Red Hat Enterprise Linux 4

Using binutils, the GNU Binary
Utilities

@ redhat

Red Hat Enterprise Linux 4: Using binutils, the GNU Binary Utilities

Copyright © 1987, 1989, 1991-2004 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation. A copy of the license is included in the
section entitled "GNU Free Documentation License".

This manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below), and the Back-Cover Texts are (b) (see
below).

(a) The FSF’s Front-Cover Text is: A GNU Manual

(b) The FSF’s Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

This version is by Red Hat, Inc.

7" Red Hat, Inc.

1801 Varsity Drive

Raleigh NC 27606-2072 USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park NC 27709 USA

bin(EN)-4-HTML-RHI (2005-02-01)

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security @redhat.comkey is:

CA 2086 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

Table of Contents

1. Introduction 1
2.ar

2.1. Controlling aron the Command Line. .

2.2. Controlling arWith @ SCIIPLccvveririirieiiriiiniciee ettt
3. nm 9
4. objcopy 13
5. objdump 21
6. ranlib 27
7. size 29
8. strings 31
9. strip 33
10. c++filt 37
11. addr2line 41
12. nlmconv 43
13. windres 45
14. Create files needed to build and use DLLs 49

15. readelf.
16. Selecting the Target System

16.1. Target SELECION.uuiuiieicieiiieietcit ettt ettt
16.1.1. objdumpTarget
16.1.2. objcopyand st ripInput TArZetccceceverirenieinieieieiee et 59
16.1.3. objcopyand st ripOutput Target.......cccovevererreuerreinieninererereceeeceereneeieseeneen 59
16.1.4. nm, size, and stringsTarget..
16.2. ArchiteCture SEIECHON.c.eoveuirieiriiietintctietcteet sttt ettt ettt ettt eeeenen
16.2.1. 0b JAUMPATCHItECUIEveeveiieiee ettt sttt er s sne
16.2.2. objcopy, nm, size, st ringsArchiteCturecccocveeverevieeveiecieeiieceeeee e 60
17. Reporting Bugs 61
17.1. Have You Found a Bug?
17.2. HOW t0 REPOIt BUZS.....cviiiiieiiiiiiieiectecteeet ettt e
A. GNU Free Documentation License 65
A.1. ADDENDUM: How to use this License for your documents............ccccevueueueriruruerencenne 69

Index 71

gnu Binary Utilities

E) redhat

Chapter 1.
Introduction

This brief manual contains documentation for the gnu binary utilities (collectively version
2.15.92.0.2):

This document is distributed under the terms of the GNU Free Documentation License. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Chapter 1. Introduction

5) redhat

Chapter 2.
ar

ar [-]plmod [relpos] [count]] archive [member...]
ar -M [<mri-script]

The gnu ar program creates, modifies, and extracts from archives. An archive is a single file holding
a collection of other files in a structure that makes it possible to retrieve the original individual files
(called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are preserved in the
archive, and can be restored on extraction.

gnu ar can maintain archives whose members have names of any length; however, depending on how
ar is configured on your system, a limit on member-name length may be imposed for compatibility
with archive formats maintained with other tools. If it exists, the limit is often 15 characters (typical
of formats related to a.out) or 16 characters (typical of formats related to coff).

ar is considered a binary utility because archives of this sort are most often used as libraries holding
commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object modules in the archive when you
specify the modifier s. Once created, this index is updated in the archive whenever ar makes a change
to its contents (save for the g update operation). An archive with such an index speeds up linking to
the library, and allows routines in the library to call each other without regard to their placement in
the archive.

Youmay use nm -sornm -print-armap to list this index table. If an archive lacks the table, another
form of ar called ranlib can be used to add just the table.

gnu ar is designed to be compatible with two different facilities. You can control its activity using
command-line options, like the different varieties of ar on Unix systems; or, if you specify the single
command-line option -M, you can control it with a script supplied via standard input, like the MRI
"librarian" program.

2.1. Controlling aron the Command Line

ar [-X32_64] [-]p[mod [relpos] [count]] archive [member...]

When you use ar in the Unix style, ar insists on at least two arguments to execute: one keyletter
specifying the operation (optionally accompanied by other keyletters specifying modifiers), and the
archive name to act on.

Most operations can also accept further member arguments, specifying particular files to operate on.

gnu ar allows you to mix the operation code p and modifier flags mod in any order, within the first
command-line argument.

If you wish, you may begin the first command-line argument with a dash.

The p keyletter specifies what operation to execute; it may be any of the following, but you must
specify only one of them:

Chapter 2. ar

Delete modules from the archive. Specify the names of modules to be deleted as member. .. ; the
archive is untouched if you specify no files to delete.

If you specify the v modifier, ar lists each module as it is deleted.

Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs are linked using
the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the member arguments are moved to
the end of the archive; you can use the a, b, or i modifiers to move them to a specified place
instead.

Print the specified members of the archive, to the standard output file. If the v modifier is speci-
fied, show the member name before copying its contents to standard output.

If you specify no member arguments, all the files in the archive are printed.

Quick append; Historically, add the files member... to the end of archive, without checking
for replacement.

The modifiers a, b, and i do not affect this operation; new members are always placed at the end
of the archive.

The modifier v makes ar list each file as it is appended.

Since the point of this operation is speed, the archive’s symbol table index is not updated, even
if it already existed; you can use ar s or ranlib explicitly to update the symbol table index.

However, too many different systems assume quick append rebuilds the index, so gnu ar imple-
ments g as a synonym for r.

Insert the files member... into archive (with replacement). This operation differs from g in
that any previously existing members are deleted if their names match those being added.

If one of the files named in member... does not exist, ar displays an error message, and leaves
undisturbed any existing members of the archive matching that name.

By default, new members are added at the end of the file; but you may use one of the modifiers
a, b, or i to request placement relative to some existing member.

The modifier v used with this operation elicits a line of output for each file inserted, along with
one of the letters a or r to indicate whether the file was appended (no old member deleted) or
replaced.

Display a table listing the contents of archive, or those of the files listed in member. .. that are
present in the archive. Normally only the member name is shown; if you also want to see the
modes (permissions), timestamp, owner, group, and size, you can request that by also specifying
the v modifier.

If you do not specify a member, all files in the archive are listed.

Chapter 2. ar 5

If there is more than one file with the same name (say, fie) in an archive (say b.a), ar t b.a
fie lists only the first instance; to see them all, you must ask for a complete listing--in our
example, ar t b.a.

Extract members (named member) from the archive. You can use the v modifier with this opera-
tion, to request that ar list each name as it extracts it.

If you do not specify a member, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to specify variations on an
operation’s behavior:

Add new files after an existing member of the archive. If you use the modifier a, the name
of an existing archive member must be present as the relpos argument, before the archive
specification.

Add new files before an existing member of the archive. If you use the modifier b, the name
of an existing archive member must be present as the relpos argument, before the archive
specification. (same as 1i).

Create the archive. The specified archive is always created if it did not exist, when you request
an update. But a warning is issued unless you specify in advance that you expect to create it, by
using this modifier.

Truncate names in the archive. gnu ar will normally permit file names of any length. This will
cause it to create archives which are not compatible with the native ar program on some systems.
If this is a concern, the £ modifier may be used to truncate file names when putting them in the
archive.

Insert new files before an existing member of the archive. If you use the modifier i, the name
of an existing archive member must be present as the relpos argument, before the archive
specification. (same as b).

This modifier is accepted but not used.

Uses the count parameter. This is used if there are multiple entries in the archive with the same
name. Extract or delete instance count of the given name from the archive.

Preserve the original dates of members when extracting them. If you do not specify this modifier,
files extracted from the archive are stamped with the time of extraction.

Use the full path name when matching names in the archive. gnu ar can not create an archive
with a full path name (such archives are not POSIX complaint), but other archive creators can.

6 Chapter 2. ar

This option will cause gnu ar to match file names using a complete path name, which can be
convenient when extracting a single file from an archive created by another tool.

Write an object-file index into the archive, or update an existing one, even if no other change is
made to the archive. You may use this modifier flag either with any operation, or alone. Running
ar s on an archive is equivalent to running ranlib on it.

Do not generate an archive symbol table. This can speed up building a large library in several
steps. The resulting archive can not be used with the linker. In order to build a symbol table, you
must omit the S modifier on the last execution of ar, or you must run ranlib on the archive.

Normally, ar r... inserts all files listed into the archive. If you would like to insert only those of
the files you list that are newer than existing members of the same names, use this modifier. The
u modifier is allowed only for the operation r (replace). In particular, the combination qu is not
allowed, since checking the timestamps would lose any speed advantage from the operation q.

This modifier requests the verbose version of an operation. Many operations display additional
information, such as filenames processed, when the modifier v is appended.

This modifier shows the version number of ar.

ar ignores an initial option spelt -x32_64, for compatibility with AIX. The behaviour produced by
this option is the default for gnu ar. ar does not support any of the other -X options; in particular, it
does not support -x32 which is the default for AIX ar.

2.2. Controlling arwith a Script

ar -M [<script]

If you use the single command-line option -M with ar, you can control its operation with a rudimen-
tary command language. This form of ar operates interactively if standard input is coming directly
from a terminal. During interactive use, ar prompts for input (the prompt is AR >), and continues
executing even after errors. If you redirect standard input to a script file, no prompts are issued, and
ar abandons execution (with a nonzero exit code) on any error.

The ar command language is not designed to be equivalent to the command-line options; in fact,
it provides somewhat less control over archives. The only purpose of the command language is to
ease the transition to gnu ar for developers who already have scripts written for the MRI "librarian"
program.

The syntax for the ar command language is straightforward:

» commands are recognized in upper or lower case; for example, LIST is the same as 1ist. In the
following descriptions, commands are shown in upper case for clarity.

+ asingle command may appear on each line; it is the first word on the line.

« empty lines are allowed, and have no effect.

Chapter 2. ar 7

« comments are allowed; text after either of the characters * or ; is ignored.

» Whenever you use a list of names as part of the argument to an ar command, you can separate the
individual names with either commas or blanks. Commas are shown in the explanations below, for
clarity.

+ +is used as a line continuation character; if + appears at the end of a line, the text on the following
line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three of them have
special significance:

OPEN or CREATE specify a current archive, which is a temporary file required for most of the other
commands.

SAVE commits the changes so far specified by the script. Prior to SAVE, commands affect only the
temporary copy of the current archive.

ADDLIB archive
ADDLIB archive (module, module, ... module)

Add all the contents of archive (or, if specified, each named module from archive) to the
current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member
Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

CLEAR
Discard the contents of the current archive, canceling the effect of any operations since the last
SAVE. May be executed (with no effect) even if no current archive is specified.

CREATE archive

Creates an archive, and makes it the current archive (required for many other commands). The
new archive is created with a temporary name; it is not actually saved as archive until you
use SAVE. You can overwrite existing archives; similarly, the contents of any existing file named
archive will not be destroyed until SAVE.

DELETE module, module, ... module

Delete each listed module from the current archive; equivalent to ar -d archive module
module.

