

Class Library Reference Manual
BHT-200-CE
Bar Code Handy Terminal

Copyright DENSO WAVE INCORPORATED, 2006

All rights reserved. No part of this publication may be reproduced in any form or by any means without permission in
writing from the publisher.

Specifications are subject to change without prior notice.

All products and company names mentioned in this manual are trademarks or registered trademarks of their
respective holders.

Introduction

This reference manual is intended for software developers using VB.NET or C# to develop software applications using
barcode read functions and so forth for the BHT200.

¾ Related Manuals
Please refer to the following related manuals for further information.

• BHT-200-CE API Reference Manual
• BHT-200B-CE/200BW-CE User’s Manual
• BHT-200Q-CE/200QW-CE User’s Manual

¾ Contacts
Please forward any opinions or questions that you may have regarding this manual to the address below or contact us
by telephone.
DENSO WAVE INCORPORATED
MT Bldg. Hall No.2, 4-2-12,Toranomon, Minato-ku, Tokyo, 105-0001 Japan
Tel: +81-3-5472-0477

¾ Latest Information
Please access our Web site using the following URL for the latest information on this manual and our full range of
products.

http://www.denso-wave.com/

More detailed information is available for product owners at our dedicated Web site (QBNet) for registered users.
Please access the above URL for user registration and details on QBNet.

- i -

http://www.denso-wave.com/

Contents

1. Development Environment ...5
2. Development Procedure...6

2.1. Project Creation Procedure..6
2.2. Assignment Procedure ...6

3. Device Control ..8
4. Barcode Reading..9

4.1. Readable Codes...9
4.2. Trigger Switch Operation Mode..11
4.3. Display LEDs and Beeper Control ...12
4.4. Barcode Data ...12
4.5. Check Digit Calculation ..12

5. Wireless Communication..13
5.1. Wireless Communication System Configuration..13
5.2. Wireless Communication Parameters..14
5.3. Wireless Communication Parameters..19

6. Backlight ...21
6.1. Backlight Control ..22
6.2. Backlight Control Key...22
6.2. Backlight Control Key...23
6.3. Backlight Illumination Duration...24
6.4. Brightness ..24
6.5. OFF/DIM Toggle ...24

7. Beeper, Vibrator ...25
7.1. Beeper/Vibrator Selection ..25
7.2. Beeper, Vibrator Parameters..25
7.3. Beeper Volume...26
7.4. Beeper and Vibrator Control ..26
7.5. Priority Order ..26

8. Battery Information ...27
9. Keyboard ..28

9.1. Key Input Modes ..28
9.2. Magic Key Operation..31
9.3. Shift Key Operation ..32
9.4. Keyboard Type ...33

10. LED...34
11. Power Management ...36

11.1. Standby Transition Conditions..36
11.2. Suspend Transition Conditions...37

12. Updating the OS...38
13. Status Display...39
14. System Information ..40

- ii -

15. Data Communication..41
15.1. IrDA Interface ...41
15.2. Connector Interface..41
15.3. File Transfer ...41
15.4. ActiveSync Auto Connection ..41

16. Namespaces...42
17. Class...43

17.1. Scanner ..45
17.2. Scanner.CodeInfo...46
17.3. Scanner.Settings ..47
17.4. BatteryCollection ..48
17.5. BatteryCollection.Battery..49
17.6. Backlight...50
17.7. Backlight.Settings...51
17.8. LED ..52
17.9. LED.UsageCollection ...53
17.10. Beep ...54
17.11. Beep.Settings ...55
17.12. RF...56
17.13. RF.Profile..57
17.14. RF.Settings ...58
17.15. RF.WepKeyCollection...59
17.16. RF.SiteSurvey...60
17.17. RF.Info ..61
17.18. Keys ...62
17.19. Keys.Settings ...63
17.20. SysInfo ...64
17.21. SysInfo.Settings ...65
17.22. PwrMng ..66
17.23. PwrMng.Settings ..67
17.24. Icon...68
17.25. Icon.Settings...69
17.26. Display..70
17.27. Display.Settings..71
17.28. SysModification ..72
17.29. Registry ..73
17.30. ArgumentException ..74
17.31. ObjectDisposedException ..75
17.32. SecurityException ..76
17.33. DeviceNotFoundException...77
17.34. DeviceLoadException ..78
17.35. NotSupportedException ...79
17.36. CommSerial..80
17.37. FileTransfer ..81

18. Members...82

- iii -

18.1. Scanner ..82
18.2. Scanner.CodeInfo.. 137
18.3. Scanner.Settings ... 140
18.4. BatteryCollection ... 153
18.5. BatteryCollection.Battery... 156
18.6. Backlight.. 166
18.7. Backlight.Settings.. 170
18.8. LED ... 177
18.9. LED.UsageCollection .. 186
18.10. Beep .. 188
18.11. Beep.Settings .. 196
18.12. RF.. 207
18.13. RF.Profile... 224
18.14. RF.Settings .. 248
18.15. RF.WepKeyCollection.. 259
18.16. RF.SiteSurvey.. 262
18.17. RF.Info ... 267
18.18. Keys .. 273
18.19. Keys.Settings .. 276
18.20. SysInfo .. 289
18.21. SysInfo.Settings .. 290
18.22. PwrMng ... 297
18.23. PwrMng.Settings ... 301
18.24. Icon.. 309
18.25. Icon.Settings.. 310
18.26. Display... 318
18.27. Display.Settings... 319
18.28. SysModification ... 320
18.29. Registry ... 327
18.30. CommSerial... 329
18.31. FileTransfer ... 347

Appendix A. Keyboard Arrangements, Virtual Key Codes and Character Codes 371
Appendix A.1. 26-key Pad ... 371
Appendix A.2. 30-key Pad ... 373

Appendix B. Differences Between Units Running Windows CE 4.x and Windows CE 5.x 374

- iv -

- 5 -

1. Development Environment

¾ Development tool

• Microsoft Visual Studio .NET 2003

¾ Application development kit

The following assemblies have been provided as dedicated BHT class libraries.

• BHT200CL.dll
- Assembly equipped with dedicated BHT functions such as barcode reading
- Used as a reference when developing applications employing dedicated BHT functions.
- This file can be downloaded from QBNet.

• BHT200CL.xml
- BHT200CL.dll document comment file
- IntelliSense can be used by storing the file in the same folder as BHT200CL.dll.

• Communication200.dll
- Assembly equipped with file transfer and serial communication functions
- Used as a reference when developing applications employing file transfer and serial communication.
- This file can be downloaded from QBNet.

• Communication200.xml
- Communication200.dll document comment file
- IntelliSense can be used by storing the file in the same folder as Communication200.dll.

• DNWA.Exception.dll
- Assembly equipped with dedicated BHT exceptions
- Refer to when developing applications used to catch exceptions thrown by dedicated DENSO WAVE

functions.
- This can be downloaded from the QBNet Web site.

• DNWA.Exception.xml
- Assembly equipped with dedicated BHT exceptions
- DNWA.Exception.dll document comment file
- IntelliSense can be used by storing the file in the same folder as DNWA.Exception.dll.

¾ Hardware

• Dedicated BHT-200 USB cable
- Used when employing USB ActiveSync for assignment of applications and debugging.

- 6 -

2. Development Procedure
2.1. Project Creation Procedure
1. Store the dedicated BHT class libraries (dll, xml files) in an appropriate location on the computer used for

application development.

2. Start up Visual Studio.NET.

3. Select [File] – [New] – [Project…] to create a new project.

4. At the [New Project] dialog box, set the [Project Types:] to “Visual Basic Projects” or “Visual C# Projects”, and
the [Templates] to “Smart Device Application”.

5. At the [Smart Device Application Wizard], set the [What platform do you want to target?] to “Windows CE “, and
the [What project type do you want to create?] to the actual project type to be created.

6. Open the [View] – [Solution Explorer] window.

7. Right-click the [Reference] icon, and select [Add References…] to start up the reference add menu.

8. Press [Browse…] and select the dll saved at step 1.

2.2. Assignment Procedure

¾ Assignment using USB ActiveSync

1. Select [Tools] – [Options…] – [Device Tools] – [Devices] to start up the Device Tool.

2. Press [Save As…] with "Windows CE" selected at the [Show devices for platform:] and enter an appropriate
filename (e.g., “BHT AS”).

3. With the “BHT AS” file created at step 2 selected, set [Transport:] to “TCP Connect Transport”.

4. Press [Configure…] to open the “Configure TCP/IP Transport Settings” dialog box.

5. Select “Obtain an IP address automatically using ActiveSync” for the device IP address.

6. Press [OK] to exit the [Options] menu.

7. Connect the BHT and computer with the USB ActiveSync cable.

8. Select [Build…] – [Build solution] and then assign a solution.

Step 8 only is required from the second time onwards.

¾ Assignment using Smart Device Authentication

1. Connect the BHT to the same network as the computer used for development.

2. Run SDAuthUtilDevice.exe at the BHT and press START.

3. Perform steps 1 to 4 listed above for the “Assignment using USB ActiveSync” procedure.

4. Select “Use Specific IP Address” for the device IP address, and enter the IP address that displays when the
SDAuthUtilDevice.exe file run at step 2 starts up.

5. Press [OK] to exit the [Options] menu.

6. Select [Tools] - [Smart Device Authentication Utility] to start up the Smart Device Authentication Utility.

7. Enter the IP address entered at step 4 in the [Smart Device Authentication Utility] dialog box and press [Set up
device].

8. If authentication is successful, press [Close] at the [Smart Device Authentication Utility] dialog box.

- 7 -

9. Select [Build…] – [Build solution] and then assign a solution.

Unless the IP address is changed, step 9 only is required from the second time onwards.

When debugging, change both methods from [Build…] – [Build solution] to [Debug] – [Start].

- 8 -

3. Device Control
The following table lists devices that can be controlled from the dedicated BHT class library and the respective
classes used.

Function Class Assembly
Barcode reading Scanner
Wireless communication RF
Backlight Backlight
Beeper, vibrator Beep
Battery information Battery
Keyboard Keys
LED LED
Power management PwrMng
OS update SysModification
Status display Icon
Screen control Display
System information SysInfo
Registry Registry

BHT200CL.dll

Serial communication COM
File transfer FileTransfer

Communication200.dll

- 9 -

4. Barcode Reading
The barcode reading function has the following features.

• Specification of barcode types for which reading is permitted

• Specification of the trigger switch operation mode

• Specification of the method used to notify the operator that reading is complete

• Acquisition of the read barcode data, number of code digits, and code type

• Calculation of check digits

4.1. Readable Codes
The BHT unit can read the following codes. Codes for which reading is permitted are specified at the
Scanner.RdType property.

BHT-200B
EAN-13 (JAN-13) EAN-8 (JAN-8) UPC-A, UPC-E
Interleaved 2of5 (ITF) Standard 2of5 (STF) Codabar (NW-7)
Code-39 Code-93 Code-128 (EAN-128) (*1)
MSI

BHT-200Q

QR code PDF417 MaxiCode
Data Matrix EAN UCC Composite
EAN-13 (JAN-13) EAN-8 (JAN-8) UPC-A, UPC-E
Interleaved 2of5 (ITF) CODABAR (NW-7) CODE-39
CODE-128 (EAN-128) (*1) RSS

 (*1) Both Code-128 and EAN-128 can be read by specifying Code-128.

- 10 -

The following options can be specified for the above code types.
BHT-200B

Code Type Option
EAN-13 (JAN-13)
EAN-8 (JAN-8)
UPC-A, UPC-E

1st character (country flag)
Codes with add-on

Interleaved 2of5 (ITF) No. of read digits
Check digits

Codabar
 (NW-7)

No. of read digits
Start/stop characters
Check digits

Code-39 No. of read digits
Check digits

Code-93 No. of read digits
Code-128 No. of read digits
Standard 2of5 (STF) No. of read digits

Start/stop characters
Check digits

MSI Single-digit check digits

BHT-200Q

Code Type Option
QR code Model 1, Model 2, Micro QR Code, no code version

specification
No continuous reading

PDF417 PDF417, MicroPDF417

MaxiCode No specification

Data Matrix Square codes, rectangular codes, no code version
specification

EAN UCC Composite No specification
EAN-13 (*1) (JAN-13(*1))
EAN-8 (JAN-8)
UPC-A (*1), UPC-E

No specification for no. of read digits
No check digits

Interleaved 2of5 (ITF) No specification for no. of read digits
No check digits
No start/stop characters

CODABAR (NW-7) No specification for no. of read digits
No check digits

CODE-39 No specification for no. of read digits
CODE-128 (EAN-128) (*2)
RSS No specification

- 11 -

4.2. Trigger Switch Operation Mode
The following four modes exist based on differences in the illumination timing and duration of the illumination LED.
These modes are specified at the Scanner.RdMode property.

¾ Auto-off mode (default)

The illumination LED turns ON when the trigger switch is pressed, and turns OFF again when the trigger
switch is released or a barcode is read. The illumination LED remains ON for a maximum of five seconds
if the trigger switch is held down continuously.

A barcode can be read while the illumination LED is ON. Barcode reading will no longer be possible,
however, after reading of a barcode is complete or a barcode device file is closed.

If the illumination LED turns OFF after five seconds has elapsed since the trigger switch is pressed, the
trigger switch must be pressed again before barcode reading is possible.

Provided the read data is not read out from the barcode buffer, the illumination LED will not turn ON, and
it will not be possible to read the next barcode, even if the trigger switch is pressed.

¾ Momentary switch mode

The illumination LED turns ON and a barcode can be read only when the trigger switch is held down.

Provided the read data is not read out from the barcode buffer, the illumination LED will not turn ON, and
it will not be possible to read the next barcode, even if the trigger switch is pressed.

¾ Alternate switch mode

The illumination LED turns ON when the trigger switch is pressed, and remains ON even after the trigger
switch is released. The illumination LED turns OFF when the barcode device file is closed or when the
trigger switch is pressed again. A barcode can be read while the illumination LED is ON.

The illumination LED turns ON and OFF alternately each time the trigger switch is pressed. Even if a
barcode is read normally, provided the read data is not read out from the barcode buffer, the illumination
LED turns ON, however, the next barcode cannot be read, even if the trigger switch is pressed.

¾ Continuous read mode

By specifying this read mode, the illumination LED remains ON until the barcode device file is closed,
regardless of whether the trigger switch is pressed. A barcode can be read while the illumination LED is
ON.

Even if a barcode is read normally, provided the read data is not read out from the barcode buffer, the
next barcode cannot be read.

- 12 -

4.3. Display LEDs and Beeper Control
A notification given to inform the operator that barcode reading has been performed successfully can be controlled
as follows. This is specified at the Scanner.RdMode property.

• Turn ON/do not turn ON display LEDs. (Default: Turn ON display LEDs.)

• Sound/do not sound beeper. (Default: Do not sound beeper.)

If set to “Turn ON display LEDs.”, it will not be not possible to control the LEDs from the application while barcode
reading is enabled.

If set to “Do not turn ON display LEDs.”, the LEDs can be controlled from the application, even while barcode
reading is enabled. As a result, actions such as the following are possible.

• The read barcode value is checked at the user program, and the blue LED is turned ON only when the barcode
is read correctly.

• The red LED is turned ON when a barcode is read etc.

If set to “Sound beeper.”, the beeper is sounded when the barcode is read correctly.
By changing the Beep.Settings.Device value, it is possible to specify “Beeper only”, “Vibrator” only, or “Beeper and
vibrator”.

4.4. Barcode Data
Read barcode data is stored in the barcode buffer. The buffer is 99 characters in size and can store data for a
single input operation. Use the Scanner.Input method to read data from the barcode buffer.

BHT-200B

The read barcode type and number of digits can be acquired. By checking the number of digits, it is possible to
check whether the read barcode data has been stored in the barcode buffer.

BHT-200Q

The barcode buffer is 8192 bytes in size for 2D codes and 99 bytes in size for barcodes and can store data for a
single input operation.

4.5. Check Digit Calculation
It is possible to calculate the barcode check digits. This function is used when adding check digits to a barcode
with no check digits.

Check digits in barcode data currently being read are automatically checked by specifying “With check digit” at the
Scanner.RdType property and enabling barcode reading.

5. Wireless Communication
5.1. Wireless Communication System Configuration
SS method data communication is performed using a wireless card.

Wireless communication between the host computer and BHT is performed via an access point. Please refer to
the “BHT-200B-CE/200BW-CE User’s Manual” or “BHT-200Q-CE/200QW-CE User’s Manual” for further details.

The table below shows the wireless communication devices on the BHT-200 and communication state transition
for the above system configuration.

Wireless Communication Device Status Communication
Open (power on) Impossible
Checking synchronization with access point Impossible
Synchronization complete Possible

Roaming

Impossible:
If the BHT is not synchronized with an access point.
Possible:
If synchronization with an access point is maintained.

Roaming complete Possible
Close (power off) Impossible

The wireless communication device will consume a significant amount of power if always open. The device should
therefore be closed as much as possible when not in use.

It will, however, take several seconds until the wireless communication device is ready to perform communication
after being opened. Frequent opening and closing of the device will require much time, resulting in poor
responsiveness. The application purposes of user programs should be taken into account when programming.

When the wireless communication device is synchronized with the access point, the BHT-200 displays a
synchronization icon at the LCD screen.

- 13 -

- 14 -

5.2. Wireless Communication Parameters
The BHT-200 wireless operation mode has a Zero Config mode and NIC Control mode. The default mode is
NIC Control mode. NIC Control mode only is supported on BHT units running Windows CE.NET 4.1.

▪ Zero Config mode : Windows CE standard I/F
 : Security supported
▪ NIC Control mode : BHT original I/F
 : Compatible with units running Windows CE.NET 4.1.

The parameter setting method differs due to the differences between these two operation modes. Please
refer to sections “5.2.1. Parameter Setting in Zero Config Mode” and “5.2.2. Parameter Setting in NIC
Control Mode” for further details.

5.2.1. Parameter Setting in Zero Config Mode

To connect to the wireless communications pathway, specify the following system settings in System Menu or
in a user program:

▪ POWER
▪ ESSID (Extended Service Set ID)
▪ ENCRYPTION
▪ AUTHENTICATION
▪ EAP TYPE
▪ WEP KEY

For the procedure in System Menu, refer to the "BHT-200B/200BW-CE User's Manual" or
"BHT-200Q/200QW-CE User's Manual."
If no system settings are made in a user program, those made in System Menu will apply.

The following procedure is used to perform system settings in the user program.

Step 1: Set the control mode to Zero Config mode.

Step 2: Set the editing mode to Zero Config mode.

Step 3: Select the profile to be edited.
When editing an exiting profile, call the RF.Profile.Update method prior to editing.
Profiles are specified by creating Profile instances with ESSID and Infrastructure mode as arguments.
If no profile corresponding to the specified ESSID and Infrastructure mode combination exists, a new profile
will be created.

Step 4: Change parameter 1, parameter 2, ….., parameter N for the profile selected at Step 3.
Settings can be changed by changing the property values for the Profile instance created at Step 3.

Step 5: Update the set parameters to the driver.

- 15 -

[Ex.] Changing the recognition mode for the existing Profile (SSID: BHT, Infrastructure
mode).

[VB]

RF.Controller = RF.EN_CONTROLLER.ZEROCONFIG

 ‘Sets the control mode to Zero Config.

RF.EditMode = RF.EN_EDIT_MODE.ZEROCONFIG

 ‘Sets the edit mode to Zero Config.

RF.Profile.Update ‘Updates the existing Profile.

MyProfile = New RF.Profile(“BHT200”, RF.Profile.
EN_INFRA_MODE.INFRASTRUCTURE)

MyProfile.Authentication = RF.Profile.EN_AUTHENTICATION.SHARED

RF.Profile.Commit ‘Reflects to driver.

[C#]

RF.Controller = RF.EN_CONTROLLER.ZEROCONFIG;

 // Sets the control mode to Zero Config.

RF.EditMode = RF.EN_EDIT_MODE.ZEROCONFIG;

 // Sets the edit mode to Zero Config.

RF.Profile.Update(); // Updates the existing Profile.

MyProf = new RF.Profile(“BHT200”, RF.Profile.EN_INFRASTRUCTURE);

MyProf.Authentication = RF.Profile.EN_AUTHENTICATION.SHARED;

RF.Profile.Commit(); // Reflects to driver.

Use the highest priority profile from among those created to attempt a connection.
If connection fails, attempt to connect automatically using the highest priority profiles sequentially.

The profile with the highest priority will be the one created last.
Up to a maximum of 16 profiles can be created.

Settable Parameters

The BHT can be used with the following security configurations by setting ZeroConfig.

▪ PEAP（802.1x）
▪ EAP-TLS（802.1x）
▪ PEAP（WPA）
▪ EAP-TLS（WPA）
▪ PSK（WPA）(Only on units running on Windows CE 5.0.)

Details of the parameters used with the above security configurations are outlined in the table below.

Security
Parameter

None PEAP
(802.1x)

EAP-TLS
(802.1x)

PEAP
(WPA)

EAP-TLS
(WPA)

PSK
(WPA)

Authentication OPEN OPEN OPEN WPA WPA WPA-PSK

Encryption
Disable
WEP

(static)

WEP
(auto

distribution)

WEP
(auto

distribution)
TKIP TKIP TKIP

802.1x Disable PEAP EAP-TLS PEAP EAP-TLS Disable
ESSID ● ● ● ● ● ●

Profile Priority ● ● ● ● ● ●
Pre Shared Key - - - - - ●

WEP Key ● - - - - -
(●: Setting valid, -: Setting invalid)

▪ POWER
Set the power mode for the wireless module built in the BHT. The following 6 power modes are available.
The default is MOST.

Power mode Power consuming state
FULL Consumes much power (no power saving effect)
MOST
MORE
MID
LESS

LEAST

Consumes much power (little power saving effect)

Consumes less power (much power saving effect).
The BHT may take more time to establish the wireless link or send
response messages.

- 16 -

[Ex.] Set the power mode to "Cosumes much power"

RF.Settings.PowerSave = RF.Settings.EN_POWERSAVE.FULL

▪ ESSID
Specify an ID that identifies the wireless network as a character string. The ESSID of the BHT should be the
same as the SSID of the access point. If the ESSID is not set correctly, no communication is possible.
The ESSID is specified when creating a Profile instance.

[Ex.] Set the "BHT200" to the ESSID

MyProfile = new RF.Profile(“BHT200”, EN_INFRA_MODE.INFRASTRUCTURE);

- 17 -

▪ ENCRYPTION
This is the encryption method setting. A selection can be made from Prohibited, WEP, and TKIP.

▪ AUTHENTICATION

This is the authentication method setting. A selection can be made from Open, Shared, and WPA for units
running on Windows CE 4.2, and a selection can be made from Open, Shared, WPA, and WPA-PSK for
units running Windows CE 5.0.

▪ EAP TYPE
This is the EAP type setting. A selection can be made from Prohibited, PEAP, and TLS.

▪ WEP KEY

The encryption key (WEP KEY) can be set.

▪ Pre Shared KEY

Used to specify the PreShared key. (Only on units running on Windows CE 5.0.)

[Ex.] Settings required to connect to a network using PEAP(802.1x)

MyProfile.Authentication = RF.Profile.EN_AUTHENTICATION.OPEN

MyProfile.Encryption = RF.Profile.EN_ENCRYPTION.WEP

MyProfile.EAP8021x = RF.Profile.EN_EAP8021X.PEAP

[Ex.] Settings used to enable WEP. Sets the WEP KEY to
"01234567890123456789ABCDEF" (128-bit).

MyProfile.Authentication = RF.Profile.EN_AUTHENTICATION.OPEN

MyProfile.Encryption = RF.Profile.EN_ENCRYPTION.WEP

MyProfile.EAP8021x = RF.Profile.EN_EAP8021X.DISABLE

MyProfile.WepKey = “01234567890123456789ABCDEF”

5.2.2. Parameter Setting in NIC Control Mode

Make the following system setting values at either the System Menu or in a user program in order to establish
the wireless communication pathway.

▪ POWER
▪ ESSID (Extended Service Set ID)
▪ AUTHENTICATION
▪ WEP KEY

For the setting procedure at the System Menu, plese refer to the "BHT-200B/200BW-CE User's Manual" or
“BHT-200Q/200QW-CE User's Manual".
If no system settings are made in a user program, those made at the System Menu will apply.

Settable Parameters

▪ POWER
The wireless module power mode can be set. The following 6 power modes are available. The default is
P_PWRSAVE_MOST.

Power Mode Power Consumption Status

FULL Consumes much power (no power saving effect)
MOST
MORE
MID
LESS

LEAST

Consumes much power (little power saving effect)

The BHT may take a little more time to establish a wireless connection or
issue responses with little power consumption (large power saving
effect).

[Ex.] Set the power mode to "Cosumes much power"

RF.Settings.PowerSave = RF.Settings.EN_POWERSAVE.FULL

- 18 -

▪ ESSID
Specify a character string for the ID used on the wireless network. The ESSID for the BHT should be the
same as the SSID for the communication access point. If the ESSID is set incorrectly, no communication
will be possible.

[Ex.] Set the "BHT200" to the ESSID

RF.Settings.SSID1 = “BHT200”

▪ AUTHENTICATION

Authentication method setting: Open or Shared can be selected.
Select Open when the WEP setting is OFF.
Select Shared when the WEP setting is ON.

[Ex.] Enabling (128-bit) the WEP settings.

RF.Settings.Authentication = RF.Settings.EN_AUTHENTICATION.SHARED128

▪ WEP KEY

Four types of encryption key (WEP KEY) from 1 to 4 can be set.
When the WEP setting is ON, select a WEP KEY from 1 to 4 using the Transmit Key.

[Ex.] Setting WEP key 1 to ”01234567890123456789ABCDEF” (128-bit).

RF.WepKey(1) = ”01234567890123456789ABCDEF”

▪ TRANSMIT KEY

Select the WEP KEY actually used from the set WEP KEY 1 to 4.

[Ex.] Using WEP key 1.

RF.WepKeyCollection.TransmitKey = 1

5.3. Wireless Communication Parameters
5.3.1. Parameter Setting in Zero Config Mode

By the setting “TRUE” for the RF.Open property, the wireless communication device is started up and wireless
communication is permitted.

By the setting “FALSE” for the RF.Open property, the wireless communication device is stopped and wireless
communication is prohibited.

Furthermore, the wireless permission method can be changed using the OpenMode property. However, with
units running on Windows CE 4.1 or 4.2, synchronization with the Nic Control mode menu is not performed. If
the wireless communication device is opened continuously from the application, it is also necessary to close
from the application.

OpenMode Details
EN_OPEN_MODE.NORMAL Wireless communication open
EN_OPEN_MODE.CONTINUOUSLY Wireless communication continuously open

The following diagram illustrates the wireless communication device status transmission.

Wireless
communication open

& wireless
communication

continuously open

Wireless
communication

open

Wireless

communication
continuously open

Wireless
communication
device stopped

1
1

4

4

4

2

3

1

3

2

4

2

2

3

3

1

1 RF.Open = TRUE (RF.OpenMode=RF.EN_OPEN_MODE.NORMAL)

2 RF.Open = FALSE (RF.OpenMode=RF.EN_OPEN_MODE.NORMAL)

3 RF.Open = TRUE (RF.OpenMode=RF.EN_OPEN_MODE.CONTINUOUSLY)

4 RF.Open = FALSE (RF.OpenMode=RF.EN_OPEN_MODE.CONTINUOUSLY)

- 19 -

- 20 -

5.3.2. Checking Synchronization with the Access Point

When performing data communication with a wireless communication device, use the RF.Synchronize method
to check whether synchronization with the access point has been obtained.

The following is a list of possible reasons why it may not be possible to obtain synchronization with the access
point.

(1) The wireless communication device is currently open.
Several seconds are required to obtain synchronization with the access point after opening the wireless
communication device.
Furthermore, when using DHCP, there are times when several tens of seconds are required to obtain the
IP after connecting to the network.

(2) When the wireless device is moved from the current access point to the next access point during roaming
(3) When the wireless device is moved outside the radio-wave area covered by the access point.
(4) When the wireless device is moved to a location where an obstruction prevents wireless communication

with the access point.

- 21 -

6. Backlight
The backlight function has the following features.

• Backlight control

• Backlight control key specification

• Backlight illumination duration specification

• Brightness adjustment

• Backlight OFF/DIM toggle (Only on units running on Windows CE 5.0.)

6.1. Backlight Control
The backlight can be controlled using the following methods.

• Control by pressing the backlight function control key

• Control using the backlight control property

The backlight function can be enabled/disabled by pressing the backlight function control key.

With the backlight function enabled, press any key or tap the touch panel to turn the backlight ON.

If a key is not pressed or the touch panel is not tapped within the backlight illumination duration, the backlight
function remains enabled, however the backlight itself will turn OFF or dim.

The backlight illumination status can be controlled by entering a value at the Backlight.Status property, regardless
of whether it is currently disabled or disabled. Furthermore, the illumination status can be acquired by reading the
property value.

Disabled

Enabled, OFF/DIM
[Default Status]

Illumination duration elapses
since key last pressed or touch

panel tapped,

or
Status = ENABLE_OFF

Press backlight function control key,
or

Status = DISABLE_OFF

Press backlight function control key,
or

Status = DISABLE_OFF

Enabled, ON

Press key other than backlight
function control key or tap

touch panel,

or
Status = ENABLE_ON

Status = ENABLE_OFF

Press backlight function control key,
or

Status = ENABLE_ON

- 22 -

- 23 -

6.2. Backlight Control Key
The backlight function control key can be specified with the Backlight.Settings.CtrlKey property. The backlight is
controlled by holding down the [SF] key and pressing [M4] by default. Furthermore, the current backlight control
key can be acquired by reading the property value.

Backlight Control Key Setting Backlight Control Key Setting
 [SF] + [.] 0x0001000A
 [SF] + [BS] 0x0001000B
 [SF] + [C] 0x0001000C
[F1] 0x00000101
[F2] 0x00000102
[F3] 0x00000103
[F4] 0x00000104
[F5] 0x00000105
[F6] 0x00000106
[F7] 0x00000107
[F8] 0x00000108
[F9] 0x00000109
[F10] 0x0000010A
[F11] 0x0000010B
[F12] 0x0000010C
[SCAN] 0x00000200 [SF] + [SCAN] 0x00010200
[M1] 0x00000201 [SF] + [M1] 0x00010201
[M2] 0x00000202 [SF] + [M2] 0x00010202
[M3H] (half-press) 0x00000243 [SF] + [M3H] (half-press) 0x00010243
[M3] 0x00000203 [SF] + [M3] 0x00010203
[M4H] (half-press) 0x00000244 [SF] + [M4H] (half-press) 0x00010244
[M4] 0x00000204 [SF] + [M4] 0x00010204

- 24 -

6.3. Backlight Illumination Duration
The backlight illumination duration time can be set at or acquired from the Backlight.Settings.OnTimeBattery
/OnTimeACTime property when the backlight is powered by the battery or when the BHT is installed on the CU.

The illumination duration default value is 3 seconds when powered by the battery, and 60 seconds when installed
on the CU.

The illumination duration begins from the moment all keys or the touch panel is released.

6.4. Brightness
The brightness when the backlight turns ON can be set at or acquired from the Backlight.Settings.Brightness
property.

The backlight brightness can be selected from the following four levels:

0 (OFF), 1 (dark) to 3 (bright) (Default: 3)

6.5. OFF/DIM Toggle
This is supported only on units running on Windows CE 5.0.

It is possible to set or acquire whether the backlight turns OFF completely or dims when not lit at the
Backlight.Settings.PowerSave property.

Default: DIM

The Backlight.Status property should be ENABLE_OFF (OFF/dimmer) or DISABLE (disabled) in either case.

- 25 -

7. Beeper, Vibrator
The beeper and vibrator function is equipped with the following features.

• The beeper or vibrator is selected and the beeper volume setting made at the system settings.

• Sound pattern specification

7.1. Beeper/Vibrator Selection
It is possible to select from “Beeper only”, “Vibrator only”, and “Beeper and vibrator”.

Sounding of the beeper or activation of the vibrator from the application is controlled using an indexer. The beeper
or vibrator is specified for the index.

[Ex.] Sound beeper only.

[VB] MyBeep.Item(Beep.Settings.EN_DEVICE.BEEP) = Beep.EN_CTRL.ON

[C#] MyBeep[Beep.Settings.EN_DEVICE.BEEP] = Beep.EN_CTRL.ON

例) Sound beeper and vibrator.

[VB] MyBeep.Item(Beep.Settings.EN_DEVICE.BEEP Or _

Beep.Settings.EN_DEVICE.VIBRATOR) = Beep.EN_CTRL.ON

[C#] MyBeep[Beep.Settings.EN_DEVICE.BEEP

| Beep.Settings.EN_DEVICE.VIBRATOR] = Beep.EN_CTRL.ON

Specify whether to sound the beeper or activate the vibrator when displaying a warning message and so forth
upon the completion of barcode reading at the Beep.Settings.Device property.

