
Cortex™-R4 and Cortex-R4F
Revision: r1p3

Technical Reference Manual
Copyright © 2009 ARM Limited. All rights reserved.
ARM DDI 0363E (ID013010)



 

Cortex-R4 and Cortex-R4F
Technical Reference Manual

Copyright © 2009 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and other 
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may 
be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be 
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the 
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or 
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or 
damage arising from the use of any information in this document, or any error or omission in such information, or any 
incorrect use of the product.

Some material in this document is based on ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point 
Arithmetic. The IEEE disclaims any responsibility or liability resulting from the placement and use in the described 
manner.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license 
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this 
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

15 May 2006 A Confidential First release for r0p1

22 October 2007 B Non-Confidential First release for r1p2

16 June 2008 C Non-Confidential Restricted Access First release for r1p3

11 September 2009 D Non-Confidential Second release for r1p3

20 November 2009 E Non-Confidential Documentation update for r1p3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. ii
ID013010 Non-Confidential, Unrestricted Access



Contents
Cortex-R4 and Cortex-R4F Technical Reference 
Manual

Preface
About this book ........................................................................................................  xvii
Feedback ..................................................................................................................  xxi

Chapter 1 Introduction
1.1 About the processor .................................................................................................  1-2
1.2 About the architecture ..............................................................................................  1-3
1.3 Components of the processor ..................................................................................  1-4
1.4 External interfaces of the processor ......................................................................  1-11
1.5 Power management ...............................................................................................  1-12
1.6 Configurable options ..............................................................................................  1-13
1.7 Execution pipeline stages ......................................................................................  1-17
1.8 Redundant core comparison ..................................................................................  1-19
1.9 Test features ..........................................................................................................  1-20
1.10 Product documentation, design flow, and architecture ..........................................  1-21
1.11 Product revision information ..................................................................................  1-24

Chapter 2 Programmer’s Model
2.1 About the programmer’s model ...............................................................................  2-2
2.2 Instruction set states ................................................................................................  2-3
2.3 Operating modes .....................................................................................................  2-4
2.4 Data types ................................................................................................................  2-5
2.5 Memory formats .......................................................................................................  2-6
2.6 Registers ..................................................................................................................  2-7
2.7 Program status registers ........................................................................................  2-10
2.8 Exceptions .............................................................................................................  2-16
2.9 Acceleration of execution environments ................................................................  2-27
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. iii
ID013010 Non-Confidential, Unrestricted Access



Contents
2.10 Unaligned and mixed-endian data access support ................................................  2-28
2.11 Big-endian instruction support ...............................................................................  2-29

Chapter 3 Processor Initialization, Resets, and Clocking
3.1 Initialization ..............................................................................................................  3-2
3.2 Resets ......................................................................................................................  3-6
3.3 Reset modes ............................................................................................................  3-7
3.4 Clocking ...................................................................................................................  3-9

Chapter 4 System Control Coprocessor
4.1 About the system control coprocessor .....................................................................  4-2
4.2 System control coprocessor registers ......................................................................  4-9

Chapter 5 Prefetch Unit
5.1 About the prefetch unit .............................................................................................  5-2
5.2 Branch prediction .....................................................................................................  5-3
5.3 Return stack .............................................................................................................  5-5

Chapter 6 Events and Performance Monitor
6.1 About the events ......................................................................................................  6-2
6.2 About the PMU ........................................................................................................  6-6
6.3 Performance monitoring registers ............................................................................  6-7
6.4 Event bus interface ................................................................................................  6-19

Chapter 7 Memory Protection Unit
7.1 About the MPU ........................................................................................................  7-2
7.2 Memory types ..........................................................................................................  7-7
7.3 Region attributes ......................................................................................................  7-9
7.4 MPU interaction with memory system ...................................................................  7-11
7.5 MPU faults .............................................................................................................  7-12
7.6 MPU software-accessible registers .......................................................................  7-13

Chapter 8 Level One Memory System
8.1 About the L1 memory system ..................................................................................  8-2
8.2 About the error detection and correction schemes ..................................................  8-4
8.3 Fault handling ..........................................................................................................  8-7
8.4 About the TCMs .....................................................................................................  8-13
8.5 About the caches ...................................................................................................  8-18
8.6 Internal exclusive monitor ......................................................................................  8-34
8.7 Memory types and L1 memory system behavior ...................................................  8-35
8.8 Error detection events ............................................................................................  8-36

Chapter 9 Level Two Interface
9.1 About the L2 interface ..............................................................................................  9-2
9.2 AXI master interface ................................................................................................  9-3
9.3 AXI master interface transfers .................................................................................  9-7
9.4 AXI slave interface .................................................................................................  9-20
9.5 Enabling or disabling AXI slave accesses .............................................................  9-23
9.6 Accessing RAMs using the AXI slave interface .....................................................  9-24

Chapter 10 Power Control
10.1 About power control ...............................................................................................  10-2
10.2 Power management ...............................................................................................  10-3

Chapter 11 Debug
11.1 Debug systems ......................................................................................................  11-2
11.2 About the debug unit ..............................................................................................  11-3
11.3 Debug register interface ........................................................................................  11-5
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. iv
ID013010 Non-Confidential, Unrestricted Access



Contents
11.4 Debug register descriptions .................................................................................  11-10
11.5 Management registers .........................................................................................  11-32
11.6 Debug events .......................................................................................................  11-39
11.7 Debug exception ..................................................................................................  11-41
11.8 Debug state .........................................................................................................  11-44
11.9 Cache debug .......................................................................................................  11-50
11.10 External debug interface ......................................................................................  11-51
11.11 Using the debug functionality ...............................................................................  11-54
11.12 Debugging systems with energy management capabilities .................................  11-71

Chapter 12 FPU Programmer’s Model
12.1 About the FPU programmer’s model .....................................................................  12-2
12.2 General-purpose registers .....................................................................................  12-3
12.3 System registers ....................................................................................................  12-4
12.4 Modes of operation ..............................................................................................  12-10
12.5 Compliance with the IEEE 754 standard .............................................................  12-11

Chapter 13 Integration Test Registers
13.1 About Integration Test Registers ...........................................................................  13-2
13.2 Programming and reading Integration Test Registers ...........................................  13-3
13.3 Summary of the processor registers used for integration testing ..........................  13-4
13.4 Processor integration testing .................................................................................  13-5

Chapter 14 Cycle Timings and Interlock Behavior
14.1 About cycle timings and interlock behavior ............................................................  14-3
14.2 Register interlock examples ...................................................................................  14-6
14.3 Data processing instructions ..................................................................................  14-7
14.4 QADD, QDADD, QSUB, and QDSUB instructions ................................................  14-9
14.5 Media data-processing ........................................................................................  14-10
14.6 Sum of Absolute Differences (SAD) ....................................................................  14-11
14.7 Multiplies ..............................................................................................................  14-12
14.8 Divide ...................................................................................................................  14-14
14.9 Branches ..............................................................................................................  14-15
14.10 Processor state updating instructions ..................................................................  14-16
14.11 Single load and store instructions ........................................................................  14-17
14.12 Load and Store Double instructions .....................................................................  14-20
14.13 Load and Store Multiple instructions ....................................................................  14-21
14.14 RFE and SRS instructions ...................................................................................  14-24
14.15 Synchronization instructions ................................................................................  14-25
14.16 Coprocessor instructions .....................................................................................  14-26
14.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions ................................  14-27
14.18 Miscellaneous instructions ...................................................................................  14-28
14.19 Floating-point register transfer instructions ..........................................................  14-29
14.20 Floating-point load/store instructions ...................................................................  14-30
14.21 Floating-point single-precision data processing instructions ...............................  14-32
14.22 Floating-point double-precision data processing instructions ..............................  14-33
14.23 Dual issue ............................................................................................................  14-34

Chapter 15 AC Characteristics
15.1 Processor timing ....................................................................................................  15-2
15.2 Processor timing parameters .................................................................................  15-3

Appendix A Processor Signal Descriptions
A.1 About the processor signal descriptions ..................................................................  A-2
A.2 Global signals ..........................................................................................................  A-3
A.3 Configuration signals ...............................................................................................  A-4
A.4 Interrupt signals, including VIC interface signals .....................................................  A-7
A.5 L2 interface signals ..................................................................................................  A-8
A.6 TCM interface signals ............................................................................................  A-13
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. v
ID013010 Non-Confidential, Unrestricted Access



Contents
A.7 Dual core interface signals ....................................................................................  A-16
A.8 Debug interface signals .........................................................................................  A-17
A.9 ETM interface signals ............................................................................................  A-19
A.10 Test signals ............................................................................................................  A-20
A.11 MBIST signals ........................................................................................................  A-21
A.12 Validation signals ...................................................................................................  A-22
A.13 FPU signals ...........................................................................................................  A-23

Appendix B ECC Schemes
B.1 ECC scheme selection guidelines ...........................................................................  B-2

Appendix C Revisions

Glossary
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. vi
ID013010 Non-Confidential, Unrestricted Access



List of Tables
Cortex-R4 and Cortex-R4F Technical Reference 
Manual

Change History ...............................................................................................................................  ii
Table 1-1 Configurable options .................................................................................................................  1-13
Table 1-2 Configurable options at reset ....................................................................................................  1-15
Table 1-3 ID values for different product versions ....................................................................................  1-25
Table 2-1 Register mode identifiers ............................................................................................................  2-8
Table 2-2 GE[3:0] settings ........................................................................................................................  2-12
Table 2-3 PSR mode bit values ................................................................................................................  2-14
Table 2-4 Exception entry and exit ............................................................................................................  2-16
Table 2-5 Configuration of exception vector address locations ................................................................  2-26
Table 2-6 Exception vectors ......................................................................................................................  2-26
Table 2-7 Jazelle register instruction summary .........................................................................................  2-27
Table 3-1 Reset modes ...............................................................................................................................  3-7
Table 4-1 System control coprocessor register functions ...........................................................................  4-3
Table 4-2 Summary of CP15 registers and operations ...............................................................................  4-9
Table 4-3 Main ID Register bit functions ...................................................................................................  4-15
Table 4-4 Cache Type Register bit functions ............................................................................................  4-16
Table 4-5 TCM Type Register bit functions ...............................................................................................  4-16
Table 4-6 MPU Type Register bit functions ..............................................................................................  4-17
Table 4-7 Processor Feature Register 0 bit functions ...............................................................................  4-19
Table 4-8 Processor Feature Register 1 bit functions ...............................................................................  4-19
Table 4-9 Debug Feature Register 0 bit functions ....................................................................................  4-20
Table 4-10 Memory Model Feature Register 0 bit functions .......................................................................  4-22
Table 4-11 Memory Model Feature Register 1 bit functions .......................................................................  4-23
Table 4-12 Memory Model Feature Register 2 bit functions .......................................................................  4-24
Table 4-13 Memory Model Feature Register 3 bit functions .......................................................................  4-25
Table 4-14 Instruction Set Attributes Register 0 bit functions .....................................................................  4-26
Table 4-15 Instruction Set Attributes Register 1 bit functions .....................................................................  4-28
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. vii
ID013010 Non-Confidential, Unrestricted Access



List of Tables
Table 4-16 Instruction Set Attributes Register 2 bit functions .....................................................................  4-29
Table 4-17 Instruction Set Attributes Register 3 bit functions .....................................................................  4-30
Table 4-18 Instruction Set Attributes Register 4 bit functions .....................................................................  4-31
Table 4-19 Current Cache Size Identification Register bit functions ...........................................................  4-33
Table 4-20 Bit field and register encodings for Current Cache Size Identification Register ........................  4-33
Table 4-21 Current Cache Level ID Register bit functions ..........................................................................  4-34
Table 4-22 Cache Size Selection Register bit functions .............................................................................  4-35
Table 4-23 System Control Register bit functions .......................................................................................  4-36
Table 4-24 Auxiliary Control Register bit functions .....................................................................................  4-38
Table 4-25 Secondary Auxiliary Control Register bit functions ...................................................................  4-42
Table 4-26 Coprocessor Access Register bit functions ..............................................................................  4-45
Table 4-27 Fault Status Register encodings ...............................................................................................  4-45
Table 4-28 Data Fault Status Register bit functions ....................................................................................  4-46
Table 4-29 Instruction Fault Status Register bit functions ...........................................................................  4-47
Table 4-30 ADFSR and AIFSR bit functions ...............................................................................................  4-48
Table 4-31 MPU Region Base Address Registers bit functions ..................................................................  4-50
Table 4-32 Region Size Register bit functions ............................................................................................  4-51
Table 4-33 MPU Region Access Control Register bit functions ..................................................................  4-52
Table 4-34 Access data permission bit encoding ........................................................................................  4-52
Table 4-35 MPU Memory Region Number Register bit functions ...............................................................  4-53
Table 4-36 Functional bits of c7 for Set and Way .......................................................................................  4-56
Table 4-37 Widths of the set field for L1 cache sizes ..................................................................................  4-56
Table 4-38 Functional bits of c7 for address format ....................................................................................  4-57
Table 4-39 BTCM Region Register bit functions .........................................................................................  4-58
Table 4-40 ATCM Region Register bit functions .........................................................................................  4-59
Table 4-41 Slave Port Control Register bit functions ..................................................................................  4-60
Table 4-42 nVAL IRQ Enable Set Register bit functions .............................................................................  4-62
Table 4-43 nVAL FIQ Enable Set Register bit functions .............................................................................  4-63
Table 4-44 nVAL Reset Enable Set Register bit functions ..........................................................................  4-64
Table 4-45 nVAL Debug Request Enable Set Register bit functions ..........................................................  4-65
Table 4-46 nVAL IRQ Enable Clear Register bit functions .........................................................................  4-66
Table 4-47 nVAL FIQ Enable Clear Register bit functions ..........................................................................  4-67
Table 4-48 nVAL Reset Enable Clear Register bit functions ......................................................................  4-67
Table 4-49 nVAL Debug Request Enable Clear Register bit functions .......................................................  4-68
Table 4-50 nVAL Cache Size Override Register .........................................................................................  4-69
Table 4-51 nVAL instruction and data cache size encodings .....................................................................  4-69
Table 4-52 Correctable Fault Location Register - cache .............................................................................  4-71
Table 4-53 Correctable Fault Location Register - TCM ..............................................................................  4-71
Table 4-54 Build Options 1 Register ...........................................................................................................  4-72
Table 4-55 Build Options 2 Register ...........................................................................................................  4-73
Table 6-1 Event bus interface bit functions .................................................................................................  6-2
Table 6-2 PMNC Register bit functions .......................................................................................................  6-7
Table 6-3 CNTENS Register bit functions ...................................................................................................  6-9
Table 6-4 CNTENC Register bit functions ................................................................................................  6-10
Table 6-5 Overflow Flag Status Register bit functions ..............................................................................  6-11
Table 6-6 SWINCR Register bit functions .................................................................................................  6-12
Table 6-7 Performance Counter Selection Register bit functions .............................................................  6-13
Table 6-8 EVTSELx Register bit functions ................................................................................................  6-14
Table 6-9 USEREN Register bit functions ................................................................................................  6-15
Table 6-10 INTENS Register bit functions ..................................................................................................  6-16
Table 6-11 INTENC Register bit functions ..................................................................................................  6-17
Table 7-1 Default memory map ...................................................................................................................  7-2
Table 7-2 Memory attributes summary .......................................................................................................  7-7
Table 7-3 TEX[2:0], C, and B encodings .....................................................................................................  7-9
Table 7-4 Inner and Outer cache policy encoding ....................................................................................  7-10
Table 8-1 Types of aborts .........................................................................................................................  8-11
Table 8-2 Cache parity error behavior ......................................................................................................  8-21
Table 8-3 Cache ECC error behavior ........................................................................................................  8-22
Table 8-4 Tag RAM bit descriptions, with parity ........................................................................................  8-26
Table 8-5 Tag RAM bit descriptions, with ECC .........................................................................................  8-26
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. viii
ID013010 Non-Confidential, Unrestricted Access



List of Tables
Table 8-6 Tag RAM bit descriptions, no parity or ECC .............................................................................  8-26
Table 8-7 Cache sizes and tag RAM organization ....................................................................................  8-27
Table 8-8 Organization of a dirty RAM line ...............................................................................................  8-27
Table 8-9 Instruction cache data RAM sizes, no parity or ECC ................................................................  8-29
Table 8-10 Data cache data RAM sizes, no parity or ECC .........................................................................  8-29
Table 8-11 Instruction cache data RAM sizes, with parity ..........................................................................  8-29
Table 8-13 Data cache RAM bits, with parity ..............................................................................................  8-30
Table 8-14 Instruction cache data RAM sizes with ECC .............................................................................  8-30
Table 8-12 Data cache data RAM sizes, with parity ...................................................................................  8-30
Table 8-15 Data cache data RAM sizes with ECC ......................................................................................  8-31
Table 8-16 Data cache RAM bits, with ECC ...............................................................................................  8-31
Table 8-17 Memory types and associated behavior ...................................................................................  8-35
Table 9-1 AXI master interface attributes ....................................................................................................  9-3
Table 9-2 ARCACHEM and AWCACHEM encodings .................................................................................  9-5
Table 9-3 ARUSERM and AWUSERM encodings ......................................................................................  9-5
Table 9-4 Non-cacheable LDRB .................................................................................................................  9-8
Table 9-5 LDRH from Strongly Ordered or Device memory .......................................................................  9-9
Table 9-6 LDR or LDM1 from Strongly Ordered or Device memory ...........................................................  9-9
Table 9-7 LDM5, Strongly Ordered or Device memory .............................................................................  9-10
Table 9-8 STRB to Strongly Ordered or Device memory ..........................................................................  9-11
Table 9-9 STRH to Strongly Ordered or Device memory ..........................................................................  9-11
Table 9-10 STR or STM1 to Strongly Ordered or Device memory .............................................................  9-12
Table 9-11 STM7 to Strongly Ordered or Device memory to word 0 or 1 ...................................................  9-12
Table 9-12 Linefill behavior on the AXI interface ........................................................................................  9-13
Table 9-13 Cache line write-back ................................................................................................................  9-13
Table 9-14 LDRH from Non-cacheable Normal memory ............................................................................  9-13
Table 9-15 LDR or LDM1 from Non-cacheable Normal memory ................................................................  9-14
Table 9-16 LDM5, Non-cacheable Normal memory or cache disabled ......................................................  9-14
Table 9-17 STRH to Cacheable write-through or Non-cacheable Normal memory ....................................  9-15
Table 9-18 STR or STM1 to Cacheable write-through or Non-cacheable Normal memory ........................  9-16
Table 9-19 AXI transaction splitting, all six words in same cache line ........................................................  9-16
Table 9-20 AXI transaction splitting, data in two cache lines ......................................................................  9-17
Table 9-21 Non-cacheable LDR or LDM1 crossing a cache line boundary ................................................  9-17
Table 9-22 Cacheable write-through or Non-cacheable STRH crossing a cache line boundary ................  9-17
Table 9-23 AXI transactions for Strongly Ordered or Device type memory ................................................  9-18
Table 9-24 AXI transactions for Non-cacheable Normal or Cacheable write-through memory ..................  9-18
Table 9-25 AXI slave interface attributes ....................................................................................................  9-22
Table 9-26 RAM region decode ..................................................................................................................  9-24
Table 9-27 TCM chip-select decode ...........................................................................................................  9-25
Table 9-28 MSB bit for the different TCM RAM sizes .................................................................................  9-25
Table 9-29 Cache RAM chip-select decode ................................................................................................  9-26
Table 9-30 Cache tag/valid RAM bank/address decode .............................................................................  9-26
Table 9-32 Data format, instruction cache and data cache, no parity and no ECC ....................................  9-27
Table 9-31 Cache data RAM bank/address decode ...................................................................................  9-27
Table 9-33 Data format, instruction cache and data cache, with parity ......................................................  9-28
Table 9-34 Data format, instruction cache, with ECC .................................................................................  9-28
Table 9-35 Data format, data cache, with ECC ...........................................................................................  9-28
Table 9-36 Tag register format for reads, no parity or ECC ........................................................................  9-29
Table 9-37 Tag register format for reads, with parity ..................................................................................  9-29
Table 9-38 Tag register format for reads, with ECC ...................................................................................  9-29
Table 9-39 Tag register format for writes, no parity or ECC .......................................................................  9-30
Table 9-40 Tag register format for writes, with parity ..................................................................................  9-30
Table 9-41 Tag register format for writes, with ECC ...................................................................................  9-30
Table 9-42 Dirty register format, with parity or with no error scheme .........................................................  9-31
Table 9-43 Dirty register format, with ECC .................................................................................................  9-31
Table 11-1 Access to CP14 debug registers ...............................................................................................  11-5
Table 11-2 CP14 debug registers summary ...............................................................................................  11-6
Table 11-3 Debug memory-mapped registers ............................................................................................  11-6
Table 11-4 External debug interface access permissions ...........................................................................  11-9
Table 11-5 Terms used in register descriptions ........................................................................................  11-10
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. ix
ID013010 Non-Confidential, Unrestricted Access



List of Tables
Table 11-6 CP14 debug register map .......................................................................................................  11-10
Table 11-7 Debug ID Register functions ...................................................................................................  11-11
Table 11-8 Debug ROM Address Register functions ................................................................................  11-12
Table 11-9 Debug Self Address Offset Register functions ........................................................................  11-13
Table 11-10 Debug Status and Control Register functions .........................................................................  11-14
Table 11-11 Data Transfer Register functions ............................................................................................  11-19
Table 11-12 Watchpoint Fault Address Register functions .........................................................................  11-19
Table 11-13 Vector Catch Register functions .............................................................................................  11-20
Table 11-14 Debug State Cache Control Register functions ......................................................................  11-21
Table 11-15 Debug Run Control Register functions ...................................................................................  11-22
Table 11-16 Breakpoint Value Registers functions .....................................................................................  11-23
Table 11-17 Breakpoint Control Registers functions ...................................................................................  11-24
Table 11-18 Meaning of BVR bits [22:20] ...................................................................................................  11-25
Table 11-19 Watchpoint Value Registers functions ....................................................................................  11-26
Table 11-20 Watchpoint Control Registers functions ..................................................................................  11-27
Table 11-21 OS Lock Status Register functions .........................................................................................  11-29
Table 11-22 Authentication Status Register bit functions ...........................................................................  11-29
Table 11-23 PRCR functions ......................................................................................................................  11-30
Table 11-24 PRSR functions .......................................................................................................................  11-31
Table 11-25 Management Registers ...........................................................................................................  11-32
Table 11-26 Processor Identifier Registers .................................................................................................  11-32
Table 11-27 Claim Tag Set Register functions ...........................................................................................  11-33
Table 11-28 Functional bits of the Claim Tag Clear Register .....................................................................  11-34
Table 11-29 Lock Status Register functions ...............................................................................................  11-35
Table 11-30 Device Type Register functions ..............................................................................................  11-35
Table 11-31 Peripheral Identification Registers ..........................................................................................  11-36
Table 11-32 Fields in the Peripheral Identification Registers ......................................................................  11-36
Table 11-33 Peripheral ID Register 0 functions ..........................................................................................  11-36
Table 11-34 Peripheral ID Register 1 functions ..........................................................................................  11-37
Table 11-35 Peripheral ID Register 2 functions ..........................................................................................  11-37
Table 11-36 Peripheral ID Register 3 functions ..........................................................................................  11-37
Table 11-37 Peripheral ID Register 4 functions ..........................................................................................  11-37
Table 11-38 Component Identification Registers ........................................................................................  11-38
Table 11-39 Processor behavior on debug events .....................................................................................  11-40
Table 11-40 Values in link register after exceptions ...................................................................................  11-42
Table 11-41 Read PC value after debug state entry ...................................................................................  11-44
Table 11-42 Authentication signal restrictions ............................................................................................  11-52
Table 11-43 Values to write to BCR for a simple breakpoint ......................................................................  11-58
Table 11-44 Values to write to WCR for a simple watchpoint .....................................................................  11-59
Table 11-45 Example byte address masks for watchpointed objects .........................................................  11-60
Table 12-1 VFP system registers ................................................................................................................  12-4
Table 12-2 Accessing VFP system registers ..............................................................................................  12-4
Table 12-3 FPSID Register bit functions .....................................................................................................  12-5
Table 12-4 FPSCR Register bit functions ...................................................................................................  12-6
Table 12-5 Floating-Point Exception Register bit functions ........................................................................  12-8
Table 12-6 MVFR0 Register bit functions ...................................................................................................  12-8
Table 12-7 MVFR1 Register bit functions ...................................................................................................  12-9
Table 12-8 Default NaN values .................................................................................................................  12-11
Table 12-9 QNaN and SNaN handling ......................................................................................................  12-12
Table 13-1 Integration Test Registers summary .........................................................................................  13-4
Table 13-2 Output signals that can be controlled by the Integration Test Registers ...................................  13-5
Table 13-3 Input signals that can be read by the Integration Test Registers ..............................................  13-6
Table 13-4 ITETMIF Register bit assignments ............................................................................................  13-7
Table 13-5 ITMISCOUT Register bit assignments ......................................................................................  13-8
Table 13-6 ITMISCIN Register bit assignments ..........................................................................................  13-9
Table 13-7 ITCTRL Register bit assignments ...........................................................................................  13-10
Table 14-1 Definition of cycle timing terms .................................................................................................  14-4
Table 14-2 Register interlock examples ......................................................................................................  14-6
Table 14-3 Data Processing Instruction cycle timing behavior if destination is not PC ...............................  14-7
Table 14-4 Data Processing instruction cycle timing behavior if destination is the PC ...............................  14-7
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. x
ID013010 Non-Confidential, Unrestricted Access



List of Tables
Table 14-5 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behavior ...................................  14-9
Table 14-6 Media data-processing instructions cycle timing behavior ......................................................  14-10
Table 14-7 Sum of absolute differences instruction timing behavior .........................................................  14-11
Table 14-8 Example interlocks ..................................................................................................................  14-11
Table 14-9 Example multiply instruction cycle timing behavior .................................................................  14-12
Table 14-10 Branch instruction cycle timing behavior .................................................................................  14-15
Table 14-11 Processor state updating instructions cycle timing behavior ..................................................  14-16
Table 14-12 Cycle timing behavior for stores and loads, other than loads to the PC .................................  14-17
Table 14-13 Cycle timing behavior for loads to the PC ...............................................................................  14-17
Table 14-14 <addr_md_1cycle> and <addr_md_3cycle> LDR example instruction explanation ...............  14-18
Table 14-15 Load and Store Double instructions cycle timing behavior .....................................................  14-20
Table 14-16 <addr_md_1cycle> and <addr_md_3cycle> LDRD example instruction explanation .............  14-20
Table 14-17 Cycle timing behavior of Load and Store Multiples, other than load multiples including the PC ....... 

14-21
Table 14-18 Cycle timing behavior of Load Multiples, with PC in the register list (64-bit aligned) ..............  14-22
Table 14-19 RFE and SRS instructions cycle timing behavior ....................................................................  14-24
Table 14-20 Synchronization instructions cycle timing behavior .................................................................  14-25
Table 14-21 Coprocessor instructions cycle timing behavior ......................................................................  14-26
Table 14-22 SVC, BKPT, Undefined, prefetch aborted instructions cycle timing behavior .........................  14-27
Table 14-23 IT and NOP instructions cycle timing behavior .......................................................................  14-28
Table 14-24 Floating-point register transfer instructions cycle timing behavior ..........................................  14-29
Table 14-25 Floating-point load/store instructions cycle timing behavior ....................................................  14-30
Table 14-26 Floating-point single-precision data processing instructions cycle timing behavior ................  14-32
Table 14-27 Floating-point double-precision data processing instructions cycle timing behavior ...............  14-33
Table 14-28 Permitted instruction combinations .........................................................................................  14-35
Table 15-1 Miscellaneous input ports timing parameters: ...........................................................................  15-3
Table 15-2 Configuration input port timing parameters ...............................................................................  15-3
Table 15-3 Interrupt input ports timing parameters .....................................................................................  15-4
Table 15-4 AXI master input port timing parameters ..................................................................................  15-4
Table 15-5 AXI slave input port timing parameters .....................................................................................  15-5
Table 15-6 Debug input ports timing parameters ........................................................................................  15-6
Table 15-7 ETM input ports timing parameters ...........................................................................................  15-6
Table 15-8 Test input ports timing parameters ...........................................................................................  15-7
Table 15-9 TCM interface input ports timing parameters ............................................................................  15-7
Table 15-10 Miscellaneous output port timing parameter .............................................................................  15-8
Table 15-11 Interrupt output ports timing parameters ...................................................................................  15-8
Table 15-12 AXI master output port timing parameters ................................................................................  15-8
Table 15-13 AXI slave output ports timing parameters .................................................................................  15-9
Table 15-14 Debug interface output ports timing parameters .....................................................................  15-10
Table 15-15 ETM interface output ports timing parameters ........................................................................  15-11
Table 15-16 Test output ports timing parameters .......................................................................................  15-11
Table 15-17 TCM interface output ports timing parameters ........................................................................  15-11
Table 15-18 FPU output port timing parameters .........................................................................................  15-12
Table A-1 Global signals .............................................................................................................................  A-3
Table A-2 Configuration signals ..................................................................................................................  A-4
Table A-3 Interrupt signals ..........................................................................................................................  A-7
Table A-4 AXI master port signals for the L2 interface ................................................................................  A-8
Table A-5 AXI master port error detection signals .....................................................................................  A-10
Table A-6 AXI slave port signals for the L2 interface ................................................................................  A-10
Table A-7 AXI slave port error detection signals .......................................................................................  A-12
Table A-8 ATCM port signals ....................................................................................................................  A-13
Table A-9 B0TCM port signals ..................................................................................................................  A-13
Table A-10 B1TCM port signals ..................................................................................................................  A-14
Table A-11 Dual core interface signals ........................................................................................................  A-16
Table A-12 Debug interface signals ............................................................................................................  A-17
Table A-13 Debug miscellaneous signals ...................................................................................................  A-17
Table A-14 ETM interface signals ...............................................................................................................  A-19
Table A-15 Test signals ...............................................................................................................................  A-20
Table A-16 MBIST signals ...........................................................................................................................  A-21
Table A-17 Validation signals ......................................................................................................................  A-22
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xi
ID013010 Non-Confidential, Unrestricted Access



List of Tables
Table A-18 FPU signals ...............................................................................................................................  A-23
Table C-1 Differences between issue B and issue C .................................................................................. C-1
Table C-2 Differences between issue C and issue D .................................................................................. C-3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xii
ID013010 Non-Confidential, Unrestricted Access



List of Figures
Cortex-R4 and Cortex-R4F Technical Reference 
Manual

Key to timing diagram conventions ..............................................................................................  xix
Figure 1-1 Processor block diagram ............................................................................................................  1-4
Figure 1-2 Processor Fetch and Decode pipeline stages ..........................................................................  1-17
Figure 1-3 Cortex-R4 Issue and Execution pipeline stages .......................................................................  1-17
Figure 1-4 Cortex-R4F Issue and Execution pipeline stages .....................................................................  1-18
Figure 2-1 Byte-invariant big-endian (BE-8) format ......................................................................................  2-6
Figure 2-2 Little-endian format .....................................................................................................................  2-6
Figure 2-3 Register organization ..................................................................................................................  2-9
Figure 2-4 Program status register .............................................................................................................  2-10
Figure 2-5 Interrupt entry sequence ...........................................................................................................  2-21
Figure 3-1 Power-on reset ............................................................................................................................  3-7
Figure 3-2 AXI interface clocking .................................................................................................................  3-9
Figure 4-1 System control and configuration registers .................................................................................  4-4
Figure 4-2 MPU control and configuration registers .....................................................................................  4-5
Figure 4-3 Cache control and configuration registers ..................................................................................  4-6
Figure 4-4 TCM control and configuration registers .....................................................................................  4-6
Figure 4-5 System performance monitor registers .......................................................................................  4-7
Figure 4-6 System validation registers .........................................................................................................  4-7
Figure 4-7 Main ID Register format ............................................................................................................  4-14
Figure 4-8 Cache Type Register format .....................................................................................................  4-15
Figure 4-9 TCM Type Register format ........................................................................................................  4-16
Figure 4-10 MPU Type Register format .......................................................................................................  4-17
Figure 4-11 Multiprocessor ID Register format ............................................................................................  4-18
Figure 4-12 Processor Feature Register 0 format ........................................................................................  4-18
Figure 4-13 Processor Feature Register 1 format ........................................................................................  4-19
Figure 4-14 Debug Feature Register 0 format .............................................................................................  4-20
Figure 4-15 Memory Model Feature Register 0 format ................................................................................  4-22
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xiii
ID013010 Non-Confidential, Unrestricted Access



List of Figures
Figure 4-16 Memory Model Feature Register 1 format ................................................................................  4-23
Figure 4-17 Memory Model Feature Register 2 format ................................................................................  4-24
Figure 4-18 Memory Model Feature Register 3 format ................................................................................  4-25
Figure 4-19 Instruction Set Attributes Register 0 format ..............................................................................  4-26
Figure 4-20 Instruction Set Attributes Register 1 format ..............................................................................  4-27
Figure 4-21 Instruction Set Attributes Register 2 format ..............................................................................  4-29
Figure 4-22 Instruction Set Attributes Register 3 format ..............................................................................  4-30
Figure 4-23 Instruction Set Attributes Register 4 format ..............................................................................  4-31
Figure 4-24 Current Cache Size Identification Register format ....................................................................  4-33
Figure 4-25 Current Cache Level ID Register format ...................................................................................  4-34
Figure 4-26 Cache Size Selection Register format ......................................................................................  4-35
Figure 4-27 System Control Register format ................................................................................................  4-36
Figure 4-28 Auxiliary Control Register format ..............................................................................................  4-38
Figure 4-29 Secondary Auxiliary Control Register format ............................................................................  4-42
Figure 4-30 Coprocessor Access Register format .......................................................................................  4-44
Figure 4-31 Data Fault Status Register format .............................................................................................  4-46
Figure 4-32 Instruction Fault Status Register format ....................................................................................  4-47
Figure 4-33 Auxiliary fault status registers format ........................................................................................  4-48
Figure 4-34 MPU Region Base Address Registers format ...........................................................................  4-50
Figure 4-35 MPU Region Size and Enable Registers format .......................................................................  4-51
Figure 4-36 MPU Region Access Control Register format ...........................................................................  4-52
Figure 4-37 MPU Memory Region Number Register format ........................................................................  4-53
Figure 4-38 Cache operations ......................................................................................................................  4-55
Figure 4-39 c7 format for Set and Way ........................................................................................................  4-56
Figure 4-40 Cache operations address format .............................................................................................  4-56
Figure 4-41 BTCM Region Registers ...........................................................................................................  4-58
Figure 4-42 ATCM Region Registers ...........................................................................................................  4-59
Figure 4-43 Slave Port Control Register ......................................................................................................  4-60
Figure 4-44 nVAL IRQ Enable Set Register format ......................................................................................  4-62
Figure 4-45 nVAL FIQ Enable Set Register format ......................................................................................  4-63
Figure 4-46 nVAL Reset Enable Set Register format ...................................................................................  4-64
Figure 4-47 nVAL Debug Request Enable Set Register format ...................................................................  4-65
Figure 4-48 nVAL IRQ Enable Clear Register format ..................................................................................  4-66
Figure 4-49 nVAL FIQ Enable Clear Register format ...................................................................................  4-66
Figure 4-50 nVAL Reset Enable Clear Register format ...............................................................................  4-67
Figure 4-51 nVAL Debug Request Enable Clear Register format ................................................................  4-68
Figure 4-52 nVAL Cache Size Override Register format .............................................................................  4-69
Figure 4-53 Correctable Fault Location Register - cache .............................................................................  4-70
Figure 4-54 Correctable Fault Location Register - TCM ..............................................................................  4-71
Figure 4-55 Build Options 1 Register format ................................................................................................  4-72
Figure 4-56 Build Options 2 Register format ................................................................................................  4-73
Figure 6-1 PMNC Register format ................................................................................................................  6-7
Figure 6-2 CNTENS Register format ............................................................................................................  6-9
Figure 6-3 CNTENC Register format .........................................................................................................  6-10
Figure 6-4 FLAG Register format ...............................................................................................................  6-11
Figure 6-5 SWINCR Register format ..........................................................................................................  6-12
Figure 6-6 PMNXSEL Register format .......................................................................................................  6-12
Figure 6-7 EVTSELx Register format .........................................................................................................  6-14
Figure 6-8 USEREN Register format .........................................................................................................  6-15
Figure 6-9 INTENS Register format ...........................................................................................................  6-16
Figure 6-10 INTENC Register format ...........................................................................................................  6-17
Figure 7-1 Overlapping memory regions ......................................................................................................  7-5
Figure 7-2 Overlay for stack protection ........................................................................................................  7-5
Figure 7-3 Overlapping subregion of memory ..............................................................................................  7-6
Figure 8-1 L1 memory system block diagram ..............................................................................................  8-3
Figure 8-2 Error detection and correction schemes .....................................................................................  8-4
Figure 8-3 Nonsequential read operation performed with one RAM access. .............................................  8-28
Figure 8-4 Sequential read operation performed with one RAM access ....................................................  8-28
Figure 11-1 Typical debug system ...............................................................................................................  11-2
Figure 11-2 Debug ID Register format .......................................................................................................  11-11
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xiv
ID013010 Non-Confidential, Unrestricted Access



List of Figures
Figure 11-3 Debug ROM Address Register format ....................................................................................  11-12
Figure 11-4 Debug Self Address Offset Register format ............................................................................  11-13
Figure 11-5 Debug Status and Control Register format .............................................................................  11-14
Figure 11-6 Watchpoint Fault Address Register format .............................................................................  11-19
Figure 11-7 Vector Catch Register format ..................................................................................................  11-20
Figure 11-8 Debug State Cache Control Register format ..........................................................................  11-21
Figure 11-9 Debug Run Control Register format ........................................................................................  11-22
Figure 11-10 Breakpoint Control Registers format .......................................................................................  11-23
Figure 11-11 Watchpoint Control Registers format ......................................................................................  11-27
Figure 11-12 OS Lock Status Register format .............................................................................................  11-29
Figure 11-13 Authentication Status Register format ....................................................................................  11-29
Figure 11-14 PRCR format ...........................................................................................................................  11-30
Figure 11-15 PRSR format ...........................................................................................................................  11-31
Figure 11-16 Claim Tag Set Register format ................................................................................................  11-33
Figure 11-17 Claim Tag Clear Register format ............................................................................................  11-34
Figure 11-18 Lock Status Register format ....................................................................................................  11-34
Figure 11-19 Device Type Register format ..................................................................................................  11-35
Figure 12-1 FPU register bank .....................................................................................................................  12-3
Figure 12-2 Floating-Point System ID Register format .................................................................................  12-5
Figure 12-3 Floating-Point Status and Control Register format ...................................................................  12-6
Figure 12-4 Floating-Point Exception Register format .................................................................................  12-7
Figure 12-5 MVFR0 Register format ............................................................................................................  12-8
Figure 12-6 MVFR1 Register format ............................................................................................................  12-9
Figure 13-1 ITETMIF Register bit assignments ............................................................................................  13-7
Figure 13-2 ITMISCOUT Register bit assignments ......................................................................................  13-8
Figure 13-3 ITMISCIN Register bit assignments ..........................................................................................  13-9
Figure 13-4 ITCTRL Register bit assignments .............................................................................................  13-9
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xv
ID013010 Non-Confidential, Unrestricted Access



Preface

This preface introduces the Cortex-R4 and Cortex-R4F Technical Reference Manual. It contains 
the following sections:
• About this book on page xvii
• Feedback on page xxi.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xvi
ID013010 Non-Confidential, Unrestricted Access



Preface 
About this book
This is the Technical Reference Manual (TRM) for the Cortex-R4 and Cortex-R4F processors. 
In this book the generic term processor means both the Cortex-R4 and Cortex-R4F processors. 
Any differences between the two processors are described where necessary.

Note
 The Cortex-R4F processor is a Cortex-R4 processor that includes the optional Floating Point 
Unit (FPU) extension, see Product revision information on page 1-24 for more information.

In this book, references to the Cortex-R4 processor also apply to the Cortex-R4F processor, 
unless the context makes it clear that this is not the case.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for system designers, system integrators, and programmers who are 
designing or programming a System-on-Chip (SoC) that uses the processor.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction 
Read this for an introduction to the processor and descriptions of the major 
functional blocks.

Chapter 2 Programmer’s Model 
Read this for a description of the processor registers and programming 
information.

Chapter 3 Processor Initialization, Resets, and Clocking 
Read this for a description of clocking and resetting the processor, and the steps 
that the software must take to initialize the processor after reset.

Chapter 4 System Control Coprocessor 
Read this for a description of the system control coprocessor registers and 
programming information.

Chapter 5 Prefetch Unit 
Read this for a description of the functions of the Prefetch Unit (PFU), including 
dynamic branch prediction and the return stack.

Chapter 6 Events and Performance Monitor 
Read this for a description of the Performance Monitoring Unit (PMU) and the 
event bus.

Chapter 7 Memory Protection Unit 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xvii
ID013010 Non-Confidential, Unrestricted Access



Preface 
Read this for a description of the Memory Protection Unit (MPU) and the access 
permissions process.

Chapter 8 Level One Memory System 
Read this for a description of the Level One (L1) memory system.

Chapter 10 Power Control 
Read this for a description of the power control facilities.

Chapter 11 Debug 
Read this for a description of the debug support.

Chapter 12 FPU Programmer’s Model 
Read this for a description of the Floating Point Unit (FPU) support in the 
Cortex-R4F processor.

Chapter 13 Integration Test Registers 
Read this for a description of the Integration Test Registers, and of integration 
testing of the processor with an ETM-R4 trace macrocell.

Chapter 15 AC Characteristics 
Read this for a description of the timing parameters applicable to the processor.

Chapter 14 Cycle Timings and Interlock Behavior 
Read this for a description of the instruction cycle timing and instruction 
interlocks.

Appendix A Processor Signal Descriptions 
Read this for a description of the inputs and outputs of the processor.

Appendix B ECC Schemes 
Read this for a description of how to select the Error Checking and Correction 
(ECC) scheme depending on the Tightly-Coupled Memory (TCM) configuration.

Appendix C Revisions 
Read this for a description of the technical changes between released issues of this 
book.

Glossary Read this for definitions of terms used in this guide.

Conventions

Conventions that this book can use are described in:
• Typographical
• Timing diagrams on page xix
• Signals on page xix.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes signal 
names. Also used for terms in descriptive lists, where appropriate.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xviii
ID013010 Non-Confidential, Unrestricted Access



Preface 
monospace Denotes text that you can enter at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter 
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

< and > Enclose replaceable terms for assembler syntax where they appear in code 
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing 
diagrams. Variations, when they occur, have clear labels. You must not assume any timing 
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the 
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix A Denotes global Advanced eXtensible Interface (AXI) signals.

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xix
ID013010 Non-Confidential, Unrestricted Access



Preface 
Prefix R Denotes AXI read data channel signals.

Prefix W Denotes AXI write data channel signals.

Further reading

This section lists publications by ARM and by third parties.

See http://infocenter.arm.com for access to ARM documentation.

ARM publications

This book contains information that is specific to the processor. See the following documents 
for other relevant information:

• AMBA® AXI Protocol Specification (ARM IHI 0022)

• AMBA 3 APB Protocol Specification (ARM IHI 0024)

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406)

• ARM PrimeCell® Vectored Interrupt Controller (PL192) Technical Reference Manual 
(ARM DDI 0273)

• Cortex-R4 and Cortex-R4F Integration Manual (ARM DII 0130)

• Cortex-R4 and Cortex-R4F Configuration and Sign-off Guide (ARM DII 0185)

• CoreSight™ DAP-Lite Technical Reference Manual (ARM DDI 0316) 

• CoreSight ETM-R4 Technical Reference Manual (ARM DII 0367)

• RealView™ Compilation Tools Developer Guide (ARM DUI 0203)

• Application Note 98, VFP Support Code (ARM DAI 0098)

• Application Note 204, Understanding processor memory types and access ordering 
(ARM DAI 0204).

Other publications

This section lists relevant documents published by third parties:

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

• JEP106M, Standard Manufacture’s Identification Code, JEDEC Solid State Technology 
Association.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xx
ID013010 Non-Confidential, Unrestricted Access



Preface 
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms if 
appropriate.

Feedback on this book

If you have any comments on this book, send an e-mail to errata@arm.com. Give:
• the title
• the number
• the relevant page number(s) to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. xxi
ID013010 Non-Confidential, Unrestricted Access



Chapter 1 
Introduction

This chapter introduces the processor and its features. It contains the following sections:
• About the processor on page 1-2
• About the architecture on page 1-3
• Components of the processor on page 1-4
• External interfaces of the processor on page 1-11
• Power management on page 1-12
• Configurable options on page 1-13
• Execution pipeline stages on page 1-17
• Redundant core comparison on page 1-19
• Test features on page 1-20
• Product documentation, design flow, and architecture on page 1-21
• Product revision information on page 1-24.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-1
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.1 About the processor
The processor is a mid-range CPU for use in deeply-embedded systems.

The features of the processor include:

• An integer unit with integral EmbeddedICE-RT logic.

• High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible 
Interfaces (AXI) for Level two (L2) master and slave interfaces.

• Dynamic branch prediction with a global history buffer, and a 4-entry return stack.

• Low interrupt latency.

• Non-maskable interrupt.

• Optional Floating Point Unit (FPU). The Cortex-R4F processor is a Cortex-R4 processor 
that includes the FPU.

• A Harvard Level one (L1) memory system with:
— optional Tightly-Coupled Memory (TCM) interfaces with support for error 

correction or parity checking memories
— optional caches with support for optional error correction schemes
— optional ARMv7-R architecture Memory Protection Unit (MPU)
— optional parity and Error Checking and Correction (ECC) on all RAM blocks.

• The ability to implement and use redundant core logic, for example, in fault detection.

• An L2 memory interface:
— single 64-bit master AXI interface
— 64-bit slave AXI interface to TCM RAM blocks and cache RAM blocks.

• A debug interface to a CoreSight Debug Access Port (DAP).

• A trace interface to a CoreSight ETM-R4.

• A Performance Monitoring Unit (PMU).

• A Vectored Interrupt Controller (VIC) port.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-2
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.2 About the architecture
The processor implements the ARMv7-R architecture and ARMv7 debug architecture. In 
addition, the Cortex-R4F processor implements the VFPv3-D16 architecture. This includes the 
VFPv3 instruction set.

The ARMv7-R architecture provides 32-bit ARM and 16-bit and 32-bit Thumb instruction sets, 
including a range of Single Instruction, Multiple-Data (SIMD) Digital Signal Processing (DSP) 
instructions that operate on 16-bit or 8-bit data values in 32-bit registers.

See the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition for more 
information on the:
• ARM instruction set and Thumb instruction set
• ARMv7 debug architecture
• VFPv3 instruction set.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-3
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.3 Components of the processor
This section describes the main components of the processor:
• Data Processing Unit on page 1-5
• Load/store unit on page 1-5
• Prefetch unit on page 1-5
• L1 memory system on page 1-5
• L2 AXI interfaces on page 1-7
• Debug on page 1-8
• System control coprocessor on page 1-9
• Interrupt handling on page 1-9.

Figure 1-1 shows the structure of the processor.

Figure 1-1 Processor block diagram

The PreFetch Unit (PFU) fetches instructions from the memory system, predicts branches, and 
passes instructions to the Data Processing Unit (DPU). The DPU executes all instructions and 
uses the Load/Store Unit (LSU) for data memory transfers. The PFU and LSU interface to the 
L1 memory system that contains L1 instruction and data caches and an interface to a L2 system. 
The L1 memory can also contain optional TCM interfaces.

Processor

Level two interface

                            Level one memory system

AXI master busAXI slave bus

L2 interface 
AXI

master port

Data 
Processing 

Unit

Memory 
Protection 

Unit

Prefetch Unit Load/Store 
Unit

L2 interface 
AXI

slave port

Tightly-
Coupled 
Memory 
(TCM)

interfaceB0TCM

B1TCM

ATCM

L1
instruction 

cache control

L1
instruction 

cache RAM

L1
data cache 

control

L1
data

 cache RAM

Debug

Debug
interface

ETM

ETM
interface
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-4
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.3.1 Data Processing Unit

The DPU holds most of the program-visible state of the processor, such as general-purpose 
registers, status registers and control registers. It decodes and executes instructions, operating 
on data held in the registers in accordance with the ARM Architecture. Instructions are fed to 
the DPU from the PFU through a buffer. The DPU performs instructions that require data to be 
transferred to or from the memory system by interfacing to the LSU. See Chapter 2 
Programmer’s Model for more information.

Floating Point Unit

The Floating Point Unit (FPU) is an optional part of the DPU which includes the VFP register 
file and status registers. It performs floating-point operations on the data held in the VFP register 
file. See Chapter 12 FPU Programmer’s Model for more information.

1.3.2 Load/store unit

The LSU manages all load and store operations, interfacing with the DPU to the TCMs, caches, 
and L2 memory interfaces.

1.3.3 Prefetch unit

The PFU obtains instructions from the instruction cache, the TCMs, or from external memory 
and predicts the outcome of branches in the instruction stream. See Chapter 5 Prefetch Unit for 
more information.

Branch prediction

The branch predictor is a global type that uses history registers and a 256-entry pattern history 
table.

Return stack

The PFU includes a 4-entry return stack to accelerate returns from procedure calls. For each 
procedure call, the return address is pushed onto a hardware stack. When a procedure return is 
recognized, the address held in the return stack is popped, and the prefetch unit uses it as the 
predicted return address.

1.3.4 L1 memory system

The processor L1 memory system includes the following features:
• separate instruction and data caches
• flexible TCM interfaces
• 64-bit datapaths throughout the memory system
• MPU that supports configurable memory region sizes
• export of memory attributes for L2 memory system
• parity or ECC supported on local memories.

For more information of the blocks in the L1 memory system, see:
• Instruction and data caches on page 1-6
• Memory Protection Unit on page 1-6
• TCM interfaces on page 1-6
• Error correction and detection on page 1-7.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-5
ID013010 Non-Confidential, Unrestricted Access



Introduction 
Instruction and data caches

You can configure the processor to include separate instruction and data caches. The caches 
have the following features:

• Support for independent configuration of the instruction and data cache sizes between 
4KB and 64KB.

• Pseudo-random cache replacement policy.

• 8-word cache line length. Cache lines can be either write-back or write-through, 
determined by MPU region.

• Ability to disable each cache independently.

• Streaming of sequential data from LDM and LDRD operations, and sequential instruction 
fetches.

• Critical word first filling of the cache on a cache miss.

• Implementation of all the cache RAM blocks and the associated tag and valid RAM 
blocks using standard ASIC RAM compilers

• Parity or ECC supported on local memories.

Memory Protection Unit

An optional MPU provides memory attributes for embedded control applications. You can 
configure the MPU to have eight or twelve regions, each with a minimum resolution of 32 bytes. 
MPU regions can overlap, and the highest numbered region has the highest priority.

The MPU checks for protection and memory attributes, and some of these can be passed to an 
external L2 memory system. 

For more information, see Chapter 7 Memory Protection Unit.

TCM interfaces

Because some applications might not respond well to caching, there are two TCM interfaces that 
permit connection to configurable memory blocks of Tightly-Coupled Memory (ATCM and 
BTCM). These ensure high-speed access to code or data. As an option, the BTCM can have two 
memory ports for increased bandwidth.

An ATCM typically holds interrupt or exception code that must be accessed at high speed, 
without any potential delay resulting from a cache miss.

A BTCM typically holds a block of data for intensive processing, such as audio or video 
processing.

You can individually configure the TCM blocks at any naturally aligned address in the memory 
map. Permissible TCM block sizes are:
• 0KB
• 4KB
• 8KB
• 16KB
• 32KB
• 64KB
• 128KB
• 256KB
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-6
ID013010 Non-Confidential, Unrestricted Access



Introduction 
• 512KB
• 1MB
• 2MB
• 4MB
• 8MB.

The TCMs are external to the processor. This provides flexibility in optimizing the TCM 
subsystem for performance, power, and RAM type. The INITRAMA and INITRAMB pins 
enable booting from the ATCM or BTCM, respectively. Both the ATCM and BTCM support 
wait states. 

For more information, see Chapter 8 Level One Memory System.

Error correction and detection

To increase the tolerance of the system to soft memory faults, you can configure the caches for 
either:
• parity generation and error correction/detection
• ECC code generation, single-bit error correction, and two-bit error detection.

Similarly, you can configure the TCM interfaces for:
• parity generation and error detection
• ECC code generation, single-bit error correction, and two-bit error detection.

For more information, see Chapter 8 Level One Memory System.

1.3.5 L2 AXI interfaces

The L2 AXI interfaces enable the L1 memory system to have access to peripherals and to 
external memory using an AXI master and AXI slave port. 

AXI master interface

The AXI master interface provides a high bandwidth interface to second level caches, on-chip 
RAM, peripherals, and interfaces to external memory. It consists of a single AXI port with a 
64-bit read channel and a 64-bit write channel for instruction and data fetches.

The AXI master can run at the same frequency as the processor, or at a lower synchronous 
frequency. If asynchronous clocking is required an external asynchronous AXI slice is required.

AXI slave interface

The AXI slave interface enables AXI masters, including the AXI master port of the processor, 
to access data and instruction cache RAMs and TCMs on the AXI system bus. You can use this 
for DMA into and out of the TCM RAMs and for software test of the TCM and cache RAMs.

The slave interface can run at the same frequency as the processor or at a lower, synchronous 
frequency. If asynchronous clocking is required an external asynchronous AXI slice is required.

Bits in the Auxiliary Control Register and Slave Port Control Register can control access to the 
AXI slave. Access to the TCM RAMs can be granted to any master, to only privileged masters, 
or completely disabled. Access to the cache RAMs can be separately controlled in a similar way.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-7
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.3.6 Debug

The processor has a CoreSight compliant Advanced Peripheral Bus version 3 (APBv3) debug 
interface. This permits system access to debug resources, for example, the setting of 
watchpoints and breakpoints.

The processor provides extensive support for real-time debug and performance profiling.

The following sections give an overview of debug:
• System performance monitoring
• ETM interface
• Real-time debug facilities.

System performance monitoring

This is a group of counters that you can configure to monitor the operation of the processor and 
memory system. For more information, see About the PMU on page 6-6.

ETM interface

The Embedded Trace Macrocell (ETM) interface enables you to connect an external ETM unit 
to the processor for real-time code tracing of the core in an embedded system.

The ETM interface collects various processor signals and drives these signals from the 
processor. The interface is unidirectional and runs at the full speed of the processor. The ETM 
interface connects directly to the external ETM unit without any additional glue logic. You can 
disable the ETM interface for power saving. For more information, see the CoreSight ETM-R4 
Technical Reference Manual.

Real-time debug facilities

The processor contains an EmbeddedICE-RT logic unit to provide real-time debug facilities. It 
has:
• up to eight breakpoints
• up to eight watchpoints
• a Debug Communications Channel (DCC).

Note
 The number of breakpoints and watchpoints is configured during implementation, see 
Configurable options on page 1-13.

The EmbeddedICE-RT logic monitors the internal address and data buses. You access the 
EmbeddedICE-RT logic through a memory-mapped APB interface.

The processor implements the ARMv7 Debug architecture, including the extensions of the 
architecture to support CoreSight.

To get full access to the processor debug capability, you can access the debug register map 
through the APBv3 slave port. See Chapter 11 Debug for more information on debug.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-8
ID013010 Non-Confidential, Unrestricted Access



Introduction 
The EmbeddedICE-RT logic supports two modes of debug operation:

Halt mode On a debug event, such as a breakpoint or watchpoint, the debug logic stops the 
processor and forces it into debug state. This enables you to examine the internal 
state of the processor, and the external state of the system, independently from 
other system activity. When the debugging process completes, the processor and 
system state are restored, and normal program execution resumes.

Monitor debug mode 
On a debug event, the processor generates a debug exception instead of entering 
debug state, as in halt mode. The exception entry enables a debug monitor 
program to debug the processor while enabling critical interrupt service routines 
to operate on the processor. The debug monitor program can communicate with 
the debug host over the DCC or any other communications interface in the 
system. 

1.3.7 System control coprocessor

The system control coprocessor provides configuration and control of the memory system and 
its associated functionality. Other system-level operations, such as memory barrier instructions, 
are also managed through the system control coprocessor. 

For more information, see System control and configuration on page 4-4. 

1.3.8 Interrupt handling

Interrupt handling in the processor is compatible with previous ARM architectures, but has 
several additional features to improve interrupt performance for real-time applications.

VIC port

The core has a dedicated port that enables an external interrupt controller, such as the ARM 
PrimeCell Vectored Interrupt Controller (VIC), to supply a vector address along with an 
Interrupt Request (IRQ) signal. This provides faster interrupt entry, but you can disable it for 
compatibility with earlier interrupt controllers.

Note
 If you do not have a VIC in your design, you must ensure the nIRQ and nFIQ signals are 
asserted, held LOW, and remain LOW until the exception handler clears them.

Low interrupt latency

On receipt of an interrupt, the processor abandons any pending restartable memory operations. 
Restartable memory operations are the multiword transfer instructions LDM, LDRD, STRD, STM, PUSH, 
and POP that can access Normal memory.

To minimize the interrupt latency, ARM recommends that you do not perform:
• multiple accesses to areas of memory marked as Device or Strongly Ordered
• SWP operations to slow areas of memory.

Exception processing

The ARMv7-R architecture contains exception processing instructions to reduce interrupt 
handler entry and exit time:
SRS Save return state to a specified stack frame.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-9
ID013010 Non-Confidential, Unrestricted Access



Introduction 
RFE Return from exception using data from the stack.
CPS Change processor state, such as interrupt mask setting and clearing, and mode 

changes.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-10
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.4 External interfaces of the processor
The processor has the following interfaces for external access:
• APB Debug interface
• ETM interface
• Test interface.

For more information on these interfaces and how they are integrated into the system, see the 
AMBA 3 APB Protocol Specification and the CoreSight Architecture Specification.

1.4.1 APB Debug interface

AMBA APBv3 is used for debugging purposes. CoreSight is the ARM architecture for 
multi-processor trace and debug. CoreSight defines what debug and trace components are 
required and how they are connected. 

Note
 The APB debug interface can also connect to a DAP-Lite. For more information on the 
DAP-Lite, see the CoreSight DAP-Lite Technical Reference Manual.

1.4.2 ETM interface

You can connect an ETM-R4 to the processor through the ETM interface. The ETM-R4 
provides instruction and data trace for the processor. For more information on how the ETM-R4 
connects to the processor, see the CoreSight ETM-R4 Technical Reference Manual.

All outputs are driven directly from a register unless specified otherwise. All signals are relative 
to CLKIN unless specified otherwise.

The ETM interface includes these signals:
• an instruction interface
• a data interface
• an event interface
• other connections to the ETM.

See ETM interface signals on page A-19 for information about the names of signals that form 
these interfaces. See Event bus interface on page 6-19 for more information about the event bus.

1.4.3 Test interface

The test interface provides support for test during manufacture of the processor using Memory 
Built-In Self Test (MBIST). For more information on the test interface, see MBIST signals on 
page A-21. See the Cortex-R4 and Cortex-R4F Integration Manual for information about the 
timings of these signals.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-11
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.5 Power management
The processor includes several microarchitectural features to reduce energy consumption:

• Accurate branch and return prediction, reducing the number of incorrect instruction fetch 
and decode operations.

• The caches use sequential access information to reduce the number of accesses to the tag 
RAMs and to unmatched data RAMs.

• Extensive use of gated clocks and gates to disable inputs to unused functional blocks. 
Because of this, only the logic actively in use to perform a calculation consumes any 
dynamic power. 

The processor uses four levels of power management:

Run mode This mode is the normal mode of operation where all of the functionality 
of the processor is available. 

Standby mode This mode disables most of the clocks of the device, while keeping the 
device powered up. This reduces the power drawn to the static leakage 
current and the minimal clock power overhead required to enable the 
device to wake up from the Standby mode.

Shutdown mode This mode has the entire device powered down. All state, including cache 
and TCM state, must be saved externally. The assertion of reset returns the 
processor to the run state.

Dormant mode The processor can be implemented in such a way as to support Dormant 
mode. Dormant mode is a power saving mode in which the processor 
logic, but not the processor TCM and cache RAMs, is powered down. The 
processor state, apart from the cache and TCM state, is stored to memory 
before entry into Dormant mode, and restored after exit. 
For more information on preparing the Cortex-R4 to support Dormant 
mode, contact ARM.

For more information on the power management features, see Chapter 10 Power Control.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-12
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.6 Configurable options
Table 1-1 shows the features of the processor that can be configured using either 
build-configuration or pin-configuration. See Product documentation, design flow, and 
architecture on page 1-21 for information about configuration of the processor. Many of these 
features, if included, can also be enabled and disabled during software configuration.

Table 1-1 Configurable options

Feature Options Sub-options Build-configuration 
or pin-configuration

Redundant core Single-core (no redundancy) - Build

Dual-core (redundant) In-phase clocks
Out-of-phase clocks

Build

Instruction cache No i-cache - Build

i-cache included No error checking
Parity error checking
64-bit ECC error checking

Build

4KB (4x1KB ways)
8KB (4x2KB ways)
16KB (4x4KB ways)
32KB (4x8KB ways)
64KB (4x16KB ways)

Build

Data cache No d-cache - Build

d-cache included No error checking
Parity error checking
32-bit ECC error checking

Build

4KB (4x1KB ways)
8KB (4x2KB ways)
16KB (4x4KB ways)
32KB (4x8KB ways)
64KB (4x16KB ways)

Build

ATCM No ATCM ports - Build and pin

One ATCM port No error checking
Parity error checking
32-bit ECC error checking
64-bit ECC error checking

Build

4KB, 8KB, 16KB, 32KB, 64KB, 
128KB, 256KB, 512KB, 1MB, 2MB, 
4MB, or 8MB

Pin
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-13
ID013010 Non-Confidential, Unrestricted Access



Introduction 
BTCM No BTCM ports - Build and pin

One BTCM port (B0TCM) No error checking
Parity error checking
32-bit ECC error checking
64-bit ECC error checking

Build

4KB, 8KB, 16KB, 32KB, 64KB, 
128KB, 256KB, 512KB, 1MB, 2MB, 
4MB, or 8MB

Pin

Two BTCM ports (B0TCM 
and B1TCM)

No error checking
Parity error checking
32-bit ECC error checking
64-bit ECC error checking

Build

2x2KB, 2x4KB, 2x8KB, 2x16KB, 
2x32KB, 2x64KB, 2x128KB, 
2x256KB, 2x512KB, 2x1MB, 2x2MB, 
or 2x4MB

Pin

Interleaved on 64-bit granularity in 
memory
Adjacent in memory

Pin

Instruction 
endianness

Little-endian - Build

Pin-configured Little-endian
Big-endian

Pin

Floating point 
(VFP)

No FPU - Build

FPU includeda -

MPU No MPU - Build

MPU included 8 MPU regions
12 MPU regions

Build

TCM bus parity No TCM address and control 
bus parity

- Build

TCM address and control 
bus parity generated

-

AXI bus parity No AXI bus parity - Build

AXI bus parity generated/ 
checked

-

Breakpoints 2-8 breakpoint register pairs - Build

Watchpoints 1-8 watchpoint registers - Build

ATCM at reset Disabled - Pin

Enabledb Base address 0x0
Base address configured

Pin and build

Table 1-1 Configurable options (continued)

Feature Options Sub-options Build-configuration 
or pin-configuration
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-14
ID013010 Non-Confidential, Unrestricted Access



Introduction 
Table 1-2 describes the various features that can be pin-configured to be either enabled or 
disabled at reset. It also shows which CP15 register field provides software configuration of the 
feature when the processor is out of reset. All of these fields exist in either the system control 
register, or one of the auxiliary control registers.

BTCM at reset Disabled - Pin

Enabledb Base address configured
Base address 0x0

Pin and build

Peripheral ID 
RevAnd field

Any 4-bit value - Build

AXI slave 
interface

No AXI-slave - Build

AXI-slave included -

TCM Hard Error 
Cache

No TCM Hard Error Cache - Build

TCM Hard Error Cache 
included c

-

Non-Maskable 
FIQ Interrupt

Disabled (FIQ can be 
masked by software

- Pin

Enabled -

Parity typed Odd parity - Pin

Even parity -

a. Only available with the Cortex-R4F processor.
b. Only if the relevant TCM port(s) are included.
c. Only if at least one TCM port is included and uses ECC error checking.
d. Only relevant if at least one TCM port is included and uses parity error checking, one of the caches includes parity checking, 

or AXI or TCM bus parity is included.

Table 1-1 Configurable options (continued)

Feature Options Sub-options Build-configuration 
or pin-configuration

Table 1-2 Configurable options at reset

Feature Options Register

Exception endianness Little-endian/big-endian data for exception handling EE

Exception state ARM/Thumb state for exception handling TE

Exception vector table Base address for exception vectors: 0x00000000/0xFFFF0000 V

TCM error checking ATCM parity check enablea ATCMPCEN

BTCM parity check enable, for B0TCM and B1TCM independently a B0TCMPCEN/ 
B1TCMPCEN

ATCM ECC check enablea ATCMPCEN

BTCM ECC check enabled, for B0TCM and B1TCM togethera B0TCMPCEN/ 
B1TCMPCEN
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-15
ID013010 Non-Confidential, Unrestricted Access



Introduction 
TCM external errors ATCM external error enable ATCMECEN

BTCM external error enable, for B0TCM and B1TCM independently B0TCMECEN/ 
B1TCMECEN

TCM load/store-64 
(read-modify-write) behavior

ATCM load/store-64 enableb ATCMRMW

BTCM load/store-64 enableb BTCMRMW

a. Can only be enabled if the appropriate TCM is configured with the appropriate error checking scheme, and the appropriate 
number of ports

b. Can only be enabled if the appropriate TCM is not configured with 32-bit ECC.

Table 1-2 Configurable options at reset (continued)

Feature Options Register
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-16
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.7 Execution pipeline stages
The following stages make up the pipeline:
• the Fetch stages
• the Decode stages
• an Issue stage
• the three or four Execution stages.

Figure 1-2 shows the Fetch and Decode pipeline stages of the processor and the pipeline 
operations that can take place at each stage.

Figure 1-2 Processor Fetch and Decode pipeline stages

The names of the pipeline stages and their functions are:

Fe Instruction fetch where data is returned from instruction memory.

Pd Pre-decode where instructions are formatted and branch prediction occurs.

De Instruction decode.

Figure 1-3 shows the Issue and Execution pipeline stages for the Cortex-R4 processor.

Figure 1-3 Cortex-R4 Issue and Execution pipeline stages

Figure 1-4 on page 1-18 shows the Issue and Execution pipeline stages for the Cortex-R4F 
processor.

Fe1 Fe2 Pd De

Instruction 
decode

Predicted branches and returns

Instruction 
formatting 

branch 
predicting

2nd fetch 
stage

1st fetch 
stage

Register 
read, 

address 
generation, 

and 
instruction 

issue
EX1

DC1

Exception flush and mispredicted 
indirect branches

EX1

DC2 Load/store 
pipeline

Data 
processing 

pipeline

Iss Ex1 Ex2 Wr Ret

Mispredicted direct branches  

Wr
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-17
ID013010 Non-Confidential, Unrestricted Access



Introduction 
Figure 1-4 Cortex-R4F Issue and Execution pipeline stages

The names of the common pipeline stages and their functions are:

Iss Register read and instruction issue to execute stages.

Ex Execute stages.

Wr Write-back of data from the execution pipelines.

Ret Instruction retire.

The names of the load/store pipeline stages and their functions are:

DC1 First stage of data memory access.

DC2 Second stage of data memory access.

The names of the floating point pipeline stages and their functions are:

F0 Floating point register read.

F1 First stage of floating point execution.

F2 Second stage of floating point execution.

Fwr Floating point writeback.

The pipeline structure provides a pipelined 2-cycle memory access and single-cycle load-use 
penalty. This enables integration with slow RAM blocks and maintains good CPI at reasonable 
frequencies.

Register 
read, 

address 
generation, 

and 
instruction 

issue

EX1

DC1

Exception flush and mispredicted 
indirect branches

F0

EX1

DC2

F1 F2

Load/store 
pipeline

Data 
processing 

pipeline

Floating point 
pipeline

Iss Ex1 Ex2 Wr Ret

Fwr

Mispredicted direct branches  

Wr
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-18
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.8 Redundant core comparison
The processor can be implemented with a second, redundant copy of most of the logic. This 
second core shares the input pins and the cache RAMs of the master core, so only one set of 
cache RAMs is required. The master core drives the output pins and the cache RAMs.

Comparison logic can be included during implementation which compares the outputs of the 
redundant core with those of the master core. If a fault occurs in the logic of either core, because 
of radiation or circuit failure, this is detected by the comparison logic. Used in conjunction with 
the RAM error detection schemes, this can help protect the system from faults. The inputs 
DCCMINP[7:0] and DCCMINP2[7:0] and the outputs DCCMOUT[7:0] and 
DCCMOUT2[7:0] enable the comparison logic inside the processor to communicate with the 
rest of the system.

ARM provides example comparison logic, but you can change this during implementation. If 
you are implementing a processor with dual-redundant cores, contact ARM for more 
information. If you are integrating a Cortex-R4 macrocell with dual-redundant cores, contact the 
implementer for more details.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-19
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.9 Test features
The processor is delivered as fully-synthesizable RTL and is a fully-static design. Scan-chains 
and test wrappers for production test can be inserted into the design by the synthesis tools during 
implementation. See the relevant reference methodology documentation for more information.

Production test of the processor cache and TCM RAMs can be done through the dedicated, 
pipelined MBIST interface. This interface shares some of the multiplexing present in the 
processor design, which improves the potential frequency compared to adding multiplexors to 
the RAM modules. See the Cortex-R4 and Cortex-R4F Integration Manual for more 
information about this interface, and how to control it.

In addition, you can use the AXI slave interface to read and write the cache and TCM RAMs. 
You can use this feature to test the cache RAMs in a running system. This might be required in 
a safety-critical system. The TCM RAMs can be read and written directly by the program 
running on the processor. You can also use the AXI slave interface for swapping a test program 
in to the TCMs for the processor to execute. See Accessing RAMs using the AXI slave interface 
on page 9-24 for more information about how to access the RAMs using the AXI slave interface.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-20
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.10 Product documentation, design flow, and architecture
This section describes the content of the product documents, how they relate to the design flow, 
and the relevant architectural standards and protocols.

Note
 See Further reading on page xx for more information about the documentation described in this 
section.

1.10.1 Documentation

The following books describe the processor:

Technical Reference Manual 
The Technical Reference Manual (TRM) describes the processor functionality 
and the effects of functional options on the behavior of the processor. It is required 
at all stages of the design flow. Some behavior described in the TRM might not 
be relevant, because of the way the processor has been implemented and 
integrated. If you are programming the processor, contact the implementer to 
determine the build configuration of the implementation, and the integrator to 
determine the pin configuration of the SoC that you are using.

Configuration and Sign-Off Guide 
The Configuration and Sign-Off Guide (CSG) describes:
• the available build configuration options and related issues in selecting 

them
• how to configure the Register Transfer Level (RTL) with the build 

configuration options
• the processes to sign off the configured RTL and final macrocell.
The ARM product deliverables include reference scripts and information about 
using them to implement your design. Reference methodology documentation 
from your EDA tools vendor complements the CSG. The CSG is a confidential 
book that is only available to licensees.

Integration Manual 
The Integration Manual (IM) describes how to integrate the processor into a SoC 
including describing the pins that the integrator must tie off to configure the 
macrocell for the required integration. Some of the integration is affected by the 
configuration options that were used to implement the processor. Contact the 
implementer of the macrocell that you are using to determine the implemented 
build configuration options. The IM is a confidential book that is only available 
to licensees.

1.10.2 Design flow

The processor is delivered as synthesizable RTL. Before it can be used in a product, it must go 
through the following process:

1. Implementation. The implementer configures and synthesizes the RTL to produce a hard 
macrocell. This includes integrating the cache RAMs into the design.

2. Integration. The integrator integrates the hard macrocell into a SoC, connecting it to a 
memory system and to appropriate peripherals for the intended function. This memory 
system includes the Tightly Coupled Memories (TCMs).
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-21
ID013010 Non-Confidential, Unrestricted Access



Introduction 
3. Programming. The system programmer develops the software required to configure and 
initialize the processor, and possibly tests the required application software on the 
processor.

Each of these stages can be performed by a different company. Configuration options are 
available at each stage. These options affect the behavior and available features at the next stage:

Build configuration 
The implementer chooses the options that affect how the RTL source files are 
pre-processed. They usually include or exclude logic that can affect the area or 
maximum frequency of the resulting macrocell.
For example, the BTCM interface can be configured to have zero, one (B0TCM) 
or two (B0TCM and B1TCM) ports. If one port is chosen, the logic for the second 
port is excluded from the macrocell, although the pins remain, and the second port 
(B1TCM) cannot be used on that macrocell.

Configuration inputs 
The integrator configures some features of the processor by tying inputs to 
specific values. These configurations affect the start-up behavior before any 
software configuration is made. They can also limit the options available to the 
software.
For example, if the build configuration for the macrocell includes both BTCM 
ports, the integrator can choose how many ports to actually use, and therefore 
how many RAMs must be integrated with the macrocell. If the integrator only 
wishes to use one BTCM port, they can connect RAM to the B0TCM port only, 
and tie the ENTCM1IF input to zero to indicate that the B1TCM is not available.

Software configuration 
The programmer configures the processor by programming particular values into 
software-visible registers. This affects the behavior of the processor. 
For example, the enable bit in the BTCM Region Register controls whether or not 
memory accesses are performed to the BTCM interface. However, the BTCM 
cannot, and must not, be enabled if the build configuration does not include any 
BTCM ports, or if the pin configuration indicates that no RAMs have been 
integrated onto the BTCM ports.

Note
 This manual refers to implementation-defined features that are applicable to build configuration 
options. References to a feature which is included mean that the appropriate build and pin 
configuration options have been selected, while references to an enabled feature mean one that 
has also been configured by software.

1.10.3 Architectural information

The Cortex-R4 processor conforms to, or implements, the following specifications:

ARM Architecture 
This describes:
• The behavior and encoding of the instructions that the processor can 

execute.
• The modes and states that the processor can be in.
• The various data and control registers that the processor must contain.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-22
ID013010 Non-Confidential, Unrestricted Access



Introduction 
• The properties of memory accesses.
• The debug architecture you can use to debug the processor. The TRM gives 

more information about the implemented debug features.
The Cortex-R4 processor implements the ARMv7-R architecture profile.

Advanced Microcontroller Bus Architecture protocol 
Advanced Microcontroller Bus Architecture (AMBA) is an open standard, 
on-chip bus specification that defines the interconnection and management of 
functional blocks that make up a System-on-Chip (SoC). It facilitates 
development of embedded processors with multiple peripherals.

IEEE 754 This is the IEEE Standard for Binary Floating Point Arithmetic.

An architecture specification typically defines a number of versions, and includes features that 
are either optional or partially specified. The TRM describes which architectures are used, 
including which version is implemented, and the architectural choices made for the 
implementation. The TRM does not provide detailed information about the architecture, but 
some architectural information is included to give an overview of the implementation or, in the 
case of control registers, to make the manual easier to use. See the appropriate specification for 
more information about the implemented architectural features.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-23
ID013010 Non-Confidential, Unrestricted Access



Introduction 
1.11 Product revision information
This manual is for major revision 1 of the processor. At the time of release, this includes the 
r1p0, r1p1, r1p2, and r1p3 releases, although the vast majority of the information in this 
document will also be applicable to any future r1px releases. The following broadly describes 
the changes made in each subsequent revision of the processor:

Revision 1 Introduction of the ECC functional options and addition of the FPU options, to 
implement the Cortex-R4F processor.

Note
 The r1p0 release was not generally available.

1.11.1 Processor identification

The Cortex-R4 processor contains a number of IDentification (ID) registers that enable software 
or a debugger to identify the processor as Cortex-R4, and the variant (major revision) and 
revision (minor revision) of the design. These registers are:

Main ID Register (MIDR) 
This register is accessible by software and identifies the part, the variant, and the 
revision. See c0, Main ID Register on page 4-14. A copy of this register can also 
be read by a debugger through the debug APB interface. See Processor ID 
Registers on page 11-32.

Debug ID Register (DIDR) 
This register can be read by a debugger through the debug APB interface, and by 
software. It identifies the variant and revision. See CP14 c0, Debug ID Register 
on page 11-10.

Peripheral ID Registers 
These registers can be accessed through the debug APB interface only, and 
identify the revision number of the processor. See Debug Identification Registers 
on page 11-35.

Floating Point System ID Register (FPSID)  
When the build-configuration includes the floating point unit, this register 
identifies the revision number of the floating-point unit. See Floating-Point 
System ID Register, FPSID on page 12-5.

Note
 Floating point functionality is provided only with the Cortex-R4F processor.

The revision number of the processor, in the Peripheral ID and FPSID registers, is a single field 
that incorporates information about both major and minor revisions.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-24
ID013010 Non-Confidential, Unrestricted Access



Introduction 
Table 1-3 shows the mappings between these various numbers, for all releases.

1.11.2 Architectural information

The ARM Architecture includes a number of registers that identify the version of the 
architecture and some of the architectural features that a processor implements. Chapter 4 
System Control Coprocessor describes the values that the processor implements for the fields in 
these registers. For details of the possible values and their meanings for these fields, see the 
ARM Architecture Reference Manual.

Table 1-3 ID values for different product versions

ID value r0p0 r0p1 r0p2 r0p3 r1p0 r1p1 r1p2 r1p3

Variant field, Main ID Register 0x0 0x0 0x0 0x0 0x1  0x1  0x1 0x1

Revision field, Main ID Register 0x0 0x1 0x2 0x3 0x0  0x1  0x2 0x3

Variant field, Debug ID Register 0x0 0x0 0x0 0x0 0x1  0x1  0x1 0x1

Revision field, Debug ID Register 0x0 0x1 0x2 0x3 0x0  0x1  0x2 0x3

Revision number, Peripheral ID Registers 0x0 0x1 0x2 0x5 0x3  0x4  0x6 0x7

Revision number, FPSID Register -  -  -  - 0x3  0x4  0x6 0x7
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 1-25
ID013010 Non-Confidential, Unrestricted Access



Chapter 2 
Programmer’s Model

This chapter describes the processor registers and provides an overview for programming the 
microprocessor. It contains the following sections:
• About the programmer’s model on page 2-2
• Instruction set states on page 2-3
• Operating modes on page 2-4
• Data types on page 2-5
• Memory formats on page 2-6
• Registers on page 2-7
• Program status registers on page 2-10
• Exceptions on page 2-16
• Acceleration of execution environments on page 2-27
• Unaligned and mixed-endian data access support on page 2-28
• Big-endian instruction support on page 2-29.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-1
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.1 About the programmer’s model
The processor implements the ARMv7-R architecture that provides:
• the 32-bit ARM instruction set
• the extended Thumb instruction set introduced in ARMv6T2, that uses Thumb-2 

technology to provide a wide range of 32-bit instructions.

For more information on the ARM and Thumb instruction sets, see the ARM Architecture 
Reference Manual. This chapter describes some of the main features of the architecture but, for 
a complete description, see the ARM Architecture Reference Manual.

This chapter also makes reference to older versions of the ARM architecture that the processor 
does not implement. These references are included to contrast the behavior of the Cortex-R4 
processor with other processors you might have used that implement an older version of the 
architecture.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-2
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.2 Instruction set states
The processor has two instruction set states:

ARM state The processor executes 32-bit, word-aligned ARM instructions in this 
state.

Thumb state The processor executes 32-bit and 16-bit halfword-aligned Thumb 
instructions in this state.

Note
 Transition between ARM state and Thumb state does not affect the processor mode or the 
register contents.

2.2.1 Switching state

The instruction set state of the processor can be switched between ARM state and Thumb state:

• Using the BX and BLX instructions, by a load to the PC, or with a data-processing instruction 
that does not set flags, with the PC as the destination register. Switching state is described 
in the ARM Architecture Reference Manual.

Note
 When the BXJ instruction is used the processor invokes the BX instruction.

• Automatically on an exception. You can write an exception handler routine in ARM or 
Thumb code. For more information, see Exceptions on page 2-16.

2.2.2  Interworking ARM and Thumb state

The processor enables you to mix ARM and Thumb code. For more information about 
interworking ARM and Thumb, see the RealView Compilation Tools Developer Guide.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-3
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.3 Operating modes
In each state there are seven modes of operation:
• User (USR) mode is the usual mode for the execution of ARM or Thumb programs. It is 

used for executing most application programs.
• Fast interrupt (FIQ) mode is entered on taking a fast interrupt.
• Interrupt (IRQ) mode is entered on taking a normal interrupt.
• Supervisor (SVC) mode is a protected mode for the operating system and is entered on 

taking a Supervisor Call (SVC), formerly SWI.
• Abort (ABT) mode is entered after a data or instruction abort.
• System (SYS) mode is a privileged user mode for the operating system.
• Undefined (UND) mode is entered when an Undefined instruction exception occurs.

Modes other than User mode are collectively known as Privileged modes. Privileged modes are 
used to service interrupts or exceptions, or access protected resources.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-4
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.4 Data types
The processor supports these data types:
• doubleword, 64-bit
• word, 32-bit
• halfword, 16-bit
• byte, 8-bit.

Note
 • When any of these types are described as unsigned, the N-bit data value represents a 

non-negative integer in the range 0 to +2N-1, using normal binary format.

• When any of these types are described as signed, the N-bit data value represents an integer 
in the range -2N-1 to +2N-1-1, using two’s complement format.

For best performance you must align these data types in memory as follows:
• doubleword quantities aligned to 8-byte boundaries, doubleword aligned
• word quantities aligned to 4-byte boundaries, word aligned
• halfword quantities aligned to 2-byte boundaries halfword aligned
• byte quantities can be placed on any byte boundary.

The processor supports mixed-endian and unaligned access. For more information, see 
Unaligned and mixed-endian data access support on page 2-28.

Note
 You cannot use LDRD, LDM, STRD, or STM instructions to access 32-bit quantities if they are not 
32-bit aligned.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-5
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.5 Memory formats
The processor views memory as a linear collection of bytes numbered in ascending order from 
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored 
word.

The processor can treat words of data in memory as being stored in either:
• Byte-invariant big-endian format
• Little-endian format.

Additionally, the processor supports mixed-endian and unaligned data accesses. For more 
information, see the ARM Architecture Reference Manual.

2.5.1  Byte-invariant big-endian format

In byte-invariant big-endian (BE-8) format, the processor stores the most significant byte of a 
word at the lowest-numbered byte, and the least significant byte at the highest-numbered byte. 
Figure 2-1 shows byte-invariant big-endian (BE-8) format.

Figure 2-1 Byte-invariant big-endian (BE-8) format

2.5.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte of the 
word and the highest-numbered byte is the most significant. Figure 2-2 shows little-endian 
format.

Figure 2-2 Little-endian format

Memory Register
Address
A[31:0]

+1

msbyte

lsbyte

+2

+3

B0

07

B1

B3B2B0 B1

31 24 23 16 15 8 7 0

B2

B3

Memory Register
Address
A[31:0]

+1

msbyte

lsbyte

+2

+3

b0

07

b1

b0b1b3 b2

31 24 23 16 15 8 7 0

b2

b3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-6
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.6 Registers
The processor has a total of 37 program registers:
• 31 general-purpose 32-bit registers
• six 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating mode 
determine the registers that are available to the programmer.

2.6.1 The register set

In the processor the same register set is used in both the ARM and Thumb states. Sixteen general 
registers and one or two status registers are accessible at any time. In Privileged modes, 
alternative mode-specific banked registers become available. Figure 2-3 on page 2-9 shows the 
registers that are available in each mode.

The register set contains 16 directly-accessible registers, R0-R15. Another register, the Current 
Program Status Register (CPSR), contains condition code flags, status bits, and current mode 
bits. Registers R0-R12 are general-purpose registers that hold either data or address values. 
Registers R13, R14, R15, and the CPSR have these special functions: 

Stack pointer Software normally uses register R13 as a Stack Pointer (SP). The SRS and 
RFE instructions use Register R13.

Link Register Register R14 is used as the subroutine Link Register (LR).
Register R14 receives the return address when a Branch with Link (BL or 
BLX) instruction is executed.
You can use R14 as a general-purpose register at all other times. The 
corresponding banked registers R14_svc, R14_irq, R14_fiq, R14_abt, and 
R14_und similarly hold the return values when interrupts and exceptions 
are taken, or when BL or BLX instructions are executed within interrupt or 
exception routines.

Program Counter Register R15 holds the PC:
• in ARM state this is word-aligned
• in Thumb state this is either word or halfword-aligned.

Note
 There are special cases for reading R15:

• reading the address of the current instruction plus, either:
— 4 in Thumb state
— 8 in ARM state.

• reading 0x00000000 (zero).
There are special cases for writing R15:
• causing a branch to the address that was written to R15
• ignoring the value that was written to R15
• writing bits [31:28] of the value that was written to R15 to the 

condition flags in the CPSR, and ignoring bits [27:20] (used for the 
MRC instruction only).

You must not assume any of these special cases unless it is explicitly stated 
in the instruction description. Instead, you must treat instructions with 
register fields equal to R15 as Unpredictable.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-7
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
For more information, see the ARM Architecture Reference Manual.

In Privileged modes, another register, the Saved Program Status Register (SPSR), is accessible. 
This contains the condition code flags, status bits, and current mode bits saved as a result of the 
exception that caused entry to the current mode.

Banked registers have a mode identifier that indicates which mode they relate to. Table 2-1lists 
these identifiers.

FIQ mode has seven banked registers mapped to R8–R14 (R8_fiq–R14_fiq). As a result many 
FIQ handlers do not have to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specific 
registers mapped to R13 and R14, permitting a private stack pointer and link register for each 
mode.

Figure 2-3 on page 2-9 shows the register set, and those registers that are banked.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usra

a. The usr identifier is usually 
omitted from register 
names. It is only used in 
descriptions where the User 
or System mode register is 
specifically accessed from 
another operating mode.

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System usra

Undefined und
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-8
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Figure 2-3 Register organization

Note
 For 16-bit Thumb instructions, the high registers, R8–R15, are not part of the standard register 
set. You can use special variants of the MOV instruction to transfer a value from a low register, in 
the range R0–R7, to a high register, and from a high register to a low register. The CMP instruction 
enables you to compare high register values with low register values. The ADD instruction 
enables you to add high register values to low register values. For more information, see the 
ARM Architecture Reference Manual.

General registers and program counter

System and User

Program status registers

= banked register

Supervisor Abort IRQ Undefined

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

FIQ

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

R15 (PC) R15 (PC) R15 (PC) R15 (PC)
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-9
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.7 Program status registers
The processor contains one CPSR and five SPSRs for exception handlers to use. The program 
status registers:
• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operating mode.

Figure 2-4 shows the bit arrangement in the status registers.

Figure 2-4 Program status register

The following sections explain the meanings of these bits:
• The N, Z, C, and V bits
• The Q bit on page 2-11
• The IT bits on page 2-11
• The J bit on page 2-12
• The DNM bits on page 2-12
• The GE bits on page 2-12
• The E bit on page 2-13
• The A bit on page 2-13
• The I and F bits on page 2-13
• The T bit on page 2-13
• The M bits on page 2-14

2.7.1 The N, Z, C, and V bits

The N, Z, C, and V bits are the condition code flags. You can optionally set them with arithmetic 
and logical operations, and also with MSR instructions and MRC instructions to R15. The processor 
tests these flags in accordance with an instruction's condition code to determine whether to 
execute that instruction.

In ARM state, most instructions can execute conditionally on the state of the N, Z, C, and V bits. 
The exceptions are:
• BKPT

• CPS

• LDC2

• MCR2

• MCRR2

• MRC2

M[4:0]TFIAEIT[7:2]GE[3:0]N J

Greater than
or equal to
Java state bit

Sticky overflow
Overflow
Carry/Borrow/Extend
Zero
Negative/Less than

Mode bits
Thumb state bit
FIQ disable
IRQ disable
Imprecise abort 
disable bit
Data endianness bit

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Z C V Q

IT[1:0]

DNM
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-10
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
• MRRC2

• PLD

• RFE

• SETEND

• SRS

• STC2.

In Thumb state, the processor can only execute the Branch instruction conditionally. Other 
instructions can be made conditional by placing them in the If-Then (IT) block. For more 
information about conditional execution in Thumb state, see the ARM Architecture Reference 
Manual.

2.7.2 The Q bit

Certain multiply and fractional arithmetic instructions can set the Sticky Overflow, Q, flag:
• QADD

• QDADD

• QSUB

• QDSUB

• SMLAD

• SMLAxy

• SMLAWy

• SMLSD

• SMUAD

• SSAT

• SSAT16

• USAT

• USAT16.

The Q flag is sticky in that, when an instruction sets it, this bit remains set until an MSR instruction 
writing to the CPSR explicitly clears it. Instructions cannot execute conditionally on the status 
of the Q flag. 

To determine the status of the Q flag you must read the PSR into a register and extract the Q flag 
from this. For information of how the Q flag is set and cleared, see individual instruction 
definitions in the ARM Architecture Reference Manual.

2.7.3 The IT bits

IT[7:5] encodes the base condition code for the current IT block, if any. It contains b000 when 
no IT block is active.

IT[4:0] encodes the number of instructions that are to be conditionally executed, and whether 
the condition for each is the base condition code or the inverse of the base condition code. It 
contains b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the 
instruction, and the Then and Else (T and E) parameters in the instruction. During execution of 
an IT block, IT[4:0] is shifted to:

• reduce the number of instructions to be conditionally executed by one

• move the next bit into position to form the least significant bit of the condition code.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-11
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
For more information on the operation of the IT execution state bits, see the ARM Architecture 
Reference Manual.

2.7.4 The J bit

The J bit in the CPSR returns 0 when read.

Note
 You cannot use an MSR to change the J bit in the CPSR.

2.7.5 The DNM bits

Software must not modify the Do Not Modify (DNM) bits. These bits are:

• Readable, to preserve the state of the processor, for example, during process context 
switches.

• Writable, to enable the processor to restore its state. To maintain compatibility with future 
ARM processors, and as good practice, use a read-modify-write strategy when you 
change the CPSR.

2.7.6 The GE bits

Some of the SIMD instructions set GE[3:0] as greater-than-or-equal bits for individual 
halfwords or bytes of the result, as Table 2-2 shows.