Requires prior use of OPEN or CREATE.
DIRECTORY archive (module, ... module)
DIRECTORY archive (module, ... module) outputfile

List each named module present in archive. The separate command VERBOSE specifies the
form of the output: when verbose output is off, output is like that of ar -t archive module. ...
When verbose output is on, the listing is like ar -tv archive module. ...

Output normally goes to the standard output stream; however, if you specify outputfile as a
final argument, ar directs the output to that file.

8 Chapter 2. ar

END

Exit from ar, with a 0 exit code to indicate successful completion. This command does not save
the output file; if you have changed the current archive since the last SAVE command, those
changes are lost.

EXTRACT module, module, ... module

Extract each named module from the current archive, writing them into the current directory as
separate files. Equivalent to ar -x archive module. . ..

Requires prior use of OPEN or CREATE.

LIST

Display full contents of the current archive, in "verbose" style regardless of the state of VERBOSE.
The effect is like ar tv archive. (This single command is a gnu ar enhancement, rather than
present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive (required for many other commands).
Any changes as the result of subsequent commands will not actually affect archive until you
next use SAVE.

REPLACE module, module, ... module

In the current archive, replace each existing module (named in the REPLACE arguments) from
files in the current working directory. To execute this command without errors, both the file, and
the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE
Toggle an internal flag governing the output from DIRECTORY. When the flag is on, DIRECTORY
output matches output from ar -tv

SAVE

Commit your changes to the current archive, and actually save it as a file with the name specified
in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

@ redhat Chapter 3.

nm

nm [-a|--debug-syms] [-g|-—-extern-only]
[-B] [-C|--demangle[=style]] [-D|--dynamic]
[-S|--print-size] [-s|--print-armap]
[-A|-o|--print-file-name]
[-n|-v|--numeric-sort] [-p|--no-sort]
[-r|--reverse-sort] [--size-sort] [-u|--undefined-only]
[-t radix|--radix=radix] [-P|--portability]
[--target=bfdname] [-fformat|--format=format]
[--defined-only] [-1|--line-numbers] [--no-demangle]
[-V|--version] [-X 32_64] [--help] [objfile...]

gnu nm lists the symbols from object files objfile.... If no object files are listed as arguments, nm
assumes the file a. out.

For each symbol, nm shows:

+ The symbol value, in the radix selected by options (see below), or hexadecimal by default.

+ The symbol type. At least the following types are used; others are, as well, depending on the object
file format. If lowercase, the symbol is local; if uppercase, the symbol is global (external).

A
The symbol’s value is absolute, and will not be changed by further linking.

B
The symbol is in the uninitialized data section (known as BSS).

C
The symbol is common. Common symbols are uninitialized data. When linking, multiple com-
mon symbols may appear with the same name. If the symbol is defined anywhere, the common
symbols are treated as undefined references. For more details on common symbols, see the dis-
cussion of -warn-common in .

D
The symbol is in the initialized data section.

G
The symbol is in an initialized data section for small objects. Some object file formats permit
more efficient access to small data objects, such as a global int variable as opposed to a large
global array.

I

The symbol is an indirect reference to another symbol. This is a gnu extension to the a.out
object file format which is rarely used.

10

Chapter 3. nm

The symbol is a debugging symbol.

The symbol is in a read only data section.

The symbol is in an uninitialized data section for small objects.

The symbol is in the text (code) section.

The symbol is undefined.

The symbol is a weak object. When a weak defined symbol is linked with a normal defined
symbol, the normal defined symbol is used with no error. When a weak undefined symbol is
linked and the symbol is not defined, the value of the weak symbol becomes zero with no error.

The symbol is a weak symbol that has not been specifically tagged as a weak object symbol.
When a weak defined symbol is linked with a normal defined symbol, the normal defined
symbol is used with no error. When a weak undefined symbol is linked and the symbol is
not defined, the value of the symbol is determined in a system-specific manner without error.
Uppercase indicates that a default value has been specified.

The symbol is a stabs symbol in an a.out object file. In this case, the next values printed are
the stabs other field, the stabs desc field, and the stab type. Stabs symbols are used to hold
debugging information. For more information, see .

The symbol type is unknown, or object file format specific.

+ The symbol name.

The long and short forms of options, shown here as alternatives, are equivalent.

-A

-0

-print-file-name

—a

Precede each symbol by the name of the input file (or archive member) in which it was found,
rather than identifying the input file once only, before all of its symbols.

—debug-syms

Display all symbols, even debugger-only symbols; normally these are not listed.

The same as -format=bsd (for compatibility with the MIPS nm).

Chapter 3. nm 11

-C
—demangle [=style]

Decode (demangle) low-level symbol names into user-level names. Besides removing any initial
underscore prepended by the system, this makes C++ function names readable. Different compil-
ers have different mangling styles. The optional demangling style argument can be used to choose
an appropriate demangling style for your compiler. Chapter 10 c++filt, for more information on
demangling.

-no-demangle
Do not demangle low-level symbol names. This is the default.

-D

—dynamic

Display the dynamic symbols rather than the normal symbols. This is only meaningful for dy-
namic objects, such as certain types of shared libraries.

—-f format
—format=format

Use the output format format, which can be bsd, sysv, or posix. The default is bsd. Only the
first character of format is significant; it can be either upper or lower case.

-9
—extern-only
Display only external symbols.
-1
—line-numbers

For each symbol, use debugging information to try to find a filename and line number. For a
defined symbol, look for the line number of the address of the symbol. For an undefined sym-
bol, look for the line number of a relocation entry which refers to the symbol. If line number
information can be found, print it after the other symbol information.

-n
-V

-numeric-sort
Sort symbols numerically by their addresses, rather than alphabetically by their names.
P
—no-sort
Do not bother to sort the symbols in any order; print them in the order encountered.
-p
—-portability
Use the POSIX.2 standard output format instead of the default format. Equivalent to -f posix.
-S
-print-size

Print size, not the value, of defined symbols for the bsd output format.

12 Chapter 3. nm

—-S

—-print-armap
When listing symbols from archive members, include the index: a mapping (stored in the archive
by ar or ranlib) of which modules contain definitions for which names.

-r

—reverse-sort

Reverse the order of the sort (whether numeric or alphabetic); let the last come first.

-size-sort

Sort symbols by size. The size is computed as the difference between the value of the symbol
and the value of the symbol with the next higher value. If the bsd output format is used the size
of the symbol is printed, rather than the value, and —Ss must be used in order both size and value
to be printed.

-t radix

—radix=radix
Use radix as the radix for printing the symbol values. It must be d for decimal, o for octal, or x
for hexadecimal.

—target=bfdname
Specify an object code format other than your system’s default format. Section 16.1 Target Se-
lection, for more information.

—u

—undefined-only

Display only undefined symbols (those external to each object file).

—defined-only
Display only defined symbols for each object file.

-V

-version
Show the version number of nm and exit.

-X
This option is ignored for compatibility with the AIX version of nm. It takes one parameter
which must be the string 32_64. The default mode of AIX nm corresponds to -x 32, which is
not supported by gnu nm.

-help

Show a summary of the options to nm and exit.

Chapter 4.

objco
E) redhat 1COPY

objcopy

F bfdname|--target=bfdname]

I bfdname|--input-target=bfdname]

O bfdname | --output-target=bfdname]

B bfdarch|--binary-architecture=bfdarch]
S|--strip-all]

gl -——strip-debug]

K symbolname | ——keep-symbol=symbolname]

N symbolname |--strip-symbol=symbolname]

G symbolname | --keep-global-symbol=symbolname]
L symbolname|--localize-symbol=symbolname]
W symbolname | --weaken-symbol=symbolname]
w|--wildcard]

x| --discard-all]

X|--discard-locals]

b byte|--byte=byte]

i interleave|--interleave=interleave]

j sectionname|--only-section=sectionname]
R sectionname|--remove-section=sectionname]
[-p|--preserve-dates]

[--debugging]

[-—gap-fill=val]

[-—-pad-to=address]

[--set-start=val]

[--adjust-start=incr]
[--change-addresses=incr]
[--change-section-address section{=,+,-}val]
[--change-section-1lma section{=,+,-}val
[--change-section-vma section{=,+,-}vall]
[--change-warnings] [--no-change-warnings]
[--set-section-flags section=flags]
[-—add-section sectionname=filename]
[--rename-section oldname=newname [, flags]]
[--change-leading-char] [--remove-leading-char]
[--srec-len=ival] [--srec-forceS3]
[--redefine-sym old=new]
[--redefine-syms=filename]

[--weaken]

[--keep-symbols=filename]
[--strip-symbols=filename]
[--keep-global-symbols=filename]
[--localize-symbols=filename]
[--weaken-symbols=filename]
[--alt-machine-code=index]
[--prefix-symbols=string]
[--prefix-sections=string]
[-—-prefix-alloc-sections=string]
[-—add-gnu-debuglink=path-to-file]
[--only-keep-debug]

[--writable-text]

[--readonly-text]

[--pure]

[-—impure]

[-v|--verbose]

[-V|--version]

[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-
[-

14 Chapter 4. objcopy

[--help] [--info]
infile [outfile]

The gnu objcopy utility copies the contents of an object file to another. objcopy uses the gnu bfd
Library to read and write the object files. It can write the destination object file in a format different
from that of the source object file. The exact behavior of objcopy is controlled by command-line
options. Note that objcopy should be able to copy a fully linked file between any two formats.
However, copying a relocatable object file between any two formats may not work as expected.

objcopy creates temporary files to do its translations and deletes them afterward. objcopy uses bfd
to do all its translation work; it has access to all the formats described in bfd and thus is able to
recognize most formats without being told explicitly. .

objcopy can be used to generate S-records by using an output target of srec (e.g., use -0 srec).

objcopy can be used to generate a raw binary file by using an output target of binary (e.g., use -0
binary). When objcopy generates a raw binary file, it will essentially produce a memory dump of
the contents of the input object file. All symbols and relocation information will be discarded. The
memory dump will start at the load address of the lowest section copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to use -S to remove sections
containing debugging information. In some cases -R will be useful to remove sections which contain
information that is not needed by the binary file.

Note--objcopy is not able to change the endianness of its input files. If the input format has an
endianness (some formats do not), objcopy can only copy the inputs into file formats that have the
same endianness or which have no endianness (e.g., srec).

infile
outfile

The input and output files, respectively. If you do not specify outfile, objcopy creates a
temporary file and destructively renames the result with the name of infile.

—I bfdname
—input-target=bfdname

Consider the source file’s object format to be bfdname, rather than attempting to deduce it.
Section 16.1 Target Selection, for more information.

-0 bfdname
—output-target=bfdname

Write the output file using the object format bfdname. Section 16.1 Target Selection, for more
information.

—F bfdname
—target=bfdname

Use bfdname as the object format for both the input and the output file; i.e., simply transfer data
from source to destination with no translation. Section 16.1 Target Selection, for more informa-
tion.