7.2. Beeper, Vibrator Parameters
The beeper and vibrator parameters are listed in the following table.

Parameter Setting Default
ON duration (/100 msec) 0 to 255 5
OFF duration (/100 msec) 0 to 255 5
Frequency (beeper only) 199 to 32767Hz, 0:698Hz, 1:1396 Hz, 2:2793Hz 2
Repeat count (times) 0 to 255 1

The beeper or vibrator will remain ON continuously if the ON duration is set to a value other than “0” and the OFF
duration is set to “0”.

7.3. Beeper Volume
The beeper volume level can be selected from the six levels shown in the table below, however, there are in fact
only four levels; OFF, Low, Medium and High.

Setting Volume
Level

0 OFF
1
2 Low

3
4 Medium

5 High

When sounding the beeper from the application, the volume setting is valid only when the frequency is set to “0”,
“1”, or “2”.
The beeper will sound at maximum volume at all other frequency settings.

The key click sound, half-press key click sound, and touch panel tap sound volume can also be controlled from the
application. The volume for each of these sounds is set at the Beep.Settings.VolumeKey,
Beep.Settings.VolumeHalfKey, and Beep.Settings.VolumeTap property items, respectively, and can be set to
“OFF”, “Low”, or “High”.

Furthermore, it is possible to turn the click sound ON or OFF for individual magic keys (full or half-press) set for
trigger keys and marker keys. The value set at the Beep.Settings.VolumeKey/VolumeHalfKey properties is used
only when set to “ON”. The default click sound for magic keys (full or half-press) set for trigger keys and marker
keys is “OFF”.

7.4. Beeper and Vibrator Control
The beeper sounding or vibrator activation is called up asynchronously, the process is returned to the application
immediately after the setting is made, and the beeper or vibrator operates in the background.

7.5. Priority Order
The priority order for sounding the beeper or activating the vibrator is set for each event.

If an activation request is received when a high-priority event occurs while the beeper/vibrator is currently
activated due to a low-priority event, the beeper/vibrator for the low-priority event is stopped, and the
beeper/vibrator is activated for the high-priority event.

If an activation request is received when a low-priority event occurs while the beeper/vibrator is currently activated
due to a high-priority event, the beeper/vibrator for the low-priority event is ignored, and the process is returned.

Priority Events That Activate Beeper/Vibrator
System error
Completion of barcode reading

- 26 -

Setting in applications

High

Low Key clicks or screen taps

- 27 -

8. Battery Information
The battery information function provides the following information.

• Battery voltage (mV)

• CU installation status (charge status)

• Battery level

• Battery type

There are six battery levels.

The battery level is “HIGH” when fully charged and continues to drop to “MID” and then “LOW” and so on as the
BHT is used.

If a key is pressed or the touch panel is tapped when the battery level is “LOW”, the beeper will sound three times
and a ”Battery voltage low” message displays. This message will not display again until the BHT is next
suspended or resumed.

If use of the BHT is continued even when the battery voltage is low, the beeper will sound five times, a “Please
recharge battery.” message displays, and the BHT automatically goes into suspend mode. It will then not be
possible to resume the BHT until the battery has been sufficiently charged.

Level Voltage

HIGH 3.9 V or above

MID Less than 3.9 V

LOW Less than 3.7 V (Beeper sounds once and message displays.)

WARNING Less than 3.6 V (Beeper sounds three times, message displays, and BHT
suspended automatically.)

CRITICAL Less than 3.4 V (BHT does not operate.)

NO_BATTERY No battery installed (BHT does not operate.)

The actual battery voltage may differ depending on how the BHT is used. Barcode reading and wireless
communication and so forth exert a large load on the battery and therefore the voltage level may display lower
than the actual level at such times. A message displays and the BHT switches to suspend mode at such times
also.

If the battery that wants to acquire the kind is loaded, the kind of the battery is Li-ion. If the battery is not loaded, it
is unknown.

- 28 -

9. Keyboard
The following key functions exist in addition to the standard press/release functions.

• Input mode change

• Magic key function assignment

• [SF] key operation mode change

9.1. Key Input Modes

The following key entry modes are available.

(1) Numeric entry mode

This mode allows you to type in numeric data with the numeric keys.

(2) Alphabet entry mode

26-key pad
Use the numeric keys to type in alphabet letters in the same way as he/she uses a cellular phone.

30-key pad
Numeric keys and alphabet keys are used to input alphabet characters printed on the keys.

9.1.1. Numeric Entry Mode

This mode is the default when the BHT-200 is turned on.
The numeric entry mode starts by:
(1) EN_INPUT_METHOD.NUMERIC was set in the Keys.Settings.InputMethod property.
(2) pressing the [ALP] key in the 26-key pad alphabet entry mode. (*1)
(3) pressing the [SF] key only for a fixed length of time (1.5 seconds or more) in the 30-key pad alphabet entry

mode.

(*1) The key takes effect only when it is not disabled by the BHT_DISABLE_KEYMODE-CHANGE_KEY.

Pressing keys in this mode returns virtual key codes and character codes specified in Appendix A.

9.1.2. Alphabet Entry Mode

The alphabet entry mode starts by:
(1) EN_INPUT_METHOD.ALPHABET was set in the Keys.Settings.InputMethod property.
(2) pressing the [ALP] key in the 26-key pad numeric entry mode. (*1)
(3) pressing the [SF] key only for a fixed length of time (1.5 seconds or more) in the 30-key pad numeric entry

mode. (*1)

The alphabet entry mode terminates by:
(1) EN_INPUT_METHOD.NUMERIC was set in the Keys.Settings.InputMethod property.
(2) pressing the [ALP] key at the 26-key pad. (*1)
(3) pressing the [SF] key only for a fixed length of time (1.5 seconds or more) at the 30-key pad. (*1)

(*1) The key takes effect only when it is not disabled.

When keys are pressed in this mode, virtual key codes and character codes are returned in accordance with
“Appndix A. Keyboard Arrangement, Virtual Key Codes, and Character Codes”.

26-key pad alphabet entry mode:

Alphabet characters can be entered using an alphabet character similar to that used on a cellular phones.

When changing to alphabet entry mode, an unestablished character display window similar to that shown
below displays.

Unestablished characters display.

The unestablished character display window has the following features.

▪ This window can be moved by using the stylus.
▪ When the unestablished character is a space, “SP” displays in order to distinguish between those times

when there are no unestablished characters.
▪ The focus is not transferred to the unestablished character display window.
▪ The unestablished character display window always displays in the foreground.

Furthermore, the following icon displays in the task bar when in alphabet entry mode.

If keys [0] to [9] or the [.] key is pressed, the pressed key becomes an unestablished character and displays in
the unestablished character display window. The character then reverts to a character code when any of
these keys becomes established.
Press any of the following keys below to establish unestablished characters.

▪ Keys [0] to [9] or [.] that differ from the key pressed at the unestablished character
▪ [ENT] key
▪ “MAGIC_FUNC_ENTER” assigned to the magic/scan keys
▪ Keys [F1] to [F12]

- 29 -

- 30 -

When keys used for alphabet entry mode, the table below lists keys whose operations are different from those
in the numeric entry mode.

Use this key To do this

0 to 9 and
period (.) keys

Enter alphabets. For alphabets assigned to these keys, refer to
“Appendix A. Keyboard Arrangement, Virtual Key Codes and
Character Codes” – “A.1.3. Character Codes in Alphabet Entry Mode.”

ENT key
Establish an unestablished key if any.
If there is no unestablished key, the same character code as in the
numeric entry mode is returned.

BS key

C key

Clear an unestablished key if any.
If there is no unestablished key, the same character code as in the
numeric entry mode is returned.

F1 to F12 Key
Establish an unestablished key if any.
If there is no unestablished key, the same character code as in the
numeric entry mode is returned.

Magic key

Establish an unestablished key if any when the
MAGIC_FUNC_ENTER is assigned to these keys.
If there is no unestablished key, the same character code as in the
numeric entry mode is returned.

ALP key Clears unestablished keys if any exist and switches to numeric entry
mode.

- 31 -

9.2. Magic Key Operation

¾ Magic key function assignment

The following functions are assigned to magic keys.

None [ENT] key Trigger key [SF] key Backlight control
Marker light [CTL] key [ALT] key [TAB] key CLEAR key

The default functions for each magic key are as follows.

BHT-200B

Key Default Function Key Default Function
[M1] [TAB]
[M2] None
[M3] Trigger [M3H] Marker light
[M4] Trigger [M4H] Marker light
[M5] Trigger [M5H] Marker light

BHT-200Q

Key Default Function Key Default Function
[M1] [TAB]
[M2] None
[M3] Trigger [M3H] Trigger
[M4] Trigger [M4H] Trigger
[M5] Trigger [M5H] Trigger

- 32 -

The virtual key codes and display characters returned when functions are assigned to magic keys are as follows.

Parameter Function Virtual Key Code Character
Code

MAGIC_FUNC_NONE None Keys.M1 to Keys.M5,
Keys.M3H to Keys.M5H

−

MAGIC_FUNC_ENTER [ENT] Keys.Return 0D(H)
MAGIC_FUNC_TRG Trigger Keys.M1 to Keys.M5,

Keys.M3H to Keys.M5H

MAGIC_FUNC_SHIFT [SF] Keys.Shift −
MAGIC_FUNC_BLT Backlight control Keys.M1 to Keys.M5,

Keys.M3H to Keys.M5H

−

MAGIC_FUNC_TAB [TAB] Keys.Tab 09(H)
MAGIC_FUNC_LASER Marker light Keys.M1 to Keys.M5,

Keys.M3H to Keys.M5H

−

MAGIC_FUNC_CTRL [CTRL] Keys.Control −
MAGIC_FUNC_ALT [ALT] Keys.Menu −

MAGIC_FUNC_CLEAR CLEAR Keys.Clear −

9.3. Shift Key Operation
The following two shift key ([SF]) operation modes are available.

Operation Mode Description
Normal • Shift status when [SF] key pressed

Onetime lock • Shift status not only when the [SF] key is held down but also while the next key
(except the trigger switch) is pressed and released after the [SF] key is released.

- 33 -

9.4. Keyboard Type
The following four keyboard types exist based on the combination of the number of keys and number key
arrangement.

No. of Keys Number Key Arrangement EN_KEYBOARD_TYPE

Calculator type KEY26 26-key

Phone type KEY26P

Calculator type KEY30 30-key

Phone type KEY30P

10. LED
The unit is equipped with three types of LED; indicator LEDs (red, blue) to notify the user that barcode reading is
complete, charge LEDs (red, green) to indicate the charge status, and a wireless LED to indicate the wireless
communication status.

The illumination status for indicator LEDs and wireless LEDs can be controlled from the application.

Indicator LEDs

The illumination status is set and acquired using a 2D indexer. The illumination device is specified for the first
index, and the illumination color (red or green) is specified for the second index.

[Ex.] Turn ON the red display LED.

 [VB] MyLED. (LED.EN_DEVICE.BAR,LED.EN_COLOR.RED) _

= LED.EN_CTRL.ON

 [C#] MyLED[LED.EN_DEVICE.BAR,LED.EN_COLOR.RED]

= LED.EN_CTRL.ON

The priority order relationship is as follows:

(Barcode read based control) > (application based control)

If “Turn ON LED when barcode reading complete.” is specified and barcode reading is enabled, the display LED
illumination status cannot be controlled from the application until barcode reading is next disabled.

The illumination request from the application, however, is retained in the variable flag (RAM) inside the LED driver.
Illumination requests are also set and cleared while barcode reading is enabled. When barcode reading is
disabled, the flag is checked and the LED color for which an illumination request exists is turned ON automatically.

[Ex.]

Red Green
Status OFF OFF
Rqst. No No

Red Green
Status ON OFF
Rqst. Yes No

Red Green
Status OFF OFF
Rqst. Yes No

- 34 -

Red Green
Status ON OFF
Rqst. Yes No

Red Green
Status ON ON
Rqst. Yes Yes

Red Green
Status OFF OFF
Rqst. Yes Yes

Red Green
Status OFF OFF
Rqst. No Yes

Red Green
Status OFF ON
Rqst. No Yes

Red LED ON
specified from
application. Reading enabled

[Default status]

Reading disabled
Blue LED ON
specified from
application. Reading enabled

Red LED ON

Red LED OFF
specified from
application. Reading disabled

Blue LED ON

- 35 -

Wireless LEDs

The illumination status is set or acquired using a 2D indexer. Specify the device to be illuminated for the first index
and the illumination color (yellow) for the second index.

The usage can be changed with the Usage property. The default setting for this property is “Use only at the
wireless communication device.”

▪ Use only at the wireless communication device.
▪ Use only at the application.
▪ Use at both the wireless communication device and application. However, the wireless communication

device is given priority when wireless communication is open.

- 36 -

11. Power Management
The four power statuses are listed in the table below.

 Power ON Standby (*1) Suspend (*2) Critical OFF(*2)

CPU TURBO RUN
 / RUN / IDLE DEEP IDLE SLEEP SLEEP

LCD ON ON OFF OFF

(*1) No processing is performed when the BHT is on standby. Furthermore, ensure to disable standby before
accessing the card.

(*2) The events that cause the BHT to switch to the suspend and critical OFF statuses differ. The BHT status when
the power is turned OFF by pressing the power key or when using the auto OFF function is referred to as
“Suspend”, and the status when the power turns OFF due to low battery voltage or when the battery cover lock is
released is referred to as “Critical OFF”.

The power status and power consumption relationship is as follows.

(Power ON) > (Standby) > (Suspend) = (Critical OFF)

11.1. Standby Transition Conditions
The BHT switches to standby when the event that prohibits standby has been completed, and the standby
transition time has elapsed.

¾ Events that prohibit standby

- Keyboard being used

- Touch panel being tapped

- Screen display being refreshed

- Beeper/vibrator activated

- Click sound activated

- Backlight ON

- Barcode being read

- Wireless communication open

- IrDA connection open

- USB connection open

- Data being deleted from or written to flash memory

- RTC being accessed

- Display LED ON

- A system message is displayed

The standby transition time can be set or acquired using the PwrMng.Settings.StandbyTime property. Transition to
standby can be prohibited by setting this property to “0”.

- 37 -

11.2. Suspend Transition Conditions
The BHT switches to suspend when the power key is pressed, when the event that prohibits suspend has been
completed and the auto power OFF time has elapsed, and when the method used to switch to suspend is called
from the application.

¾ Events that prohibit suspend

- Wireless connection open (Excludes BHT-200 models used in USA and Canada.)

- IrDA connection open

- Connector communication being performed

- Key being pressed

- Touch panel being tapped

The auto power OFF time when the BHT is powered by the battery and when it is installed on the CU can be set or
acquired at the PwrMng.Settings.AutoPowerOffBattery and AutoPowerOffExt properties, respectively. Auto power
OFF can be disabled by setting this property to “0”.

It is also possible to switch to suspend from the application by calling up the PwrMng.Shutdown method.
Furthermore, operation after the transition to suspend can be specified by setting the parameters for the methods.

Parameter Description

WARM Warm boot is performed after power OFF. There is no need to turn the
power ON, the contents of the RAM are retained.

SUSPEND
The BHT switches to suspend. Press the power key to turn ON the power.
The contents of the RAM are retained provided that the sub-battery does
not become fully discharged.

COLD_BOOT_REGINIT The BHT cold boots automatically after power OFF. The contents of the
RAM are deleted, and the registry is reinitialized.

COLD_BOOT_REGREMAIN
The BHT cold boots automatically after power OFF. The contents of the
registry at this time are saved, and then restored when the BHT is started
up.

SYSMODIFY The BHT cold boots automatically after power OFF, and the consecutive
RAM allocation is maintained.

COLD (*1)

The BHT cold boots automatically after power OFF,. If the registry has been
saved, the BHT is booted based on the values for that registry, however, if it
has not been saved, the BHT is booted based on the values for the default
registry value.

(*1) Supported only on units running on Windows CE 5.0.

¾ Warm boot and cold boot

The memory contents retention status differs between warm boot and cold boot.

 Warm Boot Cold Boot
Files in flash memory ● ●
Files in RAM ● –
Data being edited – –
Registry information ● – (*1)

 (*1) If the registry is saved, the information is restored to the values at the point it is saved.

- 38 -

12. Updating the OS
The system can be updated (version update) by creating and executing the update applications discussed in the
procedure below while Windows CE is running.

¾ Update method using RAM

(1) Call up the PwrMng.Shutdown(PwrMng.EN_SHUTDOWN_MODE.SYSMODIFY) method and reboot the
BHT (*1).

(2) After rebooting, a “SysModify” directory (RAM disk) is created. Copy the OS file to this directory.
(3) Specify the update filename in the SysModification.FileName property.
(4) Call up the SysModification.Execute method to update the OS.
(5) The power turns OFF automatically after the update procedure is complete (The BHT cold boots and the

registry is initialized the next time the power is turned ON.)

¾ Update method using CF memory card

(1) Call up the PwrMng.Shutdown(PwrMng.EN_SHUTDOWN_MODE.SYSMODIFY) method and reboot the
BHT (*1).

(2) Save the OS file to the CF memory card and insert the card in the BHT-200 CF slot.
(3) Perform steps (3) to (5) above for the “Update method using RAM”.

(*1) After rebooting, the RAM usage allocation is decreased by approximately 32 MB in order to ensure that

the system secures approximately 32 MB for updating the OS.

13. Status Display
Enabling and disabling of the following status display icons can be controlled from the application.

 Property Icon Meaning

 High 3.9 V or more

 Medium Less than 3.9 V

 Low Less than 3.7 V
Residual battery
voltage Battery

 Warning Less than 3.6 V

[SF] key Shift Key [SF] key pressed

Standby transition Standby Switching to standby

 Wireless connection open

 Radio field intensity: Low
Synchronous connection

 Radio field intensity: Medium
Synchronous connection

Wireless
communication Wireless

 Radio field intensity: High
Synchronous connection

 Starting up SIP input.
SIP SIP

 Awaiting SIP input.

Alphabet entry Alphabet Currently in alphabet entry
mode

Function mode Func Currently in function mode

- 39 -

- 40 -

14. System Information
The following system information can be acquired from the BHT.

• System version

• Machine name

• Machine No.

• Serial No.

• RAM size

• ROM size

The RAM and ROM size constitute the size of the BHT memory. This does not refer to the amount of available
space or user space.

- 41 -

15. Data Communication
The following communication interfaces can be used for communication with the host computer. Of the three listed
below, the IrDA interface and connector interface can be used with the CommSerial class and FileTransfer class in
order to create applications.

• IrDA interface (IrDA-SIR1.2)

• Connector interface

• USB interface

15.1. IrDA Interface
The IrDA interface is assigned to port no. 4.

Communication
Parameter Setting Default

Transmission
speed (bps) 115200, 57600, 38400, 19200, 9600 9600

The IrDA interface conforms to an IrDA physical layer (IrDA-SIR1.2), and therefore parameters other than
transmission speed are all fixed (vertical parity = none, character length = 8 bits, stop bit length = 1 bit).

15.2. Connector Interface
The connector interface is assigned to port no. 1.

Communication
Parameter Setting Default

Transmission
speed (bps) 115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200, 600, 300 9600

Vertical parity None, even number, odd number None
Data length 7 bits, 8 bits 8
Stop bit length 1 bit, 2 bits 1

15.3. File Transfer
The FileTransfer class can be used to create a file transfer application using Y-modem communication.

In addition to the file itself, the “filename” and “file update date” are also transferred. If, however, the application at
the computer side is not compatible with the file update date, the transfer time will be set for both uploading and
downloading.

15.4. ActiveSync Auto Connection
The ActiveSync auto connection function can be enabled or disabled from the application.

This can be set for each communication interface.

The default value for all communication interfaces is “Disabled”.

The CU-421 is required for ActiveSync auto connection using IrDA.

- 42 -

16. Namespaces
The following three namespaces exist in the BHT-200 class library.

Namespace Name Description
DNWA.BHTCL Class group used to realize functions unique to

the BHT-200.
DNWA.Exception Thrown exception class group.
DNWA.Tools.BHT.Communication File Transfer, Serial Communication

- 43 -

17. Class

DNWA.BHTCL Namespace
The DNWA.BHTCL namespace includes the following classes.

Class Name Description
17.1. Scanner Barcode read control, read results acquisition
17.2. Scanner.CodeInfo Code information
17.3. Scanner.Settings Barcode related system settings
17.4. BatteryCollection Battery collection
17.5. BatteryCollection.Battery Battery information acquisition
17.6. Backlight Backlight illumination control
17.7. Backlight.Settings Backlight related system settings
17.8. LED LED illumination control
17.10. Beep Beeper/vibrator control
17.11. Beep.Settings Beeper/vibrator related system settings
17.12. RF Wireless connection open/close
17.13. RF.Profile Wireless communication profile properties
17.14. RF.Settings Wireless communication related settings
17.15. RF.WepKeyCollection Wep key
17.16. RF.SiteSurvey SiteSurvey information
17.17. RF.Info Wireless device information
17.18. Keys Keyboard related definitions
17.19. Keys.Settings Keyboard related settings
17.22. PwrMng Power management control
17.23. PwrMng.Settings Power management related settings
17.20. SysInfo System information
17.21. SysInfo.Settings System information related system settings
17.24. Icon Dedicated BHT icons
17.25. Icon.Settings Icon display enabled/disabled
17.26. Display Screen control
17.27. Display.Settings Screen control settings
17.28. SysModification OS update
17.29. Registry Registry operatings

- 44 -

DNWA.Exception Namepsace
The DNWA.Exception namespace includes the following classes.

Class Name Description
17.30. ArgumentException An exception thrown when a specified parameter is invalid.
17.31. ObjectDisposedException An exception thrown when an operation request is issued to a

device whose file has not been opened.
17.32. SecurityException An exception thrown when an open request is issued to a device

file for which authorization for opening cannot be obtained (e.g.,
when the file is already opened).

17.33. DeviceNotFoundException An exception thrown when an operation request is issued to a
device that is not installed on the BHT.

17.34. DeviceLoadException An exception that is thrown when an operation request is issued
to a device that is not ready to process it.

17.35. NotSupportedException An exception that is thrown when an attempt is made to carry out
a function that is not supported.

DNWA.Tools.BHT.Communication Namespace
The DNWA.Tools.BHT.Communication namespace includes the following classes.

Class Name Description
17.36. CommSerial Serial communication
17.37. FileTransfer File transfer using Y-modem protocol

- 45 -

17.1. Scanner
Controls barcode reading and acquires the read data.

For a description of all members of this class, refer to section “18.1. Scanner".

¾ Syntax

[VB]
Public Class Scanner

[C#]
public class Scanner

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.BHT200CL.dll

- 46 -

17.2. Scanner.CodeInfo
Acquires the code information read by the scanner.

This class exists within the Scanner class.

For a description of all members of this class, refer to section “18.2. Scanner.CodeInfo".

¾ Syntax

[VB]
Public Class Scanner.CodeInfo

[C#]
public class Scanner.CodeInfo

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 47 -

17.3. Scanner.Settings
Sets or acquires barcode related parameters.

This class exists within the Scanner class.

For a description of all members of this class, refer to section “18.3. Scanner.Settings".

¾ Syntax

[VB]
Public Class Scanner.Settings

[C#]
public class Scanner.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 48 -

17.4. BatteryCollection
Acquires information on the battery such as the charge status and output voltage.

For a description of all members of this class, refer to section “18.4. BatteryCollection".

¾ Syntax

[VB]
Public Class BatteryCollection

[C#]
public class BatteryCollection

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 49 -

17.5. BatteryCollection.Battery
Acquires information on the battery such as the charge status and output voltage.

For a description of all members of this class, refer to section “18.5. BatteryCollection.Battery".

¾ Syntax

[VB]
Public Class BatteryCollection.Battery

[C#]
public class BatteryCollection.Battery

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 50 -

17.6. Backlight
Sets or acquires the ON/OFF status of the backlight.

For a description of all members of this class, refer to section “18.6. Backlight".

¾ Syntax

[VB]
Public Class Backlight

[C#]
public class Backlight

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 51 -

17.7. Backlight.Settings
Sets or acquires backlight related parameters.

This class exists within the Backlight class.

For a description of all members of this class, refer to section “18.7. Backlight.Settings".

¾ Syntax

[VB]
Public Class Backlight.Settings

[C#]
public class Backlight.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 52 -

17.8. LED
Sets or acquires the LED ON/OFF status.

For a description of all members of this class, refer to section “18.8. LED".

¾ Syntax

[VB]
Public Class LED

[C#]
public class LED

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 53 -

17.9. LED.UsageCollection
Sets or acquires the control factor for the specified LED device.

This class exists in the LED class.

Please refer to “18.9. LED.UsageCollection” for details of all members.

- 54 -

17.10. Beep
Controls the beeping of the beeper and vibration of the vibrator.

For a description of all members of this class, refer to section “18.10. Beep".

¾ Syntax

[VB]
Public Class Beep

[C#]
public class Beep

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 55 -

17.11. Beep.Settings
Sets or acquires the beeper and vibrator related parameters.

This class exists within the Beep class.

For a description of all members of this class, refer to section “18.11. Beep.Settings".

¾ Syntax

[VB]
Public Class Beep.Settings

[C#]
public class Beep.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 56 -

17.12. RF
Opens and closes wireless communication, and sets or acquires the parameters for wireless communication.

For a description of all members of this class, refer to section “18.12. RF".

¾ Syntax

[VB]
Public Class RF

[C#]
public class RF

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 57 -

17.13. RF.Profile

Sets or acquires properties for the wireless communication profile.

This is not supported on units running on Windows CE 4.1.

This class exists within the RF class.

For a description of all members of this class, refer to section “18.13. RF.Profile".

¾ Syntax

[VB]
Public Class RF.Profile

[C#]
public class RF.Profile

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 58 -

17.14. RF.Settings

Sets or acquires the parameters for wireless communication.

This class exists within the RF class.

For a description of all members of this class, refer to section “18.14. RF.Settings".

¾ Syntax

[VB]
Public Class RF.Settings

[C#]
public class RF.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 59 -

17.15. RF.WepKeyCollection

Specifies the Wep key.

This class exists within the RF class.

For a description of all members of this class, refer to section “18.15. RF.WepKeyCollection".

¾ Syntax

[VB]
Public Class RF.WepKeyCollection

[C#]
public class RF.WepKeyCollection

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 60 -

17.16. RF.SiteSurvey

Acquires SiteSurvey data.

This class exists within the RF class.

For a description of all members of this class, refer to section “18.16. RF.SiteSurvey".

¾ Syntax

[VB]
Public Class RF.SiteSurvey

[C#]
public class RF.SiteSurvey

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 61 -

17.17. RF.Info

Acquires information on wireless communication.

This class exists within the RF class.

For a description of all members of this class, refer to section ”18.17. RF.Info".

¾ Syntax

[VB]
Public Class RF.Info

[C#]
public class RF.Info

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 62 -

17.18. Keys

Sets or acquires keyboard related parameters and defines the magic key.

For a description of all members of this class, refer to section “18.18. Keys".

¾ Syntax

[VB]
Public Class Keys

[C#]
public class Keys

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 63 -

17.19. Keys.Settings

Sets or acquires keyboard related parameters.

This class exists within the Keys class.

For a description of all members of this class, refer to section “18.19. Keys.Settings".

¾ Syntax

[VB]
Public Class Keys.Settings

[C#]
public class Keys.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 64 -

17.20. SysInfo

Sets or acquires system information.

For a description of all members of this class, refer to section “18.20. SysInfo".

¾ Syntax

[VB]
Public Class SysInfo

[C#]
public class SysInfo

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 65 -

17.21. SysInfo.Settings

Sets or acquires parameters related to the system information.

This class exists within the SysInfo class.

For a description of all members of this class, refer to section “18.21. SysInfo.Settings".

¾ Syntax

[VB]
Public Class SysInfo.Settings

[C#]
public class SysInfo.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 66 -

17.22. PwrMng

Sets or acquires power management related parameters for the BHT and controls the shut down process.

For a description of all members of this class, refer to section “18.22. PwrMng".

¾ Syntax

[VB]
Public Class PwrMng

[C#]
public class PwrMng

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 67 -

17.23. PwrMng.Settings

Sets or acquires the parameters for power management.

This class exists within the PwrMng class.

For a description of all members of this class, refer to section “18.23. PwrMng.Settings".

¾ Syntax

[VB]
Public Class PwrMng.Settings

[C#]
public class PwrMng.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 68 -

17.24. Icon

Sets or acquires the icon display status (enabled/disabled).

For a description of all members of this class, refer to section “18.24. Icon".

¾ Syntax

[VB]
Public Class Icon

[C#]
public class Icon

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 69 -

17.25. Icon.Settings

Enables or disables the display of icons.

This class exists within the Icon class.

For a description of all members of this class, refer to section “18.25. Icon.Settings".

¾ Syntax

[VB]
Public Class Icon.Settings

[C#]
public class Icon.Settings

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 70 -

17.26. Display
This function is not supported.

- 71 -

17.27. Display.Settings
This function is not supported.

- 72 -

17.28. SysModification

Updates the BHT system program.

For a description of all members of this class, refer to section “18.28. SysModification".

¾ Syntax

[VB]
Public Class SysModification

[C#]
public class SysModification

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 73 -

17.29. Registry

Performs registry operation.

Please refer to “18.29. Registry” for details of all members.

¾ Syntax

[VB]
Public Class Registry

[C#]
public class Registry

¾ Namespace

DNWA.BHTCL

¾ Assembly

BHT200CL.dll

- 74 -

17.30. ArgumentException
An exception that is thrown when the value set in the property or the value of one of the parameters specified in
the method is invalid.

¾ Syntax

[VB]
Public Class ArgumentException
 Inherits System.ArgumentException

[C#]
public class ArgumentException : System.ArgumentException

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.Exception.dll

- 75 -

17.31. ObjectDisposedException
An exception that is thrown when an operation request is issued to a device whose file has not been opened.

¾ Syntax

[VB]
Public Class ObjectDisposedException
 Inherits System.ObjectDisposedException

[C#]
public class ObjectDisposedException

: System.ObjectDisposedException

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.Exception.dll

- 76 -

17.32. SecurityException

An exception that is thrown when an open request is issued to a device file for which authorization for opening
cannot be obtained (e.g., when the file is already opened).

¾ Syntax

[VB]
Public Class SecurityException
 Inherits System.SecurityException

[C#]
public class SecurityException : System.SecurityException

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.Exception.dll

- 77 -

17.33. DeviceNotFoundException

An exception that is thrown when an operation request is issued to a device that is not installed on the BHT.

¾ Syntax

[VB]
Public Class DeviceNotFoundException
 Inherits System.IO.FileNotFoundException

[C#]
public class DeviceNotFoundException

: System.IO.FileNotFoundException

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.Exception.dll

- 78 -

17.34. DeviceLoadException

An exception that is thrown when an operation request is issued to a device that is not ready to process it.

¾ Syntax

[VB]
Public Class DeviceLoadException
 Inherits System.IO.FileLoadException

[C#]
public class DeviceLoadException : System.IO.FileLoadException

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.Exception.dll

- 79 -

17.35. NotSupportedException

An exception that is thrown when an attempt is made to carry out a function that is not supported.

¾ Syntax

[VB]
Public Class NotSupportedException
 Inherits System.IO.PlatformNotSupportedException

[C#]
public class NotSupportedException

: System.IO.PlatformNotSupportedException

¾ Namespace

DNWA.BHTCL

¾ Assembly

DNWA.Exception.dll

- 80 -

17.36. CommSerial

Sets or acquires the parameters for serial communication and performs data communication.

For a description of all members of this class, refer to section “18.30. CommSerial".

¾ Syntax

[VB]
Public Class CommSerial

[C#]
public class CommSerial

¾ Namespace

DNWA.Tools.BHT.Communication

¾ Assembly

DNWA.Tools.BHT.Communication200.dll

- 81 -

17.37. FileTransfer

Controls the uploading and downloading of files using the Y-modem protocol.

For a description of all members of this class, refer to section “18.31. FileTransfer"

¾ Syntax

[VB]
Public Class FileTransfer

[C#]
public class FileTransfer

¾ Namespace

DNWA.Tools.BHT.Communication

¾ Assembly

DNWA.Tools.BHT.Communication200.dll

- 82 -

18. Members
18.1. Scanner

¾ Constructor

Constructor Name Description
Scanner Creates a new instance of the Scanner class.

¾ Fields

Field Name Description
MAX_BAR_LEN Maximum number of digits in barcode
MAX_2DCODE_LEN Maximum number of digits in 2D code
ALL_BUFFER Used to acquire the contents of the entire buffer by the Input method

¾ Properties

Property Name Description
RdMode Read mode
RdType Read-enabled codes
PortOpen Read-enabled/read-disabled
InBufferCount Number of code digits in the barcode in the buffer
InBufferType Type of the barcode in the buffer
LastCount Number of code digits in the barcode last read
LastCodeNum Number of barcodes last read
LastType Type of the barcode last read
LastCodeInfo Information of barcodes last read

¾ Methods

Method Name Description
Input
Input
Input

Reads the contents of the barcode buffer.

GetChkDigit Calculates the check digit.
Dispose Frees up all unmanaged resources.

