
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

F2MC-8FX
8-BIT MICROCONTROLLER

PROGRAMMING MANUAL

CM26-00301-2E

F2MC-8FX
8-BIT MICROCONTROLLER

PROGRAMMING MANUAL
FUJITSU LIMITED

PREFACE

■ Purpose and Audience

The F2MC-8FX is original 8-bit one-chip microcontrollers that support application specific IC
(ASIC). It can be widely applied from household to industrial equipment starting with portable
equipment.

This manual is intended for engineers who actually develop products using the F2MC-8FX
microcontrollers, especially for programmers who prepare programs using the assembly

language for the F2MC-8FX series assembler. It describes various instructions for the F2MC-
8FX.

Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ Trademark

The company names and brand names herein are the trademarks or registered trademarks of
their respective owners.

■ Organization of This Manual

This manual consists of the following six chapters:

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU

This chapter outlines the F2MC-8FX CPU and explains its configuration by example.

CHAPTER 2 MEMORY SPACE

This chapter explains the F2MC-8FX CPU memory space.

CHAPTER 3 REGISTERS

This chapter explains the F2MC-8FX dedicated registers and general-purpose registers.

CHAPTER 4 INTERRUPT PROCESSING

This chapter explains the functions and operation of F2MC-8FX interrupt processing.

CHAPTER 5 CPU SOFTWARE ARCHITECTURE

This chapter explains the instructions for the F2MC-8FX CPU.

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS

This chapter explains each execution instruction, used in the assembler, in reference format.

APPENDIX

The appendix contains instruction and bus operation lists and an instruction map.
i

Copyright© 2004-2008 FUJITSU LIMITED All rights reserved.

• The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented solely for
the purpose of reference to show examples of operations and uses of FUJITSU semiconductor device; FUJITSU does not
warrant proper operation of the device with respect to use based on such information. When you develop equipment
incorporating the device based on such information, you must assume any responsibility arising out of such use of the
information. FUJITSU assumes no liability for any damages whatsoever arising out of the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU or any
third party or does FUJITSU warrant non-infringement of any third-party's intellectual property right or other right by using
such information. FUJITSU assumes no liability for any infringement of the intellectual property rights or other rights of third
parties which would result from the use of information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is
secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or
other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,
medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e.,
submersible repeater and artificial satellite).
Please note that FUJITSU will not be liable against you and/or any third party for any claims or damages arising in connection
with above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

• Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

• The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
ii

CONTENTS

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU 1
1.1 Outline of F2MC-8FX CPU .. 2
1.2 Configuration Example of Device Using F2MC-8FX CPU .. 3

CHAPTER 2 MEMORY SPACE .. 5
2.1 CPU Memory Space ... 6
2.2 Memory Space and Addressing .. 7

2.2.1 Data Area .. 9
2.2.2 Program Area .. 11
2.2.3 Arrangement of 16-bit Data in Memory Space .. 13

CHAPTER 3 REGISTERS ... 15
3.1 F2MC-8FX Registers .. 16
3.2 Program Counter (PC) and Stack Pointer (SP) .. 17
3.3 Accumulator (A) and Temporary Accumulator (T) .. 18

3.3.1 How To Use The Temporary Accumulator (T) ... 20
3.3.2 Byte Data Transfer and Operation of Accumulator (A) and Temporary Accumulator (T) 21

3.4 Program Status (PS) ... 23
3.5 Index Register (IX) and Extra Pointer (EP) ... 26
3.6 Register Banks ... 27
3.7 Direct Banks ... 28

CHAPTER 4 INTERRUPT PROCESSING .. 29
4.1 Outline of Interrupt Operation ... 30
4.2 Interrupt Enable/Disable and Interrupt Priority Functions ... 32
4.3 Creating an Interrupt Processing Program ... 34
4.4 Multiple Interrupt ... 36
4.5 Reset Operation .. 37

CHAPTER 5 CPU SOFTWARE ARCHITECTURE ... 39
5.1 Types of Addressing Modes ... 40
5.2 Special Instructions ... 43

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS 47
6.1 ADDC (ADD Byte Data of Accumulator and Temporary Accumulator with Carry to Accumulator)

 48
6.2 ADDC (ADD Byte Data of Accumulator and Memory with Carry to Accumulator) 50
6.3 ADDCW (ADD Word Data of Accumulator and Temporary Accumulator with Carry to Accumulator)

 52
6.4 AND (AND Byte Data of Accumulator and Temporary Accumulator to Accumulator) 54
6.5 AND (AND Byte Data of Accumulator and Memory to Accumulator) ... 56
6.6 ANDW (AND Word Data of Accumulator and Temporary Accumulator to Accumulator) 58
iii

6.7 BBC (Branch if Bit is Clear) .. 60
6.8 BBS (Branch if Bit is Set) .. 62
6.9 BC (Branch relative if C=1)/BLO (Branch if LOwer) ... 64
6.10 BGE (Branch Great or Equal: relative if larger than or equal to Zero) .. 66
6.11 BLT (Branch Less Than zero: relative if < Zero) ... 68
6.12 BN (Branch relative if N = 1) ... 70
6.13 BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal) .. 72
6.14 BNC (Branch relative if C = 0)/BHS (Branch if Higher or Same) .. 74
6.15 BP (Branch relative if N = 0: PLUS) .. 76
6.16 BZ (Branch relative if Z = 1)/BEQ (Branch if Equal) ... 78
6.17 CALL (CALL subroutine) ... 80
6.18 CALLV (CALL Vectored subroutine) ... 82
6.19 CLRB (Clear direct Memory Bit) ... 84
6.20 CLRC (Clear Carry flag) ... 86
6.21 CLRI (CLeaR Interrupt flag) .. 88
6.22 CMP (CoMPare Byte Data of Accumulator and Temporary Accumulator) 90
6.23 CMP (CoMPare Byte Data of Accumulator and Memory) .. 92
6.24 CMP (CoMPare Byte Data of Immediate Data and Memory) ... 94
6.25 CMPW (CoMPare Word Data of Accumulator and Temporary Accumulator) 96
6.26 DAA (Decimal Adjust for Addition) .. 98
6.27 DAS (Decimal Adjust for Subtraction) ... 100
6.28 DEC (DECrement Byte Data of General-purpose Register) ... 102
6.29 DECW (DECrement Word Data of Accumulator) ... 104
6.30 DECW (DECrement Word Data of Extra Pointer) ... 106
6.31 DECW (DECrement Word Data of Index Pointer) .. 108
6.32 DECW (DECrement Word Data of Stack Pointer) .. 110
6.33 DIVU (DIVide Unsigned) ... 112
6.34 INC (INCrement Byte Data of General-purpose Register) .. 114
6.35 INCW (INCrement Word Data of Accumulator) .. 116
6.36 INCW (INCrement Word Data of Extra Pointer) ... 118
6.37 INCW (INCrement Word Data of Index Register) ... 120
6.38 INCW (INCrement Word Data of Stack Pointer) ... 122
6.39 JMP (JuMP to address pointed by Accumulator) .. 124
6.40 JMP (JuMP to effective Address) ... 126
6.41 MOV (MOVE Byte Data from Temporary Accumulator to Address Pointed by Accumulator) 128
6.42 MOV (MOVE Byte Data from Memory to Accumulator) .. 130
6.43 MOV (MOVE Immediate Byte Data to Memory) ... 132
6.44 MOV (MOVE Byte Data from Accumulator to memory) .. 134
6.45 MOVW (MOVE Word Data from Temporary Accumulator to Address Pointed by Accumulator)

 136
6.46 MOVW (MOVE Word Data from Memory to Accumulator) ... 138
6.47 MOVW (MOVE Word Data from Extra Pointer to Accumulator) ... 140
6.48 MOVW (MOVE Word Data from Index Register to Accumulator) ... 142
6.49 MOVW (MOVE Word Data from Program Status Register to Accumulator) 144
6.50 MOVW (MOVE Word Data from Program Counter to Accumulator) .. 146
6.51 MOVW (MOVE Word Data from Stack Pointer to Accumulator) .. 148
6.52 MOVW (MOVE Word Data from Accumulator to Memory) ... 150
6.53 MOVW (MOVE Word Data from Accumulator to Extra Pointer) ... 152
iv

6.54 MOVW (MOVE Immediate Word Data to Extra Pointer) .. 154
6.55 MOVW (MOVE Word Data from Accumulator to Index Register) ... 156
6.56 MOVW (MOVE Immediate Word Data to Index Register) .. 158
6.57 MOVW (MOVE Word data from Accumulator to Program Status Register) 160
6.58 MOVW (MOVE Immediate Word Data to Stack Pointer) .. 162
6.59 MOVW (MOVE Word data from Accumulator to Stack Pointer) ... 164
6.60 MULU (MULtiply Unsigned) .. 166
6.61 NOP (NoOPeration) .. 168
6.62 OR (OR Byte Data of Accumulator and Temporary Accumulator to Accumulator) 170
6.63 OR (OR Byte Data of Accumulator and Memory to Accumulator) .. 172
6.64 ORW (OR Word Data of Accumulator and Temporary Accumulator to Accumulator) 174
6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory) .. 176
6.66 POPW (POP Word Data of Intherent Register from Stack Memory) .. 178
6.67 RET (RETurn from subroutine) ... 180
6.68 RETI (RETurn from Interrupt) ... 182
6.69 ROLC (Rotate Byte Data of Accumulator with Carry to Left) .. 184
6.70 RORC (Rotate Byte Data of Accumulator with Carry to Right) ... 186
6.71 SUBC (SUBtract Byte Data of Accumulator from Temporary Accumulator with Carry to Accumulator)

 188
6.72 SUBC (SUBtract Byte Data of Memory from Accumulator with Carry to Accumulator) 190
6.73 SUBCW (SUBtract Word Data of Accumulator from Temporary Accumulator with Carry to Accumulator)

 192
6.74 SETB (Set Direct Memory Bit) .. 194
6.75 SETC (SET Carry flag) ... 196
6.76 SETI (SET Interrupt flag) .. 198
6.77 SWAP (SWAP Byte Data Accumulator "H" and Accumulator "L") .. 200
6.78 XCH (eXCHange Byte Data Accumulator "L" and Temporary Accumulator "L") 202
6.79 XCHW (eXCHange Word Data Accumulator and Extrapointer) ... 204
6.80 XCHW (eXCHange Word Data Accumulator and Index Register) ... 206
6.81 XCHW (eXCHange Word Data Accumulator and Program Counter) ... 208
6.82 XCHW (eXCHange Word Data Accumulator and Stack Pointer) ... 210
6.83 XCHW (eXCHange Word Data Accumulator and Temporary Accumulator) 212
6.84 XOR (eXclusive OR Byte Data of Accumulator and Temporary Accumulator to Accumulator) 214
6.85 XOR (eXclusive OR Byte Data of Accumulator and Memory to Accumulator) 216
6.86 XORW (eXclusive OR Word Data of Accumulator and Temporary Accumulator to Accmulator)

 218

APPENDIX ... 221
APPENDIX A Instruction List .. 222

A.1 F2MC-8FX CPU Instruction Overview .. 223
A.2 Operation List ... 226
A.3 Flag Change Table ... 233

APPENDIX B Bus Operation List ... 240
APPENDIX C Instruction Map .. 251

INDEX... 253
v

vi

Main changes in this edition

The vertical lines marked in the left side of the page show the changes.

Page Changes (For details, refer to main body.)

11 2.2.2 Program Area
Table 2.2-2 CALLV Jump Address Table

(" FFC8H " → " FFC9H ")

53 Execution example : ADDCW A

(NZVC = "1010" → NZVC = "0000")

147 Execution example : MOVW A, PC

(A = "F0 63" → A = "F0 62")

(PC = "F0 63" → PC = "F0 62")

176 6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)

(" Transfer the word value from the memory indicated by SP to dr. Then, subtract 2 fromthe value of SP. " →
" Subtract 2 from the value of SP. Then, transfer the word value from the memory indicated by SP to dr. ")

6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
■ PUSHW (PUSH Word Data of Inherent Register to Stack Memory)

("((SP)) <-- (dr) (Word transfer) " → " (SP) ← (SP) - 2 (Word subtraction) ")

(" (SP) <-- (SP) - 2 (Word subtraction) " → " ((SP)) ← (dr) (Word transfer) ")

226 A.2 Operation List

("((iX)+off) <-- d8 " → " ((IX)+off) ← d8 ")

232 Table A.2-4 Operation List (for Other Instructions)

("(SP) ← (SP)-2, ((SP)) ← (A)

 (A) ← ((SP)),

 (SP) ← (SP)+2

 (SP) ← (SP)-2,

 ((SP)) ← (IX)

 (IX) ← ((SP)),

 (SP) ← (SP)+2
 No operation

 (C) ← 0

 (C) ← 1

 (I) ← 0
 (I) ← 1 ") is added.
vii

viii

CHAPTER 1
OUTLINE AND

CONFIGURATION EXAMPLE

OF F2MC-8FX CPU

This chapter outlines the F2MC-8FX CPU and explains
its configuration by example.

1.1 Outline of F2MC-8FX CPU

1.2 Configuration Example of Device Using F2MC-8FX CPU
1

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU
1.1 Outline of F2MC-8FX CPU

The F2MC-8FX CPU is a high-performance 8-bit CPU designed for the embedded control
of various industrial and OA equipment.

■ Outline of F2MC-8FX CPU

The F2MC-8FX CPU is a high-performance 8-bit CPU designed for the control of various industrial and

OA equipment. It is especially intended for applications requiring low voltages and low power

consumption. This 8-bit CPU can perform 16-bit data operations and transfer and is suitable for

applications requiring 16-bit control data. The F2MC-8FX CPU is upper compatibility CPU of the F2MC-

8L CPU, and the instruction cycle number is shortened, the division instruction is strengthened, and a direct

area is enhanced.

■ F2MC-8FX CPU Features

The F2MC-8FX CPU features are as follows:

• Minimum instruction execution time: 100 ns

• Memory: 64 Kbytes

• Instruction configuration suitable for controller

Data type: bit, byte, word

Addressing modes: 9 types

High code efficiency

16-bit data operation: Operations between accumulator (A) and temporary accumulator (T)

Bit instruction: set, reset, check

Multiplication/division instruction: 8 × 8 = 16 bits, 16/16 = 16 bits

• Interrupt priorities : 4 levels
2

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU
1.2 Configuration Example of Device Using F2MC-8FX CPU

The CPU, ROM, RAM and various resources for each F2MC-8FX device are designed in
modules. The change in memory size and replacement of resources facilitate
manufacturing of products for various applications.

■ Configuration Example of Device Using F2MC-8FX CPU

Figure 1.2-1 shows a configuration example of a device using the F2MC-8FX CPU.

Figure 1.2-1 Configuration Example of Device Using F2MC-8FX CPU

 Timer/counter
A T

IX EP Serial port

PC SP
 A/D converter

Common pins RP CCR
PWM

ALU

RAM

ROM

Clock generator
 Interrupt controller

E
xt

er
na

l b
us

 c
on

tr
ol

 s
ec

tio
n

P
in

s
in

he
re

nt
 to

 th
e

pr
od

uc
t

Pins inherent
to the product

F2MC-8FX CPU

F
2 M

C
-8

F
X

 B
U

S

F2MC-8FX Device
3

CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU
4

CHAPTER 2
MEMORY SPACE

This chapter explains the F2MC-8FX CPU memory space.

2.1 CPU Memory Space

2.2 Memory Space and Addressing
5

CHAPTER 2 MEMORY SPACE
2.1 CPU Memory Space

All of the data, program, and I/O areas managed by the F2MC-8FX CPU are assigned to

the 64 Kbyte memory space of the F2MC-8FX CPU. The CPU can access each resource
by indicating its address on the 16-bit address bus.

■ CPU Memory Space

Figure 2.1-1 shows the address configuration of the F2MC-8FX memory space.

The I/O area is located close to the least significant address, and the data area is arranged right above it.

The data area can be divided into the register bank, stack and direct areas for each application. In contrast

to the I/O area, the program area is located close to the most significant address. The reset, interrupt reset

vector and vector call instruction tables are arranged in the highest part.

Figure 2.1-1 F2MC-8FX Memory Space

I/O

FFFFH

0000H

 Program area

Data area
6

CHAPTER 2 MEMORY SPACE
2.2 Memory Space and Addressing

In addressing by the F2MC-8FX CPU, the applicable addressing mode related to memory
access may change according to the address.
Therefore, the use of the proper addressing mode increases the code efficiency of
instructions.

■ Memory Space and Addressing

The F2MC-8FX CPU has the following addressing modes related to memory access. ([] indicates one

byte):

• Direct addressing: Specify the lower 8 bits of the address using the operand. The accesses of operand

address 00H to 7FH are always 0000H to 007FH. The accesses of operand address

80H to FFH are mapped to 0080H to 047FH by setting of direct bank pointer (DP).

[Structure] [← OP code →] [← lower 8 bits →] ([← if operand available →]

• Extended addressing:Specify all 16 bits using the operand.

[Structure] [← OP code →] [← upper 8 bits →] [← lower 8 bits →]

• Bit direct addressing:Specify the lower 8 bits of the address using the operand. The accesses of operand

address 00H to 7FH are always 0000H to 007FH. The accesses of operand address

80H to FFH are mapped to 0080H to 047FH by setting of direct bank pointer (DP).

The bit positions are included in the OP code.

[Structure] [← OP code: bit →] [← lower 8 bits →]

• Indexed addressing: Add the 8 bits of the operand to the index register (IX) together with the sign and

use the result as the address.

[Structure] [← OP code →] [← 8 offset bits →] ([← if operand available →])

• Pointer addressing: Use the contents of the extra pointer (EP) directly as the address.

[Structure] [← OP code →]

• General-purpose register addressing: Specify the general-purpose registers. The register numbers are

included in the OP code.

[Structure] [← OP code: register →]

• Immediate addressing:Use one byte following the OP code as data.

[Structure] [← OP code →] [← Immediate data →]

• Vector addressing: Read the data from a table corresponding to the table number. The table numbers

are included in the OP code.

[Structure] [← OP code: table →]

• Relative addressing: Calculate the address relatively to the contents of the current PC. This addressing

mode is used during the execution of the relative jump and bit check instructions.

[Structure] [← OP code: table →] [← 8 bit relative value →]

Figure 2.2-1 shows the memory space accessible by each addressing mode.
7

CHAPTER 2 MEMORY SPACE
Figure 2.2-1 Memory Space and Addressing

: Direct addressing
: Extended addressing
: Bit direct addressing
: Index addressing
: Pointer addressing
: General-purpose register addressing
: Immediate addressing
: Vector addressing
: Relative addressing

Interrupt vector

CALLV table

Program area

External area

D
at

a
ar

ea Register bank

FFFFH

FFD0H

FFC0H

0200H

0100H

0000H
I/O area

+127 bytes

-128 bytes

047FH
8

CHAPTER 2 MEMORY SPACE
2.2.1 Data Area

The F2MC-8FX CPU data area can be divided into the following three for each purpose:
• General-purpose register bank area
• Stack area
• Direct area

■ General-Purpose Register Bank Area

The general-purpose register bank area in the F2MC-8FX CPU is assigned to 0100H to 01FFH. The general-

purpose register numbers are converted to the actual addresses according to the conversion rule shown in

Figure 2.2-2 by using the register bank pointer (RP) and the lower 3 bits of the OP code.

Figure 2.2-2 Conversion Rule for Actual Addresses of General-purpose Register Bank Area

■ Stack Area

The stack area in the F2MC-8FX CPU is used as the saving area for return addresses and dedicated

registers when the subroutine call instruction is executed and when an interrupt occurs. Before pushing data

into the stack area, decrease the contents of the 16-bit stack pointer (SP) by 2 and then write the data to be

saved to the address indicated by the SP. To pop data off the stack area, return data from the address

indicated by the SP and then increase the contents of the SP by 2. This shows that the most recently pushed

data in the stack is stored at the address indicated by the SP. Figure 2.2-3 and Figure 2.2-4 give examples of

saving data in the stack area and returning data from it.

RP

R4 R3 R2 R1 R0 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Lower bits of OP code

Transaction address

"0" "0""0" "0" "0" "0" "0" "1"
9

CHAPTER 2 MEMORY SPACE
Figure 2.2-3 Example of Saving Data in Stack Area

Figure 2.2-4 Example of Returning Data from Stack Area

■ Direct Area

The direct area in the F2MC-8FX CPU is located at the lower side of the memory space or the 1152 bytes

from 0000H to 047FH and is mainly accessed by direct addressing and bit direct addressing. The area that

can be used at a time by direct addressing and bit direct addressing is 256 bytes. 128 bytes of 0000H to

007FH can be used at any time as a direct area. 0080H to 047FH is a direct bank of 128 bytes × 8 and can

use one direct bank as a direct area by setting the direct bank pointer (DP). Conversion from the operand

address of direct addressing and bit direct addressing to the real address is done by the conversion rule

shown in Table 2.2-1 by using DP.

Access to it is obtained by the 2-byte instruction.

The I/O control registers and part of RAM that are frequently accessed are arranged in this direct area.

