-— AMD SB600
AMD 1 BIOS Developer’s Guide
(Public Version)

Technical Reference Manual
Rev. 3.00

P/N: 46157_sb600_bdg_pub_3.00
©2008 Advanced Micro Devices, Inc.

Trademarks

AMD, the AMD Arrow, ATI, the ATI logo, Radeon, Mobility Radeon, AMD Athlon, Sempron, Turion and
combinations thereof are trademarks of Advanced Micro Devices, Inc.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes
no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the
right to make changes to specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth
in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied
warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular
purpose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical
implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure
of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without notice.

Table of Contents

R 18 0o U1 [o I SRR 7
1.1 ADOUL THIS IMNUAL.....ceiiiiii ettt et e st teenaesaeeneesbesneeeeeeas 7

1.2 OVEIVIEW ..ottt ettt ettt et e e be e s be e s beeshe e e bt e esbeeate e beesbeesaeesaeeesbesbaeteesbaesteessbeenbeenteens 7

1.3 PClLINTEMNAI DEBVICESccvveiiiiiiiiite sttt bbbttt bbbt 10

2 SB600 Programming ArChiteCtUIeccviiiiie e 12
2.1 PCI DeVices and FUNCLIONScceiuiieieieieise sttt bbbt st b e ene s 12

N VL@ Y - T o PRSPPSO 13
2.2.1 FiXed 1/O AdUIESS RANQEScveieiesiisiesieeeeeeiesestes e e e se e e eaesse e stestesreaseareeseenseseesseseesnesresneeneeseens 13
2.2.1.1 Fixed I/O Address Ranges — SB600 Proprietary POMSccccoovvivvveieieerienesese e seee e 13

2.2.2 Variable 1/O DECOUE RANGEScveiveiuiririieetieieieriestes e stestesseeseeaesaes e stestesteaseaseeseessessessessessessessesseeseens 13

2.3 IMIBIMONY VTP .ttt ettt b et b e e b e e sb e e b b e e b bt e n bt et e e ebe e sbeesaeeenne e 14

3 SB600 Early-POST INitialization...........ccooiiiiiiiiiieeeeeee e, 15
3.1 SI2K/IM ROM ENABIE ...ttt sttt et neeseeereenae e 15
.11 PCEROM itttk b et et e e ke ekt e e ke e et e e b e e e ke e et e e na et e e nare s 15

N I O = (@ 1Y PP OPR TP 15

3.1.3 LPC ROM REAA/WIITE PIOECEcviiviieiiiieieiiiieiecs ettt ettt 15

314 SPIROM CONTIOIET ..ottt ettt et bbbttt be st 16

3.2 Real TIME CIOCK (RTC) ...ttt bbb ene s 17
K A = [O o o= L SR POPRPT 17
3.2.1.1 Special Locked Area in CIMOS ..ottt e bbb 17

3.2.0.2 CRNTUIY BYLO ... ittt ettt ettt e bt bt et e s st e s b e e s b e e sbe e ebe e b e e nreeaeeebeenbeenreen 17

KT e R B T N - 1 o OSSOSO POSI 17

3.3 BIOS RAM . bt bbbt bbbt b bt nre e nre s 18

KR T= AT N 1 PR PRUSTPRPSTN 18

3.5 SubSystemID and SubSystem VENdOr IDccoiiiiiiiiiiiiiseiere e 19

3.6 AMD AthION™ ProCessOr REGISTENScoveiieiiiiiiiiie sttt 19

3.7 System Restart after POWEr Failcccooviiiiiiccc e e 20
3.7.1 Power Fail and ALBIM SEIUPc.oiviiiiiieee bbb 20

4 PClIRQ ROULING....cuiiiiiiie ettt e et ste et e e e e sreesbaesneesraennas 21
4.1 PCl IRQ ROULING REJISIEISveveeiiiiieciicte sttt ettt ste et ne et sbe e srennas 21

4.2 PCIl IRQ BIOS Programming.......ccceeceeiieeiieeiieeiiuesiieesieesteesseesssessseassessesssessesssssssesssesssesssessens 21

4.3 Integrated PCI DeviceS IRQ ROULINGccviiiiieie et 22
4.3.1 IRQ ROULING FOr HD AUGIOccviiieieiiiieict ettt sttt sttt sttt st ne s 22

4.4 PCI IRQ RoUtING TOIr APIC MOUE.......coiiiiiiiieisiete e 23

5 SMBUS ProgrammMingccccoiioiiiieiie e sra e esaeesna e e ennas 24
5.1 SMBUS 1/O BaSE AUUIESS.......eiueieieiiiiteeriesieseeiesieereestesteestestesseestesteesaessesseessesseaseessessesssessessenssens 24

5.2 SIMBUS TIMING c.ecvviiiiiticie sttt te ettt esbe et esbesteesbesaeese e besssesaesteansesreesaessenreas 24

5.3 SMBuUs Host Controller Programmingcccciieiieeieeieeieeseeseeseese e esseesseesreessnesseeseeeseee e 25

6 IDE CONTIOIIEK ...t 27
© 2008 Advanced Micro Devices Inc. Table of Contents

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 3

6.1 IDE Channel ENADIE/DISADIE.cccoiiiiieiiee ettt ettt et e e et e e e s s e et et e e e s e ssbrreeeeees 27

6.1.1 IDE Channel ENADIEc.oiuiiiiiiieee ettt bbbt 27

6.1.2 IDE Channel DiSADIEccueiiiiiiieiiieese ettt bbb 27

LT o (@ N Y oo USRS 28
oI A = (@ Y/ o o[SO RPSOSRS 28

ST = (@ I 142113 S SPSSSRS 28

5.3 DIMA IMOUES.ottt ettt sttt sttt et e te st estesteeseesbeeseestesbeeseenbeaseeseesteaneesaeeneenrens 28
6.3.1 Legacy (Multi-Words) DIMA MOUE........coiiieiiieiie ittt ettt st st st sae e e enee e 28

6.3.2 URIA-DIMA MOUEcvicieceectic ettt sttt te ettt e et e et eesb e s taesbeesteeseeetesneesaeesaeesreenteenreans 29

7 SEEHAI ATA (SATA) oottt ettt ettt s e 30
T 1 SATA HOEPIUG oottt b et ane s 30

T 1L SAMPIE COUR ...ttt ettt e bbbt bt bt e s e e b et e e b e ebe s be e bt et e e Reembenbeebesbeebeebeaneaneeneen 30

8 POWEK MaNAQEIMENT........oiiiiiiie ittt nbe e e 31
8.1 SMI Handling — EOS (PM 10 Reg10N[Bit0])ccververierieieiiisiisiesiesesie e 31

8.2 Programmable 1/OS..........oii ittt e et nreeraenre s 31

8.3 POWeEr ManagemMent TIMIEIS.cuciieiieeee e e ste e st e s et eeteeste e ste e sreesreesn e an e e nbe e beesteesreesreeeneeeeeees 32
8.3.1 PM TIimer 1 (INACHIVILY TIMEI) c.eeveiiiieiiisie e st sttt sttt sreanesra e e eneesneneeneeneens 32

8.3.2 PM TImer 2 (ACHIVILY TIMEI) .ottt bttt sttt e 32

8.4 SIMI EVENTS ...ttt ettt ettt b e bt e he e s h b a bt e e b e e b e e b e e enn e ae e nne e 32
841 POWEE BULLON ...ttt ettt ettt h e eh bt s e b e st e s b e et e e bt e e e s re e ebe e eneenneenneanneans 34

8.5 C-State Break EVENTSociiiiieiie ettt st ste e e besse e e e sbeanaesaesraeneenre s 34
8.5.1 Break EVENtS fOr C2 STALE.......couiiiiiiiiiii ettt ettt bbbt st e e e 34

8.5.2 Break Events fOr C3 and C4 SEALES.......cooiiiuiiiieie ettt se et st e e e 34

8.6 Save/Restore SeqUENCe FOr S3 STALE.......cccviiii i 34
8.6.1 Register Save SEQUENCE TOr S3 STALEciriiiiiieree e 34

8.7 WVAKE ON EVENTS.ciiitiiei ittt sttt sttt ettt e b s be e s e e besmeeseesbeaneeseeereeneeneeas 35

8.8 SIEEP SIMI EVENLSottt sttt sttt e et se e beeseeneesbeeneeseesneeneesaeeneeneeas 35
8.8.1 SIeep SMI CONLrOl REGISETeivirieiiitiieiisieieic ettt bbbt b et sttt b 35

8.8.2 Sleep SMI Programiming SEOUENCEeiueeeeieieiiestestesiestesseeseesaessestessessessessessesssessessessessessessessesssessens 35
8.8.2.1 Set Sleep SMI CONLrol REGISIETcveviieieiiiie ettt sttt 35

8.8.2.2 ENLEr SIEEP SIMIH ROULINEcveieiiiitice ettt st sttt et sbeebeere e e e e srenes 35

9 APIC ProgrammMiNgcooeiioieieieeiesie sttt ettt n e sne e sne e 37
9.1 Northbridge APIC ENADIEocuoiieeeiee et 37

9.2 Southbridge APIC ENADIEccooiiiiieic b 37

0.3 TOAPIC BaSE AUAIESS.evieiieiieiesietisie sttt sttt b bbbttt be bbb e eseeneaneas 37

ST N o [O | (@ ANt T[] =] | SR 37

9.5 APIC IRQ ROULING ...ecveiteitieieiteeie sttt sttt sttt te e e saesteeneesteeseeneesseaneesbeaneeneeseeeseeneeas 38

10 WALCNAOG TIMEK ...t 39
11 A-LINK BIIAQGE ..ttt et 41
111 A-LINK REOISTEIS ..cciiiiiiiiie ettt siee sttt et rte e te e st st sta e s e s e e be e be e beesteeanaeeneeeneeenteesreesneenreenneas 41
11.2 Programming PrOCEAUIEoiiiiie it eeeeeieeie sttt e sttt e et este s e seeseeeseeseesteentesreeneenbesreeneeneees 42

© 2008 Advanced Micro Devices Inc. Table of Contents

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 4

12 High Precision Event Timer (HPET) ..o 44

I [T T 1 €[] o ST 44
12.1.1 Sample INQtIAliZation COU.ceriiiiiieirt bbbt 44
12.2 ACPI HPET DeSCription TabIecccuveiiieieeieisic et st 45
12.3 HPET Support fOr LONGNOMooiiiie ettt sttt e 45
13 Common Interface Module — CIM-SBB600............ccccevieiiieeiiee e 46
13.1 CIM-SBB00 AICNITECIUIEveeiieeiiieciie e ete e te e e s e see s e te e te e te et eeste e sraeeseeesteesteesreesreesnnenneas 46
13.2 CIM-SB600 BUild CONFIQUIALION.ciiiiiiiiiiiiiite et 48
13.3 CIM-SB600 Setup INPUL DAta STIUCTUIEociiiieiiieciie ettt 48
13.4 CIM-SB600 SBPOR SUD-MOUUIEccoeiiiiececce ettt 51
IR S = T O 01 (=] - Tot 51
13.5 CIM-SB600 SB POST Initialize SUD-MOAUIEccooiiiiiiii e 51
13.5.1 REGUITEMENES ...c.viviiiieteiieeteeieeie e ste e s testeste e st eee st e bestesbesteebeeseessesbeseebesbeabeabeeaeesee s enbesbeatestesnsareeseeneeses 51
13.5.2 SB POST INEEITACE . .ecveiiriieieiie ettt ettt sttt et st et e s be et e et e e se e s e e b e besbe st e s teeneene et eneees 52
13.6 CIM-SB600 SB Runtime Interface SUD-MOAUIEcccooiiiiiiiicc e 53
13.6.1 REQUITEIMENESitiitiiteiietie ettt sttt b bbb e bt e s e e e e st e se e b e e b e eb e e bt e Reeh e e ee e benbesbenbeebeane e e enbeee 53
13.6.2 SB RUNLIME INTEITACEvviiiiiie ettt e et ab et e e st e e steesbe e steeneaneeanes 53
13.7 CIM-SB600 SB SMI Interface SUD-MOAUIEcccocveiiiiciccece e 54
13.7.1 REQUITEIMENTSetiietiiteiete ettt etttk b bbbt e bt e b b s bbbt bbbt b et e bttt 54
13.8 CIM-SB600 SPI Interface SUD-MOTUIEcccviiiiie e 54
14 SAMPIE PrOQIramMS . .ooviiiiiiieeeie ettt ettt st nnee e 55
14.1 SB600 Register Initialization 0n POWE-UPccooveiiiiiiiic e 55
14.1.1 Initialization of PCI IRQ Routing Before Resource AIlOCationcccoovvvvieivinvieiiccecce e 55
IS =1 (0 o O 4[] LSS 56
14.2.1 B4 BYLES DIMIA ... ittt sttt st e s bb e e s bt e s bt e e e b bt e e b b e e Rt e R b e e b b e e be e b b e e nbae et 56
14.2.2 USB Overcurrent Detection DiSabIe..........c.coiiiiiiiiiciiicie s s 56
I B O B 10 o] oo] TPV RP TR PUPPRTRTNt 57
14.2.4 Subtractive Decoding for P2P BIiaQE.......cccoviiiiiiieiiieeeieeie ettt e ettt st sra e nn e e e 57
14.2.5 Enable/Disable ON-Chip SATA ...ttt s r et s be st e teeneere et enee e 58
14.2.6 Change Class ID fOr SATA ...ttt sttt st e be e e e e e e besbesbesteeneere e e eneeee 58
14.2.7 Disable AC97 Audio 0 MCO7 MOUBM.......ccuciuiiiiiiiiiictise ettt st re e e sr e s 60
14.2.8 ENADBIe EHCI CONIOIETc.viiiiecii ettt st sttt s b e teeneena e e e s 61
e I o o] Tl @] o (O o1 7] | T PSSR 63
14,3 IDE SEIINGS ..eveeeteseeieeieeie ettt bbbt b bbbttt ettt ne e 63
14.3.1 PIO MOOE SEHINGS. ... teiuietieeeieeie sttt ettt sttt bbbt e et et e bt s b e s bt ebe e b e e e e s b e sb e besbeabeebeaneere e e et nee 63
14.3.2 MUITIWOIT DIMA SEELINGS ...ttt sttt bbb b ettt s e e e be b e b et e bt ebe e e e e 65
14.3.3 UDMA MOUE SEELINGSeeueeeeteiteitieterie ettt st st e et e e et e sbesbe st e beabeeseeneebesbesbesbeabeebeeneere e e eneenee 65
14.3.4 IDE Channel DiSabIeooiiii ittt ettt ta e te e nreene e anes 66
14.3.5 IDE Channel ENADIEccuooiiie ettt e st s be e te e ste e neeneeenes 68
14.4 USB Controller Reset at Hard RESELcoviiiiiieirce sttt st 69
I O o Tod S I] £ (1 o RSP 69
I I I o 1LY (o o PSS 71
14.6.1 Lid Switch Hardware CONNECLIONcvciviiieiieiiee ittt ettt et ettt sbe e sbe e be st estaesbeesreeaesaneaas 71
14.6.2 ASSOCIAtEA REGISIEIS .. .eiuiiieviieiteiti st s e e e e e ste st te st e st e e e e st e e et e besbesbesbeeteese e s e sbeseesbesbeabeeteaneereeseenrees 71
TR I = T (@ RSN Lo) (14 Ui o] SR 71
© 2008 Advanced Micro Devices Inc. Table of Contents

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 5

14.6.4 ACPI PrOGIramMIMING ...oceeoueeeeiteieeiesteseesiste sttt st b ssese bt ssesesbe s st ab s eseabesses e abe b es e abe b s s abeneessabeneeseans 72

14.7 SATA Hot Plug Sample Programcccceeieeieciec ettt e stee e ae e sae e e sneesnee e nneas 74
14.8 Temperature Limit Shutdown through SMIZ ... 80
14.8.1 Setting Up ITE 8712 SUPEF 1/O REGISEISvoiviiviiieitieieieeie ettt sttt a e sr e 80
14.8.2 Initialize Southbridge RegiSters fOr SMIHccoiiiiiiiiiiieeicce e 85

14.8.3 SMI Programming to Shut DOWN the SYSIEM.........ccciiiiiiiiiic i 86

14.9 Sleep Trap through SIMIF ..o 87
14.9.1 Enable Sleep SMI# in ACPT ASL COURoouiiiiiiiiieieeiee ettt e bbbt 87

14.9.2 SIEEP Trap SMI ROULINEcoueiiiiie ettt ettt e bbbttt b e bbbt e e s e eb e et e 88

14.10 HD Audio — Detection and Configurationcccccvviiveviiiiiiieic e 89
AppendiX: ReVISION HISTONYcoiioiiiice et 98
© 2008 Advanced Micro Devices Inc. Table of Contents

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 6

1 Introduction

1.1 About This Manual

This manual provides guidelines for BIOS developers working with the AMD SB600. It
describes the BIOS and software modifications required to fully support the device.

Note: To help the reader to readily identify changes/updates in this document, changes/updates
over the previous revision are highlighted in red. Refer to Appendix: Revision History at the end

of this document for a detailed revision history.

1.2 Overview

The SB600 is an I/0 Communication Processor designed to work with AMD’s ATl Radeon™
and Mobility Radeon™ Integrated Graphics Processors (IGPs). The functions and capabilities of

the SB600 are as follows:
CPU Interface
= Supports both Single and Dual core AMD

CPUs

= Desktop: AMD Athlon™ 64, Athlon 64
FX, Athlon 64 X2, Sempron™,
Opteron™, dual-core Opteron

= Mobile: Athlon XP-M, Mobile Athlon
64, Turion 64, Mobile Sempron
PCI Host Bus Controller

= Supports PCI Rev. 2.3 specification
= Supports PCI bus at 33MHz

= Supports up to 6 bus master devices
= Supports 40-bit addressing

= Supports interrupt steering for plug-n-play
devices

= Supports concurrent PCI operations

= Supports hiding of PCI devices by
B10OS/hardware

= Supports spread spectrum on PCI clocks
USB Controllers

= 5 0OHCI and 1 EHCI Host controllers to
support 10 USB ports

All 10 ports are USB 1.1 (“Low Speed”,
“Full Speed”) and 2.0 (“High Speed”)
compatible

Supports ACPI S1~S5
Supports legacy keyboard/mouse
Supports USB debug port

Supports port disable with individual control

SMBus Controller

SMBus Rev. 2.0 compliant
Support SMBALERT # signal / GPIO

Interrupt Controller

Supports IOAPIC/X-10 APIC mode for 24
channels of interrupts

Supports 8259 legacy mode for 15 interrupts

Supports programmable level/edge
triggering on each channels

Supports serial interrupt on quiet and
continuous modes

DMA Controller

Two cascaded 8237 DMA controllers
Supports PC/PCI DMA

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Introduction

Proprietary Page 7

Supports LPC DMA
Supports type F DMA

LPC host bus controller

Supports LPC based super 1/0O and flash
devices

Supports two master/DMA devices

Supports TPM version 1.1/1.2 devices for
enhanced security

Supports SPI devices

SATA Il AHCI Controller

Supports four SATA ports, complying with
the SATA 2.0 specification

Supports SATA Il 3.0GHz PHY, with
backward compatibility with 1.5GHz

Supports RAID striping (RAID 0) across all
4 ports

Supports RAID mirroring (RAID 1) across
all 4 ports

Supports RAID 10 (4 ports needed)
Supports both AHCI mode and IDE mode

Supports advanced power management with
ACHI mode

IDE Controller

Single PATA channel support

Supports PIO, Multi-word DMA, and Ultra
DMA 33/66/100/133 modes

32x32byte buffers on each channel for
buffering

Swap bay support by tri-state IDE signals
Supports Message Signaled Interrupt (MSI)

Integrated IDE series resistors

AC Link interface

Supports for both audio and modem codecs
Compliant with AC-97 codec Rev. 2.3

= 6/8 channel support on audio codec

= Multiple functions for audio and modem
Codec operations

= Bus master logic
= Supports up to 3 codecs simultaneously
= Supports SPDIF output

= Separate bus from the HD audio

HD Audio

» 4 Independent output streams (DMA)
= 4 Independent input streams (DMA)

= Up to 16 channels of audio output per
stream

= Supports up to 4 codecs

= Up to 192kHz sample rate

= Up to 32-bit per sample

= Message Signaled Interrupt (MSI) capability
= 64-bit addressing capability for MSI

» 64-bit addressing capability for DMA bus
master

= Unified Audio Architecture (UAA)
compatible

= HD Audio registers can be located anywhere
in the 64-bit address space

Timers

= 8254-compatible timer

= Microsoft High Precision Event Timer
(HPET)

= ACPI power management timer

RTC (Real Time Clock)

= 256-byte battery-backed CMOS RAM
= Hardware supported century rollover

= RTC battery monitoring feature

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Introduction

Proprietary Page 8

Power Management = Supports CPU SMM, generating SMI#

signal upon power management events
= ACPI specification 2.0 compliant power
management schemes

= Supports C2, C3, C4, ACPI states
= Supports Cle and C3 pop-up

= GPIO supports on external wake up events

= Supports CLKRUN# on PCI power
management

= Provides clock generator and CPU
= Supports S0, S1, S2, S3, S4, and S5 STPCLK# control

= Wakeup events for S1, S2, S3, S4/S5 = Support for ASF
generated by:

= Any GEVENT pin

= Any GPM pin
= Supports 3 Independent FAN Control
= USB
outputs

= Supports 1 AMDSI function

Hardware Monitor

= Power button

= Internal RTC wakeup
= SMI# event Note: SB600 does not support thermal diode

temperature sensing function.
= Full support for On-Now™

© 2008 Advanced Micro Devices Inc. Introduction

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 9

1.3 PCI Internal Devices

This section contains two block diagrams for the SB600. Figure 1 shows the SB600 internal PCI devices
with their assigned bus, device, and function numbers. Figure 2 shows the SB600 internal PCI devices

and the major function blocks.