Table 2-2 GE[3:0] settings

GE[3] GE[2] GE[1] GE[0]

Instruction A op B greater than 
or equal to C

A op B greater than 
or equal to C

A op B greater 
than or equal to C

A op B greater 
than or equal to C

Signed

SADD16 [31:16] + [31:16] ≥ 0 [31:16] + [31:16] ≥ 0 [15:0] + [15:0] ≥ 0 [15:0] + [15:0] ≥ 0

SSUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

SADDSUBX [31:16] + [15:0] ≥ 0 [31:16] + [15:0] ≥ 0 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

SSUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 0 [15:0] + [31:16] ≥ 0

SADD8 [31:24] + [31:24] ≥ 0 [23:16] + [23:16] ≥ 0 [15:8] + [15:8] ≥ 0 [7:0] + [7:0] ≥ 0

SSUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0

Unsigned

UADD16 [31:16] + [31:16] ≥ 216 [31:16] + [31:16] ≥ 216 [15:0] + [15:0] ≥ 216 [15:0] + [15:0] ≥ 216

USUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

UADDSUBX [31:16] + [15:0] ≥ 216 [31:16] + [15:0] ≥ 216 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

USUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 216 [15:0] + [31:16] ≥216

UADD8 [31:24] + [31:24] ≥ 28 [23:16] + [23:16] ≥ 28 [15:8] + [15:8] ≥ 28 [7:0] + [7:0] ≥ 28

USUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-12
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Note
 GE bit is 1 if A op B ≥ C, otherwise 0.

The SEL instruction uses GE[3:0] to select which source register supplies each byte of its result.

Note
 • For unsigned operations, the usual ARM rules determine the GE bits for carries out of 

unsigned additions and subtractions, and so are carry-out bits. 

• For signed operations, the rules for setting the GE bits are chosen so that they have the 
same sort of greater than or equal functionality as for unsigned operations.

2.7.7 The E bit

ARM and Thumb instructions are provided to set and clear the E bit. The E bit controls 
load/store endianness. See the ARM Architecture Reference Manual for information on where 
the E bit is used.

Architecture versions prior to ARMv6 specify this bit as SBZ. This ensures no endianness 
reversal on loads or stores.

2.7.8 The A bit

The A bit is set automatically. It disables imprecise Data Aborts. For more information on how 
to use the A bit, see Imprecise abort masking on page 2-23.

2.7.9 The I and F bits

The I and F bits are the interrupt disable bits:
• when the I bit is set, IRQ interrupts are disabled
• when the F bit is set, FIQ interrupts are disabled.

Software can use MSR, CPS, MOVS pc, SUBS pc, LDM ..,{..pc}^, or RFE instructions to change the 
values of the I and F bits.

When NMFIs are enabled, updates to the F bit are restricted. For more information see 
Non-maskable fast interrupts on page 2-19.

2.7.10 The T bit

The T bit reflects the instruction set state:
• when the T bit is set, the processor executes in Thumb state
• when the T bit is clear, the processor executes in ARM state.

Note
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. The processor 
ignores any attempt to modify the T bit using an MSR instruction.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-13
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.7.11 The M bits

M[4:0] are the mode bits. These bits determine the processor operating mode as Table 2-3 
shows. 

Note
 • In Privileged mode an illegal value programmed into M[4:0] causes the processor to enter 

System mode.

• In User mode M[4:0] can be read. Writes to M[4:0] are ignored.

2.7.12 Modification of PSR bits by MSR instructions

In architecture versions earlier than ARMv6, MSR instructions can modify the flags byte, bits 
[31:24], of the CPSR in any mode, but the other three bytes are only modifiable in Privileged 
modes. 

In the ARMv7-R architecture each CPSR bit falls into one of these categories:

• Bits that are freely modifiable from any mode, either directly by MSR instructions or by 
other instructions whose side-effects include writing the specific bit or writing the entire 
CPSR.
Bits in Figure 2-4 on page 2-10 that are in this category are N, Z, C, V, Q, GE[3:0], and E.

• Bits that an MSR instruction must never modify, and so must only be written as a side-effect 
of another instruction. If an MSR instruction tries to modify these bits, the results are 
architecturally Unpredictable. In the processor these bits are not affected.
The bits in Figure 2-4 on page 2-10 that are in this category are the execution state bits 
[26:24], [15:10], and [5].

• Bits that can only be modified from Privileged modes, and that instructions completely 
protect from modification while the processor is in User mode. Entering a processor 
exception is the only way to modify these bits while the processor is in User mode, as 
described in Exceptions on page 2-16. 

Table 2-3 PSR mode bit values

M[4:0] Mode
Visible state registers

Thumb ARM

b10000 User R0–R7, R8-R12, SP, LR, PC, CPSR R0–R14, PC, CPSR

b10001 FIQ R0–R7, R8_fiq-R12_fiq, SP_fiq, LR_fiq PC, 
CPSR, SPSR_fiq

R0–R7, R8_fiq–R14_fiq, PC, CPSR, 
SPSR_fiq

b10010 IRQ R0–R7, R8-R12, SP_irq, LR_irq, PC, CPSR, 
SPSR_irq

R0–R12, R13_irq, R14_irq, PC, CPSR, 
SPSR_irq

b10011 Supervisor R0–R7, R8-R12, SP_svc, LR_svc, PC, CPSR, 
SPSR_svc

R0–R12, R13_svc, R14_svc, PC, CPSR, 
SPSR_svc

b10111 Abort R0–R7, R8-R12, SP_abt, LR_abt, PC, CPSR, 
SPSR_abt

R0–R12, R13_abt, R14_abt, PC, CPSR, 
SPSR_abt

b11011 Undefined R0–R7, R8-R12, SP_und, LR_und, PC, CPSR, 
SPSR_und

R0–R12, R13_und, R14_und, PC, CPSR, 
SPSR_und

b11111 System R0–R7, R8-R12, SP, LR, PC, CPSR R0–R14, PC, CPSR
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-14
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Bits in Figure 2-4 on page 2-10 that are in this category are A, I, F, and M[4:0].
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-15
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.8 Exceptions
Exceptions are taken whenever the normal flow of a program must temporarily halt, for 
example, to service an interrupt from a peripheral. Before attempting to handle an exception, the 
processor preserves the critical parts of the current processor state so that the original program 
can resume when the handler routine has finished.

This section provides information of the processor exception handling:
• Exception entry and exit summary
• Reset on page 2-18
• Interrupts on page 2-18
• Aborts on page 2-22
• Supervisor call instruction on page 2-24
• Undefined instruction on page 2-25
• Breakpoint instruction on page 2-25
• Exception vectors on page 2-26.

Note
 When the processor is in debug halt state, and an exception occurs, it is handled differently to 
normal. See Exceptions in debug state on page 11-47 for more details

2.8.1 Exception entry and exit summary

Table 2-4 summarizes the PC value preserved in the relevant R14 on exception entry, and the 
recommended instruction for exiting the exception handler.

Table 2-4 Exception entry and exit

Exception 
or entry Recommended return instruction

Previous state
Notes

ARM R14_x Thumb R14_x

SVCa MOVS PC, R14_svc IA + 4 IA + 2 Where the IA is the 
address of the SVC or 
Undefined instruction.UNDEF Variesb IA + 4 IA + 2

PABT SUBS PC, R14_abt, #4 IA + 4 IA + 4 Where the IA is the 
address of instruction that 
had the Prefetch Abort.

FIQ SUBS PC, R14_fiq, #4 IA + 4 IA + 4 Where the IA is the 
address of the instruction 
that was not executed 
because the FIQ or IRQ 
took priority.

IRQ SUBS PC, R14_irq, #4 IA + 4 IA + 4

DABT SUBS PC, R14_abt, #8 IA + 8 IA + 8 Where the IA is the 
address of the Load or 
Store instruction that 
generated the Data Abort.

RESET NA - - The value saved in 
R14_svc on reset is 
Unpredictable.

BKPT SUBS PC, R14_abt, #4 IA + 4 IA + 4 Software breakpoint.

a. Formerly SWI.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-16
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Taking an exception

When taking an exception the processor: 

1. Preserves the address of the next instruction in the appropriate LR. When the exception is 
taken from:
ARM state 

The processor writes the address of the instruction into the LR, offset by a value 
(current IA + 4 or IA + 8 depending on the exception) that causes the program 
to resume from the correct place on return.

Thumb state 
The processor writes the address of the instruction into the LR, offset by a value 
(current IA + 2, IA + 4 or IA + 8 depending on the exception) that causes the 
program to resume from the correct place on return.

2. Copies the CPSR into the appropriate SPSR. Depending on the exception type, the 
processor might modify the IT execution state bits of the CPSR prior to this operation to 
facilitate a return from the exception.

3. Forces the CPSR mode bits to a value that depends on the exception and clears the IT 
execution state bits in the CPSR.

4. Sets the E bit based on the state of the EE bit. Both these bits are contained in the System 
Control Register, see c1, System Control Register on page 4-35.

5. The T bit is set based on the state of the TE bit.

6. Forces the PC to fetch the next instruction from the relevant exception vector.

The processor can also set the interrupt disable flags to prevent otherwise unmanageable nesting 
of exceptions.

Leaving an exception

When an exception has completed, the exception handler must move the LR, minus an offset, 
to the PC. The offset varies according to the type of exception, as Table 2-4 on page 2-16 shows.

Typically the return instruction is an arithmetic or logical operation with the S bit set and Rd = 
R15, so the processor copies the SPSR back to the CPSR. Alternatively, an LDM ..,{..pc}^ or 
RFE instruction can perform a similar operation if the return state has been pushed onto a stack.

Note
 The action of restoring the CPSR from the SPSR:

• Automatically restores the T, E, A, I, and F bits to the value they held immediately prior 
to the exception.

• Normally resets the IT execution state bits to the values held immediately prior to the 
exception. If the exception handler wants to return to the following instruction, these bits 
might require to be manually advanced to avoid applying the incorrect condition codes to 
that instruction. For more information about the IT instruction and Undefined instruction, 
and an example of the exception handler code, see the ARM Architecture Reference 
Manual.

b. The return instruction you must use after an UNDEF exception has been handled depends on whether you want to retry the 
undefined instruction or not and, if so, on the size of the undefined instruction.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-17
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Because SVC handlers are always expected to return after the SVC instruction, the IT 
execution state bits are automatically advanced when an exception is taken prior to 
copying the CPSR into the SPSR. 

2.8.2 Reset

When the nRESET signal is driven LOW a reset occurs, and the processor abandons the 
executing instruction.

When nRESET is driven HIGH again the processor:

1. Forces CPSR M[4:0] to b10011 (Supervisor mode) and sets the A, I, and F bits in the 
CPSR. The E bit is set based on the state of the CFGEE pin. Other bits in the CPSR are 
indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.

3. Reverts to ARM state or Thumb state depending on the state of the TEINIT pin, and 
resumes execution.

After reset, all register values except the PC and CPSR are indeterminate. 

See Chapter 3 Processor Initialization, Resets, and Clocking for more information on the reset 
behavior for the processor.

2.8.3 Interrupts

The processor has two interrupt inputs, for normal interrupts (nIRQ) and fast interrupts (nFIQ). 
Each interrupt pin, when asserted and not masked, causes the processor to take the appropriate 
type of interrupt exception. See Exceptions on page 2-16 for more information. The CPSR.F and 
CPSR.I bits control masking of fast and normal interrupts respectively.

A number of features exist to improve the interrupt latency, that is, the time taken between the 
assertion of the interrupt input and the execution of the interrupt handler. By default, the 
processor uses the Low Interrupt Latency (LIL) behaviors introduced in version 6 and later of 
the ARM Architecture. The processor also has a port for connection of a Vectored Interrupt 
Controller (VIC), and supports Non-Maskable Fast Interrupts (NMFI).

The following subsections describe interrupts:
• Interrupt request
• Fast interrupt request on page 2-19
• Non-maskable fast interrupts on page 2-19
• Low interrupt latency on page 2-19
• Interrupt controller on page 2-20.

Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. An IRQ 
has a lower priority than an FIQ, and is masked on entry to an FIQ sequence. You must ensure 
that the nIRQ input is held LOW until the processor acknowledges the interrupt request, either 
from the VIC interface or the software handler.

Irrespective of whether the exception is taken from ARM state or Thumb state, an IRQ handler 
returns from the interrupt by executing:

SUBS PC, R14_irq, #4
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-18
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
You can disable IRQ exceptions within a Privileged mode by setting the CPSR.I bit to b1. See 
Program status registers on page 2-10. IRQ interrupts are automatically disabled when an IRQ 
occurs, by setting the CPSR.I bit. You can use nested interrupts but it is up to you to save any 
corruptible registers and to re-enable IRQs by clearing the CPSR.I bit.

Fast interrupt request

The Fast Interrupt Request (FIQ) reduces the execution time of the exception handler relative 
to a normal interrupt. FIQ mode has eight private registers to reduce, or even remove the 
requirement for register saving (minimizing the overhead of context switching).

An FIQ is externally generated by taking the nFIQ input signal LOW. You must ensure that the 
nFIQ input is held LOW until the processor acknowledges the interrupt request from the 
software handler.

Irrespective of whether exception entry is from ARM state or Thumb state, an FIQ handler 
returns from the interrupt by executing:

SUBS PC, R14_fiq, #4

If Non-Maskable Fast Interrupts (NMFIs) are not enabled, you can mask FIQ exceptions by 
setting the CPSR.F bit to b1. For more information see:
• Program status registers on page 2-10
• Non-maskable fast interrupts.

FIQ and IRQ interrupts are automatically masked by setting the CPSR.F and CPSR.I bits when 
an FIQ occurs. You can use nested interrupts but it is up to you to save any corruptible registers 
and to re-enable interrupts.

Non-maskable fast interrupts

When NMFI behavior is enabled, FIQ interrupts cannot be masked by software. Enabling NMFI 
behavior ensures that when the FIQ mask, that is, the CPSR.F bit, has been cleared by the reset 
handler, fast interrupts are always taken as quickly as possible, except during handling of a fast 
interrupt. This makes the fast interrupt suitable for signaling critical events. NMFI behavior is 
controlled by a configuration input signal CFGNMFI, that is asserted HIGH to enable NMFI 
operation. There is no software control of NMFI.

Software can detect whether NMFI operation is enabled by reading the NMFI bit of the System 
Control Register:

NMFI == 0 Software can mask FIQs by setting the CPSR.F bit to b1.

NMFI == 1 Software cannot mask FIQs.

For more information see c1, System Control Register on page 4-35.

When the NMFI bit in the System Control Register is b1:
• an instruction writing b0 to the CPSR.F bit clears it to b0
• an instruction writing b1 to the CPSR.F bit leaves it unchanged
• the CPSR.F bit can be set to b1 only by an FIQ or reset exception entry.

Low interrupt latency

Low Interrupt Latency (LIL) is a set of behaviors that reduce the interrupt latency for the 
processor, and is enabled by default. That is, the FI bit [21] in the System Control Register is 
Read-as-One.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-19
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
LIL behavior enables accesses to Normal memory, including multiword accesses and external 
accesses, to be abandoned part-way through execution so that the processor can react to a 
pending interrupt faster than would otherwise be the case. When an instruction is abandoned in 
this way, the processor behaves as if the instruction was not executed at all. If, after handling the 
interrupt, the interrupt handler returns to the program in the normal way using instruction SUBS 
pc, r14, #4, the abandoned instruction is re-executed. This means that some of the memory 
accesses generated by the instruction are performed twice.

Memory that is marked as Strongly Ordered or Device type is typically sensitive to the number 
of reads or writes performed. Because of this, instructions that access Strongly Ordered or 
Device memory are never abandoned when they have started accessing memory. These 
instructions always complete either all or none of their memory accesses. Therefore, to 
minimize the interrupt latency, you must avoid the use of multiword load/store instructions to 
memory locations that are marked as Strongly Ordered or Device.

Interrupt controller

The processor includes a VIC port for connection of a Vectored Interrupt Controller (VIC). An 
interrupt controller is a peripheral that handles multiple interrupt sources. Features usually 
found in an interrupt controller are:

• multiple interrupt request inputs, one for each interrupt source, and one or more 
amalgamated interrupt request outputs to the processor

• the ability to mask out particular interrupt requests

• prioritization of interrupt sources for interrupt nesting.

In a system with an interrupt controller with these features, software is still required to:

• determine from the interrupt controller which interrupt source is requesting service

• determine where the service routine for that interrupt source is loaded

• mask or clear that interrupt source, before re-enabling processor interrupts to allow 
another interrupt to be taken.

A VIC does all these in hardware to reduce the interrupt latency. It supplies the starting address 
of the service routine corresponding to the highest priority asserted interrupt source directly to 
the processor. When the processor has accepted this address, it masks the interrupt so that the 
processor can re-enable interrupts without clearing the source. The PL192 VIC is an Advanced 
Microcontroller Bus Architecture (AMBA) compliant, System-on-Chip (SoC) peripheral that is 
developed, tested, and licensed by ARM for use in Cortex-R4 designs. 

You can use the VIC port to connect a PL192 VIC to the processor. See the ARM PrimeCell 
Vectored Interrupt Controller (PL192) Technical Reference Manual for more information about 
the PL192 VIC. You can enable the VIC port by setting the VE bit in the System Control 
Register. When the VIC port is enabled and an IRQ occurs, the processor performs an handshake 
over the VIC interface to obtain the address of the handling routine for the IRQ.

See the Cortex-R4 and Cortex-R4F Integration Manual for more information about the VIC 
port, its signals, and their timings.

Interrupt entry flowchart

Figure 2-5 on page 2-21 is a flowchart for processor interrupt recognition. It shows all the 
necessary decisions and actions for complete interrupt entry. 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-20
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Figure 2-5 Interrupt entry sequence

For information on the I and F bits that Figure 2-5 shows, see Program status registers on 
page 2-10. For information on the V and VE bits that Figure 2-5 shows, see c1, System Control 
Register on page 4-35.

LR_fiq = RA+4

CPSR[4:0] = FIQ mode

CPSR[5] = TE

CPSR[7] = 1, CPSR[6] = 1

SPSR_fiq = CPSR

V==1

FALSE

TRUE

FALSE

!((nFIQ||F)
&&

(nIRQ||I))

!(nFIQ||F)

VE==1FALSEV==1

TRUE

PC[31:0] = Handler address 
provided by VIC

Acknowledge address to VIC

  TRUE

FALSE
Is VIC ready to 
provide handler 

address?

FALSE

TRUE

TRUE

Start handshake with VIC

LR_irq = RA+4

SPSR_irq = CPSR

CPSR[4:0] = IRQ mode

FALSE

CPSR[7] = 1

CPSR[5] = TE

VE==1

PC[31:0] = 
0x0000001C

PC[31:0] = 
0xFFFF001C

PC[31:0] = 
0xFFFF0018

PC[31:0] = 
0x00000018

!VE || VIC 
handshake 
complete

FALSE

Start

TRUE

TRUE

TRUE

FALSE
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-21
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.8.4 Aborts

When the processor's memory system cannot complete a memory access successfully, an abort 
is generated. Aborts can occur for a number of reasons, for example:
• a permission fault indicated by the MPU
• an error response to a transaction on the AXI memory bus
• an error detected in the data by the ECC checking logic.

An error occurring on an instruction fetch generates a prefetch abort. Errors occurring on data 
accesses generate data aborts. Aborts are also categorized as being either precise or imprecise.

When a prefetch or data abort occurs, the processor takes the appropriate type of exception. See 
Exception entry and exit summary on page 2-16 for more information. Additional information 
about the type of abort is stored in registers, and signaled as events. See Fault handling on 
page 8-7 for more details of the types of fault that can cause an abort and the information that 
the processor provides about these faults.

Prefetch aborts

When a Prefetch Abort (PABT) occurs, the processor marks the prefetched instruction as 
invalid, but does not take the exception until the instruction is to be executed. If the instruction 
is not executed, for example because a branch occurs while it is in the pipeline, the abort does 
not take place.

All prefetch aborts are precise.

Data aborts

An error occurring on a data memory access can generate a data abort. If the instruction 
generating the memory access is not executed, for example, because it fails its condition codes, 
or is interrupted, the data abort does not take place.

A Data Abort (DABT) can be either precise or imprecise, depending on the type of fault that 
caused it.

The processor implements the base restored Data Abort model, as opposed to a base updated 
Data Abort model.

With the base restored Data Abort model, when a Data Abort exception occurs during the 
execution of a memory access instruction, the processor hardware always restores the base 
register to the value it contained before the instruction was executed. This removes the 
requirement for the Data Abort handler to unwind any base register update that the aborted 
instruction might have specified. This simplifies the software Data Abort handler. For more 
information, see the ARM Architecture Reference Manual.

Precise aborts

A precise abort, also known as a synchronous abort, is one for which the exception is guaranteed 
to be taken on the instruction that generated the aborting memory access. The abort handler can 
use the value in the Link Register (r14_abt) to determine which instruction generated the abort, 
and the value in the Saved Program Status Register (SPSR_abt) to determine the state of the 
processor when the abort occurred.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-22
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Imprecise aborts

An imprecise abort, also known as an asynchronous abort, is one for which the exception is 
taken on a later instruction to the instruction that generated the aborting memory access. The 
abort handler cannot determine which instruction generated the abort, or the state of the 
processor when the abort occurred. Therefore, imprecise aborts are normally fatal.

Imprecise aborts can be generated by store instructions to normal-type or device-type memory. 
When the store instruction is committed, the data is normally written into a buffer that holds the 
data until the memory system has sufficient bandwidth to perform the write access. This gives 
read accesses higher priority. The write data can be held in the buffer for a long period, during 
which many other instructions can complete. If an error occurs when the write is finally 
performed, this generates an imprecise abort.

Imprecise abort masking

The nature of imprecise aborts means that they can occur while the processor is handling a 
different abort. If an imprecise abort generates a new exception in such a situation, the r14_abt 
and SPSR_abt values are overwritten. If this occurs before the data is pushed to the stack in 
memory, the state information about the first abort is lost. To prevent this from happening, the 
CPSR contains a mask bit to indicate that an imprecise abort cannot be accepted, the A-bit. 
When the A-bit is set, any imprecise abort that occurs is held pending by the processor until the 
A-bit is cleared, when the exception is actually taken. The A-bit is automatically set when abort, 
IRQ or FIQ exceptions are taken, and on reset. You must only clear the A-bit in an abort handler 
after the state information has either been stacked to memory, or is no longer required.

Only one pending imprecise abort of each imprecise abort type is supported. The processor 
supports the following pending imprecise aborts:

• Imprecise external abort
If a subsequent imprecise external abort is signaled while another one is pending, the later 
one is ignored and only one abort is taken.

• One TCM write external error for each TCM port.

• Cache write parity or ECC error.
If a subsequent cache parity or ECC error is signaled while another one is pending, the 
later one is normally ignored and only one abort is taken. However, if the pending error 
was correctable, and the later one is not correctable, the pending error is ignored, and one 
abort is taken for the error that cannot be corrected.

Memory barriers

When a store instruction, or series of instructions has been executed to normal-type or 
device-type memory, it is sometimes necessary to determine whether any errors occurred 
because of these instructions. Because most of these errors are reported imprecisely, they might 
not generate an abort exception until some time after the instructions are executed. To ensure 
that all possible errors have been reported, you must execute a DSB instruction. Abort exceptions 
are only taken because of these errors if they are not masked, that is, the CPSR A-bit is clear. If 
the A-bit is set, the aborts are held pending.

Aborts in Strongly Ordered and Device memory

When a memory access generates an abort, the instruction generating that access is abandoned, 
even if it has not completed all its memory accesses, and the abort exception is taken. The abort 
handler can then do one of the following:

• fix the error and return to the instruction that was abandoned, to re-execute it
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-23
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
• perform the appropriate data transfers on behalf of the aborted instruction and return to 
the instruction after the abandoned instruction

• treat the error as fatal and terminate the process.

If the abort handler returns to the abandoned instruction, some of the memory accesses 
generated are repeated. The effect is that multiword load/store instructions can access the same 
memory location twice. The first access occurs before the abort is detected, and the second when 
the instruction is restarted.

In Strongly Ordered or Device type memory, repeating memory accesses might have 
unacceptable side-effects. Therefore, if the abort handler can fix the error and re-execute the 
aborted instruction, you must ensure that for all memory errors on multiword load/store 
instructions, either:
• all side effects of repeating accesses are inconsequential
• the error must either occur on the first word accessed or not at all.

The instructions that this rule applies to are:

• All forms of ARM instructions LDM, and LDRD, all forms of STM, STRD including VFP 
variants, and unaligned LDR, STR, LDRH, and STRH

• Thumb instructions LDMIA, LDRD, SDRD, PUSH, POP, and STMIA including VFP variants, and 
unaligned LDR, STR, LDRH, and STRH.

Abort handler

If you configure the processor with parity or ECC on the caches or the TCMs, and the abort 
handler is in one of these memories, then it is possible for a parity or ECC error to occur in the 
abort handler. If the error is not recoverable, then a precise abort occurs and the processor loops 
until the next interrupt. The LR and SPSR values for the original abort are also lost. Therefore, 
you must construct software that ensures that no precise aborts occur when in the abort handler. 
This means the abort handler must be in external memory and not cached.

2.8.5 Supervisor call instruction

You can use the SuperVisor Call (SVC) instruction (formerly SWI) to enter Supervisor mode, 
usually to request a particular supervisor function. The SVC handler reads the opcode to extract 
the SVC function number. A SVC handler returns by executing the following instruction, 
irrespective of the processor operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SVC. 

IRQs are disabled when a software interrupt occurs. 

The processor modifies the IT execution state bits on exception entry so that the values that the 
processor writes into the SPSR are correct for the instruction following the SVC. This means 
that the SVC handler does not have to perform any special action to accommodate the IT 
instruction. For more information on the IT instruction, see the ARM Architecture Reference 
Manual.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-24
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.8.6 Undefined instruction

When an instruction is encountered which is UNDEFINED, or is for the VFP when the VFP is 
not enabled, the processor takes the Undefined instruction exception. Software can use this 
mechanism to extend the ARM instruction set by emulating UNDEFINED coprocessor 
instructions. UNDEFINED exceptions also occur when a UDIV or SDIV instruction is executed, 
the value in Rm is zero, and the DZ bit in the System Control Register is set.

If the handler is required to return after the instruction that caused the Undefined exception, it 
must:

• Advance the IT execution state bits in the SPSR before restoring SPSR to CPSR. This is 
so that the correct condition codes are applied to the next instruction on return. The 
pseudo-code for advancing the IT bits is:
Mask = SPSR[11,10,26,25];
if (Mask != 0) {

Mask = Mask << 1;
SPSR[12,11,10,26,25] = Mask;
}

if (Mask[3:0] == 0) {
SPSR[15:12] = 0;

}

• Obtain the instruction that caused the Undefined exception and return correctly after it. 
Exception handlers must also be aware of the potential for both 16-bit and 32-bit 
instructions in Thumb state.
After testing the SPSR and determining the instruction was executed in Thumb state, the 
Undefined handler must use the following pseudo-code or equivalent to obtain this 
information:
addr = R14_undef - 2
instr = Memory[addr,2]
if (instr >> 11) > 28 { /* 32-bit instruction */
 instr = (instr << 16) | Memory[addr+2,2]
 if (emulating, so return after instruction wanted) }
 R14_undef += 2 //

} //
}

After this, instr holds the instruction (in the range 0x0000-0xE7FF for a 16-bit instruction, 
0xE8000000-0xFFFFFFFF for a 32-bit instruction), and the exception can be returned from 
using a MOVS PC, R14 to return after it.

IRQs are disabled when an Undefined instruction trap occurs. For more information about 
Undefined instructions, see the ARM Architecture Reference Manual.

2.8.7 Breakpoint instruction

A breakpoint (BKPT) instruction operates as though the instruction causes a Prefetch Abort.

A breakpoint instruction does not cause the processor to take the Prefetch Abort exception until 
the instruction is to be executed. If the instruction is not executed, for example because a branch 
occurs while it is in the pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction irrespective of 
the processor operating state:

SUBS PC, R14_abt, #4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-25
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
Note
 If the EmbeddedICE-RT logic is configured into Halt debug-mode, a breakpoint instruction 
causes the processor to enter debug state. See Halting debug-mode debugging on page 11-3.

2.8.8 Exception vectors 

You can configure the location of the exception vector addresses by setting the V bit in CP15 c1 
System Control Register to enable HIVECS, as Table 2-5 shows.

Table 2-6 shows the exception vector addresses and entry conditions for the different exception 
types.

Table 2-5 Configuration of exception vector address locations

Value of V bit Exception vector 
base location

0 0x00000000

1 (HIVECS) 0xFFFF0000

Table 2-6 Exception vectors

Exception Offset from 
vector base Mode on entry A bit on entry F bit on entry I bit on entry

Reset 0x00 Supervisor Set Set Set

Undefined instruction 0x04 Undefined Unchanged Unchanged Set

Software interrupt 0x08 Supervisor Unchanged Unchanged Set

Abort (prefetch) 0x0C Abort Set Unchanged Set

Abort (data) 0x10 Abort Set Unchanged Set

IRQ 0x18 IRQ Set Unchanged Set

FIQ 0x1C FIQ Set Set Set
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-26
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.9 Acceleration of execution environments

Because the ARMv7-R architecture requires Jazelle® software compatibility, three Jazelle 
registers are implemented in the processor.

Table 2-7 shows the Jazelle register instruction summary and the response to the instructions.

Note
 Because no hardware acceleration is present in the processor, when the BXJ instruction is used, 
the BX instruction is invoked.

Table 2-7 Jazelle register instruction summary

Register Instruction Response

Jazelle ID MRC p14, 7, <Rd>, c0, c0, 0

MCR p14, 7, <Rd>, c0, c0, 0

Read as zero
Ignore writes

Jazelle main configuration MRC p14, 7, <Rd>, c2, c0, 0

MCR p14, 7, <Rd>, c2, c0, 0

Read as zero
Ignore writes

Jazelle OS control MRC p14, 7, <Rd>, c1, c0, 0

MCR p14, 7, <Rd>, c1, c0, 0

Read as zero
Ignore writes
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-27
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.10 Unaligned and mixed-endian data access support
The processor supports unaligned memory accesses. Unaligned memory accesses was 
introduced with ARMv6. Bit [22] of c1, Control Register is always 1.

The processor supports byte-invariant big-endianness BE-8 and little-endianness LE. The 
processor does not support word-invariant big-endianness BE-32. Bit [7] of c1, Control Register 
is always 0.

For more information on unaligned and mixed-endian data access support, see the ARM 
Architecture Reference Manual.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-28
ID013010 Non-Confidential, Unrestricted Access



Programmer’s Model 
2.11 Big-endian instruction support
The processor supports little-endian or big-endian instruction format, and is dependent on the 
setting of the CFGIE pin. This is reflected in bit [31] of the System Control Register. For more 
information, see c1, System Control Register on page 4-35.

Note
 The facility to use big-endian or little-endian instruction format is an implementation option, 
and you can therefore remove it in specific implementations. If this facility is not present, the 
CFGIE pin is still reflected in the System Control Register but the instruction format is always 
little-endian.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 2-29
ID013010 Non-Confidential, Unrestricted Access



Chapter 3 
Processor Initialization, Resets, and Clocking

Before you can run application software on the processor, it must be reset and initialized, including 
loading the appropriate software-configuration. This chapter describes the signals for clocking and 
resetting the processor, and the steps that the software must take to initialize the processor after 
reset. It contains the following sections:
• Initialization on page 3-2
• Resets on page 3-6
• Reset modes on page 3-7
• Clocking on page 3-9.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-1
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
3.1 Initialization
Most of the architectural registers in the processor, such as r0-r14, and s0-s31 and d0-d15 when 
floating-point is included, are not reset. Because of this, you must initialize these for all modes 
before they are used, using an immediate-MOV instruction, or a PC-relative load instruction. 
The Current Program Status Register (CPSR) is given a known value on reset. This is described 
in the ARM Architecture Reference Manual. The reset values for the CP15 registers are 
described along with the registers in Chapter 4 System Control Coprocessor.

In addition, before you run the application, you might want to:
• program particular values into various registers, for example, stack pointers
• enable various processor features, for example, error correction
• program particular values into memory, for example, the TCMs.

Other initialization requirements are described in:
• MPU
• CRS
• FPU
• Caches on page 3-3
• TCM on page 3-3.

3.1.1 MPU

If the processor has been built with an MPU, before you can use it you must:
• program and enable at least one of the regions
• enable the MPU in the System Control Register.

See c6, MPU memory region programming registers on page 4-49. Do not enable the MPU 
unless at least one MPU region is programmed and active. If the MPU is enabled, before using 
the TCM interfaces you must program MPU regions to cover the TCM regions to give access 
permissions to them.

3.1.2 CRS

In processor revisions r1p2 and earlier the Call-Return-Stack (CRS) in the PFU is not reset. This 
means it contains UNPREDICTABLE data after reset. ARM recommends that you initialize the 
CRS before it is used. For more information on the PFU, see Chapter 5 Prefetch Unit,

To do this, before any return instructions are executed, such as BX, LDR pc, or LDM pc, execute 
four branch-and-link instructions, as follows:

; Initialise call-return-stack (CRS) with four call instructions.
BL call1

call1 BL call2
call2 BL call3
call3 BL next
next

3.1.3 FPU

If the processor has been built with a Floating Point Unit (FPU) you must enable it before VFP 
instructions can be executed:

• enable access to the FPU in the coprocessor access control register, see c1, Coprocessor 
Access Register on page 4-44
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-2
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
• enable the FPU by setting the EN-bit in the FPEXC register, see Floating-Point Exception 
Register, FPEXC on page 12-7.

Note
 Floating-point logic is only available with the Cortex-R4F processor.

3.1.4 Caches

If the processor has been built with instruction or data caches, these must be invalidated before 
they are enabled, otherwise UNPREDICTABLE behavior can occur. See Cache operations on 
page 4-54.

If you are using an error checking scheme in the cache, you must enable this by programming 
the auxiliary control register as described in Auxiliary Control Registers on page 4-38 before 
invalidating the cache, to ensure that the correct error code or parity bits are calculated when the 
cache is invalidated. An invalidate all operation never reports any ECC or parity errors.

3.1.5 TCM

The processor does not initialize the TCM RAMs. It is not essential to initialize all the memory 
attached to the TCM interface but ARM recommends that you do. In addition, you might want 
to preload instructions or data into the TCM for the main application to use. This section 
describes various ways that you can perform data preloading. You can also configure the 
processor to use the TCMs from reset.

Preloading TCMs

You can write data to the TCMs using either store instructions or the AXI slave interface. 
Depending on the method you choose, you might require:
• particular hardware on the SoC that you are using
• boot code
• a debugger connected to the processor.

Methods to preload TCMs include:

Memory copy with running boot code 
The boot code includes a memory copy routine that reads data from a ROM, and 
writes it into the appropriate TCM. You must enable the TCM to do this, and it 
might be necessary to give the TCM one base address while the copy is occurring, 
and a different base address when the application is being run.

Copy data from the debug communications channel 
The boot code includes a routine to read data from the Debug Communications 
Channel (DCC) and write it into the TCM. The debug host feeds the data for this 
operation into the DCC by writing to the appropriate registers on the processor 
APB debug port.

Execute code in debug halt state 
The processor is put into debug halt state by the debug host, which then feeds 
instructions into the processor through the Instruction Transfer Register (ITR). 
The processor executes these instructions, which replace the boot code in either 
of the two methods described above.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-3
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
DMA into TCM 
The SoC includes a Direct Memory Access (DMA) device that reads data from a 
ROM, and writes it to the TCMs through the AXI slave interface.

Write to TCM directly from debugger 
A Debug Access Port (DAP) in the system is used to generate AMBA 
transactions to write data into the TCMs through the AXI slave interface. This 
DAP is controlled from the debug host through a JTAG chain.

Preloading TCMs with parity or ECC

The error code or parity bits in the TCM RAM, if configured with an error scheme, are not 
initialized by the processor. Before a RAM location is read with ECC or parity checking 
enabled, the error code or parity bits must be initialized. To calculate the error code or parity bits 
correctly, the logic must have all the data in the data chunk that those bits protect. Therefore, 
when the TCM is being initialized, the writes must be of the same width and aligned to the data 
chunk that the error scheme protects.

You can initialize the TCM RAM with error checking turned on or off, according to the rules 
below see. See Auxiliary Control Registers on page 4-38. The error code or parity bits written 
to the TCM are valid even if the error checking is turned off.

If the slave port is used, write transactions must be used that write to the TCM memory as 
follows:

• If the error scheme is parity, any write transaction can be used.

• If the error scheme is 32-bit ECC, the write transactions must start at a 32-bit aligned 
addresses and write a continuous block of memory, containing a multiple of 4 bytes. All 
bytes in the block must be written, that is, have their byte lane strobe asserted.

• If the error scheme is 64-bit ECC, the write transactions must start at a 64-bit aligned 
addresses and write a continuous block of memory, containing a multiple of 8 bytes. All 
bytes in the block must be written, that is, have their byte lane strobe asserted.

If initialization is done by running code on the processor, this is best done by a loop of stores 
that write to the whole of the TCM memory as follows:

• If the error scheme is parity, or no error scheme, any store instruction can be used.

• If the scheme is 32-bit ECC, use Store Word (STR), Store Two Words (STRD), or Store 
Multiple Words (STM) instructions to 32-bit aligned addresses.

• If the scheme is 64-bit ECC, use STRD or STM, that has an even number of registers in 
the register list, with a 64-bit aligned starting address.

Note
 You can use the alignment-checking features of the processor to help you ensure that memory 
accesses are 32-bit aligned, but there is no checking for 64-bit alignment. If you are using STRD 
or STM, an alignment fault is generated if the address is not 32-bit aligned. For the same 
behavior with STR instructions, enable strict-alignment-checking by setting the A-bit in the 
System Control Register. See c1, System Control Register on page 4-35.

If the error scheme is 64-bit ECC, a simpler way to initialize the TCM is:

• Turn off error checking.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-4
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
• Turn on 64-bit store behavior using CP15. See c15, Secondary Auxiliary Control Register 
on page 4-41.

• Write to the TCM using any store instructions, or any AXI write transactions. The 
processor performs read-modify-write accesses to ensure that all writes are to 64-bit 
aligned quantities, even though error checking is turned off.

Note
 You can enable error checking and 64-bit store behavior on a per-TCM interface basis. 
References above to these controls relate to whichever TCM is being initialized.

Using TCMs from reset

The processor can be pin-configured to enable the TCM interfaces from reset, and to select the 
address at which each TCM appears from reset. See TCM initialization on page 8-16 for more 
details. This enables you to configure the processor to boot from TCM but, to do this, the TCM 
must first be preloaded with the boot code. The nCPUHALT pin can be asserted while the 
processor is in reset to stop the processor from fetching and executing instructions after coming 
out of reset. While the processor is halted in this way, the TCMs can be preloaded with the 
appropriate data. When the nCPUHALT pin is deasserted, the processor starts fetching 
instructions from the reset vector address in the normal way.

Note
 When it has been deasserted to start the processor fetching, nCPUHALT must not be asserted 
again except when the processor is under processor or power-on reset, that is, nRESET 
asserted. The processor does not halt if the nCPUHALT pin is asserted while the processor is 
running.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-5
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
3.2 Resets
The processor has the following reset inputs:

nRESET  This signal is the main processor reset that initializes the majority of the 
processor logic.

PRESETDBGn This signal resets processor debug logic and CoreSight ETM-R4.

nSYSPORESET This signal is the reset that initializes the entire processor, including CP14 
debug logic and the APB debug logic. See CP14 registers reset on page 
11-23 for information.

nCPUHALT This signal stops the processor from fetching instructions after reset.

All of these are active-LOW signals that reset logic in the processor. You must take care when 
designing the logic to drive these reset signals.

The processor synchronizes the resets to the relevant clock domains internally.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-6
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
3.3 Reset modes
The reset signals in the processor enable you to reset different parts of the design independently. 
Table 3-1 shows the reset signals, and the combinations and possible applications that you can 
use them in.

Note
 If nRESET is set to 1 and nSYSPORESET is set to 0 the behavior is architecturally 
Unpredictable.

This section of the manual describes:
• Power-on reset
• Processor reset on page 3-8
• Normal operation on page 3-8
• Halt operation on page 3-8.

3.3.1 Power-on reset

You must apply power-on or cold reset to the processor when power is first applied to the 
system. In the case of power-on reset, the leading, or falling, edge of the reset signals, nRESET 
and nSYSPORESET, does not have to be synchronous to CLKIN. Because the nRESET and 
nSYSPORESET signals are synchronized within the processor, you do not have to synchronize 
these signals. Figure 3-1 shows the application of power-on reset.

Figure 3-1 Power-on reset

ARM recommends that you assert the reset signals for at least four CLKIN cycles to ensure 
correct reset behavior.

It is not necessary to assert PRESETDBGn on power-up.

Table 3-1 Reset modes

Reset mode nRESET PRESETDBGn nSYSPORESET nCPUHALT Application

Power-on reset 0 x 0 x Reset at power up, full system 
reset. Hard reset or cold reset.

Processor reset 0 x 1 x Reset of processor only, 
watchdog reset. Soft reset or 
warm reset.

Normal 1 x 1 1 Normal run mode.

Halt 1 x 1 0 Halt mode, provided normal 
mode has not been entered 
since reset.

Debug reset x 0 x x Resets all debug logic and 
debug APB interface.

CLKIN

nRESET

nSYSPORESET
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-7
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
3.3.2 Processor reset

A processor or warm reset initializes the majority of the processor, excluding the 
EmbeddedICE-RT logic. Processor reset is typically used for resetting a system that has been 
operating for some time, for example, watchdog reset.

Because the nRESET signal is synchronized within the processor, you do not have to 
synchronize this signal.

3.3.3 Normal operation

During normal operation, neither processor reset nor power-on reset is asserted. If the 
Embedded ICE-RT is not used, the value of PRESETDBGn does not matter.

3.3.4 Halt operation

When nCPUHALT is asserted, and nSYSPORESET and nRESET deasserted, the processor 
is out of reset, but the PFU is inhibited from fetching instructions. For example, you can use 
nCPUHALT to enable DMA into the TCMs using the processor. You can then deassert 
nCPUHALT and the PFU starts fetching instructions from TCMs. When the processor has 
started fetching, nCPUHALT must not be asserted again except when the processor is reset.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-8
ID013010 Non-Confidential, Unrestricted Access



Processor Initialization, Resets, and Clocking 
3.4 Clocking
The processor has two functional clock inputs. Externally to the processor, you must connect 
together CLKIN and FREECLKIN.

In addition, there is the PCLKDBG clock for the debug APB bus. This is asynchronous to the 
main clock.

All clocks can be stopped indefinitely without loss of state.

Three additional clock inputs, CLKIN2, DUALCLKIN, and DUALCLKIN2, are related to 
the dual-redundant core functionality, if included. If you are integrating a Cortex-R4 macrocell 
with dual-redundant core, contact the implementer of that macrocell for information about how 
to connect the clock inputs.

The following is described in this section:
• AXI interface clocking
• Clock gating.

3.4.1 AXI interface clocking

The AXI master and AXI slave interfaces must be connected to AXI systems that are 
synchronous to the processor clock, CLKIN, even if this might be at a lower frequency. This 
means that every rising edge on the AXI system clock must be synchronous to a rising edge on 
CLKIN.

The AXI master interface clock enable signal ACLKENM and the AXI slave interface clock 
enable signal ACLKENS must be asserted on every CLKIN rising edge for which there is a 
simultaneous rising edge on the AXI system clock.

Figure 3-2 shows an example in which the processor is clocked at 400MHz (CLKIN), while the 
AXI system connected to the AXI master interface is clocked at 200MHz (ACLKM). The 
ACLKENM clock indicates the relationship between the two clocks.

Figure 3-2 AXI interface clocking

If the AXI system connected to an interface is clocked at the same frequency as the processor, 
then the corresponding clock enable signal must be tied HIGH.

3.4.2 Clock gating

You can use the STANDBYWFI output to gate the clock to the TCMs when the processor is in 
Standby mode. If you do, you must design the logic so that the TCM clock starts running within 
four cycles of STANDBYWFI going LOW.

ACLKM

ACLKENM

CLKIN
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 3-9
ID013010 Non-Confidential, Unrestricted Access



Chapter 4 
System Control Coprocessor

This chapter describes the purpose of the system control coprocessor, its structure, operation, and 
how to use it. It contains the following sections:
• About the system control coprocessor on page 4-2
• System control coprocessor registers on page 4-9.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-1
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.1 About the system control coprocessor
This section gives an overview of the system control coprocessor. For more information of the 
registers in the system control coprocessor, see System control coprocessor registers on 
page 4-9.

The purpose of the system control coprocessor, CP15, is to control and provide status 
information for the functions implemented in the processor. The main functions of the system 
control coprocessor are:
• overall system control and configuration
• cache configuration and management
• Memory Protection Unit (MPU) configuration and management
• system performance monitoring.

The system control coprocessor does not exist in a distinct physical block of logic.

4.1.1 System control coprocessor functional groups

The system control coprocessor appears as a set of registers that you can write to and read from. 
Some of the registers permit more than one type of operation. The functional groups for the 
registers are:
• System control and configuration on page 4-4
• MPU control and configuration on page 4-5
• Cache control and configuration on page 4-5
• TCM control and configuration on page 4-6
• System performance monitor on page 4-6
• System validation on page 4-7.

Table 4-1 on page 4-3 shows the overall functionality for the system control coprocessor, 
provided through the registers. The registers are listed in their functional groups.

Table 4-2 on page 4-9 lists the registers in the system control processor, in register order, and 
gives the reset value for each register.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-2
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-1 System control coprocessor register functions

Function Register/operation Reference to description

System control and 
configuration 

Control c1, System Control Register on page 4-35

Auxiliary control Auxiliary Control Registers on page 4-38

Coprocessor Access Control c1, Coprocessor Access Register on page 4-44

Main IDa c0, Main ID Register on page 4-14

Product Feature IDs The Processor Feature Registers on page 4-18
c0, Debug Feature Register 0 on page 4-20
c0, Auxiliary Feature Register 0 on page 4-21
Memory Model Feature Registers on page 4-21
Instruction Set Attributes Registers on page 4-26

Multiprocessor ID c0, Multiprocessor ID Register on page 4-18

Slave Port Control c11, Slave Port Control Register on page 4-59

Context ID c13, Context ID Register on page 4-60

FCSE PID c13, FCSE PID Register on page 4-60

Software compatibility Thread And Process ID c13, Thread and Process ID Registers on page 4-61

MPU control and 
configuration

Data Fault Status c5, Data Fault Status Register on page 4-45

Auxiliary Fault Status c5, Auxiliary Fault Status Registers on page 4-47

Instruction Fault Status c5, Instruction Fault Status Register on page 4-46

Instruction Fault Address c6, Instruction Fault Address Register on page 4-49

Data Fault Address c6, Data Fault Address Register on page 4-48

MPU Type c0, MPU Type Register on page 4-17

Region Base Address c6, MPU Region Base Address Registers on page 4-50

Region Size and Enable c6, MPU Region Size and Enable Registers on page 4-50

Region Access Control c6, MPU Region Access Control Registers on page 4-51

Memory Region Number c6, MPU Memory Region Number Register on page 4-53

Cache control and 
configuration

Cache Type c0, Cache Type Register on page 4-15

Current Cache Size 
Identification

c0, Current Cache Size Identification Register on page 4-32

Current Cache Level c0, Current Cache Level ID Register on page 4-34

Cache Size Selection c0, Cache Size Selection Register on page 4-35

c7, Cache Operations Cache operations on page 4-54

c15, Invalidate all data cache
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-3
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.1.2 System control and configuration

The system control and configuration registers provide overall management of:
• memory functionality
• interrupt behavior
• exception handling
• program flow prediction
• coprocessor access rights for CP0-CP13, including the VFP, CP10-11.

The system control and configuration registers also provide the processor ID and information 
on configured options.

The system control and configuration registers consist of 18 read-only registers and seven 
read/write registers. Figure 4-1 shows the arrangement of registers in this functional group.

Figure 4-1 System control and configuration registers

Some of the functionality depends on how you set external signals at reset.

System control and configuration behaves in three ways:
• as a set of flags or enables for specific functionality
• as a set of numbers, with values that indicate system functionality
• as a set of addresses for processes in memory.

TCM control and 
configuration

TCM Status c0, TCM Type Register on page 4-16

Region c9, BTCM Region Register on page 4-57
c9, TCM Selection Register on page 4-59

System performance 
monitoring

Performance monitoring Chapter 6 Events and Performance Monitor

Validation System validation Validation Registers on page 4-62

a. Known as the ID Code Register on previous designs. Returns the device ID code.

Table 4-1 System control coprocessor register functions (continued)

Function Register/operation Reference to description

CRn

c1

Coprocessor Access Register
Auxiliary Control Register
System Control Register

1
0c00

c13 0c0
Context ID Register

0

Opcode_2CRmOpcode_1
c0 Main ID Register0c00

Debug Feature Register 0
Auxiliary Feature Register 0

{0, 1} Processor Feature Registers 0, 1
Multiprocessor ID Register

Memory Model Feature Registers 0 - 3
Instruction Set Attributes Registers 0 - 5

c1
5

2
3

{4–7}
{0-5}c2

2
Slave Port Control Register0c11 0 c0

Write-only Accessible in User modeRead-only Read/write

FCSE  PID Register
1

c15 00 c0
c2 0

1

Secondary Auxiliary Control Register
Build Options Register 1
Build Options Register 2
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-4
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.1.3 MPU control and configuration

The MPU control and configuration registers:

• control program access to memory

• designate areas of memory as either:
— Normal, Non-cacheable
— Normal, Cacheable
— Device
— Strongly Ordered.

• detect MPU faults and external aborts.

The MPU control and configuration registers consist of one read-only register and eleven 
read/write registers. Figure 4-2 shows the arrangement of registers in this functional group.

Figure 4-2 MPU control and configuration registers

MPU control and configuration can behave:

• as a set of numbers, with values that describe aspects of the MPU or indicate its current 
state

• as a set of operations that act on the MPU.

4.1.4 Cache control and configuration

The cache control and configuration registers:

• provide information on the size and architecture of the instruction and data caches

• control cache maintenance operations that include clean and invalidate caches, drain and 
flush buffers, and address translation

• override cache behavior during debug or interruptible cache operations.

The cache control and configuration registers consist of three read-only registers, one read/write 
register, and a number of write-only registers. Figure 4-3 on page 4-6 shows the arrangement of 
the registers in this functional group.

4 MPU Type Registerc00

Opcode_2CRmCRn Opcode_1

1

Data Fault Address Register

Data Fault Status Register0

0

c5

Region Size and Enable Register
Region Base Register

Region Access Control Register
Memory Region Number Register

Instruction Fault Address Register

Instruction Fault Status Register

1
Auxilary Data Fault Status Register
Auxilary Instruction Fault Status Register

0

c0
0 c0

c1

c6 0 c0

0c1
2
4
0c2

2

Write-only Accessible in User modeRead-only Read/write

0 Correctable Fault Location Registerc15 c30
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-5
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-3 Cache control and configuration registers

Cache control and configuration registers behave as:
• a set of numbers, with values that describe aspects of the caches
• a set of bits that enable specific cache functionality
• a set of operations that act on the caches.

4.1.5 TCM control and configuration

The TCM control and configuration registers:
• inform the processor about the status of the TCM regions
• define TCM regions.

The TCM control and configuration registers consist of two read-only registers and two 
read/write registers. Figure 4-4 shows the arrangement of registers.

Figure 4-4 TCM control and configuration registers

TCM control and configuration behaves in three ways:
• as a set of numbers, with values that describe aspects of the TCMs
• as a set of bits that enable specific TCM functionality
• as a set of addresses that define the memory locations of data stored in the TCMs.

4.1.6 System performance monitor

The performance monitor registers:
• control the monitoring operation
• count events.

The system performance monitor consists of 12 read/write registers. Figure 4-5 on page 4-7 
shows the arrangement of registers in this functional group.

Opcode_2CRmOpcode_1

1c0 0 c0 Cache Type Register

CRn

c7 † Cache Operations Registers ‡

‡ See description of cache operations 
for operations with User mode access

Invalidate all Data Cache Registerc15 0
0
0 c5

Write-only Accessible in User modeRead-only Read/write

Current Cache Size Identification Register
Current Cache Level Identification Register
Cache Size Selection Register

0c01
1
02 c0

†

† See description of cache operations for 
implemented CRm and Opcode_2 values

ATCM Region Register1
c9 0
c0 20

0
c0

BTCM Region Register
TCM Type Register

CRn CRmOpcode_1 Opcode_2

TCM Selection Register0

Write-only Accessible in User modeRead-only Read/write

c1

c2
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-6
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-5 System performance monitor registers

System performance monitoring counts system events, such as cache misses, pipeline stalls, and 
other related features to enable system developers to profile the performance of their systems. 
It can generate interrupts when the number of events reaches a given value. 

For more information on the programmer’s model of the performance counters see the ARM 
Architecture Reference Manual.

See Chapter 6 Events and Performance Monitor for more information on the registers.

4.1.7 System validation

The system validation registers extend the use of the system performance monitor registers to 
provide some functions for validation. You must not use them for other purposes. The system 
validation registers schedule and clear:
• resets
• interrupts
• fast interrupts
• external debug requests.

The system validation registers consist of nine read/write registers and one write-only register. 
Figure 4-6 shows the arrangement of registers.

Figure 4-6 System validation registers

Opcode_2CRmCRn Opcode_1

c9 00 c12

Overflow Flag Status Register †

Count Enable Set Register †
Count Enable Clear Register †

Performance Monitor Control Register †

Event Select Register †

Performance Counter Selection Register †
Cycle Count Register †

Software Increment Register †

Interrupt Enable Clear Register

User Enable Register
Interrupt Enable Set Register

Performance Count Register †

1
2
3
4
5
0c13
1
2

0

0
1
2

c140

Write-only Accessible in User modeRead-only Read/write
† If enabled in User 

Enable Register

0c15
Opcode_2Opcode_1 CRmCRn

0

1
nVAL IRQ Enable Set Register †
nVAL FIQ Enable Set Register †  
nVAL Reset Enable Set Register †  
nVAL Debug Request Enable Set Register †
nVAL IRQ Enable Clear Register †
nVAL FIQ Enable Clear Register †

nVAL Debug Request Enable Clear Register †
Cache size override register

nVAL Reset Enable Clear Register †  

Write-only Accessible in User modeRead-only Read/write
† If enabled in User 

Enable Register

c1

2
3
4
5
6
7

c14

0

0

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-7
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
You can only change the cache size to a size supported by the cache RAMs implemented in your 
design.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-8
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2 System control coprocessor registers
This section describes all of the registers in the system control coprocessor. The section presents 
a summary of the registers and descriptions in register order of CRn, Opcode_1, CRm, 
Opcode_2. 

For more information on using the system control coprocessor and the general method of how 
to access CP15 registers, see the ARM Architecture Reference Manual.

4.2.1 Register allocation

Table 4-2 shows a summary of address allocation and reset values for the registers in the system 
control coprocessor where:
• CRn is the register number within CP15
• Op1 is the Opcode_1 value for the register
• CRm is the operational register
• Op2 is the Opcode_2 value for the register.

Table 4-2 Summary of CP15 registers and operations

CRn Op1 CRm Op2 Register or operation Type Reset value Page

c0 0 c0 {0, 3, 6-7} Main ID Read-only 0x41xFC14xa page 4-14

1 Cache Type Read-only 0x8003C003 page 4-15

2 TCM Type Read-only 0x00010001 page 4-16

4 MPU Type Read-only 0x00000000b page 4-17

5 Multiprocessor ID Read-only 0x00000000 page 4-18

c1 0 Processor Feature 0 Read-only 0x00000131 page 4-18

1 Processor Feature 1 Read-only 0x00000001 page 4-19

2 Debug Feature 0 Read-only 0x00010400 page 4-20

3 Auxiliary Feature 0 Read-only 0x00000000 page 4-21

4 Memory Model Feature 0 Read-only 0x00210030 page 4-21

5 Memory Model Feature 1 Read-only 0x00000000 page 4-22

6 Memory Model Feature 2 Read-only 0x01200000 page 4-24

7 Memory Model Feature 3 Read-only 0x00000011 page 4-25

c2 0 Instruction Set Attributes 0 Read-only 0x01101111 page 4-26

c0 0 c2 1 Instruction Set Attributes 1 Read-only 0x13112111 page 4-27

2 Instruction Set Attributes 2 Read-only 0x21232131 page 4-28

3 Instruction Set Attributes 3 Read-only 0x01112131 page 4-30

4 Instruction Set Attributes 4 Read-only 0x00010142 page 4-31

5 Instruction Set Attributes 5 Read-only 0x00000000 page 4-32

6-7 Reserved, Read As Zero 
(RAZ)

Read-only 0x00000000 page 4-32

c3-c7 0-7 Reserved, RAZ Read-only 0x00000000 -
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-9
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
c8-c15 0-7 Undefined - - -

1 c0 0 Current Cache Size ID Read-only -cd page 4-32

1 Current Cache Level ID Read-only 0x09000003c page 4-34

2-7 Undefined - - -

c1-c15 0-7

2 c0 0 Cache Size Selection Read/write Unpredictable page 4-35

c1 0 c0 0 System Control Read/write -d page 4-35

1 Auxiliary Control Read/write -d page 4-38

2 Coprocessor Access Read/write 0x00000000 page 4-44

3-7 Undefined - - -

c1-c15 0-7

c2-c4 0 c0-c15 0-7

c5 0 c0 0 Data Fault Status Read/write Unpredictable page 4-45

1 Instruction Fault Status Read/write Unpredictable page 4-46

2-7 Undefined - - -

c1 0 Auxiliary Data Fault Status Read/write Unpredictable page 4-47

c5 0 c1 1 Auxiliary Instruction Fault 
Status

Read/write Unpredictable page 4-47

2-7 Undefined - - -

c2-c15 0-7

c6 0 c0 0 Data Fault Address Read/write Unpredictable page 4-48

1 Undefined - - -

2 Instruction Fault Address Read/write Unpredictable page 4-49

3-7 Undefined - - -

c1 0 MPU Region Base Address Read/write 0x00000000 page 4-50

1 Undefined - - -

2 MPU Region Size and 
Enable

Read/write 0x00000000 page 4-50

3 Undefined - - -

4 MPU Region Access 
Control

Read/write 0x00000000 page 4-51

5-7 Undefined - - -

c2 0 MPU Memory Region 
Number

Read/write 0x00000000 page 4-53

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-10
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
1-7 Undefined - - -

c3-c15 1-7

c7 0 c0 0-3 Undefined - - -

4 NOP, previously Wait For 
Interrupt

Write-only - page 4-54

5-7 Undefined - - -

c1-c4 0-7

c5 0 Invalidate entire instruction 
cache

Write-only - page 4-55

c7 0 c5 1 Invalidate instruction cache 
line by address to 
Point-of-Unification.

Write-only - page 4-55

2-3 Undefined - - -

4 Flush prefetch buffer Write-only - page 4-55

5 Undefined - - -

6 Invalidate entire branch 
predictor array

Write-only - page 4-55

7 Invalidate address from 
branch predictor array

Write-only - page 4-55

c6 0 Undefined - - -

1 Invalidate data cache line 
by physical address

Write-only - page 4-55

2 Invalidate data cache line 
by Set/Way

Write-only - page 4-55

3-7 Undefined - - -

c7-9 0-7

c10 0

1 Clean data cache line by 
physical address

Write-only - page 4-55

2 Clean data cache line by 
Set/Way

Write-only - page 4-55

3 Undefined - - -

4 Data Synchronization 
Barrier

Write-only - page 4-57

5 Data Memory Barrier Write-only - page 4-57

6-7 Undefined - - -

c11 0

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-11
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
c7 0 c11 1 Clean data cache line by 
physical address to 
Point-of-Unification

Write-only - page 4-55

2-7 Undefined - - -

c12-c13 0-7

c14 0

1 Clean and invalidate data 
cache line by physical 
address to 
Point-of-Unification

Write-only - page 4-55

c14 2 Clean and invalidate data 
cache line by Set/Way

Write-only - page 4-55

3-7 Undefined - - -

c15 0-7

c8 0 c0-c15 0-7 Undefined - - -

c9 0 c0 0-7 Undefined - - -

c1 0 BTCM Region Read/write -d page 4-57

1 ATCM Region Read/write -d page 4-57

2-7 Undefined - - -

c2 0 TCM selection Read/write 0x00000000 page 4-59

1-7 Undefined - - -

c3-c11 0-7

c12 0 Performance Monitor 
Control

Read/write 0x41141800 page 6-7

1 Count Enable Set Read/write Unpredictable page 6-8

2 Count Enable Clear Read/write Unpredictable page 6-9

3 Overflow Flag Status Read/write Unpredictable page 6-10

4 Software Increment Write-only - page 6-11

c9 0 c12 5 Performance Counter 
Selection 

Read/write Unpredictable page 6-12

6-7 Undefined - - -

c13 0 Cycle Count Read/write 0x00000000 page 6-13

1 Event Select Read/write Unpredictable page 6-13

2 Performance Monitor 
Count

Read/write 0x00000000 page 6-15

3-7 Undefined - - -

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-12
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
c14 0 User Enable Read/write 0x00000000 page 6-15

1 Interrupt Enable Set Read/write Unpredictable page 6-16

c14 2 Interrupt Enable Clear Read/write Unpredictable page 6-17

3-7 Undefined - - -

c15 0-7

c10 0 c0-c15 0-7 Undefined - - -

c11 0 c0 0 Slave Port Control Read/write 0x00000000 page 4-59

c0 1-7 Undefined - - -

c1-c15 0-7

c12 0 c0-c15 0-7

c13 0 c0 0 FCSE PID RAZ, ignore 
writes

0x00000000 page 4-60

1 Context ID Read/write 0x00000000 page 4-60

2 User read/write 
Thread and Process ID

Read/write 0x00000000 page 4-61

3 User Read-only 
Thread and Process ID

Read/write 0x00000000 page 4-61

4 Privileged Only 
Thread and Process ID

Read/write 0x00000000 page 4-61

5-7 Undefined - - -

c13 0 c1-c15 0-7 Undefined - - -

c14 0 c0-c15 0-7

c15 0 c0 0 Secondary Auxiliary 
Control

Read/write -d page 4-41

1-7 Undefined - - -

c1 0 nVAL IRQ Enable Set Read/write Unpredictable page 4-62

1 nVAL FIQ Enable Set Read/write Unpredictable page 4-63

2 nVAL Reset Enable Set Read/write Unpredictable page 4-64

3 nVAL Debug Request 
Enable Set

Read/write Unpredictable page 4-64

4 nVAL IRQ Enable Clear Read/write Unpredictable page 4-65

c1 5 nVAL FIQ Enable Clear Read/write Unpredictable page 4-66

6 nVAL Reset Enable Clear Read/write Unpredictable page 4-67

7 nVAL Debug Request 
Enable Clear

Read/write Unpredictable page 4-68

c2 0 Build Options 1 Read-only -d page 4-72

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-13
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2.2 c0, Main ID Register

The Main ID Register returns the device ID code that contains information about the processor.

The Main ID Register is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-7 shows the arrangement of bits in the register.

Figure 4-7 Main ID Register format

1 Build Options 2 Read-only -d page 4-72

2-7 Undefined - - -

c3 0 Correctable Fault Location Read/write Unpredictable page 4-70

1-7 Undefined - - -

c4 0-7

c5 0 Invalidate all data cache Write-only - page 4-55

1-7 Undefined - - -

c6-c13 0-7

c15 0 c14 0 Cache Size Override Write-only - page 4-69

1-7 Undefined - - -

c15 0-7

a. The value of bits [23:20,3:0] of the Main ID Register depend on product revision. See the register description for more 
information.

b. Reset value depends on number of MPU regions.
c. Reset value depends on the cache size implemented.
d. See register description for more information.

Table 4-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation Type Reset value Page

VariantImplementor

31 23 20 19 16 15 4 3 0

Architecture Primary part number Revision

24
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-14
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The contents of the Main ID Register depend on the specific implementation. Table 4-3 shows 
how the bit values correspond with the Main ID Register functions.

Note
 If an MRC instruction is executed with CRn = c0, Opcode_1 = 0, CRm = c0, and an Opcode_2 
value corresponding to an unimplemented or reserved ID register, the system control 
coprocessor returns the value of the main ID register.

To access the Main ID Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 0 ; Read Main ID Register

For more information on the processor features, see The Processor Feature Registers on 
page 4-18.

4.2.3 c0, Cache Type Register

The Cache Type Register determines the instruction and data minimum line length in bytes to 
enable a range of addresses to be invalidated.

The Cache Type Register is:
• a read-only register 
• accessible in Privileged mode only.

The contents of the Cache Type Register depend on the specific implementation. Figure 4-8 
shows the arrangement of bits in the register.

Figure 4-8 Cache Type Register format

Table 4-3 Main ID Register bit functions

Bits Field Function

[31:24] Implementer Indicates implementer.
0x41 - ARM Limited.

[23:20] Variant Identifies the major revision of the processor. This is the major revision number n in 
the rn part of the rnpn description of the product revision status. See Product revision 
information on page 1-24 for details of the value of this field.

[19:16] Architecture Indicates the architecture version.
0xF - see feature registers.

[15:4] Primary part number Indicates processor part number.
0xC14 - Cortex-R4.

[3:0] Revision Identifies the minor revision of the processor. This is the minor revision number n in 
the pn part of the rnpn description of the product revision status. See Product revision 
information on page 1-24 for details of the value of this field.

1CWG ERG IMinLineReserved

31 0

DMinLine 1

3413141516192028 27

Reserved

24 23
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-15
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-4 shows how the bit values correspond with the Cache Type Register functions.

To access the Cache Type Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 1 ; Returns cache details

4.2.4 c0, TCM Type Register

The TCM Type Register informs the processor of the number of ATCMs and BTCMs in the 
system.

The TCM Type Register is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-9 shows the arrangement of bits in the register.

Figure 4-9 TCM Type Register format

Table 4-5 shows how the bit values correspond with the TCM Type Register functions.

Table 4-4 Cache Type Register bit functions

Bits Field Function

[31:28] - Always b1000.

[27:24] CWG Cache Write-back Granule
0x0 = no information provided. See maximum cache line size in c0, Current Cache Size 
Identification Register on page 4-32.

[23:20] ERG Exclusives Reservation Granule
0x0 = no information provided.

[19:16] DMinLine Indicates log2 of the number of words in the smallest cache line of the data and unified caches 
controlled by the processor:
0x3 = eight words in an L1 data cache line.

[15:14] - Always 0x3.

[13: 4] - Always 0x000.

[3: 0] IMinLine Indicates log2 of the number of words in the smallest cache line of the instruction caches 
controlled by the processor:
0x3 - eight words in an L1 instruction cache line.

0

31 30 29 28 19 18 16 15 3 2 0

0 0 Reserved BTCM Reserved ATCM

Table 4-5 TCM Type Register bit functions

Bits Field Function

[31:29] - Always 0.

[28:19] Reserved SBZ.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-16
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the TCM Type Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 2 ; Returns TCM type register

Note
 • The ATCM and BTCM fields in the TCM Type Register occupy the same space as the 

ITCM and DTCM fields as defined by the ARM Architecture. These fields, and the 
corresponding TCM interfaces, can be considered equivalent to those defined in the 
Architecture.

• The ARM Architecture requires only the ITCM to be accessible from both instruction and 
data sides. In the Cortex-R4 processor, both ATCM and BTCM are accessible from both 
instruction and data sides.

4.2.5 c0, MPU Type Register

The MPU Type Register holds the value for the number of instruction and data memory regions 
implemented in the processor. 

The MPU Type Register is:
• read-only register
• accessible in Privileged mode only.

Figure 4-10 shows the arrangement of bits in the register.

Figure 4-10 MPU Type Register format

Table 4-6 shows how the bit values correspond with the MPU Type Register functions.

To access the MPU Type Register, read CP15 with:

[18:16] BTCM Specifies the number of BTCMs implemented. This is always set to b001 because the processor 
has one BTCM.

[15:3] Reserved SBZ.

[2:0] ATCM Specifies the number of ATCMs implemented. Always set to b001. The processor has one ATCM.

Table 4-5 TCM Type Register bit functions (continued)

Bits Field Function

SReserved

31 16 8 7 1 0

ReservedDRegion

Table 4-6 MPU Type Register bit functions

Bits Field Function

[31:16] Reserved SBZ.

[15:8] DRegion Specifies the number of unified MPU regions. Set to 0, 8 or 12 data MPU regions.

[7:1] Reserved SBZ.

[0] S Specifies the type of MPU regions, unified or separate, in the processor. 
Always set to 0, the processor has unified memory regions.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-17
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
MRC p15, 0, <Rd>, c0, c0, 4 ; Returns MPU details

4.2.6 c0, Multiprocessor ID Register

The Multiprocessor ID Register enables cores to be recognized and characterized within a 
multiprocessor system.

The Multiprocessor ID Register is:
• read-only register
• accessible in Privileged mode only.

Figure 4-11 shows the arrangement of bits in the register.

Figure 4-11 Multiprocessor ID Register format

Because this is a uniprocessor system, this register is Read-As-Zero.

To access the Multiprocessor ID Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 5 ; Returns Multiprocessor ID details

4.2.7 The Processor Feature Registers

There are two Processor Feature Registers, PFR0 and PFR1. This section describes:
• c0, Processor Feature Register 0, PFR0
• c0, Processor Feature Register 1, PFR1 on page 4-19.

c0, Processor Feature Register 0, PFR0

The Processor Feature Register 0 provides information about the execution state support and 
programmer’s model for the processor.

Processor Feature Register 0 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-12 shows the bit arrangement for Processor Feature Register 0.

Figure 4-12 Processor Feature Register 0 format

Affinity Level 2Reserved

31 16 8 7 0

Affinity Level 0Affinity Level 1

24 23

Reserved State3

31 16 15 8 7 3 0

State2 State1 State0

41112
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-18
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-7 shows how the bit values correspond with the Processor Feature Register 0 functions.

To access the Processor Feature Register 0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 0 ; Read Processor Feature Register 0

c0, Processor Feature Register 1, PFR1

The Processor Feature Register 1 provides information about the execution state support and 
programmer’s model for the processor.

Processor Feature Register 1 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-13 shows the bit arrangement for Processor Feature Register 1.

Figure 4-13 Processor Feature Register 1 format

Table 4-8 shows how the bit values correspond with the Processor Feature Register 1 functions.

Table 4-7 Processor Feature Register 0 bit functions

Bits Field Function

[31:16] Reserved SBZ.

[15:12] State3 Indicates support for Thumb Execution Environment (ThumbEE).
0x0, no support.

[11:8] State2 Indicates support for acceleration of execution environments in hardware or software.
0x1, the processor supports acceleration of execution environments in software.

[7:4] State1 Indicates type of Thumb encoding that the processor supports.
0x3, the processor supports Thumb encoding with all Thumb instructions.

[3:0] State0 Indicates support for ARM instruction set.
0x1, the processor supports ARM instructions.

31 12 11 8 7 4 3 0

Reserved

Microcontroller programmer’s model
Security extension

ARMv4 Programmer’s model

Table 4-8 Processor Feature Register 1 bit functions

Bits Field Function

[31:12] Reserved SBZ.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-19
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Processor Feature Register 1 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 1 ; Read Processor Feature Register 1

4.2.8 c0, Debug Feature Register 0

The Debug Feature Register 0 provides information about the debug system for the processor.

Debug Feature Register 0 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-14 shows the bit arrangement for Debug Feature Register 0.

Figure 4-14 Debug Feature Register 0 format

Table 4-9 shows how the bit values correspond with the Debug Feature Register 0 functions.

[11:8] Microcontroller programmer’s model Indicates support for Microcontroller programmer’s model:
0x0, no support.

[7:4] Security extension Indicates support for Security Extensions Architecture:
0x0, no support.

[3:0] ARMv4 Programmer’s model Indicates support for standard ARMv4 programmer’s model:
0x1, the processor supports the ARMv4 model.

Table 4-8 Processor Feature Register 1 bit functions (continued)

Bits Field Function

Reserved

Microcontroller debug model – memory mapped
Trace debug model – memory mapped

Trace debug model – coprocessor
Core debug model – memory mapped

Core debug model – coprocessor
Secure debug model

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Table 4-9 Debug Feature Register 0 bit functions

Bits Field Function

[31:24] Reserved SBZ.

[23:20] Microcontroller 
Debug model - 
memory mapped

Indicates support for the microcontroller debug model - memory mapped:
0x0, no support.

[19:16] Trace debug model - 
memory mapped

Indicates support for the trace debug model - memory mapped:
0x1, trace supported, memory mapped access.

[15:12] Trace debug model - 
coprocessor

Indicates support for the trace debug model - coprocessor:
0x0, no support.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-20
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Debug Feature Register 0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 2 ; Read Debug Feature Register 0

4.2.9 c0, Auxiliary Feature Register 0

The Auxiliary Feature Register 0 provides additional information about the features of the 
processor.

The Auxiliary Feature Register 0 is:
• a read-only register
• accessible in Privileged mode only.

In this processor, the Auxiliary Feature Register 0 reads as 0x00000000.

To access the Auxiliary Feature Register 0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 3 ; Read Auxiliary Feature Register 0.

4.2.10 Memory Model Feature Registers

There are four Memory Model Feature Registers, MMFR0 to MMFR3. They are described in 
the following subsections:
• c0, Memory Model Feature Register 0, MMFR0
• c0, Memory Model Feature Register 1, MMFR1 on page 4-22
• c0, Memory Model Feature Register 2, MMFR2 on page 4-24
• c0, Memory Model Feature Register 3, MMFR3 on page 4-25.

c0, Memory Model Feature Register 0, MMFR0

The Memory Model Feature Register 0 provides information about the memory model, memory 
management, and cache support operations of the processor.

The Memory Model Feature Register 0 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-15 on page 4-22 shows the bit arrangement for Memory Model Feature Register 0.

[11:8] Core debug model - 
memory mapped

Indicates the type of embedded processor debug model that the processor supports:
0x4, ARMv7 based model - memory mapped.

[7:4] Secure debug model Indicates the type of secure debug model that the processor supports:
0x0, no support.

[3:0] Core debug model - 
coprocessor

Indicates the type of applications processor debug model that the processor supports:
0x0, no support.

Table 4-9 Debug Feature Register 0 bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-21
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-15 Memory Model Feature Register 0 format

Table 4-10 shows how the bit values correspond with the Memory Model Feature Register 0 
functions.

To access the Memory Model Feature Register 0 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 4 ; Read Memory Model Feature Register 0.

c0, Memory Model Feature Register 1, MMFR1

The Memory Model Feature Register 1 provides information about the memory model, memory 
management, and cache support of the processor.

The Memory Model Feature Register 1 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-16 on page 4-23 shows the bit arrangement for Memory Model Feature Register 1.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reserved FCSE TCM PMSA VMSA

Auxiliary Control Register

Cache coherence
Outer shareable

Table 4-10 Memory Model Feature Register 0 bit functions

Bits Field Function

[31:28] Reserved SBZ.

[27:24] FCSE Indicates support for Fast Context Switch Extension (FCSE).
0x0, no support.

[23:20] Auxiliary Control Register Indicates support for the auxiliary registers.
0x2, the processor supports the Auxiliary Instruction and Data Fault Status 
Registers (AIFSR and ADFSR) and the Auxiliary Control Register.

[19:16] TCM Indicates support for TCM and associated DMA.
0x1, implementation defined.

[15:12] Outer shareable Indicates support for the Outer shareable attribute.
0x0, no support.

[11:8] Cache coherence Indicates support for cache coherency maintenance.
0x0, no support for shared caches.

[7:4] PMSA Indicates support for Physical Memory System Architecture (PMSA).
0x3, the processor supports PMSAv7 (subsection support).

[3:0] VMSA Indicates support for Virtual Memory System Architecture (VMSA).
0x0, no support.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-22
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-16 Memory Model Feature Register 1 format

Table 4-11 shows how the bit values correspond with the Memory Model Feature Register 1 
functions.

To access the Memory Model Feature Register 1 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 5 ; Read Memory Model Feature Register 1.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

L1 test clean operations
L1 cache maintenance operations (unified)

L1 cache maintenance operations (Harvard)
L1 cache line maintenance operations - Set and Way (unified)

L1 cache line maintenance operations - Set and Way (Harvard)
L1 cache line maintenance operations - MVA (unified)

L1 cache line maintenance operations - MVA (Harvard)

Branch predictor

Table 4-11 Memory Model Feature Register 1 bit functions

Bits Field Function

[31:28] Branch predictor Indicates Branch Predictor management requirements.
0x0, no MMU present.

[27:24] L1 test clean operations Indicates support for test and clean operations on data cache, Harvard or unified 
architecture.
0x0, no support. 

[23:20] L1 cache maintenance 
operations (unified)

Indicates support for L1 cache, entire cache maintenance operations, unified 
architecture.
0x0, no support.

[19:16] L1 cache maintenance 
operations (Harvard)

Indicates support for L1 cache, entire cache maintenance operations, Harvard 
architecture.
0x0, no support.

[15:12] L1 cache line maintenance 
operations - Set and Way 
(unified)

Indicates support for L1 cache line maintenance operations by Set and Way, 
unified architecture.
0x0, no support.

[11:8] L1 cache line maintenance 
operations - Set and Way 
(Harvard)

Indicates support for L1 cache line maintenance operations by Set and Way, 
Harvard architecture.
0x0, no support.

[7:4] L1 cache line maintenance 
operations - MVA (unified)

Indicates support for L1 cache line maintenance operations by address, unified 
architecture.
0x0, no support.

[3:0] L1 cache line maintenance 
operations - MVA (Harvard)

Indicates support for L1 cache line maintenance operations by address, Harvard 
architecture.
0x0, no support.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-23
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
c0, Memory Model Feature Register 2, MMFR2

The Memory Model Feature Register 2 provides information about the memory model, memory 
management, and cache support operations of the processor.

The Memory Model Feature Register 2 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-17 shows the bit arrangement for Memory Model Feature Register 2.

Figure 4-17 Memory Model Feature Register 2 format

Table 4-12 shows how the bit values correspond with the Memory Model Feature Register 2 
functions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Hardware 
access flag WFI Memory 

barrier

TLB maintenance operations (unified)
TLB maintenance operations (Harward)

L1 cache maintenance range operations (Harward)
L1 background prefetch cache operations
L1 foreground prefetch cache operations

Table 4-12 Memory Model Feature Register 2 bit functions

Bits Field Function

[31:28] Hardware access flag Indicates support for Hardware Access Flag.
0x0, no support.

[27:24] WFI Indicates support for Wait-For-Interrupt stalling.
0x1, the processor supports Wait-For-Interrupt.

[23:20] Memory barrier Indicates support for memory barrier operations.
0x2, the processor supports:
• DSB (formerly DWB)
• ISB (formerly Prefetch Flush)
• DMB.

[19:16] TLB maintenance 
operations (unified)

Indicates support for TLB maintenance operations, unified architecture.
0x0, no support.

[15:12] TLB maintenance 
operations (Harvard)

Indicates support for TLB maintenance operations, Harvard architecture.
0x0, no support.

[11:8] L1 cache 
maintenance range 
operations (Harvard)

Indicates support for cache maintenance range operations, Harvard architecture.
0x0, no support.

[7:4] L1 background 
prefetch cache 
operations

Indicates support for background prefetch cache range operations, Harvard 
architecture.
0x0, no support.

[3:0] L1 foreground 
prefetch cache 
operations

Indicates support for foreground prefetch cache range operations, Harvard 
architecture.
0x0, no support.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-24
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Memory Model Feature Register 2 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 6 ; Read Memory Model Feature Register 2.

c0, Memory Model Feature Register 3, MMFR3

The Memory Model Feature Register 3 provides information about the two cache line 
maintenance operations for the processor.

The Memory Model Feature Register 3 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-18 shows the bit arrangement for Memory Model Feature Register 3.

Figure 4-18 Memory Model Feature Register 3 format

Table 4-13 shows how the bit values correspond with the Memory Model Feature Register 3 
functions.

To access the Memory Model Feature Register 3 read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 7 ; Read Memory Model Feature Register 3.

31 8 7 3 0

Reserved

412 11

Branch predictor maintenance operations
Hierarchical cache maintenance operations by Set and Way  

Hierarchical cache maintenance operations by MVA

Table 4-13 Memory Model Feature Register 3 bit functions

Bits Field Function

[31:12] Reserved SBZ.

[11:8] Branch predictor maintenance 
operations

Indicates support for branch predictor maintenance operations in systems 
with hierarchical cache maintenance operations.
0x0, no support.

[7:4] Hierarchical cache maintenance 
operations by Set and Way

Indicates support for hierarchical cache maintenance operations by Set and 
Way.
0x1, the processor supports invalidate cache, clean and invalidate, and clean 
by Set and Way.

[3:0] Hierarchical cache maintenance 
operations by MVA

Indicates support for hierarchical cache maintenance operations by address.
0x1, the processor supports:
• Invalidate data cache by address
• Clean data cache by address
• Clean and invalidate data cache by address
• Invalidate instruction cache by address
• Invalidate all instruction cache entries.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-25
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2.11 Instruction Set Attributes Registers

There are eight Instruction Set Attributes Registers, ISAR0 to ISAR7, but three of these are 
currently unused. This section describes:
• c0, Instruction Set Attributes Register 0, ISAR0
• c0, Instruction Set Attributes Register 1, ISAR1 on page 4-27
• c0, Instruction Set Attributes Register 2, ISAR2 on page 4-28
• c0, Instruction Set Attributes Register 3, ISAR3 on page 4-30
• c0, Instruction Set Attributes Register 4, ISAR4 on page 4-31
• c0, Instruction Set Attributes Registers 5-7 on page 4-32.

c0, Instruction Set Attributes Register 0, ISAR0

The Instruction Set Attributes Register 0 provides information about the instruction set that the 
processor supports beyond the basic set.

The Instruction Set Attributes Register 0 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-19 shows the bit arrangement for Instruction Set Attributes Register 0.

Figure 4-19 Instruction Set Attributes Register 0 format

Table 4-14 shows how the bit values correspond with the Instruction Set Attributes Register 0 
functions.

Reserved

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Divide instructions
Debug instructions

Coprocessor instructions
Compare and branch instructions

Bitfield instructions
Bit count instructions

Atomic instructions

Table 4-14 Instruction Set Attributes Register 0 bit functions

Bits Field Function

[31:28] Reserved SBZ

[27:24] Divide instructions Indicates support for divide instructions.
0x1, the processor supports SDIV and UDIV instructions.

[23:20] Debug instructions Indicates support for debug instructions.
0x1, the processor supports BKPT.

[19:16] Coprocessor instructions Indicates support for coprocessor instructions other than separately attributed 
feature registers, such as CP15 registers and VFP.
0x0, no support.

[15:12] Compare and branch 
instructions

Indicates support for combined compare and branch instructions.
0x1, the processor supports combined compare and branch instructions, CBNZ and 
CBZ.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-26
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Instruction Set Attributes Register 0, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 0 ; Read Instruction Set Attributes Register 0

c0, Instruction Set Attributes Register 1, ISAR1

The Instruction Set Attributes Register 1 provides information about the instruction set that the 
processor supports beyond the basic set.

The Instruction Set Attributes Register 1 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-20 shows the bit arrangement for Instruction Set Attributes Register 1.

Figure 4-20 Instruction Set Attributes Register 1 format

[11:8] Bitfield instructions Indicates support for bitfield instructions.
0x1, the processor supports bitfield instructions, BFC, BFI, SBFX, and UBFX.

[7:4] Bit counting instructions Indicates support for bit counting instructions.
0x1, the processor supports CLZ.

[3:0] Atomic instructions Indicates support for atomic load and store instructions.
0x1, the processor supports SWP and SWPB.

Table 4-14 Instruction Set Attributes Register 0 bit functions (continued)

Bits Field Function

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Jazelle instructions

Interworking instructions
Immediate instructions

ITE instructions
Extend instructions

Exception 2 instructions
Exception 1 instructions

Endian instructions
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-27
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-15 shows how the bit values correspond with the Instruction Set Attributes Register 1 
functions.

To access the Instruction Set Attributes Register 1 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 1 ; Read Instruction Set Attributes Register 1

c0, Instruction Set Attributes Register 2, ISAR2

The Instruction Set Attributes Register 2 provides information about the instruction set that the 
processor supports beyond the basic set.

The Instruction Set Attributes Register 2 is:
• a read-only register
• accessible in Privileged mode only.

Table 4-15 Instruction Set Attributes Register 1 bit functions

Bits Field Function

[31:28] Jazelle 
instructions

Indicates support for Jazelle instructions.
0x1, the processor supports:
• BXJ instruction
• J bit in PSRs.
For more information see Program status registers on page 2-10 and Acceleration of 
execution environments on page 2-27.

[27:24] Interworking 
instructions

Indicates support for interworking instructions.
0x3, the processor supports:
• BX, and T bit in PSRs
• BLX, and PC loads have BX behavior.
• Data-processing instructions in the ARM instruction set with the PC as the destination 

and the S bit clear have BX-like behavior.

[23:20] Immediate 
instructions

Indicates support for immediate instructions.
0x1, the processor supports:
• the MOVT instruction
• MOV instruction encodings with 16-bit immediates
• Thumb ADD and SUB instructions with 12-bit immediates.

[19:16] ITE 
instructions

Indicates support for if then instructions.
0x1, the processor supports IT instructions.

[15:12] Extend 
instructions

Indicates support for sign or zero extend instructions.
0x2, the processor supports:
• SXTB, SXTB16, SXTH, UXTB, UXTB16, and UXTH
• SXTAB, SXTAB16, SXTAH, UXTAB, UXTAB16, and UXTAH.

[11:8] Exception 2 
instructions

Indicates support for exception 2 instructions.
0x1, the processor supports RFE, SRS, and CPS.

[7:4] Exception 1 
instructions

Indicates support for exception 1 instructions.
0x1, the processor supports LDM (exception return), LDM (user registers), and STM (user 
registers).

[3:0] Endian 
instructions

Indicates support for endianness control instructions.
0x1, the processor supports SETEND and E bit in PSRs.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-28
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-21 shows the bit arrangement for Instruction Set Attributes Register 2.

Figure 4-21 Instruction Set Attributes Register 2 format

Table 4-16 shows how the bit values correspond with the Instruction Set Attributes Register 2 
functions.

To access the Instruction Set Attributes Register 2 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 2 ; Read Instruction Set Attributes Register 2

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reversal instructions
PSR instructions

Unsigned multiply instructions
Signed multiply instructions

Multiply instructions
Interruptible instructions
Memory hint instructions

Load/store instructions

Table 4-16 Instruction Set Attributes Register 2 bit functions

Bits Field Function

[31:28] Reversal 
instructions

Indicates support for reversal instructions.
0x2, the processor supports REV, REV16, REVSH, and RBIT.

[27:24] PSR 
instructions

Indicates support for PSR instructions.
0x1, the processor supports MRS and MSR, and the exception return forms of data-processing 
instructions.

[23:20] Unsigned 
multiply 
instructions

Indicates support for advanced unsigned multiply instructions.
0x2, the processor supports:
• UMULL and UMLAL
• UMAAL.

[19:16] Signed 
multiply 
instructions

Indicates support for advanced signed multiply instructions.
0x3, the processor supports:
• SMULL and SMLAL
• SMLABB, SMLABT, SMLALBB,SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, 

SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT, and Q flag in PSRs
• SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, 

SMMLSR, SMPUL, SMPULR, SMUAD, SMUADX, SMUSD, and SMUSDX.

[15:12] Multiply 
instructions

Indicates support for multiply instructions.
0x2, the processor supports MUL, MLA, and MLS.

[11:8] Interruptible 
instructions

Indicates support for multi-access interruptible instructions.
0x1, the processor supports restartable LDM and STM.

[7:4] Memory hint 
instructions

Indicates support for memory hint instructions.
0x3, the processor supports PLD and PLI.

[3:0] Load/store 
instructions

Indicates support for additional load and store instructions.
0x1, the processor supports LDRD and STRD.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-29
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
c0, Instruction Set Attributes Register 3, ISAR3

The Instruction Set Attributes Register 3 provides information about the instruction set that the 
processor supports beyond the basic set.

The Instruction Set Attributes Register 3 is:
• a read-only registers
• accessible in Privileged mode only.

Figure 4-22 shows the bit arrangement for Instruction Set Attributes Register 3.

Figure 4-22 Instruction Set Attributes Register 3 format

Table 4-17 shows how the bit values correspond with the Instruction Set Attributes Register 3 
functions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

ThumbEE extension
True NOP instructions

Thumb copy instructions
Table branch instructions

Synchronization primitive instructions
SVC instructions

SIMD instructions
Saturate instructions

Table 4-17 Instruction Set Attributes Register 3 bit functions

Bits Field Function

[31:28] ThumbEE 
extension

Indicates support for ThumbEE Execution Environment extension.
0x0, no support.

[27:24] True NOP 
instructions

Indicates support for true NOP instructions.
0x1, the processor supports NOP16, NOP32 and various NOP compatible hints in both the ARM 
and Thumb instruction sets.

[23:20] Thumb copy 
instructions

Indicates support for Thumb copy instructions.
0x1, the processor supports Thumb MOV(3) low register ⇒ low register.

[19:16] Table branch 
instructions

Indicates support for table branch instructions.
0x1, the processor supports table branch instructions, TBB and TBH.

[15:12] Synchronization 
primitive 
instructions

Indicates support for synchronization primitive instructions.
0x2, the processor supports:
• LDREX and STREX
• LDREXB, LDREXH, LDREXD, STREXB, STREXH, STREXD, and CLREX.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-30
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Instruction Set Attributes Register 3 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 3 ; Read Instruction Set Attributes Register 3

c0, Instruction Set Attributes Register 4, ISAR4

The Instruction Set Attributes Register 4 provides information about the instruction set that the 
processor supports beyond the basic set.

The Instruction Set Attributes Register 4 is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-23 shows the bit arrangement for Instruction Set Attributes Register 4.

Figure 4-23 Instruction Set Attributes Register 4 format

Table 4-18 shows how the bit values correspond with the Instruction Set Attributes Register 4 
functions.

[11:8] SVC instructions Indicates support for SVC (formerly SWI) instructions.
0x1, the processor supports SVC.

[7:4] SIMD 
instructions

Indicates support for Single Instruction Multiple Data (SIMD) instructions.
0x3, the processor supports:
PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, 
SHADD8, SHASX, SHSUB16, SHSUB8, SHSAX, SSAT, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, 
UADD16, UADD8, UASX, UHADD16, UHADD8, UASX, UHSUB16, UHSUB8, USAX, UQADD16, UQADD8, UQASX, 
UQSUB16, UQSUB8, UQSAX, USAD8, USADA8, USAT, USAT16, USUB16, USUB8, USAX, UXTAB16, UXTB16, 
and the GE[3:0] bits in the PSRs.

[3:0] Saturate 
instructions

Indicates support for saturate instructions.
0x1, the processor supports QADD, QDADD, QDSUB, QSUB and Q flag in PSRs.

Table 4-17 Instruction Set Attributes Register 3 bit functions (continued)

Bits Field Function

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Exclusive instructions
Barrier instructions

SMC instructions Write-back instructions
With shift instructions
Unprivileged instructions

Reserved

Table 4-18 Instruction Set Attributes Register 4 bit functions

Bits Field Function

[31:24] Reserved SBZ.

[23:20] Exclusive instructions Indicates support for Exclusive instructions. 
0x0, Only supports synchronization primitive instructions as indicated by bits 
[15:12] in the ISAR3 register. See c0, Instruction Set Attributes Register 3, ISAR3 
on page 4-30 for more information.

