
M
ig

ra
ti

ng
 A

pp
lic

at
io

ns
 to

 F
le

x
2

Ad
ob
e® Fl

ex
™
 2

© 2006 Adobe Systems Incorporated. All rights reserved.

Migrating Applications to Flex™ 2

If this guide is distributed with software that includes an end-user agreement, this guide, as well as the software described in it, is
furnished under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any
such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note
that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end-user
license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability
for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright
law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright
owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any
actual organization.

Adobe, the Adobe logo, Flex, Flex Builder and Flash Player are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA

Notice to U.S. government end users. The software and documentation are “Commercial Items,” as that term is defined at 48
C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such
terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R.
§§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software
Documentation are being licensed to U.S. Government end users (a) only as Commercial items and (b) with only those rights as
are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the
provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1
through 60-60, 60-250 ,and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be
incorporated by reference.

3

Contents

About Flex Documentation. 7

Using this manual . 7
Accessing the Flex documentation . 7

Chapter 1: Getting Started .9

Introduction .9
Step 1: Find and replace . 10
Step 2: Add access modifiers . 14
Step 3: Add types. 15
Step 4: Update events. 16
Step 5: Import classes for package-level functions 17
Step 6: Put all ActionScript components in packages. 17
Step 7: Update data services. 18
Step 8: Charts . 18
Step 9: Overrides . 18
Step 10: Binding . 19
Step 11: API updates . 19

Chapter 2: ActionScript 2.0 to 3.0. 21

Overview. 21
Usability improvements. 22
Classes and packages. 25
Using external files . 28
Initializing variables . 29
Typing . 32
Global functions . 34
Miscellaneous . 36

Chapter 3: Flex Classes . 41

Core classes . 42
Containers . 53
Controls . 61
Effects. 81

4 Contents

Events . 84
Formatters. 89
Interfaces. 90
Managers. 91
Media controls . 94
Printing. 94
Resources . 95
Service tags . 95
Skins. 97
States . 98
Utilities . 99
Validators . 99

Chapter 4: Data Providers. 101

Chapter 5: Binding . 105

About binding . 105
The <mx:Binding> tag must be a top-level tag . 106
Binding from a property . 106
Binding with Arrays .110

Chapter 6: Events . 111

About events. .112
Component startup life cycle .112
Migrating the Event object .113
Using static constants .114
Using function listeners .115
Using the EventDispatcher class .116
Maintaining scope . 117
Using setCapture() . 117
Keyboard events . 117

Chapter 7: Styles and Skinning. 119

Using styles. .119
Using skinning . 124
Using embedded fonts . 126
Themes . 127

Chapter 8: Behaviors . 129

Overview . 130
New Behaviors syntax .131

Contents 5

Chapter 9: Data Services. 135

About Data Services .135
Migrating RemoteObject components . 137
Migrating HTTPService components .140
Migrating WebService components .143
Migrating secure data services .145
Mapping Java types for RemoteObject. .150
Accessing request/response data with RemoteObject152

Chapter 10: Configuration and Command Line Tools. 153

Configuration files. .154
Security. .155
Command-line compilers .156
fdb debugger .158

Chapter 11: Customizing Components . 161

UIObject class removed . 161
Class variables changed . 161
Specifying the package. .162
Defining the class .162
Defining the constructor .162
Creating bindable properties .162
Overriding a method .163
Clip parameters removed .163
Initialization sequence changed .163
Renamed invalidateStyle() .163

Chapter 12: Additional Migration Issues. 165

HistoryManager .165
Charting .165
Cell renderers .169
Validators . 170
Embedding resources . 172

Chapter 13: Migration Patterns . 173

Instantiating Flex controls. 174
Using mixins. 175
Variable enumeration and object introspection 176
Using the drag-and-drop feature . 178
Using Timer .182
Using the Preloader .183
Accessing request data. .183

6 Contents

7

About Flex Documentation

Migrating Applications to Flex 2 provides information on updating applications written for
Flex 1.x to Flex 2.

Contents
Using this manual . 7

Accessing the Flex documentation . 7

Using this manual
This manual can help anyone who has developed Flex applications. You should have an
understanding of the architecture and details of the Flex 1.x framework.

Adobe recommends that you begin with Chapter 1, “Getting Started,” on page 9. This topic
provides several steps that are meant to walk you through performing a large majority of the
simple tasks in migration your applications.

You should then examine each of the other topics that provides more in-depth information
about changes to particular areas of Adobe® Flex™ 2, including events, effects, and data
binding.

Finally, for more complex migration issues, you should examine Chapter 13, “Migration
Patterns,” on page 173. This topic provides longer examples that provide context to certain
difficult migration issues.

Accessing the Flex documentation
The Flex documentation is designed to provide support for the complete spectrum of
participants.

8 About Flex Documentation

Documentation set
The Flex documentation set includes the following titles:

Viewing online documentation
All Flex documentation is available online in Adobe® Acrobat® Portable Document Format
(PDF) files from the Adobe website.

Typographical conventions
The following typographical conventions are used in this book:

■ Italic font indicates a value that should be replaced (for example, in a folder path).
■ Code font indicates code.
■ Code font italic indicates a parameter.
■ Boldface font indicates a verbatim entry.

Book Description

Flex 2 Developer’s Guide Describes how to develop your dynamic web
applications.

Getting Started with Flex 2 Contains an overview of Flex features and
application development procedures.

Creating and Extending Flex 2
Components

Describes how to create and extend Flex
components.

Migrating Applications to Flex 2 Provides an overview of the migration process, as
well as detailed descriptions of changes in Flex and
ActionScript.

Using Flex Builder 2 Contains comprehensive information about all
Adobe® Flex™ Builder™ 2 features, for every level of
Flex Builder users.

Adobe Flex 2 Language Reference Provides descriptions, syntax, usage, and code
examples for the Flex API.

http://www.adobe.com/go/flex_documentation

9

1
CHAPTER 1

Getting Started

This topic describes the first steps of migrating a Macromedia Flex 1.x application to Adobe
Flex 2. This topic describes steps that are meant to be accomplished quickly and resolve most
of the warnings and errors that you encounter. When you complete the steps in this topic, you
should read other topics in this manual for more information about specific migration
operations.

Contents
Introduction . 9

Step 1: Find and replace . 10

Step 2: Add access modifiers . 14

Step 3: Add types. 15

Step 4: Update events. 16

Step 5: Import classes for package-level functions .17

Step 6: Put all ActionScript components in packages. .17

Step 7: Update data services. 18

Step 8: Charts . 18

Step 9: Overrides . 18

Step 10: Binding . 19

Step 11: API updates . 19

Introduction
You should undertake the migration process in a series of steps. The earlier steps involve
simple tasks, such as finding and replacing, or adding access modifiers. This topic describes
these steps. The later steps are more involved and require you to read other topics in this
manual. For example, when you convert portions of an application that uses binding, you
should read Chapter 5, “Binding,” on page 105.

10 Getting Started

The basic steps are the following:

■ “Step 1: Find and replace” on page 10
■ “Step 2: Add access modifiers” on page 14
■ “Step 3: Add types” on page 15
■ “Step 4: Update events” on page 16
■ “Step 6: Put all ActionScript components in packages” on page 17
■ “Step 7: Update data services” on page 18
■ “Step 8: Charts” on page 18
■ “Step 9: Overrides” on page 18
■ “Step 10: Binding” on page 19
■ “Step 11: API updates” on page 19

The remaining sections of this topic describe these steps in detail.

Step 1: Find and replace
There are many simple operations that you can do to your application to minimize the
number of warnings and errors you get when you first attempt to compile your application. In
many cases, these operations require that you do a find and replace.

You should not have to spend much time performing these tasks because the differences
between the Flex 1.x and Flex 2 syntax is generally minor but necessary. These operations
include the following:

■ “Application namespace” on page 11
■ “Void” on page 11
■ “Newline” on page 11
■ “Effects/behaviors” on page 14
■ “Application and container initialization” on page 12
■ “Alpha and scale properties” on page 12
■ “Event.currentTarget” on page 12
■ “Uninitialized values” on page 12
■ “Replace _root” on page 13
■ “Application namespace” on page 11
■ “Effects/behaviors” on page 14
■ “getURL() method” on page 14

Step 1: Find and replace 11

This section describes only the most common targets of finding and replacing. There are
many other members of Flex classes that have changed that are not mentioned here. For a
complete list, see Chapter 3, “Flex Classes,” on page 41.

Application namespace
Change the MXML namespace. Change the following:
xmlns:mx="http://www.macromedia.com/2003/mxml"

to this:
xmlns:mx="http://www.adobe.com/2006/mxml"

For example:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

Void
Replace Void (with a capital V) with void (with a lower-case v).

Newline
The newline constant has been removed. In ActionScript, use “\n” to add a carriage return in
your Strings. In an MXML tag, use the  XML character entity to add a carriage return.

Color value formats
Replace all occurrences of 0x with # in CSS style sheets or <mx:Style> tag blocks. The
supported color value formats have changed; for example:
.b1 { color: red; } // Valid
.b2 { color: #FF0000; } // Valid
.b3 { color: 0xFF0000; } // Invalid

In calls to the setStyle() method, you can prefix RRGGBB color values with 0x or #, but
you must put quotation marks around constants and # values; for example:
b1.setStyle("color",0xFF0000); // Valid
b2.setStyle("color","red"); // Valid
b3.setStyle("color","#FF0000"); // Valid
b4.setStyle("color",red); // Invalid
b5.setStyle("color",#FF0000); // Invalid

For more information on changes to the supported color value formats, see “Using colors”
on page 121.

12 Getting Started

Application and container initialization
The initialize event is now dispatched later in the startup and component creation life
cycle. In particular, it is now dispatched after the object’s children have been created. If your
event handler assumes that the object’s children have already been created, you can use the
initialize event. If your event handler requires that the object’s children have been
processed by the LayoutManager class, use the creationComplete event; for example:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

creationComplete="initApp()">

Alpha and scale properties
The scaleX, scaleY, and alpha properties now range from 0.0 to 1.0, rather than 1 to 100.
This is also true for the Fade.alphaFrom, Fade.alphaTo, Zoom.zoomFrom, and
Zoom.zoomTo properties.

Event.currentTarget
Use the currentTarget property rather than the target property of the Event object. The
Event object now has two properties: target and currentTarget. The former is the object
that originally dispatched the event, and the latter is the object to which your event handler is
attached. The two are often the same, but they may differ if the event has bubbled up from a
child object.

In most cases, you will want to change the target property to the currentTarget property,
because the object that was previously the target is now most likely the current target; for
example:
switch (event.currentTarget.className) { ... }

For more information, see “Using the target property” on page 113.

Uninitialized values
Remove checks against the undefined value. In Flex 2, undefined is only for use with the *
(no-type) “type”. Other types can no longer store the undefined value. If you assign
undefined to other types, it will be coerced into null, NaN, 0, or false. You can use the
isNaN() method to check if a variable is NaN.

If you do not initialize a variable at all, the initial value is different than in Flex 1.x. For more
information, see “Initializing variables” on page 29.

Step 1: Find and replace 13

Replace _root
Remove the use of “_root” from your application code if you used it to access the Application
instance. In Flex 1.x, you could use _root to refer to the main application from anywhere in
your application or one of the components. This was never a recommended practice, but was
a convenient way to access the application root. To access the Application instance from
anywhere in your application, use Application.application.
import mx.core.Application;
function myFunction():void {

//_root.ta1.text = "Thank you!"; // Flex 1.x
Application.application.ta1.text = "Thank you!"; // Flex 2

}

Also, “_global” and “_level0” no longer exist.

Alerts
The Application.alert() convenience method was removed. You must now use the
mx.controls.Alert.show() method. You import the mx.controls.Alert class and call the
Alert.show() method, as the following example shows:
import mx.controls.Alert;
public function myEventHandler(event:Event):void {

Alert.show("An event occurred!");
}

If you call the show() method in an MXML tag, then you must also include a script block
that imports the mx.controls.Alert class, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script><![CDATA[
import mx.controls.Alert;

]]></mx:Script>
<mx:Button id="b1" label="Show Style" click="Alert.show('Alert!');"/>

</mx:Application>

14 Getting Started

Effects/behaviors
For each effect, such as Fade, Sequence, and Parallel, change the name property to id. Also,
remove the <mx:Effect> tags; for example:
<mx:Sequence id="myWipes">

<mx:WipeLeft/>
<mx:WipeRight/>
<mx:WipeUp/>
<mx:WipeDown/>

</mx:Sequence>

For more information, see Chapter 8, “Behaviors,” on page 129.

getURL() method
Replace the getURL() method with the navigateToURL() method in the flash.net package.
This global method takes a URLRequest object; for example:
var url:URLRequest = new URLRequest("http://mysite.com");
navigateToURL(url,"_self");

For more information, see Chapter 34, “Communicating with the Wrapper,” in Flex 2
Developer’s Guide.

Step 2: Add access modifiers
You must add access modifiers to all your properties, variables, methods, and classes. Available
access modifiers are public, internal, private, or protected.

When you first write or port an application, it is easiest to set every method and property to
public. You can then revisit the application when it is working and begin restricting access by
adding the private identifier where necessary.

The following table shows some common situations where you add modifiers:

Flex 1.x Flex 2

function processVariables() {
// Returns a Boolean

}

public function processVariables():Boolean {
// Returns a Boolean

}

function getBalance() { ... } private function getBalance():Number { ... }

var s = "My name is Fred."; private var s:String = "My name is Fred.";

class MyButton extends Button { ... } public class MyButton extends Button { ... }

Step 3: Add types 15

The default access modifier for methods, variables, and classes is internal. This means that
all classes in the same package can access them, but classes outside of the package cannot.
However, the Flex compiler issues a warning if you do not specify any access modifier.

For more information about access modifiers, see “Access modifiers” on page 27. For
information about disabling warnings, see Chapter 9, “Using the Flex Compilers,” in Building
and Deploying Flex 2 Applications.

Step 3: Add types
All variables, properties, method arguments, and method return types should now be typed.
To find variables and properties, search for the keyword “var” to locate places where you
should type variables and properties.

The following table shows common variable typing tasks:

To find methods and method arguments, search for the keyword function and add a return
type if that method returns a value and type each method argument; for example:

Flex 1.x:
function getAnswer(myString) {

...
return myString;

}

Flex 2:
public function getAnswer(myString:String):String {

...
return myString;

}

For more information, see “Explicit typing” on page 32.

Flex 1.x Flex 2

var s = "Title Page"; public var s:String = "Title Page";

var myType = event.type; public var myType:String =
String(event.type);

item = event.target.selectedItem; item =
ThumbnailView(event.target.selectedItem);

public function
myHandler(event):void

public function myHandler(event:Event):void

16 Getting Started

Step 4: Update events
The Event model changed in Flex 2. However, you can migrate most event handlers with
minimal effort. This section describes the most popular changes that you must make to your
event handling code. For more information about migrating events, see Chapter 6, “Events,”
on page 111.