-B bfdarch
-binary-architecture=bfdarch

Useful when transforming a raw binary input file into an object file. In this case the output
architecture can be set to bfdarch. This option will be ignored if the input file has a known
bfdarch. You can access this binary data inside a program by referencing the special symbols
that are created by the conversion process. These symbols are called _binary_objfile_start,

Chapter 4. objcopy 15

_binary_objfile_end and _binary_obijfile_size. e.g. you can transform a picture file into an
object file and then access it in your code using these symbols.

—Jj sectionname

-only-section=sectionname
Copy only the named section from the input file to the output file. This option may be given more
than once. Note that using this option inappropriately may make the output file unusable.

—R sectionname

-remove-section=sectionname

Remove any section named sectionname from the output file. This option may be given more
than once. Note that using this option inappropriately may make the output file unusable.

-S
-strip-all

Do not copy relocation and symbol information from the source file.
-9

-strip-debug

Do not copy debugging symbols or sections from the source file.

-strip-unneeded
Strip all symbols that are not needed for relocation processing.
—K symbolname
—keep-symbol=symbolname
Copy only symbol symbolname from the source file. This option may be given more than once.
—N symbolname
-strip-symbol=symbolname
Do not copy symbol symbolname from the source file. This option may be given more than
once.
-G symbolname
~keep-global-symbol=symbolname
Keep only symbol symbolname global. Make all other symbols local to the file, so that they are
not visible externally. This option may be given more than once.
—L symbolname
—localize-symbol=symbolname
Make symbol symbolname local to the file, so that it is not visible externally. This option may
be given more than once.
-W symbolname
-weaken-symbol=symbolname
Make symbol symbolname weak. This option may be given more than once.
-w
-wildcard

Permit regular expressions in symbolnames used in other command line options. The question
mark (?), asterisk (*), backslash (\) and square brackets ([]) operators can be used anywhere in

16 Chapter 4. objcopy

the symbol name. If the first character of the symbol name is the exclamation point (!) then the
sense of the switch is reversed for that symbol. For example:

-w -W !foo -W fo*

would cause objcopy to weaken all symbols that start with "fo" except for the symbol "foo".
—X
—discard-all

Do not copy non-global symbols from the source file.
-X
—-discard-locals

Do not copy compiler-generated local symbols. (These usually start with L or ..)
-b byte
~byte=byte

Keep only every byteth byte of the input file (header data is not affected). byte can be in the
range from 0 to interleave-1, where interleave is given by the -i or —~interleave option,
or the default of 4. This option is useful for creating files to program rom. It is typically used with
an srec output target.

-1 interleave
—interleave=interleave

Only copy one out of every interleave bytes. Select which byte to copy with the -b or -byte
option. The default is 4. objcopy ignores this option if you do not specify either -b or -byte.

P
-preserve-dates

Set the access and modification dates of the output file to be the same as those of the input file.

-debugging
Convert debugging information, if possible. This is not the default because only certain debug-
ging formats are supported, and the conversion process can be time consuming.

—gap—-fill val
Fill gaps between sections with val. This operation applies to the load address (LMA) of the
sections. It is done by increasing the size of the section with the lower address, and filling in the
extra space created with val.

-pad-to address
Pad the output file up to the load address address. This is done by increasing the size of the last
section. The extra space is filled in with the value specified by —~gap-£i11 (default zero).

—-set-start val
Set the start address of the new file to val. Not all object file formats support setting the start
address.

—-change-start incr

—adjust-start incr

Change the start address by adding incr. Not all object file formats support setting the start
address.

Chapter 4. objcopy 17

—change—-addresses incr
—adjust-vma incr

Change the VMA and LMA addresses of all sections, as well as the start address, by adding
incr. Some object file formats do not permit section addresses to be changed arbitrarily. Note
that this does not relocate the sections; if the program expects sections to be loaded at a certain
address, and this option is used to change the sections such that they are loaded at a different
address, the program may fail.

—change-section-address section{=,+,-}val
—adjust-section-vma section{=,+,-}val

Set or change both the VMA address and the LMA address of the named section. If = is used,
the section address is set to val. Otherwise, val is added to or subtracted from the section
address. See the comments under —~change-addresses, above. If section does not exist in
the input file, a warning will be issued, unless -no-change-warnings is used.

—change-section-1lma section{=,+,-}val

Set or change the LMA address of the named section. The LMA address is the address where
the section will be loaded into memory at program load time. Normally this is the same as the
VMA address, which is the address of the section at program run time, but on some systems,
especially those where a program is held in ROM, the two can be different. If = is used, the
section address is set to val. Otherwise, val is added to or subtracted from the section address.
See the comments under —~change-addresses, above. If section does not exist in the input
file, a warning will be issued, unless —-no-change-warnings is used.

—change-section-vma section{=,+,-}val

Set or change the VMA address of the named section. The VMA address is the address where
the section will be located once the program has started executing. Normally this is the same as
the LMA address, which is the address where the section will be loaded into memory, but on
some systems, especially those where a program is held in ROM, the two can be different. If = is
used, the section address is set to val. Otherwise, val is added to or subtracted from the section
address. See the comments under —~change-addresses, above. If section does not exist in
the input file, a warning will be issued, unless -no-change-warnings is used.

—change-warnings
-adjust-warnings

If —~change-section-address or —change-section-1lma Or —change-section-vma is
used, and the named section does not exist, issue a warning. This is the default.

-no-change-warnings
-no-adjust-warnings

Do not issue a warning if -change-section-address or -adjust-section-lma or
-adjust-section-vma is used, even if the named section does not exist.

—-set-section-flags section=flags

Set the flags for the named section. The flags argument is a comma separated string of flag
names. The recognized names are alloc, contents, load, noload, readonly, code, data,
rom, share, and debug. You can set the contents flag for a section which does not have con-
tents, but it is not meaningful to clear the contents flag of a section which does have contents-
just remove the section instead. Not all flags are meaningful for all object file formats.

18 Chapter 4. objcopy

—add-section sectionname=filename

Add a new section named sectionname while copying the file. The contents of the new section
are taken from the file £ilename. The size of the section will be the size of the file. This option
only works on file formats which can support sections with arbitrary names.

-rename-section oldname=newname [, flags]

Rename a section from oldname to newname, optionally changing the section’s flags to flags
in the process. This has the advantage over usng a linker script to perform the rename in that the
output stays as an object file and does not become a linked executable.

This option is particularly helpful when the input format is binary, since this will always cre-
ate a section called .data. If for example, you wanted instead to create a section called .rodata
containing binary data you could use the following command line to achieve it:

objcopy -I binary -0 <output_format> -B <architecture> \
--rename-section .data=.rodata,alloc,load, readonly,data,contents \
<input_binary_file> <output_object_file>

—-change-leading-char

Some object file formats use special characters at the start of symbols. The most common
such character is underscore, which compilers often add before every symbol. This option tells
objcopy to change the leading character of every symbol when it converts between object file
formats. If the object file formats use the same leading character, this option has no effect. Oth-
erwise, it will add a character, or remove a character, or change a character, as appropriate.

—-remove-leading-char

If the first character of a global symbol is a special symbol leading character used by the object
file format, remove the character. The most common symbol leading character is underscore.
This option will remove a leading underscore from all global symbols. This can be useful if
you want to link together objects of different file formats with different conventions for symbol
names. This is different from -change-leading-char because it always changes the symbol
name when appropriate, regardless of the object file format of the output file.

-srec-len=ival
Meaningful only for srec output. Set the maximum length of the Srecords being produced to
ival. This length covers both address, data and crc fields.
-srec-forceS3
Meaningful only for srec output. Avoid generation of S1/S2 records, creating S3-only record
format.
-redefine-sym old=new
Change the name of a symbol o1d, to new. This can be useful when one is trying link two things
together for which you have no source, and there are name collisions.
-redefine-syms=filename

Apply -redefine-symto each symbol pair "old new" listed in the file filename. filename
is simply a flat file, with one symbol pair per line. Line comments may be introduced by the hash
character. This option may be given more than once.

-weaken

Change all global symbols in the file to be weak. This can be useful when building an object
which will be linked against other objects using the —R option to the linker. This option is only
effective when using an object file format which supports weak symbols.

Chapter 4. objcopy 19

—keep-symbols=filename
Apply -keep-symbol option to each symbol listed in the file filename. filename is simply a
flat file, with one symbol name per line. Line comments may be introduced by the hash character.
This option may be given more than once.

-strip-symbols=filename
Apply -strip-symbol option to each symbol listed in the file filename. £ilename is sim-
ply a flat file, with one symbol name per line. Line comments may be introduced by the hash
character. This option may be given more than once.

—keep-global-symbols=filename
Apply -keep-global-symbol option to each symbol listed in the file filename. filename
is simply a flat file, with one symbol name per line. Line comments may be introduced by the
hash character. This option may be given more than once.

—localize-symbols=filename
Apply -localize-symbol option to each symbol listed in the file filename. filename is
simply a flat file, with one symbol name per line. Line comments may be introduced by the hash
character. This option may be given more than once.

-weaken-symbols=filename
Apply -weaken-symbol option to each symbol listed in the file filename. filename is sim-
ply a flat file, with one symbol name per line. Line comments may be introduced by the hash
character. This option may be given more than once.

—alt-machine-code=index
If the output architecture has alternate machine codes, use the indexth code instead of the default
one. This is useful in case a machine is assigned an official code and the tool-chain adopts the
new code, but other applications still depend on the original code being used.

-writable-text

Mark the output text as writable. This option isn’t meaningful for all object file formats.

—-readonly-text

Make the output text write protected. This option isn’t meaningful for all object file formats.

-pure
Mark the output file as demand paged. This option isn’t meaningful for all object file formats.
—impure
Mark the output file as impure. This option isn’t meaningful for all object file formats.
-prefix-symbols=string
Prefix all symbols in the output file with string.
-prefix-sections=string
Prefix all section names in the output file with st ring.

-prefix-alloc-sections=string

Prefix all the names of all allocated sections in the output file with string.

20

Chapter 4. objcopy

—add-gnu-debuglink=path-to-file

Creates a .gnu_debuglink section which contains a reference to path-to-file and adds it to
the output file.

—-only-keep-debug

-V

Strip a file, removing any sections that would be stripped by -strip-debug and leaving the
debugging sections.

The intention is that this option will be used in conjunction with -add-gnu-debuglink to
create a two part executable. One a stripped binary which will occupy less space in RAM and
in a distribution and the second a debugging information file which is only needed if debugging
abilities are required. The suggested procedure to create these files is as follows:

1. Link the executable as normal. Assuming that is is called foo then...

2. Run objcopy -only-keep-debug foo foo.dbg to create a file containing the debug-
ging info.

3. Run objcopy -strip-debug foo to create a stripped executable.

4. Run objcopy —-add-gnu-debuglink=foo.dbg foo toadd alink to the debugging info
into the stripped executable.

Note - the choice of .dbg as an extension for the debug info file is arbitrary. Also the
-only-keep-debug step is optional. You could instead do this:

1. Link the executable as normal.

2. Copy foo to foo.full

3. Run objcopy -strip-debug foo

4. Run objcopy -add-gnu-debuglink=foo.full foo

ie the file pointed to by the —~add-gnu-debuglink can be the full executable. It does not have
to be a file created by the —only-keep-debug switch.