[19:16] Barrier instructions Indicates support for Barrier instructions. 
0x1, the processor supports DMB, DSB, and ISB instructions.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-31
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Instruction Set Attributes Register 4 read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 4 ; Read Instruction Set Attributes Register 4

c0, Instruction Set Attributes Registers 5-7

The Instruction Set Attributes Registers 5-7 provide additional information about the properties 
of the processor.

The Instruction Set Attributes Register 5 is:
• a read-only register
• accessible in Privileged mode only.

In the processor, Instruction Set Attributes Register 5 is read as 0x00000000.

To access the Instruction Set Attributes Register 5, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 5 ; Read Instruction Set Attribute Register 5

Instruction Set Attributes Registers 6 and 7 are not implemented, and their positions in the 
register map are Reserved. They correspond to CP15 accesses with:

MRC p15, 0, <Rd>, c0, c2, 6 ; Read Instruction Set Attribute Register 6
MRC p15, 0, <Rd>, c0, c2, 7 ; Read Instruction Set Attribute Register 7

These registers are read-only, and are accessible in Privileged mode only.

4.2.12 c0, Current Cache Size Identification Register

The Current Cache Size Identification Register provides the current cache size information for 
the instruction and data caches. Architecturally, there can be up to eight levels of cache, 
containing instruction, data, or unified caches. This processor contains L1 instruction and data 
caches. The Cache Size Selection Register determines which Current Cache Size Identification 
Register to select, see c0, Cache Size Selection Register on page 4-35.

The Current Cache Size Identification Register is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-24 on page 4-33 shows the bit arrangement for the Current Cache Size Identification 
Register.

[15:12] SMC instructions Indicates support for Secure Monitor Call (SMC) (formerly SMI) instructions.
0x0, no support.

[11:8] Write-back instructions Indicates support for write-back instructions.
0x1, supports all the writeback addressing modes defined in ARMv7.

[7:4] With shift instructions Indicates support for with-shift instructions.
0x4, the processor supports:
• the full range of constant shift options, on load/store and other instructions
• register-controlled shift options.

[3:0] Unprivileged instructions Indicates support for Unprivileged instructions.
0x2, the processor supports LDR{SB|B|SH|H}T and STR{B|H}T.

Table 4-18 Instruction Set Attributes Register 4 bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-32
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-24 Current Cache Size Identification Register format

Table 4-19 shows how the bit values correspond with the Current Cache Size Identification 
Register.

The LineSize field is encoded as 2 less than log(2) of the number of words in the cache line. For 
example, a value of 0x0 indicates there are four words in a cache line, that is the minimum size 
for the cache. A value of 0x1 indicates there are eight words in a cache line. 

Table 4-20 shows the individual bit field and complete register encodings for the Current Cache 
Size Identification Register. Use this to match the cache size and level of cache set by the 
Current Cache Size Selection Register (CSSR). See c0, Cache Size Selection Register on 
page 4-35.

Line 
Size

W
T

31 30 29 28 27 13 12 2 0

W
B

R
A

W
A NumSets Associativity

Table 4-19 Current Cache Size Identification Register bit functions

Bits Field Function

[31] WT Indicates support available for write-through:
1 = write-through support availablea

a. See Table 4-20 for valid bit field encodings.

[30] WB Indicates support available for write-back:
1 = write-back support availablea

[29] RA Indicates support available for read allocation:
1 = read allocation support availablea

[28] WA Indicates support available for write allocation:
1 = write allocation support availablea

[27:13] NumSets Indicates the number of sets as 
(number of sets) - 1a

[12:3] Associativity Indicates the number of ways as 
(number of ways) - 1a 

[2:0] LineSize Indicates the number of words in each cache linea

Table 4-20 Bit field and register encodings for Current Cache Size Identification Register

Size
Complete 
register 
encoding

Register bit field encoding

WT WB RA WA NumSets Associativity LineSize

4KB 0xF003E019 1 1 1 1 0x001F 0x3 0x1

8KB 0xF007E019 1 1 1 1 0x003F

16KB 0xF00FE019 1 1 1 1 0x007F

32KB 0xF01FE019 1 1 1 1 0x00FF

64KB 0xF03FE019 1 1 1 1 0x01FF
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-33
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Current Cache Size Identification Register read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 0 ; Read Current Cache Size Identification Register

4.2.13 c0, Current Cache Level ID Register

The Current Cache Level ID Register indicates the cache levels that are implemented. 
Architecturally, there can be a different number of cache levels on the instruction and data side. 
The register also captures the point-of-coherency and the point-of-unification. 

The Current Cache Level ID Register is:
• a read-only register
• accessible in Privileged mode only.

Figure 4-25 shows the bit arrangement for the Current Cache Level ID Register.

Figure 4-25 Current Cache Level ID Register format

Table 4-21 shows how the bit values correspond with the Current Cache Level ID Register.

To access the Current Cache Level ID Register, read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 1 ; Read Current Cache Level ID Register

CL 8 CL 7 CL 6 CL 5 CL 4 CL 3 CL 2 CL 1

Reserved

31 30 29 27 26 24 23 21 20 18 17 15 14 12 11 10 8 6 5 3 2 0

LoU LoC

Table 4-21 Current Cache Level ID Register bit functions

Bits Field Function

[31:30] Reserved SBZ

[29:27] LoU 0b001 = Level of Unification

[26:24] LoC 0b001 = Level of Coherency

[23:21] CL 8 0b000 = no cache at Cache Level (CL) 8

[20:18] CL 7 0b000 = no cache at CL 7

[17:15] CL 6 0b000 = no cache at CL 6

[14:12] CL 5 0b000 = no cache at CL 5

[11:9] CL 4 0b000 = no cache at CL 4

[8:6] CL 3 0b000 = no cache at CL 3

[5:3] CL 2 0b000 = no cache at CL 2

[2] CL 1 RAZ. Indicates no unified cache at CL1

[1] CL 1 0b001 if a data cache is implemented
0b000 if no data cache is implemented

[0] CL 1 0b001 if an instruction cache is implemented
0b000 if no instruction cache is implemented
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-34
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2.14 c0, Cache Size Selection Register

The Cache Size Selection Register holds the value that the processor uses to select the Current 
Cache Size Identification Register to use. 

The Cache Size Selection Register is:
• a read/write register
• accessible in Privileged mode only.

Figure 4-26 shows the bit arrangement for the Cache Size Selection Register.

Figure 4-26 Cache Size Selection Register format

Table 4-22 shows how the bit values correspond with the Cache Size Selection Register.

To access the Current Cache Size Identification Registers read or write CP15 with:

MRC p15, 2, <Rd>, c0, c0, 0 ; Read Cache Size Selection Register
MCR p15, 2, <Rd>, c0, c0, 0 ; Write Cache Size Selection Register

4.2.15 c1, System Control Register

The System Control Register provides control and configuration information for:
• memory alignment, endianness, protection, and fault behavior
• MPU and cache enables and cache replacement strategy
• interrupts and the behavior of interrupt latency
• the location for exception vectors
• program flow prediction.

The System Control Register is:
• a read/write register
• accessible in Privileged mode only.

Figure 4-27 on page 4-36 shows the arrangement of bits in the register.

Reserved Level

4 3 1 0

InD

31

Table 4-22 Cache Size Selection Register bit functions

Bits Field Function

[31: 4] Reserved SBZ.

[3:1] Level Identifies which cache level to select.
b000 = Level 1 cache
This field is read only, writes are ignored.

[0] InD Identifies instruction or data cache to use.
1 = instruction
0 = data.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-35
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-27 System Control Register format

Table 4-23 shows the purposes of the individual bits in the System Control Register.

TRE

IE
TE

AFE

NMFI
SBZ

EE
VE

Z
RR
SBZ
SBO
BR
SBO

FI
DZ
SBZ

M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 7 6 3 2 1 0

SBO 1 V I SBZ SBO C A

Table 4-23 System Control Register bit functions

Bits Field Function

[31] IE Identifies little or big instruction endianness in use:
0 = little-endianness
1 = big-endianness.
The primary input CFGIE defines the reset value. This bit is read-only.

[30] TE Thumb exception enable:
0 = enable ARM exception generation
1 = enable Thumb exception generation.
The primary input TEINIT defines the reset value.

[29] AFE Access Flag Enable. On the processor this bit is SBZ.

[28] TRE TEX Remap Enable. On the processor this bit is SBZ.

[27] NMFI NMFI, non-maskable fast interrupt enable:
0 = Software can disable FIQs
1 = Software cannot disable FIQs.
This bit is read-only. The configuration input CFGNMFI defines its value.

[26] Reserved SBZ.

[25] EE Determines how the E bit in the CPSR is set on an exception:
0 = CPSR E bit is set to 0 on an exception
1 = CPSR E bit is set to 1 on an exception.
The primary input CFGEE defines the reset value.

[24] VE Configures vectored interrupt:
0 = offset for IRQ = 0x18
1 = VIC controller provides offset for IRQ.
The reset value of this bit is 0.

[23:22] Reserved SBO.

[21] FI Fast Interrupts enable.
On the processor Fast Interrupts are always enabled. This bit is SBO.

[20] Reserved SBZ.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-36
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To use the System Control Register ARM recommends that you use a read-modify-write 
technique. To access the System Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 0 ; Read System Control Register configuration data
MCR p15, 0, <Rd>, c1, c0, 0 ; Write System Control Register configuration data

[19] DZ Divide by zero:
0 = do not generate an Undefined instruction exception
1 = generate an Undefined instruction exception.
The reset value of this bit is 0.

[18] Reserved SBO.

[17] BR MPU background region enable. 

[16] Reserved SBO.

[15] Reserved SBZ.

[14] RR Round-robin bit, controls replacement strategy for instruction and data caches:
0 = random replacement strategy
1 = round-robin replacement strategy.
The reset value of this bit is 0. The processor always uses a random replacement strategy, 
regardless of the state of this bit.

[13] V Determines the location of exception vectors:
0 = normal exception vectors selected, address range = 0x00000000-0x0000001C
1 = high exception vectors (HIVECS) selected, address range = 0xFFFF0000-0xFFFF001C.
The primary input VINITHI defines the reset value.

[12] I Enables L1 instruction cache:
0 = instruction caching disabled. This is the reset value.
1 = instruction caching enabled.
If no instruction cache is implemented, then this bit is SBZ.

[11] Z Branch prediction bit.
The processor supports branch prediction. This bit is SBO. The Auxiliary Control Register can 
control branch prediction, see Auxiliary Control Registers on page 4-38.

[10:7] Reserved SBZ.

[6:3] Reserved SBO.

[2] C Enables L1 data cache:
0 = data caching disabled. This is the reset value.
1 = data caching enabled. 
If no data cache is implemented, then this bit is SBZ.

[1] A Enables strict alignment of data to detect alignment faults in data accesses:
0 = strict alignment fault checking disabled. This is the reset value.
1 = strict alignment fault checking enabled.

[0] M Enables the MPU:
0 = MPU disabled. This is the reset value.
1 = MPU enabled.
If no MPU is implemented, the MPU has zero regions, this bit is SBZ.

Table 4-23 System Control Register bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-37
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Attempts to read or write the System Control Register from User mode results in an Undefined 
exception.

4.2.16 Auxiliary Control Registers

The Auxiliary Control Registers control:
• branch prediction
• performance features
• error and parity logic.

c1, Auxiliary Control Register

The Auxiliary Control Register is:
• a read/write register
• accessible in Privileged mode only.

Figure 4-28 shows the arrangement of bits in the register.

Figure 4-28 Auxiliary Control Register format

Table 4-24 shows how the bit values correspond with the Auxiliary Control Register functions.

31 25 24 23 22 21 19 18 17 16 15 14 13 12 11 7 6 3 2 1 0

CEC

26272830 29

DIADI

1020

DICDI
DIB2DI
DIB1DI

B1TCMPCEN
B0TCMPCEN

ATCMPCEN
AXISCEN

9

BP

58

AXISCUEN
DILSM

DEOLP
DBHE

FRCDIS RSDIS
Reserved

ATCMECEN
B0TCMECEN
B1TCMECEN
DILS
sMOV
FDSnS
FWT
FORA
DNCH
ERPEG
DLFO
DBWR

Table 4-24 Auxiliary Control Register bit functions

Bits Field Function

[31] DICDIa Case C dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[30] DIB2DIa Case B2 dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[29] DIB1DIa Case B1 dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-38
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
[28] DIADIa Case A dual issue control:
0 = Enabled. This is the reset value.
1 = Disabled.

[27] B1TCMPCEN B1TCM parity or ECC check enable:
0 = Disabled
1 = Enabled.
The primary input PARECCENRAM[2]b defines the reset value.
If the BTCM is configured with ECC, you must always set this bit to the same value as 
B0TCMPCEN.

[26] B0TCMPCEN B0TCM parity or ECC check enable:
0 = Disabled
1 = Enabled.
The primary input PARECCENRAM[1]b defines the reset value.
If the BTCM is configured with ECC, you must always set this bit to the same value as 
B1TCMPCEN.

[25] ATCMPCEN ATCM parity or ECC check enable:
0 = Disabled
1 = Enabled.
The primary input PARECCENRAM[0]b defines the reset value.

[24] AXISCEN AXI slave cache RAM access enable:
0 = Disabled. This is the reset value.
1 = Enabled.

Note
 When AXI slave cache access is enabled, the caches are disabled and the processor cannot 
run any cache maintenance operations. If the processor attempts a cache maintenance 
operation, an Undefined instruction exception is taken.

[23] AXISCUEN AXI slave cache RAM non-privileged access enable:
0 = Disabled. This is the reset value.
1 = Enabled.

[22] DILSM Disable Low Interrupt Latency (LIL) on load/store multiples:
0 = Enable LIL on load/store multiples. This is the reset value.
1 = Disable LIL on all load/store multiples.

[21] DEOLP Disable end of loop prediction:
0 = Enable loop prediction. This is the reset value.
1 = Disable loop prediction.

[20] DBHE Disable Branch History (BH) extension:
0 = Enable the extension. This is the reset value.
1 = Disable the extension.

[19] FRCDIS Fetch rate control disable:
0 = Normal fetch rate control operation. This is the reset value.
1 = Fetch rate control disabled.

[18] Reserved SBZ.

Table 4-24 Auxiliary Control Register bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-39
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
[17] RSDIS Return stack disable:
0 = Normal return stack operation. This is the reset value.
1 = Return stack disabled.

[16:15] BP This field controls the branch prediction policy:
b00 = Normal operation. This is the reset value.
b01 = Branch always taken.
b10 = Branch always not taken.
b11 = Reserved. Behavior is Unpredictable if this field is set to b11.

[14] DBWR Disable write burst in the AXI master:
0 = Normal operation. This is the reset value.
1 = Disable write burst optimization.

[13] DLFO Disable linefill optimization in the AXI master:
0 = Normal operation. This is the reset value.
1 = Limits the number of outstanding data linefills to two.

[12] ERPEGc Enable random parity error generation:
0 = Random parity error generation disabled. This is the reset value.
1 = Enable random parity error generation in the cache RAMs.

Note
 This bit controls error generation logic during system validation. A synthesized ASIC 
typically does not have such models and this bit is therefore redundant for ASICs.

[11] DNCH Disable data forwarding for Non-cacheable accesses in the AXI master:
0 = Normal operation. This is the reset value.
1 = Disable data forwarding for Non-cacheable accesses.

[10] FORA Force outer read allocate (ORA) for outer write allocate (OWA) regions:
0 = No forcing of ORA. This is the reset value.
1 = ORA forced for OWA regions.

[9] FWT Force write-through (WT) for write-back (WB) regions:
0 = No forcing of WT. This is the reset value.
1 = WT forced for WB regions.

[8] FDSnS Force D-side to not-shared when MPU is off:
0 = Normal operation. This is the reset value.
1 = D-side normal Non-cacheable forced to Non-shared when MPU is off.

[7] sMOV sMOV of a divide does not complete out of order. No other instruction is issued until the 
divide is finished.
0 = Normal operation. This is the reset value.
1 = sMOV out of order disabled.

[6] DILS Disable low interrupt latency on all load/store instructions.
0 = Enable LIL on all load/store instructions. This is the reset value.
1 = Disable LIL on all load/store instructions.

[5:3] CEC Cache error control for cache parity and ECC errors.
See Table 8-2 on page 8-21 and Table 8-3 on page 8-22 for details of how these bits are used. 
The reset value is b100.

Table 4-24 Auxiliary Control Register bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-40
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Auxiliary Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 1 ; Read Auxiliary Control Register
MCR p15, 0, <Rd>, c1, c0, 1 ; Write Auxiliary Control Register

ARM recommends that any instruction that changes bits [31:28] or [7] is followed by an ISB 
instruction to ensure that the changes have taken effect before any dependent instructions are 
executed.

c15, Secondary Auxiliary Control Register

The Secondary Auxiliary Control Register is:
• a read/write register
• accessible in Privileged mode only.

Note
 This register is implemented from the r1pm releases of the processor. Attempting to access this 
register in r0pm releases of the processor results in an Undefined Instruction exception.

Figure 4-29 on page 4-42 shows the arrangement of bits in the register.

[2] B1TCMECEN B1TCM external error enable:
0 = Disabled
1 = Enabled.
The primary input ERRENRAM[2] defines the reset value.

[1] B0TCMECEN B0TCM external error enable:
0 = Disabled
1 = Enabled.
The primary input ERRENRAM[1] defines the reset value.

[0] ATCMECEN ATCM external error enable:
0 = Disabled
1 = Enabled.
The primary input ERRENRAM[0] defines the reset value.

a. See Dual issue on page 14-34
b. See Configuration signals on page A-4.
c. This bit is only supported if parity error generation is implemented in your design.

Table 4-24 Auxiliary Control Register bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-41
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-29 Secondary Auxiliary Control Register format

Table 4-25 shows how the bit values correspond with the Secondary Auxiliary Control Register 
functions.

Reserved

31 22 21 19 18 17 16 15 14 13 12 11 7 3 2 1 01020 9 48

DR2B
DF6DI
DF2DI

DOODPFP
DDI

ATCMRMW

ATCMECC

IDC
DZC
IOC
UFC
OFC

IXC

DOOFMACS

BTCMRMW

B0TCMECC

Reserved

Reserved

DCHE

23

Table 4-25 Secondary Auxiliary Control Register bit functions

Bits Field Function

[31:23] Reserved SBZ.

[22] DCHE Disable hard-error support in the caches.a

0 = Enabled. The cache logic recovers from some hard errors. You must not use this value on 
revisions r1p2 or earlier of the processor.
1 = Disabled. Most hard errors in the caches are fatal. This is the reset value.
See Hard errors on page 8-5 for more information.

[21] DR2Bb Enable random 2-bit error generation in cache RAMs. This bit has no effect unless ECC is 
configured, see Configurable options on page 1-13.
0 = Disabled. This is the reset value.
1 = Enabled.

Note
 This bit controls error generation logic during system validation. A synthesized ASIC 
typically does not have such models and this bit is therefore redundant for ASICs.

[20] DF6DI F6 dual issue control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[19] DF2DI F2_Id/F2_st/F2D dual issue control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[18] DDI F1/F3/F4dual issue control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[17] DOODPFP Out-of-order Double Precision Floating Point instruction control.c

0 = Enabled. This is the reset value.
1 = Disabled.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-42
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
[16] DOOFMACS Out-of-order FMACS control.c

0 = Enabled. This is the reset value.
1 = Disabled.

[15:14] Reserved SBZ.

[13] IXC Floating-point inexact exception output mask.c

0 = Mask floating-point inexact exception output. The output FPIXC is forced to zero. This 
is the reset value.
1 = Propagate floating point inexact exception flag FPSCR.IXC to output FPIXC.

[12] OFC Floating-point overflow exception output mask.c

0 = Mask floating-point overflow exception output. The output FPOFC is forced to zero. This 
is the reset value.
1 = Propagate floating-point overflow exception flag FPSCR.OFC to output FPOFC.

[11] UFC Floating-point underflow exception output mask.c

0 = Mask floating-point underflow exception output. The output FPUFC is forced to zero. 
This is the reset value.
1 = Propagate floating-point underflow exception flag FPSCR.UFC to output FPUFC.

[10] IOC Floating-point invalid operation exception output mask.c

0 = Mask floating-point invalid operation exception output. The output FPIOC is forced to 
zero. This is the reset value.
1 = Propagate floating-point invalid operation exception flag FPSCR.IOC to output FPIOC.

[9] DZC Floating-point divide-by-zero exception output mask.c

0 = Mask floating-point divide-by-zero exception output. The output FPDZC is forced to 
zero. This is the reset value.
1 = Propagate floating-point divide-by-zero exception flag FPSCR.DZC to output FPDZC.

[8] IDC Floating-point input denormal exception output mask.c

0 = Mask floating-point input denormal exception output. The output FPIDC is forced to zero. 
This is the reset value.
1 = Propagate floating-point input denormal exception flag FPSCR.IDC to output FPIDC.

[7:4} Reserved SBZ.

[3] BTCMECC Correction for internal ECC logic on BTCM ports.d

0 = Enabled. This is the reset value.
1 = Disabled.

Table 4-25 Secondary Auxiliary Control Register bit functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-43
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Secondary Auxiliary Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c0, 0 ; Read Secondary Auxiliary Control Register
MCR p15, 0, <Rd>, c15, c0, 0 ; Write Secondary Auxiliary Control Register

ARM recommends that any instruction that changes bits [20:16] is followed by an ISB 
instruction to ensure that the changes have taken effect before any dependent instructions are 
executed.

4.2.17 c1, Coprocessor Access Register

The Coprocessor Access Register sets access rights for coprocessors CP0-CP13. This register 
has no effect on access to CP14, the debug control coprocessor, or CP15, the system control 
coprocessor. This register also provides a means for software to determine if any particular 
coprocessor, CP0-CP13, exists in the system.

The Coprocessor Access Register is:
• a read/write register
• accessible in Privileged mode only.

Because this processor does not support coprocessors CP0 through CP9, CP12, and CP13, bits 
[27:24] and [19:0] in this register are read-as-zero and ignore writes.

Figure 4-30 shows the arrangement of bits in the register.

Figure 4-30 Coprocessor Access Register format

[2] ATCMECC Correction for internal ECC logic on ATCM port.d

0 = Enabled. This is the reset value.
1 = Disabled.

[1] BTCMRMW Enables 64-bit stores for the BTCMs. When enabled, the processor uses read-modify-write to 
ensure that all reads and writes presented on the BTCM ports are 64 bits wide.e

0 = Disabled
1 = Enabled.
The primary input RMWENRAM[1] defines the reset value.

[0] ATCMRMW Enables 64-bit stores for the ATCM. When enabled, the processor uses read-modify-write to 
ensure that all reads and writes presented on the ATCM port are 64 bits wide.e

0 = Disabled
1 = Enabled.
The primary input RMWENRAM[0] defines the reset value.

a. This bit is RAZ if both caches have neither ECC nor parity.
b. This bit is only supported if parity error generation is implemented in your design.
c. This bit has no effect unless the Floating Point Unit (FPU) has been configured, see Configurable options on page 1-13.
d. This bit has no effect unless TCM ECC logic has been configured for the respective TCM interface, see Configurable options 

on page 1-13.
e. This feature is not available when the TCM interface has been built with 32-bit ECC.

Table 4-25 Secondary Auxiliary Control Register bit functions (continued)

Bits Field Function

Reserved

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cp13 cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1 cp0
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-44
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-26 shows how the bit values correspond with the Coprocessor Access Register 
functions.

To access the Coprocessor Access Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 2 ; Read Coprocessor Access Register
MCR p15, 0, <Rd>, c1, c0, 2 ; Write Coprocessor Access Register

4.2.18 Fault Status and Address Registers

The processor reports the status and address of faults that occur during its operation. For both 
data and instruction faults there are two Fault Status Registers (FSRs) and one Fault Address 
Register (FAR). 

Fields within the Data and Instruction FSRs indicate the priority and source of a fault and the 
validity of the address in the corresponding FAR. Table 4-27 shows this encoding for the FSRs.

All other encodings for these FSR bits are Reserved.

c5, Data Fault Status Register

The Data Fault Status Register (DFSR) holds status information regarding the source of the last 
data abort.

Table 4-26 Coprocessor Access Register bit functions

Bits Field Function

[31:28] Reserved SBZ.

[27:0] cp<n>a Defines access permissions for each coprocessor.
Access denied is the reset condition, and is the behavior for non-existent coprocessors.
b00 = Access denied. Attempts to access generates an Undefined exception. 
b01 = Privileged mode access only
b10 = Reserved
b11 = Privileged and User mode access.
Access permissions for the FPU are set by fields cp10 and cp11. For all other 
coprocessor fields, the value is fixed to b00.

a. n is the coprocessor number between 0 and 13.

Table 4-27 Fault Status Register encodings

Priority Sources FSR 
[10,3:0] FAR

Highest Alignment 0b00001 Valid

Background 0b00000 Valid

Permission 0b01101 Valid

Precise External Abort 0b01000 Valid

Imprecise External Abort 0b10110 Unpredictable

Precise Parity/ECC Error 0b11001 Valid

Imprecise Parity/ECC Error 0b11000 Unpredictable

Lowest Debug Event 0b00010 Unchanged
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-45
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The Data Fault Status Register is:
• a read/write register 
• accessible in Privileged mode only.

Figure 4-31 shows the bit arrangement in the Data Fault Status Register.

Figure 4-31 Data Fault Status Register format

Table 4-28 shows how the bit values correspond with the Data Fault Status Register functions.

To use the DFSR read or write CP15 with:

MRC p15, 0, <Rd>, c5, c0, 0 ; Read Data Fault Status Register
MCR p15, 0, <Rd>, c5, c0, 0 ; Write Data Fault Status Register

c5, Instruction Fault Status Register

The Instruction Fault Status Register (IFSR) holds status information regarding the source of 
the last instruction abort. 

The Instruction Fault Status Register is:
• a read/write register 
• accessible in Privileged mode only. 

Figure 4-32 on page 4-47 shows the bit arrangement in the Instruction Fault Status Register.

Domain0Reserved

31 8 7 4 3 0

Status

9

0S

10111213

RW
SD

Table 4-28 Data Fault Status Register bit functions

Bits Field Function

[31:13] Reserved SBZ.

[12] SD Distinguishes between an AXI Decode or Slave error on an external abort. This bit is only valid 
for external aborts. For all other aborts types of abort, this bit is set to zero:
0 = AXI Decode error (DECERR) caused the abort
1 = AXI Slave error (SLVERR, or OKAY in response to exclusive read transaction) caused the 
abort. 

[11] RW Indicates whether a read or write access caused an abort:
0 = read access caused the abort
1 = write access caused the abort. 

[10]a S Part of the Status field.

[9:8] - Always read as 0. Writes ignored.

[7:4] Domain SBZ. This is because domains are not implemented in this processor.

[3:0]a Status Indicates the type of fault generated. To determine the data fault, you must use bit [12] and bit [10] 
in conjunction with bits [3:0]. 

a. For more information on how these bits are used in reporting faults, see Table 4-27 on page 4-45.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-46
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-32 Instruction Fault Status Register format

Table 4-29 shows how the bit values correspond with the Instruction Fault Status Register 
functions.

To access the IFSR read or write CP15 with:

MRC p15, 0, <Rd>, c5, c0, 1 ; Read Instruction Fault Status Register
MCR p15, 0, <Rd>, c5, c0, 1 ; Write Instruction Fault Status Register

c5, Auxiliary Fault Status Registers

There are two auxiliary fault status registers:
• the Auxiliary Data Fault Status Register (ADFSR)
• the Auxiliary Instruction Fault Status Register (AIFSR).

These registers provide additional information about data and instruction parity, ECC, and 
external TCM errors.

The auxiliary fault status registers are:
• read/write registers 
• accessible in Privileged mode only.

Figure 4-33 on page 4-48 shows the bit arrangement in the auxiliary fault status registers.

SReserved

31 3 0

StatusDomain

4910111213

Reserved

SD

8 7

Reserved

Table 4-29 Instruction Fault Status Register bit functions

Bits Field Function

[31:13] Reserved SBZ.

[12] SD Distinguishes between an AXI Decode or Slave error on an external abort. This bit is only valid for 
external aborts. For all other aborts types of abort, this bit is set to zero:
0 = AXI Decode error (DECERR) caused the abort
1 = AXI Slave error (SLVERR) caused the abort. 

[11] Reserved SBZ.

[10]a S Part of the Status field.

[9:8] Reserved SBZ.

[7:4] Domain SBZ. This is because domains are not implemented in this processor.

[3:0]a Status Indicates the type of fault generated. To determine the instruction fault, bit [12] and bit [10] must 
be used in conjunction with bits [3:0].

a. For more information on how these bits are used in reporting faults, see Table 4-27 on page 4-45.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-47
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-33 Auxiliary fault status registers format

Table 4-30 shows how the bit values correspond with the auxiliary fault status register functions.

To access the auxiliary fault status registers, read or write CP15 with:

MCR p15, 0, <Rd>, c5, c1, 0 ; Write Auxiliary Data Fault Status Register 
MRC p15, 0, <Rd>, c5, c1, 0 ; Read Auxiliary Data Fault Status Register 
MCR p15, 0, <Rd>, c5, c1, 1 ; Write Auxiliary Instruction Fault Status Register
MRC p15, 0, <Rd>, c5, c1, 1 ; Read Auxiliary Instruction Fault Status Register

The contents of an auxiliary fault status register are only valid when the corresponding Data or 
Instruction Fault Status Register indicates that a parity error has occurred. At other times the 
contents of the auxiliary fault status registers are Unpredictable.

c6, Data Fault Address Register

The Data Fault Address Register (DFAR) holds the address of the fault when a precise abort 
occurs.

The DFAR is:
• a read/write register 
• accessible in Privileged mode only.

Reserved IndexReserved

31 0

Reserved

427 24 23 22 14 13 5

CacheWay
Side

28 21 20

Recoverable error

Table 4-30 ADFSR and AIFSR bit functions

Bits Field Function

[31:28] Reserved SBZ.

[27:24] CacheWaya The value returned in this field indicates the cache way or ways in which the error occurred.

[23:22] Side The value returned in this field indicates the source of the error. Possible values are:
b00 = Cache or AXI-master interface
b01 = ATCM
b10 = BTCM
b11 = Reserved.

[21] Recoverable 
error

The value returned in this field indicates if the error is recoverable.
0 = Unrecoverable error.
1 = Recoverable error. This includes all correctable parity/ECC errors and recoverable 
TCM external errors.

[20:14] Reserved SBZ.

[13:5] Indexb This field returns the index value for the access giving the error.

[4:0] Reserved SBZ.

a. This field is only valid for data cache store parity/ECC errors, otherwise it is Unpredictable.
b. This field is only valid for data cache store parity/ECC errors. On the AIFSR, and for TCM accesses, this field SBZ.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-48
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The Data Fault Address Register bits [31:0] contain the address where the precise abort 
occurred.

To access the DFAR read or write CP15 with:

MRC p15, 0, <Rd>, c6, c0, 0 ; Read Data Fault Address Register
MCR p15, 0, <Rd>, c6, c0, 0 ; Write Data Fault Address Register

A write to this register sets the DFAR to the value of the data written. This is useful for a 
debugger to restore the value of the DFAR.

The processor also updates the DFAR on debug exception entry because of watchpoints. See 
Effect of debug exceptions on CP15 registers and WFAR on page 11-42 for more information.

c6, Instruction Fault Address Register

The purpose of the Instruction Fault Address Register (IFAR) is to hold the address of 
instructions that cause a prefetch abort.

The IFAR is:
• a read/write register 
• accessible in Privileged mode only.

The Instruction Fault Address Register bits [31:0] contain the Instruction Fault address.

To access the IFAR read or write CP15 with:

MRC p15, 0, <Rd>, c6, c0, 2 ; Read Instruction Fault Address Register
MCR p15, 0, <Rd>, c6, c0, 2 ; Write Instruction Fault Address Register

A write to this register sets the IFAR to the value of the data written. This is useful for a 
debugger to restore the value of the IFAR.

4.2.19 c6, MPU memory region programming registers

The MPU memory region programming registers program the MPU regions. 

There is one register that specifies which one of the sets of region registers is to be accessed. 
See c6, MPU Memory Region Number Register on page 4-53. Each region has its own register 
to specify:
• region base address 
• region size and enable 
• region access control.

You can implement the processor with eight or 12 regions, or without an MPU entirely. If you 
implement the processor without an MPU, then there are no regions and no region programming 
registers.

Note
 • When the MPU is enabled:

— The MPU determines the access permissions for all accesses to memory, including 
the TCMs. Therefore, you must ensure that the memory regions in the MPU are 
programmed to cover the complete TCM address space with the appropriate access 
permissions. You must define at least one of the regions in the MPU.

— An access to an undefined area of memory generates a background fault.

• For the TCM space the processor uses the access permissions but ignores the region 
attributes from MPU.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-49
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
CP15, c9 sets the location of the TCM base address. For more information see c9, BTCM 
Region Register on page 4-57 and c9, ATCM Region Register on page 4-58.

c6, MPU Region Base Address Registers

The MPU Region Base Address Registers describe the base address of the region specified by 
the Memory Region Number Register. The region base address must always align to the region 
size.

The MPU Region Base Address Registers are:
• 32-bit read/write registers
• accessible in Privileged mode only.

Figure 4-34 shows the arrangement of bits in the registers.

Figure 4-34 MPU Region Base Address Registers format

Table 4-31 shows how the bit values correspond with the MPU Region Base Address Register 
functions.

To access an MPU Region Base Address Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 0 ; Read MPU Region Base Address Register
MCR p15, 0, <Rd>, c6, c1, 0 ; Write MPU Region Base Address Register

c6, MPU Region Size and Enable Registers

The MPU Region Size and Enable Registers: 

• specify the size of the region specified by the Memory Region Number Register

• identify the address ranges that are used for a particular region

• enable or disable the region, and its sub-regions, specified by the Memory Region 
Number Register.

The MPU Region Size and Enable Registers are:
• 32-bit read/write registers
• accessible in Privileged mode only.

Figure 4-35 on page 4-51 shows the arrangement of bits in the registers.

31 0

Base address

45

Reserved

Table 4-31 MPU Region Base Address Registers bit functions

Bits Field Function

[31:5] Base address Physical base address. Defines the base address of a region.

[4:0] Reserved SBZ
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-50
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-35 MPU Region Size and Enable Registers format

Table 4-32 shows how the bit values correspond with the MPU Region Size and Enable 
Registers.

To access an MPU Region Size and Enable Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 2 ; Read Data MPU Region Size and Enable Register
MCR p15, 0, <Rd>, c6, c1, 2 ; Write Data MPU Region Size and Enable Register

Writing a region size that is outside the range results in Unpredictable behavior.

c6, MPU Region Access Control Registers 

The MPU Region Access Control Registers hold the region attributes and access permissions 
for the region specified by the Memory Region Number Register.

Reserved Sub-region disable

31 6 5 0

Region size

1781516

Reserved
Enable

Table 4-32 Region Size Register bit functions

Bits Field Function

[31:16] Reserved SBZ.

[15:8] Sub-region disable Each bit position represents a sub-region, 0-7a. 
Bit [8] corresponds to sub-region 0
...
Bit [15] corresponds to sub-region 7
The meaning of each bit is:
0 = address range is part of this region
1 = address range is not part of this region.

Reserved SBZ.

[5:1] Region size Defines the region size:
b00000 - b00011=Unpredictable
b00100 = 32 bytes
b00101 = 64 bytes
b00110 = 128 bytes
b00111 = 256 bytes
b01000 = 512 bytes
b01001 = 1KB
b01010 = 2KB
b01011 = 4KB

b01100 = 8KB
b01101 = 16KB
b01110 = 32KB
b01111 = 64KB
b10000 = 128KB
b10001 = 256KB
b10010 = 512KB
b10011 = 1MB
b10100 = 2MB
b10101 = 4MB

b10110 = 8MB
b10111 = 16MB
b11000 = 32MB
b11001 = 64MB
b11010 = 128MB
b11011 = 256MB
b11100 = 512MB
b11101 = 1GB
b11110 = 2GB
b11111 = 4GB.

[0] Enable Enables or disables a memory region:
0 = Memory region disabled. Memory regions are disabled on reset.
1 = Memory region enabled. A memory region must be enabled before it is used.

a. Sub-region 0 covers the least significant addresses in the region, while sub-region 7 covers the most significant 
addresses in the region. For more information, see Subregions on page 7-3.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-51
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The MPU Region Access Control Registers are:
• read/write registers
• accessible in Privileged mode only.

Figure 4-36 shows the arrangement of bits in the register.

Figure 4-36 MPU Region Access Control Register format

Table 4-33 shows how the bit values correspond with the Region Access Control Register 
functions.

Table 4-34 shows the AP bit values that determine the permissions for Privileged and User data 
access.

Reserved BC

31 3 0

TEX S

12567811 1012

XN AP

Reserved

13

Table 4-33 MPU Region Access Control Register bit functions

Bits Field Function

[31:13] Reserved SBZ.

[12] XN Execute never. Determines if a region of memory is executable: 
0 = all instruction fetches enabled
1 = no instruction fetches enabled.

[11] - Reserved.

[10:8] AP Access permission. Defines the data access permissions. For more information on AP bit values 
see, Table 4-34. 

[7:6] Reserved SBZ.

[5:3] TEX Type extension. Defines the type extension attributea.

[2] S Share. Determines if the memory region is Shared or Non-shared:
0 = Non-shared.
1 = Shared.
This bit only applies to Normal, not Device or Strongly Ordered memory.

[1] C C bita:

[0] B B bita:

a. For more information on this region attribute, see Table 7-3 on page 7-9.

Table 4-34 Access data permission bit encoding

AP bit values Privileged permissions User permissions Description

b000 No access No access All accesses generate a permission fault

b001 Read/write No access Privileged access only

b010 Read/write Read-only Writes in User mode generate permission 
faults
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-52
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the MPU Region Access Control Registers read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 4 ; Read Region access control Register
MCR p15, 0, <Rd>, c6, c1, 4 ; Write Region access control Register

To execute instructions in User and Privileged modes:
• the region must have read access as defined by the AP bits 
• the XN bit must be set to 0.

c6, MPU Memory Region Number Register

The MPU Region Registers are multiple registers with one register for each memory region 
implemented. The value contained in the MPU Memory Region Number Register determines 
which of the multiple registers is accessed.

The MPU Memory Region Number Registers are:
• read/write register
• accessible in Privileged mode only.

Figure 4-37 shows the arrangement of bits in the register. 

Figure 4-37 MPU Memory Region Number Register format

Table 4-35 shows how the bit values correspond with the MPU Memory Region Number 
Register bits.

To access the MPU Memory Region Number Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c2, 0 ; Read MPU Memory Region Number Register
MCR p15, 0, <Rd>, c6, c2, 0 ; Write MPU Memory Region Number Register

Writing this register with a value greater than or equal to the number of regions from the MPU 
Type Register is Unpredictable. Associated register bank accesses are also Unpredictable.

b011 Read/write Read/write Full access

b100 UNP UNP Reserved

b101 Read-only No access Privileged read-only

b110 Read-only Read-only Privileged/User read-only

b111 UNP UNP Reserved

Table 4-34 Access data permission bit encoding (continued)

AP bit values Privileged permissions User permissions Description

31 4 0

Reserved Region

3

Table 4-35 MPU Memory Region Number Register bit functions

Bits Field Function

[31:4] Reserved SBZ.

[3:0] Region Defines the group of registers to be accessed. Read the MPU Type Register to determine the number 
of supported regions, see c0, MPU Type Register on page 4-17.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-53
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2.20 Cache operations

The purpose of c7 is to manage the associated caches. The maintenance operations are formed 
into two management groups:
• Set and Way:

— clean
— invalidate
— clean and invalidate.

• Address, usually labelled MVA for Modified Virtual Address, but on this processor all 
addresses are identical:
— clean
— invalidate
— clean and invalidate.

In addition, the maintenance operations use these definitions:

Point of Coherency (PoC) 
A point where all instruction, data, or translation-table walks are transparent to 
any processor in the system.

Point of Unification (PoU) 
A point where instruction and data become unified and self-modifying code can 
function.

Figure 4-38 on page 4-55 shows the arrangement of the functions in this group that operate with 
the MCR and MRC instructions.

Note
 The following operations, as Figure 4-38 on page 4-55 shows, are implemented as No 
Operation, NOP, on the processor: 
• Wait For Interrupt, CRm= c0, Opcode_2 = 4
• Invalidate Entire Branch Predictor Array, CRm= c5, Opcode_2 = 6
• Invalidate Branch Predictor Array Line using MVA, CRm= c5, Opcode_2 = 7

The Wait For Interrupt (WFI) instruction provides the Wait For Interrupt function. For more 
information see the ARM Architecture Reference Manual.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-54
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-38 Cache operations

In addition to the register c7 cache management functions in this processor, an Invalidate all 
data caches operation is provided as a c15 operation. For convenience, that c15 operation is also 
described in this section.

Note
 • Writing c7 with a combination of CRm and Opcode_2 not listed in Figure 4-38 results in 

an Undefined exception. 

• In this processor, reading from c7 causes an Undefined exception.

• All accesses to c7 can only be executed in a Privileged mode of operation, except for the 
Flush Prefetch Buffer, Data Synchronization Barrier, and Data Memory Barrier 
operations. These can be performed in User mode. Attempting to execute a Privileged 
instruction in User mode results in an Undefined exception.

• This processor does not contain an address-based branch predictor array.

Invalidate and clean operations

The terms that describe the invalidate, clean, and prefetch operations are defined in the ARM 
Architecture Reference Manual.

You can perform invalidate and clean operations on:
• single cache lines
• entire caches.

Set and Way format

Figure 4-39 on page 4-56 shows the Set and Way format for invalidate and clean operations.

c7 SBZ

SBZ

MVA

SBZ

MVA

Way

MVA

Way

SBZ

SBZ

MVA

Way

Invalidate data cache line by set/way
Invalidate data cache line to Point-of-Coherency by MVA

Invalidate entire branch predictor array (NOP)

Wait For Interrupt (NOP)

Flush Prefetch buffer

Invalidate VA from Branch Predictor Array (NOP)

Invalidate All Instruction Caches
Invalidate Instruction Cache Line to Point-of-Unification by MVA

Clean data cache line to Point-of-Unification by MVA

Clean data cache line to Point-of-Coherency by MVA
Clean data cache line by set/way
Data Synchronization Barrier
Data Memory Barrier

Clean and Invalidate data cache line to Point-of-Unification by MVA
Clean and Invalidate data cache line by set/way

Opcode_2CRmCRn Opcode_1

SBZ

MVA

SBZ Should Be Zero
MVA

Way

Using MVA
Using Set and Way

SBZ Invalidate all Data Caches0c15

Write-only Accessible in User modeRead-only Read/write

4c0
0
1
4
6
7

c5

1
2

c6

1c10
2
4
5
1c11

0

1c14
2

c50
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-55
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-39 c7 format for Set and Way

Table 4-36 shows how the bit values correspond with the Cache Operation functions for Set and 
Way format operations.

Table 4-37 shows the cache sizes and the resultant bit range for Set.

See c0, Cache Type Register on page 4-15 for more information on cache sizes.

Address format

Figure 4-40 shows the address format for invalidate and clean operations.

Figure 4-40 Cache operations address format

Way

0

Set ReservedReserved

5 4S+4S+531 2930

Table 4-36 Functional bits of c7 for Set and Way

Bits Field Function

[31:30] Way Indicates the cache way to invalidate or clean.

[29:S+5] Reserved SBZ.

[S+4:5] Set Indicates the cache set to invalidate or clean. Because the cache sizes are configurable, the width 
of the Set field is unique to the cache size. See Table 4-37.

[4:0]] Reserved SBZ.

Table 4-37 Widths of the set field for L1 cache sizes

Size Set

4KB [9:5]

8KB [10:5]

16KB [11:5]

32KB [12:5]

64KB [13:5]

Address

31 4 0

Reserved

5

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-56
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-38 shows how the bit values correspond with the address format for invalidate and clean 
operations.

Data Synchronization Barrier operation

The purpose of the Data Synchronization Barrier operation is to ensure that all outstanding 
explicit memory transactions complete before any following instructions begin. This ensures 
that data in memory is up to date before the processor executes any more instructions.

The Data Synchronization Barrier Register is:
• a write-only operation
• accessible in both User and Privileged mode.

To access the Data Synchronization Barrier operation, write CP15 with:

MCR p15, 0, <Rd>, c7, c10, 4 ; Data Synchronization Barrier operation

For more information about memory barriers, see the ARM Architecture Reference Manual.

Data Memory Barrier operation

The purpose of the Data Memory Barrier operation is to ensure that all outstanding explicit 
memory transactions complete before any following explicit memory transactions begin. This 
ensures that data in memory is up to date before any memory transaction that depends on it.

The Data Memory Barrier operation is:
• write-only 
• accessible in User and Privileged mode.

To access the Data Memory Barrier operation write CP15 with:

MCR p15, 0, <Rd>, c7, c10,5 ; Data Memory Barrier Operation.

For more information about memory barriers, see the ARM Architecture Reference Manual.

4.2.21 c9, BTCM Region Register

The BTCM Region Register holds the base address and size of the BTCM. It also determines if 
the BTCM is enabled. 

The BTCM Region Register is:
• a read/write register
• accessible in Privileged mode only.

Figure 4-41 on page 4-58 shows the arrangement of bits in the register.

Table 4-38 Functional bits of c7 for address format

Bits Field Function

[31:5] Address Specifies the address to invalidate or clean

[4:0] Reserved SBZ
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-57
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-41 BTCM Region Registers

Table 4-39 shows how the bit values correspond with the BTCM Region Register.

To access the BTCM Region Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c1, 0 ; Read BTCM Region Register
MCR p15, 0, <Rd>, c9, c1, 0 ; Write BTCM Region Register

4.2.22 c9, ATCM Region Register

The ATCM Region Register holds the base address and size of the ATCM. It also determines if 
the ATCM is enabled. 

The ATCM Region Register is:
• a read/write register
• accessible in Privileged mode only.

Figure 4-42 on page 4-59 shows the arrangement of bits in the register.

Base address

31 12 11 7 6 2 1 0

Reserved Size

Reserved
Enable

Table 4-39 BTCM Region Register bit functions

Bits Field Function

[31:12] Base 
address

Base address. Defines the base address of the BTCM. The base address must be aligned to the 
size of the BTCM. Any bits in the range [(log2(RAMSize)-1):12] are ignored. 
At reset, if LOCZRAMA is set to:
0 =The initial base address is 0x0.
1 =The initial base address is implementation-defined. See Configurable options on page 1-13.

[11:7] Reserved UNP on reads, SBZ on writes.

[6:2] Size Size. Indicates the size of the BTCM on reads. On writes this field is ignored. See About the 
TCMs on page 8-13.

b00000 = 0KB
b00011 = 4KB
b00100 = 8KB
b00101 = 16KB

b00110 = 32KB
b00111 = 64KB
b01000 = 128KB
b01001 = 256KB

b01010 = 512kB
b01011 = 1MB
b01100 = 2MB
b01101 = 4MB
b01110 = 8MB

[1] Reserved SBZ. 

[0] Enable Enables or disables the BTCM.
0 = Disabled
1 = Enabled. The reset value of this field is determined by the INITRAMB input pin.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-58
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-42 ATCM Region Registers

Table 4-40 shows how the bit values correspond with the ATCM Region Register.

To access the ATCM Region Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c1, 1 ; Read ATCM Region Register
MCR p15, 0, <Rd>, c9, c1, 1 ; Write ATCM Region Register

4.2.23 c9, TCM Selection Register

The TCM Selection Register determines the TCM region register that the processor writes to. 
The processor only supports one TCM region for each TCM interface, and the TCM Selection 
Register Reads-As-Zero and ignores writes. It is only accessible in Privileged mode.

4.2.24 c11, Slave Port Control Register

The Slave Port Control Register enables or disables TCM access to the AXI slave port in 
Privileged or User mode.

Note
 Use the Auxiliary Control Register to enable access to the cache RAMs through the AXI slave 
port. See Auxiliary Control Registers on page 4-38.

Base address

31 12 11 7 6 2 1 0

Reserved Size

Reserved
Enable

Table 4-40 ATCM Region Register bit functions

Bits Field Function

[31:12] Base 
address

Base address. Defines the base address of the ATCM. The base address must be aligned to the 
size of the ATCM. Any bits in the range [(log2(RAMSize)-1):12] are ignored. 
At reset, if LOCZRAMA is set to:
0 = The initial base address is implementation-defined. See Configurable options on page 1-13
1 = The initial base address is 0x0.

[11:7] Reserved UNP on reads, SBZ on writes.

[6:2] Size Size. Indicates the size of the ATCM on reads. On writes this field is ignored. See About the TCMs 
on page 8-13.

b00000 = 0KB
b00011 = 4KB
b00100 = 8KB
b00101 = 16KB

b00110 = 32KB
b00111 = 64KB
b01000 = 128KB
b01001 = 256KB

b01010 = 512kB
b01011 = 1MB
b01100 = 2MB
b01101 = 4MB
b01110 = 8MB.

[1] Reserved SBZ 

[0] Enable Enables or disables the ATCM.
0 = Disabled
1 = Enabled. The reset value of this field is determined by the INITRAMA input pin.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-59
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The Slave Port Control Register is:
• a read/write register 
• accessible in User and Privileged mode.

Figure 4-43 shows the arrangement of bits in the register.

Figure 4-43 Slave Port Control Register

Table 4-41 shows how the bit values correspond with the Slave Port Control Register functions.

To access the Slave Port Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c11, c0, 0 ; Read Slave Port Control Register
MCR p15, 0, <Rd>, c11, c0, 0 ; Write Slave Port Control Register

4.2.25 c13, FCSE PID Register

This processor does not support Fast Context Switch Extension (FCSE). 

The FCSE Process IDentifier (PID) Register is accessible in Privileged mode only. This register 
reads as zero and ignores writes. 

4.2.26 c13, Context ID Register

The Context ID Register holds a process IDentification (ID) value for the currently-running 
process.

The Embedded Trace Macrocell (ETM) and the debug logic use this register. The ETM can 
broadcast its value to indicate the process that is running currently. You must program each 
process with a unique number.

The Context ID value can also enable process dependent breakpoints and instructions.

The Context ID Register is:
• a read/write register
• accessible in Privileged mode only.

Reserved

31 2 1 0

Privilege access

AXI slave enable

Table 4-41 Slave Port Control Register bit functions

Bits Field Function

[31:2] Reserved RAZ/UNP

[1] Privilege access Defines level of access for TCM accesses:
0 = Non-privileged and privileged access, reset value
1 = Privileged access only.

[0] AXI slave enable Enables or disables the AXI slave port for TCM accesses:
0 = Enables AXI slave port, reset value
1 = Disables AXI slave port.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-60
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The Context ID Register, bits [31:0] contain the process ID number.

To use the Context ID Register, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 1 ; Read Context ID Register
MCR p15, 0, <Rd>, c13, c0, 1 ; Write Context ID Register

4.2.27 c13, Thread and Process ID Registers

The Thread and Process ID Registers provide locations to store the IDs of software threads and 
processes for Operating System (OS) management purposes.

The Thread and Process ID Registers are:
• three read/write registers:

— User read/write Thread and Process ID Register
— User read-only Thread and Process ID Register
— Privileged-only Thread and Process ID Register.

• each accessible in different modes:
— The User read/write register can be read and written in User and Privileged modes.
— The User read-only register can only be read in User mode, but can be read and 

written in Privileged modes.
— The Privileged-only register can be read and written in Privileged modes only.

To access the Thread and Process ID registers, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 2 ; Read User read/write Thread and Proc. ID Register
MCR p15, 0, <Rd>, c13, c0, 2 ; Write User read/write Thread and Proc. ID Register
MRC p15, 0, <Rd>, c13, c0, 3 ; Read User Read Only Thread and Proc. ID Register
MCR p15, 0, <Rd>, c13, c0, 3 ; Write User Read Only Thread and Proc. ID Register
MRC p15, 0, <Rd>, c13, c0, 4 ; Read Privileged Only Thread and Proc. ID Register
MCR p15, 0, <Rd>, c13, c0, 4 ; Write Privileged Only Thread and Proc. ID Register

Reading or writing the Thread and Process ID registers has no effect on processor state or 
operation. These registers provide OS support, and the OS must manage them.

You must clear the contents of all Thread and Process ID registers on process switches to 
prevent data leaking from one process to another. This is important to ensure the security of data. 
The reset value of these registers is 0.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-61
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2.28 Validation Registers

The processor implements a set of validation registers. This section describes:
• c15, nVAL IRQ Enable Set Register
• c15, nVAL FIQ Enable Set Register on page 4-63
• c15, nVAL Reset Enable Set Register on page 4-64
• c15, nVAL Debug Request Enable Set Register on page 4-64
• c15, nVAL IRQ Enable Clear Register on page 4-65
• c15, nVAL FIQ Enable Clear Register on page 4-66
• c15, nVAL Reset Enable Clear Register on page 4-67
• c15, nVAL Debug Request Enable Clear Register on page 4-68
• c15, nVAL Cache Size Override Register on page 4-69.

c15, nVAL IRQ Enable Set Register

The nVAL IRQ Enable Set Register enables any of the PMC Registers, PMC0-PMC2, and 
CCNT, to generate an interrupt request on overflow. If enabled, the interrupt request is signaled 
by nVALIRQ being asserted LOW.

The nVAL IRQ Enable Set Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-44 shows the bit arrangement for the nVAL IRQ Enable Set Register.

Figure 4-44 nVAL IRQ Enable Set Register format

Table 4-42 shows how the bit values correspond with the nVAL IRQ Enable Set Register.

To access the nVAL IRQ Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 0 ; Read nVAL IRQ Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 0 ; Write nVAL IRQ Enable Set Register

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow IRQ request enables

Cycle count overflow IRQ request enable

Table 4-42 nVAL IRQ Enable Set Register bit functions

Bits Field Function

[31] C CCNT overflow IRQ request

[30: 3] Reserved UNP or SBZP

[2] P2 PMC2 overflow IRQ request

[1] P1 PMC1 overflow IRQ request 

[0] P0 PMC0 overflow IRQ request
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-62
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
On reads, this register returns the current setting. On writes, interrupt requests can be enabled. 
If an interrupt request has been enabled it is disabled by writing to the nVAL IRQ Enable Clear 
Register, see c15, nVAL IRQ Enable Clear Register on page 4-65.

If one or more of the IRQ request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then an IRQ request is indicated by nVALIRQ being asserted LOW. This 
signal might be passed to a system interrupt controller.

c15, nVAL FIQ Enable Set Register

The nVAL FIQ Enable Set Register enables any of the PMC Registers, PMC0-PMC2, and 
CCNT, to generate an fast interrupt request on overflow. If enabled, the interrupt request is 
signaled by nVALFIQ being asserted LOW.

The nVAL FIQ Enable Set Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-45 shows the bit arrangement for the nVAL FIQ Enable Set Register.

Figure 4-45 nVAL FIQ Enable Set Register format

Table 4-43 shows how the bit values correspond with the nVAL FIQ Enable Set Register.

To access the FIQ Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 1 ; Read FIQ Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 1 ; Write FIQ Enable Set Register

On reads, this register returns the current setting. On writes, interrupt requests can be enabled. 
If an interrupt request has been enabled it is disabled by writing to the FIQ Enable Clear 
Register, see c15, nVAL FIQ Enable Clear Register on page 4-66.

If one or more of the FIQ request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then an FIQ request is indicated by nVALFIQ being asserted LOW. This 
signal can be passed to a system interrupt controller.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow FIQ request enables

Cycle count overflow FIQ request enable

Table 4-43 nVAL FIQ Enable Set Register bit functions

Bits Field Function

[31] C CCNT overflow FIQ request 

[30:3] Reserved UNP or SBZP

[2] P2 PMC2 overflow FIQ request

[1] P1 PMC1 overflow FIQ request

[0] P0 PMC0 overflow FIQ request
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-63
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
c15, nVAL Reset Enable Set Register

The nVAL Reset Enable Set Register enables any of the PMC Registers, PMC0-PMC2, and 
CCNT, to generate a reset request on overflow. If enabled, the reset request is signaled by 
nVALRESET being asserted LOW.

The nVAL Reset Enable Set Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-46 shows the bit arrangement for the nVAL Reset Enable Set Register.

Figure 4-46 nVAL Reset Enable Set Register format

Table 4-44 shows how the bit values correspond with the nVAL Reset Enable Set Register.

To access the nVAL Reset Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 2 ; Read nVAL Reset Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 2 ; Write nVAL Reset Enable Set Register

On reads, this register returns the current setting. On writes, reset requests can be enabled. If a 
reset request has been enabled, it is disabled by writing to the nVAL Reset Enable Clear 
Register. See c15, nVAL Reset Enable Clear Register on page 4-67.

If one or more of the reset request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then a reset request is indicated by nVALRESET being asserted LOW. This 
signal can be passed to a system reset controller.

c15, nVAL Debug Request Enable Set Register

The Debug Request Enable Set Register enables any of the PMC Registers, PMC0-PMC2, and 
CCNT, to generate a debug request on overflow. If enabled, the debug request is signaled by 
VALEDBGRQ being asserted HIGH.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow reset request enables

Cycle count overflow reset request enable

Table 4-44 nVAL Reset Enable Set Register bit functions

Bits Field Function

[31] C CCNT overflow reset request

[30:3] Reserved UNP or SBZP

[2] P2 PMC2 overflow reset request 

[1] P1 PMC1 overflow reset request

[0] P0 PMC0 overflow reset request 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-64
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
The nVAL Debug Request Enable Set Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-47 shows the bit arrangement for the nVAL Debug Request Enable Set Register.

Figure 4-47 nVAL Debug Request Enable Set Register format

Table 4-45 shows how the bit values correspond with the nVAL Debug Request Enable Set 
Register.

To access the nVAL Debug Request Enable Set Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 3 ; Read nVAL Debug Request Enable Set Register
MCR p15, 0, <Rd>, c15, c1, 3 ; Write nVAL Debug Request Enable Set Register

On reads, this register returns the current setting. On writes, debug requests can be enabled. If 
a debug request has been enabled, it is disabled by writing to the nVAL Debug Request Enable 
Clear Register. See c15, nVAL Debug Request Enable Clear Register on page 4-68.

If one or more of the reset request fields (P2, P1, P0, and C) is enabled, and the corresponding 
counter overflows, then a debug reset request is indicated by VALEDBGRQ being asserted 
HIGH. This signal can be passed to an external debugger.

c15, nVAL IRQ Enable Clear Register

The nVAL IRQ Enable Clear Register disables overflow IRQ requests from any of the PMC 
Registers, PMC0-PMC2, and CCNT, for which they have been enabled.

The nVAL IRQ Enable Clear Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-48 on page 4-66 shows the bit arrangement for the nVAL IRQ Enable Clear Register.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow debug request enables

Cycle count overflow debug  request enable

Table 4-45 nVAL Debug Request Enable Set Register bit functions

Bits Field Function

[31] C CCNT overflow debug request

[30:3] Reserved UNP or SBZP

[2] P2 PMC2 overflow debug request

[1] P1 PMC1 overflow debug request

[0] P0 PMC0 overflow debug request
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-65
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-48 nVAL IRQ Enable Clear Register format

Table 4-46 shows how the bit values correspond with the nVAL IRQ Enable Clear Register.

To access the nVAL IRQ Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 4 ; Read nVAL IRQ Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 4 ; Write nVAL IRQ Enable Clear Register

On reads, this register returns the current setting. On writes, overflow interrupt requests that are 
currently enabled can be disabled.

For more information of how to enable IRQ requests on counter overflows, and how the requests 
are signaled, see c15, nVAL IRQ Enable Set Register on page 4-62.

c15, nVAL FIQ Enable Clear Register

The nVAL FIQ Enable Clear Register disables overflow FIQ requests from any of the PMC 
Registers, PMC0-PMC2, and CCNT, that are enabled.

The nVAL FIQ Enable Clear Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access mode, 
see c9, User Enable Register on page 6-15.

Figure 4-49 shows the bit arrangement for the nVAL FIQ Enable Clear Register.

Figure 4-49 nVAL FIQ Enable Clear Register format

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow IRQ request disables

Cycle count overflow
IRQ request disable

Table 4-46 nVAL IRQ Enable Clear Register bit functions

Bits Field Function

[31] C CCNT overflow IRQ request

[30:3] Reserved UNP or SBZP

[2] P2 PMC2 overflow IRQ request 

[1] P1 PMC1 overflow IRQ request

[0] P0 PMC0 overflow IRQ request 

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow FIQ  request disables

Cycle count overflow
FIQ request disable
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-66
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-47 shows how the bit values correspond with the FIQ Enable Clear Register.

To access the FIQ Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 5 ; Read FIQ Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 5 ; Write FIQ Enable Clear Register

On reads, this register returns the current setting. On writes, overflow interrupt requests that are 
currently enabled can be disabled.

For information on how to enable FIQ requests on counter overflows, and how the requests are 
signaled, see c15, nVAL FIQ Enable Set Register on page 4-63.

c15, nVAL Reset Enable Clear Register

The nVAL Reset Enable Clear Register disables overflow reset requests from any of the PMC 
Registers, PMC0-PMC2, and CCNT, that are enabled.

The nVAL Reset Enable Clear Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-50 shows the bit arrangement for the nVAL Reset Enable Clear Register.

Figure 4-50 nVAL Reset Enable Clear Register format

Table 4-48 shows how the bit values correspond with the nVAL Reset Enable Clear Register.

Table 4-47 nVAL FIQ Enable Clear Register bit functions

Bits Field Function

[31] C CCNT overflow FIQ request 

[30:3] Reserved UNP or SBZP

[2] P2 PMC2 overflow FIQ request

[1] P1 PMC1 overflow FIQ request

[0] P0 PMC0 overflow FIQ request

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter overflow 
reset request disables

Cycle count overflow
reset request disable

Table 4-48 nVAL Reset Enable Clear Register bit functions

Bits Field Function

[31] C CCNT overflow reset request 

[30:3] Reserved UNP or SBZP
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-67
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the nVAL Reset Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 6 ; Read nVAL Reset Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 6 ; Write nVAL Reset Enable Clear Register

On reads, this register returns the current setting. On writes, overflow reset requests that are 
currently enabled can be disabled.

For more information of how to enable reset requests on counter overflows, and how the 
requests are signaled, see c15, nVAL Reset Enable Set Register on page 4-64.

c15, nVAL Debug Request Enable Clear Register

The nVAL Debug Request Enable Clear Register disables overflow debug requests from any of 
the PMC Registers, PMC0-PMC2, and CCNT, that are enabled.

The nVAL Debug Request Enable Clear Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register on page 6-15.

Figure 4-51 shows the bit arrangement for the nVAL Debug Request Enable Clear Register.

Figure 4-51 nVAL Debug Request Enable Clear Register format

Table 4-49 shows how the bit values correspond with the nVAL Debug Request Enable Clear 
Register.

[2] P2 PMC2 overflow reset request

[1] P1 PMC1 overflow reset request

[0] P0 PMC0 overflow reset request

Table 4-48 nVAL Reset Enable Clear Register bit functions (continued)

Bits Field Function

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter overflow 
debug request disables

Cycle count overflow
debug request disable

Table 4-49 nVAL Debug Request Enable Clear Register bit functions

Bits Field Function

[31] C CCNT overflow debug request 

[30:3] Reserved UNP or SBZP

[2] P2 PMC2 overflow debug request 

[1] P1 PMC1 overflow debug request 

[0] P0 PMC0 overflow debug request 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-68
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the nVAL Debug Request Enable Clear Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c1, 7 ; Read nVAL Debug Request Enable Clear Register
MCR p15, 0, <Rd>, c15, c1, 7 ; Write nVAL Debug Request Enable Clear Register

On reads, this register returns the current setting. On writes, overflow debug requests that are 
currently enabled can be disabled.

For more information of how to enable debug requests on counter overflows, and how the 
requests are signaled, see c15, nVAL Debug Request Enable Set Register on page 4-64.

c15, nVAL Cache Size Override Register

The nVAL Cache Size Override Register overwrites the caches size fields in the main register. 
This enables you to choose a smaller instruction and data cache size than is implemented.

The nVAL Cache Size Override Register is:
• a write-only register
• only accessible in Privileged mode.

Figure 4-52 shows the bit arrangement for the nVAL Cache Size Override Register.

Figure 4-52 nVAL Cache Size Override Register format

Table 4-50 shows how the bit values correspond with the nVAL Cache Size Override Register.

Table 4-51 shows the encodings for the nVAL instruction and data cache sizes.

To access the nVAL Cache Size Override Register, write CP15 with:

MCR p15, 0, <Rd>, c15, c14, 0 ; nVAL Cache Size Override Register

Icache

31 16 15 78 4 3 0

Reserved Dcache

Table 4-50 nVAL Cache Size Override Register

Bits Field Function

[31:8] Reserved SBZ.

[7:4] Dcache Defines the nVAL data cache size. See Table 4-51.

[3:0] Icache Defines the nVAL instruction cache size. See Table 4-51.

Table 4-51 nVAL instruction and data cache size encodings

Encoding Instruction and data cache size

b0000 4kB

b0001 8kB

b0011 16kB

b0111 32kB

b1111 64kB
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-69
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Note
 The nVAL Cache Size Override Register can only be used to select cache sizes for which the 
appropriate RAM has been integrated. Larger cache sizes require deeper data and tag RAMs, 
and smaller cache sizes require wider tag RAMs. Therefore, it is unlikely that you can change 
the cache size using this register except using a simulation model of the cache RAMs.

4.2.29 Correctable Fault Location Register

The Correctable Fault Location Register (CFLR) indicates the location of the last correctable 
error that occurred during cache or TCM operations. It is not updated on speculative accesses, 
for example, an instruction fetch for an instruction that is not executed because of a previous 
branch. This register is:
• a read/write register
• accessible in Privileged mode only.

Note
 This register is implemented from the r1pm releases of the processor. Attempting to access this 
register in r0pm releases of the processor results in an Undefined Instruction exception.

The processor updates this register regardless of whether an abort is taken or an access is retried 
in response to the error.

This register is updated on:
• parity or ECC errors in the instruction cache
• single-bit ECC errors in the data cache
• parity or multi-bit errors in the data cache when write-through behavior is forced
• single-bit TCM ECC errors.

The CFLR is not updated on a TCM external error or external retry request.

Every correctable error that causes a CFLR update also has an associated event. See Table 6-1 
on page 6-2 for the events which are related to CFLR updates. If two correctable errors occur 
simultaneously, for example an AXI slave error and an LSU or PFU error, the LSU or PFU write 
takes priority. If multiple errors occur, the value in the CFLR reflects the location of the latest 
event.

The same register is updated by all correctable errors. You can read bits [25:24] to determine 
whether the error was from a cache or TCM access. Figure 4-53 shows the bit arrangement of 
the CFLR when it indicates a correctable cache error.

Figure 4-53 Correctable Fault Location Register - cache

Side  Reserved Type

31 30 29 26 25 24 23 14 13 5 4 2 1 0

Way Index

Reserved Reserved
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-70
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Table 4-52 shows how the bit values correspond to the CFLR when it indicates a correctable 
cache error.

Figure 4-54 shows the bit arrangement of the CFLR when it indicates a correctable TCM error.

Figure 4-54 Correctable Fault Location Register - TCM

Table 4-53 shows how the bit values correspond to the CFLR when it indicates a correctable 
TCM error.

To access the Correctable Fault Location Register, read or write CP15 with:

MRC p15, 0, <Rd>, c15, c3, 0 : Read CFLR
MCR p15, 0, <Rd>, c15, c3, 0 : Write CFLR

Table 4-52 Correctable Fault Location Register - cache

Bits Field Function

[31:30] Reserved RAZ

[29:26] Way Indicates the Way of the error.

[25:24] Side Indicates the source of the error. For cache errors, this value is always 0b00.

[23:14] Reserved RAZ

[13:5] Index Indicates the index of the location where the error occurred.

[4:2] Reserved RAZ

[1:0] Type Indicates the type of access that caused the error.
0b00 = Instruction cache.
0b01 = Data cache.

Type  

31 26 25 24 23 22 3 2 1 0

Reserved Side  Address[22:3]

Reserved Reserved

Table 4-53 Correctable Fault Location Register - TCM

Bits Field Function

[31:26] Reserved RAZ

[25:24] Side Indicates the source of the error.
0b01 = ATCM
0b10 = BTCM

[23] Reserved RAZ

[22:3] Address Indicates the address in the TCM where the error occurred.

[2] Reserved RAZ

[1:0] Type Indicates the type of access that caused the error.
0b00 = Instruction.
0b01 = Data.
0b10, 0b11 = AXI slave.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-71
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
4.2.30 Build Options Registers

Build options registers reflect the build configuration options used to build the processor. They 
do not reflect any pin-configuration options. These registers are:
• read-only registers
• accessible in Privileged mode only.

Note
 These registers are implemented from the r1pm releases of the processor. Attempting to access 
these registers in r0pm releases of the processor results in an Undefined Instruction exception.

c15, Build Options 1 Register

Figure 4-55 shows the bit arrangement for the Build Options 1 Register.

Figure 4-55 Build Options 1 Register format

Table 4-54 shows how the bit values correspond with the Build Options 1 Register.

To access the Build Options 1 Register, write CP15 with:

MRC p15, 0, <Rd>, c15, c2, 0 ; read Build Options 1 Register 

c15, Build Options 2 Register

Figure 4-56 on page 4-73 shows the bit arrangement for the Build Options 2 Register.

31 11 012

ReservedTCM_HI_INIT_ADDR

Table 4-54 Build Options 1 Register

Bits Field Function

[31:12] TCM_HI_INIT_ADDR Default high address for the TCM.

[11:0] Reserved SBZ
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-72
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
Figure 4-56 Build Options 2 Register format

Table 4-55 shows how the bit values correspond with the Build Options 2 Register.

31 25 24 23 22 21 19 17 16 14 13 12 11 7 6 3 026272830 29 1020 9 458

DUAL_CORE
DUAL_NCLK
NO_ICACHE

NO_DCACHE
ATCM_ES
BTCM_ES

NO_IE
NO_FPU
NO_MPU

MPU_REGIONS
BREAK_POINTS
WATCH_POINTS
NO_A_TCM_INF

NO_B0_TCM_INF
NO_B1_TCM_INF
TCMBUSPARITY

NO_SLAVE
ICACHE_ES

DCACHE_ES
N0_HARD_ERROR_CACHE

AXIBUSPARITY

2

RESERVED

Table 4-55 Build Options 2 Register

Bits Field Function

[31] DUAL_COREa Indicates whether a second, redundant, copy of the processor logic and 
checking logic was instantiated:
0 = single core
1 = dual core.

[30] DUAL_NCLKa Indicates whether an inverted clock is used for the redundant core:
0 = inverted clock not used
1 = inverted clock used.

[29] NO_ICACHE Indicates whether the processor contains instruction cache:
0 = processor contains instruction cache
1 = processor does not contain instruction cache.

[28] NO_DCACHE Indicates whether the processor contains data cache:
0 = processor contains data cache
1 = processor does not contain data cache.

[27:26] ATCM_ES Indicates whether an error scheme is implemented on the ATCM interface:
00 = no error scheme
01 = 8-bit parity logic
10 = 32-bit error detection and correction
11 = 64-bit error detection and correction.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-73
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
[25:24] BTCM_ES Indicates whether an error scheme is implemented on the BTCM interface(s):
00 = no error scheme
01 = 8-bit parity logic
10 = 32-bit error detection and correction
11 = 64-bit error detection and correction.

[23] NO_IE Indicates whether the processor supports big-endian instructions:
0 = processor supports big-endian instructions
1 = processor does not support big-endian instructions.

[22] NO_FPU Indicates whether the processor contains a floating point unit:
0 = processor contains a floating point unit
1 = processor does not contain a floating point unit.

[21] NO_MPU Indicates whether the processor contains a Memory Protection Unit (MPU):
0 = processor contains an MPU
1 = processor does not contain an MPU.

[20] MPU_REGIONS Indicates the number of regions in the included MPU:
0 = 8
1 = 12.
If the processor does not contain an MPU (bit [21] set to 0), this bit is set to 0. 

[19:17] BREAK_POINTS Indicates the number of break points implemented in the processor, minus 1.

[16:14] WATCH_POINTS Indicates the number of watch points implemented in the processor, minus 1.

[13] NO_A_TCM_INF Indicates whether the processor contains an ATCM port:
0 = processor contains ATCM port
1 = processor does not contain ATCM port.

[12] NO_B0_TCM_INF Indicates whether the processor contains a B0TCM port:
0 = processor contains B0TCM port
1 = processor does not contain B0TCM port.

[11] NO_B1_TCM_INF Indicates whether the processor contains a B1TCM port:
0 = processor contains B1TCM port
1 = processor does not contain B1TCM port.

[10] TCMBUSPARITY Indicates whether the processor contains TCM address bus parity logic:
0 = processor does not contain TCM address bus parity logic
1 = processor contains TCM address bus parity logic.

[9] NO_SLAVE Indicates whether the processor contains an AXI slave port:
0 = processor contains an AXI slave port
1 = processor does not contain an AXI slave port.

[8:7] ICACHE_ES Indicates whether an error scheme is implemented for the instruction cache:
00 = no error scheme
01 = 8-bit parity error detection
11 = 64-bit error detection and correction.
If the processor does not contain an i-cache, these bits are set to 00.

Table 4-55 Build Options 2 Register (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-74
ID013010 Non-Confidential, Unrestricted Access



System Control Coprocessor 
To access the Build Options 2 Register, write CP15 with:

MRC p15, 0, <Rd>, c15, c2, 1 ; read Build Options 2 Register 

[6:5] DCACHE_ES Indicates whether an error scheme is implemented for the data cache:
00 = no error scheme
01 = 8-bit parity error detection
10 = 32-bit error detection and correction.
If the processor does not contain a d-cache, these bits are set to 00.

[4] NO_HARD_ERROR_CACH
E

Indicates whether the processor contains cache for corrected TCM errors:
0 = processor contains TCM error cache
1 = processor does not contain TCM error cache.

[3] AXIBUSPARITY Indicates whether the processor contains AXI bus parity logic.
0 = processor does not contain AXI bus parity logic
1 = processor contains AXI bus parity logic.

[2:0] Reserved Undefined.

a. The value of this bit is UNPREDICTABLE in revision r1p0 of the processor.

Table 4-55 Build Options 2 Register (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 4-75
ID013010 Non-Confidential, Unrestricted Access



Chapter 5 
Prefetch Unit

This chapter describes how the PreFetch Unit (PFU), in conjunction with the DPU, uses program 
flow prediction to locate branches in the instruction stream and the strategies used to determine if 
a branch is likely to be taken or not. It contains the following sections:
• About the prefetch unit on page 5-2
• Branch prediction on page 5-3
• Return stack on page 5-5.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 5-1
ID013010 Non-Confidential, Unrestricted Access



Prefetch Unit 
5.1 About the prefetch unit
The purpose of the PFU is to:

• perform speculative fetch of instructions ahead of the DPU by predicting the outcome of 
branch instructions

• format instruction data in a way that aids the DPU in efficient implementation.

The PFU fetches instructions from the memory system under the control of the DPU, and the 
internal coprocessors CP14 and CP15. In ARM state the memory system can supply up to two 
instructions per cycle. In Thumb state the memory system can supply up to four instructions per 
cycle.

The PFU buffers up to three instruction data fetches in its FIFO. There is an additional FIFO 
between the PFU and the DPU that can normally buffer up to eight instructions. This reduces or 
eliminates stall cycles after a branch instruction. This increases the performance of the 
processor.

Program flow prediction occurs in the PFU by:

• predicting the outcome of conditional branches using the branch predictor and, for direct 
branches, calculating their destination address using the offset encoded in the instruction

• predicting the destination of procedure returns using the return stack.

The DPU resolves the program flow predictions that the PFU makes.

The PFU fetches the instruction stream as dictated by:
• the Program Counter
• the branch predictor
• procedure returns signaled by the return stack
• exceptions including aborts and interrupts signaled by the DPU
• correction of mispredicted branches as indicated by the DPU.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 5-2
ID013010 Non-Confidential, Unrestricted Access



Prefetch Unit 
5.2 Branch prediction
The PFU normally fetches instructions from sequential addresses. If a branch instruction is 
fetched, the next instruction to be fetched can only be determined with certainty after the 
instruction has completed execution at the end of the pipeline in the DPU. If the branch is taken, 
the next instruction to be executed is not sequential. The sequential instructions that the PFU 
has fetched while the branch instruction was executing must be flushed from the pipeline and 
the correct instruction fetched. This has the effect of reducing the performance of the processor.

The PFU can detect branches in the Pd-stage of the pipeline, predict whether or not the branch 
is taken, and determine or predict the target address for a taken branch. This enables the PFU to 
start fetching instructions at the destination of a taken branch before the branch has completed 
execution in the DPU. The branch instruction is still executed in the DPU to determine the 
accuracy of the prediction. If the branch was mispredicted, the pipeline must be flushed and the 
correct instruction fetched. In general, more branches are correctly predicted than mispredicted 
so fewer pipeline flushes occur and the performance of the processor is enhanced.

Two major classes of branch are addressed in the processor prediction scheme:

1. Direct branches, including B, BL, CZB, and BLX immediate, where the target address is a 
fixed offset, encoded in the instruction, from the program counter. If such an instruction 
has been fetched, and the program counter is known, predicting the destination of the 
branch only involves predicting whether the instruction passes or fails its condition code, 
that is, whether the branch is taken or not taken.

2. Indirect branches such as load and Branch and eXchange (BX), instructions which write to 
the PC, that can be identified as a likely return from a procedure call. Two identifiable 
cases are:
• loads to the PC from an address derived from R13 
• BX from R0-R14.
In these cases, if the calling operation can also be identified, the likely return address can 
be stored in the return stack. Typical calling operations are BL and BLX instructions. 

Note
 Unconditional instructions of either class of program flow are always executed, and do not 
affect prediction history. Unconditional return stack operations always affect the return stack.

This section describes:
• Disabling program flow prediction
• Branch predictor on page 5-4
• Incorrect predictions and correction on page 5-4.

5.2.1 Disabling program flow prediction

You cannot disable program flow prediction using the Z bit, bit [11], of CP15 Register c1. The 
Z bit is tied to 1. To disable the program flow prediction you must disable the return stack and 
set the branch prediction policy to not-taken. For more information see c1, System Control 
Register on page 4-35.

You can also control the return stack, the branch predictor, and the fetch rate using the Auxiliary 
Control Register. For more information see Auxiliary Control Registers on page 4-38.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 5-3
ID013010 Non-Confidential, Unrestricted Access



Prefetch Unit 
5.2.2 Branch predictor

Branch prediction in the processor is dynamic and is based around a global history prediction 
scheme. In addition, there is extra logic to handle predictions that thrash and to predict the end 
of long loops. 

The global history scheme is an adaptive predictor that learns the behavior of branches during 
execution, based on the historical pattern of behavior of the preceding branches. For each 
pattern of branch behavior, the history table holds a 2-bit hint value. The 2-bit hint indicates if 
the next branch must be predicted taken or predicted not-taken based on the behavior of previous 
branches. The history table contains 256 entries.

For loops beyond a certain number of iterations, the branch history is not large enough to learn 
the history and predict the loop exit. The PFU includes logic to count the number of iterations 
(up to 31) of a loop, and thereby predict the not-taken branch that exits the loop. If the number 
of iterations taken exceeds 31, the loop branch is never predicted as not-taken.

If multiple branch histories index into the same hint value, this can cause thrashing in the history 
table and reduce accuracy of the branch predictor. Logic in the branch predictor detects these 
cases and provides some hysteresis for the hint value.

For direct branches, the target address is calculated statically from the instruction encoding and 
the program counter. For indirect branches, the hint value predicts if the branch is taken or 
not-taken, and the return stack can sometimes be used to predict the target address. When the 
destination of a branch cannot be calculated statically, or popped from the return stack, PFU 
assumes the branch to be not-taken.

The PFU updates the history for each occurrence of a branch when the DPU indicates how the 
branch was resolved.

Configuring the branch predictor 

You can configure the branch predictor by setting bits in the Auxiliary Control Register:

• Set bits [16:15] to b00 to enable prediction using the pattern history tables.

• Set bits [16:15] to b01 to force branches to be always predicted taken.

• Set bits [16:15] to b10 to force branches to be always predicted not-taken.

• Set bit [21] to disable prediction using the dynamic branch predictor loop cache.

• Set bit [20] to disable prediction using the dynamic branch predictor register extension 
cache.

For more information, see c1, Auxiliary Control Register on page 4-38

5.2.3 Incorrect predictions and correction

The DPU resolves branches that the dynamic branch predictor predicts at the Wr-stage of the 
pipeline, see Figure 1-3 on page 1-17. A misprediction causes the PFU to flush the pipeline and 
fetch the correct instruction stream.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 5-4
ID013010 Non-Confidential, Unrestricted Access



Prefetch Unit 
5.3 Return stack
The call-return stack predicts procedural returns that are program flow changes such as loads, 
and branch register. The dynamic branch predictor determines if conditional procedure returns 
are predicted as taken or not-taken. The return stack predicts the target address for unconditional 
procedure returns, and conditional procedure returns that have been predicted as taken by the 
branch predictor.

The return stack consists of a 4-entry circular buffer. When the PFU detects a taken procedure 
call instruction, the PFU pushes the return address onto the return stack. The instructions that 
the PFU recognizes as procedure calls are:
• for ARM and Thumb instructions:

— BL immediate
— BLX immediate
— BLX Rm.

When the return stack detects a taken return instruction, the PFU issues an instruction fetch from 
the location at the top of the return stack, and pops the return stack. The instructions that the 
PFU recognizes as procedure returns are, in both the ARM and Thumb instruction sets:
•
• POP {..,pc}

• LDMIB Rn{!}, {..,pc}

• LDMDA Rn{!}, {..,pc}

• LDMDB Rn{!}, {..,pc}

• LDR pc, [sp], #4

• BX Rm.

Return stack mispredictions can exist when:

• The prediction that a conditional return passed or failed its condition code is not correct.

• The return address is not correct. The DPU resolves indirect branches that the return stack 
predicts at the Ret-stage of the pipeline, see Figure 1-3 on page 1-17. A misprediction 
causes the PFU to flush the pipeline and fetch the correct instruction stream.

The return stack has no underflow or overflow detection. Either scenario is likely to cause a 
misprediction.

Note
 The MOV PC, LR instruction is not decoded and is not predicted as a return.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 5-5
ID013010 Non-Confidential, Unrestricted Access



Chapter 6 
Events and Performance Monitor

This chapter describes the Performance Monitoring Unit (PMU) and event bus interface. It 
contains the following sections:
• About the events on page 6-2
• About the PMU on page 6-6
• Performance monitoring registers on page 6-7
• Event bus interface on page 6-19.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-1
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
6.1 About the events
The processor includes logic to detect various events that can occur, for example, a cache miss. 
These events provide useful information about the behavior of the processor that you can use 
when debugging or profiling code.

The events are made visible on an output bus, EVNTBUS, and can be counted using registers 
in the Performance Monitoring Unit (PMU). See Event bus interface on page 6-19 for more 
information about the event bus, and About the PMU on page 6-6 for more information about 
the PMU. Table 6-1 lists the events that are generated, along with the bit position of each event 
on the event bus, and the numbers that the PMU uses to refer the events. Event reference 
numbers that are not listed are Reserved. See Error detection events on page 8-36 for more 
information on the CFLR related events.

Table 6-1 Event bus interface bit functions

EVNTBUS 
bit position Description CFLR 

update

Event 
Ref. 
Value

N/A Software increment. The register is incremented only on writes to the 
Software Increment Register. See c9, Software Increment Register on 
page 6-11.

- 0x00

[0] Instruction cache miss. 
Each instruction fetch from normal Cacheable memory that causes a refill 
from the level 2 memory system generates this event. Accesses that do not 
cause a new cache refill, but are satisfied from refilling data of a previous miss 
are not counted. Where instruction fetches consist of multiple instructions, 
these accesses count as single events. CP15 cache maintenance operations do 
not count as events.

- 0x01

[1] Data cache miss.
Each data read from or write to normal Cacheable memory that causes a refill 
from the level 2 memory system generates this event. Accesses that do not 
cause a new cache refill, but are satisfied from refilling data of a previous miss 
are not counted. Each access to a cache line to normal Cacheable memory that 
causes a new linefill is counted, including the multiple transactions of an LDM 
and STM. Write-through writes that hit in the cache do not cause a linefill and 
so are not counted. CP15 cache maintenance operations do not count as 
events.

- 0x03

[2] Data cache access.
Each access to a cache line is counted including the multiple transactions of 
an LDM, STM, or other operations. CP15 cache maintenance operations do not 
count as events.

- 0x04

[3] Data Read architecturally executed.
This event occurs for every instruction that explicitly reads data, including 
SWP.

- 0x06

[4] Data Write architecturally executed.
This event occurs for every instruction that explicitly writes data, including 
SWP.

- 0x07

[5] Instruction architecturally executed. - 0x08

[6] Dual-issued pair of instructions architecturally executed. - 0x5e

[7] Exception taken.
This event occurs on each exception taken.

- 0x09
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-2
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
[8] Exception return architecturally executed.
This event occurs on every exception return, for example, RFE, MOVS PC, LDM 
PC^.

- 0x0A

[9] Change to Context ID executed. - 0x0B

[10] Software change of PC, except by an exception, architecturally executed. - 0x0C

[11] B immediate, BL immediate or BLX immediate instruction architecturally 
executed (taken or not taken).

- 0x0D

[12] Procedure return architecturally executed, other than exception returns, for 
example, BX Rm; LDM PC. 
MOV PC, LR does not generate this event, because it is not predicted as a return.

- 0x0E

[13] Unaligned access architecturally executed. 
This event occurs for each instruction that was to an unaligned address that 
either triggered an alignment fault, or would have done so if the System 
Control Register A-bit had been set.

- 0x0F

[14] Branch mispredicted or not predicted. 
This event occurs for every pipeline flush caused by a branch.

- 0x10

N/A Cycle count. - 0x11

[15] Branches or other change in program flow that could have been predicted by 
the branch prediction resources of the processor.

- 0x12

[16] Stall because instruction buffer cannot deliver an instruction. 
This can indicate an ICache miss. This event occurs every cycle where the 
condition is present.

- 0x40

[17] Stall because of a data dependency between instructions.
This event occurs every cycle where the condition is present.

- 0x41

[18] Data cache write-back. 
This event occurs once for each line that is written back from the cache.

- 0x42

[19] External memory request.
Examples of this are cache refill, Non-cacheable accesses, write-through 
writes, cache line evictions (write-back).

- 0x43

[20] Stall because of LSU being busy. 
This event takes place each clock cycle where the condition is met. A high 
incidence of this event indicates the pipeline is often waiting for transactions 
to complete on the external bus.

- 0x44

[21] Store buffer was forced to drain completely.
Examples of this are DMB, Strongly Ordered memory access, or similar events.

- 0x45

N/A The number of cycles FIQ interrupts are disabled. - 0x46

N/A The number of cycles IRQ interrupts are disabled. - 0x47

N/A ETMEXTOUT[0]. - 0x48

N/A ETMEXTOUT[1]. - 0x49

Table 6-1 Event bus interface bit functions (continued)

EVNTBUS 
bit position Description CFLR 

update

Event 
Ref. 
Value
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-3
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
[22] Instruction cache tag RAM parity or ECC error (correctable). Yes 0x4A

[23] Instruction cache data RAM parity or ECC error (correctable). Yes 0x4B

[24] Data cache tag or dirty RAM parity error or correctable ECC error. Yes 0x4C

[25] Data cache data RAM parity error. or correctable ECC error Yes 0x4D

[26] TCM parity error or fatal ECC error reported from the prefetch unit. - 0x4E

[27] TCM parity error or fatal ECC error reported from the load/store unit. - 0x4F

N/A Store buffer merge. - 0x50

N/A LSU stall caused by full store buffer. - 0x51

N/A LSU stall caused by store queue full. - 0x52

N/A Integer divide instruction, SDIV or UDIV, executed. - 0x53

N/A Stall cycle caused by integer divide. - 0x54

N/A PLD instruction that initiates a linefill. - 0x55

N/A PLD instruction that did not initiate a linefill because of a resource shortage. - 0x56

N/A Non-cacheable access on AXI master bus. - 0x57

[28] Instruction cache access.
This is an analog to event 0x04.

- 0x58

N/A Store buffer operation has detected that two slots have data in same cache line 
but with different attributes.

- 0x59

[29] Dual issue case A (branch). - 0x5A

[30] Dual issue case B1, B2, F2 (load/store), F2D. - 0x5B

[31] Dual issue other. - 0x5C

[32] Double precision floating point arithmetic or conversion instruction executed. - 0x5D

[33] Data cache data RAM fatal ECC error. - 0x60

[34] Data cache tag/dirty RAM fatal ECC error. - 0x61

[35] Processor livelock because of hard errors or exception at exception vector.a - 0x62

[36] Unused. - 0x63

[37] ATCM parity or multi-bit ECC error. - 0x64

[38] B0TCM parity or multi-bit ECC error. - 0x65

[39] B1TCM parity or multi-bit ECC error. - 0x66

[40] ATCM single-bit ECC error. - 0x67

[41] B0TCM single-bit ECC error. - 0x68

[42] B1TCM single-bit ECC error. - 0x69

Table 6-1 Event bus interface bit functions (continued)

EVNTBUS 
bit position Description CFLR 

update

Event 
Ref. 
Value
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-4
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
[43] TCM correctable ECC error reported by load/store unit. Yes 0x6A

[44] TCM correctable ECC error reported by prefetch unit. Yes 0x6B

[45] TCM parity or fatal ECC error reported by AXI slave interface. - 0x6C

[46] TCM correctable ECC error reported by AXI slave interface. Yes 0x6D

N/A Cycle count - 0xFF

a. This event is only generated for by revisions r1p2 and later of the processor.

Table 6-1 Event bus interface bit functions (continued)

EVNTBUS 
bit position Description CFLR 

update

Event 
Ref. 
Value
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-5
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
6.2 About the PMU
The PMU consists of three event counting registers, one cycle counting register and 12 CP15 
registers, for controlling and interrogating the counters. The performance monitoring registers 
are always accessible in Privileged mode. You can use the User Enable (USEREN) Register to 
make all of the performance monitoring registers, except for the USEREN, Interrupt Enable Set 
(INTENS), and Interrupt Enable Clear (INTENC) Registers, accessible in User mode. 

All three event counters are read and written through the same CP15 register. The Performance 
Counter Selection (PMNXSEL) Register determines which counter is read or written. The three 
Event Selection registers, one per counter, are read and written through one CP15 register in the 
same way. 

Using the control registers, you can enable or disable each of the event counters individually, 
and read and reset the overflow flag for each counter. Any or all of the counters can be enabled 
to assert an interrupt request output, nPMUIRQ, on overflow.

When the processor is in Debug halt state:
• the PMU does not count events
• events are not visible on the ETM interface
• the Cycle CouNT (CCNT) register is halted.

For more information on Debug state see Chapter 11 Debug.

