Initializes to 00004

Program status: Setsflagto O, sets|IL bit to 11, sets RP bit to 00000 and Initializes DP bit to 000
Program counter: Reset vector values

RAM (including general-purpose registers): Keeps value before reset

Resources: Basically stop

Others: Refer to the manual for each product for the condition of each pin

Refer to the manual for each product for details of the value and operation of each register for special reset
conditions.

37

CHAPTER 4 INTERRUPT PROCESSING

38

CHAPTER 5
CPU SOFTWARE
ARCHITECTURE

This chapter explains the instructions for the F?MC-8FX
CPU.

5.2 Special Instructions

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

5.1 Types of Addressing Modes

The F2MC-8FX CPU has the following ten addressing modes:
» Direct addressing (dir)

Extended addressing (ext)

Bit direct addressing (dir:b)

Indexed addressing (@IX+off)

Pointer addressing (@EP)
General-purpose register addressing (Ri)
Immediate addressing (#imm)

Vector addressing (#k)

Relative addressing (rel)

Inherent addressing

B Direct Addressing (dir)
This addressing mode, indicated as "dir" in the instruction list, is used to access the direct area from 0000
to 047F,. In this addressing, when the operand address is 00y to 7Fy, it accesses 0000 to OO07F.
Moreover, when the operand address is 80 to FFy, the access is good to 0080y to 047F at the mapping
by direct bank pointer DP setting.

[Example] MOV 92H,A

Y

0112, | 45, }F A| 45,
I

DP | 001,

B Extended Addressing (ext)
This addressing mode, indicated as "ext" in the instruction list, is used to access the entire 64-Kbyte area. In
this addressing mode, the upper byte is specified by the first operand and the lower byte by the second
operand.

M Bit Direct Addressing (dir:b)

This addressing mode, indicated as "dir:b" in the instruction list, is used for bit-by-bit access of the direct
area from 0000y to 047Fy. In this addressing, when the operand address is 00y to 7Fy, it accesses 0000

to 007F. Moreover, when the operand address is 80y to FFy, the access is good to 0080 to 047F at the
mapping by direct bank pointer DP setting. The position of the bit in the specified address is specified by
the value for the instruction code of three subordinate position bits.

[Example] SETB 34H: 2 76543210

00340 | XXXXX1XXs
DP | XXXg - RS y

40

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

B Index Addressing (@IX+off)
This addressing mode, indicated as " @I X+off" in the instruction list, is used to access the entire 64-Kbyte
area. In this addressing mode, the contents of the first operand are sign-extended and then added to the
index register (1X). Theresult is used as the address.

[Example] MOVW A, @IX+5AH

IX| 27A5H

1234+

+ 2800H| 34H
— A

\—’27FFH 12H

B Pointer Addressing (@EP)

This addressing mode, indicated as " @EP" in the instruction list, is used to access the entire 64-Kbyte area.
In this addressing mode, the contents of the extra pointer (EP) are used as the address.

[Example] MOVW A, @EP

1234+

EP| 27A5H

27A5H| 12+

27A6H 34 }
> A

B General-Purpose Register Addressing (Ri)
This addressing mode, indicated as "Ri" in the instruction list, is used to access the register bank area. In
this addressing mode, one upper byte of the address is set to 01 and one lower byte is created from the
contents of the register bank pointer (RP) and the 3 lower bits of the instruction to access this address.

[Example] MOV A, R2

.

B Immediate Addressing (#imm)
This addressing mode, indicated as "#imm" in the instruction list, is used for acquiring the immediate data.
In this addressing mode, the operand is used directly as the immediate data. The byte or word is specified
by the instruction code.

[Example] MOV A, #56H

T >A | 56H

41

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

B Vector Addressing (#k)

This addressing mode, indicated as "#k" in the instruction list, is used for branching to the subroutine
address registered in the table. In this addressing mode, the information about #k is contained in the
instruction code and the table addresses listed in Table 5.1-1 are created.

Table 5.1-1 Jump Address Table

H*
=

Address table (upper jump address: lower jump address)
FFCOy:FFC1,
FFC2,:FFC3y
FFC4,,:FFC5
FFC6,:FFC74
FFC8,:FFC9,
FFCA:FFCBy
FFCC,:FFCDy
FFCE:FFCFy

N o o A W] N[R| O

[Example] CALLV #5

(Conversion) —FFCAH| FEH

—PC| FEDCH

FFCBH| DCH

B Relative Addressing (rel)

This addressing mode, indicated as "rel" in the instruction list, is used for branching to the 128-byte area
across the program counter (PC). In this addressing mode, the contents of the operand are added with their
sign, to the program counter. The result is stored in the program counter.

[Example] BNE *+FEH

T{ 9ABCH + FFFEH
OldPC | 9ABCH — New PC | 9ABAH

In this example, the program jumps to the address where the instruction code BNE is stored, resulting in an
infinite loop.
B Inherent Addressing

This addressing mode, which has no operand in the instruction list, is used for operations to be determined
by the instruction code. In this addressing mode, the operation varies for every instruction.

[Example] NOP

Old PC 9ABCH New PC | 9ABDH

42

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

5.2 Special Instructions

In the F°MC-8FX series, the following six special instructions are available:
« JMP @A

« MOVW A, PC

 MULUA

« DIVUA

« XCHWA, PC

o« CALLV #k

H IJMP @A
Thisinstruction is used for branching to an address where the contents of the accumulator (A) are used. The
contents of one of the N jump addresses arranged in table form is selected and transferred to the
accumulator. Executing this instruction enables the N-branch processing.

[Example] JMP @A

Before execution After execution

12341 |— F[B Al 12344

Old PC| XXXXH —> New PC 1234H

B MOVW A, PC
This instruction is used for performing the opposite operation to IMP @A. In other words, it stores, the
contents of the program counter (PC) in the accumulator (A). When this instruction is executed in the main
routine and a specific subroutine is to be called, make sure that the contents of the accumulator are the
specified value in the subroutine, that is the branch is from the expected section, enabling a decision on

crash.
[Example] MOVW A, PC
Before execution After execution
A | XXXXH A | 1234n
Old PC| 1234n New PC 1234H

When this instruction is executed, the contents of the accumulator are the same as those of the address
where the code for the next instruction is stored and not the address where the code for this instruction is
stored. The above example shows that the value 1234 stored in the accumulator agrees with that of the

address where the instruction code next to MOVW A, PC is stored.

43

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

B MULU A

B DIVU A

Thisinstruction is used for multiplying 8 bits of the AL by 8 bits of the TL without a sign and stores the 16-
bit result in the accumulator (A). The contents of the temporary accumulator (T) do not change. In the
operation, the original contents of the AH and TH are not used. Since the flag does not change, attention
must be paid to the result of multiplication when branching accordingly.

[Example] MULUA, T

Before execution After execution

A| 5678H 1860H

T 1234+ T

1234H

This instruction is used for dividing 16 bits of the temporary accumulator (T) by 16 bits of the A without a
sign and stores the results as 16 bitsin the A and the remainder as 16 bitsin the T. When A is 0000y, Z flag

is1as0division. At thistime, the operation result is not guaranteed.

[Example] DIVU A
Before execution After execution
A | 12344 A| 0004n
T 5678H T ODAS8H

B XCHW A, PC

44

This instruction is used for exchanging the contents of the accumulator (A) for those of the program
counter (PC). As a result, the program branches to the address indicated by the contents of the origina
accumulator and the contents of the current accumulator become the value of the address next to the one
where the instruction code XCHW A, PC is stored. This instruction is provided especially for specifying
tables using the main routine and for subroutinesto use them.

[Example] XCHW A, PC

Before execution After execution

A 5678H Al 1235H

PC PC

1234+ 5678H

When this instruction is executed, the contents of the accumulator are the same as those of the address
where the code for the next instruction is stored and not the address where the code for this instruction is
stored. The above example shows that the value of the accumulator 1235, agrees with that of the address

where the instruction code next to XCHW A, PC is stored. Consequently, 1235, not 1234, is indicated.

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

Figure 5.2-1 Example of Using XCHW A, PC

[Main routine] [Subroutine]

MOVW A, #PUTSUB J PUTSUB XCHW A, EP
XCHW A, PC PUSHW A
DB 'PUT OUT DATA', EOL PTS1 MOV A, @QEP

INCW EP
MOVW A, #1234+
. MOV IO, A - Qutput table data here.

CMP A, #EOL
BNE PTS1
POPW A
XCHW A, EP
JMP @A

B CALLV #k
This instruction is used for branching to a subroutine address registered in the table. In this addressing
mode, the information about #k isincluded in the instruction code and the tale addresses listed in Table 5.2-
1 are created. After saving the contents of the current program counter (PC) in the stack, the program
branches to the address in the table. Because it is a 1-byte instruction, using it for frequently-used
subroutines reduces the size of the entire program.

Table 5.2-1 Jump Address Table

#k Address table (upper jump address : lower jump address)
0 FFCOy:FFC1,
1 FFC2,:FFC3,
2 FFC4,:FFC5
3 FFC6y:FFC74
4 FFC8,:FFC9y
5 FFCA:FFCBy
6 FFCC,:FFCDy
7 FFCE,:FFCFy

45

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

[Example] CALLV #3
Before execution

PC| 5678H PC| FEDCH
sp| 1234n -2 SP| 1232H

After execution

12341 | DCH FFC7v | DCH

12341 | FEH FFC6H | FEH
E—

1233H| XXH 12331 | 79H

1232H| XXH 1232H| 56H

46

CHAPTER 6

DETAILED RULES
FOR EXECUTION
INSTRUCTIONS

This chapter explains each execution instruction, used
in the assembler, in reference format.

All execution insurrections are described in alphabetical
order.

For information about the outline of each item and the meaning of
symbols (abbreviations) explained for each execution instruction,
see "CHAPTER 5 CPU SOFTWARE ARCHITECTURE".

47

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.1 ADDC (ADD Byte Data of Accumulator and Temporary
Accumulator with Carry to Accumulator)

Add the byte data of TL to that of AL, add a carry to the LSB and then return the results
to AL. The contents of AH are not changed.

B ADDC (ADD Byte Data of Accumulator and Temporary Accumulator with Carry to
Accumulator)

Operation

(AL) « (AL) + (TL) + (C) (Byte addition with carry)
Assembler format

ADDCA
Condition code (CCR)

N 4 \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to 0 in other cases.
Z: Setto 1if theresult of operation is 00 and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Setto 1if acarry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1
OP code: 22

48

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example :

12 ' 34

56 | 78

0L

ADDC A

FFFFH

T

Memory

'

Byte 0O000H

N Z A\ C

—~[oolo]o]

— Byte J— Byte —

(Before execution)

PS

FFFFH

T

Memory

!

Byte 0O000H

N 4 Vv C

—[1]of1]o]

(After execution)

49

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.2 ADDC (ADD Byte Data of Accumulator and Memory with
Carry to Accumulator)

Add the byte data of EA memory (memory expressed in each type of addressing) to that
of AL, add a carry to the LSB and then return the results to AL. The contents of AH are
not changed.

B ADDC (ADD Byte Data of Accumulator and Memory with Carry to Accumulator)
Operation
(AL) « (AL) + (EA) + (C) (Byte addition with carry)
Assembler format
ADDCA, EA
Condition code (CCR)

N Z \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1if the MSB of AL is1 asthe result of operation and set to O in other cases.
Z: Set to 1if the result of operation is 00 and set to O in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.

C: Setto 1if acarry occurs as the result of operation and set to O in other cases.

Table 6.2-1 Number of Execution Cycles / Byte Count / OP Code

50

EA #d8 dir @IX+off @EP Ri
Number of execution 2 3 3 2 2
cycles
Byte count 2 2 2 1 1
OP code 24 25 26 27 2810 2F

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : ADDC A, #25H

Memory FFFFH

12 | 34]
; Byte 0000H
N Z VvV C
; o|lo| 0] 1
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

12 | 5A A
; Byte 0000H
N zZz V C
ojo|o|oO
L Byte J_ Byte — (After execution)

51

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.3 ADDCW (ADD Word Data of Accumulator and Temporary
Accumulator with Carry to Accumulator)

Add the word data of T to that of A, add a carry to the LSB and then return the results to
A.

B ADDCW (ADD Word Data of Accumulator and Temporary Accumulator with Carry to
Accumulator)

Operation

(A) « (A) + (T) + (C) (Word addition with carry)
Assembler format

ADDCW A
Condition code (CCR)

N Y4 \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB of A is 1 astheresult of operation and set to 0 in other cases.
Z: Set to 1if the result of operation is 0000 and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Setto 1if acarry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1
OP code: 23

52

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : ADDCW A

Memory FFFFH

12 . 34 T
56 | 78
; Byte 0000H
N Z VvV C
i —|0]0|0]|1
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

68 : AD T
56 | 78
: Byte 0000H
N zZz V C
i 0/0|0]|0O
L Byte J_ Byte — (After execution)

53

Execution example : ADDCW A
(NZVC = "1010" → NZVC = "0000")

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.4 AND (AND Byte Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical AND on the byte data of AL and TL for every bit and return the
result to AL. The byte data of AH is not changed.

B AND (AND Byte Data of Accumulator and Temporary Accumulator to Accumulator)
Operation
(AL) « (AL) ~ (TL) (Byte AND)
Assembler format
AND A
Condition code (CCR)

N 4 \Y, C

+ + R -

+: Changed by executing instruction

-2 Not changed

R: Set to 0 by executing instruction

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to O in other cases.
Z: Setto 1if theresult of operation is 00y and set to O in other cases.

V: Alwayssetto 0

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 62

54

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : AND A

Memory FFFFH

12 © 34 T

XX+ 2C

' |

i Byte 0000H

L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

12 | 24 t
XX | 2C
: Byte 000O0H
N Z V C
i 0jo0|o0|oO
L Byte J_ Byte — (After execution)

55

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.5 AND (AND Byte Data of Accumulator and Memory to
Accumulator)

Carry out the logical AND on the byte data of AL and EA memory (memory expressed in

each type of addressing) for every bit and return the result to AL. The byte data of AH is
not changed.

B AND (AND Byte Data of Accumulator and Memory to Accumulator)
Operation
(AL) < (AL) ~ (EA) (Byte AND)
Assembler format
AND A, EA
Condition code (CCR)

N Z \% C

+ + R -

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to 0 in other cases.
Z: Set to 1if theresult of operation is 00 and set to 0 in other cases.

V: Always set to O

C: Not changed

Table 6.5-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri
Number of execution 5 3 3 5 5
cycles
Byte count 2 2 2 1 1
OP code 64 65 66 67 68 to 6F

56

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : AND , @EP

Memory FFFFH

02 | 53 '
. 31 0123+
. Byte 0000H
01 . 23
N z VvV C
i olo|1]o0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

02 | 11 '
: 31 0123w
. Byte 0000H
01: 23
N z VvV C
i 0|0 0
L Byte J_ Byte — (After execution)

57

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.6 ANDW (AND Word Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical AND on the word data of A and T for every bit and return the
results to A.

B ANDW (AND Word Data of Accumulator and Temporary Accumulator to Accumulator)
Operation

(A) « (A)~ (T) (Word AND)
Assembler format

ANDW A
Condition code (CCR)

N z \Y C

+ + R -

+: Changed by executing instruction

-2 Not changed

R: Set to 0 by executing instruction

N: Setto 1if the MSB of A is 1 asthe result of operation and set to O in other cases.
Z: Setto 1if theresult of operation is 0000 and set to O in other cases.

V: Alwayssetto 0

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 63

58

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : ANDW A

Memory FFFFH

56 | 63 t
34 | 32
; Byte 0000H
N Z V C
i —0|0|0]|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
14 22)
34 | 32
: Byte 0000H
N Z V C
5 ojlolo]|o
L Byte J_ Byte — (After execution)

59

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.7 BBC (Branch if Bit is Clear)

Branch when the value of bit b in dir memory is 0. Branch address corresponds to the
value of addition between the PC value (word value) of the next instruction and the
value with rel code-extended (word value).

B BBC (Branch if Bit is Clear)
Operation
(bit)b = 0: (PC) « (PC) + 3 + rel (Word addition)
(bit)b = 1: (PC) « (PC) + 3 (Word addition)
Assembler format
BBCdir:b, rel
Condition code (CCR)

N Z \% C

- + - -

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Set to 1 when the value of dir:bis0 and set to O wheniitis 1.
V: Not changed

C: Not changed

Number of execution cycles: 5

Byte count: 3
OP code: BOto B7

60

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BBC 84H : 0, OFBH

E8 | 00

Memory

BO

bit0

XXXX XXX0

Byte

N Z V

FFFFH

!

E800H

0084+

|

0000H

C

00

0|00

0

— Byte J— Byte —

(Before execution)

SP

PC

EP

PS

E7 © FE

Memory FFFFH

BO

bit0

XXXX XXX0

Byte

N Z V

f

E800H

E7FEH

0084+

|

0000H

Cc

oOj1|0

0

(After execution)

61

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.8 BBS (Branch if Bit is Set)

Branch when the value of bit b in dir memory is 1. Branch address corresponds to the
value of addition between the PC value (word value) of the next instruction and the
value with rel code-extended (word value).

B BBS (Branch if Bit is Set)
Operation
(bit)b = 0: (PC) « (PC) + 3 (Word addition)
(bit)b = 1: (PC) « (PC) + 3 + rel (Word addition)
Assembler format
BBSdir:b, rel
Condition code (CCR)

N Z \% C

- + - -

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Set to 1 when the value of dir:bis0 and set to O wheniitis 1.
V: Not changed

C: Not changed

Number of execution cycles: 5

Byte count: 3
OP code: B8 to BF

62

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BBS 84H : 0, OFBH

E8 : 00

Memory

BO

FFFFH

f

E800H

bit0

XXXX XXX1

0084+

Byte

|

000O0H

00

— Byte J— Byte —

(Before execution)

SP

PC

EP

PS

E7 © FE

Memory FFFFH

BO

bit0

XXXX XXX1

Byte

f

E800H

E7FEH

0084+

|

0000H

00

— Byte J— Byte —

(After execution)

63

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.9 BC (Branch relative if C=1)/BLO (Branch if LOwer)

Execute the next instruction if the C-flag is 0 and the branch if it is 1. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

B BC (Branch relative if C=1)/BLO (Branch if LOwer)
Operation
(C) = 0: (PC) « (PC) + 2 (Word addition)
(C) =1: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BCrel/BLO rel
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2
OP code: F9

64

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : BC OFEH

Memory FFFFH Memory FFFFH
E T A E T
5 [
| x|
. E804n
i FE SP FE
F9 F802H F9
: / : E802+
E8 : 02 l PC | ES8 + 04 l

Byte 0000H Ep Byte 0000H
N Z VvV C N Z V C
| —{1]1]1]o0 PS | —{1]1]1]o0
L Byte J_ Byte — (Before execution) - Byte J_ Byte — (After execution)

65

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.10 BGE (Branch Great or Equal: relative if larger than or equal
to Zero)

Execute the next instruction if the logical exclusive-OR for the V and N flags is 1 and the
branch if it is 0. Branch address corresponds to the value of addition between the PC
value (word value) of the next instruction and the value with rel code-extended (word
value).