PUSHW A

SP 67H SP 67H

CDH
ABCDH

ABH

Before execution MEMORY

1233H

ABCDH

1235H

1234H

1233H

1232H

1235H

1234H

1233H

1232H

1235H

After execution MEMORY

A A

SP SP 567AH

IX IX FEDCH
DCH DCH

FEH FEH

5678H 567BH

567AH

5678H

5679H

567BH

567AH

5678H

5679H
XXXXH

Before execution MEMORY After execution MEMORY
POPW IX

Table 2.2-1 Conversion Rule for Actual Address of Direct Addressing and Bit Direct
Addressing

Operand address Direct bank pointer (DP) Actual address

00H to 7FH 0000H to 007FH

80H to FFH

000 0080H to 00FFH

001 0100H to 017FH

010 0180H to 01FFH

011 0200H to 027FH

100 0280H to 02FFH

101 0300H to 037FH

110 0380H to 03FFH

111 0400H to 047FH
10

CHAPTER 2 MEMORY SPACE
2.2.2 Program Area

The program area in the F2MC-8FX CPU includes the following two:
• Vector call instruction table
• Reset and interrupt vector table

■ Vector Call Instruction Table
FFC0H to FFCFH of the memory space is used as the vector call instruction table. The vector call

instruction for the F2MC-8FX CPU provides access to this area according to the vector numbers included

in the OP code and makes a subroutine call using the data written there as the jump address. Table 2.2-2

indicates the correspondence of the vector numbers with the jump address table.

■ Reset and Interrupt Vector Table
FFCCH to FFFFH of the memory space is used as the table indicating the starting address of an interrupt or

reset Table 2.2-3 indicates the correspondence between the interrupt numbers or resets and the reference

table.

Table 2.2-2 CALLV Jump Address Table

CALLV Jump address table

#k Upper address Lower address

#0 FFC0H FFC1H

#1 FFC2H FFC3H

#2 FFC4H FFC5H

#3 FFC6H FFC7H

#4 FFC8H FFC9H

#5 FFCAH FFCBH

#6 FFCCH FFCDH

#7 FFCEH FFCFH
11

2.2.2 Program Area
Table 2.2-2 CALLV Jump Address Table
(" FFC8H " → " FFC9H ")

CHAPTER 2 MEMORY SPACE
FFFCH: Reserved

FFFDH: Mode

Note: The actual number varies according to the product.

Use the interrupt number #22 and #23 exclusively for vector call instruction, CALLV #6 and

CALLV #7

Table 2.2-3 Reset and Interrupt Vector Table

Interrupt No. Table address Interrupt No. Table address

Upper data Lower data Upper data Lower data

Reset FFFEH FFFFH #11 FFE4H FFE5H

FFFCH FFFDH #12 FFE2H FFE3H

#0 FFFAH FFFBH #13 FFE0H FFE1H

#1 FFF8H FFF9H #14 FFDEH FFDFH

#2 FFF6H FFF7H #15 FFDCH FFDDH

#3 FFF4H FFF5H #16 FFDAH FFDBH

#4 FFF2H FFF3H #17 FFD8H FFD9H

#5 FFF0H FFF1H #18 FFD6H FFD7H

#6 FFFEH FFFFH #19 FFD4H FFD5H

#7 FFECH FFFDH #20 FFD2H FFD3H

#8 FFEAH FFFBH #21 FFD0H FFD1H

#9 FFE8H FFF9H #22 FFCEH FFCFH

#10 FFE6H FFE7H #23 FFCCH FFCDH
12

CHAPTER 2 MEMORY SPACE
2.2.3 Arrangement of 16-bit Data in Memory Space

The F2MC-8FX CPU can perform 16-bit data transfer and arithmetic operation though it
is an 8-bit CPU. Arrangement of 16-bit data in the memory space is shown below.

■ Arrangement of 16-bit Data in Memory Space

As shown in Figure 2.2-5, the F2MC-8FX CPU treats 16-bit data in the memory as upper data if it is

written at the first location having a lower address and as lower data if it is written at the next location after

that.

Figure 2.2-5 Arrangement of 16-bit Data in Memory

As when 16 bits are specified by the operand during the execution of an instruction, bytes are assumed to

be upper and lower in the order of their proximity to the OP code. This applies when the operand indicates

the memory address and 16-bit immediate data as shown in Figure 2.2-6.

Figure 2.2-6 Arrangement of 16-bit Data during Instruction Execution

The same may also apply to data saved in the stack by interrupts.

ABCFH ABCFH

ABCEH 34H ABCEH

ABCDH 12H ABCDH

ABCCH ABCCH

Before execution MEMORY MEMORYAfter execution

A A1234H 1234H

MOVW ABCDH, A

[Example]

MOV A, 5678H ; Extended address
MOVWA, #1234H ; 16-bit immediate data

Assembled

:.

:.

:.
XXXXH XX XX ; Extended address
XXXXH 60 56 78 ; 16-bit immediate data
XXXXH E4 12 34
XXXXH XX

:.
13

CHAPTER 2 MEMORY SPACE
14

CHAPTER 3
REGISTERS

This chapter explains the F2MC-8FX dedicated registers
and general-purpose registers.

3.1 F2MC-8FX Registers

3.2 Program Counter (PC) and Stack Pointer (SP)

3.3 Accumulator (A) and Temporary Accumulator (T)

3.4 Program Status (PS)

3.5 Index Register (IX) and Extra Pointer (EP)

3.6 Register Banks

3.7 Direct Banks
15

CHAPTER 3 REGISTERS
3.1 F2MC-8FX Registers

In the F2MC-8FX series, there are two types of registers: dedicated registers in the CPU,
and general-purpose registers in memory.

■ F2MC-8FX Dedicated Registers
The dedicated register exists in the CPU as a dedicated hardware resource whose application is restricted to

the CPU architecture.

The dedicated register is composed of seven types of 16-bit registers. Some of these registers can be

operated with only the lower 8 bits.

Figure 3.1-1 shows the configuration of seven dedicated registers.

Figure 3.1-1 Configuration of Dedicated Registers

■ F2MC-8FX General-Purpose Registers
The general-purpose register is as follows:

• Register bank: 8-bit length: stores data

 16 bits

PC

A

T

IX

EP

SP

RP CCR

PS

Initial value

0000H

0000H

0000H

0000H

0000H

FFFDH Program counter: indicates the location of the stored instructions

Accumulator: temporarily stores the result of operations and transfer

Temporary accumulator: performs operations with the accumulator

Index register: indicates address indexes

Extra pointer: indicates memory addresses

Stack pointer: indicates the current location of the top of the stack

Program status: stores register bank pointers, direct bank pointer
 and condition codesCCR: IL1, 0 = 11

 Other flags = 0
RP : 00000
DP : 000

DP
16

CHAPTER 3 REGISTERS
3.2 Program Counter (PC) and Stack Pointer (SP)

The program counter (PC) and stack pointer (SP) are application-specific registers
existing in the CPU.
The program counter (PC) indicates the address of the location at which the instruction
currently being executed is stored.
The stack pointer (SP) holds the addresses of the data location to be referenced by the
interrupt and stack push/pop instructions. The value of the current stack pointer (SP)
indicates the address at which the last data pushed onto the stack is stored.

■ Program Counter (PC)
Figure 3.2-1 shows the operation of the program counter (PC).

Figure 3.2-1 Program Counter Operation

■ Stack Pointer (SP)
Figure 3.2-2 shows the operation of the stack pointer (SP).

Figure 3.2-2 Stack Pointer Operation

PC PC

00H Instruction "NOP" executed

Before execution MEMORY After execution MEMORY

1234H 1235H

1234H

1235H

1234H 00H

XXH

SP SP

A 1234H1234H

5678H
5678H 5678H

5676H

5676H5676H

5679H

5677H 5677H

5679HXXH

XXH

XXH

XXH

32H

12H

Before execution MEMORY After execution MEMORY

PUSHW A

A

17

CHAPTER 3 REGISTERS
3.3 Accumulator (A) and Temporary Accumulator (T)

The accumulator (A) and temporary accumulator (T) are application-specific registers
existing in the CPU.
The accumulator (A) is used as the area where the results of operations are temporarily
stored.
The temporary accumulator (T) is used as the area where the old data is temporarily
saved for data transfer to the accumulator (A) or the operand for operations.

■ Accumulator (A)
For 16-bit operation all 16 bits are used as shown in Figure 3.3-1. For 8-bit operation only the lower 8 bits

are used as shown in Figure 3.3-2.

Figure 3.3-1 Accumulator (A) Operation (16-bit Operation)

Figure 3.3-2 Accumulator (A) Operation (8-bit Operation)

■ Temporary Accumulator (T)
When 16-bit data is transferred to the accumulator (A), all the old 16-bit data in the accumulator is

transferred to the temporary accumulator (T) as shown in Figure 3.3-3. When 8-bit data is transferred to the

accumulator, old 8-bit data stored in the lower 8 bits of the accumulator is transferred to the lower 8 bits of

the temporary accumulator as shown in Figure 3.3-4. Although all 16-bits are used as the operand for 16-bit

operations as shown in Figure 3.3-5, only the lower 8 bits are used for 8-bit operations as shown in Figure

3.3-6.

ADDCW A

CF 1 CF 0

1234H

5678H

68ADH

5678H

Before execution After execution

AA

T T

ADDC A

CF CF

Before execution After execution

1234H

5678H 5678H

12ADH

1 0

A

T T

A

18

CHAPTER 3 REGISTERS
Figure 3.3-3 Data Transfer between Accumulator (A) and Temporary Accumulator (T) (16-bit Transfer)

Figure 3.3-4 Data Transfer between Accumulator (A) and Temporary Accumulator (T) (8-bit Transfer)

Figure 3.3-5 Operations between Accumulator (A) and Temporary Accumulator (T) (16-bit Operations)

Figure 3.3-6 Operations between Accumulator (A) and Temporary Accumulator (T) (8-bit Operations)

Before execution After execution

1234H

5678H

5678H AA

TT XXXXH

MOVW A, #1234H

Before execution After execution

A A

TT
MOV A, #12H

5678H

XX78H

5612H

XXXXH

CF CF

Before execution After execution

1234H

5678H 5678H

68ADH

TT

AA +

1 0

1234H+5678H+1

ADDCW A

ADDC A

CF CF

Before execution After execution
34H+78H+1

1234H

5678H 5678H

12ADH

1 0

+A

T

A

T

19

CHAPTER 3 REGISTERS
3.3.1 How To Use The Temporary Accumulator (T)

The F2MC-8FX CPU has a special-purpose register called a temporary accumulator. This
section described the operation of this register.

■ How to Use the Temporary Accumulator (T)

The F2MC-8FX CPU has various binary operation instructions, some data transfer instructions and the

temporary accumulator (T) for 16-bit data operation. Although there is no instruction for direct data

transfer to the temporary accumulator, the value of the original accumulator is transferred to the temporary

accumulator before executing the instruction for data transfer to the accumulator. Therefore, to perform

operations between the accumulator and temporary accumulator, execute operations after carrying out the

instruction for data transfer to the accumulator twice. Since data is not automatically transferred by all

instructions to the temporary accumulator, see the columns of TL and TH in the instruction list for details

of actual data transfer instructions. An example of addition with carry of 16-bit data stored at addresses

1280H and 0042H is shown below.

Figure 3.3-7 shows the operation for the accumulator and temporary accumulator when the above example

is executed.

Figure 3.3-7 Operation of Accumulator (A) and Temporary Accumulator (T) in Word Data Processing

MOVW A, 0042H -
MOVW A, 1280H -
ADDCW A -

A A A

T T T CF T

RAM RAM RAM RAM

78H 78H 78H 78H

56H 56H 56H 56H

34H 34H 34H 34H

12H 12H 12H 12H

XXXXH

XXXXH XXXXH

1234H 5678H

1234H

68ACH

1234H

1281H

1280H

0043H

0042H

1281H

1280H

0043H

0042H

1281H

1280H

0043H

0042H

1281H

1280H

0043H

0042H

0

...

Before execution Last result

+ A
20

CHAPTER 3 REGISTERS
3.3.2 Byte Data Transfer and Operation of Accumulator (A)
and Temporary Accumulator (T)

When data transfer to the accumulator (A) is performed byte-by-byte, the transfer data
is stored in the AL. Automatic data transfer to the temporary accumulator (T) is also
performed byte-by-byte and only the contents of the original AL are stored in the TL.
Neither the upper 8 bits of the accumulator nor the temporary accumulator are affected
by the transfer. Only the lower 8 bits are used for byte operation between the
accumulator and temporary accumulator. None of the upper 8 bits of the accumulator or
temporary accumulator are affected by the operation.

■ Example of Operation of Accumulator (A) and Temporary Accumulator (T) in Byte Data
Processing

An example of addition with carry of 8-bit data stored at addresses 1280H and 0042H is shown below.

Figure 3.3-8 shows the operation of the accumulator and temporary accumulator when the above example

is executed.

Figure 3.3-8 Operation of Accumulator and Temporary Accumulator in Byte Data Processing

MOV A, 0042H -
MOV A, 1280H -
ADDC A -

A A A A

T T T CF 1 T

RAM RAM RAM RAM

56H 56H 56H 56H

EFH EFH EFH EFH

ABXXH

CDXXH

ABEFH

CDXXH

AB56H

CDEFH

AB 46H

CDEFH

1280H

0042H

...

1280H

0042H

1280H

0042H

1280H

0042H

...

Before execution Last result

*2

*1

 *1 The TH does not change when there is automatic data transfer to the temporary accumulator.

 *2 The AH is not changed by the result of the addition of the AL, TL, and CF.

+

21

CHAPTER 3 REGISTERS
■ Direct Data Transfer from Temporary Accumulator (T)

The temporary accumulator (T) is basically temporary storage for the accumulator (A). Therefore, data

from the temporary accumulator cannot be transferred directly to memory. However, as an exception, using

the accumulator as a pointer enabling saving of the contents of the temporary accumulator in memory. An

example of this case is shown below.

Figure 3.3-9 Direct Data Transfer from Temporary Accumulator (T)

A A

T T

RAM RAM

EFH

CDH

1234H 1234H

CDEFH CDEFH

XXH

XXH

1235H

1234H

1235H

1234H

 [Example] MOVW @A, T

Before execution After execution
22

CHAPTER 3 REGISTERS
3.4 Program Status (PS)

The program status (PS) is a 16-bit application-specific register existing in the CPU.
In upper byte of program status (PS), the upper 5-bit is the register bank pointer (RP)
and lower 3-bit is the direct bank pointer (DP). The lower byte of program status (PS) is
the condition code register (CCR). The upper byte of program status (PS), i.e. RP and
DP, is mapped to address 0078H. So it is possible to make read and write accesses to

them by an access to address 0078H.

■ Structure of Program Status (PS)
Figure 3.4-1 shows the structure of the program status.

The register bank pointer (RP) indicates the address of the register bank currently in use. The relationship

between the contents of the register bank pointer and actual addresses is as shown in Figure 3.4-2.

DP shows the memory area (direct bank) used for direct addressing and bit direct addressing. Conversion

from the operand address of direct addressing and bit direct addressing to the real address follows the

conversion rule shown in Table 3.4-1 by using DP.

The condition code register (CCR) has bits for indicating the result of operations and the content of transfer

data and bits for controlling the operation of the CPU in the event of an interrupt.

Figure 3.4-1 Structure of Program Status (PS)

Figure 3.4-2 Conversion Rule for Actual Address of General-purpose Register Area

PS RP

RP

H I N Z V C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IL0, 1DP

DP CCR

RP

R4 R3 R2 R1 R0 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Lower bits of OP code

Transaction address

"0" "0" "0" "0" "0" "0" "0" "1"
23

CHAPTER 3 REGISTERS
■ Program Status (PS) Flags
The program status flags are explained below.

• H flag

This flag is 1 if a carry from bit 3 to bit 4 or a borrow from bit 4 to bit 3 is generated as the result of an

operation, and it is 0 in other cases. Because it is used for decimal compensation instructions, it cannot

be guaranteed if it is used for applications other than addition or subtraction.

• I flag

An interrupt is enabled when this flag is 1 and is disabled when it is 0. It is set to 0 at reset which results

in the interrupt disabled state.

• IL1, IL0

These bits indicate the level of the currently-enabled interrupt. The interrupt is processed only when an

interrupt request with a value less than that indicated by these bits is issued.

• N flag

This flag is 1 when the most significant bit is 1 and is 0 when it is 0 as the result of an operation.

• Z flag

This flag is 1 when the most significant bit is 0 and is 0 in other cases as the result of an operation.

• V flag

Table 3.4-1 Conversion Rule for Actual Address of Direct Addressing and Bit
Direct Addressing

Operand address Direct bank pointer (DP) Actual address

00H to 7FH 0000H to 007FH

80H to FFH

000 0080H to 00FFH

001 0100H to 017FH

010 0180H to 01FFH

011 0200H to 027FH

100 0280H to 02FFH

101 0300H to 037FH

110 0380H to 03FFH

111 0400H to 047FH

IL1 IL0 Interrupt level High and low

0 0 0 Highest

Lowest

0 1 1

1 0 2

1 1 3
24

CHAPTER 3 REGISTERS
This flag is 1 when a two’s complement overflow occurs and is 0 when one does not as the result of an

operation.

• C flag

This flag is 1 when a carry or a borrow, from bit 7 in byte mode and from bit 15 in word mode, is

generated as the result of an operation but 0 in other cases. The shifted-out value is provided by the shift

instruction.

■ Access to Register Bank Pointer and Direct Bank Pointer
The upper byte of program status (PS), i.e. register bank pointer (RP) and direct bank pointer (DP), is
mapped to address 0078H. So it is possible to make read and write accesses to them by an access to address

0078H, besides using instructions that have access to PS (MOVW A, PS or MOVW PS, A).
25

CHAPTER 3 REGISTERS
3.5 Index Register (IX) and Extra Pointer (EP)

The index register (IX) and extra pointer (EP) are 16-bit application-specific registers
existing in the CPU.
The index register (IX) adds an 8-bit offset value with its sign to generate the address
stored by the operand.
The extra pointer (EP) indicates the address stored by the operand.

■ Index Register (IX)
Figure 3.5-1 indicates the operation of the index register.

Figure 3.5-1 Operation of Index Register (IX)

■ Extra Pointer (EP)
Figure 3.5-2 shows the operation of the extra pointer.

Figure 3.5-2 Operation of the Extra Pointer (EP)

34H 34H
IX IX

12H 12H

A AXXXXH

5678H

56CFH

56CEH

56CDH

56CCH

1234H

5678H

MOVW A, @IX+55H 5678H+0055H

 = 56CDH +

Before execution MEMORY After execution MEMORY

56CFH

56CEH

56CDH

56CCH

34H 34H

12H 12H
EP EP

Before execution MEMORY After execution

1234H

5678H

XXXXH

5678H

5679H

5678H

5677H

5676H

MEMORY

A A 5679H

5678H

5677H

5676H
MOVW A, @EP
26

CHAPTER 3 REGISTERS
3.6 Register Banks

The register bank register is an 8-bit general-purpose register existing in memory.
There are eight registers per bank of which there can be 32 altogether. The current bank
is indicated by the register bank pointer (RP).

■ Register Bank Register
Figure 3.6-1 shows the configuration of the register bank.

Figure 3.6-1 Configuration of Register Bank

R0

R1

R2

R3

R4

R5

R6

R7

Address = 0100H + 8 * (RP)

 Maximum of 32 banks

Memory area
27

CHAPTER 3 REGISTERS
3.7 Direct Banks

The direct bank is in 0080H to 047FH of direct area, and composed of 128 bytes × 8

banks. The access that uses direct addressing and bit direct addressing in operand
address 80H to FFH can be extended to 8 direct banks according to the value of the

direct bank pointer (DP). The current bank is indicated by the direct bank pointer (DP).

■ Direct Bank
Figure 3.7-1 shows the configuration of a direct bank.

The access that uses direct addressing and bit direct addressing in operand address 80H to FFH can be

extended to 8 direct banks according to the value of the direct bank pointer (DP). The access that uses

direct addressing and bit direct addressing in operand address 00H to 7FH is not affected by the value of the

direct bank pointer (DP). This access is directed to fixed direct area 0000H to 007FH.

Figure 3.7-1 Configuration of Direct Bank

Direct area

Memory

047FH
0400H

017FH
0100H

00FFH
0080H

007FH
0000H

Direct bank 7
(DP=111)

Direct bank 1
(DP=001)

Direct bank 0
(DP=000)

Fixed direct area

FFH
80H

7FH
00H

Direct addressing
and

Operand address
in bit direct addressing
28

CHAPTER 4
INTERRUPT PROCESSING

This chapter explains the functions and operation of

F2MC-8FX interrupt processing.

4.1 Outline of Interrupt Operation

4.2 Interrupt Enable/Disable and Interrupt Priority Functions

4.3 Creating an Interrupt Processing Program

4.4 Multiple Interrupt

4.5 Reset Operation
29

CHAPTER 4 INTERRUPT PROCESSING
4.1 Outline of Interrupt Operation

F2MC-8FX series interrupts have the following features:
• Four interrupt priority levels
• All maskable features
• Vector jump feature by which the program jumps to address mentioned in the

interrupt vector.

■ Outline of Interrupt Operation

In the F2MC-8FX series, interrupts are transferred and processed according to the following procedure:

1. An interrupt source occurs in resources.

2. Refer to interrupt enable bits in resources. If an interrupt is enabled, interrupt requests are issued from

resources to the interrupt controller.

3. As soon as an interrupt request is received, the interrupt controller decides the priorities of the interrupt

requested and then transfers the interrupt level corresponding to the interrupts applicable to the CPU.

4. The CPU compares the interrupt levels requested by the interrupt controller with the IL bit in the

program status register.

5. In the comparison, the CPU checks the contents of the I flag in the same program status register only if

the priority is higher than the current interrupt processing level.

6. In the check in 5., the CPU sets the contents of the IL bit to the requested level only if the I flag is

enabled for interrupts, processes interrupts as soon as the instruction currently being executed is

completed and then transfers control to the interrupt processing routine.

7. The CPU clears the interrupt source caused in 1. using software in the user’s interrupt processing

routine to terminate the processing of interrupts.
30

CHAPTER 4 INTERRUPT PROCESSING
Figure 4.1-1 shows the flow diagram of F2MC-8FX interrupt operation.