The PMU only counts events when non-invasive debug is enabled, that is, when either DBGEN 
or NIDEN inputs are asserted. The Cycle Count (CCNT) Register is always enabled regardless 
of whether non-invasive debug is enabled, unless the DP bit of the PMNC register is set. See c9, 
Performance Monitor Control Register on page 6-7.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-6
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
6.3 Performance monitoring registers
The performance monitoring registers are described in:
• c9, Performance Monitor Control Register
• c9, Count Enable Set Register on page 6-8
• c9, Count Enable Clear Register on page 6-9
• c9, Overflow Flag Status Register on page 6-10
• c9, Software Increment Register on page 6-11
• c9, Performance Counter Selection Register on page 6-12
• c9, Cycle Count Register on page 6-13
• c9, Event Selection Register on page 6-13
• c9, Performance Monitor Count Registers on page 6-15
• c9, User Enable Register on page 6-15
• c9, Interrupt Enable Set Register on page 6-16
• c9, Interrupt Enable Clear Register on page 6-17.

6.3.1 c9, Performance Monitor Control Register

The Performance MoNitor Control (PMNC) Register controls the operation of the three count 
registers, and the CCNT Register.

The PMNC Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines accessibility in 
User mode, see c9, User Enable Register on page 6-15.

Figure 6-1 shows the bit arrangement for the PMNC Register.

Figure 6-1 PMNC Register format

Table 6-2 shows how the bit values correspond with the PMNC Register.

D C P EIMP

31 11 6 4 3 2 1 0

IDCODE N

10

Reserved D
P

5

X

24 23 16 15

Table 6-2 PMNC Register bit functions

Bits Field Function

[31:24] IMP Implementer code:
0x41 = ARM

[23:16] IDCODE Identification code:
0x14 = Cortex-R4

[15:11] N Specifies the number of counters implemented:
0x3 = three counters implemented

[10: 6] Reserved RAZ on reads, Should Be Zero or Preserved (SBZP) on writes

[5] DP Disable CCNT when prohibited, that is, when non-invasive debug is not enabled:
0 = Count is enabled in prohibited regions. This is the reset value.
1 = Count is disabled in prohibited regions.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-7
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
The PMNC Register is always accessible in Privileged mode. To access the register, read or 
write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 0 ; Read PMNC Register
MCR p15, 0, <Rd>, c9, c12, 0 ; Write PMNC Register

6.3.2 c9, Count Enable Set Register

The CouNT ENable Set (CNTENS) Register enables any of the performance monitor count 
registers. When read, this register indicates which counters are enabled. Writing a 1 to a 
particular count enable bit enables that counter. Writing a 0 to a count enable bit has no effect. 
You must use the Count Enable Clear Register to disable the counters.

The CNTENS Register is:

• A read/write register.

• Always accessible in Privileged mode. The USEREN Register determines accessibility in 
User mode, see c9, User Enable Register on page 6-15.

The values in this register are ignored unless the E bit, bit [0], is set in the PMNC Register, see 
c9, Performance Monitor Control Register on page 6-7.

Figure 6-2 on page 6-9 shows the bit arrangement for the CNTENS Register.

[4] X Enable export of the events to the event bus for an external monitoring block, for example the 
ETM, to trace events:
0 = Export disabled. This is the reset value.
1 = Export enabled.

[3] D Cycle count divider:
0 = Counts every processor clock cycle. This is the reset value.
1 = Counts every 64th processor clock cycle.

[2] C Cycle counter reset:
0 = no action
1 = reset cycle counter, CCNT, to zero.
This bit Reads-As-Zero.

[1] P Event counter reset: 
0 = no action
1 = reset all event counters to zero.
This bit Reads-As-Zero.

[0] E Enable:
0 = Disable all counters, including CCNT. This is the reset value.
1 = Enable all counters including CCNT.

Table 6-2 PMNC Register bit functions  (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-8
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
Figure 6-2 CNTENS Register format

Table 6-3 shows how the bit values correspond with the CNTENS Register.

To access the CNTENS Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 1 ; Read CNTENS Register
MCR p15, 0, <Rd>, c9, c12, 1 ; Write CNTENS Register

The CNTENS Register retains its value when the enable bit of the PMNC is clear, even though 
its settings are ignored.

6.3.3 c9, Count Enable Clear Register

The CouNT ENable Clear (CNTENC) Register disables any of the Performance Monitor Count 
Registers.

When reading this register, any enable that reads as 0 indicates the corresponding counter is 
disabled. Any enable that reads as 1 indicates the corresponding counter is enabled.

When writing this register, any enable written with a value of 0 is ignored, that is, not updated. 
Any enable written with a value of 1 clears the counter enable.

The CNTENC Register is:

• A read/write register

• Always accessible in Privileged mode. The User Enable Register determines accessibility 
in User mode, see c9, User Enable Register on page 6-15.

Figure 6-3 on page 6-10 shows the bit arrangement for the CNTENC Register.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor
counter enables

Cycle count enable

Table 6-3 CNTENS Register bit functions

Bits Field Function

[31] C Cycle counter enable set:
0 = disable
1 = enable.

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 enable

[1] P1 Counter 1 enable

[0] P0 Counter 0 enable
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-9
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
Figure 6-3 CNTENC Register format

Table 6-4 shows how the bit values correspond with the CNTENC Register.

To access the CNTENC Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 2 ; Read CNTENC Register
MCR p15, 0, <Rd>, c9, c12, 2 ; Write CNTENC Register

Writing to bits in this register disables individual counters, and clears the corresponding bits in 
the CNTENS Register, see c9, Count Enable Set Register on page 6-8. 

You can use the enable, EN, bit [0] of the PMNC Register to disable all performance counters 
including CCNT, see c9, Performance Monitor Control Register on page 6-7. 

The CNTENC and CNTENS Registers retain their values when the enable bit of the PMNC is 
clear, even though their settings are ignored. The CNTENC Register can be used to clear the 
enabled flags for individual counters even when all counters are disabled in the PMNC Register.

6.3.4 c9, Overflow Flag Status Register

The overflow FLAG status (FLAG) Register indicates if performance monitor counters have 
overflowed.

The FLAG Register is:

• A read/write register

• Always accessible in Privileged mode. The USEREN Register determines accessibility in 
User mode, see c9, User Enable Register on page 6-15.

Figure 6-4 on page 6-11 shows the bit arrangement for the FLAG Register.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor
counter disables

Cycle count disable

Table 6-4 CNTENC Register bit functions

Bits Field Function

[31] C Cycle counter enable clear:
0 = disable
1 = enable.

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 enable

[1] P1 Counter 1 enable

[0] P0 Counter 0 enable
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-10
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
Figure 6-4 FLAG Register format

Table 6-5 shows how the bit values correspond with the FLAG Register.

To access the FLAG Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 3 ; Read FLAG Register
MCR p15, 0, <Rd>, c9, c12, 3 ; Write FLAG Register

If an overflow flag is set to 1 in the FLAG register it remains set until one of the following 
happens:
• writing 1 to the flag bit in the FLAG Register clears the flag
• the processor is reset.

The following operations do not clear the overflow flags:
• disabling the overflowed counter in the CNTENC Register
• disabling all counters in the PMNC Register
• resetting the overflowed counter using the PMNC Register.

6.3.5 c9, Software Increment Register

The Software INCRement (SWINCR) Register increments the count of a Performance Monitor 
Count Register.

The SWINCR Register is:

• A write-only register that Reads-As-Zero

• Always accessible in Privileged mode. The USEREN Register determine accessibility in 
User mode, see c9, User Enable Register on page 6-15.

Caution
 You must only use the SWINCR Register to increment performance monitor count registers 
when the counter event is set to 0x00, software count, in the Event Select Register, see c9, Event 
Selection Register on page 6-13.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counters
overflow flags

Cycle count overflow

Table 6-5 Overflow Flag Status Register bit functions

Bits Field Function

[31] Cycle counter overflow Cycle counter overflow flag:
0 = disable
1 = enable.

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Counter 2 overflow flag

[1] P1 Counter 1 overflow flag

[0] P0 Counter 0 overflow flag
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-11
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
If you attempt to use the SWINCR Register to increment a performance monitor count register 
when the counter event is set to a value other than 0x00 the result is Unpredictable.

Figure 6-5 shows the bit arrangement for the SWINCR Register.

Figure 6-5 SWINCR Register format

Table 6-6 shows how the bit values correspond with the SWINCR Register.

To access the SWINCR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 4 ; Read SWINCR Register
MCR p15, 0, <Rd>, c9, c12, 4 ; Write SWINCR Register

6.3.6 c9, Performance Counter Selection Register

The Performance Counter SELection (PMNXSEL) Register selects a Performance Monitor 
Count Register. It determines which count register is accessed or controlled by accesses to the 
Event Selection Register and the Performance Monitor Count Register.

The PMNXSEL Register is:

• A read/write register

• Always accessible in Privileged mode. The USEREN Register determines accessibility in 
User mode, see c9, User Enable Register on page 6-15.

Figure 6-6 shows the bit arrangement for the PMNXSEL Register.

Figure 6-6 PMNXSEL Register format

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counters
software increment bits

Table 6-6 SWINCR Register bit functions

Bits Field Function

[31:3] Reserved RAZ on reads, SBZP on writes

[2] P2 Increment Counter 2

[1] P1 Increment Counter 1

[0] P0 Increment Counter 0

SEL

31 4 0

Reserved

5

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-12
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
Table 6-7 shows how the bit values correspond with the PMNXSEL Register functions.

Any values programmed in the PMNXSEL Register other than those specified in Table 6-7 are 
Unpredictable.

To access the PMNXSEL Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 5 ; Read PMNXSEL Register
MCR p15, 0, <Rd>, c9, c12, 5 ; Write PMNXSEL Register

6.3.7 c9, Cycle Count Register

The Cycle CouNT (CCNT) Register counts clock cycles.

The CCNT Register is:

• A read/write register

• Always accessible in Privileged mode. The USEREN Register determines accessibility in 
User mode, see c9, User Enable Register on page 6-15.

To access the CCNT read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 0 ; Read CCNT Register
MCR p15, 0, <Rd>, c9, c13, 0 ; Write CCNT Register

The Cycle Count Register must be disabled before software can write to it. Any attempt by 
software to write to this register when enabled is Unpredictable.

6.3.8 c9, Event Selection Register

There are three Event Selection Registers in the processor, EVTSEL0 to EVTSEL2, each 
corresponding to one of the Performance Monitor Count (PMC) Registers, PMC0 to PMC2. 
Each register selects the events you want a PMC Register to count. The register to be accessed 
is determined by the value in the Performance Counter Selection Register.

The EVTSEL Register is:

• A read/write register

• Always accessible in Privileged mode. The USEREN Register determines accessibility in 
User mode, see c9, User Enable Register on page 6-15.

Figure 6-7 on page 6-14 shows the bit arrangement for the EVTSELx Register.

Table 6-7 Performance Counter Selection Register bit functions

Bits Field Function

[31:5] Reserved RAZ on reads, SBZP on writes

[4:0] SEL Counter select:
b00000 = selects counter 0
b00001 = selects counter 1
b00010 = selects counter 2.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-13
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
Figure 6-7 EVTSELx Register format

Table 6-8 shows how the bit values correspond with the EVTSELx Register.

To access the EVTSELx Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 1 ; Read EVTSELx Register
MCR p15, 0, <Rd>, c9, c13, 1 ; Write EVTSELx Register

The absolute counts of events recorded might vary because of pipeline effects. This has 
negligible effect except in cases where the counters are enabled for a very short time.

In addition to the counters within the processor, most of the events that Table 6-1 on page 6-2 
shows are available to the ETM unit or other external trace hardware to enable monitoring of 
the events. For information on how to monitor these events, see the CoreSight ETM-R4 
Technical Reference Manual. 

SEL

31 0

Reserved

8 7

Table 6-8 EVTSELx Register bit functions

Bits Field Function

[31:8] Reserved RAZ or SBZP.

[7:0] SEL Event number selected, see Table 6-1 on page 6-2 for 
values.
The reset value of this field is Unpredictable.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-14
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
6.3.9 c9, Performance Monitor Count Registers

There are three PMC Registers (PMC0-PMC2) in the processor. Each PMC Register, as selected 
by the PMNXSEL Register, counts instances of an event selected by the EVTSEL Register. Bits 
[31:0] of each PMC Register contain an event count. The register to be accessed is determined 
by the value in the Performance Counter Selection Register.

Each PMC Register is:

• A read/write register

• Always accessible in Privileged mode. The USEREN Register determines access, see c9, 
User Enable Register.

To access the current Performance Monitor Count Registers, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 2 ; Read current PMNx Register
MCR p15, 0, <Rd>, c9, c13, 2 ; Write current PMNx Register

6.3.10 c9, User Enable Register

The USER ENable (USEREN) Register enables User mode to have access to:

• the performance monitor registers, see Performance monitoring registers on page 6-7

• the validation registers, see Validation Registers on page 4-62.

Note
 The USEREN Register does not provide access to the registers that control interrupt generation.

The USEREN Register is:
• a read/write register
• writable only in Privileged mode, readable in any processor mode.

Figure 6-8 shows the bit arrangement for the USEREN Register.

Figure 6-8 USEREN Register format

Table 6-9 shows how the bit values correspond with the Performance Monitor Count Enable Set 
Register.

If the EN bit in the USEREN Register is not set, any attempt to access a performance monitor 
register or a validation register from User mode causes an Undefined instruction exception.

31 1 0

Reserved

EN

Table 6-9 USEREN Register bit functions

Bits Field Function

[31:1] Reserved RAZ or SBZP.

[0] EN User mode access to performance monitor and validation registers:
0 = Disabled. This is the reset value.
1 = Enabled.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-15
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
Note
 For more information on access permissions to the performance monitor registers and validation 
registers, see the ARM Architecture Reference Manual. 

To access the USEREN Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 0 ; Read USEREN Register
MCR p15, 0, <Rd>, c9, c14, 0 ; Write USEREN Register

6.3.11 c9, Interrupt Enable Set Register

The INTerrupt ENable Set (INTENS) Register determines if any of the PMC Registers, 
PMC0-PMC2 and CCNT, generate an interrupt request on overflow.

The INTENS Register is:
• a read/write register
• accessible in Privileged mode only.

Reading this register returns the current setting. Writing to this register can enable interrupts. 
You can disable interrupts only by writing to the INTENC Register.

Figure 6-9 shows the bit arrangement for the INTENS Register.

Figure 6-9 INTENS Register format

Table 6-10 shows how the bit values correspond with the INTENS Register.

When reading bits [31], [2], [1], and [0] of the INTENS Register:
• 0 = interrupt disabled
• 1 = interrupt enabled.

When writing to bits [31], [2], [1], and [0] of the INTENS Register:
• 0 = no action
• 1 = interrupt enabled.

To access the Interrupt Enable Set Register, read or write CP15 with:

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow interrupt enables

Cycle count overflow interrupt enable

Table 6-10 INTENS Register bit functions

Bits Field Function

[31] C CCNT overflow interrupt enable

[30:3] Reserved UNP on reads, SBZP on write 

[2] P2 PMC2 overflow interrupt enable

[1] P1 PMC1 overflow interrupt enable

[0] P0 PMC0 overflow interrupt enable
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-16
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
MRC p15, 0, <Rd>, c9, c14, 1 ; Read INTENS Register
MCR p15, 0, <Rd>, c9, c14, 1 ; Write INTENS Register

If this unit generates an interrupt, the processor asserts the pin nPMUIRQ. You can route this 
pin to an external interrupt controller for prioritization and masking. This is the only mechanism 
that signals this interrupt to the processor.

Note
 ARM expects that the Performance Monitor interrupt request signal, nPMUIRQ, connects to a 
system interrupt controller.

6.3.12 c9, Interrupt Enable Clear Register

The INTerrupt ENable Clear (INTENC) Register determines if any of the PMC Registers, 
PMC0-PMC2 and CCNT, generate an interrupt request on overflow.

The INTENC Register is:
• a read/write register
• accessible in Privileged mode only.

Reading this register returns the current setting. Writing to this register can disable interrupt 
requests. You can enable interrupt requests only by writing to the INTENS Register.

Figure 6-10 shows the bit arrangement for the INTENC Register.

Figure 6-10 INTENC Register format

Table 6-11 shows how the bit values correspond with the INTENC Register.

When reading bits [31], [2], [1], and [0] of the INTENC Register:
• 0 = interrupt disabled
• 1 = interrupt enabled.

When writing to bits [31], [2], [1], and [0] of the INTENC Register:
• 0 = no action
• 1 = interrupt disabled.

C

31 3 2 1 0

Reserved

P2
P1
P0

Performance monitor counter 
overflow interrupt disables

Cycle count overflow interrupt disable

Table 6-11 INTENC Register bit functions

Bits Field Function

[31] C CCNT overflow interrupt enable bit

[30:3] Reserved UNP on reads, SBZP on writes

[2] P2 Interrupt on PMC2 overflow when enabled

[1] P1 Interrupt on PMC1 overflow when enabled

[0] P0 Interrupt on PMC0 overflow when enabled
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-17
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
To access the INTENC Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 2 ; Read INTENC Register
MCR p15, 0, <Rd>, c9, c14, 2 ; Write INTENC Register
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-18
ID013010 Non-Confidential, Unrestricted Access



Events and Performance Monitor 
6.4 Event bus interface
The event bus, EVNTBUS, is used to signal when an event has occurred. The event bus includes 
most, but not all, of the events that can be counted by the performance monitoring unit. Each 
individual event is assigned to an individual bit of this bus, and this bit is asserted for one cycle 
each time the event occurs.

The event bus only signals events when it is enabled. Set the X bit in the Performance Monitor 
Control Register to enable the event bus. See c9, Performance Monitor Control Register on 
page 6-7.

See Table 6-1 on page 6-2 to see which bit of the event bus each event is signaled on.

Note
 If an event is being counted in the PMU, the count might not be incremented in exactly the same 
cycle that the event is signaled on the event bus.

6.4.1 Use of the event bus and counters

The event bus is designed to be connected to the ETM-R4, which enables processor events to 
trigger tracing for debug purposes. You can also connect it to event counting registers external 
to the processor, or to an interrupt generator.

Because each EVNTBUS pin is only asserted for one cycle for each occurrence of the event, it 
is possible to create composite events by ORing various EVNTBUS pins together. A composite 
event signal like this is asserted when any of the included events occur although, if multiple 
events occur in the same cycle, the composite event only occurs once.

The processor also has two event input pins, ETMEXTOUT[1:0]. This bus is normally 
intended for connection to the ETM, and enables the Cortex-R4 performance monitor to count 
events generated by the ETM. These inputs can alternatively be used for composite events 
generated external to the processor.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 6-19
ID013010 Non-Confidential, Unrestricted Access



Chapter 7 
Memory Protection Unit

This chapter describes the Memory Protection Unit (MPU). It contains the following sections:
• About the MPU on page 7-2
• Memory types on page 7-7
• Region attributes on page 7-9
• MPU interaction with memory system on page 7-11
• MPU faults on page 7-12
• MPU software-accessible registers on page 7-13.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-1
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.1 About the MPU
The MPU works with the L1 memory system to control accesses to and from L1 and external 
memory. For a full architectural description of the MPU, see the ARM Architecture Reference 
Manual.

The MPU enables you to partition memory into regions and set individual protection attributes 
for each region. The MPU supports zero, eight, or twelve memory regions.

Note
 If the MPU has zero regions, you cannot enable or program the MPU. Attributes are only 
determined from the default memory map when zero regions are implemented.

Each region is programmed with a base address and size, and the regions can be overlapped to 
enable efficient programming of the memory map. To support overlapping, the regions are 
assigned priorities, with region 0 having the lowest priority and region 11 having the highest. 
The MPU returns access permissions and attributes for the highest priority region where the 
address hits.

The MPU is programmed using CP15 registers c1 and c6, see MPU control and configuration 
on page 4-5. Memory region control read and write access is permitted only from Privileged 
modes.

Table 7-1 shows the default memory map.

Table 7-1 Default memory map

Address 
range

Instruction memory type Data memory type 

Execute NeverInstruction 
cache enabled

Instruction 
cache disabled

Data cache 
enabled

Data cache 
disabled 

0xFFFFFFFF Normal 
Non-cacheable 
only if HIVECS is 
TRUE

Normal 
Non-cacheable 
only if HIVECS is 
TRUE

Strongly Ordered Strongly 
Ordered 

Instruction 
execution only 
permitted if 
HIVECS is TRUE

0xF0000000

0xEFFFFFFF - - Strongly Ordered Strongly 
Ordered 

Execute Never

0xC0000000

0xBFFFFFFF - - Shared Device Shared 
Device

Execute Never

0xA0000000

0x9FFFFFFF - - Non-shared
Device

Non-shared
Device

Execute Never

0x80000000

0x7FFFFFFF Normal, 
Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Shared

Normal, 
Non-cacheable, 
Shared

Instruction 
execution permitted

0x60000000

0x5FFFFFF Normal, 
Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Non-shared

Normal, 
WT Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Shared 

Instruction 
execution permitted

0x40000000

0x3FFFFFFF Normal, 
Cacheable, 
Non-shared

Normal, 
Non-cacheable, 
Non-shared

Normal, 
WBWA Cacheable
, Non-shared

Normal, 
Non-cacheable, 
Shared 

Instruction 
execution permitted

0x00000000
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-2
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
This section describes:
• Memory regions
• Overlapping regions on page 7-4
• Background regions on page 7-6
• TCM regions on page 7-6.

7.1.1 Memory regions

Before the MPU is enabled, you must program at least one valid protection region. If you do not 
do this, the processor will enter a state that only reset can recover. 

When the MPU is disabled, no access permission checks are performed, and memory attributes 
are assigned according to the default memory map. See Table 7-1 on page 7-2.

For more information on how to enable or disable the MPU, see MPU interaction with memory 
system on page 7-11.

Depending on the implementation, the MPU has a maximum of eight or 12 regions. Using CP15 
register c6 you can specify the following for each region:
• region base address
• region size
• subregion enables
• region attributes
• region access permissions
• region enable.

Region base address

The base address defines the start of the memory region. You must align this to a region-sized 
boundary. For example, if a region size of 8KB is programmed for a given region, the base 
address must be a multiple of 8KB. 

Note
 If the region is not aligned correctly, this results in Unpredictable behavior.

Region size

The region size is specified as a 5-bit value, encoding a range of values from 32 bytes, a 
cache-line length, to 4GB. Table 4-32 on page 4-51 shows the encoding.

Subregions

Each region can be split into eight equal sized non-overlapping subregions. An access to a 
memory address in a disabled subregion does not use the attributes and permissions defined for 
that region. Instead, it uses the attributes and permissions of a lower priority region or generates 
a background fault if no other regions overlap at that address. This enables increased protection 
and memory attribute granularity. 

All region sizes between 256 bytes and 4GB support eight subregions. Region sizes below 256 
bytes do not support subregions, and the subregion disable field is SBZ/UNP for regions of less 
than 256 bytes in size.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-3
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
Region attributes

Each region has a number of attributes associated with it. These control how a memory access 
is performed when the processor accesses an address that falls within a given region. The 
attributes are:
• Memory Type, one of:

— Strongly Ordered
— Device
— Normal

• Shared or Non-shared
• Non-cacheable
• Write-through Cacheable
• Write-back Cacheable
• Read allocation
• Write allocation.

See Memory types on page 7-7 for more information about memory types, and Region attributes 
on page 7-9 for a description of how to assign types and attributes to a region.

Region access permissions

Each region can be given no access, read-only access, or read/write access permissions for 
Privileged or all modes. In addition, each region can be marked as eXecute Never (XN) to 
prevent instructions being fetched from that region.

For example, if a User mode application attempts to access a Privileged mode access only region 
a permission fault occurs. 

The ARM architecture uses constants known as inline literals to perform address calculations. 
The assembler and compiler automatically generate these constants and they are stored inline 
with the instruction code. To ensure correct operation, only a memory region that has permission 
for data read access can execute instructions. For more information, see the ARM Architecture 
Reference Manual. For information about how to program access permissions, see Table 4-34 
on page 4-52.

Instructions cannot be executed from regions with Device or Strongly-Ordered memory type 
attributes. The processor treats such regions as if they have XN permissions.

7.1.2 Overlapping regions

You can program the MPU with two or more overlapping regions. For overlapping regions, a 
fixed priority scheme determines attributes and permissions for memory access to the 
overlapping region. Attributes and permissions for region 11 take highest priority, those for 
region 0 take lowest priority. For example:

Region 2 Is 4KB in size, starting from address 0x3000. Privileged mode has full 
access, and User mode has read-only access.

Region 1 Is 16KB in size, starting from address 0x0000. Both Privileged and User 
modes have full access.

When the processor performs a data write to address 0x3010 while in User mode, the address 
falls into both region 1 and region 2, as Figure 7-1 on page 7-5 shows. Because these regions 
have different permissions, the permissions associated with region 2 are applied. Because User 
mode is read access only for this region, a permission fault occurs, causing a data abort.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-4
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
Figure 7-1 Overlapping memory regions

Example of using regions that overlap

You can use overlapping regions for stack protection. For example:

• allocate to region 1 the appropriate size for all stacks

• allocate to region 2 the minimum region size, 32 bytes, and position it at the end of the 
stack for the current process

• set the region 2 access permissions to No Access.

If the current process overflows the stack it uses, a write access to region 2 by the processor 
causes the MPU to raise a permission fault.

Figure 7-2 Overlay for stack protection

Example of using subregions

You can use subregions for stack protection. For example:

• Allocate to region 1 the appropriate size for all stacks.

• Set the least-significant subregion disable bit. That is, set the subregion disable field, bits 
[15:8], of the CP15 MPU Region Size Register to 0x01.

If the current process overflows the stack it uses, a write access by the processor to the disabled 
subregion causes the MPU to raise a background fault.

Region 2

Region 1

0x4000

0x0000

0x3000

0x3010

Region 1

0x4000

0x0000 Region 2
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-5
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
Figure 7-3 Overlapping subregion of memory

7.1.3 Background regions

Overlapping regions increase the flexibility of how the regions can be mapped onto physical 
memory devices in the system. You can also use the overlapping properties to specify a 
background region. For example, you might have a number of physical memory areas sparsely 
distributed across the 4GB address space. If a programming error occurs, the processor might 
issue an address that does not fall into any defined region.

If the address that the processor issues falls outside any of the defined regions, the MPU is 
hard-wired to abort the access. That is, all accesses for an address that is not mapped to a region 
in the MPU generate a background fault. You can override this behavior by programming region 
0 as a 4GB background region. In this way, if the address does not fall into any of the other 11 
regions, the attributes and access permissions you specified for region 0 control the access.

In Privileged modes, you can also override this behavior by setting the BR bit, bit [17], of the 
System Control Register. This causes Privileged accesses that fall outside any of the defined 
regions to use the default memory map.

7.1.4 TCM regions

Any memory address that you configure to be accessed using a TCM interface is given Normal, 
Non-shared type attributes, regardless of the attributes of any MPU region that the address also 
belongs to. Access permissions for an address in a TCM region are preserved from the MPU 
region that the address also belongs to. For more information, see About the TCMs on page 8-13.

Stack

0x4000

0x0000
Guard region

0x0800
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-6
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.2 Memory types
The ARM Architecture defines a set of memory types with characteristics that are suited to 
particular devices. There are three mutually exclusive memory type attributes:
• Strongly Ordered
• Device
• Normal.

MPU memory regions can each be assigned a memory type attribute. Table 7-2 shows a 
summary of the memory types.

Note
 The processor’s L1 cache does not cache shared normal regions.

For more information on memory attributes and types, memory barriers, and ordering 
requirements for memory accesses, see the ARM Architecture Reference Manual and 
Application Note 204, Understanding processor memory types and access ordering.

7.2.1 Using memory types

The processor's memory system contains a store buffer which helps to improve the throughput 
of accesses to Normal type memory. See Store buffer on page 8-18 for more information. 
Because of the ordering rules which they must follow, accesses to other types of memory 
typically have a lower throughput or higher latency than accesses to Normal memory. In 
particular:

• reads from Device memory must first drain the store buffer of all writes to Device memory

• all accesses to Strongly Ordered memory must first drain the store buffer completely.

Similarly, when it is accessing Strongly Ordered or Device type memory, the processor's 
response to interrupts must be modified, and the interrupt response latency is longer. See Low 
interrupt latency on page 2-19 for more information.

Table 7-2 Memory attributes summary

Memory 
type 
attribute

Shared or 
Non-shared Other attributes Description

Strongly 
Ordered

- - All memory accesses to Strongly Ordered memory occur in 
program order. All Strongly Ordered accesses are assumed to 
be shared.

Device Shared - For memory-mapped peripherals that several processors share. 

Non-shared - For memory-mapped peripherals that only a single processor 
uses.

Normal Shared Non-cacheable 
Write-through Cacheable 
Write-back Cacheable

For normal memory that is shared between several processors.

Non-shared Non-cacheable 
Write-through Cacheable 
Write-back Cacheable

For normal memory that only a single processor uses.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-7
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
To ensure optimum performance, you must understand the architectural semantics of the 
different memory types. Use Device memory type for appropriate memory regions, typically 
peripherals, and only use Strongly Ordered memory type for memory regions where it is 
essential.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-8
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.3 Region attributes
Each region has a number of attributes associated with it. These control how a memory access 
is performed when the processor accesses an address that falls within a given region. The 
attributes are:
• Memory type, see Memory types on page 7-7, one of:

— Strongly Ordered
— Device
— Normal

• Shared or Non-shared
• Non-cacheable
• Write-through cacheable
• Write-back cacheable
• Read allocation
• Write allocation.

The Region Access Control Registers use five bits to encode the memory region type. These are 
the TEX)[2:0], C and B bits. Table 7-3 shows the mapping of these bits to memory region 
attributes. 

Note
 In earlier versions of the architecture, the TEX, C, and B bits were known as the Type Extension, 
Cacheable and Bufferable bits. These names no longer adequately describe the function of the 
B, C, and TEX bits.

All memory attributes which are Cacheable, write-back or write-through, are also implicitly 
read-allocate. Table 7-3 shows which attributes are write-allocate.

In addition, the Region Access Control Registers contain the shared bit, S. This bit only applies 
to Normal memory, and determines whether the memory region is Shared (1) or Non-shared (0).

Table 7-3 TEX[2:0], C, and B encodings

TEX[2:0] C B Description Memory Type Shareable?

000 0 0 Strongly-ordered. Strongly-ordered Shareable

000 0 1 Shareable Device. Device Shareable

000 1 0 Outer and Inner write-through, no write-allocate. Normal S bita

000 1 1 Outer and Inner write-back, no write-allocate. Normal S bita

001 0 0 Outer and Inner Non-cacheable. Normal S bita

001 0 1 Reserved. - -

001 1 0

001 1 1 Outer and Inner write-back, write-allocate. Normal S bita

010 0 0 Non-shareable Device. Device Non-shareable

010 0 1 Reserved. - -
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-9
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.3.1 Cacheable memory policies

When TEX[2] == 1, the memory region is Cacheable memory, and the rest of the encoding 
defines the Inner and Outer cache policies:
TEX[1:0] defines the Outer cache policy
C,B defines the Inner cache policy

The same encoding is used for the Outer and Inner cache policies. Table 7-4 shows the 
encoding.

When the processor performs a memory access through its AXI bus master interface:
• the Inner attributes are indicated on the A*USERM signals. For the encodings, see 

Table 9-3 on page 9-5
• the Outer attributes are indicated on the and A*CACHEM signals. For the encodings, see 

Table 9-2 on page 9-5.

For more information on region attributes, see the ARM Architecture Reference Manual.

010 1 X Reserved. - -

011 X X Reserved. - -

1BB A A Cacheable memory: AAb = Inner policy
BBb = Outer policy

Normal S bita

a. Region is Shareable if S == 1, and Non-shareable if S == 0.
b. Table 7-4 shows the encoding for these bits.

Table 7-3 TEX[2:0], C, and B encodings (continued)

TEX[2:0] C B Description Memory Type Shareable?

Table 7-4 Inner and Outer cache policy encoding

Memory attribute encoding Cache policy

00 Non-cacheable

01 Write-back, write-allocate

10 Write-through, no write-allocate

11 Write-back, no write-allocate
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-10
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.4 MPU interaction with memory system
This section describes how to enable and disable the MPU. After you enable or disable the 
MPU, the pipeline must be flushed using ISB and DSB instructions to ensure that all subsequent 
instruction fetches see the effect of turning on or off the MPU.

Before you enable or disable the MPU you must:

1. Program all relevant CP15 registers. This includes setting up at least one memory region 
that covers the currently executing code, and that the attributes and permissions of that 
region are the same as the attributes and permissions of the region in the default memory 
map that covers the code, and that the region is executable in Privileged mode.

2. Clean and invalidate the data caches.

3. Disable caches.

4. Invalidate the instruction cache.

The following code is an example of enabling the MPU:

MRC p15, 0, R1, c1, c0, 0 ; read CP15 register 1
ORR R1, R1, #0x1
DSB
MCR p15, 0, R1, c1, c0, 0 ; enable MPU
ISB
Fetch from programmed memory map
Fetch from programmed memory map
Fetch from programmed memory map
Fetch from programmed memory map

The following code is an example of disabling the MPU:

MRC p15, 0, R1, c1, c0, 0 ; read CP15 register 1
BIC R1, R1, #0x1
DSB
MCR p15, 0, R1, c1, c0, 0 ; disable MPU 
ISB
Fetch from default memory map
Fetch from default memory map
Fetch from default memory map
Fetch from default memory map

Table 7-1 on page 7-2 shows the default memory map.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-11
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.5 MPU faults
The MPU can generate three types of fault:
• Background fault
• Permission fault
• Alignment fault.

When a fault occurs, the memory access or instruction fetch is precisely aborted, and a prefetch 
abort or data abort exception is taken as appropriate. No memory accesses are performed on the 
AXI bus master interface. For more information about fault handling, see Fault handling on 
page 8-7.

7.5.1 Background fault

A background fault is generated when the MPU is enabled and a memory access is made to an 
address that is not within an enabled subregion of an MPU region. A background fault does not 
occur if the background region is enabled and the access is Privileged. See Background regions 
on page 7-6.

7.5.2 Permission fault

A permission fault is generated when a memory access does not meet the requirements of the 
permissions defined for the memory region that it accesses. See Region access permissions on 
page 7-4.

7.5.3 Alignment fault

An alignment fault is generated if a data access is performed to an address that is not aligned for 
the size of the access, and strict alignment is required for the access. A number of instructions 
that access memory, for example, LDM and STC, require strict alignment. See the ARM 
Architecture Reference Manual for details. In addition, strict alignment can be required for all 
data accesses by setting the A-bit in the System Control Register. See c1, System Control 
Register on page 4-35.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-12
ID013010 Non-Confidential, Unrestricted Access



Memory Protection Unit 
7.6 MPU software-accessible registers
Figure 4-2 on page 4-5 shows the CP15 registers that control the MPU. 

When the MPU is not present, the c6, MPU memory region programming registers on page 4-49 
read as zero and ignore writes in Privileged mode. No Undefined instruction exceptions are 
taken.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 7-13
ID013010 Non-Confidential, Unrestricted Access



Chapter 8 
Level One Memory System

This chapter describes the processor Level one (L1) memory system. It contains the following 
sections:
• About the L1 memory system on page 8-2
• About the error detection and correction schemes on page 8-4
• Fault handling on page 8-7
• About the TCMs on page 8-13
• About the caches on page 8-18
• Internal exclusive monitor on page 8-34
• Memory types and L1 memory system behavior on page 8-35
• Error detection events on page 8-36.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-1
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.1 About the L1 memory system
The processor L1 memory system can be configured during implementation and integration. It 
can consist of:
• separate instruction and data caches
• multiple Tightly-Coupled Memory (TCM) areas
• a Memory Protection Unit (MPU).

The instruction-side and data-side can each optionally have their own L1 caches. The cache 
architecture is Harvard, that is, only instructions can be fetched from the i-cache, and only data 
can be fetched from the d-cache. In parallel with each of the caches are two areas of dedicated 
RAM accessible to both the instruction and data sides. These are regions of TCM. You can 
implement one TCM using the ATCM interface and up to two TCMs using the BTCM interface. 
Figure 8-1 on page 8-3 shows this.

Each TCM and cache can be configured at implementation time to have an error detection and 
correction scheme to protect the data stored in the memory from errors. Each TCM interface 
also has support for logic external to the processor to tell the processor that an error has 
occurred.

The MPU handles accesses to both the instruction and data sides. The MPU is responsible for 
protection checking, address access permissions, and memory attributes. Some of these 
functions can be passed to the L2 memory system through the AXI master. See Chapter 7 
Memory Protection Unit for more information about the MPU.

The L1 memory system includes a monitor for exclusive accesses. Exclusive load and store 
instructions can be used, for example, LDREX, STREX, with the appropriate memory monitoring to 
provide inter-process or inter-processor synchronization and semaphores. See the ARM 
Architecture Reference Manual for more details. The monitor can handle some exclusive 
monitoring internally to the processor.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-2
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Figure 8-1 L1 memory system block diagram

AXI master

Instruction cache 
controller and 

RAMs

Data cache 
controller and 

RAMs
B0TCM

AXI bus

AXI bus

External Tightly-Coupled Memory (TCM)

AXI slave

Data Processing Unit (DPU)

Memory 
Protection Unit 

(MPU)

Prefetch Unit 
(PFU)

Load Store Unit 
(LSU)

Interconnect

ATCM  B1TCM

Processor
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-3
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.2 About the error detection and correction schemes
In silicon devices, stray radiation and other effects can cause the data stored in a RAM to be 
corrupted. The TCMs and caches on Cortex-R4 can be configured to detect and correct errors 
that can occur in the RAMs. Extra, redundant data is computed by the processor and stored in 
the RAMs alongside the real data. When the processor reads data from the RAMs, it checks that 
the redundant data is consistent with the real data and can either signal an error, or attempt to 
correct the error.

A number of different error schemes are available, and are described in:
• Parity
• 64-bit ECC on page 8-5
• 32-bit ECC on page 8-5.

Each has different properties in terms of the number of errors that can be detected, and corrected, 
and the amount of extra RAM required to store the redundant data. Because different logic is 
required for each scheme, the scheme must be chosen in the build-configuration, although you 
can enable or disable, or change the behavior of the error schemes using software-configuration. 
This section describes the generic properties of each of the schemes. See Appendix B ECC 
Schemes for more information about the advantages and disadvantages of each scheme to the 
implementer. The details of operation of the error schemes for the caches are described in Cache 
error detection and correction on page 8-20, and for the TCMs in TCM internal error detection 
and correction on page 8-14.

The error schemes are each described in terms of their operation on a doubleword (64 bits) of 
data, because this is the amount of data that the processor L1 memory system can transfer each 
cycle. The tag and dirty RAMs associated with the caches are different sizes, but the principles 
are the same. An error is considered to be a single bit of data that has been inverted relative to 
its correct value.

Figure 8-2 shows the error schemes. The shaded areas represent bits with errors.

Figure 8-2 Error detection and correction schemes

8.2.1 Parity

For each byte, a parity bit is computed and stored with that byte. This requires eight bits of 
parity, or redundant data per doubleword. With a parity scheme, a single error in a byte or its 
parity bit can be detected, but not corrected. This means that, provided they are all in different 
bytes, eight errors can be detected per doubleword. However, if there are two errors in any 
individual byte, this cannot be detected. Odd or even parity can be used, and this can be 
pin-configured during integration.

Parity: one error per 
byte detected

64-bit ECC: one error 
per doubleword 

corrected

64-bit ECC: two errors 
per doubleword 

detected

32-bit ECC: two errors 
per word detected

32-bit ECC: one error 
per word corrected
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-4
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.2.2 Error checking and correction

The processor supports Error Checking and Correction (ECC) schemes for either 64-bits or 
32-bits of data, and these have similar properties, although though the size of the data chunk that 
the ECC scheme applies to is different. For each data chunk, either 32-bits or 64-bits, aligned, 
a number of redundant code bits are computed and stored with the data. This enables the 
processor to detect up to two errors in the data chunk or its code bits, and correct any single error 
in the data chunk or its associated code bits. This is sometimes referred to as a 
Single-Error-Correction, Double-Error-Detection (SEC-DED) ECC scheme.

If there are more than two errors in a data chunk and its associated code bits, they might or might 
not be detected. The error scheme might interpret such a condition as a single-error and make 
an unsuccessful attempt at a correction.

64-bit ECC

Eight code bits are computed for each 64 bits of data. The scheme can correct any single error 
occurring in any doubleword, and detect any two errors occurring in any doubleword.

32-bit ECC

Seven code bits are computed for each 32 bits of data, so 14 bits of redundant data are required 
for each doubleword. The scheme can correct two errors per doubleword, if they are in different 
words. Four errors can be detected per doubleword, if there are two in each word.

8.2.3 Read-Modify-Write

The smallest unit of data that the processor can write is a byte. However, both the ECC schemes 
are computed on data chucks that are larger than this. To write any data to a RAM protected with 
ECC requires the error code for that data to be recomputed and rewritten. If the entire data chunk 
is not written, for example, a halfword, 16-bits, is written to address 0x4 of a RAM with a 32-bit 
error scheme, the error code must be computed partly from the data being written, and partly 
from data already stored in the RAM. In this example, the halfword in the RAM at address 0x6. 

To compute the error code for such a write, the processor must first read data from the RAM, 
then merge the data to be written with it, to compute the error code, then write the data to the 
RAM, along with the new error code. This process is referred to as read-modify-write.

8.2.4 Hard errors

The errors described in this chapter are all assumed to be soft errors, that is, one or more bits of 
the data stored in a RAM chunk are inverted. A new value can still be written to the RAM and 
read back correctly, unless another soft error occurs in the meantime.

If the error in the memory is a hard error, that is, a physical failure of the RAM circuit so that a 
bit can never be read or written reliably, the processor might not be able to correct and recover 
from the error. The processor contains features that enable it to recover from some hard errors. 
If you are implementing the processor and require these features, contact ARM to discuss the 
features and your requirements.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-5
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.2.5 Error correction

When a correctable error is detected in data that has been read from a RAM, the processor has 
various ways of generating the correct data, which follow two schemes:

Correct inline 
The error code bits are used to correct the data read from the RAM, and this data 
is used. This is the simplest way of correcting the data.

Correct-and-retry 
The error code bits are used to correct the data, and this data is then written back 
to the RAM. The processor then repeats the read access by re-executing the 
instruction that caused the read, and reads the corrected data from the RAM if no 
more errors have occurred. This takes more clock cycles (at least nine) in the 
event of an error, but has the side-effect of correcting the data in the RAM so that 
the errors in the data cannot become worse.

Note
 Because RAM errors generally occur infrequently, the extra cycles required to 

perform correct-and-retry do not have a significant impact on average 
performance.

The correction method that the processor uses depends on the individual error. The processor 
uses correct inline error correction when it detects a correctable error on a TCM read made by 
the AXI-slave interface. The processor uses correct-and-retry correction when it detects a 
correctable ECC error on a TCM read made by the instruction-side or data-side.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-6
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.3 Fault handling
Faults can occur on instruction fetches for the following reasons:
• MPU background fault
• MPU permission fault
• External AXI slave error (SLVERR)
• External AXI decode error (DECERR)
• Cache parity or ECC error
• TCM parity or ECC error
• TCM external error
• TCM external retry request
• Breakpoints, and vector capture events.

Faults can occur on data accesses for the following reasons:
• MPU background fault
• MPU permission fault
• MPU alignment fault
• External AXI slave error (SLVERR)
• External AXI decode error (DECERR)
• Cache parity or ECC error
• TCM parity or ECC error
• TCM external error
• TCM external retry request
• Watchpoints.

Fault handling is described in:
• Faults
• Fault status information on page 8-9
• Correctable Fault Location Register on page 8-10
• Usage models on page 8-10.

8.3.1 Faults

The classes of fault that can occur are:
• MPU faults
• External faults on page 8-8
• Cache and TCM parity and ECC errors on page 8-8
• TCM external faults on page 8-8
• Debug events on page 8-9.

MPU faults

The MPU can generate an abort for various reasons. See MPU faults on page 7-12 for more 
details. MPU faults are always precise, and take priority over other types of abort. If an MPU 
fault occurs on an access that is not in the TCM, and is Non-cacheable, or has generated a 
cache-miss, the AXI transactions for that access is not performed.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-7
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
External faults

A memory access performed through the AXI master interface can generate two different types 
of error response, a slave error (SLVERR) or decode error (DECERR). These are known as 
external errors, because they are generated by the AXI system outside the processor. Precise 
aborts are generated for instruction fetches, data loads, and data stores to strongly-ordered-type 
memory. Stores to normal-type or device-type memory generate imprecise aborts. 

Note
 An AXI slave that cannot handle exclusive transactions returns OKAY in response to an 
exclusive read. This is also treated as an external error, and the processor behaves as if the 
response was SLVERR.

Cache and TCM parity and ECC errors

If the processor has been configured with the appropriate build options, it can detect data errors 
occurring in the cache and TCM RAMs using parity or ECC logic. For more information on 
cache errors, see Handling cache parity errors on page 8-21 and Handling cache ECC errors 
on page 8-22. For more information on TCM errors, see Handling TCM parity errors on 
page 8-15 and Handling TCM ECC errors on page 8-15. Depending on the software 
configuration of the processor, these errors are either ignored, generate an abort, are 
automatically corrected without generating an abort, or are corrected and generate an abort. If 
the processor is in debug-halt-state, an error that is otherwise automatically corrected generates 
an abort.

Parity and ECC errors can only occur on reads, although these reads might be a side-effect of 
store instructions. Aborts generated by loads are always precise. Aborts generated by store 
instructions to the TCM are also always precise, while those to the cache are always imprecise. 
These errors can also occur on some cache-maintenance operations, see Errors on cache 
maintenance operations on page 8-23, and generate imprecise aborts.

Many of the parity and ECC errors are also signaled by the generation of events. See Chapter 6 
Events and Performance Monitor. Some of these events are generated when the error is 
detected, regardless of whether or not an abort is taken. Aborts are only taken when a memory 
access with an error is committed. Others are signaled when and only when the abort is taken.

Any parity or ECC error that can be corrected by the processor is considered to be a correctable 
fault, regardless of whether or not the processor is configured to correct the fault.

TCM external faults

The TCM port includes signals that can be used to signal an error on a TCM transaction. See the 
Cortex-R4 and Cortex-R4F Integration Manual for more information about the TCM port. If 
enabled, this causes the processor to take the appropriate type of abort for instruction and data 
accesses, or to generate a SLVERR response to an AXI-slave transaction. Write transactions 
always generate imprecise aborts, while read transactions always generate precise aborts.

An error signaled on a read transaction can also signal a retry request, which requests that the 
processor retry the same operation rather than take an exception.

A retry request from the TCM port is considered to be a recoverable error. All correctable ECC 
faults are also considered to be recoverable.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-8
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Debug events

The debug logic in the processor can be configured to generate breakpoints or vector capture 
events on instruction fetches, and watchpoints on data accesses. If the processor is 
software-configured for monitor-mode debugging, an abort is taken when one of these events 
occurs, or when a BKPT instruction is executed. For more details, see Chapter 11 Debug.

Precise and imprecise aborts

See Aborts on page 2-22 for more information about the differences between precise and 
imprecise aborts.

8.3.2 Fault status information

When an abort occurs, information about the cause of the fault is recorded in a number of 
registers, depending on the type of abort:
• Abort exceptions
• Precise abort exceptions on page 8-10
• Imprecise abort exceptions on page 8-10.

Abort exceptions

The following registers are updated when any abort exception is taken:

Link Register  
The r14_abt register is updated to provide information about the address of the 
instruction that the exception was taken on, in a similar way to other types of 
exception. See Exceptions on page 2-16 for more details. This information can be 
used to resume program execution after the abort has been handled.

Note
 When a prefetch abort has occurred, ARM recommends that you do not use the 

link register value for determining the aborting address, because 32-bit Thumb 
instructions do not have to be word aligned and can cause an abort on either 
halfword. This applies even if all of the code in the system does not use the extra 
32-bit Thumb instructions introduced in ARMv6T2, because the earlier BL and 
BLX instructions are both 32 bits long. Use the Fault Address Register instead, as 
described in this section.

Saved Program Status Register 
The SPSR_abt register is updated to record the state and mode of the processor 
when the exception was taken, in a similar way to other types of exception. See 
Exceptions on page 2-16 for more details.

Fault Status Register 
There are two fault status registers, one for prefetch aborts (IFSR) and one for 
data aborts (DFSR). These record the type of abort that occurred, and whether it 
occurred on a read or a write. In particular, this enables the abort handler to 
distinguish between precise aborts, imprecise aborts, and debug events. For 
details of the format of this register and the encodings used, see Fault Status and 
Address Registers on page 4-45.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-9
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Precise abort exceptions

The following registers are updated when a precise abort exception is taken:

Fault Address Register 
There are two fault address registers, one for prefetch aborts (IFAR) and one for 
data aborts (DFAR). These indicate the address of the memory access that caused 
the fault. See Fault Status and Address Registers on page 4-45.

Auxiliary Fault Status Register 
There are two auxiliary fault status registers, one for prefetch aborts (AIFSR) and 
one for data aborts (ADFSR). These record additional information about the 
nature and location of the fault, including whether it was a recoverable error or 
not, whether it occurred in the cache or AXI-master interface, ATCM or BTCM 
and, if appropriate, which cache way the error occurred in. The cache index is not 
recorded on a precise abort, because this information can be derived from the fault 
address. See Fault Status and Address Registers on page 4-45.

Imprecise abort exceptions

The following register is updated when an imprecise abort exception is taken:

Auxiliary Data Fault Status Register 
The ADFSR is updated to indicate whether or not the fault was recoverable, 
whether it occurred in the cache, ATCM or BTCM and, if appropriate, which 
cache set and way the error occurred in. Because the DFAR is not updated on 
imprecise aborts, imprecise aborts cannot normally be located, except when the 
error occurred in the cache.

The effect of debug events on these registers is described in Debug exception on page 11-41.

8.3.3 Correctable Fault Location Register

When a correctable fault generates an abort exception, information about the location of that 
fault is recorded in the various fault status registers. However, if the fault is automatically 
corrected by the processor, depending on the configuration, an exception might not be 
generated, and the fault status registers might not be not updated. In all cases, information about 
the location of the fault is recorded in the Correctable Fault Location Register (CFLR).

All correctable faults are recorded in the same register, regardless of whether it was an 
instruction-fetch, a data-access, or a DMA (AXI-slave) access that generated the fault, and 
whether the fault occurred in the ATCM, BTCM or cache. The CFLR contains information to 
identify what sort of access generated the fault, and which device it occurred in. See Correctable 
Fault Location Register on page 4-70 for more details of the format of this register. Each time 
the CFLR is updated, the information already in the CFLR is discarded and therefore the CFLR 
can only contain information about the most recent correctable fault.

8.3.4 Usage models

This section describes some ways in which errors can be handled in a system. Exactly how you 
program the processor to handle errors depends on the configuration of your processor and 
system, and what you are trying to achieve.

If an abort exception is taken, the abort handler reads the information in the link register, SPSR, 
and fault status registers to determine the type of abort. Some types of abort are fatal to the 
system, and others can be fixed, and program execution resumed. For example, an MPU 
background fault might indicate a stack overflow, and be rectified by allocating more stack and 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-10
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
reprogramming the MPU to reflect this. Alternatively, an imprecise external abort might 
indicate that a software error meant that a store instruction occurred to an unmapped memory 
address. Such an abort is fatal to the system or process because no information is recorded about 
the address the error occurred on, or the instruction which caused the error.

Table 8-1 shows which types of abort are typically fatal because either the location of the error 
is not recorded or the error is unrecoverable. Some aborts that are marked as not fatal might turn 
out to be fatal in some systems when the cause of the error has been determined. For example, 
an MPU background fault might indicate a stack overflow, which can be rectified, or it might 
indicate that, because of a bug, the software has accessed a nonexistent memory location, which 
can be fatal. These cases can be distinguished by determining the location where the error 
occurred. If an error is unrecoverable, that is, it is not a correctable parity or ECC error, and it 
is not a TCM external retry request, it is normally fatal regardless of whether or not the location 
of the error is recorded. When an abort is taken on an external TCM, parity, or ECC error, the 
appropriate Auxiliary Fault Status Register records whether the error was recoverable. See Fault 
Status and Address Registers on page 4-45.

Correctable errors

In a system in which the processor is configured to automatically correct ECC errors without 
taking an abort exception, you can still configure it to respond to such errors. Connect the event 
output or outputs that indicate a correctable error to an interrupt controller. When such an event 
occurs, the interrupt input to the processor is set, and the processor will take an interrupt 
exception. When your interrupt handler has identified the source of the interrupt as a correctable 
error, it can read the CFLR to determine where the ECC error occurred. You can examine this 
information to identify trends in such errors. By masking the interrupt when necessary, your 
software can ensure that when critical code is executing, the processor corrects the error 
automatically, but delays examining information about the error until after the critical code has 
completed.

Table 8-1 Types of aborts

Type Conditions Source Precise Fatal

MPU fault Access not permitted by MPUa MPU Yes No

Precise External Load using L2 memory interface AXI Yes No

Imprecise External Store to Normal or Device memory using L2 memory 
interface

AXI No Yes

Precise Parity/ECC Cache Load from cacheb Cache Yes Maybec

Precise Parity/ECC TCM Load/store from/to TCMd TCM Yes Maybec

Precise TCM external error Load/store from/to TCMe TCM Yes Yes

Imprecise Parity/ECC Cache Store to cache or cache maintenance operationb Cache No Maybec

Imprecise TCM external 
error

Store to TCMe TCM No Yes

a. See MPU faults on page 7-12 for more information about the types of MPU fault.
b. See Cache error detection and correction on page 8-20 for more information about parity/ECC errors from the cache.
c. These types of error can be correctable or uncorrectable. Uncorrectable errors are typically fatal. Correctable errors are 

automatically corrected by the hardware and might not cause the abort handler to be called. See Cache error detection and 
correction on page 8-20 and TCM internal error detection and correction on page 8-14.

d. See TCM internal error detection and correction on page 8-14 for more information about parity/ECC errors from the TCM.
e. Aborts generated by external TCM errors are always unrecoverable, and therefore fatal, see External TCM errors on page 8-16 

for more information about external errors from the TCM.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-11
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
When the processor is in debug halt-state, any correctable error is corrected as appropriate, but 
the memory access is not repeated to fetch the correct data, therefore the instruction generating 
the error does not complete successfully. Instead, the sticky precise abort flag in the DSCR is 
set. See CP14 c1, Debug Status and Control Register on page 11-14.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-12
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.4 About the TCMs
The processor has two TCM interfaces to support the connection of local memories. The ATCM 
interface has one TCM port. The BTCM interface can support one or two TCM ports. Each 
TCM port is a physical connection on the processor that is suitable for connection to SRAM 
with minimal glue logic. These ports are optimized for low latency memory.

The TCM ports are designed to be connected to RAM, or RAM-like memory, that is, 
Normal-type memory. The processor can issue speculative read accesses on these interfaces, 
and interrupt store instructions that have issued some but not all of their write accesses. 
Therefore, both read and write accesses through the TCM interfaces can be repeated. This 
means that the TCM ports are generally not suitable for read- or write-sensitive devices such as 
FIFOs. ROM can be connected to the TCM ports, but normally only if ECC is not used. See 
Hard errors on page 8-5. If the access is speculative, the processor ignores any error or retry 
signaled on the TCM port.

The TCM ports also have wait and error signals to support slow memories and external error 
detection and correction. For more information, see External TCM errors on page 8-16.

The PFU can read data using the TCM interfaces. The LSU and AXI slave can each read and 
write data using the TCM interfaces.

Each TCM interface has a dedicated base address that you can place anywhere in the physical 
address map, and must not be backed by memory implemented externally. The ATCM and 
BTCM interfaces must have separate base addresses and must not overlap. 

This section describes:
• TCM attributes and permissions
• ATCM and BTCM configuration on page 8-14
• TCM internal error detection and correction on page 8-14
• TCM arbitration on page 8-15
• TCM initialization on page 8-16
• TCM port protocol on page 8-16
• External TCM errors on page 8-16
• AXI slave interfaces for TCMs on page 8-17.

8.4.1 TCM attributes and permissions

Accesses to the TCMs from the LSU and PFU are checked against the MPU for access 
permission. Memory access attributes and permissions are not exported on this interface. Reads 
that generate an MPU fault are broadcast on the TCM interface but the abort is taken before the 
data is used, ensuring protection is maintained.

TCMs always behave as Non-cacheable Non-shared Normal memory, irrespective of the 
memory type attributes defined in the MPU for a memory region containing addresses held in 
the TCM. Access permissions for TCM accesses are the same as the permission attributes that 
the MPU assigns to the same address. See Chapter 7 Memory Protection Unit for more 
information about memory attributes, types, and permissions.

Note
 Any address in an MPU region with device or strongly-ordered memory type attributes is 
implicitly given execute-never (XN) permissions. If such an address is also in a TCM region, 
XN permissions are applied to TCM accesses to that address. None of the other device or 
strongly-ordered behaviors apply to an address in a TCM region.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-13
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.4.2 ATCM and BTCM configuration

The TCM interfaces are configured during implementation and integration.

You can configure the ATCM interface to be removed, and not included in the processor design. 
If implemented, the ATCM can have only a single port.

You can configure the BTCM interface to:
• be removed, and not included in the processor design
• have a single BTCM port
• have two banked BTCM ports, interleaved on either:

— Bit [3] of the address
— The most significant bit of the BTCM interface address. This depends on the size of 

the BTCM.

During implementation, you can configure the ATCM and/or the BTCM to use an 
error-protection scheme to protect the data stored in the TCM, see TCM internal error detection 
and correction.

The size of each TCM interface is configured during integration. See the Cortex-R4 and 
Cortex-R4F Integration Manual for more information. The permissible TCM sizes are:
• 0KB
• 4KB
• 8KB
• 16KB
• 32KB
• 64KB
• 128KB
• 256KB
• 512KB
• 1MB
• 2MB
• 4MB
• 8MB.

If the BTCM interface has two ports, the size of the RAM attached to each port is half the total 
size for the BTCM interface.

The size of the TCM interfaces is visible to software in the TCM Region Registers, see c9, 
BTCM Region Register on page 4-57 and c9, ATCM Region Register on page 4-58. All TCM 
interface build configuration options can be read from the Build Options Registers, see c15, 
Build Options 1 Register on page 4-72 and c15, Build Options 2 Register on page 4-72.

8.4.3 TCM internal error detection and correction

Each TCM interface can be configured with either parity, 32-bit ECC, or 64-bit ECC error 
schemes. Both the BTCM ports must have the same error scheme. The following sections 
describe these error schemes:
• Handling TCM parity errors on page 8-15
• Handling TCM ECC errors on page 8-15.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-14
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Handling TCM parity errors

If a TCM interface has been built with parity error checking, you can enable this by setting the 
appropriate bits in the Auxiliary Control Register. See c1, Auxiliary Control Register on 
page 4-38. If the BTCM interface has been built with two ports, parity checking can be enabled 
for each port individually. You can pin-configure the processor to set the enable bits and 
therefore enable parity checking on reset, by tying off the PARECCENRAM input as required.

Parity bits for the data are generated on all TCM writes, regardless of whether or not the parity 
bits are being checked on reads. When a parity error is detected on a TCM read, a precise abort 
is generated. The type of the abort is shown in the appropriate Fault Status Register (FSR) as 
being a precise parity error. The processor cannot correct parity errors in the TCM.

When you use the parity error detection scheme, the PARLVRAM input to the processor selects 
between odd and even parity.

Handling TCM ECC errors

If a TCM interface has been built with either 32-bit or 64-bit ECC error checking, you can 
enable this by setting the appropriate bits in the Auxiliary Control Register. See c1, Auxiliary 
Control Register on page 4-38. On the BTCM interface, ECC checking can only be enabled for 
both ports or neither port. You can pin-configure the processor to set the enable bits and 
therefore enable ECC checking on reset, by tying off the PARECCENRAM input as required.

When a fatal error, that is, a 2-bit ECC error, is detected on a TCM read, an error is generated. 
Instruction and data reads generate the appropriate type of precise abort, and the AXI-slave 
interface returns a SLVERR response to the AXI system.

When a correctable error, that is, a 1-bit ECC error, is detected on a TCM read made by the 
AXI-slave interface, the processor corrects the data inline before returning to the system.

When a correctable ECC error is detected on a TCM read made by the instruction-side or 
data-side, the processor normally generates the correct data and writes it back to the TCM. In 
the meantime, the processor retries the read to fetch the correct instruction or data. By setting 
the appropriate bits in the Secondary Auxiliary Control Register, you can disable this behavior. 
See c15, Secondary Auxiliary Control Register on page 4-41. Instead of correcting the error in 
the TCM, the processor generates the appropriate type of precise abort.

All ECC code generation and ECC checking must be performed on a complete data chunk, 
either 32-bits or 64-bits depending on the configuration. If a read access smaller than the data 
chunk is required, the whole chunk is read. If a write smaller than the data chunk is required, the 
processor must perform read-modify-write to generate the correct data and ECC code, but it 
only does this when ECC error checking is enabled. The data read as part of the 
read-modify-write sequence is checked for ECC errors, and the errors are handled in the same 
way as for any other TCM read. The ECC code is generated and written to the TCM for every 
write, regardless of whether error checking is enabled or not, but the code is only correct if the 
write was of a complete data chunk or if the processor performed read-modify-write to generate 
the complete data chunk. All data and instruction aborts generated by the ECC logic are 
indicated in the appropriate FSR as being a precise parity error.

8.4.4 TCM arbitration

Each TCM port receives requests from the LSU, PFU, and AXI slave. In most cases, the LSU 
has the highest priority, followed by the PFU, with the AXI slave having lowest priority. 

When a higher-priority device is accessing a TCM port, an access from a lower-priority device 
must stall.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-15
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
When either the LSU or the AXI slave interface is performing a read-modify-write operation on 
a TCM port, various internal data hazards exist for either the AXI-slave interface or the LSU. 
In these cases, additional stall cycles are generated, beyond those normally required for 
arbitration. For optimum performance of the processor when configured with ECC, ensure that 
all write bursts to the TCM from the AXI slave interface write an entire data chunk, that is, 
32-bits or 64-bits, naturally aligned, depending on the error scheme.

8.4.5 TCM initialization

You can enable the processor to boot from the ATCM or the BTCM. The INITRAMA and 
INITRAMB pins, when tied HIGH, enable the ATCM and the BTCM respectively on leaving 
reset. The LOCZRAMA pin forces one of the TCMs to have its base address at 0x0. If 
LOCZRAMA is tied HIGH, the initial base address of the ATCM is 0x0, otherwise the initial 
base address of the BTCM is 0x0. In both cases, the initial base address of the other TCM is 
implementation-defined, see Configurable options on page 1-13. 

The ATCM Region Register and BTCM Region Register respectively determine the base 
address for the ATCM and BTCM. For information on how to read the TCM region registers, 
see c9, BTCM Region Register on page 4-57 or c9, ATCM Region Register on page 4-58 as 
appropriate. For information about pre-loading data into the TCMs, see TCM on page 3-3.

8.4.6 TCM port protocol

Each TCM port operates independently to read and write data to and from the memory attached 
to it. Information about which memory location is to be accessed is passed on the TCM port 
along with write data and associated error code or parity bits, if appropriate. In addition, the 
TCM port provides information about whether the access results from an instruction fetch from 
the PFU, a data access from the LSU, or a DMA transfer from the AXI slave interface. Each 
TCM port also has an associated parity bit, computed from the address and control signals for 
that port.

Read data and associated error code or parity bits are read back from the TCM port. In addition, 
the TCM memory controller can indicate that the processor must wait one or more cycles before 
reading the response, or signal that an error has occurred and must be either aborted or retried. 
For more information about TCM errors, see External TCM errors.

For more information about TCM port protocol, the signals and timing, see the Cortex-R4 and 
Cortex-R4F Integration Manual.

8.4.7  External TCM errors

Each TCM port has a number of features that support the integration of a TCM RAM with an 
error checking scheme implemented in the RAM controller logic outside of the processor, that 
is, by the integrator.

Errors can be signaled to each TCM port if the external error checking scheme detects one and, 
if enabled, the processor generates an instruction or data abort or an AXI error response as 
appropriate. On a TCM read from either the instruction-side or data-side, the TCM controller 
can indicate that the read must be retried instead of generating an abort. 

You can enable external errors for each TCM port individually by setting the appropriate bits in 
the Auxiliary Control Register. See c1, Auxiliary Control Register on page 4-38. If external 
errors are not enabled for a TCM port, the processor ignores any error signaled on that port. You 
can pin-configure the processor to set the enable bits, and therefore enable external error 
checking on reset, by tying off the ERRENRAM input as required.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-16
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
In addition, an external error detection scheme might require that data is read and written in 
particular sized chunks. The load/store-64 feature, when enabled for a particular TCM interface, 
causes all loads and stores to the TCM ports to be of 64-bits of data. This feature is also known 
as Read-Modify-Write (RMW), because it causes the processor to generate read-modify-write 
sequences for any store of less than 64-bits. You can enable RMW behavior for each TCM 
interface individually by setting the appropriate bits in the Secondary Auxiliary Control 
Register. See c1, Auxiliary Control Register on page 4-38. You can pin-configure the processor 
to set the enable bits and therefore RMW behavior on reset, by tying off the RMWENRAM 
input as required.

Note
 The load/store-64 feature is not available on any TCM interface that has been configured with 
32-bit ECC.

The error inputs on each TCM port can also be used to signal other types of error, for example, 
when an address accessed is out of range for the RAM attached to the TCM port. Errors signaled 
on writes from the data-side generate an imprecise abort. All other aborts generated by external 
errors are precise. The type of abort is shown in the appropriate FSR as either precise or 
imprecise parity error.

8.4.8 AXI slave interfaces for TCMs

The processor has a 64-bit AXI slave interface that provides access to the TCM interfaces from 
the AXI bus. This interface is included by default, but can be excluded during configuration of 
the processor.

You can use the slave port for access to the TCM memories. This also enables you to construct 
a system with a consistent view of memory. That is, the TCMs can be available at the same 
address to the processor and to the system bus.

The AXI slave port accesses have lower priority than the LSU or PFU accesses. 

The MPU does not check accesses from the AXI slave. You can configure the processor to 
enable privileged or nonprivileged access to the TCM interfaces from the AXI slave port.

The AXI slave interface does not support locked and exclusive accesses. This means that AXI 
masters, other than the processor, cannot safely use semaphores in the TCMs. Although the 
Cortex-R4 processor can use semaphores in the TCMs for inter-process synchronization, you 
must not use the AXI-slave interface to write to TCM semaphores. The processor has no logic 
to preserve its own exclusivity against such writes.

For more information on the AXI slave interface, see AXI slave interface on page 9-20.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-17
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.5 About the caches
The L1 memory system can be configured to include instruction and data caches of varying 
sizes. You can configure whether the cache controller is included and, if it is, configure the size 
of each cache independently. The cached instructions or data are fetched from external memory 
using the L2 memory interface. The cache controllers use RAMs that are integrated into the 
Cortex-R4 macrocell during implementation.

Any access that is not for a TCM is handled by the appropriate cache controller. If the access is 
to Cacheable memory, and the cache is enabled, a lookup is performed in the cache and, if found 
in the cache, that is, a cache hit, the data is fetched from or written into the cache. When the 
cache is not enabled and for Non-cacheable memory, the accesses are performed using the L2 
memory interface.

Both caches allocate a memory location to a cache line on a cache miss because of a read, that 
is, all Cacheable locations are Read-Allocate (RA). In addition, the data cache can allocate on a 
write access if the memory location is marked as Write-Allocate (WA). When a cache line is 
allocated, the appropriate memory is fetched into a linefill buffer by the L2 memory interface 
before being written to the cache. See Linefill buffers and the AXI master interface on page 9-4. 
The linefill buffers always fetch the requested data first, and then the rest of the cache line. This 
enables the data read to be used by the pipeline without waiting for the linefill to complete and 
is known as critical word first and non-blocking behavior. If an error is reported to the L2 
memory interface for a linefill, the linefill does not update the cache RAMs, but an abort is only 
generated if the error was reported on the critical word.

If all the cache lines in a set are valid, to allocate a different address to the cache, the cache 
controller must evict a line from the cache.

Writes accesses that hit in the cache are written into the cache RAMs. If the memory location is 
marked as Write-Through (WT), the write is also performed on the L2 memory interface, so that 
the data stored in the RAM remains coherent with the external memory system. If the memory 
is Write-Back (WB), the cache line is marked as dirty, and the write is only performed on the L2 
memory interface when the line is evicted. When a dirty cache line is evicted, the data is passed 
to the Eviction Buffer in the L2 memory interface to be written to the external memory system. 
See Eviction buffer on page 9-5 for more information.

The cache controllers also manage the cache maintenance operations described in Cache 
maintenance operations on page 8-19.

Each cache can also be configured with either parity or ECC error checking schemes. If an error 
checking scheme is implemented and enabled, then the tags associated with each line, and data 
read from the cache are checked whenever a lookup is performed in the cache. See Cache error 
detection and correction on page 8-20 for more information.

For more information on the general rules about memory attributes and behavior, see the ARM 
Architecture Reference Manual.

8.5.1 Store buffer

The cache controller includes a store buffer to hold data before it is written to the cache RAMs 
or passed to the AXI master interface. The store buffer has four entries. Each entry can contain 
up to 64 bits of data and a 32-bit address. All write requests from the data-side that are not to a 
TCM interface are stored in the store buffer.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-18
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Store buffer merging

The store buffer has merging capabilities. If a previous write access has updated an entry, other 
write accesses on the same line can merge into this entry. Merging is only possible for stores to 
Normal memory. 

Merging is possible between several entries that can be linked together if the data inside the 
different entries belong to the same cache line.

No merging occurs for writes to Strongly Ordered or Device memory. The processor 
automatically drains the store buffer before performing Strongly Ordered accesses or Device 
reads.

Store buffer behavior

The store buffer redirects write requests to the following blocks:

• Cache controller for Cacheable write hits:
The store buffer sends a cache lookup to check that the cache hits in the specified line, and 
if so, the store buffer merges its data into the cache when the entry is drained.

• AXI master interface:
— For Non-cacheable stores or write-through Cacheable stores, a write access is 

performed on the AXI master interface.
— For write-back, write-allocate stores that miss in the data cache, a linefill is started 

using either of the two linefill buffers. When the linefill data is returned from the L2 
memory system, the data in the store buffer is merged into the linefill buffer.

Store buffer draining

A store buffer entry is drained if:
• All bytes in the entry have been written. This might result from merging.
• The entry can be merged into a linefill buffer.
• The entry contains a store to Device or Strongly Ordered memory.

The store buffer is completely drained when:
• an explicit drain request is done for:

— system control coprocessor cache maintenance operations
— a DMB or DSB instruction
— a load or store to Strongly Ordered memory
— an exclusive load or store to Shared memory
— a SWP or SWPB to Non-cacheable memory.

• the store buffer is full or likely to become full.

The store buffer is drained of all stores to Device memory before a load is performed from 
Device memory.

8.5.2 Cache maintenance operations

All cache maintenance operations are done through the system control coprocessor, CP15. The 
system control coprocessor operations supported for the data cache are:

• Invalidate all

• Invalidate by address (MVA)
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-19
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
• Invalidate by Set/Way combination

• Clean by address (MVA)

• Clean by Set/Way combination

• Clean and Invalidate by address (MVA)

• Clean and Invalidate by Set/Way combination

• Data Memory Barrier (DMB) and Data Synchronization Barrier (DSB) operations. 

The system control coprocessor operations supported for the instruction cache are:
• Invalidate all
• Invalidate by address.

For more information on cache operations, see Cache operations on page 4-54.

8.5.3 Cache error detection and correction

This section describes how the processor detects, handles, reports, and corrects cache memory 
errors. Memory errors have Fault Status Register (FSR) values to distinguish them from other 
abort causes.

This section describes:
• Error build options
• Address decoder faults on page 8-21
• Handling cache parity errors on page 8-21
• Handling cache ECC errors on page 8-22
• Errors on instruction cache read on page 8-23
• Errors on data cache read on page 8-23
• Errors on data cache write on page 8-23
• Errors on evictions on page 8-23
• Errors on cache maintenance operations on page 8-23.

Error build options

The caches can detect and correct errors depending on the build options used in the 
implementation. The build options for the instruction cache can be different to the data cache.

If the parity build option is enabled, the cache is protected by parity bits. For both the instruction 
and data cache, the data RAMs include one parity bit per byte of data. The tag RAM contains 
one parity bit to cover the tag and valid bit.

If the ECC build option is enabled:

• The instruction cache is protected by a 64-bit ECC scheme. The data RAMs include eight 
bits of ECC code for every 64 bits of data. The tag RAMs include seven bits of ECC code 
to cover the tag and valid bit.

• The data cache is protected by a 32-bit ECC scheme. The data RAMs include seven bits 
of ECC code for every 32 bits of data. The tag RAMs include seven bits of ECC code to 
cover the tag and valid bit. The dirty RAM includes four bits of ECC to cover the dirty bit 
and the two outer attributes bits.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-20
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Address decoder faults

The error detection schemes described in this section provide protection against errors that 
occur in the data stored in the cache RAMs. Each RAM normally includes a decoder which 
enables access to that data and, if an error occurs in this logic, it is not normally detected by these 
error detection schemes. The processor includes features that enable it to detect some address 
decoder faults. If you are implementing the processor and require these features, contact ARM 
to discuss the features and your requirements.

Handling cache parity errors

Table 8-2 shows the behavior of the processor on a cache parity error, depending on bits [5:3] 
of the Auxiliary Control Register, see Auxiliary Control Registers on page 4-38. 

See Disabling or enabling error checking on page 8-32 for information on how to safely change 
these bits.

Hardware recovery

When parity checking is enabled, hardware recovery is always enabled. Memory marked as 
write-back write-allocate behaves as write-though. This ensures that cache lines can never be 
dirty, therefore the error can always be recovered from by invalidating the cache line that 
contains the parity error. The processor automatically performs this invalidation when an error 
is detected. The correct data can then be re-read from the L2 memory system.

Parity aborts

If aborts on parity errors are enabled, software is notified of the error by a data abort or prefetch 
abort. The error is still automatically corrected by the hardware even if an abort is generated.

If abort generation is not enabled, the hardware recovery is invisible to software. If required, 
software can use events and the Correctable Fault Location Register to monitor the errors that 
are detected and corrected. See Error detection events on page 8-36 and Correctable Fault 
Location Register on page 4-70.

Table 8-2 Cache parity error behavior

Value Behavior

b000 Abort on all parity errors, force write through, enable hardware recovery

b001

b010

b011 Reserved

b100 Disable parity checking

b101 Force write-through, enable hardware recovery, do not generate aborts on parity errors

b110

b111 Reserved
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-21
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Handling cache ECC errors

Table 8-3 shows the behavior of the processor on a cache ECC error, depending on bits [5:3] of 
the Auxiliary Control Register, see Auxiliary Control Registers on page 4-38.

See Disabling or enabling error checking on page 8-32 for information on how to safely change 
these bits.

When ECC checking is enabled, hardware recovery is always enabled. When an ECC error is 
detected, the processor tries to evict the cache line containing the error. If the line is clean, it is 
invalidated, and the correct data is reloaded from the L2 memory system. If the line is dirty, the 
eviction writes the dirty data out to the L2 memory system, and in the process it corrects any 
1-bit errors. The corrected data is then reloaded from the L2 memory system.

If a 2-bit error is detected in a dirty line, the error is not correctable. If the 2-bit error is in the 
tag or dirty RAM, no data is written to the L2 memory system. If the 2-bit error is in the data 
RAM, the cache line is written to the L2 memory system, but the AXI master port WSTRBM 
signal is LOW for the data that contains the error. If an uncorrectable error is detected, an abort 
is always generated because data might have been lost. It is expected that such a situation can 
be fatal to the software process running.

If one of the force write-though settings is enabled, memory marked as write-back write-allocate 
behaves as write-though. This ensures that cache lines can never be dirty, therefore the error can 
always be recovered from by invalidating the cache line that contains the ECC error.

All detectable errors in the instruction cache can always be recovered from because the 
instruction cache can never contain dirty data.

ECC aborts

If aborts on ECC errors are enabled, software is notified of the error by a data abort or prefetch 
abort. The error is still automatically corrected by the hardware even if an abort is generated.

If abort generation is not enabled, the hardware recovery is invisible to software. If required, 
software can use events and the Correctable Fault Location Register to monitor the errors that 
are detected and corrected. See Error detection events on page 8-36 and Correctable Fault 
Location Register on page 4-70.

Table 8-3 Cache ECC error behavior

Value Behavior

b000  Abort on all ECC errors, enable hardware recovery

b001

b010  Abort on all ECC errors, force write-through, enable hardware recovery

b011 Reserved

b100  Disable ECC checking

b101  Enable hardware recovery, do not generate aborts on ECC errors

b110  Force write-through, enable hardware recovery, do not generate aborts on ECC errors

b111 Reserved
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-22
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Errors on instruction cache read

All parity or ECC errors detected on instruction cache reads are correctable. If aborts are 
enabled, a precise prefetch abort exception occurs. The instruction FAR gives the address that 
caused the error to be detected. The instruction FSR indicates a parity error on a read. The 
auxiliary FSR indicates that the error was in the cache and which cache Way the error was in.

Errors on data cache read

If parity or ECC aborts are enabled, or an uncorrectable ECC error is detected, a precise data 
abort exception occurs. The data FAR gives the address that caused the error to be detected. The 
data FSR indicates a precise read parity error. The auxiliary FSR indicates that the error was in 
the cache and which cache Way the error was in.

Errors on data cache write

If parity or ECC aborts are enabled, or an uncorrectable ECC error is detected, an imprecise data 
abort exception occurs. Because the abort is imprecise, the data FAR is Unpredictable. The data 
FSR indicates an imprecise write parity error. The auxiliary FSR indicates that the error was in 
the cache and which cache Way and Index the error was in.

In write-through cache regions the store that caused the error is written to external memory 
using the L2 memory interface so data is not lost and the error is not fatal. 

Errors on evictions

If the cache controller has determined a cache miss has occurred, it might have to do an eviction 
before a linefill can take place. This can occur on reads, and on writes if write-allocation is 
enabled for the region. Certain cache maintenance operations also generate evictions. If it is a 
data-cache line which is dirty, an ECC error might be detected on the line being evicted:

• if the error is correctable, it is corrected inline before the data is written to the external 
memory using the L2 memory interface

• if there is an uncorrectable error in the tag or dirty RAM, the write is not done and an 
imprecise abort occurs

• if there is an uncorrectable error in the data RAM, the AXI master port WSTRBM signal 
is deasserted for the word(s) with an error, and an imprecise abort occurs.

An imprecise abort can also occur on a correctable error depending on the Auxiliary Control 
Register bits [5:3], see Auxiliary Control Registers on page 4-38. Any detected error is signaled 
with the appropriate event.

Note
 When parity checking is enabled, force write-though is always enabled. Therefore the cache 
lines can never be dirty, and so evictions are not required. Force write-through can also be 
enabled with ECC checking.

Errors on cache maintenance operations

The following sections describe errors on cache maintenance operations:
• Invalidate all instruction cache on page 8-24
• Invalidate all data cache on page 8-24
• Invalidate instruction cache by address on page 8-24
• Invalidate data cache by address on page 8-24
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-23
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
• Invalidate data cache by set/way
• Clean data cache by address
• Clean data cache by set/way on page 8-25
• Clean and invalidate data cache by address on page 8-25
• Clean and invalidate data cache by set/way on page 8-25.

Invalidate all instruction cache

This operation ignores all errors in the cache and sets all instruction cache entries to invalid 
regardless of error events. This operation cannot generate an imprecise abort, and no error 
events are signaled.

Invalidate all data cache

This operation ignores all errors in the cache and sets all data cache entries to invalid regardless 
of errors. This operation cannot generate an imprecise abort and no error events are signaled.

Invalidate instruction cache by address

This operation requires a cache lookup. Any errors found in the set that was looked up are fixed 
by invalidating that line and, if the address in question is found in the set, it is invalidated.

This operation cannot generate an imprecise abort. Any detected error is signaled with the 
appropriate event.

Invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked 
up are fixed and, if the address in question is found in the set, it is invalidated.

Any uncorrectable errors cause an imprecise abort. An imprecise abort can also be raised on a 
correctable error if aborts on RAM errors are enabled in the Auxiliary Control Register.

Any detected error is signaled with the appropriate event.

Invalidate data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The entry at the given set/way is marked as invalid regardless of any errors. This operation 
cannot generate an imprecise abort. Any detected error is signaled with the appropriate event.

Clean data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked 
up are fixed and, if the address in question is found in the set, the instruction carries on with the 
clean operation. When the tag lookup is done, the dirty RAM is checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBM AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors cause an imprecise abort. An imprecise abort can also be raised on a 
correctable error if aborts on RAM errors are enabled in the Auxiliary Control Register.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-24
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Any detected error is signaled with the appropriate event.

Clean data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The tag and dirty RAMs for the cache line are checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBM AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an imprecise abort. An imprecise abort can also be raised 
on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control Register.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked 
up are fixed and, if the address in question is found in the set, the instruction carries on with the 
clean and invalidate operation. When the tag lookup is done, the dirty RAM is checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBM AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.

Any uncorrectable errors found cause an imprecise abort. An imprecise abort can also be raised 
on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control Register.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The tag and dirty RAMs for the cache line are checked.

Note
 When force write-through is enabled, the dirty bit is ignored.

If the tag or dirty RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable 
error, the words with the error have their WSTRBM AXI signal deasserted. If there is a 
correctable error, the line has the error corrected inline before it is written back to memory.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-25
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Any uncorrectable errors found cause an imprecise abort. An imprecise abort can also be raised 
on a correctable error if aborts on RAM errors are enabled in the Auxiliary Control Register.

Any detected error is signaled with the appropriate event.

8.5.4 Cache RAM organization

This section describes RAM organization in the following sections:
• Tag RAM
• Dirty RAM on page 8-27
• Data RAM on page 8-27.

Tag RAM

The tag RAMs consist of four ways of up to 512 lines. The width of the RAM depends on the 
build options selected, and the size of the cache. The following tables show the tag RAM bits:
• Table 8-4 shows the tag RAM bits when parity is implemented
• Table 8-5 shows the tag RAM bits when ECC is implemented
• Table 8-6 shows the tag RAM bits when neither parity nor ECC is implemented.

A cache line is marked as valid by bit [22] of the tag RAM. Each valid bit is associated with a 
whole cache line, so evictions always occur on the entire line.

Table 8-4 Tag RAM bit descriptions, with parity

Bit in the tag cache line Description

Bit [23] Parity bit

Bit [22] Valid bit

Bits [21:0] Tag value

Table 8-5 Tag RAM bit descriptions, with ECC

Bit in the tag cache line Description

Bits [29:23] ECC code bits

Bit [22] Valid bit

Bits [21:0] Tag value

Table 8-6 Tag RAM bit descriptions, no parity or ECC

Bit in the tag cache line Description

Bit [22] Valid bit

Bits [21:0] Tag value
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-26
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Table 8-7 shows the tag RAM cache sizes and associated RAM organization, assuming no parity 
or ECC. For parity, the width of the tag RAMs must be increased by one bit. For ECC, the width 
of the tag RAMs must be increased by seven bits.

Dirty RAM

For the data cache only, the dirty RAM stores the following information:
• two bits for line outer attributes for evictions 
• one line dirty bit
• four ECC code bits if the ECC build option is enabled.

The dirty RAM array consists of one bank of up to 512 12-bit lines, 4 ways x 3 bits. If ECC is 
enabled, the dirty RAM is 28 bits wide. Each line of dirty RAM contains all the information of 
the four ways for a given index. 

Each time a dirty bit is written, the outer bits of the line and, if implemented, the ECC code bits, 
are also written. The dirty RAM is bit-enabled. Table 8-8 shows the organization of a dirty RAM 
line.

Data RAM

Data RAM is organized as eight banks of 32-bit wide lines, or in the instruction cache as four 
banks of 64-bit wide lines. This RAM organization means that it is possible to:

• Perform a cache look-up with one RAM access, all banks selected together. This is done 
for nonsequential read operations. Figure 8-3 on page 8-28 shows this.

• Select the appropriate bank RAM for sequential read operations. Figure 8-4 on page 8-28 
shows this.

Table 8-7 Cache sizes and tag RAM organization

Cache size Tag RAM organization

4KB 4 banks 23 bits 32 lines

8KB 4 banks 22 bits 64 lines

16KB 4 banks 21 bits 128 lines

32KB 4 banks 20 bits 256 lines

64KB 4 banks 19 bits 512 lines

Table 8-8 Organization of a dirty RAM line

Bit in the dirty cache line Description

Bits [6:3] ECC bits, if implemented

Bits [2:1] Outer attributes that are re-encoded on AWCACHE when an eviction is sent to the AXI 
bus:
01 = WB, WA
10 = WT
11 = WB, no WA
00 = Non-cacheable.

Bit [0] Dirty bit
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-27
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
• Write a line to the eviction buffer in one cycle, a 256-bit read access.

• Fill a line in one cycle from the linefill buffer, a 256-bit write access.

Figure 8-3 shows a cache look-up being performed on all banks with one RAM access.

Figure 8-3 Nonsequential read operation performed with one RAM access.

Figure 8-4 shows the appropriate bank RAM being selected for a sequential read operation.

Figure 8-4 Sequential read operation performed with one RAM access

The data RAM organization is optimized for 64-bit read operations, because with the same 
address, two words on the same way can be selected.

Data RAM sizes depend on the build option selected, and are described in:
• Data RAM sizes without parity or ECC implemented on page 8-29
• Data RAM sizes with parity implemented on page 8-29
• Data RAM sizes with ECC implemented on page 8-30.

RAM address

0

1

2

3 Way 1
Word 6

Bank 0

Way 1
Word 7

Way 2
Word 4

Way 2
Word 5

Way 3
Word 2

Way 3
Word 3

Way 0
Word 0

Way 0 
Word 1

Bank 1

Way 2
Word 6

Bank 2

Way 2
Word 7

Way 3
Word 4

Way 3
Word 5

Way 0
Word 2

Way 0
Word 3

Way 1
Word 0

Way 1 
Word 1

Bank 3

Way 3
Word 6

Bank 4

Way 3
Word 7

Way 0
Word 4

Way 0
Word 5

Way 1
Word 2

Way 1
Word 3

Way 2
Word 0

Way 2 
Word 1

Bank 5

Way 0
Word 7

Way 1
Word 4

Way 1
Word 5

Way 2
Word 2

Way 2
Word 3

Way 3
Word 0

Way 3 
Word 1

Bank 7Bank 6

Way 0
Word 6

256-bit wide

RAM address

0

1

2

3 Way 1
Word 6

Bank 0

Way 1
Word 7

Way 2
Word 4

Way 2
Word 5

Way 3
Word 2

Way 3
Word 3

Way 0
Word 0

Way 0 
Word 1

Bank 1

Way 2
Word 6

Bank 2

Way 2
Word 7

Way 3
Word 4

Way 3
Word 5

Way 0
Word 2

Way 0
Word 3

Way 1
Word 0

Way 1 
Word 1

Bank 3

Way 3
Word 6

Bank 4

Way 3
Word 7

Way 0
Word 4

Way 0
Word 5

Way 1
Word 2

Way 1
Word 3

Way 2
Word 0

Way 2 
Word 1

Bank 5

Way 0
Word 7

Way 1
Word 4

Way 1
Word 5

Way 2
Word 2

Way 2
Word 3

Way 3
Word 0

Way 3 
Word 1

Bank 7Bank 6

Way 0
Word 6
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-28
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Data RAM sizes without parity or ECC implemented

Table 8-9 shows the organization for instruction and data caches when neither parity nor ECC 
is implemented.

Data RAM sizes with parity implemented

Table 8-11 shows the organization for instruction and data caches when parity is implemented. 
For parity error detection, one bit is added per byte, so four bits are added for each RAM bank.

Table 8-9 Instruction cache data RAM sizes, no parity or ECC

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 64 bits 128 lines or 
8 banks 32 bits 128 lines

8KB, 4 2KB ways 4 banks 64 bits 256 lines or
8 banks 32 bits 256 lines

16KB, 4 4KB ways 4 banks 64 bits 512 lines or
8 banks 32 bits 512 lines

32KB, 4 8KB ways 4 banks 64 bits 1024 lines or
8 banks 32 bits 1024 lines

64KB, 4 16KB ways 4 banks 64 bits 2048 lines or
8 banks 32 bits 2048 lines

Table 8-10 Data cache data RAM sizes, no parity or ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 32 bits 128 lines

8KB, 4 2KB ways 8 banks 32 bits 256 lines

16KB, 4 4KB ways 8 banks 32 bits 512 lines

32KB, 4 8KB ways 8 banks 32 bits 1024 lines

64KB, 4 16KB ways 8 banks 32 bits 2048 lines

Table 8-11 Instruction cache data RAM sizes, with parity

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 72 bits 128 lines or
8 banks 36 bits 128 lines

8KB, 4 2KB ways 4 banks 72 bits 256 lines or
8 banks 36 bits 256 lines

16KB, 4 4KB ways 4 banks 72 bits 512 lines or
8 banks 36 bits 512 lines

32KB, 4 8KB ways 4 banks 72 bits 1024 lines or
8 banks 36 bits 1024 lines

64KB, 4 16KB ways 4 banks 72 bits 2048 lines or
8 banks 36 bits 2048 lines
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-29
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Table 8-13 shows the organization of the data cache RAM bits when parity is implemented.

Parity bits are grouped together in bits[35:32] so that data and parity bits are easily 
differentiated. With this design the parity bit is selected alongside the related data byte, so that 
when data is updated, the parity bit is also updated.

Data RAM sizes with ECC implemented

Table 8-14 shows the organization for the instruction cache when ECC is implemented. For 
ECC error detection, eight bits are added per 64 bits, so four bits are added for each RAM bank.

Table 8-12 Data cache data RAM sizes, with parity

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 36 bits 128 lines

8KB, 4 2KB ways 8 banks 36 bits 256 lines

16KB, 4 4KB ways 8 banks 36 bits 512 lines

32KB, 4 8KB ways 8 banks 36 bits 1024 lines

64KB, 4 16KB ways 8 banks 36 bits 2048 lines

Table 8-13 Data cache RAM bits, with parity

RAM bits Description

Bit [35] Parity bit for byte[31:24]

Bit [34] Parity bit for byte[23:16]

Bit [33] Parity bit for byte[15:8]

Bit [32] Parity bit for byte[7:0]

Bits [31:0] Data[31:0]

Table 8-14 Instruction cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 72 bits 128 lines or
8 banks 36 bits 128 lines

8KB, 4 2KB ways 4 banks 72 bits 256 lines or
8 banks 36 bits 256 lines

16KB, 4 4KB ways 4 banks 72 bits 512 lines or
8 banks 36 bits 512 lines

32KB, 4 8KB ways 4 banks 72 bits 1024 lines or
8 banks 36 bits 1024 lines

64KB, 4 16KB ways 4 banks 72 bits 2048 lines or
8 banks 36 bits 2048 lines
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-30
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
Table 8-15 shows the organization for the data cache when ECC is implemented. For ECC error 
detection, seven bits are added per 32 bits, so seven bits are added for each RAM bank.