-version

-V

Show the version number of objcopy.

—-verbose

Verbose output: list all object files modified. In the case of archives, objcopy -V lists all mem-
bers of the archive.

~help

Show a summary of the options to objcopy.

-info

Display a list showing all architectures and object formats available.

S) redhat

objdump

Chapter 5.
objdump

[-a| -—archive-headers]

[-b bfdname|--target=bfdname]
[-C|--demangle [=style]]

[-d| -—disassemble]
[-D|--disassemble-all]

[-z| -—disassemble-zeroes]
[-EB|-EL|--endian={big | little }]
[-f|--file-headers]
[--file-start-context]
[-g|--debugging]

[-e | ——debugging-tags]
[-h|-—section-headers|--headers]
[-i|--info]

[-j section|--section=section]
[-1]--line-numbers]

[-S| --source]

[-m machine|--architecture=machine]
[-M options|--disassembler-options=options]
[-p| ——private-headers]
[-r|—-reloc]

[-R| ——dynamic-reloc]
[-s|-—full-contents]

[-G| --stabs]

[-t|--syms]

[-T|--dynamic-syms]
[-x]|--all-headers]

[-w]|-——wide]
[--start-address=address]
[--stop-address=address]
[-—-prefix-addresses]
[--[no-]show-raw-insn]
[--adjust-vma=offset]
[-V|--version]

[-H|--help]

objfile. ..

objdump displays information about one or more object files. The options control what particular
information to display. This information is mostly useful to programmers who are working on the
compilation tools, as opposed to programmers who just want their program to compile and work.

objfile.

.. are the object files to be examined. When you specify archives, objdump shows infor-

mation on each of the member object files.

The long and short forms of options, shown here as alternatives, are equivalent. At least one option
from the list -a, -d,-D, -e, -£, -9, -G, -h, -H, -p, -r, -R, -s, =S, -t,, -T, -V, —x must be given.

—a

—archive-header

If any of the objfile files are archives, display the archive header information (in a format
similar to 1s -1). Besides the information you could list with ar tv, objdump -a shows the
object file format of each archive member.

22

Chapter 5. objdump

—adjust-vma=offset

When dumping information, first add offset to all the section addresses. This is useful if the
section addresses do not correspond to the symbol table, which can happen when putting sections
at particular addresses when using a format which can not represent section addresses, such as
a.out.

-b bfdname
—target=bfdname

-C

Specify that the object-code format for the object files is bfdname. This option may not be
necessary; ob jdump can automatically recognize many formats.

For example,
objdump -b ocasys -m vax -h fu.o

displays summary information from the section headers (-h) of fu. o, which is explicitly iden-
tified (-m) as a VAX object file in the format produced by Oasys compilers. You can list the
formats available with the —1i option. Section 16.1 Target Selection, for more information.

—demangle [=style]

Decode (demangle) low-level symbol names into user-level names. Besides removing any initial
underscore prepended by the system, this makes C++ function names readable. Different compil-
ers have different mangling styles. The optional demangling style argument can be used to choose
an appropriate demangling style for your compiler. Chapter 10 c++filt, for more information on
demangling.

-9

-debugging
Display debugging information. This attempts to parse debugging information stored in the file
and print it out using a C like syntax. Only certain types of debugging information have been
implemented. Some other types are supported by readelf -w.Chapter 15 readelf.

-e

—-debugging-tags

-d

Like -g, but the information is generated in a format compatible with ctags tool.

—disassemble

-D

Display the assembler mnemonics for the machine instructions from objfile. This option only
disassembles those sections which are expected to contain instructions.

—disassemble-all

Like -d, but disassemble the contents of all sections, not just those expected to contain instruc-
tions.

-prefix-addresses

When disassembling, print the complete address on each line. This is the older disassembly
format.

Chapter 5. objdump 23

-EB
-EL
—-endian={big|little}

Specify the endianness of the object files. This only affects disassembly. This can be useful when
disassembling a file format which does not describe endianness information, such as S-records.
-f
—-file-headers

Display summary information from the overall header of each of the objfile files.

-file-start-context

Specify that when displaying interlisted source code/disassembly (assumes -S) from a file that
has not yet been displayed, extend the context to the start of the file.

-h

-section-headers

—headers
Display summary information from the section headers of the object file.
File segments may be relocated to nonstandard addresses, for example by using the -Ttext,
-Tdata, or —Tbss options to 1d. However, some object file formats, such as a.out, do not store
the starting address of the file segments. In those situations, although 1d relocates the sections
correctly, using objdump -h to list the file section headers cannot show the correct addresses.
Instead, it shows the usual addresses, which are implicit for the target.

-H

~help
Print a summary of the options to objdump and exit.

-1i

—-info
Display a list showing all architectures and object formats available for specification with -b or
—m.

-3 name

—-section=name

Display information only for section name.
-1
—line-numbers

Label the display (using debugging information) with the filename and source line numbers cor-
responding to the object code or relocs shown. Only useful with -d, -D, or —r.

-m machine
—architecture=machine

Specify the architecture to use when disassembling object files. This can be useful when disas-
sembling object files which do not describe architecture information, such as S-records. You can
list the available architectures with the —i option.

24 Chapter 5. objdump

—-M options
—disassembler-options=options

Pass target specific information to the disassembler. Only supported on some targets. If it is
necessary to specify more than one disassembler option then multiple —M options can be used or
can be placed together into a comma separated list.

If the target is an ARM architecture then this switch can be used to select which register name set
is used during disassembler. Specifying -M reg-name-std (the default) will select the register
names as used in ARM’s instruction set documentation, but with register 13 called ’sp’, register
14 called ’Ir” and register 15 called "pc’. Specifying -M reg-names-apcs will select the name
set used by the ARM Procedure Call Standard, whilst specifying -M reg-names-raw will just
use r followed by the register number.

There are also two variants on the APCS register naming scheme enabled by -M
reg-names—atpcs and -M reg-names-special-atpcs which use the ARM/Thumb
Procedure Call Standard naming conventions. (Either with the normal register names or the
special register names).

This option can also be used for ARM architectures to force the disassembler
to interpret all instructions as Thumb instructions by using the switch
-disassembler-options=force-thumb. This can be useful when attempting to
disassemble thumb code produced by other compilers.

For the x86, some of the options duplicate functions of the -m switch, but allow finer grained
control. Multiple selections from the following may be specified as a comma separated string.
x86-64, 1386 and 18086 select disassembly for the given architecture. intel and att select
between intel syntax mode and AT&T syntax mode. addr32, addrl6, data32 and datalé6
specify the default address size and operand size. These four options will be overridden if
x86-64, 1386 or 18086 appear later in the option string. Lastly, suf £ix, when in AT&T mode,
instructs the disassembler to print a mnemonic suffix even when the suffix could be inferred by
the operands.

For PPC, booke, booke32 and booke64 select disassembly of BookE instructions. 32 and 64
select PowerPC and PowerPC64 disassembly, respectively.

For MIPS, this option controls the printing of register names in disassembled instructions. Mul-
tiple selections from the following may be specified as a comma separated string, and invalid
options are ignored:

gpr—names=ABI

Print GPR (general-purpose register) names as appropriate for the specified ABI. By default,
GPR names are selected according to the ABI of the binary being disassembled.

fpr-names=ABI
Print FPR (floating-point register) names as appropriate for the specified ABI. By default,
FPR numbers are printed rather than names.

cpO-names=ARCH

Print CPO (system control coprocessor; coprocessor 0) register names as appropriate for
the CPU or architecture specified by ARCH. By default, CPO register names are selected
according to the architecture and CPU of the binary being disassembled.

hwr-names=ARCH

Print HWR (hardware register, used by the rdhwr instruction) names as appropriate for the
CPU or architecture specified by ARCH. By default, HWR names are selected according to
the architecture and CPU of the binary being disassembled.

Chapter 5. objdump 25

reg-names=ABI

Print GPR and FPR names as appropriate for the selected ABIL

reg-names=ARCH

Print CPU-specific register names (CPO register and HWR names) as appropriate for the
selected CPU or architecture.

For any of the options listed above, ABI or ARCH may be specified as numeric to have numbers
printed rather than names, for the selected types of registers. You can list the available values of
ABT and ARCH using the ~help option.

P
-private-headers

Print information that is specific to the object file format. The exact information printed depends
upon the object file format. For some object file formats, no additional information is printed.

-r

-reloc
Print the relocation entries of the file. If used with -d or -D, the relocations are printed inter-
spersed with the disassembly.

-R

—dynamic-reloc

Print the dynamic relocation entries of the file. This is only meaningful for dynamic objects, such
as certain types of shared libraries.

—-S

—-full-contents
Display the full contents of any sections requested. By default all non-empty sections are dis-
played.

-S

-source

Display source code intermixed with disassembly, if possible. Implies -d.

-show-raw-insn

When disassembling instructions, print the instruction in hex as well as in symbolic form. This
is the default except when -prefix-addresses is used.

-no-show-raw-insn

When disassembling instructions, do not print the instruction bytes. This is the default when
-prefix-addresses is used.

-G

-stabs
Display the full contents of any sections requested. Display the contents of the .stab and
.stab.index and .stab.excl sections from an ELF file. This is only useful on systems (such as
Solaris 2.0) in which .stab debugging symbol-table entries are carried in an ELF section. In
most other file formats, debugging symbol-table entries are interleaved with linkage symbols,
and are visible in the -syms output. For more information on stabs symbols, see .

26 Chapter 5. objdump

-start-address=address

Start displaying data at the specified address. This affects the output of the -d, -r and -s options.

—stop-address=address

Stop displaying data at the specified address. This affects the output of the -d, -r and -s options.

-t

—syms
Print the symbol table entries of the file. This is similar to the information provided by the nm
program.

-T

—dynamic-syms

Print the dynamic symbol table entries of the file. This is only meaningful for dynamic objects,
such as certain types of shared libraries. This is similar to the information provided by the nm
program when given the -D (-dynamic) option.

-V
-version

Print the version number of objdump and exit.
-X

-all-headers
Display all available header information, including the symbol table and relocation entries. Using
-x is equivalent to specifying all of -a -f -h -p -r -t.

-w

-wide
Format some lines for output devices that have more than 80 columns. Also do not truncate
symbol names when they are displayed.

-z

-disassemble-zeroes

Normally the disassembly output will skip blocks of zeroes. This option directs the disassembler
to disassemble those blocks, just like any other data.

E) redhat Chapter 6.

ranlib

ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The index lists
each symbol defined by a member of an archive that is a relocatable object file.

You may use nm -s or nm -print-armap to list this index.

An archive with such an index speeds up linking to the library and allows routines in the library to
call each other without regard to their placement in the archive.

The gnu ranlib program is another form of gnu ar; running ranlib is completely equivalent to
executing ar -s. Chapter 2 ar.

-v
-V
-version

Show the version number of ranlib.

28

Chapter 6. ranlib

S) redhat

Chapter 7.
size

size [-A|-B|--format=compatibility]

[--help]
[-d|-o|-x|--radix=number]
[-t|-—totals]

[--target=bfdname] [-V|--version]
[objfile...]