- 83 -

¾ Events

Event Name Description
OnDone Occurs when decoding is complete.

¾ Enumeration

None

- 84 -

Scanner

Initializes a new instance of the Scanner class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public Scanner()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a MyScanner Scanner instance.

[VB] Dim MyScanner As Scanner = New Scanner

[C#] Scanner MyScanner = new Scanner();

- 85 -

MAX_BAR_LEN

The maximum number of digits in the barcode. This value is fixed (not variable).

￭ Syntax

[VB]
Public Const MAX_BAR_LEN As Integer

[C#]
public const int MAX_BAR_LEN;

[Ex.] Declare a buffer containing a barcode with the maximum number of elements.

[VB] Dim ReadBuf(Scanner.MAX_BAR_LEN) As Byte

[C#] Byte[] ReadBuf = new byte[Scanner.MAX_BAR_LEN];

MAX_2DCODE_LEN

The maximum number of digits in the 2D code. This value is fixed (not variable).

￭ Syntax

[VB]
Public Const MAX_2DCODE_LEN As Integer

[C#]
public const int MAX_2DCODE _LEN;

[Ex.] Declare a buffer containing a 2D code with the maximum number of elements.

[VB] Dim ReadBuf(Scanner.MAX_2DCODE_LEN) As Byte

[C#] Byte[] ReadBuf = new byte[Scanner. MAX_2DCODE_LEN];

- 86 -

ALL_BUFFER

Specify this parameter during a read operation using the Input method to read the contents of the
entire barcode buffer. This value is fixed (not variable).

￭ Syntax

[VB]
Public Const ALL_BUFFER As Integer

[C#]
public const int ALL_BUFFER;

[Ex.] Read all remaining data in the barcode buffer.

[VB] MyScanner.Input(ReadBuf, 0, Scanner.ALL_BUFFER)

[C#] MyScanner.Input(ReadBuf, 0, Scanner.ALL_BUFFER);

- 87 -

RdMode

Sets or acquires Read mode.

￭ Syntax

[VB]
Public Property RdMode As String

[C#]
public string RdMode {get; set}

￭ Property

Character string used to specify read mode

Default value: "FB"

￭ Exceptions

None

￭ Note

The setting for this property will be valid the next time the read operation is enabled.

If an invalid character string is specified, no exceptions are thrown immediately, however, an exception
is thrown the next time the read operation is enabled.

The BHT supports four read modes: momentary switching mode (M), auto-off mode (F), alternate
switching mode (A), and continuous reading mode (C). Select a read mode by specifying the
appropriate code (M, F, A, or C).

Momentary switching mode (M)
The illumination LED lights up and barcodes can be read only when the trigger switch is
held down.

Provided the barcode data that has been read remains inside (i.e., not sent out of) the
barcode buffer, the BHT cannot read new barcodes even if the trigger switch is pressed (the
LED will not light up).

[Ex.] Set the read mode to momentary, turn the beeper notification OFF, and turn the LED
notification ON.

 [VB] MyScanner.RdMode = "M"

 [C#] MyScanner.RdMode = "M";

- 88 -

Auto-off mode (F)
Press the trigger switch to turn ON the illumination LED. The LED turns OFF when the switch is
released or when the BHT completes barcode reading. The LED remains illuminated for a maximum of
5 seconds when the trigger switch is held down.

The BHT can read barcodes while the illumination LED is ON. The BHT is no longer able to read
barcodes after a barcode has been read or the barcode device file is closed.

When the illumination LED turns OFF 5 seconds after pressing the trigger switch, the switch must be
pressed again to read a barcode.

Provided the barcode data that has been read remains inside (i.e., not sent out of) the
barcode buffer, the BHT cannot read new barcodes even if the trigger switch is pressed (the
LED will not light up).

[Ex.] Set the read mode to auto-off, turn the beeper notification OFF, and turn the LED
notification ON.

 [VB] MyScanner.RdMode = "F"

 [C#] MyScanner.RdMode = "F";

Alternate switching mode (A)
Press the trigger switch to turn ON the illumination LED. Even after releasing the switch, the
illumination LED remains on until the barcode device file is closed or the trigger switch is pressed again.
The BHT can read barcodes while the illumination LED is ON.

Pressing the trigger switch toggles the illumination LED ON and OFF.

After a barcode has been read successfully, provided the barcode data that has been read remains
inside (i.e., not sent out of) the barcode buffer, the BHT cannot read new barcodes even if the trigger
switch is pressed. The LED, however, will turn ON.

[Ex.] Set the read mode to alternate, turn the beeper notification OFF, and turn the LED
notification ON.

 [VB] MyScanner.RdMode = "A"

 [C#] MyScanner.RdMode = "A"

Continuous reading mode (C)

If this mode is specified, the illumination LED turns ON and remains ON until the barcode device file is
closed, regardless of the position of the trigger switch.

The BHT can read barcodes while the illumination LED is ON.

After a barcode has been read successfully, provided the barcode data that has been read
remains inside (i.e., not sent out of) the barcode buffer, the BHT cannot read new barcodes.

[Ex.] Set the read mode to continuous reading, turn the beeper notification OFF, and turn
the LED notification ON.

 [VB] MyScanner.RdMode = "C"

 [C#] MyScanner.RdMode = "C";

- 89 -

Notes:

If no choice is specified for the read mode, the auto-off mode is selected by default.

In momentary switching mode, alternate switching mode, or continuous reading mode, if,
after reading a low-quality barcode requiring more than one second to read, the barcode
read head remains in close proximity to that barcode, the BHT may re-read the same
barcode again at intervals of one second (or longer).

- 90 -

Beeper control and LED control
This property is used to control the action of the beeper and indicator LED when a barcode has been
read successfully. This property also allows the vibrator to be controlled with beeper control.

Specify the parameters for read mode, beeper control, and LED control with no spaces in between.

Specify the parameters for read mode, beeper control, and LED control in this order.

Specify B for beeper control to select beeping only, vibrating only, or beeping & vibrating, based on the
setting specified at the BEEP/VIBRATOR menu in the System menu or the setting specified at the
Beep.Settings.Device system function.

Specifying L for indicator LED control will not turn on the indicator LED. Specify B to activate the beeper
(vibrator) when a barcode is successfully read.

[Ex.] Set the read mode to auto-off, turn the beeper notification ON, and turn the LED
notification ON.

[VB] MyScanner.RdMode = "FB"

[C#] MyScanner.RdMode = "FB";

Specify L to prevent the blue LED from turning ON when a barcode is successfully read.

[Ex.] Set the read mode to auto-off, turn the beeper notification ON, and turn the LED
notification OFF.

 [VB] MyScanner.RdMode = "FL"

 [C#] MyScanner.RdMode = "FL";

- 91 -

RdType

Sets or acquires the codes that are to be read-enabled.

￭ Syntax

[VB]
Public Property RdType As String

[C#]
public string RdType {get; set}

￭ Property

Character string used to specify read-enabled codes

Default value: "A,I:4-99,M:1-99,N:3-99,L:1-99,K:1-99,H:3-99,P:1-99" (BHT-200B)

"Q:E,A,I:4-99,M:1-99,N:3-99,K:1-99,R,V,Y,X,Z" (BHT-200Q)

￭ Exceptions

None

￭ Note

The setting for this property will be valid the next time the read operation is enabled.

If an invalid character string is specified, no exceptions are thrown immediately, however, an exception
is thrown the next time the read operation is enabled.

A maximum of twenty four codes can be specified.

The maximum code version for QR Code, maximum code number for Data Matrix, and maximum
number of digits for barcodes are limited by the readable range.

- 92 -

BHT-200B

The BHT-200B supports universal product codes, Interleaved 2of5 (ITF), Codabar (NW-7), Code-39,
Code-93, Code-128, Standard 2of5 (STF), and MSI. It can also read EAN-128 if Code-128 is specified.

• Universal product codes (A)

[Syntax]

A [:[code] [1st character [2nd character]][supplemental]]

Specify a code from one of the following.

Code Barcode Type
A EAN-13 (JAN-13), UPC-A
B EAN-8 (JAN-8)
C UPC-E

If the code is omitted, it will be possible to read any of the above universal product codes.

The 1st character and 2nd character are flag characters representing the country code, and each must
be a numeral between 0 and 9 (inclusive). If a question mark (?) is specified for the 1st character or 2nd
character, it is treated as a wild card.

“supplemental” refers to the reading of an add-on code. Specifying an S for add-on enables the BHT to
read barcodes with an add-on code also.

[Ex.]) To enable the BHT to scan EAN-13 with 1st character "4", 2nd character "9", and
add-on code:

[VB] MyScanner.RdType = "A:49S"

[C#] MyScanner.RdType = "A49S";

[Ex.] To enable the BHT to scan EAN-13 and EAN-8 only:

[VB] MyScanner.RdType = "A:A,A:B"

[C#] MyScanner.RdType = "A:A,A:B";

- 93 -

• Interleaved 2of5 (ITF) (I)

[Syntax]

I [:[mini.no.digits[-max.no.digits]][CD]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively.

These numbers must both be between 2 and 99 (inclusive) and satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from the minimum
number of digits specified at system mode up to 99 digits.

If only max.no.digits is omitted, the BHT will only be able to read as many digits as specified by
mini.no.digits.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on MOD-10. The
number of check digits is included in the number of digits to be read.

[Ex.] To enable the BHT to scan ITF with mini.no.digits 6, max.no.digits 10, and MOD-10:

[VB] MyScanner.RdType = "I:6-10C"

[C#] MyScanner.RdType = "I:6-10C";

[Ex.] To enable the BHT to scan ITF with mini.no.digits 6 and max.no.digits 10 or with
mini.no.digits 20 and max.no.digits 40:

[VB] MyScanner.RdType = "I:6-10,I:20-40"

[C#] MyScanner.RdType = "I:6-10,I:20-40";

- 94 -

• CODABAR (NW-7) (N)

[Syntax]

N [:[mini.no.digits[-max.no.digits]][startstop][CD]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively.

These numbers must both be between 3 and 99 (inclusive) and satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from the minimum
number of digits specified at system mode up to 99 digits.

If only max.no.digits is omitted, the BHT will only be able to read as many digits as specified by
mini.no.digits.

Start and stop are the start and stop characters, respectively. Specify each of these as A, B, C, or D. If
a question mark (?) is specified, it is treated as a wild card. The start and stop characters are included
in the number of digits. A to D are stored in the barcode buffer as a to d.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on MOD-16. The
number of check digits is included in the number of digits to be read.

[Ex.] To enable the BHT to scan CODABAR with mini.no.digits 8, start character A, stop
character A, and MOD-16:

[VB] MyScanner.RdType = "N:8AAC"

[C#] MyScanner.RdType = "N:8AAC";

[Ex.] To enable the BHT to scan CODABAR with mini.no.digits 6 and max.no.digits 10 or
with mini.no.digits 20 and max.no.digits 40:

[VB] MyScanner.RdType = "N:6-10,N:20-40"

[C#] MyScanner.RdType = "N:6-10,N:20-40";

- 95 -

• CODE-39 (M)

[Syntax]

M [:[mini.no.digits[-max.no.digits]][CD]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from 1
to 99 digits. If only max.no.digits is omitted, the BHT will only be able to read as many digits
as specified by mini.no.digits.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on
MOD-43. The number of check digits is included in the number of digits to be read.

[Ex.] To enable the BHT to scan Code 39 with mini.no.digits 8, max.no.digits 12, and
MOD-43:

[VB] MyScanner.RdType = "M:8-12C"

[C#] MyScanner.RdType = "M:8-12C";

[Ex.] To enable the BHT to scan Code 39 with mini.no.digits 6 and max.no.digits 10 or with
mini.no.digits 20 and max.no.digits 40:

[VB] MyScanner.RdType = "M:6-10,M:20-40"

[C#] MyScanner.RdType = "M:6-10,M:20-40";

- 96 -

• CODE-93 (L)

[Syntax]

L [:[mini.no.digits[-max.no.digits]]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters or check digits.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from 1
to 99 digits. If only max.no.digits is omitted, the BHT will only be able to read as many digits
as specified by mini.no.digits.

[Ex.] To enable the BHT to scan Code 93 with mini.no.digits 6 and max.no.digits 12:

[VB] MyScanner.RdType = "L:6-12"

[C#] MyScanner.RdType = "L:6-12";

[Ex.] To enable the BHT to scan Code 93 with mini.no.digits 6 and max.no.digits 10 or with
mini.no.digits 20 and max.no.digits 40:

[VB] MyScanner.RdType = "L:6-10,L:20-40"

[C#] MyScanner.RdType = "L:6-10,L:20-40";

Note:

Neither the start/stop characters nor check digit(s) are transferred to the barcode buffer.

- 97 -

• CODE-128 (K)

[Syntax]

K [:[mini.no.digits[-max.no.digits]]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters or check digits.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from 1
to 99 digits. If only max.no.digits is omitted, the BHT will only be able to read as many digits
as specified by mini.no.digits.

[Ex.] To enable the BHT to scan Code-128 with mini.no.digits 6 and max.no.digits 12:

[VB] MyScanner.RdType = "K:6-12"

[C#] MyScanner.RdType = "K:6-12";

[Ex.] To enable the BHT to scan Code-128 with mini.no.digits 6 and max.no.digits 10 or
with mini.no.digits 20 and max.no.digits 40:

[VB] MyScanner.RdType = "K:6-10,K:20-40"

[C#] MyScanner.RdType = "K:6-10,K:20-40";

Note:

Neither the start/stop characters nor check digit(s) are transferred to the barcode buffer.

- 98 -

Handling of special characters
If the BHT reads a barcode made up of special characters only (such as FNC, CODE-A, CODE-B,
CODE-C and SHIFT characters), it will not transfer the data to the barcode buffer. If the beeper is
enabled, only the beeper sounds.

• FNC1

FNC1 characters placed within two character positions after the start character are not transferred to
the barcode buffer. FNC1 characters in any other positions are converted to GS characters (1Dh) and
then transferred to the barcode buffer.

If an FNC1 character immediately follows the start character, the barcode will be recognized as
EAN-128 and marked with W instead of K.

• FNC2

If the BHT reads a barcode containing any FNC2 characters, the data is transferred directly to the
barcode buffer with the FNC2 character(s) discarded, without being temporarily buffered.

• FNC3

If the BHT reads a barcode containing any FNC3 character(s), it will regard the data as invalid, and no
data transfer will take place. If enabled by the RdMode property, the indicator LED will light up and the
beeper (vibrator) will sound (vibrate).

• FNC4

The FNC4 character converts data in code set A or B into extended ASCII (basic ASCII code value +
128).

A standalone (single) FNC4 character converts only the subsequent data character into extended
ASCII.

A pair of continuous FNC4 characters converts all subsequent data characters preceding another pair
of continuous FNC4 characters or the stop character into extended ASCII. If, however, a standalone
(single) FNC4 character is inserted in between, one data character immediately after this standalone
FNC4 character is left as it is (not converted).

An FNC4 character does not convert any of GS characters converted by an FNC1 character into
extended ASCII.

- 99 -

• Standard 2of5 (STF) (H)

[Syntax]

H [:[mini.no.digits[-max.no.digits]][CD][startstop]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from the minimum
number of digits specified at system mode up to 99 digits.

If only max.no.digits is omitted, the BHT will only be able to read as many digits as specified
by mini.no.digits.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on
MOD-10. The number of check digits is included in the number of digits to be read.

Startstop specifies whether the normal or short format of the start/stop characters is to be used.

Specify N for the normal format or S for the short format. If startstop is omitted, start/stop
characters can be read in either format.

[Ex.] To enable the BHT to scan STF with mini.no.digits 6 and max.no.digits 12:

[VB] MyScanner.RdType = "H:6-12"

[C#] MyScanner.RdType = "H:6-12";

[Ex.] To enable the BHT to scan STF with mini.no.digits 6 and max.no.digits 10 or with
mini.no.digits 20 and max.no.digits 40:

[VB] MyScanner.RdType = "H:6-10,H:20-40"

[C#] MyScanner.RdType = "H:6-10,H:20-40";

- 100 -

• MSI (P)

[Syntax]

P [:[mini.no.digits[-max.no.digits]][CD]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from 1
to 99 digits. If only max.no.digits is omitted, the BHT will only be able to read as many digits
as specified by mini.no.digits.

CD is used to specify a check digit(s). If C1 or C2 is specified for the CD, the Interpreter will
check barcodes with a single-digit CD or double-digit CD, respectively. If no CD is specified,
the Interpreter checks barcodes with a single-digit CD. The number of check digits is
included in the number of digits to be read.

[Ex.] To enable the BHT to scan MSI with mini.no.digits 6, max.no.digits 12, and a
single-digit CD check:

[VB] MyScanner.RdType = "P:6-12C1"

[C#] MyScanner.RdType = "P:6-12C1";

[Ex.] To enable the BHT to scan MSI with mini.no.digits 6, max.no.digits 10 and a
single-digit CD check or with mini.no.digits 20, max.no.digits 40 and a double-digit CD
check:

[VB] MyScanner.RdType = " P:6-10,P:20-40C2"

[C#] MyScanner.RdType = " P:6-10,P:20-40C2";

- 101 -

BHT-200Q
The BHT-200Q supports the following 2D code and barcode types.

Supported 2D code types

QR code, PDF417, MaxiCode, Data Matrix, EAN/UCC Composite

Supported barcode types

Universal product codes, Interleaved 2of5 (ITF), Codabar (NW-7), Code-39, Code-128
It can also read EAN-128 if Code-128 is specified.

• QR code (Q)

[Syntax]

Q [:[symbol type [min code version[-max code version]]][Split mode]]

[;symbol type[min code version[-max code version]]]

[;symbol type[min code version[-max code version]]]

The following symbol types can be set.

Symbol Type Applicable Code
S MicroQR
M QR model 1
L QR model 2

All of the above code types can be read if the symbol type is omitted.

The “min code version” and “max code version” are the minimum and maximum QR code
versions that can be read, respectively. The table below shows the permissible range of
code versions by symbol type.

Permissible Code Version Range Symbol Type
1 - 4 S

1 - 22 M
1 - 40 L

The “min code version” and “max code version” must satisfy the following condition:

min code version ≤ max code version

If both the minimum and maximum code versions are omitted, it will be possible to read QR
codes up to the maximum permissible code version for each symbol type. If only the
maximum code version is omitted, only the QR code of the minimum code version specified
can be read.

In split/merge mode, QR code symbols split into a maximum of 16 segments can be read
properly. Edit mode, batch edit mode, and non-edit mode can be specified as shown below.

- 102 -

Split/merge
mode

E Enables compound code reading in edit mode.
B Enables compound code reading in batch edit mode.
C Enables compound code reading in non-edit mode.

The mode specified last will be valid if multiple modes are specified.

It is not possible to read split QR code symbols without specifying a split/merge mode.

 [Ex.] To enable the BHT to read compound codes:

RdType = " Q:M5-14E;L1-40;S1-4"

When reading a compound code in edit mode, the maximum data length is 8,192 bytes. If the data
exceeds 8,192 bytes, a read error will occur, the beeper will sound for 1 sec, and the read data will be
destroyed.

When a compound code is read in non-edit mode, the read data is stored in the barcode buffer in the
following format:

Sub-code no Number of sub-codes Parity Read data
Sub-code no., No. of sub-codes: 1 byte (hex.) (0 – F)
Parity: 2 bytes (hex.) (00 − FF)

The sub-code number, number of sub-codes, and parity are converted into hexadecimal
characters.

The sub-code number is expressed in hexadecimal notation; for example, 0 (30h) for the
first, and F (46h) for the 16th. Likewise, the number of sub-codes is expressed in
hexadecimal notation; for example, 1 (31h) when splitting into 2 divisions, and F (46h) when
splitting into 16 divisions.

The parity is provided for sum checking of the read data. It also serves as a delimiter between that
sub-code and another sub-code.

When reading a compound code, the beeper sounds as follows: Upon reading the first
sub-code of a compound code, it beeps twice, signaling the start of compound code reading
mode. Thereafter, the beeper sounds once each time a sub-code is read, except the last
one, for which the beeper sounds three times, signaling the end of compound code reading
mode.

All split sub-codes within a compound code must be read, regardless of the read order. Once read, a
split sub-code cannot be read again until all other split sub-codes within the compound code have been
read.

In any of the following events, compound code reading will be terminated, even if reading of the entire
compound code is not complete. If reading is terminated in this manner when in edit mode, all data
read up to that point will be deleted.

- 103 -

1. A code other than a split sub-code is read.
In this case, the data that has been read will be stored in the barcode buffer.

2. Another concatenated code is read.
The BHT initiates reading of the new compound code starting with the newly read
sub-code.

3. The barcode read window is removed from the barcode for more than 3 seconds in
momentary switch mode, alternate switch mode, or continuous read mode, or more than
5 seconds has elapsed since a split sub-code was read.

4. The illumination LED has been turned OFF using the trigger switch, i.e., the trigger
switch has been released when in momentary switch mode or auto-off mode, or the
trigger switch has been pressed again when in alternate switch mode.

• PDF417（Y）

[Syntax]

Y[:[symbol type]]

The following symbol types can be set.

Symbol type Applicable code
S MicroPDF417
M PDF417

Both of the above code types can be read if the symbol type is omitted.

- 104 -

• MaxiCode（X）

[Syntax]

X

• Data Matrix（Z）

[Syntax]

Z [:[symbol type [min code no. [−max code no.]]]]

[;symbol type [min code no.[−max code no.]]]

The following symbol types can be set.

Symbol Type Applicable Code
S Square Data Matrix
R Rectangular Data Matrix

Both of the above code types can be read if the symbol type is omitted.

The “min code no.” and “max code no.” are the minimum and maximum DataMatrix code
numbers that can be read, respectively. The table below shows the permissible range of
code numbers by symbol type.

Permissible Code Numbers Symbol Type
1 - 24 S
1 - 6 R

Both the Square Data Matrix and Rectangular Data Matrix code types are read if the symbol
type is omitted.

The “min code no.” and “max code no.” must satisfy the following condition:

min code no. ≤ max code no.

If both the minimum and maximum code numbers are omitted, it will be possible to read
DataMatrix codes up to the maximum permissible code number for each symbol type. If
only the maximum code number is omitted, only the DataMatrix code of the minimum code
number specified can be read. The table below shows the correlation between the code
number and the number of cells.

- 105 -

S (Square Data Matrix)

Code
No.

Row x
Col.

Code
No.

Row x
Col.

Code
No.

Row x
Col.

Code
No.

Row x
Col.

1
2
3
4
5
6

10 x 10
12 x 12
14 x 14
16 x 16
18 x 18
20 x 20

7
8
9
10
11
12

22 x 22
24 x 24
26 x 26
32 x 32
36 x 36
40 x 40

13
14
15
16
17
18

44 x 44
48 x 48
52 x 52
64 x 64
72 x 72
80 x 80

19
20
21
22
23
24

88 x 88
96 x 96

104 x 104
120 x 120
132 x 132
144 x 144

R (Rectangular Data Matrix)

Code
No.

Row x
Col.

Code
No.

Row x
Col.

1
2
3

8 x 18
8 x 32

12 x 26

4
5
6

12 x 36
16 x 36
16 x 48

• EAN/UCC Composite（V）

[Syntax]

V

- 106 -

• Universal product code (A)

[Syntax]

A [:[code][1st character [2nd character]][supplemental]]

Specify one of the codes listed below.

Code Barcode Type
A EAN-13 (JAN-13), UPC-A
B EAN-8 (JAN-8)
C UPC-E

If the code is omitted, it will be possible to read any of the above universal product codes.

The 1st character and 2nd character are flag characters representing the country code, and each must
be a numeral between 0 and 9 (inclusive). If a question mark (?) is specified for the 1st character or 2nd
character, it is treated as a wild card.

“Supplemental” refers to the reading of an add-on code. Specifying an S for add-on enables
the BHT to read barcodes with an add-on code also.

To specify multi-line code reading, first specify “&” and then specify this syntax as many
times as the number of rows to be read. The code cannot be omitted.

[Ex.] Reading 3 rows of a universal product code:

RdType = "&,A:A,A:B,A:C"

- 107 -

• Interleaved 2of5 (ITF) (I)

[Syntax]

I [:[mini.no.digits [−max. no.digits]][CD]][;[1st character [2nd character]]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from the minimum
number of digits specified at system mode up to 99 digits.

If only max.no.digits is omitted, the BHT will only be able to read as many digits as specified
by mini.no.digits.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on
MOD-10. The number of check digits is included in the number of digits to be read.

To specify multi-line code reading, first specify “&” and then specify this syntax as many
times as the number of rows to be read. In this syntax, “;” and the portion after it are valid
only for multi-line code reading. Specify a numeral (0 − 9) for the first and second
characters.

[Ex.] Reading 2 rows of an ITF code:

RdType = "&,I:;12,I:;23"

- 108 -

• Codabar（NW-7）（N）

[Syntax]

N [:[mini.no.digits [− max.no.digits]][startstop] [CD]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively.

These numbers must both be between 3 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from the minimum
number of digits specified at system mode up to 99 digits.

If only max.no.digits is omitted, the BHT will only be able to read as many digits as specified
by mini.no.digits.

Start and stop are the start and stop characters, respectively. Specify each of these as A, B,
C, or D. If a question mark (?) is specified, it is treated as a wild card. The start and stop
characters are included in the number of digits. A to D are stored in the barcode buffer as a
to d.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on
MOD-10. The number of check digits is included in the number of digits to be read.

To specify multi-line code reading, first specify “&” and then specify this syntax as many
times as the number of rows to be read.

[Ex.] Reading 3 rows of a Codabar:

RdType = "&,N:8,N:6,N:4"

- 109 -

• Code-39（M）

[Syntax]

M [:[min.no.digits [−max.no.digits]][CD]][; [1st character [2nd character]]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters or check digits.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from 1
to 99 digits. If only max.no.digits is omitted, the BHT will only be able to read as many digits
as specified by mini.no.digits.

CD is used to specify a check digit(s). If C is specified, barcodes are checked based on
MOD-43. The number of check digits is included in the number of digits to be read.

To specify multi-line code reading, first specify “&” and then specify this syntax as many
times as the number of rows to be read. In this syntax, “;” and the portion after it are valid
only for multi-line code reading. Specify a numeral (0 − 9) for the first and second
characters.

[Ex.] Reading 2 rows of a Code-39:

RdType = "&,M:;12,M:;23"

- 110 -

• Code-128（K）

[Syntax]

K [:[mini.no.digits [−max.no.digits]]][;[1st character [2nd character]]]

The mini.no.digits and max.no.digits are the minimum and maximum numbers of barcode digits to be
read by the BHT, respectively. These do not include the start and stop characters or check digits.

These numbers must both be between 1 and 99 (inclusive) and satisfy the following
condition:

mini.no.digits ≤ max.no.digits

If both mini.no.digits and max.no.digits are omitted, the default reading range will be from 1
to 99 digits. If only max.no.digits is omitted, the BHT will only be able to read as many digits
as specified by mini.no.digits.

Neither the start/stop characters nor check digit(s) are transferred to the barcode buffer.

To specify multi-line code reading, first specify “&” and then specify this syntax as many
times as the number of rows to be read. In this syntax, “;” and the portion after it are valid
only for multi-line code reading. Specify a numeral (0 − 9) for the first and second
characters.

[Ex.] Reading 2 rows of a Code-128:

RdType = "&,K:;12,K:;23"

- 111 -

Multi-line code reading
To specify multi-line code reading, specify “&” followed by the codes to be read. Up to three
rows can be specified.

[Syntax]

“&, code in 1st row, code in 2nd row, [code in 3rd row]”

Multi-line code reading is independent of single-row code reading.

[Ex.] Reading universal product code EAN-8 and EAN-13 (2 rows):

RdType = "&,A:B,A:A"

[Ex.] Reading 1 row of universal product code EAN-8 and 2 rows of Code 39:

RdType = "A:B,&,M,M"

A 2D code and multi-line code can be specified simultaneously.

[Ex.] Reading a QR code and 3 rows of code 39:

RdType = "Q,&,M,M,M "

When performing multi-line code reading, the read order can be specified using the first two
characters (start/stop in the case of Codabar).

[Ex.] Reading 3 rows of ITF (with character specification) in the following sequence: code
beginning with “12,” code with CD beginning with “21” of 6 – 10 digits in length, and code
beginning with “23” of 12 digits in length:

RdType = "&,I:;12,I:6-10C;21,I:12;23"

It is also possible to specify one character.

[Ex.] Reading a universal product code EAN and ITF (with character specification) in the
following order: EAN beginning with “49”, ITF of 6 – 10 digits in length beginning with “2”.:

RdType = "&,A:A49,I:6-10;2"

Data is output in the order in which the code is specified.

[Ex.] Data is to be output in the sequence of EAN-8 beginning with “12” - EAN-8 beginning
with “21.”

RdType = "&,A:B12,A:B21"

Note, however, that if same character and same number of digits is specified, the output
order will be unpredictable.

[Ex.] Reading 2 rows of ITF, both beginning with “49” and with a length of 6 digits:

RdType = "&,I:6;49,I:6;49"

- 112 -

If the same code (with the same code type and the same data code) appears more than
once in a multi-line code, it cannot be read by the BHT.

[Ex.] A code consisting of EAN-13: “'4912345678904'” in the first row, EAN-13;
“'1200000000003” in the second row, and EAN-13 “4912345678904” in the third row
cannot be read with the following instruction:

RdType = "&,A:A49,A:A12,A:A49"

If the same code type, same number of digits, and same conditions are specified for
single-line reading and multi-line code reading, the BHT will not be able to read the
single-row code.

[Ex.] If there is a single-row EAN-13 code “4901234567894” and a two-row EAN-13 code
consisting of “4909876543214” in the first row and “1200000000003” in the second row, it
will not be possible to read them using the following instruction:

RdType = "A:A49,&,A:A49,A:A12"

When performing multi-line code reading, an ITF code less than 4 digits in length cannot be
read unless the number of digits is specified.

It is not possible to specify multi-line code reading for add-on codes in the universal product
code.

It is not possible to specify multi-line code reading for RSS code.

When the point scan mode is selected, it is not possible to specify multi-line code reading.

• RSS（R）

[Syntax]

R

- 113 -

PortOpen

Enables or disables barcode reading.

￭ Syntax

[VB]
Public WriteOnly Property PortOpen As Boolean

[C#]
public bool PortOpen {set}

￭ Property

Read-enabled (= True), Read-disabled (= False)

Default value: False

￭ Exceptions

Name of Exception Meaning

SecurityException Barcode device file already opened

ArgumentException The specified read mode was invalid.
The specified read-enabled code(s) was/were invalid.

[Ex.] Enable barcode reading.

[VB] MyScanner.PortOpen = True

[C#] MyScanner.PortOpen = true;

- 114 -

InBufferCount

BHT-200B
Acquires the number of digits in the barcode remaining in the barcode buffer.

BHT-200Q
Acquires the number of digits in the barcode remaining in the barcode buffer.

When a multi-line code is read, the total number of digits in the multi-line code is returned.

When an EAN/UCC composite code is read, the total number of digits in the composite
code is returned.

￭ Syntax

[VB]
Public Property ReadOnly InBufferCount As Integer

[C#]
public int InBufferCount {get}

￭ Property

Number of digits in the barcode in the barcode buffer

Default value: 0

￭ Exceptions

None

￭ Note

Once data has been read from the barcode buffer using the Input method, this count is reduced by the
number of digits that have been read.

This count is reset to zero (0) the moment barcode reading is disabled.

[Ex.] Acquire the number of code digits for data remaining in the barcode buffer.

[VB] Dim len As Integer = MyScanner.InBufferCount

[C#] int len = MyScanner.InBufferCount;

- 115 -

InBufferType

BHT-200B
Acquires the type of barcode remaining in the barcode buffer.

BHT-200Q
Acquires the type of barcode remaining in the barcode buffer.

When a multi-line code is read, this fact is communicated to the caller.

When an EAN/UCC composite code is read, this fact is communicated to the caller.

￭ Syntax

[VB]
Public Property ReadOnly InBufferType As Char

[C#]
public char InBufferType {get}

￭ Property

Type of barcode in the barcode buffer

The correlation between code type and InBufferType values is shown below.

Code Type InBufferType
None (No code read) 0
EAN-13 (JAN-13), UPC-A 'A'
EAN-8 (JAN-8) 'B'
UPC-E 'C'
ITF 'I'
STF (BHT-200B only) 'H'
CODABAR (NW-7) 'N'
CODE-39 'M'
CODE-93 (BHT-200B only) 'L'
CODE-128 'K'
EAN-128 'W'
MSI (BHT-200B only) 'P'

- 116 -

Code Type InBufferType

QR code (BHT-200Q only) ‘Q’
Compound QR code (in
non-edit mode)
(BHT-200Q only)

‘S’

PDF417 (BHT-200Q only) 'Y'
Maxi Code (BHT-200Q only) 'X'
Data Matrix (BHT-200Q only) 'Z'
Multi-line code (BHT-200Q only) '&'
Composite code
(BHT-200Q only) 'V'

Default value: 0 (Nothing in VB.NET)

￭ Exceptions

None

￭ Note

The value is reset to zero (0) when all data is read from the barcode buffer using the Input method and
the barcode buffer is empty.