B BGE (Branch Great or Equal: relative if larger than or equal to Zero)
Operation
(V) V (N) = 1: (PC) « (PC) + 2 (Word addition)
(V) V (N) = 0: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BGE rel
Condition code (CCR)

N z \Y C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2
OP code: FE

66

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BGE 02H

F4 | 56/

Memory FFFFH

02

FE

Byte

f

FA56H

|

0000H

N Z V C

0

11

1

— Byte J— Byte —

(Before execution)

SP

PC

EP

PS

Memory FFFFH
F458H
i 02

FE FA456H

F4 . 58 l
; Byte 0000H

N Z V C

; ol1]|1]1
L Byte J_ Byte — (After execution)

67

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.11 BLT (Branch Less Than zero: relative if < Zero)

Execute the next instruction if the logical exclusive-OR for the V and N flags is 0 and the
branch if it is 1. Branch address corresponds to the value of addition between the PC
value (word value) of the next instruction and the value with rel code-extended (word
value).

B BLT (Branch Less Than zero: relative if < Zero)
Operation
(V) V (N) =0: (PC) « (PC) + 2 (Word addition)
(V) ¥V (N) =1: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BLT rel
Condition code (CCR)

N z \Y C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)
Byte count: 2
OP code: FF

68

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BLT 02H

Memory FFFFH

f

F458H
i 02
//////z FF F456H
Fa | 56 |
: Byte 0000H
N Z V C
E ol1]1]1

— Byte J— Byte —

(Before execution)

—

SP

PC

EP

PS

Memory FFFFH
FAS5AH
FA58H
i 02
FF FA56H
F4 5A l
: Byte 000O0H
N zZ V C
: 0|1]1]1
L Byte J_ Byte — (After execution)

69

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.12 BN (Branch relative if N = 1)

Execute the next instruction if the N-flag is 0 and the branch if it is 1. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

B BN (Branch relative if N = 1)
Operation
N = 0: (PC) « (PC) + 2 (Word addition)
N = 1: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BN rel
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)
Byte count: 2
OP code: FB

70

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BN 02H

FC! s5EL—]

Memory FFFFH

02

FB

Byte

f

FC5FH

|

0000H

N Z V C

1

111

0

(Before execution)

SP

PC

EP

PS

FC: 63

Memory FFFFH

02

FB

Byte

f

FC63H

FC5FH

!

0000H

N Z V C

1

1

1

0

(After execution)

71

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.13 BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal)

Execute the next instruction if the Z-flag is 1 and the branch if it is 0. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

B BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal)
Operation
(2) = 1: (PC) « (PC) + 2 (Word addition)
(2) =0: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BNZ rel/BNE rel
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2
OP code: FC

72

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BNZ OFAH

Memory FFFFH

f

FA

FC FE1EH

FE | 1E/

(Before execution)

SP

PC

EP

PS

Memory FFFFH
FE20H
i FA
FC FE1EH
FE: 20 |
: Byte 0000H
N Z V C
; ojl1]|]0|0
L Byte J_ Byte — (After execution)

73

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.14 BNC (Branch relative if C = 0)/BHS (Branch if Higher or
Same)

Execute the next instruction if the C-flag is 1 and the branch if it is O . Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

B BNC (Branch relative if C = 0)/BHS (Branch if Higher or Same)
Operation
(C) = 1: (PC) « (PC) + 2 (Word addition)
(C) = 0: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BNC rel/BHSrel
Condition code (CCR)

N z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2
OP code: F8

74

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BNC 01H

Memory FFFFH

f

E804H
i 01
//////z F8 E802H
E8 | 02 |
. Byte 0000H
N Z V C
; 1|1(1|0

(Before execution)

—>

SP

PC

EP

PS

Memory FFFFH
i E805+
E804+
i 01

F8 E802+

E8 : 05 l
; Byte 0000H

N Z V C

; 1|1 0
L Byte J_ Byte — (After execution)

75

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.15 BP (Branch relative if N = 0: PLUS)

Execute the next instruction if the N-flag is 1 and the branch if it is 0. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

B BP (Branch relative if N = 0: PLUS)
Operation
(N) = 1: (PC) « (PC) + 2 (Word addition)
(N) =1: (PC) « (PC) + 2+ rel (Word addition)
Assembler format
BPrel
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)
Byte count: 2
OP code: FA

76

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BP 04H

Memory FFFFH

04

FA

FC ! 5F /////}

Byte

f

FC5FH

|

0000H

N Z V C

1101

1

— Byte J— Byte —

(Before execution)

SP

PC

EP

PS

Memory FFFFH

04

FA

FC: 61

Byte

f

FC61n

FC5FH

0000H

N Z V C

110

1

1

(After execution)

77

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.16 BZ (Branch relative if Z = 1)/BEQ (Branch if Equal)

Execute the next instruction if the Z-flag is 0 and the branch if itis 1. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

B BZ (Branch relative if Z = 1)/BEQ (Branch if Equal)
Operation
(2) =0: (PC) « (PC) + 2 (Word addition)
(2) =1: (PC) « (PC) + 2 + rel (Word addition)
Assembler format
BZ rel/BEQ rel
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2
OP code: FD

78

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : BZ OFAH

Memory FFFFH

FE20H
! FA
FD FE1EH
FE| 1E |
; Byte 0000H
N z VvV C
5 o|l1]|0|0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
5 FA
FD FE1EH
/ FE1AH
FE : 1A l
; Byte 0000H
N Z V C
—0 |1 0
Byte J_ Byte — (After execution)

79

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.17 CALL (CALL subroutine)

Branch to address of ext. Return to the instruction next to this one by using the RET

instruction of the branch subroutine.

B CALL (CALL subroutine)

80

Operation
(SP) « (SP) - 2 (Word subtraction), ((SP)) < (PC) (Word transfer)
(PC) « ext

Assembler format
CALL ext

Condition code (CCR)

N z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 6
Byte count: 3
OP code: 31

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CALL OFCOOH

Memory FFFFH
020AH
02 : OA /
F6 | 23 |
; Byte 0000H
N zZz V C
: ojofofoO
L Byte J_ Byte — (Before execution)

—>

SP

PC

EP

PS

Memory FFFFH

f

020AH
02 : 08 \ 26

F6 0208+

FCi 00 |
: Byte 00O0O0H

N Z V C

: ojo|lo0|oO
L Byte J_ Byte — (After execution)

81

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.18 CALLV (CALL Vectored subroutine)

Branch to the vector address (VA) of vct. Return to the instruction next to this one by
using the RET instruction of the branch subroutine. The vector address (VA) indicated
by VCT is shown on the next page.

B CALLV (CALL Vectored subroutine)
Operation
(SP) « (SP) - 2 (Word subtraction), ((SP)) « (PC) (Word transfer)
(PC) « (VA)
Assembler format
CALLYV #vct
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 7

Byte count: 1
OP code: E8 to EF

82

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CALL #02H

Memory FFFFH
- vct 00 FFC5H
: 02 EC |FFC4n
/ 0208+ —>
02 | 08
E8 | 00 |
; Byte 0000H
N Z V C
5 —>0|0|0|0O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

ECOOH
0208H
02 06 01

E8 0206+

EC: 00 l
Byte 000O0H

N Z V C

; —> 0|0|0]|O

L Byte J_ Byte — (After execution)

Table 6.18-1 Call Storage Address of Vector Call Instruction

Vector address (VA)

Instruction
Lower address Upper address
FFCEy FFCF CALL#7
FFCCy FFCDy CALL#6
FFCAY FFCBy CALL#5
FFC8y FFC9y4 CALL#4
FFC6y FFC7y CALL#3
FFC4y FFC5y CALL#2
FFC2y4 FFC3y4 CALL#1
FFCOx FFC1y CALL#0

83

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.19 CLRB (Clear direct Memory Bit)

Set the contents of 1 bit (indicated by 3 lower bits (b) of mnemonic) of the direct area to
0.

B CLRB (Clear direct Memory Bit)
Operation
(dirb) « 0
Assembler format
CLRB dir:b
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4

Byte count: 2
OP code: AOto A7

84

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CLRB 84H : 0

Memory FFFFH

0000 000X

Byte

f

0084+

|

0000H

N Z V C

00 —| 0

0|0

0

(Before execution)

SP

PC

EP

PS

Memory

0000 0000

Byte

FFFFH

f

0084+

|

0000H

N Z V C

00| O

0

(After execution)

85

86

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.20 CLRC (Clear Carry flag)

Set the C-flag to 0.

B CLRC (Clear Carry flag)
Operation
(C)«0
Assembler format
CLRC
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed

R: Set to 0 by executing instruction
N: Not changed

Z: Not changed

V: Not changed

C: Setto 0.

Number of execution cycle: 1
Byte count: 1
OP code: 81

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CLRC

Memory FFFFH

’ f

: |

i Byte 0000H

N Z V C

—> 00| 0] 1

L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

: Byte 000O0H
N Z V C
; olo|o]|o

(After execution)

87

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.21 CLRI (CLeaR Interrupt flag)

Set the I-flag to 0.

B CLRI (CLeaR Interrupt flag)
Operation
(Hh«o0
Assembler format
CLRI
Condition code (CCR)

I N z \Y C

R - - - -

+: Changed by executing instruction
-: Not changed

R: Set to 0 by executing instruction
I: Setto O

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 80

88

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CLRI

H |

Memory FFFFH

f

|

Byte 0000H

IL11L0O N Z VvV C

1

1(]0(0]0)|1

— Byte

Byte

(Before execution)

SP

PC

EP

PS

H

Memory FFFFH

f

|

Byte 0000H

IL11L0O N Z V C

1

1010|011

Byte

Byte

(After execution)

89

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.22 CMP (CoMPare Byte Data of Accumulator and Temporary
Accumulator)

Compare the byte data of AL with that of TL and set the results to CCR. AL and TL are
not changed.

B CMP (CoMPare Byte Data of Accumulator and Temporary Accumulator)
Operation

(TL) - (AL)
Assembler format
CMPA
Condition code (CCR)

N z \Y C

+ + + +

+: Changed by executing instruction

-2 Not changed

N: Setto 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Setto 1if theresult of operation is 00y and set to O in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.

C: Setto 1if acarry occurs as the result of operation and set to O in other cases.
Number of execution cycle: 1

Byte count: 1
OP code: 12

90

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CMP A

Memory FFFFH

XX | 75 1

XX 1 48

' |

; Byte 000O0H

N Z V C

—> 00| 0] O

- Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

XX i 75 T
XX+ 48
: Byte 00O0O0H
N Z V C
i 1|00 1
L Byte J_ Byte — (After execution)

91

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.23 CMP (CoMPare Byte Data of Accumulator and Memory)

Compare the byte data of AL with that of the EA memory (memory expressed in each
type of addressing) and set the results to CCR. AL and EA memory are not changed.

B CMP (CoMPare Byte Data of Accumulator and Memory)
Operation
(AL) - (EA)
Assembler format
CMPA, EA
Condition code (CCR)

N Z \% C

+ + + +

+: Changed by executing instruction

-2 Not changed

N: Setto 1if the MSB is 1 as the result of operation and set to O in other cases.

Z: Set to 1if the result of operation is 00, and set to O in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.

C: Setto 1if acarry occurs as the result of operation and set to O in other cases.

Table 6.23-1 Number of Execution Cycles / Byte Count / OP Code

92

EA #d8 dir @IX+off @EP Ri
Number of 2 3 3 2 2
execution cycles
Byte count 2 2 2 1 1
OP code 14 15 16 17 18to 1F

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CMP A, 80H

Memory FFFFH

XX i 23 T
: 56 0180+
; Byte 0000H
N Z VvV C
02 . ojo0jo|1
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

XX+ 23 T
: 56 0180+
. Byte 0000H
N Z V C
02 1(0|0]|1
L Byte J_ Byte — (After execution)

93

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.24 CMP (CoMPare Byte Data of Immediate Data and Memory)

Compare the byte data of EA memory (memory expressed in each type of addressing)
with the immediate data and set the results to CCR. EA memory is not changed.

B CMP (CoMPare Byte Data of Immediate Data and Memory)
Operation
(EA) - d8
Assembler format
CMPEA, #d8
Condition code (CCR)

N z \% C

+ + + +

+: Changed by executing instruction

-2 Not changed

N: Setto 1if the MSB is 1 as the result of operation and set to O in other cases.

Z: Set to 1if the result of operation is 00, and set to O in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.

C: Setto 1if acarry occurs as the result of operation and set to O in other cases.

Table 6.24-1 Number of Execution Cycles / Byte Count / OP Code

94

EA dir @IX+off @EP Ri
Number of execution 4 4 3 3
cycles
Byte count 3 3 2 2
OP code 95 96 97 98 to 9F

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CMP @EP , #33H

Memory FFFFH

f

: 54 0120H
: !
: Byte 0000H
01 : 20
N Zz VvV C
0|0 |0|1
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

54 0120H

: '
; Byte 0000H
01 ! 20
N Z VvV C
—|0|0]0]|O
Byte J_ Byte — (After execution)

95

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.25 CMPW (CoMPare Word Data of Accumulator and Temporary
Accumulator)

Compare the word data of A with that of T and set the results to CCR. A and T are not
changed.

B CMPW (CoMPare Word Data of Accumulator and Temporary Accumulator)
Operation
(M- (A)
Assembler format
CMPW A
Condition code (CCR)

N 4 \% C

+ + + +

+: Changed by executing instruction

-2 Not changed

N: Setto 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Setto 1if theresult of operation is 0000 and set to O in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.

C: Setto 1if acarry occurs as the result of operation and set to O in other cases.
Number of execution cycles: 2

Byte count: 1
OP code: 13

96

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : CMPW A

Memory FFFFH

86 | 75]
24 | 48
: Byte 0000H
N Z V C
: —|1|/0]|0]0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
86 : 75 T
24 | 48
: Byte 0000H
N Z V C
: —|1|0]1]|1
L Byte J_ Byte — (After execution)

97

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.26 DAA (Decimal Adjust for Addition)

When adding the correction value to AL by the state in the carry before execution of
instruction and half-carry, decimal operation is corrected.

B DAA (Decimal Adjust for Addition)
Operation

(AL) « (AL) + 6 or 60H or 66H

(Add a correction value shown in the next page to AL and the value of AL according to the state of the
C or H-flag.)

Assembler format
DAA
Condition code (CCR)

N z \Y C

+ + + +

+: Changed by executing instruction

-2 Not changed

N: Setto 1if the MSB is 1 as the result of operation and set to 0 in other cases.
Z: Setto 1if theresult of operation is 00y and set to O in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Change asindicated on the next page.

Number of execution cycle: 1

Byte count: 1
OP code: 84

98

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : DAA
Memory FFFFH Memory FFFFH
A | XX | oaA t A | xxi 50 1
T T
IX IX
—>
SP sp
PC | PC |
; Byte 0000H ; Byte 0000H
EP EP
H | IL11ILO N Z V C H | IL1ILO N Z V C
PS 0O(1j1j0|0]0]|O PS oj1|{1y,0(0|0]|O
— Byte Byte — Byte Byte
(Before execution) (After execution)
Table 6.26-1 Decimal Adjustment Table (DAA)
C-flag AL H-flag AL Correction C-flag after
(bit7 to bit4) (bit3 to bit0) value execution
0 0to9 0 0to9 00 0
0 0to8 0 AtoF 06 0
0 0to9 1 0to3 06 0
0 AtoF 0 0to9 60 1
0 9toF 0 AtoF 66 1
0 AtoF 1 0to3 66 1
1 Oto2 0 0to9 60 1
1 Oto2 0 AtoF 66 1
1 0to3 1 0to3 66 1
Table 6.26-2 Execution Example
Mnemonic AL C H
MOV A, #75H 75 0 X
ADDC A, #25H 9A 0 0
DAA 00 1 0

99

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.27 DAS (Decimal Adjust for Subtraction)

Subtract the correction value from AL according to the state of the C or H-flag before
executing instruction.

B DAS (Decimal Adjust for Subtraction)
Operation
(AL) < (AL) - 6 or 60H or 66H

(Subtract a correction value shown in the next page to AL and the value of AL according to the state of
the C or H-flag.)

Assembler format
DAS
Condition code (CCR)

N Y4 \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1if theresult of operation is 00 and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Change asindicated on the next page.

Number of execution cycle: 1

Byte count: 1
OP code: 94

100

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : DAS

Memory FFFFH Memory FFFFH
A | xx | oF A A | xxi 29 1
T T
IX IX
—>
SP SP
PC i | PC 5 |
- Byte 0000H ; Byte 0000H
EP : EP :
H I IL211L0 N Z V C H I IL211L0 N Z VvV C
PS 1|/0|1j12/0|0f|0] O PS o(1(1|j0(0|0}|O0
— Byte Byte — Byte Byte
(Before execution) (After execution)
Table 6.27-1 Decimal Adjustment Table (DAS)
C-flag H-flag Correction C-flag after
value execution
0 0 00 0
1 1 66 1
0 1 06 0
1 0 60 1
Table 6.27-2 Execution Example
Mnemonic AL C H
MOV A, #70H 70 X X
SUBC A, #25H 4B 0 1
DAS 45 0 1

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.28 DEC (DECrement Byte Data of General-purpose Register)

Decrement byte data of Ri by one.

B DEC (DECrement Byte Data of General-purpose Register)
Operation
(Ri) « (Ri) - 1 (byte subtract)
Assembler format
DECRI
Condition code (CCR)

N 4 \% C

+ + + -

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Setto 1if theresult of operation is 00y and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Not changed

Number of execution cycles: 3

Byte count: 1
OP code: D8 to DF

102

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : DEC R2

Memory FFFFH

f

: R2 FE 0112+
: R1
0110#H
Byte 0000H
N Z Vv C
10 —{o0|o|o]o0

(Before execution)

SP

PC

EP

PS

Memory FFFFH

f

; R2 ED 0112+
: R1
0110H
Byte 0000H
N Z V C
1/0[0|O0

(After execution)

103

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.29 DECW (DECrement Word Data of Accumulator)

Decrement word data of A by one.

B DECW (DECrement Word Data of Accumulator)
Operation
(A) « (A) - 1 (Word subtraction)
Assembler format
DECW A
Condition code (CCR)

N 4 \% C

+ + - -

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB is 1 as the result of operation and set to 0 in other cases.
Z: Setto 1if theresult of operation is 0000 and set to 0 in other cases.

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: DO

104

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : DECW A

Memory —FFFFH

78 1 22 T
: Byte 0000H
N Z V C
i ojojo]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

78 21 T
: Byte 0000H
N Z V C
i olojof|o
L Byte J_ Byte — (After execution)

105

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.30 DECW (DECrement Word Data of Extra Pointer)

Decrement word data of EP by one.

B DECW (DECrement Word Data of Extra Pointer)
Operation
(EP) « (EP) - 1 (Word subtraction)
Assembler format
DECW EP
Condition code (CCR)

N 4 Vv C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: D3

106

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : DECW EP

Memory FFFFH

f

'

; Byte 0000H
12 : 34
N Zz VvV C
0(0j0]|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

: Byte 0000H
12 + 33
N Z V C
: ojo|o]|oO
L Byte J_ Byte — (After execution)

107

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.31 DECW (DECrement Word Data of Index Pointer)

Decrement word data of IX by one.

B DECW (DECrement Word Data of Index Pointer)
Operation
(IX) « (IX) - 1 (Word subtraction)
Assembler format
DECW IX
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: D2

108

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : DECW IX

Memory FFFFH

16 | 27
; Byte 0000H
N Z V C
5 —|0|0|O0]|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

16 | 26
: Byte 00O00H
N Zz VvV C
; o|o|0]|oO
L Byte J_ Byte — (After execution)

109

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.32 DECW (DECrement Word Data of Stack Pointer)

Decrement word data of SP by one.