Figure 4.1-1 Outline of F2MC-8FX Interrupt Operation

F2MC-8FX CPU
I IL

AND

In
te

rn
al

 b
us

Check Comparator

Le
ve

l c
om

pa
ra

to
r

Interrupt
controller

Peripheral

Peripheral

Interrupt request
enable bit

Interrupt request
flag

1

5

4

2

3

6

7

31

CHAPTER 4 INTERRUPT PROCESSING
4.2 Interrupt Enable/Disable and Interrupt Priority Functions

In the F2MC-8FX series, interrupt requests are transferred to the CPU using the three
types of enable/disable functions listed below.
• Request enable check by interrupt enable flags in resources
• Checking the level using the interrupt level determination function
• Interrupt start check by the I flag in the CPU
Interrupts generated in resources are transferred to the CPU with the priority levels
determined by the interrupt priority function.

■ Interrupt Enable/Disable Functions
• Request enable check by interrupt enable flags in resources

This is a function to enable/disable a request at the interrupt source. If interrupt enable flags in resources

are enabled, interrupt request signals are sent from resources to the interrupt controller. This function is

used for controlling the presence or absence of an interrupt, resource-by-resource. It is very useful

because when software is described for each resource operation, interrupts in another resource do not

need to be checked for whether they are enabled or disabled.

• Checking the level using the interrupt level determination function

This function determines the interrupt level. The interrupt levels corresponding to interrupts generated

in resources are compared with the IL bit in the CPU. If the value is less than the IL bit, a decision is

made to issue an interrupt request. This function is able to assign priorities if there are two or more

interrupts.

• Interrupt start check by the I flag in the CPU

The I flag enables or disables the entire interrupt. If an interrupt request is issued and the I flag in the

CPU is set to interrupt enable, the CPU temporarily suspends the flow of instruction execution to

process interrupts. This function is able to temporarily disable the entire interrupt.

■ Interrupt Requests in Resources
As shown in Figure 4.2-1, interrupts generated in resources are converted by the corresponding interrupt

level registers in the interrupt controller into the values set by software and then transferred to the CPU.

The interrupt level is defined as high if its numerical value is lower, and low if it is higher.
32

CHAPTER 4 INTERRUPT PROCESSING
Figure 4.2-1 Relationship between Interrupt Request and Interrupt Level in Resources

Interrupt
request F/F

Resource #1

Resource #2

To CPU Interrupt level register

Interrupt controller

Resource #n

... ...

... ...

1H

2H

0H

3H
33

CHAPTER 4 INTERRUPT PROCESSING
4.3 Creating an Interrupt Processing Program

In the F2MC-8FX series, basically, interrupt requests from resources are issued by
hardware and cleared by software.

■ Creating an Interrupt Processing Program
The interrupt processing control flow is as follows:

1. Initialize resources before operation.

2. Wait until an interrupt occurs.

3. In the event of an interrupt, if the interrupt can be accepted, perform interrupt processing to branch to

the interrupt processing routine.

4. First, set software so as to clear the interrupt source at the beginning of the interrupt processing routine.

This is done so that the resource causing an interrupt can regenerate the interrupt during the interrupt

processing program.

5. Next, perform interrupt processing to transfer the necessary data.

6. Use the interrupt release instruction to release the interrupt from interrupt processing.

7. Then, continue to execute the main program until an interrupt recurs. The typical interrupt processing

flow is shown in Figure 4.3-1.

The numbers in the figure correspond to the numbers above.

Figure 4.3-1 Interrupt Processing Flow

The time to transfer control to the interrupt processing routine after the occurrence of an interrupt 3 in

Figure 4.3-1) is 9 instruction cycles. An interrupt can only be processed in the last cycle of each instruction.

The time shown in Figure 4.3-2 is required to transfer control to the interrupt processing routine after an

interrupt occurs.

The longest cycle (17 + 9 = 26 instruction cycles) is required when an interrupt request is issued

immediately after starting the execution of the DIVU instruction.

Set the interrupt request from
the resource in hardware and
issue an interrupt request.

Main program

Initialize the
resource.

Set he interrupt level
to the IL bit.

Interrupt processing program

Clear the interrupt source: To accept a multiple interrupts
 from the same resource.

Interrupt processing program: Transfer the actual
 processing data.

Release the interrupt from the interrupt processing.

→Prevent multiple
interrupts of the
same level.
34

CHAPTER 4 INTERRUPT PROCESSING
Figure 4.3-2 Interrupt Response Time

CPU operation Interrupt
handling

Normal
instruction execution

Interrupt processing program

Interrupt wait time Sample wait (a)

Interrupt request issued

9 instruction
cycles (b)

Indicates the last instruction cycle
in which an interrupt is sampled.

Note: It will take (a) + (b) instruction cycles to transfer control to
 the interrupt processing routine after an interrupt occurs.
35

CHAPTER 4 INTERRUPT PROCESSING
4.4 Multiple Interrupt

The F2MC-8FX CPU can have a maximum of four levels as maskable interrupts. These
can be used to assign priorities to interrupts from resources.

■ Multiple Interrupt
A specific example is given below.

• When giving priority over the A/D converter to the timer interrupt

When the above program is started, interrupts are generated from the A/D converter and timer after an

elapsed time. In this case, when the timer interrupt occurs while processing the A/D converter interrupt, it

will be processed through the sequence shown in Figure 4.4-1.

Figure 4.4-1 Example of Multiple Interrupt

When starting processing of an A/D converter interrupt, the IL bit in the PS register of the CPU is
automatically the same as the value of request (2 here). Therefore, when a level 1 or 0 interrupt request is
issued during the processing of an A/D converter interrupt, the processing proceeds without disabling the
A/D converter interrupt request. When temporarily disabling interrupts lower in priority than this interrupt
during A/D converter interrupt processing, disable the I flag in the PS register of the CPU for the interrupts
or set the IL bit to 0.

When control is returned to the interrupted routine by the release instruction after completion of each
interrupt processing routine, the PS register is set to the value saved in the stack. Consequently, the IL bit
takes on the value before interruption.

For actual coding, refer to the Hardware Manual for each device to check the addresses of the interrupt
controller and each resource and the interrupts to be supported.

START MOV ADIL, #2 Set the interrupt level of the A/D converter to 2.

MOV TMIL, #1 Set the interrupt level of the timer to 1. ADIL and
TMIL are IL bits in the interrupt controller.

CALL STAD Start the A/D converter.

CALL STTM Start the timer.

.

.

.

ı

ı

Main program

...
...

Initialize the resource.

The A/D converter
interrupt occurs.

The main program
is resumed.

A/D converter interrupt processing

IL=2 IL=1
Timer interrupt
occurs.

Suspended
Resumed

Process the A/D
converter interrupt.
Release the timer interrupt.

Process the timer interrupt.

Process the timer interrupt.

Release the timer interrupt.
36

CHAPTER 4 INTERRUPT PROCESSING
4.5 Reset Operation

In the F2MC-8FX series, when a reset occurs, the flag of program status is 0 and the IL
bit is set to 11. When cleared, the reset operation is executed from the starting address
written to set vectors (FFFEH, FFFFH).

■ Reset Operation
A reset affects:

• Accumulator, temporary accumulator: Initializes to 0000H

• Stack pointer: Initializes to 0000H

• Extra pointer, index register: Initializes to 0000H

• Program status: Sets flag to 0, sets IL bit to 11, sets RP bit to 00000 and Initializes DP bit to 000

• Program counter: Reset vector values

• RAM (including general-purpose registers): Keeps value before reset

• Resources: Basically stop

• Others: Refer to the manual for each product for the condition of each pin

Refer to the manual for each product for details of the value and operation of each register for special reset

conditions.
37

CHAPTER 4 INTERRUPT PROCESSING
38

CHAPTER 5
CPU SOFTWARE
ARCHITECTURE

This chapter explains the instructions for the F2MC-8FX
CPU.

5.1 Types of Addressing Modes

5.2 Special Instructions
39

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
5.1 Types of Addressing Modes

The F2MC-8FX CPU has the following ten addressing modes:
• Direct addressing (dir)
• Extended addressing (ext)
• Bit direct addressing (dir:b)
• Indexed addressing (@IX+off)
• Pointer addressing (@EP)
• General-purpose register addressing (Ri)
• Immediate addressing (#imm)
• Vector addressing (#k)
• Relative addressing (rel)
• Inherent addressing

■ Direct Addressing (dir)
This addressing mode, indicated as "dir" in the instruction list, is used to access the direct area from 0000H

to 047FH. In this addressing, when the operand address is 00H to 7FH, it accesses 0000H to 007FH.

Moreover, when the operand address is 80H to FFH, the access is good to 0080H to 047FH at the mapping

by direct bank pointer DP setting.

■ Extended Addressing (ext)
This addressing mode, indicated as "ext" in the instruction list, is used to access the entire 64-Kbyte area. In

this addressing mode, the upper byte is specified by the first operand and the lower byte by the second

operand.

■ Bit Direct Addressing (dir:b)
This addressing mode, indicated as "dir:b" in the instruction list, is used for bit-by-bit access of the direct

area from 0000H to 047FH. In this addressing, when the operand address is 00H to 7FH, it accesses 0000H

to 007FH. Moreover, when the operand address is 80H to FFH, the access is good to 0080H to 047FH at the

mapping by direct bank pointer DP setting. The position of the bit in the specified address is specified by

the value for the instruction code of three subordinate position bits.

[Example] MOV 92H,A

0112H 45H 45HA001BDP

SETB 34H: 2

0034H X X X X X 1 X X B

7 6 5 4 3 2 1 0[Example]

XXXBDP
40

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
■ Index Addressing (@IX+off)
This addressing mode, indicated as "@IX+off" in the instruction list, is used to access the entire 64-Kbyte

area. In this addressing mode, the contents of the first operand are sign-extended and then added to the

index register (IX). The result is used as the address.

■ Pointer Addressing (@EP)
This addressing mode, indicated as "@EP" in the instruction list, is used to access the entire 64-Kbyte area.

In this addressing mode, the contents of the extra pointer (EP) are used as the address.

■ General-Purpose Register Addressing (Ri)
This addressing mode, indicated as "Ri" in the instruction list, is used to access the register bank area. In

this addressing mode, one upper byte of the address is set to 01 and one lower byte is created from the

contents of the register bank pointer (RP) and the 3 lower bits of the instruction to access this address.

■ Immediate Addressing (#imm)
This addressing mode, indicated as "#imm" in the instruction list, is used for acquiring the immediate data.

In this addressing mode, the operand is used directly as the immediate data. The byte or word is specified

by the instruction code.

IX 34H

12H

 [Example] MOVW A, @IX+5AH

27A5H 2800H

27FFH
1234H

+
A

34H

EP 12H

 [Example] MOVW A, @EP

27A5H
1234H

27A5H

27A6H
A

RP

 [Example] MOV A, R2

01010B 0152H ABH ABHA

 [Example] MOV A, #56H

A 56H
41

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
■ Vector Addressing (#k)
This addressing mode, indicated as "#k" in the instruction list, is used for branching to the subroutine

address registered in the table. In this addressing mode, the information about #k is contained in the

instruction code and the table addresses listed in Table 5.1-1 are created.

■ Relative Addressing (rel)
This addressing mode, indicated as "rel" in the instruction list, is used for branching to the 128-byte area

across the program counter (PC). In this addressing mode, the contents of the operand are added with their

sign, to the program counter. The result is stored in the program counter.

In this example, the program jumps to the address where the instruction code BNE is stored, resulting in an

infinite loop.

■ Inherent Addressing
This addressing mode, which has no operand in the instruction list, is used for operations to be determined

by the instruction code. In this addressing mode, the operation varies for every instruction.

Table 5.1-1 Jump Address Table

#k Address table (upper jump address: lower jump address)

0 FFC0H:FFC1H

1 FFC2H:FFC3H

2 FFC4H:FFC5H

3 FFC6H:FFC7H

4 FFC8H:FFC9H

5 FFCAH:FFCBH

6 FFCCH:FFCDH

7 FFCEH:FFCFH

(Conversion)

 [Example] CALLV #5

FFCAH

FFCBH

FEH

DCH
FEDCHPC

 {Old PC New PC

 [Example] BNE +FEH

9ABCH
9ABCH + FFFEH

9ABAH

Old PC New PC

 [Example] NOP

9ABCH 9ABDH
42

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
5.2 Special Instructions

In the F2MC-8FX series, the following six special instructions are available:
• JMP @A
• MOVW A, PC
• MULU A
• DIVU A
• XCHW A, PC
• CALLV #k

■ JMP @A
This instruction is used for branching to an address where the contents of the accumulator (A) are used. The

contents of one of the N jump addresses arranged in table form is selected and transferred to the

accumulator. Executing this instruction enables the N-branch processing.

■ MOVW A, PC
This instruction is used for performing the opposite operation to JMP @A. In other words, it stores, the

contents of the program counter (PC) in the accumulator (A). When this instruction is executed in the main

routine and a specific subroutine is to be called, make sure that the contents of the accumulator are the

specified value in the subroutine, that is the branch is from the expected section, enabling a decision on

crash.

When this instruction is executed, the contents of the accumulator are the same as those of the address

where the code for the next instruction is stored and not the address where the code for this instruction is

stored. The above example shows that the value 1234H stored in the accumulator agrees with that of the

address where the instruction code next to MOVW A, PC is stored.

Before execution After execution

1234H 1234H

1234HXXXXH New PCOld PC

 [Example] JMP @A

A

 [Example] MOVW A, PC

Before execution After execution

XXXXH

1234H

1234H

1234H

A A

New PCOld PC
43

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
■ MULU A
This instruction is used for multiplying 8 bits of the AL by 8 bits of the TL without a sign and stores the 16-

bit result in the accumulator (A). The contents of the temporary accumulator (T) do not change. In the

operation, the original contents of the AH and TH are not used. Since the flag does not change, attention

must be paid to the result of multiplication when branching accordingly.

■ DIVU A
This instruction is used for dividing 16 bits of the temporary accumulator (T) by 16 bits of the A without a

sign and stores the results as 16 bits in the A and the remainder as 16 bits in the T. When A is 0000H, Z flag

is 1 as 0 division. At this time, the operation result is not guaranteed.

■ XCHW A, PC
This instruction is used for exchanging the contents of the accumulator (A) for those of the program

counter (PC). As a result, the program branches to the address indicated by the contents of the original

accumulator and the contents of the current accumulator become the value of the address next to the one

where the instruction code XCHW A, PC is stored. This instruction is provided especially for specifying

tables using the main routine and for subroutines to use them.

When this instruction is executed, the contents of the accumulator are the same as those of the address

where the code for the next instruction is stored and not the address where the code for this instruction is

stored. The above example shows that the value of the accumulator 1235H agrees with that of the address

where the instruction code next to XCHW A, PC is stored. Consequently, 1235H not 1234H is indicated.

Before execution After execution

 [Example] MULU A, T

A A

T T1234H 1234H

5678H 1860H

Before execution After execution
 [Example] DIVU A

1234HA A

T T5678H

0004H

0DA8H

Before execution After execution

 [Example] XCHW A, PC

5678HA

PC

A

PC 5678H

1235H

1234H
44

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
Figure 5.2-1 Example of Using XCHW A, PC

■ CALLV #k
This instruction is used for branching to a subroutine address registered in the table. In this addressing

mode, the information about #k is included in the instruction code and the tale addresses listed in Table 5.2-

1 are created. After saving the contents of the current program counter (PC) in the stack, the program

branches to the address in the table. Because it is a 1-byte instruction, using it for frequently-used

subroutines reduces the size of the entire program.

[Main routine]

..
.

[Subroutine]

MOVW A, #PUTSUB
XCHW A, PC

DB 'PUT OUT DATA', EOL

MOVW A, #1234H

PUTSUB XCHW A, EP
PUSHW A

PTS1 MOV A, @EP
INCW EP

MOV IO, A

CMP A, #EOL

BNE PTS1

POPW A

XCHW A, EP

JMP @A

Output table data here.

..
. ...

Table 5.2-1 Jump Address Table

#k Address table (upper jump address : lower jump address)

0 FFC0H:FFC1H

1 FFC2H:FFC3H

2 FFC4H:FFC5H

3 FFC6H:FFC7H

4 FFC8H:FFC9H

5 FFCAH:FFCBH

6 FFCCH:FFCDH

7 FFCEH:FFCFH
45

CHAPTER 5 CPU SOFTWARE ARCHITECTURE
PC PC

SP (- 2) SP

DCH DCH

FEH FEH

79H

56H

5678H

Before execution After execution
 [Example] CALLV #3

1234H 1232H

FEDCH

1233H

1232H

1233H

1232H

FFC7H

FFC6H

1234H

1234H

XXH

XXH

...
46

CHAPTER 6
DETAILED RULES
FOR EXECUTION

INSTRUCTIONS

This chapter explains each execution instruction, used
in the assembler, in reference format.
All execution insurrections are described in alphabetical
order.

For information about the outline of each item and the meaning of
symbols (abbreviations) explained for each execution instruction,
see "CHAPTER 5 CPU SOFTWARE ARCHITECTURE".
47

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.1 ADDC (ADD Byte Data of Accumulator and Temporary
Accumulator with Carry to Accumulator)

Add the byte data of TL to that of AL, add a carry to the LSB and then return the results
to AL. The contents of AH are not changed.

■ ADDC (ADD Byte Data of Accumulator and Temporary Accumulator with Carry to
Accumulator)

Operation

(AL) ← (AL) + (TL) + (C) (Byte addition with carry)

Assembler format

ADDC A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1

OP code: 22

N Z V C

+ + + +
48

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

12 34

56 78

Byte Byte

Byte

 A

 T

IX

SP

PC

EP

PS

12 AC

56 78

Byte Byte

Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

1 010

Execution example : ADDC A
49

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.2 ADDC (ADD Byte Data of Accumulator and Memory with
Carry to Accumulator)

Add the byte data of EA memory (memory expressed in each type of addressing) to that
of AL, add a carry to the LSB and then return the results to AL. The contents of AH are
not changed.

■ ADDC (ADD Byte Data of Accumulator and Memory with Carry to Accumulator)
Operation

(AL) ← (AL) + (EA) + (C) (Byte addition with carry)

Assembler format

ADDC A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

N Z V C

+ + + +

Table 6.2-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri

Number of execution
cycles

2 3 3 2 2

Byte count 2 2 2 1 1

OP code 24 25 26 27 28 to 2F
50

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

12 34

Byte Byte

 A

 T

IX

SP

PC

EP

PS

12 5A

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

0 000

Execution example : ADDC A, #25H
51

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.3 ADDCW (ADD Word Data of Accumulator and Temporary
Accumulator with Carry to Accumulator)

Add the word data of T to that of A, add a carry to the LSB and then return the results to
A.

■ ADDCW (ADD Word Data of Accumulator and Temporary Accumulator with Carry to
Accumulator)

Operation

(A) ← (A) + (T) + (C) (Word addition with carry)

Assembler format

ADDCW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of A is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1

OP code: 23

N Z V C

+ + + +
52

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

12 34

56 78

Byte Byte

 A

 T

IX

SP

PC

EP

PS

68 AD

56 78

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

0 000

Execution example : ADDCW A
53

Execution example : ADDCW A
(NZVC = "1010" → NZVC = "0000")

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.4 AND (AND Byte Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical AND on the byte data of AL and TL for every bit and return the
result to AL. The byte data of AH is not changed.

■ AND (AND Byte Data of Accumulator and Temporary Accumulator to Accumulator)
Operation

(AL) ← (AL) ^ (TL) (Byte AND)

Assembler format

AND A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Always set to 0

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 62

N Z V C

+ + R -
54

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

12 34

XX 2C

Byte Byte

 A

 T

IX

SP

PC

EP

PS

12 24

XX 2C

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : AND A
55

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.5 AND (AND Byte Data of Accumulator and Memory to
Accumulator)

Carry out the logical AND on the byte data of AL and EA memory (memory expressed in
each type of addressing) for every bit and return the result to AL. The byte data of AH is
not changed.

■ AND (AND Byte Data of Accumulator and Memory to Accumulator)
Operation

(AL) ← (AL) ^ (EA) (Byte AND)

Assembler format

AND A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Always set to 0

C: Not changed

N Z V C

+ + R -

Table 6.5-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri

Number of execution
cycles

2 3 3 2 2

Byte count 2 2 2 1 1

OP code 64 65 66 67 68 to 6F
56

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

02 53

Byte Byte

 A

 T

IX

SP

PC

EP

PS

02 11

Byte Byte

31 0123H 31 0123H

01 23 01 23
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 010

N Z V C

0 000

Execution example : AND , @EP
57

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.6 ANDW (AND Word Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical AND on the word data of A and T for every bit and return the
results to A.

■ ANDW (AND Word Data of Accumulator and Temporary Accumulator to Accumulator)
Operation

(A) ← (A) ^ (T) (Word AND)

Assembler format

ANDW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of A is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Always set to 0

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 63

N Z V C

+ + R -
58

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

56 63

34 32

Byte Byte

 A

 T

IX

SP

PC

EP

PS

14 22

34 32

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : ANDW A
59

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.7 BBC (Branch if Bit is Clear)

Branch when the value of bit b in dir memory is 0. Branch address corresponds to the
value of addition between the PC value (word value) of the next instruction and the
value with rel code-extended (word value).

■ BBC (Branch if Bit is Clear)
Operation

(bit)b = 0: (PC) ← (PC) + 3 + rel (Word addition)

(bit)b = 1: (PC) ← (PC) + 3 (Word addition)

Assembler format

BBC dir:b, rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Set to 1 when the value of dir:b is 0 and set to 0 when it is 1.

V: Not changed

C: Not changed

Number of execution cycles: 5

Byte count: 3

OP code: B0 to B7

N Z V C

- + - -
60

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

B0 E800H

E8 00 E7 FE
XXXX XXX0 0084H

bit0

B0 E800H

XXXX XXX0 0084H

bit0

E7FEH

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 001

Execution example : BBC 84H : 0, 0FBH

0000
61

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.8 BBS (Branch if Bit is Set)

Branch when the value of bit b in dir memory is 1. Branch address corresponds to the
value of addition between the PC value (word value) of the next instruction and the
value with rel code-extended (word value).