Specify types

Events are now more strongly typed than in Flex 1.x. As a result, you should specify the object
type in the event listener function. For example, previously you could write the following:
function myListener(event) { var s = event.type; }

Now, you must specify an event object in the function’s signature; for example:
private function myListener(event:Event):void { var s = event.type; }

Where possible, make the events as specific as possible. If the previous example was a listener
for click events, specify a MouseEvent as the type:
private function myListener(event:MouseEvent):void { ... }

Dispatch custom events

When you dispatch custom events, you must declare a new Event object rather than use a
generic object; for example:
click="dispatchEvent(new Event('checkOut'))"

Remove delegates

You are no longer required to wrap a listener function with a Delegate to maintain application
scope. You can remove the Delegate from the following line:
b1.addEventListener("click", mx.utils.Delegate.create(this,myListener));

So the line appears as follows:
b1.addEventListener(MouseEvent.CLICK, myListener);

Step 6: Put all ActionScript components in packages 17

Step 5: Import classes for package-level
functions
When you use package-level functions, you must import the package. For example, in Flex 1.x
you could call the show() method in the following way:
mx.controls.Alert.show("This is an Alert!");

In Flex 2, you must import the package before calling the function, as the following example
shows:
import mx.controls.Alert;
Alert.show("This is an Alert!");

Step 6: Put all ActionScript components
in packages
You must wrap all ActionScript components in a package statement, even if the component
is located in the same directory as the main application. If the component is in the same
directory as the main application, you can use an unnamed package, but the package
statement must be the first line of the component’s file; for example:
package {

public class MyClass {
// Class definition

}
} // Close package

Adobe recommends that you use unique package names so that there are no duplicate class
names in your source paths. The generally accepted syntax is to use the reverse URL
technique; for example:
com.yourcompany.MyPackage

Package names must match the directory hierarchy. For example, if you have the following
component used by your main application:
/myfiles/MainApp.mxml
/myfiles/mycomponents/TrivialComponent.mxml

Your package name must be mycomponents, as the following example shows:
package mycomponents {

...
}

For more information about the package statement syntax, see “Package statement syntax”
on page 26.

18 Getting Started

Step 7: Update data services
The RemoteObject, HTTPService, and WebService MXML services are now known as RPC
services. The RemoteObject tag is not functional unless you use Adobe Flex Data Services.
You must replace use of this with another tag.

You can still use the HTTPService and WebService tags, but you can only access resources on
a server that is in the same domain as the Flex application or from a server that has a
crossdomain.xml file installed on it. This file must allow access to the requesting application’s
domain. In addition, you must set useProxy=false in the MXML tag (the default).

For more information on using data services, see Chapter 9, “Data Services,” on page 135.

Step 8: Charts
If you are using Adobe Flex 2 SDK, you must now install a separate SWC file to use charts.
For more information, see the installation instructions in the Adobe Flex Charting’
readme.txt file.

If you are using the Flex Data Services server, charts are included.

The way charts are implemented also changed significantly. For more information, see
“Charting” on page 165.

Step 9: Overrides
Whenever a method on a subclass overrides a similarly named method on a superclass, the
declaration of the subclass’s method must now be prefixed by override. For more
information, see “Overriding a method” on page 163.

Step 11: API updates 19

Step 10: Binding
To make a user-defined variable bindable, you must now explicitly identify it by adding the
[Bindable] metadata tag to the property; for example:
[Bindable]
public var catalog:Array;

In addition, the <mx:Binding> tag must be moved to the top level. The following example
compiled in Flex 1.5:
<mx:HBox>

<mx:Label id="myLabel"/>
<mx:Label id="my2ndLabel" text="hello"/>
<mx:Binding source="my2ndLabel.text" destination="myLabel.text"/>

</mx:HBox>

In Flex 2, you must move the tag to the top level, as the following example shows:
<mx:Binding source="my2ndLabel.text" destination="myLabel.text"/>
<mx:HBox>

<mx:Label id="myLabel"/>
<mx:Label id="my2ndLabel" text="hello"/>

</mx:HBox>

For more information, see Chapter 5, “Binding”.

Step 11: API updates
The Flex ActionScript API has been updated to be more user-friendly. Changes include
enforcing proper capitalization, making class and property names clearer and more intuitive,
eliminating redundant classes and properties, and unifying common properties across
controls.

The following specific areas changed:

■ Event names. All event names and their constants were changed to present tense. For
example, the childAdded event is now childAdd, and its constant, CHILD_ADDED, is
now CHILD_ADD.

■ Camel-casing. Package, method, and property names now consistently use camel-case. For
example, the mx.containers.accordionclasses package name is now
mx.containers.accordionClasses.

■ Renderers. The terms cell, data, and row have been changed to item for renderers. For
example, cellFocusIn is now itemFocusIn, and the charting event mouseOverData is now
itemMouseOver.

20 Getting Started

■ Expanded abbreviations. Abbreviations in property and method names have been
expanded where practical. For example, the hPosition property is now
horizontalPosition.

■ Property names. Some properties have been renamed so that their function is more
evident. For example, the Boolean multipleSelection is now
allowMultipleSelection.

■ Chart skins. The chart skins are now referred to as renderers.
■ Unnecessary interfaces and classes. Unnecessary interfaces and classes have been removed

and their functionality has been moved to other interfaces and classes where necessary.

For a complete list of changes, see Chapter 3, “Flex Classes,” on page 41. This topic presents
these changes in tabular format.

21

2
CHAPTER 2

ActionScript 2.0 to 3.0

The ActionScript language has undergone a complete redesign. It is now a more robust, type-
safe, and usable language. This topic provides an overview of changes to the ActionScript
language. For information about using ActionScript 3.0, see Programming ActionScript 3.0.
For a complete reference on using ActionScript 3.0, see the ActionScript 3.0 Language
Reference.

Contents
Overview. 21

Usability improvements. 22

Classes and packages. 25

Using external files . 28

Initializing variables . 29

Typing . 32

Global functions . 34

Miscellaneous . 36

Overview
This section lists some of the most common changes that you will encounter when migrating
ActionScript 2.0 to ActionScript 3.0. The remaining sections provide more details about
specific changes in the language.

■ Most classes are sealed (non-dynamic); as a result, you cannot get or set properties, or call
methods, that weren’t declared.

■ Declarations are no longer public by default.
■ You cannot get or set a property, or call a method, on an object reference which is null or

undefined.
■ Method overrides must be marked override, and the signature must match exactly.

22 ActionScript 2.0 to 3.0

■ A subclass cant have a var with the same name as one visible from the superclass, and you
can’t override a var.

■ You must declare a type for everything or you’ll get a compiler warning.
■ Accessing methods or properties of the target of an event object won't compile unless you

cast event.target to the type of the target. For example, event.target.foo must be changed
to MyComponent(event.target).foo.

■ You cannot do a for in loop on every object to see the object’s properties. This only works
on dynamic objects now. An alternative is to use E4X to do object introspection.

■ All classes must be in a package or they will only be accessible from the current script.
■ You should put return types on all of your functions.
■ Array is a final class.
■ The trace() method is now in the flash.util.trace package.
■ The Timer class in flash.util replaces setInterval and setTimeout.

Usability improvements
This section describes changes to the ActionScript language that improve usability. Most
changes described here affect the syntax but do not add functionality. This section describes
general changes to the language, and not specifics, although it includes some illustrative
examples.

The goal of these usability improvements was to provide consistency. This makes the language
easier to understand and reduces the amount of time it takes developers to learn it. The less
special case rules need to be remembered, the better.

There are some places where a better developer experience was achieved by bending the rules.
For example, ActionScript 3.0 puts enumerations into inner classes. Putting all keycode
constants into an inner class of Keyboard, however, creates too verbose a language:
Keyboard.KeyCode.UP instead of Keyboard.UP. To create a better developer experience, it
was necessary to bend the rules slightly.

Some of these changes come at the price of higher migration costs, but the longer-term
benefit is a more robust language.

Usability improvements 23

Capitalization of identifiers
The ActionScript 3.0 naming conventions match the Flex application model and the
ECMAScript standard. All identifiers are in “camel case.” This means that an identifier’s
characters are in lowercase, except that the first letter of each word in the identifier is
capitalized. For example, ExternalInterface.

Class names are fully capitalized using camel case. The first letter of a class name is always a
capital letter. Names of nested classes start with a capital letter, just like any other class name.

Members of classes, with the exception of nested classes, start instead with a lowercase letter.
For instance, addChildAt().

Package names are not capitalized at all. For instance, flash.display and flash.external.

Acronyms in class name identifiers are fully capitalized, even if the letters of the acronym are
adjacent to another capitalized word in the identifier. For example, URLRequest and
IMEEvent.

For members of classes, acronyms are fully capitalized, except when the acronym is the first
word of the identifier. When this occurs, the acronym is entirely in lowercase. For example,
swfVersion and url. When the acronym is a subsequent word, it is fully capitalized. For
example, loaderURL() and navigateToURL().

Constants are one place where we do not use camel case. The entire identifier should be in
uppercase, with underscores separating each word. For instance, MouseEvent.CLICK. The
rule is similar to Java and ECMAScript conventions.

Package reorganization
Some packages have been changed to make the classes within them located in a more intuitive
place. In addition, special care was taken to avoid having too many packages in the Flash
Player API. If the ActionScript packages were too granular, you would have a hard time
finding the classes you want to use. For some examples, see “Global functions” on page 34.

Accessors
Like C#, ECMAScript 4 supports using accessors. Accessors were also a feature of
ActionScript since Flash Player 6. Instead of hand-coding the getX() and setX() methods,
developers can declare a property in such a way as to be interpreted as an accessor. Getting or
setting the value of this accessor property invokes the associated get or set function.

24 ActionScript 2.0 to 3.0

ActionScript 2.0 had many instances where getter and setter methods existed rather than
accessors. Now, ActionScript 3.0 uses accessors wherever possible. Unless a function has
arguments, it was converted to an accessor.

Methods that return a Boolean such as Socket.isConnected() were converted to accessors,
but retained the “is” or “has” prefix. For example, a method called methods would be
converted to the Socket.isConnected property.

Internal functionality marked private
ActionScript 3.0 includes a greater number of classes and members that are marked private.
Prior to this, maybe private members were not marked appropriately and functionality that
was intended to be used internally was exposed.

Naming conflicts with Flex classes
The Flex class library and the Flash Player API share similar class names, such as Buttons,
Images, and TextFields.

It is important that classes in the Flex classes and the Flash Player API not have the exact same
names. Even though the package system gives classes “long names” and helps partition
conflicting names away from each other, you might import many packages. If Flex and Flash
Player both have a class named Button, and you import both packages, the Flex compiler
throws ambiguity errors.

As a general rule, the Flex class library and Flash Player API do not use the same name for a
class any more.

Integer constants in enumerations
In ActionScript 2.0, enumerations were often expressed using string constants. For instance,
the TextField.align property could be set to the strings left, center, or right.

ActionScript 3.0 generally uses integer constants instead of strings. Integer constants are
declared as public static const members of a class, usually with type uint. The naming
should be all uppercase with underscores separating words.

Using integer constants has benefits for performance, and makes it possible for typos and
other usage errors to be detected at compile-time.

Classes and packages 25

Abbreviations
ActionScript 3.0 contains fewer abbreviations in method and property names. The names are
as descriptive as possible. For example, the mapPt() method is now mapPoint().

Some abbreviations are still used in ActionScript 3.0. For example, the getBounds() method
was not changed to getBoundaries() because it is shorter but just as descriptive.

In some cases, the use of abbreviation was preferred. For example, the
getBoundsOfCharacter() method was changed to getBoundsOfChar() because the term
char is used in many other places in the API, such as String.charAt.

Consistent use of prefixes
Prefixes on member variables in ActionScript 3.0 have been removed. For interfaces, the prefix
“I” has been added; for example IEventDispatcher. Class names do not have prefixes.

The prefixes “is” and “has” are used on methods and accessors that test conditions. They ask a
question of the framework. For example, isXMLName() asks “Is this an XML name?”. As a
result, “is” and “has” prefixes are used only for reading properties and not writing.

The prefix “use” may be used to indicate a Boolean property that can be modified. For
example, useHandCursor().

Type annotations
All variables and methods now have type annotations, and those type annotations are as
precise as possible. The Object type is only used when there is no reasonable alternative, or
where attempting to strongly type the value makes the language more difficult to use. For
more information on type annotations, see “Typing” on page 32.

The this keyword
The use of the this keyword has been made more consistent. It now refers to the instance of
the class that the current method is in.

Classes and packages
This section describes changes to the way you write classes, interfaces, and packages in
ActionScript.

26 ActionScript 2.0 to 3.0

Using packages
The package statement syntax has changed. In addition, you are now required to put custom
ActionScript components inside packages.

If you do not put a class inside a package, then the class is only visible in the current script.
For example:
class Foo {}

is a class that is not in any package, so it is only visible in the current script. If you put a class
in an unnamed package:
package { public class Foo {} }

Then you can access the class from any script. All scripts import the unnamed package by
default.

Package statement syntax
You now use a package statement rather than dot notation syntax to declare classes inside
packages. You add package statements before imports, wrapped around the entire class. For
example, to place the Button class in the mx.controls package in Flex 1.5:
class mx.controls.Button extends mx.core.UIComponent {

function Button() {
}

}

This implicitly declared that class Button was in package mx.controls. To place the Button
class in the mx.controls package in Flex 2:
package mx.controls {

public class Button extends mx.core.UIComponent {
public function Button() {
}

}
}

Custom component packages
ActionScript 3.0 now requires that all ActionScript components be inside packages. These
packages can be unnamed; for example:
package {

class MyClass { ... }
}

Classes and packages 27

Using classes
This section describes changes to ActionScript classes.

Access modifiers
The new internal access modifier refers to a different namespace in each package definition,
and is not defined outside of a package definition (that is, in global code).

If a class in a package isn’t marked public or private, then it defaults to internal. The class
cannot be accessed by classes in other packages; this is the same as the protected modifier in
Java. Accessing internal classes from outside of the package causes a ReferenceError at run
time.

If you do not put any namespace (public, private, internal, or user-defined) on a declaration,
the Flex compiler throws a warning.

The following table summarizes the access modifiers:

Inside a package, the default access specifier is internal. Outside of a package, the default
access specifier is public.

Class identifiers
The form ClassIdentifiers:ClassIdentifiers.Identifier has been deprecated and results in a
compile-time warning. It is equivalent to declaring the class name Identifier in the package
ClassIdentifiers. For example:
class P.A {} // ActionScript 2.0
package P { // ActionScript 3.0
 class A {}
}

super()
You can only use a super() statement inside a constructor. It is a syntax error to use a
super() statement anywhere else in a program. Previous versions of ActionScript allowed
super() statements to be used anywhere in a class (except in a static method).

Access Modifier Description

private Only accessible to the class.

public Accessible from anywhere.

protected Private to classes and subclasses.

internal Private to other classes in the package.

28 ActionScript 2.0 to 3.0

Using external files
This section describes changes to embedding, including, and importing external resources
with ActionScript in your Flex applications.

include
In ActionScript 2.0, the include keyword was preceded by an octothorp: #include. You now
use the keyword without the octothorp, and end the line with a semi-colon. For example:

ActionScript 2.0:
#include "../scripts/thescript.as"

ActionScript 3.0:
include "../scripts/thescript.as";

import
The import keyword lets you reference classes from other packages in your application. For
example, to use a trace() statement in your custom ActionScript class, you import the
flash.util.trace class. The import syntax is as follows:
import class;

For example:
import flash.util.trace;

You can optionally import entire packages using the wildcard syntax, as the following example
shows:
import flash.util.*;

However, best practices dictate that you only import the classes you need and not the entire
package. Doing so is better for performance and debugging.

ActionScript 3.0 uses a number of implicit imports to provide direct access to common global
functions such as trace(). In ActionScript 3.0, the number of implicit imports has been
reduced. For more information, see “Explicit imports” on page 34.

It is important to understand that you should import classes with an import statement rather
than use the full classname in your code. For example, do this:
import mx.formatters.*;
public var f:NumberFormatter = new NumberFormatter();

Rather than this:
public var f:mx.formatters.NumberFormatter = new

mx.formatters.NumberFormatter();

Initializing variables 29

Doing the latter results in a “Type annotation is not a compile-time constant” error.

Embed
The Embed syntax in ActionScript is [Embed(params)], and this metadata must be used over
a variable. The variable should be of type Class; for example:
[Embed(source="holdon.mp3")]
var sndCls:Class;
public function playSound():void {

var snd:flash.media.Sound = new sndCls();
snd.play();

}

This works in a very similar way to what was implemented in Flex 1.x. The main difference is
that instead of typing the embedded variable String, you type it as Class. In addition,
instantiation relies on the new operator rather than the attachMovie() and attachSound()
methods.