The value is reset to zero (0) the moment barcode reading is disabled.

[Ex.] Acquire the code type for data remaining in the barcode buffer.

[VB] Dim type As Char = MyScanner.InBufferType

[C#] char type = MyScanner.InBufferType;

- 117 -

LastCount

BHT-200B
Acquires the number of digits in the barcode that was read last.

“0” is stored if no barcodes are read since the BHT was last started up.

BHT-200Q
Acquires the number of digits in the barcode that was read last.

“0” is stored if no barcodes are read since the BHT was last started up.

If the barcode that was read last is a multi-line code, the total number of digits for all rows is
returned.

To acquire the number of digits for a specific row, use LastCodeInfo.

When an EAN/UCC composite code is read, the total number of digits in the composite
code is returned. To acquire the information for a specific row, use LastCodeInfo.

￭ Syntax

[VB]
Public Property ReadOnly LastCount As Integer

[C#]
public int LastCount {get}

￭ Property

Number of digits in the barcode that was read last

Default value: 0

￭ Exceptions

None

- 118 -

￭ Note

The value is "0" if no barcode is read after an instance of the Scanner class was created.

The value remains unchanged even if barcode reading is disabled.

[Ex.] Acquire the number of code digits for the data last read.

[VB] Dim count As Integer = MyScanner.LastCount

[C#] int count = MyScanner.LastCount;

- 119 -

LastType

BHT-200B
Acquires the type of code that was read last.

“0” is stored if no barcodes are read since the BHT was last started up.

BHT-200Q
Acquires the type of code that was read last.

“0” is stored if no barcodes are read since the BHT was last started up.

When a multi-line code is read, this fact is communicated to the caller.

To acquire the type of code for a specific row, use LastCodeInfo.

When an EAN/UCC composite code is read, this fact is communicated to the caller. To
acquire the code type for a specific row, use LastCodeInfo.

￭ Syntax

[VB]
Public Property ReadOnly LastType As Integer

[C#]
public int LastType {get}

￭ Property

Type of barcode that was read last

The correlation between the barcode type and values is the same as that for the
InBufferType.

Default value: 0 (Nothing in VB.NET)

￭ Exceptions

None

￭ Note

The value is "0" if no barcode is read after an instance of the Scanner class was created.

The value remains unchanged even if barcode reading is disabled.

[Ex.] Acquire the code type for the data last read.

[VB] Dim count As Integer = MyScanner.LastCount

[C#] int count = MyScanner.LastCount;

- 120 -

LastCodeInfo

Acquires information on the code that was read last.

￭ Syntax

[VB]
Public Property ReadOnly LastCodeInfo As Scanner.CodeInfo

[C#]
public Scanner.CodeInfo LastCodeInfo {get}

￭ Property

Information on the barcode that was read last

The correlation between the barcode type and values is the same as that for the
InBufferType.

Default value: null (Nothing in VB.NET)

￭ Exceptions

None

[Ex.] Acquire the code type and number of digits in all rows for the data last read.

[VB]

For i = 0 To MyScanner.LastCodeNum

 len(i) = MyScanner.LastCodeInfo(i).Len

 type(i) = MyScanner.LastCodeInfo(i).Type

Next

[C#]

for (i = 0; i < MyScanner.LastCodeNum; i++) {

 len[i] = MyScanner.LastCodeInfo[i].Len

 type[i] = MyScanner.LastCodeInfo[i].Type

}

- 121 -

LastCodeNum

Acquires the number of codes (rows) that were read last.

￭ Syntax

[VB]
Public Property ReadOnly LastCodeNum As Integer

[C#]
public int LastCodeNum {get}

￭ Property

Number of barcodes that were read last.

BHT-200Q

If the code that was read last is a multi-line code, the number of rows is returned.

If the code that was read last is a composite code, the number of codes constituting the
composite code (which is “2”) is returned.

If the code that was read last is other than the above, “1” is returned.

Default value: 0

￭ Exceptions

None

 [Ex.] Acquire the code type and number of digits in all rows for the data last read.

[VB]

For i = 0 To MyScanner.LastCodeNum

 len(i) = MyScanner.LastCodeInfo(i).Len

 type(i) = MyScanner.LastCodeInfo(i).Type

Next

[C#]

for (i = 0; i < MyScanner.LastCodeNum; i++) {

 len[i] = MyScanner.LastCodeInfo[i].Len

 type[i] = MyScanner.LastCodeInfo[i].Type

}

- 122 -

Input

Reads unicoded data from the barcode buffer.

￭ Syntax

[VB]
Public Function Input(ByVal len As Integer) As String

[C#]
public string Input(int len)

￭ Parameters

len

[in] Maximum number of digits in the barcode to be read

Specifying Scanner.ALL_BUFFER causes the entire contents of the barcode buffer to
be read.

￭ Return value

Barcode data that has been read

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException Barcode reading is disabled

￭ Note

Calling this method while barcode reading is disabled will cause an exception to be thrown.

[Ex.] Display the data last read.

[VB] TextBoxData.Text = MyScanner.Input(Scanner.ALL_BUFFER)

[C#] TextBoxData.Text = MyScanner.Input(Scanner.ALL_BUFFER);

- 123 -

Input

Reads unicoded data from the barcode buffer.

￭ Syntax

[VB]
Public Function Input(ByVal buffer() As Char,ByVal offset As Integer, _

len As Integer) As Integer

[C#]
public int Input(char[] buffer, int offset, int len)

￭ Parameters

buffer

[out] Destination buffer

offset

[in] Offset value within buffer indicating the start point of reading

Specifying Scanner.ALL_BUFFER causes the entire contents of the barcode buffer to
be read.

len

[in] Maximum number of digits in the barcode to be read

Specifying Scanner.ALL_BUFFER causes the entire contents of the barcode buffer to
be read.

￭ Return value

Actual number of digits that have been read

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException Barcode reading is disabled.

- 124 -

￭ Note

Calling this method while barcode reading is disabled will cause an exception to be thrown.

[Ex.] Read out the last read data converted to Unicode.

[VB] len = MyScanner.Input(buffer, 0, Scanner.ALL_BUFFER)

[C#] len = MyScanner.Input(buffer, 0, Scanner.ALL_BUFFER);

- 125 -

Input

Reads binary data from the barcode buffer.

￭ Syntax

[VB]
Public Function Input (ByVal buffer() As Byte, ByVal offset As Integer,
_

len As Integer) As Integer

[C#]
public int Input(byte[] buffer, int offset, int len)

￭ Parameters

buffer

[out] Destination buffer

offset

[in] Offset value within buffer indicating the start point of reading

len

[in] Maximum number of barcode digits to be read out

Specifying Scanner.ALL_BUFFER causes the entire contents of the barcode buffer to
be read.

￭ Return value

Actual number of digits that have been read

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException Barcode reading is disabled.

- 126 -

￭ Note

Calling this method while barcode reading is disabled will cause an exception to be thrown.

When displaying the read data, it is necessary to use the encoding class and convert to
Unicode.

[Ex.] Use the ANSI code page encoding currently set in the system and convert to
Unicode.

 [VB]

 Dim buffer(MAX_2DCODE_LEN) As Byte

 Input(buffer, 0, ALL_BUFFER)

 Dim strDisplayData As String = System.Text.Encoding.Default.GetString(buffer)

 [C#]

 byte[] buffer = new byte[MAX_2DCODE_LEN];

 Input(buffer, 0, ALL_BUFFER);

 string strDisplayData = System.Text.Encoding.Default.GetString(buffer);

- 127 -

GetChkDigit

Calculates the check digit for the barcode data based on the specified calculation algorithm.

￭ Syntax

[VB]
Public Shared Function GetChkDigit(ByVal bardata As String, _
ByVal type As Char) As Integer

[C#]
public static int GetChkDigit(string bardata, char type)

￭ Parameters

bardata

[in] Barcode data

type

[in] Check digit type

Code Type Type Calculation Method
EAN(JAN), UPC 'A' MOD10
ITF 'I' MOD10
STF (BHT-200B only) 'H' MOD10
CODABAR (NW-7) 'N' MOD16
CODE-39 'M' MOD43
MSI (BHT-200B only) 'P' MOD10

￭ Return value

Calculated check digit

￭ Exceptions

Name of Exception Meaning
ArgumentException The barcode data is invalid, or

the specified check digit type is invalid.

- 128 -

￭ Note

If the barcode data within the code (excluding the check digit positions) contains any
characters outside the character set corresponding to the barcode type specified by the
check digit type, this function returns "0" and throws an exception. However, if only the
check digit positions contain a character outside the valid character set, then this function
calculates the correct check digit and returns it as a single-character string.

[VB] Scanner.GetChkDigit("494AB4458", "A")

[C#] Scanner.GetChkDigit("494AB4458", "A")

Since "A" and "B" lie outside the valid character set for EAN (JAN) or UPC, "0" is returned
and an exception is thrown.

[VB] Scanner.GetChkDigit("4940045X", "A")

[C#] Scanner.GetChkDigit("4940045X", "A");

"X" lies outside the valid character set but is in the CD position, and therefore the correct
CD (ASCII "8") is calculated and returned.

[VB] Scanner.GetChkDigit("a0ef3-a", "N")

[C#] Scanner.GetChkDigit("a0ef3-a", "N");

Since "e" and "f" lie outside the valid character set for Codabar (NW-7), "0" is returned and
an exception is thrown.

[VB] Scanner.GetChkDigit("a123Qa", "N")

[C#] Scanner.GetChkDigit("a123Qa", "N");

"Q" lies outside the valid character set but is in the CD position, and therefore the correct
CD (ASCII "-") is calculated and returned.

- 129 -

When CD type is A(EAN (JAN) or UPC):
This function identifies the code type (EAN or UPC) based upon the data length (number of
digits) as shown below.

If the data length is other than 13, 8, or 7, this function returns "0" and throws an exception.

No. of Digits in Barcode Data Barcode type
13 EAN-13 (JAN-13), UPC-A
8 EAN-8 (JAN-8)
7 UPC-E

To check whether the CD type is correct, pass a piece of barcode data with a CD to the
Scanner.GetChkDigit method as shown below. If the returned value is equal to the CD,
then the CD is correct.

[VB]

If (Scanner.GetChkDigit("49400458", "A") = Asc("8")) Then

Console.WriteLine ("CD OK")

End If

[C#]

UnicodeEncoding encode = new UnicodeEncoding();

if (Scanner.GetChkDigit("49400458", 'A') == (int)encode.GetBytes("8")[0]) {

Console.WriteLine ("CD OK");

}

To append a CD to the barcode data, pass a piece of barcode data with a dummy character
appended to the Scanner.GetChkDigit method as shown below. The returned value will be
the CD. Replace the dummy character with the returned value.

[VB]

Dim origData As String = "4940045"

Dim digit As Integer = Scanner.GetChkDigit(origData+"0", "A")

Console.WriteLine("CD = {0}", origData + New String(Chr(digit), 1))

[C#]

string origData = "4940045";

int digit = Scanner.GetChkDigit(origData+"0", 'A');

byte[] digitByteArray = {(byte)digit};

ASCIIEncoding encode = new ASCIIEncoding();

Console.WriteLine("CD = {0}", origData + encode.GetString(digitByteArray, 0, 1));

Result

> CD = 49400458

- 130 -

When CD type is I (ITF):
The barcode data must be an even number with two or more digits. Otherwise, this function
returns "0" and throws an exception.

To check whether the CD is correct, pass a piece of barcode data with a CD to the
Scanner.GetChkDigit method as shown below. If the returned value is equal to the CD,
then the CD is correct.

[VB]

If (Scanner.GetChkDigit("123457", "I") = Asc("7")) Then

Console.WriteLine ("CD OK")

End If

[C#]

UnicodeEncoding encode = new UnicodeEncoding();

if (Scanner.GetChkDigit("123457", 'I') == (int)encode.GetBytes("7")[0]) {

Console.WriteLine ("CD OK");

}

To append a CD to barcode data, pass a piece of barcode data with a dummy character
appended to the Scanner.GetChkDigit method as shown below. The returned value will be
the CD. Replace the dummy character with the returned value.

[VB]

Dim origData As String = "12345"

Dim digit As Integer = Scanner.GetChkDigit(origData+"0", "I")

Console.WriteLine("CD = {0}", origData + New String(Chr(digit), 1))

[C#]

string origData = "12345";

int digit = Scanner.GetChkDigit(origData+"0", 'I');

byte[] digitByteArray = {(byte)digit};

ASCIIEncoding encode = new ASCIIEncoding();

Console.WriteLine("CD = {0}", origData + encode.GetString(digitByteArray, 0, 1));

Result

> CD = 123457

- 131 -

When CD type is H (STF):
The barcode data must be two or more digits in length. Otherwise, this function returns "0"
and throws an exception.

To check whether the CD is correct, pass a piece of barcode data with a CD to the
Scanner.GetChkDigit method as shown below. If the returned value is equal to the CD,
then the CD is correct.

[VB]

If (Scanner.GetChkDigit("12345678905", "H") = Asc("5")) Then

Console.WriteLine ("CD OK")

End If

[C#]

UnicodeEncoding encode = new UnicodeEncoding();

if (Scanner.GetChkDigit("12345678905", 'H') == (int)encode.GetBytes("5")[0]) {

Console.WriteLine ("CD OK");

}

To append a CD to barcode data, pass a piece of barcode data with a dummy character
appended to the Scanner.GetChkDigit method as shown below. The returned value will be
the CD. Replace the dummy character with the returned value.

[VB]

Dim origData As String = "1234567890"

Dim digit As Integer = Scanner.GetChkDigit(origData+"0", "H")

Console.WriteLine("CD = {0}", origData + New String(Chr(digit), 1))

[C#]

string origData = "1234567890";

int digit = Scanner.GetChkDigit(origData+"0", 'H');

byte[] digitByteArray = {(byte)digit};

ASCIIEncoding encode = new ASCIIEncoding();

Console.WriteLine("CD = {0}", origData + encode.GetString(digitByteArray, 0, 1));

Result

> CD = 12345678905

- 132 -

When CD type is N (Codabar):
The barcode data must be three or more digits in length, including the start and stop
characters. Otherwise, this function returns "0" and throws an exception.

To check whether the CD is correct, pass a piece of barcode data with a CD to the
Scanner.GetChkDigit method as shown below. If the returned value is equal to the CD,
then the CD is correct.

[VB]

If (Scanner.GetChkDigit("a0123-a", "N") = Asc("-")) Then

Console.WriteLine ("CD OK")

End If

[C#]

UnicodeEncoding encode = new UnicodeEncoding();

if (Scanner.GetChkDigit("a0123-a", 'N') == (int)encode.GetBytes("-")[0]) {

Console.WriteLine ("CD OK");

}

To append a CD to barcode data, pass a piece of barcode data with a dummy character
appended to the Scanner.GetChkDigit method as shown below. The returned value will be
the CD. Replace the dummy character with the returned value.

[VB]

Dim origDataF As String = "a0123"

Dim origDataR As String = "a"

Dim digit As Integer = Scanner.GetChkDigit(origDataF+"0"+ origDataR, "N")

Console.WriteLine("CD = {0}", origDataF + New String(Chr(digit), 1) + origDataR)

[C#]

string origDataF = "a0123";

string origDataR = "a";

int digit = Scanner.GetChkDigit(origDataF+"0"+ origDataR, 'N');

byte[] digitByteArray = {(byte)digit};

ASCIIEncoding encode = new ASCIIEncoding();

Console.WriteLine("CD = {0}", origDataF+encode.GetString(digitByteArray, 0,
1)+origDataR);

Result

> CD = a0123-a

- 133 -

When CD type is M (Code 39):
The barcode data must be two or more digits in length, excluding the start and stop
characters. Otherwise, this function returns "0" and throws an exception.

To check whether the CD is correct, pass a piece of barcode data with a CD to the
Scanner.GetChkDigit method as shown below. If the returned value is equal to the CD,
then the CD is correct.

[VB]

If (Scanner.GetChkDigit("CODE39W", "M") = Asc("W")) Then

Console.WriteLine ("CD OK")

End If

[C#]

UnicodeEncoding encode = new UnicodeEncoding();

if (Scanner.GetChkDigit("CODE39W", 'M') == (int)encode.GetBytes("W")[0]) {

Console.WriteLine ("CD OK");

}

To append a CD to barcode data, pass a piece of barcode data with a dummy character
appended to the Scanner.GetChkDigit method as shown below. The returned value will be
the CD. Replace the dummy character with the returned value.

[VB]

Dim origData As String = "CODE39"

Dim digit As Integer = Scanner.GetChkDigit(origData+"0", "M")

Console.WriteLine("CD = {0}", origData + New String(Chr(digit), 1))

[C#]

string origData = "CODE39";

int digit = Scanner.GetChkDigit(origData+"0", 'M');

byte[] digitByteArray = {(byte)digit};

ASCIIEncoding encode = new ASCIIEncoding();

Console.WriteLine("CD = {0}", origData + encode.GetString(digitByteArray, 0, 1));

Result

> CD = CODE39W

- 134 -

When CD type is P (MSI):
The barcode data must be two or more digits in length. Otherwise, this function returns "0"
and throws an exception. To calculate a two-digit CD, call this function twice.

To check whether the CD is correct, pass a piece of barcode data with a CD to the
Scanner.GetChkDigit method as shown below. If the returned value is equal to the CD,
then the CD is correct.

[VB]

If (Scanner.GetChkDigit("123456782", "P") = Asc("2")) Then

Console.WriteLine ("CD OK")

End If

[C#]

UnicodeEncoding encode = new UnicodeEncoding();

if (Scanner.GetChkDigit("123456782", 'P') == (int)encode.GetBytes("2")[0]) {

Console.WriteLine ("CD OK");

}

To append a CD to barcode data, pass a piece of barcode data with a dummy character
appended to the Scanner.GetChkDigit method as shown below. The returned value will be
the CD. Replace the dummy character with the returned value.

[VB]

Dim origData As String = "12345678"

Dim digit As Integer = Scanner.GetChkDigit(origData+"0", "P")

Console.WriteLine("CD = {0}", origData + New String(Chr(digit), 1))

[C#]

string origData = "12345678";

int digit = Scanner.GetChkDigit(origData+"0", 'P');

byte[] digitByteArray = {(byte)digit};

ASCIIEncoding encode = new ASCIIEncoding();

Console.WriteLine("CD = {0}", origData + encode.GetString(digitByteArray, 0, 1));

Result

> CD = 123456782

- 135 -

Dispose

Frees up all the unmanaged resources.

This function must be called before instances of the Scanner class are no longer referenced.

￭ Syntax

[VB]
Public Sub Dispose()

[C#]
public void Dispose()

￭ Parameters

None

￭ Return value

None

￭ Exceptions

None

￭ Note

This function must be called before instances of the Scanner class are no longer
referenced.

[VB]

Private Sub Form1_Closed(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyBase.Closed

 MyScanner.Dispose()

End Sub

[C#]

private void Form1_Closed(object sender, EventArgs e)

{

 MyScanner.Dispose();

}

- 136 -

OnDone

This event occurs when decoding is complete.

￭ Syntax

[VB]
Public Event OnDone As EventHandler

[C#]
public event EventHandler OnDone

￭ Event data

The Event Handler has received EventArgs type parameters.

The second parameter EventArgs e is always System.EventArgs.Empty.

[Ex.] Read data when decoding complete.

[VB]

Private Sub MyScanner_OnDone(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyScanner.OnDone

 Dim ReadBuf(Scanner.MAX_BAR_LEN) As Byte

 MyScanner.Input(ReadBuf, 0, Scanner.ALL_BUFFER)

End Sub

[C#]

private void MyScanner_OnDone(object sender, EventArgs e)

{

 byte[] ReadBuf = new byte[Scanner.MAX_BAR_LEN];

 MyScanner.Input(ReadBuf, 0, Scanner.ALL_BUFFER);

}

- 137 -

18.2. Scanner.CodeInfo

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
Type Code Type
Len Number of digits in code (code length)

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 138 -

Type

Acquires the code type.

￭ Syntax

[VB]
Public ReadOnly Property Type As Char

[C#]
public char Type {get;}

￭ Property

Code type. Refer to InBufferType for the relationship between code types and properties.

Default value: 0

￭ Exceptions

None

[Ex.] Acquire the code type and number of digits in all rows for the data last read.

[VB]

For i = 0 To MyScanner.LastCodeNum

 len(i) = MyScanner.LastCodeInfo(i).Len

 type(i) = MyScanner.LastCodeInfo(i).Type

Next

[C#]

for (i = 0; i < MyScanner.LastCodeNum; i++) {

 len[i] = MyScanner.LastCodeInfo[i].Len

 type[i] = MyScanner.LastCodeInfo[i].Type

}

- 139 -

Len

Acquires the number of digits in the code (code length).

￭ Syntax

[VB]
Public ReadOnly Property Len As Integer

[C#]
public int Len {get;}

￭ Property

Number of digits in the code

Default value: 0

￭ Exceptions

None

[Ex.] Acquire the code type and number of digits in all rows for the data last read.

[VB]

For i = 0 To MyScanner.LastCodeNum

 len(i) = MyScanner.LastCodeInfo(i).Len

 type(i) = MyScanner.LastCodeInfo(i).Type

Next

[C#]

for (i = 0; i < MyScanner.LastCodeNum; i++) {

 len[i] = MyScanner.LastCodeInfo[i].Len

 type[i] = MyScanner.LastCodeInfo[i].Type

}

- 140 -

18.3. Scanner.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description

CRTime Re-read prevention time
Invert Enabling/disabling of black-and-white inverted label reading function
DecodeLevel Decoding level
MinDigitITF Minimum number of digits in ITF (Interleaved 2of5)
MinDigitSTF (BHT-200B only) Minimum number of digits in STF (Standard 2of5)
MinDigitNW7 Minimum number of digits in NW7 (CODABAR)
Marker Marker mode
Reverse (BHT-200Q only) Front-back inverted reading
ScanMode (BHT-200Q only) Scan mode
OptionData (BHT-200Q only) Option data

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_MARKER Marker mode
EN_SCAN_MODE Scan mode

- 141 -

CRTime

Sets or acquires re-read prevention time.

￭ Syntax

[VB]
Public Shared Property CRTime As Integer

[C#]
public static int CRTime {get; set;}

￭ Property

Re-read prevention time (in units of 100 msec)

Parameter values: 0 to 255

Default value: 10

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

If "0" is specified, the same code will not be read twice in a row.

[Ex.] Set the 2nd read prevention time to 2 seconds.

[VB] Scanner.Settings.CRTime = 10

[C#] Scanner.Settings.CRTime = 10;

- 142 -

Invert

Sets or acquires the enabling and disabling of the black-and-white inverted label reading
function.

￭ Syntax

[VB]
Public Shared Property Invert As Integer

[C#]
public static int Invert {get; set;}

￭ Property

Parameter values: 0: disabled, 1: enabled (BHT-200B)

0: disabled, 1: black and white inversion only, 2: auto (BHT-200Q)

Default value: 0

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Disable black-and-white inversion reading.

[VB] Scanner.Settings.Invert = 0

[C#] Scanner.Settings.Invert = 0;

- 143 -

DecodeLevel

Sets or acquires the decoding level.

￭ Syntax

[VB]
Public Shared Property DecodeLevel As Integer

[C#]
public static int DecodeLevel {get; set;}

￭ Property

Decoding level

Parameter values: 1 to 9

Default value: 4

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The setting for this property will be valid the next time read operation is enabled.

[Ex.] Set the decode level to 7.

[VB] Scanner.Settings.DecodeLevel = 7

[C#] Scanner.Settings.DecodeLevel = 7;

- 144 -

MinDigitITF

Sets or acquires the minimum number of digits in ITF code.

￭ Syntax

[VB]
Public Shared Property MinDigitITF As Integer

[C#]
public static int MinDigitITF {get; set;}

￭ Property

Minimum number of digits

Parameter values: 2 to 20

Default value: 4

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The setting for this property will be valid the next time read operation is enabled.

If the minimum number of ITF digits is specified at the read enable code RdType property, the value set
for the RdType property will be given priority.

[Ex.] Set the default value for the minimum number of digits for ITF code reading to 8.

[VB] Scanner.Settings.MinDigitITF = 8

[C#] Scanner.Settings.MinDigitITF = 8;

- 145 -

MinDigitSTF

Sets or acquires the minimum number of digits in STF code.

￭ Syntax

[VB]
Public Shared Property MinDigitSTF As Integer

[C#]
public static int MinDigitSTF {get; set;}

￭ Property

Minimum number of digits

Parameter values: 1 to 20

Default value: 3

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

This is not supported on the BHT-200Q. An exception is thrown when attempting to set or
acquire.

The setting for this property will be valid the next time read operation is enabled.

If the minimum number of STF digits is specified at the read enable code RdType property,
the value set for the RdType property will be given priority.

[Ex.] Set the default value for the minimum number of digits for STF code reading to 20.

[VB] Scanner.Settings.MinDigitSTF = 20

[C#] Scanner.Settings.MinDigitSTF = 20;

- 146 -

MinDigitNW7

Sets or acquires the minimum number of digits in NW7 code (CODABAR).

￭ Syntax

[VB]
Public Shared Property MinDigitNW7 As Integer

[C#]
public static int MinDigitNW7 {get; set;}

￭ Property

Minimum number of digits

Parameter values: 3 to 20

Default value: 4

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The setting for this property will be valid the next time read operation is enabled.

If the minimum number of NW7 digits is specified at the read enable code RdType property,
the value set for the RdType property will be given priority.

[Ex.] Set the default value for the minimum number of digits for NW7 code reading to 4.

[VB] Scanner.Settings.MinDigitNW7 = 4

[C#] Scanner.Settings.MinDigitNW7 = 4;

- 147 -

Marker

Sets or acquires the marker mode.

￭ Syntax

[VB]
Public Shared Property Marker As EN_MARKER

[C#]
public static EN_MARKER Marker {get; set;}

￭ Property

Marker mode

Parameter values: As listed in EN_MARKER

Default value: EN_MARKER.NORMAL

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

Marker ahead mode (EN_MARKER.AHEAD) is supported only on BHT-200B models used
in Japan.

[Ex.] Setting to ensure that the marker is not lit when performing barcode reading.

[VB] Scanner.Settings.Marker = Scanner.Settings.Marker.EN_MARKER

[C#] Scanner.Settings.Marker = Scanner.Settings.Marker.EN_MARKER;

- 148 -

Reverse

Sets or acquires the front-back inverted reading enabled/disabled status.

￭ Syntax

[VB]
Public Shared Property Reverse As Integer

[C#]
public static int Reverse {get; set;}

￭ Property

Front-back inverted reading enabled/disabled status

Parameter values: 0: Disabled, 1: Enabled

Default value: 0

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The BHT-200B does not support this property. An exception will be thrown if an attempt is
made to specify or read this property using the BHT-200B.

- 149 -

ScanMode

Sets or acquires the scan mode.

￭ Syntax

[VB]
Public Shared Property ScanMode As EN_SCAN_MODE

[C#]
public static EN_SCAN_MODE ScanMode {get; set;}

￭ Property

Scan mode

Parameter values: As listed in EN_SCAN_MODE

Default value: EN_SCAN_MODE.NORMAL

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The BHT-200B does not support this property. An exception will be thrown if an attempt is
made to specify or read this property using the BHT-200B.

- 150 -

OptionData

Sets or acquires the status of the option data.

￭ Syntax

[VB]
Public Shared Property OptionData As Integer

[C#]
public static int OptionData {get; set;}

￭ Property

Option data status

Parameter values: 0: Do not append option data 1: Append option data

Default value: 0

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The BHT-200B does not support this property. An exception will be thrown if an attempt is
made to specify or read this property using the BHT-200B.

- 151 -

EN_MARKER

Specifies the marker mode.

￭ Syntax

[VB]
Public Enum EN_MARKER

[C#]
public enum EN_MARKER

￭ Members

Member Name Description

NORMAL Normal mode

AHEAD Ahead mode

DISABLE Lighting is disabled

￭ Class

BHTCL.Scanner.Settings

- 152 -

EN_SCAN_MODE

Specifies the scan mode.

￭ Syntax

[VB]
Public Enum EN_SCAN_MODE

[C#]
public enum EN_SCAN_MODE

￭ Members

Member Name Description

NORMAL Normal mode

POINT Point scan mode

D1 Barcode reader mode

￭ Class

BHTCL.Scanner.Settings

- 153 -

18.4. BatteryCollection

¾ Constructor

None

Acquire battery information by first obtaining an instance of the battery using the "ExistingBatteries"
property and then locating it in the corresponding property.

¾ Fields

Field Name Description
COUNT Maximum number of batteries

¾ Properties

Property Name Description
ExistingBatteries Instances of existing batteries

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 154 -

COUNT

Number of batteries. This value is fixed (not variable).

￭ Syntax

[VB]
Public Const COUNT As Integer

[C#]
public const int COUNT;

[Ex.] Acquire the maximum number of batteries that can be inserted in the BHT-200.

[VB] Count = BatteryCollection.COUNT

[C#] Count = BatteryCollection.COUNT;

- 155 -

ExistingBatteries

Acquires instances of existing batteries.

￭ Syntax

[VB]
Public Shared ReadOnly Property ExistingBatteries As Battery()

[C#]
public static Battery[] ExistingBatteries {get;}

￭ Property

Battery instances arrangement

￭ Exceptions

None

￭ Note

Even if there is no battery in either the grip or BHT body, an arrangement with two elements
is created.

[Ex.] Acquire the battery instance.

[VB] MyBattery = BatteryCollection.ExistingBatteries

[C#] MyBattery = BatteryCollection.ExistingBatteries;

- 156 -

18.5. BatteryCollection.Battery

¾ Constructor

Constructor Name Description
Battery Creates a new instance of the Battery class.

¾ Fields

None

¾ Properties

Property Name Description
ID Battery ID
OnCU CU installation status
Voltage Battery voltage
Level Battery voltage level
Chemistry Battery type

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_CHARGE Battery charge status
EN_LEVEL Battery voltage level
EN_CHEMISTRY Battery type

- 157 -

Battery

Initializes a new instance of the Battery class.

￭ Syntax

[VB]
Public Sub New(ByVal BatteryID As Integer)

[C#]
public Battery(int BatteryID)

￭ Parameters

BatteryID: Battery ID

Parameter values: 0: Battery in BHT body, 1: Battery in grip

￭ Exceptions

None

- 158 -

ID

Acquires the battery ID.

￭ Syntax

[VB]
Public ReadOnly Property ID As Integer

[C#]
public int ID {get;}

￭ Property

ID

Parameter values: 0: Battery in BHT body, 1: Battery in grip

￭ Exceptions

None

- 159 -

OnCU

Acquires the CU installation status for the BHT.

￭ Syntax

[VB]
Public ReadOnly Property OnCU As EN_CHARGE

[C#]
public EN_CHARGE OnCU {get;}

￭ Property

CU installation status

Default value: Installation status at the time of initialization

￭ Exceptions

None

￭ Note

The value is the same for batteries in the BHT body and grip.

[Ex.] Acquire the battery charge status.

[VB]

For Each MyBattery In BatteryCollection.ExistingBatteries

 Dim OnCU As BatteryCollection.Battery.EN_CHARGE = MyBattery.OnCU

Next

[C#]

foreach (BatteryCollection.Battery MyBattery in BatteryCollection.ExistingBatteries)

{

 BatteryCollection.Battery.EN_CHARGE Charge = MyBattery.OnCU;

}

- 160 -

Voltage

Acquires the battery voltage.

￭ Syntax

[VB]
Public ReadOnly Property Voltage As Integer

[C#]
public int Voltage {get;}

￭ Property

Battery voltage (mV)

Default value: Battery voltage at the time of initialization

￭ Exceptions

None

￭ Note

If the BHT has a battery in the grip only, the battery voltage for the BHT body will be 0 (mV).
Similarly, if there is a battery in the BHT body only, the battery voltage for the grip will be 0
(mV).

[Ex.] Acquire the battery voltage at the BHT body and grip.

[VB]

For Each MyBattery In BatteryCollection.ExistingBatteries

 Dim Volt As Short = MyBattery.Voltage

Next

[C#]

foreach (BatteryCollection.Battery MyBattery in BatteryCollection.ExistingBatteries)

{

 short volt = MyBattery.Voltage;

}

- 161 -

Level

Acquires the battery voltage level.

￭ Syntax

[VB]
Public ReadOnly Property Level As EN_LEVEL

[C#]
public EN_LEVEL Level {get;}

￭ Property

Battery voltage level

Default value: Battery voltage level at the time of initialization

￭ Exceptions

None

￭ Note

If the BHT has a battery in the grip only, the battery voltage level for the BHT body will be
EN_LEVEL.NO_BATTERY. Similarly, if there is a battery in the BHT body only, the battery
voltage level for the grip will be EN_LEVEL.NO_BATTERY.

[Ex.] Acquire the battery level at the BHT body and grip.