■ BBS (Branch if Bit is Set)
Operation

(bit)b = 0: (PC) ← (PC) + 3 (Word addition)

(bit)b = 1: (PC) ← (PC) + 3 + rel (Word addition)

Assembler format

BBS dir:b, rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Set to 1 when the value of dir:b is 0 and set to 0 when it is 1.

V: Not changed

C: Not changed

Number of execution cycles: 5

Byte count: 3

OP code: B8 to BF

N Z V C

- + - -
62

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

B0 E800H

E8 00 E7 FE
XXXX XXX1 0084H

bit0

B0 E800H

XXXX XXX1 0084H

bit0

E7FEH

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : BBS 84H : 0, 0FBH

0000
63

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.9 BC (Branch relative if C=1)/BLO (Branch if LOwer)

Execute the next instruction if the C-flag is 0 and the branch if it is 1. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

■ BC (Branch relative if C=1)/BLO (Branch if LOwer)
Operation

(C) = 0: (PC) ← (PC) + 2 (Word addition)

(C) = 1: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BC rel/BLO rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: F9

N Z V C

- - - -
64

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FE

E8 02 E8 04

F802H

E802H

F9

FE

F9

E804H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 011

N Z V C

1 011

Execution example : BC 0FEH
65

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.10 BGE (Branch Great or Equal: relative if larger than or equal
to Zero)

Execute the next instruction if the logical exclusive-OR for the V and N flags is 1 and the
branch if it is 0. Branch address corresponds to the value of addition between the PC
value (word value) of the next instruction and the value with rel code-extended (word
value).

■ BGE (Branch Great or Equal: relative if larger than or equal to Zero)
Operation

(V) ∀ (N) = 1: (PC) ← (PC) + 2 (Word addition)

(V) ∀ (N) = 0: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BGE rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: FE

N Z V C

- - - -
66

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

02

F4 56 F4 58

F456H F456HFE

02

FE

F458H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 111

N Z V C

0 111

Execution example : BGE 02H
67

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.11 BLT (Branch Less Than zero: relative if < Zero)

Execute the next instruction if the logical exclusive-OR for the V and N flags is 0 and the
branch if it is 1. Branch address corresponds to the value of addition between the PC
value (word value) of the next instruction and the value with rel code-extended (word
value).

■ BLT (Branch Less Than zero: relative if < Zero)
Operation

(V) ∀ (N) = 0: (PC) ← (PC) + 2 (Word addition)

(V) ∀ (N) = 1: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BLT rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: FF

N Z V C

- - - -
68

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

02

F4 56 F4 5A

F456H F456HFF

02

FF

F45AH

F458H F458H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 111

N Z V C

0 111

Execution example : BLT 02H
69

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.12 BN (Branch relative if N = 1)

Execute the next instruction if the N-flag is 0 and the branch if it is 1. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

■ BN (Branch relative if N = 1)
Operation

N = 0: (PC) ← (PC) + 2 (Word addition)

N = 1: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BN rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: FB

N Z V C

- - - -
70

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FC 5F FC 63
FC5FH FC5FH

02

FB

FC63H

02

FB

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 011

N Z V C

1 011

Execution example : BN 02H
71

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.13 BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal)

Execute the next instruction if the Z-flag is 1 and the branch if it is 0. Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

■ BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal)
Operation

(Z) = 1: (PC) ← (PC) + 2 (Word addition)

(Z) = 0: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BNZ rel/BNE rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: FC

N Z V C

- - - -
72

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FA

FE 1E FE 20

FE1EH FE1EHFC

FA

FC

FE20H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 001

N Z V C

0 001

Execution example : BNZ 0FAH
73

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.14 BNC (Branch relative if C = 0)/BHS (Branch if Higher or
Same)

Execute the next instruction if the C-flag is 1 and the branch if it is 0 . Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

■ BNC (Branch relative if C = 0)/BHS (Branch if Higher or Same)
Operation

(C) = 1: (PC) ← (PC) + 2 (Word addition)

(C) = 0: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BNC rel/BHS rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: F8

N Z V C

- - - -
74

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

01

E8 02 E8 05

E802H E802HF8

01

F8

E805H

E804H E804H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 011

N Z V C

1 011

Execution example : BNC 01H
75

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.15 BP (Branch relative if N = 0: PLUS)

Execute the next instruction if the N-flag is 1 and the branch if it is 0 . Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

■ BP (Branch relative if N = 0: PLUS)
Operation

(N) = 1: (PC) ← (PC) + 2 (Word addition)

(N) = 1: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BP rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: FA

N Z V C

- - - -
76

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

04

FC 5F FC 61

FC5FH FC5FHFA

04

FA

FC61H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 110

N Z V C

1 110

Execution example : BP 04H
77

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.16 BZ (Branch relative if Z = 1)/BEQ (Branch if Equal)

Execute the next instruction if the Z-flag is 0 and the branch if it is 1 . Branch address
corresponds to the value of addition between the PC value (word value) of the next
instruction and the value with rel code-extended (word value).

■ BZ (Branch relative if Z = 1)/BEQ (Branch if Equal)
Operation

(Z) = 0: (PC) ← (PC) + 2 (Word addition)

(Z) = 1: (PC) ← (PC) + 2 + rel (Word addition)

Assembler format

BZ rel/BEQ rel

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4 (at divergence)/ 2 (at non-divergence)

Byte count: 2

OP code: FD

N Z V C

- - - -
78

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FD

FE 1E FE 1A

FE1EH

FE1AH

FA

FD FE1EH

FA

FE20H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 001

N Z V C

0 001

Execution example : BZ 0FAH
79

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.17 CALL (CALL subroutine)

Branch to address of ext. Return to the instruction next to this one by using the RET
instruction of the branch subroutine.

■ CALL (CALL subroutine)
Operation

(SP) ← (SP) - 2 (Word subtraction), ((SP)) ← (PC) (Word transfer)

(PC) ← ext

Assembler format

CALL ext

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 6

Byte count: 3

OP code: 31

N Z V C

- - - -
80

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

F6 23 FC 00

020AH

0208H

020AH

26

F6

02 OA 02 08

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : CALL 0FC00H
81

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.18 CALLV (CALL Vectored subroutine)

Branch to the vector address (VA) of vct. Return to the instruction next to this one by
using the RET instruction of the branch subroutine. The vector address (VA) indicated
by VCT is shown on the next page.

■ CALLV (CALL Vectored subroutine)
Operation

(SP) ← (SP) - 2 (Word subtraction), ((SP)) ← (PC) (Word transfer)

(PC) ← (VA)

Assembler format

CALLV #vct

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 7

Byte count: 1

OP code: E8 to EF

N Z V C

- - - -
82

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
Table 6.18-1 Call Storage Address of Vector Call Instruction

Vector address (VA)
Instruction

Lower address Upper address

FFCEH FFCFH CALL#7

FFCCH FFCDH CALL#6

FFCAH FFCBH CALL#5

FFC8H FFC9H CALL#4

FFC6H FFC7H CALL#3

FFC4H FFC5H CALL#2

FFC2H FFC3H CALL#1

FFC0H FFC1H CALL#0

 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

02 08

EC 00

0208H

0206H

0208H

01

E8

E8 00

00

EC

FFC5H

FFC4H

vct

02 EC00H

02 06

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : CALL #02H
83

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.19 CLRB (Clear direct Memory Bit)

Set the contents of 1 bit (indicated by 3 lower bits (b) of mnemonic) of the direct area to
0.

■ CLRB (Clear direct Memory Bit)
Operation

(dir:b) ← 0

Assembler format

CLRB dir:b

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4

Byte count: 2

OP code: A0 to A7

N Z V C

- - - -
84

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0084H0000 000X 0084H0000 0000

00 00

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : CLRB 84H : 0
85

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.20 CLRC (Clear Carry flag)

Set the C-flag to 0.

■ CLRC (Clear Carry flag)
Operation

(C) ← 0

Assembler format

CLRC

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Not changed

Z: Not changed

V: Not changed

C: Set to 0.

Number of execution cycle: 1

Byte count: 1

OP code: 81

N Z V C

- - - R
86

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

0 000

Execution example : CLRC
87

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.21 CLRI (CLeaR Interrupt flag)

Set the I-flag to 0.

■ CLRI (CLeaR Interrupt flag)
Operation

(I) ← 0

Assembler format

CLRI

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

I: Set to 0

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 80

I N Z V C

R - - - -
88

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

N

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0 1 1 1 0 0 0 1

H I IL1 IL0 Z V C N

0 0 1 1 0 0 0 1

H I IL1 IL0 Z V C

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

Execution example : CLRI
89

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.22 CMP (CoMPare Byte Data of Accumulator and Temporary
Accumulator)

Compare the byte data of AL with that of TL and set the results to CCR. AL and TL are
not changed.

■ CMP (CoMPare Byte Data of Accumulator and Temporary Accumulator)
Operation

(TL) - (AL)

Assembler format

CMP A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1

OP code: 12

N Z V C

+ + + +
90

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 75

XX 48

XX 75

XX 48

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

1 100

Execution example : CMP A
91

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.23 CMP (CoMPare Byte Data of Accumulator and Memory)

Compare the byte data of AL with that of the EA memory (memory expressed in each
type of addressing) and set the results to CCR. AL and EA memory are not changed.

■ CMP (CoMPare Byte Data of Accumulator and Memory)
Operation

(AL) - (EA)

Assembler format

CMP A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

N Z V C

+ + + +

Table 6.23-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri

Number of
execution cycles

2 3 3 2 2

Byte count 2 2 2 1 1

OP code 14 15 16 17 18 to 1F
92

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 23 XX 23

56 0180H 56 0180H

02 02

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

1 100

Execution example : CMP A , 80H
93

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.24 CMP (CoMPare Byte Data of Immediate Data and Memory)

Compare the byte data of EA memory (memory expressed in each type of addressing)
with the immediate data and set the results to CCR. EA memory is not changed.

■ CMP (CoMPare Byte Data of Immediate Data and Memory)
Operation

(EA) - d8

Assembler format

CMP EA, #d8

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

N Z V C

+ + + +

Table 6.24-1 Number of Execution Cycles / Byte Count / OP Code

EA dir @IX+off @EP Ri

Number of execution
cycles

4 4 3 3

Byte count 3 3 2 2

OP code 95 96 97 98 to 9F
94

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

01 20

54 0120H 54 0120H

01 20
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

0 000

Execution example : CMP @EP , #33H
95

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.25 CMPW (CoMPare Word Data of Accumulator and Temporary
Accumulator)

Compare the word data of A with that of T and set the results to CCR. A and T are not
changed.

■ CMPW (CoMPare Word Data of Accumulator and Temporary Accumulator)
Operation

(T) - (A)

Assembler format

CMPW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

Number of execution cycles: 2

Byte count: 1

OP code: 13

N Z V C

+ + + +
96

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

86 75

24 48

86 75

24 48

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 000

N Z V C

1 110

Execution example : CMPW A
97

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.26 DAA (Decimal Adjust for Addition)

When adding the correction value to AL by the state in the carry before execution of
instruction and half-carry, decimal operation is corrected.

■ DAA (Decimal Adjust for Addition)
Operation

(AL) ← (AL) + 6 or 60H or 66H

(Add a correction value shown in the next page to AL and the value of AL according to the state of the

C or H-flag.)

Assembler format

DAA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Change as indicated on the next page.

Number of execution cycle: 1

Byte count: 1

OP code: 84

N Z V C

+ + + +
98

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
Table 6.26-1 Decimal Adjustment Table (DAA)

C-flag AL
(bit7 to bit4)

H-flag AL
(bit3 to bit0)

Correction
value

C-flag after
execution

0
0
0
0
0
0
1
1
1

0 to 9
0 to 8
0 to 9
A to F
9 to F
A to F
0 to 2
0 to 2
0 to 3

0
0
1
0
0
1
0
0
1

0 to 9
A to F
0 to 3
0 to 9
A to F
0 to 3
0 to 9
A to F
0 to 3

00
06
06
60
66
66
60
66
66

0
0
0
1
1
1
1
1
1

Table 6.26-2 Execution Example

Mnemonic AL C H

MOV A, #75H 75 0 ×

ADDC A, #25H 9A 0 0

DAA 00 1 0

 A

 T

IX

SP

PC

EP

PS

 A

 T

IX

SP

PC

EP

PS

XX 4A XX 50

N

Byte Byte

0 0 1 1 0 0 0 0

H I IL1 IL0 Z V C

Byte Byte

N

0 0 1 1 0 0 0 0

H I IL1 IL0 Z V C

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

Execution example : DAA
99

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.27 DAS (Decimal Adjust for Subtraction)

Subtract the correction value from AL according to the state of the C or H-flag before
executing instruction.

■ DAS (Decimal Adjust for Subtraction)
Operation

(AL) ← (AL) - 6 or 60H or 66H

(Subtract a correction value shown in the next page to AL and the value of AL according to the state of

the C or H-flag.)

Assembler format

DAS

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Change as indicated on the next page.

Number of execution cycle: 1

Byte count: 1

OP code: 94

N Z V C

+ + + +
100

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

 A

 T

IX

SP

PC

EP

PS

XX 2F XX 29

N

Byte Byte

1 0 1 1 0 0 0 0

H I IL1 IL0 Z V C

Byte Byte

N

1 0 1 1 0 0 0 0

H I IL1 IL0 Z V C

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

Execution example : DAS

Table 6.27-1 Decimal Adjustment Table (DAS)

C-flag H-flag Correction
value

C-flag after
execution

0
1
0
1

0
1
1
0

00
66
06
60

0
1
0
1

Table 6.27-2 Execution Example

Mnemonic AL C H

MOV A, #70H 70 × ×

SUBC A, #25H 4B 0 1

DAS 45 0 1
101

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.28 DEC (DECrement Byte Data of General-purpose Register)

Decrement byte data of Ri by one.

■ DEC (DECrement Byte Data of General-purpose Register)
Operation

(Ri) ← (Ri) - 1 (byte subtract)

Assembler format

DEC Ri

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Not changed

Number of execution cycles: 3

Byte count: 1

OP code: D8 to DF

N Z V C

+ + + -
102

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FE 0112H

0110H

10

R2

R1

R0

FD 0112H

0110H

R2

R1

R0

10

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

1 000

Execution example : DEC R2
103

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.29 DECW (DECrement Word Data of Accumulator)

Decrement word data of A by one.

■ DECW (DECrement Word Data of Accumulator)
Operation

(A) ← (A) - 1 (Word subtraction)

Assembler format

DECW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: D0

N Z V C

+ + - -
104

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

78 22

Byte Byte

 A

 T

IX

SP

PC

EP

PS

78 21

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : DECW A
105

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.30 DECW (DECrement Word Data of Extra Pointer)

Decrement word data of EP by one.

■ DECW (DECrement Word Data of Extra Pointer)
Operation

(EP) ← (EP) - 1 (Word subtraction)

Assembler format

DECW EP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: D3

N Z V C

- - - -
106

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

12 34

Byte Byte

 A

 T

IX

SP

PC

EP

PS

12 33

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : DECW EP
107

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.31 DECW (DECrement Word Data of Index Pointer)

Decrement word data of IX by one.

■ DECW (DECrement Word Data of Index Pointer)
Operation

(IX) ← (IX) - 1 (Word subtraction)

Assembler format

DECW IX

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: D2

N Z V C

- - - -
108

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

16 27

Byte Byte

 A

 T

IX

SP

PC

EP

PS

16 26

Byte Byte

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : DECW IX
109

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.32 DECW (DECrement Word Data of Stack Pointer)

Decrement word data of SP by one.

■ DECW (DECrement Word Data of Stack Pointer)
Operation

(SP) ← (SP) - 1 (Word subtraction)

Assembler format

DECW SP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: D1

N Z V C

- - - -
110

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : DECW SP
111

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.33 DIVU (DIVide Unsigned)

Divide the word data of T by that of AL as an unsigned binary value. Return the quotient
to A and the remainder to T.
When A is 0, the result is indefinite and Z flag is 1 to show 0 division.

■ DIVU (DIVide Unsigned)
Operation

Quotient (A) ← (T) / (A)

Remainder (T) ← (T) MOD (A)

Assembler format

DIVU A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Set to 1 if A before execution of instruction is 0000H and set to 0 in other cases.

V: Not changed

C: Not changed

Number of execution cycles: 17

Byte count: 1

OP code: 11

N Z V C

- + - -
112

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

00 OA

Byte Byte

 A

 T

IX

SP

PC

EP

PS

00 20

Byte Byte

01 41 00 01

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : DIVU A
113

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.34 INC (INCrement Byte Data of General-purpose Register)

Add 1 to byte data of Ri.

■ INC (INCrement Byte Data of General-purpose Register)
Operation

(Ri) ← (Ri) + 1 (Word addition)

Assembler format

INC Ri

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Not changed

Number of execution cycles: 3

Byte count: 1

OP code: C8 to CF

N Z V C

+ + + -
114

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

56 0109H 57 0109H

08 08

R1

R0

R1

R00108H 0108H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : INC R1
115

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.35 INCW (INCrement Word Data of Accumulator)

Add 1 to word data of A.

■ INCW (INCrement Word Data of Accumulator)
Operation

(A) ← (A) +1 (Word addition)

Assembler format

INCW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of A is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: C0

N Z V C

+ + - -
116

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

12 33 12 34

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : INCW A
117

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.36 INCW (INCrement Word Data of Extra Pointer)

Add 1 to word data of EP.

■ INCW (INCrement Word Data of Extra Pointer)
Operation

(EP) ← (EP) + 1 (Word addition)

Assembler format

INCW EP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: C3

N Z V C

- - - -
118

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

25 42 25 43
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : INCW EP
119

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.37 INCW (INCrement Word Data of Index Register)

Add 1 to word data of IX.

■ INCW (INCrement Word Data of Index Register)
Operation

(IX) ← (IX) + 1 (Word addition)

Assembler format

INCW IX

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: C2

N Z V C

- - - -
120

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

25 72 25 73

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : INCW IX
121

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.38 INCW (INCrement Word Data of Stack Pointer)

Add 1 to word data of SP.

■ INCW (INCrement Word Data of Stack Pointer)
Operation

(SP) ← (SP) + 1 (Word addition)

Assembler format

INCW SP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: C1

N Z V C

- - - -
122

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FF FF 00 00

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : INCW SP
123

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.39 JMP (JuMP to address pointed by Accumulator)

Transfer word data from A to PC.

■ JMP (JuMP to address pointed by Accumulator)
Operation

(PC) ← (A) (Word transfer)

Assembler format

JMP @A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 3

Byte count: 1

OP code: E0

N Z V C

- - - -
124

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX F0 89

F0 89 F0 89

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 000

N Z V C

1 000

Execution example : JMP @A
125

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.40 JMP (JuMP to effective Address)

Branch to the PC value indicated by ext.

■ JMP (JuMP to effective Address)
Operation

(PC) ← ext (Word transfer)

Assembler format

JMP ext

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4

Byte count: 3

OP code: 21

N Z V C

- - - -
126

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

E6

D8 00 E6 54

D800H21

54

E6

D800H21

54

E654H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 111

N Z V C

0 111

Execution example : JMP 0E654H
127

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.41 MOV (MOVE Byte Data from Temporary Accumulator to
Address Pointed by Accumulator)

Transfer byte data from T to memory indirectly addressed by A.

■ MOV (MOVE Byte Data from Temporary Accumulator to Address Pointed by
Accumulator)

Operation

((A)) ← T (Word transfer)

Assembler format

MOV @A, T

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 2

Byte count: 1

OP code: 82

N Z V C

- - - -
128

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

01 20 01 20

0120HXX 0120H3F

XX 3F XX 3F

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

00

Execution example : MOV @A, T

0 0
129

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.42 MOV (MOVE Byte Data from Memory to Accumulator)

Transfer byte data from EA memory (memory expressed in each type of addressing) to
A. Byte data in AL is transferred to TL. AH is not changed.

■ MOV (MOVE Byte Data from Memory to Accumulator)
Operation

(AL) ← (EA) (Byte transfer)

Assembler format

MOV A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of transferred data is 1 and set to 0 in other cases.

Z: Set to 1 if transferred data is 00H and set to 0 in other cases.

V: Not changed

C: Not changed

N Z V C

+ + - -

Table 6.42-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off ext @A @EP Ri

Number of
execution cycles

2 3 3 4 2 2 2

Byte count 2 2 2 3 1 1 1

OP code 04 05 06 60 92 07 08 to 0F
130

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

11 22 11 51

0383H51 0383H51

XX XX XX 22

06 06

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOV A, 83H
131

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.43 MOV (MOVE Immediate Byte Data to Memory)

Transfer byte immediate data to EA memory (memory expressed in each type of
addressing).

■ MOV (MOVE Immediate Byte Data to Memory)
Operation

(EA) ← d8 (Byte transfer)

Assembler format

MOV EA, #d8

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

N Z V C

- - - -

Table 6.43-1 Number of Execution Cycles / Byte Count / OP Code

EA dir @IX+off @EP Ri

Number of
execution cycles

4 4 3 3

Byte count 3 3 2 2

OP code 85 86 87 88 to 8F
132

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0202H

XX
0202H

35

02 00 02 00

0200H 0200H

(IX+2) (IX+2)

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOV @IX+02, #35H
133

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.44 MOV (MOVE Byte Data from Accumulator to memory)

Transfer bytes (data from AL) immediate data to EA memory (memory expressed in
each type of addressing).

