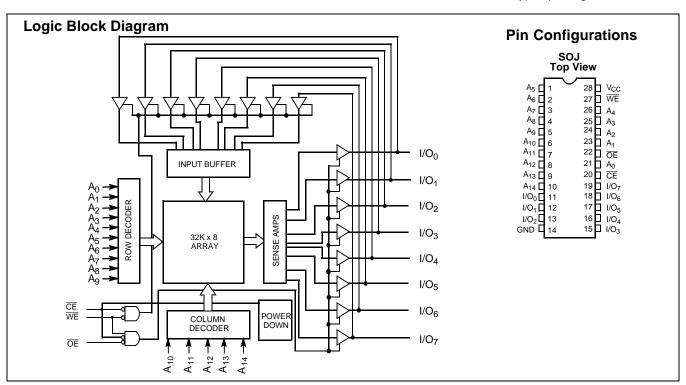


# 32K x 8 3.3V Static RAM

#### **Features**


- · Single 3.3V power supply
- Ideal for low-voltage cache memory applications
- High speed
  - -10/12/15 ns
- · Low active power
  - 216 mW (max.)
- · Low-power alpha immune 6T cell
- · Plastic SOJ and TSOP packaging

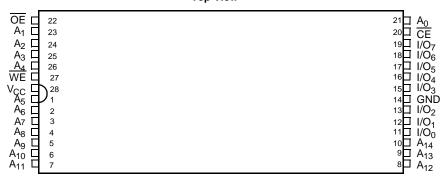
### **Functional Description**

The CY7C1399B is a high-performance 3.3V CMOS Static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE) and active LOW Output Enable (OE) and three-state drivers. The device has an automatic power-down feature, reducing the power consumption by more than 95% when deselected.

An active LOW Write Enable signal (WE) controls the writing/ reading operation of the memory. When  $\overline{CE}$  and  $\overline{WE}$  inputs are both LOW, data on the eight data input/output pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is written into the memory location addressed by the address present on the address pins  $(A_0 \text{ through } A_{14})$ . Reading the device is accomplished by selecting the device and enabling the outputs, CE and OE active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and Write Enable (WE) is HIGH. The CY7C1399B is available in 28-pin standard 300-mil-wide SOJ and TSOP Type I packages.




#### **Selection Guide**

|                                   |   | 1399B-10 | 1399B-12 | 1399B-15 | 1399B-20 |
|-----------------------------------|---|----------|----------|----------|----------|
| Maximum Access Time (ns)          |   | 10       | 12       | 15       | 20       |
| Maximum Operating Current (mA)    |   | 60       | 55       | 50       | 45       |
| Maximum CMOS Standby Current (μA) |   | 500      | 500      | 500      | 500      |
|                                   | L | 50       | 50       | 50       | 50       |



### **Pin Configuration**

# TSOP Top View



### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage on  $V_{CC}$  to Relative  $\mbox{GND}^{[1]}\,...$  –0.5V to +4.6V DC Voltage Applied to Outputs in High Z State  $^{[1]}$ .....-0.5V to  $^{V}$  CC + 0.5V

| Output Current into Outputs (LOW) | 20 mA   |
|-----------------------------------|---------|
| Static Discharge Voltage          | >2001V  |
| (per MIL-STD-883, Method 3015)    |         |
| Latch-Up Current                  | >200 mA |

### **Operating Range**

| Range      | Ambient<br>Temperature | V <sub>CC</sub> |
|------------|------------------------|-----------------|
| Commercial | 0°C to +70°C           | 3.3V ±300 mV    |
| Industrial | –40°C to +85°C         | 3.3V ±300 mV    |

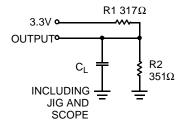
## Electrical Characteristics Over the Operating Range<sup>[1]</sup>