[VB]

For Each MyBattery In BatteryCollection.ExistingBatteries

Dim Level As BatteryCollection.Battery.EN_LEVEL = MyBattery.Level

Next

[C#]

foreach (BatteryCollection.Battery MyBattery in BatteryCollection.ExistingBatteries)

{

 BatteryCollection.Battery.EN_LEVEL Level = MyBattery.Level;

}

- 162 -

Chemistry

Acquires the battery type.

￭ Syntax

[VB]
Public ReadOnly Property Chemistry As EN_CHEMISTRY

[C#]
public EN_CHEMISTRY Chemistry {get;}

￭ Property

Battery type

Default value: Type of battery installed

￭ Exceptions

None

￭ Note

If the BHT has a battery in the grip only, the battery type for the BHT body will be
EN_CHEMISTRY.UNKNOWN. Similarly, if there is a battery in the BHT body only, the
battery type for the grip will be EN_CHEMISTRY.UNKNOWN.

[Ex.] Acquire the battery type at the BHT body and grip.

[VB]

For Each MyBattery In BatteryCollection.ExistingBatteries

Dim Chemistry As BatteryCollection.Battery.EN_CHEMISTRY =
MyBattery.Chemistry

Next

[C#]

foreach (BatteryCollection.Battery MyBattery in BatteryCollection.ExistingBatteries)

{

 BatteryCollection.Battery.EN_CHEMISTRY Chemistry = MyBattery.Chemistry;

}

- 163 -

EN_CHARGE

Specifies whether the battery is charged or not.

￭ Syntax

[VB]
Public Enum EN_CHARGE

[C#]
public enum EN_CHARGE

￭ Members

Member Name Description

OFFLINE Not charged

ONLINE Charged

UNKNOWN Charge status unknown

￭ Class

Within BHTCL.BatteryCollection.Battery class

- 164 -

EN_LEVEL

Specifies the battery voltage level.

￭ Syntax

[VB]
Public Enum EN_LEVEL

[C#]
public enum EN_LEVEL

￭ Members

Member Name Description

HIGH 3.9 V or above

MID 3.7 V or above but less than 3.9 V

LOW 3.6 V or above but less than 3.7 V

WARNING Less than 3.6 V

CRITICAL Less than 3.4 V

NO_BATTERY No battery installed

￭ Class

Within BHTCL.BatteryCollection.Battery class

- 165 -

EN_CHEMISTRY

Specifies the battery type.

￭ Syntax

[VB]
Public Enum EN_CHEMISTRY

[C#]
public enum EN_CHEMISTRY

￭ Members

Member Name Description

ALKALINE Alkaline battery

NICD Nickel-Cadmium battery

NIMH Nickel Metal Hydride battery

LION Lithium Ion battery

LIPOLY Lithium Polymer battery

UNKNOWN Unknown, missing

￭ Class

Within BHTCL.BatteryCollection.Battery class

- 166 -

18.6. Backlight

¾ Constructor

Constructor Name Description
Backlight Creates a new instance of the Backlight class.

¾ Fields

None

¾ Properties

Property Name Description
Status Backlight is lit.

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_STATUS Backlight is lit.

- 167 -

Backlight

Initializes a new instance of the Backlight class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public Backlight()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a MyBacklight Backlight instance.

[VB] Dim MyBacklight As Backlight = New Backlight

[C#] Backlight MyBacklight = new Backlight();

- 168 -

Status

Sets or acquires the backlight status (whether the backlight is lit).

￭ Syntax

[VB]
Public Shared Property Status As EN_STATUS

[C#]
public static EN_STATUS Status {get; set;}

￭ Property

Backlight status (whether the backlight is lit)

Parameter values: As listed in EN_STATUS

Default value: Backlight status at the time of initialization

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Turn ON the backlight.

[VB] Backlight.Status = Backlight.EN_STATUS.ENABLE_ON

[C#] Backlight.Status = Backlight.EN_STATUS.ENABLE_ON;

- 169 -

EN_STATUS

Specifies the backlight status (whether the backlight is lit).

￭ Syntax

[VB]
Public Enum EN_STATUS

[C#]
public enum EN_STATUS

￭ Members

Member Name Description

ENABLE_ON ON

ENABLE_OFF OFF

DISABLE_OFF Disabled

￭ Class

Within BHTCL.Backlight class

- 170 -

18.7. Backlight.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
OnTimeBattery "ON" time (when powered by battery)
OnTimeAC " ON " time (when installed on CU)
CtrlKey Control key
Brightness Brightness level
PowerSave Brightness when OFF (Only on units running on Windows CE 5.0.)

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 171 -

OnTimeBattery

Sets or acquires the ON time when the backlight is powered by the battery.

￭ Syntax

[VB]
Public Shared Property OnTimeBattery As Integer

[C#]
public static int OnTimeBattery {get; set;}

￭ Property

ON time (in units of 1 sec)

Parameter values: 0 to 255

Default value: 3

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

When "0" is specified, the backlight does not turn ON.

When "255" is specified, the backlight remains ON constantly.

[Ex.] Set the backlight ON time to 10 seconds when the BHT is powered by the battery.

[VB] Backlight.Settings.OnTimeBattery = 10

[C#] Backlight.Settings.OnTimeBattery = 10;

- 172 -

OnTimeAC

Sets or acquires the backlight ON time when installed on the CU.

￭ Syntax

[VB]
Public Shared Property OnTimeAC As Integer

[C#]
public static int OnTimeAC {get; set;}

￭ Property

ON time (in units of 1 sec)

Parameter values: 0 to 255

Default value: 60

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

When "0" is specified, the backlight does not turn ON.

When "255" is specified, the backlight remains ON constantly.

[Ex.] Set the backlight ON time to 10 seconds when the BHT is installed on the CU.

[VB] Backlight.Settings.OnTimeAC = 10

[C#] Backlight.Settings.OnTimeAC = 10;

- 173 -

CtrlKey

Sets or acquires the control key for turning ON and OFF the backlight.

￭ Syntax

[VB]
Public Shared Property CtrlKey As Integer

[C#]
public static int CtrlKey {get; set;}

￭ Property

Backlight ON/OFF control key

Parameter values: See table below.

Default value: 0x00010204([SF] + [M4])

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

The relationship between the control keys and settings is shown in table below.

- 174 -

Backlight Control Key Setting Backlight Control Key Setting

 0x00000201 [SF] + [.] (Period) 0x0001000A
 0x00000202 [SF] + [BS] (BackSpace) 0x0001000B
 0x00000243 [SF] + [C] (Clear) 0x0001000C
 [F1] 0x00000101
 [F2] 0x00000102
 [F3] 0x00000103
 [F4] 0x00000104
 [F5] 0x00000105
 [F6] 0x00000106
 [F7] 0x00000107
 [F8] 0x00000108
 [F9] 0x00000109
 [F10] 0x0000010A
 [F11] 0x0000010B
 [F12] 0x0000010C
 [SCAN] 0x00000200 [SF] + [SCAN] 0x00010200
 [M1] 0x00000201 [SF] + [M1] 0x00010201
 [M2] 0x00000202 [SF] + [M2] 0x00010202
 [M3H] (half-press) 0x00000243 [SF] + [M3H] (half-press) 0x00010243
 [M3] 0x00000203 [SF] + [M3] 0x00010203
 [M4H] (half-press) 0x00000244 [SF] + [M4H] (half-press) 0x00010244
 [M4] 0x00000204 [SF] + [M4] 0x00010204

[Ex.] Set the backlight control key to the [M1] key.

[VB] Backlight.Settings.CtrlKey = 0x00000201

[C#] Backlight.Settings.CtrlKey = 0x00000201;

- 175 -

Brightness

Sets or acquires the backlight brightness level.

￭ Syntax

[VB]
Public Shared Property Brightness As Integer

[C#]
public static int Brightness {get; set;}

￭ Property

Brightness level

Parameter values: 0 (OFF), 1 (dark) to 3 (bright)

Default value: 3

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the brightness to maximum when turning ON the backlight.

[VB] Backlight.Settings.Brightness = 3

[C#] Backlight.Settings.Brightness = 3;

- 176 -

PowerSave

Sets or acquires the backlight brightness when OFF.

￭ Syntax

[VB]
Public Shared Property PowerSave As Integer

[C#]
public static int PowerSave {get; set;}

￭ Property

Brightness when OFF

Parameter values: 0 (OFF), 1 (Dimly)

Default value: 1

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.
NotSupportedException PowerSave not supported

[Ex.] Set the backlight status to OFF when not lit.

[VB] Backlight.Settings.PowerSave = 0

[C#] Backlight.Settings.PowerSave = 0;

￭ Note

This is not supported on units running on Windows CE 4.1 or 4.2. An exception is thrown
when an attempt is made to set or acquire.

- 177 -

18.8. LED

¾ Constructor

Constructor Name Description
LED Creates a new instance of the LED class.

¾ Fields

Field Name Description
Usage Restrictions on LED usage

¾ Properties

Property Name Description
Item LED ON/OFF status

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_DEVICE LED device
EN_COLOR LED color
EN_CTRL LED ON/OFF status
EN_USAGE Restrictions on LED usage

- 178 -

LED

Initializes a new instance of the LED class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public LED()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a MyLED LED instance.

[VB] Dim MyLED As LED = New LED

[C#] LED MyLED = new LED();

- 179 -

Usage

Sets or acquires the LED control factor.

￭ Syntax

[VB]
Public Usage As LED.UsageCollection

[C#]
public LED.UsageCollection Usage

￭ Property

LED control factor

Parameter values: As listed in LED.EN_USAGE
 (one of the values or a combination of the values)

Default value: Control factor when initialized

￭ Note

Usage Description
RF LED illumination cannot be controlled from the application if this

value is specified.
APL The LED does not illuminate during wireless communication if

this value is specified.
RF | APL LED illumination can be controlled from both the wireless

communication device and application. However, the wireless
communication device is given priority during wireless
communication.

- 180 -

Item

Sets or aquires the LED status (ON/OFF) specified by the index.

In C#, this property is used as the indexer for the LED class.

￭ Syntax

[VB]
Public Property Item(ByVal device As LED.EN_DEVICE, _

ByVal color As LED.EN_COLOR) As LED.EN_CTRL

[C#]
public LED.EN_CTRL this[LED.EN_DEVICE device][LED.EN_COLOR
color] {get; set;}

￭ Parameters

device

LED device

Parameter values: As listed in LED.EN_DEVICE

color

LED color

Parameter values: As listed in LED.EN_COLOR

￭ Property

LED ON/OFF status

Parameter values: As listed in EN_CTRL

Default value: ON/OFF status at the time of initialization

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

- 181 -

￭ Note

When an indicator LED (=BAR) is specified as "device," selection of the color yellow (=YELLOW) is
ignored.
When a wireless LED (=RF) is specified as "device," selection of the color red (=RED) or blue
(=GREEN) is ignored.
In general, indicator LEDs cannot be controlled from the application while barcode reading is enabled.
However, if prohibition of operation for a particular indicator LED is specified, it can be controlled from
the application.
Once an LED is turned on from the application, it will remain lit, even after the application is
finished, until it is deliberately turned off.

[Ex.] Turn ON the blue LED.

[VB] MyLED(LED.EN_DEVICE.BAR, LED.EN_COLOR.BLUE) = LED.EN_CTRL.ON

[C#] MyLED[LED.EN_DEVICE.BAR, LED.EN_COLOR.BLUE] = LED.EN_CTRL.ON;

- 182 -

EN_DEVICE

Specifies the LED device.

￭ Syntax

[VB]
Public Enum EN_DEVICE

[C#]
public enum EN_DEVICE

￭ Members

Member Name Description

BAR Indicator LED

RF Wireless LED

￭ Class

Within BHTCL.LED class

- 183 -

EN_COLOR

Specifies the LED color.

￭ Syntax

[VB]
Public Enum EN_COLOR

[C#]
public enum EN_COLOR

￭ Members

Member Name Description

RED Red

BLUE Blue(=GREEN)

GREEN Green

YELLOW Yellow

￭ Class

Within BHTCL.LED class

- 184 -

EN_CTRL

Specifies the LED ON/OFF status.

￭ Syntax

[VB]
Public Enum EN_CTRL

[C#]
public enum EN_CTRL

￭ Members

Member Name Description

OFF LED OFF

ON LED ON

￭ Class

Within BHTCL.LED class

- 185 -

EN_USAGE

Specifies the LED control factor.

￭ Syntax

[VB]
Public [Flags] Enum EN_USAGE

[C#]
public enum [Flags] EN_USAGE

￭ Members

Member Name Description

RF Wireless communication

APL Application

￭ Class

Within BHTCL.LED class

- 186 -

18.9. LED.UsageCollection

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
Item LED control factor

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 187 -

Item

Sets or acquires the LED control factor specified at the index.

At C#, this property uses the indexer for the LED.UsageCollection class.

￭ Syntax

[VB]
Public Property Item(ByVal device As LED.EN_DEVICE) _
As LED.EN_USAGE

[C#]
public LED.EN_USAGE this[LED.EN_DEVICE device]{get; set;}

￭ Parameters

device

LED device

Parameter values: As listed in LED.EN_DEVICE
(Only wireless LEDs can be controlled.)

￭ Property

LED control factor

Parameter values: As listed in LED.EN_USAGE
(one of the values or a combination of the values)

Default value: Control factor when initialized

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified LED device is invalid.

[Ex.] Setting wireless LEDs so that they are used only at the application

[VB] MyLED.Usage(LED.EN_DEVICE.RF) = LED.EN_USAGE.RF.

[C#] MyLED.Usage[LED.EN_DEVICE.RF]= LED.EN_USAGE.RF.

- 188 -

18.10. Beep

¾ Constructor

Constructor Name Description
Beep Creates a new instance of the Beep class.

¾ Fields

None

¾ Properties

Property Name Description
Item Beep control
OnTime ON duration
OffTime OFF duration
Frequency Beep frequency
Count Number of beeps

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_CTRL Beep status

- 189 -

Beep

Initializes a new instance of the Beep class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public Beep()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a MyBeep beeper/vibrator instance.

[VB] Dim MyBeep As LED = New Beep

[C#] LED MyBeep = new Beep();

- 190 -

Item

Starts or stops the beeping or vibrating of the device specified by the index.

In C#, this property is used as the indexer for the Beep class.

￭ Syntax

[VB]
Public WriteOnly Property Item(ByVal device As Beep.EN_DEVICE) _
As Beep.EN_CTRL

[C#]
public Beep.EN_CTRL this[Beep.EN_DEVICE device]{set;}

￭ Parameters

device

Beep device

Parameter values: As listed in EN_DEVICE (one of the values or a combination of the
values)

￭ Property

Status of the beeper or vibrator

Parameter values: As listed in EN_CTRL

Default value: EN_CTRL.OFF

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
Specification of the beep device is invalid.

[Ex.] Activate the beeper and vibrator.

[VB] MyBeep(Beep.Settings.EN_DEVICE.BUZZER _

Or Beep.Settings.EN_DEVICE.VIBRATOR) = Beep.EN_CTRL.ON

[C#] MyBeep[Beep.Settings.EN_DEVICE.BUZZER |

Beep.Settings.EN_DEVICE.VIBRATOR] = Beep.EN_CTRL.ON;

- 191 -

OnTime

Sets or acquires the ON/OFF duration of the beeper or vibrator.

￭ Syntax

[VB]
Public Property OnTime As Integer

[C#]
public int OnTime{get; set;}

￭ Property

ON duration of the beeper or vibrator (in units of 100 msec)

Parameter values: 0 to 255

Default value: 5

￭ Exceptions

None

￭ Note

If a value outside the permissible range is specified, no exceptions will be thrown
immediately, however, an exception will be thrown later when the start of beeping or
vibrating is specified with an Item property.

If this property is set to "0," the beeper or the vibrator will not sound or vibrate.

[Ex.] Set the ON time to 1 second.

[VB] MyBeep.OnTime = 10

[C#] MyBeep.OnTime = 10;

- 192 -

OffTime

Sets or acquires the OFF duration of the beeper or vibrator.

￭ Syntax

[VB]
Public Property OffTime As Integer

[C#]
public int OffTime{get; set;}

￭ Property

OFF duration of the beeper or vibrator (in units of 100 msec)

Parameter values: 0 to 255

Default value: 5

￭ Exceptions

None

￭ Note

If a value outside the permissible range is specified, no exceptions will be thrown
immediately, however, an exception will be thrown later when the start of beeping or
vibrating is specified with an Item property.

If a value other than zero is specified for the ON duration while 0 is specified for the OFF
duration, the beeper or the vibrator will continue to sound or vibrate.

[Ex.] Set the downtime to 1 second.

[VB] MyBeep.OffTime = 10

[C#] MyBeep.OffTime = 10;

- 193 -

Frequency

Sets or acquires the beeping frequency of the beeper.

￭ Syntax

[VB]
Public Property Frequency As Integer

[C#]
public int Frequency {get; set;}

￭ Property

Beeping frequency of the beeper (Hz)

Parameter values: 0 (698 Hz), 1 (1396 Hz), 2 (2793 Hz), and 199 to 32767 (inclusive)

Default value: 2

￭ Exceptions

None

￭ Note

If a value outside the permissible range is specified, no exceptions will be thrown
immediately, however, an exception will be thrown later when the start of beeping or
vibrating is specified with an Item property.

If a value between 3 and 198 (inclusive) is specified, no exceptions will be thrown, however,
the beeper will not sound.

[Ex.] Set the beep frequency to 698Hz.

[VB] MyBeep.Frequency = 0

[C#] MyBeep.Frequency = 0;

- 194 -

Count

Sets or acquires the number of beeps or vibrations of the beeper or vibrator.

￭ Syntax

[VB]
Public Property Count As Integer

[C#]
public int Count {get; set;}

￭ Property

Number of beeps or vibrations of the beeper or vibrator

Parameter values: 0 to 255. The beeper will not sound if “0” is specified.

Default value: 1

￭ Exceptions

None

￭ Note

If a value outside the permissible range is specified, no exceptions will be thrown
immediately, however, an exception will be thrown later when the start of beeping or
vibrating is specified with an Item property.

[Ex.] Set the beep count to 5.

[VB] MyBeep.Count = 5

[C#] MyBeep.Count = 5;

- 195 -

EN_CTRL

Starts or stops the beeping or vibration.

￭ Syntax

[VB]
Public Enum EN_CTRL

[C#]
public enum EN_CTRL

￭ Members

Member Name Description

OFF Stop the beeping or vibration.

ON Start the beeping or vibration.

￭ Class

Within BHTCL.BEEP class

- 196 -

18.11. Beep.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
Device Beeper or vibrator
Volume Beeper volume
VolumeKey Key click sound volume
VolumeTap Tap sound volume
VolumeHalfKey Half-pressed key click sound volume
OnOffLaserKey Trigger switch ON/OFF sound
OnOffTrgKey Laser key click ON/OFF sound

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_DEVICE Beeper or vibrator.
EN_VOLUME Sound volume.
EN_ON_OFF Click sound ON/OFF

- 197 -

Device

Sets or acquires the beeper or vibrator.

￭ Syntax

[VB]
Public Shared Property Device As EN_DEVICE

[C#]
public static EN_DEVICE Device {get; set;}

￭ Property

Beeper or vibrator

Parameter values: As listed in EN_DEVICE (one of the values or a combination of the
values)

Default value: EN_DEVICE.BEEP

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the sound device (barcode reading, warning sound etc.) for the entire system to
vibrator only.

[VB] Beep.Settings.Device = Beep.Settings.EN_DEVICE.VIBRATOR

[C#] Beep.Settings.Device = Beep.Settings.EN_DEVICE.VIBRATOR;

- 198 -

Volume

Sets or acquires the beeper volume.

￭ Syntax

[VB]
Public Shared Property Volume As EN_VOLUME

[C#]
public static EN_VOLUME Volume {get; set;}

￭ Property

Beeper volume

Parameter values: As listed in EN_VOLUME

Default value: EN_VOLUME.LEVEL5

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the beeper volume to maximum.

[VB] Beep.Settings.Volume = Beep.Settings.EN_VOLUME.LEVEL5

[C#] Beep.Settings.Volume = Beep.Settings.EN_VOLUME.LEVEL5;

- 199 -

VolumeKey

Sets or acquires the volume of a key click.

￭ Syntax

[VB]
Public Shared Property VolumeKey As EN_VOLUME

[C#]
public static EN_VOLUME VolumeKey {get; set;}

￭ Property

Sound volume

Parameter values: EN_VOLUME values LEVEL_OFF to LEVEL2

Default value: EN_VOLUME.LEVEL2

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the key click sound volume to maximum.

[VB] Beep.Settings.VolumeKey = Beep.Settings.EN_VOLUME.LEVEL2

[C#] Beep.Settings.VolumeKey = Beep.Settings.EN_VOLUME.LEVEL2;

- 200 -

VolumeTap

Sets or acquires the sound volume of the screen taps.

￭ Syntax

[VB]
Public Shared Property VolumeTap As EN_VOLUME

[C#]
public static EN_VOLUME VolumeTap {get; set;}

￭ Property

Sound volume

Parameter values: EN_VOLUME values LEVEL_OFF to LEVEL2

Default value: EN_VOLUME.LEVEL2

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the screen tap sound volume to maximum.

[VB] Beep.Settings.VolumeTap = Beep.Settings.EN_VOLUME.LEVEL2

[C#] Beep.Settings.VolumeTap = Beep.Settings.EN_VOLUME.LEVEL2;

- 201 -

VolumeHalfKey

Sets or acquires the sound volume of a half-pressed key click.

￭ Syntax

[VB]
Public Shared Property VolumeHalfKey As EN_VOLUME

[C#]
public static EN_VOLUME VolumeHalfKey {get; set;}

￭ Property

Sound volume

Parameter values: EN_VOLUME values LEVEL_OFF to LEVEL2

Default value: EN_VOLUME.LEVEL_OFF

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the half-press key click sound volume to maximum.

[VB] Beep.Settings.VolumeHalfKey = Beep.Settings.EN_VOLUME.LEVEL2

[C#] Beep.Settings.VolumeHalfKey = Beep.Settings.EN_VOLUME.LEVEL2;

- 202 -

OnOffLaserKey

Sets or acquires the ON/OFF for the sound of the clicking of the laser marker key.

￭ Syntax

[VB]
Public Shared Property OnOffLaserKey As EN_ON_OFF

[C#]
public static EN_VOLUME OnOffLaserKey {get; set;}

￭ Property

Clicking sound ON/OFF

Parameter values: As listed in EN_ON_OFF

Default value: EN_ON_OFF.OFF

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Turn OFF the laser marker key click sound.

[VB] Beep.Settings.OnOffLaserKey = Beep.Settings.EN_ON_OFF.OFF

[C#] Beep.Settings.OnOffLaserKey = Beep.Settings.EN_ON_OFF.OFF;

- 203 -

OnOffTrgKey

Sets or acquires the ON/OFF for the sound of the clicking of the trigger switch.

￭ Syntax

[VB]
Public Shared Property OnOffTrgKey As EN_ON_OFF

[C#]
public static EN_VOLUME OnOffTrgKey {get; set;}

￭ Property

Clicking sound ON/OFF

Parameter values: As listed in EN_ON_OFF

Default value: EN_ON_OFF.OFF

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Turn OFF the trigger key click sound.

[VB] Beep.Settings.OnOffTrgKey = Beep.Settings.EN_ON_OFF.OFF

[C#] Beep.Settings.OnOffTrgKey = Beep.Settings.EN_ON_OFF.OFF;

- 204 -

EN_DEVICE

Specifies the beeper or vibrator.

￭ Syntax

[VB]
Public [Flags] Enum EN_DEVICE

[C#]
public [Flags] enum EN_DEVICE

￭ Members

Member Name Description

BEEP Beeper

VIB Vibrator

￭ Class

Within BHTCL.Beep.Settings class

- 205 -

EN_VOLUME

Specifies the beeper volume level.

￭ Syntax

[VB]
Public Enum EN_VOLUME

[C#]
public enum EN_VOLUME

￭ Members

Member Name Description

LEVEL_OFF OFF

LEVEL1 Low

LEVEL2

LEVEL3

LEVEL4

LEVEL5 High

￭ Class

BHTCL.Beep.Settings

- 206 -

EN_ON_OFF

Specifies the ON/OFF for the clicking sound.

￭ Syntax

[VB]
Public Enum EN_ON_OFF

[C#]
public enum EN_ON_OFF

￭ Members

Member Name Description

OFF OFF

ON ON

￭ Class

BHTCL.Beep.Settings

- 207 -

18.12. RF

¾ Constructor

Constructor Name Description
RF Creates a new instance of the RF class.

¾ Fields

None

¾ Properties

Property Name Description
OpenMode Wireless communication open mode (Only on units running on Windows CE

5.0.)
Open Wireless communication open state
Controller Control mode
EditMode Wireless communication parameter editing mode
SelectedProfile Profile selection
WepKey Wep key

¾ Methods

Method Name Description
Synchronize Checks the status of synchronization with AP.

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_OPEN_MODE Wireless device open mode
EN_CONTROLLER Wireless control mode
EN_EDIT_MODE Wireless parameter edit mode

- 208 -

RF

Initializes a new instance of the RF class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public RF()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a MyRf RF interface.

[VB] Dim MyRf As RF = New RF

[C#] RF MyRf = new RF();

- 209 -

OpenMode

Sets or acquires the wireless open mode.

￭ Syntax

[VB]
Public Property OpenMode As EN_OPEN_MODE

[C#]
public EN_OPEN_MODE OpenMode{get; set;}

￭ Property

Wireless communication open mode

Parameter values: As listed in EN_OPEN_MODE

Default value: EN_OPEN_MODE.NORMAL

￭ Exceptions

None

￭ Note

If an invalid value is specified for this property, no exceptions will be thrown immediately;
however, an exception will be thrown later when an attempt is made to open or close the
wireless device.

The Open status is not reflected to the Nic Control menu on units running on Windows CE
4.1 or 4.2. If the wireless communication device is opened by specifying
EN_OPEN_MODE.CONTINUOUSLY for this property, it is necessary to close from the
application.

When the property is set to EN_OPENMODE.NORMAL and the wireless device is opened:

When closing the wireless device, set the property to EN_OPEN_MODE.NORMAL and
then close the device.

The wireless device will remain open provided that neither of the above two operations are
performed (including when closing the wireless device from another application).

Application: This applies to connections made to the network from a single application and
applications used to perform communication using FTP and so forth.

- 210 -

When the property is set to EN_OPENMODE.CONTINUOUSLY and the wireless device is
opened:

When closing the wireless device, set the property to EN_OPEN_MODE.CONTINUOUSLY
and then close the device.

The wireless device is not closed even when exiting the application.

The wireless device is closed when the EN_OPEN_MODE.CONTINUOUSLY property is
specified at another application and the wireless device is closed.

Application: This applies to applications used only to perform settings in order to establish
a connection to the network.

[Ex.] Open a wireless connection to ensure that it is closed automatically when exiting the
application.

[VB]

 MyRf.OpenMode = RF.EN_OPEN_MODE.NORMAL

 MyRf.Open = True

[C#]

 MyRf.OpenMode = RF.EN_OPEN_MODE.NORMAL;

 MyRf.Open = true;

[Ex.] Close the wireless connection opened from the current application.

[VB]

 MyRf.OpenMode = RF.EN_OPEN_MODE.NORMAL

 MyRf.Open = True

 ………

 MyRf.Open = False

[C#]

 MyRf.OpenMode = RF.EN_OPEN_MODE.NORMAL;

 MyRf.Open = true;

 ………

 MyRf.Open = false;

- 211 -

[Ex.] Close the wireless connection opened from any application (including the current
application).

[VB]

 MyRf.Open = True

 ………

 MyRf.OpenMode = RF.EN_OPEN_MODE.CONTINUOUSLY

 MyRf.Open = False

[C#]

 MyRf.Open = true;

 ………

 MyRf.OpenMode = RF.EN_OPEN_MODE.CONTINUOUSLY;

 MyRf.Open = false;

- 212 -

Open

Opens or closes wireless communication.

￭ Syntax

[VB]
Public Property Open As Boolean

[C#]
public bool Open{get; set;}

￭ Property

Wireless communication open (= True), close (= False)

If wireless communication is achieved by setting OpenMode to
EN_OPEN_MODE.NORMAL, the status achieved by setting OpenMode to
EN_OPEN_MODE.NORMAL will be returned.

If wireless communication is achieved by setting OpenMode to
EN_OPEN_MODE.CONTINUOUSLY, the status achieved by setting OpenMode to
EN_OPEN_MODE.CONTINUOUSLY will be returned.

Default value: False

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException The specified device does not exist.
ArgumentException The value specified for OpenMode is abnormal.

[Ex.] Open a wireless connection.

[VB] MyRf.Open = True

[C#] MyRf.Open = true;

- 213 -

Controller

Specifies the control mode.

￭ Syntax

[VB]
Public Shared Property Controller As EN_CONTROLLER

[C#]
public static EN_CONTROLLER Controller{set; get;}

￭ Property

Wireless control mode

Parameter values: As listed in EN_CONTROLLER

Default value: EN_CONTROLLER.NIC

￭ Exceptions

Name of Exception Meaning
ArgumentException Parameter error
NotSupportedException Control mode not supported

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when an
attempt is made to set or acquire.

Set the control mode to Zero Config mode prior to performing any of the following
operations.

-Copying (Profile.Update) the value set at the Zero Config GUI to the BHT wireless registry
used by the wireless driver.

-Reflecting (Profile.Commit) the value set from the application to Zero Config.

-Using the parameter set at Zero Config to connect to the AP.

Set the control mode to Nic Control mode prior to performing the following operation.

- Using the parameter set at Nic Control to connect to the AP.

- 214 -

[Ex.] Copying the value set at Zero Config to the BHT wireless registry

[VB]

RF.Controller = RF.EN_CONTROLLER.ZEROCONFIG

RF.Profile.Update

[C#]

RF.Controller = RF.EN_CONTROLLER.ZEROCONFIG;

RF.Profile.Update();

- 215 -

EditMode

Specifies the wireless parameter edit mode.

￭ Syntax

[VB]
Public Shared WriteOnly Property EditMode As EN_EDIT_MODE

[C#]
public static EN_EDIT_MODE EditMode{set;}

￭ Property

Wireless parameter edit mode

Parameter values: As listed in EN_EDIT_MODE

￭ Exceptions

Name of Exception Meaning
MissingMethodException Editmode not supported
ArgumentException Parameter error

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when an
attempt is made to set or acquire.

Security related parameters should be set or acquired after setting the value for this
property in EN_EDIT_MODE.ZEROCONFIG.

[Ex.] Setting the encryption method to TKIP

[VB]

RF.EditMode = RF.EN_EDIT_MODE.ZEROCONFIG

MyProf.Encryption = RF.Pfoile.EN_ENCRYPTION.TKIP

[C#]

RF.EditMode = RF.EN_EDIT_MODE.ZEROCONFIG;

MyProf.Encryption = RF.Pfoile.EN_ENCRYPTION.TKIP;

- 216 -

SelectedProfile

Sets or acquires the Profile to be edited.

￭ Syntax

[VB]
Public Shared Profile SelectedProfile

[C#]
public static Profile SelectedProfile;

￭ Property

Profile

Parameter values: Profile class instance

Default value: null

￭ Exceptions

Name of Exception Meaning
ArgumentException
MissingMethodException Profile not supported

￭ Note

This method allows compatibility with Windows CE 4.1. This method is used when selecting
the Profile to be edited if the parameter is edited from the RF.Settings class property when
in Zero Config mode.

No exception is thrown even if an incorrect value is set for this property. An exception is
thrown, however, when the parameter is actually edited from the RF.Settings class property
when in Zero Config mode.

- 217 -

[Ex.] Setting Wep key 1 from RF.WepKey(1) when in Zero Config mode

[VB]

RF.EditMode = RF.EN_EDIT_MODE.ZEROCONFIG

RF.SelectedProfile = _

New RF.Profile(“BHT200”, RF.Profile.EN_PROFILE.INFRASTRUCTURE)

RF.WepKey(1) = “12345123451234123412341234”

[C#]

RF.EditMode = RF.EN_EDIT_MODE.ZEROCONFIG;

RF.SelectedProfile =

new RF.Profile(“BHT200”, RF.Profile.EN_PROFILE.INFRASTRUCTURE);

RF.WepKey[1] = “12345123451234123412341234”

- 218 -

WepKey

Generates an instance of the WepKeyCollection.

￭ Syntax

[VB]
Public Shared ReadOnly Property WepKey As WepKeyCollection

[C#]
public static WepKeyCollection WepKey{get;}

￭ Property

WepKey instance

Default value: null (Nothing at VB.NET)

￭ Exceptions

None

￭ Note

An instance cannot be generated directly from WepKeyCollection and therefore WepKey
should be obtained with this property.

This property has been retained for compatibility with Windows CE 4.1. Ensure to use the
Profile class WepKey property for the Wep key setting.

- 219 -

Synchronize

Checks the status of synchronization with AP.