ALINK-EXPRESS Il

AR AC97 Audio
Bus 0 DEV 20
B-LINK A-LINK Function 5 AC97
PORT 1 PORT 0 Device ID 4382h >
4 PORTS SATA Controller 1 1 i AC97 Modem
—p . >
Bus 0 DEV 18 Function 0 Bus 0 DEV 20
Device ID 4380h Function 6
USB:0OHCI x5 B-LINK Device ID 43‘8Eh
Bus 0 DEV 19 Function 0:4 HD Audio
Device ID 4387h : 4388h :
10 PORTS 4389h : 438Ah: 438Bh Bus 0 DEV 20 >
P Function 2
USB:EHCI Device ID 4383h
D;Hé",;;,'rt’ Bus 0 DEV 19 Function 5
Device ID 4386h
ALINK \ i
PCI Bridge IDE 1 CHANNEL
Bus 0 DEV 20 S e
- Bus 0 DEV 20 Function 1
6 PCI SLOTS Function 4 Device ID 438Ch
Device ID 4384h
LPC LPC bus
= Bus0DEV20
Function 3
V h SPI bus
Device ID 438Dh
SMBUS /ACPI

Bus 0 DEV 20 Function 0
Device ID 4385h

Figure 1 SB600 PCI Internal Devices

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Introduction

Page 10

ALINK-EXPRESS Il

AB
B-LINK A-LINK
PORT 1 ‘ PORT 0
4 PORTS SATA AC97 Audio Aco7
-4¢—P Controll >
ontrofier AC97 Modem
B-LINK
USB:OHCI HD Audio]
io PORTS —p
t
<-----t; --------- | USB:EHCI
Debug port ALINK
- -
t 1
IDE CHANNEL
SMBUS /ACPI LPC bus
PCI Bridge LPC
6 PCI SLOTS A SPI bus
A
Y <J=D> ROM el
—— RTC <
X1IX2 BUS Controler |<gg————
e— SIRQ I A K=l GPIO N
SERIRQ# o
PICD[0] 5
RTC_IRQ#,
< PIDE_INTRQ,
ol SIDE_INTRQ, BM =P
USB_IRQ#, @—p>| 8250 TIMER —SPEAKER—
PIC AC97INTAB,
AC97INTBB v
¢
INTERRUPT
controller |« v
smi | ACPIHWI | qymus PM
Monitor
INTR T
IGNNE#, GEVENT[7:0],SLPBUTTON PWRGOOD
0], CPURST
FERRB#, TEMPDEAD, TEMPCAUT, | INITE
INT# F:A SHUTDOWN,DC_STOP# RESET’#
SCIOUT, SLP#,
CPUSTP#, PCISTP#,
STPCLK#, SOFF#, SMI#,
SMIACT#
Figure 2 SB600 PCI Internal Devices and Major Function Blocks
© 2008 Advanced Micro Devices Inc. Introduction

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 11

2 SB600 Programming Architecture

2.1 PCI Devices and Functions

Bus:Device:Function Function Description Dev ID Enable/Disable
Bus 0:Device 14h:Function 0 | SMBus Controller 4385h Always enabled
Bus 0:Device 14h:Function 1 | IDE Controller 438Ch Always enabled
Bus 0:Device 14h:Function 2 | HD Audio Controller 4383h PM 10 Reg59h[Bit3]

0: Disables HD Audio
1: Enables HD Audio

Bus 0:Device 14h:Function 3 | LPC Controller 438Dh SMBus PCI Reg64h[Bit20]
0: Disables LPC controller
1: Enables LPC controller

Bus 0:Device 14h:Function 4 | PCI to PCI Bridge 4384h Always enabled

Bus 0:Device 14h:Function 5 | AC’97 Audio Controller 4382h PM 10 Reg59h[Bit0]
0: Enables AC97
1: Disables AC97

Bus 0:Device 14h:Function 6 | AC’97 Modem Controller 438Eh PM 10 Reg59n[Bit1]
0: Enables MC97
1: Disables MC97

Bus 0:Device 13h:Function 5 | EHCI USB Controller 4386h SMBus PCI Reg68h[Bit0]
0: Enables EHCI controller
1: Disables EHCI controller

Bus 0:Device 13h:Function 0 | OHCI USB Controller #0 4387h SMBus PCI Reg68h[Bitl1]
Bus 0:Device 13h:Function 1 | OHCI USB Controller #1 4388h SMBus PCI Reg68h[Bit2]
Bus 0:Device 13h:Function 2 | OHCI USB Controller #2 4389h SMBus PCI Reg68h[Bit3]
Bus 0:Device 13h:Function 3 | OHCI USB Controller #3 438Ah SMBus PCI Reg68h[Bit4]
Bus 0:Device 13h:Function 4 | OHCI USB Controller #4 438Bh SMBus PCI Reg68h[Bit5]
438Ch 0: Disables OHCI controller
1: Enables OHCI controller

Bus 0:Device 12h:Function 0 | Raid-5 Serial ATA 4381h SMBus PCI Reg ADh[bit 0]
Controller 4380h
Non-Raid-5 Serial ATA
Controller
© 2008 Advanced Micro Devices Inc. SB600 Programming Architecture

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 12

2.2 1/0 Map

The I/0 map is divided into Fixed and Variable address ranges. Fixed ranges cannot be moved,
but can be disabled in some cases. Variable ranges are configurable.

2.2.1 Fixed I/0O Address Ranges

2.2.1.1 Fixed I/O Address Ranges — SB600 Proprietary Ports

1/0 Address Description Enable Bit
C00h-C01h IRQ Routing Index/Data register SMBus PCI Reg64h[Bit0]
Cl4h PCI Error Control register SMBus PCI Reg78h[Bit4]
C50h-C51h Client Management Index /Data SMBus PCI Reg 79h[Bit3]
registers
C52h GPM Port SMBus PCI Reg78h[Bit6]
C6Fh Flash Rom Program Enable SMBus PCI Reg78h[Bit8]
CDOh-CD1h | PM2 Index/Data
CD4h-CD5h | BIOS RAM Index/Data
CD6h-CD7h | Power Management 1/O register SMBus PCI Reg64h[Bit2] & Reg78h[Bit9]

2.2.2 Variable 1/0 Decode Ranges

1/0 Name Description Configure Register Range Size
(Bytes)
P10O0 Programmable I/0 Range 0 | PM IO Regl4h & Reg15h <=16
P1O01 Programmable 1/0 Range 1 | PM 10 Regl16H & Regl7H <=16
P102 Programmable I/0O Range 2 | PM IO Reg18h & Reg19h <=16
P103 Programmable I/0 Range 3 | PM IO ReglAh & ReglBh <=16
P104 Programmable I/0O Range 4 | PM 10 Reg AOh & Reg Alh <=16
P105 Programmable 1/0 Range 5 | PM 10 Reg A2h & Reg A3h <=16
P106 Programmable I/O Range 6 | PM 10 Reg A4h & Reg A5h <=16
P107 Programmable I/O Range 7 | PM 10 Reg A6h & Reg A7h <=16
PM1_EVT ACPI PMla_EVT_BLK PM 10 Reg20h & Reg21h 4
PM1 CNT ACPI PMla_CNT_BLK PM 10 Reg22h & Reg23h 2
PM_TMR ACPI PM_TMR_BLK PM 10 Reg24h & Reg25h 4
P_BLK ACPI P_BLK PM 10 Reg26h & Reg27h 6
GPEO_EVT ACPI GPEO_EVT_BLK PM 10 Reg28h & Reg2%h 8
SMI CMD Block * | SMI Command Block PM 10 Reg2Ah & Reg2Bh 2
Pma Cnt Block PMa Control Block PM 10 Reg2Ch & Reg2Dh 1
Reserved Reserved PM 10 Reg2Eh & Reg2Fh 1
SMBus SMBus 10 Space SMBus PCI Reg90h & 16
RegD2h[Bit0]

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

SB600 Programming Architecture
Proprietary Page 13

* Note:

e The SMI CMD Block must be defined on the 16-bit boundary, i.e., the least significant nibble
of the address must be zero (for example, BOh, COh etc.)

® The SMI CMD Block consists of two ports — the SMI Command Port at base address, and the
SMI Status Port at base address+1.

® The writes to SMI Status Port will not generate an SMI. The writes to the SMI Command
Port will generate an SMI.

® The SMI Command and SMI Status ports may be written individually as 8 bit ports, or
together as a 16-bit port.

2.3 Memory Map

Memory Range Description Enable Bit
0000 0000h-000D FFFFh Main System Memory
0010 0000h- TOM
000E 0000h-000F FFFFh Either PCI ROM or LPC | PCI ROM : SMBus PCI Reg41h[Bit4]
ROM LPC ROM : LPC Reg68h & LPC_Rom strap
FFCO0 0000h-FFC7 FFFFh FWH LPC Reg70h[3:0]
FF80 0000h-FF87 FFFFh
FFC8 0000h-FFCF FFFFh FWH LPC Reg70h[7:4]
FF88 0000h-FF8F FFFFh
FFDO 0000h-FFD7 FFFFh FWH LPC Reg70h[11:8]
FF90 0000h-FF97 FFFFh
FFD8 0000h-FFDF FFFFh FWH LPC Reg70h[15:12]
FF98 0000h-FF9F FFFFh
FFEO 0000h-FFE7 FFFFh FWH LPC Reg70h[19:16]
FFAO 0000h-FFA7 FFFFh
FFE8 0000h-FFEF FFFFh FWH LPC Reg70H[23:20]
FFAB8 0000h-FFAF FFFFh
FFFO 0000h-FFF7 FFFFh FWH LPC Reg70h[27:24]
FFBO0 0000h-FFB7 FFFFh
FFF8 0000h-FFFF FFFFh FWH LPC Reg70h[31:28]
FFB8 0000h-FFBF FFFFh
© 2008 Advanced Micro Devices Inc. SB600 Programming Architecture

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 14

3 SB600 Early-POST Initialization

The system BIOS needs to configure the SB600 at the very beginning of POST. Some of the
settings will change depending on the OEM design, or on the newer revision chipset.

3.1 512K/1M ROM Enable

With the SB600 design, there can be two possible ROM sources: PCI ROM and LPC ROM. Two
pin straps (UseLpcRom, FWHDisable) decide where the ROM is (see the SB600 databook).
Upon system power on, the SB600 enables 256K ROM by default. The BIOS needs to enable

512K ROM or up to 1M for LPC ROM, if required.

3.1.1 PCIROM

. o 256K ROM | 512K ROM
Control Bit Description (Default) Setting
SMBus PCI Reg41h[Bitl] | When set to 1, the address between FFF80000h to
FFFDFFFFh will be directed to the PCI ROM 0 1
interface.
SMBus PCI Reg41h[Bit4] | When set to 1, the address between OE000Ch to
OEFFFFh will be directed to the PCI ROM 0 1
interface.

3.1.2 LPCROM

To use the LPC ROM, the pin straps UseLpcRom, FWHDisable must be set accordingly.

]

Reg48Hh[Bits4:3

address range 1 & 2.

Note: with pins straps set to LPC
ROM, these two bits have no effect on
Reg68 & Reg6C.

. o 512K ROM 1M ROM
Control Bit(s) Description Default Setting Setting
LPC PCI 16-bit starting & end address of the
Reg68h LPC ROM memory address range 1. 000E0000h |~ 000E0000h 000E0000h
LPC PCI Reg6Ch | 16-bit starting & end address of the FFFEO000

LPC ROM memory address range 2. h FFF80000h FFF00000h
LPC PCI Enable bits for LPC ROM memory 00b 11b 11b

3.1.3 LPC ROM Read/Write Protect

The SB600 allows all or a portion of the LPC ROM addressed by the firmware hub to be read
protected, write protected, or both read and write protected. Four dword registers are provided to
select up to 4 LPC ROM ranges for read or write protection. The ROM protection range is
defined by the base address and the length. The base address is aligned at a 2K boundary. The
address length can be from 1K to 256K in increments of 1K.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

SB600 Early-POST Initialization
Proprietary

Page 15

Register 50h, 54h, 58h, 5ch of Device 14h, Function 3

Field Name Bits Description

Base Address 31:11 ROM Base address. The most significant 21 bits of the base address are
defined in this field. Bits 10:0 of the base address are assumed to be zero.
Base address, therefore, is aligned at a 2K boundary.

Length 10:2 These 9 bits (0-511) define the length from 1K to 512K in increments of
1K.

Read Protect 1 When set, the memory range defined by this register is read protected.
Reading any location in the range returns FFh.

Write Protect 0 When set, the memory range defined by this register is write protected.

Writing to the range has no effect.

Example:

Protect 32K LPC ROM starting with base address FFF80000.
Base address bits 31:11 1111 1111 1111 1000 00000 b
Length 32K it 10:2 =31h = 000 0111 11b

Read protect bit1 =1
Write protect bit 0 =1
Register 50h = 1111 1111 1111 1000 0000 0000 0111 1111 b = FFF8007F h

Note:

1. Registers 50h ~ 5Fh can be written once after the hardware reset. Subsequent writes to them
have no effect.

2. Setting sections of the LPC ROM to either read or write protect will not allow the ROM to be
updated by a flash programming utility. Most flash utilities write and verify ROM sectors,
and will terminate programming if verification fails due to read protect.

3.1.4 SPI ROM controller

The SPI ROM interface is a new feature added to the SB600. Refer to the AMD SB600 Register Reference
Guide for more information on this feature.

Note: The LPC ROM Read/Write Protect mentioned in the previous paragraph also applies to SPI. Two
strap pins, PCICLKO and PCICLKZ1, determine the SB600 boot up from LPC ROM or SPI ROM. There is
no register status to reflect whether the current ROM interface is LPC or SPI.

© 2008 Advanced Micro Devices Inc.

SB600 Early-POST Initialization

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 16

3.2 Real Time Clock (RTC)

3.2.1 RTC Access

The internal RTC is divided into two sections: the clock and alarm function (registers 0 to 0Dh),
and CMOS memory (registers OEh to FFh). The clock and alarm functions must be accessed
through 1/O ports 70h/71h. The CMOS memory (registers OEh to FFh) should be accessed
through 1/0 ports 72h/73h.

3.2.1.1 Special Locked Area in CMOS

Some CMOS memory locations may be disabled for read/write. Register 6Ah of SMBus (Bus 0,
Device 14h, Function 0) has bits to disable these CMOS memory locations. These bits can be
written only once after each power up reset or PCI reset.

RTCProtect- RW - 8 bits - [PCl_Reg: 6Ah]
Field Name Bits Default Description
RTCProtect 0 Oh When set, RTC RAM index 38h:3Fh will be locked from
read/write. This bit can only be written once.
RTCProtect 1 Oh When set, RTC RAM index FOh:FFh will be locked from
read/write. This bit can only be written once.
RTCProtect 2 Oh When set, RTC RAM index EOh:EFh will be locked from
read/write. This bit can only be written once.
RTCProtect 3 Oh When set, RTC RAM index DOh:DFh will be locked from
read/write. This bit can only be written once.
RTCProtect 4 Oh When set, RTC RAM index COh:CFh will be locked from
read/write. This bit can only be written once.
Reserved 75 Oh

3.2.1.2 Century Byte

The RTC has a century byte at CMOS location 32h. Century is stored in a single byte and the
BCD format is used for the century (for example, 20h for the year 20xx). This byte is accessed
using 1/0 ports 70h and 71h. (The BIOS must set PMIO register 7Ch bit 4 to 1 to use this century
byte at CMOS location 32h

3.2.1.3 Date Alarm

The RTC has a date alarm byte. This byte is accessed as follows:

1. Setto 1the RTC register OAh, bit 4, using 1/0O ports 70h and 71h.

2. Write Date Alarm in BCD to register ODh using 1/O ports 70h and 71h.
3. Clear to 0 the RTC register 0Ah bit 4 using 1/O ports 70h and 71h.

Note: It is important to clear RTC register 0Ah bit 4 to zero; otherwise, the CMOS memory may
not be accessed correctly from this point onward.

© 2008 Advanced Micro Devices Inc. SB600 Early-POST Initialization

AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Page 17

3.3 BIOS RAM
The SB600 has 256 bytes of BIOS RAM. Data in this RAM is preserved until RSMRST# or S5 is
asserted, or until power is lost.
This RAM is accessed using index and data registers at CD4h/CD5h.

3.4 Serial IRQ

The SB600 supports serial IRQ, which allows one single signal to report multiple interrupt
requests. The SB600 supports a message for 21 serial interrupts, which include 15 IRQs, SMI#,
IOCHK#, and 4 PCI interrupts.

SMBus PCI Reg69h is used for setting serial IRQ.

Bits in SMBus Description Power-on Recommended
PCI Reg69 Default Value
7 1 - Enables the serial IRQ function 0 1
0 — Disables the serial IRQ function
6 1 — Active (quiet) mode 0 0
0 — Continuous mode
5:2 Total number of serial IRQs =17 + 0 0100b

NumSerlrgBits

0 — 17 serial IRQs (15 IRQs, SMI#,
IOCHK#)

1 - 18 serial IRQs (15 IRQs, SMI#,
IOCHK#, INTA#)

15 - 32 serial IRQ's

The SB600 serial IRQ can support 15
IRQs, SMI#, IOCHK#, INTA#,
INTB#, INTC#, and INTD#.

1:0 Number of clocks in the start frame 0 00b

Note: The BIOS should enter the continuous mode first when enabling the serial IRQ protocol, so that the
SB600 can generate the start frame.

© 2008 Advanced Micro Devices Inc. SB600 Early-POST Initialization

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 18

3.5 SubSystemID and SubSystem Vendor ID

SubSytem ID and SubSystem Vendor ID can be programmed in various functions of SB600
register 2Ch. These registers are write-once registers. For example, to program a SubSystem
vendor ID of 1002h and SubSystem ID of 4341h in AC97 device 14h, function 5, use the

following assembly language sample code:

mov eax,8000A52Ch
mov dx,0CF8h

out dx,eax

mov dx,0CFCh

mov eax,43411002h

out dx,eax

3.6 AMD Athlon™ Processor Registers

The SB600 is set for the AMD Athlon processor by hardware strap. The following registers in the
PM 10 space (accessed through index/data registers at CD6h/CD7h) are specific for the AMD
Athlon processor. For the early post initialization these registers may be left at default values.

SMAFX in the table below are sent with STPCLK messages down the HyperTransport™ link.

Register Name Default Description
PM 10 80h SMAFOQ 06h System Management Action for C2 and S4/S5
PM 10 81h SMAF1 21h System Management Action for VFID and C3
PM 10 82h SMAF2 43h System Management Action for S3 and S1
PM 10 83h SMAF3 55h System Management Action for thermal and normal
throttling.
PM 10 85h CF9Rst 00h Full reset/INIT
PM 10 86h Thermal Throttle 00h Enables time control for thermal throttling.
Control
PM 10 87h LdtStpCmd 00h Write bit[0] = 1 to generate C3
PM 10 88h LdtStartTime 00h LDTSTP# assertion delay in microseconds
PM 10 8Ah LdtAgpTimeCntl 00h LDTSTP# de-assertion delay select
PM 10 8Bh StutterTime 00h Stutter LDTSTP# duration in microseconds
PM 10 8Ch StpClkDIyTime 00h STPCLK# assertion in microseconds
PM 10 8Dh AbPmeCntl 0Eh Fake A-link bridge PME

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

SB600 Early-POST Initialization
Proprietary Page 19

3.7 System Restart after Power Fail

The way the system restarts following the power-fail/ power-restore cycle depends both on the
PMIO register 74h [bits 1:0], and the hardware jumper on the SB600 pin ACPWR_Strap.