In Flex 1.x, the [Embed] metadata was placed before a var, and the var received the linkage ID
that was associated with the asset. In Flex 2, you put the [Embed] metadata before a class
definition to associate the class with an asset. This change makes the linkage ID unnecessary;
instead, the asset is manifested to the object model as a class.

For backwards compatibility, the variable associated with an [Embed] can be of type String.
However, this requires you to get the class via the getDefinitionByName() method. For
example:
[Embed(source="holdon.mp3")]
var sndStr:String;
public function playSound():void {

var sndClass:Class = getDefinitionByName(sndStr);
var snd:flash.media.Sound = new sndCls();
snd.play();

}

Initializing variables
The default values of uninitialized typed variables (and arguments and properties) was always
undefined in ActionScript 2.0, and is almost never undefined in ActionScript 3.0. In
ActionScript 3.0, undefined is only for use with type Object. Other types can no longer store
the undefined value. If you assign undefined to other types, it will be coerced into null,
NaN, 0, or false.

30 ActionScript 2.0 to 3.0

Default values
The following example shows the default values for variables of different types:
var dog:int; // defaults to 0
var dog:uint; // defaults to 0
var dog:Boolean;// defaults to false
var dog:Number; // defaults to NaN
var dog:Object; // defaults to undefined
var cat; // type defaults to Object, so default value is undefined

For all other classes (such as String, XML, MovieClip, Sprite, or any user-defined class), null
is the default value for uninitialized variables of that type.
var dog:String; // defaults to null
var dog:UserDefinedClass; // defaults to null
var dog:MovieClip; // defaults to null

With the exception of Object, the types with a non-null default value are the types which can
never hold null as a value. They get what a typecast of null to that type would result in.

To check for a possibly uninitialized variable, compare against the defaults described in
“Default values” on page 30. Alternatively, assign an initial, impossible value to your variable’s
declaration which you can then test against; for example:
var length:int = -1;

if (someTest())
length = 2;

if (someOtherTest())
length = 3;

if (length == -1)
length = lastResort();

For instances of classes, use the following pattern:
if (o) // ActionScript 3.0
if (o != null) // ActionScript 2.0

and
if (!o) // ActionScript 3.0
if (o == null) // ActionScript 2.0

Because a Boolean can only be true or false, and never undefined, write the following when
checking if a Boolean is true:
if (b) // ActionScript 3.0
if (b == true) // ActionScript 2.0
if (b != false) // ActionScript 2.0

Initializing variables 31

About undefined
In general, ActionScript 2.0 allowed accessing undeclared variables whose value had not yet
been set. By default, their value was undefined. In ActionScript 3.0, accessing undeclared
variables results in a ReferenceError. You can use the hasOwnProperty() method to check if a
variable has been declared:
if (hasOwnProperty('b') == false)

b = 20;
if (someObj.hasOwnProperty('myDynamicProp') == false)

someObj.myDynamicProp = 22;

Alternately, you can use a try/catch block to catch the ReferenceError; for example:
try {

bb;
} catch(x:ReferenceError) {

print("no bb");
bb = 20;

}

Another alternative is to check if the typeof the variable is undefined.
if (typeof bb == undefined)

bb = 22;

The typeof keyword does not throw a ReferenceError in this case, but rather returns
undefined.

For a dynamic class such as Object, the compiler expects that instances will often have
dynamic properties added to them. The compiler does not throw a ReferenceError when
accessing an undeclared property of a variable if its value is an instance of a dynamic class; for
example:
var a:Object = new Object();
if (a.foo == undefined) // Does not throw a ReferenceError.

a.foo = 22;

About NaN
NaN (Not a Number) is a special instance of Number used to indicate a value which is outside
the range of valid Numbers. Any Boolean valued comparison involving NaN (such as ==, ===,
=>, and >) always returns false because any Number operation involving NaN is bogus. This
is exactly how C++, Java, and other languages treat NaN as well.

For comparisons with NaN, use the global isNaN() method:
var a:Number;
if (isNaN(a))

a = 22;

32 ActionScript 2.0 to 3.0

If you previously checked against undefined for a Number, you use a similar syntax; for
example:
if (n == undefined) // ActionScript 2.0
if (isNaN(n)) // ActionScript 3.0

Typing
ActionScript 3.0 is more strongly typed than previous versions of ActionScript. This section
describes changes to the rules of typing.

Explicit typing
Flex 2 checks for type correctness for class and package property/methods at compile-time,
and enforces types at run time. By using stricter typing, you increase performance of your
application and strengthen the compile-time error checking.

If a variable is untyped, it will be treated as if it is type Object, which is slower than a Number,
int, uint, String, or Boolean. You should use Object only when absolutely necessary, and you
should never leave a variable untyped.

Use the most restrictive type that will work. Do not use Number if you can use int, and do
not use int if you can use uint. Use Class if something is a class reference.

In many cases, you will need to cast a general type to something more specific to get the
benefits of strong typing. Omitting types causes the Flex compiler to throw a warning, so your
applications will compile without this step.

The compiler enforces type checking wherever possible, but due to the dynamic nature of the
language, it does not checking style variable access or variables and functions declared outside
of classes (because they could be redefined dynamically at run time).

In ActionScript 3.0, type checking is performed at run time. In previous versions of
ActionScript, it was only checked at compile time. The following example shows how the
compiler will react
class a {

var b:String;
}
var c = new a();
c.b = 22; // Results in a compiler error.
c["b"] = 22; // ActionScript 2.0 would allow this, but ActionScript 3.0

// throws a TypeError exception.

The arguments assigned to method parameters must have compatible number and types.

Typing 33

Type detection
To perform type detection, you should use is rather than typeof or instanceof. The is
function examines types, whereas the instanceof function looks at the prototype chain. The
instanceof function has been deprecated.

For example:
class B {

public function B() {}
}

class A extends B {
public function A() {

super();
}

}

class Main extends MovieClip {
public function Main() {

var a:A = new A();
trace(a instanceof B); // false; instanceof is deprecated.
trace(a instanceof A); // false; instanceof is deprecated.
trace(a is B); // true
trace(a is A); // true

}
}

Primitive types
In ActionScript 3.0, there is no longer a distinction between primitive types such as strings
and instances of the String class. All strings are instances of String; every datatype is an
instance of some class. The same is true for numbers and Booleans. For example:
print("test" == String("test")); // true
print("test" === String("test")); // true
print(45 == new Number(45)); // true
print(45 === new Number(45)); // true
print("one;two;three".substring(4,7));// "two"
print((255).toString(16)); // "ff"

Non-assignment expressions
A non-assignment expression is any expression where a value is not assigned to a property (or
a variable or argument); for example:
var myVar : hintString ? String : Number;

34 ActionScript 2.0 to 3.0

(hintString ? String:Number) is the non-assignment expression. The variable myVar is
dynamically typed to be String if hintString is true, else its type will be Number. You can
use a non-assignment expression anywhere that you would use a type-assignment expression.

Global functions
Most global functions have changed packages. In addition, they are no longer implicitly
imported. This section describes some changes to the global functions.

Explicit imports
In most cases, you must import the classes to use global functions. For example, to use
functions in the System.* package, you now import flash.system.*. The global functions in
System.* were previously accessible in your <mx:Script> blocks without explicit imports.

The following table lists common functions that you must now explicitly add an import
statement to use:

For more information on what packages global functions are in, see the global function’s entry
in ActionScript 3.0 Language Reference.

The trace() function is an exception. It is in the flash.util package, but is implicitly
imported.

Function Package to import

ContextMenu import flash.ui.ContextMenu;

EventDispatcher import flash.events.EventDispatcher;
(was mx.events.EventDispatcher mix-in)

LocalConnection import flash.net.LocalConnection;

MovieClip import flash.display.MovieClip;

PopUpManager import mx.managers.PopUpManager;

XML import flash.xml.XMLNode;

Global functions 35

Function changes
Some global functions have been removed and replaced with new functions. The following
table shows removed global functions and their ActionScript 3.0 equivalents:

Deprecated features
The following features are deprecated:

■ The Object.registerClass() method no longer works on ActionScript 1.0 prototype
objects, only on ActionScript 2.0 classes.

■ Prototype inheritance no longer works for the built-in objects.
■ Features such as __resolve no longer works the same way.
■ ASNative is no longer supported.
■ #initclip no longer supported.
■ _global may not be supported (use static variables of classes).
■ Most classes are sealed, not dynamic, and cannot have properties added to them.
■ Top-level functions such as gotoAndPlay() are not supported or changed.

ActionScript 2.0 ActionScript 3.0

chr(num) String.fromCharCode(num)

int(expr) Math.round(expr)

length(expr) expr.length

mbchr(num) String.fromCharCode(num)

mblength(string) string.length

mbord(char) String(char).charCodeAt(0)

mbsubstring(string, index, count) string.substr(index,count)

ord String(char).charCodeAt(0)

random Math.random

subString(string, index, count) string.substr(index,count)

getProperty(target, propertyName) target.propertyName

setProperty(target,propertyName,value) target.propertyName = value

object.addProperty(
prop:String,
getFunc:Function,
setFunc:Function)

Class definition should use:
function get prop() {
...

}
function set prop() {
...

}

36 ActionScript 2.0 to 3.0

Miscellaneous
This section describes miscellaneous changes to the ActionScript language.

MovieClip
MovieClip has been replaced by Sprite as the parent class of the base object for Flex controls,
UIComponent.

The following table lists changes to methods of MovieClip:

The drawing methods such as moveTo() are now accessed via the graphics property of the
MovieClip object. To use them you must import the flash.display.* package.

ActionScript 2.0 method ActionScript 3.0 equivalent

beginMeshFill() The beginMeshFill() method has been removed. There is no
ActionScript 3.0 equivalent.

swapDepths() Target paths are not supported in ActionScript 3.0. Instead,
you can specify depth as integer depth value, or rewrite your
code using ActionScript 3.0 Sprites instead of MovieClips.

setMask() Target paths are not supported in ActionScript 3.0. Instead,
you can specify the mask as a DisplayObject, or rewrite your
code using ActionScript 3.0 Sprites instead of MovieClips.

loadMovie() The method (GET or POST) optional argument to the
loadMovie() method is not supported in ActionScript 3.0.

getURL() The getURL() method has been deprecated. You should
instead use the navigateToURL() method. For more
information, see the Flex 2 Developer’s Guide.

loadMovieNum() The loadMovieNum() method is no longer supported in
ActionScript 3.0. To achieve similar functionality, rewrite your
code to use ActionScript 3.0 Sprites instead of ActionScript
2.0 MovieClips.

loadVariables() The loadVariables() method is not supported in ActionScript
3.0.

Miscellaneous 37

Arrays
Arrays no longer automatically update if you change the data. This means that you should no
longer databind to an Array unless you manually call the dispatchEvent() each time an
element in the Array changes. Otherwise, the control to which the data is bound will not
reflect the changes. You can databind to a Collection.

Two convenience methods of the Array class have been removed. You can no longer use the
addItem() and removeItem() methods. You must instead use push() and pop(),
respectively. Array was formerly a mixin, but is now used directly from the Flash package
without modification. For example:
var cards:Array;
// Old way.
cards.addItem({label: "Visa", data: CreditCardValidatorCardType.VISA});
// New way.
cards.push({label: "Visa", data: CreditCardValidatorCardType.VISA});

Arrays are commonly used as data providers in Flex applications.

setInterval() and clearInterval()
The setInterval() and clearInterval() methods are now in the flash.util package, so to
use them you must import that package. But the setInterval() and clearInterval()
methods are deprecated in favor of the new Timer class.

For an example that uses a timer in a Flex application, see “Using Timer” on page 182.

For information on using the Timer class, see the ActionScript 3.0 Language Reference.

Metadata
You must now separate metadata properties with commas. For example:

ActionScript 2.0:
[Style(name="horizontalAlign" enumeration="left,center,right"

inherit="no")]

ActionScript 3.0:
[Style(name="horizontalAlign", enumeration="left,center,right",

inherit="no")]

38 ActionScript 2.0 to 3.0

Constants
You can use the const keyword to define constants in ActionScript 3.0. First, you determine
which class and instance variables qualify as constants, and then declare them with const
instead of var; for example:
static const NONMODAL:Number = Alert.NONMODAL;
const backgroundColorName:String = "buttonColor";

In general, constants should be class constants rather than instance constants.

The initial value for a constant must be an expression that can be evaluated at compile time.
Also, you cannot create constants of type Array or Object.

Method signatures
This section describes changes to method signatures in ActionScript 3.0.

No arguments
If a function takes no arguments, be sure to specify its argument list as () and not as (void).
The latter specifies a single argument of type Object named “void”. Consider which, if any, of
the arguments should be optional, and assign default values for them; for example:
override public function createClassObject(type:Class, name:String=null,

depth:int=0, initObj:Object=null):UIObject

Variable number of arguments
If the function takes a variable number of arguments, use the new “...” syntax:
function function_name([arguments], ... arrayOfArgs)

For example:
function foo(n:Number, ... arrayOfArgs):void

The “...” and its array must be the last argument in the method. You cannot specify a type
because it is always an Array containing the other arguments.

The following example shows how to use a method with a variable number of arguments. If
you define the following:
function myfunc(arg1, ... arrayOfArgs)

you can call it as:
myfunc(a, b, c, d);

and the Array arrayOfArgs will have the value [b, c, d].

Miscellaneous 39

__proto__
ActionScript 3.0 does not support “hacking” the prototype chain. The use of __proto__ is no
longer supported. For example:

ActionScript 2.0:
Class A {}
var a: A = new A;
trace(a.b) // Output: undefined
a.__proto__.b = 10 // Ok
trace(a.b) // Output: 10
class C {

var x:Number = 20;
}
var c:C = new C();
a.__proto__ = C.prototype;
trace(a.x); // Output: 20

ActionScript 3.0:
class A {}
var a: A = new A
trace(a.b) // Output: undefined
a.__proto__.b = 10 // Error, __proto__ unsupported.

// Use .constructor.prototype instead.
a.constructor.prototype.b = 10; // Ok
trace(a.b) // Output: 10
class C {

var x:Number = 20;
}
var c:C = new C();
a.__proto__ = C.prototype; // Error, __proto__ unsupported.

// .constructor.prototype is equivalent,
// though read only.

Primitive types
Primitive types are sealed classes and do not have object wrappers. Primitive types in
ActionScript 3.0 are final, sealed classes. Furthermore, there are no object wrappers for
primitives. As a result, you cannot create properties on them at run time; for example:

ActionScript 2.0:
newstring = new String("hello");
newstring.sayHi = function() {

trace("hi!");
}
newstring.sayHi();
newstring2 = "hello";

40 ActionScript 2.0 to 3.0

newstring2.prop = 1;
trace(newstring2.prop); // prints '1'

ActionScript 3.0:
newstring = new String("hello");
String.prototype.sayHi = function() {

trace("hi!");
}
newstring.sayHi();
newstring2 = "hello";
newstring2.prop = 1; // Warning, String is sealed...
String.prototype.prop = 1;
trace(newstring2.prop); // Output: 1

Working with keys
The Key class is now the Keyboard class.

doLater() method
The doLater() method on UIComponent has been removed. You now use callLater().
The callLater() method takes a similar number of arguments. You no longer specify the
object on which the function to be called later is defined. In addition, because of stricter
typing, you must remove quotes from around the function if you used them; the type is
function and cannot be coerced from type String. For example:

Flex 1.5:
doLater(this, "moveText");

Flex 2:
callLater(moveText);

The callLater() method still takes an optional args argument. For more information, see
ActionScript 3.0 Language Reference.

LocalConnection
The LocalConnection.allowDomain() method specifies one or more domains that can send
LocalConnection calls to this LocalConnection instance. In previous versions of ActionScript,
the allowDomain() method was a callback method that you implemented. In ActionScript
3.0, allowDomain() is a built-in method of LocalConnection that you call. This makes the
allowDomain() method work in much the same way as the Security.allowDomain()
method.

41

3
CHAPTER 3

Flex Classes

This topic describes API changes to the Flex class library in Adobe Flex 2 SDK, including
class-level changes to containers, core classes, and UI components.