￭ Syntax

[VB]
Public Shared Function Synchronize(ByVal TimeOut As Integer) _
As Integer

[C#]
public static int Synchronize(int TimeOut)

￭ Parameters

TimeOut

[in] time-out value until synchronization is established.

If RF.SYNC_CHECK is specified, the synchronization status is immediately checked and
a result returned.

If RF.SYNC_INFINITE is specified, processing continues until synchronization is
established.

Parameter values: RF.SYNC_CHECK, RF.SYNC_INFINITE, 1～Int32.MaxValue

￭ Return value

0: Synchronization has been established.

-1: Synchronization has not been established (time-out).

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException There is no NIC (Network Interface Card).
DeviceLoadException The NIC device is not ready.
ArgumentException The specified time-out value is invalid.

￭ Note

Before calling this method, ensure that wireless communication has been established using
the Open property. If this method is called before establishing wireless communication,
DeviceLoadException will be thrown.

- 220 -

 [Ex.] Check the synchronization with the AP every second until synchronization is
established.

[VB]

While Not 0 = RF.Synchronize(RF.SYNC_CHECK)

 Threading.Thread.Sleep(1000)

End While

[C#]

while (0 != RF.Synchronize(RF.SYNC_CHECK))

{

 System.Threading.Thread.Sleep(1000);

}

- 221 -

EN_OPEN_MODE

Specifies the wireless connection open mode.

￭ Syntax

[VB]
Public Enum EN_OPEN_MODE

[C#]
public enum EN_OPEN_MODE

￭ Members

Member Name Description

NORMAL Normal mode (*1)

CONTINUOUSLY Continuously open mode (*1)

(*1) Please refer to the notes for the OpenMode property for further details.

- 222 -

EN_CONTROLLER

Specifies the wireless control mode.

￭ Syntax

[VB]
Public Enum EN_CONTROLLER

[C#]
public enum EN_CONTROLLER

￭ Members

Member Name Description

NIC Nic Control mode

ZEROCONFIG Zero Config mode

- 223 -

EN_EDIT_MODE

Specifies the wireless parameter edit mode.

￭ Syntax

[VB]
Public Enum EN_EDIT_MODE

[C#]
public enum EN_EDIT_MODE

￭ Members

Member Name Description

NIC Nic Control mode

ZEROCONFIG Zero Config mode

- 224 -

18.13. RF.Profile
This is not supported on units running on Windows CE 4.1.

¾ Constructor

Constructor Name Description
Profile Specifies ESSID and infrastructure mode, and generates a profile instance.

¾ Fields

None

¾ Properties

Property Name Description
SSID ESSID
InfraMode Infrastructure mode
Priority Priority
Authentication Authentication method
Encryption Encryption method
EAP8021x EAP type
WepKey WEP key
PreSharedKey PreSharedKey (Supported only on units running on Windows CE 5.0.)
KeyIndex The key index used during communication
Count No. of registered profiles.
Registered Registered profiles

¾ Methods

Method Name Description
Update Update
Commit Commit
Remove Remove

¾ Events

None

- 225 -

¾ Enumeration

Enumeration Name Description
EN_AUTHENTICATION Authentication method
EN_EAP8021X EAP type
EN_ENCRYPTION Encryption method
EN_INFRA_MODE Infrastructure

- 226 -

Profile

Specifies ESSID and infrastructure mode, and initializes a new instance.

￭ Syntax

[VB]
Public Sub New(ByVal SSID As Integer, _

ByVal infra As EN_INFRA_MODE)

[C#]
public Profile(string SSID, EN_INFRA_MODE infra)

￭ Parameters

SSID: ESSID

Parameter values: Alphanumeric character string of 32 characters or less

infra: Infrastructure mode

 Parameter values: As listed in EN_INFRA_MODE

￭ Exceptions

Name of Exception Meaning
ArgumentException The values specified for SSID and infra are abnormal.
MissingMethodException Profile not supported
IOException The number of registered profiles exceeded 16.

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when
an attempt is made to create an instance.

Select a profile matching the specified ESSID and infrastructure mode combination. If none
exists, create a new profile and select that one.

If multiple profiles are created, the priority order for the profiles used for connection is
highest for the profile created last.

- 227 -

SSID

Acquires the profile ESSID.

￭ Syntax

[VB]
Public ReadOnly Property SSID As String

[C#]
public string SSID {get;}

￭ Property

ESSID

￭ Exceptions

None

- 228 -

InfraMode

Acquires the profile infrastructure.

￭ Syntax

[VB]
Public ReadOnly Property InfraMode As EN_INFRA_MODE

[C#]
public EN_INFRA_MODE InfraMode {get;}

￭ Property

Infrastructure mode

￭ Exceptions

None

- 229 -

Priority

Sets or acquires the profile priority.

￭ Syntax

[VB]
Public Property Priority As Integer

[C#]
public int Priority {get; set;}

￭ Property

Profile priority

Parameter values: 1 (high) to 16 (low)

Default value: 1

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.

￭ Note

The profile priority can only be set or acquired when the edit mode (RF.EditMode) is set to
Zero Config mode. An exception is thrown if an attempt is made to set or acquire when in
Nic Control mode. Please set or acquire after setting the RF.EditMode value to
EN_EDIT_MODE.ZEROCONFIG.

When a profile is created, the priority order for each of the existing profiles drops by one.

When a profile is deleted, the priority order for the existing profiles previously below the
deleted profile increases by one.

If the same priority order is set for different profiles, the priority order of the profile set first
will drop by one. Profiles for which an even lower priority order is set will also drop by one.

 [Ex.] Use a MyProf profile setting and make that profile the highest priority in order to
connect to the network.

[VB] MyProf.Priority = 1

[C#] MyProf.Priority = 1;

- 230 -

Authentication

Sets or acquires the profile authentication method.

￭ Syntax

[VB]
Public Property Authentication As EN_AUTHENTICATION

[C#]
public EN_AUTHENTICATION Authentication {get; set;}

￭ Property

Profile authentication method

Parameter values: As listed in EN_AUTHENTICATION

EN_AUTHENTICATION.WPAPSK is only supported on units running
on Windows CE 5.0.

Default value: EN_AUTHENTICATION.OPEN

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

￭ Note

The profile authentication method can only be set or acquired when the edit mode
(RF.EditMode) is set to Zero Config mode. An exception is thrown if an attempt is made to
set or acquire when in Nic Control mode. Set the RF.EditMode value to
EN_EDIT_MODE.ZEROCONFIG.

 [Ex.] Set the MyProf profile authentication method to Open.

[VB] MyProf.Authentication = RF.Profile.EN_AUTHENTICATION.OPEN

[C#] MyProf.Authentication = RF.Profile.EN_AUTHENTICATION.OPEN;

- 231 -

Encryption

Sets or acquires the profile encryption method.

￭ Syntax

[VB]
Public Property Encryption As EN_ENCRYPTION

[C#]
public EN_ENCRYPTION Encryption {get; set;}

￭ Property

Profile encryption method

Parameter values: As listed in EN_ENCRYPTION

Default value: EN_ENCRYPTION.DISABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

￭ Note

The profile encryption method can only be set or acquired when the edit mode
(RF.EditMode) is set to Zero Config mode. An exception is thrown if an attempt is made to
set or acquire when in Nic Control mode. Set the RF.EditMode value to
EN_EDIT_MODE.ZEROCONFIG.

[Ex.] Set the MyProf profile encryption method to Wep.

[VB] MyProf.Encryption = RF.Profile.EN_ENCRYPTION.WEP

[C#] MyProf.Encryption = RF.Profile.EN_ENCRYPTION.WEP;

- 232 -

EAP8021x

Sets or acquires the profile EAP (802.1x) type.

￭ Syntax

[VB]
Public Property EAP8021x As EN_EAP8021X

[C#]
public EN_EAP8021X EAP8021x {get; set;}

￭ Property

Profile EAP type

Parameter values: As listed in EN_EAP8021X

Default value: EN_EAP8021X.DISABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

￭ Note

The profile EAP(802.1x) type can only be set or acquired when the edit mode
(RF.EditMode) is set to Zero Config mode. An exception is thrown if an attempt is made to
set or acquire when in Nic Control mode. Set the RF.EditMode value to
EN_EDIT_MODE.ZEROCONFIG.

[Ex.] Set the MyProf profile EAP type to Tkip.

[VB] MyProf.EAP8021x = RF.Profile.EN_EAP8021X.TKIP

[C#] MyProf.EAP8021x = RF.Profile.EN_EAP8021X.TKIP;

- 233 -

WepKey

Sets the profile WepKey.

￭ Syntax

[VB]
Public WriteOnly Property WepKey As String

[C#]
public string WepKey {set;}

￭ Property

Profile WEP key.

Parameter values: 10-character alphanumeric character string (40-bit)

 26-character alphanumeric character string (128-bit)

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

Set from RF.WepKey.

￭ Note

The profile Wepkey can only be set or acquired when the edit mode (RF.EditMode) is set to
Zero Config mode. An exception is thrown if an attempt is made to set or acquire when in
Nic Control mode. Set the RF.EditMode value to EN_EDIT_MODE.ZEROCONFIG.

[Ex.] Set the MyProf profile Wep key to "12345123451234123412341234".

[VB] MyProf.WepKey = "12345123451234123412341234"

[C#] MyProf.WepKey = "12345123451234123412341234";

- 234 -

PreSharedKey

Specifies the profile PreSharedKey.

￭ Syntax

[VB]
Public WriteOnly Property PreSharedKey As String

[C#]
public string PreSharedKey {set;}

￭ Property

Profile PreSharedKey

Parameter values: 64-characters alphanumeric character string in hexadecimal notation, or
ASCII character string with 8 characters or more and 63 characters or
less

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) lies outside the permissible

range.
NotSupportedException PreSharedKey not supported.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

￭ Note

This is not supported on units running on Windows CE 4.1 or 4.2. An exception is thrown
when an attempt is made to set.

The profile PreSharedKey can only be set or acquired when the edit mode (RF.EditMode) is
set to Zero Config mode. An exception is thrown if an attempt is made to set or acquire
when in Nic Control mode. Set the RF.EditMode value to EN_EDIT_MODE.ZEROCONFIG.

[Ex.] Set the MyProf profile PreSharedKey to "12345123451234123412341234".

[VB] MyProf.PreSharedKey = "12345123451234123412341234"

[C#] MyProf. PreSharedKey = "12345123451234123412341234";

- 235 -

KeyIndex

Sets or acquires the key index used during communication.

￭ Syntax

[VB]
Public Property KeyIndex As Integer

[C#]
public int KeyIndex {set; get;}

￭ Property

The key index used by the profile during communication

Parameter values: 1 to 4

￭ Exceptions

Name of Exception Meaning
ArgumentException The setting lies outside the range.
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

Set from RF.WepKey.TransmitKey.

￭ Note

The key index can only be set or acquired when the edit mode (RF.EditMode) is set to Zero
Config mode. An exception is thrown if an attempt is made to set or acquire when in Nic
Control mode. Set the RF.EditMode value to EN_EDIT_MODE.ZEROCONFIG.

[Ex.] Setting the key index to “2”

[VB] MyProf.KeyIndex = 2

[C#] MyProf.KeyIndex = 2;

- 236 -

Count

Acquires the number of registered profiles.

￭ Syntax

[VB]
Public Shared ReadOnly Property Count As Integer

[C#]
public static int Count {get;}

￭ Property

Registered profile count

￭ Exceptions

Name of Exception Meaning
MissingMethodException Profile not supported.

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when an
attempt is made to acquire.

- 237 -

Registered

Acquires all registered profiles.

￭ Syntax

[VB]
Public Shared ReadOnly Property Registered As RF.Profile[]

[C#]
public static RF.Profile[] Registered {get;}

￭ Property

All registered profile instances.

￭ Exceptions

Name of Exception Meaning
MissingMethodException Profile not supported.

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when an
attempt is made to acquire.

It is necessary to call the RF.Profile.Update method and copy the Zero Config GUI settings
to the BHT wireless registry prior to acquiring all registered profiles.

- 238 -

[Ex.] Delete all registered profiles.

[VB]

RF.Profile.Update() ' Copies settings from the Zero Config GUI to the BHT wireless
registry.

Dim regProfiles() As RF.Profile = RF.Profile.Registered

For Each prof As RF.Profile In regProfiles

 RF.Profile.Remove(prof.SSID, prof.InfraMode)

Next

RF.Profile.Commit() ' Updates to the Zero Config GUI.

[C#]

RF.Profile.Update() ' Copies settings from the Zero Config GUI to the BHT wireless
registry.Zero Config GUI.

RF.Profile[] regProfiles = RF.Profile.Registered

foreach (RF.Profile prof In regProfiles)

 RF.Profile.Remove(prof.SSID, prof.InfraMode)

Next

RF.Profile.Commit() ' Updates to the Zero Config GUI.

- 239 -

Update

Copies the value set at the Zero Config GUI to the BHT wireless registry referenced by the
wireless driver.

￭ Syntax

[VB]
Public Shared Sub Update()

[C#]
public static void Update()

￭ Parameters

None

￭ Exceptions

Name of Exception Meaning
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when
executed.

Call this method first if the value set at the Zero Config GUI is acquired from the class
library.

This can only be executed when the control mode (RF.Controller) is set to Zero Config
mode. An exception is thrown if an attempt is made to set or acquire when in Nic Control
mode. Set the RF.Controller value to EN_CONTROLLER.ZEROCONFIG.

- 240 -

[Ex.] Changing the profile (ESSID:BHT, Infra: Infrastructure) Wep key created at Zero
Config to “1234567890”.

[VB]

RF.Profile.Update();

Dim prof As RF.Profile = New Profile("BHT", EN_INFRA_MODE.INFRASTRUCTURE)

prof.WepKey = “1234567890”

RF.Profile.Commit();

[C#]

RF.Profile.Update();

RF.Profile prof = new Profile("BHT", EN_INFRA_MODE.INFRASTRUCTURE);

prof.WepKey = “1234567890”

RF.Profile.Commit();

- 241 -

Commit

Reflects the value set from application to the Zero Config GUI.

￭ Syntax

[VB]
Public Shared Sub Commit()

[C#]
public static void Commit()

￭ Parameters

None

￭ Exceptions

Name of Exception Meaning
DeviceLoadException The device is not ready.

The edit mode has not been set to Zero Config mode.
MissingMethodException Profile not supported.

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when
executed.

Call this method prior to opening the wireless device if the value set from the library is used
and a connection is established with the network.

This can only be executed when the control mode (RF.Controller) is set to Zero Config
mode. An exception is thrown if an attempt is made to set or acquire when in Nic Control
mode. Set the RF.Controller value to EN_CONTROLLER.ZEROCONFIG.

- 242 -

[Ex.] Changing the profile (ESSID:BHT, Infra: Infrastructure) Wep key created at Zero
Config to “1234567890”.

[VB]

RF.Profile.Update();

Dim prof As RF.Profile = New Profile("BHT", EN_INFRA_MODE.INFRASTRUCTURE)

prof.WepKey = “1234567890”

RF.Profile.Commit();

[C#]

RF.Profile.Update();

RF.Profile prof = new Profile("BHT", EN_INFRA_MODE.INFRASTRUCTURE);

prof.WepKey = “1234567890”

RF.Profile.Commit();

- 243 -

Remove

Deletes registered profiles.

￭ Syntax

[VB]
Public Shared Sub Remove(ByVal ssid As String, ByVal infra As
EN_INFRA_MODE)

[C#]
public static void Remove(string ssid, EN_INFRA_MODE infra)

￭ Parameters

ssid: Deleted profile ESSID

infra: Deleted profile infrastructure mode

￭ Exceptions

Name of Exception Meaning
MissingMethodException Profile not supported.

￭ Note

This is not supported on units running on Windows CE 4.1. An exception is thrown when
executed.

[Ex.] Delete a profile (ESSID:BHT, infra: infrastructure).

[VB] RF.Profile.Remove("BHT", EN_INFRA_MODE.INFRASTRUCTURE)

[C#] RF.Profile.Remove("BHT", EN_INFRA_MODE.INFRASTRUCTURE);

- 244 -

EN_AUTHENTICATION

Specifies the authentication method.

￭ Syntax

[VB]
Public Enum EN_AUTHENTICATION

[C#]
public enum EN_AUTHENTICATION

￭ Members

Member Name Description

OPEN Open

SHARED Shared

WPA WPA

WPAPSK WPA-PSK

- 245 -

EN_EAP8021X

Specifies the EAP type.

￭ Syntax

[VB]
Public Enum EN_EAP8021X

[C#]
public enum EN_EAP8021X

￭ Members

Member Name Description

DISABLE Disable

MD5CHALLENGE MD5-Challenge

PEAP PEAP

TLS TLS

- 246 -

EN_ENCRYPTION

Specifies the encryption method.

￭ Syntax

[VB]
Public Enum EN_ENCRYPTION

[C#]
public enum EN_ENCRYPTION

￭ Members

Member Name Description

DISABLE Disable

WEP Wep

AES AES (Not Supported)

TKIP Tkip

- 247 -

EN_INFRA_MODE

Specifies infrastructure.

￭ Syntax

[VB]
Public Enum EN_INFRA_MODE

[C#]
public enum EN_INFRA_MODE

￭ Members

Member Name Description

INFRASTRUCTURE Infrastructure

ADHOC ad hoc

- 248 -

18.14. RF.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
PowerSave Power save mode
Authentication Authentication method
DestMACAddress Destination’s MAC address
Version Driver version
FWVersion Firmware version
HWVersion Hardware version
MACAddress MAC address
SSID1 ESSID1

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_AUTHENTICATION Authentication method
EN_POWERSAVE Power save mode

- 249 -

PowerSave

Sets or acquires power save mode.

￭ Syntax

[VB]
Public Shared Property PowerSave As EN_POWERSAVE

[C#]
public static EN_POWERSAVE PowerSave {get; set;}

￭ Property

Power save mode

Parameter values: As listed in EN_POWERSAVE

Default value: EN_POWERSAVE.MOST

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the wireless power consumption to LEAST.

[VB] RF.Settings.PowerSave = RF.Settings.EN_POWERSAVE.LEAST

[C#] RF.Settings.PowerSave = RF.Settings.EN_POWERSAVE.LEAST;

- 250 -

Authentication

Sets or acquires the authentication method.

￭ Syntax

[VB]
Public Shared Property Authentication As EN_AUTHENTICATION

[C#]
public static EN_AUTHENTICATION Authentication {get; set;}

￭ Property

Authentication method

Parameter values: As listed in EN_AUTHENTICATION

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

This property has been retained to provide compatibility with Windows CE4.1. Ensure to
use the Profile class Authentication property for the authentication method setting.

When setting or acquiring the authentication method when in Zero Config mode, depending
on the RF.SelectedProfile property, please perform after selecting the Profile to be edited.

When setting EN_AUTHENTICATION.OPEN for this property when in Zero Config mode,
change the authentication method value to OPEN and the encryption method value to
DISABLE in the BHT class library.

When in Zero Config mode, if EN_AUTHENTICATION.SHARED40 or
EN_AUTHENTICATION.SHARED128 is set for this property, the BHT class library internal
authentication method value is changed to Open, and the encryption method value is
changed to WEP.

- 251 -

DestMACAddress

Sets or acquires the MAC address of the destination AP.

￭ Syntax

[VB]
Public Shared Property DestMACAddress As String

[C#]
public static string DestMACAddress {get; set;}

￭ Property

MAC address of AP

Default value: null

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

An exception will be thrown only when the length of the string exceeds 12 characters.

[Ex.] Specify the connection destination AP as "001122334455".

[VB] RF.Settings.DestMACAddress = "001122334455"

[C#] RF.Settings.DestMACAddress = "001122334455";

- 252 -

Version

Acquires the driver version.

￭ Syntax

[VB]
Public Shared ReadOnly Property Version As String

[C#]
public static string Version {get;}

￭ Property

Driver version

Default value: null

￭ Exceptions

Name of Exception Meaning
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the wireless driver version.

[VB] Dim VerDriver As String = RF.Settings.Version

[C#] string VerDriver = RF.Settings.Version;

- 253 -

FWVersion

Acquires the firmware version.

￭ Syntax

[VB]
Public Shared ReadOnly Property FWVersion As String

[C#]
public static string FWVersion {get;}

￭ Property

Firmware version

Default value: null

￭ Exceptions

Name of Exception Meaning
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the wireless F/W version.

[VB] Dim VerFW As String = RF.Settings.FWVersion

[C#] string VerFW = RF.Settings.FWVersion;

- 254 -

HWVersion

Acquires the hardware version.

￭ Syntax

[VB]
Public Shared ReadOnly Property HWVersion As String

[C#]
public static string HWVersion {get;}

￭ Property

Hardware version

Default value: null

￭ Exceptions

Name of Exception Meaning
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the wireless H/W version.

[VB] Dim VerHW As String = RF.Settings.HWVersion

[C#] string VerHW = RF.Settings.HWVersion;

- 255 -

MACAddress

Acquires the MAC address.

￭ Syntax

[VB]
Public Shared ReadOnly Property MACAddress As String

[C#]
public static string MACAddress {get;}

￭ Property

MAC address

Default value: null

￭ Exceptions

Name of Exception Meaning
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the MAC address.

[VB] Dim MacAddr As String = RF.Settings.MACAddress

[C#] string MacAddr = RF.Settings.MACAddress;

- 256 -

SSID1

Sets or acquires the ESSID.

￭ Syntax

[VB]
Public Shared Property SSID1 As String

[C#]
public static string SSID1 {get; set;}

￭ Property

ESSID

Default value: "101"

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

This property has been retained for compatibility with Windows CE 4.1. Set SSID at the
Profile class constructor.

Any values set for this property are ignored when in Zero Config mode.

- 257 -

EN_AUTHENTICATION

Specifies the authentication method.

￭ Syntax

[VB]
Public Enum EN_AUTHENTICATION

[C#]
public enum EN_AUTHENTICATION

￭ Members

Member Name Description

OPEN Open

SHARED40 40bit

SHARED128 128bit

￭ Class

BHTCL.RF.Settings

- 258 -

EN_POWERSAVE

Specifies power save mode.

￭ Syntax

[VB]
Public Enum EN_POWERSAVE

[C#]
public enum EN_POWERSAVE

￭ Members

Member Name Description

FULL Max. power consumption

MOST

MORE

MID

LESS

LEAST Min. power consumption

￭ Class

BHTCL.RF.Settings

- 259 -

18.15. RF.WepKeyCollection

¾ Constructor

None

Instances cannot be created directly form this class.

¾ Fields

None

¾ Properties

Property Name Description
Item Wep key value
TransmitKey Wep transmission key

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 260 -

Item

Sets the value of the Wep key specified by the index.

In C#, this property is used as the indexer for the WepKeyCollection class.

￭ Syntax

[VB]
Public WriteOnly Property Item(ByVal KeyNo As Integer) As String

[C#]
public string this[int KeyNo] {set;}

￭ Parameters

KeyNo

Wep key index

Values for 1 to 4

￭ Property

Wep key

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

This property has been retained for compatibility with Windows CE 4.1. Ensure to use the
Profile class WepKey property for the Wep key setting.

When setting or acquiring the authentication method from this property when in Zero Config
mode, perform after specifying the profile for the authentication method to be set or
acquired in the RF.SelectedProfile property.

- 261 -

TransmitKey

Sets or acquires the Wep transmission key [to be] used.

￭ Syntax

[VB]
Public Default Property TransmitKey As Integer

[C#]
public static int TransmitKey {get; set;}

￭ Property

Wep transmission key

Default value: Wep transmission key value at the time of initialization.

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

- 262 -

18.16. RF.SiteSurvey

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
Strength Strength
Beacon Beacon
Link Communication quality

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_LINE_QUALITY Communication quality

- 263 -

Strength

Acquires the radio field strength.

￭ Syntax

[VB]
Public Shared ReadOnly Property Strength As Integer

[C#]
public static int Strength {get;}

￭ Property

Radio field strength (%)

Default value: Radio field strength at the time of initialization.

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No NIC device was found.
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the radio field strength.

[VB] Dim Strength As Integer = RF.SiteSurvey.Strength

[C#] int Strength = RF.SiteSurvey.Strength;

- 264 -

Beacon

Acquires the beacon quality.

￭ Syntax

[VB]
Public Shared ReadOnly Property Beacon As Integer

[C#]
public static int Beacon {get;}

￭ Property

Beacon quality (%)

Default value: Beacon quality at the time of initialization.

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No NIC device was found.
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the beacon.

[VB] Dim Beacon As Integer = RF.SiteSurvey.Beacon

[C#] int Beacon = RF.SiteSurvey.Beacon;

- 265 -

Link

Acquires the communication quality.

￭ Syntax

[VB]
Public Shared ReadOnly Property Link As EN_LINE_QUALITY

[C#]
public static EN_LINE_QUALITY Link {get;}

￭ Property

Communication quality

Default value: Communication quality at the time of initialization.

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No NIC device was found.
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the communication quality.

[VB] Dim LineQuality As RF.SiteSurvey.EN_LINE_QUALITY = RF.SiteSurvey.Link

[C#] RF.SiteSurvey.EN_LINE_QUALITY LineQuality = RF.SiteSurvey.Link;

- 266 -

EN_LINE_QUALITY

Specifies the communication quality.

￭ Syntax

[VB]
Public Enum EN_LINE_QUALITY

[C#]
public enum EN_LINE_QUALITY

￭ Members

Member Name Description

UNSYNC Not connected (not synchronized)

POOR Less than 20%

FAIR 20% to 40%

GOOD 40% to 75%

EXCELLENT 75% or greater

￭ Class

Within BHTCL.RF.SiteSurvey class

- 267 -

18.17. RF.Info

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
Rate Communication speed
RateKbps Communication speed (kbps)
Channel Communication channel
APMAC MAC address of destination AP

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_RATE Communication speed

- 268 -

Rate

Acquires the communication speed.

￭ Syntax

[VB]
Public Shared ReadOnly Property Rate As EN_RATE

[C#]
public static EN_RATE Rate {get;}

￭ Property

Communication speed

Default value: NOT_LINK

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No NIC device was found.
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the current communication speed.

[VB] Dim Rate As RF.Info.EN_RATE = RF.Info.Rate

[C#] RF.Info.EN_RATE Rate = RF.Info.Rate;

- 269 -

RateKbps

Acquires the communication speed.

￭ Syntax

[VB]
Public Shared ReadOnly Property RateKbps As Integer

[C#]
public static int RateKbps {get;}

￭ Property

Communication speed (kbps)

Default value: 0

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No Nic device exists.
DeviceLoadException The Nic device is not ready.
ArgumentException RateKbps not supported.

[Ex.] Acquire the current communication speed.

[VB] Dim RateKbps As Integer = RF.Info.RateKbps

[C#] int RateKbps = RF.Info.RateKbps;

￭ Note

This is not supported on units running on Windows CE 4.1 or 4.2. An exception is thrown
when an attempt is made to set or acquire.

- 270 -

Channel

Acquires the communication channel.

￭ Syntax

[VB]
Public Shared ReadOnly Property Channel As Integer

[C#]
public static int Channel {get;}

￭ Property

Communication channel

Default value: 0

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No NIC device was found.
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the current communication channel.

[VB] Dim Channel As Integer = RF.Info.Channel

[C#] int Channel = RF.Info.Channel;

- 271 -

APMAC

Acquires the MAC address of the currently linked AP.

￭ Syntax

[VB]
Public Shared ReadOnly Property APMAC As String

[C#]
public static string APMAC {get;}

￭ Property

MAC address

Default value: null

￭ Exceptions

Name of Exception Meaning
DeviceNotFoundException No NIC device was found.
DeviceLoadException The NIC device is not ready.

[Ex.] Acquire the MAC address of the currently linked AP.

[VB] Dim CurAPMacAddr As String = RF.Info.APMAC

[C#] int Channel = RF.Info.Channel;

- 272 -

EN_RATE

Specifies the communication speed.

￭ Syntax

[VB]
Public Enum EN_RATE

[C#]
public enum EN_RATE

￭ Members

Member Name Description

AUTO Auto

MBPS1 1 Mbps

MBPS2 2 Mbps

MBPS5_5 5.5 Mbps

MBPS11 11 Mbps

OVER Faster than above

￭ Class

Within BHTCL.RF.Info class

- 273 -

18.18. Keys

¾ Constructor

None

There is no need to create an instance because all the members are static members.

¾ Fields

Field Name Description
Mx, MxH (Mx:M1 to M5,
MxH:M3H to M5H)

Key code for MagicKey: Mx (M1 to M5), MxH (M3H to M5H)

ALP Alphabetic key

¾ Properties

None

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 274 -

Mx, MxH (Mx:M1 to M5, MxH:M3H to M5H)

Key code of the magic key and the half-pressed magic key

If the [ENTER], [Shift], [TAB], [CTRL], and [Alt] key functions are assigned to these keys, the
assigned key code is returned.

￭ Syntax

[VB]
Public Const Mx As Windows.Forms.Keys

[C#]
public const Windows.Forms.Keys Mx;

ALP

Key code for [ALP] key

￭ Syntax

[VB]
Public Const ALPKey As System.Windows.Forms.Keys

[C#]
public const System.Windows.Forms.Keys ALPKey;

- 275 -

[Ex.] Display the pressed key.

[VB]

Private Sub Form1_KeyDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyDown

 Select Case e.KeyCode

 Case DNWA.BHTCL.Keys.M1

 Console.WriteLine("[M1] key is down")

 Case DNWA.BHTCL.Keys.ALP

 Console.WriteLine("[ALP] key is down")

 End Select

End Sub

[C#]

private void Form1_KeyDown(object sender, KeyEventArgs e)

{

 switch(e.KeyCode)

 {

 case DNWA.BHTCL.Keys.M1:

 Console.WriteLine("[M1] key is down");

 break;

 case DNWA.BHTCL.Keys.ALP:

 Console.WriteLine("[ALP] key is down");

 break;

 }

}

- 276 -

18.19. Keys.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
ShiftMode [SF] key operation mode
MxMode(Mx : M1 to M5,
M3H,M4H,M5H)

Magic key function
Mx: M1 to M5 keys, MxH: M3H to M5H keys

InputMethod Input method
PwrDownTime Length of time PWR key pressed down until power OFF (in units of 100

msec)
AllowChangeIM Input method switching enabled/disabled
KeyboardType Keyboard type
HandleStatus Grip handle status (connected or not connected)

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_SHIFT_MODE [SF] key operation mode
EN_MX_MODE Magic key function
EN_INPUT_METHOD Input method
EN_CHANGE_IM Input method switching enabled/disabled
EN_KEYBOARD_TYPE Keyboard type

- 277 -

ShiftMode

Sets or acquires the operation mode for the [SF] key.

￭ Syntax

[VB]
Public Shared Property ShiftMode As EN_SHIFT_MODE

[C#]
public static EN_SHIFT_MODE ShiftMode {get; set;}

￭ Property

Operation mode

Parameter values: As listed in EN_SHIFT_MODE

Default value: EN_SHIFT_MODE.NON_LOCK

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the [SF] key operation mode to onetime lock.

[VB] Keys.Settings.ShiftMode = Keys.Settings.EN_SHIFT_MODE.ONE_LOCK

[C#] Keys.Settings.ShiftMode = Keys.Settings.EN_SHIFT_MODE.ONE_LOCK;

- 278 -

MxMode(Mx : M1 to M5, M3H,M4H,M5H)

Sets or acquires the operation mode for the magic key, including that when the key is
half-pressed.

￭ Syntax

[VB]
Public Shared Property MxMode As EN_MX_MODE

[C#]
public static EN_MX_MODE MxMode {get; set;}

￭ Property

Operation mode

Parameter values: As listed in EN_MX_MODE with the exception of EN_MX.MODE.IM

Default value: M1 EN_MX_MODE.TAB

 M2 EN_MX_MODE.NONE

 M3 EN_MX_MODE.TRG

M4 EN_MX_MODE.TRG

 M5 EN_MX_MODE.TRG

 M3H EN_MX_MODE.LASER (BHT-200B)

 M4H EN_MX_MODE.LASER (BHT-200B)

 M5H EN_MX_MODE.LASER (BHT-200B)

 M3H EN_MX_MODE.TRG (BHT-200Q)

 M4H EN_MX_MODE.TRG (BHT-200Q)

 M5H EN_MX_MODE.TRG (BHT-200Q)

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.
NotSupportedException The specified magic key does not exist.

[Ex.] Set the [M2] key function to the [CTRL] key.

[VB] Keys.Settings.M2Mode = Keys.EN_MX_MODE.CTRL

[C#] Keys.Settings.M2Mode = Keys.EN_MX_MODE.CTRL;

- 279 -

InputMethod

Sets or acquires the input method.

￭ Syntax

[VB]
Public Shared Property InputMethod As EN_INPUT_METHOD

[C#]
public static EN_INPUT_METHOD InputMethod {get; set;}

￭ Property

Input method

Parameter values: As listed in EN_INPUT_METHOD

Default value: EN_ INPUT_METHOD.NUMERIC

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Set the input method to alphabet entry mode.