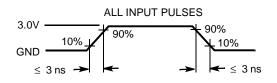
DC Input Voltage<sup>[1]</sup> .....-0.5V to V<sub>CC</sub> + 0.5V

|                  |                                                | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | 7C13           | 99B-10                   | 7C13           | 99B-12                   |      |
|------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|--------------------------|----------------|--------------------------|------|
| Parameter        | Description                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | Min.           | Max.                     | Min.           | Max.                     | Unit |
| V <sub>OH</sub>  | Output HIGH Voltage                            | $V_{CC} = Min., I_{OH} = -2.0 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | 2.4            |                          | 2.4            |                          | V    |
| $V_{OL}$         | Output LOW Voltage                             | V <sub>CC</sub> = Min., I <sub>OL</sub> = 4.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                | 0.4                      |                | 0.4                      | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | 2.2            | V <sub>CC</sub><br>+0.3V | 2.2            | V <sub>CC</sub><br>+0.3V | V    |
| $V_{IL}$         | Input LOW Voltage                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | -0.3           | 0.8                      | -0.3           | 0.8                      | V    |
| I <sub>IX</sub>  | Input Load Current                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | -1             | +1                       | -1             | +1                       | μΑ   |
| I <sub>OZ</sub>  | Output Leakage<br>Current                      | $\begin{aligned} &\text{GND} \leq \text{V}_{I} \leq \text{V}_{CC}, \\ &\text{Output Disabled} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | <del>-</del> 5 | +5                       | <del>-</del> 5 | +5                       | μА   |
| I <sub>OS</sub>  | Output Short<br>Circuit Current <sup>[2]</sup> | V <sub>CC</sub> = Max., V <sub>OUT</sub> = GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>CC</sub> = Max., V <sub>OUT</sub> = GND |                | -300                     |                | -300                     | mA   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating<br>Supply Current    | $V_{CC} = Max.$ , $I_{OUT} = 0$ mA,<br>$f = f_{MAX} = 1/t_{RC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                | 60                       |                | 55                       | mA   |
| I <sub>SB1</sub> | Automatic CE Power-Down                        | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                | 5                        |                | 5                        | mA   |
|                  | Current — TTL Inputs                           | $V_{IN} \ge V_{IH}$ , or $V_{IN} \le V_{IL}$ , $f = f_{MAX}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                              |                | 4                        |                | 4                        | mA   |
| I <sub>SB2</sub> | Automatic CE Power-Down                        | $Max. V_{CC}, \overline{CE} \ge V_{CC} - 0.3V, V_{IN} \ge V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                | 500                      |                | 500                      | μΑ   |
|                  | Current — CMOS Inputs <sup>[3]</sup>           | $-0.3V$ , or $V_{IN} \le 0.3V$ , $WE \ge V_{CC} - 0.3V$ or $WE \le 0.3V$ , $WE$ |                                                |                | 50                       |                | 50                       | μА   |

- Minimum voltage is equal to -2.0V for pulse durations of less than 20 ns. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- Device draws low standby current regardless of switching on the addresses.

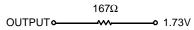



### **Electrical Characteristics** Over the Operating Range (continued)


|                  |                                                |                                                                                                                              |      | 139  | 9B-15                    | 139  | 9B-20                    |    |
|------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------------|------|--------------------------|----|
| Parameter        | Description                                    | Test Conditions                                                                                                              | Min. | Max. | Min.                     | Max. | Unit                     |    |
| V <sub>OH</sub>  | Output HIGH Voltage                            | $V_{CC} = Min., I_{OH} = -2.0 \text{ mA}$                                                                                    |      | 2.4  |                          | 2.4  |                          | V  |
| V <sub>OL</sub>  | Output LOW Voltage                             | $V_{CC} = Min., I_{OL} = 4.0 \text{ mA}$                                                                                     |      |      | 0.4                      |      | 0.4                      | V  |
| V <sub>IH</sub>  | Input HIGH Voltage                             |                                                                                                                              |      | 2.2  | V <sub>CC</sub><br>+0.3V | 2.2  | V <sub>CC</sub><br>+0.3V | V  |
| V <sub>IL</sub>  | Input LOW Voltage                              |                                                                                                                              |      | -0.3 | 0.8                      | -0.3 | 0.8                      | V  |
| I <sub>IX</sub>  | Input Load Current                             |                                                                                                                              |      | -1   | +1                       | -1   | +1                       | μΑ |
| I <sub>OZ</sub>  | Output Leakage Current                         | $\begin{aligned} & \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$ |      | -5   | +5                       | -5   | +5                       | μА |
| I <sub>OS</sub>  | Output Short Circuit<br>Current <sup>[2]</sup> | V <sub>CC</sub> = Max., V <sub>OUT</sub> = GND                                                                               |      |      | -300                     |      | -300                     | mA |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating<br>Supply Current    | $V_{CC} = Max., I_{OUT} = 0 mA,$<br>$f = f_{MAX} = 1/t_{RC}$                                                                 |      |      | 50                       |      | 45                       | mA |
| I <sub>SB1</sub> | Automatic CE Power-Down                        | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,                                                                                 |      |      | 5                        |      | 5                        | mA |
|                  | Current — TTL Inputs                           | $V_{IN} \ge V_{IH}$ , or $V_{IN} \le V_{IL}$ ,<br>$f = f_{MAX}$                                                              |      |      | 4                        |      | 4                        | mA |
| I <sub>SB2</sub> | Automatic CE Power-Down                        | Max. $V_{CC}$ , $\overline{CE} \ge V_{CC}$ = 0.3V, $V_{IN} \ge$                                                              |      |      | 500                      |      | 500                      | μΑ |
|                  | Current — CMOS Inputs <sup>[3]</sup>           | $V_{CC} = 0.3V$ , or $V_{IN} \le 0.3V$ , $WE \ge V_{CC} = 0.3V$ or $WE \le 0.3V$ , $f = f_{MAX}$                             |      |      | 50                       |      | 50                       | μА |