PMIO Description

Register 74h

bits[1:0]

00b The system restart will depend on the ACPWR_Strap pin pull up/down state.
Pin = 0 : The system will restart without pressing the power button
Pin =1 : The system will remain off until the power button in pressed.

01b The system will always restart after the power is restored.

10b The system will remain off until the power button is pressed.

11b At power-up the system will either restart or remain off depending on the state of the
system at power failure. If the system was on when the power failed, the system will
restart at power-up. If the system was off when the power failed, the system will
remain off after the power is restored. Pressing the power button is required to restart
the system.

Notes on programming the PMIO register 74h:

1. PMIOQ register bits[3:0] should be used for programming. Bits[7:4] are read-only bits and
reflect the same values as bits[3:0].

2. Bit2 is used by the hardware to save the power on/off status. This bit should not be
modified during Software/BIOS programming. The BIOS programmer should always
read the PMIO register 74h, modify bit3 and bits[1:0] as required, and write back the
PMIO register 74h.

3.7.1 Power Fail and Alarm Setup

The state of the machine after the power-fail/power-restore cycle is controlled by PMIO register
74h bits[1:0] as described above. This programming can be over-ridden for the special case when
the alarm is set. When both the alarm and the PMIO register 74h bit3 are set, the system will
restart after the power is restored, regardless of how register 74h bits [1:0] are defined.

© 2008 Advanced Micro Devices Inc. SB600 Early-POST Initialization
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 20

4 PCI IRQ Routing

4.1 PCI IRQ Routing Registers

The SB600 uses one pair of 1/O ports to do the PCI IRQ routing. The ports are at CO0Oh/CO01h.

Address

Register Name

Description

CO0h

PCI_Intr_Index

PCI IRQ Routing Index
0 - INTA#
1-INTB#

2 - INTC#

3- INTD#

4 - SCI

5 — SMBus interrupt
9 - INTE#

OAh — INTF#

0Bh — INTG#

0Ch — INTH#

CO1h

PCI_Intr_Data

0 ~15:IRQO to IRQ15
IRQQ, 2, 8, 13 are reserved

4.2 PCI IRQ BIOS Programming

PCI IRQs are assigned to interrupt lines using 1/0 ports at CO0h and C01h in index/data format.
The register COOh is used for index as written with index number 0 through 0Ch as described in
section 4.1 above. Register CO1h is written with the interrupt number as data.

The following assembly language example assigns INTB# line to interrupt 10 (OAh).

mov
mov
out

mov
mov

out

dx,0C00h
al,02h
dx,al
dx,0C01h
al,0Ah

dx,al

; To write to 10 port COOh

; Index for PCI IRQ INTB# as defined in section 4.1
: Index is now set for INTB#

; To write interrupt number 10 (0Ah)

; Data is interrupt number 10 (0Ah)

; Assign IRQB# to interrupt 10

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 21

PCI IRQ Routing

4.3

43.1

Integrated PCI Devices IRQ Routing

In the SB600, the AC’97 and USB need PCI IRQ. Internally, they are routed to different PCI

INTH#s.

Device Reg3Dh of PCI INT# Description

PCI Device

Bus 0:Device 14h:Function 1 01 INTA# IDE Controller*
Bus 0:Device 14h: Function 2 01 Programmable*** High Definition Audio
Bus 0:Device 14h:Function 5 02 INTB# AC’97 Audio Controller
Bus 0:Device 14h:Function 6 02 INTB# AC’97 Modem Controller
Bus 0:Device 13h:Function 0 01 INTA# OHCI USB Controller #1
Bus 0:Device 13h:Function 1 02 INTB# OHCI USB Controller #2
Bus 0:Device 13h:Function 2 03 INTC# EHCI USB Controller
Bus 0:Device 13h: Function 3 02 INTB# OHCI USB Controller #3
Bus 0:Device 13h: Function 4 03 INTC# OHCI USB Controller #4
Bus 0:Device 13h: Function5 04 INTD# EHCI USB Controller
Bus 0:Device 12h:Function 0 01 Programmable** SATA Controller #1
Bus 0:Device 11h:Function 0 01 Programmable** SATA Controller #2

Notes:

* IDE controller needs PCI IRQ only if it is set to the native mode.
** Smbus_pci_config OXAF [4:2] for SATAL

Smbus_pci_config OXAF [7:5] for SATA2
*** Refer to section 4.3.1 for details.

IRQ Routing for HD Audio

Interrupt routing for device 14h, function 2 HD Audio is done through PCI SMBUS (device 14h,
function 0) register 63h. Values from INTA# to INTH# can be set in this register.

Sample Code: Set High Definition Audio interrupt routing to INTA#:

mov eax,8000A060h
mov dx,0CF8h

out dx,eax

mov dx,0CFFh

mov al,0

out dx,al

; Device 14h, function 0, registers 60h-63h

; PCI configuration Index register
; Set to read/write registers 60h-63h

; PCI configuration Data register for 63h

: Setto INTA#

; Write to PCI register 63h

Note: The SB600 has provisions to modify the interrupt pin register (PCI register 3Dh) for special
conditions. This pin is modified through device 14h, function 2, register 44h. Under normal
circumstances do not modify this register. The default is Pin 1.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

PCI IRQ Routing
Page 22

4.4 PCI IRQ Routing for APIC Mode

PCI IRQ APIC Assignment
INTA# 16
INTB# 17
INTC# 18
INTD# 19
INTE# 20
INTF# 21
INTG# 22
INTH# 23

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

PCI IRQ Routing
Page 23

5 SMBus Programming
The SB600 SMBus (System Management Bus) complies with SMBus Specification Version 2.0.

5.1 SMBus I/O Base Address

The BIOS needs to set a valid SMBus I/O base address before enabling the SMBus Controller.
There are two places at which the BIOS is able to set the SMBus 1/0O base addresses: one is at PCI
Reg10h, another is at PCI Reg90h, and both are on the SMBus Controller (Bus 0, Device 14h,
Function 0).

Before the BAR register, Reg10h, is assigned automatically during PCI bus enumeration, the
BIOS needs to give a temporary SMBus 1/0 base address for accessing devices on the SMBus.

The SMBus controller enable bit is bit 0, register D2h, of the SMBus device (Bus 0, Device 14h,
Function 0).

The following is a sample code to enable the SMBus with a temporary 1/0 base address:
SMB_10 EQU 8040h
: Set SMBus 1/0 base address

mov dx, 0CF8h ; PCI Index Register

mov eax, 8000A090h ; Reg90h on SMBus PCI Controller
out dx, eax

mov dx, 0CFCh ; PCI Data Register

mov eax, SMB_10 ; temp SMBus 1/0 base address

out dx, eax

: Enable the SMBus controller

mov dx, OCF8h ; PCI Index Register

mov eax, 8000A0DO0h ; RegD0 on SMBus PCI Controller

out dx, eax

mov dx, OCFEh ; PCI Data Register

in al, dx ; read back from RegD2h

oral, 01 ; bit0 for enabling SMBus Controller interface
out dx, al

5.2 SMBus Timing
The SMBus frequency can be adjusted using different values in an 8-bit 1/O register at the
SMBus base + OEh location.
The SMBus frequency is set as follows:
SMBus Frequency = (Primary A-Link Clock)/(Count in index OEh * 4)

© 2008 Advanced Micro Devices Inc. SMBus Programming
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 24

The power-up default value in register OEh is AOh, therefore the default frequency is
(66MHZz)/(160 * 4), or approximately 103 KHz.

The minimum SMBus frequency can be set with the value FFh in the register at index OEh, which

yields:

(66MHz)/(255*4) = 64.7 KHz.

5.3 SMBus Host Controller Programming

Step Descriptions Register in Comments
SMBus 1/0
Space
1 |Wait until SMBus is idle. Reg00h[Bit0] [0 - Idle
1 - Busy
2 |Clear SMBus status. RegO00h[Bit4:1] |Write all 1’s to clear
3 |Set SMBus command. Reg03h The command will go to SMBus device.
4 |Set SMBus device address with Reg04h Bit7:1 — address
read/write protocol Bit0 — 1 for read, O for write
5 |Select SMBus protocol Reg02h[Bit4:2]
6 |Do aread from Reg02 to reset the Reg02h
counter if it’s going to be a block
read/write operation
7 |Set low byte when write command Reg05h Byte command — It is the written data
Word command — It is the low byte data
Block command — It is block count
Others — Don’t care
8 |Set high byte when write command Reg06h Word command — It is the high byte data
Others — Don’t care
9 |Write the data when block write Reg07h Block write — write data one by one to it
Others — Don’t care
10 |Start SMBus command execution Reg02h[Bit6] |Write 1 to start the command
11 |Wait for host not busy Reg00h[Bit0]
12 |Check status to see if there is any | Reg00h[Bit4:2] |With 1 in the bit, there is error
error
13 |Read data Reg05h Byte command — It is the read data
Word command — It is the low byte data
Block command — It is block count
Others — Don’t care
14 |Read data Reg06h Word command — It is the high byte data
Others — Don’t care
15 |Read the data when block write Reg07h Block read — read data one by one.
Others — Don’t care

The following flow chart illustrates the steps in programming the SMBus host controller.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

SMBus Programming
Page 25

Proprietary

Set
. SmBus_x00 = x1F,

Program
SmBus_x04

Program
SmBus_x03

Iz this &

Togram
byte count M at
SmBus_x05

Read?

Togram
byte count M at
SmBus_x05

This iz to clear all status
hits

Thiz iz to program target
address and readfrite bit
[Mote the readtwvrite bit must
be programmed again for
every transaction)

Thiz iz to program the
"camimand” sent to the

target

Mo

= this @ block
Write?

Wirite datal into
SmBus_x05

Wirite datal into
SmBus_x086

Wirite datal into
SmBus_x05

ez, there is an errar.
Let's retry.

Yes

= bits 2, 3, or

Write to
SmBus_0Z to
execute

E
keep loduing SmBus_x00[0]

zet? Mo

Read =05, :06, =0
to retrieve data

Please see SmBus register
specifications for defintions

- Fead =05 for single bye,

- Fead x05, =06 for word

- For hlock read, first read =02
to re=et the FIFO pointer, then
read x05 to get the number of
bvtes received. Finally read the
number of bytes from =07

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

SMBus Programming
Page 26

6 IDE Controller

The SB600 IDE controller supports Ultra ATA 33/66/100/133 modes. The IDE controller can be
configured into either the compatible mode or the native mode. Under the compatible mode, the
IDE controller will use the legacy resources.

The SB600 allows programming of the IDE timing and mode for each drive independently on
each channel.

6.1 IDE Channel Enable/Disable

Register on IDE Controller Bit Description
Reg09h 1 Primary IDE channel programmable logic enable.
Reg48h 0 Set 1 to disable the primary IDE channel.
Reg48h 8 Set 1 to disable the secondary IDE channel.

With the SB600, the BIOS must follow particular sequences to enable or disable the IDE
channels (see section 6.1.1 and 6.1.2 below for further information).

6.1.1 IDE Channel Enable

Both of the IDE channels are enabled as power-on default. To enable an IDE channel, the BIOS
must be set as follows:

1. Set the IDE channel programmable logic enable bit in Reg09h.

2. Clear the IDE channel disable bit in Reg48h to enable the IDE channel.

Note: No IDE I/O port access is allowed in between step (1) and step (2). It is recommended that
the BIOS execute step (2) immediately after step (1).

Refer to section 14.3.5 for a programming sample.

6.1.2 IDE Channel Disable

To disable an IDE channel, the BIOS must:

1. Set IDE channel programmable logic enable bit in Reg09h.

2. Set IDE channel disable bit in Reg48h to disable IDE channel.

Note: No IDE 1/O port access is allowed in between step (1) and (2). It’s recommended that the
BIOS execute step (2) immediately after step (1).

Note: Secondary IDE channel should always be disabled for there is no pin out for secondary
IDE.

After the IDE disable sequence, the IDE channel programmable logic enable bit will be cleared
automatically.

Refer to section 14.3.4 for a programming sample.

© 2008 Advanced Micro Devices Inc. IDE Controller
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 27

6.2 PIO Modes

The SB600 supports IDE P10 mode 0, 1, 2, 3, and 4. For PIO mode selection, the BIOS needs to
program not only the PIO mode register, but also the PIO timing register.

6.2.1 PIO Mode

The BIOS can simply give the PIO mode number through Reg4Ah on the IDE controller.

6.2.2 PIO Timing

Two parameters determine the PIO bus-cycle timing: the command width and the recovery width.
CT (bus-cycle timing) = 30ns * ((command width + 1) + (recovery width + 1))

For each PIO mode, the command width and the recovery width must be set by the BIOS

accordingly:
P10 Mode | Command Width Recovery Width cT
(In Reg40h) (In Reg40h)
0 9 9 600ns = 30 * ((9+1) + (9+1))
1 4 7 390ns = 30 * ((4+1) + (7+1))
2 3 4 270ns = 30 * ((3+1) + (4+1))
3 2 2 180ns = 30 * ((2+1) + (2+1))
4 2 0 120ns = 30 * ((2+1) + (0+1))

6.3 DMA Modes

The SB600 IDE controller can run at either the legacy (Multi-Words) DMA mode, or the Ultra-
DMA mode.

6.3.1 Legacy (Multi-Words) DMA mode

The SB600 IDE controller will run at the legacy DMA mode only when the Ultra-DMA mode is
disabled.

Two parameters determine the DMA bus-cycle timing: the command width and the recovery
width.

CT (bus-cycle timing) = 30ns * ((command width + 1) + (recovery width + 1))
For each legacy DMA mode, the command width and recovery width must be set by the BIOS

accordingly:
Legacy DMA | Command Width | Recovery Width cT
Mode (In Reg44h) (In Reg44h)
0 7 7 480ns = 30 * ((7+1) + (7+1)
1 2 1 150ns = 30 * ((2+1) + (1+1))
2 2 0 120ns = 30 * ((2+1) + (0+1))

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

IDE Controller

Proprietary Page 28

6.3.2 Ultra-DMA Mode

The SB600 IDE controller supports UDMA mode 0, 1, 2, 3, 4, 5, and 6.
It only takes two simple steps to program the SB600 IDE controller into the UDMA mode:
1. Set the mode number in UDMA mode register (Reg56h).

2. Enable the UDMA mode through the UDMA control register (Reg54h). The UDMA bus-
cycle timing is fixed after the UDMA mode is selected.

UDMA Mode Bus-Cycle Timing (ns)
0 120
1 90
2 60
3 45
4 30
5 20
6 15
© 2008 Advanced Micro Devices Inc. IDE Controller

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 29

7 Serial ATA (SATA)

The SB600 has two SATA devices. For ASIC revision A21, they are at Bus 0, Device 12h,
Function 0 and Bus 0, Device 11h, Function 0. For revisions A1l and Al2, they are at Bus 0,
Device 13h, Function 3 and Function 4. The SATA devices are enabled/disabled through a
register at ADh in the SMBus controller (Device 14h, function 0).

MiscSata - RW - 8 bits - [PCI_Reg: ADh]
Field Name Bits Default Description
SATA Enable 0 1 SATA enable
SataSmbusEn 1 0 SATA SMBus enable
SataSmbusMode 2 0 SATA SMBus mode, set to 1 to put SATA 12C on GPIO pins
SataPsvEn 5 1 SATA power saving enable
Enable

MiscSata register

The SATA option ROM initial load size is 64KB, and the run time size is 2KB.
A SATA controller enable/disable sample code is found in section 14.2.5.

A SATA class ID change sample code is found in section 14.2.6.

7.1 SATA Hot Plug

The SATA hot plug feature is implemented through the following registers:
1. ACPI GPEO Block status register bit 31 for SCI status.
2. ACPI GPEO Block enable register bit 31 for SCI enable.
3. PMIO register 37h bit 2 to trigger SATA hot plug SCI.
1 = Rising edge.
0 = Falling edge trigger.

4. The SATA internal status is set whenever a SATA hard drive is plugged in, unplugged,
powered up, or powered down. The status registers are:

Register BAR 5 + 10Ah, bit 0, for primary channel.
Register BAR 5 + 18Ah, bit 0, for secondary channel.

7.1.1 Sample Code

See section 14.7 for the SATA Hot Plug sample code.

© 2008 Advanced Micro Devices Inc. Serial ATA (SATA)
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 30

8 Power Management

On the SB600, PM registers can be accessed through 1/O ports CD6h/CD7h. Before initiating any
power management functions in the SB600, the BIOS needs to set the 1/0 base addresses for the
ACPI 1/O register, the SMI Command Port, etc.

1/0 Name Description Configure Register Range Size
(Bytes)
PM1 EVT ACPI PMla EVT BLK PM 10 Reg20h & Reg21h 4
PM1 CNT ACPI PMla CNT BLK PM 10 Reg22h & Reg23h 2
PM_TMR ACPIPM_TMR_BLK PM 10 Reg24h & Reg25h 4
P BLK ACPI P BLK PM 10 Reg26h & Reg27h 6
GPEQ EVT ACPI GPEO_EVT BLK PM 10 Reg28h & Reg2%h 8
SMI CMD Block * | SMI Command Block PM 10 Reg2Ah & Reg2Bh 2

* Notes:

® The SMI CMD Block must be dword aligned, i.e., the least significant two bits of the address
must be zero (address[1:0] must be 00). For example, BOh, B4h, B8h, BCh, etc.

® The SMI CMD Block consists of two ports — the SMI Command Port at base address, and the
SMI Status Port at base address+1.

® The writes to the SMI Status Port will not generate an SMI. The writes to the SMI Command
Port will generate an SMI.

® The SMI Command and SMI Status ports may be written individually as 8 bit ports, or
together as a 16 bit port.

8.1 SMI Handling - EOS (PM 10 Reg10h[Bit0])

Upon each SMI generation, the SB600 will clear the EOS bit automatically. At the end of the
SMI service, the BIOS needs to clear the status bit of the SMI event and re-enable the EOS;
otherwise, the SB600 will not be able to generate SMI, even if SMI events arrive.

8.2 Programmable 1/0Os

There are eight sets of programmable 1/Os available on the SB600. The BIOS can use them for
1/0 trapping, which means that an SMI will be generated if any access falls into the PIO range.

The P10 address range can be set to 2, 4, 8, and 16.

1/0 Name Description Configure Register Enable Status
PIO0 | Programmable 1/0 Range O | PM IO Regl4h & Regl5h | PM 10 ReglCh[Bit7] | PM 10 ReglDh[Bit7]
PIO1 Programmable I/0O Range 1 | PM 10 Reg16h & Regl7h | PM IO Reg1Ch[Bit6] | PM 10 Regl1Dh[Bit6]
P102 Programmable 1/0 Range 2 | PM 10 Reg18h & Reg19h | PM IO Reg1Ch[Bit5] | PM 10 Regl1Dh[Bit5]
P103 Programmable 1/0 Range 3 |PM 10 ReglAh & Reg1Bh| PM 10 Reg1Ch[Bit4] | PM 10 ReglDh[Bit4]

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Power Management
Page 31

1/0 Name Description Configure Register Enable Status
P104 Programmable 1/0 Range 4 | PM 10 RegA0 & RegAlh [PM 10 Reg A8h[Bit0]| PM 10 RegA9h[Bit0]
PIO5 | Programmable 1/0 Range 5 | PM 10 RegA2 & RegA3h [PM 10 Reg A8h[Bitl]| PM 10 RegA9h[Bit1]
P106 Programmable 1/0O Range 6 | PM 10 RegA4 & RegA5h [PM 10 Reg A8h[Bit2]| PM 10 RegA9h[Bit2]
PI1O7 Programmable I/0 Range 7 | PM 10 RegA6 & RegA7h [PM 10 Reg A8h[Bit3]| PM 10 RegA9h[Bit3]

Note: PM 10 Reg04h[Bit7] is the overall control bit for enabling all the P10s. The BIOS must set it before using
any PIO.

8.3 Power Management Timers

There are two PM timers available on the SB600 — PM Timer 1 and PM Timer 2. The PM Timer
1 (Inactivity Timer) can be programmed to reload on some activities, but not the PM Timer 2
(Activity Timer).

8.3.1 PM Timer 1 (Inactivity Timer)

The PM Timer 1 is a 6-bit timer with a granularity of 1 minute. The BIOS can set the initial value
of the PM Timer 1 through PM 10 RegOBh. PM 10 RegOCh will return the current value of the
decrementing counter.