[VB] Keys.Settings.InputMethod = Keys.Settings.EN_INPUT_METHOD.ALPHABET

[C#] Keys.Settings.InputMethod = Keys.Settings.EN_INPUT_METHOD.ALPHABET;

- 280 -

PwrDownTime

Sets or acquires the length of time the PWR key is pressed down until the power turns OFF.

￭ Syntax

[VB]
Public Shared Property PwrDownTime As Integer

[C#]
public static int PwrDownTime {get; set;}

￭ Property

Length of time key pressed down (in units of 100msec)

Parameter values: 1 to 255

Default value: 5

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Make setting to ensure the power does not turn OFF unless the [PWR] key is held
down for 10 seconds.

[VB] Keys.Settings.PwrDownTime = 100

[C#] Keys.Settings.PwrDownTime = 100;

- 281 -

AllowChangeIM

Sets or acquires the enabling/disabling of the transition to the alphabet entry mode.

￭ Syntax

[VB]
Public Shared Property AllowChangeIM As EN_CHANGE_IM

[C#]
public static EN_CHANGE_IM AllowChangeIM {get; set;}

￭ Property

Enable/disable

Parameter values: As listed in EN_CHANGE_IM

Default value: EN_CHANGE_IM.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Disable transition to alphabet entry mode.

[VB] Keys.Settings.AllowChangeIM = Keys.Settings.EN_CHANGE_IM.DISABLE

[C#] Keys.Settings.AllowChangeIM = Keys.Settings.EN_CHANGE_IM.DISABLE;

- 282 -

KeyboardType

Acquires the keyboard type.

￭ Syntax

[VB]
Public Shared ReadOnly Property KeyboardType

As EN_KEYBOARD_TYPE

 [C#]
public static EN_KEYBOARD_TYPE KeyboardType {get;}

￭ Property

Keyboard type

￭ Exceptions

None

[Ex.] Check the key type.

[VB]

If DNWA.BHTCL.Keys.Settings.KeyboardType = _

Keys.Settings.EN_KEYBOARD_TYPE.KEY26 Then

 Console.WriteLine("26 keys")

End If

[C#]

if (DNWA.BHTCL.Keys.Settings.EN_KEYBOARD_TYPE.KEY26

 == DNWA.BHTCL.Keys.Settings.KeyboardType)

{

 Console.WriteLine("26 keys");

}

- 283 -

HandleStatus

Acquires the grip handle status (connected/not connected).

￭ Syntax

[VB]
Public Shared ReadOnly Property HandleStatus

As EN_HANDLE_STATUS

 [C#]
public static EN_HANDLE_STATUS HandleStatus {get;}

￭ Property

Grip handle status

￭ Exceptions

None

[Ex.] Check the grip handle connection status

[VB]

If DNWA.BHTCL.Keys.Settings.HandleStatus = _

Keys.Settings.EN_HANDLE_STATUS.LOADED Then

 Console.WriteLine("Grip handle is loaded.")

Else

 Console.WriteLine("Grip handle is not loaded.")

End If

[C#]

if (DNWA.BHTCL.Keys.Settings.EN_KEYBOARD_TYPE.TYPE1

 == DNWA.BHTCL.Keys.Settings.KeyboardType)

{

 Console.WriteLine("Grip handle is loaded.");

}

else

{

 Console.WriteLine("Grip handle is not loaded.");

}

- 284 -

EN_SHIFT_MODE

Specifies the operation mode for the Shift (SF) key.

￭ Syntax

[VB]
Public Enum EN_SHIFT_MODE

[C#]
public enum EN_SHIFT_MODE

￭ Members

Member Name Description

NON_LOCK Normal

ONE_LOCK Onetime lock mode

￭ Class

BHTCL.Keys.Settings

- 285 -

EN_MX_MODE

Specifies the key function.

￭ Syntax

[VB]
Public Enum EN_MX_MODE

[C#]
public enum EN_MX_MODE

￭ Members

Member Name Description

NONE None

ENTER Enter key

TRG Trigger key

SHIFT Shift key

BACKLIGHT Backlight control key

TAB Tab key

IM Input method switching key

LASER Laser ON/OFF key

CTRL Ctrl key

ALT Alt key

USER_DEF_CODE User definition code

￭ Class

BHTCL.Keys.Settings

- 286 -

EN_INPUT_METHOD

Specifies the input method.

￭ Syntax

[VB]
Public Enum EN_INPUT_METHOD

[C#]
public enum EN_INPUT_METHOD

￭ Members

Member Name Description

NUMERIC Numeric entry mode

ALPHABET Alphabet entry mode

￭ Class

BHTCL.Keys.Settings

- 287 -

EN_CHANGE_IM

Specifies whether to enable or disable input method switching.

￭ Syntax

[VB]
Public Enum EN_CHANGE_IM

[C#]
public enum EN_CHANGE_IM

￭ Members

Member Name Description

ENABLE Enable

DISABLE Disable

￭ Class

BHTCL.Keys.Settings

- 288 -

EN_KEYBOARD_TYPE

Specifies the keyboard type.

￭ Syntax

[VB]
Public Enum EN_KEYBOARD_TYPE

[C#]
public enum EN_KEYBOARD_TYPE

￭ Members

Member Name Description

KEY26 26-key (Calculator-type key layout)

KEY30 30-key (Calculator-type key layout)

KEY26P 26-key (Phone-type key layout)

KEY30P 30-key (Phone-type key layout)

￭ Class

BHTCL.Keys.Settings

- 289 -

18.20. SysInfo

¾ Constructor

None

There is no need to create an instance because all the members are static members.

¾ Fields

None

¾ Properties

None

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 290 -

18.21. SysInfo.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
OSVersion System version
MachineName Machine name
MachineNumber Product number
SerialNumber Serial number
RAMSize RAM size
ROMSize ROM size

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 291 -

OSVersion

Acquires the operating system (OS) version.

￭ Syntax

[VB]
Public Shared ReadOnly Property OSVersion As String

[C#]
public static string OSVersion {get;}

￭ Property

System version (4 digits)

￭ Exceptions

None

[Ex.] Acquire the system version.

[VB] Dim OSVer As String = SysInfo.Settings.OSVersion

[C#] string OSVer = SysInfo.Settings.OSVersion;

- 292 -

MachineName

Acquires the machine name.

￭ Syntax

[VB]
Public Shared ReadOnly Property MachineName As String

[C#]
public static string MachineName {get;}

￭ Property

Machine name

￭ Exceptions

None

[Ex.] Acquire the machine name.

[VB] Dim MachineName As String = SysInfo.Settings.MachineName

[C#] string MachineName = SysInfo.Settings.MachineName;

- 293 -

MachineNumber

Acquires the machine number.

￭ Syntax

[VB]
Public Shared ReadOnly Property MachineNumber As String

[C#]
public static string MachineNumber {get;}

￭ Property

Machine number

￭ Exceptions

None

[Ex.] Acquire the machine number.

[VB] Dim MachineNumber As String = SysInfo.Settings.MachineNumber

[C#] string MachineNumber = SysInfo.Settings.MachineNumber;

- 294 -

SerialNumber

Sets or acquires the serial number.

￭ Syntax

[VB]
Public Shared Property SerialNumber As String

[C#]
public static string SerialNumber {get;set;}

￭ Property

Serial number

Parameter values: 6-digit character string

Default value: Last 6 digits of machine number on the back of the BHT.

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Acquire the serial number.

[VB] Dim SerialNumber As String = SysInfo.Settings.SerialNumber

[C#] string SerialNumber = SysInfo.Settings.SerialNumber;

- 295 -

RAMSize

Acquires the size (capacity) of the BHT RAM.

￭ Syntax

[VB]
Public Shared ReadOnly Property RAMSize As Integer

[C#]
public static int RAMSize {get;}

￭ Property

Capacity (Byte)

￭ Exceptions

None

[Ex.] Acquire the capacity of the BHT RAM.

[VB] Dim RAMSize As Integer = SysInfo.Settings.RAMSize

[C#] string RAMSize = SysInfo.Settings.RAMSize;

- 296 -

ROMSize

Acquires the size (capacity) of the BHT ROM.

￭ Syntax

[VB]
Public Shared ReadOnly Property ROMSize As Integer

[C#]
public static int ROMSize {get;}

￭ Property

Capacity (Byte)

￭ Exceptions

None

[Ex.] Acquire the capacity of the BHT ROM.

[VB] Dim ROMSize As Integer = SysInfo.Settings.ROMSize

[C#] string ROMSize = SysInfo.Settings.ROMSize;

- 297 -

18.22. PwrMng

¾ Constructor

None

There is no need to create an instance because all the members are static members.

¾ Fields

None

¾ Properties

None

¾ Methods

Method Name Description
Shutdown Shuts down the power in such a way that the system will be started in the

specified mode next time it is turned ON.

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_SHUTDOWN_MODE Shutdown mode

- 298 -

Shutdown

Shuts down the power in such a way that the next time the system is turned ON, it will start up in
the mode specified by the parameter.

￭ Syntax

[VB]
Public Shared Sub Shutdown _

(ByVal mode As EN_SHUTDOWN_MODE)

[C#]
public static void Shutdown(EN_SHUTDOWN_MODE mode)

￭ Parameters

mode

[in] Mode to be entered at the time of start-up

Parameter values: As listed in EN_SHUTDOWN_MODE

EN_SHUTDOWN_MODE.COLD is only valid on units running on
Windows CE 5.0.

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified mode is invalid.

￭ Note

 After warm booting After cold booting
Files in the FLASH folder Retained Retained
Files in the RAM Retained Lost

Contents of the Registry Retained Lost (*)

Data being edited Lost Lost

(*) If the Registry has been backed up, the backup copy will be used.

- 299 -

[Ex.] Switch to suspend.

[VB] PwrMng.Shutdown(PwrMng.EN_SHUTDOWN_MODE.SUSPEND)

[C#] PwrMng.Shutdown(PwrMng.EN_SHUTDOWN_MODE.SUSPEND);

- 300 -

EN_SHUTDOWN_MODE

Specifies the operation mode to be entered at the next start-up after shutdown.

￭ Syntax

[VB]
Public Enum EN_SHUTDOWN_MODE

[C#]
public enum EN_SHUTDOWN_MODE

￭ Members

Member Name Description

WARM Warm-boot

SUSPEND Suspend

COLD_BOOT_REGINIT Cold-boot, with registry initialized

COLD_BOOT_REGREMAIN Cold-boot, with registry saved

SYSMODIFY Update OS

COLD Cold-boot

￭ Class

Within BHTCL.PwrMng class

- 301 -

18.23. PwrMng.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
StandbyTime Standby transition time
AutoPowerOffBattery Auto-power-OFF time (battery-powered)
AutoPowerOffExt Auto-power-OFF time (installed on CU)
EnableSuspendSlotX
(X=0,1)

Auto power OFF Enable/Disable for CF card slot X currently being used.

CPUClock CPU clock

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_SUSPEND Suspend enable/disable
EN_CPU_CLOCK CPU clock

- 302 -

StandbyTime

Sets or Acquires the standby transition time.

￭ Syntax

[VB]
Public Shared Property StandbyTime As Integer

[C#]
public static int StandbyTime {get; set;}

￭ Property

Transition time (in units of 100 msec)

Parameter values: 0 to 255

Default value: 10

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

If "0" is specified, transition to the standby state will not take place.

[Ex.] Prohibits transition to standby.

[VB] PwrMng.Settings.StandbyTime = 0

[C#] PwrMng.Settings.StandbyTime = 0;

- 303 -

AutoPowerOffBattery

Sets or acquires the automatic power-OFF time when powered by the battery.

￭ Syntax

[VB]
Public Shared Property AutoPowerOffBattery As Integer

[C#]
public static int AutoPowerOffBattery {get; set;}

￭ Property

Auto-power-off time (in units of 1 sec)

Parameter values: 0 to System.Int32.MaxValue

Default value: 180

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

If "0" is specified, the system will not be turned OFF while powered by the battery.

[Ex.] Prohibits transition to auto power off when powered by the battery.

[VB] PwrMng.Settings.AutoPowerOffBattery = 0

[C#] PwrMng.Settings.AutoPowerOffBattery = 0;

- 304 -

AutoPowerOffExt

Sets or acquires the automatic power-OFF time when the BHT is installed on the CU.

￭ Syntax

[VB]
Public Shared Property AutoPowerOffExt As Integer

[C#]
public static int AutoPowerOffExt {get; set;}

￭ Property

Automatic power-off time (in units of 1 sec)

Parameter values: 0 to System.Int32.MaxValue

Default value: 0 (The system will not be turned OFF automatically.)

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

If "0" is specified, the system will not be turned OFF while charging.

[Ex.] Prohibits transition to auto power off when the BHT is installed on the CU.

[VB] PwrMng.Settings.AutoPowerOffExt = 0

[C#] PwrMng.Settings.AutoPowerOffExt = 0;

- 305 -

EnableSuspendSlotX (X=0,1)

Sets or acquires the auto power OFF enable/disable status for the CF slot X currently being used.

￭ Syntax

[VB]
Public Shared Property EnableSuspendSlotX As Integer

[C#]
public static int EnableSuspendSlotX {get; set;}

￭ Property

Auto power OFF enable (EN_SUSPEND.ENABLE), disable (EN_SUSPEND.DISABLE)

Parameter values: As listed in EN_SUSPEND

Default value: Slot 0: Enable, Slot 1: Enable

￭ Exceptions

Name of Exception Meaning
ArgumentException The setting is invalid.
NotSupportedException EnableSuspendSlot 0, 1 not supported.

￭ Note

This is not supported on units running on Windows CE 4.1 or 4.2. An exception is thrown
when an attempt is made to set or acquire.

Slot 0 is located inside the BHT.

Remove the battery cover to locate Slot 1.

 [Ex.] Disabling auto power OFF when Slot 0 is being used

[VB] PwrMng.Settings.EnableSuspendSLot0 = _

PwrMng.Settings.EN_SUSPEND.Enable

[C#] PwrMng.Settings.EnableSuspendSLot0 =

PwrMng.Settings.EN_SUSPEND.Enable;

- 306 -

CPUClock

Sets or acquires the CPU clock speed.

￭ Syntax

[VB]
Public Shared Property CPUClock As EN_CPU_CLOCK

[C#]
public static EN_CPU_CLOCK CPUClock {get; set;}

￭ Property

CPU clock

Parameter values: As listed in EN_CPU_CLOCK

Default value: EN_CPU_CLOCK.NORMAL

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Up to the CPU clock speed.

[VB] PwrMng.Settings.Clock = PwrMng.Settings.EN_CPU_CLOCK.FAST

[C#] PwrMng.Settings.Clock = PwrMng.Settings.EN_CPU_CLOCK.FAST;

- 307 -

EN_SUSPEND

Specifies whether to enable or disable suspend mode.

￭ Syntax

[VB]
Public Enum EN_SUSPEND

[C#]
public enum EN_SUSPEND

￭ Members

Member Name Description

DISABLE Disable

ENABLE Enable

￭ Class

BHTCL.Pwrmng.Settings

- 308 -

EN_CPU_CLOCK

Specifies the CPU clock.

￭ Syntax

[VB]
Public Enum EN_CPU_CLOCK

[C#]
public enum EN_CPU_CLOCK

￭ Members

Member Name Description

NORMAL Normal

FAST Fast

￭ Class

BHTCL.Pwrmng.Settings

- 309 -

18.24. Icon

¾ Constructor

None

There is no need to create an instance because all the members are static members.

¾ Fields

None

¾ Properties

None

¾ Methods

None

¾ Events

None

¾ Enumeration

None

- 310 -

18.25. Icon.Settings

¾ Constructor

None

Instances cannot be created directly from this class.

¾ Fields

None

¾ Properties

Property Name Description
ShiftKey Enables/disables display of the icon indicating that the SF key is pressed

down.
Battery Enables/disables display of the battery icon.
Standby Enables/disables display of the icon indicating standby transition state.
Wireless Enables/disables display of the icon indicating that the BHT is in wireless

communication mode.
SIP Enables/disables display of the icon indicating that the system is in SIP input

mode.
Alphabet Enables/disables display of the icon indicating that the BHT is in alphabet

entry mode.

¾ Methods

None

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_STATUS Disables icon display.

- 311 -

ShiftKey

Sets or acquires the display status (enabled/disabled) of the icon indicating that key input is in
shift mode.

￭ Syntax

[VB]
Public Shared Property ShiftKey As EN_STATUS

[C#]
public static EN_STATUS ShiftKey {get; set;}

￭ Property

Display enabled/disabled

Parameter values: As listed in EN_STATUS

Default value: EN_STATUS.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

When enabled, the icon will appear next time the keypad is put in shift mode (or
immediately if it is already in shift mode).

When disabled, the icon will disappear immediately.

[Ex.] Disables display of the shift status icon.

[VB] Icon.Settings.ShiftKey = Icon.Settings.EN_STATUS.DISABLE

[C#] Icon.Settings.ShiftKey = Icon.Settings.EN_STATUS.DISABLE;

- 312 -

Battery

Sets or acquires the display status (enabled/disabled) of the icon indicating the residual charge of
the battery.

￭ Syntax

[VB]
Public Shared Property Battery As EN_STATUS

[C#]
public static EN_STATUS Battery {get; set;}

￭ Property

Display enabled/disabled

Parameter values: As listed in EN_STATUS

Default value: EN_STATUS.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Disables display of the battery status icon.

[VB] Icon.Settings.Battery = Icon.Settings.EN_STATUS.DISABLE

[C#] Icon.Settings.Battery = Icon.Settings.EN_STATUS.DISABLE;

- 313 -

Standby

Sets or acquires the display status (enabled/disabled) of the icon indicating the standby transition
state.

￭ Syntax

[VB]
Public Shared Property Standby As EN_STATUS

[C#]
public static EN_STATUS Standby {get; set;}

￭ Property

Display enabled/disabled

Parameter values: As listed in EN_STATUS

Default value: EN_STATUS.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

When enabled, the icon will appear the next time the CPU is put in standby state.

When disabled, the icon will disappear immediately.

[Ex.] Disables display of the standby transition status icon.

[VB] Icon.Settings.Standby = Icon.Settings.EN_STATUS.ENABLE

[C#] Icon.Settings.Standby = Icon.Settings.EN_STATUS.ENABLE;

- 314 -

Wireless

Sets or acquires the display status (enabled/disabled) of the icon indicating that the BHT is in
wireless communication mode.

￭ Syntax

[VB]
Public Shared Property Wireless As EN_STATUS

[C#]
public static EN_STATUS Wireless {get; set;}

￭ Property

Display enabled/disabled

Parameter values: As listed in EN_STATUS

Default value: EN_STATUS.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

When enabled, the icon will appear the next time the wireless device is opened (or
immediately if it is already open).

When disabled, the icon will disappear immediately.

[Ex.] Disables display of the wireless communication status icon.

[VB] Icon.Settings.Wireless = Icon.Settings.EN_STATUS.DISABLE

[C#] Icon.Settings.Wireless = Icon.Settings.EN_STATUS.DISABLE;

- 315 -

SIP

Sets or acquires the display status (enabled/disabled) of the Software Input Panel (SIP) icon.

￭ Syntax

[VB]
Public Shared Property SIP As EN_STATUS

[C#]
public static EN_STATUS SIP {get; set;}

￭ Property

Display enabled/disabled

Parameter values: As listed in EN_STATUS

Default value: EN_STATUS.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

[Ex.] Disables display of the Software Input Panel icon.

[VB] Icon.Settings.SIP = Icon.Settings.EN_STATUS.DISABLE

[C#] Icon.Settings.SIP = Icon.Settings.EN_STATUS.DISABLE;

- 316 -

Alphabet

Sets or acquires the display status (enabled/disabled) of the icon indicating the alphabet entry
mode.

￭ Syntax

[VB]
Public Shared Property Alphabet As EN_STATUS

[C#]
public static EN_STATUS Alphabet {get; set;}

￭ Property

Display enabled/disabled

Parameter values: As listed in EN_STATUS

Default value: EN_STATUS.ENABLE

￭ Exceptions

Name of Exception Meaning
ArgumentException The specified parameter value(s) is invalid.

￭ Note

When enabled, the icon will appear the next time the keypad is put in alphabet entry mode
(or immediately if it is already in alphabet entry mode).

When disabled, the icon will disappear immediately.

[Ex.] Disables display of the alphabet entry mode icon.

[VB] Icon.Settings.Alphabet = Icon.Settings.EN_STATUS.DISABLE

[C#] Icon.Settings.Alphabet = Icon.Settings.EN_STATUS.DISABLE;

- 317 -

EN_STATUS

Enables/disables icon display.

￭ Syntax

[VB]
Public Enum EN_STATUS

[C#]
public enum EN_STATUS

￭ Members

Member Name Description

DISABLE Display is disabled.

ENABLE Display is enabled.

￭ Class

BHTCL.Icon.Settings

- 318 -

18.26. Display
This function is not supported.

- 319 -

18.27. Display.Settings

This function is not supported.

- 320 -

18.28. SysModification

¾ Constructor

Constructor Name Description
SysModification Creates a new instance of the SysModification class.

¾ Fields

None

¾ Properties

Property Name Description
FileName OS reconfiguration filename
Mode Reboot mode after turning the power OFF

¾ Methods

Method Name Description
Execute Execute OS updating

¾ Events

None

¾ Enumeration

Enumeration Name Description
EN_MODE Reboot mode after turning the power OFF

- 321 -

SysModification

Initializes a new instance of the SysModificaiton class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public SysModification()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create the OS update instance.

[VB] Dim MySysMod As SysModification = New SysModification

[C#] SysModification MySysMod = new SysModification();

- 322 -

FileName

Specifies the OS update filename.

￭ Syntax

[VB]
Public Property FileName As String

[C#]
public string FileName{get; set;}

￭ Property

Filename

Default value: ""

The file name must contain the absolute path of the file.

Set the path name to ”\SysModify\”.

Ensure that the file extension is ”.zl”.

￭ Exceptions

None

￭ Note

Even if an invalid filename or a non-existent file is specified, no exceptions are immediately
thrown. An exception is thrown when the Execute method attempts to update (modify) the
OS.

[Ex.] Update the BHT200 system to the system with filename ”BHT200New.zl”.

[VB]

MySysMod.FileName = “\SysModification\BHT200New.zl”

MySysMod.Mode = SysModification.EN_MODE.POWEROFF

MySysMod.Execute

[C#]

MySysMod.FileName = @“\SysModification\BHT200New.zl”;

MySysMod.Mode = SysModification.EN_MODE.POWEROFF;

MySysMod.Execute();

- 323 -

Mode

Specifies the operation mode after updating the OS.

￭ Syntax

[VB]
Public Property Mode As EN_MODE

[C#]
public EN_MODE Mode{get; set;}

￭ Property

Operation mode

Parameter values: As listed in EN_MODE

Default value: EN_MODE.POWEROFF

￭ Exceptions

None

￭ Note

Even if you specify an invalid file name or a non-existent file, no exceptions will be thrown
immediately. An exception will be thrown when the Execute method attempts to update
(modify) the OS.

[Ex.] Update the BHT200 system to the system with filename ”BHT200New.zl”.

[VB]

MySysMod.FileName = “\SysModification\BHT200New.zl”

MySysMod.Mode = SysModification.EN_MODE.POWEROFF

MySysMod.Execute

[C#]

MySysMod.FileName = @“\SysModification\BHT200New.zl”;

MySysMod.Mode = SysModification.EN_MODE.POWEROFF;

MySysMod.Execute();

- 324 -

Execute

Executes the OS update.

￭ Syntax

[VB]
Public Sub Execute()

 [C#]
public void Execute()

￭ Parameters

None

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
FileNotFoundException The file specified by FileName does not exist.
ArgumentException The specified file name is invalid.

The specified mode is invalid.

￭ Note

Before calling this method to update the OS, it is necessary to restart the BHT using the
PwrMng.Shutdown (EN_SHUTDOWN_MODE.SYSMODIFY) method.

[Ex.] Update the BHT200 system to the system with filename ”BHT200New.zl”.

[VB]

MySysMod.FileName = “\SysModification\BHT200New.zl”

MySysMod.Mode = SysModification.EN_MODE.POWEROFF

MySysMod.Execute

- 325 -

[C#]

MySysMod.FileName = @“\SysModification\BHT200New.zl”;

MySysMod.Mode = SysModification.EN_MODE.POWEROFF;

MySysMod.Execute();

- 326 -

EN_MODE

Specifies the operation mode to be entered after updating the OS.

￭ Syntax

[VB]
Public Enum EN_MODE

[C#]
public enum EN_MODE

￭ Members

Member Name Description

POWEROFF Power OFF (The system will be cold-booted next time it is
turned ON.)

￭ Class

Within BHTCL.SysModification class

- 327 -

18.29. Registry

¾ Constructor

None

There is no need to create an instance because all the members are static members.

¾ Fields

None

¾ Properties

None

¾ Methods

Method Name Description
Save Saves the registry to the FLASH memory.

¾ Events

None

¾ Enumeration

None

- 328 -

Save

Saves the registry to the FLASH memory.

￭ Syntax

[VB]
Public Shared Sub Save()

 [C#]
public static void Save();

￭ Parameters

None

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
MissingMethodException Registry save function not supported.

￭ Note

This is not supported on units running on Windows CE 4.1 or 4.2. An exception is thrown
when executed.

[Ex.] Saving the registry

[VB] Registry.Save

[C#] Registry.Save();

- 329 -

18.30. CommSerial

¾ Constructor

Constructor Name Description
CommSerial Creates a new instance of the CommSerial class.

¾ Fields

Field Name Description
DEFAULT_PORT Default value for the COM port to be used

¾ Properties

Property Name Description
WaitEvent Specifies a wait event.
SignaledEvent Acquires the event that has occurred.
InBufferCount Size of data in the receive buffer
OutBufferCount Size of data in the send buffer
PortOpen Open/close of a COM port
Port Port number of the COM port to be used
Params Communication parameter

¾ Methods

Method Name Description
Input Reads the contents of the receive buffer.
Output Writes into the send buffer.
Dispose Frees up all unmanaged resources.

¾ Events

Event Name Description
OnDone Occurs when a communication event has occurred.

¾ Enumeration

Enumeration Name Description
EN_EVENT Event type

- 330 -

CommSerial

Initializes a new instance of the CommSerial class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public CommSerial()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a MyComm CommSerial instance.

[VB] Dim MyComm As CommSerial = New CommSerial

[C#] CommSerial MyComm = new CommSerial();

- 331 -

DEFAULT_PORT

Default value of the port number. This value is read-only.

￭ Syntax

[VB]
Public ReadOnly DEFAULT_PORT As Integer

[C#]
public readonly int DEFAULT_PORT;

- 332 -

WaitEvent

Sets or acquires the event to wait for.

￭ Syntax

[VB]
Public Property WaitEvent As EN_EVENT

[C#]
public EN_EVENT WaitEvent {get; set;}

￭ Property

Event to wait for

Parameter values: As listed in EN_EVENT

Default value: EN_EVENT.NONE

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException COM has not been opened yet.
ArgumentException The specified parameter value(s) lies outside the

permissible range.

￭ Note

The parameter value will always be EN_EVENT.NONE while the port is closed.

 [Ex.] Set the BHT to wait for a receive event.

[VB] MyComm.WaitEvent = CommSerial.EN_EVENT.RECEIVE

[C#] MyComm.WaitEvent = CommSerial.EN_EVENT.RECEIVE;

- 333 -

SignaledEvent

Acquires the last serial communication event that occurred.

￭ Syntax

[VB]
Public ReadOnly Property SignaledEvent As EN_EVENT

[C#]
public EN_EVENT SignaledEvent {get}

￭ Property

Event to wait for

Parameter values: As listed in EN_EVENT

Default value: EN_EVENT.NONE

￭ Exceptions

None

￭ Note

The parameter value will always be EN_EVENT.NONE while the port is closed.

[Ex.] Acquire the last event that occurred.

[VB] Dim CommSerial.EN_EVENT CommEvent = MyComm.SignaledEvent

[C#] EN_EVENT CommEvent = MyComm.SignaledEvent;

- 334 -

InBufferCount

Acquires the size of meaningful data in the receive buffer (in buffer).

￭ Syntax

[VB]
Public Property ReadOnly InBufferCount As Integer

[C#]
public int InBufferCount {get}

￭ Property

Size of meaningful data in the receive buffer (in buffer) (bytes)

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException The COM port has not been opened yet.

￭ Note

Each time a piece of data is read from the receive buffer using the Input method, the size of
meaningful data in the receive buffer decreases by the amount of the data just read out.

If the port is closed by specifying "false" for the PortOpen property, the size of meaningful
data is reset to “0”.

[Ex.] Read out all data remaining in the receive buffer.

[VB]

While MyComm.InBufferCount > 0

 len = MyComm.Input(buffer, 0, buffer.Length)

End While

[C#]

while (MyComm.InBufferCount > 0)

{

 len = MyComm.Input(buffer, 0, buffer.Length);

}

- 335 -

OutBufferCount

Acquires the size of meaningful data in the send buffer (out buffer).

￭ Syntax

[VB]
Public Property ReadOnly OutBufferCount As Integer

[C#]
public int OutBufferCount {get}

￭ Property

Size of meaningful data in the send buffer (out buffer) (bytes)

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException The COM port has not been opened yet.

￭ Note

Data can be stored in the send buffer (out buffer) using the Output method.

If the port is closed by specifying "false" for the PortOpen property, the size of meaningful
data is reset to “0”.

[Ex.] Send the len(byte) data when there is no longer any data in the send buffer.

[VB]

If MyComm.OutBufferCount = 0 Then

 MyComm.Output(buffer, 0, len)

End If

[C#]

if (MyComm.OutBufferCount == 0)

{

 MyComm.Output(buffer, 0, len);

}

- 336 -

PortOpen

Opens/closes the COM port.

￭ Syntax

[VB]
Public Property PortOpen As Boolean

[C#]
public bool PortOpen {get;set}

￭ Property

COM port status: Open (=True), Disabled (=False)

Default value: False

￭ Exceptions

Name of Exception Meaning

DevNotFoundException No COM port exists.

ObjectDisposedException The COM port has not been opened (i.e., The COM port
is closed).

SecurityException The COM port has already been opened.

[Ex.] Open the COM port.

[VB] MyComm.PortOpen = True

[C#] MyComm.PortOpen = true;

- 337 -

Port

Specifies the COM port number.

￭ Syntax

[VB]
Public Property Port As Integer

[C#]
public bool Port {get; set}

￭ Property

An integer indicating the port number

Parameter value(s): 1: Connector interface, 4: IrDA

Default value: 4

￭ Exceptions

Name of Exception Meaning

InvalidOperationException The COM port is already open.

￭ Note

If the value of this property is changed while COM port is open, an exception will be thrown.

If a port number that does not exist is specified at in this property, no exceptions will be
thrown immediately; however, an exception will be thrown later when an attempt is made to
open the specified port.

[Ex.] Specify the connector interface.

[VB] MyComm.Port = 1

[C#] MyComm.Port = 1;

- 338 -

Params

Sets the following communication parameters in alphabetic characters:

Baud rate, parity bit, data size, and stop bit

￭ Syntax

[VB]
Public Property Params As String

[C#]
public string Params {get; set}

￭ Property

Character string representing the communication parameters

Syntax : "BBBB,P,D,S"

 BBBB : BaudRate(bps)

 "115200","57600","38400","19200","9600","4800","2400","1200","600"

(Connector interface)

"115200","57600","38400","19200","9600"

(IrDA)

 P : Parity

 "N": no parity bit

 D : Data size (bits)

 "8" or "7"

 S : Stop bit (bit)

 "1" or "2"

Default value: "9600,N,8,1" (Connector interface)

"9600,N,8,1" (IrDA)

- 339 -

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException The COM port has not been opened yet.
ArgumentException The specified parameter value(s) lies outside the

permissible range.

[Ex.] Specify a baud rate of 115200 bps, set the parity to none, the data length to 8 bits,
and the stop bit to 1 bit.

[VB] MyComm.Params = "115200,N,8,1"

[C#] MyComm.Params = "115200,N,8,1";

- 340 -

Input

Reads data from the receive buffer.

￭ Syntax

[VB]
Public Function Input(ByVal buffer() As Byte, ByVal offset As Integer, _
ByVal len As Integer) As Integer

 [C#]
public int Input(byte[] buffer, int offset, int len)

￭ Parameters

buffer

[out] Destination buffer

offset

[in] Offset from the beginning of the destination buffer indicating the start point of the read
data

len

[in] Maximum length of the buffer to be read

￭ Return value

Length (size) of the data that has been actually read out

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException The COM port has not been opened yet.

- 341 -

[Ex.] Read out all data remaining in the receive buffer.

[VB]

While MyComm.InBufferCount > 0

 len = MyComm.Input(buffer, 0, buffer.Length)

End While

[C#]

while (MyComm.InBufferCount > 0)

{

 len = MyComm.Input(buffer, 0, buffer.Length);

}

- 342 -

Output

Writes data into the send buffer.