B DECW (DECrement Word Data of Stack Pointer)
Operation
(SP) « (SP) - 1 (Word subtraction)
Assembler format
DECW SP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OPcode: D1

110

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : DECW SP

Memory FFFFH

f

32 1 85
; Byte 0000H
N zZ V C
i olojo0|oO
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

32 . 84
: Byte 0000H
N Z V C
: ojoflofoO
L Byte J_ Byte — (After execution)

111

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.33 DIVU (DIVide Unsigned)

Divide the word data of T by that of AL as an unsigned binary value. Return the quotient
to A and the remainder to T.

When A is 0, the result is indefinite and Z flag is 1 to show 0 division.

B DIVU (DIVide Unsigned)
Operation
Quotient (A) « (T)/ (A)
Remainder (T) « (T) MOD (A)
Assembler format
DIVU A
Condition code (CCR)

N 4 \% C

- + - -

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Setto 1if A before execution of instruction is 0000y and set to O in other cases.
V: Not changed

C: Not changed

Number of execution cycles: 17

Byte count: 1
OP code: 11

112

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : DIVU A

Memory FFFFH

00 | OA)
01! 41
; Byte 0000H
N z VvV C
: ojofo0|o0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

00 | 20 A
00 | o1
: Byte 0000H
N Z V C
; olo|o]| o
L Byte J_ Byte — (After execution)

113

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.34 INC (INCrement Byte Data of General-purpose Register)

Add 1 to byte data of Ri.

B INC (INCrement Byte Data of General-purpose Register)
Operation
(Ri) « (Ri) + 1 (Word addition)
Assembler format
INC Ri
Condition code (CCR)

N 4 \% C

+ + + -

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Setto 1if theresult of operation is 00y and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Not changed

Number of execution cycles: 3

Byte count: 1
OP code: C8to CF

114

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : INC R1

Memory ~FFFFH

f

R1 56 0109+
5 RO 0108H
' —>
: Byte 0000H
,7 N Z Vv C
08 ! —l0|0]|0|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
R1 57 0109+
5 RO 0108+
: Byte 0000H
— N Z V C
08 ! —{0|0| 0| O
L Byte J_ Byte — (After execution)

115

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.35 INCW (INCrement Word Data of Accumulator)

Add 1 to word data of A.

B INCW (INCrement Word Data of Accumulator)
Operation
(A) « (A) +1 (Word addition)
Assembler format
INCW A
Condition code (CCR)

N 4 \% C

+ + - -

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB of A is1 astheresult of operation and set to O in other cases.
Z: Setto 1if theresult of operation is 0000 and set to 0 in other cases.

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: CO

116

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : INCW A

Memory FFFFH

12 | 33 '
| Byte 0000H
N Z VvV C
5 0l|o0
— Byte J— Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

121 34 A
i Byte 0000H
N Z V C
5 0|0
~ Byte J— Byte — (After execution)

117

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.36 INCW (INCrement Word Data of Extra Pointer)

Add 1 to word data of EP.

B INCW (INCrement Word Data of Extra Pointer)
Operation
(EP) « (EP) + 1 (Word addition)
Assembler format
INCW EP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: C3

118

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

pPC

EP

PS

Execution example : INCW EP

Memory FFFFH

f

s 4 Byte 0000H
N Z V C
0| o
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

' '
. 43 Byte 0000H
N Z VvV C
ol o
L Byte J_ Byte — (After execution)

119

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.37 INCW (INCrement Word Data of Index Register)

Add 1 to word data of IX.

B INCW (INCrement Word Data of Index Register)
Operation
(IX) « (IX) + 1 (Word addition)
Assembler format
INCW IX
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: C2

120

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : INCW IX

Memory FFFFH

25 ' 72
; Byte 0O0O0O0H
N Z VvV C
; olo|lo|oO
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
25 | 73
: Byte 0O0O0O0H
N Z VvV C
; o|o|o0]|oO
Byte J_ Byte — (After execution)

121

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.38 INCW (INCrement Word Data of Stack Pointer)

Add 1 to word data of SP.

B INCW (INCrement Word Data of Stack Pointer)
Operation
(SP) « (SP) + 1 (Word addition)
Assembler format
INCW SP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: C1

122

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : INCW SP

Memory FFFFH

f

FF | FF
' Byte 0000H
N Z V C
: ojo|o0]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

00 : 00
; Byte 0000H
N zZ V C
; olo|o0]|oO
L Byte J_ Byte — (After execution)

123

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.39 JMP (JUMP to address pointed by Accumulator)

Transfer word data from A to PC.

B JMP (JuMP to address pointed by Accumulator)
Operation
(PC) « (A) (Word transfer)
Assembler format
JMP @A
Condition code (CCR)

N 4 Vv C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 3

Byte count: 1
OP code: EO

124

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : JMP @A

Memory FFFFH

FO : 89 T
XX XX l
- Byte 0000H
N Z V C
| 1]ofo]o
- Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

FO | 89 1
FO | 89 |
; Byte 0000H
N zZ VvV C
1/o0]ofo
L Byte J_ Byte — (After execution)

125

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.40 JMP (JUMP to effective Address)

Branch to the PC value indicated by ext.

B JMP (JuMP to effective Address)
Operation
(PC) « ext (Word transfer)
Assembler format
JMP ext
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4

Byte count: 3
OP code: 21

126

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : JMP OE654H

Memory FFFFH

f

54
E6
21 D800H
D8 . 00 l
Byte 0000H
N Z V C
oO|1|1]1

(Before execution)

SP

PC

EP

PS

E6 !

54

Memory FFFFH
E654H
54
E6
21 D800+
Byte 0000H
N Z V C
oOl1]1|1

(After execution)

127

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.41 MOV (MOVE Byte Data from Temporary Accumulator to
Address Pointed by Accumulator)

Transfer byte data from T to memory indirectly addressed by A.

B MOV (MOVE Byte Data from Temporary Accumulator to Address Pointed by
Accumulator)

Operation

((A)) « T (Word transfer)
Assembler format

MOV @A, T
Condition code (CCR)

N Y4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 2

Byte count: 1
OP code: 82

128

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOV @A, T

Memory FFFFH

01| 20 1
XX | 3F
; XX | 01204
: |

Byte 0000H

N Z V C

—> 00| 0| O

L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
01 : 20 T
XX i 3F
' 3F 0120+
: Byte 0000H
N Z V C
ololo]o
L Byte J_ Byte (After execution)

129

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.42 MOV (MOVE Byte Data from Memory to Accumulator)

Transfer byte data from EA memory (memory expressed in each type of addressing) to

A. Byte data in AL is transferred to TL. AH is not changed.

B MOV (MOVE Byte Data from Memory to Accumulator)
Operation
(AL) « (EA) (Byte transfer)
Assembler format
MQV A, EA
Condition code (CCR)

N Y4 Vv C

+ + - -

+: Changed by executing instruction

-2 Not changed

N: Set to 1 if the MSB of transferred datais 1 and set to O in other cases.
Z: Set to 1if transferred datais 00, and set to O in other cases.

V: Not changed
C: Not changed
Table 6.42-1 Number of Execution Cycles / Byte Count / OP Code
EA #d8 dir @IX+off ext @A @EP Ri

Number of 2 3 3 4 2 2 2
execution cycles
Byte count 2 2 2 3 1 1 1
OP code 04 05 06 60 92 07 08 to OF

130

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOV A, 83H

Memory FFFFH

111 22 1
XX 1 XX
51 0383+
; Byte 0000H
N z VvV C
06 | o|lolo|o
L Byte J_ Byte — (Before execution)

—>

SP

PC

EP

PS

Memory FFFFH

11 1 51 i

XX 1 22

51 0383H

- Byte 0000H
N Z V C
06 —> 0| 0| 0| O

(After execution)

131

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.43 MOV (MOVE Immediate Byte Data to Memory)

Transfer byte immediate data to EA memory (memory expressed in each type of
addressing).

B MOV (MOVE Immediate Byte Data to Memory)
Operation
(EA) « d8 (Byte transfer)
Assembler format
MOV EA, #d8
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Table 6.43-1 Number of Execution Cycles / Byte Count / OP Code

132

EA dir @IX+off @EP Ri
Numbt_ar of 4 4 3 3
execution cycles
Byte count 3 3 2 2
OP code 85 86 87 88to 8F

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOV @IX+02, #35H

Memory FFFFH

02 | 00
' 0202+
XX
: (IX+2)
0200+
; Byte 0000H
N zZz VvV C
i ojo|o0]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
02 | 00
! 0202+
35

. (IX+2)
0200H
: Byte 0000H

N Z V C

5 ojo|lof|oO
L Byte J_ Byte — (After execution)

133

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.44 MOV (MOVE Byte Data from Accumulator to memory)

Transfer bytes (data from AL) immediate data to EA memory (memory expressed in
each type of addressing).

B MOV (MOVE Byte Data from Accumulator to memory)
Operation
(EA) « (AL) (Byte transfer)
Assembler format
MOV EA, A
Condition code (CCR)

N z \% C

+: Changed by executing instruction

-2 Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Table 6.44-1 Number of Execution Cycles / Byte Count / OP Code
EA dir @IX+off ext @EP Ri

Number of 3 3 4 2 2
execution cycles
Byte count 2 2 3 1 1
OP code 45 46 61 47 48 to 4F

134

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOV 82H, A

Memory FFFFH

XX 1 06 T
XX 0202+
; Byte 0000H
N zZz VvV C
03 | olofo]o
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
XX 1 06 T
06 0202+
; Byte 0000H
N Z V C
03 | olo|ofo
L Byte J_ Byte — (After execution)

135

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.45 MOVW (MOVE Word Data from Temporary Accumulator to
Address Pointed by Accumulator)

Transfer word data from T to memory indirectly addressed by A.

B MOVW (MOVE Word Data from Temporary Accumulator to Address Pointed by
Accumulator)
Operation
((A)) « (T) (Word transfer)
Assembler format
MOVW @A, T
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 3

Byte count: 1
OP code: 83

136

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW @A, T

Memory FFFFH

01 78 1
FB | AA
. XX 0179+
: XX |0178H
: Byte 0000H
N z V C
i ojoj|jO0f|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

01! 78)
FB | AA
; AA 0179H
: FB | 0178+
; Byte 0000H
N Z Vv C
olofo]o
L Byte J_ Byte — (After execution)

137

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.46 MOVW (MOVE Word Data from Memory to Accumulator)

Transfer word data from EA and EA + 1 memories (EA is an address expressed in each
type of addressing) to A. Word data in A is transferred to T.

B MOVW (MOVE Word Data from Memory to Accumulator)
Operation
(A) « (EA) (Word transfer)
Assembler format
MOVW A, EA
Condition code (CCR)

N Z \% C

+ + - -

+: Changed by executing instruction

-2 Not changed

N: Setto 1 if MSB of transferred datais 1 and set to O in other cases.
Z: Set to 1if transferred datais 0000, and set to O in other cases.

V: Not changed
C: Not changed
Table 6.46-1 Number of Execution Cycles / Byte Count / OP Code
EA #d16 dir @IX+off ext @A @EP

Number of 3 4 4 5 3 3
execution cycles
Byte count 3 2 2 3 1 1
OP code E4 C5 C6 C4 93 Cc7

138

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW A, @IX+01H

Memory FFFFH

01 | 02]
XX | XX
01 : 50
23
: EF
: 0150
; Byte 0000H
N Z V C
olofofo
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

EF | 23]
01 | 02
01 : 50
23 0151H
! EF
' (IX+1)
0150+
; Byte 0000H
N Z V C
1|0
ByteJ— Byte — (After execution)

139

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.47 MOVW (MOVE Word Data from Extra Pointer to
Accumulator)

Transfer word data from EP to A.

B MOVW (MOVE Word Data from Extra Pointer to Accumulator)
Operation
(A) « (EP) (Word transfer)
Assembler format
MOVW A, EP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: F3

140

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW A, EP

Memory FFFFH
XX | XX $
; Byte 0000H
96 : 32
N Zz V C
—>0|0|0|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

9 | 32 4
; Byte 0000H
96 @ 32
N Z V C
ojloflofo
L Byte J_ Byte — (After execution)

141

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.48 MOVW (MOVE Word Data from Index Register to
Accumulator)

Transfer word data from IX to A.

B MOVW (MOVE Word Data from Index Register to Accumulator)
Operation
(A) « (IX) (Word transfer)
Assembler format
MOVW A, IX
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: F2

142

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW A, IX

Memory FFFFH

XX i XX 1
87 | 23
; Byte 0000H
N zZ VvV C
i ojofofo
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

87 | 23 '
87 | 23
: Byte 00O0O0H
N Z V C
i ojloflo]|oO
L Byte J_ Byte — (After execution)

143

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.49 MOVW (MOVE Word Data from Program Status Register to
Accumulator)

Transfer word data from PS to A.

B MOVW (MOVE Word Data from Program Status Register to Accumulator)
Operation
(A) « (PS) (Word transfer)
Assembler format
MOVW A, PS
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 70

144

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW A, PS

Memory FFFFH

XX XX 1
: Byte ~ 0O0OOH
N zZ V C
78 118 1/0|0]0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

78 1 18]
; Byte 0000H
N Z V C
78 18 110100
L Byte J_ Byte — (After execution)

145

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.50 MOVW (MOVE Word Data from Program Counter to
Accumulator)

Transfer word data from PC to A.

B MOVW (MOVE Word Data from Program Counter to Accumulator)
Operation
(A) « (PC) (Word transfer)
Assembler format
MOVW A, PC
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 2

Byte count: 1
OP code: FO

146

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW A, PC

Memory FFFFH

XX XX i
FO 62 l
: Byte 00O0O0H
N Z V C
— 0|0|0]O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

FO | 62 1
FO i 62 l
; Byte 0000H
N Zz V C
ojo|lof|oO
L Byte J_ Byte — (After execution)

147

Execution example : MOVW A, PC
(A = "F0 63" → A = "F0 62")
(PC = "F0 63" → PC = "F0 62")

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.51 MOVW (MOVE Word Data from Stack Pointer to
Accumulator)

Transfer word data from SP to A.

B MOVW (MOVE Word Data from Stack Pointer to Accumulator)
Operation
(A) « (SP) (Word transfer)
Assembler format
MOVW A, SP
Condition code (CCR)

N Y4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: F1

148

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW A, SP

Memory FFFFH

XX | XX]
69 ' 05
; Byte 0000H
N Zz VvV C
; ojlojo]|oO
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
69 ' 05 T
69 : 05
; Byte 0000H
N Z V C
; o|lojo0]|oO
Byte J_ Byte — (After execution)

149

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.52 MOVW (MOVE Word Data from Accumulator to Memory)

Transfer word data from A to EA and EA + 1 memories (memory expressed in each type
of addressing).

B MOVW (MOVE Word Data from Accumulator to Memory)
Operation
(EA) « (A) (Word transfer)
Assembler format
MOVW EA, A
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Table 6.52-1 Number of Execution Cycles / Byte Count / OP Code

EA dir @IX+off ext @EP
Numbt_ar of 4 4 5 3
execution cycles
Byte count 2 2 3 1
OP code D5 D6 D4 D7

150

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW 93H, A

Memory FFFFH
10 | 56 $
. XX 0094+
' XX | 0093H
: Byte 0000H
N zZz VvV C
00 —0|0[0]|0O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory —FFFFH

10 | 56]
. 56 0094+
' 10 0093+
: Byte 0000H
N Z V C
00 0j0j0]|oO
L Byte J_ Byte — (After execution)

151

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.53 MOVW (MOVE Word Data from Accumulator to Extra
Pointer)

Transfer word data from A to EP.

B MOVW (MOVE Word Data from Accumulator to Extra Pointer)
Operation
(EP) « (A) (Word transfer)
Assembler format
MOVW EP, A
Condition code (CCR)

N Y4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: E3

152

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW EP, A

Memory FFFFH

87 | 65 1

’ |

; Byte 0000H
XX 1 XX
N z VvV C
—|1]|0|0]|0O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
87 . 65 T
; Byte 0000H
87 : 65
N zZ V C
—>1]0|0]|O0
L Byte J_ Byte — (After execution)

153

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.54 MOVW (MOVE Immediate Word Data to Extra Pointer)

Transfer word immediate data to EP.

B MOVW (MOVE Immediate Word Data to Extra Pointer)
Operation
(EP) « d16 (Word transfer)
Assembler format
MOVW EP, #d16
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 3

Byte count: 3
OP code: E7

154

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW EP, #2345H

Memory FFFFH

f

|

: Byte 0000H
XX 1 XX
N Z V C
0|0]0]|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

' '
: Byte 0000H
23 1 45
N Z V C
0|0|0]|O
L Byte J_ Byte — (After execution)

155

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.55 MOVW (MOVE Word Data from Accumulator to Index
Register)

Transfer word data from A to IX.

B MOVW (MOVE Word Data from Accumulator to Index Register)
Operation
(IX) « (A) (Word transfer)
Assembler format
MOVW IX, A
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: E2

156

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW [IX, A

Memory FFFFH

56 | 43)
XX | XX
; Byte 0000H
N zZz VvV C
i ojofo]o
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
56 | 43)
56 | 43
; Byte 0000H
N zZ VvV C
5 olo|lo]|oO
L Byte J_ Byte — (After execution)

157

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.56 MOVW (MOVE Immediate Word Data to Index Register)

Transfer word immediate data to IX.

B MOVW (MOVE Immediate Word Data to Index Register)
Operation
(IX) « d16 (Word transfer)
Assembler format
MOVW IX, #d16
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 3

Byte count: 3
OP code: E6

158

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW IX, #4567H

Memory FFFFH

XX | XX
: Byte 0000H
N Z V C
; 0|0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

45 67
: Byte 0000H
N Z V C
o|o
L Byte J_ Byte — (After execution)

159

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.57 MOVW (MOVE Word data from Accumulator to Program
Status Register)

Transfer word data from A to PS.

B MOVW (MOVE Word data from Accumulator to Program Status Register)
Operation
(PS) « (A) (Word transfer)
Assembler format
MOVW PS, A
Condition code (CCR)

N Y4 \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Become the value for lower bit 3 of A
Z: Become the value for lower bit 2 of A
V: Become the value for lower bit 1 of A

C: Become the value for lower bit 0 of A
Number of execution cycle: 1

Byte count: 1
OP code: 71

160

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW PS, A

Memory FFFFH

50 I 32 i
¢
. Byte 0000w
N Z V C
XX XX X | X|X]|Xx
L Byte J_ Byte— (Before execution)

SP

PC

EP

PS

Memory FFFFH

50 i 32 *
' '
; Byte 0000H
N Z V C
50 | 3p ojo|1]o0
L Byte J_ Byte — (After execution)

161

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.58 MOVW (MOVE Immediate Word Data to Stack Pointer)

Transfer word immediate data to SP.

B MOVW (MOVE Immediate Word Data to Stack Pointer)
Operation
(SP) « d16 (Word transfer)
Assembler format
MOVW SP, #d16
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 3

Byte count: 3
OP code: E5

162

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW SP, #6789H

Memory FFFFH

f

XX 1 XX
; Byte 0000H
N Z V C
0|0|O0|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

67 : 89
; Byte 0000H
N zZ VvV C
0|j0|0]O
L Byte J_ Byte — (After execution)

163

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.59 MOVW (MOVE Word data from Accumulator to Stack
Pointer)

Transfer word data from A to SP.