The PM Timer 1 is typically used as a stand-by timer under the APM mode.

PM Timerl Reloading On Description Enable
IRQ[15:8] IRQ[15:8] activity. PM 10 Reg08h[Bit7:0]
IRQ[7:3], NMI, and IRQ[1:0] [IRQ[7:3], NMI, and IRQ[1:0] activity PM 10 Reg09h[Bit7:0]
Programmable 10 Any access to P10 ports. PM 10 RegOAh[BiIt7]
Parallel Port Parallel ports activity PM 10 RegOAR[Bit6]
Serial Port Serial Ports activity PM 10 RegOAR[BIt5]
IDE Port IDE port activity PM 10 RegOAN[BIt4]
Floppy Port Floppy port activity PM 10 RegOAR[BIt3]
Game Port Game port (201H) activity PM 10 RegOAR[Bit2]
ExtEventl Assert ExtEventl pin PM 10 RegOAh[Bit1]
ExtEvent0 Assert ExtEvent0 pin PM 10 RegOAh[BItO]

8.3.2 PM Timer 2 (Activity Timer)

The PM Timer 2 is an 8-bit timer with a granularity of 500 ps. The BIOS can set the initial value
of the PM Timer 2 through PM 10 Reg12h. PM 10 Reg13h will return the current value of the
decrementing counter.

Note: The PM Timer 2 cannot be configured to reload on any system activities.

8.4 SMI Events

The following is a list of all the SMI events available on the SB600. The events can only generate
SMI, not SCI or wakeup events.

The global SMI disable bit is PM 10 register 53h, bit [3].

© 2008 Advanced Micro Devices Inc. Power Management
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 32

PM 10 register 53h bit [3] =0 SMI# enabled (default)
PM 10 register 53h bit [3] =1 SMI# disabled (all events disabled)

SMI Source Description Enable Status
Software SMI Set SmiReq (PM 10 Always PM 10 Reg01h[Bit4]
(obsolete way) Reg00h[Bit4]) to generate SMI.

Software SMI Any writing to SMI Command |[PM IO RegOEh[Bit2] |PM IO RegOFh[Bit2]
port.

PM Timer 1 Timeout on PM Timer 1. PM 10 Reg00h[Bit1] PM 10 Reg01h[Bit1]
Activity on PM 10 register 08h,
09h, 0Ah will retrigger timer

PM Timer 2 Timeout on PM Timer 2. PM 10 Reg00h[Bit2] PM 10 Reg01h[Bit2]
(See section 9.3.2)

IRQ[15:8] IRQ[15:8] activity. PM 10 Reg02h[Bit7:0] |PM IO Reg05h[Bit7:0]

IRQ[7:3], NMI, and |IRQ[7:3], NMI, and IRQ[1:0] [PM IO Reg03h[Bit7:0] |PM IO Reg06h[Bit7:0]

IRQ[1:0] activity

Programmable 1/0

Any access to PIO ports

PM 10 Reg04h[Bit7]
AND
PM 10 ReglCh[Bit7:4]

PM 10 Reg1Dh([Bit7:4]

errors or special cycle command
or other catastrophic system
errors.

bit[0]

Parallel Port Parallel ports activity PM 10 Reg04h[Bit6] PM 10 Reg07h[Bit6]
Serial Port Serial Ports activity PM 10 Reg04h[Bit5] PM 10 Reg07h[Bit5]
IDE Port IDE port activity PM 10 Reg04h[Bit4] PM 10 Reg07h[Bit4]
Floppy Port Floppy port activity PM 10 Reg04h[Bit3] PM 10 Reg07h[Bit3]
Game Port Game port (201h) activity PM 10 Reg04h[Bit2] PM 10 Reg07h[Bit2]
ExtEventl Assert ExtEventl pin PM 10 Reg04h[Bit1] PM 10 Reg07h[Bit1]
ExtEventO Assert ExtEvent0 pin PM 10 Reg04h[Bit0] PM 10 Reg07h[Bit0]
Mouse/Keyboard Mouse/Keyboard port activity |PM 10 Reg1Ch[Bit3] |PM IO Reg1Dh[Bit3]
Audio/MSS Audio/MSS port activity PM 10 Reg1Ch[Bit2] |PM IO ReglDh[Bit2]
MIDI MINI port activity PM 10 ReglCh[Bitl] |PM IO ReglDh[Bitl]
AD_LIB AD_LIB port activity PM 10 Reg1Ch[Bit0] |PM IO Regl1Dh[Bit0]
SERR# port System error to report parity PCI SMBus Reg 66h, |PCI SMBus reg 04h, bit

[30].
PM 10 reg OFh[Bit 1]

Global Release

OS write to PM1 Control

PM 10 OEh[Bit 0]

PM 10 OFh[Bit0]

Write register
Temperature C50/C51, index 03, C50/C51, index 02,
Warning [bit1] [bit1]

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Power Management
Page 33

8.4.1 Power Button

Power button is always a wake-up event and can be programmed as an SCI wake-up event. The
power button status register is AcpiPmEvVtBIK, bit[8]. The BIOS must make sure this bit is cleared
prior to the entry into any C or S states.

In addition, when the power button is pressed for 4 seconds, the SB600 will shut down the entire
system (by going to S5). No programming is required for this function.

8.5 C-State Break Events

8.5.1 Break Events for C2 State

Under C2 the break events are as follows:
o PBE#
e Special_message from CPU (AMD Athlon™ mode)
e |/O write to special register (AMD Athlon mode)

e SMI#
e NMI
e INIT

e Interrupts (in PIC mode only)

8.5.2 Break Events for C3 and C4 States

All of the events listed (above) as break events in C2 state are also break events in C3 and C4
states. In addition, the Bus Master Status is also a break event in C3 and C4 states.

8.6 Save/Restore Sequence for S3 State

8.6.1 Register Save Sequence for S3 State

Prior to initiating S3 states, the BIOS must save the registers on the machine. The BIOS reserves

a section of the memory and a section of the CMOS to save the registers. Depending on the BIOS
architecture, these registers may be saved either one time just prior to handing of the control over
to the OS, or every time just before going into the S3 states.

The following registers must be saved:
e Some Northbridge registers in CMOS
e Some Northbridge and Memory Controller registers
e Southbridge PCI registers on the SB600
e Southbridge non-PCI registers

© 2008 Advanced Micro Devices Inc. Power Management
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 34

e PCI registers not on the SB600
e Super 1/O and other 1/O registers.

The BIOS typically sets aside an area in the memory to save the registers prior to the S3 state.
The Southbridge registers may be saved in any order as long as those registers are visible to the
BIOS.

Some of the registers, such as SubSystem ID and SubSystem Vendor 1D, may be saved, but
written only once as dword. They are handled separately during restore.

8.7 Wake on Events

TBD

8.8 Sleep SMI Events

These events provide an SMI# before the system transits to an SX state (e.g. ACPI S1, S2,
S3, S4, and S5). This feature helps the System BIOS to develop software workarounds or
debugging routines before the system goes to sleep state.

8.8.1 Sleep SMI Control Register

There is a Sleep SMI control register in the SB600. Its base 1/O address is defined at PMIO Reg
0x04.

SLP_SMI_EN is a R/W register bit for controlling a Sleep SMI when the system transits to an
ACPI SX state. The register definition is as follows:

e SLP SMI_EN [Bit7] =0, Disables Sleep SMI event.

e SLP _SMI_EN [Bit7] = 1, Enables Sleep SMI event.

There is a Sleep SMI Status register in the SB600. Its base /O address is defined at PMIO Reg
0x07.

SLP_SMI_Status [Bit7] is asserted when the system goes to an ACPI SX state, and when
SLP_SMI_EN is set to enable.

8.8.2 Sleep SMI Programming Sequence

8.8.2.1 Set Sleep SMI Control Register
The Sleep SMI Control Register does not necessary have to be enabled before the system goes to
the ACPI SX state. One may enable the control the bit in the ACPI ASL code. Please refer to
section 14.9 “Sleep Trap Through SMI#” for the sample code.

8.8.2.2 Enter Sleep SMI# Routine

The system does not go into the sleep state (set by ACPI PM1_CNT) when SMI# is asserted. The

© 2008 Advanced Micro Devices Inc. Power Management
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 35

System BIOS has to follow the sequence below:

1. Disable Sleep SMI Control register (SLP_SMI_EN).
2. Software workaround or system BIOS debugging routing implementation.
3. Write SLP_SMI_Status 1 to clear this event.
4. Rewrite sleep command to ACPI register (ACPI PM1_CNT).
5. RSM if necessary.
© 2008 Advanced Micro Devices Inc. Power Management

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 36

9 APIC Programming

With the AMD integrated chipset solution, the BIOS needs to program both the Northbridge and
the Southbridge in order to support APIC.

9.1 Northbridge APIC Enable

There are three bits in the Northbridge that the BIOS should set before enabling APIC support.

e Enable Local APIC in AMD Athlon processors. (Set bitll in APIC_BASE MSR(001B)
register.)

o Reg4C[bitl] - This bit should be set to enable. It forces the CPU request with address
OXFECx_xxxx to the Southbridge.

e Reg4C[bit18] - This bit should be set to enable. It sets the Northbridge to accept MSI
with address OXFEEX_xxxx from the Southbridge.

9.2 Southbridge APIC Enable

There are two bits in the Southbridge that the BIOS should set before enabling APIC support.

e Reg64[bit3] = 1 to enable the APIC function.
o Reg64[bit7] = 1 to enable the xAPIC function. It is only valid if Bit3 is being set.

9.3 IOAPIC Base Address

The IOAPIC base address can be defined at SMBus PCI Reg. 74h. The power-on default value is
FECO00000h.

Note: This register is 32-bit access only. The BIOS should not use the byte restore mechanism to
restore its value during S3 resume.

9.4 APIC IRQ Assignment

SB600 has IRQ assignments under APIC mode as follows:

IRQ0~15 - legacy IRQ
IRQ 16 — PCI INTA
IRQ 17 -PCI INTB
IRQ 18 - PCI INTC
IRQ 19 - PCI INTD
IRQ 20 — PCI INTE
IRQ 21 - PCI INTF
IRQ 22 - PCI INTG
INT 23 - PCI INTH
IRQ 09 — ACPI SCI

SCl is still as low-level trigger with APIC enabled.

© 2008 Advanced Micro Devices Inc. APIC Programming
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 37

9.5 APIC IRQ Routing
During the BIOS POST, the BIOS will do normal PCI IRQ routing through port COOh/C01h.
Once APIC is fully enabled by the OS, the routing in CO0h/C0O1 must be all cleared to zero.
The following is a sample ASL code that may be incorporated into the BIOS:

Name(PICF,0x00)
Method(_PIC, 0x01, NotSerialized)

{
Store (Arg0, PICF)
If(Arg0) {
_SB.PCI0.LPCO.DSPI() // clear interrupt at 0xC00/0xC01
}
}

OperationRegion(PIRQ, SystemlO, 0xC00, 0x2)
Field(PIRQ, ByteAcc, NoLock, Preserve)

PIID, 8,
PIDA, 8

¥

IndexField(PIID, PIDA, ByteAcc, NoLock, Preserve)

{
PIRA, 8,
PIRB, 8,
PIRC, 8,
PIRD, 8,
PIRS, 8
Offset(0x09),
PIRE, 8,
PIRF, 8,
PIRG, 8,
PIRH, 8

}

Method(DSPI)

{
Store(0x00, PIRA)
Store(0x00, PIRB)
Store(0x00, PIRC)
Store(0x00, PIRD)
Store(0x00, PIRS)
Store(0x00, PIRE)
Store(0x00, PIRF)
Store(0x00, PIRG)
Store(0x00, PIRH)

© 2008 Advanced Micro Devices Inc. APIC Programming
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 38

10 Watchdog Timer

To enable the watchdog timer in the SB600, the following registers must be initialized:

e Enable the watchdog timer by resetting bit 0 in PMIO register 069h.

e Setbit 3 in SMBus PCI Config (Bus 0 Device 20 Function 0) Reg 41h to enable the
watchdog decode.

e Ensure that the watchdog timer base address is set to a non zero value, typically
OFECO000FO0h. The watchdog base address is set at PMIO address 6Ch-6Fh as shown in the
sample program below. (PMIO is addressed as byte index/data):

Sample Program:

mov
mov
out

mov
mov

out

mov
mov
out

mov
mov

out

mov
mov
out

mov
mov

out

dx,0CD6h
al,6Fh
dx,al
dx,0CD7h
al,0FEh

dx,al

dx,0CD6h
al,6Eh
dx,al
dx,0CD7h
al,0Coh

dx,al

dx,0CD6h
al,6Dh
dx,al
dx,0CD7h
al,00h

dx,al

; PMIO index register

; Most significant base address location

; Set the index to 6Fh
; PMIO data register

; Most significant base address

; PMIO index register

; Second significant base address location

; Set the index to 6Eh
; PMIO data register

; Second significant base address

; PMIO index register

; Third significant base address location

; Set the index to 6Dh
; PMIO data register

; Third significant base address

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Watchdog Timer
Page 39

mov
mov
out

mov
mov

out

To verify that the watchdog timer works correctly, perform the following steps:
e Write 100 (count) to the watchdog count register at address OFECO00F4h.

dx,0CD6h
al,6Ch
dx,al
dx,0CD7h
al,0F0h

dx,al

; PMIO index register

; Least significant base address location

: Set the index to 6Ch
; PMIO data register

; Least significant base address

o Enable and start the watchdog timer by writing 00000081h to the watchdog control register at
OFECO00FOh.
e The counter will start decrementing and will reset the system once it reaches 0. This means
that the watchdog timer is working as designed.

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Watchdog Timer
Page 40

11 A-Link Bridge

11.1 A-Link Registers

The registers are accessed using an address-register/data-register mechanism. The address register
is AB_INDX]31:0], and the data register is AB_DATA[31:0].

31:30

29:17

16:2

1:0

RegSpace[1:0]

Reserved

Register address[16:2]

Reserved

AB_INDX [31:0]

31:0

Data[31:0]

AB_DATA[31:0]

RegSpace[1:0]
00b AXINDC Index/Data Registers. (AX_INDXC)
01b AXINPD Index/Data Registers (AX_INDXP)
10b A-Link Express Configuration (AXCFG)
11b A-Link Bridge Configuration (ABCFG)

Definition of RegSpace[1:0]

In order to read or write a particular register, the software will write the register address and the
register space identifier to AB_INDX and then do a read or write to AB_DATA. This is
analogous to how PCI configuration reads and writes work through 1/0 addresses CF8h/CFCh.

The location of AB_INDX in the 1/0 space is defined by the abRegBaseAddr register located at
Device 14h, function 0, register OFOh. The AB_DATA register address is offset 4h from the
AB_INDX address. The address of the AB_INDX must be 8 byte aligned.

31:3

2.0

BaseAddr[31:3]

Rsv

abRegBAR[31:0] at Bus 0, Device 14h, Function 0, Register OFOh

AXCFG and ABCFG registers are accessed indirectly through AB_INDX/AB_DATA. To read or
write a particular register through AB_INDX/AB_DATA, the register address and the register
space identifier is first written to AB_INDX. The specified register is then accessed by doing a
read or write to AB_DATA (see the example below).

Access to AXINDC and AXINDP registers requires a second level of indirection. Registers in
these spaces are addressed through the following indirection registers:
AX_INDEXC/AX_DATAC and AX_INDEXP/AX_DATAP.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

A-Link Bridge
Page 41

Register Indirect Address
AX_INDXC 30h
AX_DATAC 34h
AX_INDXP 38h
AX_DATAP 3Ch

Example: To write to register 21h in the INDXC space with a data of 00, the following steps are
required:

1. Out 30hto AB_INDX. This will prepare to write register from INDXC
2. Out21lhto AB_DATA. This will set register 21h of INDXC

3. Out 34h to AB_INDX. This will prepare to write data to register defined in steps 1
and 2 above

4. Out00to AB_DATA. This will write the data to the register defined n steps 1 and 2
above.

11.2 Programming Procedure

Indirect access is required to access both A-Link Express Configuration and A-Link Bridge
Configuration register space. The programming procedure is as follows:

Write:

1. Setthe A-Link bridge register access address. This address is set at device 14h,
function 0, register OFOh. This is an 1/0 address and needs to be set only once after
power-up. The 1/O address must be on a 8-byte boundary (i.e., 3 LS bits must be
zZeroes).

Example: To set C80h as an A-Link bridge register access address:
mov dx,0CF8h ; To access device 14h, function 0
mov eax,8000A0FOh ;
out dx,eax
mov dx,0CFCh
mov eax,00000C80h ; A-Link bridge register access address
out dx,eax
Note: Although the 32-bit I/O address is set for the A-Link bridge (e.g., 00000C80h),
the bridge may be accessed by a 16-bit address (i.e., 0C80h). The MS word is set to
00 by default (see the example below).
2. Write the register address in the AB_INDX.
Example: To write to the A-Link Bridge configuration register space at 90h:
mov dx,0c80h ; 1/O address index assigned to A-Link
© 2008 Advanced Micro Devices Inc. A-Link Bridge

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 42

mov

out

mov

mov

out
Read:

eax, 0C0000090h

dx,eax
dx,0c84h
eax,00000001h

dx,eax

; Bits[31:30] = 11 for A-Link Bridge register

; space
; Register index is set
: 1/O address for data

; Power down 2 lanes to save power

Use a similar indirect procedure to read out the register value inside AB and BIF.

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

A-Link Bridge
Page 43

12 High Precision Event Timer (HPET)

The SB600 includes an industry standard High Precision Event Timers (HPET). The details and the
operation of the timer are described in the IA-PC HPET specification. This section describes the timer
initialization in the SB600 chipset.

12.1 Initialization
For SB600 is HPET usage is required, then during the early POST, the timer base address must be
programmed in Device 14h, Function 0, register 14h. This base address is also reported to the operating

system through the ACPI table as specified in the specification. In addition, the HPET interrupts may also
be enabled through Device 14h, Function 0, register 64h, bit 10.

12.1.1 Sample Initialization Code

HpetBaseAddress EQU OFEDOOOOOH ; OEM specific address

; Set Base address in Device 14h, Function 0, Register 14h

mov dx,0CF8h ; PCIl index register

mov eax,8000A014h ; Bus 0, Device 14h, Function 0, Register 14h
out dx,eax ; Set PCI index to register 14h

mov dx,0CFCh ; PCI data register

mov eax,0FEDO000ON ; Base address, OEM specific

out dx,eax

; Enable the HPET interrupts, if needed. Set Device 14h, Function 0, Register 64h, bit 10

mov dx,0CF8h ; PCI index register

mov eax,8000A064h ; Bus 0, Device 14h, Function 0, Register 64h
out dx,eax ; Set PCI index to register 64h

mov dx,0CFCh ; PCI data register

in eax,dx ; Read current value of register 64h
or eax,00000400h ; Set bit 10

out dx,eax

© 2008 Advanced Micro Devices Inc. High Precision Event Timer (HPET)
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 44

12.2 ACPI HPET Description Table

As described in the specification, an ACPI HPET table is required to report the base address to the
operating system. The table includes a ACPI table header, and HPET table-specific fields. The sample

values for the HPET specific fields are as follows:

Event Timer Block ID DD 00000000h

Base Address (Lower 4 bytes) DD 00000800h

Base Address (Middle 4 bytes) DD OFEDO00000Oh

Base Address (Upper 4 bytes) DD 00000000h
HPET Number DB 00h
Minimum Clock Tick DW 37EEh

12.3 HPET Support for Longhorn

; Address on 32 bit system

; Used on 64 bit system

; 14318 (decimal)

For the SB600, PM_I0O register 72h bits [2:0] should be set to 111b for Longhorn support.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

High Precision Event Timer (HPET)
Proprietary Page 45

13 Common Interface Module — CIM-SB600

13.1 CIM-SB600 Architecture

CIM-SB600 employs a modular component design with an open interface definition such that the
amount of functional components included, the sequence these components are called, and the
way these components are called could all be different, depend on different requirements of
different OEM projects/platforms.

CIM-SB600 requires bios code base provides addresses (for ex. SMBUS Base Address).
SB600-CIM can be divided into four functional sub modules:

e Power On Reset initialization (SBPOR)

e POST initialization.

e RUNTIME initialization.

e SMM Module

The following diagram is a conceptual overview of the AMD SB600-CIM infrastructure and its
functional modules in relative with a typical system BIOS power on boot up timeframe. Each
modular component (functional module) will be introduced in more detail in later chapters.