■ MOV (MOVE Byte Data from Accumulator to memory)
Operation

(EA) ← (AL) (Byte transfer)

Assembler format

MOV EA, A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

N Z V C

- - - -

Table 6.44-1 Number of Execution Cycles / Byte Count / OP Code

EA dir @IX+off ext @EP Ri

Number of
execution cycles

3 3 4 2 2

Byte count 2 2 3 1 1

OP code 45 46 61 47 48 to 4F
134

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 06

XX 06 XX 06

0202H 0202H

03 03

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOV 82H, A
135

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.45 MOVW (MOVE Word Data from Temporary Accumulator to
Address Pointed by Accumulator)

Transfer word data from T to memory indirectly addressed by A.

■ MOVW (MOVE Word Data from Temporary Accumulator to Address Pointed by
Accumulator)

Operation

((A)) ← (T) (Word transfer)

Assembler format

MOVW @A, T

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 3

Byte count: 1

OP code: 83

N Z V C

- - - -
136

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX

01 78

0178H 0178H

0179H 0179H

FB AA

01 78

FB AA

XX

FB

AA

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW @A, T
137

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.46 MOVW (MOVE Word Data from Memory to Accumulator)

Transfer word data from EA and EA + 1 memories (EA is an address expressed in each
type of addressing) to A. Word data in A is transferred to T.

■ MOVW (MOVE Word Data from Memory to Accumulator)
Operation

(A) ← (EA) (Word transfer)

Assembler format

MOVW A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if MSB of transferred data is 1 and set to 0 in other cases.

Z: Set to 1 if transferred data is 0000H and set to 0 in other cases.

V: Not changed

C: Not changed

N Z V C

+ + - -

Table 6.46-1 Number of Execution Cycles / Byte Count / OP Code

EA #d16 dir @IX+off ext @A @EP

Number of
execution cycles

3 4 4 5 3 3

Byte count 3 2 2 3 1 1

OP code E4 C5 C6 C4 93 C7
138

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

EF

01 02

0150H
0150H

XX XX

EF 23

01 02

23

EF

23

(IX+1)

0151H

01 50 01 50

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

1 000

Execution example : MOVW A, @IX+01H
139

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.47 MOVW (MOVE Word Data from Extra Pointer to
Accumulator)

Transfer word data from EP to A.

■ MOVW (MOVE Word Data from Extra Pointer to Accumulator)
Operation

(A) ← (EP) (Word transfer)

Assembler format

MOVW A, EP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: F3

N Z V C

- - - -
140

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX 96 32

96 32 96 32
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW A, EP
141

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.48 MOVW (MOVE Word Data from Index Register to
Accumulator)

Transfer word data from IX to A.

■ MOVW (MOVE Word Data from Index Register to Accumulator)
Operation

(A) ← (IX) (Word transfer)

Assembler format

MOVW A, IX

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: F2

N Z V C

- - - -
142

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX 87 23

87 23 87 23

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW A, IX
143

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.49 MOVW (MOVE Word Data from Program Status Register to
Accumulator)

Transfer word data from PS to A.

■ MOVW (MOVE Word Data from Program Status Register to Accumulator)
Operation

(A) ← (PS) (Word transfer)

Assembler format

MOVW A, PS

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 70

N Z V C

- - - -
144

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX 78 18

78 18 78 18

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 000

N Z V C

1 000

Execution example : MOVW A, PS
145

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.50 MOVW (MOVE Word Data from Program Counter to
Accumulator)

Transfer word data from PC to A.

■ MOVW (MOVE Word Data from Program Counter to Accumulator)
Operation

(A) ← (PC) (Word transfer)

Assembler format

MOVW A, PC

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 2

Byte count: 1

OP code: F0

N Z V C

- - - -
146

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX

F0 62 F0 62

F0 62

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW A, PC
147

Execution example : MOVW A, PC
(A = "F0 63" → A = "F0 62")
(PC = "F0 63" → PC = "F0 62")

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.51 MOVW (MOVE Word Data from Stack Pointer to
Accumulator)

Transfer word data from SP to A.

■ MOVW (MOVE Word Data from Stack Pointer to Accumulator)
Operation

(A) ← (SP) (Word transfer)

Assembler format

MOVW A, SP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: F1

N Z V C

- - - -
148

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX

69 05 69 05

69 05

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW A, SP
149

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.52 MOVW (MOVE Word Data from Accumulator to Memory)

Transfer word data from A to EA and EA + 1 memories (memory expressed in each type
of addressing).

■ MOVW (MOVE Word Data from Accumulator to Memory)
Operation

(EA) ← (A) (Word transfer)

Assembler format

MOVW EA, A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

N Z V C

- - - -

Table 6.52-1 Number of Execution Cycles / Byte Count / OP Code

EA dir @IX+off ext @EP

Number of
execution cycles

4 4 5 3

Byte count 2 2 3 1

OP code D5 D6 D4 D7
150

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

10 56 10 56

XX

XX

0094H

0093H

56

10

0094H

0093H

00 00

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW 93H, A
151

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.53 MOVW (MOVE Word Data from Accumulator to Extra
Pointer)

Transfer word data from A to EP.

■ MOVW (MOVE Word Data from Accumulator to Extra Pointer)
Operation

(EP) ← (A) (Word transfer)

Assembler format

MOVW EP, A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: E3

N Z V C

- - - -
152

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

87 65 87 65

XX XX 87 65
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 000

N Z V C

1 000

Execution example : MOVW EP, A
153

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.54 MOVW (MOVE Immediate Word Data to Extra Pointer)

Transfer word immediate data to EP.

■ MOVW (MOVE Immediate Word Data to Extra Pointer)
Operation

(EP) ← d16 (Word transfer)

Assembler format

MOVW EP, #d16

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 3

Byte count: 3

OP code: E7

N Z V C

- - - -
154

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX 23 45
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW EP, #2345H
155

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.55 MOVW (MOVE Word Data from Accumulator to Index
Register)

Transfer word data from A to IX.

■ MOVW (MOVE Word Data from Accumulator to Index Register)
Operation

(IX) ← (A) (Word transfer)

Assembler format

MOVW IX, A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: E2

N Z V C

- - - -
156

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX

56 4356 43

56 43

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW IX, A
157

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.56 MOVW (MOVE Immediate Word Data to Index Register)

Transfer word immediate data to IX.

■ MOVW (MOVE Immediate Word Data to Index Register)
Operation

(IX) ← d16 (Word transfer)

Assembler format

MOVW IX, #d16

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 3

Byte count: 3

OP code: E6

N Z V C

- - - -
158

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX XX 45 67

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW IX, #4567H
159

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.57 MOVW (MOVE Word data from Accumulator to Program
Status Register)

Transfer word data from A to PS.

■ MOVW (MOVE Word data from Accumulator to Program Status Register)
Operation

(PS) ← (A) (Word transfer)

Assembler format

MOVW PS, A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Become the value for lower bit 3 of A

Z: Become the value for lower bit 2 of A

V: Become the value for lower bit 1 of A

C: Become the value for lower bit 0 of A

Number of execution cycle: 1

Byte count: 1

OP code: 71

N Z V C

+ + + +
160

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS X X X X

N Z V C

Byte Byte

Memory FFFFH

Byte 0000H

(Before execution)

 A

 T

IX

SP

PC

EP

PS 0 0 1 0

N Z V C

Byte Byte

Memory FFFFH

Byte 0000H

(After execution)

50 32 50 32

XX XX 50 32

Execution example : MOVW PS, A
161

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.58 MOVW (MOVE Immediate Word Data to Stack Pointer)

Transfer word immediate data to SP.

■ MOVW (MOVE Immediate Word Data to Stack Pointer)
Operation

(SP) ← d16 (Word transfer)

Assembler format

MOVW SP, #d16

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 3

Byte count: 3

OP code: E5

N Z V C

- - - -
162

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 67 89

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW SP, #6789H

XX
163

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.59 MOVW (MOVE Word data from Accumulator to Stack
Pointer)

Transfer word data from A to SP.

■ MOVW (MOVE Word data from Accumulator to Stack Pointer)
Operation

(SP) ← (A) (Word transfer)

Assembler format

MOVW SP, A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: E1

N Z V C

- - - -
164

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 43 21

43 21 43 21

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MOVW SP, A

XX
165

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.60 MULU (MULtiply Unsigned)

Multiply the byte data of AL and TL as unsigned binary values. Return the results to the
word data of A.

■ MULU (MULtiply Unsigned)
Operation

(A) ← (AL) * (TL)

Assembler format

MULU A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 8

Byte count: 1

OP code: 01

N Z V C

- - - -
166

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 40 XX 40

XX 20 08 00

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : MULU A
167

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.61 NOP (NoOPeration)

No operation

■ NOP (NoOPeration)
Operation

————

Assembler format

NOP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 00

N Z V C

- - - -
168

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

PC+1

PC

PC+1

PC

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C N Z V C

Execution example : NOP
169

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.62 OR (OR Byte Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical OR on byte data of AL and TL for every bit and return the results to
AL. The contents of AH are not changed.

■ OR (OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)
Operation

(AL) ← (AL) ∨ (TL) (byte logical OR)

Assembler format

OR A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Always set to 0

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 72

N Z V C

+ + R -
170

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX 41 XX 41

15 23 15 63

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : OR A
171

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.63 OR (OR Byte Data of Accumulator and Memory to
Accumulator)

Carry out the logical OR on AL and EA memory (memory expressed in each type of
addressing) for every bit and return the results to AL. The contents of AH are not
changed.

■ OR (OR Byte Data of Accumulator and Memory to Accumulator)
Operation

(AL) ← (AL)∨ (EA) (byte logical OR)

Assembler format

OR A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Always set to 0

C: Not changed

N Z V C

+ + R -

Table 6.63-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri

Number of
execution cycles

2 3 3 2 2

Byte count 2 2 2 1 1

OP code 74 75 76 77 78 to 7F
172

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

15 32 15 76

56 0122H

01 22

56 0122H

01 22
Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : OR A, @EP
173

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.64 ORW (OR Word Data of Accumulator and Temporary
Accumulator to Accumulator)

Carry out the logical OR on the word data of A and T for every bit and return the results
to A.

■ ORW (OR Word Data of Accumulator and Temporary Accumulator to Accumulator)
Operation

(A) ← (A) ∨ (T) (word logical OR)

Assembler format

ORW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of A is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Always set to 0

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 73

N Z V C

+ + R -
174

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

57 23 77 63

33 41 33 41

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : ORW A
175

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.65 PUSHW (PUSH Word Data of Inherent Register to Stack
Memory)

Subtract 2 from the value of SP. Then, transfer the word value from the memory
indicated by SP to dr.

■ PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
Operation

(SP) ← (SP) - 2 (Word subtraction)

((SP)) ← (dr) (Word transfer)

Assembler format

PUSHW dr

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

N Z V C

- - - -

Table 6.65-1 Number of Execution Cycles / Byte Count / OP Code

DR A IX

Number of execution
cycles

4 4

Byte count 1 1

OP code 40 41
176

6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
(" Transfer the word value from the memory indicated by SP to dr. Then, subtract 2 fromthe value of SP. " →
" Subtract 2 from the value of SP. Then, transfer the word value from the memory indicated by SP to dr. ")

6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
■ PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
("((SP)) <-- (dr) (Word transfer) " → " (SP) ← (SP) - 2 (Word subtraction) ")
(" (SP) <-- (SP) - 2 (Word subtraction) " → " ((SP)) ← (dr) (Word transfer) ")

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0222H

02 20

12 34

02 22 X

X

0222H

34

12

12 34

0220H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : PUSHW IX
177

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.66 POPW (POP Word Data of Intherent Register from Stack
Memory)

Transfer the word value from the memory indicated by SP to dr. Then, add 2 to the value
of SP.

■ POPW (POP Word Data of Intherent Register from Stack Memory)
Operation

(dr) ← ((SP)) (Word transfer)

(SP) ← (SP) + 2 (Word addition)

Assembler format

POPW dr

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

N Z V C

- - - -

Table 6.66-1 Number of Execution Cycles / Byte Count / OP Code

DR A IX

Number of execution
cycles

3 3

Byte count 1 1

OP code 50 51
178

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0233H

02 35

XX XX

02 33 26

31

0235H

26

31

31 26

0233H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : POPW A
179

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.67 RET (RETurn from subroutine)

Return the contents of PC saved in the stack. When this instruction is used in
combination with the CALLV or CALL instruction, return to the next instruction to each
of them.

■ RET (RETurn from subroutine)
Operation

(PC) ← ((SP)) (Word transfer)

(SP) ← (SP) + 2 (Word addition)

Assembler format

RET

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 6

Byte count: 1

OP code: 20

N Z V C

- - - -
180

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0206H

02 08

F8 09

02 06
10

FC

0208H

10

FC
FC 10

0206H

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : RET
181

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.68 RETI (RETurn from Interrupt)

Return the contents of PS and PC saved in the stack. Return PS and PC to the state
before interrupt.

■ RETI (RETurn from Interrupt)
Operation

(PS) ← ((SP)), (PC) ← ((SP + 2)) (Word transfer)

(SP) ← (SP) + 4 (Word addition)

Assembler format

RETI

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Become to the saved value of N.

Z: Become to the saved value of Z.

V: Become to the saved value of V.

C: Become to the saved value of C.

Number of execution cycles: 8

Byte count: 1

OP code: 30

N Z V C

+ + + +
182

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

0206H

02 OA

XX

02 06

10

FC

84

08

0208H

FC 10
0206H

10

FC

84

08

XX XB 08 84

020AH

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

1 110

N Z V C

0 001

Execution example : RETI

XX
183

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.69 ROLC (Rotate Byte Data of Accumulator with Carry to Left)

Shift byte data of AL with a carry one bit to the left. The contents of AH are not changed.

■ ROLC (Rotate Byte Data of Accumulator with Carry to Left)
Operation

Assembler format

ROLC A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of the shift and set to 0 in other cases.

Z: Set to 1 if the result of the shift is 00H and set to 0 in other cases.

V: Not changed

C: Enter Bit 7 of A before shift.

Number of execution cycle: 1

Byte count: 1

OP code: 02

AL C

N Z V C

+ + - +
184

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX ABXX 55

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

1 000

Execution example : ROLC A
185

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.70 RORC (Rotate Byte Data of Accumulator with Carry to Right)

Shift byte data of AL with a carry bit to the right. The contents of AH are not changed.

■ RORC (Rotate Byte Data of Accumulator with Carry to Right)
Operation

Assembler format

RORC A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB is 1 as the result of the shift and set to 0 in other cases.

Z: Set to 1 if the result of the shift is 00H and set to 0 in other cases.

V: Not changed

C: LSB of A before entering shift

Number of execution cycle: 1

Byte count: 1

OP code: 03

AL C

N Z V C

+ + - +
186

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

XX AAXX 55

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 100

N Z V C

1 100

Execution example : RORC A
187

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.71 SUBC (SUBtract Byte Data of Accumulator from Temporary
Accumulator with Carry to Accumulator)

Subtract the byte data of AL from that of TL, subtract a carry and then return the result
to AL. The contents of AH are not changed.

■ SUBC (SUBtract Byte Data of Accumulator from Temporary Accumulator with Carry to
Accumulator)

Operation

(AL) ← (TL) - (AL) - C (Byte subtraction with carry)

Assembler format

SUBC A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1

OP code: 32

N Z V C

+ + + +
188

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

12 1112 23

76 34 76 34

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : SUBC A
189

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.72 SUBC (SUBtract Byte Data of Memory from Accumulator
with Carry to Accumulator)

Subtract the byte data of the EA memory (memory expressed in each type of
addressing) from that of AL, subtract a carry and then return the results to AL. The
contents of AH are not changed.

■ SUBC (SUBtract Byte Data of Memory from Accumulator with Carry to Accumulator)
Operation

(AL) ← (AL) - (EA) - C (Byte subtraction with carry)

Assembler format

SUBC A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

N Z V C

+ + + +

Table 6.72-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri

Number of
execution cycles

2 3 3 2 2

Byte count 2 2 2 1 1

OP code 34 35 36 37 38 to 3F
190

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

12 FD12 34

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

1 100

Execution example : SUBC A, #37H
191

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.73 SUBCW (SUBtract Word Data of Accumulator from
Temporary Accumulator with Carry to Accumulator)

Subtract the word data of A from that of T, subtract a carry and then return the result to
A.

■ SUBCW (SUBtract Word Data of Accumulator from Temporary Accumulator with
Carry to Accumulator)

Operation

(AL) ← (T) - (A) - C (Word subtraction with carry)

Assembler format

SUBCW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Set to 1 if the MSB of A is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Set to 1 if an overflow occurs as the result of operation and set to 0 in other cases.

C: Set to 1 if a carry occurs as the result of operation and set to 0 in other cases.

Number of execution cycle: 1

Byte count: 1

OP code: 33

N Z V C

+ + + +
192

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
A

T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

24 2032 14

56 34 56 34

Byte Byte

(Before execution) (After execution)

Memory FFFFH Memory FFFFH

0000H 0000H

N Z V C

0 000

N Z V C

0 000

Execution example : SUBCW A
193

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.74 SETB (Set Direct Memory Bit)

Set the contents of 1 bit (indicated by 3 lower bits (b) of mnemonic) for the direct area to
1.

■ SETB (Set Direct Memory Bit)
Operation

(dir:b) ← 1

Assembler format

SETB dir:b

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 4

Byte count: 2

OP code: A8 to AF

N Z V C

- - - -
194

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

FFFFH

0000H

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FFFFH

0000H

00X0 0000 0032H 0032H0010 0000

05 05

Byte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : SETB 32H : 5
195

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.75 SETC (SET Carry flag)

Set the C-flag to 1.

■ SETC (SET Carry flag)
Operation

(C) ← 1

Assembler format

SETC

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

S: Set to 1 by executing instruction

N: Not changed

Z: Not changed

V: Not changed

C: Set to 1

Number of execution cycle: 1

Byte count: 1

OP code: 91

N Z V C

- - - S
196

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 100

Execution example : SETC
197

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.76 SETI (SET Interrupt flag)

Set the I-flag to 1 (enable an interrupt).

■ SETI (SET Interrupt flag)
Operation

(I) ← 1

Assembler format

SETI

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

S: Set to 1 by executing instruction

I: Set to 1

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 90

I N Z V C

S - - - -
198

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

 A

 T

IX

SP

PC

EP

PS

N

Byte Byte

H I IL1 IL0 Z V C

Byte Byte

NH I IL1 IL0 Z V C

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

0 000 0 0000 1 11 11 11

Execution example : SETI
199

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.77 SWAP (SWAP Byte Data Accumulator "H" and Accumulator
"L")

Exchange the byte data of AH for that of AL.

■ SWAP (SWAP Byte Data Accumulator "H" and Accumulator "L")
Operation

(AH) ↔ (AL) (Byte data exchange)

Assembler format

SWAP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 10

N Z V C

- - - -
200

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

32 AA AA 32

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : SWAP
201

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.78 XCH (eXCHange Byte Data Accumulator "L" and Temporary
Accumulator "L")

Exchange the byte data of AL for that of TL.

■ XCH (eXCHange Byte Data Accumulator "L" and Temporary Accumulator "L")
Operation

(AL) ↔ (TL) (conversion of byte data)

Assembler format

XCH A, T

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 42

N Z V C

- - - -
202

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

32 AA 32 79

55 79 55 AA

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XCH A, T
203

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.79 XCHW (eXCHange Word Data Accumulator and Extrapointer)

Exchange the word data of A for that of EP.

■ XCHW (eXCHange Word Data Accumulator and Extrapointer)
Operation

(A) ↔ (EP) (conversion of word data)

Assembler format

XCHW A, EP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: F7

N Z V C

- - - -
204

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

32 AA 55 79

55 79 32 AA

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XCHW A, EP
205

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.80 XCHW (eXCHange Word Data Accumulator and Index
Register)

Exchange the word data of A for that of IX.

■ XCHW (eXCHange Word Data Accumulator and Index Register)
Operation

(A) ↔ (IX) (conversion of word data)

Assembler format

XCHW A, IX

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: F6

N Z V C

- - - -
206

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

32 AA 55 79

55 79 32 AA

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XCHW A, IX
207

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.81 XCHW (eXCHange Word Data Accumulator and Program
Counter)

Exchange the word data of PC for that of A.

■ XCHW (eXCHange Word Data Accumulator and Program Counter)
Operation

(PC) ← (A) (word transfer)

(A) ← (PC) +1 (word addition, word transfer)

Assembler format

XCHW A, PC

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 3

Byte count: 1

OP code: F4

N Z V C

- - - -
208

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

F0 C7 F1 7A

F1 79 F0 C7

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

1 000

N Z V C

1 000

Execution example : XCHW A, PC
209

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.82 XCHW (eXCHange Word Data Accumulator and Stack
Pointer)

Exchange the word data of A for that of SP.

■ XCHW (eXCHange Word Data Accumulator and Stack Pointer)
Operation

(A) ↔ (SP) (conversion of word data)

Assembler format

XCHW A, SP

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycles: 2

Byte count: 1

OP code: F5

N Z V C

- - - -
210

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

32 AA 55 79

55 79 32 AA

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XCHW A, SP
211

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.83 XCHW (eXCHange Word Data Accumulator and Temporary
Accumulator)

Exchange the word data of A for that of T.

■ XCHW (eXCHange Word Data Accumulator and Temporary Accumulator)
Operation

(A) ↔ (T) (conversion of word data)

Assembler format

XCHW A, T

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

N: Not changed

Z: Not changed

V: Not changed

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 43

N Z V C

- - - -
212

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

32 AA 55 79

55 79 32 AA

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XCHW A, T
213

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.84 XOR (eXclusive OR Byte Data of Accumulator and
Temporary Accumulator to Accumulator)

Carry out the logical exclusive-OR on the byte data of AL and TL for every bit and return
the results to AL. The contents of AH are not changed.