B MOVW (MOVE Word data from Accumulator to Stack Pointer)
Operation
(SP) « (A) (Word transfer)
Assembler format
MOVW SP, A
Condition code (CCR)

N Y4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: E1

164

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MOVW SP, A

Memory FFFFH
43 © 21 T

XX 1+ XX

’ |

Byte 0000H

N Z V C

: —> 0|0|0|O

(Before execution)

SP

PC

EP

PS

Memory FFFFH
43 | 21 '
43 | 21
' Byte 0000H
N Z V C
| o[ofo]o
L Byte J_ Byte — (After execution)

165

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.60 MULU (MULtiply Unsigned)

Multiply the byte data of AL and TL as unsigned binary values. Return the results to the
word data of A.

B MULU (MULtiply Unsigned)
Operation
(A) « (AL) * (TL)
Assembler format
MULU A
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 8

Byte count: 1
OP code: 01

166

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : MULU A

Memory FFFFH

XX | 20 A
XX | 40
. Byte O0OOH
N Z V C
olo|o]|o
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

08 | 00 t
XX | 40
; Byte 0000H
N Z V C
olofo]o
L Byte J_ Byte — (After execution)

167

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.61 NOP (NoOPeration)

No operation

B NOP (NoOPeration)

Operation

Assembler format
NOP
Condition code (CCR)

N z \Y C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 00

168

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : NOP

Memory FFFFH

5 f

PC+1

| PC

’ |

. Byte 000OH

N Z V C

L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

PC+1

PC

|

Byte 00OOH

N Z VvV C

— Byte J— Byte —

(After execution)

169

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.62 OR (OR Byte Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical OR on byte data of AL and TL for every bit and return the results to
AL. The contents of AH are not changed.

B OR (OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)
Operation

(AL) « (AL) v (TL) (byte logica OR)
Assembler format

ORA
Condition code (CCR)

N z \Y C

+ + R -

+: Changed by executing instruction

-2 Not changed

R: Set to 0 by executing instruction

N: Setto 1if the MSB of AL is1 asthe result of operation and set to O in other cases.
Z: Setto 1if theresult of operation is 00y and set to O in other cases.

V: Alwayssetto 0

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 72

170

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : OR A

Memory FFFFH
A | 151 23 1
T | XX 41
IX
SP
PC |
. Byte 0000H
EP 5
N zZ V C
PS —/o0|0|0]oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

15 | 63 '
XX | 41
, Byte 0000H
N Z V C
—{o0|o0|0]o0
L Byte J_ Byte — (After execution)

171

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.63 OR (OR Byte Data of Accumulator and Memory to
Accumulator)

Carry out the logical OR on AL and EA memory (memory expressed in each type of
addressing) for every bit and return the results to AL. The contents of AH are not
changed.

B OR (OR Byte Data of Accumulator and Memory to Accumulator)
Operation
(AL) < (AL)v (EA) (byte logical OR)
Assembler format
ORA, EA
Condition code (CCR)

N Y4 \% C

+ + R -

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to 0 in other cases.
Z: Set to 1if theresult of operation is 00 and set to 0 in other cases.

V: Always set to O

C: Not changed

Table 6.63-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri
Number of 2 3 3 2 2
execution cycles
Byte count 2 2 2 1 1
OP code 74 75 76 77 78to 7F

172

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : OR A, @EP

Memory FFFFH
15+ 32 T

: 56 0122+

. Byte 0000H
01 22
N Z V C
—|0|0|0|O0
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
15 | 76 A
: 56 0122+
; Byte 0000H
011 22
N zZ V C
0o 0
Byte J_ Byte — (After execution)

173

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.64 ORW (OR Word Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical OR on the word data of A and T for every bit and return the results
to A.

B ORW (OR Word Data of Accumulator and Temporary Accumulator to Accumulator)
Operation
(A) « (A) v (T) (word logical OR)
Assembler format
ORW A
Condition code (CCR)

N 4 \% C

+ + R -

+: Changed by executing instruction

-2 Not changed

R: Set to 0 by executing instruction

N: Setto 1if the MSB of A is 1 asthe result of operation and set to O in other cases.
Z: Setto 1if theresult of operation is 0000 and set to O in other cases.

V: Alwayssetto 0

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 73

174

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : ORW A

SP

PC

EP

PS

Memory FFFFH

57 : 23 T
33 | 41
; Byte 0000H
N Z Vv C
o|o|0]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
77 | 63)
33 | 41
. Byte 000OH
N Z V C
—lo|o|o]o
ByteJ— Byte — (After execution)

175

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.65 PUSHW (PUSH Word Data of Inherent Register to Stack
Memory)

Subtract 2 from the value of SP. Then, transfer the word value from the memory
indicated by SP to dr.

B PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
Operation
(SP) « (SP) - 2 (Word subtraction)
((SP)) « (dr) (Word transfer)
Assembler format
PUSHW dr
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Table 6.65-1 Number of Execution Cycles / Byte Count / OP Code

DR A IX
Number of execution
4 4
cycles
Byte count 1 1
OP code 40 41

176

6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
(" Transfer the word value from the memory indicated by SP to dr. Then, subtract 2 fromthe value of SP. " →
" Subtract 2 from the value of SP. Then, transfer the word value from the memory indicated by SP to dr. ")

6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
■ PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
("((SP)) <-- (dr) (Word transfer) " → " (SP) ← (SP) - 2 (Word subtraction) ")
(" (SP) <-- (SP) - 2 (Word subtraction) " → " ((SP)) ← (dr) (Word transfer) ")

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : PUSHW IX

Memory ~FFFFH

A i '
T |
IX 12 34
/ 0222H
SP | 02 i 22 X
PC : |
- Byte ~ OO0OOH
EP
N Z Vv C
PS i —|o|ofo]|o
Byte J_ Byte — (Before execution)

—>

SP

PC

EP

PS

Memory FFFFH
12 | 34
0222+
02 | 20 \\\\\\ 34
12 0220w
- Byte 0000H
N zZ V C
§ olololo

— Byte J— Byte —

(After execution)

177

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.66 POPW (POP Word Data of Intherent Register from Stack
Memory)

Transfer the word value from the memory indicated by SP to dr. Then, add 2 to the value
of SP.

B POPW (POP Word Data of Intherent Register from Stack Memory)
Operation
(dr) « ((SP)) (Word transfer)
(SP) « (SP) + 2 (Word addition)
Assembler format
POPW dr
Condition code (CCR)

N Z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Table 6.66-1 Number of Execution Cycles / Byte Count / OP Code

DR A IX
Number of execution 3 3
cycles
Byte count 1 1
OP code 50 51

178

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : POPW A

Memory FFFFH

A | XX 1 XX]
T i
IX i
SP | 02 : 33 \ 26
31 0233+
PC : |
. Byte 00OOH
EP :
N Z V C
PS 5 —lololo]o
Byte J_ Byte (Before execution)

SP

PC

EP

PS

31 . 26

Memory FFFFH

f

0235k
02 ! 35 //////

26
31 0233H
Byte 0000H
N Z VvV C

(After execution)

179

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.67 RET (RETurn from subroutine)

Return the contents of PC saved in the stack. When this instruction is used in

combination with the CALLV or CALL instruction, return to the next instruction to each
of them.

B RET (RETurn from subroutine)
Operation
(PC) « ((SP)) (Word transfer)
(SP) « (SP) + 2 (Word addition)
Assembler format
RET
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 6

Byte count: 1
OP code: 20

180

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : RET

02 | 06
10
FC 0206w

Memory FFFFH

f

F8 : 09 l
- Byte 0000H

N Z VvV C

— 0|00 O
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH
' 0208
02 08 |— ;
10
: FC 0206+
FC: 10 l
; Byte 0000H
N Z V C
—> 0|0 0
Byte J_ Byte — (After execution)

181

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.68 RETI (RETurn from Interrupt)

Return the contents of PS and PC saved in the stack. Return PS and PC to the state
before interrupt.

B RETI (RETurn from Interrupt)
Operation
(PS) «— ((SP)), (PC) « ((SP + 2)) (Word transfer)
(SP) « (SP) + 4 (Word addition)
Assembler format
RETI
Condition code (CCR)

N Y4 \% C

+ + + +

+: Changed by executing instruction
-: Not changed

N: Become to the saved value of N.
Z: Becometo the saved value of Z.
V: Become to the saved value of V.
C: Become to the saved value of C.

Number of execution cycles: 8

Byte count: 1
OP code: 30

182

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : RETI

Memory FFFFH

f

10
' FC
02 : 06
84
! 08 0206+
XX 1 XX |
. Byte 0000H
N Z V C
XX XB |—[1]0]|1]1
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

' 020AH
' 10
. FC 0208H
02 . OA
84
' 08 0206+
FC . 10 l
- Byte 0000H
N Zz VvV C
08 g4 |~ 0(1]0]0
- Byte J_ Byte — (After execution)

183

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.69 ROLC (Rotate Byte Data of Accumulator with Carry to Left)

Shift byte data of AL with a carry one bit to the left. The contents of AH are not changed.

B ROLC (Rotate Byte Data of Accumulator with Carry to Left)
Operation

AL
[TTTTT]

Assembler format
ROLCA
Condition code (CCR)

N 4 Vv C

+ + - +

+: Changed by executing instruction

-2 Not changed

N: Setto 1 if the MSB is 1 as the result of the shift and set to O in other cases.
Z: Setto 1if theresult of the shift is 00 and set to O in other cases.

V: Not changed

C: Enter Bit 7 of A before shift.

Number of execution cycle: 1

Byte count: 1
OP code: 02

184

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : ROLC A

Memory FFFFH

XX | 55 '
' Byte 0000H

N zZz V C

| ofofofa
- Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

XX | AB 1
; Byte 0000H
N Z V C
—{1]0|o0]o0
L Byte J_ Byte — (After execution)

185

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.70 RORC (Rotate Byte Data of Accumulator with Carry to Right)

Shift byte data of AL with a carry bit to the right. The contents of AH are not changed.

B RORC (Rotate Byte Data of Accumulator with Carry to Right)
Operation

AL
[T

Assembler format
RORC A
Condition code (CCR)

N 4 \% C

+ + - +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB is 1 as the result of the shift and set to 0 in other cases.
Z: Setto 1if theresult of the shift is 00 and set to O in other cases.

V: Not changed

C: LSB of A before entering shift

Number of execution cycle: 1

Byte count: 1
OP code: 03

186

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : RORC A

Memory FFFFH

XX 55 T
; Byte 0000H
N zZ V C
; o|lo|o|1
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

XX+ AA T
: Byte 0000H

N Z V C

—> 10|01
Byte J_ Byte — (After execution)

187

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.71 SUBC (SUBtract Byte Data of Accumulator from Temporary
Accumulator with Carry to Accumulator)

Subtract the byte data of AL from that of TL, subtract a carry and then return the result
to AL. The contents of AH are not changed.

B SUBC (SUBtract Byte Data of Accumulator from Temporary Accumulator with Carry to
Accumulator)

Operation

(AL) « (TL) - (AL) - C (Byte subtraction with carry)
Assembler format

SUBCA
Condition code (CCR)

N 4 \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to 0 in other cases.
Z: Set to 1if theresult of operation is 00 and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Setto 1if acarry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1
OP code: 32

188

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : SUBC A

Memory FFFFH
12 | 23 A
76 | 34
; Byte 0000H
N Z V C
—|0 |0 |0 |0
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

12 1 T
76 1 34
; Byte 0000H
N Z V C
—|o|o|o|o
L Byte J_ Byte — (After execution)

189

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.72 SUBC (SUBtract Byte Data of Memory from Accumulator
with Carry to Accumulator)

Subtract the byte data of the EA memory (memory expressed in each type of
addressing) from that of AL, subtract a carry and then return the results to AL. The
contents of AH are not changed.

B SUBC (SUBtract Byte Data of Memory from Accumulator with Carry to Accumulator)
Operation
(AL) « (AL) - (EA) - C (Byte subtraction with carry)
Assembler format
SUBCA, EA
Condition code (CCR)

N Y4 \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to O in other cases.
Z: Set to 1if the result of operation is 00, and set to 0 in other cases.

V: Setto 1if an overflow occurs as the result of operation and set to 0 in other cases.

C: Setto 1if acarry occurs as the result of operation and set to O in other cases.

Table 6.72-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @I1X+off @EP Ri

Number of
execution cycles

Byte count 2 2 2 1 1

OP code 34 35 36 37 38to 3F

190

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : SUBC A, #37H

Memory FFFFH

12 | 34]
. Byte 0000H
N zZ V C
ojlo|o]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

12 © FD 1
; Byte 0000H
N Zz V C
10|01
L Byte J_ Byte — (After execution)

191

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.73 SUBCW (SUBtract Word Data of Accumulator from
Temporary Accumulator with Carry to Accumulator)

Subtract the word data of A from that of T, subtract a carry and then return the result to
A.

B SUBCW (SUBtract Word Data of Accumulator from Temporary Accumulator with
Carry to Accumulator)

Operation

(AL) « (T) - (A) - C (Word subtraction with carry)
Assembler format

SUBCW A
Condition code (CCR)

N Z \% C

+ + + +

+: Changed by executing instruction

-: Not changed

N: Setto 1 if the MSB of A is 1 astheresult of operation and set to 0 in other cases.
Z: Set to 1if theresult of operation is 0000 and set to 0 in other cases.

V: Set to 1if an overflow occurs as the result of operation and set to 0 in other cases.
C: Setto 1if acarry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1
OP code: 33

192

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : SUBCW A

Memory FFFFH

A |32} 14 .
T | 56 | 34
IX
SP
PC i |
. Byte OOOOH
EP 5
N zZ V C
PS —|{0|0|0]oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

24 | 20)
56 | 34
; Byte 0000H
N Z V C
—|/0|0|0]|O
L Byte J_ Byte — (After execution)

193

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.74 SETB (Set Direct Memory Bit)

Set the contents of 1 bit (indicated by 3 lower bits (b) of mnemonic) for the direct area to
1.

B SETB (Set Direct Memory Bit)
Operation
(dirb) « 1
Assembler format
SETB dir:b
Condition code (CCR)

N z \% C

+: Changed by executing instruction
-2 Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 4

Byte count: 2
OP code: A8to AF

194

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : SETB 32H:5

Memory FFFF

f

00X0 0000| 0032+

N Z V C
05 o|jo0|o0|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory

0010 0000

N

Byte

FFFFr

f

0032+

0000~

Zz V C

0

0

0

0

(After execution)

195

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.75 SETC (SET Carry flag)

Set the C-flag to 1.

B SETC (SET Carry flag)
Operation
(C)«1
Assembler format
SETC
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed

S: Set to 1 by executing instruction
N: Not changed

Z: Not changed

V: Not changed

C: Settol

Number of execution cycle: 1
Byte count: 1
OP code: 91

196

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : SETC

Memory FFFFw
A E T
T |
IX
sp
PC i |
. Byte 0000+
EP !
N Z V C
PS —>|0o|lo|0]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

f

; Byte 0000H
N z VvV C
olofo|1

(After execution)

197

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.76 SETI (SET Interrupt flag)

Set the I-flag to 1 (enable an interrupt).

B SETI (SET Interrupt flag)
Operation
Hhe1
Assembler format
SETI
Condition code (CCR)

I N y4 \Y, C

IS - - - -

+: Changed by executing instruction
-: Not changed

S: Set to 1 by executing instruction
I: Setto 1l

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 90

198

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : SETI

Memory FFFFu
A ; T
T[]
IX
sp
PC |
, Byte 0000H
EP
H I IL11LO0O N Z V C
PS 0oj0|1|1|0|0|0|1
(Before execution)

— Byte -~ Byte —

SP

PC

EP

PS

Memory FFFFH

f

|

. Byte 0000+
H | IL11L0O N Z V C
o|1(1]1j0|0j0]|1
L Byte - Byte (After execution)

199

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.77 SWAP (SWAP Byte Data Accumulator "H" and Accumulator
n LII)

Exchange the byte data of AH for that of AL.

B SWAP (SWAP Byte Data Accumulator "H" and Accumulator "L")
Operation
(AH) < (AL) (Byte data exchange)
Assembler format
SWAP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 10

200

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : SWAP

Memory FFFFu
A |32 A)
T i
IX
sp
PC i |
. Byte 0000H
EP !
N zZ V C
PS —|lo0o|0]0]|oO
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFu

AA L 32 t
. Byte 0000H
N Z V C
o|lo|lo]|o
L Byte J_ Byte — (After execution)

201

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.78 XCH (eXCHange Byte Data Accumulator "L" and Temporary
Accumulator "L")

Exchange the byte data of AL for that of TL.

B XCH (eXCHange Byte Data Accumulator "L" and Temporary Accumulator "L")
Operation
(AL) & (TL) (conversion of byte data)
Assembler format
XCHA, T
Condition code (CCR)

N Y4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 42

202

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : XCH A, T

Memory FFFFw

32 | AA $
55 | 79
. Byte 0000H
N zZ V C
; ololo|o
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFH

321 79 $
55 | AA
; Byte 0000H
N Z V C
| olo|o]|o
L Byte J_ Byte — (After execution)

203

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.79 XCHW (eXCHange Word Data Accumulator and Extrapointer)

Exchange the word data of A for that of EP.

B XCHW (eXCHange Word Data Accumulator and Extrapointer)
Operation
(A) & (EP) (conversion of word data)
Assembler format
XCHW A, EP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: F7

204

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : XCHW A, EP

Memory FFFFu

32 1 AA T
. Byte 0000+
55 1 79
N Z V C
0|j0|0f|oO
- Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFF

55 . 79 T
; Byte 0000+
32 1 AA
N Z V C
o|lofo]|oO
L Byte J_ Byte — (After execution)

205

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.80 XCHW (eXCHange Word Data Accumulator and Index
Register)

Exchange the word data of A for that of IX.

B XCHW (eXCHange Word Data Accumulator and Index Register)
Operation
(A) & (IX) (conversion of word data)
Assembler format
XCHW A, IX
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: F6

206

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : XCHW A, IX

Memory FFFFu

A | 321 A '
T |
SP
PC : |
- Byte 0000H
EP
N Z V C
PS olololfo
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFu

55 | 79)
32 1 AA
. Byte 0000+
N z Vv C
ojofo]o
L Byte J_ Byte — (After execution)

207

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.81 XCHW (eXCHange Word Data Accumulator and Program
Counter)

Exchange the word data of PC for that of A.

B XCHW (eXCHange Word Data Accumulator and Program Counter)
Operation
(PC) « (A) (word transfer)
(A) « (PC) +1 (word addition, word transfer)
Assembler format
XCHW A, PC
Condition code (CCR)

N z \Y C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 3

Byte count: 1
OP code: F4

208

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : XCHW A, PC

Memory FFFF4

FO | C7 '
F1| 79 |
; Byte 0000w
| N Z V C
110(0]0
Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFx

F1 0 7A 1
Fo ! c7 |
. Byte 0000H
N Z V C
1/0(0]O0
Byte J_ Byte — (After execution)

209

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.82 XCHW (eXCHange Word Data Accumulator and Stack
Pointer)

Exchange the word data of A for that of SP.

B XCHW (eXCHange Word Data Accumulator and Stack Pointer)
Operation
(A) <> (SP) (conversion of word data)
Assembler format
XCHW A, SP
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycles: 2

Byte count: 1
OP code: F5

210

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : XCHW A, SP

Memory FFFFy

32 | AA T
55 | 79
- Byte 0000H
N Z V C
| olofolo
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFu

55 | 79 1
32 | AA
; Byte 0000H
N Z V C
olololo
L Byte J_ Byte — (After execution)

211

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.83 XCHW (eXCHange Word Data Accumulator and Temporary
Accumulator)

Exchange the word data of A for that of T.