© 2008 Advanced Micro Devices Inc. Common Interface Module — CIM-SB600
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 46

System PowerOn

A

SBCIM - SBPOR Initialization Module

v

CPU Initialization, NorthBridge Initialization

Restore memory
controller configuration
etc

A
SBCIM Runtime
submodule -
AtiSbBfPciRestore

A

SBCIM Runtime sub module —

1. Route SATA controllers to different AB-ports
depending on input parameters

2. Program prefetch for IDE, USB and PCIB.

3. Program SATA class code

4. Restore Subsystem IDs for all the SB devices

Restore PCI devices

and do other S3 resume
tasks

A

SBCIM Runtime

SBCIM Runtime sub module —
1.Initialize SATA PHY

submodule -
AtiSbAfPciRestore

Memory detection.
System BIOS shadowing

v_l

NO

SBCIM Post Initialization submodule

= AtiSbBeforePcilnit

1. Reads the PCIE base address from
NorthBridge and saves it for further use to do
PCI config using MMIO access.

2. Enable or Disable South Bridge devices
depending on input data structure values.

3. Reset usb controllers.

4. Enable or disable thermal trip function.

5. Call SBCIM Runtime submodules

L+

PCI enumeration and resource
allocation

. I

SBCIM Post Initialization

submodule -
AtiSbAfterPcilnit

1. Configure High definition Audio

»| (Azalia)

2.Detect and configure AC-97 modem

3.Detect and configure MC-97 modem

A
Do other S3 resume
tasks.

Jump to Wakeup vector.

[

SBCIM SMI sub module
AtiSbSmiService
1. Check & service if SMI due to keyboard reset \

4.Initialize USB PHY settings and most
of the other settings which are
recommended in RPR.

Configures all 10 Devices.
Enumerate USB
Detect and Initialize boot devices

Ll

System BIOS SMI handler

Operating System

A

Option ROM initliazation
BIOS Setup etc

VJ

SBCIM Post Initialization

submodule -
AtiSbLatePost
1.Initialize some of the PCI bridge registers

Load bootloader
and give control to
0os

i

which are recommended in RPR.
2.Initialize the SBCIM SMI data structure
3.Program some of RPR settings for SATA
controller

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Common Interface Module — CIM-SB600

Proprietary Page 47

13.2 CIM-SB600 Build Configuration

SBCIM module provides the BIOS developer the flexibility to assign their own values (for programmable

options such as SMBUS port address).

SB module configuration requirement from BIOS code base:

Override Symbol

Description

ATI_BIOS_SIZE

BIOS FlashROM size.
Set to 100000h if you are using IMB
flash part.

ATI_SMBUS_BASE_ADDRESS

SMBus base address(12C port
address); by default , ASF Base
Address is set

ATI_SMBUS _BASE_ADDRESS
+10h

ATI_SIO_PME_BASE_ADDRESS

This is a base for SIO PME

sb_acpi_base_tbl:

acpi_base STRUC
pmlevt dw
pmlctr dw
pmtmr dw
cpuctr dw
gpe0 dw
smicmd dw
pmactl dw
ssctl dw

acpi_base ends

;pmio 2ah

(OO RS S B BRES RS BN |

;pmio 2eh

8 10 addresses should be provided by
bios code base.

ATI_ACPI_WDRT_BASE

WatchDog timer base address is set to
OXFECOO00FO by default

ATI_HPET_BASE

HPET base address

13.3 CIM-SB600 Setup Input Data Structure

Before calling any SBCIM module interfaces (except SBPOR), the following input data structure has to
be filled depending on the options selected in BIOS setup. It is up to the BIOS porting engineer to decide
whether to give a user option or use a fixed value. Since this Input Data Structure is needed all the time
(both during POST and runtime), it is necessary this data structure is placed in the runtime segment

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Common Interface Module — CIM-SB600

Proprietary

Page 48

ATI_SB_CFG_STRUCT STRUC
ACAF DD 0 ; ATI CFG ASL Flags
; BITO:TPMF
; BITL:STHP: SATA HOT Plug
; BIT2:SHPG: Second IDE Hot Plug
; BITXIXXXX
SATA_CHANNEL DB 1 ; 0:None 1:SATA
SATA CLASS DB 1 ; 0:IDE 1:RAID 2:AHCI
UsB11 DB 3 ; O:disable 1:enable
UsSB20 DB 1 ; O:disable 1:enable
AC97_AUDIO DB 0 ; 0:AUTO 1:disable 2:enable
MC97_MODEM DB 0 ; 0:AUTO 1:disable 2:enable
AZALIA DB 0 ; 0:AUTO 1:disable 2:enable
AZA PIN_CFG DB 1 ; O:disable 1:enable
FRONT_PANEL DB 0 ; 0:AUTO 1:disable 2:enable
FP_DETECTED DB 0 ; 0:Not Detected 1:Detected
SATA_SMBUS DB 0 ; 0:disable 1:enable
SPD_SPEC DB 0 ; 0:disable 1:enable
AL_CLK_DELAY DB 4 ; 1 byte
AL_CLK_GATEDB 0 ; 0:disable 1:enable
BL_CLK_DELAY DB 4 ; 1 byte
BL CLK _GATEDB 0 ; O:disable 1:enable
DS PT DB 0 ; O:disable 1:enable
USB_XLINK DB 0 ; 0:BLINK 1:ALINK
sb600_sata_sts db 0 ; BITO/1/2/3 connected of PM/PS/SM/SS
fan_ctrl db 15h
fan0 HWM_FAN <>
fanl HWM_FAN <>
fan2 HWM_FAN <>
ATI_SB_CFG_STRUCT ends
HWM_FAN STRUC
CTRL DB 1 ; 0:Disabled 1:Enw/o Temp
; 2:Enw/ TempO 3:En w/ AMDSI
Auto DB 0 ; 0:Disabled 1:Enabled
Linear DB 0 ; 0:Disabled 1:Enabled
DutyValue DB 0 ; 0:Output Low 1:Output High
Misc DB 0
FreqDiv DB 0 ;
LowDuty DB 0 ;
MedDuty DB 0 ;
Multiplier DB 0 ;
LowTemplo DB 0 ;
LowTempHi DB 0 ;
MedTemplo DB 0 ;
MedTempHi DB 0 ;
HighTemplo DB 0 ;
HighTempHi DB 0 ;
LinearRange DB 0 ;
LinearAdjust DB 0 ;
LinearHoldCountDB 0 ;

HWM_FAN

ends

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Common Interface Module — CIM-SB600

Page 49

Description of Data Structure

Option Description Values Default Value
SATA_CHANNEL Enable/Disable SATA 0 — Disable SATA 1 - Enable
controllers controllers SATA
1 - Enable SATA controllers
controller
SATA CLASS SATA controller operating | 0 - IDE Mode 0 - IDE Mode
mode 1 - RAID Mode
2 - AHCI
SATA_SMBUS Enable/Disable SATA 0 - Disable 1-Enable
SMBUS. There isonly one | 1 - Enable
SATA SMBUS (12C)
interface for the two SATA
controllers
USB11 Enable/Disable USB1.1 0 — Disable all OHCI 1- Enable all
OHCI controllers. controllers and EHCI OHCI
1 - Enable all OHCI controllers
controllers
USB20 Enable/Disable USB2.0 0 — Disable EHCI 1 - Enable
EHCI controller controller EHCI
1 - Enable EHCI controller
controller
AC97_AUDIO Enable/Disable AC97 0 - Detect AC ‘97 0 - Detect AC
controller. controller automatically | “97 controller
1 - Always disable AC automatically
’97 controller
2 - Always enable AC
’97 controller
MC97_MODEM Enable/Disable MC97 0 - Detect MC ‘97 0 - Detect MC
controller. controller automatically | “97 controller
1 - Always disable MC automatically
’97 controller
2 - Always enable MC
’97 controller
AZALIA Enable/Disable Azalia High | 0 - Detect Azalia HD 0 - Detect
Definition (HD) audio audio controller Azalia HD
controller. automatically audio
1 - Always disable controller
Azalia HD audio automatically
controller
2 - Always enable
Azalia HD audio
controller
AZA_PIN_CFG Azalia Pin Configuration. 0 - Disable 1 - Enable
1 -Enable
FRONT_PANEL Front Panel Audio. 0 - Detect front panel 0- Auto

audio automatically

1 - Always disable front
panel audio
automatically

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Common Interface Module — CIM-SB600
Page 50

Proprietary

13.4 CIM-SB600 SBPOR Sub-Module

Southbridge Power-On Reset initialization (SBPOR) is designed to support initialization of Southbridge
registers common across all platforms. Design take in to consideration that code will be executed in
stackless environment. There is no inputs requirement for this module except that the return address
should be setup in SP.

Module files: SB_POR.INC

Support files: SB_CMN.INC, ATISBCFG.INC

13.4.1 SBPOR Interface

ATISBPowerOnResetInitJSP — This routine initializes all the Southbridge device registers (including
ACPI Base Address registers, PMIO registers) and applies LPC-DMA deadlock workaround. This
routine should be called before the BIOS decides whether it is normal POST or S3 resume.

13.5 CIM-SB600 SB POST Initialize Sub-Module

SB POST Initialization module consists of three parts:
1. Early POST (Before PCI enumeration in system BIOS).
2. Mid POST (After PCI enumeration in system BIOS).
3. Late POST(Before BIOS gives control to bootloader)
All the PCI configuration access is done using the memory mapped PCI configuration space.

Module files: ATISBPT.INC, AM97POST.INC, AZALIAP.INC, SATAPOST.INC, USBPOST.INC
Support files: SB_CFG.INC, ATISBCFG.INC, SB_CMN.INC, SB_CMNPT.INC

The entire POST initialization module is needed only during POST and it can be discarded at end of
POST.

13.5.1 Requirements

The following requirements should be met before calling any interface in the SB POST initialization
module.
1. Module required stack to be present to operate.
2. Input Data Structure (ATI_SB_CFG_SETUP_SETTING) should be initialized before doing any
interface to this module.
3. System should be in 4GB flat mode (also called as Big Real Mode).
4. PCIE BAR should be initialized before calling any interface in this module.

© 2008 Advanced Micro Devices Inc. Common Interface Module — CIM-SB600
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 51

13.5.2 SB POST Interface

AtiSbBeforePcilnit — This interface should be called during early POST after memory detection and
B10OS shadowing but before PCI bus enumeration. The segment where the SBCIM Runtime sub module is
included should be made writable before calling this routine, since this interfaces updates some of the
variables which are present in the SBCIM runtime module. This routine:

1.

w

N o gk~

Reads the PCIE base address from the Northbridge and saves it for further use to do PCI
configuration using MMIO access.

Enables or Disables Southbridge devices depending on input data structure values.
Calls runtime sub module interface to route SATA controllers to different AB-ports
depending on input parameters

Calls runtime sub module interface to program prefetch for IDE, USB and PCIB.

Calls runtime sub module interface to program SATA class code.

Resets USB controllers.

Enables or disables thermal trip function.

AtiSbAfterPcilnit — This interface should be called after PCI enumeration is done in the BIOS so that the
resources for all the devices are assigned. This interface:

apr PR

o

Calls runtime sub module interface to initialize SATA PHY and reset SATA channels.
Configures High definition Audio (Azalia).

Detects and configures AC-97 modem.

Detects and configures MC-97 modem.

Initializes USB PHY settings and most of the other settings which are recommended in
Register Programming requirements (RPR).

Calls runtime sub module interface to program Subsystem IDs for all the SB devices.
Enables IDE dynamic power saving.

AtiSbLatePost - This interface should be called very late in the POST after hard disk detection and BIOS
setup is done. This module:

1. Initializes some of the PCI bridge registers which are recommended in RPR.
2. Initializes the SBCIM SMI data structure.
3. Programs some of the RPR settings for SATA controller.
© 2008 Advanced Micro Devices Inc. Common Interface Module — CIM-SB600

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 52

13.6 CIM-SB600 SB Runtime Interface Sub-Module

SB Runtime Initialization module is consistent of two parts.

1) Normal boot.
2) S3resume

All the PCI configuration accesses are done using the memory mapped PCI configuration space.

Module files: ATISBRT.INC, AM97RT.INC, AZALIAR.INC, SATART.INC, USBRT.INC
Support files: ATISBCFG.INC, SB_CMN.INC, SB_CMNPT.INC

The entire runtime initialization module is needed during POST and S3 resume and so it should not be
discarded at end of BIOS POST. The input data structure ATlI_SB_CFG_STRUCT is defined in this
module.

13.6.1 Requirements

The following requirements should be met before calling any interface in the SB POST initialization
module:

1. Module stack should be available..

2. Input Data Structure (ATI_SB_CFG_SETUP_SETTING) should be initialized before doing any
interface to this module.

3. System should be in 4GB flat mode (also called as Big Real Mode).

4. PCIE BAR should be initialized before calling any interface module.

13.6.2 SB Runtime Interface

During normal boot, most of the SBCIM runtime interfaces are called by SBCIM POST interface. There
is no interface between the BIOS code base and SBCIM runtime sub module during the normal POST.
There are following interfaces between the BIOS code base and SBCIM runtime sub module during the
S3 resume.

AtiSbBfPciRestore - This interface should be called during S3 resume after memory is restored and
before PCI devices are restored. This interface:

Routes SATA controllers to different AB-ports depending on input parameters
Programs prefetch for IDE, USB and PCIB.

Programs SATA class code

Restores Subsystem IDs for all the SB devices

AP

AtiSBAfRestore — This interface should be called during S3 resume after PCI devices are
restored. This interface:
1. Initializes SATA PHY and reset SATA channels.

© 2008 Advanced Micro Devices Inc. Common Interface Module — CIM-SB600
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 53

2. Enables Keyboard reset SMI for P4 platforms.
3. Enables IDE dynamic power savings.

13.7 CIM-SB600 SB SMI Interface Sub-Module

SBCIM SMI interface implements workarounds for some of the known hardware issues

Module files: SBSMI.INC, KBRST_WA.INC, RTC_WA.INC, SATATRAP.INC,
Support files: ATISBCFG.INC, SB_CMN.INC, SB_CMNPT.INC

13.7.1 Requirements
The following requirements should be met before calling any interface in the SB SMI module:

1. Stack should be present.

2. Input Data Structure (ATI_SB_CFG_SETUP_SETTING) should be initialized before doing
any interface to this module.

3. PCIE BAR should be initialized before calling this interface module.

4. ES should be set to access 0-4GB address.

13.8 CIM-SB600 SPI Interface Sub-Module

Atispi.inc is the only interface to access SPI ROM. This file provides a number of routines to enable the
BIOS to read the SPI part ID, to read/write the SPI status register, to erase the sector/block/chip, and to
flash a byte to SPI part. The BIOS vendor or customer should implement their own interface routine
between flash utility/POST and atisp.inc.

© 2008 Advanced Micro Devices Inc. Common Interface Module — CIM-SB600
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 54

14 Sample Programs

14.1 SB600 Register Initialization on Power-Up

14.1.1 Initialization of PCI IRQ Routing Before Resource Allocation

The PCI IRQs are programmed using index/data format through registers CO0h/C01h. Index 0
through 3, and 9 through OCh, are for PCI IRQ lines. Index 4 is for SCI interrupt generated for
ACPI, and Index 5 is for SMBus interrupt.

Sample Program
The following routine initializes all PCI interrupts to zeroes.

Pcilrglnit proc near

push ax ; Save the registers used in the routine

push dx

mov ax,00h ; Start with index =0, data=0
ClearPcilrg0To5:

mov dx,0C00h ; PCl interrupt index port

out dx,al : Set index

mov dx,0C01h ; PCl interrupt data port

xchg ah,al :Getdatain AL=0

out dx,al

xchg ah,al : AL = Index

inc al : Point to next index

cmp al, 05h : Max index in 0 to 5 series

jbe ClearPcilrg0To5
; Initialize for index 9 through 0Ch

mov ax,0009h : To clear from index 09 to OCh
ClearPcilrg9ToC:

mov dx,0C00h ; PCl interrupt index port
out dx,al : Set index
mov dx,0C01h ; PCl interrupt data port
xchg ah,al :Getdatain AL=0
out dx,al
xchg ah,al : AL = Index
inc al : Point to next index

© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 55

cmp
jbe
pop
pop
ret

Pcilrglnit

al, 0Ch
ClearPcilrg9ToC
dx

ax

endp

14.2 Setup Options

14.2.1 64 Bytes DMA

: Max index in 9 to OCh series

; Restore the registers

If 64 bytes DMA is selected for P2P bridge, set PCI to PCI bridge device 14h, function 4, register

4Bh, bit 4 to 1.

14.2.2 USB Overcurrent Detection Disable

To disable over-current detection for both OHCI and EHCI USB devices, set USB device 13h,
function O register 51h, bit 0,

Sample Program

UsbOverCurrentDetectionDisable

push
push
mov
mov

out

mov

or

out

pop
pop
ret

UsbOverCurrentDetectionDisable

eax
dx

dx,0CF8h
eax,8000A850h

dx,eax

dx,0CFDh
dx,al
al,01h

dx,al

dx

eax

proc near

; Save registers used by this device

; PCI configuration space index register
; Device 13h, function 0, register 50h-53h

; PCI configuration space. Access reg. 51h
: Read current value
: Set to disable USB OHCI and EHCI overcurrent

; Restore registers used by this routine

endp

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 56

Sample Programs

14.2.3

C3 Support

The C3 support depends on the processor PBE support and HyperThreading. The ACPI FACP
table also needs to be modified for C3 support. The description below applies only to the SB600
registers affected by C3 support.

PM 1/O register 51h is set to C3 latency as follows:
C3 Latency = (bits[5:0] of PM /O register 51h) * 8us
Hence for recommended C3 Latency = 40us, set (bits[5:0] of PM 1/O register 51h) =5

For deep C3 support, in addition to setting register 51h above, PM 1/O register 50h bit0 must also
be setto 1.

14.2.4 Subtractive Decoding for P2P Bridge

To enable the subtractive decoding, set device 14h, function 4, P2P bridge register 40h bit 5 to 1.

Sample Program:

EnableSubtractiveDecoding proc near
push eax ; Save registers used in this routine
push dx
mov dx,0CF8h
mov eax,8000A440h ; Bus 0, device 14h, function 4, register 40h, P2P
out dx,eax
mov dx,0CFCh ; To access register 40h
in al,dx
or al,20h ; Set bit 5 for subtractive decoding
out dx,al
; Set bit 7 of register 4Bh to show subtractive decoding in class code reg. 09h bit 0
mov dx,0CF8h
mov eax,8000A448h ; Bus 0, device 14h, function 4, register 48h-4Bh
out dx,eax
mov dx,0CFFh ; To access register 4Bh
in al,dx
or al,80h ; Control bit for PI register
out dx,al

© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 57

pop dx
pop eax
ret

EnableSubtractiveDecoding endp

14.2.5 Enable/Disable On-Chip SATA

; Restore registers

SATA may be disabled/enabled by Miscellaneous SATA register located at bus 0, device 14h,
function 0, register ADh. Bit 0 of this register, when set to 1, enables SATA.

Sample Program:
This sample program will enable SATA
EnableDisableSataSampleProgram
push eax
push dx
mov dx,0CF8h
mov eax,8000A0ACh
out dx,eax
mov dx,0CFDh

in al,dx
or al,01h
out dx,al
pop dx
pop eax
ret

EnableDisableSataSampleProgram

14.2.6 Change Class ID for SATA

proc near

; Save registers used by this routine

; To access PCI configuration space
; Register ACh to AFh of device 14h, function 0

; To access register 0ADh

: Read current value

: Set bit 0 to enable SATA

; Write the byte back

endp

The SATA device may have multiple PCI class codes. Some of the class codes are as follows::

Class Base Class Code SubClass Code Programming Interface
Register 0Bh Register 0Ah Register 09h
IDE Class 01h 01h 8Fh
AHCI Class 01h 06h 01h
Raid Class 01h 04h 00h

To change the class ID for the SATA*;

1. Enable header write: Set the SATA PCI Bus 0, Device 12h, Function 0 (for SATA), register

40h, bit 0 to 1.

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 58

2. Write to the same SATA device registers (9h, 0Ah, 0Bh) with the class ID.
3. Disable header write: Clear the SATA device register 40h, bit 0 to 0.

Sample Program:

This sample program will set SATA-1, Bus 0, Device 12h, Function 0 to class code for IDE class

01018Fh.