# Capacitance<sup>[4]</sup>

| Parameter                   | Description        | Test Conditions                              | Max. | Unit |
|-----------------------------|--------------------|----------------------------------------------|------|------|
| C <sub>IN</sub> : Addresses | Input Capacitance  | $T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 3.3$ V | 5    | pF   |
| C <sub>IN</sub> : Controls  |                    |                                              | 6    | pF   |
| C <sub>OUT</sub>            | Output Capacitance | 7                                            | 6    | pF   |


### **AC Test Loads and Waveforms**





Equivalent to:

THÉVENIN EQUIVALENT



#### Note:

4. Tested initially and after any design or process changes that may affect these parameters.



### Switching Characteristics Over the Operating Range<sup>[5]</sup>

|                               |                                     | 1399 | 9B-10 | 1399 | B-12 |      |
|-------------------------------|-------------------------------------|------|-------|------|------|------|
| Parameter Description         |                                     | Min. | Max.  | Min. | Max. | Unit |
| READ CYCLE                    |                                     | •    | •     | •    | •    | •    |
| t <sub>RC</sub>               | Read Cycle Time                     | 10   |       | 12   |      | ns   |
| t <sub>AA</sub>               | Address to Data Valid               |      | 10    |      | 12   | ns   |
| t <sub>OHA</sub>              | Data Hold from Address Change       | 3    |       | 3    |      | ns   |
| t <sub>ACE</sub>              | CE LOW to Data Valid                |      | 10    |      | 12   | ns   |
| t <sub>DOE</sub>              | OE LOW to Data Valid                |      | 5     |      | 5    | ns   |
| t <sub>LZOE</sub>             | OE LOW to Low Z <sup>[6]</sup>      | 0    |       | 0    |      | ns   |
| t <sub>HZOE</sub>             | OE HIGH to High Z <sup>[6, 7]</sup> |      | 5     |      | 5    | ns   |
| t <sub>LZCE</sub>             | CE LOW to Low Z <sup>[6]</sup>      | 3    |       | 3    |      | ns   |
| t <sub>HZCE</sub>             | CE HIGH to High Z <sup>[6, 7]</sup> |      | 5     |      | 6    | ns   |
| t <sub>PU</sub>               | CE LOW to Power-Up                  | 0    |       | 0    |      | ns   |
| t <sub>PD</sub>               | CE HIGH to Power-Down               |      | 10    |      | 12   | ns   |
| WRITE CYCLE <sup>[8, 9]</sup> | 9]                                  | ·    |       |      |      |      |
| t <sub>WC</sub>               | Write Cycle Time                    | 10   |       | 12   |      | ns   |
| t <sub>SCE</sub>              | CE LOW to Write End                 | 8    |       | 8    |      | ns   |
| t <sub>AW</sub>               | Address Set-Up to Write End         | 7    |       | 8    |      | ns   |
| t <sub>HA</sub>               | Address Hold from Write End         | 0    |       | 0    |      | ns   |
| t <sub>SA</sub>               | Address Set-Up to Write Start       | 0    |       | 0    |      | ns   |
| t <sub>PWE</sub>              | WE Pulse Width                      | 7    |       | 8    |      | ns   |
| t <sub>SD</sub>               | Data Set-Up to Write End            | 5    |       | 7    |      | ns   |
| t <sub>HD</sub>               | Data Hold from Write End            | 0    |       | 0    |      | ns   |
| t <sub>HZWE</sub>             | WE LOW to High Z <sup>[8]</sup>     |      | 7     |      | 7    | ns   |
| t <sub>LZWE</sub>             | WE HIGH to Low Z <sup>[6]</sup>     | 3    |       | 3    |      | ns   |

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $I_{Q_i}/I_{OH}$  and capacitance  $C_L = 30$  pF.