Contents
Core classes . 42

Containers . 53

Controls . 61

Effects. 81

Events . 84

Formatters . 89

Interfaces . 90

Managers . 91

Media controls. 94

Printing . 94

Resources . 95

Service tags . 95

Skins . 97

States . 98

Utilities . 99

Validators . 99

42 Flex Classes

Core classes
The UIObject and UIComponent classes have been combined. As a result, references to the
UIObject class should be replaced by UIComponent. Visual Flex controls are subclasses of the
UIComponent class (formerly UIObject). In Flex 1.5, the UIComponent class was a
descendent of the MovieClip class. Now, the UIComponent class descends from the Sprite
class. The following example shows the full hierarchy of a Flex control, such as the Button
control:
Object

|
+--flash.events.EventDispatcher

|
+--flash.display.DisplayObject

|
+--flash.display.InteractiveObject

|
+--flash.display.FlashContainer

|
+--flash.display.Sprite

|
+--mx.core.UIComponent

|
+--mx.controls.Button

The EventDispatcher class was a mixin. It is now a base class in the flash.events package.

This section describes changes to Flex classes in the mx.core package.

mx.core.Application
The Application class now directly extends mx.core.Container instead of mx.containers.Box.

The following table describes changes to the mx.core.Application class:

Member Change description

alert() Removed. You must now use the
mx.controls.Alert.show() method. For information about
additional changes to Alert, see “mx.controls.Alert”
on page 61.

attachApplication Removed.

backgroundColor For information on changes to setting the backgroundColor
style property, see the entry for fillAlphas/fillColors.

className Removed. Now on UIComponent.

constructObject() Removed.

Core classes 43

mx.core.Container
The class as been moved to the mx.core package.

createLater addToCreationQueue

direction The direction property has been replaced by the layout
property.

fillAlphas/fillColors The application background gradient now uses the
backgroundGradientAlphas and backgroundGradientColors
style properties for styling, instead of the fillAlphas and
fillColors style properties. If the
backgroundGradientColors property is undefined (which is
the default), the background colors are calculated based
on the backgroundColor style property.
This means you no longer have to set the fillColors (or
backgroundGradientColors) property when setting the
backgroundColor property unless you require specific
control over the gradient colors.

getURL() Removed. For more information, see “getURL() method”
on page 51.

handleEvent() Removed.

isFontEmbedded() Removed. Use the SystemManager’s
isFontFaceEmbedded() method instead.

marginBottom paddingBottom

marginLeft paddingLeft

marginRight paddingRight

marginTop paddingTop

modalTransparency The range for this property is now 0 to 1, instead of 0 to
100.

onSetFocus() Removed.

resize() Removed. Now in the UIComponent class.

selfContained Removed.

Member Change description

44 Flex Classes

The following table describes changes to the Container class:

Member Change description

allChildrenList rawChildren

backgroundAlpha Deprecated. Use the background style to set this value.

backgroundDisabledColor Deprecated.

backgroundSize Deprecated. Use the background style to set this value.

childAdded (formerly
childCreated)

childAdd

childRemoved (formerly
childDestroyed)

childRemove

childIndexChanged childIndexChange

childrenCreationCompleteEffect Removed. Use the creationCompleteEffect effect.

createComponent() createComponentFromDescriptor(). This method now takes
a descriptor as its first argument rather than either a
descriptor or a descriptor index. If you know the index, use
childDescriptors[index] to get the descriptor itself.
This method requires that you call the validateNow()
method on the container to make the specified
component appear in the display list. Alternatively, you
can use the createComponentsFromDescriptors() method
to create all components of the container.

createComponents() createComponentsFromDescriptors()

createdComponents This property is now internal only.

dataObjectChanged dataChange

defaultButton The defaultButton property of a container used to be set
as follows:
<mx:Form defaultButton="id">
You must now set it as follows:
<mx:Form defaultButton="{id}">
Where id is the name of the Button control given in the
MXML tag.

dropShadow dropShadowEnabled

hLineScrollSize horizontalLineScrollSize

hPageScrollSize horizontalPageScrollSize

hPosition horizontalScrollPosition

hScrollBarStyleName horizontalScrollBarStyleName

Core classes 45

If you set the background style, Flex ignores any value that is supplied for backgroundAlpha,
backgroundColor, backgroundImage, or backgroundSize. If you do not specify a value for
the background style, Flex uses the backgroundAlpha, backgroundColor,
backgroundImage, and backgroundSize properties, as it did in Flex 1.5. Flex displays a
deprecation warning if you use backgroundAlpha or backgroundSize.

mx.core.ContainerAllChildrenList
This class is now named ContainerRawChildrenList and is private.

mx.core.ContainerScrollPolicy
This class is now named ScrollPolicy.

hScroller horizontalScroller

hScrollPolicy horizontalScrollPolicy

marginBottom paddingBottom

marginLeft paddingLeft

marginRight paddingRight

marginTop paddingTop

maxHPosition maxHorizontalScrollPosition

maxVPosition maxVerticalScrollPosition

showInAutomationHierarchy Removed.

viewMetricsAndMargins viewMetricsAndPadding

vLineScrollSize verticalLineScrollSize

vPageScrollSize verticalPageScrollSize

vPosition verticalSrollPosition

vScrollBarStyleName verticalScrollBarStyleName

vScroller verticalScroller

vScrollPolicy verticalScrollPolicy

Member Change description

46 Flex Classes

mx.core.MovieClipLoaderAsset
The following table describes changes to the mx.core.MovieClipLoaderAsset class:

mx.core.MXMLUIObject
The MXMLObject class is now the IMXMLObject class, to conform with the Flex 2 interface
naming style.

mx.core.Repeater
The following table describes changes to the mx.core.Repeater class:

mx.core.ScrollView
The ScrollView class is now named ScrollControlBase.

The following table describes changes to the ScrollView class:

Member Change description

addedHandler Removed. Use the complete event instead.

Member Change description

showInAutomationHierarchy Removed.

Member Change description

dropShadow dropShadowEnabled

hPosition horizontalScrollPosition

hScrollBarStyleName horizontalScrollBarStyleName

hScroller horizontalScroller

hScrollPolicy horizontalScrollPolicy

maxHPosition maxHorizontalScrollPosition

maxVPosition maxVerticalScrollPosition

vPosition verticalScrollPosition

vScrollBarStyleName verticalScrollBarStyleName

vScroller verticalScroller

vScrollPolicy verticalScrollPolicy

Core classes 47

mx.core.Skin*
The mx.core.Skin* classes have been renamed to use the term Asset in the class name. For
example, the SkinSprite class is now named SpriteAsset, and the SkinMovieClip class is now
named MovieClipAsset.

These classes now implement the IFlexAsset interface.

mx.core.UIComponent
The UIComponent class has been combined with UIObject to form a single base class for
visual Flex components. As a result, many of the changes listed in this section apply to
properties, methods, and other members that were originally of the UIObject class.

The following table describes changes to the mx.core.UIComponent class:

Member Change description

automationComposite Removed.

automationDelegate Removed.

automationName Removed.

automationParent Removed.

automationValue Removed.

childrenCreated() This method is now protected and not public. It is a
component life-cycle method that the framework calls, and
which component developers must override, but it should
not be called directly.

className Read-only.

commitProperties() This method is now protected and not public. It is a
component life-cycle method that the framework calls, and
which component developers must override, but it should
not be called directly.

constructObject2() Removed. Use the new operator and the addChild()
method or other methods to add new visual objects to the
display list.

createChildren() This method is now protected and not public. It is a
component life-cycle method that the framework calls, and
which component developers must override, but it should
not be called directly.

48 Flex Classes

createEmptyObject() Removed. Use the new operator and the addChild()
method or other methods to add new visual objects to the
display list.

createToolTip toolTipCreate

currentStateChanged currentStateChange

deleteStyle() clearStyle()

destroyObject() Removed. Use the removeChild() method or other
methods to remove a child from its parent.

doLater() callLater()

draw updateComplete

drawRect() Removed. Use the drawRect() method of the
flash.display.Graphics class.

endToolTip toolTipEnd

fillRect() Removed. Use the fill methods of the
flash.display.Graphics class.

getFocusManager() focusManager

getSystemManager() systemManager

getUnscaledHeight() unscaledHeight

getUnscaledWidth() unscaledWidth

hideToolTip toolTipHide

invalidateStyle() styleChanged()

isChildOf() Removed. Use the contains() method of the
DisplayObjectContainer class.

isParentOf() Removed. Use the contains() method of the
DisplayObjectContainer class.

layoutComplete updateComplete

MAX_HEIGHT DEFAULT_MAX_HEIGHT

MAX_WIDTH DEFAULT_MAX_WIDTH

measure() This method is now protected and not public. It is a
component life-cycle method that the framework calls, and
which component developers must override, but it should
not be called directly.

mouseDownOutside This event is now of type FlexMouseEvent instead of
MouseEvent.

Member Change description

Core classes 49

mouseOverEffect rollOverEffect

mouseOutEffect rollOutEffect

mouseWheelOutside This event is now of type FlexMouseEvent instead of
MouseEvent.

notifyEffectEnding effectEnding

notifyEffectPlaying effectPlaying

popUp isPopUp

record This event is no longer dispatched by UIComponent.

regenerateProtoChain() regenerateStyleCache()

scrollTrackColor Removed.

setFocusLater() This method is now private.

setSize() setActualSize()

showToolTip toolTipShow

startToolTip toolTipStart

strokeRoundRect() Removed. Use the drawRoundRect() method of the
flash.display.Graphics class.

themeColor The themeColor property is now a style property only. In
Flex 1.5, it was a standard property of UIComponent as
well as a style property. You can still apply themeColor in an
MXML tag, but you must use the getStyle() and
setStyle() methods to access this property from
ActionScript.

updateDisplayList() This method is now protected and not public. It is a
component life-cycle method that the framework calls, and
which component developers must override, but it should
not be called directly.

updateNow() validateNow()

validationFailed validationResultHandler()

validationSucceeded() validationResultHandler()

valueCommitted valueCommit

Member Change description

50 Flex Classes

The alpha, scaleX, and scaleY properties

The alpha, scaleX, and scaleY properties now range from 0 to 1 instead of from 0 to 100.
For example, to make a UIObject 50% opaque, specify alpha=0.5 instead of alpha=50. To
stretch the object horizontally by a factor of two, specify scaleX=2 instead of scaleX=200.

The default value for the focusAlpha property is now 0.3.

The width and height properties

The width and height properties are now typed as Number. In Flex 1.5, you could set the
width and height to a Number (such as 50) or a String (such as "50%"). Because the type is
now only a Number, you can no longer use the following syntax in your ActionScript:
myUIObject.width = "50%";

To set widths and heights using percentage values, you must now use the following syntax:
myUIObject.percentWidth = 50;

However, in MXML, you can express the width property as a pixel or percentage value. For
example, the following two lines of code are valid:
<Canvas width="50%">
<Canvas percentWidth="50">

The addEventHandler() method

The addEventHandler() method has been removed from UIObject. This method is now
inherited from the flash.events.EventDispatcher class.

N
O

T
E

This change formerly applied to the UIObject class, but because UIObject and
UIComponent have been combined into a single base class, the change now applies to
the UIComponent class.

N
O

T
E

This change formerly applied to the UIObject class, but because UIObject and
UIComponent have been combined into a single base class, the change now applies to
the UIComponent class.

N
O

T
E

This change formerly applied to the UIObject class, but because UIObject and
UIComponent have been combined into a single base class, the change now applies to
the UIComponent class.

Core classes 51

getURL() method

In Flex 1.5, every UIObject inherited the getURL() method from the MovieClip class. This is
no longer the case. You now use the navigateToURL() method in the flash.net package,
which takes a URLRequest object rather than a String for the URL:
navigateToURL(new URLRequest('url'));

The load and unload events

The load event, which was previously deprecated, has been removed.

The unload event has been moved to the SWFLoader object and is dispatched whenever a
loaded SWF file is removed using the LSWFLoader.unload() method.

Validation and layout methods
The invalidateLayout(), invalidate(), layoutChildren() and draw() methods have
been removed. Subclasses now override the updateDisplayList() method, which is now
protected instead of public.

Drawing methods

The Adobe Flash drawing API methods, such as beginFill() and moveTo(), are no longer
inherited by UIObject; they are now methods of the Graphics object, which you access with
the graphics property of Sprite, which UIObject inherits.

N
O

T
E

This change formerly applied to the UIObject class, but because UIObject and
UIComponent have been combined into a single base class, the change now applies to
the UIComponent class.

N
O

T
E

This change formerly applied to the UIObject class, but because UIObject and
UIComponent have been combined into a single base class, the change now applies to
the UIComponent class.

N
O

T
E

This change formerly applied to the UIObject class, but because UIObject and
UIComponent have been combined into a single base class, the change now applies to
the UIComponent class.

52 Flex Classes

Enumerated values are now constants
In many cases, properties that took a predefined list of values (such as the Button control’s
labelPlacement property taking right, left, bottom, and top) now take class constants as
well. For example, the labelPlacement property can now take one of the following
constants:

■ ButtonLabelPlacement.RIGHT

■ ButtonLabelPlacement.LEFT

■ ButtonLabelPlacement.BOTTOM

■ ButtonLabelPlacement.TOP

Other properties that now use constants include the Box control’s direction property; the
Container control’s creationPolicy, hScrollPolicy, and vScrollPolicy properties, and
the ProgressBar control’s direction, labelPlacement, and mode properties.

This change applies to ActionScript code. In general, the MXML usage has not changed.

life-cycle methods
The createChildren(), childrenCreated(), commitProperties(), measure(), and
updateDisplayList() methods of UIComponent are now protected rather than public.
These are component life-cycle methods that the framework calls, and which component
developers must override, but they should not be called directly.

Flex 1.x:
override public function measure():void {

...
}

Flex 2:
override protected function measure():void {

...
}

mx.core.UIObject
The UIObject base class has been merged with the UIComponent class. UIComponent is
now the lowest-level base class for nonskins. For information about changes to the combined
object, see “mx.core.UIComponent” on page 47.

Containers 53

mx.core.UITextFormat
The following table describes the changes to the UITextFormat class:

mx.core.View
The mx.core.View class has been removed and its functionality has been distributed between
the SWFLoader (formerly Loader), ScrollControlBase (formerly ScrollView), and Container
classes.

Object creation and destruction methods that were on the View class have been removed. To
create a new object, you now use the new operator and use the addChild() method or other
methods to add the new object to the parent container. To destroy an object, you use the
removeChild() or other methods to remove the object from the parent container.

The following methods of the View class have been removed:

■ createChild()

■ createChildWithStyles()

■ destroyChild()

■ destroyChildAt()

■ destroyAllChildren()

Containers
This section describes changes to Flex classes in the mx.containers package. In addition to the
changes listed here, there are also changes to the layouts. For more information, see Chapter
15, “Using Layout Containers,” in Flex 2 Developer’s Guide.

Member Change description

isFontFaceEmbedded Moved to the SystemManager class.

54 Flex Classes

mx.containers.Accordion
The following table describes changes to the Accordion class:

mx.containers.accordionclasses.*
The accordionclasses package is now named accordionClasses.

Member Change description

Child indices The types have been changed from uint to int.

change Dispatched when a user clicked on an Accordion header or
when you programmatically set the value of the
selectedIndex property to a new number. Now the
Accordion container dispatches a change event only when
a button is pressed. The Accordion container dispatches a
valueCommit event in both cases.

changeEffect Use the showEffect and hideEffect effect triggers of
children of the Accordion container.

createSegment() Removed. Use the new operator and the addChild()
method or other methods to add new visual objects to the
display list.

getHeaderAt Parameter renamed from i to index.

headerClass headerRenderer (now typed IFactory)

headerStyle headerStyleName

historyManagement historyManagementEnabled

newValue newIndex

openEasing openEasingFunction

marginBottom paddingBottom

marginTop paddingTop

prevValue oldIndex

selectionChange change

Containers 55

mx.containers.ApplicationControlBar
The following table describes changes to the ApplicationControlBar class:

mx.containers.Box
The following table describes the changes to the Box class:

mx.containers.buttonbarclasses.ButtonBarButton
This class has been moved to the mx.controls.buttonBarClasses package and is now private.

mx.containers.Canvas
The following table describes the changes to the Canvas class:

mx.containers.ControlBar
The ControlBar class now derives from mx.containers.Box instead of mx.containers.HBox.