The gnu size utility lists the section sizes--and the total size--for each of the object or archive files
objfile in its argument list. By default, one line of output is generated for each object file or each

module in an archive.

objfile... are the object files to be examined. If none are specified, the file a . out will be used.

The command line options have the following meanings:

-A
-B
—format=compatibility

Using one of these options, you can choose whether the output from gnu size resembles
output from System V size (using -A, or -format=sysv), or Berkeley size (using -B, or
-format=berkeley). The default is the one-line format similar to Berkeley’s.

Here is an example of the Berkeley (default) format of output from size:

$ size --format=Berkeley ranlib size

text data bss dec hex filename
294880 81920 11592 388392 5ed28 ranlib
294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V conventions:

$ size --format=SysV ranlib size

ranlib
section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392
size
section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

—help

Show a summary of acceptable arguments and options.

30 Chapter 7. size

—radix=number
Using one of these options, you can control whether the size of each section is given in dec-
imal (-d, or —radix=10); octal (-o, or —radix=8); or hexadecimal (-x, or —radix=16). In
—-radix=number, only the three values (8, 10, 16) are supported. The total size is always given
in two radices; decimal and hexadecimal for —d or —x output, or octal and hexadecimal if you're
using -o.

-t
-totals

Show totals of all objects listed (Berkeley format listing mode only).

—target=bfdname

Specify that the object-code format for objfile is bfdname. This option may not be neces-
sary; size can automatically recognize many formats. Section 16.1 Target Selection, for more
information.

-V
-version

Display the version number of size.

@ redhat Chapter 8.

strings

strings [-afov] [-min-len]
[-n min-len] [--bytes=min-len]
[-t radix] [--radix=radix]
[-e encoding] [--encoding=encoding]
[-]1 [--all] [--print-file-name]
[--target=bfdname]
[--help] [--version] file...

For each file given, gnu strings prints the printable character sequences that are at least 4 charac-
ters long (or the number given with the options below) and are followed by an unprintable character.
By default, it only prints the strings from the initialized and loaded sections of object files; for other
types of files, it prints the strings from the whole file.

strings is mainly useful for determining the contents of non-text files.

—a
—all

Do not scan only the initialized and loaded sections of object files; scan the whole files.
-f

-print-file-name

Print the name of the file before each string.

~help
Print a summary of the program usage on the standard output and exit.
—min-len

-n min-len
~bytes=min-len

Print sequences of characters that are at least min-1len characters long, instead of the default 4.

-0
Like -t o. Some other versions of st rings have —o act like -t d instead. Since we can not be
compatible with both ways, we simply chose one.

-t radix

—radix=radix

Print the offset within the file before each string. The single character argument specifies the
radix of the offset--o for octal, x for hexadecimal, or d for decimal.

32 Chapter 8. strings

—e encoding
—encoding=encoding

Select the character encoding of the strings that are to be found. Possible values for encoding
are: s = single-7-bit-byte characters (ASCII, ISO 8859, etc., default), S = single-8-bit-byte char-
acters, b = 16-bit bigendian, 1 = 16-bit littleendian, B = 32-bit bigendian, L = 32-bit littleendian.
Useful for finding wide character strings.

—target=bfdname
Specify an object code format other than your system’s default format. Section 16.1 Target Se-
lection, for more information.

-V

-version

Print the program version number on the standard output and exit.

@ redhat Chapter 9.

strip

strip [-F bfdname |--target=bfdname]
[-I bfdname |--input-target=bfdname]
[-O bfdname |--output-target=bfdname]

[-s|——strip-all]
[-S|-g|-d|--strip-debug]

[-K symbolname |--keep-symbol=symbolname]

[-N symbolname |--strip-symbol=symbolname]
[-w|--wildcard]

[-x|--discard-all] [-X |--discard-locals]

[-R sectionname |--remove-section=sectionname]
[-o file] [-p|--preserve-dates]
[--only-keep-debug]

[-v |--verbose] [-V|--version]

[--help] [--info]

objfile...

gnu strip discards all symbols from object files objfile. The list of object files may include
archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing modified copies under different
names.

—F bfdname
—-target=bfdname

Treat the original objfile as a file with the object code format bfdname, and rewrite it in the
same format. Section 16.1 Target Selection, for more information.
—help

Show a summary of the options to st rip and exit.

-info
Display a list showing all architectures and object formats available.

-1 bfdname

—input-target=bfdname
Treat the original objfile as a file with the object code format bfdname. Section 16.1 Target
Selection, for more information.

-0 bfdname

—output-target=bfdname
Replace objfile with a file in the output format bfdname. Section 16.1 Target Selection, for
more information.

—R sectionname

-remove-section=sectionname

Remove any section named sectionname from the output file. This option may be given more
than once. Note that using this option inappropriately may make the output file unusable.

34 Chapter 9. strip

-s
-strip-all

Remove all symbols.
-9
-S
-d
-strip-debug

Remove debugging symbols only.

-strip-unneeded
Remove all symbols that are not needed for relocation processing.
—K symbolname
—keep-symbol=symbolname
Keep only symbol symbolname from the source file. This option may be given more than once.
—-N symbolname
—-strip-symbol=symbolname
Remove symbol symbolname from the source file. This option may be given more than once,
and may be combined with strip options other than -K.
-o file
Put the stripped output in file, rather than replacing the existing file. When this argument is
used, only one objfile argument may be specified.
P
-preserve-dates
Preserve the access and modification dates of the file.
—W
-wildcard

Permit regular expressions in symbolnames used in other command line options. The question
mark (?), asterisk (*), backslash (\) and square brackets ([]) operators can be used anywhere in
the symbol name. If the first character of the symbol name is the exclamation point (!) then the
sense of the switch is reversed for that symbol. For example:

-w -K !foo -K fo*
would cause strip to only keep symbols that start with the letters "fo", but to discard the symbol
"foo".
—X
—discard-all
Remove non-global symbols.
-X
—discard-locals

Remove compiler-generated local symbols. (These usually start with L or ..)

Chapter 9. strip 35

—only-keep-debug

-V

Strip a file, removing any sections that would be stripped by -strip-debug and leaving the
debugging sections.

The intention is that this option will be used in conjunction with -add-gnu-debuglink to
create a two part executable. One a stripped binary which will occupy less space in RAM and
in a distribution and the second a debugging information file which is only needed if debugging
abilities are required. The suggested procedure to create these files is as follows:

1. Link the executable as normal. Assuming that is is called foo then...

2. Run objcopy -only-keep-debug foo foo.dbg to create a file containing the debug-
ging info.

3. Run objcopy -strip-debug foo to create a stripped executable.

4.Run objcopy -add-gnu-debuglink=foo.dbg foo toadd alink to the debugging info
into the stripped executable.

Note - the choice of .dbg as an extension for the debug info file is arbitrary. Also the
-only-keep-debug step is optional. You could instead do this:

1. Link the executable as normal.

2. Copy footo foo.full

3.Run strip -strip-debug foo

4. Run objcopy -add-gnu-debuglink=foo.full foo

ie the file pointed to by the ~add-gnu-debuglink can be the full executable. It does not have
to be a file created by the —only-keep-debug switch.

-version

-V

Show the version number for st rip.

-verbose

Verbose output: list all object files modified. In the case of archives, strip -v lists all members
of the archive.

36

Chapter 9. strip

5) redhat

Chapter 10.
c++filt

c++filt [-_|--strip-underscores]
[-31--Java]
[-n|-—no-strip-underscores]
[-p | --no-params]
[-s format |--format=format]
[--help] [--version] [symbol...]

The C++ and Java languages provides function overloading, which means that you can write many
functions with the same name (providing each takes parameters of different types). All C++ and Java
function names are encoded into a low-level assembly label (this process is known as mangling). The
c++filt ' program does the inverse mapping: it decodes (demangles) low-level names into user-level
names so that the linker can keep these overloaded functions from clashing.

Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods) seen in the
input is a potential label. If the label decodes into a C++ name, the C++ name replaces the low-level
name in the output.

You can use c++£1i1t to decipher individual symbols:

c++filt symbol

If no symbol arguments are given, c++£1ilt reads symbol names from the standard input and writes
the demangled names to the standard output. All results are printed on the standard output.

-strip-underscores

On some systems, both the C and C++ compilers put an underscore in front of every name.
For example, the C name foo gets the low-level name _foo. This option removes the initial
underscore. Whether c++£1i1t removes the underscore by default is target dependent.

-3
-java
Prints demangled names using Java syntax. The default is to use C++ syntax.
-n
-no-strip-underscores
Do not remove the initial underscore.
P
—no-params

When demangling the name of a function, do not display the types of the function’s parameters.

1. MS-DOS does not allow + characters in file names, so on MS-DOS this program is named cxxfilt.

38

-s

Chapter 10. c++filt

format

—format=format

c++£filt can decode various methods of mangling, used by different compilers. The argument
to this option selects which method it uses:

auto
Automatic selection based on executable (the default method)

gnu

the one used by the gnu C++ compiler (g++)

lucid

the one used by the Lucid compiler (Icc)

arm

the one specified by the C++ Annotated Reference Manual

hp
the one used by the HP compiler (aCC)

edg

the one used by the EDG compiler
gnu-v3

the one used by the gnu C++ compiler (g++) with the V3 ABIL
java

the one used by the gnu Java compiler (gcj)

gnat
the one used by the gnu Ada compiler (GNAT).

~help

Print a summary of the options to c++£ilt and exit.

-version

Print the version number of c++£i1lt and exit.

Warning: c++£ilt is a new utility, and the details of its user interface are subject to change in future
releases. In particular, a command-line option may be required in the the future to decode a name passed as
an argument on the command line; in other words,

ct+filt symbol

may in a future release become

ct++filt option symbol

Chapter 10. c++filt

39

40

Chapter 10. c++filt

é) rednat Chapter 11.
addr2line

addr2line [-b bfdname|--target=bfdname]
[-C|--demangle [=style]]

[-e filename|--exe=filename]
[-f|-—functions] [-s|--basename]
[-H|--help] [-V]|--version]

[addr addr ...]

addr2line translates program addresses into file names and line numbers. Given an address and an
executable, it uses the debugging information in the executable to figure out which file name and line
number are associated with a given address.

The executable to use is specified with the —e option. The default is the file a . out.
addr2line has two modes of operation.

In the first, hexadecimal addresses are specified on the command line, and addr21ine displays the
file name and line number for each address.

In the second, addr21ine reads hexadecimal addresses from standard input, and prints the file name
and line number for each address on standard output. In this mode, addr21ine may be used in a pipe
to convert dynamically chosen addresses.

The format of the output is FILENAME : LINENO. The file name and line number for each address is
printed on a separate line. If the - £ option is used, then each FILENAME : LINENO line is preceded by
a FUNCTIONNAME line which is the name of the function containing the address.

If the file name or function name can not be determined, addr21ine will print two question marks in
their place. If the line number can not be determined, addr21ine will print 0.

The long and short forms of options, shown here as alternatives, are equivalent.

-b bfdname
—-target=bfdname

Specify that the object-code format for the object files is bfdname.