Table 8-16 shows the organization of the data cache RAM bits when ECC is implemented.

8.5.5 Cache interaction with memory system

This section describes how to enable or disable the cache RAMs, and to enable or disable error 
checking. After you enable or disable the instruction cache, you must issue an ISB instruction to 
flush the pipeline. This ensures that all subsequent instruction fetches see the effect of enabling 
or disabling the instruction cache.

After reset, you must invalidate each cache before enabling it.

When disabling the data cache, you must clean the entire cache to ensure that any dirty data is 
flushed to L2 memory.

Before enabling the data cache, you must invalidate the entire data cache if L2 memory might 
have changed since the cache was disabled.

Before enabling the instruction cache, you must invalidate the entire instruction cache if L2 
memory might have changed since the cache was disabled.

See Enabling or disabling AXI slave accesses on page 9-23 and Accessing RAMs using the AXI 
slave interface on page 9-24 for information about how to access the cache RAMs using the 
AXI slave interface.

Disabling or enabling all of the caches

The following code is an example of enabling caches:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
ORR R1, R1, #0x1 <<12 ; instruction cache enable
ORR R1, R1, #0x1 <<2 ; data cache enable
DSB
MCR p15, 0, r0, c15, c5, 0 ; Invalidate entire data cache
MCR p15, 0, r0, c7, c5, 0 ; Invalidate entire instruction cache
MCR p15, 0, R1, c1, c0, 0 ; enabled cache RAMs
ISB

Table 8-15 Data cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 39 bits 128 lines

8KB, 4 2KB ways 8 banks 39 bits 256 lines

16KB, 4 4KB ways 8 banks 39 bits 512 lines

32KB, 4 8KB ways 8 banks 39 bits 1024 lines

64KB, 4 16KB ways 8 banks 39 bits 2048 lines

Table 8-16 Data cache RAM bits, with ECC

RAM bits Description

Bits [39:32] ECC code bits for data [31:0]

Bits [31:0] Data [31:0]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-31
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
The following code is an example of disabling the caches:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
BIC R1, R1, #0x1 <<12 ; instruction cache disable
BIC R1, R1, #0x1 <<2 ; data cache disable
DSB
MCR p15, 0, R1, c1, c0, 0 ; disabled cache RAMs
ISB
; Clean entire data cache. This routine will depend on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data 

Disabling or enabling instruction cache

The following code is an example of enabling the instruction cache:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
ORR R1, R1, #0x1 <<12 ; instruction cache enable
MCR p15, 0, r0, c7, c5, 0 ; Invalidate entire instruction cache
MCR p15, 0, R1, c1, c0, 0 ; enabled instruction cache
ISB

The following code is an example of disabling the instruction cache:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
BIC R1, R1, #0x1 <<12 ; instruction cache enable
MCR p15, 0, R1, c1, c0, 0 ; disabled instruction cache
ISB

Disabling or enabling data cache

The following code is an example of enabling the data cache:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
ORR R1, R1, #0x1 <<2
DSB
MCR p15, 0, r0, c15, c5, 0 ; Invalidate entire data cache
MCR p15, 0, R1, c1, c0, 0 ; enabled data cache

The following code is an example of disabling the cache RAMs:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
BIC R1, R1, #0x1 <<2
DSB
MCR p15, 0, R1, c1, c0, 0 ; disabled data cache
; Clean entire data cache. This routine will depend on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data.

Disabling or enabling error checking

Software must take care when changing the error checking bits in the Auxiliary Control 
Register. If the bits are changed when the caches contain data, the parity or ECC bits in the 
caches might not be correct for the new setting, resulting in unexpected errors and data loss. 
Therefore the bits in the Auxiliary Control Register must only be changed when both caches are 
turned off and the entire cache must be invalidated after the change.

The following code is the recommended sequence to perform the change:

MRC p15, 0, r0, c1, c0, 0 ; Read System Control Register
BIC r0, r0, #0x1 << 2   ; Disable data cache bit
BIC r0, r0, #0x1 << 12 ; Disable instruction cache bit
DSB
MCR p15, 0, r0, c1, c0, 0 ; Write System Control Register
ISB ; Ensures following instructions are not executed from cache
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-32
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
; Clean entire data cache. This routine will depend on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data (e.g. if the cache has not 
been enabled yet).
MRC p15, 0, r1, c1, c0, 1 ; Read Auxiliary Control Register
; Change bits 5:3 as needed
MCR p15, 0, r1, c1, c0, 1 ; Write Auxiliary Control Register
MCR p15, 0, r0, c15, c5, 0 ; Invalidate entire data cache
MCR p15, 0, r0, c7, c5, 0 ; Invalidate entire instruction cache
MRC p15, 0, r0, c1, c0, 0 ; Read System Control Register
ORR r0, r0, #0x1 << 2   ; Enable data cache bit
ORR r0, r0, #0x1 << 12 ; Enable instruction cache bit
DSB
MCR p15, 0, r0, c1, c0, 0 ; Write System Control Register
ISB
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-33
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.6 Internal exclusive monitor
The processor L1 memory system has an internal exclusive monitor. This is a two state, open 
and exclusive, state machine that manages load/store exclusive (LDREXB, LDREXH, LDREX, LDREXD, 
STREXB, STREXH, STREX and STREXD) accesses and clear exclusive (CLREX) instructions. You can use 
these instructions, operating in the L1 memory system, to construct semaphores and ensure 
synchronization between different processes. By adding an external exclusive monitor, you can 
also use these instructions in the L2 memory system to construct semaphores and ensure 
synchronization between different processors. See the ARM Architecture Reference Manual for 
more information about how these instructions work.

When a load-exclusive access is performed, the internal exclusive monitor moves to the 
exclusive state. It moves back to the open state when a store exclusive access or clear exclusive 
instruction is performed. The internal exclusive monitor holds exclusivity state for the 
Cortex-R4 processor only. It does not record the address of the memory that a load-exclusive 
access was performed to. Any store exclusive access performed when the state is open fails. If 
the state is exclusive, the access passes if it is to non-shared memory but, if it is to shared 
memory, the access must be performed as an exclusive using the L2 memory interface. Whether 
the shared store-exclusive access passes or fails depends on the state of an external exclusive 
monitor which can track accesses made by other processors in the system.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-34
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.7 Memory types and L1 memory system behavior
The behavior of the L1 memory system depends on the type attribute of the memory that is being 
accessed:

• Only Normal, Non-shared memory can be cached in the RAMs.

• The store buffer can merge any stores to Normal memory. See Store buffer on page 8-18 
for more information.

• Only Normal memory is considered restartable, that is, a multi-word transfer can be 
abandoned part way through because of an interrupt, to be restarted after the interrupt has 
been handled. See Interrupts on page 2-18 for more information about interrupt behavior.

• Only the internal exclusive monitor is used for exclusive accesses to Non-shared memory. 
Exclusive accesses to shared memory are checked using the internal monitor and also, if 
necessary, any external monitor, using the L2 memory interface.

• Accesses resulting from SWP and SWPB instructions to Cacheable memory are not marked 
as locked when performed using the L2 memory interface.

Table 8-17 summarizes the processor memory types and associated behavior. 

Table 8-17 Memory types and associated behavior

Memory type Cacheable Merging Restartable Internal 
exclusives 

Locked 
swaps

Normal Shared No Yes Yes Partially Yes

Non-shared Yes Yes Yes Yes No

Device Shared No No No Partially Yes

Non-shared No No No Yes Yes

Strongly Ordered Shared No No No Partially Yes
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-35
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
8.8 Error detection events
The processor generates a number of events related to the internal error detection and correction 
schemes in the TCMs and caches. For more information, see Table 6-1 on page 6-2. This section 
describes:
• TCM error events
• Instruction-cache error events
• Data-cache error events
• Events and the CFLR.

8.8.1 TCM error events

TCM parity and ECC error events are only signaled for TCM reads, although this includes the 
read-modify-write sequence performed for some stores. Most errors detected by the internal 
parity or ECC logic are signaled twice:
• once on a TCM-centric event
• once on a processor-centric event.

The TCM-centric events consist of two events per TCM port, one for fatal, that is, 2-bit ECC or 
parity errors and one for correctable, that is, 1-bit ECC errors. These events are generated three 
clock cycles after the data read cycle. Consequently, these events are sometimes signaled on 
speculative TCM reads, such as instructions which are prefetched but never executed because 
of a branch earlier in the instruction sequence.

Note
 When an external error is signaled on a TCM access, the TCM-centric events are still generated 
as appropriate, based on the data returned, as if no external error had been signaled.

The processor-centric TCM events are only signaled for errors in data that would have otherwise 
been used by the processor. Errors on speculative reads never generate these errors. They consist 
of fatal and correctable events for:
• the prefetch unit, to signal errors on instruction fetches
• the load/store unit, to signal errors on data accesses
• the AXI slave interface, to signal errors on DMA accesses.

8.8.2 Instruction-cache error events

All parity and ECC errors are correctable in the i-cache. Therefore there are only two events, to 
indicate when an error is detected in a read from the tag RAM, or from the data RAM. These 
events are only signaled for non-speculative instruction fetches and certain cache maintenance 
operations. See Cache error detection and correction on page 8-20.

8.8.3 Data-cache error events

The d-cache can generate fatal and correctable errors, and therefore has four events, one for each 
type of error in the data RAM and in the tag or dirty RAMs. These events are only signaled for 
non-speculative data accesses, cache line evictions, and certain cache maintenance operations. 
See Cache error detection and correction on page 8-20.

8.8.4 Events and the CFLR

The Correctable Fault Location Register (CFLR) records the location of the last correctable 
error detected on a non-speculative access. See Correctable Fault Location Register on 
page 4-70 for more information. Every correctable error that is recorded in the CFLR also 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-36
ID013010 Non-Confidential, Unrestricted Access



Level One Memory System 
generates an event. See Table 6-1 on page 6-2 to see which events are CFLR-related. For 
correctable cache errors, the CLFR does not record whether the error occurred in the data RAM 
or tag/dirty RAM. This distinction is only made by the events.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 8-37
ID013010 Non-Confidential, Unrestricted Access



Chapter 9 
Level Two Interface

This chapter describes the features of the Level two (L2) interface not covered in the AMBA AXI 
Protocol Specification. It contains the following sections:
• About the L2 interface on page 9-2
• AXI master interface on page 9-3
• AXI master interface transfers on page 9-7
• AXI slave interface on page 9-20
• Enabling or disabling AXI slave accesses on page 9-23
• Accessing RAMs using the AXI slave interface on page 9-24.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-1
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.1 About the L2 interface
This section describes the processor L2 interface. The L2 interface consists of AXI master and 
AXI slave interfaces.

The processor is designed for use in larger chip designs using the Advanced Microcontroller Bus 
Architecture (AMBA) AXI protocol. The processor uses the L2 interfaces as its interface to 
memory and peripheral devices.

External AXI masters and the processor can use the AXI slave interface to access the processor 
RAMs. You can use the AXI slave interface for DMA access into and out of the TCMs or to 
perform software test of the TCMs and cache RAMs.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-2
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.2 AXI master interface
The processor has a single AXI master interface, with one port which is used for:
• I-cache linefills
• D-cache linefills and evictions
• Non-cacheable (NC) Normal-type memory instruction fetches
• NC Normal-type memory data accesses
• Device and Strongly-ordered type data accesses, normally to peripherals.

The port is 64 bits wide, and conforms to the AXI standard as described in the AMBA AXI 
Protocol Specification. Within the AXI standard, the master port uses the AWUSERM and 
ARUSERM signals to indicate inner memory attributes.

The master interface can run at the same frequency as the processor or at a lower synchronous 
frequency. See AXI interface clocking on page 3-9 for more information.

In addition, the AXI master interface produces or checks parity bits for each AXI channel. These 
additional signals are not part of the AXI specification. See the Cortex-R4 and Cortex-R4F 
Integration Manual for more information.

Note
 References in this section to an AXI slave refer to the AXI slave in the external system which is 
connected to the Cortex-R4 AXI master port. This is not necessarily the Cortex-R4 AXI slave 
port.

The following sections describe the attributes of the AXI master interface, and provide 
information about the types of burst generated:
• Identifiers for AXI bus accesses on page 9-4
• Write response on page 9-4
• Linefill buffers and the AXI master interface on page 9-4
• Eviction buffer on page 9-5
• Memory attributes on page 9-5.

Table 9-1 shows the AXI master interface attributes.

Table 9-1 AXI master interface attributes

Attribute Value Comments

Write issuing capability 4 Made up of four outstanding writes that can be evictions, single writes, or write 
bursts.a

Read issuing capability 7 Made up of five linefills on the data side, one NC read on the data side, and one 
read on the instruction side, that can be NC or linefill.

Combined issuing capability 11a -

Write ID capability 2 -

Write interleave capability 1 The AXI master interface presents all write data in order.

Read ID capability 7 Made up of five linefills on the data side, one NC read on the data side, and one 
linefill or NC read on the instruction side.

a. When there are three outstanding write transactions, only data is issued for the fourth. Only three outstanding write addresses 
are issued.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-3
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.2.1 Identifiers for AXI bus accesses

Accesses on the AXI bus use ID values as follows:

Outstanding write/read access on different IDs 
This means, for example, that a Non-cacheable (NC) read and linefills can be 
outstanding on the AXI bus simultaneously as long as the IDs are different. 
At the same time, there can be:
• up to seven outstanding reads, each with one of seven different ID values, 

that consists of:
— a data side read NC access, RID0
— an instruction side read NC access or an instruction side read 

Cacheable access, RID1
— five outstanding data side linefills on the AXI bus, RID3 - RID7.

• up to two IDs on outstanding writes, that consist of:
— single or burst NC writes or write-through (WT) writes, WID0
— evictions, WID1.

Outstanding write accesses with the same ID 
When the address and data of the first write are both put on AXI bus, another write 
request with same ID can be sent when the address or data channel is released. 
For example, the new address can be sent with the same ID, before the target 
accepts the data of the first write.

Note
 • The AXI master does not generate two outstanding read accesses with the same ID.

• The AXI master does not interleave write data from two different bursts, even if the bursts 
have different IDs.

9.2.2 Write response

The AXI master requires that the slave does not return a write response until it has received both 
the write data and the write address.

9.2.3 Linefill buffers and the AXI master interface

On the data side there are two LineFill Buffers (LFBs), LFB0 and LFB1. Each request from the 
data cache controller or from the STore Buffer (STB) can be allocated to either LFB0 or LFB1.

On the instruction side, there is one LFB. This is the Instruction LFB (ILFB), that treats 
instruction linefill requests or Non-cacheable instruction reads in the same way. 

The linefill buffers:
• get returned data from the AXI bus for linefill requests
• get returned data from the AXI bus for any Non-cacheable LDR or LDMs
• get data from the STB to write as a burst on the AXI bus (LFB0 and LFB1 only).

Single writes do not use LFBs.

The LFBs are 256 bits wide so that an entire cache line can be written to the cache RAMs in one 
cycle. While the LFB is being filled from L2 memory, its bytes can be merged with write data 
from the STB.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-4
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.2.4 Eviction buffer

As soon as a linefill is requested, the selected evicted cache line is loaded into the EViction 
Buffer (EVB). The EVB forwards this information to the AXI bus when possible.

The EVB has a structure of 256 bits for data and 32 bits for the address. See Cache line 
write-back (eviction) on page 9-13 for details of the AXI transaction generated.

The EVB is removed if cache RAMs are not implemented for the processor.

9.2.5 Memory attributes

The Cortex-R4 AXI master interface uses the ARCACHEM, AWCACHEM, ARUSERM, 
and AWUSERM signals to indicate the memory attributes of the transfer, as returned by the 
MPU. Table 9-2 Shows the encodings used for the signals ARCACHEM and AWCACHEM 
of the master interface. These are generated from the memory type and outer region attributes.

Table 9-3 shows the encodings the master interface uses for the ARUSERM and AWUSERM 
signals. These are generated from the memory type and inner region attributes. 

Table 9-2 ARCACHEM and AWCACHEM encodings

Encodinga

a. All encodings not shown in the table are reserved.

Meaning

b0000 Strongly Ordered

b0001 Device

b0011 Non-cacheable 

b0110 Cacheable, write-through, allocate on reads only

b0111 Cacheable, write-back, allocate on reads only

b1111 Cacheable write-back, allocate on reads and writes

Table 9-3 ARUSERM and AWUSERM encodings

Encodinga

a. All encodings not shown in the table are reserved.

Meaning

b00001 Strongly Ordered

b00010 Device, Non-shared

b00011 Device, shared

b00110 Non-cacheable, Non-shared

b00111 Non-cacheable, shared

b01100 Cacheable, write-through, read-allocate only, Non-shared

b01101 Cacheable, write-through, read-allocate only, shared

b11110 Cacheable, write-back, read- and write-allocate, Non-shared

b11111 Cacheable, write-back, read- and write-allocate, shared
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-5
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Memory system implications for AXI accesses

The attributes of the memory being accessed can affect an AXI access. The L1 memory system 
can cache any Normal memory address that is marked as either:
• Cacheable, write-back, read- and write-allocate, non-shared
• Cacheable, write-through, read-allocate only, non-shared.

However, Device and Strongly Ordered memory is always Non-cacheable. Also, any unaligned 
access to Device or Strongly Ordered memory generates an alignment fault and therefore does 
not cause any AXI transfer. This means that the access examples given in this chapter never 
show unaligned accesses to Device or Strongly Ordered memory.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-6
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.3 AXI master interface transfers
The processor conforms to the AXI specification, but it does not generate all the AXI transaction 
types that the specification permits. This section describes the types of AXI transaction that the 
Cortex-R4 AXI master does not generate. If you are designing an AXI slave to work only with 
the Cortex-R4 processor, and there are no other AXI masters in your system, you can take 
advantage of these restrictions and the interface attributes described above to simplify the slave.

This section also contains tables that show some of the types of AXI burst that the processor 
generates. However, because a particular type of transaction is not shown here does not mean 
that the processor does not generate such a transaction.

Note
 An AXI slave device connected to the Cortex-R4 AXI master port must be capable of handling 
every kind of transaction permitted by the AXI specification, except where there is an explicit 
statement in this chapter that such a transaction is not generated. You must not infer any 
additional restrictions from the example tables given. Restrictions described here are applicable 
to the r1p0, r1p1, and r1p2 revisions of the processor, and might not be true for future revisions.

Load and store instructions to Non-cacheable memory might not result in an AXI transfer 
because the data might either be retrieved from, or merged into the internal store data buffers. 
The exceptions to this are loads or stores to Strongly Ordered or Device memory. These always 
result in AXI transfers. See Strongly Ordered and Device transactions on page 9-8.

Restrictions on AXI transfers on page 9-8 describes restrictions on the type of transfers that the 
Cortex-R4 AXI master interface generates. The AXI master port never deasserts the buffered 
write response and read data channel ready signals, BREADYM and RREADYM. You must 
not make any other assumptions about the AXI handshaking signals, except that they conform 
to the AMBA AXI Protocol Specification.

The following sections give examples of transfers generated by the AXI master interface:
• Strongly Ordered and Device transactions on page 9-8
• Linefills on page 9-13
• Cache line write-back (eviction) on page 9-13
• Non-cacheable reads on page 9-13
• Non-cacheable or write-through writes on page 9-15
• AXI transaction splitting on page 9-16
• Normal write merging on page 9-17.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-7
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.3.1 Restrictions on AXI transfers

The Cortex-R4 AXI master interface applies the following restrictions to the AXI transactions 
it generates:

• A burst never transfers more than 32 bytes.

• The burst length is never more than 8 transfers.

• No transaction ever crosses a 32-byte boundary in memory. See AXI transaction splitting 
on page 9-16.

• FIXED bursts are never used.

• The write address channel always issues INCR type bursts, and never WRAP or FIXED.

• WRAP type read bursts, see Linefills on page 9-13:
— are used only for linefills (reads) of Cacheable Normal non-shared memory
— always have a size of 64 bits, and a length of 4 transfers
— always have a start address that is 64-bit aligned.

• If the transfer size is 8 bits or 16 bits then the burst length is always 1 transfer.

• The transfer size is never greater than 64 bits, because it is a 64-bit AXI bus.

• Instruction fetches, identified by ARPROT[2], are always a 64 bit transfer size, and never 
locked or exclusive.

• Transactions to Device and Strongly Ordered memory are always to addresses that are 
aligned for the transfer size. See Strongly Ordered and Device transactions.

• Exclusive and Locked accesses are always to addresses that are aligned for the transfer 
size.

• Write data is never interleaved.

• In addition to the above, there are various limitations to the ID values that the AXI master 
interface uses. See Identifiers for AXI bus accesses on page 9-4.

9.3.2 Strongly Ordered and Device transactions

A load or store instruction to or from Strongly Ordered or Device memory always generates 
AXI transactions of the same size as implied by the instruction. All accesses using LDM, STM, LDRD, 
or STRD instructions to Strongly Ordered or Device memory occur as 32-bit transfers.

LDRB

Table 9-4 shows the values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM for a 
Non-cacheable LDRB from bytes 0-7 in Strongly Ordered or Device memory.

Table 9-4 Non-cacheable LDRB

Address[2:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x0 (byte 0) 0x00 Incr 8-bit 1 data transfer

0x1 (byte 1) 0x01 Incr 8-bit 1 data transfer

0x2 (byte 2) 0x02 Incr 8-bit 1 data transfer

0x3 (byte 3) 0x03 Incr 8-bit 1 data transfer
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-8
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
LDRH

Table 9-5 shows the values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM for a 
Non-cacheable LDRH from halfwords 0-3 in Strongly Ordered or Device memory.

Note
 A load of a halfword from Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7 
generates an alignment fault.

LDR or LDM that transfers one register

Table 9-6 shows the values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM for a 
Non-cacheable LDR or an LDM that transfers one register, (an LDM1) in Strongly Ordered or Device 
memory.

Note
 A load of a word from Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 
0x7 generates an alignment fault.

0x4 (byte 4) 0x04 Incr 8-bit 1 data transfer

0x5 (byte 5) 0x05 Incr 8-bit 1 data transfer

0x6 (byte 6) 0x06 Incr 8-bit 1 data transfer

0x7 (byte 7) 0x07 Incr 8-bit 1 data transfer

Table 9-5 LDRH from Strongly Ordered or Device memory

Address[3:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer

0x4 (halfword 2) 0x04 Incr 16-bit 1 data transfer

0x6 (halfword 3) 0x06 Incr 16-bit 1 data transfer

Table 9-6 LDR or LDM1 from Strongly Ordered or Device memory

Address[2:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer

Table 9-4 Non-cacheable LDRB (continued)

Address[2:0] ARADDRM ARBURSTM ARSIZEM ARLENM
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-9
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
LDM that transfers five registers

Table 9-7 shows the values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM for a 
Non-cacheable LDM that transfers five registers (an LDM5) in Strongly Ordered or Device memory.

Note
 A load-multiple from address 0x1, 0x2, 0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xD, 0xE, or 0xF generates 
an alignment fault.

Table 9-7 LDM5, Strongly Ordered or Device memory

Address[4:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x00 (word 0) 0x00 Incr 32-bit 5 data transfers

0x04 (word 1) 0x04 Incr 32-bit 5 data transfers

0x08 (word 2) 0x08 Incr 32-bit 5 data transfers

0x0C (word 3) 0x0C Incr 32-bit 5 data transfers
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-10
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
STRB

Table 9-8 shows the values of AWADDRM, AWBURSTM, AWSIZEM, and AWLENM for 
an STRB to Strongly Ordered or Device memory over the AXI master port.

STRH

Table 9-9 shows the values of AWADDRM, AWBURSTM, AWSIZEM, and AWLENM for 
an STRH over the AXI master port to Strongly Ordered or Device memory.

Note
 A store of a halfword to Strongly Ordered or Device memory addresses 0x1, 0x3, 0x5, or 0x7 
generates an alignment fault.

Table 9-8 STRB to Strongly Ordered or Device memory

Address[4:0] AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x00 (byte 0) 0x00 Incr 8-bit 1 data transfer b00000001

0x01 (byte 1) 0x01 Incr 8-bit 1 data transfer b00000010

0x02 (byte 2) 0x02 Incr 8-bit 1 data transfer b00000100

0x03 (byte 3) 0x03 Incr 8-bit 1 data transfer b00001000

0x04 (byte 4) 0x04 Incr 8-bit 1 data transfer b00010000

0x05 (byte 5) 0x05 Incr 8-bit 1 data transfer b00100000

0x06 (byte 6) 0x06 Incr 8-bit 1 data transfer b01000000

0x07 (byte 7) 0x07 Incr 8-bit 1 data transfer b10000000

Table 9-9 STRH to Strongly Ordered or Device memory

Address[2:0] AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x0 (halfword 0) 0x00 Incr 16-bit 1 data transfer b00000011

0x2 (halfword 1) 0x02 Incr 16-bit 1 data transfer b00001100

0x4 (halfword 2) 0x04 Incr 16-bit 1 data transfer b00110000

0x6 (halfword 3) 0x06 Incr 16-bit 1 data transfer b11000000
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-11
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
STR or STM of one register

Table 9-10 shows the values of AWADDRM, AWBURSTM, AWSIZEM, and AWLENM for 
an STR or an STM that transfers one register (an STM1) over the AXI master port to Strongly 
Ordered or Device memory. 

Note
 A store of a word to Strongly Ordered or Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 
0x7 generates an alignment fault.

STM of seven registers

Table 9-11 shows the values of AWADDRM, AWBURSTM, AWSIZEM, and AWLENM for 
an STM that writes seven registers (an STM7) over the AXI master port to Strongly Ordered or 
Device memory.

Note
 A store-multiple to address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment fault.

Table 9-10 STR or STM1 to Strongly Ordered or Device memory

Address[2:0] AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x0 (word0) 0x00 Incr 32-bit 1 data transfer b00001111

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer b11110000

Table 9-11 STM7 to Strongly Ordered or Device memory to word 0 or 1

Address[4:0] AWADDRM AWBURSTM AWSIZEM AWLENM First WSTRBM

0x00 (word 0) 0x00 Incr 32-bit 7 data transfers b00001111

0x04 (word 1) 0x04 Incr 32-bit 7 data transfers b11110000
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-12
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.3.3 Linefills

Loads and instruction fetches from Normal, Cacheable memory that do not hit in the cache 
generate a cache linefill when the appropriate cache is enabled. Table 9-12 shows the values of 
ARADDRM, ARBURSTM, ARSIZEM, and ARLENM for cache linefills.

9.3.4 Cache line write-back (eviction)

When a valid and dirty cache line is evicted from the d-cache, a write-back of the data must 
occur. Table 9-13 shows the values of AWADDRM, AWBURSTM, AWSIZEM, and 
AWLENM for cache line write-backs, over the AXI master interface. 

9.3.5 Non-cacheable reads

Load instructions accessing Non-cacheable Normal memory generate AXI bursts that are not 
necessarily the same size or length as the instruction implies. In addition, if the data to be read 
is contained in the store buffer, the instruction might not generate an AXI read transaction at all.

The tables in this section give examples of the types of AXI transaction that might result from 
various load instructions, accessing various addresses in Non-cacheable Normal memory. They 
are provided as examples only, and are not an exhaustive description of the AXI transactions. 
Depending on the state of the processor, and the timing of the accesses, the actual bursts 
generated might have a different size and length to the examples shown, even for the same 
instruction.

Table 9-14 shows possible values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM 
for an LDRH from bytes 0-7 in Non-cacheable Normal memory.

Table 9-12 Linefill behavior on the AXI interface

Address[4:0]a

a. These are the bottom five bits of the address of the access that cause the linefill, that 
is, the address of the critical word.

ARADDRM ARBURSTM ARSIZEM ARLENM

0x00-0x07 0x00 Wrap 64-bit 4 data transfers

0x08-0x0F 0x08 Wrap 64-bit 4 data transfers

0x10-0x17 0x10 Wrap 64-bit 4 data transfers

0x18-0x1F 0x18 Wrap 64-bit 4 data transfers

Table 9-13 Cache line write-back

AWADDRM[4:0] AWBURSTM AWSIZEM AWLENM

0x00 Incr 64-bit 4 data transfers

Table 9-14 LDRH from Non-cacheable Normal memory

Address[2:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x0 (byte 0) 0x00 Incr 16-bit 1 data transfer

0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer

0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer

0x3 (byte 3) 0x03 Incr 32-bit 2 data transfers
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-13
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Table 9-15 shows possible values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM 
for a Non-cacheable LDR or an LDM that transfers one register, an LDM1.

Table 9-16 show possible values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM 
for a Non-cacheable LDM that transfers five registers (an LDM5).

0x4 (byte 4) 0x04 Incr 16-bit 1 data transfer

0x5 (byte 5) 0x04 Incr 32-bit 1 data transfer

0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer

0x7 (byte 7) 0x07 Incr 32-bit 2 data transfers

Table 9-15 LDR or LDM1 from Non-cacheable Normal memory

Address[2:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer

0x1 (byte 1) 0x01 Incr 64-bit 1 data transfer

0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer

0x3 (byte 3) 0x00 Incr 64-bit 2 data transfers

0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer

0x5 (byte 5) 0x05 Incr 32-bit 2 data transfers

0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer

0x08 Incr 16-bit 1 data transfer

0x7 (byte 7) 0x04 Incr 32-bit 2 data transfers

Table 9-16 LDM5, Non-cacheable Normal memory or cache disabled

Address[4:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x00 (word 0) 0x00 Incr 64-bit 3 data transfers

0x04 (word 1) 0x04 Incr 64-bit 3 data transfers

0x08 (word 2) 0x08 Incr 64-bit 3 data transfers

0x0C (word 3) 0x0C Incr 64-bit 3 data transfers

0x10 (word 4) 0x10 Incr 64-bit 2 data transfers

0x00 Incr 32-bit 1 data transfer

0x14 (word 5) 0x14 Incr 64-bit 2 data transfers

0x00 Incr 64-bit 1 data transfer

Table 9-14 LDRH from Non-cacheable Normal memory (continued)

Address[2:0] ARADDRM ARBURSTM ARSIZEM ARLENM
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-14
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.3.6 Non-cacheable or write-through writes

Store instructions to Non-cacheable or write-through Normal memory generate AXI bursts that 
are not necessarily the same size or length as the instruction implies. The AXI master port 
asserts byte-lane-strobes, WSTRBM[7:0], to ensure that only the bytes that were written by the 
instruction are updated.

The tables in this section give examples of the types of AXI transaction that might result from 
various store instructions, accessing various addresses in Non-cacheable Normal memory. They 
are provided as examples only, and are not an exhaustive description of the AXI transactions. 
Depending on the state of the processor, and the timing of the accesses, the actual bursts 
generated might have a different size and length to the examples shown, even for the same 
instruction.

In addition, write operations to Normal memory can be merged to create more complex AXI 
transactions. See Normal write merging on page 9-17 for examples.

Table 9-17 shows possible values of AWADDRM, AWBURSTM, AWSIZEM, and 
AWLENM for an STRH to Normal memory.

0x18 (word 6) 0x18 Incr 64-bit 1 data transfer

0x00 Incr 64-bit 2 data transfers

0x1C (word 7) 0x1C Incr 32-bit 1 data transfer

0x00 Incr 64-bit 2 data transfers

Table 9-16 LDM5, Non-cacheable Normal memory or cache disabled  (continued)

Address[4:0] ARADDRM ARBURSTM ARSIZEM ARLENM

Table 9-17 STRH to Cacheable write-through or Non-cacheable Normal memory

Address[2:0] AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x0 (byte 0) 0x00 Incr 32-bit 1 data transfer b00000011

0x1 (byte 1) 0x00 Incr 32-bit 1 data transfer b00000110

0x2 (byte 2) 0x02 Incr 64-bit 1 data transfer b00001100

0x3 (byte 3) 0x03 Incr 32-bit 2 data transfers b00001000
b00010000

0x4 (byte 4) 0x04 Incr 16-bit 1 data transfer b00110000

0x5 (byte 5) 0x05 Incr 32-bit 1 data transfer b01100000

0x6 (byte 6) 0x06 Incr 16-bit 1 data transfer b11000000

0x7 (byte 7) 0x07 Incr 8-bit 1 data transfer b10000000

0x08 Incr 8-bit 1 data transfer b00000001
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-15
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Table 9-18 shows possible values of AWADDRM, AWBURSTM, AWSIZEM, and 
AWLENM for an STR or an STM that transfers one register, an STM1, to Normal memory through 
the AXI master port. 

9.3.7 AXI transaction splitting

The processor splits AXI bursts when it accesses addresses across a cache line boundary, that 
is, a 32-byte boundary. An instruction which accesses memory across one or two 32-byte 
boundaries generates two or three AXI bursts respectively. The following examples show this 
behavior. They are provided as examples only, and are not an exhaustive description of the AXI 
transactions. Depending on the state of the processor, and the timing of the accesses, the actual 
bursts generated might have a different size and length to the examples shown, even for the same 
instruction.

For example, LDMIA R10, {R0-R5} loads six words from memory. The number of AXI 
transactions generated by this instruction depends on the base address, R10:

• If all six words are in the same cache line, there is a single AXI transaction. For example, 
for LDMIA R10, {R0-R5} with R10 = 0x1008, the interface might generate a burst of three, 
64-bit read transfers, as shown in Table 9-19.

Table 9-18 STR or STM1 to Cacheable write-through or Non-cacheable Normal memory

Address[2:0] AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x0 (byte 0) (word 0) 0x00 Incr 32-bit 1 data transfer b00001111

0x1 (byte 1) 0x01 Incr 64-bit 1 data transfer b00011110

0x2 (byte 2) 0x00 Incr 64-bit 1 data transfer b00111100

0x3 (byte 3) 0x03 Incr 64-bit 2 data transfers b01111000
b00000000

0x4 (byte 4) (word 1) 0x04 Incr 32-bit 1 data transfer b11110000

0x5 (byte 5) 0x05 Incr 32-bit 2 data transfers b11100000
b00000001

0x6 (byte 6) 0x06

0x08

Incr
Incr

16-bit
16-bit

1 data transfer
1 data transfer

b11000000
b00000011

0x7 (byte 7) 0x04 Incr 32-bit 2 data transfers b10000000
b00000111

Table 9-19 AXI transaction splitting, all six words in same cache line

ARADDRM ARBURSTM ARSIZEM ARLENM

0x1008 Incr 64-bit 3 data transfers
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-16
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
• If the data comes from two cache lines, then there are two AXI transactions. For example, 
for LDMIA R10, {R0-R5} with R10 = 0x1010, the interface might generate one burst of two 
64-bit reads, and one burst of a single 64-bit read, as shown in Table 9-20.

Table 9-21 shows possible values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM 
for an LDR or LDM1 to Non-cacheable Normal memory that crosses a cache line boundary.

Table 9-22 shows possible values of ARADDRM, ARBURSTM, ARSIZEM, and ARLENM 
for an STRH to Non-cacheable Normal memory that crosses a cache line boundary.

9.3.8 Normal write merging

A store instruction to Non-cacheable, or write-through Normal memory might not result in an 
AXI transfer because of the merging of store data in the internal buffers.

The STB can detect when it contains more than one write request to the same cache line for 
write-through Cacheable or Non-cacheable Normal memory. This means it can combine the 
data from more than one instruction into a single write burst to improve the efficiency of the 
AXI port. If the AXI master receives several write requests that do not form a single contiguous 
burst it can choose to output a single burst, with the WSTRBW signal low for the bytes that do 
not have any data.

For write accesses to Normal memory, the STB can perform writes out of order, if there are no 
address dependencies. It can do this to best use its ability to merge accesses.

The instruction sequence in Example 9-1 on page 9-18 shows the merging of writes.

Table 9-20 AXI transaction splitting, data in two cache lines

ARADDRM ARBURSTM ARSIZEM ARLENM

0x1010 Incr 64-bit 2 data transfers

0x1020 Incr 64-bit 1 data transfer

Table 9-21 Non-cacheable LDR or LDM1 crossing a cache line boundary

Address[4:0] ARADDRM ARBURSTM ARSIZEM ARLENM

0x1D (byte 29) 0x1C Incr 32-bit 1 data transfer

0x00 Incr 32-bit 1 data transfer

0x1E (byte 30) 0x1E Incr 16-bit 1 data transfer

0x00 Incr 64-bit 1 data transfer

0x1F (byte 31) 0x1F Incr 8-bit 1 data transfer

0x00 Incr 32-bit 1 data transfer

Table 9-22 Cacheable write-through or Non-cacheable STRH crossing a cache line
boundary

Address[4:0] AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x1F (byte 31) 0x1F Incr 8-bit 1 data transfer b10000000

0x00 Incr 16-bit 1 data transfer b00000001
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-17
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Example 9-1 Write merging

MOV r0, #0x4000
STRH r1, [r0, #0x18]; Store a halfword at 0x4018
STR r2, [r0, #0xC] ; Store a word at 0x400C
STMIA r0, {r4-r7} ; Store four words at 0x4000
STRB r3, [r0, #0x1D]; Store a byte at 0x401D

If the memory at address 0x4000 is marked as Strongly Ordered or Device type memory, the AXI 
transactions shown in Table 9-23 are generated.

In the example above, each store instruction produces an AXI burst of the same size as the data 
written by the instruction.

Table 9-24 shows a possible resulting transaction if the same memory is marked as 
Non-cacheable Normal, or Cacheable write-through.

In this example:

• The store buffer has merged the STRB and STRH writes into one buffer entry, and therefore 
a single AXI transfer, the fourth in the burst.

• The writes, which occupy three buffer entries, have been merged into a single AXI burst 
of four transfers.

• The write generated by the STR instruction has not occurred, because it was overwritten by 
the STM instruction.

• The write transfers have occurred out of order with respect to the original program order.

Table 9-23 AXI transactions for Strongly Ordered or Device type memory

AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x4018 Incr 16-bit 1 data transfer 0b00000011

0x400C Incr 32-bit 1 data transfer 0b11110000

0x4000 Incr 32-bit 4 data transfers 0b00001111
0b11110000
0b00001111
0b11110000

0x401D Incr 8-bit 1 data transfer 0b00100000

Table 9-24 AXI transactions for Non-cacheable Normal or Cacheable write-through
memory

AWADDRM AWBURSTM AWSIZEM AWLENM WSTRBM

0x4000 Incr 64-bit 4 data transfers 0b11111111
0b11111111
0b00000000
0b00100011
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-18
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
The transactions shown in Table 9-24 on page 9-18 show this behavior. They are provided as 
examples only, and are not an exhaustive description of the AXI transactions. Depending on the 
state of the processor, and the timing of the accesses, the actual bursts generated might have a 
different size and length to the examples shown, even for the same instruction. 

If the same memory is marked as write-back Cacheable, and the addresses are allocated into a 
cache line, no AXI write transactions occur until the cache line is evicted and performs a 
write-back transaction. See Cache line write-back (eviction) on page 9-13.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-19
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.4 AXI slave interface
The processor has a single AXI slave interface, with one port. The port is 64 bits wide and 
conforms to the AXI standard as described in the AMBA AXI Protocol Specification. Within the 
AXI standard, the slave port uses the AWUSERS and ARUSERS each as four separate chip 
select input signals to enable access to:
• BTCM
• ATCM
• instruction cache RAMs
• data cache RAMs.

The external AXI system must generate the chip select signals. The slave interface routes the 
access to the required RAM.

In addition, the AXI slave interface produces or checks parity bits for each AXI channel. These 
additional signals are not part of the AXI specification. See the Cortex-R4 and Cortex-R4F 
Integration Manual for more information.

The slave interface can run at the same frequency as the processor or at a lower, synchronous 
frequency. See AXI interface clocking on page 3-9 for more information. If asynchronous 
clocking is required an external asynchronous AXI register slice is required.

The AXI slave provides access to the TCMs and competes for access to the TCMs with the LSU 
and PFU. Both the LSU and PFU normally have a higher priority than the AXI slave.

If two BTCM ports are used, you can configure these to interleave in the address map, so any 
AXI slave access that is denied access to the BTCM on the first cycle of the access gains access 
on the second cycle when the LSU is using the other port, and can continue in lock-step with the 
LSU, assuming both are accessing sequential data. Accesses to the ATCM are more likely to 
encounter a conflict because there is only one port on the interface.

Memory BIST ports are routed through the AXI slave interface logic, to access the RAMs. 
Memory BIST access is assumed only to occur when no other accesses are taking place, and 
takes highest priority.

9.4.1 AXI slave interface for cache RAMs

You can use the AXI slave for software testing of the cache RAMs in functional mode. When 
the AXI slave is enabled to access the RAMs, the processor considers the caches as cache-off, 
so that the instruction and data requests cannot interact with AXI slave requests. AXI slave 
requests access the cache RAMs. Instruction and data requests are considered as Non-cacheable 
and do not perform any lookup in the caches.

The AXI slave interface accesses each cache RAM individually.

On the instruction cache side the AXI slave can access:
• data cache RAMs, data and parity or ECC code bits
• tag RAMs, tag and parity or ECC code bits.

On the data cache side, the AXI slave can access:
• data cache RAMs, data and parity or ECC code bits
• tag RAMs, tag and parity or ECC code bits
• dirty RAM, dirty bit and attributes, and ECC code bits.

A simple decode of two address bits and four way address bits determines which of the data, 
tag, or dirty RAMs is accessed within the caches. The AXI access is given a SLVERR error 
response when access to nonexistent cache RAM is indicated.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-20
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.4.2 TCM parity and ECC support

The TCMs can support parity or ECC, as described in TCM internal error detection and 
correction on page 8-14. If a write transaction is issued to the AXI slave, the slave interface 
calculates the required parity or ECC bits to store to the TCM. ECC schemes require the AXI 
slave to perform a read-modify-write sequence if the write data width is smaller than the ECC 
chunk size.

If a read transaction is issued to the AXI slave, the slave interface reads the parity or ECC bits 
and, if error checking is enabled for the appropriate TCM, checks the data for errors. If the 
interface detects a correctable error, it corrects it inline and returns the correct data on the AXI 
bus. It does not update the data in the TCM to correct it. If the interface detects an uncorrectable 
error, it generates a SLVERR error response to the AXI transaction.

9.4.3 External TCM errors

If an error response is given to a TCM access from the AXI slave interface, and external errors 
are enabled for the appropriate TCM port, the AXI slave returns a SLVERR response to the AXI 
transaction.

The AXI slave ignores late-error and retry responses from the TCM.

9.4.4 Cache parity and ECC support

When the caches support parity or ECC, the AXI slave interface can read and write the parity 
or ECC code bits directly. No errors are detected automatically, and on writes the AXI slave does 
not automatically generate the correct parity or ECC code values.

Note
 The AXI slave interface provides read/write access to the cache RAMs for functional test. It is 
not suitable for preloading the caches.

9.4.5 AXI slave control

By default, both privileged and non-privileged accesses can be made to the Cortex-R4 TCM 
RAMs through the AXI slave port. To disable non-privileged accesses, you can set bit [1] in the 
Slave Port Control Register. You can disable all slave accesses by setting bit [0] of the register. 
See c11, Slave Port Control Register on page 4-59.

Access to the cache RAMs can only be made when bit [24] of the Auxiliary Control Register is 
set. By default, only privileged accesses can be made to the cache RAMs, but you can enable 
non-privileged accesses by setting bit [23] of the Auxiliary Control Register. When cache RAM 
access is enabled, both caches are treated as if they were not enabled. See Auxiliary Control 
Registers on page 4-38.

The AXI access is given a SLVERR error response when access is not permitted.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-21
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.4.6 AXI slave characteristics

This section describes the capabilities of the AXI slave interface, and the attributes of its AXI 
port. You must not make any other assumptions about the behavior of the AXI slave port except 
that it conforms to the AMBA AXI Protocol Specification.

• The AXI slave interface supports merging of data. When handling an AXI burst of data 
less than 64-bits wide, the AXI slave interface attempts to perform the minimum number 
of TCM accesses required to read or write the data. When an ECC error scheme is in use, 
this sometimes reduces the number of read-modify-write sequences that the AXI slave 
must perform.

• The AXI slave interface does not support:
— Security Extensions, all accesses are secure, so AxPROT[1] is not used
— data and instruction transaction signaling, so AxPROT[2] is not used
— memory type and cacheability, so AxCACHE is not used
— atomic accesses. The AXI slave accepts locked transactions but makes no use of the 

locking information, that is, AxLOCK.

• The AXI slave interface has no exclusive access monitor. If there are any exclusive 
accesses, the AXI slave interface responds with an OKAY response.

• The width of the ID signals for the AXI slave port is 8 bits.
You must avoid building the processor into an AXI system that requires more than 8 bits 
of ID. The number of bits of ID required by a system can often be reduced by compressing 
the encoding to remove unused values. The AXI master port does not use all possible 
values. See Identifiers for AXI bus accesses on page 9-4 for details.

Table 9-25 shows the AXI slave port attributes.

Table 9-25 AXI slave interface attributes

Attribute Value Comments

Combined acceptance capability 7 -

Write interleave depth 1 All write data must be presented to the AXI slave interface in order

Read data reorder depth 1 The AXI slave interface returns all read data in order, even if the bursts 
have different IDs
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-22
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.5 Enabling or disabling AXI slave accesses
This section describes how to enable or disable AXI slave accesses to the cache RAMs. When 
caches are accessible by the AXI slave interface, the caches are considered to be cache-off from 
the processor. After turning the interface on or off, an ISB instruction must flush the pipeline so 
that all subsequent instruction fetches return valid data.

The following code is an example of enabling AXI slave accesses to the cache RAMs:

MRC p15, 0, R1, c1, c0, 1 ; Read Auxiliary Control Register
ORR R1, R1, #0x1 <<24
DSB
MCR p15, 0, R1, c1, c0, 1 ; enabled AXI slave accesses to the cache RAMs
ISB
; Clean entire data cache. This routine will depend on the data cache size. It can be 
omitted if it is known that the data cache has no dirty data 
Fetch from uncached memory
Fetch from uncached memory
Fetch from uncached memory
Fetch from uncached memory

The following code is an example of disabling AXI slave accesses to the cache RAMs. No cache 
invalidation is performed because it is assumed that, after accessing the cache RAMs, the AXI 
slave interface restored the previously valid data to them.

MRC p15, 0, R1, c1, c0, 1 ; Read Auxiliary Control Register
BIC R1, R1, #0x1 <<24
DSB
MCR p15, 0, R1, c1, c0, 1 ; disabled AXI slave accesses to the cache RAMs
ISB
Fetch from cached memory
Fetch from cached memory
Fetch from cached memory
Fetch from cached memory
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-23
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.6 Accessing RAMs using the AXI slave interface
This section describes how to access the TCM and cache RAMs using the AXI slave interface. 

Table 9-26 shows the bits of the ARUSERS or AWUSERS inputs to use to access RAM or a 
group of RAMs. Each bit is a one-hot 4-bit input, with each bit corresponding to a particular 
RAM or group of RAMs.

For the caches and the BTCMs, more decoding is performed depending on the address of the 
request, ARADDRS for reads and AWADDRS for writes. For more information see:
• TCM RAM access on page 9-25
• Cache RAM access on page 9-26.

Note
 Because AWUSERS and AWADDRS work in the same way as ARUSERS and ARADDRS, 
the following sections only describe ARUSERS and ARADDRS. 

Table 9-26 RAM region decode

AxUSERS bit One-hot RAM select

[3] Data cache RAMs

[2] Instruction cache RAMs

[1] B0TCM and B1TCM

[0] ATCM
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-24
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
9.6.1 TCM RAM access

Table 9-27 shows the decode of the ARUSERS[3:0] signal, and the state of the address signals 
for accessing the TCM RAMs. The table also shows the SLBTCMSB configuration input signal 
that determines the address bit that is used, either:
• ARADDRS[3] 
• ARADDRS[MSB], see Table 9-28.

In Table 9-27 ARADDRS[MSB] means the most significant address bit for the TCM RAM, and 
Table 9-28 shows the MSB bit for the different TCM RAM sizes.

ARADDRS[22:3] indicates the address of the doubleword within the TCM that you want to 
access. If you are accessing a TCM that is smaller than the maximum 8MB, then it is possible 
to address a doubleword that is outside of the physical size of the TCM.

An access to the TCM RAMs is given a SLVERR error response if:
• It is outside the physical size of the targeted TCM RAM, that is, bits of 

ARADDRS[22:MSB+1] are non-zero.

Table 9-27 TCM chip-select decode

BTCM ports ARUSERS[3:0] ARADDRS[3] ARADDRS[MSB] SLBTCMSB RAM selected

Don’t care 0001 - - - ATCM

1 0010 - - - B0TCM 

2 0010 0 - 0 B0TCM 

2 0010 1 - 0 B1TCM

2 0010 - 0 1 B0TCM

2 0010 - 1 1 B1TCM

Table 9-28 MSB bit for the different TCM RAM sizes

TCM size ARADDRS[MSB]

4KB [11]

8KB [12]

16KB [13]

32KB [14]

64KB [15]

128KB [16]

256KB [17]

512KB [18]

1MB [19]

2MB [20]

4MB [21]

8MB [22]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-25
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
• There is no TCM present. The mapping of bus addresses to ARUSERS and ARADDRS 
is determined when the processor is integrated. You must understand this mapping to use 
of the AXI-slave interface within your system.

9.6.2 Cache RAM access

This section contains the following:
• Memory map when accessing the cache RAMs
• Data RAM access on page 9-27
• Tag RAM access on page 9-29
• Dirty RAM access on page 9-31.
• Other examples of accessing cache RAMs on page 9-32

Memory map when accessing the cache RAMs

The memory maps for the data and instruction caches have the same format. Because the 
instruction cache does not have a dirty RAM, accesses to it generate the SLVERR error 
response.

Table 9-29, Table 9-30, and Table 9-31 on page 9-27 show the chip-select decodes for selecting 
the cache RAMs in the processor.

Table 9-29 Cache RAM chip-select decode

Inputs
RAM selected

ARUSERS[3:0] ARADDRS[22:19]

0100 0000 Instruction cache data RAM

0100 0001 Instruction cache tag RAM

0100 0010 Not used, generates an error

0100 0011 Not used, generates an error

0100 ARADDRS[22:21] != 00 Not used, generates an error

1000 0000 Data cache data RAM

1000 0001 Data cache tag RAM

1000 0010 Data cache dirty RAM

1000 0011 Not used, generates an error

1000 ARADDRS[22:21] != 00 Not used, generates an error

Table 9-30 Cache tag/valid RAM bank/address decode

Inputs RAM bank 
selected

Cache 
wayARADDRS[18:15]

0001 Bank 0 0
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-26
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Note
 You can only access the cache RAMs using 32-bit or 64-bit AXI transfers. Using an 8-bit or a 
16-bit transfer size generates a SLVERR error response.

Data RAM access

The following tables shows the data formats for cache data RAM accesses:

• Table 9-32 shows the format when neither parity nor ECC is implemented

• Table 9-33 on page 9-28 shows the format when parity is implemented

• Table 9-34 on page 9-28 shows the instruction cache format when ECC is implemented

• Table 9-35 on page 9-28 shows the data cache format when ECC is implemented.

0010 Bank 1 1

0100 Bank 2 2

1000 Bank 3 3

Table 9-31 Cache data RAM bank/address decode

Inputs RAM bank 
selectedARADDRS[18:15] ARADDRS[3]

0001 0 Bank 0

0001 1 Bank 1

0010 0 Bank 2

0010 1 Bank 3

0100 0 Bank 4

0100 1 Bank 5

1000 0 Bank 6

1000 1 Bank 7

Table 9-32 Data format, instruction cache and data cache, no parity and no ECC

Data bit Description

[63:48] Not used, read-as-zero

[47:32] Data value, [31:16] or [63:48]

[31:16] Not used, read-as-zero

[15:0] Data value, [15:0] or [47:32]

Table 9-30 Cache tag/valid RAM bank/address decode (continued)

Inputs RAM bank 
selected

Cache 
wayARADDRS[18:15]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-27
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Table 9-33 Data format, instruction cache and data cache, with parity

Data bit Description

[63:50] Not used, read-as-zero

[49] Parity bit for data value [31:24] or [63:56]

[48] Parity bit for data value [23:16] or [55:48]

[47:32] Data value, [31:16] or [63:48]

[31:18] Not used, read-as-zero

[17] Parity bit for data value [15:8] or [47:40]

[16] Parity bit for data value [7:0] or [39:32]

[15:0] Data value, [15:0] or [47:32]

Table 9-34 Data format, instruction cache, with ECC

Data bit Description

[63:52] Not used, read-as-zero

[51:48] Upper or lower half of the ECC 64 codea

[47:32] Data value, [31:16] or [63:48]

[31:20] Not used, read-as-zero

[19:16] Upper or lower half of the ECC 64 codeb

[15:0] Data value, [15:0] or [47:32]

a. If accessing bits [31:16] of the data, bits [51:48] hold the lower half of the ECC code.
If accessing bits [63:48] of the data, bits [51:48] hold the upper half of the ECC code.

b. If accessing bits [15:0] of the data, bits [19:16] hold the lower half of the ECC code.
If accessing bits [47:32] of the data, bits [19:16] hold the upper half of the ECC code.

Table 9-35 Data format, data cache, with ECC

Data bit Description

[63:55] Not used, read-as-zero

[54:48] ECC 32 codea

[47:32] Data value, [31:16] or [63:48]

[31:23] Not used, read-as-zero

[22:16] ECC 32 code

[15:0] Data value [15:0] or [47:32]

a. For a 64 bit access, the ECC bits are 
duplicated in bits [22:16] and bits 
[54:48], and the two copies are identical. 
For a 32 bit access, the ECC bits refer to 
the whole 32 bit data value, even though 
only 16 bits of data are accessed.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-28
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Tag RAM access

The following tables show the data formats for tag RAM accesses:

• Table 9-36 shows the format for read accesses when neither parity nor ECC is 
implemented

• Table 9-37 shows the format for read accesses when parity is implemented

• Table 9-38 shows the format for read accesses when ECC is implemented

• Table 9-39 on page 9-30 shows the format for write accesses when neither parity nor ECC 
is implemented

• Table 9-40 on page 9-30 shows the format for write accesses when parity is implemented

• Table 9-41 on page 9-30 shows the format for write accesses when ECC is implemented.

Table 9-36 Tag register format for reads, no parity or ECC

Data bit Description

[63:55] Not used, read-as-zero

[54] Valid, way 2/3

[53:32] Tag value, way 2/3

[31:23] Not used, read-as-zero

[22] Valid, way 0/1

[21:0] Tag value, way 0/1

Table 9-37 Tag register format for reads, with parity

Data bit Description

[63:56] Not used, read-as-zero

[55] Parity, way 2/3

[54] Valid, way 2/3

[53:32] Tag value, way 2/3

[31:24] Not used, read-as-zero

[23] Parity, way 0/1

[22] Valid, way 0/1

[21:0] Tag value, way 0/1

Table 9-38 Tag register format for reads, with ECC

Data bit Description

[63:62] Not used, read-as-zero

[61:55] ECC, way 2/3

[54] Valid, way 2/3

[53:32] Tag value, way 2/3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-29
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Note
 For tag RAM writes, only bits [23:0] of the data bus are used. If two tag RAMs are written at 
the same time, they are both written with the same data. To write only one tag RAM using the 
AXI Slave, select only one RAM with bits [18:15] of the address bus.

[31:30] Not used, read-as-zero

[29:23] ECC, way 0/1

[22] Valid, way 0/1

[21:0] Tag value, way 0/1

Table 9-39 Tag register format for writes, no parity or ECC

Data bit Description

[63:23] Not used, read-as-zero

[22] Valid, all ways

[21:0] Tag value, all ways

Table 9-40 Tag register format for writes, with parity

Data bit Description

[63:24] Not used, read-as-zero

[23] Parity. all ways

[22] Valid, all ways

[21:0] Tag value, all ways

Table 9-41 Tag register format for writes, with ECC

Data bit Description

[63:30] Not used, read-as-zero

[29:23] ECC, all ways

[22] Valid, all ways

[21:0] Tag value, all ways

Table 9-38 Tag register format for reads, with ECC (continued)

Data bit Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-30
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Dirty RAM access

The following tables show the data format for accessing the dirty RAM:

• Table 9-42 shows the format when parity is implemented, or no error scheme is 
implemented

• Table 9-43 shows the format when ECC is implemented.

Note
 When parity checking is enabled, all Cacheable accesses are forced to write-through. Therefore 
the dirty RAM is not used and does not require parity protection.

Table 9-42 Dirty register format, with parity or with no error scheme

Data bit Description

[63:27] Not used, read-as-zero

[26:25] Outer attributes, way 3

[24] Dirty value, way 3

[23:19] Not used, read-as-zero

[18:17] Outer attributes, way 2

[16] Dirty value, way 2

[15:11] Not used, read-as-zero

[10:9] Outer attributes, way 1

[8] Dirty value, way 1

[7:3] Not used, read-as-zero

[2:1] Outer attributes, way 0

[0] Dirty value, way 0

Table 9-43 Dirty register format, with ECC

Data bit Description

[63:31] Not used, read-as-zero

[30:27] ECC, way 3

[26:25] Outer attributes, way 3

[24] Dirty value, way 3

[23] Not used, read-as-zero

[22:19] ECC, way 2

[18:17] Outer attributes, way 2

[16] Dirty value, way 2

[15] Not used, read-as-zero
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-31
ID013010 Non-Confidential, Unrestricted Access



Level Two Interface 
Other examples of accessing cache RAMs

Normally ARADDRS[18:15] is a one-hot field, and only accesses one RAM at a time.

However, if you want to access two tag RAMs, such as banks 0 and 2 or banks 1 and 3 at the 
same time, use:
• ARADDRS[18:15] = 4'b0101 to access banks 0 and 2 
• ARADDRS[18:15] = 4'b1010 to access banks 1 and 3.

This enables data to be read from two tag RAMs simultaneously, and the same data to be written 
to two tag RAMs simultaneously. To write different data to each tag RAM, you must ensure only 
one tag RAM is accessed at a time.

You can access any combination of dirty RAM banks simultaneously. For example, to access all 
dirty RAM banks use:

ARADDRS[18:15] = 4'b1111. 

If you break these rules, for example if you access tag RAM banks 0 and 1, no SLVERR 
response is generated, and any attempt to read or write banks in other combinations or multiple 
banks of other RAMs is Unpredictable.

Note
 If you attempt to read or write cache RAMs outside the physical cache size implemented, the 
MSBs for that read or write access are ignored. For example, accessing 0x10000000 or 0x00000000 
addresses in the cache RAM accesses the same physical location 0x0. This means that such 
accesses are aliased and no errors are generated.

[14:11] ECC, way 1

[10:9] Outer attributes, way 1

[8] Dirty value, way 1

[7] Not used, read-as-zero

[6:3] ECC, way 0

[2:1] Outer attributes, way 0

[0] Dirty value, way 0

Table 9-43 Dirty register format, with ECC (continued)

Data bit Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 9-32
ID013010 Non-Confidential, Unrestricted Access



Chapter 10 
Power Control

This chapter describes the processor power control functions. It contains the following sections:
• About power control on page 10-2
• Power management on page 10-3.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 10-1
ID013010 Non-Confidential, Unrestricted Access



Power Control 
10.1 About power control
The features of the processor that improve energy efficiency include:

• branch and return prediction, reducing the number of incorrect instruction fetch and 
decode operations

• the caches use sequential access information to reduce the number of accesses to the tag 
RAMs and to unwanted data RAMs.

In the processor, extensive use is also made of gated clocks and gates to disable inputs to unused 
functional blocks. Only the logic actively in use to perform a calculation consumes any dynamic 
power. 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 10-2
ID013010 Non-Confidential, Unrestricted Access



Power Control 
10.2 Power management
The processor supports four levels of power management. This section describes:
• Run mode
• Standby mode
• Dormant mode
• Shutdown mode
• Communication to the Power Management Controller on page 10-4.

10.2.1 Run mode

Run mode is the normal mode of operation where all of the functionality of the processor is 
available. 

10.2.2 Standby mode

Standby mode disables most of the clocks of the device, while keeping the design powered up. 
This reduces the power drawn to the static leakage current, plus a tiny clock power overhead 
required to enable the device to wake up from the Standby mode. 

The transition from Standby mode to Run mode is caused by:
• the arrival of an interrupt, whether masked or unmasked
• a debug request, whether debug is enabled or disabled
• a reset.

The debug request can be generated by an externally generated debug request, using the 
EDBGRQ pin on the processor, or from a Debug Halt instruction issued to the processor 
through the debug Advanced Peripheral Bus (APB). 

Entry into Standby mode is performed by executing the Wait For Interrupt (WFI) instruction. To 
ensure that the entry into the Standby mode does not affect the memory system, the WFI 
automatically performs a Data Synchronization Barrier operation. This ensures that all explicit 
memory accesses occur in program order before the WFI has completed.

Systems using the VIC interface must ensure that the VIC is not masking any interrupts that are 
required for restarting the processor when in this mode of operation.

When the processor clocks are stopped the STANDBYWFI signal is asserted to indicate that 
the processor is in Standby mode. 

When the processor is in Standby mode and the AXI slave interface receives a transaction, the 
processor clocks are temporarily restarted and STANDBYWFI is deasserted to enable it to 
service the transaction, but it does not return to Run mode.

10.2.3 Dormant mode

Dormant mode ensures that only the processor logic, but not the processor TCM and cache 
RAMs, is powered down. In dormant mode, the processor state, apart from the cache and TCM 
state, is stored to memory before entry into this mode, and restored after exit. For more 
information on how to implement and use dormant mode in your design, contact ARM.

10.2.4 Shutdown mode

Shutdown mode has the entire device powered down, and you must externally save all state, 
including cache and TCM state. The processor is returned to Run mode by asserting and 
deasserting nRESET. When you perform state saving, you must ensure that interrupts are 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 10-3
ID013010 Non-Confidential, Unrestricted Access



Power Control 
disabled and finish with a Data Synchronization Barrier operation. When all the state of the 
processor is saved the processor executes a WFI instruction. The STANDBYWFI signal is 
asserted to indicate that the processor can enter Shutdown mode. 

10.2.5 Communication to the Power Management Controller

You can use a Power Management Controller (PMC) to control the powering up and powering 
down of the processor. The communication mechanism between the processor and the PMC is 
a memory-mapped controller that is accessed by the processor performing Strongly-Ordered 
accesses to it. 

The STANDBYWFI signal from the processor informs the PMC of the powerdown mode to 
adopt.

The STANDBYWFI signal can also signal that the processor is ready to have its power state 
changed. STANDBYWFI is asserted in response to a WFI operation.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 10-4
ID013010 Non-Confidential, Unrestricted Access



Chapter 11 
Debug

This chapter describes the processor debug unit. These features assist the development of 
application software, operating systems, and hardware. This chapter contains the following 
sections:
• Debug systems on page 11-2
• About the debug unit on page 11-3
• Debug register interface on page 11-5
• Debug register descriptions on page 11-10
• Management registers on page 11-32
• Debug events on page 11-39
• Debug exception on page 11-41
• Debug state on page 11-44
• Cache debug on page 11-50
• External debug interface on page 11-51
• Using the debug functionality on page 11-54
• Debugging systems with energy management capabilities on page 11-71.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-1
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.1 Debug systems
The Cortex-R4 processor is one component of a debug system. Figure 11-1 shows a typical 
system.

Figure 11-1 Typical debug system

This typical system has three parts, described in the following sections:
• Debug host
• Protocol converter
• Debug target.

11.1.1 Debug host

The debug host is a computer, for example a personal computer, running a software debugger 
such as RealView™ Debugger. The debug host enables you to issue high-level commands such 
as setting breakpoint at a certain location, or examining the contents of a memory address.

11.1.2 Protocol converter

The debug host connects to the processor development system using an interface such as 
Ethernet. The messages broadcast over this connection must be converted to the interface 
signals of the debug target. A protocol converter performs this function, for example, RealView 
ICE.

11.1.3 Debug target

The debug target is the lowest level of the system. An example of a debug target is a 
development system with a Cortex-R4 test chip or a silicon part with a Cortex-R4 macrocell.

The debug target must implement some system support for the protocol converter to access the 
processor debug unit using the Advanced Peripheral Bus (APB) slave port. 

The debug unit enables you to:
• stall program execution
• examine the internal state of the processor and the state of the memory system
• resume program execution.

Host computer running RealView DebuggerDebug
host

For example, RealView ICE

Development system containing 
Cortex-R4 processor

Debug
target

Protocol
converter
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-2
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.2 About the debug unit
The processor debug unit assists in debugging software running on the processor. You can use 
the processor debug unit, in combination with a software debugger program, to debug:
• application software 
• operating systems
• ARM processor-based hardware systems.

The debug unit enables you to:
• stop program execution 
• examine and alter processor state
• examine and alter memory and peripheral state
• restart the processor.

You can debug software running on the processor in the following ways:
• Halting debug-mode debugging
• Monitor debug-mode debugging
• Trace debugging, see ETM interface on page 1-11. 

The processor debug unit conforms to the ARMv7 debug architecture. For more information see 
the ARM Architecture Reference Manual.

11.2.1 Halting debug-mode debugging

When the processor debug unit is in Halting debug-mode, the processor halts when a debug 
event, such as a breakpoint, occurs. When the processor is halted, an external debugger can 
examine and modify the processor state using the APB slave port. This debug mode is invasive 
to program execution.

11.2.2 Monitor debug-mode debugging

When the processor debug unit is in Monitor debug-mode, the processor takes a debug 
exception instead of halting. A special piece of software, a monitor target, can then take control 
to examine or alter the processor state. Monitor debug-mode is essential in real-time systems 
where the processor cannot be halted to collect information. Examples of these systems are 
engine controllers and servo mechanisms in hard drive controllers that cannot stop the code 
without physically damaging the components.

When debugging in Monitor debug-mode, the processor stops execution of the current program 
and starts execution of a monitor target. The state of the processor is preserved in the same 
manner as all ARM exceptions. The monitor target communicates with the debugger to access 
processor and coprocessor state, and to access memory contents and peripherals. Monitor 
debug-mode requires a debug monitor program to interface between the debug hardware and the 
software debugger.

11.2.3 Programming the debug unit

The processor debug unit is programmed using the APB slave interface. See Table 11-3 on 
page 11-6 for a complete list of memory-mapped debug registers accessible using the APB slave 
interface. Some features of the debug unit that you can access using the memory-mapped 
registers are:

• instruction address comparators for triggering breakpoints, see Breakpoint Value 
Registers on page 11-23 and Breakpoint Control Registers on page 11-23
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-3
ID013010 Non-Confidential, Unrestricted Access



Debug 
• data address comparators for triggering watchpoints, see Watchpoint Value Registers on 
page 11-26 and Watchpoint Control Registers on page 11-26

• a bidirectional Debug Communication Channel (DCC), see Debug communications 
channel on page 11-55

• all other state information associated with the debug unit.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-4
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.3 Debug register interface
You can access the processor debug register map using the APB slave port. This is the only way 
to get full access to the processor debug capability. ARM recommends that if your system 
requires the processor to access its own debug registers, you choose a system interconnect 
structure that enables the processor to access the APB slave port by executing load and stores 
to an appropriate area of physical memory.

This section describes:
• Coprocessor registers
• CP14 access permissions
• Coprocessor registers summary
• Memory-mapped registers on page 11-6
• Memory addresses for breakpoints and watchpoints on page 11-7
• Power domains on page 11-8
• Effects of resets on debug registers on page 11-8
• APB port access permissions on page 11-8.

11.3.1 Coprocessor registers

Although most of the processor debug registers are accessible through the memory-mapped 
interface, there are several registers that you can access through a coprocessor interface. This is 
important for boot-strap access to the register file. It enables software running on the processor 
to identify the debug architecture version that the device implements.

11.3.2 CP14 access permissions

By default, you can access all CP14 debug registers from a nonprivileged mode. However, you 
can program the processor to disable user-mode access to all coprocessor registers using bit [12] 
of the DSCR, see CP14 c1, Debug Status and Control Register on page 11-14 for more 
information. CP14 debug registers accesses are always permitted when the processor is in debug 
state regardless of the processor mode.

Table 11-1 shows access to the CP14 debug registers.

11.3.3 Coprocessor registers summary

Table 11-2 on page 11-6 shows a set of valid CP14 instructions for accessing the debug 
registers. All CP14 instructions not listed are Undefined.

Table 11-1 Access to CP14 debug registers

Debug state Processor mode DSCR[12] CP14 debug access

Yes X X Permitted

No User b0 Permitted

No User b1 Not permitteda

a. Instructions attempting to access CP14 registers cause the processor to take an 
Undefined exception.

No Privileged X Permitted
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-5
ID013010 Non-Confidential, Unrestricted Access



Debug 
Note
 The CP14 debug instructions are defined as having Opcode_1 set to 0.

11.3.4 Memory-mapped registers

Table 11-3 shows the complete list of memory-mapped registers accessible at the APB slave 
interface.

Note
 You must ensure that the base address of this 4KB register map is aligned to a 4KB boundary in 
physical memory.

Table 11-2 CP14 debug registers summary

Instruction Mnemonic Description

MRC p14, 0, <Rd>, c0, c0, 0 DIDR Debug Identification Register. See CP14 c0, Debug ID Register on 
page 11-10.

MRC p14, 0, <Rd>, c1, c0, 0 DRAR Debug ROM Address Register. See CP14 c0, Debug ROM Address 
Register on page 11-12.

MRC p14, 0, <Rd>, c2, c0, 0 DSAR Debug Self Address Register. See CP14 c0, Debug Self Address 
Offset Register on page 11-12.

MRC p14, 0, <Rd>, c0, c5, 0
STC p14, c5, <addressing mode>

DTRRX Host to Target Data Transfer Register. See Data Transfer Register on 
page 11-18.

MCR p14, 0, <Rd>, c0, c5, 0
LDC p14, c5, <addressing mode>

DTRTX Target to Host Data Transfer Register. See Data Transfer Register on 
page 11-18.

MRC p14, 0, <Rd>, c0, c1, 0
MRC p14, 0, PC, c0, c1, 0

DSCR Debug Status and Control Register. See CP14 c1, Debug Status and 
Control Register on page 11-14.

Table 11-3 Debug memory-mapped registers

Offset 
(hex)

Register 
number Access Mnemonic Description

0x000 c0 R DIDR CP14 c0, Debug ID Register on page 11-10

0x004-0x014 c1-c5 R - RAZ

0x18 c6 RW WFAR Watchpoint Fault Address Register on page 11-19

0x01C c7 RW VCR Vector Catch Register on page 11-19

0x020 c8 R - RAZ

0x024 c9 RW ECR Not implemented in this processor. Reads as zero.

0x028 c10 RW DSCCR Debug State Cache Control Register on page 11-21.

0x02C c11 R - RAZ

0x030-0x07C c12-c31 R - RAZ
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-6
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.3.5 Memory addresses for breakpoints and watchpoints

The Vector Catch Register (VCR) sets breakpoints on exception vectors as instruction 
addresses.

0x080 c32 RW DTRRX Data Transfer Register on page 11-18

0x084 c33 W ITR Instruction Transfer Register on page 11-21

0x088 c34 RW DSCR CP14 c1, Debug Status and Control Register on page 11-14

0x08C c35 RW DTRTX Data Transfer Register on page 11-18

0x090 c36 W DRCR Debug Run Control Register on page 11-22

0x094-0x0FC c37-c63 R - RAZ

0x100-0x11C c64-c71 RW BVR Breakpoint Value Registers on page 11-23

0x120-0x13C c72-c79 R - RAZ

0x140-0x15C c80-c87 RW BCR Breakpoint Control Registers on page 11-23

0x160-0x17C c88-c95 R - RAZ

0x180-0x19C c96-c103 RW WVR Watchpoint Value Registers on page 11-26

0x1A0-0x1BC c104-c111 R - RAZ

0x1C0-0x1DC c112-c119 RW WCR Watchpoint Control Registers on page 11-26

0x1E0-0x1FC c120-c127 R - RAZ

0x200-0x2FC c128-c191 R - RAZ

0x300 c192 R OSLAR Not implemented in this processor. Reads as zero.

0x304 c193 R OSLSR Operating System Lock Status Register on page 11-28

0x308 c194 R OSSRR Not implemented in this processor. Reads as zero.

0x30C c195 R - RAZ

0x310 c196 RW PRCR Device Power-down and Reset Control Register on 
page 11-30

0x314 c197 R PRSR Device Power-down and Reset Status Register on page 11-30

0x318-0x7FC c198-c511 R - RAZ

0x800-0x8FC c512-575 R - RAZ

0x900-0xCFC c576-c831 R - RAZ

0xD00-0xDFC c832-c895 R - Processor ID Registers on page 11-32

0xE00-0xE7C c896-c927 R - RAZ

0xE80-0xEFC c928-c959 - - Chapter 13 Integration Test Registers

0xF00-0xFFC c960-c1023 - - Management registers on page 11-32

Table 11-3 Debug memory-mapped registers (continued)

Offset 
(hex)

Register 
number Access Mnemonic Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-7
ID013010 Non-Confidential, Unrestricted Access



Debug 
The Watchpoint Fault Address Register (WFAR) reads an address and a processor state 
dependent offset, +8 for ARM and +4 for Thumb.

11.3.6 Power domains

The processor has a single power domain. Therefore, it does not support the Event Catch 
Register, the OS Lock, or the OS Save and Restore functionality.

11.3.7 Effects of resets on debug registers

The processor has two reset signals which affect the debug registers in the following ways:

nSYSPORESET 
You must assert this signal when powering up to set the non-debug processor 
logic to a known state.

PRESETDBGn 
You can assert this signal to set all of the debug logic to a known state, without 
affecting the state of the remainder of the processor logic.

11.3.8 APB port access permissions

The restrictions for accessing the APB slave port are described as follows:

Privilege of memory access 
You must configure the system to disable accesses to the memory-mapped 
registers based on the privilege of the memory access.

Power down 
The processor only supports a single power domain, therefore you must configure 
the system to return an error response to all accesses made to the APB interface 
while the processor is powered-down.

Privilege of memory access permission

When non-privileged software attempts to access the APB slave port, the system must ignore 
the access or generate an error response to the access. You must implement this restriction at the 
system level because the APB protocol does not have a privileged or user control signal. You 
can choose to have the system either ignore the access or generate an error response.

You can place additional restrictions on memory transactions that are permitted to access the 
APB port. However, ARM does not recommend this.

Locks permission

You can lock the APB slave port so that access to some debug registers is restricted. ARM 
Architecture v7 defines two locks:

Software lock 
The external debugger can set this lock to prevent software from modifying the 
debug registers settings. A debug monitor can also set this lock prior to returning 
control to the application to reduce the chance of erratic code changing the debug 
settings. When this lock is set, writes to all debug registers are ignored, except 
those generated by the external debugger, which override the lock. For more 
information, see Lock Access Register on page 11-34.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-8
ID013010 Non-Confidential, Unrestricted Access



Debug 
OS Lock The processor does not support OS Lock.

Note
 • These locks are set to their reset values only on reset of the debug logic, provided by 

PRESETDBGn.

• You must set the PADDRDBG31 input signal to 1 for accesses originated from the 
external debugger for the Software Lock override feature to work.

Table 11-4 External debug interface access permissions

Registers

PADDRDBG31 Lock DRCR, PRCR, PRSR Other Debug registers LAR Other registers

X Xa NPOSSb NPOSSb NPOSSb NPOSSb

1 Xa OKc OKc OKc OKc

0 1d WIe WIe OKc WIe

0 0 OKc OKc OKc OKc

a. X indicates that the outcome does not depend on this condition.
b. Not possible. Accessing debug registers while the processor is powered down is not possible.
c. OK indicates that the access succeeds.
d. LSR[1] bit is set.
e. WI indicates that writes are ignored.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-9
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4 Debug register descriptions
Table 11-5 shows definitions of terms used in the register descriptions.

11.4.1 Accessing debug registers

To access the CP14 debug registers you set Opcode_1 and Opcode_2 to zero. The CRn and CRm 
fields of the coprocessor instructions encode the CP14 debug register number, where the register 
number is {<Opcode2>, <CRm>}. In addition, the CRn field can specify additional registers.

Table 11-6 shows the CP14 debug register map.

11.4.2 CP14 c0, Debug ID Register

The DIDR is a read-only register that identifies the debug architecture version and specifies the 
number of debug resources that the processor implements.

Table 11-5 Terms used in register descriptions

Term Description

R Read-only. Written values are ignored.

W Write-only. This bit cannot be read. Reads return an Unpredictable value.

RW Read or write.

RAZ Read-As-Zero. Always zero when read.

RAO Read-As-One. Always one when read.

SBZP Should-Be-Zero (SBZ) or Preserved (P). Must be written as 0 or preserved by writing the same value previously 
read from the same fields on the same processor. These bits are usually reserved for future expansion.

UNP A read from this bit returns an Unpredictable value.

Table 11-6 CP14 debug register map

CRn Op1 CRm Op2 CP14 debug register name Abbreviation Reference

c0 0 c0 0 Debug ID Register DIDR CP14 c0, Debug ID 
Register

c1 0 c0 0 Debug ROM Address Register DRAR CP14 c0, Debug ROM 
Address Register on 
page 11-12

c2 0 c0 0 Debug Self Address Offset Register DSAR CP14 c0, Debug Self 
Address Offset Register on 
page 11-12

c3-c15 0 c0 0 Reserved - -

c0 0 c1 0 Debug Status and Control Register DSCR CP14 c1, Debug Status 
and Control Register on 
page 11-14

c1-c15 0 c1 0 Reserved - -

c0-c15 0 c2-c4 0 Reserved - -

c0 0 c5 0 Data Transfer Register DTR Data Transfer Register on 
page 11-18
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-10
ID013010 Non-Confidential, Unrestricted Access



Debug 
The Debug ID Register is:
• in CP14 c0
• a 32 bit read-only register
• accessible in User and Privileged modes.

Figure 11-2 shows the bit arrangement of the DIDR.

Figure 11-2 Debug ID Register format

Table 11-7 shows how the bit values correspond with the Debug ID Register functions.

The values of the following fields of the Debug ID Register agree with the values in CP15 c0, 
Main ID Register:
• DIDR[3:0] is the same as CP15 c0 bits [3:0]
• DIDR[7:4] is the same as CP15 c0 bits [23:20].

See c0, Main ID Register on page 4-14 for more information of CP15 c0, Main ID Register. 

The reason for duplicating these fields here is that the Debug ID Register is also accessible 
through the APB slave port. This enables an external debugger to determine the variant and 
revision numbers without stopping the processor.

ReservedWRP

31 28 27 24 23 20 19 16 15 4 3 0

BRP Context ID Variant Revision

Debug architecture 
version

8 7

Table 11-7 Debug ID Register functions

Bits Field Function

[31:28] WRP Number of Watchpoint Register Pairs:
b0000 = 1 WRP
b0001 = 2 WRPs
...
b0111 = 8 WRPs.

[27: 24] BRP Number of Breakpoint Register Pairs:
b0001 = 2 BRPs
b0010 = 3 BRPs
...
b0111 = 8 BRPs.

[23:20] Context Number of Breakpoint Register Pairs with context ID comparison capability:
b0000 = 1 BRP has context ID comparison capability

[19:16] Debug architecture 
version

Debug architecture version:
b0100 denotes ARMv7 Debug.

[15:8] Reserved RAZ.

[7: 4] Variant Implementation-defined variant number. See Product revision information on page 1-24 
for details of the value of this field.

[3: 0] Revision Implementation-defined revision number. See Product revision information on 
page 1-24 for details of the value of this field.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-11
ID013010 Non-Confidential, Unrestricted Access



Debug 
To use the Debug ID Register, read CP14 c0 with:

MRC p14, 0, <Rd>, c0, c0, 0 ; Read Debug ID Register

11.4.3 CP14 c0, Debug ROM Address Register

The Debug ROM Address Register is a read-only register that returns a 32-bit Debug ROM 
Address Register value. This is the address that indicates where in memory a debug monitor can 
locate the debug bus ROM specified by the CoreSight™ multiprocessor trace and debug 
architecture. This ROM holds information about all the components in the debug bus. You can 
configure the address read in this register during integration using the 
DBGROMADDR[31:12] and DBGROMADDRV inputs. DBGROMADDRV must be tied 
off to 1 if DBGROMADDR[31:12] is tied off to a valid value.

The Debug ROM Address Register is:
• in CP14 c0, sub-register c1
• a 32 bit read-only register
• accessible in User and Privileged modes.

Figure 11-3 shows the bit arrangement of the Debug ROM address register.

Figure 11-3 Debug ROM Address Register format

Table 11-8 shows how the bit values correspond with the Debug ROM Address Register 
functions.

To use the Debug ROM Address Register, read CP14 c0 with:

MRC p14, 0, <Rd>, c1, c0, 0 ; Read Debug ROM Address Register

11.4.4 CP14 c0, Debug Self Address Offset Register

The Debug Self Address Offset Register is a read-only register that returns a 32-bit offset value 
from the Debug ROM Address Register to the address of the processor debug registers. You can 
configure the address read in this register during integration using the 
DBGSELFADDR[31:12] and DBGSELFADDRV inputs. DBGSELFADDRV must be tied 
off to 1 if DBGSELFADDR[31:12] is tied off to a valid value.

Debug bus ROM physical address Reserved

Valid bits

31 12 11 2 1 0

Table 11-8 Debug ROM Address Register functions

Bits Field Function

[31:12] Debug bus 
ROM address.

Indicates bits [31:12] of the debug bus ROM address.

[11: 2] Reserved SBZ.

[1:0] Valid bits Indicates that the ROM address is valid.
Reads b11 if DBGROMADDRV is set to 1, otherwise reads b00. DBGROMADDRV must 
be set to 1 if DBGROMADDR[31:12] is set to a valid value.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-12
ID013010 Non-Confidential, Unrestricted Access



Debug 
The Debug Self Address Offset Register is:
• in CP14 c0, sub-register c2
• a 32 bit read-only register
• accessible in User and Privileged modes.

Figure 11-4 shows the bit arrangement of the Debug Self Address Offset Register.

Figure 11-4 Debug Self Address Offset Register format

Table 11-9 shows how the bit values correspond with the Debug Self Address Offset Register 
functions.

To use the Debug Self Address Offset Register, read CP14 c0 with:

MRC p14, 0, <Rd>, c2, c0, 0 ; Read Debug Self Address Offset Register

Debug bus self address offset value Reserved

Valid bits

31 12 11 2 1 0

Table 11-9 Debug Self Address Offset Register functions

Bits Field Function

[31:12] Debug bus self 
address offset value

Indicates bits [31:12] of the two’s complement offset from the debug ROM physical 
address to the physical address where the debug registers are mapped.

[11: 2] Reserved UNP on reads, SBZP on writes.

[1:0] Valid bits Reads b11 if DBGSELFADDRV is set to 1, otherwise reads b00. 
DBGSELFADDRV must be set to 1 if DBGSELFADDR[31:12] is set to a valid 
value.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-13
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.5 CP14 c1, Debug Status and Control Register

The DSCR contains status and control information about the debug unit. Figure 11-5 shows the 
bit arrangement of the DSCR.

Figure 11-5 Debug Status and Control Register format

Table 11-10 shows how the bit values correspond with Debug Status and Control Register 
functions.

31 30 29 28 16 15 14 13 12 11 10 6 5 2 1 0

MOE

9 78

Core halted
Core restarted

26 25 24 23

PipeAdv
InstrCompl

22 21 20 19 18

Monitor mode
Halting mode
ARM

DbgAck
IntDis
Comms

Sticky imprecise abort
Sticky Undefined
Reserved

Sticky precise abort

DTR access  

Discard 
imprecise 
abort

27

Reserved

DTRTXfull
DTRRXfull
Reserved

Reserved

Reserved

Table 11-10 Debug Status and Control Register functions

Bits Field Function

[31] Reserved RAZ on reads, SBZP on writes.

[30] DTRRXfull The DTRRXfull flag:
0 = Read-DTR, DTRRX, empty, reset value
1 = Read-DTR, DTRRX, full.
When set, this flag indicates to the processor that there is data available to read at the 
DTRRX. It is automatically set on writes to the DTRRX by the debugger, and is cleared 
when the processor reads the CP14 DTR. If the flag is not set, the DTRRX returns an 
Unpredictable value.

[29] DTRTXfull The DTRTXfull flag:
0 = Write-DTR, DTRTX, empty, reset value
1 = Write-DTR, DTRTX, full.
When clear, this flag indicates to the processor that the DTRTX is ready to receive data. It 
is automatically cleared on reads of the DTRTX by the debugger, and is set when the 
processor writes to the CP14 DTR. If this bit is set and the processor attempts to write to 
the DTRTX, the register contents are overwritten and the DTRRXfull flag remains set.

[28:26] Reserved RAZ on reads, SBZP on writes.

[25] PipeAdv Sticky pipeline advance read-only bit. This bit enables the debugger to detect whether the 
processor is idle. In some situations, this might mean that the system bus port is 
deadlocked. This bit is set to 1 when the processor pipeline retires one instruction. It is 
cleared by a write to DRCR[3].
0 = no instruction has completed execution since the last time this bit was cleared
1 = an instruction has completed execution since the last time this bit was cleared.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-14
ID013010 Non-Confidential, Unrestricted Access



Debug 
[24] InstrCompl Instruction complete read-only bit. This flag determines whether the processor has 
completed execution of an instruction issued through the APB port.
0 = processor is currently executing an instruction fetched from the ITR Register
1 = processor is not currently executing an instruction fetched from the ITR Register.
When the APB port reads the DSCR and this bit is clear, then a subsequent write to the 
ITR Register is ignored unless DSCR[21:20] is not equal to 0. If DSCR[21:20] is not equal 
to 0, the ITR write stalls until the processor completes execution of the current instruction. 
If the processor is not in debug state, then the value read for this flag is Unpredictable. The 
flag is set to 1 on entry to debug state.

[23:22] Reserved RAZ on reads, SBZP on writes.

[21:20] DTR access DTR access mode. You can use this field to optimize DTR traffic between a debugger and 
the processor.
b00 = Non-blocking mode, the default
b01 = Stall mode
b10 = Fast mode
b11 = Reserved.

Note
 • This field only affects the behavior of DSCR, DTR, and ITR accesses through the 

APB port, and not through CP14 debug instructions. 
• Non-blocking mode is the default setting. Improper use of the other modes might 

result in the debug access bus becoming deadlocked.

See DTR access mode on page 11-17 for more information.

[19] Discard imprecise 
abort

The Discard imprecise abort bit is set when the processor is in debug state and is cleared 
on exit from debug state. While this bit is set, the processor does not take imprecise Data 
Aborts. However, the sticky imprecise Data Abort bit is set to 1.
0 = do not discard imprecise Data Aborts
1 = discard imprecise Data Aborts.

[18-16] Reserved RAZ on reads, SBZP on writes.

[15] Monitor mode The Monitor debug-mode enable bit:
0 = Monitor debug-mode disabled, this is the reset value
1 = Monitor debug-mode enabled.
If Halting debug-mode is enabled through bit [14], then the processor is in Halting 
debug-mode regardless of the value of bit [15]. If the external interface input DBGEN is 
LOW, this bit reads as 0. The programmed value is masked until DBGEN is HIGH, and 
at that time the read value reverts to the programmed value.

[14] Halting mode The Halting debug-mode enable bit:
0 = Halting debug-mode disabled, this is the reset value
1 = Halting debug-mode enabled.
If the external interface input DBGEN is LOW, this bit reads as 0. The programmed value 
is masked until DBGEN is HIGH, and at that time the read value reverts to the 
programmed value.

Table 11-10 Debug Status and Control Register functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-15
ID013010 Non-Confidential, Unrestricted Access



Debug 
[13] ARM Execute ARM instruction enable bit:
0 = disabled, this is the reset value
1 = enabled.
If this bit is set and an ITR write succeeds, the processor fetches an instruction from the 
ITR for execution. If this bit is set to 1 when the processor is not in debug state, the 
behavior of the processor is Unpredictable.

[12] Comms CP14 debug user access disable control bit:
0 = CP14 debug user access enable, this is the reset value
1 = CP14 debug user access disable.
If this bit is set and a User mode process attempts to access any CP14 debug registers, an 
Undefined instruction exception is taken.

[11] IntDis Interrupts disable bit:
0 = interrupts enabled, this is the reset value
1 = interrupts disabled.
If this bit is set, the IRQ and FIQ input signals are inhibited. The external debugger can 
optionally use this bit to execute pieces of code in normal state as part of the debugging 
process to avoid having an interrupt taking control of the program flow. For example, the 
debugger might use this bit to execute an OS service routine to bring a page from disk into 
memory. It might be undesirable to service any interrupt during the routine execution.

[10] DbgAck DbgAck bit. If this bit is set to 1, the DBGACK output signal is forced HIGH, regardless 
of the processor state. The external debugger can optionally use this bit to execute pieces 
of code in normal state as part of the debugging process for the system to behave as if the 
processor is in debug state. Some systems rely on DBGACK to determine whether data 
accesses are application or debugger generated. This bit is 0 on reset.

[9] Reserved RAZ on reads, SBZP on writes.

[8] Sticky Undefined Sticky Undefined bit:
0 = no Undefined exception occurred in debug state since the last time this bit was cleared
1 = an Undefined exception occurred while in debug state since the last time this bit was 
cleared.
This flag detects Undefined exceptions generated by instructions issued to the processor 
through the ITR. This bit is set to 1 when an Undefined instruction exception occurs while 
the processor is in debug state and is cleared by writing a 1 to DRCR[2].

[7] Sticky imprecise 
abort

Sticky imprecise Data Abort bit:
0 = no imprecise Data Aborts occurred since the last time this bit was cleared
1 = an imprecise Data Abort occurred since the last time this bit was cleared.
This flag detects imprecise Data Aborts triggered by instructions issued to the processor 
through the ITR. This bit is set to 1 when an imprecise Data Abort occurs while the 
processor is in debug state and is cleared by writing a 1 to DRCR[2].

[6] Sticky precise 
abort

Sticky precise Data Abort bit:
0 = no precise Data Abort occurred since the last time this bit was cleared
1 = a precise Data Abort occurred since the last time this bit was cleared.
This flag detects precise Data Aborts generated by instructions issued to the processor 
through the ITR. This bit is set to 1 when a precise Data Abort occurs while the processor 
is in debug state and is cleared by writing to the DRCR[2].

Table 11-10 Debug Status and Control Register functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-16
ID013010 Non-Confidential, Unrestricted Access



Debug 
To use the Debug Status and Control Register, read or write CP14 c1 with:

MRC p14, 0, <Rd>, c0, c1, 0 ; Read Debug Status and Control Register
MCR p14, 0, <Rd>, c0, c1, 0 ; Write Debug Status and Control Register

DTR access mode

You can use the DTR access mode field to optimize data transfer between a debugger and the 
processor. 

The DTR access mode can be one of the following:
• Nonblocking. This is the default mode.
• Stall.
• Fast.