The following table describes changes to the ControlBar class:

Member Change description

borderStyle Can no longer be set on ApplicationControlBar.

fillAlphas The default value has changed to [0,0].

fillColor Is now fillColors (with an s). The default value is
[0xFFFFFF, 0xFFFFFF].

Member Change description

marginBottom paddingBottom

marginTop paddingTop

Member Change description

horizontalGap Removed.

verticalGap Removed.

Member Change description

backgroundSkin Removed. This style property was not used.

56 Flex Classes

mx.containers.DividedBox
The following table describes changes to the DividedBox class:

mx.containers.dividedboxclasses.*
The dividedboxclasses package is now named dividedBoxClasses.

mx.containers.Form
The following table describes changes to the Form class:

mx.containers.FormHeading
The following table describes changes to the FormHeading class:

Member Change description

dividerDragged dividerDrag

dividerPressed dividerPress

dividerReleased dividerRelease

getDividerCount numDividers

horizontalCursor horizontalDividerCursor

verticalCursor verticalDividerCursor

Member Change description

marginBottom paddingBottom

marginTop paddingTop

Member Change description

horizontalGap Removed.

verticalGap paddingTop

Containers 57

mx.containers.FormItem
The following table describes changes to the FormItem class:

mx.containers.gridclasses.*
The gridclasses package is now named dataGridClasses.

mx.containers.GridRow
The GridRow class now subclasses HBox instead of Box.

mx.containers.HBox
The following table describes changes to the HBox class:

mx.containers.HDividedBox
The following table describes changes to the HDividedBox class:

mx.containers.LinkBar
The mx.containers.LinkBar class has been moved to mx.controls.LinkBar.

Member Change description

labelObject This property is now internal only.

marginBottom paddingBottom

marginRight paddingRight

marginTop paddingTop

Member Change description

direction Removed.

Member Change description

direction Removed.

58 Flex Classes

The following table describes changes to the LinkBar class:

mx.containers.NavBar
The mx.containers.NavBar class has been moved to mx.controls.NavBar.

The following table describes changes to the NavBar class:

mx.containers.Panel
Panel containers now extend mx.core.Container instead of mx.containers.Box.

The following table describes changes to the Panel class:

Member Change description

click itemClick

marginBottom paddingBottom

marginTop paddingTop

strokeColor separatorColor

strokeWidth separatorWidth

Member Change description

click itemClick

"none selected" The special value for "none selected" is -1 instead of NaN.

selectedIndex The property in NavBar containers (including TabBar and
LinkBar containers) is now public and is now an int instead
of a Number. It is also now bindable.

Member Change description

borderStyle The Panel container now supports the borderStyle
property inherited from Container. In Flex 1.5, borderStyle
was ignored. You could approximate the same behavior by
setting the borderThickness property.

controlBar This property is now protected.

direction Replaced by the layout property.

dropShadow dropShadowEnabled

marginBottom paddingBottom

marginTop paddingTop

Containers 59

mx.containers.TabBar
The mx.containers.TabBar class has been moved to the mx.controls package. The TabBar
container now extends mx.containers.ToggleButtonBar instead of mx.containers.NavBar.

The following table describes changes to the TabBar class:

mx.containers.tabbarclasses.Tab
This class has been moved to the mx.controls.tabBarClasses package and is now private.

mx.containers.TabNavigator
The following table describes changes to the TabNavigator class:

modalTransparency The range for this property is now 0 to 1, instead of 0 to
100.

panelAlpha borderAlpha

panelBorderStyle roundBottomCorners

statusStyleDeclaration Removed. Use the statusStyleName style.

statusTestField This property is now protected.

titleStyleDeclaration Removed. Use the titleStyleName style.

titleTestField This property is now protected.

Member Change description

activeTabStyleDeclaration selectedTabTextStyleName

click itemClick

tabSkin tabStyleName

verticalAlign The default value is now middle. Previously, it was top, as
inherited from the Box control.

verticalGap The default value is now -1 (was 6, as inherited from the
Box control).

Member Change description

activeTabStyleDeclaration selectedTabTextStyleName

createTab() Removed. Use the addChild() method.

Member Change description

60 Flex Classes

mx.containers.Tile
The following table describes changes to the Tile class:

mx.containers.TitleWindow
The following table describes changes to the TitleWindow class:

In Flex 1.x, clicking on the close button (and only the close button) generated a click event.
In Flex 2, the click event is triggered when the user presses the mouse button anywhere in
the TitleWindow area. You should change your click event handler to handle a close event
instead.

mx.containers.ToggleButtonBar
The mx.containers.ToggleButtonBar class has been moved to the mx.controls package.

The following table describes changes to the ToggleButtonBar class:

getTabAt Parameter renamed from i to index.

tabSkin tabStyleName

Member Change description

marginBottom paddingBottom

marginTop paddingTop

Member Change description

closeButton showCloseButton

Member Change description

selectedButtonTextStyleName selectedItemStyleName

unselectable alwaysToggleOnClick

Member Change description

Controls 61

mx.containers.ViewStack
The following table describes changes to the ViewStack class:

When all children are removed from a ViewStack, Flex sets the selectedIndex to -1 (was
NaN). Removing children from a ViewStack container now adjusts the selectedIndex.

If a view is removed from the front (where 0 is the front-most), Flex decrements the
selectedIndex by 1 to remain pointing at the selected item. If the current view is removed,
Flex points the selectedIndex to the next view first, and then the previous view.

If there are no remaining views, Flex sets the selectedIndex property to -1.

Controls
This section describes changes to Flex classes in the mx.controls package.

mx.controls.Alert
The following table describes changes to the Alert class:

Member Change description

Child indices The type of the child indices in the ViewStack container
has been changed from uint to int.

cachePolicy The ViewStack container no longer overrides the
cachePolicy property.

changeEffect Use the showEffect and hideEffect effect triggers of
children of the ViewStack container instead.

historyManagement historyManagementEnabled

marginBottom paddingBottom

marginTop paddingTop

Member Change description

buttonStyleDeclaration Removed. Use the buttonStyleName style.

messageStyleDeclaration Removed. Use the messageStyleName style.

62 Flex Classes

mx.controls.alertclasses.*
The alertclasses package is now named alertClasses.

mx.controls.Button
The Button class no longer inherits from SimpleButton.

The following table describes changes to the Button class:

show() The show() method now has the following signature:
show(text:String, title:String=null, flags:uint=0x4,

parent:Sprite=null, closeHandler:Function=null,
iconClass:Class=null,defaultButtonFlag:uint=0x4):A
lert

titleStyleDeclaration Removed. Use the titleStyleName style.

Member Change description

buttonDragOut The Button control no longer dispatches this event.

cornerRadius Removed.

dataChanged dataChange

falseDisabledSkin disabledSkin

falseDownSkin downSkin

falseOverSkin overSkin

falseUpSkin upSkin

icon Now a style of type Class not a property of type Object.

marginBottom paddingBottom

marginLeft paddingLeft

marginRight paddingRight

marginTop paddingTop

selected Cannot be set if toggle is false. Flex now forces selected
to false when toggle is false.

trueDisabledSkin selectedDisabledSkin

trueDownSkin selectedDownSkin

trueOverSkin selectedOverSkin

Member Change description

Controls 63

mx.controls.ButtonBar
The following table describes changes to the ButtonBar class:

mx.controls.ButtonBarButton
The ButtonBarButton class has been made internal only.

mx.controls.CalendarLayout
The following table describes changes to the CalendarLayout class:

trueUpSkin selectedUpSkin

version Removed.

Member Change description

click itemClick

Member Change description

background This property is now internal only.

backMonthButton This property is now internal only.

backMonthHit This property is now internal only.

border This property is now internal only.

callHeader This property is now internal only.

disjointSelection allowDisjointSelection

downYearButton This property is now internal only.

downYearHit This property is now internal only.

fwdMonthButton This property is now internal only.

fwdMonthHit This property is now internal only.

headerDisplay This property is now internal only.

headerStyleDeclaration headerStyleName

monthDisplay This property is now internal only.

multipleSelection allowMultipleSelection

todayStyleDeclaration todayStyleName

Member Change description

64 Flex Classes

mx.controls.ColorPicker
The following table describes changes to the ColorPicker class:

mx.controls.ComboBase
The following table describes changes to the ComboBase class:

upYearButton This property is now internal only.

upYearHit This property is now internal only.

weekDayStyleDeclaration weekDayStyleName

yearDisplay This property is now internal only.

Member Change description

closeEasing closeEasingFunction

marginBottom paddingBottom

marginLeft paddingLeft

marginRight paddingRight

marginTop paddingTop

openEasing openEasingFunction

Member Change description

border This property is now internal.

downArrowButton This property is now internal.

length Removed.

selectionChanged This property is now internal.

selectedIndexChanged This property is now internal.

selectedItemChanged This property is now internal.

textInput This property is now internal.

Member Change description

Controls 65

mx.controls.ComboBox
The following table describes changes to the ComboBox class:

mx.controls.DataGrid
The DataGrid class now extends the new GridBase class, which extends the ListBase class.

The following table describes changes to the DataGrid class:

Member Change description

alternatingRowColors alternatingItemColors

cellRenderer itemRenderer

dataChanged dataChange

textDisabledColor disabledColor

itemSkin itemRenderer

openEasing openEasingFunction

selectionEasing selectionEasingFunction

Member Change description

addColumn() Removed.

addColumnAt() Removed.

cellBeginEdit itemEditBegin

cellEditor itemEditorInstance

cellEndEdit itemEditEnd

cellFocusIn itemFocusIn

cellFocusOut itemFocusOut

cellPress Removed.

cellRenderer itemRenderer

cellRequestEdit itemEditBeginning

columnNames Removed.

editedCell editedItemRenderer

focusedCell editedItemPosition

getColumnAt() Removed.

getColumnIndex() Removed.

getColumnName() Removed.

66 Flex Classes

In Flex 2, when a DataGrid control’s width is not wide enough to show all columns, only the
first column gets smaller. This applies to DataGrid controls with a horizontal scroll policy of
true or auto. In Flex 1.5, DataGrid controls tried to squeeze in all the columns ignoring the
their minColWidth property.

mx.controls.dataGridClasses.DataGridColumn
The following table describes changes to the DataGridColumn class:

headerColor headerColors

headerStyle headerStyleName

hGridLineColors horizontalGridLineColors

hGridLines horizontalGridLines

hPosition horizontalScrollPosition

minColWidth minColumnWidth

removeAllColumns() Removed.

removeColumnAt() Removed.

setColumnIndex Removed.

vGridLineColors verticalGridLineColors

vGridLines verticalGridLines

Member Change description

cellRenderer itemRenderer

columnName dataField

editorClass itemEditor

editorProperty editorDataField

headerClass headerRenderer (now typed IFactory)

headerStyle headerStyleName

itemSkin itemRenderer

styleName Use individual style properties on DataGridColumn.

Member Change description

Controls 67

mx.controls.dataGridClasses.DataGridListData
The following table describes changes to the DataGridListData class:

mx.controls.DateChooser
The following table describes changes to the DateChooser class:

Member Change description

columnName dataField

Member Change description

background This property is now internal only.

backMonthButton This property is now internal only.

backMonthHit This property is now internal only.

border This property is now internal only.

callHeader This property is now internal only.

disjointSelection allowDisjointSelection

downYearButton This property is now internal only.

downYearHit This property is now internal only.

fwdMonthButton This property is now internal only.

fwdMonthHit This property is now internal only.

headerColor headerColors

headerDisplay This property is now internal only.

headerStyle headerStyleName

headerStyleDeclaration headerStyleName

horizontalGap Removed.

monthDisplay This property is now internal only.

multipleSelection allowMultipleSelection

todayStyleDeclaration todayStyleName

upYearButton This property is now internal only.

upYearHit This property is now internal only.

verticalGap Removed.

68 Flex Classes

mx.controls.DateField
The following table describes changes to the DateField class:

mx.controls.HorizontalList
The following table describes changes to the HorizontalList class:

weekDayStyleDeclaration weekDayStyleName

yearDisplay This property is now internal only.

Member Change description

dataChanged dataChange

formattingFunction labelFunction

headerStyleDeclaration headerStyleName

headerColor Removed. Replaced with the dateChooserStyleName
property.

headerColors Deprecated. Replaced with the dateChooserStyleName
property.

headerStyle headerStyleName

parsingFunction parseFunction

pulldown dropdown

rollOverColor Deprecated. Replaced with the dateChooserStyleName
property.

selectionColor Deprecated. Replaced with the dateChooserStyleName
property.

todayColor Deprecated. Replaced with the dateChooserStyleName
property.

todayStyleDeclaration todayStyleName

weekDayStyleDeclaration weekDayStyleName

Member Change description

cellRenderer listItemRenderer

itemWidth columnWidth

Member Change description

Controls 69

mx.controls.HRule
The following table describes changes to the HRule class:

mx.controls.HSlider
The following table describes changes to the HSlider class:

mx.controls.Image
The following table describes changes to the Image class:

mx.controls.Label
The Label class now extends mx.core.UIComponent rather than mx.core.UIObject.

The following table describes changes to the Label class:

mx.controls.Link
The Link class is now named LinkButton.

Member Change description

color strokeColor

Member Change description

labelStyleDeclaration Removed. Use the labelStyleName style instead.

showTicks Removed. Instead of setting it to false to turn off tick
marks, you set tickInterval to 0; for example:
<mx:HSlider id="hs1" snapInterval="1"

tickInterval="0"/>

toolTipStyleDeclaration Removed. Use the toolTipStyleName style instead.

Member Change description

dataChanged dataChange

Member Change description

dataChanged dataChange

70 Flex Classes

mx.controls.List
The following table describes changes made to the List class:

mx.controls.listclasses.*
The listclasses package name has been changed to listClasses.

The class hierarchy for the list-based classes has changed, as follows:
ListBase

+-GridBase
+-DataGrid

+-List
+-Menu
+-Tree

+-TileBase
+-HorizontalList
+-TileList

A dragManager property has been added to the List classes. If you are using the drag-and-
drop operation in the List classes, you must set dragManager="DragManager" in order for
the drag-and-drop operation to work properly.

mx.controls.listclasses.DataProvider
The DataProvider class is removed. Use Collections instead.

For more information, see Chapter 4, “Data Providers,” on page 101.

Member Change description

cellBeginEdit itemEditBegin

cellEditor itemEditorInstance

cellEndEdit itemEditEnd

cellFocusIn itemFocusIn

cellFocusOut itemFocusOut

cellRequestEdit itemEditBeginning

editedCell editedItemRenderer

focusedCell editedItemPosition

getItemAt() DataProvider APIs are no longer on the list-based classes.
Instead of myList.getItemAt(index), you use
myList.dataProvider.getItemAt(index).

isCellEditor rendererIsEditor

Controls 71

mx.controls.listclasses.ListBase
The following table describes changes to the ListBase class:

Member Change description

activeTabStyleDeclaration SelectedTabStyleName

alternatingRowColors alternatingItemColors

cachedPaddingBottom This property is now internal.

cachedPaddingTop This property is now internal.

cachedVerticalAlign This property is now internal.

calculateHeight measureHeightOfItems

calculateWidth measureWidthOfItems

cellRenderer itemRenderer

commitSelectedIndex() This method is now internal.

commitSelectedIndices() This method is now internal.

dataChanged dataChange

defaultIcon Removed.

getItemRendererForData() itemToItemRenderer()

isHighLighted isItemHighlighted

isSelected isItemSelected

itemSkin itemRenderer

itemToString itemToLabel

listItemRenderer itemRenderer

marginBottom paddingBottom

marginLeft paddingLeft

marginRight paddingRight

marginTop paddingTop

multipleSelection allowMultipleSelection

selectionEasing selectionEasingFunction

setColumnCount() This method is now internal.

setColumnWidth() This method is now internal.

textDisabledColor Removed.