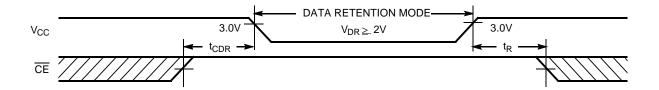
  At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE}$ ,  $t_{HZCE}$ , is less than  $t_{LZCE}$ , and  $t_{HZWE}$  is less than  $t_{LZWE}$  for any given device.  $t_{HZCE}$ ,  $t_{HZCE}$ ,  $t_{HZWE}$  are specified with  $C_L = 5$  pF as in AC Test Loads. Transition is measured  $\pm 500$  mV from steady state voltage.

  The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

  The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of  $t_{HZWE}$  and  $t_{SD}$ .

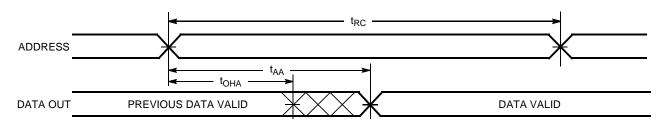


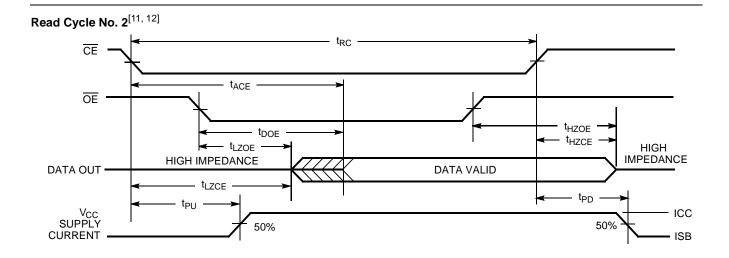
# $\textbf{Switching Characteristics} \ \, \text{Over the Operating Range}^{[5]} \, (\text{Continued})$


|                               |                                     | 1399 | B-15 | 1399 |      |      |
|-------------------------------|-------------------------------------|------|------|------|------|------|
| Parameter                     | Parameter Description               |      |      | Min. | Max. | Unit |
| READ CYCLE                    |                                     | •    |      |      |      |      |
| t <sub>RC</sub>               | Read Cycle Time                     | 15   |      | 20   |      | ns   |
| t <sub>AA</sub>               | Address to Data Valid               |      | 15   |      | 20   | ns   |
| t <sub>OHA</sub>              | Data Hold from Address Change       | 3    |      | 3    |      | ns   |
| t <sub>ACE</sub>              | CE LOW to Data Valid                |      | 15   |      | 20   | ns   |
| t <sub>DOE</sub>              | OE LOW to Data Valid                |      | 6    |      | 7    | ns   |
| t <sub>LZOE</sub>             | OE LOW to Low Z <sup>[6]</sup>      | 0    |      | 0    |      | ns   |
| t <sub>HZOE</sub>             | OE HIGH to High Z <sup>[6, 7]</sup> |      | 6    |      | 6    | ns   |
| t <sub>LZCE</sub>             | CE LOW to Low Z <sup>[6]</sup>      | 3    |      | 3    |      | ns   |
| t <sub>HZCE</sub>             | CE HIGH to High Z <sup>[6, 7]</sup> |      | 7    |      | 7    | ns   |
| t <sub>PU</sub>               | CE LOW to Power-Up                  | 0    |      | 0    |      | ns   |
| t <sub>PD</sub>               | CE HIGH to Power-Down               |      | 15   |      | 20   | ns   |
| WRITE CYCLE <sup>[8, 9]</sup> | oj .                                |      | •    | •    | •    | •    |
| t <sub>WC</sub>               | Write Cycle Time                    | 15   |      | 20   |      | ns   |
| t <sub>SCE</sub>              | CE LOW to Write End                 | 10   |      | 12   |      | ns   |
| t <sub>AW</sub>               | Address Set-Up to Write End         | 10   |      | 12   |      | ns   |
| t <sub>HA</sub>               | Address Hold from Write End         | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>               | Address Set-Up to Write Start       | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>              | WE Pulse Width                      | 10   |      | 12   |      | ns   |
| t <sub>SD</sub>               | Data Set-Up to Write End            | 8    |      | 10   |      | ns   |
| t <sub>HD</sub>               | Data Hold from Write End            | 0    |      | 0    |      | ns   |
| t <sub>HZWE</sub>             | WE LOW to High Z <sup>[8]</sup>     |      | 7    |      | 7    | ns   |
| t <sub>LZWE</sub>             | WE HIGH to Low Z <sup>[6]</sup>     | 3    |      | 3    |      | ns   |