B XCHW (eXCHange Word Data Accumulator and Temporary Accumulator)
Operation
(A) <> (T) (conversion of word data)
Assembler format
XCHWA, T
Condition code (CCR)

N 4 \% C

+: Changed by executing instruction
-: Not changed
N: Not changed
Z: Not changed
V: Not changed
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 43

212

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : XCHW A, T

Memory FFFFu

32 1 AA T
55 1 79
. Byte 0000H
N Z VvV C
0j0|0f|oO
L Byte J_ Byte (Before execution)

SP

PC

EP

PS

Memory FFFFu

55 79 T
32 1 AA
- Byte 0000H
N Z V C
| olofofo
- Byte J_ Byte — (After execution)

213

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.84 XOR (eXclusive OR Byte Data of Accumulator and
Temporary Accumulator to Accumulator)

Carry out the logical exclusive-OR on the byte data of AL and TL for every bit and return
the results to AL. The contents of AH are not changed.

B XOR (eXclusive OR Byte Data of Accumulator and Temporary Accumulator to
Accumulator)
Operation
(AL) « (AL) V (TL) (bytelogical exclusive-OR)
Assembler format
XOR A
Condition code (CCR)

N Y4 \% C

+ + R -

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to 0 in other cases.
Z: Set to 1if the result of operation is 00 and set to 0 in other cases.

V: Alwayssetto 0

C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 52

214

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

SP

PC

EP

PS

Execution example : XOR A

Memory FFFFu
76 | 23]
XX 1 41
. Byte 0000H
N zZz VvV C
—| 0|0|0]|O
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFu

76 | 62)
XX 1 41
; Byte 0000H
N z Vv C
olo|o]|o
Byte J_ Byte — (After execution)

215

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.85 XOR (eXclusive OR Byte Data of Accumulator and Memory
to Accumulator)

Carry out the logical exclusive-OR for the byte data of AL and EA memory (memory

expressed in each type of addressing) for every bit and return the results to AL. The
contents of AH are not changed.

B XOR (eXclusive OR Byte Data of Accumulator and Memory to Accumulator)
Operation
(AL) « (AL) V (EA) (bytelogical exclusive-OR)
Assembler format
XORA, EA
Condition code (CCR)

N z \% C

+ + R -

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Setto 1 if the MSB of AL is1 asthe result of operation and set to 0 in other cases.
Z: Set to 1if theresult of operation is 00 and set to 0 in other cases.

V: Always set to O

C: Not changed

Table 6.85-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri
Number of 2 3 3 2 2
execution cycles
Byte count 2 2 2 1 1
OP code 54 55 56 57 58 to 5F

216

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : XOR A, @EP

Memory FFFFy

A | 54 32 1
T i
IX i
: 12 0122+
SP
PC |
. Byte 0000H
EP| 01 | 22
N Z V C
PS —|o0|0|0]oO
ByteJ— Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFu
54 | 20 '
: 12 01224
. Byte 0000w
01 1 22
N zZz V C
ojofofoO
Byte J_ Byte — (After execution)

217

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

6.86 XORW (eXclusive OR Word Data of Accumulator and
Temporary Accumulator to Accmulator)

Carry out the logical exclusive-OR on the word data of A and T for every bit and return
the results to A.

B XORW (eXclusive OR Word Data of Accumulator and Temporary Accumulator to
Accmulator)
Operation
(A) « (A) V¥ (T) (word logical exclusive-OR)
Assembler format
XORW A
Condition code (CCR)

N 4 \% C

+ + R -

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Setto 1 if the MSB of A is 1 astheresult of operation and set to 0 in other cases.
Z: Set to 1if the result of operation is 0000 and set to 0 in other cases.

V: Alwayssetto 0
C: Not changed

Number of execution cycle: 1

Byte count: 1
OP code: 53

218

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

Execution example : XORW A

Memory FFFFy
A | 57 23 '
T |33 4
IX
SP
PC : |
- Byte 0000H
EP
N Z V C
PS —>/o|o|o]|o
L Byte J_ Byte — (Before execution)

SP

PC

EP

PS

Memory FFFFu

64 | 62)
331 41
; Byte 0000H
N zZ V C
ololo]o
L Byte J_ Byte — (After execution)

219

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

220

APPENDIX

The appendix contains instruction and bus operation
lists and an instruction map.

APPENDIX A Instruction List
APPENDIX B Bus Operation List
APPENDIX C Instruction Map

221

APPENDIX

APPENDIX A Instruction List

Appendix A contains lists of instructions used in the assembler.

A.1 F2MC-8FX CPU Instruction Overview
A.2 Operation List
A.3 Flag Change Table

222

APPENDIX A Instruction List

A.1 F2MC-8FX CPU Instruction Overview

This section explains the F2MC-8FX CPU instructions.

B F2MC-8FX CPU Instruction Overview

In the FPMC-8FX CPU, there is 140 kinds of one byte machine instruction (as the map, 256 bytes), and the
instruction code is composed of the instruction and the operand following it.

Figure A.1-1 shows the instruction code and the correspondence of the instruction map.

Figure A.1-1 Correspondence between the Instruction Code and the Instruction Map

Give 0 to 2 bytes according to
1 byte the instruction.

Machine r A}

Instruction code | instruction | Operand |

——>» Upper 4 bits

[Instruction map]

Lower 4 bits

Y

The following are enumerated as a feature of F2MC-8FX CPU instruction.
e Theinstruction is classified into 4 types: transfer, operation, branch, and others.

« There is various methods of address specification, and ten kinds of addressing can be selected by the
selection of the instruction and the operand specification.

* It provides with the bit operation instruction, and the read modification write can operate.
» Thereisaninstruction that directs special operation.

223

APPENDIX

B Sign of the Instruction List

Table A.1-1 explains the sign used by describing the instruction code in the table.

Table A.1-1 Sign of the Instruction List

Notation Meaning
dir Direct address (8 bits)
off Offset (8 hits)
ext Extended address (16 bits)
#vct Vector table number (3 bits)
#d8 Immediate data (8 bits)
#d16 Immediate data (16 bits)
dirb Bit direct address (8 bits: 3 bits)
rel Relative branch address (8 bits)
@ Register indirect (example: @A, @I X, @EP)
A Accumulator (8-bit or 16-bit length is determined by instruction to be used.)
AH Upper 8 bits of accumulator (8 bits)
AL Lower 8 bits of accumulator (8 bits)
T Temporary accumulator (8-bit or 16-bit length is determined by instruction to be used.)
TH Upper 8 bits of temporary accumulator (8 bits)
TL Lower 8 bits of temporary accumulator (8 bits)
IX Index register (16 bits)
EP Extra pointer (16 bits)
PC Program counter (16 hits)
SP Stack pointer (16 bits)
PS Program status (16 bits)
dr Accumulator or index register (16 bits)
CCR Condition code register (8 hits)
RP Register bank pointer (5 bits)
DP Direct bank pointer (3 bits)
Ri General-purpose register (8 bits, i =0to 7)
X X indicates immediate data. (8-bit or 16-bit length is determined by instruction to be used.)
xX) The contents of X are to be accessed. (8-bit or 16-bit length is determined by instruction to be used.)
(X)) The address indicated by the contents of X isto be accessed. (8-bit or 16-hit length is determined by

instruction to be used.)

224

APPENDIX A Instruction List

M Item in Instruction Table
Table A.1-2 explains the item of instruction table.

Table A.1-2 Item in Instruction Table

Item Description

NMEMONIC | The assembly description of the instruction is shown.

RD Theread of aninternal busis shown.
WR The write of an internal busis shown.
RMW The read modification write signal of an internal busis shown.

~ Cycle of theinstruction number is shown. One instruction cycle is one machine cycle.

Note:

The instruction cycle number might be postponed one cycle by the immediately preceding instruction.
Moreover, cycle of the instruction number might be extended in the access to the |O area.

The number of bytesfor the instruction is shown.

Operation The operation of the instruction is shown.

TL, TH, AH The change in the content when TL, TH, and AH each instruction is executed is shown. The sign in the
column shows the following respectively.

e -:Donot change.

e dH : Upper 8 hits of the data written in operation

e AL, AH : Become the contents of AL or AH immediately before instruction.

« 00 : Become 00.

N,Z,V,C The flag changed when each instruction is executed is shown. The sign in the column shows the
following respectively.

e -:Donot change.

e +:Change.

* R:BecomeO.

e S:Becomel.

OP CODE The code of the instruction is shown. When a pertinent instruction occupies two or more codes, it
follows the following description rules.
48to 4F: 48, 49, ..., 4F are shown.

225

APPENDIX

A.2 Operation List

Table A.2-1 is the operation list for transfer instructions. Table A.2-2 is the operation list
for operation instructions. Table A.2-3 is the operation list for branch instructions. Table
A.2-4 is the operation list for other instructions.

B Operation List

Table A.2-1 Operation List (for Transfer Instructions) (1/3)

No MNEMONIC ~ # OPERATION TL | TH | AH NzVvC OP CODE
1 MOV dir, A 3 2 (dir) « (A) - - - —_—— 45
2 MOV @IX+off, 3 2 (1X)+off) « (A) - - - _—— 46
A
3 MOV ext, A 4 3 (ext) « (A) - - - —_—— 61
4 MOV @ER, A 2 1 ((EP)) « (A) - - - _ 47
5 MOV Ri, A 2 1 (Ri) « (A) - - - _— 48 to 4F
6 MOV A, #d8 2 2 (A) « d8 AL | - - ++—— 04
7 MOV A, dir 3 2 (A) « (dir) AL | - - +4+—— 05
8 | MOV A, 3 |2 | (A)« ((1X)+off) AL |- |- o 06
@I X +off
9 | MOV A, ext 4 |3 | (A) <« (ext) AL |- |- - 60
10 | MOV A, @A 2 |1 | (A)«(A) AL | - |- ++—— 92
11 | MOV A, @EP 2 |1 | (A)«(EP) AL |- |- 4 07
12 | MOV A, Ri 2 1 (A) < (Ri) AL |- |- e 08 to OF
13 | MOV dir, #d8 4 3 (dir) « d8 - - - _— 85
14 | MOV @IX+off, |4 |3 | ((IX)+off) « d8 - |- |- — 86
#d8
15 | MOV@ER#d8 |3 |2 | ((EP)«d8 - |- |- S 87
16 | MOV Ri, #d8 3 2 (Ri) « d8 - - - —_—— 88 to 8F
17 | MOVW dir, A 4 |2 | (dir)« (AH), - |- |- N D5
(dir+1)«(AL)
18 | MOVW 4 2 ((IX)+off) « (AH), - - - _— D6
@I X+off, A ((1X)+off+1) « (AL)

226

A.2 Operation List
("((iX)+off) <-- d8 " → " ((IX)+off) ← d8 ")

Table A.2-1 Operation List (for Transfer Instructions) (2/3)

APPENDIX A Instruction List

No MNEMONIC ~ # OPERATION TL | TH | AH NzZVC OP CODE

19 | MOVW ext, A 5 3 (ext) « (AH), - - - _—— D4
(ext+1) « (AL)

20 | MOVW @ER A |3 1 ((EP)) « (AH), - - - _—— D7
((EP)+1) « (AL)

21 | MOVW EPR, A 1 1 (EP) < (A) - — - _ E3

22 | MOVW A, #d16 | 3 3 (A) « d16 AL | AH | dH ++—— E4

23 | MOVW A, dir 4 |2 | (AH) « (dir), AL | AH | dH +t—— c5
(AL) « (dir+1)

24 | MOVW A, 4 |2 | (AH) « ((IX)+off), AL | AH | dH e+ C6

@I X+off (AL) « ((IX)+off+1)

25 | MOVW A, ext 5 3 (AH) « (ext), AL | AH | dH ++—— C4
(AL) « (ext+1)

26 | MOVW A, @A 3 1 (AH) < ((A)), AL | AH | dH ++—— 93
(AL) < ((A)+1)

27 | MOVWA, @EP | 3 1 (AH) « ((EP)), AL | AH | dH ++—— c7
(AL) « ((EP)+1)

28 | MOVW A, EP 1 |1 |(A)«(EP - |- |aH R F3

29 | MOVWEPR #d16 | 3 3 (EP) « d16 - - - _—— E7

30 | MOVW IX, A 1 1 (IX) « (A) - - - - E2

31 | MOVWA, IX 1 1 (A) « (IX) - - dH _ F2

32 | MOVWSP A 1 1 (SP) « (A) - - - _ E1

33 | MOVWA, SP 1 |1 | (A)«(SP - |- |aH S F1

34 | MOV @A, T 2 1 ((A)) « (T - - - _—— 82

35 | MOVW @A, T 3 1 ((A)) « (TH), - - - _— 83
((A)+1) « (TL)

36 | MOVW IX,#d16 | 3 3 (IX) « d16 - - - - E6

37 | MOVW A, PS 1 1 (A) « (PS) - - dH _ 70

38 | MOVW PS, A 1 1 (PS) « (A) — — — ++++ 71

39 | MOVW SP #d16 | 3 3 (SP) « d16 - - - - E5

40 | SWAP 1 1 (AH) & (AL) - - AL - 10

227

APPENDIX

Table A.2-1 Operation List (for Transfer Instructions) (3/3)

No MNEMONIC ~ # OPERATION TL | TH | AH NZVC OP CODE
41 | SETB dir:b 4 2 (dir)b«1 - - - —_—— A8to AF
42 | CLRBdir:b 4 2 (din:b«0 - - - —_—— AOto A7
43 | XCHA,T 1 |1 | (AL)<(TL) AL | — |- —_— 42
44 | XCHWA, T 1 |1 | (Ao AL | AH | dH ——— 43
45 | XCHW A, EP 1 1 (A) & (EP) - - dH _ F7
46 | XCHW A, IX 1 |1 | (A)eX) - |- |aH R F6
47 | XCHW A, SP 1 |1 |(A)e(SP - |- |aH ——_— F5
48 | MOVW A, PC 2 |1 |(A)« (PO - |- |aH —_—— FO
Notes:
1. Inbytetransfer to A, T « A isonly low bytes.
2. The operands of an instruction with two or more operands should be stored in the order designated in
MNEMONIC.
Table A.2-2 Operation List (for Operation Instructions) (1/3)
No MNEMONIC ~ # OPERATION TL | TH | AH NzVvC OP CODE
1 | ADDCA,Ri 2 1 | (A) « (A)*HRi)+C I R 2810 2F
2 ADDC A, #d8 2 2 (A) « (A)+d8+C - - - ++++ 24
3 ADDCA, dir 3 2 (A) « (A)+(din+C - - |- 4+ 25
4 ADDCA, 3 2 (A) < (A)+((IX)+off)+C - - - ++++ 26
@I X+off
5 |ADDCA,@EP |2 |1 | (A)« (A)+(EP)+C - |- |- +H 27
6 | ADDCW A 1 |1 | (A« (A)HTD+C - |- |dH ++ o+ 23
7 ADDCA 1 1 (AL) « (AL)+(TL)+C - - - ++++ 22
8 SUBC A, Ri 2 1 (A) « (A)-(RI)-C - - - ++++ 38to 3F
9 SUBC A, #d8 2 2 (A) « (A)-d8-C - - — ++++ 34
10 | SUBCA, dir 3 |2 | (A)« (A)-(di-C - |- |- +H 35
11 | SUBCA, 3 |2 | (A)«A-(X)+f)}-C |- |- |- +H 36
@I X+off
12 SUBC A, @EP 2 1 (A) « (A)-((EP))-C - - - ++++ 37
13 | SUBCW A 1 |1 | (A)«(D-(A-C - |- |oH Ta—_— 33
14 | suBC A 1 |1 |(AL)« (TL)-(AL)-C - |- |- ++ e+t <7)

228

Table A.2-2 Operation List (for Operation Instructions) (2/3)

APPENDIX A Instruction List

No MNEMONIC ~ # OPERATION TL | TH | AH NzvC OP CODE
15 | INC Ri 3 1 | (R)« (Ri)+1 - |- |- 4 C8to CF
16 | INCWEP 1 1 (EP) « (EP)+1 - - - —_— C3
17 | INCWIX 1 1 (IX) « (IX)+1 - - - ——— c2
18 | INCWA 1 1 (A) « (A)+1 - - dH ++—— Co
19 | DECRi 3 1 | (Ri)« (Ri)-1 S P ++H— D8 to DF
20 | DECWEP 1 |1 | (EP)«(EP-1 - |- |- —_— D3
21 | DECW IX 1 1 (IX) « (IX)-1 - - - - D2
22 | DECW A 1 1 (A) « (A)-1 - - dH ++—— DO
23 | MULUA 8 1 (A) « (AL)*(TL) - - dH —_— 01
24 | DIVUA 17 |1 | (A« (DA, d. | dH | dH —+—— 11
MOD — (T)
25 | ANDW A 1 1 (A) < (A)M(T) - - dH ++R- 63
26 | ORW A 1 1 (A) < (A)v (T - - dH ++R-— 73
27 | XORW A 1 1 (A) < (A)VY (T - - dH ++R-— 53
28 | CMP A 1 1 (TL)-(AL) - - - ++++ 12
29 | CMPWA 1 1 M- (A) - - - ++++ 13
30 RORC A 1 1 CA - - - ++—+ 03
31 | ROLCA 1 1 - - - ++—+ 02
[C—A j
32 | CMP A, #d8 2 2 (A)- d8 - - - ++++ 14
33 | CMP A, dir 3 2 (A)- (dir) - - - ++++ 15
34 | CMP A, @EP 2 1 (A)- ((EP)) - - - ++++ 17
35 | CMP A, 3 2 (A)- ((IX)+off) - - - ++++ 16
@I X+off
36 | CMP A,Ri 2 1 (A)- (Ri) - - - ++++ 18to 1F
37 DAA 1 1 decimal adjust for addition | — - - ++++ 84

229

APPENDIX

Table A.2-2 Operation List (for Operation Instructions) (3/3)

No MNEMONIC ~ # OPERATION TL | TH | AH NzvC OP CODE
38 | DAS 1 1 decimal adjust for - - - ++++ 94
subtraction

39 | XORA 1 1 (A) « (AL) V (TL) - - - ++R-— 52

40 | XORA, #d8 2 2 (A) « (AL) vV d8 - — - ++R-— 54

41 | XORA, dir 3 2 (A) « (AL) V (dir) - - - ++R-— 55

42 | XORA, @EP 3 |1 | (A)«(AL) Y ((EP) - |- |- ++R— 57

43 | XORA, @IX+off | 4 2 (A) « (AL) V ((IX)+off) | — - - ++R- 56

44 | XORA,Ri 2 1 (A) « (AL) V (Ri) - - - ++R- 58 to 5F
45 | ANDA 1 1 (A) « (AL) ™ (TL) - — - ++R-— 62

46 | AND A, #d8 2 2 (A) « (AL)~d8 - - - ++R-— 64

47 | AND A, dir 3 2 (A) « (AL) ™ (dir) - - - ++R-— 65

48 | AND A, @EP 2 1 (A) « (AL) ™ ((EP) - - - ++R- 67

49 | AND A, @IX+off | 3 2 (A) « (AL) ™ ((1X)+off) - - - ++R- 66

50 | ANDA,Ri 2 1 (A) « (AL) ™ (Ri) - — - ++R-— 68 to 6F
51 | ORA 1 1 (A) « (AL) v (TL) - - - ++R-— 72