In Non-blocking mode, reads from DTRTX and writes to DTRRX and ITR are ignored if the 
appropriate latched ready flag is not in the ready state. These latched flags are updated on DSCR 
reads. The following applies:

• writes to DTRRX are ignored if DTRRXfull_l is set to b1

• reads from DTRTX are ignored, and return an Unpredictable value, if DTRTXfull_l is set 
to b0

[5:2] MOE Method of entry bits:
b0000 = a DRCR[0] halting debug event occurred
b0001 = a breakpoint occurred
b0100 = an EDBGRQ halting debug event occurred
b0011 = a BKPT instruction occurred
b1010 = a precise watchpoint occurred
others = reserved.
These bits are set to indicate any of:
• the cause of a debug exception
• the cause for entering debug state.
A Prefetch Abort or Data Abort handler must check the value of the CP15 Fault Status 
Register to determine whether a debug exception occurred and then use these bits to 
determine the specific debug event.

[1]a Core restarted Core restarted bit:
0 = the processor is exiting debug state
1 = the processor has exited debug state. This is the reset value.
The debugger can poll this bit to determine when the processor responds to a request to 
leave debug state.

[0]a Core halted Core halted bit:
0 = the processor is in normal state. This is the reset value.
1 = the processor is in debug state.
The debugger can poll this bit to determine when the processor has entered debug state.

a. These bits always reflect the status of the processor, therefore they only have a reset value if the particular reset event affects 
the processor. For example, a PRESETDBGn event leaves these bits unchanged and a processor reset event such as 
nSYSPORESET sets DSCR[18] to a 0 and DSCR[1:0] to 10.

Table 11-10 Debug Status and Control Register functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-17
ID013010 Non-Confidential, Unrestricted Access



Debug 
• writes to ITR are ignored if InstrCompl_l is set to b0

• following a successful write to DTRRX, DTRRXfull and DTRRXfull_l are set to b1

• following a successful read from DTRTX, DTRTXfull and DTRTXfull_l are cleared to b0

• following a successful write to ITR, InstrCompl and InstrCompl_l are cleared to b0.

Debuggers accessing these registers must first read DSCR. This has the side-effect of copying 
DTRRXfull and DTRTXfull to DTRRXfull_l and DTRTXfull_l. The debugger must then:
• write to the DTRRX if the DTRRXfull flag was b0 (DTRRXfull_l is b0)
• read from the DTRTX if the DTRTXfull flag was b1 (DTRTXfull_l is b1)
• write to the ITR if the InstrCompl_l flag was b1.

However, debuggers can issue both actions together and later determine from the read DSCR 
value whether the operations were successful.

In Stall mode, the APB accesses to DTRRX, DTRTX, and ITR stall under the following 
conditions:
• writes to DTRRX are stalled until DTRRXfull is cleared
• writes to ITR are stalled until InstrCompl is set
• reads from DTRTX are stalled until DTRTXfull is set.

Fast mode is similar to Stall mode except that in Fast mode, the processor fetches an instruction 
from the ITR when a DTRRX write or DTRTX read succeeds. In Stall mode and Nonblocking 
mode, the processor fetches an instruction from the ITR when an ITR write succeeds.

11.4.6 Data Transfer Register

The DTR consists of two separate physical registers: 
• the DTRRX (Read Data Transfer Register)
• the DTRTX (Write Data Transfer Register).

The register accessed is dependent on the instruction used:
• writes, MCR and LDC instructions, access the DTRTX
• reads, MRC and STC instructions, access the DTRRX.

Note
 Read and write are used with respect to the processor. 

For information on the use of these registers with the DTRTXfull flag and DTRRXfull flag, see 
Debug communications channel on page 11-55. The Data Transfer Register, bits [31:0] contain 
the data to be transferred.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-18
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-11 shows how the bit values correspond with the DTRRX and DTRTX functions.

11.4.7 Watchpoint Fault Address Register

The Watchpoint Fault Address Register (WFAR) is a read/write register that holds the address 
of the instruction that triggers the watchpoint.

Figure 11-6 shows the bit arrangement of the Watchpoint Fault Address Register.

Figure 11-6 Watchpoint Fault Address Register format

Table 11-12 shows how the bit values correspond with the WFAR functions.

11.4.8 Vector Catch Register

The processor supports efficient exception vector catching. The read/write Vector Catch 
Register controls this, as Figure 11-7 on page 11-20 shows.

Table 11-11 Data Transfer Register functions

Bits Field Function

[31:0] Data Reads the Data Transfer Register. This is read-only for the CP14 interface.

Note
 Reads of the DTRRX through the coprocessor interface cause the DTRTXfull flag to be cleared. 
However, reads of the DTRRX through the APB port do not affect this flag.

[31:0] Data Writes the Data Transfer Register. This is write-only for the CP14 interface.

Note
 Writes to the DTRTX through the coprocessor interface cause the DTRRXfull flag to be set. 
However, writes to the DTRTX through the APB port do not affect this flag.

Address

31 01

Reserved

Table 11-12 Watchpoint Fault Address Register functions

Bits Field Function

[31:1] Address This is the address of the watchpointed instruction. When a watchpoint occurs in ARM state, the 
WFAR contains the address of the instruction causing it plus an offset of 0x8. When a watchpoint 
occurs in Thumb state, the offset is plus 0x4.

[0] Reserved RAZ.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-19
ID013010 Non-Confidential, Unrestricted Access



Debug 
Figure 11-7 Vector Catch Register format

If one of the bits in this register is set and the instruction at the corresponding vector is 
committed for execution, the processor either enters debug state or takes a debug exception.

Note
 • Under this model, any prefetch from an exception vector can trigger a vector catch, not 

only the ones because of exception entries. An explicit branch to an exception vector 
might generate a vector catch debug event.

• If any of the bits are set when the processor is in Monitor debug-mode, then the processor 
ignores the setting and does not generate a vector catch debug event. This prevents the 
processor entering an unrecoverable state. The debugger must program these bits to zero 
when Monitor debug-mode is selected and enabled to ensure forward-compatibility.

Table 11-13 shows how the bit values correspond with the Vector Catch Register functions.

31 8 7 6 5 4 3 2 1 0

Reserved

Reset
Reserved

SVC
Prefetch abort

Data abort
Reserved

IRQ
FIQ

Table 11-13 Vector Catch Register functions

Bits Field Reset 
value

Normal 
address

High vectors 
address Function Access

[31:8] Reserved 0 - - Do not modify on writes. On reads, 
the value returns zero.

RAZ or 
SBZP

[7] FIQ 0 0x0000001C 0xFFFF001C Vector catch enable. RW

[6] IRQ - 0x00000018a 0xFFFF0018a Vector catch enable. -

[5] Reserved 0 - - Do not modify on writes. On reads, 
the value returns zero.

RAZ or 
SBZP

[4] Data Abort 0 0x00000010 0xFFFF0010 Vector catch enable. RW

[3] Prefetch Abort 0 0x0000000C 0xFFFF000C Vector catch enable. RW

[2] SVC 0 0x00000008 0xFFFF0008 Vector catch enable. RW

[1] Reserved 0 0x00000004 0xFFFF0004 Vector catch enable, Undefined 
instruction.

RW

[0] Reset 0 0x00000000 0xFFFF0000 Vector catch enable. RW

a. If the VIC interface is enabled, the address is the last IRQ handler address supplied by the VIC, whether or not high vectors 
are in use.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-20
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.9 Debug State Cache Control Register

The DSCCR controls the L1 cache behavior when the processor is in debug state.

Figure 11-8 shows the bit arrangement of the DSCCR.

Figure 11-8 Debug State Cache Control Register format

For information on the usage model of the DSCCR register, see Cache debug on page 11-50.

Table 11-14 shows how the bit values correspond with the Debug State Cache Control Register 
functions.

11.4.10 Instruction Transfer Register

The ITR enables the external debugger to feed instructions into the processor for execution 
while in debug state. The ITR is a write-only register. Reads from the ITR return an 
Unpredictable value.

The Instruction Transfer Register, bits [31:0] contain the ARM instruction for the processor to 
execute while in debug state. The reset value of this register is Unpredictable.

Note
 Writes to the ITR when the processor is not in debug state or the DSCR[13] execute instruction 
enable bit is cleared are Unpredictable. When an instruction is issued to the processor, the debug 
unit prevents the next instruction from being issued until the DSCR[25] instruction complete bit 
is set.

31 2 131 0

Not write-through

Reserved

3

Instruction cache line-fill

Data cache line-fill

Table 11-14 Debug State Cache Control Register functions

Bits Field Reset 
value Description

[31:3] Reserved 0 Reserved. Do not modify on writes. On reads, the value returns zero.

[2] nWT 0 Not write-through:
1 = normal operation of regions marked as write-back in debug state
0 = force write-through behavior for regions marked as write-back in debug state, this is 
the reset value.

[1] nIL 0 Instruction cache line-fill:
1 = normal operation of L1 instruction cache in debug state
0 = L1 instruction cache line-fills disabled in debug state, this is the reset value.

[0] nDL 0 Data cache line-fill:
1 = normal operation of L1 data cache in debug state
0 = L1 data cache line-fills disabled in debug state, this is the reset value.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-21
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.11 Debug Run Control Register

The DRCR requests the processor to enter or leave debug state. It also clears the sticky 
exception bits present in the DSCR.

Figure 11-9 shows the bit arrangement of the DRCR.

Figure 11-9 Debug Run Control Register format

Table 11-15 shows how the bit values correspond with the Debug Run Control Register 
functions.

31 05 3

Reserved

Cancel memory request

2 14

Clear sticky pipeline advance

Clear sticky exceptions

Restart request

Halt request

Table 11-15 Debug Run Control Register functions

Bits Field Function

[31:5] Reserved RAZ.

[4] Cancel memory 
requests

If 1 is written to this bit, the processor abandons any pending memory transactions until it 
can enter debug state. Debug state entry is the acknowledge event that clears this request. 
Abandoned transactions have the following behavior:
• abandoned stores might write an Unpredictable value to the target address
• abandoned loads return an Unpredictable value to the register bank.
An abandoned transaction does not cause any exception. Additional instruction fetches or 
data accesses after the processor entered debug state have an Unpredictable behavior.
This bit enables the debugger to progress on a deadlock so the processor can enter debug 
state. For a debug state entry to occur, a halting debug event must be requested before this 
bit is set. If you write a 1 to this bit when DBGEN is LOW, the write has no effect.a

[3] Clear sticky 
pipeline advance

Writing a 1 to this bit clears DSCR[25].

[2] Clear sticky 
exceptions

Writing a 1 to this bit clears DSCR[8:6].

[1] Restart request Writing a 1 to this bit requests that the processor leaves debug state. This request is held 
until the processor exits debug state. When the debugger makes this request, it polls 
DSCR[1] until it reads 1. This bit always reads as zero. Writes are ignored when the 
processor is not in debug state.

[0] Halt request Writing a 1 to this bit triggers a halting debug event, that is, a request that the processor 
enters debug state. This request is held until the debug state entry occurs. When the 
debugger makes this request, it polls DSCR[0] until it reads 1. This bit always reads as zero. 
Writes are ignored when the processor is already in debug state.

a. Entry into debug state is not expected to be recoverable.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-22
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.12 Breakpoint Value Registers

Each BVR is associated with a Breakpoint Control Register (BCR). BCRy is the corresponding 
control register for BVRy.

A pair of breakpoint registers, BVRy/BCRy, is called a Breakpoint Register Pair (BRP). 
BVR0-7 are paired with BCR0-7 to make BRP0-7.

The breakpoint value contained in this register corresponds to either an instruction address or a 
context ID. Breakpoints can be set on:
• an instruction address
• a context ID value
• an instruction address and context ID pair.

For an instruction address and context ID pair, two BRPs must be linked. A debug event is 
generated when both the instruction address and the context ID pair match at the same time.

Table 11-16 shows how the bit values correspond with the Breakpoint Value Registers 
functions.

Note
 • Only BRPn supports context ID comparison, where n+1 is the number of breakpoint 

register pairs implemented in the processor.

• Bits [1:0] of Registers BVR0 to BVR(n-1) are Do Not Modify on writes and 
Read-As-Zero because these registers do not support context ID comparisons.

• The contents of the CP15 Context ID Register give the context ID value for a BVR to 
match. For information on the Context ID Register, see Chapter 4 System Control 
Coprocessor.

11.4.13 Breakpoint Control Registers

The BCR is a read/write register that contains the necessary control bits for setting:
• breakpoints
• linked breakpoints.

Figure 11-10 shows the bit arrangement of the BCRs.

Figure 11-10 Breakpoint Control Registers format

Table 11-16 Breakpoint Value Registers functions

Bits Reset value Description

[31:0] 0x0 Breakpoint value

Reserved

M Linked BRP Reserved
Byte 

address
select

Secure state access control

Breakpoint 
address mask

Reserved Reserved

B

31 29 28 24 23 22 20 19 16 15 14 13 9 8 5 4 3 2 1 0

S

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-23
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-17 shows how the bit values correspond with the Breakpoint Control Registers 
functions.

Table 11-17 Breakpoint Control Registers functions

Bits Field Function

[31:29] Reserved Do not modify on writes. On reads, the value returns zero. 

[28:24] Breakpoint 
address mask

This field sets a breakpoint on a range of addresses by masking lower order address bits out 
of the breakpoint comparison.a

b00000 = no mask
b00001 = Reserved
b00010 = Reserved
b00011 = 0x00000007 mask for instruction address
b00100 = 0x0000000F mask for instruction address
b00101 = 0x0000001F mask for instruction address
...
b11111 = 0x7FFFFFFF mask for instruction address.

[23] Reserved -

[22:20] M Meaning of BVR:
b000 = instruction address match
b001 = linked instruction address match
b010 = unlinked context ID
b011 = linked context ID
b100 = instruction address mismatch
b101 = linked instruction address mismatch
b11x = Reserved.
For more information, see Table 11-18 on page 11-25

[19:16] Linked BRP 
number

The binary number encoded here indicates another BRP to link this one with.

Note
 • if a BRP is linked with itself, it is Unpredictable whether a breakpoint debug event is 

generated
• if this BRP is linked to another BRP that is not configured for linked context ID 

matching, it is Unpredictable whether a breakpoint debug event is generated.

[15:14] Secure state 
access control

RAZ or SBZP.

[13:9] Reserved Do not modify on writes. On reads, the value returns zero.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-24
ID013010 Non-Confidential, Unrestricted Access



Debug 
[8:5] Byte address 
select

For breakpoints programmed to match an instruction address, the debugger must write a 
word-aligned address to the BVR. You can then use this field to program the breakpoint so 
it hits only if certain byte addresses are accessed.b

If the BRP is programmed for instruction address match:
b0000 = the breakpoint never hits
bxxx1 = the breakpoint hits if the byte at address (BVR & 0xFFFFFFFC) +0 is accessed
bxx1x = the breakpoint hits if the byte at address (BVR & 0xFFFFFFFC) +1 is accessed
bx1xx = the breakpoint hits if the byte at address (BVR & 0xFFFFFFFC) +2 is accessed
b1xxx = the breakpoint hits if the byte at address (BVR & 0xFFFFFFFC) +3 is accessed
b1111 = the breakpoint hits if any of the four bytes starting at address (BVR & 0xFFFFFFFC) 
+0 is accessed.
If the BRP is programmed for instruction address mismatch, the breakpoint hits where the 
corresponding instruction address breakpoint does not hit, that is, the range of addresses 
covered by an instruction address mismatch breakpoint is the negative image of the 
corresponding instruction address breakpoint.
If the BRP is programmed for context ID comparison, this field must be set to b1111. 
Otherwise, breakpoint and watchpoint debug events might not be generated as expected.

[4:3] Reserved -

[2:1] S Supervisor access control. The breakpoint can be conditioned on the mode of the processor:
b00 = User, System, or Supervisor
b01 = Privileged
b10 = User
b11 = any.

[0] B Breakpoint enable:
0 = Breakpoint disabled. This is the reset value.
1 = Breakpoint enabled.

a. If BCR[28:24] is not set to b00000, then BCR[8:5] must be set to b1111. Otherwise the behavior is Unpredictable. In addition, 
if BCR[28:24] is not set to b00000, then the corresponding BVR bits that are not being included in the comparison Should Be 
Zero. Otherwise the behavior is Unpredictable. If this BRP is programmed for context ID comparison, this field must be set 
to b00000. Otherwise the behavior is Unpredictable. There is no encoding for a full 32-bit mask but the same effect of a break 
anywhere breakpoint can be achieved by setting BCR[22] to 1 and BCR[8:5] to b0000.

b. Writing a value to BCR[8:5] so that BCR[8] is not equal to BCR[7] or BCR[6] is not equal to BCR[5] has Unpredictable 
results.

Table 11-18 Meaning of BVR bits [22:20]

BVR[22:20] Meaning

b000 The corresponding BVR[31:2] is compared against the instruction address bus and the state of the 
processor against this BCR. It generates a breakpoint debug event on a joint instruction address and state 
match.

b001 The corresponding BVR[31:2] is compared against the instruction address bus and the state of the 
processor against this BCR. This BRP is linked with the one indicated by BCR[19:16] linked BRP field. 
They generate a breakpoint debug event on a joint instruction address, context ID, and state match.

b010 The corresponding BVR[31:0] is compared against CP15 Context ID Register, c13 and the state of the 
processor against this BCR. This BRP is not linked with any other one. It generates a breakpoint debug 
event on a joint context ID and state match. For this BRP, BCR[8:5] must be set to b1111. Otherwise it 
is Unpredictable whether a breakpoint debug event is generated.

Table 11-17 Breakpoint Control Registers functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-25
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.14 Watchpoint Value Registers

Each WVR is associated with a Watchpoint Control Register (WCR). WCRy is the 
corresponding register for WVRy.

A pair of watchpoint registers, WVRy and WCRy, is called a Watchpoint Register Pair (WRP). 
WVR0-7 are paired with WCR0-7 to make WRP0-7.

The watchpoint value contained in the WVR always corresponds to a data address and can be 
set either on:
• a data address
• a data address and context ID pair.

For a data address and context ID pair, a WRP and a BRP with context ID comparison capability 
must be linked. A debug event is generated when both the data address and the context ID pair 
match simultaneously. Table 11-19 shows the bit field definitions for the Watchpoint Value 
Registers.

11.4.15 Watchpoint Control Registers

The WCRs contain the necessary control bits for setting:
• watchpoints
• linked watchpoints.

Figure 11-11 on page 11-27 shows the bit arrangement of the Watchpoint Control Registers.

b011 The corresponding BVR[31:0] is compared against CP15 Context ID Register, c13. This BRP links 
another BRP (of the BCR[21:20]=b01 type), or WRP (with WCR[20]=b1). They generate a breakpoint 
or watchpoint debug event on a joint instruction address or data address and context ID match. For this 
BRP, BCR[8:5] must be set to b1111, BCR[15:14] must be set to b00, and BCR[2:1] must be set to b11. 
Otherwise it is Unpredictable whether a breakpoint debug event is generated.

b100 The corresponding BVR[31:2] and BCR[8:5] are compared against the instruction address bus and the 
state of the processor against this BCR. It generates a breakpoint debug event on a joint instruction 
address mismatch and state match.

b101 The corresponding BVR[31:2] and BCR[8:5] are compared against the instruction address bus and the 
state of the processor against this BCR. This BRP is linked with the one indicated by BCR[19:16] linked 
BRP field. It generates a breakpoint debug event on a joint instruction address mismatch, state and 
context ID match.

b11x Reserved. The behavior is Unpredictable.

Table 11-18 Meaning of BVR bits [22:20] (continued)

BVR[22:20] Meaning

Table 11-19 Watchpoint Value Registers functions

Bits Description

[31:2] Watchpoint address.

[1:0] Reserved. Do not modify on writes. On reads, the value returns zero. 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-26
ID013010 Non-Confidential, Unrestricted Access



Debug 
Figure 11-11 Watchpoint Control Registers format

Table 11-20 shows how the bit values correspond with the Watchpoint Control Registers 
functions.

Reserved

Linked BRP Byte address select L/S P W

Reserved

Watchpoint 
address mask

31 21 20 19 16 15 5 3 2 1

E L/S S

24 4 014 1329 28 23

Secure state access control

12

Reserved

Table 11-20 Watchpoint Control Registers functions

Bits Field Function

[31:29] Reserved Do not modify on writes. On reads, the value returns zero.

[28:24] Watchpoint 
address 
mask

This field watches a range of addresses by masking lower order address bits out of the 
watchpoint comparison.
b00000 = no mask
b00001 = Reserved
b00010 = Reserved
b00011 = 0x00000007 mask for data address
b00100 = 0x0000000F mask for data address
b00101 = 0x0000001F mask for data address
...
b11111 = 0x7FFFFFFF mask for data address.

Note
 • If WCR[28:24] is not set to b00000, then WCR[12:5] must be set to b11111111. 

Otherwise the behavior is Unpredictable.
• If WCR[28:24] is not set to b00000, then the corresponding WVR bits that are not being 

included in the comparison Should Be Zero. Otherwise the behavior is Unpredictable.
• To watch for a write to any byte in an 8-byte aligned object of size 8 bytes, ARM 

recommends that a debugger sets WCR[28:24] to b00111, and WCR[12:5] to b11111111. 
This is compatible with both ARMv7 debug compliant implementations that have an 
8-bit WCR[12:5] and with those that have a 4-bit WCR[8:5] byte address select field.

[23:21] Reserved Do not modify on writes. On reads, the value returns zero.

[20] E Enable linking bit:
0 = linking disabled
1 = linking enabled.
When this bit is set, this watchpoint is linked with the context ID holding BRP selected by the 
linked BRP field.

[19:16] Linked 
BRP

Linked BRP number. The binary number encoded here indicates a context ID holding BRP to 
link this WRP with. If this WRP is linked to a BRP that is not configured for linked context ID 
matching, it is Unpredictable whether a watchpoint debug event is generated.

[15:14] Secure state 
access 
control

RAZ or SBZP.

[13] Reserved Appear as zero when read. Do not modify on writes.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-27
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.16 Operating System Lock Status Register

The Operating System Lock Status Register (OSLSR) contains status information about the 
locked debug registers.

Figure 11-12 on page 11-29 shows the bit arrangement of the OSLSR.

[12:5] Byte 
address 
select

The WVR is programmed with word-aligned address. You can use this field to program the 
watchpoint so it only hits if certain byte addresses are accessed:
b00000000 The watchpoint never hits.
bxxxxxxx1 The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFFC) +0 is 

accessed.
bxxxxxx1x The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFFC) +1 is 

accessed.
bxxxxx1xx The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFFC) +2 is 

accessed.
bxxxx1xxx The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFFC) +3 is 

accessed.
bxxx1xxxx The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFF8) +4 is 

accessed.
bxx1xxxxx The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFF8) +5 is 

accessed.
bx1xxxxxx The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFF8) +6 is 

accessed.
b1xxxxxxx The watchpoint hits if the byte at address (WVR[31:0] & 0xFFFFFFF8) +7 is 

accessed.

[4:3] L/S Load/store access. The watchpoint can be conditioned to the type of access:
b00 = Reserved
b01 = load, load exclusive, or swap
b10 = store, store exclusive or swap
b11 = either.
A SWP or SWPB triggers on load, store, or either. A load exclusive instruction triggers on load or 
either. A store exclusive instruction triggers on store or either, whether it succeeds or not.

[2:1] S Privileged access control. The watchpoint can be conditioned to the privilege of the access:
b00 = reserved
b01 = Privileged, match if the processor does a privileged access to memory
b10 = User, match only on non-privileged accesses
b11 = either, match all accesses.

Note
 For all cases, the match refers to the privilege of the access, not the mode of the processor.

[0] W Watchpoint enable:
0 = Watchpoint disabled. This is the reset value.
1 = Watchpoint enabled.

Table 11-20 Watchpoint Control Registers functions (continued)

Bits Field Function
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-28
ID013010 Non-Confidential, Unrestricted Access



Debug 
Figure 11-12 OS Lock Status Register format

Table 11-21 shows how the bit values correspond with the OS Lock Status Register functions.

11.4.17 Authentication Status Register

The Authentication Status Register is a read-only register that reads the current values of the 
configuration inputs that determine the debug permission level.

Figure 11-13 shows the bit arrangement of the Authentication Status Register.

Figure 11-13 Authentication Status Register format

Table 11-22 shows how the bit values correspond with the Authentication Status Register 
functions.

31 0

Reserved

1

Lock implemented bit

Table 11-21 OS Lock Status Register functions

Bits Field Function

[31:1] Reserved RAZ.

[0] Lock implemented bit Indicates that the OS lock functionality is not implemented. This bit always reads 0.

31 03

Reserved

45678

Secure non-invasive debug features implemented

Secure non-invasive debug features enabled

Secure invasive debug features implemented

Secure invasive debug features enabled
Non-secure debug features

Table 11-22 Authentication Status Register bit functions

Bits Field Value Function

[31:8] Reserved - RAZ

[7] Secure non-invasive debug 
features implemented

0b1 Implemented

[6] Secure non-invasive debug 
features enabled 

DBGEN || NIDEN Non-invasive debug enable field

[5] Secure invasive debug 
features implemented

0b1 Implemented

[4] Secure invasive debug 
features enabled

DBGEN Invasive debug enable field

[3:0] Non-secure debug featuresa 0x0 Not implemented
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-29
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.4.18 Device Power-down and Reset Control Register

The PRCR is a read/write register that controls reset and power-down related functionality.

Figure 11-14 shows the bit arrangement of the PRCR.

Figure 11-14 PRCR format

Table 11-23 shows how the bit values correspond with the Device Power down and Reset 
Control Register functions.

11.4.19 Device Power-down and Reset Status Register

The PRSR is a read-only register that provides information about the reset and power-down 
state of the processor.

Figure 11-15 on page 11-31 shows the bit arrangement of the PRSR.

a. Cortex-R4 does not implement the Security Extensions, so all the debug features are considered 
secure.

31 03

Reserved

2 1

Hold internal reset  
Force internal reset

No Power-down

Table 11-23 PRCR functions

Bits Field Function

[31:3] Reserved Do not modify on writes. On reads, the value returns zero.

[2] Hold internal 
reset

Hold internal reset bit. This bit can be used to prevent the processor from running again before 
the debugger detects a power-down event and restores the state of the debug registers in the 
processor. This bit does not have any effect on initial system power-up as nSYSPORESET 
clears it.
0 = Do not hold internal reset on power-up or warm reset. This is the reset value.
1 = Hold the processor non-debug logic in reset on warm reset until this flag is cleared.

[1] Force 
internal reset

When a 1 is written to this bit, the processor asserts the DBGRSTREQ output for four cycles. 
You can connect this output to an external reset controller which, in turn, resets the processor.

[0] No 
power-down

When set to 1, the DBGNOPWRDWN output signal is HIGH. This output connects to the 
system power controller and is interpreted as a request to operate in emulate mode. In this mode, 
the processor is not actually powered down when requested by software or hardware 
handshakes. This mode is useful when debugging applications on top of working operating 
systems.
0 = DBGNOPWRDWN is LOW. This is the reset value
1 = DBGNOPWRDWN is HIGH.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-30
ID013010 Non-Confidential, Unrestricted Access



Debug 
Figure 11-15 PRSR format

Table 11-24 shows how the bit values correspond with the PRSR functions.

31 03

Reserved

2 14

Sticky reset status
Reset status  

Sticky power-down status
Power-down status

Table 11-24 PRSR functions

Bits Field Function

[31:4] Reserved Do not modify on writes. On reads, the value returns zero.

[3] Sticky reset status Sticky reset status bit. This bit is cleared on read.
0 = the processor has not been reset since the last time this register was read. This 
is the reset value.
1 = the processor has been reset since the last time this register was read.
This sticky bit is set to 1 when nSYSPORESET is asserted.

[2] Reset status Reset status bit:
0 = the processor is not currently held in reset
1 = the processor is currently held in reset.
This bit reads 1 when nSYSPORESET is asserted.

[1] Sticky power-down status Reserved. Always zero.

[0] Power-down status Reserved. Always one.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-31
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.5 Management registers
The Management Registers define the standardized set of registers that all CoreSight 
components implement. This section describes these registers.

Table 11-25 shows the contents of the Management Registers for the processor debug unit.

11.5.1 Processor ID Registers

The Processor ID Registers are read-only registers that return the same values as the 
corresponding CP15 Main ID Register and Feature ID Registers. See Chapter 4 System Control 
Coprocessor for details about the information contained in these registers.

Table 11-26 shows the offset value, register number, mnemonic, and description that are 
associated with each Process ID Register.

Table 11-25 Management Registers

Offset 
(hex)

Register 
number Access Mnemonic Description

0xD00-0xDFC 832-895 R - Processor Identifier Registers. See Processor ID Registers.

0xF00 960 RW ITCTRL Integration Mode Control Registers. See Integration Mode 
Control Register (ITCTRL) on page 13-9.

0xFA0 1000 CLAIMSET Claim Tag Set Register. See Claim Tag Set Register on 
page 11-33.

0xFA4 1001 CLAIMCLR Claim Tag Clear Register. See Claim Tag Clear Register on 
page 11-34.

0xFB0 1004 W LOCKACCESS Lock Access Register. See Lock Access Register on 
page 11-34.

0xFB4 1005 R LOCKSTATUS Lock Status Register. See Lock Status Register on 
page 11-34.

0xFB8 1006 R AUTHSTATUS Authentication Status Register. See Authentication Status 
Register on page 11-29.

0xFB8-0xFC4 1006-1009 R - Reserved.

0xFC8 1010 R DEVID Device Identifier. Reserved.

0xFCC 1011 R DEVTYPE Device Type Register. See Device Type Register on 
page 11-35.

0xFD0-0xFFC 1012-1023 R - Identification Registers. See Debug Identification 
Registers on page 11-35.

Table 11-26 Processor Identifier Registers

Offset (hex) Register number Mnemonic Function

0xD00 832 MIDR Main ID Register

0xD04 833 CTR Cache Type Register

0xD08 834 TCMTR TCM Type Register

0xD0C 835 - Alias of MIDR
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-32
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.5.2 Claim Registers

The Claim Tag Set Register and the Claim Tag Clear Register enable an external debugger to 
claim debug resources. 

Claim Tag Set Register

Figure 11-16 shows the bit arrangement of the Claim Tag Set Register.

Figure 11-16 Claim Tag Set Register format

Table 11-27 shows how the bit values correspond with the Claim Tag Set Register functions.

0xD10 836 MPUIR MPU Type Register

0xD14 837 MPIDR Multiprocessor Affinity Register

0xD18-0xD1C 838-839 - Alias of MIDR

0xD20 840 ID_PFR0 Processor Feature Register 0

0xD24 841 ID_PFR1 Processor Feature Register 1

0xD28 842 ID_DFR0 Debug Feature Register 0

0xD2C 843 ID_AFR0 Auxiliary Feature Register 0

0xD30 844 ID_MMFR0 Processor Feature Register 0

0xD34 845 ID_MMFR1 Processor Feature Register 1

0xD38 846 ID_MMFR2 Processor Feature Register 2

0xD3C 847 ID_MMFR3 Processor Feature Register 3

0xD40 848 ID_ISAR0 ISA Feature Register 0

0xD44 849 ID_ISAR1 ISA Feature Register 1

0xD48 850 ID_ISAR2 ISA Feature Register 2

0xD4C 851 ID_ISAR3 ISA Feature Register 3

0xD50 852 ID_ISAR4 ISA Feature Register 4

0xD54 853 ID_ISAR5 ISA Feature Register 5

Table 11-26 Processor Identifier Registers (continued)

Offset (hex) Register number Mnemonic Function

31 0

Reserved

78

Claim tag set

Table 11-27 Claim Tag Set Register functions

Bits Field Function

[31:8] Reserved RAZ or SBZP.

[7:0] Claim tag set RAO. Sets claim tags on writes.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-33
ID013010 Non-Confidential, Unrestricted Access



Debug 
Writing b1 to a specific claim tag set bit sets that claim tag. Writing b0 to a specific claim tag 
bit has no effect. This register always reads 0xFF, indicating eight claim tags are implemented.

Claim Tag Clear Register 

Figure 11-16 on page 11-33 shows the bit arrangement of the Claim Tag Set Register.

Figure 11-17 Claim Tag Clear Register format

Table 11-28 shows how the bit values correspond with the Claim Tag Clear Register functions.

Writing b1 to a specific claim tag clear bit clears that claim tag. Writing b0 has no effect. 
Reading this register returns the current claim tag value.

11.5.3 Lock Access Register

The Lock Access Register is a write-only register that controls writes to the debug registers. The 
purpose of the Lock Access Register is to reduce the risk of accidental corruption to the contents 
of the debug registers. It does not prevent all accidental or malicious damage. Because the state 
of the Lock Access Register is in the debug power domain, it is not lost when the processor 
powers down.

The Lock Access Register, bits [31:0] contain a key which controls the lock status. To unlock 
the debug registers, write a 0xC5ACCE55 key to this register. To lock the debug registers, write any 
other value. Accesses to locked debug registers are ignored. The lock is set on reset.

11.5.4 Lock Status Register

The Lock Status Register is a read-only register that returns the current lock status of the debug 
registers.

Figure 11-18 shows the bit arrangement of the Lock Status Register.

Figure 11-18 Lock Status Register format

31 0

Reserved

78

Claim tag clear

Table 11-28 Functional bits of the Claim Tag Clear Register

Bit Field Description

[31:8] Reserved RAZ or SBZP.

[7:0] Claim tag clear R/W. Reset value is 0x00.

3131 0

Reserved

123

32-bit access
Locked bit

Lock implemented bit
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-34
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-29 shows how the bit values correspond with the Lock Status Register functions.

11.5.5 Device Type Register

The Device Type Register is a read-only register that indicates the type of debug component.

Figure 11-19 shows the bit arrangement of the Device Type Register.

Figure 11-19 Device Type Register format

Table 11-30 shows how the bit values correspond with the Device Type Register functions.

11.5.6 Debug Identification Registers

The Debug Identification Registers are read-only registers that consist of the Peripheral 
Identification Registers and the Component Identification Registers. The Peripheral 
Identification Registers provide standard information that all CoreSight components require. 
Only bits [7:0] of each register are used. The remaining bits Read-As-Zero.

The Component Identification Registers identify the processor as a CoreSight component. Only 
bits [7:0] of each register are used, the remaining bits Read-As-Zero. The values in these 
registers are fixed.

Table 11-29 Lock Status Register functions

Bits Field Function

[31:3] Reserved Do not modify on writes. On reads, the value returns zero.

[2] 32-bit access Indicates that a 32-bit access is required to write the key to the Lock Access Register. 
This bit always reads 0.

[1] Locked bit Locked bit:
0 = Writes are permitted.
1 = Writes are ignored. This is the reset value.

[0] Lock implemented bit Indicates that the OS lock functionality is implemented. This bit always reads 1.

3131 0

Reserved

4

Sub type Main class

8 7 3

Table 11-30 Device Type Register functions

Bits Field Function

[31:8] Reserved Do not modify on writes. On reads, the value returns zero.

[7:4] Subtype 0x1, indicates that the sub-type of the device is processor core.

[3:0] Main class 0x5, indicates that the main class of the device is debug logic.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-35
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-31 shows the offset value, register number, and description that are associated with 
each Peripheral Identification Register.

Table 11-32 shows fields that are in the Peripheral Identification Registers.

Table 11-33 shows how the bit values correspond with the Peripheral ID Register 0 functions.

Table 11-31 Peripheral Identification Registers

Offset (hex) Register number Function

0xFD0 1012 Peripheral Identification Register 4

0xFD4 1013 Reserved

0xFD8 1014 Reserved

0xFDC 1015 Reserved

0xFE0 1016 Peripheral Identification Register 0

0xFE4 1017 Peripheral Identification Register 1

0xFE8 1018 Peripheral Identification Register 2

0xFEC 1019 Peripheral Identification Register 3

Table 11-32 Fields in the Peripheral Identification Registers

Field Size Description

4KB Count 4 bits Indicates the Log2 of the number of 4KB blocks occupied by the debug device. The processor 
debug registers occupy a single 4KB block, therefore this field is always 0x0.

JEP106 
Identity 
Code

4+7 bits Identifies the designer of the processor. This field consists of a 4-bit continuation code and a 
7-bit identity code. Because the processor is designed by ARM, the continuation code is 0x4 
and the identity code is 0x3B. For more information see JEP106M, Standard Manufacture’s 
Identification Code.

Part number 12 bits Indicates the part number of the processor. The part number for the processor is 0xC14.

Revision 4 bits Indicates the major and minor revision of the product. The major revision contains 
functionality changes and the minor revision contains bug fixes for the product. The revision 
number starts at 0x0 and increments by 1 at both major and minor revisions. See Product 
revision information on page 1-24 for details of the value of this field.

RevAnd 4 bits Indicates the manufacturer revision number. This number starts at 0x0 and increments by the 
integrated circuit manufacturer on metal fixes. For the Cortex-R4 processor, the initial value is 
0x0 but this value can be changed by the manufacturer.

Customer 
modified

4 bits Indicates an endorsed modification to the device. On this processor the value is always 0x0.

Table 11-33 Peripheral ID Register 0 functions

Bits Value Description

[31:8] - Reserved

[7:0] 0x14 Indicates bits [7:0] of the Part number for the processor
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-36
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-34 shows how the bit values correspond with the Peripheral ID Register 1 functions.

Table 11-35 shows how the bit values correspond with the Peripheral ID Register 2 functions.

Table 11-36 shows how the bit values correspond with the Peripheral ID Register 3 functions.

Table 11-37 shows how the bit values correspond with the Peripheral ID Register 4 functions.

Table 11-34 Peripheral ID Register 1 functions

Bits Value Description

[31:8] - Reserved

[7:4] 0xB Indicates bits [3:0] of the JEDEC JEP106 Identity Code

[3:0] 0xC Indicates bits [11:8] of the Part number for the processor

Table 11-35 Peripheral ID Register 2 functions

Bits Value Description

[31:8] - Reserved.

[7:4] - Indicates the revision number for the Cortex-R4 processor. See Product revision information on 
page 1-24 for more information.

[3] 0x1 This field is always set to 1. It indicates that the processor uses a JEP 106 identity code.

[2:0] 0x3 Indicates bits [6:4] of the JEDEC JEP106 Identity Code.

Table 11-36 Peripheral ID Register 3 functions

Bits Value Description

[31:8] - Reserved.

[7:4] 0x0 Indicates the manufacturer revision number. This value changes based on the metal fixes made by the 
manufacturer.

[3:0] 0x0 Customer modified. See Table 11-32 on page 11-36.

Table 11-37 Peripheral ID Register 4 functions

Bits Value Description

[31:8] - Reserved.

[7:4] 0x0 Indicates the number of blocks the debug component occupies. This field is always set to 0.

[3:0] 0x4 Indicates the JEDEC JEP106 continuation code. For the processor, this value is 4.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-37
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-38 shows the offset value, register number, and value that are associated with each 
Component Identification Register.

Table 11-38 Component Identification Registers

Offset (hex) Register number Value Description

0xFF0 1020 0x0D Component Identification Register 0

0xFF4 1021 0x90 Component Identification Register 1

0xFF8 1022 0x05 Component Identification Register 2

0xFFC 1023 0xB1 Component Identification Register 3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-38
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.6 Debug events
A processor responds to a debug event in one of the following ways:
• ignores the debug event
• takes a debug exception
• enters debug state.

This section describes:
• Software debug event
• Halting debug event on page 11-40.
• Behavior of the processor on debug events on page 11-40
• Debug event priority on page 11-40
• Watchpoint debug events on page 11-40.

11.6.1 Software debug event

A software debug event is any of the following:

• A watchpoint debug event. This occurs when:
— The data address for a load or store matches the watchpoint value.
— All the conditions of the WCR match.
— The watchpoint is enabled.
— The linked context ID-holding BRP, if any, is enabled and its value matches the 

context ID in CP15 c13. See Chapter 4 System Control Coprocessor.
— The instruction that initiated the memory access is committed for execution. 
Watchpoint debug events are only generated if the instruction passes its condition code.

• A breakpoint debug event. This occurs when:
— An instruction was fetched and the instruction address or the CP15 Context ID 

register c13 matched the breakpoint value.
— At the same time the instruction was fetched, all the conditions of the BCR for 

unlinked context ID breakpoint generation matched the I-side control signals.
— The breakpoint is enabled.
— The instruction is committed for execution. These debug events are generated 

whether the instruction passes or fails its condition code.

• A BKPT debug event. This occurs when a BKPT instruction is committed for execution. 
BKPT is an unconditional instruction.

• A vector catch debug event. This occurs when:
— An instruction was prefetched and the address matched a vector location address. 

This includes any kind of prefetch, not only the ones because of exception entry.
— At the same time the instruction was fetched, the corresponding bit of the VCR was 

set, that is, the vector catch is enabled.
— The instruction is committed for execution. These debug events are generated 

whether the instruction passes or fails its condition code.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-39
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.6.2 Halting debug event

The debugger or the system can cause the processor to enter into debug state by triggering any 
of the following halting debug events:
• assertion of the EDBGRQ signal, an External Debug Request
• write to the DRCR[0] Halt Request control bit.

If EDBGRQ is asserted while DBGEN is HIGH but invasive debug is not permitted, the 
devices asserting this signal must hold it until the processor enters debug state, that is, until 
DBGACK is asserted. Otherwise, the behavior of the processor is Unpredictable. For DRCR[0] 
halting debug events, the processor records them internally until it is in a state and mode so that 
they can be taken.

11.6.3 Behavior of the processor on debug events

This section describes how the processor behaves on debug events while not in debug state. See 
Debug state on page 11-44 for information on how the processor behaves while in debug state. 
When the processor is in Monitor debug-mode, Prefetch Abort and Data Abort vector catch 
debug events are ignored. All other software debug events generate a debug exception such as 
Data Abort for watchpoints, and Prefetch Abort for anything else.

When debug is disabled, the BKPT instruction generates a debug exception, Prefetch Abort. All 
other software debug events are ignored.

When DBGEN is LOW, debug is disabled regardless of the value of DSCR[15:14].

Table 11-39 shows the behavior of the processor on debug events.

11.6.4 Debug event priority

Breakpoint, instruction address or CID match, vector catch, and halting debug events have the 
same priority. If more than one of these events occurs on the same instruction, it is 
Unpredictable which event is taken.

Breakpoint, instruction address or CID match, vector catch cancel the instruction that they occur 
on, therefore a watchpoint cannot be taken on such an instruction.

11.6.5 Watchpoint debug events

A precise watchpoint exception has similar behavior to a precise data abort exception:
• the processor sets R14_abt to the address of the instruction to return to plus 0x08.
• the processor does not complete the watchpointed instruction.

If the watchpointed access is subject to a precise data abort, then the precise abort takes priority 
over the watchpoint because it is a higher priority exception.

Table 11-39 Processor behavior on debug events

DBGEN DSCR[15:14] Debug mode Action on software debug 
event

Action on halting 
debug event

0 bxx Debug disabled Ignore or Prefetch Abort (for BKPT) Ignore

1 b00 None Ignore or Prefetch Abort (for BKPT) Debug state entry

1 bx1 Halting Debug state entry Debug state entry

1 b10 Monitor Debug exception Debug state entry
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-40
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.7 Debug exception
The processor takes a debug exception when a software debug event occurs while in Monitor 
debug-mode. Prefetch Abort and Data Abort Vector catch debug events are ignored. The debug 
software must carefully program certain debug events to prevent the processor from entering an 
unrecoverable state. If the processor takes a debug exception because of a breakpoint, BKPT, or 
vector catch debug event, the processor performs the following actions:

• sets the DSCR[5:2] method-of-entry bits to indicate that a breakpoint occurred

• sets the CP15 IFSR and IFAR registers as described in Effect of debug exceptions on CP15 
registers and WFAR on page 11-42

• performs the same sequence of actions as in a Prefetch Abort exception by:
— updating the SPSR_abt with the saved CPSR
— changing the CPSR to abort mode and the state indicated by the TE bit with normal 

interrupts and imprecise aborts disabled
— setting R14_abt as for a regular Prefetch Abort exception, that is, this register holds 

the address of the cancelled instruction plus 0x04
— setting the PC to the appropriate Prefetch Abort vector.

Note
 The Prefetch Abort handler is responsible for checking the IFSR to determine if a debug 
exception or other kind of Prefetch Abort exception caused the exception entry. If the cause is 
a debug exception, the Prefetch Abort handler must branch to the debug monitor. The R14_abt 
register holds the address of the instruction to restart.

If the processor takes a debug exception because of a watchpoint debug event, the processor 
performs the following actions:

• sets the DSCR[5:2] method-of-entry bits to indicate that a precise watchpoint occurred

• sets the CP15 DFSR, DFAR, and WFAR registers as described in Effect of debug 
exceptions on CP15 registers and WFAR on page 11-42

• performs the same sequence of actions as in a Data Abort exception by:
— updating the SPSR_abt with the saved CPSR
— changing the CPSR to the state indicated by the TE bit with normal interrupts and 

imprecise aborts disabled
— setting R14_abt as a regular Data Abort exception, that is, this register gets the 

address of the cancelled instruction plus 0x08
— setting the PC to the appropriate Data Abort vector.

Note
 The Data Abort handler must check the DFSR to determine if the exception entry was caused 
by a Debug exception or other kind of Data Abort exception. If the cause is a Debug exception, 
the Data Abort handler must branch to the debug monitor. The R14_abt register holds the 
address of the instruction to restart.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-41
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-40 shows the values in the link register after exceptions.

The following sections describe:
• Effect of debug exceptions on CP15 registers and WFAR
• Avoiding unrecoverable states on page 11-43.

11.7.1 Effect of debug exceptions on CP15 registers and WFAR

The four CP15 registers that record abort information are:
1. Data Fault Address Register (DFAR)
2. Instruction Fault Address Register (IFAR) 
3. Instruction Fault Status Register (IFSR)
4. Data Fault Status Register (DFSR).

For more information on these registers, see Chapter 4 System Control Coprocessor.

If the processor takes a debug exception because of a watchpoint debug event, the processor 
performs the following actions on these registers:

• it does not change the IFSR or IFAR

• it updates the DFSR with the debug event encoding

• it writes an Unpredictable value to the DFAR

• it updates the WFAR with the address of the instruction that accessed the watchpointed 
address, plus a processor state dependent offset:
— + 8 for ARM state
— + 4 for Thumb state.

If the processor takes a debug exception because of a breakpoint, BKPT, or vector catch debug 
event, the processor performs the following actions on these registers:
• it updates the IFSR with the debug event encoding
• it writes an Unpredictable value to the IFAR
• it does not change the DFSR, DFAR, or WFAR.

Table 11-40 Values in link register after exceptions

Cause of fault ARM Thumb Return address (RAa) meaning

a. This is the address of the instruction that the processor can execute first on debug exception return. The 
address of the access that hit the watchpoint is in the WFAR.

Breakpoint RA+4 RA+4 Breakpointed instruction address

Watchpoint RA+8 RA+8 Watchpointed instruction address

BKPT instruction RA+4 RA+4 BKPT instruction address

Vector catch RA+4 RA+4 Vector address

Prefetch Abort RA+4 RA+4 Address of the instruction where the execution can resume

Data Abort RA+8 RA+8 Address of the instruction where the execution can resume
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-42
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.7.2 Avoiding unrecoverable states

The processor ignores vector catch debug events on the Prefetch or Data Abort vectors while in 
Monitor debug-mode because these events would otherwise put the processor in an 
unrecoverable state.

The debuggers must avoid other similar cases by following these rules, that apply only if the 
processor is in Monitor debug-mode:

• if BCR[22:20] is set to b010, and unlinked context ID breakpoint is selected, then the 
debugger must program BCR[2:1] for the same breakpoint as stated in this section

• if BCR[22:20] is set to b100 or b101, and instruction address mismatch breakpoint is 
selected, then the debugger must program BCR[2:1] for the same breakpoint as stated in 
this section.

The debugger must write BCR[2:1] for the same breakpoint as either b00 or b10, that selects 
either match in only USR, SYS, or SVC modes or match in only USR mode, respectively. The 
debugger must not program either b01, that is, match in any Privileged mode, or b11, that is, 
match in any mode.

You must only request the debugger to write b00 to BCR[2:1] if you know that the abort handler 
does not switch to one of the USR, SYS, or SVC mode before saving the context that might be 
corrupted by a later debug event. You must also be careful about requesting the debugger to set 
a breakpoint or BKPT debug event inside a Prefetch Abort or Data Abort handler, or a 
watchpoint debug event on a data address that any of these handlers might access.

In general, you must only set breakpoint or BKPT debug events inside an abort handler after it 
saves the abort context. You can avoid breakpoint debug events in abort handlers by setting 
BCR[2:1] as previously described.

If the code being debugged is not running in a Privileged mode, you can prevent watchpoint 
debug events in abort handlers by setting WCR[2:1] to b10 for match only non-privileged 
accesses.

Failure to follow these guidelines can lead to debug events occurring before the handler is able 
to save the context of the abort. This causes the corresponding registers to be overwritten, and 
results in Unpredictable software behavior.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-43
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.8 Debug state
The debug state enables an external agent, usually a debugger, to control the processor following 
a debug event. While in debug state, the processor behaves as follows:

• The DSCR[0] core halted bit is set.

• The DBGACK signal is asserted, see DBGACK on page 11-51.

• The DSCR[5:2] method of entry bits are set appropriately.

• The processor is halted. The pipeline is flushed and no instructions are fetched.

• The processor does not change the execution mode. The CPSR is not altered.

• Exceptions are treated as described in Exceptions in debug state on page 11-47.

• Interrupts are ignored.

• New debug events are ignored.

The following sections describe:
• Entering debug state
• Behavior of the PC and CPSR in debug state on page 11-45
• Executing instructions in debug state on page 11-46
• Writing to the CPSR in debug state on page 11-46
• Privilege on page 11-46
• Accessing registers and memory on page 11-46
• Coprocessor instructions on page 11-47
• Effect of debug state on non-invasive debug on page 11-47
• Effects of debug events on processor registers on page 11-47
• Exceptions in debug state on page 11-47
• Leaving debug state on page 11-48.

11.8.1 Entering debug state

When a debug event occurs while the processor is in Halting debug-mode, it switches to a 
special state called debug state so the debugger can take control. You can configure Halting 
debug-mode by setting DSCR[14].

If a halting debug event occurs, the processor enters debug state even when Halting debug-mode 
is not configured. While the processor is in debug state, the PC does not increment on instruction 
execution. If the PC is read at any point after the processor has entered debug state, but before 
an explicit PC write, it returns a value as described in Table 11-41, depending on the previous 
state and the type of debug event.

Table 11-41 shows the read PC value after debug state entry for different debug events.

Table 11-41 Read PC value after debug state entry

Debug event ARM Thumb Return address (RAa) meaning

Breakpoint RA+8 RA+4 Breakpointed instruction address.

Watchpoint RA+8 RA+4 Address of the instruction where the execution resumes. This 
is several instructions after the one that hit the watchpoint.

BKPT instruction RA+8 RA+4 BKPT instruction address.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-44
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.8.2 Behavior of the PC and CPSR in debug state

The behavior of the PC and CPSR registers while the processor is in debug state is as follows:

• The PC is frozen on entry to debug state. That is, it does not increment on the execution 
of ARM instructions. However, the processor still updates the PC as a response to 
instructions that explicitly modify the PC.

• If the PC is read after the processor has entered debug state, it returns a value as described 
in Table 11-41 on page 11-44, depending on the previous state and the type of debug 
event.

• If the debugger executes a sequence for writing a certain value to the PC and subsequently 
it forces the processor to restart without any additional write to the PC or CPSR, the 
execution starts at the address corresponding to the written value.

• If the debugger forces the processor to restart without having performed a write to the PC, 
the restart address is Unpredictable.

• If the debugger writes to the CPSR, subsequent reads from the PC return an Unpredictable 
value, and if it forces the processor to restart without having performed a write to the PC, 
the restart address is Unpredictable. However, CPSR reads after a CPSR write return the 
written value.

• If the debugger writes to the PC, subsequent reads from the PC return an Unpredictable 
value.

• If the debugger forces the processor to execute an instruction that writes to the PC and this 
instruction fails its condition codes, the PC is written with an Unpredictable value. That 
is, if the debugger forces the processor to restart, the restart address is Unpredictable. 
Also, if the debugger reads the PC, the read value is Unpredictable.

• While the processor is in debug state, the CPSR does not change unless written to by an 
instruction. In particular, the CPSR IT execution state bits do not change on instruction 
execution. The CPSR IT execution state bits do not have any effects on instruction 
execution.

• If the processor executes a data processing instruction with Rd==R15 and S==0, then 
alu-out[0] must equal the current value of the CPSR T bit, otherwise the processor 
behavior is Unpredictable.

Vector catch RA+8 RA+4 Vector address.

External debug request signal 
activation

RA+8 RA+4 Address of the instruction where the execution resumes.

Debug state entry request command RA+8 RA+4 Address of the instruction where the execution resumes.

OS unlock event RA+8 RA+4 Address of the instruction where the execution resumes.

CTI debug request signal RA+8 RA+4 Address of the instruction where the execution resumes.

a. This is the address of the instruction that the processor can execute first on debug exception return. The address of the 
instruction that hit the watchpoint is in the WFAR.

Table 11-41 Read PC value after debug state entry (continued)

Debug event ARM Thumb Return address (RAa) meaning
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-45
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.8.3 Executing instructions in debug state

In debug state, the processor executes instructions issued through the Instruction Transfer 
Register (ITR). Before the debugger can force the processor to execute any instruction, it must 
enable this feature through DSCR[13].

While the processor is in debug state, it always decodes instructions from the ITR as per the 
ARM instruction set, regardless of the value of the T and J bits of the CPSR.

The following restrictions apply to instructions executed through the ITR while in debug state:

• with the exception of branch instructions and instructions that modify the CPSR, the 
processor executes any ARM instruction in the same manner as if it was not in debug state

• the branch instructions B, BL, BLX(1), and BLX(2) are Unpredictable

• certain instructions that normally update the CPSR are Unpredictable

• instructions that load a value into the PC from memory are Unpredictable.

11.8.4 Writing to the CPSR in debug state

The only instruction that can update the CPSR while in debug state is the MSR instruction. All 
other ARMv7 instructions that write to the CPSR are Unpredictable, that is, the BX, BXJ, SETEND, 
CPS, RFE, LDM(3), and data processing instructions with Rd==R15 and S==1.

The behavior of the CPSR forms of the MSR and MRS instructions in debug state is different to their 
behavior in normal state:

• When not in debug state, an MSR instruction that modifies the execution state bits in the 
CPSR is Unpredictable. However, in debug state an MSR instruction can update the 
execution state bits in the CPSR. An Instruction Synchronization Barrier (ISB) sequence 
must follow a direct modification of the execution state bits in the CPSR by an MSR 
instruction.

• When not in debug state, an MRS instruction reads the CPSR execution state bits as zeros. 
However, in debug state an MRS instruction returns the actual values of the execution state.

The debugger must execute an ISB sequence after it writes to the CPSR execution state bits using 
an MSR instruction. If the debugger reads the CPSR using an MRS instruction after a write to any 
of these bits, but before an ISB sequence, the value that MRS returns is Unpredictable. Similarly, 
if the debugger forces the processor to leave debug state after an MSR writes to the execution state 
bits, but before any ISB sequence, the behavior of the processor is Unpredictable.

11.8.5 Privilege

When the processor is in debug state, ARM instructions issued through the ITR are subject to 
different rules about whether they can perform privileged actions. The general rule is that all 
instructions and operations are permitted in debug state.

11.8.6 Accessing registers and memory

The processor always accesses register banks and memory as indicated by the CPSR mode bits, 
in both normal and debug state. For example, if the CPSR mode bits indicate the processor is in 
User mode, ARM register reads and returns the User mode banked registers, and memory 
accesses are presented to the MPU as not privileged.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-46
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.8.7 Coprocessor instructions

CP14 and CP15 instructions can always be executed in debug state regardless of processor 
mode.

11.8.8 Effect of debug state on non-invasive debug

The processor non-invasive debug features are the ETM and Performance Monitoring Unit 
(PMU). All of these non-invasive debug features are disabled when the processor is in debug 
state. For more information, see Chapter 4 System Control Coprocessor and ETM interface on 
page 1-11.

When the processor is in debug state:
• the ETM ignores all instructions and data transfers
• PMU events are not counted
• events are not visible to the ETM
• the PMU Cycle Count Register (CCNT) is stopped.

11.8.9 Effects of debug events on processor registers

On entry to debug state, the processor does not update any general-purpose or program status 
register. This includes the SPSR_abt and R14_abt registers. In addition, the processor does not 
update any coprocessor registers, including the CP15 IFSR, DFSR, DFAR, or IFAR registers, 
except for CP14 DSCR[5:2] method-of-entry bits. These bits indicate the type of debug event 
that caused the entry into debug state.

Note
 On entry to debug state, the processor updates the WFAR register with the address of the 
instruction accessing the watchpointed address plus:
• + 8 in ARM state
• + 4 in Thumb state.

11.8.10 Exceptions in debug state

While in debug state, exceptions are handled as follows:

Reset This exception is taken as in a normal processor state. This means the processor 
leaves debug state because of the system reset.

Prefetch Abort 
This exception cannot occur because the processor does not fetch any instructions 
while in debug state.

Debug The processor ignores debug events, including BKPT instructions.

SVC The processor ignores SVC exceptions.

Undefined 
When an Undefined exception occurs in debug state, the behavior of the 
processor is as follows:
• PC, CPSR, SPSR_und, and R14_und are unchanged
• the processor remains in debug state
• DSCR[8], sticky Undefined bit, is set.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-47
ID013010 Non-Confidential, Unrestricted Access



Debug 
Precise Data abort  
When a precise Data Abort occurs in debug state, the behavior of the processor is 
as follows:
• PC, CPSR, SPSR_abt, and R14_abt are unchanged
• the processor remains in debug state
• DSCR[6], sticky precise data abort bit, is set
• DFSR and DFAR are set to the same values as if the abort had occurred in 

normal state.

Imprecise Data Abort 
When an imprecise Data Abort occurs in debug state, the behavior of the 
processor is as follows, regardless of the setting of the CPSR A bit:
• PC, CPSR, SPSR_abt, and R14_abt are unchanged
• the processor remains in debug state
• DSCR[7], sticky imprecise data abort bit, is set
• the imprecise Data Abort does not cause the processor to perform an 

exception entry sequence so DFSR remains unchanged
• the processor does not act on this imprecise Data Abort on exit from the 

debug state, that is, the imprecise abort is discarded.

Imprecise Data Aborts on entry and exit from debug state

On entering debug state, the processor executes a Data Synchronization Barrier (DSB) 
sequence to ensure that any outstanding imprecise Data Aborts are detected, before starting 
debug operations.

If the DSB operation detects an imprecise Data Abort, the processor records this event and its 
type as if the CPSR A bit was set. The purpose of latching this event is to ensure that it can be 
taken on exit from the debug state.

Before forcing the processor to leave debug state, the debugger must execute a DSB sequence 
to ensure that all debugger-generated imprecise Data Aborts are detected, and therefore 
discarded, while still in debug state. After exiting debug state, the processor acts on any 
previously recorded imprecise Data Aborts if permitted by the CPSR A bit.

11.8.11 Leaving debug state

The debugger can force the processor to leave debug state:
• by setting the restart request bit, DRCR[1], to 1
• through the Cross Trigger Interface (CTI) external restart request mechanism.

When one of those restart requests occurs, the processor:

1. Clears the DSCR[1] core restarted flag.

2. Leaves debug state.

3. Clears the DSCR[0] core halted flag.

4. Drives the DBGACK signal LOW, unless the DSCR[11] DbgAck bit is set to 1.

5. Starts executing instructions from the address last written to the PC in the processor mode 
and state indicated by the current value of the CPSR. The CPSR IT execution state bit is 
restarted with the current value applying to the first instruction on restart.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-48
ID013010 Non-Confidential, Unrestricted Access



Debug 
6. Sets the DSCR[1] core restarted flag to 1.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-49
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.9 Cache debug
This section describes cache debug. It consists of:
• Cache pollution in debug state
• Cache coherency in debug state
• Cache usage profiling.

11.9.1 Cache pollution in debug state

If bit [0] of the Debug State Cache Control Register (DSCCR) is set to 0 while the processor is 
in debug state, then the L1 data cache does not perform any line fill. 

Note
 No special feature is required to prevent L1 instruction cache pollution because instruction side 
fetches cannot occur while in debug state.

11.9.2 Cache coherency in debug state

The debugger can update memory while in debug state:
• to replace an instruction with a BKPT, or to restore the original instruction
• to download code for the processor to execute on leaving debug state.

The debugger can maintain cache coherency in both these situations with the following features:

• If bit [2] of the DSCCR is set to 0 while the processor is in debug state, then the processor 
treats any memory access that hits in L1 data cache as write-through, regardless of the 
memory region attributes. This guarantees that the L1 instruction cache can see the 
changes to the code region without the debugger executing a time-consuming and 
device-specific sequence of cache clean operations.

• After the code is written to memory, the debugger can execute either a CP15 instruction 
cache invalidate all operation, or a CP15 instruction cache invalidate line operation.

Note
 The processor can normally execute CP15 instruction cache invalidate all operation or CP15 
instruction cache invalidate line operation only in Privileged mode. However, in debug state the 
processor can execute these instructions even when invasive debug is not permitted in 
Privileged mode. This exception to the rule enables the debugger to maintain coherency.

11.9.3 Cache usage profiling

You can obtain cache usage profiling information using the Performance Monitoring Unit 
(PMU). The processor can count cache accesses and misses over a period of time. See Chapter 6 
Events and Performance Monitor.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-50
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.10 External debug interface
The system can access memory-mapped debug registers through the processor APB slave port. 
This section describes the APB interface and the miscellaneous debug input and output signals:
• APB signals
• Miscellaneous debug signals
• Authentication signals on page 11-52.

11.10.1 APB signals

The APB slave port is compliant with the AMBA Advanced Peripheral Bus specification v3 and 
can be connected to the Debug Access Port (DAP). This APB slave interface supports 32-bits 
wide data, stalls, slave-generated aborts, and ten address bits [11:2] mapping 4KB of memory. 
An extra PADDRDBG31 signal indicates to the processor the source of access.

Table A-12 on page A-17 shows the external debug interface signals.

11.10.2 Miscellaneous debug signals

This section describes the miscellaneous debug signals.

EDBGRQ

This signal generates a halting debug event, that is, it requests the processor to enter debug state. 
When this occurs, the DSCR[5:2] method-of-debug entry bits are set to b0100. When 
EDBGRQ is asserted, it must be held until DBGACK is asserted. Failure to do so leads to 
Unpredictable behavior of the processor.

DBGACK

The processor asserts DBGACK to indicate that the system has entered debug state. It serves as 
a handshake for the EDBGRQ signal. The DBGACK signal is also driven HIGH when the 
debugger sets the DSCR[10] DbgAck bit to 1.

DBGNOPWRDWN

The processor asserts DBGNOPWRDWN when bit [0] of the Device Power down and Reset 
Control Register is 1. The processor power controller must work in Emulate mode when this 
signal is HIGH.

DBGROMADDR

The DBGROMADDR signal specifies bits [31:12] of the debug ROM physical address. This 
is a configuration input and must be tied off or only change while the processor is in reset. In a 
system with multiple debug ROMs, this address must be tied off to point to the top-level ROM 
address.

DBGROMADDRV is the valid signal for DBGROMADDR. If the address cannot be 
determined, DBGROMADDR must be tied off to zero and DBGROMADDRV must be tied 
LOW. The value of these signals can be read from the Debug ROM Address Register (DRAR).
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-51
ID013010 Non-Confidential, Unrestricted Access



Debug 
DBGSELFADDR

The DBGSELFADDR signal specifies bits [31:12] of the offset from the debug ROM physical 
address to the physical address where the processor APB port is mapped to the base of the 4KB 
debug register map. This is a configuration input and must be tied off or only change while the 
processor is in reset.

DBGSELFADDRV is the valid signal for DBGSELFADDR. If the offset cannot be 
determined, DBGSELFADDR must be tied off to zero and DBGSELFADDRV must be tied 
LOW. The value of these signals can be read from the Debug Self Address Register (DSAR).

DBGRESTART

The DBGRESTART signal is used to bring the processor out of debug halt state. The processor 
acknowledges DBGRESTART by asserting DBGRESTARTED, and then starts fetching 
instructions when DBGRESTART is deasserted.

DBGRESTARTED

The processor asserts DBGRESTARTED in response to a DBGRESTART request, when it is 
ready to exit debug halt state and return to normal run state.

DBGTRIGGER

The processor asserts DBGTRIGGER to indicate that the system has accepted a debug request 
and attempts to enter debug state. It is not a handshake for the EDBGRQ signal. If DBGACK 
does not go HIGH following DBGTRIGGER, the memory system has stopped responding and 
the processor has not entered debug state.

Table A-13 on page A-17 shows the debug miscellaneous signals.

11.10.3 Authentication signals

Table 11-42 shows a list of the valid authentication signals and the associated debug 
permissions. Authentication signals are used to configure the processor so its activity can only 
be debugged or traced in a certain subset of processor modes.

Changing the authentication signals

The NIDEN, and DBGEN input signals are either tied off to some fixed value or controlled by 
some external device.

Table 11-42 Authentication signal restrictions

DBGENa

a. When DBGEN is LOW, the processor behaves as if 
DSCR[15:14] equals b00 with the exception that halting 
debug events are ignored when this signal is LOW.

NIDEN Non-invasive debug permitted 
in User and Privileged modes

0 0 No

X 1 Yes

1 0 Yes
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-52
ID013010 Non-Confidential, Unrestricted Access



Debug 
If software running on the processor has control over an external device that drives the 
authentication signals, it must make the change using a safe sequence:

1. Execute an implementation-specific sequence of instructions to change the signal value. 
For example, this might be a single STR instruction that writes certain value to a control 
register in a system peripheral.

2. If step1 involves any memory operation, issue a Data Synchronization Barrier (DSB) 
instruction.

3. Poll the DSCR or Authentication Status Register to check whether the processor has 
already detected the changed value of these signals. This is required because the system 
might not issue the signal change to the processor until several cycles after the DSB 
completes.

4. Issue an Instruction Synchronization Barrier (ISB) instruction.

The software cannot perform debug or analysis operations that depend on the new value of the 
authentication signals until this procedure is complete. The same rules apply when the debugger 
has control of the processor through the ITR while in debug state.

The values of the DBGEN and NIDEN signals can be determined by polling DSCR[17:16], 
DSCR[15:14], or the Authentication Status Register.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-53
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.11 Using the debug functionality
This section provides some examples of using the processor debug functionality, both from the 
point of view of a software engineer writing code to run on an ARM processor and of a 
developer creating debug tools for the processor. In the former case, examples are given in ARM 
assembly language. In the latter case, the examples are in C pseudo-language, intended to 
convey the algorithms to be used. These examples are not intended as source code for a 
debugger.

The debugger examples use a pair of pseudo-functions such as the following:

uint32 ReadDebugRegister(int reg_num)
{

// read the value of the debug register reg_num at address reg_num << 2
}

WriteDebugRegister(int reg_num, uint32 val)
{

// write the value val to the debug register reg_num at address reg_num >> 2
}

A basic function for using the debug state is executing an instruction through the ITR. 
Example 11-1 shows the sequence for executing an ARM instruction through the ITR.

Example 11-1 Executing an ARM instruction through the ITR

ExecuteARMInstruction(uint32 instr)
{

// Step 1. Poll DSCR until InstrCompl is set.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<24));
// Step 2. Write the opcode to the ITR.
WriteDebugRegister(33, instr);
// Step 3. Poll DSCR until InstrCompl is set.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<24);

}

This section describes:
• Debug communications channel on page 11-55
• Programming breakpoints and watchpoints on page 11-57
• Single-stepping on page 11-60
• Debug state entry on page 11-61
• Debug state exit on page 11-62
• Accessing registers and memory in debug state on page 11-63
• Emulating power down on page 11-71.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-54
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.11.1 Debug communications channel

There are two ways that an external debugger can send data to or receive data from the 
processor:

• The debug communications channel, when the processor is not in debug state. It is defined 
as the set of resources used for communicating between the external debugger and 
software running on the processor.

• The mechanism for forcing the processor to execute ARM instructions, when the 
processor is in debug state. For more information, see Executing instructions in debug 
state on page 11-46.

Rules for accessing the DCC

At the processor side, the debug communications channel resources are: 
• CP14 Debug Register c5 (DTR)
• CP14 Debug Register c1 (DSCR).

The ARMv7 debug architecture is implemented on the processor so that:

• If a read of the CP14 DSCR returns 1 for the DTRTXfull flag:
— a following read of the CP14 DTR returns valid data and DTRTXfull is cleared. No 

prefetch flush is required between these two CP14 instructions.
— a following write to the CP14 DTR is Unpredictable.

• If a read of the CP14 DSCR returns 0 for the DTRTXfull flag:
— a following read of the CP14 DTR returns an Unpredictable value.
— a following write to the CP14 DTR writes the intended 32-bit word, and sets 

DTRRXfull to 1. No prefetch flush is required between these two CP14 
instructions.

When Nonblocking mode is selected for DTR accesses, the following conditions are true for 
memory-mapped DSCR, memory-mapped DTRRX, and DTRTX registers:

• If a read of the memory-mapped DSCR returns 0 for the DTRTXfull flag:
— a following read of the memory-mapped DTRTX is ignored. For example, the 

content of DTRRXfull is unchanged and the read returns an Unpredictable value.
— a following write of the memory-mapped DTRRX passes valid data to the processor 

and sets DTRTXfull to 1.

• If a read of the memory-mapped DSCR returns 1 for the DTRTXfull flag:
— a following read of the memory-mapped DTRTX returns valid data and clears 

DTRRXfull.
— a following write of the memory-mapped DTRRX is ignored, that is, both 

DTRTXfull and DTRRX contents are unchanged.

The ARMv7 debug architecture does not support other uses of the DCC resources. In particular, 
the processor does not support the following:
• CP14 DSCR[30:29] flags to access the memory-mapped DTRRX and DTRTX registers
• polling memory-mapped DSCR[30:29] flags to access CP14 DTR.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-55
ID013010 Non-Confidential, Unrestricted Access



Debug 
Software access to the DCC

Software running on the processor that sends data to the debugger through the target-to-host 
channel can use the sequence of instructions that Example 11-2 shows.

Example 11-2 Target to host data transfer (target end)

; r0 -> word to send to the debugger
WriteDCC MRC p14, 0, PC, c0, c1, 0

BEQ WriteDCC
MCR p14, 0, Rd, c0, c5, 0
BX lr

Example 11-3 shows the sequence of instructions for sending data to the debugger through the 
host-to-target channel.

Example 11-3 Host to target data transfer (target end)

; r0 -> word sent by the debugger
ReadDCC MRC p14, 0, PC, c0, c1, 0

BCC ReadDCC
MRC p14, 0, Rd, c0, c5, 0
BX lr

Debugger access to the DCC

When not in debug state, a debugger can access the DCC through the external interface. The 
following examples show the pseudo-code operations for these accesses.

Example 11-4 shows the code for target-to-host data transfer.

Example 11-4 Target to host data transfer (host end)

uint32 ReadDCC()
{

// Step 1. Poll DSCR until DTRTXfull is set to 1.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<29));
// Step 2. Read the value from DTRTX.
dtr_val := ReadDebugRegister(35);

return dtr_val;
}

Example 11-5 shows the code for host-to-target data transfer.

Example 11-5 Host to target data transfer (host end)

WriteDCC(uint32 dtr_val)
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-56
ID013010 Non-Confidential, Unrestricted Access



Debug 
{
// Step 1. Poll DSCR until DTRRXfull is clear.
repeat
{

dscr := ReadDebugRegister(34);
}
until (!(dscr & (1<<30)));
// Step 2. Write the value to DTRRX.
WriteDebugRegister(32, dtr_val);

}

While the processor is running, if the DCC is used as a data channel, it might be appropriate to 
poll the DCC regularly.

Example 11-6 shows the code for polling the DCC.

Example 11-6 Polling the DCC (host end)

PollDCC
{

dscr := ReadDebugRegister(34);
if (dscr & (1<<29))
{

// DTRTX (target -> host transfer register) full
dtr := ReadDebugRegister(35)
ProcessTargetToHostWord(dtr);

}
if (!(dscr & (1<<30)))
{

// DTRRX (host -> target transfer register) empty
dtr := GetNextHostToTargetWord()
WriteDebugRegister(32, dtr);

}
}

11.11.2 Programming breakpoints and watchpoints

This section describes the following operations:
• Programming simple breakpoints and the byte address select
• Setting a simple aligned watchpoint on page 11-58
• Setting a simple unaligned watchpoint on page 11-59.

Programming simple breakpoints and the byte address select

When programming a simple breakpoint, you must set the byte address select bits in the control 
register appropriately. For a breakpoint in ARM state, this is simple. For Thumb state, you must 
calculate the value based on the address.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-57
ID013010 Non-Confidential, Unrestricted Access



Debug 
For a simple breakpoint, you can program the settings for the other control bits as Table 11-43 
shows:

Example 11-7 shows the sequence of instructions for setting a simple breakpoint.

Example 11-7 Setting a simple breakpoint

SetSimpleBreakpoint(int break_num, uint32 address, iset_t isa)
{

// Step 1. Disable the breakpoint being set.
WriteDebugRegister(80 + break_num, 0x0);
// Step 2. Write address to the BVR, leaving the bottom 2 bits zero.
WriteDebugRegister(64 + break_num, address & 0xFFFFFFC);
// Step 3. Determine the byte address select value to use.
case (isa) of
{
// Note: The processor does not support Jazelle or ThumbEE states,
// but the ARMv7 Debug architecture does
when JAZELLE:

byte_address_select := (1 << (address & 3));
when THUMB:

byte_address_select := (3 << (address & 2));
when ARM:

byte_address_select := 15;
}
// Step 4. Write the mask and control register to enable the breakpoint.

breakpoint
WriteDebugRegister(80 + break_num, 7 | (byte_address_select << 5));

}

Setting a simple aligned watchpoint

The simplest and most common type of watchpoint watches for a write to a given address in 
memory. In practice, a data object spans a range of addresses but is aligned to a boundary 
corresponding to its size, so you must set the byte address select bits in the same way as for a 
breakpoint.

Table 11-43 Values to write to BCR for a simple breakpoint

Bits Value to write Description

[31:29] 0b000 Reserved

[28:24] 0b00000 Breakpoint address mask

[23] 0b0 Reserved

[22:20] 0b000 Meaning of BVR

[19:16] 0b0000 Linked BRP number

[15:9] 0b00 Reserved

[8:5] Derived from address Byte address select

[4:3] 0b00 Reserved

[2:1] 0b11 Supervisor access control

[0] 0b1 Breakpoint enable
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-58
ID013010 Non-Confidential, Unrestricted Access



Debug 
For a simple watchpoint, you can program the settings for the other control bits as Table 11-44 
shows:

Example 11-8 shows the code for setting a simple aligned watchpoint.

Example 11-8 Setting a simple aligned watchpoint

SetSimpleAlignedWatchpoint(int watch_num, uint32 address, int size)
{

// Step 1. Disable the watchpoint being set.
WriteDebugRegister(112 + watch_num, 0);
// (Step 2. Write address to the WVR, leaving the bottom 3 bits zero.
WriteDebugRegister(96 + watch_num, address & 0xFFFFFF8);
// Step 3. Determine the byte address select value to use.
case (size) of
{
when 1:

byte_address_select := (1 << (address & 7));
when 2:

byte_address_select := (3 << (address & 6));
when 4:

byte_address_select := (15 << (address & 4));
when 8:

byte_address_select := 255;
}
// Step 4. Write the mask and control register to enable the watchpoint.

breakpoint
WriteDebugRegister(112 + watch_num, 23 | (byte_address_select << 5));

}

Setting a simple unaligned watchpoint

Using the byte address select bits, certain unaligned objects up to a doubleword (64 bits) can be 
watched in a single watchpoint. However, this cannot cover all cases, and in many cases a 
second watchpoint might be required.

Table 11-44 Values to write to WCR for a simple watchpoint

Bits Value to write Description

[31:29] 0b000 Reserved

[28:24] 0b00000 Watchpoint address mask

[23:21] 0b000 Reserved

[20] 0b0 Enable linking

[19:16] 0b0000 Linked BRP number

[15:13] 0b00 Reserved

[12:5] Derived from address Byte address select

[4:3] 0b10 Load/Store access control

[2:1] 0b11 Privileged access control

[0] 0b1 Watchpoint enable
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-59
ID013010 Non-Confidential, Unrestricted Access



Debug 
Table 11-45 shows some examples.

Example 11-9 shows the code for setting a simple unaligned watchpoint.

Example 11-9 Setting a simple unaligned watchpoint

bool SetSimpleWatchpoint(int watch_num, uint32 address, int size)
{

// Step 1. Disable the watchpoint being set.
WriteDebugRegister(112 + watch_num, 0x0);
// Step 2. Write addresses to the WVRs, leaving the bottom 3 bits zero.
WriteDebugRegister(96 + watch_num, (address & 0xFFFFFF8));
// Step 3. Determine the byte address select value to use.
byte_address_select := (1 << size) - 1;
byte_address_select := (byte_address_select) << (address & 7);
// Step 4. Write the mask and control register to enable the breakpoint.
WriteDebugRegister (112 + watch_num, 5'b23 | ((byte_address_select & 0xFF) << 5));
// Step 5. Set second watchpoint if required. This is the case if the byte
// address mask is more than 8 bits.
if (byte_address_select >= 256)
{

WriteDebugRegister(112 + watch_num + 1, 0);
WriteDebugRegister(96 + watch_num + 1, (address & 0xFFFFFF8) + 8);
WriteDebugRegister(112 + watch_num + 1 23| ((byte_address_select & 0xFF00) >> 3));

}
// Step 6. Return flag to caller indicating if second watchpoint was used.
return (byte_address_select >= 256)

}

11.11.3 Single-stepping

You can use the breakpoint mismatch bit to implement single-stepping on the processor. Unlike 
high-level stepping, single-stepping implements a low-level step that executes a single 
instruction at a time. With high-level stepping, the instruction is decoded to determine the 
address of the next instruction and a breakpoint is set at that address.

Table 11-45 Example byte address masks for watchpointed objects

Address of object Object size 
in bytes

First address 
value

First byte 
address mask

Second address 
value

Second byte 
address mask

0x00008000 1 0x00008000 0b00000001 Not required -

0x00008007 1 0x00008000 0b10000000 Not required -

0x00009000 2 0x00009000 0b00000011 Not required -

0x0000900c 2 0x00009000 0b11000000 Not required -

0x0000900d 2 0x00009000 0b10000000 0x00009008 0b00000001

0x0000A000 4 0x0000A000 0b00001111 Not required -

0x0000A003 4 0x0000A000 0b01111000 Not required -

0x0000A005 4 0x0000A000 0b11100000 0x0000A008 0b00000001

0x0000B000 8 0x0000B000 0b11111111 Not required -

0x0000B001 8 0x0000B000 0b11111110 0x0000B008 0b00000001
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-60
ID013010 Non-Confidential, Unrestricted Access



Debug 
Example 11-10 shows the code for single-stepping off an instruction.

Example 11-10 Single-stepping off an instruction

SingleStepOff(uint32 address)
{

bkpt := FindUnusedBreakpointWithMismatchCapability();
SetComplexBreakpoint(bkpt, address, 4 << 20);

}

Note
 In Example 11-10, the third parameter of SetComplexBreakpoint() indicates the value to set 
BCR[22:20].

This method of single-stepping steps off the instruction that might not necessarily be the same 
as stepping to the next instruction executed. In certain circumstances, the next instruction 
executed might be the same instruction being stepped off.

The simplest example of this is a branch to a self instruction such as (B .). In this case, the 
wanted behavior is most likely to step off the branch to self because this is often used as a means 
of waiting for an interrupt.

A more complex example is a return from function that returns to the same point. For example, 
a simple recursive function might terminate with:

BL ThisFunction
POP {saved_registers, pc}

In this case, the POP instruction loads a link register that is saved at the start of the function, and 
if that is the link register created by the BL instruction shown, it points back at the POP instruction. 
Therefore, this single step code unwinds the entire call stack to the point of the original caller, 
rather than stepping out a level at a time. It is not possible to single step this piece of code using 
either the high-level or low-level stepping methods.

11.11.4 Debug state entry

On entry to debug state, the debugger can read the processor state, including all registers and 
the PC, and determine the cause of the exception from the DSCR method-of-entry bits.

Example 11-11 shows the code for entry to debug state.

Example 11-11 Entering debug state

OnEntryToDebugState(PROCESSOR_STATE *state)
{

// Step 1. Read the DSCR to determine the cause of debug entry.
state->dscr := ReadDebugRegister(34);
// Step 2. Issue a DataSynchronizationBarrier instruction if required;
// this is not required by Cortex-R4 but is required for ARMv7
// debug.
if ((state->dscr & (1<<19)) == 0)
{

ExecuteARMInstruction(0xEE070F9A)
// Step 3. Poll the DSCR for DSCR[19] to be set.
repeat
{

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-61
ID013010 Non-Confidential, Unrestricted Access



Debug 
dscr := ReadDebugRegister(34);
}
until (dscr & (1<<19));

}
// Step 4. Read the entire processor state. The function ReadAllRegisters
// reads all general-purpose registers for all processor mode, and saves
// the data in “state”.
ReadAllRegisters(state);
// Step 5. Based on the CPSR (processor state), determine the actual restart
// address
if (state->cpsr & (1<<5);
{

// set the T bit to Thumb state
state->pc := state->pc - 4;

}
elseif (state->cpsr & (1<<24))
{

// Set the J bit to Jazelle state. Note: ARM Cortex-R4 does not support
// Jazelle state but ARMv7 debug does.
state->pc := state->pc - IMPLEMENTATION DEFINED

value;
}
else
{

// ARM state
state->pc := state->pc - 8;

}
// Step 6. If the method of entry was Watchpoint Occurred, read the WFAR
// register
method_of_debug_entry := ((state->dscr >> 2) & 0xF;
if (method_of_debug_entry == 2 || method_of_debug_entry == 10)
{

state->wfar := ReadDebugRegister(6);
}

}

11.11.5 Debug state exit

When exiting debug state, the program counter must always be written. If the execution state or 
CPSR must be changed, this must be done before writing to the PC because writing to the CPSR 
can affect the PC.

Having restored the program state, the debugger can restart by writing to bit [1] of the Debug 
Run Control Register. It must then poll bit [1] of the Debug Status and Control Register to 
determine if the core has restarted.

Example 11-12 shows the code for exit from debug state.

Example 11-12 Leaving debug state

ExitDebugState(PROCESSOR_STATE *state)
{

// Step 1. Update the CPSR value
WriteCPSR(state->cpsr);
// Step 2. Restore any registers corrupted by debug state. The function
// WriteAllRegisters restores all general-purpose registers for all
// processor modes apart from R0.
WriteAllRegisters(state);
// Step 3. Write the return address.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-62
ID013010 Non-Confidential, Unrestricted Access



Debug 
WritePC(state->pc);
// Step 4. Writing the PC corrupts R0 therefore, restore R0 now.
WriteRegister(0, state->r0);
// Step 5. Write the restart request bit in the DRCR.
WriteDebugRegister(36, 1<<1);
// Step 6. Poll the RESTARTED flag in the DSCR.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<1));

}

11.11.6 Accessing registers and memory in debug state

This section describes the following:
• Reading and writing registers through the DCC
• Reading the PC in debug state on page 11-64
• Reading the CPSR in debug state on page 11-64
• Writing the CPSR in debug state on page 11-64
• Reading memory on page 11-65
• Fast register read/write on page 11-67
• Fast memory read/write on page 11-68
• Accessing coprocessor registers on page 11-69.

Reading and writing registers through the DCC

To read a single register, the debugger can use the sequence that Example 11-13 shows. This 
sequence depends on two other sequences, Executing an ARM instruction through the ITR on 
page 11-54 and Target to host data transfer (host end) on page 11-56.

Example 11-13 Reading an ARM register

uint32 ReadARMRegister(int Rd)
{

// Step 1. Execute instruction MCR p14, 0, Rd, c0, c5, 0 through the ITR.
ExecuteARMInstruction(0xEE000E15 + (Rd<<12));
// Step 2. Read the register value through DTRTX.
reg_val := ReadDCC();
return reg_val;

}

Example 11-14 shows a similar sequence for writing an ARM register.

Example 11-14 Writing an ARM register

WriteRegister(int Rd, uint32 reg_val)
{

// Step 1. Write the register value to DTRRX.
WriteDCC(reg_val);
// Step 2. Execute instruction MRC p14, 0, Rd, c0, c5, 0 to the ITR.
ExecuteARMInstruction(0xEE100E15 + (Rd<<12));
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-63
ID013010 Non-Confidential, Unrestricted Access



Debug 
}

Reading the PC in debug state

Example 11-15 shows the code to read the PC.

Example 11-15 Reading the PC

ReadPC()
{

// Step 1. Save R0
saved_r0 := ReadRegister(0);
// Step 2. Execute the instruction MOV r0, pc through the ITR.
ExecuteARMInstruction(0xE1A0000F);
// Step 3. Read the value of R0 that now contains the PC.
pc := ReadRegister(0);
// Step 4. Restore the value of R0.
WriteRegister(0, saved_r0);
return pc;

}

Note
 You can use a similar sequence to write to the PC to set the return address when leaving debug 
state.

Reading the CPSR in debug state

Example 11-16 shows the code for reading the CPSR.

Example 11-16 Reading the CPSR

ReadCPSR()
{

// Step 1. Save R0.
saved_r0 := ReadRegister(0);
// Step 2. Execute instruction MRS R0, CPSR through the ITR.
ExecuteARMInstruction(0xE10F0000);
// Step 3. Read the value of R0 that now contains the CPSR
cpsr_val := ReadRegister(0);
// Step 4. Restore the value of R0.
WriteRegister(0, saved_r0);
return cpsr_val;

}

Note
 You can use similar sequences to read the SPSR in Privileged modes.

Writing the CPSR in debug state

Example 11-17 on page 11-65 shows the code for writing the CPSR.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-64
ID013010 Non-Confidential, Unrestricted Access



Debug 
Example 11-17 Writing the CPSR

WriteCPSR(uint32 cpsr_val)
{

// Step 1. Save R0.
saved_r0 := ReadRegister(0);
// Step 2. Write the new CPSR value to R0.
WriteRegister(0, cpsr_val);
// Step 3. Execute instruction MSR R0, CPSR through the ITR.
ExecuteARMInstruction(0xE12FF000);
// Step 4. Execute a PrefetchFlush instruction through the ITR.
ExecuteARMInstruction(9xEE070F95);
// Step 5. Restore the value of R0.
WriteRegister(0, saved_r0);

}

Reading memory

Example 11-18 shows the code for reading a byte of memory.

Example 11-18 Reading a byte of memory

uint8 ReadByte(uint32 address, bool &aborted)
{

// Step 1. Save the values of R0 and R1.
saved_r0 := ReadRegister(0);
saved_r1 := ReadRegister(1);
// Step 2. Write the address to R0.
WriteRegister(0, address);
// Step 3. Execute the instruction LDRB R1,[R0] through the ITR.
ExecuteARMInstruction(0xE5D01000);
// Step 4. Read the value of R1 that contains the data at the address.
datum := ReadRegister(1);
// Step 5. Restore the corrupted registers R0 and R1.
WriteRegister(0, saved_r0);
WriteRegister(1, saved_r1);
// Step 6. Check the DSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

}

Example 11-19 shows the code for checking for aborts after a memory access.

Example 11-19 Checking for an abort after memory access

bool CheckForAborts()
{

// Step 1. Check the DSCR for a sticky abort.
dscr := ReadDebugRegister(34);
if (dscr & ((1<<6) + (1<<7))
{

// Step 2. Clear the sticky flag by writing DRCR[2].
WriteDebugRegister(36, 1<<2);
return true;

}
else
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-65
ID013010 Non-Confidential, Unrestricted Access



Debug 
{
return false;

}
}

Note
 You can use a similar sequence to read a halfword of memory and to write to memory.

To read or write blocks of memory, substitute the data instruction with one that uses 
post-indexed addressing. For example:

LDRB R1, [R0],1

This prevents reloading the address value for each sequential word.

Example 11-20 shows the code for reading a block of bytes of memory.

Example 11-20 Reading a block of bytes of memory

ReadBytes(uint32 address, bool &aborted, uint8 *data, int nbytes)
{

// Step 1. Save the value of R0 and R1.
saved_r0 := ReadRegister(0);
saved_r1 := ReadRegister(1);
// Step 2. Write the address to R0
WriteRegister(0, address);
while (nbytes > 0)
{

// Step 3. Execute instruction LDRB R1,[R0],1 through the ITR.
ExecuteARMInstruction(0xE4D01001);

// Step 4. Read the value of R1 that contains the data at the
// address.

*data++ := ReadRegister(1);
--nbytes;

}
// Step 5. Restore the corrupted registers R0 and R1.
WriteRegister(0, saved_r0);
WriteRegister(1, saved-r1);
// Step 6. Check the DSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

}

Example 11-21 shows the sequence for reading a word of memory.

Note
 A faster method is available for reading and writing words using the direct memory access 
function of the DCC. See Fast memory read/write on page 11-68.

Example 11-21 Reading a word of memory

uint32 ReadWord(uint32 address, bool &aborted)
{

// Step 1. Save the value of R0.
saved_r0 := ReadRegister(0);
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-66
ID013010 Non-Confidential, Unrestricted Access



Debug 
// Step 2. Write the address to R0.
WriteRegister(0, address);
// Step 3. Execute instruction LDC p14, c5, [R0] through the ITR.
ExecuteARMInstruction(0xED905E00);
// Step 4. Read the value from the DTR directly.
datum := ReadDCC();
// Step 5. Restore the corrupted register R0.
WriteRegister(0, saved_r0);
// Step 6. Check the DSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

}

Fast register read/write

When multiple registers must be read in succession, you can optimize the process by placing the 
DCC into stall mode and by writing the value 1 to the DCC access mode bits. For more 
information, see CP14 c1, Debug Status and Control Register on page 11-14.

Example 11-22 shows the sequence to change the DTR access mode.

Example 11-22 Changing the DTR access mode

SetDTRAccessMode(int mode)
{

// Step 1. Write the mode value to DSCR[21:20].
dscr := ReadDebugRegister(34);
dscr := (dscr & ~(0x3<<20)) | (mode<<20);
WriteDebugRegister(34, dscr);

}

Example 11-23 shows the sequence to read registers in stall mode.

Example 11-23 Reading registers in stall mode

ReadRegisterStallMode(int Rd)
{

// Step 1. Write the opcode for MCR p14, 0, Rd, c5, c0 to the ITR.
// Write stalls until the ITR is ready.
WriteDebugRegister(33, 0xEE000E15 + (Rd<<12));
// Step 2. Read the register value through the DCC. Read stalls until 
// DTRTX is ready
reg_val := ReadDebugRegister(32);
return reg_val;

}

Example 11-24 shows the sequence to write registers in stall mode.

Example 11-24 Writing registers in stall mode

WriteRegisterInStallMode(int Rd, uint32 value)
{

// Step 1. Write the value to the DTRRX.
// Write stalls until the DTRRX is ready.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-67
ID013010 Non-Confidential, Unrestricted Access



Debug 
WriteDebugRegister(32, value);
// Step 2. Write the opcode for MRC p14, 0, Rd, c5, c0 to the ITR.
// Write stalls until the ITR is ready.
WriteDebugRegister(33, 0xEE100E15 + (Rd<<12));

}

Note
 To transfer a register to the processor when in stall mode, you are not required to poll the DSCR 
each time an instruction is written to the ITR and a value read from or written to the DTR. The 
processor stalls using the signal PREADYDBG until the previous instruction has completed or 
the DTR register is ready for the operation.