SataClassldSampleProgram proc near

push
push

eax ; Save registers used by this routine
dx

; Enable header write. Set register 40h, bitOto 1

mov
mov
out
mov
in

or

out

dx,0CF8h ; To access PCI configuration space
eax, 80009040h ; SATA-1, Bus 0, Device 12h, Function 0, reg 40h

dx,eax

dx,CFCh ; To access register 40h
al,dx ; Current register 40h value
al,01h

dx,al

; Write class code. Register 08 is read only and will not be modified

mov
mov
out

mov
mov

out

dx,0CF8h ; To access PCI configuration space
£ax,80009008h ; Bus 0, Device 12h, Function 0, register 08h
dx,eax

dx,0CFCh ; To access dword at starting at register 08h
eax,01018F00h ; Reg 08 is read only. Reg 9-0b will be written
dx,eax

; Disable header write. Clear register 40h, bit 0 to 0

mov
mov
out
mov
in
and

out

pop

dx,0CF8h ; To access PCI configuration space
eax, 80009040h ; SATA-1, Bus 0, Device 12h, Function 0, reg 40h

dx,eax

dx,0CFCh ; To access register 40h

al,dx ; Current register 40h value

al,0FEh

dx,al

dx ; Restore registers used by this routine

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs

Page 59

pop eax
ret
SataClassldSampleProgram endp

Note: For SB600 revision A1l and revision Al12, the SATA controller was at Bus 0, Device 13h,
function 3 and 4.

14.2.7 Disable AC97 Audio or MC97 Modem
For, the AC97 PCI device 14h, functions 5 or 6 may be disabled by setting bits in PM 1/O register
59h. The setting of bit 0 will mask out AC97 device 14h, function 5. the setting of bit 1 will mask
out MC97 device 14h, function 6.
Any memory resources assigned to audio and modem PCI devices should also be cleared prior to
disabling these devices.
Sample Program:
The following sample program shows how to disable AC97 audio device 14h, function 5. To
disable MC97 modem device 14h, function 6, set PM 1/O register bit 1.
DisableAc97Sample proc near
push eax ; Save registers used by this routine
push dx
; If AC97 audio was previously enabled, clear the memory resources assigned.
mov dx,0CD6h ; PM 1/O index register
mov al, 59h ; AC97 Mask register
out dx,al
mov dx,0CD7h ; PM 1/O data register
in al,dx : Read current value
test al,01h ; Is the AC97 audio previously disabled
jnz DisableDone ; Already disabled , so exit the routine
; Clear the address at reg. 10h of AC97 device 14h, function 5 to release the resources
mov dx,0CF8h ; To access PCI configuration register
mov eax,8000A510h ; Device 14h, function 5, register 10h
out dx,eax
mov dx,0CFCh ; To access dword starting at 10h
mov eax,0 ;
out dx,eax
; Disable the AC-97 device by setting PM 1/O register 59h bit 0 to 1
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 60

mov dx,0CD6h ; PM 1/O index register

mov al, 59h ; AC97 Mask register
out dx,al
mov dx,0CD7h ; PM 1/O data register
in al,dx : Read current value
or al,01h : Set AC97 audio to disable
out dx,al
DisableDone:
pop dx
pop eax
ret

DisableAc97Sample endp

14.2.8 Enable EHCI Controller

The memory must be in big real mode to access the USB operational registers through the 32-bit
base address register.

push eax
push dx
push ebp
push es

; Set up a temporary Base Address Register (BAR)

; The value of BAR will be board specific and vary with the BIOS vendor
; This step may be skipped if the BAR is already assigned.

mov dx,0CF8h

mov eax,80009810h ; BAR for device 13h, function 0

out dx,eax

mov dx,0CFCh

mov eax,0E0000000h ; This value will differ with the BIOS vendor
out dx,eax

mov ebp,eax

; Enable memory, 1/0, and bus master access

mov dx,0CF8h

mov eax,80009A04h

out dx,eax

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 61

mov dx,0CFCh

mov al, 07h

out dx,al

; Issue host controller reset through operational register 0

xor ax,ax

mov es,ax ; To access operational registers through BAR

mov eax, es:[ebp]
or eax,02h

mov es:[ebp],eax

: Enables the USB PHY auto calibration resistor
mov eax, 00020000h

mov es[ebp+0COh], eax

; Program EHCI FIFO threshold.
: Out threshold = 20h, In threshold = 10h for 2lane NB-SB link
: Out threshold = 20h, In threshold = 40h for 4lane NB-SB link

mov eax,00200010h

mov es:[ebp+0A4h],eax

pop es
pop ebp
pop dx
pop eax
ret

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs
Page 62

14.2.9 Enable OHCI Controller
OHCI Device 13h, function 1 and 5, may be enabled/disabled by bits 1 and 5 in SMBus device
14h, function 0, register 068h.
If disable is done after BAR resources are allocated, set BAR to zero.
USB SMI enabled, when appropriate, at SMBus device 14h, function 0, register 65h, bit 7.

Sample Program:
Enable 5 OHCls .

EnableOhciSample proc near

push eax ; Save registers used in this program
push dx
mov dx,0CF8h ; To access PCI configuration space

mov eax,8000A068h ; SMBus device 14h, function 0, register 68h

out dx,eax

mov dx,0CFCh ; To read register 068h

in al,dx ;

or al,03Eh ; Set bit [5:1] to enable OHCI
out dx,al

pop dx

pop eax

ret

EnableOhciSample endp

14.3 IDE Settings

The primary IDE channel is enabled on power-up by default. Refer to section 14.3.4 to disable
the IDE channels.

14.3.1 PI1O Mode Settings

IDE PIO mode and timing is set through the registers 40h-43h, 4Ah-4Bh, the P10 timing is
programmed in registers 40h-43h, and PIO mode is programmed in registers 4Ah-4Bh.

The PCI IDE device is 14h, function 1.

Reg 40h Primary slave timing
Reg 41h Primary master timing
Reg 42h Secondary slave timing
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 63

Reg 43h Secondary master timing

Reg 4Ah, hits[2:0] Primary master mode number
Reg 4Ah bits[6:4] Primary slave mode number
Reg 4Bh bits[2:0] Secondary master mode number
Reg 4Bh bits[6:4] Secondary slave mode number

PIO timing has two components — the command width, and the recovery width. The widths are
stated in number of cycles of PCICLK and the following values are defined for PCICLK
frequency of 33MHz and 66MHz:

Width PIO Mode4 | PIOMode3 | PIOMode2 | PIO Mode 1 P10 Mode 0
Command 2 2 3 4 5
Width (cycles)

Recovery 0 2 4 7 Dh
Width

Sample program: Set primary master to PIO mode 4
; Set register 41h with timing and 4Ah, bits[2:0] with mode number

mov dx,0CF8h ; To set PCI configuration space index
mov eax,8000A140h ; To access registers 40h-43h
out dx,eax
mov dx,0CFDh ; To access PCI configuration space data at 41h
mov al,20h ; Timing for mode 4 (See table above)
out dx,al ; Set PIO timing
mov dx,0CF8h ; To set PCI configuration space index
mov eax,8000A148h ; To access registers 48-4Bh
out dx,eax ;
mov dx,0CFEh ; To access register 4Ah
in al,dx ; Read current value
and al,0F8h ; Clear bits 2:0
or al,4h ; Set to mode 4
out dx,al ;
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 64

14.3.2 Multiword DMA Settings

IDE multiword DMA setting is done through registers 44h to 47h. The timing for the multiword
DMA modes has two components — the command width, and the recovery width.

Width MW DMA Mode 2 MW DMA Mode 1 | MW DMA Mode 0
Command Width (Cycles) 2h 2h 7h
Recovery Width (Cycles) Oh 1h 7h

The register assignment is as follows:

Register 44h Primary slave MW DMA timing
Register 45h Primary master MW DMA timing
Register 46h Secondary slave MW DMA timing
Register 47h Secondary master MW DMA timing

Sample Program:

The following Assembly language code sample programs the secondary master to multiword

DMA Mode 2 (i.e., it programs register 47h to 20h).

mov dx,0CF8h ; To access PCI configuration space, index register
mov eax,8000A144h ; Device 14h, function 1, registers 44h-47h

out dx,eax ;

mov dx,0CFFh ; To access PCI register 47h

mov al,20h ; Timing for MW DMA Mode 2

out dx,al

14.3.3 UDMA Mode Settings

IDE UDMA enable/disable is set through register 54h, and the UDMA mode is set through the

registers 56h-57h. The register assignments are as follows:

Register 54h, bit[0] Primary master. 1 =Enable, 0=Disable
Register 54h, bit[1] Primary slave. 1 =Enable, 0=Disable
Register 54h, bit[2] Secondary master. 1 =Enable, 0=Disable
Register 54h, bit[3] Secondary slave. 1 =Enable, 0=Disable
Register 56h, bits[2:0] Primary master UDMA mode, 000b-110b
Register 56h, bits[6:4] Primary slave UDMA mode, 000b-110b

Register 57h, bits[2:0] Secondary master UDMA mode, 000b-110b
Register 57h, bits[6:4] Secondary slave UDMA mode, 000b-110b

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs
Page 65

Sample Program
The sample program below sets the primary slave to UDMA mode 5:

push eax

push dx

; For primary slave, set register 56h, bits [6:4] to 5 for UDMA mode 5

mov dx,0CF8h ; To access PCI configuration space of IDE controller
mov eax,8000A154h ; Device 14h, function 1, register space 54h — 57h
out dx,eax ;

mov dx,0CFEh ; To access register 56h

in al,dx ; Current value of register 56h

and al,8Fh ; Clear bits 6:4.

or al,50h ; Set UDMA 5 mode for primary slave.

out dx,al

; Enable primary slave UDMA mode in register 54h, bit 1,

mov dx,CFCh ; To access register 54h

in al,dx ; Current value of register 54h
or al,02h ; Set bit 1

out dx,al

pop dx

pop eax

ret

14.3.4 IDE Channel Disable

To disable an IDE channel, the BIOS must:
1. Set IDE channel programmable logic enable bit in Reg09h.
2. Set IDE channel disable bit in Reg48h to disable IDE channel.

Note: No IDE 1/O port access is allowed between step (1) and step (2). It is recommended that the
BIOS execute step (2) immediately after step (1). There should be no ‘in” instruction between two

‘out’ instructions to register 09h and 48h.

After the IDE disable sequence, the IDE channel programmable logic enable bit will be cleared

automatically.
Sample program: Disable secondary channel
; Read current register 48h-49h on IDE controller

push eax
push bx

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs
Page 66

push dx

mov eax,8000A148h ; To modify register 48h on the IDE controller
mov dx,0CF8h ; PCI index register

out dx,eax ; Set index for register 48h-4Bh

mov dx,0CFCh ; Set PCI data register for 48h

in ax,dx ; Read register 49h

mov bx,ax ; Save current 48h-49h registers

: Unlock the IDE controller to be enabled/disabled bit

mov eax,8000A108h ; To write to PCI register 08h on IDE controller
mov dx,0CF8h ; PCI index register

out dx,eax ; Set index for registers 08h — 0Bh

mov dx,0CFDh ; To read register 09h

in al,dx ; Read register 09h

or al,08h ; Set bit 3 to enable secondary channel program
out dx,al ; Write back to register

; Disable the secondary IDE channel. The register 48h-49h is saved in BX

mov eax,8000A148h ; To modify register 48h on the IDE controller
mov dx,0CF8h ; PCI index register

out dx,eax ; Set index for register 48h-4Bh

mov dx,0CFCh ; Set PCI data register for 49h

or bx,0100h : Set bit 8 of 48h

mov ax,bx

out dx,ax

; Lock in the secondary channel to enable/disable bit

mov eax,8000A108h ; To write to PCI register 08h on IDE controller
mov dx,0CF8h ; PCI index register

out dx,eax ; Set index for registers 08h — 0Bh

mov dx,0CFDh ; To read register 09h

in al,dx ; Read register 09h

and al,0F7h ; Clear bit 3 to enable secondary channel program
out dx,al ; Write back to register

pop dx

pop bx

pop eax

; End of secondary channel disable

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs

Page 67

14.3.5 IDE Channel Enable
The primary IDE channel is enabled as power-on default. To enable an IDE channel after they
have been disabled, the BIOS must:
1. Set the IDE channel programmable logic enable bit in Reg09h.
2. Clear the IDE channel disable bit in Reg48h to enable the IDE channel.

Note: No IDE I/O port access is allowed between step (1) and step (2). It is recommended that the
BI1OS execute step (2) immediately after step (1). There should be no ‘in” instruction between two
‘out’ instructions to register 09h and 48h.

Sample program: Enable Primary IDE channel
; Read current register 48h-49h on IDE controller

push eax

push bx

push dx

mov eax,8000A148h ; To modify register 48h on the IDE controller
mov dx,0CF8h ; PCIl index register

out dx,eax ; Set index for register 48h-4Bh

mov dx,0CFCh ; Set PCI data register for 48h

in ax,dx ; Read register 49h

mov bx,ax ; Save current 48h-49h registers

: Unlock the IDE controller to enable/disable bit

mov eax,8000A108h ; To write to PCI register 08h on IDE controller
mov dx,0CF8h ; PCI index register

out dx,eax ; Set index for registers 08h — 0Bh

mov dx,0CFDh ; To read register 09h

in al,dx ; Read register 09h

or al,02h ; Set bit 1 to enable primary channel program
out dx,al ; Write back to register

; Enable the primary IDE channel. The register 48h-49h is saved in BX

mov eax,8000A148h ; To modify register 48h on the IDE controller
mov dx,0CF8h ; PCI index register

out dx,eax ; Set index for register 48h-4Bh

mov dx,0CFCh ; Set PCI data register for 49h

and bx,0FFFEh ; Clear bit 0 of 48h

mov ax,bx

out dx,ax

; Lock in the primary channel to enable/disable bit

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 68

mov
mov
out
mov
in
and
out

pop
pop
pop

; End of primary channel enable

eax,8000A108h
dx,0CF8h
dx,eax
dx,0CFDh
al,dx

al,0FBh

dx,al

dx
bx
eax

; To write to PCI register 08h on IDE controller

; PCI index register

; Set index for registers 08h — 0Bh
; To read register 09h

; Read register 09h

; Clear bit 1 to enable primary channel program

; Write back to register

14.4 USB Controller Reset at Hard Reset

This USB controller reset sequence is not required for SB600

14.5 Clock Throttling

The SB600 has a register for setting clock duty cycle (throttling). The CLKVALUE register is
located in the ACPI region. Bit 4 of this register, when set to 1, enables clock throttling, while
bits [3:1] select the duty cycle from 12.5% to 87.5%, in seven steps of 12.5% each.

The address of ACPI CLKVALUE register is at PM 10 location (Index/Data through
0CD6h/0CD7h) index 26h and 27h.

CLKVALUE register

Bit 4

N = =)

Bits[3:1]
X X X
000
001
010
011
100
101
110
111

Duty Cycle
100%
Invalid
12.5%

25%

37.5%

50%

62.5%

75%

87.5%

Sample program: Clock throttling

ClockThrottleExample proc near
push ax ; Save registers used by this routine
push dx
© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 69

; Get ACPI CLKVALUE register address from PM 10 index 26h and 27h

mov
mov
out
mov
in

mov

mov
mov
out

mov

mov

dx,0CD6h ; Set the PM 10O register index

al, 27h ; Index = High byte, ACPI clock address
dx,al

dx,0CD7h ; Get PM 10 register data

al,dx ; High byte of ACPI clock address

ah,al ; Save High byte of address

dx,0CD6h ; Set the PM 10O register index

al, 26h ; Index = Low byte, ACPI clock address
dx,al

dx,0CD7h ; Get PM 10 register data

al,dx ; Low byte of ACPI clock address

dx,ax : dx = CLKVALUE address

; Enable throttling (set bit 4=1) and set duty cycle to 50%,(Set bits [3:1]=100b

in
and
or
out
pop
pop
ret

al,dx : Read current CLKVALue

al,0E1lh ; Keep the unused bits

al,18h ; Set bit 4 to enable and bits [3:1]=100b for 50%
dx,al ; Write new throttling value

dx ; Restore registers used by this routine

ax

ClockThrottleExample endp

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 70

14.6 Lid Switch

The Lid Switch programming is implementation specific. In a typical implementation the output
of the debounced lid switch is connected to one of the Gevent or GPM pins. The Gevent and
GPM pins can trigger the ACPI event, and the trigger polarity is programmable through the
Southbridge register. The Gevent and GPM pins are in S5 plane and hence can trigger the event
in S5 state.

14.6.1 Lid Switch Hardware Connection
This sample program assumes that the SB600 ExtEvent0 pin is connected to the lid switch.
14.6.2 Associated Registers
The registers associated with ExtEventO are:
= ExtEventO Trigger polarity at PMIO index 37h, bit 0. Set to 1 for rising edge trigger and
clear to O for falling edge trigger. (Default = 0)
= ExtEventO signal to S5 region at PMIO index 78h bit 2. Set to 1 for S5 plane. (Default
=1).
= ExtEventO set as ACPI function at Device 14h, function 0, register 66h, bit 6. Setto 1 to
enable ExtEvent0 as ACPI function. ExtEventO is a multi function pin and it must be set
for the ACPI function.
= ExtEventO ACPI event enable. This register is part of ACPI GPEO block. The address is
BI10OS implementation specific (refer to PMIO register at index 28h and 29h). For this
sample program, the ACPI GPEO block starts at 820h. ExtEventO is bit 16 of the block.
14.6.3 BIOS Initialization.
The registers must be initialized during the boot up process. The order of initialization is not
critical. The initialization may be done in the BIOS at any stage of the boot up process after
GPEO block is set in PMIO registers 28h,29h).
; Select EvtEvent0 as ACPI pin by setting device 14h, function 0, register 66h, bit6 =1
mov eax,8000A064h ; To access registers 64h-67h
mov dx,0CF8h ; PCI index register
out dx,eax
mov dx,0CFEh ; PCI data register for 66h
in al,dx ; Read current value
or al,40h ; Set bit 6
out dx,al
; Program ExtEventO trigger polarity to 0 (falling edge trigger) to indicate lid open .
; Clear PMIO register 37h, bit0=0
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 71

mov dx,0CD6h : PMIO index

mov al,37h ;

out dx,al : Set PMIO index

mov dx,0CD7h : PMIO data

in al,dx : Read current value

and al,0Feh ; Falling edge trigger (on closing the lid)
out dx,al

: Enable ExtEvent bit in ACPI GPEO enable block.

mov dx,824h : GPEO enable is offset 4 of GPEO block
in eax,dx : Read GPEO block
or eax,0100h : Set bit 16, ExeEvent0 enable

out dx,eax

; Enable ExtEventO to S5 plane. This step is optional as the bit is set by default.

mov dx,0CD6h : PMIO index

mov al,78h ; S5 plane enable register
out dx,al

mov dx,0CD7h ; PMIO data register

in al,dx ; Read current register

or al,04h ; ExtEvent0 to S5 plane
out dx,al

14.6.4 ACPI Programming

The ASL code defines the following:

= The operation region where the lid polarity resides in address space. In our example that

is at PMIO register 37h, bit 0.

= Adevice called _SB.LID with HID of PNPOCOD.

= Method _LID to return current lid status.

= A _PRW package that defines wake from S4 states (which includes wake from S1, S3

also).
= Event handler _GPE.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 72

T T T T

//Code for Lid Switch control. /!
/I This code is based on Lid switch connected to ExtEventO. /!
/I ExtEventO causes ACPI event 16 or 0x10 /!

/I ExtEventO trigger polarity is controlled by GPIO register 37h, bit0 //
/1l PMIO reg 37h bit 0 = 0 Trigger ACPI event on falling edge I
/1l PMIO reg 37h bit 0 = 1 Trigger ACPI event on rising edge I
I I
/I In addition, ExtEventO needs to be enabled for ACPI event. Device 14h, //
/! function 0, register 66h, bit 6 should be set to 1 in the BIOS /!
Il initialization code for ExtEventO to be ACPI event causing SMI. //
o I

OperationRegion (PMIO, SystemlO, 0xCD6, 0x2)
Field (PMIO, ByteAcc, NoLock, Preserve)

{
INPM,8,
DAPM,8
}
IndexField (INPM, DAPM, ByteAcc, NoLock, Preserve)//R07
{
Offset(0x37), /] To change trigger polarity for ExtEvent0
LPOL,1, /I 1 = rising edge, 0 = falling edge
1l
} /lend of indexed field
// Define the Lid Device. Lid switch is connected to ExtEventO which
/I causes ACPI event 16 (0x10)
Device(_SB.LID)
{
Name(_HID, EISAID("PNPOCOD"))
Method(_LID)
{
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 73

if(LPOL){Return(0x00)} /I Lid is closed

else {Return(0Ox1)} // Lid is open
}
Name(_PRW, Package(2)
{ 0x10, 0x03} /I ACPI event 0x10 can wake-up from S3
)
}
/IACPI event
Scope(_GPE)
{ Method(_L10)
{
Not(LPOL, LPOL) /I Reverse the polarity from sleep to
wake and vice versa
Notify(_SB.LID, 0x80) // Notify the OS that status has changed.