52 | OR A, #d8 2 2 (A) « (AL) v d8 - - - ++R-— 74

53 | OR A, dir 3 2 (A) « (AL) v (dir) - - - ++R- 75

54 | OR A,@EP 2 1 (A) « (AL) v ((EP)) - - - ++R- 77

55 | OR A, @IX,off 3 2 (A) « (AL) v ((IX)+off) - - - ++R- 76

56 | OR A,Ri 2 1 (A) « (AL) v (Ri) - - — ++R-— 78to 7F
57 | CMPdir, #d8 4 3 (dir) - d8 - - - ++++ 95

58 | CMP @EP, #d8 3 2 ((EP))- d8 - - - ++++ 97

59 | CMP @IX+off, 4 3 ((IX)+off) - d8 - - - ++++ 96

#d8

60 | CMPRI,#d8 3 2 (Ri)-d8 - - - ——— 98 to 9F
61 | INCW SP 1 1 (SP) < (SP) +1 - - - ——— C1

62 | DECW SP 1 1 (SP)«(SP) -1 - - - ——— D1

230

Table A.2-3 Operation List (for Branch Instructions)

APPENDIX A Instruction List

No MNEMONIC ~ # OPERATION TL | TH | AH NzVvC OP CODE
1 BZ/BEQ el (divergence) 4 2 if Z=1then PC « PC+rdl | — - - _ FD
(nodivergence) | o
2 | BNZBNErel (dvergence) | 4 | 2 | ifZ=OthenPC« PC+rel |- |- |- -——— | FC
(nodivergence) | o
3 BC/BLOTel (divergence) 4 2 if C=1then PC <~ PC+rel | — - - —_——— F9
(no divergence) | 2
4 BNC/BHSrel (divergence) 4 2 if C=0then PC <~ PC+rel | — - - ———— F8
(nodivergence) | 2
5 BN rel (divergence) 4 2 if N=1then PC < PC+rel | — - - ———— FB
(nodivergence) | o
6 BPrel (divergence) 4 2 if N=0then PC < PC+rel | — - - —_ FA
(nodivergence) | 2
7 BLT rel (divergence) 4 2 if V V N=1then - - - ———— FF
(nodivergence) | o PC « PC+rd
8 BGE el (divergence) 4 2 if V V N=0then - - - ———— FE
(no divergence) 2 PC « PC+rd
9 BBC dir:b, rel 5 3 if (dir:b)=0 then - - - —+—— BOto B7
PC « PC+rél
10 | BBSdir:b, rel 5 3 if (dir:b)=1then - - - —+—— B8to BF
PC « PC+rel
11 | MP@A 3 1 (PC) « (A) - - - —_— EO
12 | IMPext 4 3 (PC) « ext - - - —_——— 21
13 | CALLV #vct 7 1 | vector cal - - - ——— E8to EF
14 | CALL ext 6 3 subroutine call - - - ——— 31
15 | XCHWA, PC 3 1 (PC) « (A), - - dH - F4
(A) « (PO)+1
16 | RET 6 1 return from subroutine - - - - 20
17 | RETI 8 1 return from interrupt - - - restore 30

231

APPENDIX

Table A.2-4 Operation List (for Other Instructions)

No | MNEMONIC ~ # OPERATION TL | TH | AH NzvC OP CODE

1 PUSHW A 4 1 (SP) « (SP)-2, ((SP)) « (A) | — - - - 40

2 POPW A 3 1 (A) < ((SP)), - - dH _— 50
(SP) « (SP)+2

3 | PUSHW IX 4 |1 | (SP)«(SP)-2 - |- |- —— 41
((SP)) « (IX)

4 POPW X 3 1 (IX) « ((SP)), - - - _—— 51
(SP) « (SP)+2

5 NOP 1 1 No operation - — — _—— 00

6 CLRC 1 1 (©)«o0 - - - -——R 81

7 SETC 1 1 (C) 1 - |- |- -—-S 91

8 |CLRI 1 |1 |()«o0 - |- |- R 80

9 SETI 1 1 HN«1 - - - _ 90

232

Table A.2-4 Operation List (for Other Instructions)
("(SP) ← (SP)-2, ((SP)) ← (A)
(A) ← ((SP)),
(SP) ← (SP)+2
(SP) ← (SP)-2,
((SP)) ← (IX)
(IX) ← ((SP)),
(SP) ← (SP)+2
No operation
(C) ← 0
(C) ← 1
(I) ← 0
(I) ← 1 ") is added.

A.3 Flag Change Table

APPENDIX A Instruction List

Table A.3-1 is the flag change table for transfer instructions. Table A.3-2 is the flag

change table for operation instructions. Table A.3-3 is the flag change table for branch
instructions. Table A.3-4 is the flag change table for other instructions.

B Flag Change Table

Table A.3-1 Flag Change Table (for Transfer Instructions) (1/2)

Instruction Flag change
MOV dir, A N: Not changed
MOV @I X+off, A Z: Not changed
MOV ext, A V: Not changed
MOV @EP A C: Not changed
MOV Ri, A
MOV , #d8 N: Set to 1 if the transferred datais negative and set to 0 in other cases.
MOV A, dir Z: Setto 1if thetransferred datais 0 and set to O in other cases
MOV A, @IX+off V: Not changed
MOV A, ext C: Not changed
MOV A, @A
MOV A, @EP
MOV A, Ri
MOV dir, #d8 N: Not changed
MOV @IX+off, #d8 Z: Not changed
MOV @EP, #d8 V: Not changed
MOV Ri, #d8 C: Not changed
MOVW dir, A N: Not changed
MOVW @IX+off, A Z: Not changed
MOVW ext, A V: Not changed
MOVW @EP, A C: Not changed
MOVW A, #d16 N: Set to 1 if the transferred datais negative and set to 0 in other cases.
MOVW A, dir Z: Setto 1if the transferred datais 0 and set to O in other cases
MOVW A, @IX+off V: Not changed
MOVW A, ext C: Not changed
MOVW A, @A
MOVW A, @EP

233

APPENDIX

Table A.3-1 Flag Change Table (for Transfer Instructions) (2/2)

Instruction Flag change
MOVW A, EP N: Not changed
MOVW EP, #d16 Z: Not changed
MOVW IX, A V: Not changed
MOVW A, IX C: Not changed
MOVW SP, A
MOVW A, SP
MOVW SP, #d16
MOV @A, T N: Not changed
MOVW @A, T Z: Not changed
V: Not changed
C: Not changed
MOVW IX, #d16 N: Not changed
MOVW A, PS Z: Not changed
MOVW A, PC V: Not changed
JMP @A C: Not changed
MOVW PS, A N: Setto 1if bit3of AislandsettoOif 0.
Z:Settolif bit2of AislandsettoOif O.
V:Settolif bitlof AislandsettoOif O.
C:Settolif bitOof AislandsettoOif O.
SETB dir:b N: Not changed
CLRB dir:b Z: Not changed
V: Not changed
C: Not changed
SWAP N: Not changed
XCHA, T Z: Not changed
V: Not changed
C: Not changed
XCHWA, T N: Not changed
XCHW A, EP Z: Not changed
XCHW A, IX V: Not changed
XCHW A, SP C: Not changed
XCHW A, PC

234

APPENDIX A Instruction List

Table A.3-2 Flag Change Table (for Operation Instructions) (1/3)

: Setto 1if the result of operation is 0 and set to 0 in other cases.

: Set to 1 if an overflow occurs and set to O in other cases.

Instruction Flag change
ADDCA, Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.
ADDC A, #d8 Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
ADDCA, dir V: Set to 1 if an overflow occurs and set to O in other cases.
ADDC A, @I X+off C: Setto 1if acarry occurs and set to O in other cases.
ADDCA, @EP
ADDCA N: Set to 1if the result of operation is negative and set to 0 in other cases.
ADDCW A Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.
V: Set to 1 if an overflow occurs and set to O in other cases.
C: Setto 1if acarry occurs and set to O in other cases.
SUBCA, Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.
SUBC A, #d8 Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
SUBCA, dir V: Setto 1 if an overflow occurs and set to O in other cases.
SUBC A, @! X+off C: Setto 1if aborrow occurs and set to O in other cases.
SUBC A, @EP
SUBCA N: Set to 1 if the result of operation is negative and set to 0 in other cases.
SUBCW A Z: Setto 1if theresult of operation is0 and set to 0 in other cases.
V: Set to 1 if an overflow occurs and set to O in other cases.
C: Setto 1if aborrow occurs and set to O in other cases.
INC Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.
Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
V: Set to 1 if an overflow occurs and set to O in other cases.
C: Not changed
INCW EP N: Not changed
INCW IX Z: Not changed
INCW SP V: Not changed
C: Not changed
INCW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.
Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
V: Not changed
C: Not changed
DECRI N: Set to 1 if the result of operation is negative and set to 0 in other cases.
z
\%
C

: Not changed

235

APPENDIX

Table A.3-2 Flag Change Table (for Operation Instructions) (2/3)

Instruction Flag change
DECW EP N: Not changed
DECW IX Z: Not changed
DECW SP V: Not changed
C: Not changed
DECW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.
Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
V: Not changed
C: Not changed
MULU A N: Not changed
Z: Not changed
V: Not changed
C: Not changed
DIVU A N: Not changed
Z: Setto 1if A before operation is 0000y and set to O in other cases.
V: Not changed
C: Not changed
ANDW A N: Set to 1 if the result of operation is negative and set to O in other cases.
Z: Set to 1if the result of operation is 0 and set to O in other cases.
V: Always Setto 0
C: Not changed
AND A, #d8 N: Set to 1 if the result of operation is negative and set to O in other cases.
AND A, dir Z: Set to 1if the result of operation is 0 and set to O in other cases.
AND A, @EP V: Always set to 0
AND A, @IX+off C: Not changed
AND A, Ri
ORW A N: Set to 1 if the result of operation is negative and set to O in other cases.
Z: Set to 1if the result of operation is 0 and set to O in other cases.
V: Always set to O
C: Not changed
OR A, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.
OR A, dir Z: Set to 1if the result of operation is 0 and set to O in other cases.
ORA, @EP V: Always setto 0
OR A, @I X+off C: Not changed
ORA, Ri

236

APPENDIX A Instruction List

Table A.3-2 Flag Change Table (for Operation Instructions) (3/3)

Instruction Flag change
XORW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.
Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
V: Always setto 0
C: Not changed
XORA, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.
XORA, dir Z: Setto 1if theresult of operation is0 and set to 0 in other cases.
XOR A, @EP V: Always setto 0
XOR A, @I X+off C: Not changed
XORA, Ri
CMPA N: Set to 1 if the result of operation is negative and set to 0 in other cases.
Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
V: Set to 1 if an overflow occurs and set to O in other cases.
C: Setto 1if aborrow occurs and set to O in other cases.
CMPW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.
Z: Set to 1if the result of operation is 0 and set to 0 in other cases.
V: Set to 1 if an overflow occurs and set to O in other cases.
C: Setto 1if aborrow occurs and set to O in other cases.
CMPA, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.
CMPA, dir Z: Setto 1if theresult of operation is0 and set to 0 in other cases.
CMPA, @EP V: Set to 1if an overflow occurs and set to O in other cases.
CMP A, @IX+off C: Setto 1if aborrow occurs and set to O in other cases.
CMPA, Ri
CMP dir, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.
CMP @EP #d8 Z: Setto 1if theresult of operation is0 and set to 0 in other cases.
CMP @I X+off, #d8 V: Set to 1 if an overflow occurs and set to O in other cases.
CMPRI, #d8 C: Setto 1if aborrow occurs and set to O in other cases.
RORC A N: Set to 1 if the result of operation is negative and set to 0 in other cases.
ROLCA Z: Setto 1if the result of operation is 0 and set to 0 in other cases.
V: Not changed
C: Enter bit O (when RORA) or bit 7 (when ROLA) of A before the operation.
DAA N: Set to 1 if the result of operation is negative and set to 0 in other cases.
DAS Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.
V: Set to 1 if an overflow occurs and set to O in other cases.
C: Setto 1if acarry (borrow) occurs and set to O in other cases.

237

APPENDIX

Table A.3-3 Flag Change Table (for Branch Instructions)

Instruction Flag change

BZ rel/BEQ rel N: Not changed

BNZ rel/BNE rel Z: Not changed

BCrel/BLO el V: Not changed

BNC rel/BHS rel C: Not changed

BN rel

BPrel

BLT rel

BGE rel

JMP addr16 N: Not changed
Z: Not changed
V: Not changed
C: Not changed

BBC dir:b, rel N: Not changed

BBSdir:b, rel Z:Settolif bitbisOand setto Oif 1.
V: Not changed
C: Not changed

CALL addr16 N: Not changed

CALLV #vct Z: Not changed

RET V: Not changed
C: Not changed

RETI N: N value of saved CCR is entered.
Z: Z value of saved CCR is entered.
V: V value of saved CCR is entered.
C: Cvalue of saved CCR is entered.

238

Table A.3-4 Flag Change Table (for Other Instructions)

APPENDIX A Instruction List

Instruction

Flag change

PUSHW A
PUSHW IX

: Not changed
: Not changed
: Not changed
: Not changed

POPW A
POPW IX

: Not changed
: Not changed
: Not changed
: Not changed

NOP

: Not changed
: Not changed
: Not changed
: Not changed

CLRC

: Not changed
: Not changed
: Not changed

: Becometo O

SETC

: Not changed
: Not changed
: Not changed

:Becometo 1

CLRI

O < N Z2I0 < N ZI0 < N Z2I0 < N Z2I0 < N Z2/I0 < N Z

: Not changed
: Not changed
: Not changed
: Not changed

I: Becometo O

SETI

N:
Z:
V:
C:

Not changed
Not changed
Not changed
Not changed

|: Becometo 1

239

APPENDIX

APPENDIX B Bus Operation List

Table B-1is a bus operation list.

B Bus Operation List

Table B-1 Bus Operation List (1/11)

24 ADDC A, #d8
34 SUBC A, #d8
XOR A, #d8
AND A, #d8
74 OR A, #d8

g g

following instruction

CODE MNEMONIC ~ Cycle Address bus Data bus RD | WR | RMW
00 NOP 1 1 N +2 The following 1 0 0
80 CLRI following instruction
Q0 SETI
81 CLRC
91 SETC
10 SWAP 1 1 N +2 Thefollowing 1 0 0
12 CMP A following instruction
22 ADDCA
32 SUBCA
42 XCH A, T
52 XOR A
62 AND A
72 OrR A
13 CMPW A 1 1 N +2 Thefollowing 1 0 0
23 ADDCW A following instruction
33 SUBCW A
43 XCHW A, T
53 XORW A
63 ANDW A
73 ORW A
04 MOV A, #d8 2 1 N +2 The following 1 0 0

instruction
14 CMP A, #d8 2 N +3 The following 1 0 0

240

Table B-1 Bus Operation List (2/11)

APPENDIX B Bus Operation List

CODE MNEMONIC Cycle Address bus Data bus RD | WR | RMW
05 MOV A, dir 1 N +2 The following 1 0 0
instruction
15 CMP A, dir dir address Data 1
25 ADDC A, dir 3 N +3 The following 1
i following instruction
35 SUBC A, dir
55 XOR A, dir
65 AND A, dir
75 OR A, dir
45 MOV dir, A 1 N +2 Thefollowing 1 0 0
instruction
dir address Data 0
3 N +3 Thefollowing 0
following instruction
06 MOV A, @I X+off 1 N +2 The following 1 0 0
instruction
16 CMP A, @I X+off 2 N +3 Thefollowing 1 0 0
following instruction
26 ADDC A, @I X+off 3 (IX)+off Data 1 0 0
address
36 SUBC A, @I X+off
56 XOR A, @IX+off
66 AND A, @IX+off
76 OR A, @IX+off
46 MOV @IX+off, A 1 N +2 Thefollowing 1 0 0
instruction
2 N +3 Thefollowing 1 0 0
following instruction
3 (IX)+off address Data 0
07 MOV A, @EP 1 N +2 The following 1 0 0
following instruction
17 CMP A, @QEP 2 (EP) address Data 1 0 0
27 ADDCA, @QEP
37 SUBC A, @EP
57 XOR A, @QEP
67 AND A, @EP
77 OR A, @QEP
47 MOV @EP A 1 N +2 The following 1 0 0
following instruction
2 (EP) address Data 0 1 0

241

APPENDIX

Table B-1 Bus Operation List (3/11)

CODE MNEMONIC Cycle Address bus Data bus RD | WR | RMW
08-0F | MOV A,Ri 1 N +2 The following 1 0 0
following instruction
18-1F | CMP A,Ri 2 Rn address Data 1 0 0
28-2F | ADDCA,RI
38-3F | SUBCA,RI
58-5F | XOR A,Ri
68-6F | AND A Ri
78-7F | OR A,Ri
48-4F | MOV Ri, A 1 N +2 The following 1 0 0
following instruction
2 Rn address Data 0
Co INCW A 1 N +2 Thefollowing 0
DO DECW A following instruction
C1 INCW SP
D1 DECW SP
Cc2 INCW X
D2 DECW IX
C3 INCW EP
D3 DECW EP
FO MOVW A, PC 1 N +2 Thefollowing 1 0 0
following instruction
2 - - 0
El MOVW SP, A 1 N +2 The following 1
F1 MOVW A, SP following instruction
E2 MOVW IX, A
F2 MOVW A, IX
E3 MOVW EP, A
F3 MOVW A, EP
EO IMP @A 1 N +2 Dataof N +2 1
2 Address divergence | Thefollowing 1 0 0
instruction
3 Address divergence | Thefollowing 1 0 0
+1 following instruction
F5 XCHW A, SP 1 N +2 Thefollowing 1 0 0
6 XCHW A, IX following instruction
F7 XCHW A, EP

242

Table B-1 Bus Operation List (4/11)

APPENDIX B Bus Operation List

CODE MNEMONIC ~ Cycle Address bus Data bus RD | WR | RMW
F4 XCHW A, PC 3 1 N +2 Dataof N +2 1 0 0
2 Address divergence | Thefollowing 1 0
instruction
3 Address divergence | Thefollowing 1 0 0
+1 following instruction
AO0-A7 | CLRBdir:n 4 1 N +2 Thefollowing 1 0 1
instruction
A8-AF | SETB dir:n dir address Data 0
dir address Data 0
4 N +3 Thefollowing 1 0
following instruction
BO-B7 | BBCdir:n, rel Divergence
B8-BF | BBSdir:n, rel 5 1 N +2 rel 1 0 0
2 dir address Data 1 0 0
3 N +3 Data of N+3 1 0 0
4 Address divergence | Thefollowing 1 0 0
instruction
5 Address divergence | Thefollowing 1 0 0
+1 following instruction
No divergence
5 1 N +2 rel 1
2 dir address Data 1
3 N +3 The following 1
instruction
4 - - 0
N +4 Thefollowing
following instruction
60 MOV A, ext 4 1 N +2 ext (L byte) 1 0 0
2 N +3 Thefollowing 1 0
instruction
ext address Data 1
N +4 Thefollowing 1
following instruction
61 MOV ext, A 4 1 N +2 ext (L byte) 1
2 N +3 Thefollowing 1
instruction
ext address Data 0
N +4 The following 0
following instruction

243

APPENDIX

Table B-1 Bus Operation List (5/11)