-C
—demangle [=style]

Decode (demangle) low-level symbol names into user-level names. Besides removing any initial
underscore prepended by the system, this makes C++ function names readable. Different compil-
ers have different mangling styles. The optional demangling style argument can be used to choose
an appropriate demangling style for your compiler. Chapter 10 c++filt, for more information on
demangling.

—e filename
—exe=filename

Specify the name of the executable for which addresses should be translated. The default file is
a.out.

42 Chapter 11. addr2line

-f
—functions

Display function names as well as file and line number information.
—-S
-basenames

Display only the base of each file name.

é) rednat Chapter 12.

nimconv

nlmconv converts a relocatable object file into a NetWare Loadable Module.

Warning: nlmconv is not always built as part of the binary utilities, since it is only useful for NLM targets.

nlmconv [-I bfdname|--input-target=bfdname]
[-O bfdname|--output-target=bfdname]
[-T headerfile|--header-file=headerfile]
[-d|--debug] [-1 linker|--linker=linker]
[-h|--help] [-V]|--version]
infile outfile

nlmconv converts the relocatable 1386 object file infile into the NetWare Loadable Module
outfile, optionally reading headerfile for NLM header information. For instructions on
writing the NLM command file language used in header files, see the 1inkers section, NLMLINK in
particular, of the [NLM Development and Tools Overview], which is part of the NLM Software
Developer’s Kit ("NLM SDK"), available from Novell, Inc. nlmconv uses the gnu Binary File
Descriptor library to read infile; see , for more information.

nlmconv can perform a link step. In other words, you can list more than one object file for input if
you list them in the definitions file (rather than simply specifying one input file on the command line).
In this case, n1mconv calls the linker for you.

—-I bfdname
—input-target=bfdname

Object format of the input file. n1mconv can usually determine the format of a given file (so no
default is necessary). Section 16.1 Target Selection, for more information.

-0 bfdname
—output-target=bfdname

Object format of the output file. n1mconv infers the output format based on the input format, e.g.
for a 1386 input file the output format is n1m32-1386. Section 16.1 Target Selection, for more
information.

—T headerfile
~header-file=headerfile

Reads headerfile for NLM header information. For instructions on writing the NLM com-
mand file language used in header files, see see the 1inkers section, of the [NLM Development
and Tools Overview], which is part of the NLM Software Developer’s Kit, available from Novell,
Inc.

-d
—debug

Displays (on standard error) the linker command line used by nlmconv.

44 Chapter 12. nlmconv

-1 linker
—linker=linker

Use linker for any linking. 1inker can be an absolute or a relative pathname.
-h
—help
Prints a usage summary.
-V
-version

Prints the version number for nlmconv.

5) redhat

Chapter 13.
windres

windres may be used to manipulate Windows resources.

Warning: windres is not always built as part of the binary utilities, since it is only useful for Windows
targets.

windres [options] [input-file] [output-file]

windres reads resources from an input file and copies them into an output file. Either file may be in
one of three formats:

rc

A text format read by the Resource Compiler.

res

A binary format generated by the Resource Compiler.

coff
A COFF object or executable.
The exact description of these different formats is available in documentation from Microsoft.

When windres converts from the rc format to the res format, it is acting like the Windows Resource
Compiler. When windres converts from the res format to the coff format, it is acting like the
Windows CVTRES program.

When windres generates an rc file, the output is similar but not identical to the format expected for
the input. When an input rc file refers to an external filename, an output rc file will instead include
the file contents.

If the input or output format is not specified, windres will guess based on the file name, or, for the
input file, the file contents. A file with an extension of .rc will be treated as an rc file, a file with
an extension of . res will be treated as a res file, and a file with an extension of .o or .exe will be
treated as a coff file.

If no output file is specified, windres will print the resources in rc format to standard output.

The normal use is for you to write an rc file, use windres to convert it to a COFF object file, and
then link the COFF file into your application. This will make the resources described in the rc file
available to Windows.

-1 filename
—input filename

The name of the input file. If this option is not used, then windres will use the first non-option
argument as the input file name. If there are no non-option arguments, then windres will read
from standard input. windres can not read a COFF file from standard input.

46

Chapter 13. windres

-0 filename

—output filename

The name of the output file. If this option is not used, then windres will use the first non-option
argument, after any used for the input file name, as the output file name. If there is no non-option
argument, then windres will write to standard output. windres can not write a COFF file to
standard output. Note, for compatability with rc the option -fo is also accepted, but its use is
not recommended.

—J format
—input-format format

The input format to read. format may be res, rc, or coff. If no input format is specified,
windres will guess, as described above.

-0 format
—output-format format

The output format to generate. format may be res, rc, or cof£. If no output format is specified,
windres will guess, as described above.

—-F target
—-target target

Specify the BFD format to use for a COFF file as input or output. This is a BFD target name;
you can use the —~help option to see a list of supported targets. Normally windres will use the
default format, which is the first one listed by the ~help option. Section 16.1 Target Selection.

-preprocessor program

When windres reads an rc file, it runs it through the C preprocessor first. This option may be
used to specify the preprocessor to use, including any leading arguments. The default preproces-
sor argument is gcc -E -xc-header —-DRC_INVOKED.

—I directory
—include-dir directory

Specify an include directory to use when reading an rc file. windres will pass this to the pre-
processor as an - I option. windres will also search this directory when looking for files named
in the rc file. If the argument passed to this command matches any of the supported formats
(as descrived in the -J option), it will issue a deprecation warning, and behave just like the -J
option. New programs should not use this behaviour. If a directory happens to match a format,
simple prefix it with . / to disable the backward compatibility.

-D target
—define sym[=vall

Specify a -D option to pass to the preprocessor when reading an rc file.

-U target

-undefine sym

Specify a -U option to pass to the preprocessor when reading an rc file.

Ignored for compatibility with rc.

Enable verbose mode. This tells you what the preprocessor is if you didn’t specify one.

Chapter 13. windres 47

-1 val
-language val

Specify the default language to use when reading an rc file. val should be a hexadecimal lan-
guage code. The low eight bits are the language, and the high eight bits are the sublanguage.

-use-temp-file
Use a temporary file to instead of using popen to read the output of the preprocessor. Use this
option if the popen implementation is buggy on the host (eg., certain non-English language ver-
sions of Windows 95 and Windows 98 are known to have buggy popen where the output will
instead go the console).

-no-use-temp-file
Use popen, not a temporary file, to read the output of the preprocessor. This is the default be-
haviour.

-h

~help
Prints a usage summary.

-V

-version

Prints the version number for windres.

—-yydebug

If windres is compiled with YYDEBUG defined as 1, this will turn on parser debugging.

48

Chapter 13. windres

E) redhat Chapter 14.
Create files needed to build and use DLLs

dlltool may be used to create the files needed to build and use dynamic link libraries (DLLs).

Warning: d11tool is not always built as part of the binary utilities, since it is only useful for those targets
which support DLLs.

dlltool [-d|--input-def def-file-name]
[-b|--base-file base-file-name]
[-e|-—output-exp exports-file-name]
[-z|-—output-def def-file-name]
[-1]|--output-1lib library-file-name]
[-—export-all-symbols] [-—-no-export-all-symbols]
[-—exclude-symbols list]
[-—no-default-excludes]

[-S|--as path-to-assembler] [-f|--as-flags options]
[-D|--dllname name] [-m|--machine machine]
[-a|--add-indirect] [-U|--add-underscore] [-k|--kill-at]
[-A|--add-stdcall-alias]

[-p|——ext-prefix-alias prefix]

[-x|-—no-idata4] [-c|--no-idata5] [-i|-—-interwork]
[-n|--nodelete] [-t|--temp-prefix prefix]

[-v|--verbose]

[-h|--help] [-V]|--version]

[object-file ...]

dlltool reads its inputs, which can come from the —-d and -b options as well as object files specified
on the command line. It then processes these inputs and if the —e option has been specified it creates
a exports file. If the -1 option has been specified it creates a library file and if the —z option has been
specified it creates a def file. Any or all of the —e, -1 and -z options can be present in one invocation
of dlltool.

When creating a DLL, along with the source for the DLL, it is necessary to have three other files.
dlltool can help with the creation of these files.

The first file is a . def file which specifies which functions are exported from the DLL, which func-
tions the DLL imports, and so on. This is a text file and can be created by hand, or d11tool can be
used to create it using the —z option. In this case d11tool will scan the object files specified on its
command line looking for those functions which have been specially marked as being exported and
put entries for them in the .def file it creates.

In order to mark a function as being exported from a DLL, it needs to have an
—export:<name_of_function>> entry in the .drectve section of the object file. This can be
done in C by using the asm() operator:

asm (".section .drectve");
asm (".ascii \"-export:my_func\"");

int my_func (void) { ... }

50 Chapter 14. Create files needed to build and use DLLs

The second file needed for DLL creation is an exports file. This file is linked with the object files that
make up the body of the DLL and it handles the interface between the DLL and the outside world.
This is a binary file and it can be created by giving the —e option to d11tool when it is creating or
reading in a .def file.

The third file needed for DLL creation is the library file that programs will link with in order to access
the functions in the DLL. This file can be created by giving the -1 option to dlltool when it is creating
or reading in a .def file.

dlltool builds the library file by hand, but it builds the exports file by creating temporary files
containing assembler statements and then assembling these. The —-S command line option can be
used to specify the path to the assembler that dlltool will use, and the — £ option can be used to pass
specific flags to that assembler. The —n can be used to prevent dlltool from deleting these temporary
assembler files when it is done, and if —n is specified twice then this will prevent dlltool from deleting
the temporary object files it used to build the library.

Here is an example of creating a DLL from a source file d11 . c and also creating a program (from an
object file called program. o) that uses that DLL:

gcc —-c dll.c

dlltool -e exports.o -1 dll.1lib dll.o
gcc dll.o exports.o —-o dll.dll

gcc program.o dll.lib -o program

The command line options have the following meanings:

—d filename
—input-def filename

Specifies the name of a .def file to be read in and processed.
-b filename
-base-file filename
Specifies the name of a base file to be read in and processed. The contents of this file will be
added to the relocation section in the exports file generated by dlltool.
—e filename
—output-exp filename
Specifies the name of the export file to be created by dlltool.
-z filename
—output-def filename
Specifies the name of the .def file to be created by dlltool.
-1 filename
—output-1lib filename

Specifies the name of the library file to be created by dlltool.

—export—-all-symbols

Treat all global and weak defined symbols found in the input object files as symbols to be
exported. There is a small list of symbols which are not exported by default; see the
-no-default-excludes option. You may add to the list of symbols to not export by using the
—-exclude-symbols option.

Chapter 14. Create files needed to build and use DLLs 51

—no-export-all-symbols

Only export symbols explicitly listed in an input .def file or in .drectve sections in the input
object files. This is the default behaviour. The .drectve sections are created by dllexport
attributes in the source code.

—exclude-symbols list

Do not export the symbols in 1ist. This is a list of symbol names separated by comma or colon
characters. The symbol names should not contain a leading underscore. This is only meaningful
when -export-all-symbols is used.