# **Data Retention Characteristics** (Over the Operating Range - L version only)

| Parameter         | Description                             | Description             |                                                         | Min.            | Max. | Unit |
|-------------------|-----------------------------------------|-------------------------|---------------------------------------------------------|-----------------|------|------|
| $V_{DR}$          | V <sub>CC</sub> for Data Retention      |                         |                                                         | 2.0             |      | V    |
| I <sub>CCDR</sub> | Data Retention Current                  | Com'l                   | $\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V,}$ | 0               | 20   | uA   |
| t <sub>CDR</sub>  | Chip Deselect to Data<br>Retention Time | only descrett to data   |                                                         | 0               |      | ns   |
| t <sub>R</sub>    | Operation Recovery Time                 | Operation Recovery Time |                                                         | t <sub>RC</sub> |      | ns   |



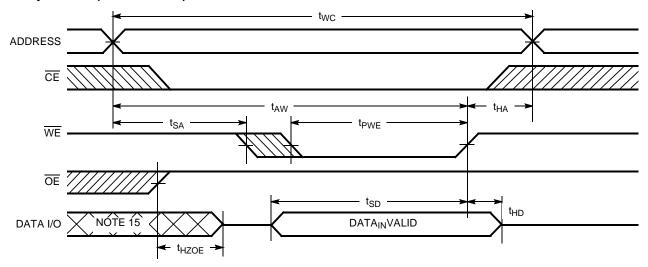


### **Data Retention Waveform**



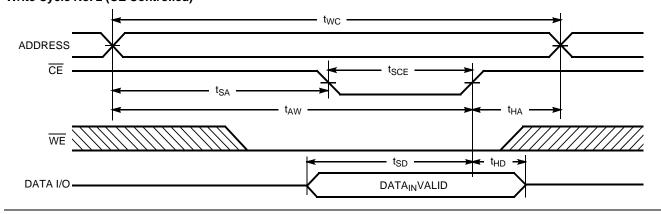
### **Switching Waveforms**

# **Read Cycle No. 1**<sup>[10, 11]</sup>

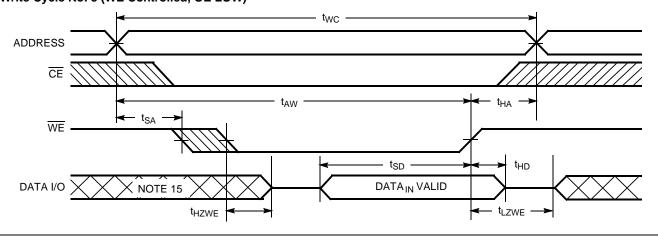





- 10. Device is continuously selected. OE, CE = V<sub>IL</sub>.
  11. WE is HIGH for read cycle.
  12. Address valid prior to or coincident with CE transition LOW.




# Switching Waveforms (continued)


# Write Cycle No. 1 (WE Controlled)[8, 13, 14]



# Write Cycle No. 2 ( $\overline{\text{CE}}$ Controlled)<sup>[8, 13, 14]</sup>



## Write Cycle No. 3 (WE Controlled, OE LOW)[9, 14]



- Data I/O is high impedance if OE = V<sub>IH</sub>.
   If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
   During this period, the I/Os are in the output state and input signals should not be applied.