CODE MNEMONIC Cycle Address bus Data bus RD | WR | RMW
c4 MOVW A, ext 1 N +2 ext (L byte) 1 0 0
2 N +3 Thefollowing 1 0
instruction
ext address Data (H byte) 1
ext+1 address Data (L byte) 1
N +4 The following 1
following instruction
D4 MOVW ext, A 1 N +2 ext (L byte) 1
2 N +3 Thefollowing 1 0
instruction
ext address Data (H byte) 1
ext+1 address Data (L byte)
N +4 Thefollowing 0
following instruction
C5 MOVW A, dir 1 N +2 Thefollowing 1 0 0
instruction
dir address Data (H byte) 1 0
dir+1 address Data (L byte) 1 0 0
N +3 The following 1 0
following instruction
D5 MOVW dir, A 1 N +2 The following 1 0 0
instruction
dir address Data (H byte) 1
dir+1 address Data (L byte)
4 N +3 Thefollowing 1 0
following instruction
Cc6 MOVW A, 1 N +2 Thefollowing 1 0 0
@I X +off instruction
2 N +3 Thefollowing 1 0 0
following instruction
(IX)+off address Data (H byte) 1
(IX)+off+1 address | Data (L byte) 1
D6 MOVW @I X+off, N +2 Thefollowing 1
A instruction
2 N +3 Thefollowing 1 0 0
following instruction
(IX)+off address Data (H byte) 1
(IX)+off+1 address | Data (L byte) 1

244

APPENDIX B Bus Operation List

Table B-1 Bus Operation List (6/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD | WR | RMW
Cc7 MOVW A, @EP 3 1 N +2 Thefollowing 1 0 0
following instruction
2 (EP) address Data(H byte) 1 0 0
3 (EP)+1 address Data(L byte)
D7 MOVW @EPR, A 3 1 N +2 Thefollowing 1 0
following instruction
2 (EP) address Data(H byte) 0 1 0
3 (EP)+1 address Data(L byte) 0 1 0
85 MOV dir, #d8 4 1 N +2 #d8 1 0 0
2 dir address Data 0 1 0
3 N +3 The following 1 0 0
instruction
4 N +4 Thefollowing 1 0 0
following instruction
95 CMP dir, #d8 4 1 N +2 #d8 1
2 dir address Data 1 0 0
3 N +3 Thefollowing 1
instruction
86 MOV @IX+off, 4 1 N +2 #d8 1
#ds 2 N +3 The following 1
instruction
(IX)+off address Data 0
4 N +4 Thefollowing 1 0
following instruction
96 CMP @I X+off, #d8 | 4 1 N +2 #d8 1
2 N +3 Thefollowing 1
instruction
(IX)+off address Data 1
N +4 The following 1
following instruction

245

APPENDIX

Table B-1 Bus Operation List (7/11)

CODE MNEMONIC Cycle Address bus Data bus RD | WR | RMW
87 MOV @EP, #d8 1 N +2 Thefollowing 1 0 0
instruction
2 (EP) address Data 0 1 0
3 N +3 Thefollowing 0
following instruction
97 CMP @EP, #d8 1 N +2 Thefollowing 1 0 0
instruction
(EP) address Data 1
3 N +3 Thefollowing 1
following instruction
88-8F | MOV Ri, #d8 1 N +2 The following 1 0 0
instruction
Rn address Data 0
3 N +3 Thefollowing 1 0
following instruction
98-9F | CMPRI, #d8 1 N +2 Thefollowing 1 0 0
instruction
Rn address Data 1
3 N +3 Thefollowing 1 0 0
following instruction
82 MOV @A, T 1 N +2 Thefollowing 1 0 0
following instruction
2 (A) address Data 0 1 0
92 MOV A, @A 1 N +2 The following 0
following instruction
2 (A) address Data 1
83 MOVW @A, T 1 N +2 Thefollowing 1
following instruction
(A) address Data (H byte) 0 1
(A) +1 address Data (L byte) 1

246

Table B-1 Bus Operation List (8/11)

APPENDIX B Bus Operation List

CODE MNEMONIC Cycle Address bus Data bus RD | WR | RMW
93 MOVW A, @A 1 N +2 Thefollowing 1 0 0
following instruction
2 (A) address Data (H byte) 1 0 0
3 (A) +1 address Data (L byte) 1 0 0
E4 MOVW A, #d16 1 N +2 Data (L byte) 1 0 0
E5 MOVW SP, #d16 2 N +3 Thefollowing 1 0 0
instruction
E6 MOVW IX, #d16 3 N +4 Thefollowing 1 0 0
following instruction
E7 MOVW EPR, #d16
84 DAA 1 N +2 The following 1 0 0
following instruction
94 DAS
02 ROLCA
03 RORC A
70 MOVW A, PS
71 MOVW PS, A
C8-CF | INCRI 1 N +2 The following 1 0 1
following instruction
D8-DF | DECRI 2 Rn address Data 1 0 1
3 Rn address Data 0 1 0
E8- EF | CALLV #n 1 N +2 Dataof N +2 1 0 0
2 Vector address Vector (H) 1 0 0
3 Vector address +1 Vector (L) 1 0 0
4 SP-1 Return address (L) 0 1 0
5 SP-2 Return address (H) 0 1 0
6 Address divergence | Thefollowing 1 0 0
ahead instruction
7 Address divergence | Thefollowing 1 0 0
ahead +1 following instruction

247

APPENDIX

Table B-1 Bus Operation List (9/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD | WR | RMW
F8 BNCre Divergence
F9 BCre 4 1 N +2 Dataof N +2 1 0
FA BPrel 2 N +3 Dataof N +3 1
FB BN rel 3 Address divergence | Thefollowing 1
ahead instruction
FC BNZ rel 4 Address divergence | Thefollowing 1 0 0
ahead +1 following instruction
FD BZ rel No divergence
FE BGE rel 2 1 N +2 Thefollowing 1 0 0
instruction
FF BLT rel 2 N +3 Thefollowing 1 0 0
following instruction
40 PUSHW A 4 1 N +2 Thefollowing 1 0 0
following instruction
41 PUSHW IX 2 - - 0 0 0
3 SP-1 Save data (L) 0 1 0
4 SP -2 Save data (H) 0 1 0
50 POPW A 3 1 N +2 The following 1 0 0
following instruction
51 POPW X 2 SP Return data (H) 1 0 0
3 SP +1 Return data (L) 1 0 0
20 RET 6 1 N +2 Dataof N +2 1 0 0
2 SP Return address (H) 1 0 0
3 SP+1 Return address (L) 1 0 0
4 - - 0 0 0
5 Return address The following 1 0 0
instruction
6 Return address +1 The following 1 0 0
following instruction
30 RETI 8 1 N +2 Dataof N +2 1 0 0
2 SP PSH (RP, DP) 1 0 0
3 SP +1 PSL (CCR) 1 0 0
4 SP+2 Return address (H) 1 0 0
5 SP+3 Return address (L) 1 0 0
6 - - 0 0 0
7 Return address The following 1 0 0
instruction
8 Return address +1 Thefollowing 1 0 0
following instruction

248

Table B-1 Bus Operation List (10/11)

APPENDIX B Bus Operation List

CODE MNEMONIC ~ Cycle Address bus Data bus RD | WR | RMW
31 CALL ext 6 1 N +2 Address divergence 1 0 0
ahead (L)
2 - - 0 0 0
3 SP-1 Return address (L) 0 1 0
4 SP-2 Return address (H) 0 1 0
5 Address divergence | Thefollowing 1 0 0
ahead instruction
6 Address divergence | Thefollowing 1 0 0
ahead +1 following instruction
21 JMP ext 4 1 N +2 Address divergence 1 0 0
ahead (L)
- - 0
3 Address divergence | Thefollowing
ahead instruction
4 Address divergence | Thefollowing 1 0 0
ahead +1 following instruction
01 MULU A 8 1 N +2 The following 1 0 0
following instruction
2 - - 0 0 0
to
8 - - 0
11 DIVU A 17 1 N +2 Thefollowing 1 0 0
following instruction
2 - - 0 0 0
to
17 - - 0 0 0
- RESET 7 1 - - 0 0 0
2 OFFFDy Mode data 1 0 0
3 OFFFEL Reset vector (H) 1 0 0
4 OFFFF Reset vector (L) 1 0 0
5 - - 0 0 0
6 Start address The following 1 0 0
instruction
7 Start address +1 Thefollowing 1 0 0
following instruction

249

APPENDIX

Table B-1 Bus Operation List (11/11)

CODE MNEMONIC Cycle Address bus Data bus RD | WR | RMW
- INTERRUPT 1 N +2 Dataof N +2 1 0 0
2 Vector address Vector (H) 1 0 0
3 Vector address +1 Vector (L) 1 0 0
4 SP-1 Return address (L) 0 1 0
5 SP-2 Return address (H) 0 1 0
6 SP-3 PSL (CCR) 0 1 0
7 SP-4 PSH (RP, DP) 0 1 0
8 Address divergence | Thefollowing 1 0 0
ahead instruction
9 Address divergence | Thefollowing 1 0 0
ahead +1 following instruction
-> Invalid bus cycle

N: Address where instruction under execution is stored

Note:

The cycle of the instruction might be extended by the immediately preceding instruction by one cycle.
Moreover, cycle of the instruction number might be extended in the access to the |O area.

250

APPENDIX C Instruction Map

Instruction Map

APPENDIX C

is an instruction map.

Table C-1

B Instruction Map

Table C-1 Instruction Map

194 L# Ly Ly 184°L: LA1p 8p# LY | 8P# LY L4y L4y L4y LR L4y L4y L4y L4y
114 ATIVO 030 ONI | 4!p S8d 413s did AOW 40 aNY 40X AOW oans | oaay | dwd | AOW El
194 of 9N 9N 184°9: 8P# 94 | 8P# '9Y Ny Ny Ny LK 9y R oYy oYy
399 ATIVO 030 ONI | 4!p S8d 413s did AOW 40 ANV 40X AOW o8ns | oaay | dio | AOW 3
194 o1 oy Gy 194°G: G:d1p 8P# Gy | 8P# 'GY Y'Y Yy Yy Yoy Gy layv | syv |ayv
74 ATV 030 ONI | 4!p sad 4138 did AOW 40 aNY 40X AOW oans | oaay | dWd | AOW a
|84 £ 4 4 184 7p: spH vy | BPEVY | WYY v v L2 120 2R vy 2R
INg ATV 030 ONI | 1P sdd 4138 dio AOW 40 ONY 40X AOW oans | oaay | dWd | AOW o]
|84 ot €y €y [94°¢: €:41p 8p# ey | 8P# ‘€Y ey ey eyy Ve ey leyy leyv leyy
Ng ATV 030 ONI | 1P sdd 4138 dio AOW 40 ONY 40X AOW oans | oaay | dwd | AOW g
184 14 4 4 194°C: ¢:41p 8p# 2y | 8PH# T 2R 4R oy LA Wy k2R ey ey
dd ATV 030 ONI | 4Ip sdd 4138 dio AOW 40 ONY 40X AOW oans | oaay | dWd | AOW v
|84 1 1y | [18471: Lodip 8P# 1Y | 8PH# 1Y 1y 1y 1y Ve 1Y TR v Ly
0d ATV 030 ONI | JIp sdd 4138 dio AOW 40 ONY 40X AOW oans | oaay | dWd | AOW 6
184 o# 0y 0y 184°0: 8P# 04 | BPE04 | OM'Y 04y 04y Y 0d 04y R R oYy
ONd ATV 030 ONI | JIp sdd 4138 dio AOW 40 ONY 40X AOW oans | oaay | dWd | AOW 8
diy 9IP#'dl | V'dI0 LEUR 1847 L:A1p 8p#'d3D | 8P#'dID | dID Y LEURY d39 Y Y 'd30 dY |[dIBY [dPYV 4DV
MHOX MAOW MAOW MAOW | 41P 094 410 did AOW 40 ANV 40X AOW oans | oaay | dwd | AOW L
X1y 9LPE X1 |V 'P+XID | P+XID'Y | |84°9: 8P# ‘P+X1 | 8P# P+X1 | P+XI0 p+X1@ p+X1@ VP+XI1D | P+XI@ | P+XI® | P+XI® | P+XI®
MHOX MAOW MAOW MAOW | 41P 084 @100 dND @ AOW| YV MO Y ONY | Y MOX AOW | 'V 08NS | 'V 00V | 'V dWD | 'V AOW 9
sy 9IP#'dS |V 4Ip 41py 194°G: G:d1Ip 8p#Alp | 8p#AIp | AIpY A1py a1py yip dipy LAipy [dpy APy
MHOX MAOW MAOW MAOW | 41Pp 094 410 did AOW 40 ANV 40X AOW o8ns | oaay | dio | AOW S
Y 9IPE'Y |V IXe xey 184°%: y:41p 8p# vy 8P# Y 8p# Y _H_ 8PEY [8PHY [8PEYV | 8PHY
MHOX MAOW MAOW MAOW | 41P 094 410 Sva vva 40 ANV 40X o8ns | oaay dio | AOW 14
diy v'dd di d3 1947°¢: €:41p Yo'y 1'vo v v v 1y v v v Ly
MAOW MAOW Mo3d MONI | 41p 094 410 MAOW MAOW M40 MANY MAOX MHOX Mogns | Modav | MO | 040y €
X1y VXl X1 X1 1847¢: ¢:41Ip Yo'y 1'vo v v v 1y v v v Ly
MAON MAOW Mo3a MONI | 41p 084 RIR) AOW AOW 40 ANV 40X HOX oans | oaay | dWd | 07104 4
sy V'dS ds ds [8471: [Y 'sd Y '3x9 X 9lippe | glppe | Y v
MAON MAOW Mo3a MONI | 41p 084 RIR) 0138 REIR) MAON AOW Mdod MHSNd TIVO | dir | NAId | nnw L
Y \[J v v 194°0: 0:41p Sd'V ey Y Y | | |
MAON dnr M3a MONI | 41p 084 RID) 1138 1410 MAON AOW Mdod MHSNd 1134 | 134 | dvMs | dON 0
4 3 a o) g v 6 8 L 9 S 14 € 4 L 0o H1

251

APPENDIX

252

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

253

INDEX

Index
Symbols
#mm

Immediate Addressing (Fimm)ccccevvineeeenne 41
#k

Vector Addressing (#K)ccevevvvvvvvveeeniniiiiinieneenn. 42
@EP

Pointer Addressing (@EP)ccvveeeiiiiiiiinnee. 41
@IX+off

Index Addressing (@IX+0ff)........cccoveeviieeiinnenne, 41
Numerics
16-bit Data

Arrangement of 16-bit Datain Memory Space...... 13

254

A
A
AccumUIEOr (A)..coeeeeeciiiiieieeee e 18
Example of Operation of Accumulator (A) and
Temporary Accumulator (T) in Byte Data
ProCessing.......cceeeeeveeeeieiiiiciiiiiiieeneeeenn 21
Accumulator
ACCUMUIBLOr (A) 1eveiiiiiieiee it 18
Example of Operation of Accumulator (A) and
Temporary Accumulator (T) in Byte Data
Processing......ccooevveeeeinrieeeeniieeee e 21
ADDC
ADDC (ADD Byte Data of Accumulator and Memory
with Carry to Accumulator) 50
ADDC (ADD Byte Data of Accumulator and
Temporary Accumulator with Carry to
AcCUMUIALON) ..veeeeieiieeiieiiieiieeee e 48
ADDCW
ADDCW (ADD Word Data of Accumulator and
Temporary Accumulator with Carry to
AcCUMUIELO) ... 52
Addressing
Memory Space and Addressingeeeeeeeennnnnn. 7
AND
AND (AND Byte Data of Accumulator and Memory
to ACCUMUIELOr) ...ccoeeeeeiiiiieeee e 56
AND (AND Byte Data of Accumulator and
Temporary Accumulator to Accumulator)
... 54
ANDW
ANDW (AND Word Data of Accumulator and
Temporary Accumulator to Accumulator)
... 58
B
BBC
BBC (Branchif BitisClear)cccccvvvvvvvnvnnnnnnnnn. 60
BBS
BBS (Branch if Bit iSSet).......cccvvvieeiiniiiiiiiiiieen. 62
BC
BC (Branch relative if C=1)/BLO (Branch if LOwer)
... 64
BEQ
BZ (Branch relative if Z=1)/BEQ (Branch if Equal)
... 78
BGE
BGE (Branch Great or Equal: relativeif larger than or
equal t0 ZEr0)covviiiiiiiiieeeeea e 66

BHS
BNC (Branch relative if C=0)/BHS (Branch if Higher
OF SAME) ..eviiiiiieieeeee e 74
Bit Direct Addressing
Bit Direct Addressing (dir:b)ccccoovviviiieinnnnn. 40
BLO
BC (Branch relative if C=1)/BLO (Branch if LOwer)
.. 64
BLT
BLT (Branch Less Than zero: relative if < Zero)
.. 68
BN
BN (Branch relativeif N=1)........ccccccovvvvirerinnnen. 70
BNC
BNC (Branch relative if C=0)/BHS (Branch if Higher
(o S 11 74
BNE
BNZ (Branch relative if Z=0)/BNE (Branch if Not
Bqual) .ccoooeeeii 72
BNZ
BNZ (Branch relative if Z=0)/BNE (Branch if Not
EQUEL) ..eeeeeiiiee 72
BP
BP (Branch relativeif N=0: PLUS)..................... 76
Bus Operation
Bus Operation LiSt.......cooeeviiiiiiiiiiiiiiiieeeeeeeee 240

Byte Data Processing
Example of Operation of Accumulator (A) and
Temporary Accumulator (T) in Byte Data

ProCessing.......cceevrieeeeeiiiiiiiee e 21
Bz
BZ (Branch relative if Z=1)/BEQ (Branch if Equal)
.. 78
C
CALL
CALL (CALL SuUbrouting)ccoeeviviinevinieennnn. 80
CALLV
CALLV HK oot 45
CALLYV (CALL Vectored subrouting).................. 82
CLRB
CLRB (Clear direct Memory Bit)cevvveennnn. 84
CLRC
CLRC (Clear Carry flag)ceeeeeeeeeeeiiiiiiiiiieeeenn. 86
CLRI
CLRI (CLeaR Interrupt flag)ovovvveeeeiniiieeeennns 88
CMP
CMP (CoMPare Byte Data of Accumulator and
1Y/ 1= 01 10]) I 92
CMP (CoMPare Byte Data of Accumulator and
Temporary Accumulator)................eeene.. 90
CMP (CoMPare Byte Data of Immediate Data and
1Y 1= 01 10]) P 94

INDEX

CMPW
CMPW (CoMPare Word Data of Accumulator and
Temporary Accumulator)cceeeeeennee 96
CPU
Configuration Example of Device Using F2M C-8FX
(O = U 3
F2MC-8FX CPU FEAIUIES...........ceeveveeerererereeeenenen. 2
F2MC-8FX CPU Instruction Overview............... 223
Outling of FPMC-8FX CPUc.coveeeeeereeeeeneenns 2
D
DAA
DAA (Decima Adjust for Addition)..................... 98
DAS
DAS (Decimal Adjust for Subtraction) 100
DEC
DEC (DECrement Byte Data of General-purpose
REGISIEN) .o 102
DECW
DECW (DECrement Word Data of Accumulator)
.. 104
DECW (DECrement Word Data of Extra Pointer)
.. 106
DECW (DECrement Word Data of Index Pointer)
.. 108
DECW (DECrement Word Data of Stack Pointer)
.. 110
Dedicated Register
F°MC-8FX Dedicated Registers............cocvurunnn... 16
dir
Direct Addressing (dir).........cocovvvvieiiiiieeeiiniines 40
dir:b
Bit Direct Addressing (dir:b)coeeeeeeenennn. 40
Direct Addressing
Direct Addressing (dir).........cccouvviiieeiiiiineniiiee 40
Direct Area
(D (= v N (== T 10
Direct Bank
DireCt BanK.........ccccvvuiiiiieiiiiiiiie e, 28