14.7 SATA Hot Plug Sample Program

Scope(_GPE)

{

Method(_L1F,0x0,Notserialized) // GPEOQ Block bit 31 is used for SATA
//hot plug

sleep(2000)
/I For SATA at Bus 0, Device 12h, Function 0, channel 0 device
/I Check if change in the status of the Serial ATA PHY
if(_SB_.PCI0.SATA.STAOQ) { /I BARS, offset 10ah, bit0
Notify(_SB.PCI0.SATA.PRID.P_DO, 0x00)
sleep(2000)
Notify(_SB.PCI0.SATA.PRID, 0x01)
sleep(2000)

store(_SB_.PCI0O.SATA.STAO,_SB_.PCI0.SATA.STAO) //Clear Status of
/I master SATA

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 74

/I For SATA at Bus 0, Device 12h, Function 0, channel 1 device

/I Check if change in the status of the Serial ATA PHY
if(_SB_.PCI0.SATA.STAL) { /I BARS, offset 18Ah, bit 0

Notify(_SB.PCI0.SATA.SECD.S_D0, 0x00)

sleep(2000)

Notify(_SB.PCI0.SATA.SECD, 0x01)

sleep(2000)

store(_SB_.PCI0.SATA.STA1\ SB .PCI0O.SATA.STA1) //clear Status
/I of slave SAT

/I For SATA at Bus 0, Device 11h, Function 0, channel 0 device

/I Check if change in the status of the Serial ATA PHY
if(_SB_.PCI0.SAT2.STAO){ /IBARS, offset 10ah, bit0

Notify(_SB.PCI0.SAT2.PRID.P_D0, 0x00)

sleep(2000)

Notify(_SB.PCI0.SAT2.PRID, 0x01)

sleep(2000)

store(_SB_.PCI0.SAT2.STAO0,\ SB_.PCI0O.SAT2.STAQ) //clear Status
/I of master SATA

/l For SATA at Bus 0, Device 11h, Function 0, channel 1 device
/I Check if change in the status of the Serial ATA PHY

if(_SB_.PCI0.SAT2.STA1) { /IBAR4, offset 18Ah, bit 0
Notify(_SB.PCI0.SAT2.SECD.S_D0, 0x00)
sleep(2000)
Notify(_SB.PCI0.SAT2.SECD, 0x01)
sleep(2000)

store(_SB_.PCI0.SAT2.STA1\ SB _.PCI0.SAT2.STALl) /lclear
/I Status of slave SAT

} /l End of Method(_L1F)
} /I End of Scope(_GPE)

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 75

Scope(_SB_.PCI0.SATA) /I Bus 0, Device 12h, Function 0

{
OperationRegion(BARS5, SystemMemory, OxFFF80000, 0x1000) /[The
/l address should be replaced by the BIOS
Field(BAR5, AnyAcc, NoLock, Preserve)
{
Offset(0x104), // Channel 0
CSTX, 1, /I Device detected but no communication with Phy
CSTO, 1, /I Communication with Phy established. (Physgood)
Offset(0x10A), // Channel 0
STAO, 1, /I Change in Phy status
Offset(0x184), /I Channel 1
CSTY, 1, /I Device detected but no communications with Phy
CSTL, 1, /I Communication with Phy established (Physgood)
Offset(0x18A), /I Channel 1
STAL, 1, /I Changes in Phy status
} // End of Field(BARS)
Method(_INI) { /I For Bus 0, Device 12h, Function 0
if(_SB_.PCI0.SATA.STA0){
store(_ SB_.PCIO.SATA.STAO0,\ SB .PCI0.SATA.STAO) //clear channel
/1 0 SATA status
}
if(_SB_.PCI0.SATA.STA1){
store(_SB_.PCI0.SATA.STA1_SB_.PCI0.SATA.STA1) //clear channel
/I 1 SATA status
}
} // End of Method (_INI)
Device(PRID) {
Name(_ADR, 0) /I |DE Primary Channel
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 76

Device(P_D0) {
Name(_ADR, 0) // Drive O - Master

Method(_STA,0){

if _SB_.PCI0.SATA.CSTO) { //1f SATA detected
return(0xO0f)

}

else {
return (0x00)

}

} End of Method (_STA)
}// End of P_DO
} // End of PRID

Device(SECD) {
Name(_ADR, 1) /I IDE Secondary Channel

Device(S_D0) {
Name(_ADR, 0) // Drive 0 - Master

Method(_STA,0){

if _SB_.PCIO.SATA.CST1) { /' 1f SATA detected
return(0xO0f)

}

else {
return (0x00)

} /

} / End of Method (_STA)
}// End of S_DO

}// End of SECD
} /I End of Scope(_SB.PCI0.SATA)

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 77

// Bus 0, Device 11h, Function 0

Scope(_SB_.PCI0.SAT2)

{

OperationRegion(BARS5, SystemMemory, OXxFFF80000, 0x1000) // Replace
/faddress in BIOS

Field(BAR5, AnyAcc, NoLock, Preserve)

{
Offset(0x104), /IChannel 0
CSTX, 1, /I Device detected but no communication with Phy
CSTO, 1, /I Communication with PHY established
Offset(0x10A), // Channel 0
STAO, 1, /l Change in PHY status
Offset(0x184), /I Channel 1
CSTY, 1, /I Device detected but no communication
Il with PHY
CST1, 1, /I Communication with PHY established
Offset(0x18A), /IChannel 1
STAL, 1, /l Change in PHY status
} // End of Field
Method(_INI) { /I For Bus 0, Device 11h, Function 0

if(_SB_.PCI0.SAT2.STA0}{

store(_SB_.PCI0.SAT2.STA0,\ SB_.PCI0O.SAT2.STAQ) //clear SATA
/I channelO status

}
if(_SB_.PCI0.SAT2.STA1}{

store(_SB_.PCI0.SAT2.STA1\ SB _.PCI0O.SAT2.STAL) //clear SATA
/I channel 1 status

} /I End of Method(_INI)

Device(PRID) {

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 78

Name(_ADR, 0) /I |DE Primary Channel

Device(P_DO0) {
Name(_ADR, 0) // Drive 0 - Master

Method(_STA,0){

if _SB_.PCI0.SAT2.CST0) { /' 1f SATA detected
return(0xO0f)

}

else {
return (0x00)

}

} // End of Method(_STA)
}// End of P_DO
} // End of PRID

Device(SECD) {
Name(_ADR, 1) // IDE Secondary Channel

Device(S_D0) {
Name(_ADR, 0) // Drive 0 - Master

Method(_STA,0){

if _SB_.PCI0.SAT2.CST1) { /' 1f SATA detected
return(0xO0f)

}

else {
return (0x00)

}

} //End of Method(_STA)
}// End of S_DO

}// End of SECD
} /I End of Scope(_SB_.PCI0.SAT2)

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs
Page 79

14.8 Temperature Limit Shutdown through SMI#

The program to shut down the system when the temperature exceeds a pre-set limit requires the
following:

1. A temperature sensing diode or thermistor positioned under the CPU socket.

2. A Super I/O device capable of monitoring the temperature and toggle an SMI# line
when the temperature exceeds the pre-set limit.

3. SMI programming in the SB600 to shut down the system.

The discussion below assumes that an ITE-8712 Super /O is present in the system and is
connected to the thermal diode to measure temperature-1 and temperature-2, and a thermistor to
measure temperature-3. This code example shows thermal programming in the Super 1/O, and
SMI programming related to thermal shutdown.

Please refer to ITE-8712 Super 1/0 device manual for register details.

This code example assumes that the GP47 from Super 1/O is connected to the ExtEventl pin on
the SB600.

14.8.1 Setting Up ITE 8712 Super 1/O Registers

ITE 8712 Super /O registers are set during the boot up process through the BIOS program.

1. Set the Environmental Controller base address.
Select a base address in the 1/0 range which is not used by any device and is also accessible to the
LPC. The address range is 8 bytes. In this example the 1/O address 228h — 22Fh will be used.
This address is set in Super 1/O logical device 04h, registers 60h, and 61h. After the base address
is set, the environment registers are accessed by index/data method at base address+5 as index,
and base address+6 as data. For this example the index/data address would be 22Dh/22Eh.

; Define equates for index/data, shutdown temperature, and Super 1/O access port.

Sensor_Port EQU 22Dh

TemperatureLimit EQU 75

Superlo_Config_Port EQU 2EH

call SuperloEnterConfig ; Write 87h, 01h, 55h, 55h to Superlo

; Enable the access to device 04 registers, i.e. set Super 1/0O address register to 04
; Device 04 is the Environment controller

mov dx,2Eh ; Super /O index
mov al, 07h ; Register 07 is device select
out dx,al
mov dx,2Fh ; Super 1/O data
mov al, 04h ; Set register to 04
out dx,al
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 80

; Logical Device Number (LDN) is now set to 04.
; Set Base address to 0228h in registers 60h and 61h of this LDN =04

; Set MS byte of base address to 02h

mov
mov
out

mov
mov
out

dx,2Eh
dx,60h
dx,al

dx,2Fh ; Super 1/0 index
al,02h ; MS byte of 0228h
dx,al

; Set LS byte of the base address to 28h

mov
mov
out

mov
mov
out

dx,2Eh
dx,61h
dx,al

dx,2Fh ; Super 1/0 index
al,28h ; MS byte of 0228h
dx,al

; The environment (temperature, voltage etc.) registers can now be accessed
; through Base address + 5 (index), and base address + 6, i.e. 22Dh and 22Eh

mov

ah, TemperatureLimit ; Selected through setup or OEM

: Set limit for 1st Thermistor
; Register 40h is for upper limit, register 41h is for lower limit
; If lower limit is set to 7Fh, then the temperature controller is in the comparator mode

mov

mov
out

mov
mov
out

mov
mov
out

mov
mov
out

dx,Sensor_Port ; The register is written through index at 22Dh
al,40h ; To set the upper limit

dx,al
dx,Sensor_Port+1 ; The temperature value is written through 22Eh
al,ah ; Get the Temperature upper limit

dx,al
dx,Sensor_Port ; The register is written through index at 22Dh
al,41h : To set the lower limit

dx,al

dx,Sensor_Port+1
al,7th ; Lower limit of 7Fh to enable the comparator mode
dx,al

: Set limit for 2nd Thermistor

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 81

; Register 42h is for upper limit, register 43h is for lower limit
; If lower limit is 7Fh then it is comparator mode

mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,42h ; To set the upper limit

out dx,al

mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,ah ; Get the Temperature upper limit

out dx,al

mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,43h : To set the lower limit

out dx,al

mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,7th ; For comparator mode

out dx,al

: Set limit for 3rd Thermistor
; Register 44h is for upper limit, register 45h is for lower limit
; If lower limit is 7Fh then it is comparator mode

mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,44h ; To set the upper limit

out dx,al

mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,ah ; Get the temperature upper limit

out dx,al

mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,45h : To set the lower limit

out dx,al

mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,7Fh ; For comparator mode

out dx,al

; Set Thermal out limit registers at 52h, 53h, 54h

mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,52h : Thermal limit for diode 1
out dx,al
mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,ah ; Get temperature upper limit
out dx,al
mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,53h : Thermal limit for diode 2
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 82

out dx,al

mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,ah ; Get temperature upper limit

out dx,al

mov dx,Sensor_Port ; The register is written through index at 22Dh

mov al,54h : Thermal limit for thermistor 3

out dx,al

mov dx,Sensor_Port+1 ; The temperature value is written through 22Eh
mov al,ah ; Get temperature upper limit

out dx,al

; Read status from register 03 to clear the status

mov dx,Sensor_Port ; The register is read through index at 22Dh
mov al,03h

out dx,al

mov dx,Sensor_Port+1 ; The register is read through data at 22Eh
in al,dx

; Enable Interrupt/SMI# register at 00.

mov dx,Sensor_Port ; The register is written through index at 22Dh
mov al,00h

out dx,al

mov dx,Sensor_Port+1 ; The register is written through data at 22Eh
in al,dx

or al,07h ; Enable IRQ, SMI# and enable monitoring
out dx,al

; In logical device 7, set SMI registers, thermal out register,
: and enable the SMI.

; 1. Set logical device to 7

mov al,07h

mov dx,Superlo_Config_Port
out dx,al

mov al,07h

inc dx

out dx,al

: 2. Set SMI pin to GP47 (00 100 111 = 27h) in reg 0f4h

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 83

; Register F4 is SMI mapping register

mov al,0f4h

mov dx,Superlo_Config_Port
out dx,al

inc dx

mov al,27h

out dx,al

; 3. Set Thermal output to GP47(00 100 111 = 27h) in reg OF5h
; Register OF is thermal mapping register

mov al,0f5h

mov dx,Superlo_Config_Port
out dx,al

inc dx

mov al,27h

out dx,al

; Enable generation of SMI# due to environment condition

mov al,0f0h

mov dx,Superlo_Config_Port
out dx,al

inc dx

in al,dx

or al,10h

out dx,al

; Set GP47 as general purpose pins
; Registers 25h and 28 are global access registers

; Select IRTX/GP47 as GP47

mov al,028h : For GP-47
mov dx,Superlo_Config_Port
out dx,al
inc dx
in al,dx
or al,80h
out dx,al
call SuperioExitConfig ; Write 02, 02 to Super 10
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 84

14.8.2 Initialize Southbridge Registers for SMI#

; Enable the base address range (228h-22Fh) in the LPC register.
; Address range 228h-22Fh is enabled in LPC Device 14h, function 3, Register 45h, bit 1

mov dx,0CF8h

mov eax,8000A344h
out dx,eax

mov dx,0CFDh

in al,dx
or al,02h
out dx,al

; PCI device access index register
; Device 14h, function 3, registers 44h-47h

; To access register 45h
; Read register 45h
; Set bit 1

; Configure ExtEventl for SMI#. ExtEventl is configured through PMIO

; register 32h bit 3:2 = 00

mov dx,0cd6h

mov al,32h
out dx,al

mov dx,0cd7h
in al,dx

and al,0f3h

or al,04h

out dx,al

; Set ExtEventl for SMI, negative edge through PMIO register 37h, bit 1 =0

mov dx,0cd6h
mov al,37h
out dx,al

mov dx,0cd7h
in al,dx

and al,0fdh
out dx,al

: Clear bits 3:2
; Set [3:2] = 01 for SMI

; Clear bit 1 for Negative edge

; Also set PMIO register 04 to enable ExtEventl for SMI

mov dx,0cd6h

mov al,04h
out dx,al

mov dx,0cd7h
in al,dx

or al,02h

out dx,al

; End of temperature setting program.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 85

14.8.3 SMI Programming to Shut Down the System

The SMI programming should shut down the system when the line connected to Super 1/O for

temperature over run is set.

; Check ExtEventl status. The ExtEventl status is on the PMIO register 07h, bit 1

mov dx,0cd6h
mov al,07h
out dx,al

mov dx,0cd7h
in al,dx

test al,02h : Bit 1 for ExtEventl

jnz ShutDownFromTalert ; ExtEventl is set, shut down

: Check alternate ExtEvent 1 status

mov dx,0cd6h

mov dl,3ah

out dx,al

mov dx,0cd7h

in al,dx

test al,02h

jz NoShutDown
ShutDownFromTalert:

mov dx,PMla CNT_BLK+1

mov al,34h : Set S5 status

out dx,al
jmp $

NoShutDown:

: Continue with rest of the SMI routine.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 86

14.9 Sleep Trap through SMI#

This sample code provides an SMI# routine to develop some software workarounds or debugging

functions before the system goes into ACPI sleep state.

14.9.1 Enable Sleep SMI# in ACPI ASL code

The following example implements Sleep SMI Control Register enable by the ASL code PTS

method.

Method(_PTS, 1) {
Store(One, _SB.PCI0.SMBS.SLPS)
PTS(Arg0)
Store(0, Index(WAKP,0))
Store(0, Index(WAKP,1))
}
OperationRegion (PMIO, SystemlO, 0xCD6, 0x2)
Field (PMIO, ByteAcc, NoLock, Preserve)

{

Il Clear Wake up package.
Il Clear Wake up package.

INPM,8,
DAPM,8

}

IndexField (INPM, DAPM, ByteAcc, NoLock, Preserve)//R07

{
Offset(0x00),
11!
TM1E,1,
TM2E,1,
Offset(0x01),
11!
TM1S,1,
TM2S,1,
Offset(0x04),
17!
SLPS,1,
Offset(0x1C),
13!
MKME,1, I
PI3E,1, I
I2E,1, I
PIL1E,1, I
PIOE,1, I
Offset(0x1D),
13!
MKMS,1, I
PI3S,1, I
PI2S,1, I

// Set to 1 to enable SMI# when PM_TIMER1 expires
// Set to 1 to enable SMI# when PM_TIMER2 expires

/I SB sets this bit to indicate that PM_TIMERL1 has expired
/I SB sets this bit to indicate that PM_TIMER2 has expired

/I Set this bit to enable SLP2SMI

© 2008 Advanced Micro Devices Inc.

AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs
Page 87

PI1S,1, 1l
PI10S,1, 1l
Offset(0x55),
SPRE,1, I
Offset(0x68),
13!
TPDE,1, I
1
} /lend of indexed field

14.9.2 Sleep Trap SMI Routine

The following example implements the Sleep Trap SMI# routine.