## **Truth Table**

| CE | WE | OE | Input/Output | Mode                      | Power                      |
|----|----|----|--------------|---------------------------|----------------------------|
| Н  | Х  | Χ  | High Z       | Deselect/Power-Down       | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out     | Read                      | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In      | Write                     | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High Z       | Deselect, Output Disabled | Active (I <sub>CC</sub> )  |

# **Ordering Information**

| Speed<br>(ns) | Ordering Code   | Package<br>Name | Package Type                       | Operating<br>Range |
|---------------|-----------------|-----------------|------------------------------------|--------------------|
| 10            | CY7C1399B-10VC  | V21             | 28-Lead Molded SOJ                 | Commercial         |
|               | CY7C1399B-10ZC  | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399BL-10VC | V21             | 28-Lead Molded SOJ                 |                    |
|               | CY7C1399BL-10ZC | Z28             | 28-Lead Thin Small Outline Package |                    |
| 12            | CY7C1399B-12VC  | V21             | 28-Lead Molded SOJ                 |                    |
|               | CY7C1399B-12ZC  | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399BL-12VC | V21             | 28-Lead Molded SOJ                 |                    |
|               | CY7C1399BL-12ZC | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399B-12VI  | V21             | 28-Lead Molded SOJ                 | Industrial         |
|               | CY7C1399B-12ZI  | Z28             | 28-Lead Thin Small Outline Package |                    |
| 15            | CY7C1399B-15VC  | V21             | 28-Lead Molded SOJ                 | Commercial         |
|               | CY7C1399B-15ZC  | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399BL-15VC | V21             | 28-Lead Molded SOJ                 |                    |
|               | CY7C1399BL-15ZC | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399B-15VI  | V21             | 28-Lead Molded SOJ                 | Industrial         |
|               | CY7C1399B-15ZI  | Z28             | 28-Lead Thin Small Outline Package |                    |
| 20            | CY7C1399B-20VC  | V21             | 28-Lead Molded SOJ                 | Commercial         |
|               | CY7C1399B-20ZC  | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399BL-20VC | V21             | 28-Lead Molded SOJ                 |                    |
|               | CY7C1399BL-20ZC | Z28             | 28-Lead Thin Small Outline Package |                    |
|               | CY7C1399B-20VI  | V21             | 28-Lead Molded SOJ                 | Industrial         |
|               | CY7C1399B-20ZI  | Z28             | 28-Lead Thin Small Outline Package |                    |



0.050

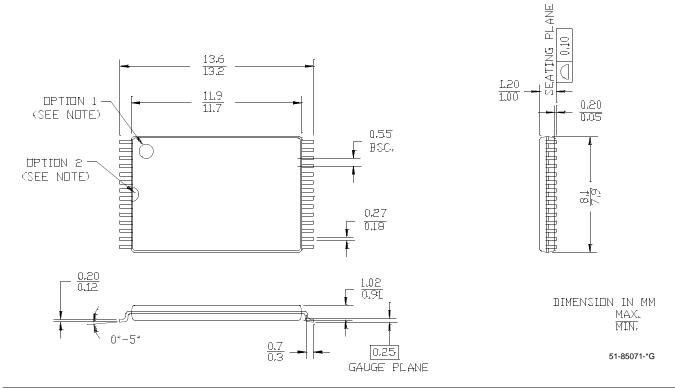
TYP.

### **Package Diagrams**

#### 28-Lead (300-Mil) Molded SOJ V21

DIMENSIONS IN INCHES MIN.  $\overline{MAX}$ . PIN 1 ID DETAIL A EXTERNAL LEAD DESIGN 0.291 0.330 0.300 0.026 0.014 OPTION 1 <u>0.697</u> 0.713 SEATING PLANE 0.120 0.007 0.013

28-Lead Thin Small Outline Package Type 1 (8x13.4 mm) Z28


0.025 MIN.

○ 0.004

<u>0.262</u> 0.272

51-85031-B

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2





# **Revision History**

| Document Title: CY7C1399B 32K x 8 3.3V Static RAM Document Number: 38-05071 |         |            |                    |                                          |  |  |  |
|-----------------------------------------------------------------------------|---------|------------|--------------------|------------------------------------------|--|--|--|
| REV.                                                                        | ECN NO. | ISSUE DATE | ORIG. OF<br>CHANGE | DESCRIPTION OF CHANGE                    |  |  |  |
| **                                                                          | 107264  | 05/25/01   | SZV                | Change from Spec #: 38-01102 to 38-05071 |  |  |  |
| *A                                                                          | 107533  | 06/28/01   | MAX                | Add Low Power                            |  |  |  |