72 Flex Classes

mx.controls.listClasses.ListCellRenderer
The ListCellRenderer class is now named ListItemRenderer.

The following table describes changes to the ListItemRenderer class:

mx.controls.listClasses.TileListItemRenderer
The following table describes changes to the TileListItemRenderer class:

mx.controls.Loader
The mx.controls.Loader class name has changed to mx.controls.SWFLoader.

The following table describes changes to the Loader class:

Adobe Flash Player 9 now dispatches ioError events when external data such as the image
cannot be loaded. The external loading code in View now listens for ioError events and
Error events and forwards them. The SWFLoader class traps these events and displays the
broken image.

Member Change description

dataChanged dataChange

Member Change description

dataChanged dataChange

Member Change description

border Removed.

borderMetrics Removed.

brokenImage The brokenImage is now the brokenImageSkin style
property. This style property is of type Class, as are all
other skin style properties.

contentPath source

load() Using the load() method to load a JPEG, GIF, or PNG file
now creates an ImageSprite (containing an Image) as the
child of the SWFLoader.

Styles You can no longer set border and background color styles
on the SWFLoader control.

Controls 73

mx.controls.Menu
The following table describes changes to the Menu class:

mx.controls.MenuBar
The following table describes changes to the MenuBar class:

Member Change description

alternatingRowColors alternatingItemColors

cellRenderer listItemRenderer

change itemClick

defaultIcon Removed.

getMenuItemAt() Removed.

menuData This property is now internal.

menuItemRollOut itemRollOut

menuItemRollOver itemRollOver

popupDuration openDuration

setMenuItemSelected() This method has been made protected.

rootVisible showRoot

textDisabledColor disabledColor

Member Change description

change itemClick

getMenuBarItemAt() Removed.

labels Removed.

menuItemRollOut itemRollOut

menuItemRollOver itemRollOver

rootModel This property is now internal.

rootVisible showRoot

selectionDisabledColor Removed.

textDisabledColor disabledColor

textRollOverColor Removed.

textSelectedColor Removed.

useRollOver Removed.

74 Flex Classes

mx.controls.menuclasses.*
The menuclasses package has been renamed menuClasses.

mx.controls.menuclasses.IMenuDataDescriptor
The following table describes changes to the IMenuDataDescriptor class:

mx.controls.menuclasses.MenuCellRenderer
The MenuCellRenderer class is now named MenuItemRenderer.

The following table describes changes to the MenuItemRenderer class:

mx.controls.NumericStepper
The following table describes changes to the NumericStepper class:

mx.controls.PopUpButton
The following table describes changes to the PopUpButton class:

Member Change description

isSelected() isToggled()

setSelected() setToggled()

Member Change description

dataChanged dataChange

Member Change description

dataChanged dataChange

dropShadow dropShadowEnabled

trackSkin Removed.

Member Change description

closePopUp() close()

openEasing openEasingFunction

openPopUp() open()

Controls 75

mx.controls.PopUpMenuButton
The following table describes changes to the PopUpMenuButton class:

mx.controls.RadioButton
The following table describes changes to the RadioButton class:

mx.controls.RadioButtonGroup
The following table describes changes to the RadioButtonGroup class:

mx.controls.RichTextEditor
The following table describes changes to the RichTextEditor class:

popUpObject popUp

popUpOnMainButton openAlways

Member Change description

change itemClick

menuItemRollOut itemRollOut

menuItemRollOver itemRollOver

popUpObject popUp

Member Change description

data value

Member Change description

click itemClick

selectedData selectedValue

Member Change description

controlBarVisible showControlBar

enableToolTip showToolTips

selectedTextRange selection

Member Change description

76 Flex Classes

mx.controls.richtexteditorclasses.*
The richtexteditorclasses package is now named richTextEditorClasses.

mx.controls.scrollClasses.ScrollBar
The following table describes changes to the ScrollBar class:

mx.controls.SimpleButton
The SimpleButton class has been removed.

mx.controls.Slider
The thumb labels, which were known as ToolTips on the Slider, HSlider, and VSlider
controls, are now known as data tips on those controls. Several property names have changed
to reflect this change. The controls now also support traditional ToolTip labels, which are
labels that appear for the entire control. You set these by using the inherited toolTip
property.

The following table describes changes to the Slider class:

Member Change description

maxPos maxScrollPosition

minPos minScrollPosition

thumbDisabledSkin Removed.

Member Change description

labelStyleDeclaration Removed. Use the labelStyleName style.

maxValue maximum

minValue minimum

scrollTrackHeight Removed.

showTicks Removed. Instead of setting it to false to turn off tick
marks, you set tickInterval to 0; for example:
<mx:HSlider id="hs1" snapInterval="1"

tickInterval="0"/>

slideEasing slideEasingFunction

showValueTip showDataTip

sliderToolTipClass sliderDataTipClass

Controls 77

mx.controls.sliderclasses.*
The sliderclasses package is now named sliderClasses.

mx.controls.sliderclasses.SliderToolTip
The SliderToolTip class is now named SliderDataTip.

mx.controls.TextArea
The following table describes changes to the TextArea class:

snapToTicks snapInterval

thumbDragged thumbDrag

thumbPressed thumbPress

thumbReleased thumbRelease

thumbWidth Removed. Use thumb skins to create custom thumbs.

tickFrequency tickInterval

tickHeight tickLength

tickSpacing tickOffset

toolTipFormatFunction dataTipFormatFunction

toolTipOffset dataTipOffset

toolTipPlacement dataTipPlacement

toolTipPrecision dataTipPrecision

toolTipStyleDeclaration Removed. Use the toolTipStyleName style.

toolTipStyleName dataTipStyleName

trackHighlight showTrackHighlight

Member Change description

dataChanged dataChange

hPosition horizontalScrollPosition

hScrollPolicy horizontalScrollPolicy

linkColor Removed.

maxVPosition maxVerticalScrollPosition

Member Change description

78 Flex Classes

mx.controls.textclasses.*
The textclasses package has been renamed textClasses.

mx.controls.TextInput
The following table describes changes to the TextInput class:

mx.controls.TileList
The following table describes changes to the TileList class:

maxHPosition maxHorizontalScrollPosition

password displayAsPassword

underlineLink Removed.

vPosition verticalSrollPosition

vScrollPolicy verticalScrollPolicy

Member Change description

dataChanged dataChange

dropShadow dropShadowEnabled

hPosition horizontalScrollPosition

maxHPosition maxHorizontalScrollPosition

password displayAsPassword

text You can now set the text property of a TextInput control
to null.

Member Change description

cellRenderer listItemRenderer

itemHeight rowHeight

itemWidth columnWidth

Member Change description

Controls 79

Flex 1.x:
<mx:TileList id="myTile" dataProvider="{dataObject}"

cellRenderer="ProdtThumbnail" itemWidth="120" itemHeight="116">

Flex 2:
<mx:TileList id="myTile" dataProvider="{dataObject}"

listItemRenderer="ProdThumbnail" columnWidth="120" rowHeight="116">

mx.controls.ToolTip
The following table describes changes to the ToolTip class:

mx.controls.Tree
The following table describes changes to the Tree class:

Member Change description

dropShadow dropShadowEnabled

Member Change description

addChildItem() This method is now internal.

alternatingRowColors alternatingItemColors

cellPress Removed.

defaultIcon Removed.

expandItemHandler() This method is now internal.

getNodeDisplayedAt() Removed. Use Tree.listItems[rowIndex][0].data
instead.

maxHPosition maxHorizontalScrollPosition

openEasing openEasingFunction

removeChildItem() This method is now internal.

rootCollectionChangedHandler() This method is now internal.

rootVisible showRoot

selectionDuration Removed.

selectionEasing selectionEasingFunction
Was of type Time; is now of type Function.

textDisabledColor Removed.

80 Flex Classes

mx.controls.treeclasses.*
The treeclasses package is now named treeClasses.

mx.controls.treeclasses.DefaultDataDescriptor
The following table describes changes to the DefaultDataDescriptor class:

mx.controls.treeClasses.TreeCellRenderer
The TreeCellRenderer class is now named TreeItemRenderer.

The following table describes changes to the TreeItemRenderer class:

mx.controls.VRule
The following table describes changes to the VRule class:

mx.controls.VSlider
The following table describes changes to the VSlider class:

Member Change description

isBranch() Supports nodes in E4X XML, but not XMLNode objects or
data that is serialized into ActionScript objects.

isSelected() isToggled()

setSelected() setToggled()

Member Change description

dataChanged dataChange

Member Change description

color strokeColor

Member Change description

labelStyleDeclaration Removed. Use the labelStyleName style.

Effects 81

Effects
The “instance” classes (such as mx.effects.RotateInstance and mx.effects.ResizeInstance) have
been moved to the mx.effects.effectClasses package.

This section describes changes to individual effects classes. In addition to the changes listed
here, the effects architecture has changed. For more information, see Chapter 8, “Behaviors,”
on page 129.

The name property is now id.

mx.effects.AnimateProperty
The following table describes changes to the AnimateProperty class:

mx.effects.Effect
The following table describes changes to the Effect class:

showTicks Removed. Instead of setting it to false to turn off tick
marks, you set tickInterval to 0; for example:
<mx:HSlider id="hs1" snapInterval="1"

tickInterval="0"/>

toolTipStyleDeclaration Removed. Use the toolTipStyleName style.

Member Change description

endValue toValue

startValue fromValue

Member Change description

effectProperties relevantProperties

effectStyles relevantStyles

endEffect() end()

listener Removed.

playEffect() Use the play() method instead. The method signature has
changed to the following:
play(targets:Array=null,

playReversedFromEnd:Boolean=false):Array

repeat repeatCount

Member Change description

82 Flex Classes

mx.effects.EffectInstance
The following table describes changes to the EffectInstance class:

mx.effects.MaskEffect
The following table describes changes to the MaskEffect class:

These changes also apply to the MaskEffectInstance class.

mx.effects.Resize
The following table describes changes to the Resize class:

These changes also apply to the mx.effects.ResizeInstance class.

mx.effects.SetPropertyAction
The following table describes changes to the SetPropertyAction class:

mx.effects.SetStyleAction
The following table describes changes to the SetPropertyAction class:

Member Change description

repeat repeatCount

stopRepeat This property is now internal.

Member Change description

moveEasing moveEasingFunction

scaleEasing scaleEasingFunction

Member Change description

hideChildren hideChildrenTargets

Member Change description

property name

Member Change description

property name

Effects 83

mx.effects.SoundEffect
The following table describes changes to the SoundEffect class:

These changes also apply to the SoundEffectInstance class.

mx.effects.Tween
The following table describes changes to the Tween class:

mx.effects.TweenEffect
The following table describes changes to the TweenEffect class:

These changes also apply to the TweenEffectInstance class.

Member Change description

panEasing panEasingFunction

soundHolder Renamed to the sound property. This property is now read-
write.

volumeEasing volumeEasingFunction

Member Change description

easing easingFunction

Member Change description

easing easingFunction

tweenEndHandler tweenEnd

84 Flex Classes

Events
All events in the mx.collections package were moved to the mx.events package.

In addition to the changes listed here, the events architecture has changed. For more
information, see Chapter 6, “Events,” on page 111.

mx.events.ChildExistenceChangedEvent
The following table describes changes to the ChildExistenceChangedEvent class:

mx.events.CalendarLayoutChangeEvent
The following table describes changes to the CalendarLayoutChangeEvent class:

mx.events.CollectionEvent
The following table describes changes to the CollectionEvent class:

mx.events.CursorEvent
This class has been removed.

mx.events.DataGridCellRenderer
The DataGridCellRenderer class is now named DataGridItemRenderer.

The following table describes changes to the DataGridItemRenderer class:

Member Change description

CHILD_ADDED CHILD_ADD

CHILD_REMOVED CHILD_REMOVE

Member Change description

cause triggerEvent

Member Change description

modelChanged collectionChange

Member Change description

dataChanged dataChange

Events 85

mx.events.DataGridEvent
The following table describes changes to the DataGridEvent class:

mx.events.DateChooserEvent
The following table describes changes to the DateChooserEvent class:

mx.events.DividerEvent
The following table describes changes to the DividerEvent class:

Member Change description

cell itemRenderer

CELL_BEGIN_EDIT ITEM_EDIT_BEGIN

CELL_END_EDIT ITEM_EDIT_END

CELL_FOCUS_IN ITEM_FOCUS_IN

CELL_FOCUS_OUT ITEM_FOCUS_OUT

CELL_REQUEST_EDIT ITEM_EDIT_BEGINNING

CELL_PRESS Removed.

cellRenderer itemRenderer

columnName dataField

itemIndex rowIndex

itemSkin itemRenderer

view Removed. Use target instead.

Member Change description

cause triggerEvent

Member Change description

DIVIDER_DRAGGED DIVIDER_DRAG

DIVIDER_PRESSED DIVIDER_PRESS

DIVIDER_RELEASED DIVIDER_RELEASE

86 Flex Classes

mx.events.DropdownEvent
The following table describes changes to the DropdownEvent class:

mx.events.EventDispatcher
This class has been moved to flash.events.EventDispatcher and is no longer used as a mixin.

mx.events.FlexEvent
The following table describes changes to the FlexEvent class:

mx.events.IndexChangedEvent
The following table describes changes to the IndexChangedEvent class:

mx.events.ItemClickEvent
The following table describes changes to the ItemClickEvent class:

Member Change description

inputType triggerEvent

Member Change description

DATA_CHANGED DATA_CHANGE

DATA_OBJECT_CHANGED DATA_CHANGE

DRAW UPDATE_COMPLETE

VALUE_COMMITED VALUE_COMMIT

Member Change description

inputType triggerEvent

Member Change description

data item

relatedNode relatedObject and has a type of InteractiveObject (not
DisplayObject)

Events 87

mx.events.ListEvent
The following table describes changes to the ListEvent class:

mx.events.ListItemSelectEvent
The following table describes changes to the ListItemSelectEvent class:

mx.events.LowLevelEvents
This class has been removed.

mx.events.MenuEvent
The following table describes changes to the MenuEvent class:

Member Change description

cell itemRenderer

CELL_BEGIN_EDIT ITEM_EDIT_BEGIN

CELL_END_EDIT ITEM_EDIT_END

CELL_FOCUS_IN ITEM_FOCUS_IN

CELL_FOCUS_OUT ITEM_FOCUS_OUT

CELL_REQUEST_EDIT ITEM_EDIT_BEGINNING

cellRenderer itemRenderer

itemIndex rowIndex

itemSkin itemRenderer

Member Change description

cellRenderer itemRenderer

inputType triggerEvent

itemSkin itemRenderer

Member Change description

cellRenderer itemRenderer

change itemClick

itemSkin itemRenderer

menuItem item

88 Flex Classes

mx.events.MouseEvent
The MouseEvent class is now called FlexMouseEvent. Do not confuse this with the
flash.events.MouseEvent class, which still exists.

The following table describes changes to the mx.events.MouseEvent class:

mx.utils.events.ObjectEvent
The ObjectEvent class is now named and is moved to mx.events.PropertyChangeEvent.

mx.utils.events.ObjectEventKind
The ObjectEventKind class is now named and is moved to
mx.events.PropertyChangeEventKind.

mx.events.SliderEvent
The following table describes changes to the SliderEvent class:

mx.events.ToolTipEvent
The following table describes changes to the ToolTipEvent class:

menuItemRollOut itemRollOut

menuItemRollOver itemRollOver

Member Change description

MOUSE_SCROLL_OUTSIDE MOUSE_WHEEL_OUTSIDE

Member Change description

inputType triggerEvent

newValue value

Member Change description

CREATE_TOOL_TIP TOOL_TIP_CREATE

END_TOOL_TIP TOOL_TIP_END

HIDE_TOOL_TIP TOOL_TIP_HIDE

Member Change description

Formatters 89

mx.events.TreeEvent
The following table describes changes to the TreeEvent class:

mx.events.UIEventDispatcher
This class has been removed.