SLPSMI_HANDLER_FAR PROC FAR PUBLIC
; Read PM1_CNT to get sleep type
mov dx, PM_BASE_ADDRESS + SB_PM_IO_PM1_CTRL; (PM1_CNT 04h)

in ax, dx

and ax, PM1_CNT _SLP_TYPE

shr ah, 2

dec ah ; For Table from 0
movzx bx, ah

shi bx, 1

add bx, offset cs:ACPISleepTrapTable
mov bx, cs:[bx]
SleepTrapPatch:
cmp word ptr cs:[bx], Offffh
je short SleepTrapPatchDone

push bx
call word ptr cs:[bx]
pop bx
inc bx
inc bx

jmp short SleepTrapPatch
SleepTrapPatchDone:
: Disable SLP2SMI
mov ah, SB_PMU_REG_04 ; PMIO_REG.04h[7] = SLP2SMI Enable

call read_io_pmu
and al, NOT BIT7 ; Disable SLP2SMI
call write_io_pmu

; Clear SLP2SMI Status bit
mov ah, SB_.PMU_REG_07 ; PMIO_REG.07h[7] = SLP2SMI Status
call read_io_pmu
call write_io_pmu ; Write 1 to clear SLP2SMI status
; Write SLP_EN to put SB into sleep
mov dx, PM_BASE_ADDRESS + SB_PM_|0_PM1 CTRL ; PM1_CNT 04h

in ax, dx
or ax, Bitl3 ; PM1_CNT_SLP_EN
out dx, ax ; This puts SB to sleep state
ret
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 88

SLPSMI_HANDLER_FAR ENDP

ACPISleepTrapTable label byte

dw offset cs:ACPISleepTrapS1
dw offset cs:ACPISleepTrapS2
dw offset cs:ACPISleepTrapS3
dw offset cs:ACPISleepTrapS4
dw offset cs:ACPISleepTrapS5

ACPISleepTrapS1l

label

byte

dw offset cs:0emACPISleepTrapS1

dw OFFFFh
ACPISleepTrapS3

label

byte

dw offset cs:Port80_Enabled
dw offset cs:0emACPISleepTrapS3

dw OFFFFh
ACPISleepTrapS4

dw OFFFFh
ACPISleepTrapS5

label
dw offset cs:0emACPISleepTrapS4

label

byte

byte

dw offset cs:0emACPISleepTrapS5

dw OFFFFh

14.10 HD Audio — Detection and Configuration

rhkkhkkEhhkhkrhkhkrhkhkhhkhkhrhkhrhkhrhkhkrhkhkhdhhkhdhkhdhkhrhhrhhkrdhkhdhhrhhrhhhdhhkhdhrhrhhrhhrdhhrdhirhhihhihhiiixkx

; Equates for HD Audio detection
ATI_PCIE_BAR3 EQU

ATI_AZALIA_BUS_DEV_FUN EQU
ATI_SMBUS_BUS_DEV_FUN EQU

ATI_AZALIA_ID EQU

ATI_AZALIA_ExtBlk_Addr EQU
ATI_AZALIA_ExtBlk DATA EQU

OE0000000h

(14h) sh1 3 + 2
(14H) shI3+ 0

0437b1002h

OF8h
OFCh

A XA *
’

; ATI_SB_Cfg_Azalia
; Configure HD Audios

; Input: EBP =0
; ES=0

%k % X X % %

A AR Ahk
’

ATI_SB_Cfg_Azalia PROC

NEAR

; NB BAR3 base at Bus-0,Dev-0, func-0,Reg 1ch

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 89

pushad

; OEM specific CMOS setup option to Auto/Disable/enable HD Audio

mov ax,CMOS_Azalia_Option ; OEM specific

call ReadCMOSOption ; OEM specific

cmp ax,1 ; Is it disable?

je DisableAzaliaController ; Jump for Disable HD Audio

; OEMs may have a CMOS setup option for HD Audio clock source.
; The options may be USB 48 MHz or HD Audio 48 MHz
; Device 14h, function 2, register 43h, bit 0 = 1 for HD Audio clock.

mov ax,CMOS_AZA CLOCK ; OEM specific
call ReadCMOSOption ; OEM specific
cmp ax,1 ; Is it HD Audio clock at 48 MHz
jne @f ; Jump for USB 48 MHz clock
or Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA BUS_DEV_FUN shl 12 + 043h], BITO
; Enable xAz48Mhz pin as clock source of 48Mhz
call ATI fixed delay 1ms_far ; Wait 1ms
@@:
; OEM may have CMOS setup for HD Audio snoop (0= Disable, 1=Enable)
; Device 14h, function 2, register 42, bits 1 and 0 control snoop option
mov ax,CMOS_AZA SNOOP ; OEM specific
call ReadCMOSOption ; OEM specific
cmp ax,1 ; Snoop enabled?
jne @f ; Jump for disabled
or Byte PTR es:[ebp+ATIl_PCIE_BAR3+ATI_AZALIA BUS DEV_FUN shl 12 + 042h], BIT1
; Enable Snoop
@@:
; Set subsystem ID at device 14h, function 2, register 2ch
mov Dword PTR es:[ebp+ATIl_PCIE_BAR3+ATI_AZALIA BUS DEV_FUN shl 12 +2Ch], \
ATI_AZALIA_ID ; Write subsystem 1D
; Get HD Audio controller’s memory mapped configuration registers in EBX
mov ebx, Dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA BUS_DEV_FUN shl 12 +10h]
; HD Audio port configuration through Extended registers.
; Extended registers are addressed as index/data through SMBUS(Dev 14h, func0) register OF8h,
; and OFCh
; Index 0 is Audio port configuration. 2 bit per port for total of 4 ports
mov Dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12\
+ATI_AZALIA_ExtBIk_Addr], 0 ; Setindexto0
; First declare all the lines as GPIO lines by setting index 00 to all 1's.
; Then read the input status of these line at index 02
; If the line is 1, it is guaranteed not to be HD Audio
; This step is necessary because after S4 resume from ring, the AC-97 gives same status as HD Audio
© 2008 Advanced Micro Devices Inc. Sample Programs

AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 90

mov

call
mov

shr
mov

mov

Byte PTR es:[ebp+ATIl_PCIE_BAR3+ATI_SMBUS_BUS DEV_FUN shl 12 \
+SB600_SMBUS_REGFC], 11111111b ; Setto GPIO

ATI fixed delay 1ms_far ; Wait 1ms

ecx, dword PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS _BUS DEV_FUN shl 12 \
+SB600_SMBUS_REGFC]

ecx,10h

di,cx ; Save GPIO lines status at di[7:0]

Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12\
+ATI_AZALIA_ExtBIk_DATA], 10101010b - Set pin to HD Audio

; Interrupt routing table for HD Audio is at SMBUS (Dev 14h, func 0) register 63h

mov

Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 063h], 0
; Set PCI routing to #INTA

; Attempt to exit the reset state. This is done by command to exit the reset state and waiting
; for status of ready to begin operation.

mov

re_do_reset:
and
or
call
test
jnz
loop
jmp

ecx, 10 ; Make up to 10 attempt to exit reset state
bx, BIT15+BIT14 ; Clear bit0-13

Byte PTR ES:[ebx+08h], BITO ; EXit the reset state
ATI_fixed_delay_1ms_far ; Wait 1ms

Byte PTR ES:[ebx+08h], BITO ; Read of 1 = Ready to begin operation
of : Go if reset bit is set

re_do_reset ; Wait until ready to begin operation
ATI_SB_Cfg_Azalia_exit ; Exit because reset bit can not be set

; Ready to begin operation.
; Check codecs present by examining memory mapped register (pointed by EBX) at OEh

@@:

call

mov
and
jnz

ATI_fixed_delay_1ms_far ; Wait 1ms
al, Byte PTR ES:[ebx+0eh] ; State change status register
al, Ofh ; Bits 3:0 are for state change status
At least one azalia ; Codec present

; Disable Azalia controller and leave

DisableAzaliaController:

; Clear memory access at PCI register 04

and

Word PTR es:[ebp+ATI_PCIE_BAR3+ATI_AZALIA_BUS_DEV_FUN shl 12 +04h], 0

; Disable HD Audio module through PMIQ register 59h bit 3

mov dx,0cd6h ; PMIO index register

mov al,59%h ; Set PMIO index to 59h

out dx.al ;

mov dx,0cd7h ; PMIO data register

in al,dx ; Read current data
© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 91

not al, BIT3 ; Clear bit 3 to disable HD Audio
out dx,al ; Output new data

; HD Audio port configuration through Extended registers.

; Extended registers are addressed as index/data through SMBUS(Dev 14h, func0) register OF8h,
; and OFCh

; Index 0 is Audio port configuration. 2 bit per port for total of 4 ports

mov Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS DEV_FUN shl 12\
+ATI_AZALIA_ExtBlk_DATA], 01010101b ; Set pin routine to AC97
jmp ATI_SB_Cfg_Azalia_exit

; Audio codec present
; Register AL has codec present bit map in bits 3:0
; Register EBX points to memory mapped configuration registers

At_least one azalia:
mov dl, al

; After resume from S4 through ring, the AC97 lines give same status as HD Audio
; Itis necessary to remove HD Audio status from those bits. The AC-97 ring resume status is in register

; DI[3:0]
mov ax,di ; Get GPIO status and AC97 S4 ring wakeup
mov ah,0fh ; To keep only bits 3:0
and al,ah ; Keep only bits 3:0
xor al,ah ; Invert the AC97 ring bits
and dlal ; Remove GPIO and AC-97 bits from HD Audio bits
mov cl,0
test_SDI:
test dl, BITO ; Test for specific codec present
jnz configure_Azalia_channel ; Jump, codec is present

; This specific codec is not present. Set pin config to AC97

; This pin is set through index 0 of extended registers.

; The extended registes are accessed as index/data at SMBus (dev 14h, func 0) registers 0F8h/0OFCh
; There are two bits per codec. Register CL has the codec number.

mov ah, 0lb ; 01 = Set codec as AC97

shl ah, cl ; Move in the position for this codec

shl ah, cl ; Two bits per codec

mov al, 11b ; Mask for this codec

shl al, cl ; Move it in the position for this codec

shl al, cl ; Two bits per codec

xor al, -1 ; Zero these two bits

and Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12\
+ATI_AZALIA_ExtBlk_DATA], al ; Clear channel pin config

or Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12\
+ATI_AZALIA_ExtBIk_DATA], ah ; Set channel pin config to AC97

jmp test_next_SDI

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 92

configure_Azalia_channel:
call ATl _SB_Cfg_Azalia_ Pin_CMD ; Configure this pin

test_next_SDI:

shr di, 1 ; Get next codec present

inc cl ; Update the codec Channel number

cmp cl, 4 ; Completed all channels

je re_do_clear_reset ; Yes, jump. Reset the controller and exit
jmp test SDI ; Do the next codec

; Reset the controller and wait till it enters reset state.

re_do_clear_reset;

and Byte PTR ES:[ebx+08h], NOT (BIT0) ; Controller transition to reset state
test Byte PTR ES:[ebx+08h], (BITO) ; Test the reset status. 0 = Controller in reset state
jnz re_do_clear_reset ; If 1, wait to enter reset state

ATI_SB_Cfg_Azalia_exit:
popad

ret
ATI_SB_Cfg_Azalia ENDP

rhkkkkkhhkkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhhkhhhkhhhkhhhkhrhhhhhhdhhhdhhhhhhhhhrhhhhhhrhhrhhrhhririxx
’

; ATI_SB_Cfg_Azalia_Pin_CMD *
. *
; Configure each codec pin *
. *
; Input: cl, = channel number *
; ebx = Memory mapped configuration register address *

*

’
rhkkkkkhkkkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhhhhhkhhhkhdhhhhhhhhhkhhhkhdhhhrhhrhhhhhhdhhhihhhrhhrhhiihikikx
1

ATI_SB_Cfg_Azalia Pin CMD PROC NEAR
pushad

; OEM may have CMOS setup option for Pin Configuration (0= Disable, 1=Enable)

mov ax CMOS_Pin_Config ; OEM specific

call ReadCMOSOption ; OEM specific

cmp axl

jne ATI_SB_Cfg_Azalia_Pin_CMD_exit ; Jump if Pin Configuration is disabled

; Set codec channel number in bits 31:28
: Write command for ID read

shl ecx, 28

mov eax, OF0000h ; Read IDs command

or eax, ecx

mov Dword PTR ES:[ebx+60h], eax ; Immediate command output register
© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 93

call ATI_SB_Cfg_Azalia_Delay ; About 30 uSec delay

mov eax, Dword PTR ES:[ebx+64h] ; Immediate command input
cmp eax, 010ec0880h ; Is it Realtec codec?
jne ATI_SB_Cfg_Azalia_Pin_CMD_exit ; This routine works only with Realtec codec

mov si, offset Azalia_Codec_Table_Start

mov di, offset Azalia_Codec_Table_end ; Table end does not include front panel

; OEM may have a CMOS setup selection for Front panel audio (0=Auto, 1=Disable)

mov ax CMOS_Front_Panel ; OEM specific

call ReadCMOSOption ; OEM specific

cmp ax,1 ; Front panel disable

je loop_Immediat_ Command_Output_Interface ; Jump for front panel disable

; Front panel option is Auto. GPIO9 detects the front panel audio in the SB600, and GPI1O8 detects the

front panel audio in SB460.
;Check whether SB460?Call DetectSB460
Jz SB460_Chip ;jmp if SB460

;Control comes here if SB600
; Set GPIO9 as input through SMBus (Dev 14h, func 0) register A9h, bit 5
; Read GP109 through SMBus (Dev 14h, func 9) register AAh, bit 5

or Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0A%h], BIT5

test

jmp

SB460_Chip:

; Set GPIO9 Input
Byte PTR es:[ebp+ATIl_PCIE_BAR3+ATI_SMBUS BUS DEV_FUN shl 12 + 0AAh], BIT5
; GP109 0:connected 1:not

DetectFrontPanel Audio

;Control comes here if SB460
; Set GPI108 as input through SMBus (Dev 14h, func 0) register A9h, bit 4
; Read GP108 through SMBus (Dev 14h, func 9) register AAh, bit 4

or

test

Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0A9h], BIT4
; Set GPIO8 Input
Byte PTR es:[ebp+ATI_PCIE_BAR3+ATI_SMBUS_BUS_DEV_FUN shl 12 + 0AAh], BIT4

: GP108 0:connected 1:not

DetectFrontPanel Audio:

jnz loop_Immediat Command_Output_Interface ; Jump, Front Panel audio is not present

; Front panel audio is present. Extend the end pointer to include front panel commands

mov di, offset Azalia_Codec_Table_FP_Enable end
; Write the codec commands

loop_Immediat_Command_Output_Interface:

cmp si, di ; End of table?

je ATI_SB_Cfg_Azalia_ Pin_CMD_exit ; Jump at the end of the command
test_again:

test Byte PTR ES:[ebx+68h], BITO ; Immediate command status register

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Sample Programs
Page 94

jnz test_again ; If bit 0 == 1, codec is not ready for command

mov eax, Ccs:[si] ; Get the command from the table
or eax, ecx ; Add codec number 0 to 3

mov Dword PTR ES:[ebx+60h], eax ; Write immediate command

call ATI_SB_Cfg_Azalia_Delay ; About 30 uSec delay

add si, 4 ; Update the pointer

jmp loop_Immediat_Command_Output_Interface ; Next command

ATl _SB_Cfg_Azalia_Pin_CMD_exit:
popad
ret
ATI_SB_Cfg_Azalia_Pin_CMD ENDP

EE Rk R e i e R o R R R R R A S R A e R R R R R R R S R A e R R R R R R R R R R R SR R R S R AR R S R R R R R

: ATI_SB_Cfg_Azalia_Delay *
. *
; Wait about 30 uSec *
. *

*

)

: Input : None

B e R S S = = = 13
;

ATI_SB_Cfg_Azalia_Delay PROCNEAR
push cx
mov cx, 4
call ATI fixed delay far ; Wait approx cx * 7 uSec
pop cX
ret
ATI_SB_Cfg_Azalia_Delay ENDP

R R R R R R R R R R R R R R R R R AR R R AR R R AR R AR R AR R AR AR R R AR R R AR R R R R R R AR AR AR AR AR R R R R R R R

; ATI_Fixed_delay_1ms_FAR

; Delay for approx 1 mSec

* % ok X %

; Input: None

A A A A A A A A A A A A AA A A A A A A A A A A A A A AAAAA AR A A A A hhd
1

PUBLICATI_fixed_delay 1ms FAR
ATI_fixed_delay_1ms_FAR PROC FAR
push cx
mov cX, 1000/15
call ATI_fixed_delay
pop cX
ret
ATI_fixed_delay_1ms_FAR ENDP

ER R R R R R R R R R R R S R R R R R R R R AR R R R R R R R R R R R R R R R AR R R AR R R AR R AR R R R AR R R AR R S R R R AR R R A R

; ATI_fixed_delay_far *

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 95

*
; Delay for about 30 uSec *
; Input: None *
. *

ER R R R R R ke L e R o R S R R R e R R e R R R R R R R S R R S R R R R R R R R R R R R R S R AR R S R R R R R
)

ATI_fixed_delay far PROC FAR

push ax
fixed_delay 1:
in al, 61h ; refresh_port
test al, 00010000b
jz fixed_delay_1
dec cX
jz fixed_delay 2
fixed_delay_3:
in al, 61h ; refresh_port

test al, 00010000b
jnz fixed_delay 3

dec cX

jnz fixed_delay 1
fixed_delay 2:

pop ax

ret
ATI_fixed_delay ENDP

Azalia_Codec_Table_Start:
dd 01471C10h
dd 01471D40h
dd 01471E01h
dd 01471F01h
dd 01571C11h
dd 01571D10h
dd 01571E01h
dd 01571F01h
dd 01671C12h
dd 01671D60h
dd 01671E01h
dd 01671F01h
dd 01771C13h
dd 01771D20h
dd 01771E01h
dd 01771F01h
dd 01871C30h
dd 01871D91h
dd 01871Ealh
dd 01871F01h
dd 01971C00h
dd 01971D00h
dd 01971E00h
dd 01971F40h
dd 01a71C31h
dd 01a71D31h

© 2008 Advanced Micro Devices Inc. Sample Programs
AMD SB600 BIOS Developer's Guide (Public Version) Proprietary Page 96

dd 01a71E81h
dd 01a71F01h
dd 01b71C00h
dd 01b71D00N
dd 01b71EQOh
dd 01b71F40h
dd 01c71C70h
dd 01c71D10h
dd 01c71E33h
dd 01c71F99h
dd 01d71C00h
dd 01d71D10h
dd 01d71E7fh
dd 01d71F90h
dd 01e71C50h
dd 01e71D00h
dd 01e71E44h
dd 01e71F01h
dd 01f71C60h
dd 01f71D00h
dd 01f71Ec4h
dd 01f71F01h

Azalia_Codec_Table_end:

dd 01971C20h
dd 01971D91h
dd 01971E21h
dd 01971F02h
dd 01B71C40h
dd 01B71D41h
dd 01B71EAlh
dd 01B71F02h

Azalia_Codec_Table FP_Enable_end:

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version)

Proprietary

Sample Programs
Page 97

Appendix: Revision History

Date

Rev

PDF

Description

Nov. 2008

3.00

46157 sh600_bdg_pub_3.00

Initial public release.

© 2008 Advanced Micro Devices Inc.
AMD SB600 BIOS Developer’'s Guide (Public Version) Proprietary

Appendix: Revision History

Page 98

	Introduction
	About This Manual
	Overview
	PCI Internal Devices

	SB600 Programming Architecture
	PCI Devices and Functions
	I/O Map
	Fixed I/O Address Ranges – SB600 Proprietary Ports
	Variable I/O Decode Ranges

	Memory Map

	SB600 Early-POST Initialization
	512K/1M ROM Enable
	PCI ROM
	LPC ROM
	LPC ROM Read/Write Protect
	SPI ROM controller

	Real Time Clock (RTC)
	Special Locked Area in CMOS
	Century Byte
	Date Alarm

	BIOS RAM
	Serial IRQ
	SubSystemID and SubSystem Vendor ID
	AMD Athlon™ Processor Registers
	System Restart after Power Fail
	Power Fail and Alarm Setup

	PCI IRQ Routing
	PCI IRQ Routing Registers
	PCI IRQ BIOS Programming
	Integrated PCI Devices IRQ Routing
	IRQ Routing for HD Audio

	PCI IRQ Routing for APIC Mode

	SMBus Programming
	SMBus I/O Base Address
	SMBus Timing
	SMBus Host Controller Programming

	IDE Controller
	IDE Channel Enable/Disable
	IDE Channel Enable
	IDE Channel Disable

	PIO Modes
	PIO Mode
	PIO Timing

	DMA Modes
	Legacy (Multi-Words) DMA mode
	Ultra-DMA Mode

	Serial ATA (SATA)
	SATA Hot Plug
	Sample Code

	Power Management
	SMI Handling – EOS (PM IO Reg10h[Bit0])
	Programmable I/Os
	Power Management Timers
	PM Timer 1 (Inactivity Timer)
	PM Timer 2 (Activity Timer)

	SMI Events
	Power Button

	C-State Break Events
	Break Events for C2 State
	Break Events for C3 and C4 States

	Save/Restore Sequence for S3 State
	Register Save Sequence for S3 State

	Wake on Events
	Sleep SMI Events
	Sleep SMI Control Register
	Sleep SMI Programming Sequence
	Set Sleep SMI Control Register
	Enter Sleep SMI# Routine

	APIC Programming
	Northbridge APIC Enable
	Southbridge APIC Enable
	IOAPIC Base Address
	APIC IRQ Assignment
	APIC IRQ Routing

	Watchdog Timer
	A-Link Bridge
	A-Link Registers
	Programming Procedure

	High Precision Event Timer (HPET)
	Initialization
	Sample Initialization Code

	ACPI HPET Description Table
	HPET Support for Longhorn

	Common Interface Module – CIM-SB600
	CIM-SB600 Architecture
	CIM-SB600 Build Configuration
	CIM-SB600 Setup Input Data Structure
	CIM-SB600 SBPOR Sub-Module
	CIM-SB600 SB POST Initialize Sub-Module
	SB POST Interface

	CIM-SB600 SB Runtime Interface Sub-Module
	Requirements
	SB Runtime Interface

	CIM-SB600 SB SMI Interface Sub-Module
	Requirements

	CIM-SB600 SPI Interface Sub-Module

	Sample Programs
	SB600 Register Initialization on Power-Up
	Initialization of PCI IRQ Routing Before Resource Allocation

	Setup Options
	64 Bytes DMA
	USB Overcurrent Detection Disable
	C3 Support
	Subtractive Decoding for P2P Bridge
	Enable/Disable On-Chip SATA
	Change Class ID for SATA
	Disable AC97 Audio or MC97 Modem
	Enable EHCI Controller
	Enable OHCI Controller

	IDE Settings
	PIO Mode Settings
	Multiword DMA Settings
	UDMA Mode Settings
	IDE Channel Disable
	IDE Channel Enable

	USB Controller Reset at Hard Reset
	Clock Throttling
	Lid Switch
	Lid Switch Hardware Connection
	Associated Registers
	BIOS Initialization.
	ACPI Programming

	SATA Hot Plug Sample Program
	Temperature Limit Shutdown through SMI#
	Setting Up ITE 8712 Super I/O Registers
	Initialize Southbridge Registers for SMI#
	SMI Programming to Shut Down the System

	Sleep Trap through SMI#
	Enable Sleep SMI# in ACPI ASL code
	Sleep Trap SMI Routine

	HD Audio – Detection and Configuration

	Appendix: Revision History