Fast memory read/write

This section provides example code to enable faster reads from memory by making use of the 
DTR access mode.

Example 11-25 shows the sequence for reading a block of words of memory.

Example 11-25 Reading a block of words of memory

ReadWords(uint32 address, bool &aborted, uint32 *data, int nwords)
{

// Step 1. Write the value 0b01 to DSCR[21:20] for stall mode.
SetDTRAccessMode(1);
// Step 2. Save the value of R0.
saved_r0 := ReadRegisterInStallMode(0);
// Step 3. Write the address to read from to the DTRRX.
// Write stalls until the DTRRX is ready.
WriteRegisterInStallMode(0, address);
// Step 4. Write the opcode for LDC p14, c5, [R0], 4 to the ITR.
// Write stalls until the ITR is ready.
WriteDebugRegister(33, 0xECB05E01);
// Step 5. Write the value 0b10 to DSCR[21:20] for fast mode.
SetDCCAccessMode(2);
// Step 6. Loop reading out the data.
// Each time a word is read from the DTRTX, the instruction is reissued.
while (nwords > 1)
{

*data++ = ReadDebugRegister(35);
--nwords;

}
// Step 7. Write the value 0b00 to DSCR[21:20] for non-blocking mode.
SetDTRAccessMode(0);
// Step 8. Need to wait for the final instruction to complete. If there
// was an abort, this will complete immediately.
do
{
 dscr := ReadDebugRegister(34);

}
until (dscr & (1<<24));
// Step 9: Check for aborts.
aborted := CheckForAborts();
// Step 10: Read the final word from the DCC.
if (!aborted) *data := ReadDCC();
// Step 11. Restore the corrupted register r0.
WriteRegister(0, saved_r0);
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-68
ID013010 Non-Confidential, Unrestricted Access



Debug 
}

Example 11-26 shows the sequence for writing a block of words to memory.

Example 11-26 Writing a block of words to memory (fast download)

WriteWords(uint32 address, bool &aborted, uint32 *data, int nwords)
{

// Step 1. Save the value of R0.
saved_r0 := ReadRegister(0);
// Step 2. Write the value 0b10 to DSCR[21:20] for fast mode.
SetDTRAccessMode(2);
// Step 3. Write the opcode for MRC p14, 0, R0, c5, c0 to the ITR.
// Write stalls until the ITR is ready but the instruction is not issued.
WriteDebugRegister(33, 0xEE100E15);
// Step 4. Write the address to read from to the DTRRX
// Write stalls until the ITR is ready, but the instruction is not reissued.
WriteDebugRegister(32, address);
// Step 5. Write the opcode for STC p14, c5, [R0], 4 to the ITR.
// Write stalls until the ITR is ready but the instruction is not issued.
WriteDebugRegister(33, 0xECA05E01);
// Step 6. Loop writing the data.
// Each time a word is written to the DTRRX, the instruction is reissued.
while (nwords > 0)
{

WriteDebugRegister(35, *data++);
--nwords;

}
// Step 7. Write the value b00 to DSCR[21:20] for normal mode.
SetDTRAccessMode(0);
// Step 8. Restore the corrupted register R0.
WriteRegister(0, saved_r0);
// Step 9. Check the DSCR for a sticky abort.
aborted := CheckForAborts();

}

Note
 As the amount of data transferred increases, these functions reach an optimum performance of 
one debug register access per data word transferred.

After writing data to memory, you must execute a data synchronization barrier instruction to 
ensure that the memory window updates properly

Accessing coprocessor registers

The sequence for accessing coprocessor registers is the same for the PC and CPSR. That is, you 
must first execute an instruction to transfer the register to an ARM register, then read the value 
back through the DTR.

Example 11-27 shows the sequence for reading a coprocessor register.

Example 11-27 Reading a coprocessor register

uint32 ReadCPReg(int CPnum, int opc1, int CRn, int CRm, int opc2)
{

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-69
ID013010 Non-Confidential, Unrestricted Access



Debug 
// Step 1. Save R0.
saved_r0 := ReadRegister(0);
// Step 2. Execute instruction MCR p15, 0, R0, c0, c1, 0 through the ITR.
ExecuteARMInstruction(0xEE000010 + (CPnum<<8) + (opc1<<21) + (CRn<<16) + CRm + (opc2<<5));
// Step 3. Read the value of R0 that now contains the CP register.
CP15c1 := ReadRegister(0);
// Step 4. Restore the value of R0.
WriteRegister(0, saved_r0);
return CP15c1;

}

ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-70
ID013010 Non-Confidential, Unrestricted Access



Debug 
11.12 Debugging systems with energy management capabilities
The processor offers functionality for debugging systems with energy-management capabilities. 
This section describes scenarios where the OS takes energy-saving measures when in an idle 
state.

The different measures that the OS can take to save energy during an idle state are divided into 
two groups:

Standby The OS takes measures that reduce energy consumption but maintain the 
processor state.

Power down The OS takes measures that reduce energy consumption but do not maintain the 
processor state. Recovery involves a reset of the processor after the power level 
has been restored, and reinstallation of the processor state.

Standby is the least invasive OS energy-saving state because it only implies that the core is 
unavailable. It does not clear any of the debug settings. For this case, the processor offers the 
following:

• If the processor is in standby and a halting debug event occurs, the processor:
— leaves standby 
— retires the Wait-For-Interrupt (WFI) instruction
— enters debug state.

• If the processor is in standby and detects an APB port access, it temporarily leaves standby 
state to complete the transaction. While the processor wakes up from standby, the APB 
access is held by keeping the PREADYDBG signal LOW.

11.12.1 Emulating power down

By writing to bit [0] of the PRCR, the debugger asserts the DBGNOPWRDWN output. The 
expected usage model of this signal is that it connects to the system power controller and that, 
when HIGH, it indicates that this controller must work in emulate mode.

On a power-down request from the processor, if the power controller is in emulate mode, it does 
not remove processor power or ETM power. Otherwise, it behaves exactly the same as in normal 
mode.

Emulating power down is ideal for debugging applications running on top of operating systems 
that are free of errors because the debug register settings are not lost on a power-down event. 
However, you must ensure that:

• nIRQ and nFIQ interrupts to the processor are externally masked as part of the emulation 
to prevent them from retiring the WFI instruction from the pipeline.

• The reset controller asserts nRESET on power up, rather than nSYSPORESET. 
Asserting nSYSPORESET on power up clears the debug registers inside the processor.

• The timing effects of power down and voltage stabilization are not factored in the 
power-down emulation. This is the case for systems with voltage recovery controlled by 
a closed loop system that monitors the processor supply voltage, rather than a fixed timed 
for voltage recovery.

• The emulation does not model state lost during power down, making it possible to miss 
errors in the state storage and recovery routines.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-71
ID013010 Non-Confidential, Unrestricted Access



Debug 
• Attaching the debugger for a postmortem debug session is not possible because setting the 
DBGNOPWRDWN signal to 1 might not cause the processor to power up. The effect of 
setting DBGNOPWRDWN to 1 when the processor is already powered down is 
implementation-defined, and is up to the system designer.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 11-72
ID013010 Non-Confidential, Unrestricted Access



Chapter 12 
FPU Programmer’s Model

This chapter describes the programmer’s model of the Floating Point Unit (FPU). The Cortex-R4F 
processor is a Cortex-R4 processor that includes the optional FPU. In this chapter, the generic term 
processor means only the Cortex-R4F processor.

This chapter contains the following sections:
• About the FPU programmer’s model on page 12-2
• General-purpose registers on page 12-3
• System registers on page 12-4
• Modes of operation on page 12-10
• Compliance with the IEEE 754 standard on page 12-11.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-1
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.1 About the FPU programmer’s model
The FPU implements the VFPv3-D16 architecture and the Common VFP Sub-Architecture v2. 
This includes the instruction set of the VFPv3 architecture. See the ARM Architecture Reference 
Manual for information on the VFPv3 instruction set.

12.1.1 FPU functionality

The FPU is an implementation of the ARM Vector Floating Point v3 architecture, with 16 
double-precision registers (VFPv3-D16). It provides floating-point computation functionality 
that is compliant with the ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point 
Arithmetic, referred to as the IEEE 754 standard. The FPU supports all data-processing 
instructions and data types in the VFPv3 architecture as described in the ARM Architecture 
Reference Manual.

The FPU fully supports single-precision and double-precision add, subtract, multiply, divide, 
multiply and accumulate, and square root operations. It also provides conversions between 
fixed-point and floating-point data formats, and floating-point constant instructions. The FPU 
does not support any data processing operations on vectors in hardware. Any data processing 
instruction that operates on a vector generates an UNDEFINED exception. The operation can 
then be emulated in software if necessary.

12.1.2 About the VFPv3-D16 architecture

The VFPv3-D16 architecture only includes 16 double-precision registers. VFPv3 includes 32 
double-precision registers by default. An instruction which attempts to access any of the 
registers D16-D31 generates an UNDEFINED exception.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-2
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.2 General-purpose registers
The FPU implements a VFP register bank. This bank is distinct from the ARM register bank.

You can reference the VFP register bank using two explicitly aliased views. Figure 12-1 shows 
the two views of the register bank and the way the word and doubleword registers overlap.

12.2.1 FPU views of the register bank

In the FPU, you can view the register bank as:
• Sixteen 64-bit doubleword registers, D0-D15.
• Thirty-two 32-bit single-word registers, S0-S31.
• A combination of registers from the above views.

Figure 12-1 FPU register bank

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>
• S<2n+1> maps to the most significant half of D<n>.

For example, you can access the least significant half of the value in D6 by accessing S12, and 
the most significant half of the elements by accessing S13.

...

D0

D1

D2

D3

D14

D15

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

...
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-3
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.3 System registers
The VFPv3 architecture describes the following system registers:
• Floating-Point System ID Register, FPSID on page 12-5
• Floating-Point Status and Control Register, FPSCR on page 12-6
• Floating-Point Exception Register, FPEXC on page 12-7
• Media and VFP Feature Registers, MVFR0 and MVFR1 on page 12-8.

Table 12-1 shows the VFP system registers in the Cortex-R4F FPU. 

Note
 The FPSID, MVFR0, and MVFR1 Registers are read-only. Attempts to write these registers are 
ignored.

Table 12-2 shows that some of the VFP system registers can only be accessed in Privileged 
modes.

Table 12-2 shows that a Privileged mode is sometimes required to access a VFP system register. 
When a Privileged mode is required, an instruction that attempts to access a register in a 
nonprivileged mode takes the Undefined Instruction exception.

For a VFP system register to be accessible, it must follow the rules in Table 12-2 and the VFP 
must also be accessible according to the Coprocessor Access Register. See c1, Coprocessor 
Access Register on page 4-44 for more information.

Table 12-1 VFP system registers

Register FMXR/FMRX <reg> field Access type Reset state

Floating-Point System ID Register, FPSID b0000 Read-only 0x4102314xa

Floating-Point Status and Control Register, FPSCR b0001 Read/write 0x00000000

Floating-Point Exception Register, FPEXC b1000 Read/write 0x00000000

VFP Feature Register 0, MVFR0 b0111 Read-only 0x10110221

VFP Feature Register 1, MVFR1 b0110 Read-only 0x00000001

a. Bits [3:0] of the FPSID depend on the product revision. See the FPSID register description for more information.

Table 12-2 Accessing VFP system registers

Register

Privileged access User access

FPEXC EN=0 FPEXC EN=1 FPEXC EN=0 FPEXC EN=1

FPSID Permitted Permitted Not permitted Not permitted

FPSCR Not permitted Permitted Not permitted Permitted

MVFR0, MVFR1 Permitted Permitted Not permitted Not permitted

FPEXC Permitted Permitted Not permitted Not permitted
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-4
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
Note
 All hardware ID information is privileged access only:

FPSID is privileged access only 
This is a change in VFPv3 compared to VFPv2.

MVFR registers are privileged access only 
User code must issue a system call to determine the features that are supported.

The following sections describe the VFP system registers:
• Floating-Point System ID Register, FPSID
• Floating-Point Status and Control Register, FPSCR on page 12-6
• Floating-Point Exception Register, FPEXC on page 12-7
• Media and VFP Feature Registers, MVFR0 and MVFR1 on page 12-8.

12.3.1 Floating-Point System ID Register, FPSID

The FPSID Register is a read-only register that must be accessed in Privileged mode only. It 
indicates which VFP implementation is being used.

Figure 12-2 shows the bit arrangement of the FPSID Register.

Figure 12-2 Floating-Point System ID Register format

Table 12-3 shows how the bit values correspond with the FPSID Register functions.

HW

Sub architecture Variant Revision

4

Implementer Part number

31 24 23 22 16 15 8 7 4 3 0

Table 12-3 FPSID Register bit functions

Bits Field Function

[31:24] Implementer ARM Limited:
0x41 = A

[23] Hardware or software 0 = hardware implementation

[22:16] Subarchitecture version VFP architecture v3 or later with Common VFP subarchitecture v2a:
0x02

[15:8] Part number 0x31 = Cortex-R4F

[7:4] Variant 0x4 = Cortex-R4F

[3:0] Revision See Product revision information on page 1-24 for details of the value of this field.

a. For details of the Common VFP subarchitecture see the ARM Architecture Reference Manual.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-5
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.3.2 Floating-Point Status and Control Register, FPSCR

FPSCR is a read/write register that can be accessed in both Privileged and nonprivileged modes. 
All bits described as DNM in Figure 12-3 are reserved for future expansion. These bits must be 
initialized to zeros. To ensure that these bits are not modified, any code other than initialization 
code must use read-modify-write techniques when writing to FPSCR. Failure to observe this 
rule can cause Unpredictable results in future systems.

Figure 12-3 shows the bit arrangement of the FPSCR Register.

Figure 12-3 Floating-Point Status and Control Register format

Table 12-4 shows how the bit values correspond with the FPSCR Register functions.

IXC

IDC

DNM

DZE

IOE

UFE

OFE

DNM

IXE

IDE

LEN

DNM

N Z C V

UFC

OFC

DZC

IOC

QC

RMODE

STRIDE

DN

FZ

DNM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 12-4 FPSCR Register bit functions

Bits Field Function

[31] N Set if comparison produces a less than result, resets to zero

[30] Z Set if comparison produces an equal result, resets to zero

[29] C Set if comparison produces an equal, greater than, or unordered result, resets to zero

[28] V Set if comparison produces an unordered result, resets to zero

[27] QC Do Not Modify (DNM)/Read As Zero (RAZ)

[26] DNM DNM

[25] DN Default NaN mode enable bit:
0 = default NaN mode disabled, this is the reset value
1 = default NaN mode enabled.

[24] FZ Flush-to-zero mode enable bit:
0 = flush-to-zero mode disabled, this is the reset value
1 = flush-to-zero mode enabled.

[23:22] RMODE Rounding mode control field:
b00 = round to nearest (RN) mode, this is the reset value
b01 = round towards plus infinity (RP) mode
b10 = round towards minus infinity (RM) mode
b11 = round towards zero (RZ) mode.

[21:20] STRIDE Indicates the vector stride, reset value is 0x0
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-6
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.3.3 Floating-Point Exception Register, FPEXC

The FPEXC Register is a read/write register accessible in Privileged modes only.

The EN bit, FPEXC[30], is the VFP enable bit. Clearing EN disables VFP functionality, causing 
all VFP instructions apart from privileged system register accesses to generate an UNDEFINED 
exception. The EN bit is cleared on reset.

Figure 12-4 shows the bit arrangement of the FPEXC Register.

Figure 12-4 Floating-Point Exception Register format

[19] DNM DNM

[18:16] LEN Indicates the vector length, reset value is 0x0

[15] IDE RAZ

[14:13] DNM DNM

[12] IXE RAZ

[11] UFE RAZ

[10] OFE RAZ

[9] DZE RAZ

[8] IOE RAZ

[7] IDC Input Subnormal cumulative flag, resets to zero

[6:5] DNM DNM

[4] IXC Inexact cumulative flag, resets to zero

[3] UFC Underflow cumulative flag, resets to zero

[2] OFC Overflow cumulative flag, resets to zero

[1] DZC Division by Zero cumulative flag, resets to zero

[0] IOC Invalid Operation cumulative flag, resets to zero

Table 12-4 FPSCR Register bit functions (continued)

Bits Field Function

Reserved
EN

Reserved

31 30 29 0

DEX

28
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-7
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
Table 12-5 shows how the bit values correspond with the FPEXC Register functions.

12.3.4 Media and VFP Feature Registers, MVFR0 and MVFR1

The VFP Feature Registers, MVFR0 and MVFR1, are read-only registers which describe the 
features supported by the FPU. These registers are accessible in Privileged modes only.

Figure 12-5 shows the bit arrangement of the MVFR0 Register.

Figure 12-5 MVFR0 Register format

Table 12-6 shows how the bit values correspond with the MVFR0 Register functions.

Figure 12-6 on page 12-9 shows the bit arrangement of the MVFR1 Register.

Table 12-5 Floating-Point Exception Register bit functions

Bits Field Function

[31] Reserved RAZ.

[30] EN VFP enable bit. Setting EN enables VFP functionality. Reset clears EN.

[29] DEX Set when an Undefined exception is taken because of a vector instruction that would have been 
executed if the processor supported vectors. This field is cleared when an Undefined exception is 
taken for any other reason. Resets to zero.

[28:0] Reserved RAZ.

RBSVRM TE SPSR D DP

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Table 12-6 MVFR0 Register bit functions

Bits Field Function

[31:28] RM All VFP rounding modes supported:
0x1

[27:24] SV VFP short vector unsupported:
0x0

[23:20] SR VFP hardware square root supported:
0x1

[19:16] D VFP hardware divide supported:
0x1

[15:12] TE Only untrapped exception handling can be selected:
0x0

[11:8] DP Double precision supported in VFPv3:
0x2

[7:4] SP Single precision supported in VFPv3:
0x2

[3:0] RB 16x64-bit media register bank supported:
0x1
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-8
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
Figure 12-6 MVFR1 Register format

Table 12-7 shows how the bit values correspond with the MVFR1 Register.

FZReserved I DNSP LS

31 20 19 16 15 12 11 8 7 4 3 0

Table 12-7 MVFR1 Register bit functions

Bits Field Function

[31:20] - Reserved

[19:16] SP Single-precision floating-point operations supported for VFP:
0b0000 = not supported

[15:12] I Integer operations supported for VFP:
0b0000 = not supported

[11:8] LS Load and store instructions supported for VFP:
0b0000 = not supported

[7:4] DN Propagation of NaN values supported for VFP:
0x1

[3:0] FZ Full denormal arithmetic supported for VFP:
0x1
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-9
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.4 Modes of operation
The FPU provides three modes of operation to accommodate a variety of applications:
• Full-compliance mode
• Flush-to-zero mode
• Default NaN mode

12.4.1 Full-compliance mode

In full-compliance mode, the FPU processes all operations according to the IEEE 754 standard 
in hardware.

12.4.2 Flush-to-zero mode

Setting the FZ bit, FPSCR[24], enables flush-to-zero mode. In this mode, the FPU treats all 
subnormal input operands of arithmetic CDP operations as zeros in the operation. Exceptions that 
result from a zero operand are signaled appropriately. VABS, VNEG, and VMOV are not considered 
arithmetic CDP operations and are not affected by flush-to-zero mode. A result that is tiny, as 
described in the IEEE 754 standard, for the destination precision is smaller in magnitude than 
the minimum normal value before rounding and is replaced with a zero. The IDC flag, 
FPSCR[7], indicates when an input flush occurs. The UFC flag, FPSCR[3], indicates when a 
result flush occurs. 

12.4.3 Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In this mode, the result of any 
operation that involves an input NaN, or that generated a NaN result, returns the default NaN. 
Propagation of the fraction bits is maintained only by VABS, VNEG, and VMOV operations. All other 
CDP operations ignore any information in the fraction bits of an input NaN.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-10
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.5 Compliance with the IEEE 754 standard
When Default NaN (DN) and Flush-to-Zero (FZ) modes are disabled, the VFP functionality is 
compliant with the IEEE 754 standard in hardware. No support code is required to achieve this 
compliance.

See the ARM Architecture Reference Manual for information about VFP architecture 
compliance with the IEEE 754 standard.

12.5.1 Complete implementation of the IEEE 754 standard

The following operations from the IEEE 754 standard are not supplied by the VFP instruction 
set:
• remainder
• round floating-point number to integer-valued floating-point number
• binary-to-decimal conversions
• decimal-to-binary conversions
• direct comparison of single-precision and double-precision values. 

For complete implementation of the IEEE 754 standard, VFP functionality must be augmented 
with library functions that implement these operations. See Application Note 98, VFP Support 
Code for information on the available library functions.

12.5.2 IEEE 754 standard implementation choices

Some of the implementation choices permitted by the IEEE 754 standard and used in the VFPv3 
architecture are described in the ARM Architecture Reference Manual. 

NaN handling

All single-precision and double-precision values with the maximum exponent field value and a 
nonzero fraction field are valid NaNs. A most significant fraction bit of zero indicates a 
Signaling NaN (SNaN). A one indicates a Quiet NaN (QNaN). Two NaN values are treated as 
different NaNs if they differ in any bit. Table 12-8 shows the default NaN values in both 
single-precision and double-precision.

Processing of input NaNs for ARM floating-point functionality and libraries is defined as 
follows:

• In full-compliance mode, NaNs are handled as described in the ARM Architecture 
Reference Manual. The hardware processes the NaNs directly for arithmetic CDP 
instructions. For data transfer operations, NaNs are transferred without raising the Invalid 
Operation exception. For the non-arithmetic CDP instructions, VABS, VNEG, and VMOV, NaNs 
are copied, with a change of sign if specified in the instructions, without causing the 
Invalid Operation exception. 

Table 12-8 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent 0xFF 0x7FF

Fraction bit [22] = 1, bits [21:0] are all zeros bit [51] = 1, bits [50:0] are all zeros
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-11
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
• In default NaN mode, arithmetic CDP instructions involving NaN operands return the 
default NaN regardless of the fractions of any NaN operands. SNaNs in an arithmetic CDP 
operation set the IOC flag, FPSCR[0]. NaN handling by data transfer and non-arithmetic 
CDP instructions is the same as in full-compliance mode.

Table 12-9 summarizes the effects of NaN operands on instruction execution.

Comparisons

Comparison results modify the flags in the FPSCR Register. You can use the VMOV r15, FPSCR 
instruction (formerly FMSTAT) to transfer the current flags from the FPSCR Register to the CPSR 
Register. See the ARM Architecture Reference Manual for mapping of IEEE 754 standard 
predicates to ARM conditions. The flags used are chosen so that subsequent conditional 
execution of ARM instructions can test the predicates defined in the IEEE 754 standard.

Underflow

The Cortex-R4F FPU uses the before rounding form of tininess and the inexact result form of 
loss of accuracy as described in the IEEE 754 standard to generate Underflow exceptions.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE 754 
standard, are flushed to a zero, and the UFC flag, FPSCR[3], is set. See the ARM Architecture 
Reference Manual for information on flush-to-zero mode.

When the FPU is not in flush-to-zero mode, operations are performed on subnormal operands. 
If the operation does not produce a tiny result, it returns the computed result, and the UFC flag, 
FPSCR[3], is not set. The IXC flag, FPSCR[4], is set if the operation is inexact. If the operation 
produces a tiny result, the result is a subnormal or zero value, and the UFC flag, FPSCR[3], is 
set if the result was also inexact.

Table 12-9 QNaN and SNaN handling

Instruction 
type

Default 
NaN mode With QNaN operand With SNaN operand

Arithmetic CDP

Off The QNaN or one of the QNaN operands, if 
there is more than one, is returned 
according to the rules given in the ARM 
Architecture Reference Manual.

IOCa set. The SNaN is quieted and the 
result NaN is determined by the rules 
given in the ARM Architecture 
Reference Manual.

On Default NaN returns. IOCa set. Default NaN returns.

Non-arithmetic 
CDP

Off
NaN passes to destination with sign changed as appropriate.

On

FCMP(Z) - Unordered compare. IOC set. Unordered compare.

FCMPE(Z) - IOC set. Unordered compare. IOC set. Unordered compare.

Load/store
Off

All NaNs transferred.
On

a. IOC is the Invalid Operation exception flag, FPSCR[0].
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-12
ID013010 Non-Confidential, Unrestricted Access



FPU Programmer’s Model 
12.5.3 Exceptions

The FPU implements the VFPv3 architecture and sets the cumulative exception status flag in 
the FPSCR register as required for each instruction. The FPU does not support user-mode traps. 
The exception enable bits in the FPSCR read-as-zero, and cannot be written. The processor also 
has six output pins, FPIXC, FPUFC, FPOFC, FPDZC, FPIDC, and FPIOC, that each reflect 
the status of one of the cumulative exception flags. See FPU signals on page A-23 for a 
description of these outputs. You can mask each of these outputs masked by setting the 
corresponding bit in the Secondary Auxiliary Control Register.

See Auxiliary Control Registers on page 4-38 for more information.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 12-13
ID013010 Non-Confidential, Unrestricted Access



Chapter 13 
Integration Test Registers

This chapter describes how to use the Integration Test Registers in the processor. It contains the 
following sections:
• About Integration Test Registers on page 13-2
• Programming and reading Integration Test Registers on page 13-3
• Summary of the processor registers used for integration testing on page 13-4
• Processor integration testing on page 13-5.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-1
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
13.1 About Integration Test Registers
The processor contains Integration Test Registers that enable you to verify integration of the 
design and enable topology detection of the design using debug tools. The Integration Mode 
Control Register (ITCTRL), which is also described in this chapter, controls the use of the 
Integration Test Registers.

When programming the Integration Test Registers you must enable all the changes at the same 
time.

For more information about the Integration Test Registers and the Integration Mode Control 
Register see the ARM Architecture Reference Manual.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-2
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
13.2 Programming and reading Integration Test Registers
The Integration Test Registers are programmed using the debug APB interface. For more 
information on using the debug APB interface see Chapter 11 Debug.

13.2.1 Software access using APB

APB provides a direct method of programming:
• a stand-alone macrocell
• a macrocell in a CoreSight system.

APB provides access to the programmable control registers of peripheral devices. It has these 
features:

• unpipelined protocol, that is, a second transfer cannot start before the first transfer 
completes

• every transfer takes at least two cycles.

For more information on APB transfers see AMBA 3 APB Protocol v1.0 Specification. 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-3
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
13.3 Summary of the processor registers used for integration testing
Table 13-1 lists the processor Integration Test Registers and the Integration Mode Control 
Register (ITCTRL).

Table 13-1 Integration Test Registers summary

Register 
name

Base 
offset

Default 
value Type Clock 

domain Description

Integration Test Registers

ITETMIF 0xED8 -a WO CLK See ITETMIF Register (ETM interface) on page 13-7

ITMISCOUT 0xEF8 n/a WO CLK See ITMISCOUT Register (Miscellaneous Outputs) 
on page 13-8

ITMISCIN 0xEFC -a RO CLK See ITMISCIN Register (Miscellaneous Inputs) on 
page 13-8

Integration Mode Control Register

ITCTRL 0xF00 0 R/W CLK See Integration Mode Control Register (ITCTRL) on 
page 13-9

a. See the register description for this value.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-4
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
13.4 Processor integration testing
This section describes the behavior and use of the Integration Test Registers that are in the 
processor. It also describes the Integration Mode Control Register that controls the use of the 
Integration Test Registers. For more information about the ITCTRL see the ARM Architecture 
Reference Manual.

If you want to access these registers you must first set bit [0] of the Integration Mode Control 
Register to 1.

• You can use the write-only Integration Test Registers to set the outputs of some of the 
processor signals. Table 13-2 shows the signals that you can write in this way.

• You can use the read-only Integration Test Registers to read the state of some of the 
processor inputs. Table 13-3 on page 13-6 shows the signals that you can read in this way.

There are Integration Test Registers that you can use in conjunction with ETM-R4 integration. 
For more information see the ETM-R4 Technical Reference Manual

Table 13-2 Output signals that can be controlled by the Integration Test Registers

Signal Register Bit Register description

DBGRESTARTED ITMISCOUT [9] See ITMISCOUT Register (Miscellaneous Outputs) on page 13-8

DBGTRIGGER ITMISCOUT [8]

ETMWFIPENDING ITMISCOUT [5]

nPMUIRQ ITMISCOUT [4]

COMMTX ITMISCOUT [2]

COMMRX ITMISCOUT [1]

DBGACK ITMISCOUT [0]

EVNTBUS[46] ITETMIF [14] See ITETMIF Register (ETM interface) on page 13-7

EVNTBUS[28, 0] ITETMIF [13:12]

ETMCID[31, 0] ITETMIF [11:10]

ETMDA[31, 0] ITETMIF [7:6]

ETMDCTL[11, 0] ITETMIF [5:4]

ETMDD[63, 0] ITETMIF [9:8]

ETMIA[31, 1] ITETMIF [3:2]

ETMICTL[13, 0] ITETMIF [1:0]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-5
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
This section describes:
• Using the Integration Test Registers
• Performing integration testing
• ITETMIF Register (ETM interface) on page 13-7
• ITMISCOUT Register (Miscellaneous Outputs) on page 13-8
• ITMISCIN Register (Miscellaneous Inputs) on page 13-8
• Integration Mode Control Register (ITCTRL) on page 13-9

13.4.1 Using the Integration Test Registers

When bit [0] of the Integration Mode Control Register (ITCTRL) is set to b1: 

• Values written to the write-only Integration Test Registers map onto the specified outputs 
of the macrocell. For example, writing b1 to ITMISCOUT[0] causes DBGACK to be 
asserted HIGH.

• Values read from the read-only Integration Test Registers correspond to the values of the 
specified inputs of the macrocell. For example, if you read ITMISCIN[9:8] you obtain 
the value of ETMEXTOUT[1:0].

13.4.2 Performing integration testing

When you perform integration testing or topology detection:

• You must ensure that the other ETM interface signals cannot change value during 
integration testing.

• ARM strongly recommends that the processor is halted while in debug state, because 
toggling input and output pins might have an unwanted effect on the operation of the 
processor. You must not set the ITCTRL Register until the processor has halted.
When the ITCTRL Register is set, the ETM interface stops trace output, and outputs the 
data written into the relevant integration registers.

After you perform integration testing or topology detection, that is, the Integration Mode 
Control Register has been set, the system must be reset. This is because the signals that are 
toggled can have an unwanted effect on connected devices. 

Table 13-3 Input signals that can be read by the Integration Test Registers

Signal Register Bit Register description

DBGRESTART ITMISCIN [11] See ITMISCIN Register (Miscellaneous Inputs) on page 13-8

ETMEXTOUT[1:0] ITMISCIN [9:8]

nETMWFIREADY ITMISCIN [5]

nIRQ ITMISCIN [2]

nFIQ ITMISCIN [1]

EDBGRQ ITMISCIN [0]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-6
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
13.4.3 ITETMIF Register (ETM interface)

The ITETMIF Register at offset 0xED8 is write-only. Figure 13-1 shows the register bit 
assignments.

Figure 13-1 ITETMIF Register bit assignments

Table 13-4 shows the fields when writing the ITETMIF Register. When this register is written 
the appropriate output pins take the value written.

Reserved

31 5 4 3 0

EVNTBUS[28]

614 13 12 11 10 9 8 7 2 1

EVNTBUS[0]
ETMCID[31]

ETMCID[0]
ETMDD[63]

ETMDD[0]
ETMDA[31]

ETMDA[0]

ETMICTL[0]
ETMICTL[13]
ETMIA[1]
ETMIA[31]
ETMDCTL[0]
ETMDCTL[11]

15

EVNTBUS[46]

Table 13-4 ITETMIF Register bit assignments

Bits Name Function

[31:15] - Reserved. Write as zero.

[14] EVNTBUS[46] Set value of the EVNTBUS[46] output pina.

a. Not available on r0px revisions of the processor.

[13] EVNTBUS[28] Set value of the EVNTBUS[28] output pin.

[12] EVNTBUS[0] Set value of the EVNTBUS[0] output pin.

[11] ETMCID[31] Set value of the ETMCID[31] output pin.

[10] ETMCID[0] Set value of the ETMCID[0] output pin.

[9] ETMDD[63] Set value of the ETMDD[63] output pin.

[8] ETMDD[0] Set value of the ETMDD[0] output pin.

[7] ETMDA[31] Set value of the ETMDA[31] output pin.

[6] ETMDA[0] Set value of the ETMDA[0] output pin.

[5] ETMDCTL[11] Set value of the ETMDCTL[11] output pin.

[4] ETMDCTL[0] Set value of the ETMDCTL[0] output pin.

[3] ETMIA[31] Set value of the ETMIA[31] output pin.

[2] ETMIA[1] Set value of the ETMIA[1] output pin.

[1] ETMICTL[13] Set value of the ETMICTL[13] output pin.

[0] ETMICTL[0] Set value of the ETMICTL[0] output pin.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-7
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
13.4.4 ITMISCOUT Register (Miscellaneous Outputs)

The ITMISCOUT Register at offset 0xEF8 is write-only. Figure 13-2 shows the register bit 
assignments.

Figure 13-2 ITMISCOUT Register bit assignments

Table 13-5 shows the fields when writing the ITMISCOUT Register. When this register is 
written the appropriate output pins take the value written.

13.4.5 ITMISCIN Register (Miscellaneous Inputs)

The ITMISCIN Register at offset OxEFC is read-only. Figure 13-3 on page 13-9 shows the 
register bit assignments.

Reserved

31 5 4 3 0

nPMUIRQ

DBGTRIGGER

6 2 1

COMMTX
Reserved

DBGACK
COMMRX

78910

Reserved

DBGRESTARTED

ETMWFIPENDING

Table 13-5 ITMISCOUT Register bit assignments

Bits Name Function

[31:10] - Reserved. Write as zero.

[9] DBGRESTARTED Set value of the DBGRESTARTED output pin.

[8] DBGTRIGGER Set value of the DBGTRIGGER output pin.

[7:6] - Reserved. Write as zero.

[5] ETMWFIPENDING Set value of the ETMWFIPENDING output pin.

[4] nPMUIRQ Set value of nPMUIRQ output pin.

[3] - Reserved. Write as zero.

[2] COMMTX Set value of COMMTX output pin.

[1] COMMRX Set value of COMMRX output pin.

[0] DBGACK Set value of the DBGACK output pin.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-8
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
Figure 13-3 ITMISCIN Register bit assignments

Table 13-6 lists the register bit assignments for the ITMISCIN Register.

13.4.6 Integration Mode Control Register (ITCTRL)

The ITCTRL Register, register 0x3C0 at offset 0xF00, is read/write. Figure 13-4 shows the 
register bit assignments.

Figure 13-4 ITCTRL Register bit assignments

Reserved

31 10 9 8 7 4 3 2 0

ETMEXTOUT[1:0]

6 5

Reserved
nETMWFIREADY

Reserved
nFIQ
nIRQ

EDBGRQ

Reserved
DBGRESTART

1112 1

Table 13-6 ITMISCIN Register bit assignments

Bits Name Function

[31:12] - Reserved. Read Undefined.

[11] DBGRESTART Read value of the DBGRESTART input pin.

[10] - Reserved. Read Undefined.

[9:8] ETMEXTOUT Read value of the ETMEXTOUT[1:0] input pins.

[7:6] - Reserved. Read Undefined.

[5] nETMWFIREADY Reads the nETMWFIREADY input pin. Although this pin is active LOW, the value of 
this bit matches the physical state of the signal:
0 = input pin is LOW (asserted)
1 = input pin is HIGH (deasserted).

[4:3] - Reserved. Read Undefined.

[2] nFIQ Read value of nFIQ input pin.

[1] nIRQ Read value of nIRQ input pin.

[0] EDBGRQ Read value of EDBGRQ input pin.

Reserved

31 01

INTMODE
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-9
ID013010 Non-Confidential, Unrestricted Access



Integration Test Registers 
Table 13-7 shows the fields of the ITCTRL Register.

Writing to the ITCTRL register controls whether the processor is in its default functional mode, 
or in integration mode, where the inputs and outputs of the device can be directly controlled for 
the purpose of integration testing or topology detection. For more information see the ARM 
Architecture Reference Manual.

Table 13-7 ITCTRL Register bit assignments

Bits Access Reset value Name Function

[31:1] RAZ/SBZP - - Reserved.

[0] R/W 0 INTMODE Controls whether the processor is in normal operating mode or 
integration mode:
b0 = normal operation
b1 = integration mode enabled.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 13-10
ID013010 Non-Confidential, Unrestricted Access



Chapter 14 
Cycle Timings and Interlock Behavior

This chapter describes the cycle timings and interlock behavior of instructions on the processor. It 
contains the following sections:
• About cycle timings and interlock behavior on page 14-3
• Register interlock examples on page 14-6
• Data processing instructions on page 14-7
• QADD, QDADD, QSUB, and QDSUB instructions on page 14-9
• Media data-processing on page 14-10
• Sum of Absolute Differences (SAD) on page 14-11
• Multiplies on page 14-12
• Divide on page 14-14
• Branches on page 14-15
• Processor state updating instructions on page 14-16
• Single load and store instructions on page 14-17
• Load and Store Double instructions on page 14-20
• Load and Store Multiple instructions on page 14-21
• RFE and SRS instructions on page 14-24
• Synchronization instructions on page 14-25
• Coprocessor instructions on page 14-26
• SVC, BKPT, Undefined, and Prefetch Aborted instructions on page 14-27
• Miscellaneous instructions on page 14-28
• Floating-point register transfer instructions on page 14-29
• Floating-point load/store instructions on page 14-30
• Floating-point single-precision data processing instructions on page 14-32
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-1
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
• Floating-point double-precision data processing instructions on page 14-33
• Dual issue on page 14-34.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-2
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.1 About cycle timings and interlock behavior
Complex instruction dependencies and memory system interactions make it impossible to 
describe briefly the exact cycle timing behavior for all instructions in all circumstances. The 
timings described in this chapter are accurate in most cases. If precise timings are required, you 
must use a cycle-accurate model of the processor.

Unless stated otherwise, cycle counts and result latencies that this chapter describes are 
best-case numbers. They assume:

• no outstanding data dependencies between the current instruction and a previous 
instruction

• the instruction does not encounter any resource conflicts

• all data accesses hit in the data cache, and do not cross protection region boundaries

• all instruction accesses hit in the instruction cache.

This section describes:
• Instruction execution overview
• Conditional instructions on page 14-4
• Flag-setting instructions on page 14-4
• Definition of terms on page 14-4.
• Assembler language syntax on page 14-5.

14.1.1 Instruction execution overview

The instruction execution pipeline has four stages, Iss, Ex1, Ex2, and Wr.

Extensive forwarding to the end of the Iss, Ex1, and Ex2 stages enables many dependent 
instruction sequences to run without pipeline stalls. General forwarding occurs from the end of 
the Ex2 and Wr pipeline stages. In addition, the multiplier contains an internal multiply 
accumulate forwarding path. The address generation unit also contains an internal forwarding 
path. 

Most instructions do not require a register until the Ex2 stage. All result latencies are given as 
the number of cycles until the register is available for a following instruction in the Ex2 stage. 
Most ALU operations require their source registers at the start of the Ex2 stage, and have a result 
latency of one. For example, the following sequence takes two cycles:

ADD R1,R3,R4 ;Result latency one
ADD R5,R2,R1 ;Register R1 required by ALU

The PC is the only register that result latency does not affect. An instruction that alters the PC 
never causes a pipeline stall because of interlocking with a subsequent instruction that reads the 
PC.

Most loads have a result latency of two or higher as they do not forward their results until the 
Wr stage. For example, the following sequence takes three cycles:

LDR R1, [R2] ;Result latency two
ADD R3, R3, R1 ;Register R1 required by ALU

If a subsequent instruction requires the register at the end of the Iss stage then an extra cycle 
must be added to the result latency of the instruction producing the required register. 
Instructions that require a register at the end of these stages are specified by describing that 
register as an Early Reg. The following sequence, requiring an Early Reg, takes four cycles:

LDR R1, [R2] ;Result latency two
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-3
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
ADD R3, R3, R1 LSL#6 ;plus one because Register R1 is Early

The following sequence where R1 is a Late Reg takes two cycles:

LDR R1, [R2] ;Result latency two minus one cycles
STR R1, [R3] ;no penalty because R1 is a Late register

The following sequence where R1 is a Very Early Reg takes four cycles:

ADD R3, R1, R2 ;Result latency one plus two cycles
LDR R4, [R3] ;plus two because register R3 is Very Early

14.1.2 Conditional instructions

Most instructions do not take more or fewer cycles to execute if they fail their condition codes. 
The exceptions to this are:
• instructions that alter the PC, such as branches
• integer divide instructions, which require only one execute cycle.

The result latency of most instructions that fail their condition codes is one. The exceptions to 
this are:
• all load and store instructions, which have their result latency unaffected
• integer divide instructions, which have a result latency of three.

14.1.3 Flag-setting instructions

Most instructions do not take more or fewer cycles to execute if they are flag-setting. The 
exceptions to this are certain multiply instructions.

14.1.4 Definition of terms

Table 14-1 gives descriptions of cycle timing terms used in this chapter.

Table 14-1 Definition of cycle timing terms

Term Description

Memory Cycles This is the number of cycles during which an instruction sends a memory access to the cache.

Cycles This is the minimum number of cycles required to issue an instruction. Issue cycles that produce 
memory accesses to the cache are included, so Cycles is always greater than or equal to Memory 
Cycles.

Result Latency This is the number of cycles before the result of this instruction is available to a Normal Reg of the 
following instruction. When the Result Latency of an instruction is greater than Cycles and the 
following instruction requires the result, the following instruction stalls for a number of cycles equal 
to Result Latency minus Cycles. 

Note
 The Result Latency is counted from the first cycle of an instruction.

Normal Reg The specified registers are required at the start of the Ex2 stage.

Late Reg The specified registers are not required until the start of the Wr stage. Subtract one cycle from the 
Result Latency of the instruction producing this register.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-4
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.1.5 Assembler language syntax

The syntax used throughout this chapter is unified assembler and the timings apply to ARM and 
Thumb instructions.

Early Reg The specified registers are required at the start of the Ex1 stage. Add one cycle to the Result Latency 
of the instruction producing this register.

Very Early Reg The specified registers are required at the start of the Iss stage. Add two cycles to the Result Latency 
of the instruction producing this register, or one cycle if the instruction producing this register is an LDM, 
LDR, LDRD, LDREX, or LDRT. The lower Result Latency does not apply if this register is the base register of 
the load instruction producing this register, or if the load instruction is an LDRB, LDRBT, LDRH, LDRSB, or 
LDRSH.

Interlock There is a data dependency between two instructions in the pipeline, resulting in the Iss stage being 
stalled until the processor resolves the dependency.

Table 14-1 Definition of cycle timing terms  (continued)

Term Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-5
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.2 Register interlock examples
Table 14-2 shows register interlock examples using LDR and ADD instructions.

LDR instructions take one cycle, have a result latency of two, and require their base register as a 
Very Early Reg.

ADD instructions take one cycle and have a result latency of one.

Table 14-2 Register interlock examples

Instruction 
sequence Behavior

LDR R1, [R2]
ADD R6, R5, R4

Takes two cycles because there are no register dependencies.

ADD R1, R2, R3
ADD R9, R6, R1

Takes two cycles because ADD instructions have a result latency of one.

LDR R1, [R2]
ADD R6, R5, R1

Takes three cycles because of the result latency of R1.

ADD R2, R5, R6
LDR R1, [R2]

Takes four cycles because of the use of the result of R2 as a Very Early Reg.

LDR R1, [R2]
LDR R5, [R1]

Takes four cycles because of the result latency of R1, the use of the result of R1 as a Very Early Reg, 
and the use of an LDR to generate R1.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-6
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.3 Data processing instructions
This section describes the cycle timing behavior for the ADC, ADD, ADDW, AND, ASR, BIC, CLZ, CMN, CMP, 
EOR, LSL, LSR, MOV, MOVT, MOVW, MVN, ORN, ORR, ROR, RRX, RSB, RSC, SBC, SUB, SUBW, TEQ, and TST 
instructions.

This section describes:
• Cycle counts if destination is not PC
• Cycle counts if destination is the PC
• Example interlocks on page 14-8

14.3.1 Cycle counts if destination is not PC

Table 14-3 shows the cycle timing behavior for data processing instructions if their destination 
is not the PC. You can substitute ADD with any of the data processing instructions identified in 
the opening paragraph of this section.

14.3.2 Cycle counts if destination is the PC

Table 14-4 shows the cycle timing behavior for data processing instructions if their destination 
is the PC. You can substitute ADD with any data processing instruction except for a CLZ. A CLZ 
with the PC as the destination is an Unpredictable instruction.

For condition code failing cycle counts, the cycles for the non-PC destination variants must be 
used.

Table 14-3 Data Processing Instruction cycle timing behavior if destination is not PC

Example instruction Cycles Early 
Reg

Late 
Reg

Result 
latency Comments

ADD <Rd>, <Rn>, #<immed> 1 - - 1 Normal cases.

ADD <Rd>, <Rn>, <Rm> 1 - - 1

ADD <Rd>, <Rn>, <Rm>, LSL #<immed> 1 <Rm> - 1 Requires a shifted source register.

ADD <Rd>, <Rn>, <Rm>, LSL <Rs> 1 <Rm>, <Rs> - 1 Requires a register controlled 
shifted source register.

MOV <Rd>, <Rm> 1 - <Rm> 1 Simple MOV case. Must not set the 
flags or require a shifted source 
register.

Table 14-4 Data Processing instruction cycle timing behavior if destination is the PC

Example instruction Cycles Early 
Reg

Late 
Reg

Result 
latency Comments

ADD pc, <Rn>, #<immed> 9 - - - Normal cases to PC

ADD pc, <Rn>, <Rm> 9 - - -

ADD pc, <Rn>, <Rm>, LSL #<immed> 9 <Rm> - - Requires a shifted source register

ADD pc, <Rn>, <Rm>, LSL <Rs> 9 <Rm>, 
<Rs>

- - Requires a register controlled shifted 
source register
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-7
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.3.3 Example interlocks

Most data processing instructions are single-cycle and can be executed back-to-back without 
interlock cycles, even if there are data dependencies between them. The exceptions to this are 
when shifts are used.

Shifter

The registers that the shifter requires are Early Regs and require an additional cycle of result 
availability before use. For example, the following sequence introduces a 1-cycle interlock, and 
takes three cycles to execute:

ADD R1,R2,R3
ADD R4,R5,R1 LSL #1

The second source register, which is not shifted, does not incur an extra data dependency check. 
Therefore, the following sequence takes two cycles to execute:

ADD R1,R2,R3
ADD R4,R1,R9 LSL #1

Register controlled shifts

The register containing the shift distance is an Early Reg. For example, the following sequence 
takes three cycles to execute:

ADD R1, R2, R3
ADD R4, R2, R4, LSL R1
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-8
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.4 QADD, QDADD, QSUB, and QDSUB instructions
This section describes the cycle timing behavior for the QADD, QDADD, QSUB, and QDSUB instructions.

These instructions perform saturating arithmetic. They have a result latency of two. The QDADD 
and QDSUB instructions must double and saturate the register <Rn> before the addition. This 
register is an Early Reg.

Table 14-5 shows the cycle timing behavior for QADD, QDADD, QSUB, and QDSUB instructions.

Table 14-5 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behavior

Instructions Cycles Early Reg Result latency

QADD, QSUB 1 - 2

QDADD, QDSUB 1 <Rn> 2
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-9
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.5 Media data-processing
Table 14-6 shows media data-processing instructions and gives their cycle timing behavior.

All media data-processing instructions are single-cycle issue instructions. These instructions 
have result latencies of one or two cycles. Some of the instructions require an input register to 
be shifted, or manipulated in some other way before use and therefore are marked as requiring 
an Early Reg.

Table 14-6 Media data-processing instructions cycle timing behavior

Instructions Cycles Early Reg Result latency

SADD16, SSUB16, SADD8, SSUB8 1 - 1

UADD16, USUB16, UADD8, USUB8 1 - 1

SEL 1 - 1

QADD16, QSUB16, QADD8, QSUB8 1 - 2

SHADD16, SHSUB16, SHADD8, SHSUB8 1 - 1

UQADD16, UQSUB16, UQADD8, UQSUB8 1 - 2

UHADD16, UHSUB16, UHADD8, UHSUB8 1 - 1

SSAT16, USAT16 1 <Rn> 1

SASX, SSAX 1 - 1

UASX, USAX 1 - 1

SXTAB, SXTAB16, SXTAH 1 <Rm> 1

SXTB, SXTB16, SXTH 1 <Rm>a

a. A shift of zero makes <Rm> a Normal Reg for these instructions.

1

UXTB, UXTB16, UXTH 1 <Rm>a 1

UXTAB, UXTAB16, UXTAH 1 <Rm> 1

REV, REV16, REVSH, RBIT 1 <Rm> 1

PKHBT, PKHTB 1 <Rm> 1

SSAT, USAT 1 <Rm> 1

QASX, QSAX 1 - 2

SHASX, SHSAX 1 - 1

UQASX, UQSAX 1 - 2

UHASX, UHSAX 1 - 1

BFC 1 <Rd> 1

SBFX, UBFX 1 <Rn> 1

BFI 1 <Rd>, <Rn> 1
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-10
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.6 Sum of Absolute Differences (SAD)
Table 14-7 shows SAD instructions and gives their cycle timing behavior.

14.6.1 Example interlocks

Table 14-8 shows interlock examples using USAD8 and USADA8 instructions.

Table 14-7 Sum of absolute differences instruction timing behavior

Instructions Cycles Early Reg Result latency

USAD8 1 <Rn>, <Rm> 2a

a. Result latency is one fewer if the destination is the 
accumulate for a subsequent USADA8. 

USADA8 1 <Rn>, <Rm> 2a

Table 14-8 Example interlocks

Instruction sequence Behavior

USAD8 R1,R2,R3
ADD R5,R6,R1

Takes three cycles because USAD8 has a Result Latency of two, and the ADD requires 
the result of the USAD8 instruction.

USAD8 R1,R2,R3
MOV R9,R9
ADD R5,R6,R1

Takes three cycles. The MOV instruction is scheduled during the Result Latency of 
the USAD8 instruction.

USAD8 R1,R2,R3
USADA8 R1,R4,R5,R1

Takes two cycles. The Result Latency is one less because the result is used as the 
accumulate for a subsequent USADA8 instruction.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-11
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.7 Multiplies
Most multiply operations cannot forward their result early, except as the accumulate value for a 
subsequent multiply. For a subsequent multiply accumulate the result is available one cycle 
earlier than for all other uses of the result.

Certain multiplies require:
• more than one cycle to execute
• more than one pipeline issue to produce a result.

The multiplicand and multiplier are required as Early Regs because they are both required at the 
end of the Iss stage.

Flag-setting multiplies followed by a conditional instruction interlock the conditional 
instruction for one cycle, or two cycles if the instruction is a conditional multiply. Flag-setting 
multiplies followed by a flag-setting instruction interlock the flag-setting instruction for one 
cycle, unless the instruction is a flag-setting multiply in which case there is no interlock.

Table 14-9 shows the cycle timing behavior of example multiply instructions.

Table 14-9 Example multiply instruction cycle timing behavior

Example 
instruction Cycles Early Reg Late Reg Result latency

MUL(S) 2 <Rn>, <Rm> - 3

MLA(S), MLS 2 <Rn>, <Rm> <Ra> 3

SMULL(S) 2 <Rn>, <Rm> - 3, 3

UMULL(S) 2 <Rn>, <Rm> - 3, 3

SMLAL(S) 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

UMLAL(S) 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

SMULxy 1 <Rn>, <Rm> - 2

SMLAxy 1 <Rn>, <Rm> - 2

SMULWy 1 <Rn>, <Rm> - 2

SMLAWy 1 <Rn>, <Rm> - 2

SMLALxy 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

SMUAD, SMUADX 1 <Rn>, <Rm> - 2

SMLAD, SMLADX 1 <Rn>, <Rm> - 2

SMUSD, SMUSDX 1 <Rn>, <Rm> - 2

SMLSD, SMLSDX 1 <Rn>, <Rm> - 2

SMMUL, SMMULR 2 <Rn>, <Rm> - 3

SMMLA, SMMLAR 2 <Rn>, <Rm> <Ra> 3

SMMLS, SMMLSR 2 <Rn>, <Rm> <Ra> 3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-12
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
Note
 Result Latency is one less if the result is used as the accumulate value for a subsequent multiply 
accumulate. This only applies if the result is the same width as the accumulate value, that is 32 
or 64 bits.

SMLALD, SMLALDX 1 <Rn>, <Rm> - 2, 2

SMLSLD, SMLSLDX 1 <Rn>, <Rm> - 2, 2

UMAAL 2 <Rn>, <Rm> <RdLo>, <RdHi> 3, 3

Table 14-9 Example multiply instruction cycle timing behavior (continued)

Example 
instruction Cycles Early Reg Late Reg Result latency
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-13
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.8 Divide
This section describes the cycle timing behavior of the UDIV and SDIV instructions.

The divider unit is separate to the main execute pipeline so the UDIV and SDIV instructions require 
one cycle to issue. They execute out-of-order relative to the rest of the pipeline, and require an 
additional issue cycle at the end of the divide operation to write the result to the destination 
register. This additional cycle is not required if the divide instruction fails its condition code. 

Result Latency for a UDIV instruction A divided by B is given by:

Result Latency for a SDIV instruction A divided by B is given by:

Note
 • A divide instruction that fails its condition code or attempts to divide by zero has a Result 

Latency of three.

• The value of the (clz(B) - clz(A) + 1)/2 component of these equations must be rounded 
down.

• The clz(x) function counts the number of leading zeros in the 32-bit value x. If x is 
negative, it is negated before this count occurs.

2
clz(B) - clz(A) + 1

,0Result latency = 3 + max ( ) )(

2
clz(B) - clz(A) + 1

,0Result latency = 4 + max ( ) )(
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-14
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.9 Branches
This section describes the cycle timing behavior for the B, BL, BLX, BX, BXJ, CBNZ, CBZ, TBB, and TBH 
instructions. Branches are subject to dynamic and return stack predictions. Table 14-10 shows 
example branch instructions and their cycle timing behavior.

Table 14-10 Branch instruction cycle timing behavior

Example instruction Cycles Memory 
cycles Comments

B<label>, BL<label>a, 

BLX<label>a
1 - Correct dynamic prediction

8 - Incorrect dynamic prediction

BX <Rm>b 1 - Correct return stack prediction

9 - Incorrect return stack prediction

BX <cond> <Rm>b 1 - Correct condition prediction and correct return stack prediction

8 - Incorrect condition prediction

9 - Correct condition prediction and incorrect return stack prediction

BXJ <cond> <Rm> 1 - Condition code fails

9 - Condition code passes

BLX <Rm> 9 - -

BLX <cond> <Rm> 1 - Condition code fails

9 - Condition code passes

CBZ <Rn>, <label>, CBNZ 
<Rn>, <label>

1 - Correct condition prediction

8 - Incorrectly predicted

TBB [<Rn>, <Rm>]c 9 1 Condition code fails

9 1 Condition code passes

TBH [<Rn>, <Rm>, LSL#1]c 9 1 Condition code fails

9 1 Condition code passes

a. Return stack push.
b. Return stack pop, if condition passes.
c. <Rn> and <Rm> are Very Early Regs.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-15
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.10 Processor state updating instructions
This section describes the cycle timing behavior for the MSR, MRS, CPS, and SETEND instructions. 
Table 14-11 shows processor state updating instructions and their cycle timing behavior.

Table 14-11 Processor state updating instructions cycle timing behavior

Instruction Cycles Comments

MRS 1 All MRS instructions

MSR 5 All other MSR instructions to the CPSR

MSR SPSR 1 All MSR instructions to the SPSR

CPS <effect> <iflags> 1 Interrupt masks only

CPS <effect> <iflags>, #<mode> 1 Mode changing

SETEND 1 -
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-16
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.11 Single load and store instructions
This section describes the cycle timing behavior for LDR, LDRHT, LDRSBT, LDRSHT, LDRT, LDRB, LDRBT, 
LDRSB, LDRH, LDRSH, STR, STRT, STRB, STRBT, STRH, and PLD instructions.

Table 14-12 shows the cycle timing behavior for stores and loads, other than loads to the PC. 
You can replace LDR with any of these single load or store instructions. The following rules 
apply:

• They are normally single-cycle issue. Both the base and any offset register are Very Early 
Regs.

• They are 3-cycle issue if pre-increment addressing with either a negative register offset or 
a shift other than LSL #1, 2 or 3 is used. Both the base and any offset register are Very 
Early Regs.

• If unaligned support is enabled then accesses to addresses not aligned to the access size 
that cross a 64-bit aligned boundary generate two memory accesses, and require an 
additional cycle to issue. This extra cycle is required if the final address is potentially 
unaligned, even if the final address turns out to be aligned.

• PLD (data preload hint instructions) have cycle timing behavior as for load instructions. 
Because they have no destination register, the result latency is not-applicable for such 
instructions.

• For store instructions <Rt> is always a Late Reg.

Table 14-13 shows the cycle timing behavior for loads to the PC.

Table 14-12 Cycle timing behavior for stores and loads, other than loads to the PC

Example instruction Cycles Memory 
cycles

Result latency 
(LDR)

Result 
latency 
(base 
register)

Comments

LDR <Rt>, <addr_md_1cycle>a 1 1 2 1 Aligned access

LDR <Rt>, <addr_md_3cycle>a 3 1 4 3 Aligned access

LDR <Rt>, <addr_md_1cycle>a 2 2 3 2 Potentially unaligned access

LDR <Rt>, <addr_md_3cycle>a 4 2 5 4 Potentially unaligned access

a. See Table 14-14 on page 14-18 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>.

Table 14-13 Cycle timing behavior for loads to the PC

Example instruction Cycles Memory 
cycles

Result 
latency Comments

LDR pc, [sp, #<imm>] (!) 1 1 - Correctly return stack predicted, or conditional 
predicted correctly

LDR pc, [sp], #<imm> 1 1 -

LDR pc, [sp, #<imm>] (!) 9 1 - Return stack mispredicted, conditional predicted 
correctly

LDR pc, [sp], #<imm> 9 1 -
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-17
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
Only cycle times for aligned accesses are given because Unaligned accesses to the PC are not 
supported.

The processor includes a 4-entry return stack that can predict procedure returns. Any LDR 
instruction to the PC with an immediate post-indexed offset of plus four, and the stack pointer 
R13 as the base register is considered a procedure return.

Table 14-14 shows the explanation of <addr_md_1cycle> and <addr_md_3cycle> used in 
Table 14-12 on page 14-17 and Table 14-13 on page 14-17.

14.11.1 Base register update

The base register update for load or store instructions occurs in the ALU pipeline. To prevent an 
interlock for back-to-back load or store instructions reusing the same base register, there is a 
local forwarding path to recycle the updated base register around the address generator. This 
only applies when the load or store instruction with base write-back uses pre-increment 
addressing, and is a single load or store instruction that is not a load or store double instruction 
or load or store multiple instruction.

For example, with R2 aligned the following instruction sequence take three cycles to execute:

LDR R5, [R2, #4]!

LDR <cond> pc, [sp, #<imm>] 

(!)

8 1 - Conditional predicted incorrectly, but return 
stack predicted correctly

LDR <cond> pc, [sp], #cns 8 1 -

LDR pc, <addr_md_1cycle>a 9 1 - -

LDR pc, <addr_md_3cycle>a 11 1 - -

a. See Table 14-14 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>. For condition code failing cycle counts, you 
must use the cycles for the non-PC destination variants.

Table 14-13 Cycle timing behavior for loads to the PC (continued)

Example instruction Cycles Memory 
cycles

Result 
latency Comments

Table 14-14 <addr_md_1cycle> and <addr_md_3cycle> LDR example instruction explanation

Example instruction Very Early Reg Comments

<addr_md_1cycle>

LDR <Rt>, [<Rn>, #<imm>] (!) <Rn> If post-increment addressing or pre-increment 
addressing with an immediate offset, or a 
positive register offset with no shift or shift 
LSL #1, 2 or 3, then 1-issue cycle

LDR <Rt>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDR <Rt>, [<Rn>, <Rm>, LSL #1, 2 or 3] (!) <Rn>, <Rm>

LDR <Rt>, [<Rn>], #<imm> <Rn>

LDR <Rt>, [<Rn>], +/-<Rm> <Rn>, <Rm>

LDR <Rt>, [<Rn>], +/-<Rm> <shift> <cns> <Rn>, <Rm>

<addr_md_3cycle>

LDR <Rt>, [<Rn>, -<Rm>] (!) <Rn>,<Rm> If pre-increment addressing with a negative 
register offset or shift other than LSL #1, 2 or 
3, then 3-issue cyclesLDR <Rt>, [Rn, +/-<Rm> <shift> <cns>] (!) <Rn>,<Rm>
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-18
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
LDR R6, [R2, #0X10]!
LDR R7, [R2, #0X20]!
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-19
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.12 Load and Store Double instructions
This section describes the cycle timing behavior for the LDRD and STRD instructions.

The LDRD and STRD instructions:

• Are normally single-cycle issue. Both the base and any offset register are Very Early Regs.

• Are 3-cycle issue if offset or pre-increment addressing with a negative register offset is 
used. Both the base and any offset register are Very Early Regs.

• Take only one memory cycle if the address is doubleword aligned.

• Take two memory cycles if the address is not doubleword aligned.

Table 14-15 shows the cycle timing behavior for LDRD and STRD instructions.

Table 14-16 shows the explanation of <addr_md_1cycle> and <addr_md_3cycle> used in 
Table 14-15.

Table 14-15 Load and Store Double instructions cycle timing behavior

Example instruction Cycles Cycles with 
base writeback

Memory 
cycles

Result 
latency 
(LDRD)

Result latency 
(base register)

Address is doubleword aligned 

LDRD R0, R1, <addr_md_1cycle>a 1 2 1 2, 2 2

LDRD R0, R1, <addr_md_3cycle>a 3 4 1 4, 4 4

Address not doubleword aligned 

LDRD R0, R1, <addr_md_1cycle>a 2 2 2 2, 3 2

LDRD R0, R1, <addr_md_3cycle>a 4 4 2 4, 5 4

a. See Table 14-16 for an explanation of <addr_md_1cycle> and <addr_md_3cycle>.

Table 14-16 <addr_md_1cycle> and <addr_md_3cycle> LDRD example instruction explanation

Example instruction Very Early Reg Comments

<addr_md_1cycle>

LDRD <Rt>, <Rt2>, [<Rn>, #<imm>] (!) <Rn> If post-increment addressing, pre-increment 
addressing with an immediate offset or a positive 
register offset, then 1-issue cycleLDRD <Rt>, <Rt2>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDRD <Rt>, <Rt2>, [<Rn>], #<imm> <Rn>

LDRD <Rt>, <Rt2>, [<Rn>], +/-<Rm> <Rn>, <Rm>

<addr_md_3cycle>

LDRD <Rt>, <Rt2>, [<Rn>, -<Rm>] (!) <Rn>,<Rm> If pre-increment addressing with a negative 
register offset, then 3-issue cycles
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-20
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.13 Load and Store Multiple instructions
This section describes the cycle timing behavior for the LDM, STM, PUSH, and POP instructions. 
These instructions take multiple cycles to issue, and then use multiple memory cycles to load 
and store all the registers. Because the memory datapath is 64-bits wide, two registers can be 
loaded or stored on each cycle.

This section describes:
• Load and Store Multiples, other than load multiples including the PC
• Load Multiples, where the PC is in the register list on page 14-22
• Example Interlocks on page 14-22

14.13.1 Load and Store Multiples, other than load multiples including the PC

In all cases the base register, <Rn>, is a Very Early Reg.

Table 14-17 shows the cycle timing behavior of load and store multiples including the PC.

Note
 The Cycle timing behavior that Table 14-17 shows also covers PUSH and POP instructions that 
behave like store and load multiple instructions with base register write-back.

Table 14-17 Cycle timing behavior of Load and Store Multiples, other than load multiples including the PC

Example instruction Cycles

Cycles 
with base 
register 
write-back

Memory 
cycles

Result latency 
(LDM)

Result latency 
(base register)

First address 64-bit aligned 

LDMIA <Rn>,{R1} 1 1 1 2 1

LDMIA <Rn>,{R1,R2} 1 2 1 2,2 2

LDMIA <Rn>,{R1,R2,R3} 2 2 2 2,2,3 2

LDMIA <Rn>,{R1,R2,R3,R4} 2 3 2 2,2,3,3 3

LDMIA <Rn>,{R1,R2,R3,R4,R5} 3 3 3 2,2,3,3,4 3

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6} 3 4 3 2,2,3,3,4,4 4

LDMIA 
<Rn>,{R1,R2,R3,R4,R5,R6,R7}

4 4 4 2,2,3,3,4,4,5 4

First address not 64-bit aligned

LDMIA <Rn>,{R1} 1 2 1 2 2

LDMIA <Rn>,{R1,R2} 2 2 2 2,3 2

LDMIA <Rn>,{R1,R2,R3} 2 3 2 2,3,3 3

LDMIA <Rn>,{R1,R2,R3,R4} 3 3 3 2,3,3,4 3

LDMIA <Rn>,{R1,R2,R3,R4,R5} 3 4 3 2,3,3,4,4 4

LDMIA <Rn>,{R1,R2,R3,R4,R5,R6} 4 4 4 2,3,3,4,4,5 4

LDMIA 
<Rn>,{R1,R2,R3,R4,R5,R6,R7}

4 5 4 2,3,3,4,4,5,5 5
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-21
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.13.2 Load Multiples, where the PC is in the register list

The processor includes a 4-entry return stack that can predict procedure returns. Any LDM to the 
PC that does not restore the SPSR to the CPSR, is predicted as a procedure return.

In all cases the base register, <Rn>, is a Very Early Reg.

Table 14-18 shows the cycle timing behavior of Load Multiples, where the PC is in the register 
list.

Note
 The Cycle timing behavior that Table 14-18 shows also covers PUSH and POP instructions that 
behave like store and load multiple instructions with base register writeback.

14.13.3 Example Interlocks

The following sequence that has an LDM instruction takes six cycles to execute, because R7 has 
a result latency of five cycles:

LDMIA R0, {R1-R7}
ADD R10, R10, R7

The following sequence that has an STM instruction takes five cycles to execute:

STMIA R0, {R1-R7}
ADD R7, R10, R11

The following sequence has a result latency hidden by issue cycles. It takes five cycles to 
execute.

LDMIA R0, {R1-R7}
ADD R10, R10, R3

The following sequence that has a POP instruction takes seven cycles to execute, because R9 has 
a result latency of six cycles:

POP {R1-R9}
ADD R10, R10, R9

The following sequence that has a PUSH instruction takes five cycles to execute:

Table 14-18 Cycle timing behavior of Load Multiples, with PC in the register list (64-bit aligned)

Example instruction Cycles Memory 
cycles

Result 
latency Comments

LDMIA <Rn>,{...,pc} ma nb 2,… Correct return stack prediction

LDMIA <Rn>,{...,pc} ma + 8 nb 2,… Incorrect return stack prediction

LDMIA <cond> 
<Rn>,{...,pc}

ma nb 2,… Correct condition prediction and correct 
return stack prediction

LDMIA <cond> 
<Rn>,{...,pc}

ma + 7 nb 2,… Incorrect condition prediction

LDMIA <cond> 
<Rn>,{...,pc}

ma + 8 nb 2,… Correct condition prediction and incorrect 
return stack prediction

a. Where m is the number of cycles for this instruction if the PC were treated as a normal register.
b. Where n is the number of memory cycles for this instruction if the PC were treated as a normal register.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-22
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
PUSH {R1-R7}
ADD R10,R10,R7

Note
 In the examples, R0 and sp are 64-bit aligned addresses. The instructions PUSH and POP always 
use the sp register for the base address.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-23
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.14 RFE and SRS instructions
This section describes the cycle timing for the RFE and SRS instructions.

These instructions:

• return from an exception and save exception return state respectively

• take one or two memory cycles depending on doubleword alignment first address 
location.

In all cases the base register is a Very Early Reg.

Table 14-19 shows the cycle timing behavior for RFE and SRS instructions.

Table 14-19 RFE and SRS instructions cycle timing behavior

Example instruction Cycles Memory cycles

Address doubleword aligned 

RFEIA <Rn> 10 1

SRSIA #<mode> 1 1

Address not doubleword aligned

RFEIA <Rn> 11 2

SRSIA #<mode> 2 2
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-24
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.15 Synchronization instructions
This section describes the cycle timing behavior for the CLREX, DMB, DSB, ISB, LDREX, LDREXB, 
LDREXD, LDREXH, STREX, STREXB, STREXD, STREXH, SWP, and SWPB instructions

In all cases the base register, Rn, is a Very Early Reg. Table 14-20 shows the synchronization 
instructions cycle timing behavior.

The synchronization instructions DMB, DSB, and ISB stall the pipeline for a variable number of 
cycles, depending on the current state of the memory system.

Table 14-20 Synchronization instructions cycle timing behavior

Instruction Cycles Memory cycles Result latency

CLREX 1 - -

LDREX <Rt>, [Rn] 1 1 2

LDREXB <Rt>, [Rn] 1 1 2

LDREXH <Rt>, [Rn] 1 1 2

LDREXD <Rt>, [Rn]a

a. Address must be 64-bit aligned.

1 1 2

STREX <Rd>, <Rt>, [Rn] 1 1 2

STREXB <Rd>, <Rt>, [Rn] 1 1 2

STREXH <Rd>, <Rt>, [Rn] 1 1 2

STREXD <Rd>, <Rt>, <Rt2>, [Rn]a 1 1 2

SWP <Rt>, <Rt2>, [Rn] 2 2 3

SWPB <Rt>, <Rt2>, [Rn] 2 2 3
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-25
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.16 Coprocessor instructions
This section describes the cycle timing behavior for the MCR and MRC instructions to CP14, the 
debug coprocessor or CP15, the system control coprocessor.

The precise timing of coprocessor instructions is tightly linked with the behavior of the relevant 
coprocessor. Table 14-21 shows the coprocessor instructions cycle timing behavior. Table 14-21 
shows the best case numbers.

Note
 Some instructions such as cache operations take more cycles.

Table 14-21 Coprocessor instructions cycle timing behavior

Instruction Cycles Result latency Comments

MCR 6 - -

MCR <cond> 6 - Condition code passes

4 - Condition code fails

MRC 6 6 -

MRC <cond> 6 6 Condition code passes

4 4 Condition code fails
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-26
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions
This section describes the cycle timing behavior for SVC, Undefined instruction, BKPT and 
Prefetch Abort.

In all cases the exception is taken in the Wr stage of the pipeline. SVC and most Undefined 
instructions that fail their condition codes take one cycle. A small number of Undefined 
instructions that fail their condition codes take two cycles. Table 14-22 shows the SVC, BKPT, 
Undefined, prefetch aborted instructions cycle timing behavior.

Table 14-22 SVC, BKPT, Undefined, prefetch aborted instructions cycle timing behavior

Instruction Cycles

SVC (formerly SWI) 9

BKPT 9

Prefetch Abort 9

Undefined Instruction 9
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-27
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.18 Miscellaneous instructions
Table 14-23 shows the cycle timing behavior for If-Then (IT) and No OPeration (NOP) 
instructions.

The DBG, PLI, SEV, WFE, and YIELD instructions are all treated the same as NOP, and so have the same 
cycle timing behavior.

The WFI instruction stalls the pipeline for a variable number of cycles, depending on the current 
state of the memory system.

Table 14-23 IT and NOP instructions cycle timing behavior

Example instructions Cycles Early Reg Late Reg Result latency Comments

IT{<v>{<w>{<z>}}} <cond> 1 - - - -

NOP 1 - - - -
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-28
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.19 Floating-point register transfer instructions
This section describes the cycle timing behavior for the various VFP instruction which transfer 
data between the VFP register file and the integer register file, including the system registers.

All source operands are Normal Regs, and the result latency for non-system register transfers is 
always 1 cycle.

Instructions that write data from the integer register file to the VFP system registers (FMXR) are 
blocking, that is, no subsequent instruction can start execution before the FMXR has completed 
execution. Consequently, the FMXR instructions take six cycles to execute.

All transfers to and from the VFP system registers are also serializing. This means that if there 
are any outstanding out-of-order-completion VFP instructions, the system register transfer 
instruction will stall in the iss-stage until these instructions are complete.

VFP instructions that complete out-of-order are VMLA.F32, VMLS.F32, VNMLS.F32, VNMLA.F32, 
VDIV.F32, VSQRT.F32, VCVT.F64.F32, and double-precision arithmetic and conversion instructions.

Table 14-24 shows the floating-point register transfer instructions cycle timing behavior.

Table 14-24 Floating-point register transfer instructions cycle timing behavior

Example instruction Cycles Result latency Comments

VMOV <Sn>, <Rt> 1 1 -

VMOV <Rt>, <Sn> 1 2 -

VMOV <Dn[x]>, <Rt> 1 1 -

VMOV.<dt> <Rt>, <Dn[x]> 1 2 -

VMOV <Sm>, <Sm1>, <Rt>, <Rt2> 1 1 -

VMOV <Rt>, <Rt2>, <Sm>, <Sm1> 1 2 -

VMOV <Dm>, <Rt>, <Rt2> 1 1 -

VMOV <Rt>, <Rt2>, <Dm> 1 2 -

VMSR <spec_reg>, <Rt> 6 - Blocking and serializing

VMRS <Rt>, <spec_reg> 1 2 Serializing

VMRS APSR_nzcv, FPSCR 1 - Serializing
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-29
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.20 Floating-point load/store instructions
This section describes the cycle timing behavior for all load and store instructions that operate 
on the VFP register file:

• The base address register, and any offset register are Very Early Regs for both loads and 
stores.

• For store instructions, the data register (Sd or Dd), or registers are always Late Regs.

• The cycle timing of load and store instructions is affected by the starting address for the 
transfer.

Note
 The starting address is not always the same as the base address.

• The cycle timing of load and store multiple instructions is also affected by whether or not 
the base address register is updated by the instruction, that is, base register writeback.

Table 14-25 shows the number of cycles and result latencies for single load and store 
instructions and load multiple instructions. Values are shown for each instruction with and 
without base register writeback, and with different starting address alignments. Cycle counts 
and base register result latencies for store multiple instructions are the same as for the equivalent 
load multiple instruction.

Table 14-25 Floating-point load/store instructions cycle timing behavior

Example instruction
Cycles/ 
memory 
cycles

Cycles with 
writeback (!)

Result 
latency 
(load)

Result 
latency 
(base 
register, 
<Rn>)

Comments

VLDR.32 <Sd>, [<Rn>{, #+/-<imm>}] 1 - 1 - -

VLDR.64 <Dd>, [<Rn>{, #+/-<imm>}] 1 - 1 - 64-bit aligned address

VLDR.64 <Dd>, [<Rn>{, #+/-<imm>}] 2 - 2 - Not aligned

VSTR.32 <Sd>, [<Rn>{, #+/-<imm>}] 1 - - - -

VSTR.64 <Dd>, [<Rn>{, #+/-<imm>}] 1 - - - 64-bit aligned address

VSTR.64 <Dd>, [<Rn>{, #+/-<imm>}] 2 - - - Not aligned

First address 64-bit aligned

VLDM{mode}.32 <Rn>{!}, {s1} 1 1 1 1 -

VLDM{mode}.32 <Rn>{!}, {s1,s2} 1 2 1,1 2 -

VLDM{mode}.32 <Rn>{!}, {s1-s3} 2 2 1,1,2 2 -

VLDM{mode}.32 <Rn>{!}, {s1-s4} 2 3 1,1,2,2 3 -

VLDM{mode}.64 <Rn>{!}, {d1} 1 2 1 2 -

VLDM{mode}.64 <Rn>{!}, {d1,d2} 2 3 1,2 3 -

VLDM{mode}.64 <Rn>{!}, {d1-d3} 3 4 1,2,3 4 -

VLDM{mode}.64 <Rn>{!}, {d1-d4} 4 5 1,2,3,4 5 -
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-30
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
First address not 64-bit aligned

VLDM{mode}.32 <Rn>{!}, {s1} 1 1 1 1 -

VLDM{mode}.32 <Rn>{!}, {s1,s2} 2 2 1,2 2 -

VLDM{mode}.32 <Rn>{!}, {s1-s3} 2 3 1,2,2 3 -

VLDM{mode}.32 <Rn>{!}, {s1-s4} 3 3 1,2,2,3 3 -

VLDM{mode}.64 <Rn>{!}, {d1} 2 2 2 2 -

VLDM{mode}.64 <Rn>{!}, {d1,d2} 3 3 2,3 3 -

VLDM{mode}.64 <Rn>{!}, {d1-d3} 4 4 2,3,4 4 -

VLDM{mode}.64 <Rn>{!}, {d1-d4} 5 5 2,3,4,5 5 -

Table 14-25 Floating-point load/store instructions cycle timing behavior (continued)

Example instruction
Cycles/ 
memory 
cycles

Cycles with 
writeback (!)

Result 
latency 
(load)

Result 
latency 
(base 
register, 
<Rn>)

Comments
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-31
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.21 Floating-point single-precision data processing instructions
This section describes the cycle timing behavior for all single-precision VFP CDP instructions. 
This includes arithmetic instructions such as VMUL.F32, data and immediate moving instructions 
such as “VMOV.F32 <Sd>, #<imm>”, VABS.F32, VNEG.F32, and “VMOV <Sd>, <Sm>”, and comparison 
instructions and conversion instructions.

Table 14-26 shows the floating-point single-precision data processing instructions cycle timing 
behavior.

Table 14-26 Floating-point single-precision data processing instructions cycle timing
behavior

Example instruction Cycles Early Reg Result latency

VMLA.F32 <Sd>, <Sn>, <Sm>a

a. Also VMLS.F32, VNMLS.F32, and VNMLA.F32.

1b

b. VMLA.F32 completes out-of-order, and can take an extra cycle (two in total) if an add 
instruction (VADD) or certain dual-issued instruction pairs are in the iss-stage when the 
instruction completes.

<Sn>, <Sm> 5c

c. Except when the instruction dependent on the result <Sd> is another VMLA.F32 
instruction, and the dependent operand is the accumulate operand, <Sd>. In this case, the 
result latency is reduced to 3 cycles.

VADD.F32 <Sd>, <Sn>, <Sm>d

d. Also VSUB.F32, VMUL.F32, and VNMUL.F32.

1 <Sn>, <Sm> 2

VDIV.F32 <Sd>, <Sn>, <Sm> 2 <Sn>, <Sm> 16

VSQRT.F32 <Sd>, <Sm> 2 <Sm> 16

VMOV.F32 <Sd>, #<imm> 1 - 1

VMOV.F32 <Sd>, <Sm>e

e. Also VABS.F32 and VNEG.F32.

1 - 1

VCMP.F32 <Sd>, <Sm>f

f. Also VCMPE.F32.

1 <Sd>, <Sm> -

VCMPE.F32 <Sd>, #0.0f 1 <Sd> -

VCVT.F32.U32 <Sd>, <Sm>g

g. Also VCVT.F32.S32.

1 <Sm> 2

VCVT.F32.U32 <Sd>, <Sd>, #<fbits>h

h. Also VCVT.F32.U16, VCVT.F32.S32, and VCVT.F32.S16.

1 <Sd> 2

VCVTR.U32.F32 <Sd>, <Sm>i

i. Also VCVT.U32.F32, VCVTR.S32.F32, and VCVT.S32.F32.

1 <Sm> 2

VCVT.U32.F32 <Sd>, <Sd>, #<fbits>j

j. Also VCVT.U16.F32, VCVT.S32.F32, and VCVT.S16.F32.

1 <Sd> 2

VCVT.F64.F32 <Dd>, <Sn> 3 <Sm> 5
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-32
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.22 Floating-point double-precision data processing instructions
This section describes the cycle timing behavior for all double-precision VFP CDP instructions. 
This includes arithmetic instructions such as VMUL.F64, data and immediate moving instructions 
such as “VMOV.F64 <Dd>, #<imm>”, VABS.F64, VNEG.F64, and “VMOV <Dd>, <Dm>”, and comparison 
instructions and conversion instructions.

Table 14-27 shows the floating-point double-precision data processing instructions cycle timing 
behavior

Table 14-27 Floating-point double-precision data processing instructions cycle timing
behavior

Example instruction Cycles Early Reg Result latency

VMLA.F64 <Dd>, <Dn>, <Dm>a

a. Also VMLS.F64, VNMLS.F64, and VNMLA.F64.

13 <Dn>, <Dm> 19

VADD.F64 <Dd>, <Dn>, <Dm>b

b. Also VSUB.F64, VMUL.F64, and VNMUL.F64.

3 <Dn>, <Dm> 9

VDIV.F64 <Dd>, <Dn>, <Dm> 3 <Dn>, <Dm> 96

VSQRT.F64 <Dd>, <Dm> 3 <Dm> 96

VMOV.F64 <Dd>, #<imm> 1 - 1

VMOV.F64 <Dd>, <Dm>c

c. Also VABS.F64 and VNEG.F64.

1 - 1

VCMP.F64 <Dd>, <Dm>d

d. Also VCMPE.F64.

2 <Dd>, <Dm> -

VCMPE.F64 <Dd>, #0.0d 2 <Dm> -

VCVT.F64.U32 <Dd>, <Sm>e

e. Also VCVT.F64.S32.

3 <Dm> 7

VCVT.F64.U32 <Dd>, <Dd>, #<fbits>f

f. Also VCVT.F64.U16, VCVT.F64.S32, and VCVT.F64.S16.

3 <Dd> 7

VCVTR.U32.F64 <Sd>, <Dm>g

g. Also VCVT.U32.F64, VCVTR.S32.F64, and VCVT.S32.F64.

3 <Dm> 7

VCVT.U32.F64 <Dd>, <Dd>, #<fbits>h

h. Also VCVT.U16.F64, VCVT.S32.F64, and VCVT.S16.F64.

3 <Dd> 7

VCVT.F32.F64 <Sd>, <Dn> 3 <Dm> 7
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-33
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.23 Dual issue
To increase instruction throughput, the processor can issue certain pairs of instructions 
simultaneously. This is called dual issue. When this happens, the instruction with the smaller 
cycle count is assumed to execute in zero cycles. If a pair of instructions can be dual-issued, they 
are always dual-issued unless dual-issuing is disabled, see Auxiliary Control Registers on 
page 4-38. If one instruction of the pair is interlocked, both are interlocked. 

This section describes:
• Dual issue rules
• Permitted combinations on page 14-35

14.23.1 Dual issue rules

The following rules apply to dual-issue instructions:

• Both instructions must be available to the issue stage at the same time. This is unlikely if 
there are many branches.

• The second instruction must not use the PC as a source register unless it is B #immed.

• The first instruction must not use the PC as a destination register.

• Both instructions must belong to the same instruction set, ARM or Thumb.

• There must be no data dependency between the two instructions. That is, the second 
instruction must not have any source registers that are destination registers of the first 
instruction.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-34
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
14.23.2 Permitted combinations

Table 14-28 lists the permitted instruction combinations. Any instruction can be conditional or 
flag-setting unless otherwise stated. Only the exact instruction combinations listed in 
Table 14-28 can be dual issued, provided you ensure the instruction combinations obey the rules 
specified in Dual issue rules on page 14-34.

Table 14-28 Permitted instruction combinations

Dual issue 
case First instruction Second instruction

Case A Any instruction other than load/store multiple/double, 
flag-setting multiply, non-VFP coprocessor operations, 
miscellaneous processor control instructionsa, or floating 
point instructions if floating point logic is not included in 
the processor

B #immed

IT

NOP

Case A-Fb Any floating point instructions, excluding load/store 
multiple, double precision CDP instructions, VCVT.F64.F32, 
and VMRS and VMSR.

Case B1 LDR <Rt>, [<Rn>, #<imm>]c

LDR <Rt>, [<Rn>, <Rm>]c

LDR <Rt>, [<Rn>, <Rm>, LSL #1, 2 or 3]c

Any data processing instruction that does not 
require a shift by a register value.d

Any bitfield, saturate or bit-packing 
instruction.e

Any signed or unsigned extend instruction.f

Any SIMD add or subtract instruction.g

Other miscellaneous instructions.h

Case B1-Fb Any single-precision CDPi, excluding 
"VMOV.F32 <Sd>, #<imm>", VNEG.F32, VABS.F32, 
VCVT.F64.F32, VDIV.F32, and VSQRT.F32.
32-bit transfers to and from the floating-point 
register filel.

Case B2 STR <Rt>, [<Rn>, #<imm>]c As for Case B1.

Case B2-Fb As for Case B1-F

Case C MOV <Rd>, #immedjk

MOVW <Rd>, #immedj

MOV <Rd>, <Rm>j

Any data processing instruction.d

Any bitfield, saturate or bit-packing 
instruction.e

Any signed or unsigned extend instruction.f

Any SIMD add or subtract instruction.g

Other miscellaneous instructions.h

Case C-Fb 32-bit transfers to and from the floating-point 
register filel.

Case F1b,m Any single-precision CDPi, excluding "VMOV.S32 <Sd>, 
#<imm>", VCVT.F64.F32, VABS.F32, and VNEG.F32.

As for case C or C-F.

Case F2_ldb VLDR.F32n As for Case B1 or Case B1-F
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-35
ID013010 Non-Confidential, Unrestricted Access



Cycle Timings and Interlock Behavior 
Case F2_stb VSTR.F32n As for Case B1.
Any single-precision CDPi, excluding 
multiply-accumulate instructionso.
32-bit transfers to and from the floating-point 
register filel.

Case F2Db VLDR.F64n As for Case B1.

Case F3b 32-bit transfers to and from the floating-point register 
filel

"VMOV.F32 <Sd>, <Sd>, <Sm>", VABS.F32, and VNEG.F32.

As for Case F2_st.

Case F4b Any instruction that does not set flags, other than 
load/store multiple/double, non-VFP coprocessor 
operations, multi-cycle multiply instructionsp, double 
precision floating point CDP instructions, VCVT.F64.F32, or 
a miscellaneous processor control instructiona

Any single-precision CDPi, excluding 
"VMOV.F32 <Sd>, #<imm>", VNEG.F32, VABS.F32, 
VCVT.F64.F32, VDIV.F32, and VSQRT.F32.
32-bit transfers to and from the floating-point 
register filel.

Case F6b VMRS r15, FPSCR As for Case A.

a. These are processor state updating instructions, synchronization instructions, SVC, BKPT, prefetch abort and Undefined 
instructions.

b. This case can only occur if floating-point functionality has been configured for the Cortex-R4F processor, see Configurable 
options on page 1-13.

c. You can substitute LDR with LDRB, LDRH, LDRSB, or LDRSH. You can also substitute STR with STRB or STRH.
d. Data processing instructions are ADC, ADD, ADDW, AND, ASR, BIC, CLZ, CMN, CMP, EOR, LSL, LSR, MOV, MOVT, MOVW, MVN, ORN, ORR, ROR, RRX, 

RSB, SBC, SUB, SUBW, TEQ, and TST.
e. Bitfield, saturate, and bit-packing instructions are BFC, BFI, PKHBT, PKHTB, QADD, QDADD, QDSUB, QSUB, SBFX, SSAT, SSAT16, UBFX, USAT, 

and USAT16.
f. Signed or unsigned extend instructions are SXTAB, SXTAB16, SXTAH, SXTB, SXTB16, SXTH, UXTAB, UXTAB16, UXTAH, UXTB, UXTB16, and 

UXTH.
g. SIMD add and subtract instructions are QADD16, QADD8, QASX, SQUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SHADD16, SHADD8, SHASX, 

SHSUB16, SHSUB8, SHSAX, SSUB16, SSUB8, SSAX, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, 
UQASX, UQSUB16, UQSUB8, UQSAX, USUB16, USUB8, and USAX.

h. Other miscellaneous instructions are RBIT, REV, REV16, REVSH, and SEL.
i. Single-precision CDPs are VABS.F32, VNEG.F32, "VMOV.F32 <Sd>, #<imm>", VMLA.F32, VMLS.F32, VNMLS.F32, VNMLA.F32, VMUL.F32, 

VNMUL.F32, VADD.F32, VSUB.F32, VDIV.F32, VSQRT.F32, VCMP.F32, VCMPE.F32, VCVT.F64.F32, VCVT.F32.U32, VCVT.F32.S32, 
VCVT.F32.U16, VCVT.F32.S16, VCVTR.U32.F32, VCVT.U32.F32, VCVTR.S32.F32, VCVT.S32.F32, VCVT.U16.F32, and VCVT.S16.F32.

j. Must not be flag-setting.
k. Immediate value must not require a shift.
l. 32-bit transfers to or from the floating point register file include single or half-double floating point register transfers, including 

"VMOV <Sn>, <Rt>", "VMOV <Dn[x]>, <Rt>", "VMOV <Rt>, <Dn[x]>", and "VMOV <Rt>, <Sn>", but excluding VMRS and VMSR.
m. When the first instruction is a floating point multiply-accumulate, and the second instruction is a 32-bit transfer to the 

floating-point register file, case F1 can only occur if the two instructions have different destination registers.
n. Any addressing modes.
o. Single-precision floating-point multiply-accumulate instructions are VMLA.F32, VMLS.F32, VNMLS.F32, and VNMLA.F32.
p. Multi-cycle multiply instructions are SMMUL, SMMLA, SMMLS, MUL, MLA, MLS, SMULL, SMLAL, UMAAL, UMULL, and UMLAL.

Table 14-28 Permitted instruction combinations (continued)

Dual issue 
case First instruction Second instruction
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 14-36
ID013010 Non-Confidential, Unrestricted Access



Chapter 15 
AC Characteristics

This chapter gives the timing parameters for the processor. It contains the following sections:
• Processor timing on page 15-2
• Processor timing parameters on page 15-3.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-1
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
15.1 Processor timing
The AXI bus interface of the processor conforms to the AMBA AXI Specification. For the 
relevant timing of the AXI write and read transfers, and the error response, see the AMBA AXI 
Protocol v1.0 Specification.

The APB debug interface of the processor conforms to the AMBA 3 APB Protocol v1.0 
Specification. For the relevant timing of the APB write and read transfers, and the error 
response, see the AMBA 3 APB Protocol v1.0 Specification.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-2
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
15.2 Processor timing parameters
This section describes the input and output port timing parameters for the processor. 

The maximum timing parameter or constraint delay for each processor signal applied to the SoC 
is given as a percentage in Table 15-1 to Table 15-17 on page 15-11. The input and output delay 
columns provide the maximum and minimum time as a percentage of the processor clock cycle 
given to the SoC for that signal.

This section describes:
• Input port timing parameters
• Output ports timing parameters on page 15-8.

15.2.1 Input port timing parameters

Table 15-1 shows the timing parameters for the miscellaneous input ports.

Table 15-2 shows the timing parameters for the configuration input port.