Formatters
This section describes changes to formatters.

mx.formatters.DateFormater
The DateFormatter pattern string can contain other text in addition to pattern letters. In Flex
1.5, the pattern string had to end with a pattern letter, and text following the last pattern
letter was truncated.

In Flex 2.0, you can have additional text after the last pattern letter and that text is no longer
truncated.

mx.formatters.NumberBase
Four public properties of the mx.formatters.NumberBase class have been renamed to be
consistent with similar mx.formatters and mx.validators properties.

SHOW_TOOL_TIP TOOL_TIP_SHOW

SHOWN_TOOL_TIP TOOL_TIP_SHOWN

START_TOOL_TIP TOOL_TIP_START

Member Change description

CELL_PRESS Removed.

cellRenderer itemRenderer

inputType triggerEvent

itemSkin itemRenderer

Member Change description

90 Flex Classes

The following table describes the changes to the NumberBase class:

mx.formatters.SwitchSymbolFormatter
The following table describes the changes to the SwitchSymbolFormatter class:

Interfaces
The following table describes changes to Flex interfaces:

Member Change description

dSymbolFrom decimalSeparatorFrom

dSymbolTo decimalSymbolTo

tSymbolFrom thousandsSeparatorFrom

tSymbolTo thousandsSeparatorTo

Member Change description

isValid This is now private.

numberSymbol This is now private.

Old name New name

IAllChildrenContainer mx.core.IRawChildrenContainer

IAllChildrenList Removed. Refer to SystemManager.numChildren
and SystemManager.getChildAt.

IChildrenList (formerly
IChildCollection)

mx.core.IChildList

IContainer Added as a marker interface to replace
IFlexContainer in the compiler.

ICreatedComponents Removed. Refer to mx.core.Container instead.

IDataObject mx.core.IDataRenderer

IDeferredInstantiationContainer Removed. Refer to mx.core.Container instead.

IDeferredInstantiationUIComponent.
cacheHeuristic

The cacheHeuristic property has been made private.

IFlexContainer Removed.
The framework code refers to mx.core.Container
instead. The compiler refers to IContainer instead.

IFocusable mx.managers.IFocusManagerComponent

Managers 91

Managers
This section describes changes to Flex classes in the mx.managers package.

mx.managers.DepthManager
This class has been removed.

IFocusManager Removed. Refer to mx.managers.FocusManager
instead.

IFocusManagerContainer mx.managers.IFocusManagerContainer

IHistoryState mx.managers.IHistoryManagerClient

IInteractionReplayer mx.automation.IAutomationReplayer

ILayoutClient mx.managers.ILayoutManagerClient

ILayoutManager mx.managers.LayoutManager

IObjectChanged mx.core.IPropertyChangeNotifier

IRecorder Removed.

IRepeaterContainer Removed. Refer to mx.core.Container instead.

IScrollBar Removed. Refer to mx.controls.ScrollBar instead.

IStyleable mx.styles.ISimpleStyleClient

IStyleClient mx.styles.IStyleClient

ISystemManager The framework refers to
mx.managers.SystemManager instead. References
to ISystemManager have been removed from the
compiler.

ITabGroup mx.managers.IFocusManagerGroup

ITabularData mx.automation.IAutomationTabularData

ITarget mx.logging.ILoggingTarget

IToolTipClient mx.managers.IToolTipManagerClient

ITreeDataProvider Removed.

IValidationListener mx.validators.IValidatorListener

Old name New name

92 Flex Classes

mx.managers.DragManager
Instead of setting event.handled inside the dragEnter event listener, you must call the
DragManager.acceptDragDrop(event.target) method.

You cannot set the action property of the event object. Instead, you must call the
setFeedback() method. For example, change the following code:
event.action=DragManager.Link;

to the following:
DragManager.showFeedback(DragManager.LINK);

This applies to all actions: MOVE, LINK, COPY, NONE.

The signature to the doDrag() method has changed. There is no longer an imageInitObj
argument, and there are two new arguments: mouseEvent and allowMove.

When using the doDrag() method and dragging text-based controls, you should use the
currentTarget property of the Event object instead of the target property. This is because
of the way text-based controls react during the bubbling event phase.

For a detailed description of these changes and a conversion example, see “Using the drag-
and-drop feature” on page 178.

mx.managers.FocusManager
The following table describes changes to the FocusManager class:

mx.managers.LayoutManager
The following table describes changes to the LayoutManager class:

Member Change description

isParentOf() Removed. Use the contains() method on the
DisplayObjectContainer class.

Member Change description

updateNow() validateNow()

Managers 93

mx.managers.PopUpManager
The following table describes changes to the PopUpManager class:

mx.managers.SystemManager
The SystemManager class now implements the ISystemManager interface.

The following table describes changes to the SystemManager class:

Member Change description

closeButton The default value of the closeButton property is now false.
To enable a close button on your pop-ups, you must
explicitly set the value of the closeButton property to true.

createPopUp() The createPopUp() method now takes only three
arguments, and returns an IFlexDisplayObject.
You can no longer pass an initObj to the createPopUp()
method. Instead, you declare the variables that you want
to set inside the pop-up’s definition, and set them on the
pop-up in the calling application.

deletePopUp() removePopUp()

popUpWindow() (was
popupWindow())

The name of the method also changed to addPopUp().
Formerly inherited from the Application object, this
method is now a method of the PopUpManager class.

Member Change description

cursors (formerly
cursorChildrenList)

cursorChildren

embeddedFontList() This method is now private. Use the Font class’s
enumerateFonts() method.

getClassByName() getDefinitionByName()

getManager() getSystemManager()

getTopLevelSystemManager() topLevelSystemManager

initializeChild() childAdded()

registerInitCallback() This method is now private.

toolTips (formerly
toolTipChildrenList)

toolTipChildren

topMostChildrenList popupChildren

94 Flex Classes

Media controls
This section describes changes to media controls in Flex 2.

mx.controls.MediaDisplay
The MediaDisplay control has been replaced by the mx.controls.VideoDisplay control. The
API is the same, but it does not support MP3 files.

mx.controls.MediaController
The MediaController control has been removed. Use the VideoDisplay control instead.

mx.controls.MediaPlayback
The MediaPlayback control has been removed. Use the VideoDisplay control instead.

mx.controls.VideoDisplay
This class replaces the mx.controls.MediaDisplay class. The following table describes changes
to the VideoDisplay class:

Printing
This section provides information about changes to classes in the mx.printing package.

The mx.print package is now named mx.printing.

mx.print.PrintJob
The name and package of the mx.print.PrintJob class has been changed to
mx.printing.FlexPrintJob.

Member Change description

metadataReceived Removed.

Service tags 95

mx.print.PrintJobType
The following table describes the changes to the PrintJobType class:

Resources
This section provides information about changes to classes in the mx.resources package.

mx.resource.*
The mx.resource package is now named mx.resources.

Service tags
This section describes changes to Flex classes in the mx.servicetags package. In addition to the
changes here, the Flex data services architecture has changed. For more information, see
Chapter 9, “Data Services,” on page 135.

mx.servicetags.HTTPService
The HTTPService class was moved to mx.rpc.http.HTTPService. It now extends the
mx.rpc.AbstractInvoker class.

The following table describes changes to the HTTPService class:

The HTTPService logic has been changed to match the WebService logic. Previously,
HTTPServices raised a fault for an invalid resultFormat at send time; now, HTTPService
throws an Error as soon as an invalid value is set.

Member Change description

HEIGHT MATCH_HEIGHT

WIDTH MATCH_WIDTH

Member Change description

protocol Deprecated. Use the destination property. For backward
compatibility, the default value of the destination property
is defaultHttps.

serviceName Deprecated. Use the destination property.

96 Flex Classes

mx.servicetags.RemoteObject
The RemoteObject class was moved to mx.rpc.remoting.RemoteObject. It now extends the
mx.rpc.AbstractService class.

The following table describes changes to the RemoteObject class:

All RemoteObject sources need destination entries in the flex-services.xml file. You should
now name every service and not use the actual source class as the name. All definitions of
named RemoteObjects must be moved into the flex-services.xml file.

mx.servicetags.WebService
The following table describes changes to the WebService class:

The WebService class has the following changes:

■ The WebService class was moved to mx.rpc.soap.WebService. It now extends the
mx.rpc.AbstractService class.

■ You must move the definitions of named services to the flex-services.xml file. The
unnamed whitelist must be updated in the defaultHttp destination.

Member Change description

encoding Removed.

endpoint Was removed. Channels defined in the flex-services.xml
file replace the need for this property.
Has been added again to allow clients to use this tag
without the configuration file at compile time.

named Removed. Use the destination property.

protocol Removed. Channels defined in the flex-services.xml file
replace the need for this property.

source Removed. Use the destination property.

type Removed. This is now controlled in the service definition in
the flex-services.xml file. You set it with the <source> tag.

Member Change description

protocol Deprecated. Use the destination property. For backward
compatibility, the default value of the destination property
is defaultHttps.

serviceName Deprecated. Use the destination property.

Skins 97

Callback URLs
Callback URLs are no longer necessary in Flex 2. Use messaging channels with endpoint
mappings instead.

Skins
This section describes changes to Flex classes in the mx.skins package. For more information,
see “Using skinning” on page 124.

mx.skins.halo.RectBorder
This class is now named HaloBorder.

mx.skins.halo.PopUpIcon
The following table describes changes to the PopUpIcon class:

mx.skins.ProgrammaticSkin
The following table describes changes to the ProgrammaticSkin class:

mx.skins.RectBorder
This class is now named mx.skins.RectangularBorder.

Member Change description

arrowColor This property is now private.

Member Change description

invalidateStyle() styleChanged()

updateNow() validateNow()

98 Flex Classes

States
This section provides information about changes to classes in the mx.states package.

mx.states.AddChild
The following table describes changes to AddChild class:

mx.states.SetEventHandler
The following table describes changes to SetEventHandler class:

mx.states.SetProperty
The following table describes changes to SetProperty class:

mx.states.SetStyle
The following table describes changes to SetStyle class:

Member Change description

added This property is now internal.

instanceCreated This property is now internal.

target relativeTo

Member Change description

event name

Member Change description

property name

Member Change description

property name

Validators 99

Utilities
This section provides information about changes to classes in the mx.utils package.

mx.utils.XMLUtil
The following table describes changes to XMLUtil class:

Validators
This section provides information about changes to classes in the mx.validator package.

mx.validator.Validator
The following table describes the changes to the Validator class:

Member Change description

createXML() createXMLDocument()

Member Change description

DIGITS DECIMAL_DIGITS

disable() enabled

disableStructure enabled

enable() enabled

enableStructure() enabled

field source and property

hasErrors() Removed.

isStructureValid() validate()

isValid() validate()

LETTERS This property was private and is now protected; it is now
named ROMAN_LETTERS.

validateAll() Returns an Array of ValidationResultEvent for Validators
that failed. If all are successful, this method returns an
empty Array. Previously, this method returned a Boolean
value.

validationError() Removed.

100 Flex Classes

101

4
CHAPTER 4

Data Providers

This topic describes migrating data providers, including the dataProvider property of Flex
controls and the ways you access and manipulate the data represented by the dataProvider
property. For detailed information on using data providers in Flex 2, see Chapter 7, “Using
Data Providers and Collections,” in Flex 2 Developer’s Guide.

The DataProvider interface and class no longer exist and have been replaced by the collection
package hierarchy. However, you still use the dataProvider property to specify the source of
the data in a control such as DataGrid or Menu. The collection classes include methods for
manipulating the underlying data and the view of that data that is displayed in the control.

The collection package includes the following interfaces and classes:

■ IList, ICollectionView, and IViewCursor interface, and the CursorBookmark class which
you use to access and manipulate data. The ICollectionView interface can represent a
sorted or filtered subset of data without modifying the underlying data.

■ ArrayCollection class, which implements the IList and ICollectionView interface using a
backing Array.

■ XMLListCollection which implements the IList and ICollectionView interface using a
backing E4X XML object.

■ Sort, and SortField for sorting the data representation of an ICollectionView.
■ ItemResponder, for handling remote paged collections.
■ ListCollectionView, a building-block class used by XMLListCollection and

ArrayCollection.

For detailed descriptions of all interfaces and classes, see the collection package in Adobe Flex 2
Language Reference. For documentation on using the package interfaces and classes, see
Chapter 7, “Using Data Providers and Collections,” in Flex 2 Developer’s Guide.

102 Data Providers

The following information briefly describes major migration issues:

■ Because the DataProvider interface has been replaced by methods of the collection classes,
controls that have dataProvider properties do not include any of the DataProvider
interface methods, such as getItemAt(). Instead, you manipulate the control contents by
manipulating the object, normally a collection, that acts as the data source. You can use
the methods on the dataProvider property or on the collection object directly.
For example, you can no longer use the following line:
myList.getItemAt(index).

Instead, use the following line:
myList.dataProvider.getItemAt(index)

In this case, the dataProvider property must specify a collection object that represents the
data.

■ Do not use raw Arrays or Objects in your dataProvider property if the data provider's
values change. The control that displays the data will not get updated when the
underlying data changes. Instead, convert your provider to an ArrayCollection class, as in
the following example:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" >

<mx:Script>
import mx.collections.*;
public var myArray:Array = ["MA", "ME", "MI", "MN","MO", "MS",

"MT"];
public var myICV:ICollectionView = new ArrayCollection(myArray);

</mx:Script>
<mx:ComboBox id="myCB0" dataProvider="{myICV}" />

</mx:Application>

■ If you use the DataProvider class directly in an existing application, replace it with the
ArrayCollection or XMLListCollection class. These classes are not one-for-one equivalents
to the old DataProvider class. They do not include the editField, getEditingData,
getItemID, replaceItemAt, sortItems and sortItemsBy methods. If you use any of these
methods, you must different techniques. For sorting, use the Sort class and the sort
property of the ICollectionView interface.

■ The Flex 1.5 Array class implemented the DataProvider interface methods, such as
replaceItemAt() and sortItems(). In Flex 2, there is no separate Flex Array class, only the
Flash Array class, which does not implement such methods. If you used the Array class
and its DataProvider methods, convert the Array to an ArrayCollection and use IList and
ICollectionView interface methods.

103

■ The Tree, Menu, MenuBar, and PopUpMenuButton controls, now use a data descriptor
class to access and manipulate control-specific information, such as menu item type, that
is contained in the data provider. Tree controls require a class that implements the
ITreeDataDescriptor interface, and menu-based controls require a class that implements
the IMenuDataDescriptor interface. The Tree and menu-based controls use a
DefaultDataDescriptor class, which implements both interfaces, as the data descriptor
class unless you specify a custom data descriptor.
The DefaultDataDescriptor supports standard E4X XML data sources, and Array based-
sources that conform to specific structure rules. You might have to change the structure of
your Array or object-based data source to conform to data descriptor rules. For detailed
information see “Using hierarchical data providers” in Chapter 4, “Data Providers,” in
Flex 2 Developer’s Guide.

■ To sort the contents of a DataGrid control, you now sort the underlying data provider,
using the collection interfaces. You can still let users control sorting by clicking on the grid
headers. For detailed information see “Sorting data in DataGrid controls” in Chapter 12,
“Using Data-Driven Controls,” in Flex 2 Developer’s Guide

104 Data Providers

105

5
CHAPTER 5

Binding

This topic describes the steps required to convert properties in your applications to be usable
as the source for a data binding expression in Adobe Flex.

For more information binding, see Chapter 5, “Using Metadata Tags in Custom
Components,” in Creating and Extending Flex 2 Components.