￭ Syntax

[VB]
Public Sub Output(ByVal buffer() As Byte, ByVal offset As Integer, _
ByVal len As Integer)

 [C#]
public void Output(byte[] buffer, int offset, int len)

￭ Parameters

buffer

[in] Source buffer

offset

[in] Offset from the beginning of the source buffer indicating the start point of the data

len

[in] Maximum length of the buffer into which data is to be written

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
ObjectDisposedException The COM port has not been opened yet.

- 343 -

[Ex.] Send the len(byte) data when there is no longer any data in the send buffer.

[VB]

If MyComm.OutBufferCount = 0 Then

 MyComm.Output(buffer, 0, len)

End If

[C#]

if (MyComm.OutBufferCount == 0)

{

 MyComm.Output(buffer, 0, len);

}

- 344 -

Dispose

Frees up all unmanaged resources.

This function must be called before instances of the CommSerial class are no longer referenced.

￭ Syntax

[VB]
Public Sub Dispose()

[C#]
public void Dispose()

￭ Parameters

None

￭ Return value

None

￭ Exceptions

None

￭ Note

This function must be called before instances of the CommSerial class are no longer
referenced.

[VB]

Private Sub Form1_Closed(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyBase.Closed

 MyComm.Dispose()

End Sub

[C#]

private void Form1_Closed(object sender, EventArgs e)

{

 MyComm.Dispose();

}

- 345 -

OnDone

Occurs when a COM event has occurred.

￭ Syntax

[VB]
Public Event OnDone As EventHandler

[C#]
public event EventHandler OnDone

￭ Event data

The Event Handler has received EventArgs type parameters.

The second parameter EventArgs e is always System.EventArgs.Empty.

To identify the type of the event that has occurred, retrieve SignaledEvent.

[Ex.] Read out the data when a receive event occurs.

[VB]

Private Sub MyComm_OnDone(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyComm.OnDone

 MyComm.Input(ReadBuf, 0, ReadBuf.Length)

End Sub

[C#]

private void MyComm_OnDone(object sender, EventArgs e)

{

 MyComm.Input(ReadBuf, 0, ReadBuf.Length);

}

- 346 -

EN_EVENT

Specifies the event type.

￭ Syntax

[VB]
[Flags]Public Enum EN_EVENT

[C#]
[Flags]public enum EN_EVENT

￭ Members

Member Name Description

NONE None

RECEIVE Receive

￭ Class

Within CommSerial class

- 347 -

18.31. FileTransfer

¾ Constructor

Constructor Name Description
FileTransfer Creates a new instance of the FileTransfer class.

¾ Fields

Field Name Description
DEFAULT_PORT Default COM port number to be used

¾ Properties

Property Name Description
Port Number of the COM port to be used
Baud Communication rate
Parity Parity scheme
StopBits Stop bits
Path Folder in which the send/receive file is located
TransferringEventInterval Event occurrence interval during transfer
Status File transfer status
FileCount File number of the file being transferred

¾ Methods

Method Name Description
AddFile Adds a file to be transferred.
ClearFile Clears the contents of the file that was added by AddFile.
Input Receives a file.
Output Sends a file.
Abort Aborts processing.
Dispose Frees up all unmanaged resources.

- 348 -

¾ Events

Event Name Description
OnDone Occurs when transfer processing has been completed.
OnTransferring Information on the file is stored during the transfer.

¾ Enumeration

Enumeration Name Description
EN_BAUD Communication baud rate
EN_PARITY Parity bit
EN_STOPBITS Stop bit
EN_STATUS File transfer status
EN_RESULT Transfer processing result

- 349 -

FileTransfer

Initializes a new instance of the FileTransfer class.

￭ Syntax

[VB]
Public Sub New()

[C#]
public FileTransfer()

￭ Parameters

None

￭ Exceptions

None

[Ex.] Create a FileTransfer class instance.

[VB] Dim MyFileTransfer As FileTransfer = New FileTransfer

[C#] FileTransfer MyFileTransfer = new FileTransfer();

DEFAULT_PORT

Default value of the port number. This value is read-only.

￭ Syntax

[VB]
Public ReadOnly DEFAULT_PORT As Integer

[C#]
public readonly int DEFAULT_PORT;

- 350 -

Port

Sets the COM port number.

￭ Syntax

[VB]
Public Property Port As Integer

[C#]
public int Port {get; set}

￭ Property

COM port number

Parameter value(s): 1: Connector interface, 4: IrDA

Default value: 4

￭ Exceptions

Name of Exception Meaning

InvalidOperationException The COM port is already open.

￭ Note

If the value of this property is changed while COM port is open, an exception will be thrown.

The value specified for this property will be valid the next time a send or receive operation is
performed.

If an invalid value is specified for this property, no exceptions will be thrown immediately;
however, an exception will be thrown later when an attempt is made to send or receive
data.

[Ex.] Create a FileTransfer class instance.

[VB] Dim Port As Integer = MyFileTransfer.Port

[C#] int Port = MyFileTransfer.Port;

- 351 -

Baud

Sets the communication rate.

￭ Syntax

[VB]
Public Property Baud As EN_BAUD

[C#]
public EN_BAUD Baud {get; set}

￭ Property

Communication rate.

Parameter values: As listed in EN_BAUD

 BPS300, BPS600, BPS1200, BPS2400, BPS4800, BPS9600, BPS19200,

BPS38400, BPS57600, BPS115200 (connector interface communication)

BPS9600, BPS19200, BPS38400, BPS57600,

BPS115200 (IrDA communication)

Default value: EN_BAUD.RATE115200

￭ Exceptions

None

￭ Note

The value specified for this property will be valid the next time a send or receive operation is
performed.

If an invalid value is specified for this property, no exceptions will be thrown immediately;
however, an exception will be thrown later when an attempt is made to send or receive
data.

[Ex.] Set the transfer baud rate to 115200 bps.

[VB] MyFileTransfer.Baud = FileTransfer.EN_BAUD.115200

[C#] MyFileTransfer.Baud = FileTransfer.EN_BAUD.115200;

- 352 -

Parity

Specifies the parity scheme to be used.

￭ Syntax

[VB]
Public Property Parity As EN_PARITY

[C#]
public EN_PARITY Parity {get; set}

￭ Property

Parity

Parameter values: As listed in EN_PARITY

NOPARITY, ODDPARITY, EVENPARITY (connector interface communication)

NOPARITY (IrDA communication)

Default value: EN_PARITY.NOPARITY

￭ Exceptions

None

￭ Note

The value specified for this property will be valid the next time a send or receive operation is
performed.

If an invalid value is specified for this property, no exceptions will be thrown immediately;
however, an exception will be thrown later when an attempt is made to send or receive
data.

[Ex.] Set the parity bit to none.

[VB] MyFileTransfer.Parity = FileTransfer.EN_PARITY.NOPARITY

[C#] MyFileTransfer.Parity = FileTransfer.EN_PARITY.NOPARITY;

- 353 -

StopBits

Specifies the number of stop bits to be used.

￭ Syntax

[VB]
Public Property StopBits As EN_STOPBITS

 [C#]
public EN_STOPBITS StopBits {get; set}

￭ Property

Stop bits

Parameter values: As listed in EN_STOPBITS

ONEBIT, TWOBITS (connector interface communication)

ONEBIT (IrDA communication)

Default value: EN_STOPBITS. ONEBIT

￭ Exceptions

None

￭ Note

The value specified for this property will be valid the next time a send or receive operation is
performed.

If an invalid value is specified for this property, no exceptions will be thrown immediately;
however, an exception will be thrown later when an attempt is made to send or receive
data.

[Ex.] Set the stop bit to 1 bit.

[VB] MyFileTransfer.StopBits = FileTransfer.EN_STOPBITS.ONEBIT

[C#] MyFileTransfer.StopBits = FileTransfer.EN_STOPBITS.ONEBIT;

- 354 -

Path

Specifies the folder in which the send file or receive file is [to be] located.

￭ Syntax

[VB]
Public Property Path As String

[C#]
public string Path {get; set}

￭ Property

Absolute path

Default value: @"\"

Maximum length: 259 characters (including the path name and the file name)

￭ Exceptions

Name of Exception Meaning
PathTooLongException The path name is too long.

￭ Note

The value specified for this property will be valid the next time a send or receive operation is
performed.

If an invalid value is specified for this property, no exceptions will be thrown immediately;
however, an exception will be thrown later when an attempt is made to send or receive
data.

[Ex.] Set the file receipt destination folder to FLASH\.

[VB] MyFileTransfer.Path = "\FLASH\"

[C#] MyFileTransfer.Path = @"FLASH";

- 355 -

TransferringEventInterval

Sets the interval for creating transferring events (OnTransferring).

￭ Syntax

[VB]
Public Property TransferringEventInterval As Integer

[C#]
public int TransferringEventInterval {get; set}

￭ Property

Event interval (in units of 100 msec)

Parameter values: 0 and above, but less than System.Int32.MaxValue

Default value: 0

0: No event will occur.

￭ Exceptions

None

￭ Note

The value specified for this property will be valid the next time a send or receive operation is
performed.

[Ex.] Set the event occurrence interval to ensure that file transfer information can be
acquired every second.

[VB] MyFileTransfer.TransferringEventInterval = 10

[C#] MyFileTransfer.TransferringEventInterval = 10;

- 356 -

Status

Acquires the file transfer status.

￭ Syntax

[VB]
Public ReadOnly Property Status As EN_STATUS

[C#]
public EN_STATUS Status {get; }

￭ Property

File transfer status

Parameter values: as listed in EN_STATUS

Default value: EN_STATUS.READY

￭ Exceptions

None

[Ex.] Acquire the file transfer status.

[VB] Dim Status As FileTransfer.EN_STATUS = MyFileTransfer.Status

[C#] FileTransfer.EN_STATUS Status = MyFileTransfer.Status;

- 357 -

FileCount

Acquires the file number of the file being transferred.

￭ Syntax

[VB]
Public ReadOnly Property FileCount As Integer

[C#]
public int FileCount {get; }

￭ Property

File number. (A serial number starting with the first file transferred as file number 1.)

Default value: 0

￭ Exceptions

None

[Ex.] Acquire the number of the file currently being sent.

[VB] Dim Number As Integer = MyFileTransfer.FileCount

[C#] int Number = MyFileTransfer.FileCount;

- 358 -

AddFile

Adds a file to be transferred.

￭ Syntax

[VB]
Public Sub AddFile(ByVal fileName As String)

[C#]
public void AddFile(string fileName);

￭ Parameters

fileName

[in] Name of the file to be added

(This should not include the path.)

Maximum length: 90 characters

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
ArgumentException The length of the specified file name was zero (0).
PathTooLongException The specified file name is too long.

[Ex.] Add "Mydoc.txt" to the file to be sent.

[VB] MyFileTransfer.AddFile("Mydoc.txt")

[C#] MyFileTransfer.AddFile("Mydoc.txt");

- 359 -

ClearFile

Clears the contents of the file that was added by AddFile.

￭ Syntax

[VB]
Public Sub ClearFile()

[C#]
public void ClearFile();

￭ Parameters

None

￭ Return value

None

￭ Exceptions

None

[Ex.] Clear the file to be sent.

[VB] MyFileTransfer.ClearFile()

[C#] MyFileTransfer.ClearFile();

- 360 -

Input

Receives a file.

￭ Syntax

[VB]
Public Sub Input()

[C#]
public void Input();

￭ Parameters

None

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
SecurityException The port has already opened by another application.
DeviceNotFoundException The COM port specified at Port does not exist.

[Ex.] Receive a file.

[VB] MyFileTransfer.Input()

[C#] MyFileTransfer.Input ();

- 361 -

Output

Sends the contents of the file that was specified by AddFile.

￭ Syntax

[VB]
Public Sub Output()

[C#]
public void Output();

￭ Parameters

None

￭ Return value

None

￭ Exceptions

Name of Exception Meaning
SecurityException The port has already opened by another application.
DeviceNotFoundException The COM port specified at Port does not exist.
ArgumentNullException The file has not been added by AddFile.
PathTooLongException The path specified by Path is too long, or the file name

specified by AddFile is too long.

[Ex.] Send a file.

[VB] MyFileTransfer.Output()

[C#] MyFileTransfer.Output ();

- 362 -

Abort

Aborts the file transfer that is already in progress.

￭ Syntax

[VB]
Public Sub Abort()

[C#]
public void Abort();

￭ Parameters

None

￭ Return value

None

￭ Exceptions

None

￭ Note

Execution of this method will result in an OnDone event after file transfer has been aborted.

[Ex.] Interrupt file transfer.

[VB] MyFileTransfer.Abort()

[C#] MyFileTransfer.Abort ();

- 363 -

Dispose

Frees up all unmanaged resources.

This function must be called before instances of the FileTransfer class are no longer referenced.

￭ Syntax

[VB]
Public Sub Dispose()
[C#]
public void Dispose()

￭ Parameters

None

￭ Return value

None

￭ Exceptions

None

￭ Note

This function must be called before instances of the FileTransfer class are no longer
referenced.

[VB]

Private Sub Form1_Closed(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyBase.Closed

 MyTransfer.Dispose()

End Sub

[C#]

private void Form1_Closed(object sender, EventArgs e) {

 MyTransfer.Dispose();

}

- 364 -

OnDone

Occurs when a transfer operation is complete.

￭ Syntax

[VB]
Public Event OnDone As TransferredHandler

 [C#]
public event TransferredHandler OnDone

￭ Event data

The Event Handler has received TransferredEventArgs type parameters.

One of the values listed in EN_Result will be stored in Result, the member of the second
parameter TransferredEventArgs e.

[Ex.] Display the event type that occurred each time a transfer event occurs.

[VB]

Private Sub MyFileTransfer_OnDone(ByVal sender As Object, _

 ByVal e As FileTransfer.TransferredEventArgs) _

 Handles MyFileTransfer.OnDone

 MessageBox.Show(e.Result.ToString())

End Sub

[C#]

private void MyTransfer_OnDone(object sender, FileTransfer.TransferredEventArgs e)

{

 MessageBox.Show(e.Result.ToString());

}

- 365 -

OnTransferring

Information on the file being transferred will be entered.

￭ Syntax

[VB]
Public Event OnTransferring As TransferringHandler

[C#]
public event TransferringHandler OnTransferring

￭ Event data

The Event Handler has received TransferringEventArgs type parameters.

The name and size of the file being transferred and the amount of the data that has already
been transferred will be stored in TransferringFileInfo, the member of the second parameter
TransferringEventArgs e.

[Ex.] Acquire transfer data each time a transfer event occurs.

[VB]

Private Sub MyFileTransfer_OnTransferring(ByVal sender As Object, _

 ByVal e As FileTransfer.TransferringEventArgs) _

Handles MyFileTransfer.OnTransferring

 Dim Name As String = e.FileName

 Dim Percent As Integer = Convert.ToInt32(((e.TransferredSize * 100) / e.TotalSize))

End Sub

[C#]

private void MyTransfer_OnTransferring(object sender,

FileTransfer.TransferringEventArgs e)

{

 string Name = e.FileName;

 int Percent = Convert.ToInt32(((e.TransferredSize * 100) / e.TotalSize));

}

- 366 -

EN_BAUD

Specifies the communication rate.

￭ Syntax

[VB]
Public Enum EN_BAUD
[C#]
public enum EN_BAUD

￭ Members

Member Name Description

BPS110 110 bps

BPS300 300 bps

BPS600 600 bps

BPS1200 1200 bps

BPS2400 2400 bps

BPS4800 4800 bps

BPS9600 9600 bps

BPS14400 14400 bps

BPS19200 19200 bps

BPS38400 38400 bps

BPS56000 56000 bps

BPS57600 57600 bps

BPS115200 115200 bps

BPS128000 128000 bps

BPS256000 256000 bps

￭ Class

Within FileTransfer class

- 367 -

EN_PARITY

Specifies the parity scheme.

￭ Syntax

[VB]
Public Enum EN_PARITY

[C#]
public enum EN_PARITY

￭ Members

Member Name Description

NOPARITY No parity

ODDPARITY Odd

EVENPARITY Even

￭ Class

Within FileTransfer class

- 368 -

EN_STOPBITS

Specifies the stop bits.

￭ Syntax

[VB]
Public Enum EN_STOPBITS

[C#]
public enum EN_STOPBITS

￭ Members

Member Name Description

ONEBIT 1 bit

TWOBITS 2 bit

￭ Class

Within FileTransfer class

- 369 -

EN_STATUS

Specifies the file transfer status.

￭ Syntax

[VB]
Public Enum EN_STATUS

[C#]
public enum EN_STATUS

￭ Members

Member Name Description

READY Ready

RECEIVE Receiving

SEND Sending

￭ Class

Within FileTransfer

- 370 -

EN_RESULT

Specifies the results of the file transfer.

￭ Syntax

[VB]
Public Enum EN_RESULT

[C#]
public enum EN_RESULT

￭ Members

Member Name Description

SUCCESS The file transfer was successfully completed

TIMEOUT Timeout

OPERATION_
ABORTED

The operation was aborted

OPEN_FAILED The file could not be opened.

INVALID_DATA Invalid data has been received.

DISK_FULL The disk storage was full and did not have enough space.

PATH_TOO_LONG The path length was too long.

￭ Class

Within FileTransfer class

Appendix A. Keyboard Arrangements, Virtual Key Codes and Character Codes
Appendix A.1. 26-key Pad
Appendix A.1.1. Keyboard Arrangement

M3(H) M4(H)↑
M1 M2

← →
Clr

BS

ALP
↓

SF 7 98

4 6 5F1

F2

F3 M5(H)
Keys M3H, M4H,
and M5H are
pushed in halfway.

 1 32 F4

0 ENT.

Appendix A.1.2. Virtual Key Codes and Character Codes

Virtual Key Character Code Key
Constant Value Normal Status Shift Status

[F1] VK_F1 70 - -
[F2] VK_F2 71 - -
[F3] VK_F3 72 - -
[F4] VK_F4 73 - -
[9] VK_9 39 39(9) 3D(=)
[8] VK_8 38 38(8) 2D(-)
[7] VK_7 37 37(7) 2B(+)
[6] VK_6 36 36(6) 25(%)
[5] VK_5 35 35(5) 2A(*)
[4] VK_4 34 34(4) 2F(/)
[3] VK_3 33 33(3) 23(#)
[2] VK_2 32 32(2) 26(&)
[1] VK_1 31 31(1) 24($)
[0] VK_0 30 30(0) 3A(:)
[.] VK_PERIOD BE 2E(.) 2C(,)
[↑] VK_UP 26 - -
[↓] VK_DOWN 28 - -
[←] VK_LEFT 25 - -
[→] VK_RIGHT 27 - -
[M1] VK_M1 C1 (*1) (*1)
[M2] VK_M2 C2 (*1) (*1)
[M3H] VK_M3H C8 (*1) (*1)
[M3] VK_M3 C3 (*1) (*1)
[M4H] VK_M4H C9 (*1) (*1)
[M4] VK_M4 C4 (*1) (*1)
[M5H] VK_M5H CA (*1) (*1)
[M5] VK_M5 C5 (*1) (*1)
[ALP] VK_ALP D0 - -
[SF] VK_SHIFT 10 - -
[BS] VK_BACK 08 08(Back space) 08(Back space)
[CLR] VK_CLEAR 0C 0C(Clear) 0C(Clear)
[ENT] VK_RETURN 0D 0D(CR) 0D(CR)

- 371 -

- 372 -

Appendix A.1.3. Character Codes in Alphabet Entry Mode

Depre-
ssion

Key
1st 2nd 3rd 4th 5th 6th 7th

[0] '-' '%' '$' '\' (*1)
[1] 'S' 'T' 'U' 's' 't' 'u' (*1)
[2] 'V' 'W' 'X' 'v' 'w' 'x' (*1)
[3] 'Y' 'Z' '+' 'y' 'z' (*1)
[4] 'J' 'K' 'L' 'j 'k 'l' (*1)
[5] 'M' 'N' 'O' 'm' 'n' 'o' (*1)
[6] 'P' 'Q' 'R' 'p' 'q' 'r' (*1)
[7] 'A' 'B' 'C' 'a' 'b' 'c' (*1)
[8] 'D' 'E' 'F' 'd 'e 'f' (*1)
[9] 'G' 'H' 'I' 'g 'h 'i' (*1)
[.] ',' '/' ' '

(Space)
(*1)

(*1)：Returns to the 1st letter.

Appendix A.2. 30-key Pad
Appendix A.2.1. Keyboard Arrangement

- 373 -

Appendix A.2.2. Virtual Key Codes and Character Codes

Numeric Entry Mode Alphabet Entry Mode
Virtual Key Character Code Virtual Key Character Code

Key

Constant Value Normal Status Shift Status Constant Value Normal Status Shift Status
[F1] VK_F1 70 - - - 43 43(C) 63(c)
[F2] VK_F2 71 - - - 49 49(I) 69(i)
[F3] VK_F3 72 - - - 4E 4E(N) 6E(n)
[F4] VK_F4 73 - - - 53 53(S) 73(s)
[F5] VK_F5 74 - - - 58 58(X) 78(x)
[F6] VK_F6 75 - - - 48 48(H) 68(h)
[F7] VK_F7 76 - - - 4D 4D(M) 6D(m)
[F8] VK_F8 77 - - - 52 52(R) 72(p)
[F9] VK_F9 78 - - - 57 57(W) 77(w)
[F0] VK_F10 79 - - - 20 20(Space) 20(Space)
[9] VK_9 39 39(9) 3D(=) - 4C 4C(L) 6C(l)
[8] VK_8 38 38(8) 2D(-) - 4B 4B(K) 6B(k)
[7] VK_7 37 37(7) 2B(+) - 4A 4A(J) 6A(j)
[6] VK_6 36 36(6) 25(%) - 51 51(Q) 71(q)
[5] VK_5 35 35(5) 2A(*) - 50 50(P) 70(p)
[4] VK_4 34 34(4) 2F(/) - 4F 4F(O) 6F(o)
[3] VK_3 33 33(3) 23(#) - 56 56(V) 76(v)
[2] VK_2 32 32(2) 26(&) - 55 55(U) 75(u)
[1] VK_1 31 31(1) 24($) - 54 54(T) 74(t)
[0] VK_0 30 30(0) 3A(:) - 59 59(Y) 73(y)
[.] VK_PERIOD BE 2E(.) 2C(,) - 5A 5A(Z) 7A(z)
[↑] VK_UP 26 - - - 44 44(D) 64(d)
[↓] VK_DOWN 28 - - - 45 45(E) 65(e)
[←] VK_LEFT 25 - - - 46 46(F) 66(f)
[→] VK_RIGHT 27 - - - 47 47(G) 67(g)
[M1] VK_M1 C1 (*1) (*1) - 41 41(A) 61(a)
[M2] VK_M2 C2 (*1) (*1) - 42 42(B) 62(b)
[M3H] VK_M3H C8 (*1) (*1) VK_M3H C8 (*1) (*1)
[M3] VK_M3 C3 (*1) (*1) VK_M3 C3 (*1) (*1)
[M4H] VK_M4H C9 (*1) (*1) VK_M4H C9 (*1) (*1)
[M4] VK_M4 C4 (*1) (*1) VK_M4 C4 (*1) (*1)
[M5H] VK_M5H CA (*1) (*1) VK_M5H CA (*1) (*1)
[M5] VK_M5 C5 (*1) (*1) VK_M5 C5 (*1) (*1)
[SF] VK_SHIFT 10 - - VK_SHIFT 10 - -
[BS] VK_BACK 08 08(Back Space) 0C(Clear) VK_BACK 08 08(Back space) 0C(Clear)
[ENT] VK_RETURN 0D 0D(CR) 0D(CR) VK_RETURN 0D - -

F1

F2

F3

F4

F5

M1 BS
*1

SF

ENT

3

6

9

.

8

5

2

4

1

0

7

M2

↑ ↓ ← →

M3(H) M4(H)

F6

F7

F8
M5(H)

Keys M3H, M4H, and
M5H are pushed in
halfway.

F9

F0

- 374 -

Appendix B. Differences Between Units Running Windows CE 4.x and Windows CE 5.x

Item OS Version
Class Member Difference CE4.1 CE4.2 CE5.0
Backlight.Settings PowerSave Supported Not supported Not supported Supported

OpenMode Synchronization
with system menu

No synchronization No synchronization Synchronization

Controller Supported Not supported Supported Supported
EditMode Supported Not supported Supported Supported

RF

SelectedProfile Supported Not supported Supported Supported
 Supported Not supported Supported Supported
Authentication Supported

Settable values
Not supported Open

Shared
WPA
WPA-PSK

Open
Shared
WPA
WPA-PSK

PreSharedKey Supported Not supported Not supported Supported

RF.Profile

RateKbps Supported Not supported Not supported Supported
PwrMng Shutdown First argument Warm boot

Suspend
Registry initialization
Registry save
OS Update

Warm boot
Suspend
Registry initialization
Registry save
OS Update

Warm boot
Suspend
Registry initialization
Registry save
OS Update
Cold boot

PwrMng.Settings EnableSuspendSlotX Supported Not supported Not supported Supported
Registry Supported Not supported Not supported Supported

- 375 -

BHT-200-CE Class Library Reference Manual

November, 2006 5th Release

DENSO WAVE INCORPORATED Automatic Data Capture Division

	1. Development Environment
	 2. Development Procedure
	2.1. Project Creation Procedure
	2.2. Assignment Procedure

	 3. Device Control
	 4. Barcode Reading
	4.1. Readable Codes
	 4.2. Trigger Switch Operation Mode
	 4.3. Display LEDs and Beeper Control
	4.4. Barcode Data
	4.5. Check Digit Calculation

	 5. Wireless Communication
	5.1. Wireless Communication System Configuration
	 5.2. Wireless Communication Parameters
	5.3. Wireless Communication Parameters

	 6. Backlight
	 6.1. Backlight Control
	 6.2. Backlight Control Key
	 6.3. Backlight Illumination Duration
	6.4. Brightness
	6.5. OFF/DIM Toggle

	 7. Beeper, Vibrator
	7.1. Beeper/Vibrator Selection
	7.2. Beeper, Vibrator Parameters
	 7.3. Beeper Volume
	7.4. Beeper and Vibrator Control
	7.5. Priority Order

	 8. Battery Information
	 9. Keyboard
	9.1. Key Input Modes
	9.2. Magic Key Operation
	9.3. Shift Key Operation
	9.4. Keyboard Type

	 10. LED
	 11. Power Management
	11.1. Standby Transition Conditions
	 11.2. Suspend Transition Conditions

	12. Updating the OS
	 13. Status Display
	 14. System Information
	 15. Data Communication
	15.1. IrDA Interface
	15.2. Connector Interface
	15.3. File Transfer
	15.4. ActiveSync Auto Connection

	 16. Namespaces
	 17. Class
	DNWA.BHTCL Namespace
	 DNWA.Exception Namepsace
	DNWA.Tools.BHT.Communication Namespace

	 17.1. Scanner
	 17.2. Scanner.CodeInfo
	 17.3. Scanner.Settings
	 17.4. BatteryCollection
	 17.5. BatteryCollection.Battery
	 17.6. Backlight
	 17.7. Backlight.Settings
	 17.8. LED
	 17.9. LED.UsageCollection
	 17.10. Beep
	 17.11. Beep.Settings
	 17.12. RF
	 17.13. RF.Profile
	 17.14. RF.Settings
	 17.15. RF.WepKeyCollection
	 17.16. RF.SiteSurvey
	 17.17. RF.Info
	 17.18. Keys
	 17.19. Keys.Settings
	 17.20. SysInfo
	 17.21. SysInfo.Settings
	 17.22. PwrMng
	 17.23. PwrMng.Settings
	 17.24. Icon
	 17.25. Icon.Settings
	 17.26. Display
	 17.27. Display.Settings
	 17.28. SysModification
	 17.29. Registry
	 17.30. ArgumentException
	 17.31. ObjectDisposedException
	 17.32. SecurityException
	 17.33. DeviceNotFoundException
	 17.34. DeviceLoadException
	 17.35. NotSupportedException
	 17.36. CommSerial
	 17.37. FileTransfer

	 18. Members
	18.1. Scanner
	Scanner
	MAX_BAR_LEN
	MAX_2DCODE_LEN
	ALL_BUFFER
	RdMode
	RdType
	PortOpen
	InBufferCount
	InBufferType
	LastCount
	LastType
	LastCodeInfo
	LastCodeNum
	Input
	Input
	Input
	GetChkDigit
	Dispose
	OnDone

	 18.2. Scanner.CodeInfo
	Type
	Len

	 18.3. Scanner.Settings
	CRTime
	Invert
	DecodeLevel
	MinDigitITF
	MinDigitSTF
	MinDigitNW7
	Marker
	Reverse
	ScanMode
	OptionData
	EN_MARKER
	EN_SCAN_MODE

	 18.4. BatteryCollection
	COUNT
	ExistingBatteries

	 18.5. BatteryCollection.Battery
	Battery
	ID
	OnCU
	Voltage
	Level
	Chemistry
	EN_CHARGE
	EN_LEVEL
	EN_CHEMISTRY

	 18.6. Backlight
	Backlight
	Status
	EN_STATUS

	 18.7. Backlight.Settings
	OnTimeBattery
	OnTimeAC
	CtrlKey
	Brightness
	PowerSave

	 18.8. LED
	LED
	Usage
	Item
	EN_DEVICE
	EN_COLOR
	EN_CTRL
	EN_USAGE

	 18.9. LED.UsageCollection
	Item

	 18.10. Beep
	Beep
	Item
	OnTime
	OffTime
	Frequency
	Count
	EN_CTRL

	 18.11. Beep.Settings
	Device
	Volume
	VolumeKey
	VolumeTap
	VolumeHalfKey
	OnOffLaserKey
	OnOffTrgKey
	EN_DEVICE
	EN_VOLUME
	EN_ON_OFF

	 18.12. RF
	RF
	 OpenMode
	Open
	Controller
	EditMode
	SelectedProfile
	WepKey
	Synchronize
	 EN_OPEN_MODE
	 EN_CONTROLLER
	 EN_EDIT_MODE

	 18.13. RF.Profile
	Profile
	SSID
	InfraMode
	Priority
	Authentication
	Encryption
	EAP8021x
	WepKey
	 PreSharedKey
	 KeyIndex
	Count
	Registered
	Update
	Commit
	Remove
	EN_AUTHENTICATION
	EN_EAP8021X
	EN_ENCRYPTION
	EN_INFRA_MODE

	 18.14. RF.Settings
	PowerSave
	Authentication
	DestMACAddress
	Version
	FWVersion
	HWVersion
	MACAddress
	SSID1
	EN_AUTHENTICATION
	EN_POWERSAVE

	 18.15. RF.WepKeyCollection
	Item
	TransmitKey

	 18.16. RF.SiteSurvey
	Strength
	Beacon
	Link
	EN_LINE_QUALITY

	 18.17. RF.Info
	Rate
	RateKbps
	Channel
	APMAC
	EN_RATE

	 18.18. Keys
	Mx, MxH (Mx:M1 to M5, MxH:M3H to M5H)
	ALP

	 18.19. Keys.Settings
	ShiftMode
	MxMode(Mx : M1 to M5, M3H,M4H,M5H)
	InputMethod
	PwrDownTime
	AllowChangeIM
	KeyboardType
	HandleStatus
	EN_SHIFT_MODE
	EN_MX_MODE
	EN_INPUT_METHOD
	EN_CHANGE_IM
	EN_KEYBOARD_TYPE

	 18.20. SysInfo
	 18.21. SysInfo.Settings
	OSVersion
	MachineName
	MachineNumber
	SerialNumber
	RAMSize
	ROMSize

	 18.22. PwrMng
	Shutdown
	EN_SHUTDOWN_MODE

	 18.23. PwrMng.Settings
	StandbyTime
	AutoPowerOffBattery
	AutoPowerOffExt
	EnableSuspendSlotX (X=0,1)
	CPUClock
	EN_SUSPEND
	 EN_CPU_CLOCK

	 18.24. Icon
	 18.25. Icon.Settings
	ShiftKey
	Battery
	Standby
	Wireless
	SIP
	Alphabet
	EN_STATUS

	 18.26. Display
	 18.27. Display.Settings
	 18.28. SysModification
	SysModification
	FileName
	Mode
	Execute
	EN_MODE

	 18.29. Registry
	Save

	 18.30. CommSerial
	CommSerial
	DEFAULT_PORT
	WaitEvent
	SignaledEvent
	InBufferCount
	OutBufferCount
	PortOpen
	Port
	Params
	Input
	Output
	Dispose
	OnDone
	EN_EVENT

	 18.31. FileTransfer
	FileTransfer
	DEFAULT_PORT
	Port
	Baud
	Parity
	StopBits
	Path
	TransferringEventInterval
	Status
	FileCount
	AddFile
	ClearFile
	Input
	Output
	Abort
	Dispose
	OnDone
	OnTransferring
	EN_BAUD
	EN_PARITY
	EN_STOPBITS
	EN_STATUS
	EN_RESULT

	 Appendix A. Keyboard Arrangements, Virtual Key Codes and Character Codes
	Appendix A.1. 26-key Pad
	 Appendix A.2. 30-key Pad

	Appendix B. Differences Between Units Running Windows CE 4.x and Windows CE 5.x