■ XOR (eXclusive OR Byte Data of Accumulator and Temporary Accumulator to
Accumulator)

Operation

(AL) ← (AL) ∀ (TL) (byte logical exclusive-OR)

Assembler format

XOR A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Always set to 0

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 52

N Z V C

+ + R -
214

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

76 23 76 62

XX 41 XX 41

Execution example : XOR A
215

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.85 XOR (eXclusive OR Byte Data of Accumulator and Memory
to Accumulator)

Carry out the logical exclusive-OR for the byte data of AL and EA memory (memory
expressed in each type of addressing) for every bit and return the results to AL. The
contents of AH are not changed.

■ XOR (eXclusive OR Byte Data of Accumulator and Memory to Accumulator)
Operation

(AL) ← (AL) ∀ (EA) (byte logical exclusive-OR)

Assembler format

XOR A, EA

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of AL is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 00H and set to 0 in other cases.

V: Always set to 0

C: Not changed

N Z V C

+ + R -

Table 6.85-1 Number of Execution Cycles / Byte Count / OP Code

EA #d8 dir @IX+off @EP Ri

Number of
execution cycles

2 3 3 2 2

Byte count 2 2 2 1 1

OP code 54 55 56 57 58 to 5F
216

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

54 32 54 20

01 22 01 22

12 0122H 12 0122H

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XOR A, @EP
217

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
6.86 XORW (eXclusive OR Word Data of Accumulator and
Temporary Accumulator to Accmulator)

Carry out the logical exclusive-OR on the word data of A and T for every bit and return
the results to A.

■ XORW (eXclusive OR Word Data of Accumulator and Temporary Accumulator to
Accmulator)

Operation

(A) ← (A) ∀ (T) (word logical exclusive-OR)

Assembler format

XORW A

Condition code (CCR)

+: Changed by executing instruction

-: Not changed

R: Set to 0 by executing instruction

N: Set to 1 if the MSB of A is 1 as the result of operation and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0000H and set to 0 in other cases.

V: Always set to 0

C: Not changed

Number of execution cycle: 1

Byte count: 1

OP code: 53

N Z V C

+ + R -
218

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
 A

 T

IX

SP

PC

EP

PS

Byte Byte

 A

 T

IX

SP

PC

EP

PS

Byte Byte

57 23 64 62

33 41 33 41

FFFFH

0000H

FFFFH

0000HByte Byte

(Before execution) (After execution)

Memory Memory

N Z V C

0 000

N Z V C

0 000

Execution example : XORW A
219

CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
220

APPENDIX

The appendix contains instruction and bus operation
lists and an instruction map.

APPENDIX A Instruction List

APPENDIX B Bus Operation List

APPENDIX C Instruction Map
221

APPENDIX
APPENDIX A Instruction List

Appendix A contains lists of instructions used in the assembler.

A.1 F2MC-8FX CPU Instruction Overview

A.2 Operation List

A.3 Flag Change Table
222

APPENDIX A Instruction List
A.1 F2MC-8FX CPU Instruction Overview

This section explains the F2MC-8FX CPU instructions.

■ F2MC-8FX CPU Instruction Overview

In the F2MC-8FX CPU, there is 140 kinds of one byte machine instruction (as the map, 256 bytes), and the

instruction code is composed of the instruction and the operand following it.

Figure A.1-1 shows the instruction code and the correspondence of the instruction map.

Figure A.1-1 Correspondence between the Instruction Code and the Instruction Map

The following are enumerated as a feature of F2MC-8FX CPU instruction.

• The instruction is classified into 4 types: transfer, operation, branch, and others.

• There is various methods of address specification, and ten kinds of addressing can be selected by the

selection of the instruction and the operand specification.

• It provides with the bit operation instruction, and the read modification write can operate.

• There is an instruction that directs special operation.

Operand Operand
Machine
instructionInstruction code

1 byte

[Instruction map]Upper 4 bits

Lo
w

er
 4

 b
its

Give 0 to 2 bytes according to
the instruction.
223

APPENDIX
■ Sign of the Instruction List

Table A.1-1 explains the sign used by describing the instruction code in the table.

Table A.1-1 Sign of the Instruction List

Notation Meaning

dir Direct address (8 bits)

off Offset (8 bits)

ext Extended address (16 bits)

#vct Vector table number (3 bits)

#d8 Immediate data (8 bits)

#d16 Immediate data (16 bits)

dir:b Bit direct address (8 bits: 3 bits)

rel Relative branch address (8 bits)

@ Register indirect (example: @A, @IX, @EP)

A Accumulator (8-bit or 16-bit length is determined by instruction to be used.)

AH Upper 8 bits of accumulator (8 bits)

AL Lower 8 bits of accumulator (8 bits)

T Temporary accumulator (8-bit or 16-bit length is determined by instruction to be used.)

TH Upper 8 bits of temporary accumulator (8 bits)

TL Lower 8 bits of temporary accumulator (8 bits)

IX Index register (16 bits)

EP Extra pointer (16 bits)

PC Program counter (16 bits)

SP Stack pointer (16 bits)

PS Program status (16 bits)

dr Accumulator or index register (16 bits)

CCR Condition code register (8 bits)

RP Register bank pointer (5 bits)

DP Direct bank pointer (3 bits)

Ri General-purpose register (8 bits, i = 0 to 7)

X X indicates immediate data. (8-bit or 16-bit length is determined by instruction to be used.)

(X) The contents of X are to be accessed. (8-bit or 16-bit length is determined by instruction to be used.)

((X)) The address indicated by the contents of X is to be accessed. (8-bit or 16-bit length is determined by
instruction to be used.)
224

APPENDIX A Instruction List
■ Item in Instruction Table
Table A.1-2 explains the item of instruction table.

Table A.1-2 Item in Instruction Table

Item Description

NMEMONIC The assembly description of the instruction is shown.

RD The read of an internal bus is shown.

WR The write of an internal bus is shown.

RMW The read modification write signal of an internal bus is shown.

~ Cycle of the instruction number is shown. One instruction cycle is one machine cycle.
Note:
The instruction cycle number might be postponed one cycle by the immediately preceding instruction.
Moreover, cycle of the instruction number might be extended in the access to the IO area.

The number of bytes for the instruction is shown.

Operation The operation of the instruction is shown.

TL, TH, AH The change in the content when TL, TH, and AH each instruction is executed is shown. The sign in the
column shows the following respectively.
• - : Do not change.
• dH : Upper 8 bits of the data written in operation
• AL, AH : Become the contents of AL or AH immediately before instruction.
• 00 : Become 00.

N, Z, V, C The flag changed when each instruction is executed is shown. The sign in the column shows the
following respectively.
• - : Do not change.
• + : Change.
• R : Become 0.
• S : Become 1.

OP CODE The code of the instruction is shown. When a pertinent instruction occupies two or more codes, it
follows the following description rules.
48 to 4F: 48, 49, ..., 4F are shown.
225

APPENDIX
A.2 Operation List

Table A.2-1 is the operation list for transfer instructions. Table A.2-2 is the operation list
for operation instructions. Table A.2-3 is the operation list for branch instructions. Table
A.2-4 is the operation list for other instructions.

■ Operation List

Table A.2-1 Operation List (for Transfer Instructions) (1/3)

No MNEMONIC ~ # OPERATION TL TH AH N Z V C OP CODE

1 MOV dir, A 3 2 (dir) ← (A) – – – – – – – 45

2 MOV @IX+off,
A

3 2 (IX)+off) ← (A) – – – – – – – 46

3 MOV ext, A 4 3 (ext) ← (A) – – – – – – – 61

4 MOV @EP, A 2 1 ((EP)) ← (A) – – – – – – – 47

5 MOV Ri, A 2 1 (Ri) ← (A) – – – – – – – 48 to 4F

6 MOV A, #d8 2 2 (A) ← d8 AL – – + + – – 04

7 MOV A, dir 3 2 (A) ← (dir) AL – – + + – – 05

8 MOV A,
@IX+off

3 2 (A) ← ((IX)+off) AL – – + + – – 06

9 MOV A, ext 4 3 (A) ← (ext) AL – – + + – – 60

10 MOV A, @A 2 1 (A) ← ((A)) AL – – + + – – 92

11 MOV A, @EP 2 1 (A) ← ((EP)) AL – – + + – – 07

12 MOV A, Ri 2 1 (A) ← (Ri) AL – – + + – – 08 to 0F

13 MOV dir, #d8 4 3 (dir) ← d8 – – – – – – – 85

14 MOV @IX+off,
#d8

4 3 ((IX)+off) ← d8 – – – – – – – 86

15 MOV @EP, #d8 3 2 ((EP)) ← d8 – – – – – – – 87

16 MOV Ri, #d8 3 2 (Ri) ← d8 – – – – – – – 88 to 8F

17 MOVW dir, A 4 2 (dir) ← (AH),
(dir+1)←(AL)

– – – – – – – D5

18 MOVW
@IX+off, A

4 2 ((IX)+off) ← (AH),
((IX)+off+1) ← (AL)

– – – – – – – D6
226

A.2 Operation List
("((iX)+off) <-- d8 " → " ((IX)+off) ← d8 ")

APPENDIX A Instruction List
19 MOVW ext, A 5 3 (ext) ← (AH),
(ext+1) ← (AL)

– – – – – – – D4

20 MOVW @EP, A 3 1 ((EP)) ← (AH),
((EP)+1) ← (AL)

– – – – – – – D7

21 MOVW EP, A 1 1 (EP) ← (A) – – – – – – – E3

22 MOVW A, #d16 3 3 (A) ← d16 AL AH dH + + – – E4

23 MOVW A, dir 4 2 (AH) ← (dir),
(AL) ← (dir+1)

AL AH dH + + – – C5

24 MOVW A,
@IX+off

4 2 (AH) ← ((IX)+off),
(AL) ← ((IX)+off+1)

AL AH dH + + – – C6

25 MOVW A, ext 5 3 (AH) ← (ext),
(AL) ← (ext+1)

AL AH dH + + – – C4

26 MOVW A, @A 3 1 (AH) ← ((A)),
(AL) ← ((A)+1)

AL AH dH + + – – 93

27 MOVW A, @EP 3 1 (AH) ← ((EP)),
(AL) ← ((EP)+1)

AL AH dH + + – – C7

28 MOVW A, EP 1 1 (A) ← (EP) – – dH – – – – F3

29 MOVW EP, #d16 3 3 (EP) ← d16 – – – – – – – E7

30 MOVW IX, A 1 1 (IX) ← (A) – – – – – – – E2

31 MOVW A, IX 1 1 (A) ← (IX) – – dH – – – – F2

32 MOVW SP, A 1 1 (SP) ← (A) – – – – – – – E1

33 MOVW A, SP 1 1 (A) ← (SP) – – dH – – – – F1

34 MOV @A, T 2 1 ((A)) ← (T) – – – – – – – 82

35 MOVW @A, T 3 1 ((A)) ← (TH),
((A)+1) ← (TL)

– – – – – – – 83

36 MOVW IX, #d16 3 3 (IX) ← d16 – – – – – – – E6

37 MOVW A, PS 1 1 (A) ← (PS) – – dH – – – – 70

38 MOVW PS, A 1 1 (PS) ← (A) – – – + + + + 71

39 MOVW SP, #d16 3 3 (SP) ← d16 – – – – – – – E5

40 SWAP 1 1 (AH) ↔ (AL) – – AL – – – – 10

Table A.2-1 Operation List (for Transfer Instructions) (2/3)

No MNEMONIC ~ # OPERATION TL TH AH N Z V C OP CODE
227

APPENDIX
Notes:

1. In byte transfer to A, T ← A is only low bytes.

2. The operands of an instruction with two or more operands should be stored in the order designated in

MNEMONIC.

41 SETB dir:b 4 2 (dir):b ← 1 – – – – – – – A8 to AF

42 CLRB dir:b 4 2 (dir):b ← 0 – – – – – – – A0 to A7

43 XCH A, T 1 1 (AL) ↔ (TL) AL – – – – – – 42

44 XCHW A, T 1 1 (A) ↔ (T) AL AH dH – – – – 43

45 XCHW A, EP 1 1 (A) ↔ (EP) – – dH – – – – F7

46 XCHW A, IX 1 1 (A) ↔ (IX) – – dH – – – – F6

47 XCHW A, SP 1 1 (A) ↔ (SP) – – dH – – – – F5

48 MOVW A, PC 2 1 (A) ← (PC) – – dH – – – – F0

Table A.2-1 Operation List (for Transfer Instructions) (3/3)

No MNEMONIC ~ # OPERATION TL TH AH N Z V C OP CODE

Table A.2-2 Operation List (for Operation Instructions) (1/3)

No MNEMONIC ~ # OPERATION TL TH AH NZVC OP CODE

1 ADDC A, Ri 2 1 (A) ← (A)+(Ri)+C – – – + + + + 28 to 2F

2 ADDC A, #d8 2 2 (A) ← (A)+d8+C – – – + + + + 24

3 ADDC A, dir 3 2 (A) ← (A)+(dir)+C – – – + + + + 25

4 ADDC A,
@IX+off

3 2 (A) ← (A)+((IX)+off)+C – – – + + + + 26

5 ADDC A, @EP 2 1 (A) ← (A)+((EP))+C – – – + + + + 27

6 ADDCW A 1 1 (A) ← (A)+(T)+C – – dH + + + + 23

7 ADDC A 1 1 (AL) ← (AL)+(TL)+C – – – + + + + 22

8 SUBC A, Ri 2 1 (A) ← (A)-(Ri)-C – – – + + + + 38 to 3F

9 SUBC A, #d8 2 2 (A) ← (A)-d8-C – – – + + + + 34

10 SUBC A, dir 3 2 (A) ← (A)-(dir)-C – – – + + + + 35

11 SUBC A,
@IX+off

3 2 (A) ← (A)-((IX)+off)-C – – – + + + + 36

12 SUBC A, @EP 2 1 (A) ← (A)-((EP))-C – – – + + + + 37

13 SUBCW A 1 1 (A) ← (T)-(A)-C – – dH + + + + 33

14 SUBC A 1 1 (AL) ← (TL)-(AL)-C – – – + + + + 32
228

APPENDIX A Instruction List
15 IINC Ri 3 1 (Ri) ← (Ri)+1 – – – + + + – C8 to CF

16 INCW EP 1 1 (EP) ← (EP)+1 – – – – – – – C3

17 INCW IX 1 1 (IX) ← (IX)+1 – – – – – – – C2

18 INCW A 1 1 (A) ← (A)+1 – – dH + + – – C0

19 DEC Ri 3 1 (Ri) ← (Ri)-1 – – – + + + – D8 to DF

20 DECW EP 1 1 (EP) ← (EP)-1 – – – – – – – D3

21 DECW IX 1 1 (IX) ← (IX)-1 – – – – – – – D2

22 DECW A 1 1 (A) ← (A)-1 – – dH + + – – D0

23 MULU A 8 1 (A) ← (AL)*(TL) – – dH – – – – 01

24 DIVU A 17 1 (A) ← (T)/(A),
MOD → (T)

dL dH dH – + – – 11

25 ANDW A 1 1 (A) ← (A) ^ (T) – – dH + + R – 63

26 ORW A 1 1 (A) ← (A) ∨ (T) – – dH + + R – 73

27 XORW A 1 1 (A) ← (A) ∀ (T) – – dH + + R – 53

28 CMP A 1 1 (TL)-(AL) – – – + + + + 12

29 CMPW A 1 1 (T)- (A) – – – + + + + 13

30 RORC A 1 1 – – – + + – + 03

31 ROLC A 1 1 – – – + + – + 02

32 CMP A, #d8 2 2 (A)- d8 – – – + + + + 14

33 CMP A, dir 3 2 (A)- (dir) – – – + + + + 15

34 CMP A, @EP 2 1 (A)- ((EP)) – – – + + + + 17

35 CMP A,
@IX+off

3 2 (A)- ((IX)+off) – – – + + + + 16

36 CMP A, Ri 2 1 (A)- (Ri) – – – + + + + 18 to 1F

37 DAA 1 1 decimal adjust for addition – – – + + + + 84

Table A.2-2 Operation List (for Operation Instructions) (2/3)

No MNEMONIC ~ # OPERATION TL TH AH NZVC OP CODE

C → A

C ← A
229

APPENDIX
38 DAS 1 1 decimal adjust for
subtraction

– – – + + + + 94

39 XOR A 1 1 (A) ← (AL) ∀ (TL) – – – + + R – 52

40 XOR A, #d8 2 2 (A) ← (AL) ∀ d8 – – – + + R – 54

41 XOR A, dir 3 2 (A) ← (AL) ∀ (dir) – – – + + R – 55

42 XOR A, @EP 3 1 (A) ← (AL) ∀ ((EP)) – – – + + R – 57

43 XOR A, @IX+off 4 2 (A) ← (AL) ∀ ((IX)+off) – – – + + R – 56

44 XOR A, Ri 2 1 (A) ← (AL) ∀ (Ri) – – – + + R – 58 to 5F

45 AND A 1 1 (A) ← (AL) ^ (TL) – – – + + R – 62

46 AND A, #d8 2 2 (A) ← (AL) ^ d8 – – – + + R – 64

47 AND A, dir 3 2 (A) ← (AL) ^ (dir) – – – + + R – 65

48 AND A, @EP 2 1 (A) ← (AL) ^ ((EP)) – – – + + R – 67

49 AND A, @IX+off 3 2 (A) ← (AL) ^ ((IX)+off) – – – + + R – 66

50 AND A, Ri 2 1 (A) ← (AL) ^ (Ri) – – – + + R – 68 to 6F

51 OR A 1 1 (A) ← (AL) ∨ (TL) – – – + + R – 72

52 OR A, #d8 2 2 (A) ← (AL) ∨ d8 – – – + + R – 74

53 OR A, dir 3 2 (A) ← (AL) ∨ (dir) – – – + + R – 75

54 OR A,@EP 2 1 (A) ← (AL) ∨ ((EP)) – – – + + R – 77

55 OR A, @IX,off 3 2 (A) ← (AL) ∨ ((IX)+off) – – – + + R – 76

56 OR A, Ri 2 1 (A) ← (AL) ∨ (Ri) – – – + + R – 78 to 7F

57 CMP dir, #d8 4 3 (dir) - d8 – – – + + + + 95

58 CMP @EP, #d8 3 2 ((EP))- d8 – – – + + + + 97

59 CMP @IX+off,
#d8

4 3 ((IX)+off) - d8 – – – + + + + 96

60 CMP Ri, #d8 3 2 (Ri) - d8 – – – – – – – 98 to 9F

61 INCW SP 1 1 (SP) ← (SP) + 1 – – – – – – – C1

62 DECW SP 1 1 (SP) ← (SP) - 1 – – – – – – – D1

Table A.2-2 Operation List (for Operation Instructions) (3/3)

No MNEMONIC ~ # OPERATION TL TH AH NZVC OP CODE
230

APPENDIX A Instruction List
Table A.2-3 Operation List (for Branch Instructions)

No MNEMONIC ~ # OPERATION TL TH AH NZVC OP CODE

1 BZ/BEQ rel (divergence)
(no divergence)

4
2

2 if Z=1 then PC ← PC+rel – – – – – – – FD

2 BNZ/BNE rel (divergence)
(no divergence)

4
2

2 if Z=0 then PC ← PC+rel – – – – – – – FC

3 BC/BLO rel (divergence)
(no divergence)

4
2

2 if C=1 then PC ← PC+rel – – – – – – – F9

4 BNC/BHS rel (divergence)
(no divergence)

4
2

2 if C=0 then PC ← PC+rel – – – – – – – F8

5 BN rel (divergence)
(no divergence)

4
2

2 if N=1 then PC ← PC+rel – – – – – – – FB

6 BP rel (divergence)
(no divergence)

4
2

2 if N=0 then PC ← PC+rel – – – – – – – FA

7 BLT rel (divergence)
(no divergence)

4
2

2 if V ∀ N=1 then
PC ← PC+rel

– – – – – – – FF

8 BGE rel (divergence)
(no divergence)

4
2

2 if V ∀ N=0 then
PC ← PC+rel

– – – – – – – FE

9 BBC dir:b, rel 5 3 if (dir:b)=0 then
PC ← PC+rel

– – – – + – – B0 to B7

10 BBS dir:b, rel 5 3 if (dir:b)=1 then
PC ← PC+rel

– – – – + – – B8 to BF

11 JMP @A 3 1 (PC) ← (A) – – – – – – – E0

12 JMP ext 4 3 (PC) ← ext – – – – – – – 21

13 CALLV #vct 7 1 vector call – – – – – – – E8 to EF

14 CALL ext 6 3 subroutine call – – – – – – – 31

15 XCHW A, PC 3 1 (PC) ← (A),
(A) ← (PC)+1

– – dH – – – – F4

16 RET 6 1 return from subroutine – – – – – – – 20

17 RETI 8 1 return from interrupt – – – restore 30
231

APPENDIX
Table A.2-4 Operation List (for Other Instructions)

No MNEMONIC ~ # OPERATION TL TH AH N Z V C OP CODE

1 PUSHW A 4 1 (SP) ← (SP)-2, ((SP)) ← (A) – – – – – – – 40

2 POPW A 3 1 (A) ← ((SP)),
(SP) ← (SP)+2

– – dH – – – – 50

3 PUSHW IX 4 1 (SP) ← (SP)-2,
((SP)) ← (IX)

– – – – – – – 41

4 POPW IX 3 1 (IX) ← ((SP)),
(SP) ← (SP)+2

– – – – – – – 51

5 NOP 1 1 No operation – – – – – – – 00

6 CLRC 1 1 (C) ← 0 – – – – – – R 81

7 SETC 1 1 (C) ← 1 – – – – – – S 91

8 CLRI 1 1 (I) ← 0 – – – – – – – 80

9 SETI 1 1 (I) ← 1 – – – – – – – 90
232

Table A.2-4 Operation List (for Other Instructions)
("(SP) ← (SP)-2, ((SP)) ← (A)
(A) ← ((SP)),
(SP) ← (SP)+2
(SP) ← (SP)-2,
((SP)) ← (IX)
(IX) ← ((SP)),
(SP) ← (SP)+2
No operation
(C) ← 0
(C) ← 1
(I) ← 0
(I) ← 1 ") is added.