—-no-default-excludes

When -export-all-symbols is used, it will by default avoid exporting certain special
symbols. The current list of symbols to avoid exporting is D11Main@12, D11EntryPoint@O,
impure_ptr. You may use the -no-default-excludes option to go ahead and export these
special symbols. This is only meaningful when -export-all-symbols is used.

-S path
—as path

Specifies the path, including the filename, of the assembler to be used to create the exports file.

—f options
—as—-flags options

Specifies any specific command line options to be passed to the assembler when building the
exports file. This option will work even if the -s option is not used. This option only takes
one argument, and if it occurs more than once on the command line, then later occurrences will
override earlier occurrences. So if it is necessary to pass multiple options to the assembler they
should be enclosed in double quotes.

—-D name
—dll-name name

Specifies the name to be stored in the .def file as the name of the DLL when the -e option is
used. If this option is not present, then the filename given to the —e option will be used as the
name of the DLL.

-m machine
-machine machine

Specifies the type of machine for which the library file should be built. d11tool has a built in
default type, depending upon how it was created, but this option can be used to override that.
This is normally only useful when creating DLLs for an ARM processor, when the contents of
the DLL are actually encode using Thumb instructions.

—a
—add-indirect
Specifies that when d11tool is creating the exports file it should add a section which allows

the exported functions to be referenced without using the import library. Whatever the hell that
means!

-U
—add-underscore
Specifies that when d11tool is creating the exports file it should prepend an underscore to the

names of the exported functions. The option is ignored for symbols with an explicit internal name
specification provided in a .def file.

52 Chapter 14. Create files needed to build and use DLLs

-k

-kill-at
Specifies that when dlltool is creating the exports file it should not append the string @
<number> The option is ignored for symbols with an explicit internal name specification
provided in a .def file.

-A
—add-stdcall-alias

Specifies that when d11tool is creating the exports file it should add aliases for stdcall symbols
without @ <number> in addition to the symbols with @ <number>.

P

—ext-prefix-alias prefix
Causes dl1ltool to create external aliases for all DLL imports with the specified prefix. The
aliases are created for both external and import symbols with no leading underscore.

-X

-no-idata4
Specifies that when d11tool is creating the exports and library files it should omit the . idata4
section. This is for compatibility with certain operating systems.

—C

-no-idata5
Specifies that when d11tool is creating the exports and library files it should omit the . idata5
section. This is for compatibility with certain operating systems.

-1i

—interwork
Specifies that d11tool should mark the objects in the library file and exports file that it produces
as supporting interworking between ARM and Thumb code.

-n

-nodelete

Makes d11tool preserve the temporary assembler files it used to create the exports file. If this
option is repeated then dlltool will also preserve the temporary object files it uses to create the
library file.

-t prefix

~-temp-prefix prefix
Makes d11ltool use prefix when constructing the names of temporary assembler and object
files. By default, the temp file prefix is generated from the pid.

-V

-verbose
Make dlltool describe what it is doing.

-h

~help

Displays a list of command line options and then exits.

Chapter 14. Create files needed to build and use DLLs

-V
-version

Displays dlltool’s version number and then exits.

53

54

Chapter 14. Create files needed to build and use DLLs

E)

readelf

redhat Chapter 15.

readelf

[-al--all]

[-h|--file-header]
[-1|--program-headers|--segments]
[-S|-—section-headers|-—-sections]
[-e| -—headers]
[-s|--syms | ——symbols]

[-n| ——-notes]

[-r|--relocs]

[-u|-—unwind]

[-d|--dynamic]
[-V|--version-info]
[-A|-—arch-specific]
[-D|--use-dynamic]

[-x <number> |--hex-dump=<number>]
[-w[liaprmfFso] |

--debug-dump [=1line, =info,=abbrev,=pubnames, =ranges, =macro, =frames, =frames-1ir
[-I|-histogram]

[-v|--version]

[-W]| -——wide]

[-H|--help]
elffile...

readelf displays information about one or more ELF format object files. The options control what
particular information to display.

elffile.

.. are the object files to be examined. 32-bit and 64-bit ELF files are supported, as are

archives containing ELF files.

This program performs a similar function to objdump but it goes into more detail and it exists inde-
pendently of the bfd library, so if there is a bug in bfd then readelf will not be affected.

The long and short forms of options, shown here as alternatives, are equivalent. At least one option
besides —v or —H must be given.

—a
—all

Equivalent to specifiying -file-header, -program-headers, -sections, -symbols,
-relocs, —~dynamic, -notes and -version-info.

-h

-file-header

Displays the information contained in the ELF header at the start of the file.

-1

—-program-headers
—segments

Displays the information contained in the file’s segment headers, if it has any.

56 Chapter 15. readelf

-S
—-sections
-section-headers

Displays the information contained in the file’s section headers, if it has any.
-s

—-symbols
—-syms

Displays the entries in symbol table section of the file, if it has one.
—e
—headers
Display all the headers in the file. Equivalent to -h -1 -s.
-n
—notes
Displays the contents of the NOTE segment, if it exists.
-r
-relocs
Displays the contents of the file’s relocation section, if it has one.
-u
—unwind
Displays the contents of the file’s unwind section, if it has one. Only the unwind sections for
1A64 ELF files are currently supported.
-u
—unwind
Displays the contents of the file’s unwind section, if it has one. Only the unwind sections for
IA64 ELF files are currently supported.
-d
—dynamic
Displays the contents of the file’s dynamic section, if it has one.
-V
-version-info
Displays the contents of the version sections in the file, it they exist.
-A
—arch-specific
Displays architecture-specific information in the file, if there is any.
-D
—use-dynamic
‘When displaying symbols, this option makes readel£ use the symbol table in the file’s dynamic
section, rather than the one in the symbols section.
-x <number>
—hex-dump=<number>

Displays the contents of the indicated section as a hexadecimal dump.

Chapter 15. readelf 57

-w[liaprmfFso]
—debug-dump [=1line, =info, =abbrev, =pubnames, =ranges, =macro, =frames, =frames-interp, =st

Displays the contents of the debug sections in the file, if any are present. If one of the optional
letters or words follows the switch then only data found in those specific sections will be dumped.
-I
~histogram
Display a histogram of bucket list lengths when displaying the contents of the symbol tables.
-V
-version
Display the version number of readelf.
-W
-wide

Don’t break output lines to fit into 80 columns. By default readelf breaks section header and
segment listing lines for 64-bit ELF files, so that they fit into 80 columns. This option causes
readelf to print each section header resp. each segment one a single line, which is far more
readable on terminals wider than 80 columns.

-H
~help

Display the command line options understood by readelf.

58

Chapter 15. readelf

) rednat Chapter 16.
Selecting the Target System

You can specify two aspects of the target system to the gnu binary file utilities, each in several ways:

« the target
« the architecture

In the following summaries, the lists of ways to specify values are in order of decreasing precedence.
The ways listed first override those listed later.

The commands to list valid values only list the values for which the programs you are running were
configured. If they were configured with ~enable-targets=all, the commands list most of the
available values, but a few are left out; not all targets can be configured in at once because some of
them can only be configured native (on hosts with the same type as the target system).

16.1. Target Selection

A target is an object file format. A given target may be supported for multiple architectures (Sec-
tion 16.2 Architecture Selection). A target selection may also have variations for different operating
systems or architectures.

The command to list valid target values is objdump —i (the first column of output contains the rele-
vant information).

Some sample values are: a.out-hp300bsd, ecoff-littlemips, a.out-sunos-big.

You can also specify a target using a configuration triplet. This is the same sort of name that is passed
to configure to specify a target. When you use a configuration triplet as an argument, it must be fully
canonicalized. You can see the canonical version of a triplet by running the shell script config.sub
which is included with the sources.

Some sample configuration triplets are: m68k-hp-bsd, mips-dec-ultrix, sparc-sun-sunos.

16.1.1. objdumpTarget
Ways to specify:

1. command line option: -b or —~target
2. environment variable GNUTARGET

3. deduced from the input file

16.1.2. objcopyand striplnput Target
Ways to specify:

1. command line options: -I or —input-target, or -F or —target
2. environment variable GNUTARGET

3. deduced from the input file

60 Chapter 16. Selecting the Target System

16.1.3. objcopyand stripOutput Target
Ways to specify:

1. command line options: -0 or —output-target, or -F Or —target
2. the input target (see "objcopy and strip Input Target" above)
3. environment variable GNUTARGET

4. deduced from the input file

16.1.4. nm, size, and stringsTarget
Ways to specify:

1. command line option: -target
2. environment variable GNUTARGET

3. deduced from the input file

16.2. Architecture Selection

An architecture is a type of cpu on which an object file is to run. Its name may contain a colon,
separating the name of the processor family from the name of the particular cpu.

The command to list valid architecture values is objdump -i (the second column contains the rele-
vant information).

Sample values: m68k: 68020, mips:3000, sparc.

16.2.1. objdumpArchitecture
Ways to specify:

1. command line option: -m or —architecture

2. deduced from the input file
16.2.2. objcopy, nm, size, stringsArchitecture
Ways to specify:

1. deduced from the input file

5) redhat

Chapter 17.
Reporting Bugs

Your bug reports play an essential role in making the binary utilities reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But in any case
the principal function of a bug report is to help the entire community by making the next version of
the binary utilities work better. Bug reports are your contribution to their maintenance.

In order for a bug report to serve its purpose, you must include the information that enables us to fix
the bug.

17.1. Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

+ If a binary utility gets a fatal signal, for any input whatever, that is a bug. Reliable utilities never
crash.

+ If a binary utility produces an error message for valid input, that is a bug.

+ If you are an experienced user of binary utilities, your suggestions for improvement are welcome
in any case.

17.2. How to Report Bugs

A number of companies and individuals offer support for gnu products. If you obtained the binary
utilities from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
etc/SERVICE in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for the binary utilities to
bug-binutils@gnu.org.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not sure
whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and assume that some
details do not matter. Thus, you might assume that the name of a file you use in an example does not
matter. Well, probably it does not, but one cannot be sure. Perhaps the bug is a stray memory reference
which happens to fetch from the location where that pathname is stored in memory; perhaps, if the
pathname were different, the contents of that location would fool the utility into doing the right thing
despite the bug. Play it safe and give a specific, complete example. That is the easiest thing for you to
do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new to us. Therefore,
always write your bug reports on the assumption that the bug has not been reported previously.

Sometimes people give a few sketchy facts and ask, "Does this ring a bell?" This cannot help us fix
a bug, so it is basically useless. We respond by asking for enough details to enable us to investigate.
You might as well expedite matters by sending them to begin with.

To enable us to fix the bug, you should include all these things:

+ The version of the utility. Each utility announces it if you start it with the -version argument.

62 Chapter 17. Reporting Bugs

Without this, we will not know whether there is any point in looking for the bug in the current
version of the binary utilities.

+ Any patches you may have applied to the source, including any patches made to the BFD library.
+ The type of machine you are using, and the operating system name and version number.
» What compiler (and its version) was used to compile the utilities--e.g. "gcc-2.7".