Table 15-1 Miscellaneous input ports timing parameters:

Input delay 
minimum

Input delay 
maximum Signal name

Clock uncertainty 10% nRESET

Clock uncertainty 10% nSYSPORESET

Clock uncertainty 10% PRESETDBGn

Clock uncertainty 50% nCPUHALT

Clock uncertainty 20% DBGNOCLKSTOP

Table 15-2 Configuration input port timing parameters

Input delay 
minimum

Input delay 
maximum Signal name

Clock uncertainty 20% VINITHI

Clock uncertainty 20% CFGEE

Clock uncertainty 20% CFGIE

Clock uncertainty 20% INITRAMA

Clock uncertainty 20% INITRAMB

Clock uncertainty 20% LOCZRAMA

Clock uncertainty 20% TEINIT

Clock uncertainty 20% CFGNMFI

Clock uncertainty 20% CFGATCMSZ[3:0]

Clock uncertainty 20% CFGBTCMSZ[3:0]

Clock uncertainty 20% PARECCENRAM[2:0]

Clock uncertainty 20% ERRENRAM[2:0]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-3
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-3 shows the timing parameters for the interrupt input ports.

Table 15-4 shows the input timing parameters for the AXI master port.

Clock uncertainty 20% PARLVRAM

Clock uncertainty 20% ENTCM1IF

Clock uncertainty 20% SLBTCMSB

Clock uncertainty 20% RMWENRAM[1:0]

Table 15-3 Interrupt input ports timing parameters

Input delay 
minimum

Input delay 
maximum Signal name

Clock uncertainty 60% nFIQ

Clock uncertainty 60% nIRQ

Clock uncertainty 10% INTSYNCEN

Clock uncertainty 60% IRQADDRV

Clock uncertainty 60% IRQADDRVSYNCEN

Clock uncertainty 60% IRQADDR[31:2]

Table 15-4 AXI master input port timing parameters

Input delay 
minimum

Input 
delay 
maximum

Signal name

Clock uncertainty 50% ACLKENM

Clock uncertainty 60% AWREADYM

Clock uncertainty 60% WREADYM

Clock uncertainty 60% BIDM[3:0]

Clock uncertainty 60% BRESPM[1:0]

Clock uncertainty 60% BVALIDM

Clock uncertainty 60% ARREADYM

Clock uncertainty 60% RIDM[3:0]

Clock uncertainty 60% RDATAM[63:0]

Clock uncertainty 60% RRESPM[1:0]

Clock uncertainty 60% RLASTM

Table 15-2 Configuration input port timing parameters (continued)

Input delay 
minimum

Input delay 
maximum Signal name
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-4
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-5 shows the input timing parameters for the AXI slave port.

Clock uncertainty 60% RVALIDM

Clock uncertainty 60% BPARITYM

Clock uncertainty 60% RPARITYM

Table 15-5 AXI slave input port timing parameters

Input delay 
minimum

Input 
delay 
maximum

Signal name

Clock uncertainty 50% ACLKENS

Clock uncertainty 60% AWIDS[7:0]

Clock uncertainty 60% AWADDRS[22:0]

Clock uncertainty 60% AWLENS[3:0]

Clock uncertainty 60% AWSIZES[2:0]

Clock uncertainty 60% AWBURSTS[1:0]

Clock uncertainty 60% AWPROTS

Clock uncertainty 60% AWUSERS[3:0]

Clock uncertainty 60% AWVALIDS

Clock uncertainty 60% WDATAS[63:0]

Clock uncertainty 60% WSTRBS[7:0]

Clock uncertainty 60% WLASTS

Clock uncertainty 60% WVALIDS

Clock uncertainty 60% BREADYS

Clock uncertainty 60% ARIDS[7:0]

Clock uncertainty 60% ARADDRS[22:0]

Clock uncertainty 60% ARLENS[3:0]

Clock uncertainty 60% ARSIZES[2:0]

Clock uncertainty 60% ARBURSTS[1:0]

Clock uncertainty 60% ARPROTS

Clock uncertainty 60% ARUSERS[3:0]

Clock uncertainty 60% ARVALIDS

Clock uncertainty 60% RREADYS

Table 15-4 AXI master input port timing parameters (continued)

Input delay 
minimum

Input 
delay 
maximum

Signal name
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-5
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-6 shows the input timing parameters for the debug input ports.

Table 15-7 shows the input timing parameters for the ETM input ports.

Clock uncertainty 60% AWPARITYS

Clock uncertainty 60% WPARITYS

Clock uncertainty 60% ARPARITYS

Table 15-6 Debug input ports timing parameters

Input delay 
minimum

Input delay 
maximum Signal name

Clock uncertainty 50% DBGEN

Clock uncertainty 50% NIDEN

Clock uncertainty 50% EDBGRQ

Clock uncertainty 50% PCLKENDBG

Clock uncertainty 50% PSELDBG

Clock uncertainty 50% PADDRDBG[11:2]

Clock uncertainty 50% PADDRDBG31

Clock uncertainty 50% PWDATADBG[31:0]

Clock uncertainty 50% PENABLEDBG

Clock uncertainty 50% PWRITEDBG

Clock uncertainty 10% DBGROMADDR[31:12]

Clock uncertainty 10% DBGROMADDRV

Clock uncertainty 10% DBGSELFADDR[31:12]

Clock uncertainty 10% DBGSELFADDRV

Clock uncertainty 50% DBGRESTART

Table 15-7 ETM input ports timing parameters

Input delay 
minimum

Input delay 
maximum Signal name

Clock uncertainty 50% ETMPWRUP

Clock uncertainty 50% nETMWFIREADY

Clock uncertainty 50% ETMEXTOUT[1:0]

Table 15-5 AXI slave input port timing parameters (continued)

Input delay 
minimum

Input 
delay 
maximum

Signal name
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-6
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-8 shows the timing parameters for the test input ports.

Table 15-9 shows the timing parameters for the TCM interface input ports.

Table 15-8 Test input ports timing parameters

Input delay 
minimum

Input 
delay 
maximum

Signal name

Clock uncertainty 10% SE

Clock uncertainty 10% RSTBYPASS

Clock uncertainty 50% MBTESTON

Clock uncertainty 50% MBISTDIN[71:0]

Clock uncertainty 50% MBISTADDR[19:0]

Clock uncertainty 50% MBISTCE

Clock uncertainty 50% MBISTSEL[4:0]

Clock uncertainty 50% MBISTWE[7:0]

Table 15-9 TCM interface input ports timing parameters

Input delay 
minimum

Input 
delay 
maximum

Signal name

Clock uncertainty 65% ATCDATAIN[63:0]

Clock uncertainty 65% ATCPARITYIN[13:0]

Clock uncertainty 65% ATCERROR

Clock uncertainty 50% ATCWAIT

Clock uncertainty 40% ATCLATEERROR

Clock uncertainty 50% ATCRETRY

Clock uncertainty 65% B0TCDATAIN[63:0]

Clock uncertainty 65% B0TCPARITYIN[13:0]

Clock uncertainty 65% B0TCERROR

Clock uncertainty 50% B0TCWAIT

Clock uncertainty 40% B0TCLATEERROR

Clock uncertainty 50% B0TCRETRY

Clock uncertainty 65% B1TCDATAIN[63:0]

Clock uncertainty 65% B1TCPARITYIN[13:0]

Clock uncertainty 65% B1TCERROR
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-7
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
The timing parameters for the dual-redundant core compare logic input control buses, 
DCCMINP[7:0] and DCCMINP2[7:0], are implementation-defined. Contact the implementer 
of the macrocell you are working with.

15.2.2 Output ports timing parameters

Most output ports have a maximum output delay of 60%, that is the SoC is enabled to use 60% 
of the clock cycle.

Table 15-10 shows the timing parameter for the miscellaneous output port.

Table 15-11 shows the timing parameters for the interrupt output ports.

Table 15-12 shows the timing parameters for the AXI master output port.

Clock uncertainty 50% B1TCWAIT

Clock uncertainty 40% B1TCLATEERROR

Clock uncertainty 50% B1TCRETRY

Table 15-9 TCM interface input ports timing parameters (continued)

Input delay 
minimum

Input 
delay 
maximum

Signal name

Table 15-10 Miscellaneous output port timing parameter

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 10% STANDBYWFI

Table 15-11 Interrupt output ports timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 60%  IRQACK

Clock uncertainty 60% nPMUIRQ

Table 15-12 AXI master output port timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 60% AWIDM[3:0]

Clock uncertainty 60% AWADDRM[31:0]

Clock uncertainty 60% AWLENM[3:0]

Clock uncertainty 60% AWSIZEM[2:0]

Clock uncertainty 60% AWBURSTM[1:0]

Clock uncertainty 60% AWLOCKM[1:0]

Clock uncertainty 60% AWCACHEM[3:0]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-8
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-13 shows the timing parameters for the AXI slave output ports.

Clock uncertainty 60% AWPROTM[2:0]

Clock uncertainty 60% AWUSERM[4:0]

Clock uncertainty 60% AWVALIDM

Clock uncertainty 60% WIDM[3:0]

Clock uncertainty 60% WDATAM[63:0]

Clock uncertainty 60% WSTRBM[7:0]

Clock uncertainty 60% WLASTM

Clock uncertainty 60% WVALIDM

Write response channel

Clock uncertainty 60% BREADYM

Clock uncertainty 60% ARIDM[3:0]

Clock uncertainty 60% ARADDRM[31:0]

Clock uncertainty 60% ARLENM[3:0]

Clock uncertainty 60% ARSIZEM[2:0]

Clock uncertainty 60% ARBURSTM[1:0]

Clock uncertainty 60% ARLOCKM[1:0]

Clock uncertainty 60% ARCACHEM[3:0]

Clock uncertainty 60% ARPROTM[2:0]

Clock uncertainty 60% ARUSERM[4:0]

Clock uncertainty 60% ARVALIDM

Clock uncertainty 60% RREADYM

Clock uncertainty 60% AWPARITYM

Clock uncertainty 60% WPARITYM

Clock uncertainty 60% ARPARITYM

Clock uncertainty 50% AXIMPARERR[1:0]

Table 15-13 AXI slave output ports timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 60% AWREADYS

Clock uncertainty 60% WREADYS

Clock uncertainty 60%  BIDS[7:0]

Table 15-12 AXI master output port timing parameters (continued)

Output delay 
minimum

Output delay 
maximum Signal name
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-9
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-14 shows the timing parameters for the debug interface output ports.

Clock uncertainty 60% BRESPS[1:0]

Clock uncertainty 60% BVALIDS

Clock uncertainty 60% ARREADYS

Clock uncertainty 60% RIDS[7:0]

Clock uncertainty 60% RDATAS[63:0]

Clock uncertainty 60% RRESPS[1:0]

Clock uncertainty 60% RLASTS

Clock uncertainty 60% RVALIDS

Clock uncertainty 60% BPARITYS

Clock uncertainty 60% RPARITYS

Clock uncertainty 50% AXISPARERR[2:0]

Table 15-14 Debug interface output ports timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 50% PRDATADBG[31:0]

Clock uncertainty 50% PREADYDBG

Clock uncertainty 50% PSLVERRDBG

Clock uncertainty 50% DBGNOPWRDWN

Clock uncertainty 50% DBGACK

Clock uncertainty 50% DBGTRIGGER

Clock uncertainty 50% DBGRESTARTED

Clock uncertainty 50% DBGRSTREQ

Clock uncertainty 50% COMMTX

Clock uncertainty 50% COMMRX

Table 15-13 AXI slave output ports timing parameters (continued)

Output delay 
minimum

Output delay 
maximum Signal name
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-10
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-15 shows the timing parameters for the ETM interface output ports.

Table 15-16 shows the timing parameters for the test output ports.

Table 15-17 shows the timing parameters for the TCM interface output ports.

Table 15-15 ETM interface output ports timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 50% ETMICTL[13:0]

Clock uncertainty 50% ETMIA[31:1]

Clock uncertainty 50% ETMDCTL[11:0]

Clock uncertainty 50% ETMDA[31:0]

Clock uncertainty 50% ETMDD[63:0]

Clock uncertainty 50% ETMCID[31:0]

Clock uncertainty 50% ETMWFIPENDING

Clock uncertainty 50% EVNTBUS[46:0]

Table 15-16 Test output ports timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 50% MBISTDOUT[71:0]

Clock uncertainty 50% nVALIRQ

Clock uncertainty 50% nVALFIQ

Clock uncertainty 50% nVALRESET

Clock uncertainty 50% VALEDBGRQ

Table 15-17 TCM interface output ports timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 45% ATCEN0

Clock uncertainty 45% ATCEN1

Clock uncertainty 45% ATCADDR[22:3]

Clock uncertainty 45% ATCBYTEWR[7:0]

Clock uncertainty 45% ATCSEQ

Clock uncertainty 45% ATCDATAOUT[63:0]

Clock uncertainty 45% ATCPARITYOUT[13:0]

Clock uncertainty 45% ATCACCTYPE[2:0]

Clock uncertainty 45% ATCWE
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-11
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
Table 15-18 shows the timing parameters for the FPU output signals.

Clock uncertainty 45% ATCADDRPTY

Clock uncertainty 45% B0TCEN0

Clock uncertainty 45% B0TCEN1

Clock uncertainty 45% B0TCADDR[22:3]

Clock uncertainty 45% B0TCBYTEWR[7:0]

Clock uncertainty 45% B0TCSEQ

Clock uncertainty 45% B0TCDATAOUT[63:0]

Clock uncertainty 45% B0TCPARITYOUT[13:0]

Clock uncertainty 45% B0TCACCTYPE[2:0]

Clock uncertainty 45% B0TCWE

Clock uncertainty 45% B0TCADDRPTY

Clock uncertainty 45% B1TCEN0

Clock uncertainty 45% B1TCEN1

Clock uncertainty 45% B1TCADDR[23:0]

Clock uncertainty 45% B1TCBYTEWR[7:0]

Clock uncertainty 45% B1TCSEQ

Clock uncertainty 45% B1TCDATAOUT[63:0]

Clock uncertainty 45% B1TCPARITYOUT[13:0]

Clock uncertainty 45% B1TCACCTYPE[2:0]

Clock uncertainty 45% B1TCWE

Clock uncertainty 45% B1TCADDRPTY

Table 15-18 FPU output port timing parameters

Output delay 
minimum

Output delay 
maximum Signal name

Clock uncertainty 60% FPIXC

Clock uncertainty 60% FPOFC

Clock uncertainty 60% FPUFC

Clock uncertainty 60% FPIOC

Clock uncertainty 60% FPDZC

Clock uncertainty 60% FPIDC

Table 15-17 TCM interface output ports timing parameters (continued)

Output delay 
minimum

Output delay 
maximum Signal name
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-12
ID013010 Non-Confidential, Unrestricted Access



AC Characteristics 
The timing parameters for the dual-redundant core compare logic output buses, 
DCCMOUT[7:0] and DCCMOUT2[7:0], are implementation-defined. Contact the 
implementer of the macrocell you are working with.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. 15-13
ID013010 Non-Confidential, Unrestricted Access



Appendix A 
Processor Signal Descriptions

This appendix describes the processor signals. It contains the following sections:
• About the processor signal descriptions on page A-2
• Global signals on page A-3
• Configuration signals on page A-4
• Interrupt signals, including VIC interface signals on page A-7
• L2 interface signals on page A-8
• TCM interface signals on page A-13
• Dual core interface signals on page A-16
• Debug interface signals on page A-17
• ETM interface signals on page A-19
• Test signals on page A-20
• MBIST signals on page A-21
• Validation signals on page A-22
• FPU signals on page A-23.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-1
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.1 About the processor signal descriptions
The tables in this appendix list the processor signals, along with their dimensions and direction, 
input or output, and a high-level description. Each table also has a clocking column, that 
indicates by which clock a signal is sampled or driven. All signals are sampled on or driven from 
the rising edge of the clock. The clocking column can also contain the following information:
Any Means the input is synchronised inside the processor, so the input can be driven 

from any clock.
Tie-off Means the input must be tied to a fixed value.
Reset Means the input must only be changed under reset.

Clocking is listed for all outputs, though some are typically synchronized into a different clock 
before use. 
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-2
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.2 Global signals
Table A-1 shows the processor global signals.

The free clock is ungated, with minimal insertion delay, because it clocks the clock gating 
circuits. Therefore, you must ensure that incoming clocks are balanced with the free clock.

Table A-1 Global signals

Signal Direction Clocking Description

FREECLKIN Input - Free version of the core clock.

CLKIN Input - Core clock.

CLKIN2 Input - Core clock, in phase with DUALCKLIN, for configurations 
with dual-redundant core.a

nRESET Input Any Core reset.

nSYSPORESET Input Any System power on reset.

nCPUHALT Input Any Processor halt after reset.

DBGNOCLKSTOP Input Any Processor does not stop the clocks when entering WFI state.a

DUALCLKIN Input - Clock for second, redundant, core.a

DUALCLKIN2 Input - Clock for second, redundant, core, in phase with CLKIN.a

STANDBYWFI Output FREECLKIN Indicates that the processor is in Standby mode and the 
processor clock is stopped. You can use this signal for TCMs 
RAM clock gating.

a. Not available in r0px revisions of the processor.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-3
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.3 Configuration signals
Table A-2 shows the processor configuration signals.

Table A-2 Configuration signals

Signal Direction Clocking Description

VINITHI Input Tie-off, 
Reset

Reset V-bit value. When HIGH indicates HIVECS mode at reset. 
See c1, System Control Register on page 4-35 for more 
information.

CFGEE Input Tie-off, 
Reset

Reset EE-bit value. When HIGH indicates the implementation 
uses BE-8 mode for exceptions at reset. See c1, System Control 
Register on page 4-35 for more information.

CFGIE Input Tie-off, 
Reset

Instruction side endianness, reflected in the IE-bit. When HIGH 
indicates that big endian instruction fetch is used. See c1, System 
Control Register on page 4-35 for more information.

INITRAMA Input Tie-off,
Reset

Reset value of ATCM enable bit. When HIGH indicates 
Tightly-Coupled Memory A, ATCM, enabled at reset. See c9, 
ATCM Region Register on page 4-58 for more information.

INITRAMB Input Tie-off,
Reset

Reset value of BTCM bit. When HIGH indicates 
Tightly-Coupled Memory B, BTCM, enabled at reset. See c9, 
BTCM Region Register on page 4-57 for more information.

LOCZRAMA Input Tie-off,
Reset

When HIGH indicates ATCM initial base address is zero and 
BTCM base address is implementation-defined.
When LOW indicates BTCM initial base address is zero and 
ATCM base address is implementation-defined.

TEINIT Input Tie-off,
Reset

Reset TE-bit value. Determines exception handling state at reset. 
When set to:
0 = ARM
1 = Thumb.
See c1, System Control Register on page 4-35 for more 
information.

CFGATCMSZ[3:0] Input Tie-off Selects the ATCM size. The encodings for the TCM sizes are:
b0000 = 0KB
b0011 = 4KB
b0100 = 8KB
b0101 = 16KB
b0110 = 32KB
b0111 = 64KB
b1000 = 128KB
b1001 = 256KB
b1010 = 512KB
b1011 = 1MB
b1100 = 2MB
b1101 = 4MB
b1110 = 8MB.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-4
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
CFGBTCMSZ[3:0] Input Tie-off Selects the BTCM size. The encodings for the TCM sizes are:
b0000 = 0KB
b0011 = 4KB
b0100 = 8KB
b0101 = 16KB
b0110 = 32KB
b0111 = 64KB
b1000 = 128KB
b1001 = 256KB
b1010 = 512KB
b1011 = 1MB
b1100 = 2MB
b1101 = 4MB
b1110 = 8MB.

CFGNMFI Input Tie-off,
Reset

When HIGH, enable non-maskable Fast Interrupts. Reflected in 
the NMFI bit. See c1, System Control Register on page 4-35 for 
more information.

ENTCM1IF Input Tie-off Enable B1TCM interface.
Use B0TCM only if this signal not tied HIGH.

PARECCENRAM[2:0] Input Tie-off,
Reset

TCMs parity or ECC check enable. Tie each bit HIGH to enable 
parity or ECC checking on the appropriate TCM at reset. Use 
following values:
2:B1TCMa 
1: B0TCMa

0: ATCM
See Auxiliary Control Registers on page 4-38 for more 
information.

PARLVRAM Input Tie-off, 
Reset

Selects between odd and even parity for caches, TCMs, and 
buses. See Chapter 8 Level One Memory System:
Tie LOW for even parity
Tie HIGH for odd parity.

Table A-2 Configuration signals (continued)

Signal Direction Clocking Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-5
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
ERRENRAM[2:0] Input Tie-off, 
Reset

TCMs external error enable. Tie each bit high to enable the 
external error signals for each TCM at reset. Use the following 
values:
2: B1TCM
1: B0TCM
0: ATCM
See Auxiliary Control Registers on page 4-38 for more 
information.

RMWENRAM[1:0]b Input Tie-off, 
Reset

RMW enable bits reset values. Tie each bit high to enable 
read-modify-write for TCM interfaces at reset.c Use the 
following values:
1: BTCM
0: ATCM
See Auxiliary Control Registers on page 4-38 for more 
information.

SLBTCMSB Input Tie-off Use most significant bit of BTCM address to select B1TCM if 
this signal is HIGH.
Use bit [3] of the BTCM address if this signal is LOW.

a. If the BTCM is configured with ECC, bit[2] and bit[1] must be the same value.
b. Not used if 32-bit ECC is included.
c. Not available in r0px revisions of the processor.

Table A-2 Configuration signals (continued)

Signal Direction Clocking Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-6
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.4 Interrupt signals, including VIC interface signals
Table A-3 shows the Interrupt signals including signals used on the VIC interface.

Table A-3 Interrupt signals

Signal Direction Clocking Description

nFIQ Input CLKINa

Anyb
Fast interruptc.

nIRQ Input CLKINa

Anyb
Normal interruptc.

INTSYNCEN Input Tie-off Tie HIGH if the interrupt inputs are asynchronous to CLKIN.
Tie LOW if the interrupt inputs are synchronous to CLKIN.

IRQADDRV Input CLKINd

Anye
Indicates IRQADDR is valid.

IRQADDRVSYNCEN Input Tie-off Tie HIGH if the IRQADDRV input from the VIC is 
asynchronous to CLKIN.
Tie HIGH if the IRQADDRV input from the VIC is 
synchronous to CLKIN.

IRQADDR [31:2] Input - Address of the IRQ. This signal must be stable when 
IRQADDRV is asserted.

IRQACK Output CLKIN Acknowledges interrupt.

nPMUIRQ Output CLKIN Interrupt request by Performance Monitor Unit (PMU).

a. When INTSYNCEN is tied LOW
b. When INTSYNCEN is tied HIGH
c. This signal is level-sensitive and must be held LOW until a suitable interrupt response is received from the processor.
d. When IRQADDRVSYNCEN is tied LOW
e. When IRQADDRVSYCNEN is tied HIGH
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-7
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.5 L2 interface signals
This section describes the processor L2 interface AXI signals. For more information on 
Advanced Microcontroller Bus Architecture (AMBA) AXI signals see the AMBA AXI Protocol 
Specification.

Note
 All the outputs listed in this section have their reset values during standby.

A.5.1 AXI master port

Table A-4 shows the AXI master port signals for the L2 interface. With the exception of the 
ACLKENM, all signals are only sampled or driven on CLKIN edges when ACLKENM is 
asserted, see AXI interface clocking on page 3-9 for more information.

Table A-4 AXI master port signals for the L2 interface

Signal Direction Clocking Description

ACLKENM Input CLKIN Clock enable for the AXI master port.

Write address channel

AWADDRM[31:0] Output CLKIN Transfer start address.

AWBURSTM[1:0] Output CLKIN Write burst type.

AWCACHEM[3:0] Output CLKIN Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the 
pre-ARMv6 terms such as cacheable-bufferable. These terms 
are equivalent to the ARMv6 memory-type descriptions such as 
Normal, Non-cacheable used here.

AWIDM[3:0] Output CLKIN The identification tag for the write address group of signals.

AWLENM [3:0] Output CLKIN Write transfer burst length. The transfer burst length range is 
from one to 16. A 4-bit binary value minus one determines the 
transfer burst length.

AWLOCKM[1:0] Output CLKIN Lock signal.

AWPROTM[2:0] Output CLKIN Protection type. Only bit [0] is used from the 3-bit AXI bus.

AWREADYM Input CLKIN Address ready. The slave uses this signal to indicate that it can 
accept the address.

AWSIZEM[2:0] Output CLKIN Indicates the size of the transfer.

AWUSERM[4:0] Output CLKIN Provides decode information for the write address channel. See 
Table 9-3 on page 9-5 for information about the encoding of this 
signal.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-8
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
AWVALIDM Output CLKIN Indicates address and control are valid.

Write data channel

WDATAM[63:0] Output CLKIN Write data.

WIDM[3:0] Output CLKIN The identification tag for the write data group of signals. 

WLASTM Output CLKIN Indicates the last data transfer of a burst.

WREADYM Input CLKIN Indicates that the slave is ready to accept write data

WSTRBM[7:0] Output CLKIN Write strobes used to indicate which byte lanes must be updated.

WVALIDM Output CLKIN Indicates address and control are valid.

Write response channel

BIDM [3:0] Input CLKIN The identification tag for the write response signal.

BREADYM Output CLKIN Indicates that the core is ready to accept write response.

BRESPM[1:0] Input CLKIN Write response.

BVALIDM Input CLKIN Indicates that a valid write response is available.

Read address channel

ARADDRM[31:0] Output CLKIN Instruction fetch burst start address.

ARBURSTM[1:0] Output CLKIN Burst type.

ARCACHEM[3:0] Output CLKIN Provides decode information for outer attributes:
b0000 = Strongly Ordered.
b0001 = Device.
b0011 = Normal, Non-cacheable.
b0110 = Normal, Cacheable. write-through.
b1111 = Normal, Cacheable. write-back, write allocation.
b0111 = Normal, Cacheable. write-back, no write allocation.

Note
 The AXI specification describes these encodings using the 
pre-ARMv6 terms such as cacheable-bufferable. These terms 
are equivalent to the ARMv6 memory-type descriptions such as 
Normal, Non-cacheable used here.

ARIDM[3:0] Output CLKIN Identification tag for the read address group of signals

ARLENM [3:0] Output CLKIN Instruction fetch burst length.

ARLOCKM[1:0] Output CLKIN Lock signal.

ARPROTM[2:0] Output CLKIN Protection signals provide addition information about a bus 
access.

ARREADYM Input CLKIN Address ready. The slave uses this signal to indicate that it can 
accept the address.

ARSIZEM[2:0] Output CLKIN Indicates the size of the transfer.

Table A-4 AXI master port signals for the L2 interface (continued)

Signal Direction Clocking Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-9
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.5.2 AXI master port error detection signals

Table A-5 shows the AXI master port error detection signals. these signals are only generated if 
the processor is configured to include AXI bus parity. See Configurable options on page 1-13 
for more information.

A.5.3 AXI slave port

Table A-6 shows the AXI slave port signals for the L2 interface. With the exception of the 
ACLKENS, all signals are only sampled or driven on CLKIN edges when ACLKENS is 
asserted, see AXI interface clocking on page 3-9 for more information.

ARUSERM[4:0] Output CLKIN Provides decode information for the read address channel. See 
Table 9-3 on page 9-5 for information about the encoding of this 
signal.

ARVALIDM Output CLKIN Indicates address and control are valid.

Read Data Channel

RDATAM[63:0] Input CLKIN Read Data.

RIDM[3:0] Input CLKIN The identification tag for the read data group of signals.

RLASTM Input CLKIN Indicates the last transfer in a read burst.

RREADYM Output CLKIN Read ready signal indicating that the bus master can accept read 
data and response information.

RRESPM[1:0] Input CLKIN Read response.

RVALIDM Input CLKIN Indicates that read data is available.

Table A-4 AXI master port signals for the L2 interface (continued)

Signal Direction Clocking Description

Table A-5 AXI master port error detection signals

Signal Direction Clocking Description

AWPARITYM Output CLKIN Parity bit for write address channel

WPARITYM Output CLKIN Parity bit for write data channel

BPARITYM Input CLKIN Parity bit for write response channel

ARPARITYM Output CLKIN Parity bit for read address channel

RPARITYM Input CLKIN Parity bit for read data channel

AXIMPARERR[1:0] Output CLKIN Parity error indication for read data (bit [1]) and write response 
(bit[0]) channels

Table A-6 AXI slave port signals for the L2 interface

Signal Direction Clocking Description

ACLKENS Input CLKIN Clock enable for the AXI slave port.

Write Address Channel

AWADDRS[22:0] Input CLKIN Transfer start address.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-10
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
AWBURSTS[1:0] Input CLKIN Write burst type.

AWIDS[7:0] Input CLKIN The identification tag for the write address group of signals.

AWLENS[3:0] Input CLKIN Write transfer burst length. The transfer burst length range is from 
one to 16. A four bit binary value minus one determines the 
transfer burst length.

AWPROTS Input CLKIN Protection information, privileged/normal access. AWPROT[0] in 
AXI specification.

AWREADYS Output CLKIN Address ready. The slave uses this signal to indicate that it can 
accept the address.

AWSIZES[2:0] Input CLKIN Indicates the size of the transfer.

AWUSERS[3:0] Input CLKIN Memory type select data cache, instruction cache, BTCM or 
ATCM, one hot. AWUSERS[3:0] signal is not part of the standard 
AXI specification.

AWVALIDS Input CLKIN Indicates address and control are valid.

Write Data Channel

WDATAS[63:0] Input CLKIN Write data.

WLASTS Input CLKIN Indicates the last data transfer of a burst.

WREADYS Output CLKIN Indicates that the slave is ready to accept write data.

WSTRBS[7:0] Input CLKIN Write strobes used to indicate which byte lanes must be updated.

WVALIDS Input CLKIN Indicates address and control are valid.

Write Response Channel

BIDS[7:0] Output CLKIN The identification tag for the write response signal.

BREADYS Input CLKIN Indicates that the core is ready to accept write response.

BRESPS[1:0] Output CLKIN Write response.

BVALIDS Output CLKIN Indicates that a valid write response is available.

Read Address Channel

ARADDRS[22:0] Input CLKIN Instruction fetch burst start address.

ARBURSTS[1:0] Input CLKIN Burst type.

ARIDS[7:0] Input CLKIN Identification tag for the read address group of signals.

ARLENS[3:0] Input CLKIN Instruction fetch burst length.

ARPROTS Input CLKIN Protection information, privileged/normal access. ARPROT[0] in 
AXI specification. 

ARREADYS Output CLKIN Address ready. The slave uses this signal to indicate that it can 
accept the address.

ARSIZES[2:0] Input CLKIN Indicates the size of the transfer.

Table A-6 AXI slave port signals for the L2 interface (continued)

Signal Direction Clocking Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-11
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.5.4 AXI slave port error detection signals

Table A-7 shows the AXI slave port error detection signals. These signals are only generated if 
the processor is configured to include AXI bus parity. See Configurable options on page 1-13 
for more information.

ARUSERS[3:0] Input CLKIN Memory type select {data cache, instruction cache, BTCM or 
ATCM}, one hot. AWUSERS[3:0] signal is not part of the 
standard AXI specification.

ARVALIDS Input CLKIN Indicates address and control are valid.

Read Data Channel

RDATAS[63:0] Output CLKIN Read data.

RIDS[7:0] Output CLKIN The identification tag for the read data group of signals.

RLASTS Output CLKIN Indicates the last transfer in a read burst.

RREADYS Input CLKIN Read ready signal indicating that the bus master can accept read 
data and response information.

RRESPS[1:0] Output CLKIN Read response.

RVALIDS Output CLKIN Indicates address and control are valid.

Table A-6 AXI slave port signals for the L2 interface (continued)

Signal Direction Clocking Description

Table A-7 AXI slave port error detection signals

Signal Direction Clocking Description

AWPARITYS Input CLKIN Parity bit for write address channel

WPARITYS Input CLKIN Parity bit for write data channel

BPARITYS Output CLKIN Parity bit for write response channel

ARPARITYS Input CLKIN Parity bit for read address channel

RPARITYS Output CLKIN Parity bit for read data channel

AXISPARERR[2:0] Output CLKIN Parity error indication for read address (bit [2]), write data (bit [1]), 
and write address (bit [0]) channels.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-12
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.6 TCM interface signals
Table A-8 shows the ATCM port signals.

Table A-9 shows the B0TCM port signals.

Table A-8 ATCM port signals

Name Direction Clocking Description

ATCDATAIN [63:0] Input CLKIN Data from ATCM

ATCPARITYIN [13:0] Input CLKIN Parity or ECC code from ATCM

ATCERROR Input CLKIN Error detected by ATCMa

ATCWAIT Input CLKIN Wait from ATCM

ATCLATEERROR Input CLKIN Late error from ATCMa

ATCRETRY Input CLKIN Access to ATCM must be retrieda

ATCADDRPTY Output CLKIN Parity formed from ATCM address outputb

ATCEN0 Output CLKIN Enable for ATCM lower word, bit range [31:0]

ATCEN1 Output CLKIN Enable for ATCM upper word, bit range [64:32]

ATCWE Output CLKIN Write enable for ATCM

ATCADDR [22:3] Output CLKIN Address for ATCM data RAM

ATCBYTEWR [7:0] Output CLKIN Byte strobes for direct write

ATCSEQ Output CLKIN ATCM RAM access is sequential

ATCDATAOUT [63:0] Output CLKIN Write data for ATCM data RAM

ATCPARITYOUT [13:0] Output CLKIN Write parity or ECC code for ATCM

ATCACCTYPE[2:0] Output CLKIN Determines access type:
b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTc.

a. This signal is ignored when bit [0] of the Auxiliary Control Register is set to 0, see c1, Auxiliary Control 
Register on page 4-38.

b. Only generated if the processor is configured to include TCM address bus parity.
c. The MBIST interface has no way of signalling a wait. If it is accessing the TCM, and the TCM signals a wait, 

the AXI slave pipeline stalls and the data arrives later. However, no signal is sent to the MBIST controller to 
indicate this.

Table A-9 B0TCM port signals

Name Direction Clocking Description

B0TCDATAIN [63:0] Input CLKIN Data from B0TCM

B0TCPARITYIN [13:0] Input CLKIN Parity or ECC code from B0TCM

B0TCERROR Input CLKIN Error detected by B0TCMa

B0TCWAIT Input CLKIN Wait from B0TCM
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-13
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
Table A-10 shows the B1TCM port signals.

B0TCLATEERROR Input CLKIN Late error from B0TCMa

B0TCRETRY Input CLKIN Access to B1TCM must be retrieda

B0TCADDRPTY Output CLKIN Parity formed from B0TCM address outputb

B0TCWE Output CLKIN Write enable for B0TCM

B0TCEN0 Output CLKIN Enable for B0TCM lower word, bit range [31:0]

B0TCEN1 Output CLKIN Enable for B0TCM upper word, bit range [64:32]

B0TCADDR [22:3] Output CLKIN Address for B0TCM data RAM

B0TCBYTEWR [7:0] Output CLKIN Byte strobes for direct write

B0TCSEQ Output CLKIN B0TCM RAM access is sequential

B0TCDATAOUT [63:0] Output CLKIN Write data for B0TCM data RAM

B0TCPARITYOUT [13:0] Output CLKIN Write parity or ECC code for B0TCM

B0TCACCTYPE[2:0] Output CLKIN Determines access type:
b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTc.

a. This signal is ignored when bit [1] of the Auxiliary Control Register is set to 0, see c1, Auxiliary Control Register 
on page 4-38.

b. Only generated if the processor is configured to include TCM address bus parity.
c. The MBIST interface has no way of signalling a wait. If it is accessing the TCM, and the TCM signals a wait, the 

AXI slave pipeline stalls and the data arrives later. However, no signal is sent to the MBIST controller to indicate 
this.

Table A-9 B0TCM port signals (continued)

Name Direction Clocking Description

Table A-10 B1TCM port signals

Name Direction Clocking Description

B1TCDATAIN [63:0] Input CLKIN Data from B1TCM

B1TCPARITYIN [13:0] Input CLKIN Parity or ECC code from B1TCM

B1TCERROR Input CLKIN Error detected by B1TCMa

B1TCRETRY Input CLKIN Access to B1TCM must be retrieda

B1TCLATEERROR Input CLKIN Late error from B1TCMa

B1TCWAIT Input CLKIN Wait from B1TCM

B1TCADDRPTY Output CLKIN Parity formed from B1TCM address outputb

B1TCWE Output CLKIN Write enable for B1TCM

B1TCEN0 Output CLKIN Enable for B1TCM lower word, bit range [31:0]

B1TCEN1 Output CLKIN Enable for B1TCM upper word, bit range [64:32]
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-14
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
B1TCADDR [22:3] Output CLKIN Address for B1TCM data RAM

B1TCBYTEWR [7:0] Output CLKIN Byte strobes for direct write

B1TCSEQ Output CLKIN B1TCM RAM access is sequential

B1TCDATAOUT [63:0] Output CLKIN Write data for B1TCM data RAM

B1TCPARITYOUT [13:0] Output CLKIN Write parity or ECC code for B1TCM

B1TCACCTYPE[2:0] Output CLKIN Determines access type:
b001 = Load/Store
b010 = Fetch
b100 = DMA
b100 = MBISTc.

a. This signal is ignored when bit [2] of the Auxiliary Control Register is set to 0, see c1, Auxiliary Control Register 
on page 4-38.

b. Only generated if the processor is configured to include TCM address bus parity.
c. The MBIST interface has no way of signalling a wait. If it is accessing the TCM, and the TCM signals a wait, the 

AXI slave pipeline stalls and the data arrives later. However, no signal is sent to the MBIST controller to indicate 
this.

Table A-10 B1TCM port signals (continued)

Name Direction Clocking Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-15
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.7 Dual core interface signals
Table A-11 shows the dual redundant core interface signals.

Table A-11 Dual core interface signals

Signal Direction Clocking Description

DCCMINP[7:0] Input -a

a. Implementation-defined.

Dual core compare logic input control bus

DCCMOUT[7:0] Output -a Dual core compare logic output control bus

DCCMINP2[7:0] Input -a Dual core compare logic extra input control busb

b. Not available in r0px revisions of the processor.

DCCMOUT2[7:0] Output -a Dual core compare logic extra output control busb
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-16
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.8 Debug interface signals
Table A-12 shows the debug interface signals. With the exception of PCLKDBG, 
PCLKENDBG and PRESETDBGn, all these signals are only sampled or driven on 
PCLKDBG edges when PCLKENDBG is asserted.

Table A-13 shows the debug miscellaneous signals.

Table A-12 Debug interface signals

Signal Direction Clocking Description

PCLKDBG Input - Debug clock.

PCLKENDBG Input PCLKDBG Clock enable for PCLKDBG.

PSELDBG Input PCLKDBG Selects the external debug interface.

PADDRDBG[11:2] Input PCLKDBG Programming address.

PADDRDBG31 Input PCLKDBG Programming address.

PRDATADBG[31:0] Output PCLKDBG Read data bus. 

PWDATADBG[31:0] Input PCLKDBG Write data bus.

PENABLEDBG Input PCLKDBG Indicates second, and subsequent, cycle of a transfer.

PREADYDBG Output PCLKDBG Extends a APB transfer by the inserting wait states.

PSLVERRDBG Output PCLKDBG Slave-generated error response.

PWRITEDBG Input PCLKDBG Indicates access is a write transfer.
Distinguishes between a read, LOW, and a write, HIGH.

PRESETDBGn Input Any Reset debug logic.

Table A-13 Debug miscellaneous signals

Name Direction Clocking Description

DBGEN Input Any Debug enable

NIDEN Input Any Non-invasive debug enable

EDBGRQ Input Any External debug request

DBGACK Output CLKIN Debug acknowledge

DBGRSTREQa Output PCLKDBG Request for reset from debug logic

DBGTRIGGER Output CLKIN External debug request taken

COMMRX Output CLKIN Write-DTR full

COMMTX Output CLKIN Read-DTR empty

DBGRESTART Input External restart request

DBGRESTARTED Output CLKIN Handshake for DBGRESTART

DBGNOPWRDWN Output PCLKDBG No power-down request

DBGROMADDR[31:12] Input Tie-off Debug ROM physical address
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-17
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
DBGROMADDRV Input Tie-off Debug ROM physical address valid

DBGSELFADDR[31:12] Input Tie-off Debug self-address offset

DBGSELFADDRV Input Tie-off Debug self-address offset valid

a. Not available in r0px revisions of the processor.

Table A-13 Debug miscellaneous signals (continued)

Name Direction Clocking Description
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-18
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.9 ETM interface signals
Table A-14 shows the ETM interface signals.

Table A-14 ETM interface signals

Signal Direction Clocking Description

ETMICTL[13:0] Output CLKIN ETM instruction control bus

ETMIA[31:1] Output CLKIN ETM instruction address

ETMDCTL[11:0] Output CLKIN ETM data control bus

ETMDA[31:0] Output CLKIN ETM data address

ETMDD[63:0] Output CLKIN ETM data-data

ETMCID[31:0] Output CLKIN Current value of processor CID register

ETMWFIPENDING Output CLKIN Core is attempting to enter WFI state

EVNTBUS[46:0] Output CLKIN Performance monitor unit output

ETMPWRUP Input CLKIN Power up ETM interface

nETMWFIREADY Input CLKIN ETM FIFO is empty, core can enter WFI state

ETMEXTOUT[1:0] Input CLKIN ETM detected events
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-19
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.10 Test signals
Table A-15 shows the test signals.

Table A-15 Test signals

Signal Direction Clocking Description

SE Input -a

a. Design for test only.

Scan Enable

RSTBYPASS Input -a Bypass pipelined reset
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-20
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.11 MBIST signals
Table A-16 shows the MBIST signals.

Table A-16 MBIST signals

Signal Direction Clocking Description

MBTESTON Input CLKIN MBIST test is enabled

MBISTDIN[77:0] Input CLKIN MBIST data in

MBISTADDR[19:0] Input CLKIN MBIST address

MBISTCE Input CLKIN MBIST chip enable

MBISTSEL[4:0] Input CLKIN MBIST chip select

MBISTWE [7:0] Input CLKIN MBIST write enable

MBISTDOUT[77:0] Output CLKIN MBIST data out
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-21
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.12 Validation signals
Table A-17 shows the validation signals.

Table A-17 Validation signals

Signal Direction Clocking Description

VALEDBGRQ Output CLKIN Debug request

nVALIRQ Output CLKIN Request for an interrupt

nVALFIQ Output CLKIN Request for a Fast Interrupt

nVALRESET Output CLKIN Request for a reset
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-22
ID013010 Non-Confidential, Unrestricted Access



Processor Signal Descriptions 
A.13 FPU signals
Table A-18 shows the FPU signals. These signals are only driven if the processor is configured 
to include the floating-point logic.

Table A-18 FPU signals

Signal Direction Clocking Description

FPIXC Output CLKIN Masked floating-point inexact exception

FPOFC Output CLKIN Masked floating-point overflow exception

FPUFC Output CLKIN Masked floating-point underflow exception

FPIOC Output CLKIN Masked floating-point invalid operation exception

FPDZC Output CLKIN Masked floating-point divide-by-zero exception

FPIDC Output CLKIN Masked floating-point input denormal exception
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. A-23
ID013010 Non-Confidential, Unrestricted Access



Appendix B 
ECC Schemes

This appendix describes some of the advantages and disadvantages of the different Error Checking 
and Correction (ECC) schemes for the TCMs. It contains the following section:
• ECC scheme selection guidelines on page B-2.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. B-1
ID013010 Non-Confidential, Unrestricted Access



ECC Schemes 
B.1 ECC scheme selection guidelines
When deciding to implement a Cortex-R4 processor with an ECC scheme on one or both of the 
TCM interfaces, give careful consideration between using 32-bit or 64-bit ECC. To calculate or 
check the ECC code for data, the processor must know the value of all bytes in the data chunk 
protected by the scheme. Therefore, when using these schemes, the processor must perform 
additional read accesses to calculate and check the ECC code stored with the data.

For example, if the ATCM is implemented with 32-bit ECC and a program performs an aligned 
STR to the memory, the processor can calculate the error correction code using only the data 
stored by the program.

If the same memory was implemented with 64-bit ECC, the processor cannot calculate the ECC 
code for the doubleword memory chunk being written using only the data stored by the program. 
To calculate the ECC code and store the data, the processor must first perform a read of the other 
word in that memory chunk. This increases the number of memory accesses required to execute 
the program. This increases power consumption, and can also lead to a decrease in performance.

Use the following guidelines to decide which scheme to use. If you are in any doubt, benchmark 
your system running typical software to find the best balance between area, power, and 
performance for your application.

• For a TCM interface that contains mainly instructions, use 64-bit ECC. The vast majority 
of reads requested by the prefetch unit are doubleword.

• Use 64-bit ECC when a TCM contains data that is accessed using:
— LDRD or STRD instructions where the start address is doubleword aligned
— LDM or STM instructions where the start address is doubleword aligned and there are 

an even number of registers in the register list.
64-bit ECC requires less RAM area, and does not provide any performance loss or 
increased power consumption over 32-bit ECC in these cases.

• When LDM and STM instructions are used to access many registers, the majority of TCM 
accesses do not require additional reads with 64-bit ECC.

• 32-bit ECC provides better power consumption and generally better performance 
compared to 64-bit ECC when:
— a program performs many unaligned accesses to data in a TCM
— a program performs many byte, halfword, and word accesses to data in a TCM.

You might be able to obtain optimal results by using a different error detection scheme on each 
TCM interface, and allocating instructions and data to each interface based on the guidelines 
given above.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. B-2
ID013010 Non-Confidential, Unrestricted Access



Appendix C 
Revisions

This appendix describes the technical changes between released issues of this book.

Table C-1 Differences between issue B and issue C

Change Location

Clarified the description of Thumb-2 technology and Thumb instructions • About the programmer’s model on 
page 2-2

• Abort exceptions on page 8-9

Clarified byte-invariant big-endian format Byte-invariant big-endian format on page 2-6

Clarified little-endian format Little-endian format on page 2-6

nCPUHALT removed from timing diagram Figure 3-1 on page 3-7

Added sections • AXI interface clocking on page 3-9
• Clock gating on page 3-9
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. C-1
ID013010 Non-Confidential, Unrestricted Access



Revisions 
Updated reset value information for:
• Cache Type Register
• MPU Type Register
• Instruction Set Attributes Register 1
• Instruction Set Attributes Register 4
• Current Cache Size Identification Register
• Current Cache Level ID Register 
• MPU Region Base Address Registers
• MPU Region Size and Enable Register
• MPU Region Access Control Register
• MPU Memory Region Number
• ATCM Region Register
• BTCM Region Register
• TCM selection Register
• Performance Monitor Control Register
• Software Increment Register
• User read/write Thread and Process ID Register
• User read-only Thread and Process ID Register
• Privileged-only Thread and Process ID Register
• Secondary Auxiliary Control Register
• Build Options 1 Register 
• Build Options 2 Register 
• Correctable Fault Location Register

Table 4-2 on page 4-9 

Updated Type information for the Coprocessor Access Register Table 4-2 on page 4-9

Clarified the description of the Instruction Set Attributes Register 3 • Figure 4-22 on page 4-30
• Table 4-17 on page 4-30

Clarified functions for bits [31], [30], [29], and 28] Table 4-24 on page 4-38

Clarified functions for bits [20], [19], [18], [17], [16], [3], and [2] Table 4-25 on page 4-42

Clarified instructions that the PFU recognizes as procedure calls and 
procedure returns

Return stack on page 5-5

Added reference to Application Note 204 Memory types on page 7-7

Added section Using memory types on page 7-7

Clarified the description of region attributes Region attributes on page 7-9

Clarified the description of store buffer draining Store buffer draining on page 8-19

Clarified the encodings for some signals AXI master interface on page 9-3

Clarified the number of Identifiers used for AXI bus accesses Identifiers for AXI bus accesses on page 9-4

Clarified the description of the handling of TCM external faults External TCM errors on page 9-21

Added dormant mode description Power management on page 1-12

Table C-1 Differences between issue B and issue C (continued)

Change Location
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. C-2
ID013010 Non-Confidential, Unrestricted Access



Revisions 
Added section Dormant mode on page 10-3

Updated the permitted instruction combinations Table 14-28 on page 14-35

Updated the descriptions for COMMRX and COMMTX signals Table A-13 on page A-17

Table C-2 Differences between issue C and issue D

Change Location

No technical changes -

Table C-1 Differences between issue B and issue C (continued)

Change Location
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. C-3
ID013010 Non-Confidential, Unrestricted Access



Glossary

This glossary describes some of the terms and abbreviations used in this manual. Where terms can 
have several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a processor that the value associated with a memory access is 
invalid. An abort can be caused by the external or internal memory system as a result of attempting 
to access invalid instruction or data memory. An abort is classified as either a Prefetch or Data 
Abort, and an internal or External Abort. 

See also Data Abort, External Abort and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data Abort exception. 
Different abort models behave differently with regard to load and store instructions that specify 
base register write-back.

Addressing modes A mechanism, shared by many different instructions, for generating values used by the instructions. 
For four of the ARM addressing modes, the values generated are memory addresses (which is the 
traditional role of an addressing mode). A fifth addressing mode generates values to be used as 
operands by data-processing instructions.

Advanced eXtensible Interface (AXI)
This is a bus protocol that supports separate address/control and data phases, unaligned data 
transfers using byte strobes, burst-based transactions with only start address issued, separate read 
and write data channels to enable low-cost DMA, ability to issue multiple outstanding addresses, 
out-of-order transaction completion, and easy addition of register stages to provide timing closure. 
The AXI protocol also includes optional extensions to cover signaling for low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes a number 
of features that make it very suitable for high speed sub-micron interconnect.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-1
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors such as 
an ARM core to high-performance peripherals, DMA controllers, on-chip memory, and 
interfaces. It is a high-speed, high-bandwidth bus that supports multi-master bus management 
to maximize system performance. 

See also Advanced Microcontroller Bus Architecture.

Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running with 
multiple masters and slaves. It is an on-chip bus specification that details a strategy for the 
interconnection and management of functional blocks that make up a System-on-Chip (SoC). It 
aids in the development of embedded processors with one or more CPUs or signal processors 
and multiple peripherals. AMBA complements a reusable design methodology by defining a 
common backbone for SoC modules. AHB, APB, and AXI conform to this standard.

Advanced Peripheral Bus (APB)
The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is designed for use 
with ancillary or general-purpose peripherals such as timers, interrupt controllers, UARTs, and 
I/O ports. Connection to the main system bus is through a system-to-peripheral bus bridge that 
helps to reduce system power consumption. 

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size 
is said to be aligned. Aligned words and halfwords have addresses that are divisible by four and 
two respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses 
that are divisible by four and two respectively. 

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function. It can be 
custom-built or mass-produced.

Architecture The organization of hardware and/or software that characterizes a processor and its attached 
components, and enables devices with similar characteristics to be grouped together when 
describing their behavior, for example, Harvard architecture, instruction set architecture, 
ARMv6 architecture.

ARM instruction A word that specifies an operation for an ARM processor to perform. ARM instructions must 
be word-aligned.

ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in ARM 
state.

ASIC See Application Specific Integrated Circuit.

AXI See Advanced eXstensible Interface.

AXI channel order and interfaces
The block diagram shows:
• the order in which AXI channel signals are described
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-2
ID013010 Non-Confidential, Unrestricted Access



Glossary 
• the master and slave interface conventions for AXI components.

AXI terminology The following AXI terms are general. They apply to both masters and slaves:

Active read transaction 
A transaction for which the read address has transferred, but the last read data has 
not yet transferred.

Active transfer 

A transfer for which the xVALID1 handshake has asserted, but for which 
xREADY has not yet asserted.

Active write transaction 
A transaction for which the write address and/or leading write data has 
transferred, but the write response has not yet transferred.

Completed transfer 
A transfer for which the xVALID/xREADY handshake is complete.

Payload The non-handshake signals in a transfer.

Transaction An entire burst of transfers, comprising an address, one or more data transfers and 
a response transfer (writes only).

Transmit An initiator driving the payload and asserting the relevant xVALID signal.

Transfer A single exchange of information. That is, with one xVALID/xREADY 
handshake.

The following AXI terms are master interface attributes. To obtain optimum performance, they 
must be specified for all components with an AXI master interface:

Combined issuing capability 
The maximum number of active transactions that a master interface can generate. 
This is specified instead of write or read issuing capability for master interfaces 
that use a combined storage for active write and read transactions.

Read ID capability 
The maximum number of different ARID values that a master interface can 
generate for all active read transactions at any one time.

AXI 
interconnect

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

AXI slave 
interface

AXI master 
interface

AXI
master

AXI
slave

AXI master 
interface

AXI slave 
interface

1. The letter x in the signal name denotes an AXI channel as follows:
AW Write address channel.
W Write data channel.
B Write response channel.
AR Read address channel.
R Read data channel.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-3
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Read ID width 
The number of bits in the ARID bus.

Read issuing capability 
The maximum number of active read transactions that a master interface can 
generate.

Write ID capability 
The maximum number of different AWID values that a master interface can 
generate for all active write transactions at any one time.

Write ID width 
The number of bits in the AWID and WID buses.

Write interleave capability 
The number of active write transactions for which the master interface is capable 
of transmitting data. This is counted from the earliest transaction.

Write issuing capability 
The maximum number of active write transactions that a master interface can 
generate.

The following AXI terms are slave interface attributes. To obtain optimum performance, they 
must be specified for all components with an AXI slave interface

Combined acceptance capability 
The maximum number of active transactions that a slave interface can accept. 
This is specified instead of write or read acceptance capability for slave interfaces 
that use a combined storage for active write and read transactions.

Read acceptance capability 
The maximum number of active read transactions that a slave interface can 
accept.

Read data reordering depth 
The number of active read transactions for which a slave interface can transmit 
data. This is counted from the earliest transaction.

Write acceptance capability 
The maximum number of active write transactions that a slave interface can 
accept.

Write interleave depth 
The number of active write transactions for which the slave interface can receive 
data. This is counted from the earliest transaction.

Banked registers Those physical registers whose use is defined by the current processor mode. The banked 
registers are R8 to R14.

Base register A register specified by a load/store instruction that is used to hold the base value for the 
instruction’s address calculation. Depending on the instruction and its addressing mode, an 
offset can be added to or subtracted from the base register value to form the virtual address that 
is sent to memory.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-4
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Base register write-back
Updating the contents of the base register used in an instruction target address calculation so that 
the modified address is changed to the next higher or lower sequential address in memory. This 
means that it is not necessary to fetch the target address for successive instruction transfers and 
enables faster burst accesses to sequential memory. 

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst 
comprises four beats.

See also Burst.

BE-8 Big-endian view of memory in a byte-invariant system.

See also BE-32, LE, Byte-invariant and Word-invariant.

BE-32 Big-endian view of memory in a word-invariant system. 

See also BE-8, LE, Byte-invariant and Word-invariant.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are stored at 
increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:- a byte or halfword at a word-aligned address is the most significant byte or 
halfword within the word at that address - a byte at a halfword-aligned address is the most 
significant byte within the halfword at that address.

See also Little-endian memory.

Block address An address that comprises a tag, an index, and a word field. The tag bits identify the way that 
contains the matching cache entry for a cache hit. The index bits identify the set being 
addressed. The word field contains the word address that can be used to identify specific words, 
halfwords, or bytes within the cache entry.

See also Cache terminology diagram on the last page of this glossary.

Branch prediction The process of predicting if conditional branches are to be taken or not in pipelined processors. 
Successfully predicting if branches are to be taken enables the processor to prefetch the 
instructions following a branch before the condition is fully resolved. Branch prediction can be 
done in software or by using custom hardware. Branch prediction techniques are categorized as 
static, in which the prediction decision is decided before run time, and dynamic, in which the 
prediction decision can change during program execution. 

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which program 
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of 
register contents, memory locations, variable values at fixed points in the program execution to 
test that the program is operating correctly. Breakpoints are removed after the program is 
successfully tested.

See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is 
no requirement to supply an address for any of the transfers after the first one. This increases 
the speed at which the group of transfers can occur. Bursts over AHB or AXI buses are 
controlled using the xBURST signals to specify if transfers are single, four-beat, eight-beat, or 
16-beat bursts, and to specify how the addresses are incremented.

See also Beat.

Byte An 8-bit data item.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-5
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Byte invariant In a byte-invariant system, the address of each byte of memory remains unchanged when 
switching between little-endian and big-endian operation. When a data item larger than a byte 
is loaded from or stored to memory, the bytes making up that data item are arranged into the 
correct order depending on the endianness of the memory access. The ARM architecture 
supports byte-invariant systems in ARMv6 and later versions. When byte-invariant support is 
selected, unaligned halfword and word memory accesses are also supported. Multi-word 
accesses are expected to be word-aligned.

See also Word-invariant.

Byte lane strobe An AXI signal, WSTRB, that is used for unaligned or mixed-endian data accesses to determine 
which byte lanes are active in a transfer. One bit of WSTRB corresponds to eight bits of the data 
bus.

Byte swizzling The reverse ordering of bytes in a word.

Cache A block of on-chip or off-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often used instructions and/or data. This 
is done to greatly increase the average speed of memory accesses and so improve processor 
performance. 

See also Cache terminology diagram on the last page of this glossary.

Cache contention When the number of frequently-used memory cache lines that use a particular cache set exceeds 
the set-associativity of the cache. In this case, main memory activity increases and performance 
decreases.

Cache hit A memory access that can be processed at high speed because the instruction or data that it 
addresses is already held in the cache.

Cache line The basic unit of storage in a cache. It is always a power of two words in size (usually four or 
eight words), and is required to be aligned to a suitable memory boundary.

See also Cache terminology diagram on the last page of this glossary.

Cache line index The number associated with each cache line in a cache set. Within each cache set, the cache lines 
are numbered from 0 to (set associativity) -1.

See also Cache terminology diagram on the last page of this glossary.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it 
addresses is not in the cache and a main memory access is required. 

Cache set A cache set is a group of cache lines (or blocks). A set contains all the ways that can be 
addressed with the same index. The number of cache sets is always a power of two. All sets are 
accessed in parallel during a cache look-up.

See also Cache terminology diagram on the last page of this glossary.

Cache set associativity
The maximum number of cache lines that can be held in a cache set.

See also Set-associative cache and Cache terminology diagram on the last page of this glossary.

Cache way A group of cache lines (or blocks). It is 2 to the power of the number of index bits in size.

See also Cache terminology diagram on the last page of this glossary.

Cast out See Victim.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-6
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Clean A cache line that has not been modified while it is in the cache is said to be clean. To clean a 
cache is to write dirty cache entries into main memory. If a cache line is clean, it is not written 
on a cache miss because the next level of memory contains the same data as the cache.

See also Dirty.

Clock gating Gating a clock signal for a macrocell with a control signal (such as PWRDOWN) and using the 
modified clock that results to control the operating state of the macrocell.

Clocks Per Instruction (CPI)
See Cycles Per Instruction (CPI).

Coherency See Memory coherency.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning power off 
and then back on again clears main memory and many internal settings. Some program failures 
can lock up the processor and require a cold reset to enable the system to be used again. In other 
cases, only a warm reset is required. 

See also Warm reset.

Communications channel
Software running on an ARM processor uses this to communicate with an external host through 
the debug interface. It can also be called the Debug Communications Channel. It is 
architecture-defined. See the ARM Architecture Reference Manual and your product technical 
reference manual for specific information.

Condition field A 4-bit field in an instruction that is used to specify a condition under which the instruction can 
execute.

Conditional execution
If the condition code flags indicate that the corresponding condition is true when the instruction 
starts executing, it executes normally. Otherwise, the instruction does nothing.

Context The environment that each process operates in for a multitasking operating system. In ARM 
processors, this is limited to mean the physical address range that it can access in memory and 
the associated memory access permissions.

See also Fast context switch.

Control bits The bottom eight bits of a Program Status Register (PSR). The control bits change when an 
exception arises and can be altered by software only when the processor is in a Privileged mode.

Coprocessor A processor that supplements the main processor. It carries out additional functions that the 
main processor cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

Copy back See Write-back.

Core module In the context of an ARM Integrator, a core module is an add-on development board that 
contains an ARM processor and local memory. Core modules can run standalone, or can be 
stacked onto Integrator motherboards.

Core reset See Warm reset.

CPI See Cycles per instruction.

CPSR See Current Program Status Register.

Current Program Status Register (CPSR)
The register that holds the current operating processor status.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-7
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Cycles Per instruction (CPI)
Cycles per instruction (or clocks per instruction) is a measure of the number of computer 
instructions that can be performed in one clock cycle. This figure of merit can be used to 
compare the performance of different CPUs that implement the same instruction set against each 
other. The lower the value, the better the performance.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

Data Abort An indication from a memory system to the processor of an attempt to access an illegal data 
memory location. An exception must be taken if the processor attempts to use the data that 
caused the abort. 

See also  Abort, External Abort, and Prefetch Abort.

Data cache A block of on-chip fast access memory locations, situated between the processor and main 
memory, used for storing and retrieving copies of often used data. This is done to greatly 
increase the average speed of memory accesses and so improve processor performance.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, 
together with custom hardware that supports software debugging.

Default NaN mode A mode in which all operations that result in a NaN return the default NaN, regardless of the 
cause of the NaN result. This mode is compliant with the IEEE 754 standard but implies that all 
information contained in any input NaNs to an operation is lost.

Denormalized value See Subnormal value.

Dirty A cache line in a write-back cache that has been modified while it is in the cache is said to be 
dirty. A cache line is marked as dirty by setting the dirty bit. If a cache line is dirty, it must be 
written to memory on a cache miss because the next level of memory contains data that has not 
been updated. The process of writing dirty data to main memory is called cache cleaning.

See also Clean.

Disabled exception An exception is disabled when its exception enable bit in the FPCSR is not set. For these 
exceptions, the IEEE 754 standard defines the result to be returned. An operation that generates 
an exception condition can bounce to the support code to produce the result defined by the IEEE 
754 standard. The exception is not reported to the user trap handler.

DNM See Do Not Modify.

Do Not Modify (DNM)
In Do Not Modify fields, the value must not be altered by software. DNM fields read as 
Unpredictable values, and must only be written with the same value read from the same field on 
the same processor. DNM fields are sometimes followed by RAZ or RAO in parentheses to 
show which way the bits should read for future compatibility, but programmers must not rely on 
this behavior.

Double-precision value
Consists of two 32-bit words that must appear consecutively in memory and must both be 
word-aligned, and that is interpreted as a basic double-precision floating-point number 
according to the IEEE 754-1985 standard.

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction and data 
trace information on a trace port. The ETM provides processor driven trace through a trace port 
compliant to the ATB protocol.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging in 
real-time.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-8
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Enabled exception An exception is enabled when its exception enable bit in the FPCSR is set. When an enabled 
exception occurs, a trap to the user handler is taken. An operation that generates an exception 
condition might bounce to the support code to produce the result defined by the IEEE 754 
standard. The exception is then reported to the user trap handler. 

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data word 
are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETM See Embedded Trace Macrocell.

Event 1. (Simple) An observable condition that can be used by an ETM to control aspects of a 
trace.

2. (Complex) A boolean combination of simple events that is used by an ETM to control 
aspects of a trace.

Exception A fault or error event that is considered serious enough to require that program execution is 
interrupted. Examples include attempting to perform an invalid memory access, external 
interrupts, and Undefined instructions. When an exception occurs, normal program flow is 
interrupted and execution is resumed at the corresponding exception vector. This contains the 
first instruction of the interrupt handler to deal with the exception.

Exception service routine
See Interrupt handler.

Exception vector See Interrupt vector.

Exponent The component of a floating-point number that normally signifies the integer power to which 
two is raised in determining the value of the represented number. 

External Abort An indication from an external memory system to a core that the value associated with a 
memory access is invalid. An external abort is caused by the external memory system as a result 
of attempting to access invalid memory.

See also  See also Abort, Data Abort and Prefetch Abort

Halfword A 16-bit data item.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts when a 
breakpoint or watchpoint is encountered. All processor state, coprocessor state, memory and 
input/output locations can be examined and altered by the JTAG interface.

See also  Monitor mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the top of the 
address space, rather than at the bottom.

Hit-Under-Miss (HUM)
A buffer that enables program execution to continue, even though there has been a data miss in 
the cache.

Host A computer that provides data and other services to another computer. Especially, a computer 
providing debugging services to a target being debugged.

HUM See Hit-Under-Miss.

IEEE 754 standard IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. The standard 
that defines data types, correct operation, exception types and handling, and error bounds for 
floating-point systems. Most processors are built in compliance with the standard either in 
hardware or in a combination of hardware and software.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-9
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Illegal instruction An instruction that is architecturally Undefined. 

Implementation-defined
Means that the behavior is not architecturally defined, but should be defined and documented 
by individual implementations.

Implementation-specific
Means that the behavior is not architecturally defined, and does not have to be documented by 
individual implementations. Used when there are a number of implementation options available 
and the option chosen does not affect software compatibility.

Infinity In the IEEE 754 standard format to represent infinity, the exponent is the maximum for the 
precision and the fraction is all zeros.

Input exception An exception condition in which one or more of the operands for a given operation are not 
supported by the hardware. The operation bounces to support code for processing. 

Instruction cache A block of on-chip fast access memory locations, situated between the processor and main 
memory, used for storing and retrieving copies of often used instructions. This is done to greatly 
increase the average speed of memory accesses and so improve processor performance.

Instruction Synchronization Barrier (ISB)
An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Intermediate result An internal format used to store the result of a calculation before rounding. This format can have 
a larger exponent field and fraction field than the destination format. 

Interrupt handler A program to which control of the processor is passed when an interrupt occurs. 

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors are 
configured, that contains the first instruction of the corresponding interrupt handler.

Invalidate To mark a cache line as being not valid by clearing the valid bit. This must be done whenever 
the line does not contain a valid cache entry. For example, after a cache flush all lines are invalid.

ISB See Instruction Synchronization Barrier.

LE Little endian view of memory in both byte-invariant and word-invariant systems. See also 
Byte-invariant, Word-invariant.

Line See Cache line.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored at 
increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or halfword 
within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the halfword at that 
address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register contents, not 
directly on memory contents.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-10
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Load Store Unit (LSU)
The part of a processor that handles load and store transfers.

LSU See Load Store Unit.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system comprises 
several macrocells (such as a processor, an ETM, and a memory block) plus application-specific 
logic.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value that was 
most recently written to that location. Memory coherency is made difficult when there are 
multiple possible physical locations that are involved, such as a system that has main memory, 
a write buffer and a cache.

Memory Protection Unit (MPU)
Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does 
not translate virtual addresses to physical addresses.

Microprocessor See Processor.

Miss See Cache miss.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor enables a 
software abort handler provided by the debug monitor or operating system debug task. When a 
breakpoint or watchpoint is encountered, this enables vital system interrupts to continue to be 
serviced while normal program execution is suspended. 

See also Halt mode.

MPU See Memory Protection Unit.

NaN Not a number. A symbolic entity encoded in a floating-point format that has the maximum 
exponent field and a nonzero fraction. An SNaN causes an invalid operand exception if used as 
an operand and a most significant fraction bit of zero. A QNaN propagates through almost every 
arithmetic operation without signaling exceptions and has a most significant fraction bit of one.

Penalty The number of cycles in which no useful Execute stage pipeline activity can occur because the 
instruction flow is different from that assumed or predicted.

Power-on reset See Cold reset.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the pipeline 
before the preceding instructions have finished executing. Prefetching an instruction does not 
mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to the processor that an instruction has been fetched from 
an illegal memory location. An exception must be taken if the processor attempts to execute the 
instruction. A Prefetch Abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction memory. 

See also Data Abort, External Abort and Abort.

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional 
components such as memory, and interfaces. These are combined as a single macrocell, that can 
be fabricated on an integrated circuit. 

Read Reads are defined as memory operations that have the semantics of a load. That is, the ARM 
instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB, LDRBT, LDREX, RFE, STREX, SWP, and 
SWPB, and the Thumb instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region A partition of instruction or data memory space.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-11
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Reserved A field in a control register or instruction format is reserved if the field is to be defined by the 
implementation, or produces Unpredictable results if the contents of the field are not zero. These 
fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be written as 0 
and are to be read as 0.

Rounding mode The IEEE 754 standard requires all calculations to be performed as if to an infinite precision. 
For example, a multiply of two single-precision values must accurately calculate the significand 
to twice the number of bits of the significand. To represent this value in the destination 
precision, rounding of the significand is often required. The IEEE 754 standard specifies four 
rounding modes. 

In round-to-nearest mode, the result is rounded at the halfway point, with the tie case rounding 
up if it would clear the least significant bit of the significand, making it even. 
Round-towards-zero mode chops any bits to the right of the significand, always rounding down, 
and is used by the C, C++, and Java languages in integer conversions. 
Round-towards-plus-infinity mode and round-towards-minus-infinity mode are used in interval 
arithmetic.

Saved Program Status Register (SPSR)
The register that holds the CPSR of the task immediately before the exception occurred that 
caused the switch to the current mode.

SBO See Should Be One.

SBZ See Should Be Zero.

Scan chain See Boundary scan chain.

Set See Cache set.

Set-associative cache
In a set-associative cache, lines can only be placed in the cache in locations that correspond to 
the modulo division of the memory address by the number of sets. If there are n ways in a cache, 
the cache is termed n-way set-associative. The set-associativity can be any number greater than 
or equal to 1 and is not restricted to being a power of two.

Short vector operation
An operation involving more than one destination register and perhaps more than one source 
register in the generation of the result for each destination.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces Unpredictable 
results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces Unpredictable 
results.

Should Be Zero or Preserved (SBZP)
Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the same 
value back that has been previously read from the same field on the same processor.

Significand The component of a binary floating-point number that consists of an explicit or implicit leading 
bit to the left of the implied binary point and a fraction field to the right.

SPSR See Saved Program Status Register
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-12
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Stride The stride field, FPSCR[21:20], specifies the increment applied to register addresses in short 
vector operations. A stride of 00, specifying an increment of +1, causes a short vector operation 
to increment each vector register by +1 for each iteration, while a stride of 11 specifies an 
increment of +2. 

Subnormal value A value in the range (–2Emin < x < 2Emin), except for 0. In the IEEE 754 standard format for 
single-precision and double-precision operands, a subnormal value has a zero exponent and a 
nonzero fraction field. The IEEE 754 standard requires that the generation and manipulation of 
subnormal operands be performed with the same precision as normal operands.

Support code Software that must be used to complement the hardware to provide compatibility with the IEEE 
754 standard. The support code has a library of routines that performs supported functions, such 
as divide with unsupported inputs or inputs that might generate an exception, and as well as 
operations beyond the scope of the hardware. The support code has a set of exception handlers 
to process exceptional conditions in compliance with the IEEE 754 standard.

Synchronization primitive
The memory synchronization primitive instructions are those instructions that are used to ensure 
memory synchronization. That is, the LDREX, STREX, SWP, and SWPB instructions.

Tag The upper portion of a block address used to identify a cache line within a cache. The block 
address from the CPU is compared with each tag in a set in parallel to determine if the 
corresponding line is in the cache. If it is, it is said to be a cache hit and the line can be fetched 
from cache. If the block address does not correspond to any of the tags, it is said to be a cache 
miss and the line must be fetched from the next level of memory.

See also Cache terminology diagram on the last page of this glossary.

TAP See Debug test access port.

Thumb state A processor that is executing Thumb (16-bit and 32-bit) instructions is operating in Thumb 
state.

Tightly coupled memory (TCM)
An area of low latency memory that provides predictable instruction execution or data load 
timing in cases where deterministic performance is required. TCMs are suited to holding:
• critical routines (such as for interrupt handling)
• scratchpad data
• data types whose locality is not suited to caching
• critical data structures (such as interrupt stacks).

Tiny A nonzero result or value that is between the positive and negative minimum normal values for 
the destination precision.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trap A exceptional condition that has the respective exception enable bit set in the FPSCR register. 
The user trap handler is executed. 

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data 
size is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM Architecture 
Reference Manual for more information on ARM exceptions.

UNP See Unpredictable.

Unpredictable The result of an instruction or control register field value that cannot be relied upon. 
Unpredictable instructions or results must not represent security holes, or halt or hang the 
processor, or any parts of the system.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-13
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Unsupported values Specific data values that are not processed by the hardware but bounced to the support code for 
completion. These data can include infinities, NaNs, subnormal values, and zeros. An 
implementation is free to select which of these values is supported in hardware fully or partially, 
or requires assistance from support code to complete the operation. Any exception resulting 
from processing unsupported data is trapped to user code if the corresponding exception enable 
bit for the exception is set. 

Victim A cache line, selected to be discarded to make room for a replacement cache line that is required 
as a result of a cache miss. The way in which the victim is selected for eviction is 
processor-specific. A victim is also known as a cast out.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug 
controller and debug logic. This type of reset is useful if you are using the debugging features 
of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when the data 
contained by a particular memory address is changed. Watchpoints are inserted by the 
programmer to enable inspection of register contents, memory locations, and variable values 
when memory is written to test that the program is operating correctly. Watchpoints are removed 
after the program is successfully tested. See also Breakpoint.

Way See Cache way.

WB See Write-back.

Word A 32-bit data item.

Word-invariant In a word-invariant system, the address of each byte of memory changes when switching 
between little-endian and big-endian operation, in such a way that the byte with address A in 
one endianness has address A EOR 3 in the other endianness. As a result, each aligned word of 
memory always consists of the same four bytes of memory in the same order, regardless of 
endianness. The change of endianness occurs because of the change to the byte addresses, not 
because the bytes are rearranged. The ARM architecture supports word-invariant systems in 
ARMv3 and later versions. When word-invariant support is selected, the behavior of load or 
store instructions that are given unaligned addresses is instruction-specific, and is in general not 
the expected behavior for an unaligned access. 

See also Byte-invariant.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM instructions 
SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and SWPB, and the Thumb instructions STM, 
STR, STRH, STRB, and PUSH. 

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the cache on 
line replacement following a cache miss. Otherwise, writes by the processor only update the 
cache. Also known as copyback.

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main 
memory, whose purpose is to optimize stores to main memory. 

Write completion The memory system indicates to the processor that a write has been completed at a point in the 
transaction where the memory system is able to guarantee that the effect of the write is visible 
to all processors in the system. This is not the case if the write is associated with a memory 
synchronization primitive, or is to a Device or Strongly Ordered region. In these cases the 
memory system might only indicate completion of the write when the access has affected the 
state of the target, unless it is impossible to distinguish between having the effect of the write 
visible and having the state of target updated. This stricter requirement for some types of 
memory ensures that any side-effects of the memory access can be guaranteed by the processor 
to have taken place. You can use this to prevent the starting of a subsequent operation in the 
program order until the side-effects are visible.
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-14
ID013010 Non-Confidential, Unrestricted Access



Glossary 
Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache is 
updated. 

WT See Write-through.

Cache terminology diagram
The figure below illustrates the following cache terminology:
• block address
• cache line
• cache set
• cache way
• index
• tag.

Tag
Tag

Tag

Tag Index Word

Hit
(way number)

Read data
(way that corresponds)

=

3
1

Tag

0

0

2
1

3
4
5
6
7

n

Byte

Cache way Cache set

m 12 0

Cache line

2

Block address

Line number
Word number

Cache tag RAM Cache data RAM
ARM DDI 0363E Copyright © 2009 ARM Limited. All rights reserved. Glossary-15
ID013010 Non-Confidential, Unrestricted Access


	Cortex-R4 and Cortex-R4F Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Conventions
	Further reading

	Feedback
	Feedback on this product
	Feedback on this book


	Introduction
	1.1 About the processor
	1.2 About the architecture
	1.3 Components of the processor
	1.3.1 Data Processing Unit
	1.3.2 Load/store unit
	1.3.3 Prefetch unit
	1.3.4 L1 memory system
	1.3.5 L2 AXI interfaces
	1.3.6 Debug
	1.3.7 System control coprocessor
	1.3.8 Interrupt handling

	1.4 External interfaces of the processor
	1.4.1 APB Debug interface
	1.4.2 ETM interface
	1.4.3 Test interface

	1.5 Power management
	1.6 Configurable options
	1.7 Execution pipeline stages
	1.8 Redundant core comparison
	1.9 Test features
	1.10 Product documentation, design flow, and architecture
	1.10.1 Documentation
	1.10.2 Design flow
	1.10.3 Architectural information

	1.11 Product revision information
	1.11.1 Processor identification
	1.11.2 Architectural information


	Programmer’s Model
	2.1 About the programmer’s model
	2.2 Instruction set states
	2.2.1 Switching state
	2.2.2 Interworking ARM and Thumb state

	2.3 Operating modes
	2.4 Data types
	2.5 Memory formats
	2.5.1 Byte-invariant big-endian format
	2.5.2 Little-endian format

	2.6 Registers
	2.6.1 The register set

	2.7 Program status registers
	2.7.1 The N, Z, C, and V bits
	2.7.2 The Q bit
	2.7.3 The IT bits
	2.7.4 The J bit
	2.7.5 The DNM bits
	2.7.6 The GE bits
	2.7.7 The E bit
	2.7.8 The A bit
	2.7.9 The I and F bits
	2.7.10 The T bit
	2.7.11 The M bits
	2.7.12 Modification of PSR bits by MSR instructions

	2.8 Exceptions
	2.8.1 Exception entry and exit summary
	2.8.2 Reset
	2.8.3 Interrupts
	2.8.4 Aborts
	2.8.5 Supervisor call instruction
	2.8.6 Undefined instruction
	2.8.7 Breakpoint instruction
	2.8.8 Exception vectors 

	2.9 Acceleration of execution environments
	2.10 Unaligned and mixed-endian data access support
	2.11 Big-endian instruction support

	Processor Initialization, Resets, and Clocking
	3.1 Initialization
	3.1.1 MPU
	3.1.2 CRS
	3.1.3 FPU
	3.1.4 Caches
	3.1.5 TCM

	3.2 Resets
	3.3 Reset modes
	3.3.1 Power-on reset
	3.3.2 Processor reset
	3.3.3 Normal operation
	3.3.4 Halt operation

	3.4 Clocking
	3.4.1 AXI interface clocking
	3.4.2 Clock gating


	System Control Coprocessor
	4.1 About the system control coprocessor
	4.1.1 System control coprocessor functional groups
	4.1.2 System control and configuration
	4.1.3 MPU control and configuration
	4.1.4 Cache control and configuration
	4.1.5 TCM control and configuration
	4.1.6 System performance monitor
	4.1.7 System validation

	4.2 System control coprocessor registers
	4.2.1 Register allocation
	4.2.2 c0, Main ID Register
	4.2.3 c0, Cache Type Register
	4.2.4 c0, TCM Type Register
	4.2.5 c0, MPU Type Register
	4.2.6 c0, Multiprocessor ID Register
	4.2.7 The Processor Feature Registers
	4.2.8 c0, Debug Feature Register 0
	4.2.9 c0, Auxiliary Feature Register 0
	4.2.10 Memory Model Feature Registers
	4.2.11 Instruction Set Attributes Registers
	4.2.12 c0, Current Cache Size Identification Register
	4.2.13 c0, Current Cache Level ID Register
	4.2.14 c0, Cache Size Selection Register
	4.2.15 c1, System Control Register
	4.2.16 Auxiliary Control Registers
	4.2.17 c1, Coprocessor Access Register
	4.2.18 Fault Status and Address Registers
	4.2.19 c6, MPU memory region programming registers
	4.2.20 Cache operations
	4.2.21 c9, BTCM Region Register
	4.2.22 c9, ATCM Region Register
	4.2.23 c9, TCM Selection Register
	4.2.24 c11, Slave Port Control Register
	4.2.25 c13, FCSE PID Register
	4.2.26 c13, Context ID Register
	4.2.27 c13, Thread and Process ID Registers
	4.2.28 Validation Registers
	4.2.29 Correctable Fault Location Register
	4.2.30 Build Options Registers


	Prefetch Unit
	5.1 About the prefetch unit
	5.2 Branch prediction
	5.2.1 Disabling program flow prediction
	5.2.2 Branch predictor
	5.2.3 Incorrect predictions and correction

	5.3 Return stack

	Events and Performance Monitor
	6.1 About the events
	6.2 About the PMU
	6.3 Performance monitoring registers
	6.3.1 c9, Performance Monitor Control Register
	6.3.2 c9, Count Enable Set Register
	6.3.3 c9, Count Enable Clear Register
	6.3.4 c9, Overflow Flag Status Register
	6.3.5 c9, Software Increment Register
	6.3.6 c9, Performance Counter Selection Register
	6.3.7 c9, Cycle Count Register
	6.3.8 c9, Event Selection Register
	6.3.9 c9, Performance Monitor Count Registers
	6.3.10 c9, User Enable Register
	6.3.11 c9, Interrupt Enable Set Register
	6.3.12 c9, Interrupt Enable Clear Register

	6.4 Event bus interface
	6.4.1 Use of the event bus and counters


	Memory Protection Unit
	7.1 About the MPU
	7.1.1 Memory regions
	7.1.2 Overlapping regions
	7.1.3 Background regions
	7.1.4 TCM regions

	7.2 Memory types
	7.2.1 Using memory types

	7.3 Region attributes
	7.3.1 Cacheable memory policies

	7.4 MPU interaction with memory system
	7.5 MPU faults
	7.5.1 Background fault
	7.5.2 Permission fault
	7.5.3 Alignment fault

	7.6 MPU software-accessible registers

	Level One Memory System
	8.1 About the L1 memory system
	8.2 About the error detection and correction schemes
	8.2.1 Parity
	8.2.2 Error checking and correction
	8.2.3 Read-Modify-Write
	8.2.4 Hard errors
	8.2.5 Error correction

	8.3 Fault handling
	8.3.1 Faults
	8.3.2 Fault status information
	8.3.3 Correctable Fault Location Register
	8.3.4 Usage models

	8.4 About the TCMs
	8.4.1 TCM attributes and permissions
	8.4.2 ATCM and BTCM configuration
	8.4.3 TCM internal error detection and correction
	8.4.4 TCM arbitration
	8.4.5 TCM initialization
	8.4.6 TCM port protocol
	8.4.7 External TCM errors
	8.4.8 AXI slave interfaces for TCMs

	8.5 About the caches
	8.5.1 Store buffer
	8.5.2 Cache maintenance operations
	8.5.3 Cache error detection and correction
	8.5.4 Cache RAM organization
	8.5.5 Cache interaction with memory system

	8.6 Internal exclusive monitor
	8.7 Memory types and L1 memory system behavior
	8.8 Error detection events
	8.8.1 TCM error events
	8.8.2 Instruction-cache error events
	8.8.3 Data-cache error events
	8.8.4 Events and the CFLR


	Level Two Interface
	9.1 About the L2 interface
	9.2 AXI master interface
	9.2.1 Identifiers for AXI bus accesses
	9.2.2 Write response
	9.2.3 Linefill buffers and the AXI master interface
	9.2.4 Eviction buffer
	9.2.5 Memory attributes

	9.3 AXI master interface transfers
	9.3.1 Restrictions on AXI transfers
	9.3.2 Strongly Ordered and Device transactions
	9.3.3 Linefills
	9.3.4 Cache line write-back (eviction)
	9.3.5 Non-cacheable reads
	9.3.6 Non-cacheable or write-through writes
	9.3.7 AXI transaction splitting
	9.3.8 Normal write merging

	9.4 AXI slave interface
	9.4.1 AXI slave interface for cache RAMs
	9.4.2 TCM parity and ECC support
	9.4.3 External TCM errors
	9.4.4 Cache parity and ECC support
	9.4.5 AXI slave control
	9.4.6 AXI slave characteristics

	9.5 Enabling or disabling AXI slave accesses
	9.6 Accessing RAMs using the AXI slave interface
	9.6.1 TCM RAM access
	9.6.2 Cache RAM access


	Power Control
	10.1 About power control
	10.2 Power management
	10.2.1 Run mode
	10.2.2 Standby mode
	10.2.3 Dormant mode
	10.2.4 Shutdown mode
	10.2.5 Communication to the Power Management Controller


	Debug
	11.1 Debug systems
	11.1.1 Debug host
	11.1.2 Protocol converter
	11.1.3 Debug target

	11.2 About the debug unit
	11.2.1 Halting debug-mode debugging
	11.2.2 Monitor debug-mode debugging
	11.2.3 Programming the debug unit

	11.3 Debug register interface
	11.3.1 Coprocessor registers
	11.3.2 CP14 access permissions
	11.3.3 Coprocessor registers summary
	11.3.4 Memory-mapped registers
	11.3.5 Memory addresses for breakpoints and watchpoints
	11.3.6 Power domains
	11.3.7 Effects of resets on debug registers
	11.3.8 APB port access permissions

	11.4 Debug register descriptions
	11.4.1 Accessing debug registers
	11.4.2 CP14 c0, Debug ID Register
	11.4.3 CP14 c0, Debug ROM Address Register
	11.4.4 CP14 c0, Debug Self Address Offset Register
	11.4.5 CP14 c1, Debug Status and Control Register
	11.4.6 Data Transfer Register
	11.4.7 Watchpoint Fault Address Register
	11.4.8 Vector Catch Register
	11.4.9 Debug State Cache Control Register
	11.4.10 Instruction Transfer Register
	11.4.11 Debug Run Control Register
	11.4.12 Breakpoint Value Registers
	11.4.13 Breakpoint Control Registers
	11.4.14 Watchpoint Value Registers
	11.4.15 Watchpoint Control Registers
	11.4.16 Operating System Lock Status Register
	11.4.17 Authentication Status Register
	11.4.18 Device Power-down and Reset Control Register
	11.4.19 Device Power-down and Reset Status Register

	11.5 Management registers
	11.5.1 Processor ID Registers
	11.5.2 Claim Registers
	11.5.3 Lock Access Register
	11.5.4 Lock Status Register
	11.5.5 Device Type Register
	11.5.6 Debug Identification Registers

	11.6 Debug events
	11.6.1 Software debug event
	11.6.2 Halting debug event
	11.6.3 Behavior of the processor on debug events
	11.6.4 Debug event priority
	11.6.5 Watchpoint debug events

	11.7 Debug exception
	11.7.1 Effect of debug exceptions on CP15 registers and WFAR
	11.7.2 Avoiding unrecoverable states

	11.8 Debug state
	11.8.1 Entering debug state
	11.8.2 Behavior of the PC and CPSR in debug state
	11.8.3 Executing instructions in debug state
	11.8.4 Writing to the CPSR in debug state
	11.8.5 Privilege
	11.8.6 Accessing registers and memory
	11.8.7 Coprocessor instructions
	11.8.8 Effect of debug state on non-invasive debug
	11.8.9 Effects of debug events on processor registers
	11.8.10 Exceptions in debug state
	11.8.11 Leaving debug state

	11.9 Cache debug
	11.9.1 Cache pollution in debug state
	11.9.2 Cache coherency in debug state
	11.9.3 Cache usage profiling

	11.10 External debug interface
	11.10.1 APB signals
	11.10.2 Miscellaneous debug signals
	11.10.3 Authentication signals

	11.11 Using the debug functionality
	11.11.1 Debug communications channel
	11.11.2 Programming breakpoints and watchpoints
	11.11.3 Single-stepping
	11.11.4 Debug state entry
	11.11.5 Debug state exit
	11.11.6 Accessing registers and memory in debug state

	11.12 Debugging systems with energy management capabilities
	11.12.1 Emulating power down


	FPU Programmer’s Model
	12.1 About the FPU programmer’s model
	12.1.1 FPU functionality
	12.1.2 About the VFPv3-D16 architecture

	12.2 General-purpose registers
	12.2.1 FPU views of the register bank

	12.3 System registers
	12.3.1 Floating-Point System ID Register, FPSID
	12.3.2 Floating-Point Status and Control Register, FPSCR
	12.3.3 Floating-Point Exception Register, FPEXC
	12.3.4 Media and VFP Feature Registers, MVFR0 and MVFR1

	12.4 Modes of operation
	12.4.1 Full-compliance mode
	12.4.2 Flush-to-zero mode
	12.4.3 Default NaN mode

	12.5 Compliance with the IEEE 754 standard
	12.5.1 Complete implementation of the IEEE 754 standard
	12.5.2 IEEE 754 standard implementation choices
	12.5.3 Exceptions


	Integration Test Registers
	13.1 About Integration Test Registers
	13.2 Programming and reading Integration Test Registers
	13.2.1 Software access using APB

	13.3 Summary of the processor registers used for integration testing
	13.4 Processor integration testing
	13.4.1 Using the Integration Test Registers
	13.4.2 Performing integration testing
	13.4.3 ITETMIF Register (ETM interface)
	13.4.4 ITMISCOUT Register (Miscellaneous Outputs)
	13.4.5 ITMISCIN Register (Miscellaneous Inputs)
	13.4.6 Integration Mode Control Register (ITCTRL)


	Cycle Timings and Interlock Behavior
	14.1 About cycle timings and interlock behavior
	14.1.1 Instruction execution overview
	14.1.2 Conditional instructions
	14.1.3 Flag-setting instructions
	14.1.4 Definition of terms
	14.1.5 Assembler language syntax

	14.2 Register interlock examples
	14.3 Data processing instructions
	14.3.1 Cycle counts if destination is not PC
	14.3.2 Cycle counts if destination is the PC
	14.3.3 Example interlocks

	14.4 QADD, QDADD, QSUB, and QDSUB instructions
	14.5 Media data-processing
	14.6 Sum of Absolute Differences (SAD)
	14.6.1 Example interlocks

	14.7 Multiplies
	14.8 Divide
	14.9 Branches
	14.10 Processor state updating instructions
	14.11 Single load and store instructions
	14.11.1 Base register update

	14.12 Load and Store Double instructions
	14.13 Load and Store Multiple instructions
	14.13.1 Load and Store Multiples, other than load multiples including the PC
	14.13.2 Load Multiples, where the PC is in the register list
	14.13.3 Example Interlocks

	14.14 RFE and SRS instructions
	14.15 Synchronization instructions
	14.16 Coprocessor instructions
	14.17 SVC, BKPT, Undefined, and Prefetch Aborted instructions
	14.18 Miscellaneous instructions
	14.19 Floating-point register transfer instructions
	14.20 Floating-point load/store instructions
	14.21 Floating-point single-precision data processing instructions
	14.22 Floating-point double-precision data processing instructions
	14.23 Dual issue
	14.23.1 Dual issue rules
	14.23.2 Permitted combinations


	AC Characteristics
	15.1 Processor timing
	15.2 Processor timing parameters
	15.2.1 Input port timing parameters
	15.2.2 Output ports timing parameters


	Processor Signal Descriptions
	A.1 About the processor signal descriptions
	A.2 Global signals
	A.3 Configuration signals
	A.4 Interrupt signals, including VIC interface signals
	A.5 L2 interface signals
	A.5.1 AXI master port
	A.5.2 AXI master port error detection signals
	A.5.3 AXI slave port
	A.5.4 AXI slave port error detection signals

	A.6 TCM interface signals
	A.7 Dual core interface signals
	A.8 Debug interface signals
	A.9 ETM interface signals
	A.10 Test signals
	A.11 MBIST signals
	A.12 Validation signals
	A.13 FPU signals

	ECC Schemes
	B.1 ECC scheme selection guidelines

	Revisions
	Glossary