APPENDIX A Instruction List
A.3 Flag Change Table

Table A.3-1 is the flag change table for transfer instructions. Table A.3-2 is the flag
change table for operation instructions. Table A.3-3 is the flag change table for branch
instructions. Table A.3-4 is the flag change table for other instructions.

■ Flag Change Table

Table A.3-1 Flag Change Table (for Transfer Instructions) (1/2)

Instruction Flag change

MOV dir, A N: Not changed

MOV @IX+off, A Z: Not changed

MOV ext, A V: Not changed

MOV @EP, A C: Not changed

MOV Ri, A

MOV , #d8 N: Set to 1 if the transferred data is negative and set to 0 in other cases.

MOV A, dir Z: Set to 1 if the transferred data is 0 and set to 0 in other cases

MOV A, @IX+off V: Not changed

MOV A, ext C: Not changed

MOV A, @A

MOV A, @EP

MOV A, Ri

MOV dir, #d8 N: Not changed

MOV @IX+off, #d8 Z: Not changed

MOV @EP, #d8 V: Not changed

MOV Ri, #d8 C: Not changed

MOVW dir, A N: Not changed

MOVW @IX+off, A Z: Not changed

MOVW ext, A V: Not changed

MOVW @EP, A C: Not changed

MOVW A, #d16 N: Set to 1 if the transferred data is negative and set to 0 in other cases.

MOVW A, dir Z: Set to 1 if the transferred data is 0 and set to 0 in other cases

MOVW A, @IX+off V: Not changed

MOVW A, ext C: Not changed

MOVW A, @A

MOVW A, @EP
233

APPENDIX
MOVW A, EP N: Not changed

MOVW EP, #d16 Z: Not changed

MOVW IX, A V: Not changed

MOVW A, IX C: Not changed

MOVW SP, A

MOVW A, SP

MOVW SP, #d16

MOV @A, T N: Not changed

MOVW @A, T Z: Not changed

V: Not changed

C: Not changed

MOVW IX, #d16 N: Not changed

MOVW A, PS Z: Not changed

MOVW A, PC V: Not changed

JMP @A C: Not changed

MOVW PS, A N: Set to 1 if bit 3 of A is 1 and set to 0 if 0.

Z: Set to 1 if bit 2 of A is 1 and set to 0 if 0.

V: Set to 1 if bit 1 of A is 1 and set to 0 if 0.

C: Set to 1 if bit 0 of A is 1 and set to 0 if 0.

SETB dir:b N: Not changed

CLRB dir:b Z: Not changed

V: Not changed

C: Not changed

SWAP N: Not changed

XCH A, T Z: Not changed

V: Not changed

C: Not changed

XCHW A, T N: Not changed

XCHW A, EP Z: Not changed

XCHW A, IX V: Not changed

XCHW A, SP C: Not changed

XCHW A, PC

Table A.3-1 Flag Change Table (for Transfer Instructions) (2/2)

Instruction Flag change
234

APPENDIX A Instruction List
Table A.3-2 Flag Change Table (for Operation Instructions) (1/3)

Instruction Flag change

ADDC A, Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.

ADDC A, #d8 Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

ADDC A, dir V: Set to 1 if an overflow occurs and set to 0 in other cases.

ADDC A, @IX+off C: Set to 1 if a carry occurs and set to 0 in other cases.

ADDC A, @EP

ADDC A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

ADDCW A Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Set to 1 if a carry occurs and set to 0 in other cases.

SUBC A, Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.

SUBC A, #d8 Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

SUBC A, dir V: Set to 1 if an overflow occurs and set to 0 in other cases.

SUBC A, @IX+off C: Set to 1 if a borrow occurs and set to 0 in other cases.

SUBC A, @EP

SUBC A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

SUBCW A Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Set to 1 if a borrow occurs and set to 0 in other cases.

INC Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Not changed

INCW EP N: Not changed

INCW IX Z: Not changed

INCW SP V: Not changed

C: Not changed

INCW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Not changed

C: Not changed

DEC Ri N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Not changed
235

APPENDIX
DECW EP N: Not changed

DECW IX Z: Not changed

DECW SP V: Not changed

C: Not changed

DECW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Not changed

C: Not changed

MULU A N: Not changed

Z: Not changed

V: Not changed

C: Not changed

DIVU A N: Not changed

Z: Set to 1 if A before operation is 0000H and set to 0 in other cases.

V: Not changed

C: Not changed

ANDW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Always Set to 0

C: Not changed

AND A, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.

AND A, dir Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

AND A, @EP V: Always set to 0

AND A, @IX+off C: Not changed

AND A, Ri

ORW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Always set to 0

C: Not changed

OR A, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.

OR A, dir Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

OR A, @EP V: Always set to 0

OR A, @IX+off C: Not changed

OR A, Ri

Table A.3-2 Flag Change Table (for Operation Instructions) (2/3)

Instruction Flag change
236

APPENDIX A Instruction List
XORW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Always set to 0

C: Not changed

XOR A, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.

XOR A, dir Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

XOR A, @EP V: Always set to 0

XOR A, @IX+off C: Not changed

XOR A, Ri

CMP A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Set to 1 if a borrow occurs and set to 0 in other cases.

CMPW A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Set to 1 if a borrow occurs and set to 0 in other cases.

CMP A, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.

CMP A, dir Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

CMP A, @EP V: Set to 1 if an overflow occurs and set to 0 in other cases.

CMP A, @IX+off C: Set to 1 if a borrow occurs and set to 0 in other cases.

CMP A, Ri

CMP dir, #d8 N: Set to 1 if the result of operation is negative and set to 0 in other cases.

CMP @EP #d8 Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

CMP @IX+off, #d8 V: Set to 1 if an overflow occurs and set to 0 in other cases.

CMP Ri, #d8 C: Set to 1 if a borrow occurs and set to 0 in other cases.

RORC A N: Set to 1 if the result of operation is negative and set to 0 in other cases.

ROLC A Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Not changed

C: Enter bit 0 (when RORA) or bit 7 (when ROLA) of A before the operation.

DAA N: Set to 1 if the result of operation is negative and set to 0 in other cases.

DAS Z: Set to 1 if the result of operation is 0 and set to 0 in other cases.

V: Set to 1 if an overflow occurs and set to 0 in other cases.

C: Set to 1 if a carry (borrow) occurs and set to 0 in other cases.

Table A.3-2 Flag Change Table (for Operation Instructions) (3/3)

Instruction Flag change
237

APPENDIX
Table A.3-3 Flag Change Table (for Branch Instructions)

Instruction Flag change

BZ rel/BEQ rel N: Not changed

BNZ rel/BNE rel Z: Not changed

BC rel/BLO rel V: Not changed

BNC rel/BHS rel C: Not changed

BN rel

BP rel

BLT rel

BGE rel

JMP addr16 N: Not changed

Z: Not changed

V: Not changed

C: Not changed

BBC dir:b, rel N: Not changed

BBS dir:b, rel Z: Set to 1 if bit b is 0 and set to 0 if 1.

V: Not changed

C: Not changed

CALL addr16 N: Not changed

CALLV #vct Z: Not changed

RET V: Not changed

C: Not changed

RETI N: N value of saved CCR is entered.

Z: Z value of saved CCR is entered.

V: V value of saved CCR is entered.

C: C value of saved CCR is entered.
238

APPENDIX A Instruction List
Table A.3-4 Flag Change Table (for Other Instructions)

Instruction Flag change

PUSHW A N: Not changed

PUSHW IX Z: Not changed

V: Not changed

C: Not changed

POPW A N: Not changed

POPW IX Z: Not changed

V: Not changed

C: Not changed

NOP N: Not changed

Z: Not changed

V: Not changed

C: Not changed

CLRC N: Not changed

Z: Not changed

V: Not changed

C: Become to 0

SETC N: Not changed

Z: Not changed

V: Not changed

C: Become to 1

CLRI N: Not changed

Z: Not changed

V: Not changed

C: Not changed

I: Become to 0

SETI N: Not changed

Z: Not changed

V: Not changed

C: Not changed

I: Become to 1
239

APPENDIX
APPENDIX B Bus Operation List

Table B-1 is a bus operation list.

■ Bus Operation List

Table B-1 Bus Operation List (1/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW

00 NOP 1 1 N +2 The following
following instruction

1 0 0

80 CLRI

90 SETI

81 CLRC

91 SETC

10 SWAP 1 1 N +2 The following
following instruction

1 0 0

12 CMP A

22 ADDC A

32 SUBC A

42 XCH A, T

52 XOR A

62 AND A

72 OR A

13 CMPW A 1 1 N +2 The following
following instruction

1 0 0

23 ADDCW A

33 SUBCW A

43 XCHW A, T

53 XORW A

63 ANDW A

73 ORW A

04 MOV A, #d8 2 1 N +2 The following
instruction

1 0 0

14 CMP A, #d8 2 N +3 The following
following instruction

1 0 0

24 ADDC A, #d8

34 SUBC A, #d8

54 XOR A, #d8

64 AND A, #d8

74 OR A, #d8
240

APPENDIX B Bus Operation List
05 MOV A, dir 3 1 N +2 The following
instruction

1 0 0

15 CMP A, dir 2 dir address Data 1 0 0

25 ADDC A, dir 3 N +3 The following
following instruction

1 0 0

35 SUBC A, dir

55 XOR A, dir

65 AND A, dir

75 OR A, dir

45 MOV dir, A 3 1 N +2 The following
instruction

1 0 0

2 dir address Data 0 1 0

3 N +3 The following
following instruction

1 0 0

06 MOV A, @IX+off 3 1 N +2 The following
instruction

1 0 0

16 CMP A, @IX+off 2 N +3 The following
following instruction

1 0 0

26 ADDC A, @IX+off 3 (IX)+off
address

Data 1 0 0

36 SUBC A, @IX+off

56 XOR A, @IX+off

66 AND A, @IX+off

76 OR A, @IX+off

46 MOV @IX+off, A 3 1 N +2 The following
instruction

1 0 0

2 N +3 The following
following instruction

1 0 0

3 (IX)+off address Data 0 1 0

07 MOV A, @EP 2 1 N +2 The following
following instruction

1 0 0

17 CMP A, @EP 2 (EP) address Data 1 0 0

27 ADDC A, @EP

37 SUBC A, @EP

57 XOR A, @EP

67 AND A, @EP

77 OR A, @EP

47 MOV @EP, A 2 1 N +2 The following
following instruction

1 0 0

2 (EP) address Data 0 1 0

Table B-1 Bus Operation List (2/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
241

APPENDIX
08 - 0F MOV A, Ri 2 1 N +2 The following
following instruction

1 0 0

18 - 1F CMP A, Ri 2 Rn address Data 1 0 0

28 - 2F ADDC A, Ri

38 - 3F SUBC A, Ri

58 - 5F XOR A, Ri

68 - 6F AND A, Ri

78 - 7F OR A, Ri

48 - 4F MOV Ri, A 2 1 N +2 The following
following instruction

1 0 0

2 Rn address Data 0 1 0

C0 INCW A 1 1 N +2 The following
following instruction

1 0 0

D0 DECW A

C1 INCW SP

D1 DECW SP

C2 INCW IX

D2 DECW IX

C3 INCW EP

D3 DECW EP

F0 MOVW A, PC 2 1 N +2 The following
following instruction

1 0 0

2 − − 0 0 0

E1 MOVW SP, A 1 1 N +2 The following
following instruction

1 0 0

F1 MOVW A, SP

E2 MOVW IX, A

F2 MOVW A, IX

E3 MOVW EP, A

F3 MOVW A, EP

E0 JMP @A 3 1 N +2 Data of N +2 1 0 0

2 Address divergence The following
instruction

1 0 0

3 Address divergence
+1

The following
following instruction

1 0 0

F5 XCHW A, SP 1 1 N +2 The following
following instruction

1 0 0

F6 XCHW A, IX

F7 XCHW A, EP

Table B-1 Bus Operation List (3/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
242

APPENDIX B Bus Operation List
F4 XCHW A, PC 3 1 N +2 Data of N +2 1 0 0

2 Address divergence The following
instruction

1 0 0

3 Address divergence
+1

The following
following instruction

1 0 0

A0 - A7 CLRB dir:n 4 1 N +2 The following
instruction

1 0 1

A8 - AF SETB dir:n 2 dir address Data 1 0 1

3 dir address Data 0 1 0

4 N +3 The following
following instruction

1 0 0

B0 - B7 BBC dir:n, rel Divergence

B8 - BF BBS dir:n, rel 5 1 N +2 rel 1 0 0

2 dir address Data 1 0 0

3 N +3 Data of N+3 1 0 0

4 Address divergence The following
instruction

1 0 0

5 Address divergence
+1

The following
following instruction

1 0 0

No divergence

5 1 N +2 rel 1 0 0

2 dir address Data 1 0 0

3 N +3 The following
instruction

1 0 0

4 − − 0 0 0

5 N +4 The following
following instruction

1 0 0

60 MOV A, ext 4 1 N +2 ext (L byte) 1 0 0

2 N +3 The following
instruction

1 0 0

3 ext address Data 1 0 0

4 N +4 The following
following instruction

1 0 0

61 MOV ext, A 4 1 N +2 ext (L byte) 1 0 0

2 N +3 The following
instruction

1 0 0

3 ext address Data 0 1 0

4 N +4 The following
following instruction

1 0 0

Table B-1 Bus Operation List (4/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
243

APPENDIX
C4 MOVW A, ext 5 1 N +2 ext (L byte) 1 0 0

2 N +3 The following
instruction

1 0 0

3 ext address Data (H byte) 1 0 0

4 ext+1 address Data (L byte) 1 0 0

5 N +4 The following
following instruction

1 0 0

D4 MOVW ext, A 5 1 N +2 ext (L byte) 1 0 0

2 N +3 The following
instruction

1 0 0

3 ext address Data (H byte) 0 1 0

4 ext+1 address Data (L byte) 0 1 0

5 N +4 The following
following instruction

1 0 0

C5 MOVW A, dir 4 1 N +2 The following
instruction

1 0 0

2 dir address Data (H byte) 1 0 0

3 dir+1 address Data (L byte) 1 0 0

4 N +3 The following
following instruction

1 0 0

D5 MOVW dir, A 4 1 N +2 The following
instruction

1 0 0

2 dir address Data (H byte) 0 1 0

3 dir+1 address Data (L byte) 0 1 0

4 N +3 The following
following instruction

1 0 0

C6 MOVW A,
@IX+off

4 1 N +2 The following
instruction

1 0 0

2 N +3 The following
following instruction

1 0 0

3 (IX)+off address Data (H byte) 1 0 0

4 (IX)+off+1 address Data (L byte) 1 0 0

D6 MOVW @IX+off,
A

4 1 N +2 The following
instruction

1 0 0

2 N +3 The following
following instruction

1 0 0

3 (IX)+off address Data (H byte) 0 1 0

4 (IX)+off+1 address Data (L byte) 0 1 0

Table B-1 Bus Operation List (5/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
244

APPENDIX B Bus Operation List
C7 MOVW A, @EP 3 1 N +2 The following
following instruction

1 0 0

2 (EP) address Data(H byte) 1 0 0

3 (EP)+1 address Data(L byte) 1 0 0

D7 MOVW @EP, A 3 1 N +2 The following
following instruction

1 0 0

2 (EP) address Data(H byte) 0 1 0

3 (EP)+1 address Data(L byte) 0 1 0

85 MOV dir, #d8 4 1 N +2 #d8 1 0 0

2 dir address Data 0 1 0

3 N +3 The following
instruction

1 0 0

4 N +4 The following
following instruction

1 0 0

95 CMP dir, #d8 4 1 N +2 #d8 1 0 0

2 dir address Data 1 0 0

3 N +3 The following
instruction

1 0 0

86 MOV @IX+off,
#d8

4 1 N +2 #d8 1 0 0

2 N +3 The following
instruction

1 0 0

3 (IX)+off address Data 0 1 0

4 N +4 The following
following instruction

1 0 0

96 CMP @IX+off, #d8 4 1 N +2 #d8 1 0 0

2 N +3 The following
instruction

1 0 0

3 (IX)+off address Data 1 0 0

4 N +4 The following
following instruction

1 0 0

Table B-1 Bus Operation List (6/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
245

APPENDIX
87 MOV @EP, #d8 3 1 N +2 The following
instruction

1 0 0

2 (EP) address Data 0 1 0

3 N +3 The following
following instruction

1 0 0

97 CMP @EP, #d8 3 1 N +2 The following
instruction

1 0 0

2 (EP) address Data 1 0 0

3 N +3 The following
following instruction

1 0 0

88 - 8F MOV Ri, #d8 3 1 N +2 The following
instruction

1 0 0

2 Rn address Data 0 1 0

3 N +3 The following
following instruction

1 0 0

98 - 9F CMP Ri, #d8 3 1 N +2 The following
instruction

1 0 0

2 Rn address Data 1 0 0

3 N +3 The following
following instruction

1 0 0

82 MOV @A, T 2 1 N +2 The following
following instruction

1 0 0

2 (A) address Data 0 1 0

92 MOV A, @A 2 1 N +2 The following
following instruction

1 0 0

2 (A) address Data 1 0 0

83 MOVW @A, T 3 1 N +2 The following
following instruction

1 0 0

2 (A) address Data (H byte) 0 1 0

3 (A) +1 address Data (L byte) 0 1 0

Table B-1 Bus Operation List (7/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
246

APPENDIX B Bus Operation List
93 MOVW A, @A 3 1 N +2 The following
following instruction

1 0 0

2 (A) address Data (H byte) 1 0 0

3 (A) +1 address Data (L byte) 1 0 0

E4 MOVW A, #d16 3 1 N +2 Data (L byte) 1 0 0

E5 MOVW SP, #d16 2 N +3 The following
instruction

1 0 0

E6 MOVW IX, #d16 3 N +4 The following
following instruction

1 0 0

E7 MOVW EP, #d16

84 DAA 1 1 N +2 The following
following instruction

1 0 0

94 DAS

02 ROLC A

03 RORC A

70 MOVW A, PS

71 MOVW PS, A

C8 - CF INC Ri 3 1 N +2 The following
following instruction

1 0 1

D8 - DF DEC Ri 2 Rn address Data 1 0 1

3 Rn address Data 0 1 0

E8 - EF CALLV #n 7 1 N +2 Data of N +2 1 0 0

2 Vector address Vector (H) 1 0 0

3 Vector address +1 Vector (L) 1 0 0

4 SP -1 Return address (L) 0 1 0

5 SP -2 Return address (H) 0 1 0

6 Address divergence
ahead

The following
instruction

1 0 0

7 Address divergence
ahead +1

The following
following instruction

1 0 0

Table B-1 Bus Operation List (8/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
247

APPENDIX
F8 BNC rel Divergence

F9 BC rel 4 1 N +2 Data of N +2 1 0 0

FA BP rel 2 N +3 Data of N +3 1 0 0

FB BN rel 3 Address divergence
ahead

The following
instruction

1 0 0

FC BNZ rel 4 Address divergence
ahead +1

The following
following instruction

1 0 0

FD BZ rel No divergence

FE BGE rel 2 1 N +2 The following
instruction

1 0 0

FF BLT rel 2 N +3 The following
following instruction

1 0 0

40 PUSHW A 4 1 N +2 The following
following instruction

1 0 0

41 PUSHW IX 2 − − 0 0 0

3 SP -1 Save data (L) 0 1 0

4 SP -2 Save data (H) 0 1 0

50 POPW A 3 1 N +2 The following
following instruction

1 0 0

51 POPW IX 2 SP Return data (H) 1 0 0

3 SP +1 Return data (L) 1 0 0

20 RET 6 1 N +2 Data of N +2 1 0 0

2 SP Return address (H) 1 0 0

3 SP +1 Return address (L) 1 0 0

4 − − 0 0 0

5 Return address The following
instruction

1 0 0

6 Return address +1 The following
following instruction

1 0 0

30 RETI 8 1 N +2 Data of N +2 1 0 0

2 SP PSH (RP, DP) 1 0 0

3 SP +1 PSL (CCR) 1 0 0

4 SP +2 Return address (H) 1 0 0

5 SP +3 Return address (L) 1 0 0

6 − − 0 0 0

7 Return address The following
instruction

1 0 0

8 Return address +1 The following
following instruction

1 0 0

Table B-1 Bus Operation List (9/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
248

APPENDIX B Bus Operation List
31 CALL ext 6 1 N +2 Address divergence
ahead (L)

1 0 0

2 − − 0 0 0

3 SP -1 Return address (L) 0 1 0

4 SP -2 Return address (H) 0 1 0

5 Address divergence
ahead

The following
instruction

1 0 0

6 Address divergence
ahead +1

The following
following instruction

1 0 0

21 JMP ext 4 1 N +2 Address divergence
ahead (L)

1 0 0

2 − − 0 0 0

3 Address divergence
ahead

The following
instruction

1 0 0

4 Address divergence
ahead +1

The following
following instruction

1 0 0

01 MULU A 8 1 N +2 The following
following instruction

1 0 0

2 − − 0 0 0

to

8 − − 0 0 0

11 DIVU A 17 1 N +2 The following
following instruction

1 0 0

2 − − 0 0 0

to

17 − − 0 0 0

− RESET 7 1 − − 0 0 0

2 0FFFDH Mode data 1 0 0

3 0FFFEH Reset vector (H) 1 0 0

4 0FFFFH Reset vector (L) 1 0 0

5 − − 0 0 0

6 Start address The following
instruction

1 0 0

7 Start address +1 The following
following instruction

1 0 0

Table B-1 Bus Operation List (10/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
249

APPENDIX
− INTERRUPT 9 1 N +2 Data of N +2 1 0 0

2 Vector address Vector (H) 1 0 0

3 Vector address +1 Vector (L) 1 0 0

4 SP -1 Return address (L) 0 1 0

5 SP -2 Return address (H) 0 1 0

6 SP -3 PSL (CCR) 0 1 0

7 SP -4 PSH (RP, DP) 0 1 0

8 Address divergence
ahead

The following
instruction

1 0 0

9 Address divergence
ahead +1

The following
following instruction

1 0 0

-: Invalid bus cycle
N: Address where instruction under execution is stored
Note:
The cycle of the instruction might be extended by the immediately preceding instruction by one cycle.
Moreover, cycle of the instruction number might be extended in the access to the IO area.