+ The command arguments you gave the utility to observe the bug. To guarantee you will not omit
something important, list them all. A copy of the Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we might not
encounter the bug.

+ A complete input file, or set of input files, that will reproduce the bug. If the utility is reading an
object file or files, then it is generally most helpful to send the actual object files, uuencoded if
necessary to get them through the mail system. Note that bug-binutils@gnu.org is a mailing
list, so you should avoid sending very large files to it. Making the files available for anonymous
FTP is OK.

If the source files were produced exclusively using gnu programs (e.g., gcc, gas, and/or the gnu
1d), then it may be OK to send the source files rather than the object files. In this case, be sure to
say exactly what version of gcc, or whatever, was used to produce the object files. Also say how
gcc, or whatever, was configured.

+ A description of what behavior you observe that you believe is incorrect. For example, "It gets a
fatal signal."

Of course, if the bug is that the utility gets a fatal signal, then we will certainly notice it. But if the
bug is incorrect output, we might not notice unless it is glaringly wrong. You might as well not give
us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly. Suppose
something strange is going on, such as your copy of the utility is out of synch, or you have encoun-
tered a bug in the C library on your system. (This has happened!) Your copy might crash and ours
would not. If you told us to expect a crash, then when ours fails to crash, we would know that the
bug was not happening for us. If you had not told us to expect a crash, then we would not be able
to draw any conclusion from our observations.

» If you wish to suggest changes to the source, send us context diffs, as generated by diff with the
-u, —c, or —p option. Always send diffs from the old file to the new file. If you wish to discuss
something in the 1d source, refer to it by context, not by line number.

The line numbers in our development sources will not match those in your sources. Your line
numbers would convey no useful information to us.

Here are some things that are not necessary:

+ A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input file
will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the bug is by
running a single example under the debugger with breakpoints, not by pure deduction from a series
of examples. We recommend that you save your time for something else.

Of course, if you can find a simpler example to report instead of the original one, that is a conve-
nience for us. Errors in the output will be easier to spot, running under the debugger will take less
time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug anyway and send
us the entire test case you used.

Chapter 17. Reporting Bugs 63

+ A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary information, such
as the test case, on the assumption that a patch is all we need. We might see problems with your
patch and decide to fix the problem another way, or we might not understand it at all.

Sometimes with programs as complicated as the binary utilities it is very hard to construct an
example that will make the program follow a certain path through the code. If you do not send us
the example, we will not be able to construct one, so we will not be able to verify that the bug is
fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should be an
improvement, we will not install it. A test case will help us to understand.

+ A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without first using
the debugger to find the facts.

64

Chapter 17. Reporting Bugs

5) redhat

GNU Free Documentation License

Appendix A.

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this Li-
cense preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as

you.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical con-
nection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

66

Appendix A. GNU Free Documentation License

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and
edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not "Transparent” is called "Opaque."

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word pro-
cessors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material, which the general network-
using public has access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated

Appendix A. GNU Free Documentation License 67

version of the Document.
5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher
of that version gives permission. B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if it has less than
five). C. State on the Title page the name of the publisher of the Modified Version, as the pub-
lisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright
notice for your modifications adjacent to the other copyright notices. F. Include, immediately
after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below. G. Preserve
in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice. H. Include an unaltered copy of this License. I. Preserve the section
entitled "History", and its title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Doc-
ument as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence. J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History" sec-
tion. You may omit a network location for a work that was published at least four years before
the Document itself, or if the original publisher of the version it refers to gives permission. K.
In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein. L. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or the equivalent are not considered part
of the section titles. M. Delete any section entitled "Endorsements." Such a section may not be
included in the Modified Version. N. Do not retitle any existing section as "Endorsements" or
to conflict in title with any Invariant Section. If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties-for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

68

oo

10.

11.

Appendix A. GNU Free Documentation License

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled "Ac-
knowledgements", and any sections entitled "Dedications.” You must delete all sections entitled
"Endorsements."

. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an "aggregate", and this License does not apply
to the other self-contained works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invari-
ant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License provided that you also include the original English version of this
License. In case of a disagreement between the translation and the original English version of
this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

Appendix A. GNU Free Documentation License 69

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document speci-
fies that a particular numbered version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

A.1. ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU

Free Documentation License."

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones
are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover
Texts being 1ist"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these exam-
ples in parallel under your choice of free software license, such as the GNU General Public License,
to permit their use in free software.

70

Appendix A. GNU Free Documentation License

Index

.stab, see Chapter 5 objdump

A

addr2line, see Chapter 11 addr2line

address to file name and line number, see Chapter 11
addr2line

all header information, object file, see Chapter 5 obj-
dump

ar, see Chapter 2 ar

ar compatibility, see Chapter 2 ar
architecture, see Chapter 5 objdump
architectures available, see Chapter 5 objdump
archive contents, see Chapter 6 ranlib

archive headers, see Chapter 5 objdump
archives, see Chapter 2 ar

base files, see Chapter 14 Create files needed to build
and use DLLs

bug criteria, see Section 17.1 Have You Found a Bug?
bug reports, see Section 17.2 How to Report Bugs
bugs, see Chapter 17 Reporting Bugs

bugs, reporting, see Section 17.2 How to Report Bugs

(o

c++filt, see Chapter 10 c++filt

changing object addresses, see Chapter 4 objcopy
changing section address, see Chapter 4 objcopy
changing section LMA, see Chapter 4 objcopy
changing section VMA, see Chapter 4 objcopy
changing start address, see Chapter 4 objcopy
collections of files, see Chapter 2 ar
compatibility, ar, see Chapter 2 ar

contents of archive, see Section 2.1 Controlling aron
the Command Line

crash, see Section 17.1 Have You Found a Bug?

creating archives, see Section 2.1 Controlling aron
the Command Line

cxxfilt, see Chapter 10 c++filt

D

dates in archive, see Section 2.1 Controlling aron the
Command Line

debug symbols, see Chapter 5 objdump

debugging symbols, see Chapter 3 nm

deleting from archive, see Section 2.1 Controlling
aron the Command Line

demangling C++ symbols, see Chapter 10 c++filt
demangling in nm, see Chapter 3 nm

demangling in objdump, see Chapter 11 addr2line
demangling in objdump, see Chapter 5 objdump
disassembling object code, see Chapter 5 objdump
disassembly architecture, see Chapter 5 objdump
disassembly endianness, see Chapter 5 objdump
disassembly, with source, see Chapter 5 objdump
discarding symbols, see Chapter 9 strip

DLL, see Chapter 14 Create files needed to build and
use DLLs

dlltool, see Chapter 14 Create files needed to build
and use DLLs

dynamic relocation entries, in object file, see Chapter
5 objdump

dynamic symbol table entries, printing, see Chapter 5
objdump

dynamic symbols, see Chapter 3 nm

E

ELF core notes, see Chapter 15 readelf

ELF dynamic section information, see Chapter 15
readelf

ELF file header information, see Chapter 15 readelf
ELF file information, see Chapter 15 readelf

ELF object file format, see Chapter 5 objdump

ELF program header information, see Chapter 15
readelf

ELF reloc information, see Chapter 15 readelf

ELF section information, see Chapter 15 readelf
ELF segment information, see Chapter 15 readelf
ELF symbol table information, see Chapter 15 readelf
ELF version sections informations, see Chapter 15
readelf

endianness, see Chapter 5 objdump

error on valid input, see Section 17.1 Have You Found
a Bug?

external symbols, see Chapter 3 nm

extract from archive, see Section 2.1 Controlling aron
the Command Line

F

fatal signal, see Section 17.1 Have You Found a Bug?
file name, see Chapter 3 nm

72

H

header information, all, see Chapter 5 objdump

input .def file, see Chapter 14 Create files needed to
build and use DLLs

input file name, see Chapter 3 nm

L

libraries, see Chapter 2 ar
listings strings, see Chapter 8 strings

machine instructions, see Chapter 5 objdump

moving in archive, see Section 2.1 Controlling aron
the Command Line

MRI compatibility, ar, see Section 2.2 Controlling
arwith a Script

N

name duplication in archive, see Section 2.1 Control-
ling aron the Command Line

name length, see Chapter 2 ar

nm, see Chapter 3 nm

nm compatibility, see Chapter 3 nm

nm format, see Chapter 3 nm

not writing archive index, see Section 2.1 Controlling
aron the Command Line

(0]

objdump, see Chapter 5 objdump

object code format, see Chapter 11 addr2line
object code format, see Chapter 8 strings

object code format, see Chapter 7 size

object code format, see Chapter 5 objdump
object code format, see Chapter 3 nm

object file header, see Chapter 5 objdump
object file information, see Chapter 5 objdump
object file sections, see Chapter 5 objdump
object formats available, see Chapter 5 objdump
operations on archive, see Section 2.1 Controlling
aron the Command Line

Index

P

printing from archive, see Section 2.1 Controlling
aron the Command Line
printing strings, see Chapter 8 strings

Q

quick append to archive, see Section 2.1 Controlling
aron the Command Line

R

radix for section sizes, see Chapter 7 size

ranlib, see Chapter 6 ranlib

readelf, see Chapter 15 readelf

relative placement in archive, see Section 2.1 Control-
ling aron the Command Line

relocation entries, in object file, see Chapter 5 obj-
dump

removing symbols, see Chapter 9 strip

repeated names in archive, see Section 2.1 Controlling
aron the Command Line

replacement in archive, see Section 2.1 Controlling
aron the Command Line

reporting bugs, see Chapter 17 Reporting Bugs

S

scripts, ar, see Section 2.2 Controlling arwith a
Script

section addresses in objdump, see Chapter 5 objdump
section headers, see Chapter 5 objdump

section information, see Chapter 5 objdump

section sizes, see Chapter 7 size

sections, full contents, see Chapter 5 objdump

size, see Chapter 7 size

size display format, see Chapter 7 size

size number format, see Chapter 7 size

sorting symbols, see Chapter 3 nm

source code context, see Chapter 5 objdump

source disassembly, see Chapter 5 objdump

source file name, see Chapter 3 nm

source filenames for object files, see Chapter 5 obj-
dump

stab, see Chapter 5 objdump

start-address, see Chapter 5 objdump

stop-address, see Chapter 5 objdump

strings, see Chapter 8 strings

strings, printing, see Chapter 8 strings

strip, see Chapter 9 strip

symbol index, see Chapter 6 ranlib

symbol index, see Chapter 2 ar

symbol index, listing, see Chapter 3 nm

symbol line numbers, see Chapter 3 nm

Index

symbol table entries, printing, see Chapter 5 objdump
symbols, see Chapter 3 nm
symbols, discarding, see Chapter 9 strip

U

undefined symbols, see Chapter 3 nm

Unix compatibility, ar, see Section 2.1 Controlling
aron the Command Line

unwind information, see Chapter 15 readelf
updating an archive, see Section 2.1 Controlling aron
the Command Line

\'

version, see Chapter 1 Introduction
VMA in objdump, see Chapter 5 objdump

w

wide output, printing, see Chapter 5 objdump
writing archive index, see Section 2.1 Controlling
aron the Command Line

73