Direct Bank Pointer

Direct Data Transfer
Direct Data Transfer from Temporary Accumulator

L) PR 22
DIVU
DIVU (DIVide Unsigned)ccoceevnireriveeennnnn. 112
DIVU A e 44
E
EP
ExtraPointer (EP)........ccoovviiiiiiiiiiiiieeaeeeee 26

255

INDEX

ext
Extended Addressing (€Xt)eeeveeeeerininiiinnnnee. 40
Extended Addressing
Extended Addressing (€Xt)ccvveevevrivreeenininnenn. 40
Extra Pointer
EXtraPointer (EP)cccoevvvviiiiiieiieeeeeee e 26
F
Flag
Program Status (PS) Flags............eeeevieieriiiniinins 24
Flag Change
Flag Change Tableoovivviiiiieiiiieeeeieeie 233
G
General-Purpose Register
F2MC-8FX General-Purpose Registers................. 16
General-Purpose Register Addressing
General-Purpose Register Addressing (Ri)............ 41
General-Purpose Register Bank Area
General-Purpose Register Bank Area..................... 9
I
Immediate Addressing
Immediate Addressing (imm)cccoeevviinnnnnn 41
INC
INC (INCrement Byte Data of General-purpose
REGISEN) ..o 114
INCW
INCW (INCrement Word Data of Accumulator)
.. 116
INCW (INCrement Word Data of Extra Pointer)
.. 118
INCW (INCrement Word Data of Index Register)
.. 120
INCW (INCrement Word Data of Stack Pointer)
.. 122
Index Addressing
Index Addressing (@IX+0ff)........cuvvveciiiininnnnnnn. 41
Index Register
Index Register (IX)....ooooiuiiiiiiieieeee e 26
Inherent Addressing
Inherent Addressing.........c.cevveeeveeeeeeiisiciiiiieeee. 42
Instruction
F?MC-8FX CPU Instruction Overview............... 223
Instruction List
Sign of the Instruction List.........cccvevevieieiinnnnes 224
Instruction Map
INSErUCtioN Map.....ccccoviiiiiiiiiieiee e 251
Instruction Table
[temin Instruction Table..........ccccceeeiiiiiiinnnnee. 225
Interrupt
Creating an Interrupt Processing Program............. 34

256

Interrupt Enable/Disable Functions...................... 32
Interrupt Requestsin ReSOUrCes............cccuvvvveeeeen. 32
Multiple Interrupt..........ccccveviieeiee e, 36
Outline of Interrupt Operation............cccceeveeeeeennn. 30
Reset and Interrupt Vector Table...........ccceveeeeeee. 11
Item
Item in Instruction Table...........ccccoevviiiiieninnen. 225
IX
Index Register (1X) .oooovvreeieiiieieeeieeeee e 26
J
JMP
JMP (JuMP to address pointed by Accumulator)
... 124
JMP (JuMP to effective Address)ceeee.... 126
IMP @A ..o 43
M
Memory Space
Arrangement of 16-bit Datain Memory Space...... 13
CPU MEMOIY SPACE......ceeveeiiiiiiiiiriiieeiiee e 6
Memory Space and Addressingceeeeeviveeeeennns 7
MOV
MOV (MOVE Byte Data from Accumulator to
0015 110] V) 134
MOV (MOVE Byte Data from Memory to
Accumulator)oooeeeeeeeieeieeeeeeeeees 130
MOV (MOVE Byte Datafrom Temporary
Accumulator to Address Pointed by
Accumulator)oooeeeeeeeieieeeeeeees 128
MOV (MOVE Immediate Byte Datato Memory)
... 132
MOVW
MOVW (MOVE Immediate Word Data to Extra
POINEEN) ... 154
MOVW (MOVE Immediate Word Data to Index
REGISE) .o, 158
MOVW (MOVE Immediate Word Data to Stack
POINEEN) ... 162
MOVW (MOVE Word Data from Accumulator to
EXtraPOINter)ceeveeeeeeniiiiiiiiiieeeen, 152
MOVW (MOVE Word Data from Accumulator to
Index REGISLEr) ..vvveeeeieeeiiiiiiiiiieee, 156
MOVW (MOVE Word Data from Accumulator to
MEMOIY) ..t 150
MOVW (MOVE Word data from Accumulator to
Program Status Register)ccevveeeee. 160
MOVW (MOVE Word data from Accumulator to
Stack POINLEN) ... 164
MOVW (MOVE Word Data from Extra Pointer to
AcCUMUIALON) ...evveeeieiiieeeeeieiiiieee 140
MOVW (MOVE Word Data from Index Register to
AcCUMUIALON) ...evveeeiiiiieeeeeiiiieee 142
MOVW (MOVE Word Datafrom Memory to
AcCUMUIALON) ...evveieieiiieeeieiiiieee 138

MOVW (MOVE Word Datafrom Program Counter to
Accumulator)..........uvveeeeieiieaeeees 146
MOVW (MOVE Word Data from Program Status
Register to Accumulator) 144
MOVW (MOVE Word Data from Stack Pointer to
Accumulator).........uvvveeeeieiieeeee s 148
MOVW (MOVE Word Datafrom Temporary
Accumulator to Address Pointed by

Accumulator).........evvveeeeieiieeeee s 136
MOVW APC...cooiiiiiee it 43
Multiple Interrupt
Multiple INEErTUPL.ooeiiiiee e 36
MULU
MULU (MULtiply Unsigned)c.ccccvveeeennee 166
MULU A e 44
N
NOP
NOP (NOOPeration)ceeevvivveeeeiiciieeeesienns 168
0]
Operation
OpeEration List......cocoviueeiiiiiiieeceiiieee e 226
OR
OR (OR Byte Data of Accumulator and Memory to
Accumulator)..........covvvveeeeeeiiiiiiiins 172
OR (OR Byte Data of Accumulator and Temporary
Accumulator to Accumulator) 170
ORW
ORW (OR Word Data of Accumulator and Temporary
Accumulator to Accumulator) 174
P
PC
Program Counter (PC)oeveviiiieieeiiiiieee e, 17
Pointer Addressing
Pointer Addressing (@EP)cceeviviiiiiieiieeeennn. 41
POPW
POPW (POP Word Data of Intherent Register from
Stack Memory)ccoovvivevviiiiiieieeeeeenne 178
Program Counter
Program Counter (PC)cooccvvviiieiieieeeeeeiineens 17
Program Status
Program Status (PS) Flagscceeeviiiiiiieiineeeenn. 24
Structure of Program Status (PS)vvvvvvvvnnnne. 23
PS
Program Status (PS) FIagseeeeeeieiieiainininnns 24
Structure of Program Status (PS)cccvvveeeeen. 23
PUSHW
PUSHW (PUSH Word Data of Inherent Register to
Stack Memory)ooevvvveeeeeiviieee e, 176

INDEX

R

Register Bank
Register Bank Register..........cccuvvveeeeiiieeininiiis 27

Register Bank Pointer

POINEEr ..., 25
rel
Relative Addressing (rel)......cccocvvvveeveeieeeiieiinens 42
Relative Addressing
Relative Addressing (rel).......ccouvveveeeeiiiiiiiiie 42
Reset
Reset and Interrupt Vector Table............ccooueeeeee. 11
Reset Operation...........cooceeveeeiiiieereiiiiieee e 37
RET
RET (RETurn from subroutineg) 180
RETI
RETI (RETurn from Interrupt)ccceeeeeninnne 182
Ri
General-Purpose Register Addressing (Ri) 41
ROLC
ROLC (Rotate Byte Data of Accumulator with Carry
EOLEt) coveiieieiiee e 184
RORC
RORC (Rotate Byte Data of Accumulator with Carry
TORIGht) .o 186
S
SETB
SETB (Set Direct Memory Bit)ccoccvveeeenee. 194
SETC
SETC (SET Carry flag)oveevveeiiiiieiiieiiieeee 196
SETI
SETI (SET Interrupt flag)ooooveiiiiiiiiiiiieineee. 198
Sign
Sign of the Instruction Listcccccoeevviieeennnee. 224
SP
Stack Pointer (SP).......cuvvveiiiiiiiiiiiiieeeeeeeeeeeeeee 17
Stack Area
SEACK ATEA...cei it 9
Stack Pointer
Stack Pointer (SP).......evvveiiiiiiieiiieieee e 17
SUBC

SUBC (SUBtract Byte Data of Accumulator from
Temporary Accumulator with Carry to
AcCUMUIALON) ...cceeveeeeeeeieivieeee e 188

SUBC (SUBtract Byte Data of Memory from
Accumulator with Carry to Accumulator)

SUBCW
SUBCW (SUBtract Word Data of Accumulator from
Temporary Accumulator with Carry to
ACCUMUIELON) .. 192

257

INDEX

SWAP
SWAP (SWAP Byte Data Accumulator 'H' and
Accumulator "L") .oceeeeeeeiniiiiiieeeeeeeen 200

Direct Data Transfer from Temporary Accumulator
(T) e 22

Example of Operation of Accumulator (A) and
Temporary Accumulator (T) in Byte Data

ProCessingcceevvveeeeeiiiiieee e e 21
How to Use the Temporary Accumulator (T) 20
Temporary AcCUmMUIEOr (T)....oeevvveeeeeiiiiieeeeene 18

Temporary Accumulator
Direct Data Transfer from Temporary Accumulator
(T e 22
Example of Operation of Accumulator (A) and
Temporary Accumulator (T) in Byte Data

Processingccoevvvvvvvvieriiiiiiiiiieneeeeeeenn 21

How to Use the Temporary Accumulator (T) 20

Temporary Accumulator (T).........cevvvvveveevievninnnnn. 18
Vv
Vector Addressing

Vector Addressing (#K)oeeeeeveeeeriiiniiiiiiieeeen. 42
Vector Call

Vector Call Instruction Table.........ccoeeviiiinnnnneee. 11

258

Vector Table

Reset and Interrupt Vector Table...........cccvvveeeeee. 11
X
XCH
XCH (eXCHange Byte Data Accumulator 'L’and
Temporary Accumulator 'L’) 202
XCHW
XCHW (eXCHange Word Data Accumulator and
Extrapointer)ooovvvivivieiin 204
XCHW (eXCHange Word Data Accumulator and
Index Register)coovvvvvveveevviiiiiinennnnn 206
XCHW (eXCHange Word Data Accumulator and
Program Counter)ceevvvvvvvvnvnnnnnnn. 208
XCHW (eXCHange Word Data Accumulator and
Stack POINter)vvveiiiiiiiieieiiieeeeeeee, 210
XCHW (eXCHange Word Data Accumulator and
Temporary Accumulator)..................... 212
XCHW APC..oiiiiiiiee e 44
XOR
XOR (eXclusive OR Byte Data of Accumulator and
Memory to Accumulator)................ee... 216
XOR (eXclusive OR Byte Data of Accumulator and
Temporary Accumulator to Accumulator)
... 214
XORW

XORW (eXclusive OR Word Data of Accumulator
and Temporary Accumulator to Accmulator)
... 218

CM26-00301-2E

FUJITSU SEMICONDUCTOR ¢ CONTROLLER MANUAL
F2MC-8FX

8-BIT MICROCONTROLLER

PROGRAMMING MANUAL

February 2008 the second edition

Published FUJITSU LIMITED Electronic Devices

Edited Strategic Business Development Dept.

	CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU
	1.1 Outline of F2MC-8FX CPU
	1.2 Configuration Example of Device Using F2MC-8FX CPU

	CHAPTER 2 MEMORY SPACE
	2.1 CPU Memory Space
	2.2 Memory Space and Addressing
	2.2.1 Data Area
	2.2.2 Program Area
	2.2.3 Arrangement of 16-bit Data in Memory Space

	CHAPTER 3 REGISTERS
	3.1 F2MC-8FX Registers
	3.2 Program Counter (PC) and Stack Pointer (SP)
	3.3 Accumulator (A) and Temporary Accumulator (T)
	3.3.1 How To Use The Temporary Accumulator (T)
	3.3.2 Byte Data Transfer and Operation of Accumulator (A) and Temporary Accumulator (T)

	3.4 Program Status (PS)
	3.5 Index Register (IX) and Extra Pointer (EP)
	3.6 Register Banks
	3.7 Direct Banks

	CHAPTER 4 INTERRUPT PROCESSING
	4.1 Outline of Interrupt Operation
	4.2 Interrupt Enable/Disable and Interrupt Priority Functions
	4.3 Creating an Interrupt Processing Program
	4.4 Multiple Interrupt
	4.5 Reset Operation

	CHAPTER 5 CPU SOFTWARE ARCHITECTURE
	5.1 Types of Addressing Modes
	5.2 Special Instructions

	CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
	6.1 ADDC (ADD Byte Data of Accumulator and Temporary Accumulator with Carry to Accumulator)
	6.2 ADDC (ADD Byte Data of Accumulator and Memory with Carry to Accumulator)
	6.3 ADDCW (ADD Word Data of Accumulator and Temporary Accumulator with Carry to Accumulator)
	6.4 AND (AND Byte Data of Accumulator and Temporary Accumulator to Accumulator)
	6.5 AND (AND Byte Data of Accumulator and Memory to Accumulator)
	6.6 ANDW (AND Word Data of Accumulator and Temporary Accumulator to Accumulator)
	6.7 BBC (Branch if Bit is Clear)
	6.8 BBS (Branch if Bit is Set)
	6.9 BC (Branch relative if C=1)/BLO (Branch if LOwer)
	6.10 BGE (Branch Great or Equal: relative if larger than or equal to Zero)
	6.11 BLT (Branch Less Than zero: relative if < Zero)
	6.12 BN (Branch relative if N = 1)
	6.13 BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal)
	6.14 BNC (Branch relative if C = 0)/BHS (Branch if Higher or Same)
	6.15 BP (Branch relative if N = 0: PLUS)
	6.16 BZ (Branch relative if Z = 1)/BEQ (Branch if Equal)
	6.17 CALL (CALL subroutine)
	6.18 CALLV (CALL Vectored subroutine)
	6.19 CLRB (Clear direct Memory Bit)
	6.20 CLRC (Clear Carry flag)
	6.21 CLRI (CLeaR Interrupt flag)
	6.22 CMP (CoMPare Byte Data of Accumulator and Temporary Accumulator)
	6.23 CMP (CoMPare Byte Data of Accumulator and Memory)
	6.24 CMP (CoMPare Byte Data of Immediate Data and Memory)
	6.25 CMPW (CoMPare Word Data of Accumulator and Temporary Accumulator)
	6.26 DAA (Decimal Adjust for Addition)
	6.27 DAS (Decimal Adjust for Subtraction)
	6.28 DEC (DECrement Byte Data of General-purpose Register)
	6.29 DECW (DECrement Word Data of Accumulator)
	6.30 DECW (DECrement Word Data of Extra Pointer)
	6.31 DECW (DECrement Word Data of Index Pointer)
	6.32 DECW (DECrement Word Data of Stack Pointer)
	6.33 DIVU (DIVide Unsigned)
	6.34 INC (INCrement Byte Data of General-purpose Register)
	6.35 INCW (INCrement Word Data of Accumulator)
	6.36 INCW (INCrement Word Data of Extra Pointer)
	6.37 INCW (INCrement Word Data of Index Register)
	6.38 INCW (INCrement Word Data of Stack Pointer)
	6.39 JMP (JuMP to address pointed by Accumulator)
	6.40 JMP (JuMP to effective Address)
	6.41 MOV (MOVE Byte Data from Temporary Accumulator to Address Pointed by Accumulator)
	6.42 MOV (MOVE Byte Data from Memory to Accumulator)
	6.43 MOV (MOVE Immediate Byte Data to Memory)
	6.44 MOV (MOVE Byte Data from Accumulator to memory)
	6.45 MOVW (MOVE Word Data from Temporary Accumulator to Address Pointed by Accumulator)
	6.46 MOVW (MOVE Word Data from Memory to Accumulator)
	6.47 MOVW (MOVE Word Data from Extra Pointer to Accumulator)
	6.48 MOVW (MOVE Word Data from Index Register to Accumulator)
	6.49 MOVW (MOVE Word Data from Program Status Register to Accumulator)
	6.50 MOVW (MOVE Word Data from Program Counter to Accumulator)
	6.51 MOVW (MOVE Word Data from Stack Pointer to Accumulator)
	6.52 MOVW (MOVE Word Data from Accumulator to Memory)
	6.53 MOVW (MOVE Word Data from Accumulator to Extra Pointer)
	6.54 MOVW (MOVE Immediate Word Data to Extra Pointer)
	6.55 MOVW (MOVE Word Data from Accumulator to Index Register)
	6.56 MOVW (MOVE Immediate Word Data to Index Register)
	6.57 MOVW (MOVE Word data from Accumulator to Program Status Register)
	6.58 MOVW (MOVE Immediate Word Data to Stack Pointer)
	6.59 MOVW (MOVE Word data from Accumulator to Stack Pointer)
	6.60 MULU (MULtiply Unsigned)
	6.61 NOP (NoOPeration)
	6.62 OR (OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)
	6.63 OR (OR Byte Data of Accumulator and Memory to Accumulator)
	6.64 ORW (OR Word Data of Accumulator and Temporary Accumulator to Accumulator)
	6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
	6.66 POPW (POP Word Data of Intherent Register from Stack Memory)
	6.67 RET (RETurn from subroutine)
	6.68 RETI (RETurn from Interrupt)
	6.69 ROLC (Rotate Byte Data of Accumulator with Carry to Left)
	6.70 RORC (Rotate Byte Data of Accumulator with Carry to Right)
	6.71 SUBC (SUBtract Byte Data of Accumulator from Temporary Accumulator with Carry to Accumulator)
	6.72 SUBC (SUBtract Byte Data of Memory from Accumulator with Carry to Accumulator)
	6.73 SUBCW (SUBtract Word Data of Accumulator from Temporary Accumulator with Carry to Accumulator)
	6.74 SETB (Set Direct Memory Bit)
	6.75 SETC (SET Carry flag)
	6.76 SETI (SET Interrupt flag)
	6.77 SWAP (SWAP Byte Data Accumulator "H" and Accumulator "L")
	6.78 XCH (eXCHange Byte Data Accumulator "L" and Temporary Accumulator "L")
	6.79 XCHW (eXCHange Word Data Accumulator and Extrapointer)
	6.80 XCHW (eXCHange Word Data Accumulator and Index Register)
	6.81 XCHW (eXCHange Word Data Accumulator and Program Counter)
	6.82 XCHW (eXCHange Word Data Accumulator and Stack Pointer)
	6.83 XCHW (eXCHange Word Data Accumulator and Temporary Accumulator)
	6.84 XOR (eXclusive OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)
	6.85 XOR (eXclusive OR Byte Data of Accumulator and Memory to Accumulator)
	6.86 XORW (eXclusive OR Word Data of Accumulator and Temporary Accumulator to Accmulator)

	APPENDIX
	APPENDIX A Instruction List
	A.1 F2MC-8FX CPU Instruction Overview
	A.2 Operation List
	A.3 Flag Change Table

	APPENDIX B Bus Operation List
	APPENDIX C Instruction Map