Table B-1 Bus Operation List (11/11)

CODE MNEMONIC ~ Cycle Address bus Data bus RD WR RMW
250

APPENDIX C Instruction Map
APPENDIX C Instruction Map

Table C-1 is an instruction map.

■ Instruction Map
Table C-1 Instruction Map
251

APPENDIX
252

INDEX
INDEX

The index follows on the next page.
This is listed in alphabetic order.
253

INDEX
Index

Symbols

#imm
Immediate Addressing (#imm)41

#k
Vector Addressing (#k)42

@EP
Pointer Addressing (@EP)41

@IX+off
Index Addressing (@IX+off)...............................41

Numerics

16-bit Data
Arrangement of 16-bit Data in Memory Space13

A

A
Accumulator (A).. 18
Example of Operation of Accumulator (A) and

Temporary Accumulator (T) in Byte Data
Processing .. 21

Accumulator
Accumulator (A).. 18
Example of Operation of Accumulator (A) and

Temporary Accumulator (T) in Byte Data
Processing .. 21

ADDC
ADDC (ADD Byte Data of Accumulator and Memory

with Carry to Accumulator) 50
ADDC (ADD Byte Data of Accumulator and

Temporary Accumulator with Carry to
Accumulator) 48

ADDCW
ADDCW (ADD Word Data of Accumulator and

Temporary Accumulator with Carry to
Accumulator) 52

Addressing
Memory Space and Addressing 7

AND
AND (AND Byte Data of Accumulator and Memory

to Accumulator).................................... 56
AND (AND Byte Data of Accumulator and

Temporary Accumulator to Accumulator)
... 54

ANDW
ANDW (AND Word Data of Accumulator and

Temporary Accumulator to Accumulator)
... 58

B

BBC
BBC (Branch if Bit is Clear) 60

BBS
BBS (Branch if Bit is Set)................................... 62

BC
BC (Branch relative if C=1)/BLO (Branch if LOwer)

... 64
BEQ

BZ (Branch relative if Z=1)/BEQ (Branch if Equal)
... 78

BGE
BGE (Branch Great or Equal: relative if larger than or

equal to Zero) 66
254

INDEX
BHS
BNC (Branch relative if C=0)/BHS (Branch if Higher

or Same) .. 74
Bit Direct Addressing

Bit Direct Addressing (dir:b) 40
BLO

BC (Branch relative if C=1)/BLO (Branch if LOwer)
.. 64

BLT
BLT (Branch Less Than zero: relative if < Zero)

.. 68
BN

BN (Branch relative if N=1)................................ 70
BNC

BNC (Branch relative if C=0)/BHS (Branch if Higher
or Same) .. 74

BNE
BNZ (Branch relative if Z=0)/BNE (Branch if Not

Equal) .. 72
BNZ

BNZ (Branch relative if Z=0)/BNE (Branch if Not
Equal) .. 72

BP
BP (Branch relative if N=0: PLUS)...................... 76

Bus Operation
Bus Operation List ... 240

Byte Data Processing
Example of Operation of Accumulator (A) and

Temporary Accumulator (T) in Byte Data
Processing .. 21

BZ
BZ (Branch relative if Z=1)/BEQ (Branch if Equal)

.. 78

C

CALL
CALL (CALL subroutine) 80

CALLV
CALLV #k .. 45
CALLV (CALL Vectored subroutine).................. 82

CLRB
CLRB (Clear direct Memory Bit) 84

CLRC
CLRC (Clear Carry flag) 86

CLRI
CLRI (CLeaR Interrupt flag) 88

CMP
CMP (CoMPare Byte Data of Accumulator and

Memory) .. 92
CMP (CoMPare Byte Data of Accumulator and

Temporary Accumulator)....................... 90
CMP (CoMPare Byte Data of Immediate Data and

Memory) .. 94

CMPW
CMPW (CoMPare Word Data of Accumulator and

Temporary Accumulator)96
CPU

Configuration Example of Device Using F2MC-8FX
CPU ...3

F2MC-8FX CPU Features......................................2
F2MC-8FX CPU Instruction Overview223
Outline of F2MC-8FX CPU2

D

DAA
DAA (Decimal Adjust for Addition).....................98

DAS
DAS (Decimal Adjust for Subtraction)100

DEC
DEC (DECrement Byte Data of General-purpose

Register) ...102
DECW

DECW (DECrement Word Data of Accumulator)
..104

DECW (DECrement Word Data of Extra Pointer)
..106

DECW (DECrement Word Data of Index Pointer)
..108

DECW (DECrement Word Data of Stack Pointer)
..110

Dedicated Register
F2MC-8FX Dedicated Registers...........................16

dir
Direct Addressing (dir)..40

dir:b
Bit Direct Addressing (dir:b)40

Direct Addressing
Direct Addressing (dir)..40

Direct Area
Direct Area ..10

Direct Bank
Direct Bank..28

Direct Bank Pointer
Access to Register Bank Pointer and Direct Bank

Pointer..25
Direct Data Transfer

Direct Data Transfer from Temporary Accumulator
(T)..22

DIVU
DIVU (DIVide Unsigned)112
DIVU A...44

E

EP
Extra Pointer (EP)...26
255

INDEX
ext
Extended Addressing (ext)40

Extended Addressing
Extended Addressing (ext)40

Extra Pointer
Extra Pointer (EP) ..26

F

Flag
Program Status (PS) Flags...................................24

Flag Change
Flag Change Table ...233

G

General-Purpose Register
F2MC-8FX General-Purpose Registers16

General-Purpose Register Addressing
General-Purpose Register Addressing (Ri)............41

General-Purpose Register Bank Area
General-Purpose Register Bank Area9

I

Immediate Addressing
Immediate Addressing (#imm)41

INC
INC (INCrement Byte Data of General-purpose

Register)...114
INCW

INCW (INCrement Word Data of Accumulator)
..116

INCW (INCrement Word Data of Extra Pointer)
..118

INCW (INCrement Word Data of Index Register)
..120

INCW (INCrement Word Data of Stack Pointer)
..122

Index Addressing
Index Addressing (@IX+off)...............................41

Index Register
Index Register (IX)...26

Inherent Addressing
Inherent Addressing..42

Instruction
F2MC-8FX CPU Instruction Overview...............223

Instruction List
Sign of the Instruction List224

Instruction Map
Instruction Map..251

Instruction Table
Item in Instruction Table225

Interrupt
Creating an Interrupt Processing Program34

Interrupt Enable/Disable Functions 32
Interrupt Requests in Resources........................... 32
Multiple Interrupt... 36
Outline of Interrupt Operation 30
Reset and Interrupt Vector Table 11

Item
Item in Instruction Table................................... 225

IX
Index Register (IX) .. 26

J

JMP
JMP (JuMP to address pointed by Accumulator)

... 124
JMP (JuMP to effective Address) 126
JMP @A ... 43

M

Memory Space
Arrangement of 16-bit Data in Memory Space 13
CPU Memory Space... 6
Memory Space and Addressing 7

MOV
MOV (MOVE Byte Data from Accumulator to

memory) .. 134
MOV (MOVE Byte Data from Memory to

Accumulator) 130
MOV (MOVE Byte Data from Temporary

Accumulator to Address Pointed by
Accumulator) 128

MOV (MOVE Immediate Byte Data to Memory)
... 132

MOVW
MOVW (MOVE Immediate Word Data to Extra

Pointer) .. 154
MOVW (MOVE Immediate Word Data to Index

Register) .. 158
MOVW (MOVE Immediate Word Data to Stack

Pointer) .. 162
MOVW (MOVE Word Data from Accumulator to

Extra Pointer) 152
MOVW (MOVE Word Data from Accumulator to

Index Register) 156
MOVW (MOVE Word Data from Accumulator to

Memory) .. 150
MOVW (MOVE Word data from Accumulator to

Program Status Register) 160
MOVW (MOVE Word data from Accumulator to

Stack Pointer) 164
MOVW (MOVE Word Data from Extra Pointer to

Accumulator) 140
MOVW (MOVE Word Data from Index Register to

Accumulator) 142
MOVW (MOVE Word Data from Memory to

Accumulator) 138
256

INDEX
MOVW (MOVE Word Data from Program Counter to
Accumulator)...................................... 146

MOVW (MOVE Word Data from Program Status
Register to Accumulator) 144

MOVW (MOVE Word Data from Stack Pointer to
Accumulator)...................................... 148

MOVW (MOVE Word Data from Temporary
Accumulator to Address Pointed by
Accumulator)...................................... 136

MOVW A,PC .. 43
Multiple Interrupt

Multiple Interrupt... 36
MULU

MULU (MULtiply Unsigned) 166
MULU A .. 44

N

NOP
NOP (NoOPeration) ... 168

O

Operation
Operation List.. 226

OR
OR (OR Byte Data of Accumulator and Memory to

Accumulator)...................................... 172
OR (OR Byte Data of Accumulator and Temporary

Accumulator to Accumulator) 170
ORW

ORW (OR Word Data of Accumulator and Temporary
Accumulator to Accumulator) 174

P

PC
Program Counter (PC) .. 17

Pointer Addressing
Pointer Addressing (@EP) 41

POPW
POPW (POP Word Data of Intherent Register from

Stack Memory) 178
Program Counter

Program Counter (PC) .. 17
Program Status

Program Status (PS) Flags 24
Structure of Program Status (PS) 23

PS
Program Status (PS) Flags 24
Structure of Program Status (PS) 23

PUSHW
PUSHW (PUSH Word Data of Inherent Register to

Stack Memory) 176

R

Register Bank
Register Bank Register..27

Register Bank Pointer
Access to Register Bank Pointer and Direct Bank

Pointer..25
rel

Relative Addressing (rel).....................................42
Relative Addressing

Relative Addressing (rel).....................................42
Reset

Reset and Interrupt Vector Table11
Reset Operation ..37

RET
RET (RETurn from subroutine)180

RETI
RETI (RETurn from Interrupt)182

Ri
General-Purpose Register Addressing (Ri)41

ROLC
ROLC (Rotate Byte Data of Accumulator with Carry

to Left) ...184
RORC

RORC (Rotate Byte Data of Accumulator with Carry
to Right) ...186

S

SETB
SETB (Set Direct Memory Bit)194

SETC
SETC (SET Carry flag)196

SETI
SETI (SET Interrupt flag)198

Sign
Sign of the Instruction List224

SP
Stack Pointer (SP)...17

Stack Area
Stack Area ...9

Stack Pointer
Stack Pointer (SP)...17

SUBC
SUBC (SUBtract Byte Data of Accumulator from

Temporary Accumulator with Carry to
Accumulator)188

SUBC (SUBtract Byte Data of Memory from
Accumulator with Carry to Accumulator)
..190

SUBCW
SUBCW (SUBtract Word Data of Accumulator from

Temporary Accumulator with Carry to
Accumulator)192
257

INDEX
SWAP
SWAP (SWAP Byte Data Accumulator ’H’and

Accumulator ’L’)200

T

T
Direct Data Transfer from Temporary Accumulator

(T) ...22
Example of Operation of Accumulator (A) and

Temporary Accumulator (T) in Byte Data
Processing ..21

How to Use the Temporary Accumulator (T)20
Temporary Accumulator (T)................................18

Temporary Accumulator
Direct Data Transfer from Temporary Accumulator

(T) ...22
Example of Operation of Accumulator (A) and

Temporary Accumulator (T) in Byte Data
Processing ..21

How to Use the Temporary Accumulator (T)20
Temporary Accumulator (T)................................18

V

Vector Addressing
Vector Addressing (#k)42

Vector Call
Vector Call Instruction Table...............................11

Vector Table
Reset and Interrupt Vector Table 11

X

XCH
XCH (eXCHange Byte Data Accumulator ’L’and

Temporary Accumulator ’L’) 202
XCHW

XCHW (eXCHange Word Data Accumulator and
Extrapointer) 204

XCHW (eXCHange Word Data Accumulator and
Index Register) 206

XCHW (eXCHange Word Data Accumulator and
Program Counter) 208

XCHW (eXCHange Word Data Accumulator and
Stack Pointer) 210

XCHW (eXCHange Word Data Accumulator and
Temporary Accumulator)..................... 212

XCHW A,PC... 44
XOR

XOR (eXclusive OR Byte Data of Accumulator and
Memory to Accumulator)..................... 216

XOR (eXclusive OR Byte Data of Accumulator and
Temporary Accumulator to Accumulator)
... 214

XORW
XORW (eXclusive OR Word Data of Accumulator

and Temporary Accumulator to Accmulator)
... 218
258

CM26-00301-2E

FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL

F2MC-8FX

8-BIT MICROCONTROLLER

PROGRAMMING MANUAL

February 2008 the second edition

Published FUJITSU LIMITED Electronic Devices

Edited Strategic Business Development Dept.

	CHAPTER 1 OUTLINE AND CONFIGURATION EXAMPLE OF F2MC-8FX CPU
	1.1 Outline of F2MC-8FX CPU
	1.2 Configuration Example of Device Using F2MC-8FX CPU

	CHAPTER 2 MEMORY SPACE
	2.1 CPU Memory Space
	2.2 Memory Space and Addressing
	2.2.1 Data Area
	2.2.2 Program Area
	2.2.3 Arrangement of 16-bit Data in Memory Space

	CHAPTER 3 REGISTERS
	3.1 F2MC-8FX Registers
	3.2 Program Counter (PC) and Stack Pointer (SP)
	3.3 Accumulator (A) and Temporary Accumulator (T)
	3.3.1 How To Use The Temporary Accumulator (T)
	3.3.2 Byte Data Transfer and Operation of Accumulator (A) and Temporary Accumulator (T)

	3.4 Program Status (PS)
	3.5 Index Register (IX) and Extra Pointer (EP)
	3.6 Register Banks
	3.7 Direct Banks

	CHAPTER 4 INTERRUPT PROCESSING
	4.1 Outline of Interrupt Operation
	4.2 Interrupt Enable/Disable and Interrupt Priority Functions
	4.3 Creating an Interrupt Processing Program
	4.4 Multiple Interrupt
	4.5 Reset Operation

	CHAPTER 5 CPU SOFTWARE ARCHITECTURE
	5.1 Types of Addressing Modes
	5.2 Special Instructions

	CHAPTER 6 DETAILED RULES FOR EXECUTION INSTRUCTIONS
	6.1 ADDC (ADD Byte Data of Accumulator and Temporary Accumulator with Carry to Accumulator)
	6.2 ADDC (ADD Byte Data of Accumulator and Memory with Carry to Accumulator)
	6.3 ADDCW (ADD Word Data of Accumulator and Temporary Accumulator with Carry to Accumulator)
	6.4 AND (AND Byte Data of Accumulator and Temporary Accumulator to Accumulator)
	6.5 AND (AND Byte Data of Accumulator and Memory to Accumulator)
	6.6 ANDW (AND Word Data of Accumulator and Temporary Accumulator to Accumulator)
	6.7 BBC (Branch if Bit is Clear)
	6.8 BBS (Branch if Bit is Set)
	6.9 BC (Branch relative if C=1)/BLO (Branch if LOwer)
	6.10 BGE (Branch Great or Equal: relative if larger than or equal to Zero)
	6.11 BLT (Branch Less Than zero: relative if < Zero)
	6.12 BN (Branch relative if N = 1)
	6.13 BNZ (Branch relative if Z = 0)/BNE (Branch if Not Equal)
	6.14 BNC (Branch relative if C = 0)/BHS (Branch if Higher or Same)
	6.15 BP (Branch relative if N = 0: PLUS)
	6.16 BZ (Branch relative if Z = 1)/BEQ (Branch if Equal)
	6.17 CALL (CALL subroutine)
	6.18 CALLV (CALL Vectored subroutine)
	6.19 CLRB (Clear direct Memory Bit)
	6.20 CLRC (Clear Carry flag)
	6.21 CLRI (CLeaR Interrupt flag)
	6.22 CMP (CoMPare Byte Data of Accumulator and Temporary Accumulator)
	6.23 CMP (CoMPare Byte Data of Accumulator and Memory)
	6.24 CMP (CoMPare Byte Data of Immediate Data and Memory)
	6.25 CMPW (CoMPare Word Data of Accumulator and Temporary Accumulator)
	6.26 DAA (Decimal Adjust for Addition)
	6.27 DAS (Decimal Adjust for Subtraction)
	6.28 DEC (DECrement Byte Data of General-purpose Register)
	6.29 DECW (DECrement Word Data of Accumulator)
	6.30 DECW (DECrement Word Data of Extra Pointer)
	6.31 DECW (DECrement Word Data of Index Pointer)
	6.32 DECW (DECrement Word Data of Stack Pointer)
	6.33 DIVU (DIVide Unsigned)
	6.34 INC (INCrement Byte Data of General-purpose Register)
	6.35 INCW (INCrement Word Data of Accumulator)
	6.36 INCW (INCrement Word Data of Extra Pointer)
	6.37 INCW (INCrement Word Data of Index Register)
	6.38 INCW (INCrement Word Data of Stack Pointer)
	6.39 JMP (JuMP to address pointed by Accumulator)
	6.40 JMP (JuMP to effective Address)
	6.41 MOV (MOVE Byte Data from Temporary Accumulator to Address Pointed by Accumulator)
	6.42 MOV (MOVE Byte Data from Memory to Accumulator)
	6.43 MOV (MOVE Immediate Byte Data to Memory)
	6.44 MOV (MOVE Byte Data from Accumulator to memory)
	6.45 MOVW (MOVE Word Data from Temporary Accumulator to Address Pointed by Accumulator)
	6.46 MOVW (MOVE Word Data from Memory to Accumulator)
	6.47 MOVW (MOVE Word Data from Extra Pointer to Accumulator)
	6.48 MOVW (MOVE Word Data from Index Register to Accumulator)
	6.49 MOVW (MOVE Word Data from Program Status Register to Accumulator)
	6.50 MOVW (MOVE Word Data from Program Counter to Accumulator)
	6.51 MOVW (MOVE Word Data from Stack Pointer to Accumulator)
	6.52 MOVW (MOVE Word Data from Accumulator to Memory)
	6.53 MOVW (MOVE Word Data from Accumulator to Extra Pointer)
	6.54 MOVW (MOVE Immediate Word Data to Extra Pointer)
	6.55 MOVW (MOVE Word Data from Accumulator to Index Register)
	6.56 MOVW (MOVE Immediate Word Data to Index Register)
	6.57 MOVW (MOVE Word data from Accumulator to Program Status Register)
	6.58 MOVW (MOVE Immediate Word Data to Stack Pointer)
	6.59 MOVW (MOVE Word data from Accumulator to Stack Pointer)
	6.60 MULU (MULtiply Unsigned)
	6.61 NOP (NoOPeration)
	6.62 OR (OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)
	6.63 OR (OR Byte Data of Accumulator and Memory to Accumulator)
	6.64 ORW (OR Word Data of Accumulator and Temporary Accumulator to Accumulator)
	6.65 PUSHW (PUSH Word Data of Inherent Register to Stack Memory)
	6.66 POPW (POP Word Data of Intherent Register from Stack Memory)
	6.67 RET (RETurn from subroutine)
	6.68 RETI (RETurn from Interrupt)
	6.69 ROLC (Rotate Byte Data of Accumulator with Carry to Left)
	6.70 RORC (Rotate Byte Data of Accumulator with Carry to Right)
	6.71 SUBC (SUBtract Byte Data of Accumulator from Temporary Accumulator with Carry to Accumulator)
	6.72 SUBC (SUBtract Byte Data of Memory from Accumulator with Carry to Accumulator)
	6.73 SUBCW (SUBtract Word Data of Accumulator from Temporary Accumulator with Carry to Accumulator)
	6.74 SETB (Set Direct Memory Bit)
	6.75 SETC (SET Carry flag)
	6.76 SETI (SET Interrupt flag)
	6.77 SWAP (SWAP Byte Data Accumulator "H" and Accumulator "L")
	6.78 XCH (eXCHange Byte Data Accumulator "L" and Temporary Accumulator "L")
	6.79 XCHW (eXCHange Word Data Accumulator and Extrapointer)
	6.80 XCHW (eXCHange Word Data Accumulator and Index Register)
	6.81 XCHW (eXCHange Word Data Accumulator and Program Counter)
	6.82 XCHW (eXCHange Word Data Accumulator and Stack Pointer)
	6.83 XCHW (eXCHange Word Data Accumulator and Temporary Accumulator)
	6.84 XOR (eXclusive OR Byte Data of Accumulator and Temporary Accumulator to Accumulator)
	6.85 XOR (eXclusive OR Byte Data of Accumulator and Memory to Accumulator)
	6.86 XORW (eXclusive OR Word Data of Accumulator and Temporary Accumulator to Accmulator)

	APPENDIX
	APPENDIX A Instruction List
	A.1 F2MC-8FX CPU Instruction Overview
	A.2 Operation List
	A.3 Flag Change Table

	APPENDIX B Bus Operation List
	APPENDIX C Instruction Map