Contents
About binding . 105

Binding from a property . 106

Binding with Arrays .110

About binding
In Flex 1.5, it was possible to use any public property defined as a variable or Array as the
source for a data binding expression. When a public property is the source of a data binding
expression, Flex automatically copies its value to a destination property when the value of the
source property changes.

Any property can be the destination of a data binding expression. That means you do not
have to write an special code to support the destination property of a data binding expression.

Using any property as the source for data binding is supported in Flex 2, but you must
explicitly identify the property or the property’s class as bindable using the [Bindable]
metadata tag. The property may be defined as a variable or defined by using both a setter and
a getter method. If you attempt to use a property as the source of a data binding expression,
and that property does not support binding, Flex throws a warning and does not update the
destination value of the when the source value changes.

Using Arrays and DataProviders as the source for data binding expressions in Flex 2 is not
supported and you should convert your DataProviders to use the new Collections API. For
more information, see “Binding with Arrays” on page 110.

106 Binding

The <mx:Binding> tag must be a top-level
tag
In Flex 1.5, you could place the <mx:Binding> tag in a Flex container. In Flex 2.0, the
<mx:Binding> tag must be a top-level tag in the MXML file. For example:

Flex 1.x:
<mx:HBox>

<mx:Label id="myLabel"/>
<mx:Label id="my2ndLabel" text="hello"/>
<mx:Binding source="my2ndLabel.text" destination="myLabel.text"/>

</mx:HBox>

Flex 2:
<mx:Binding source="my2ndLabel.text" destination="myLabel.text"/>
<mx:HBox>

<mx:Label id="myLabel"/>
<mx:Label id="my2ndLabel" text="hello"/>

</mx:HBox>

Binding from a property
To make properties usable as the source for a data binding expression in Flex 2, you use the
[Bindable] metadata tag. Properties of custom components often have getter/setter pairs
that were tagged with a [ChangeEvent] metadata tag. For Flex 2, you convert that tag to
[Bindable] and update the setter to dispatch an Event object.

This section describes these processes.

Binding from all public properties in a class
To make all public properties in a class usable as the source for a data binding expression,
properties defined as properties and properties defined by using both a setter and a getter
method, add the [Bindable] metadata tag before the class statement:
[Bindable]
public class MyClass { ... }

Although the easiest way to migrate an application that uses binding is to make all public
properties in a class support data binding, it is not necessarily the best practice to use the
[Bindable] metadata tag on an entire class. Doing this causes the compiler to generate more
code, which in turn can affect performance and increase your application’s file size.

Binding from a property 107

The Flex compiler automatically generates an event named propertyChange for all public
properties so the properties can be used as the source of a data binding expression. In this case,
specifying the [Bindable] metadata tag with no event is the same as specifying the following:
[Bindable(event="propertyChange")]

Binding from a single property
To make a single property usable as the source for a data binding expression, add the
[Bindable] metadata tag before the property declaration. The property can be public,
protected, or private.

Flex 1.5:
var foo:String; // You could bind to this in 1.5

Flex 2:
[Bindable]
public var foo:String;

The Flex compiler automatically generates an event named propertyChange for all public
properties so the properties can be used as the source of a data binding expression. In this case,
specifying the [Bindable] metadata tag with no event is the same as specifying the following:
[Bindable(event="propertyChange")]

Binding from a property defined by a setter and getter
method
In Flex 1.5, you used the [ChangeEvent] metadata tag on setter/getter pairs. In Flex 2, you
replace the [ChangeEvent] metadata tag with the [Bindable] metadata tag and dispatch the
event in the method. This strategy also applies to other methods that dispatched custom
events.

Flex 1.5:
[ChangeEvent("maxFontSizeChanged")]
// Define public getter method.
public function get maxFontSize():Number {

return _maxFontSize;
}

Flex 2:
[Bindable(event="maxFontSizeChanged")]
// Define public getter method.
public function get maxFontSize():Number {

return _maxFontSize;
}

108 Binding

The following is a Flex 2 example of a getter/setter pair that uses the [Bindable] metadata
tag:
// Define private variable.
private var _maxFontSize:Number = 15;

[Bindable(event="maxFontSizeChanged")]
// Define public getter method.
public function get maxFontSize():Number {

return _maxFontSize;
}

// Define public setter method.
public function set maxFontSize(value:Number):void {

if (value <= 30) {
_maxFontSize = value;

} else _maxFontSize = 30;

// Create event object.
var eventObj:Event = new Event("maxFontSizeChanged");
dispatchEvent(eventObj);

}

You can omit the event name in the metadata tag, as the following example shows:
// Define private variable.
private var _maxFontSize:Number = 15;

[Bindable]
// Define public getter method.
public function get maxFontSize():Number {

return _maxFontSize;
}

// Define public setter method.
public function set maxFontSize(value:Number):void {

if (value <= 30) {
_maxFontSize = value;

} else _maxFontSize = 30;
}

The Flex compiler automatically generates an event named propertyChange. In this case,
specifying the [Bindable] metadata tag with no event is the same as specifying the following:
[Bindable(event="propertyChange")]

Binding from a property 109

Dispatching binding events from a custom
component
To dispatch an event to trigger data binding for a property, the property’s class must either
extend EventDispatcher or implement the IEventDispatcher interface. Be sure to update the
object that is passed to the dispatchEvent() method. You must use the new Event class and
not a generic Object. For more information on converting events, see “Migrating the Event
object” on page 113.

If the class already extends EventDispatcher, you do not need to make any changes. If the class
already implements IEventDispatcher, it must implement dispatchEvent(), too. If the class
does not implement dispatchEvent(), the MXML compiler reports a warning.

If the class does not extend EventDispatcher or implement IEventDispatcher and one of your
properties is marked [Bindable] or the class is marked [Bindable], the MXML compiler
modifies the class to implement IEventDispatcher. This requires the compiler to generate the
following code for you:

■ Implements the IEventDispatcher interface.
■ Adds an addEventListener() method.
■ Adds a removeEventListener() method.
■ Adds a dispatchEvent() method.

For example, the following declaration:
class Foo {
}

Is converted by the Flex compiler to the following:
class Foo implements IEventDispatcher {

private var bar:EventDispatcher = new EventDispatcher(this);
public function addEventListener(type:String, listener:Object,

useCapture:Boolean = false, priority:int = 0):Boolean {
return bar.addEventListener(type, listener, useCapture, priority);

}
public function removeEventListener(type:String, listener:Object,

useCapture:Boolean = false):Boolean {
return bar.removeEventListener(type, listener, useCapture);

}
public function dispatchEvent(event:Event):void {

bar.dispatchEvent(event);
}

}

For more information, see Creating and Extending Flex 2 Components.

110 Binding

Binding with Flex component properties
You can no longer use all properties of Flex components as the source of a data binding
expression without extending those controls. Properties of Flex components that can be used
as the source of a data binding expression contain the following description in their entry in
the ActionScript 3.0 Language Reference:
This property can be used as the source for data binding.

Binding with Arrays
In Flex 1.5, the DataProvider class had convenience functions that it inherited from Array
such as addItem() and removeItemAt(). These functions dispatched events so that Arrays
and Array subclasses could be used as the source of a data binding expression. In Flex 2,
Arrays supports only one-time binding. If you want your DataProviders to support binding,
you must convert them to Collections.

For more information on migrating applications that use the DataProvider class, see
“mx.controls.listclasses.DataProvider” on page 70.

For more information on using Collections, see Flex 2 Developer’s Guide.

111

6
CHAPTER 6

Events

This topic describes changes to the Adobe Flex 2 event model for developers who are
migrating Flex applications.

Contents
About events .112

Component startup life cycle .112

Migrating the Event object .113

Using static constants .114

Using function listeners. .115

Using the EventDispatcher class .116

Maintaining scope . 117

Using setCapture() . 117

Keyboard events. 117

112 Events

About events
The following list is a general overview of the changes to the Event model. Review all event
handling in your Flex application by using these guidelines.

■ All event objects are either of type Event or a subclass of Event. You should explicitly
declare or cast them to their appropriate type.

■ Use static constants such as MouseEvent.CLICK instead of string literals for the event
type, such as “click”. For more information, see “Using static constants” on page 114.

■ Do not use object event listeners. Instead use function listeners. For more information, see
“Using function listeners” on page 115.

■ Scoping in event listeners is improved. You no longer need to pass a Delegate to maintain
scope.

■ Use the currentTarget property instead of the target property when you access the
object that is listening for the event. The target property refers to the object that
dispatched the event.

Subclasses of Event, such as MouseEvent, have all the properties of the Event object and
properties that are specific to that type of event. Choosing the most specific type possible
provides the following benefits:

■ Faster run-time performance
■ Compile-time type-checking
■ Access to event-specific properties
■ Smaller SWF file size

Component startup life cycle
The ordering of events during a component’s initialization has changed. The initialize
event is now named preinitialize.

The initialize event now occurs after children are added to the component. As a result,
instead of calling an event handler for the creationComplete event, you can use the
initialize event handler to perform most initialization tasks. You typically call
creationComplete when you have to wait until the LayoutManager has processed the
children so that the x, y, width, and height properties are known.

The childrenCreated event has been removed. You should use the initialize event
instead.

A new event, applicationComplete, has been added. This event is the last one dispatched
when an application starts up.

Migrating the Event object 113

Migrating the Event object
This section describes migration issues related to accessing the Event object.

Using the Event object
The Event object is no longer of type Object. It is now of type flash.events.Event. Specify a
stricter type in functions, as follows:
private function eventHandler(event:Object):Void { // Flex 1.5

private function eventHandler(event:Event):void { // Flex 2

You should also now cast the event.target in an event handler to an appropriate type to
avoid compile-time warnings. The new code should specify the stricter event type as a
function parameter, as the following example shows:
private function doDragExit(event:DragEvent):void {

event.target.hideDropFeedback(event);
}

If you assign the target to a stronger-typed variable, you must cast; for example:
var clickTarget:Button = Button(event.target);

When using the Event object, you are encouraged to use the most strict type possible. This
lets you access properties that are specific to the target type. For example, in a mouse click
listener, you should declare the Event of type MouseEvent rather than of type Event, as
follows:
private function myClickHandler(event:MouseEvent):void { ... }

If you use Event as the type, rather than MouseEvent, you do not have access to any properties
that are specific to the MouseEvent class.

Using the target property
Calling methods and accessing properties on the target can be confusing. The default type of
Event.target is Object. Because ActionScript is strongly typed, you can call
event.target.methodName() only if you cast the event.target to an object type that
defines that methodName. The same applies for properties. You can access
event.target.property only if you define property on the new type.

114 Events

If you try to call another method on the target (for example, the getStyle() method), Flex
returns an error. The getStyle() method is a method of UIComponent, a subclass of
DisplayObject. Therefore, you must cast event.target to UIComponent before calling the
getStyle() method, as the following example shows:
function myEventListener(e:Event) {

UIComponent(e.target).getStyle("color");
}

If you use the target property of the Event object to determine which control triggered the
event, you should consider changing the target property to currentTarget. The
currentTarget property supports event bubbling and capturing, which are new in Flex 2.
During these phases, the event is actually being handled by the target’s parent containers. The
target still refers to the dispatcher of the event, but the currentTarget refers to whatever
control is currently processing a bubbling or capture event.

For example, if you have <mx:List click="..."/>, inside the click handler event.target
might be one of the rows, but event.currentTarget is a reference to the List control, which
is generally what you would expect.

Another example is what occurs when you assign a mouseDown handler on a TextInput
control. Actually, the TextField class that is inside the TextInput control dispatches the event
(depending on where the user clicked), so the TextField control, not the TextInput control, is
the target. However, the TextInput control is the currentTarget if that is where you
attached the handler.

Most controls have internal subcomponents that are often the target for mouse events.

Using static constants
Use static constants to represent event types; for example, use MouseEvent.CLICK rather than
"click", as the following example shows:
addEventListener("click", myClickListener); // Flex 1.5
addEventListener(MouseEvent.CLICK, myClickListener); // Flex 2

Change the following:
switch (event.type) {

case "click":
...

}

To this:
switch (event.type) {

case MouseEvent.CLICK:
...

}

Using function listeners 115

To find the appropriate static constant for your event type, see the events section of the
control’s entry in Adobe Flex 2 Language Reference.

Using function listeners
When migrating, convert all object event listeners to function event listeners. You can no
longer pass an object as the second parameter to the addEventListener() method. The
listener argument of the addEventListener() method was of type Object, which also
accepted a Function, but is now of type Function. If you try to pass an object listener, Flex
reports an error.

For example, if you had the following:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

creationComplete="createHandler()">
<mx:Script>
import mx.core.Alert;
function createHandler() {

var myListener = new Object();
myListener.click = function(event) {

Alert.show("This is a log message");
}
myButton.addEventListener("click", myListener);
trace("Added listener");

}
</mx:Script>
<mx:Button label="Click Me" id="myButton"/>

</mx:Application>

Convert it to the following:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

creationComplete="createHandler()">
<mx:Script>
import mx.controls.Alert;
private function createHandler():void {

trace("Added listener");
button1.addEventListener(MouseEvent.CLICK, myClickHandler);

}
private function myClickHandler(event:MouseEvent):void {

Alert.show("This is a log message");
}
</mx:Script>
<mx:Button label="Click Me" id="button1"/>

</mx:Application>

http://www.adobe.com/go/flex2_apiref

116 Events

You must also change your code if you created a custom event handler class and defined a
handleEvent() method that listened for all events. Flex implicitly registered this method as a
handler for all events. Functions named handleEvent() no longer catch all events by default
as they did in Flex 1.x.

For example, if in your application you registered the custom listener with the
addEventListener() method, as follows:
public var myListener:MyEventListener = new MyEventListener();
b1.addEventListener("click", myListener);

You now explicitly register the custom listener’s handleEvent() method for each event you
want to handle, as follows:
public var myListener:MyEventListener = new MyEventListener();
b1.addEventListener(MouseEvent.CLICK, myListener.handleEvent);

Using the EventDispatcher class
The UIComponent class now inherits from the player’s EventDispatcher class. As a result, you
no longer need to mix in the EventDispatcher class when creating new components.

The dispatchEvent() method now requires an argument of type Event, so you can no
longer construct an event using an Object like { type: "click" }. You must now do the
following instead:
dispatchEvent(new MouseEvent(MouseEvent.CLICK));

To dispatch an event from a custom component, you can do the following:

Flex 1.x:
<mx:CustomPanel mouseDown="dispatchEvent({type: 'resizeEvent', size:

'small'})">

Flex 2:
private function mouseDownHandler(event:MouseEvent):void {

var resizePanelEvent:ResizePanelEvent = new
ResizePanelEvent(ResizePanelEvent.RESIZE);

resizePanelEvent resizePanelEvent.size = "small";
dispatchEvent(event);

}

Keyboard events 117

Maintaining scope
Previously, you used the mx.utils.Delegate class to provide access to the document scope
within an event handler. You would pass the Delegate object into a call to the
addEventListener() method so that the listener would execute in that scope. This is no
longer necessary. The event listener’s scope is now the class in which it is declared as a
function, which is in most cases the scope you should expect; for example:

Flex 1.x:
addEventListener("click", mx.utils.Delegate.create(this, myListener));

Flex 2:
addEventListener(MouseEvent.CLICK, myListener);

Using setCapture()
The setCapture() method has been removed. This method was added in earlier Beta releases
of Flex 2 and was used to block events going to other (nested or non-nested) components
during drag-and-drop operations and a few other interactions. However, in the nested
situation, if one component called the setCapture() method, its parents and children could
not.

If you require this functionality, you should use the capture phase of the event model by
calling the stage.addEventListener("mouseXXX", mouseXXXHandler, true) method,
where mouseXXX is the mouse event you want to block. You can then emulate the
setCapture() method by calling the event.stopPropagation() method; however, Adobe
does not recommend doing this because most components should ignore the event.

The removeCapture() method has also been removed.

Keyboard events
The code and ascii properties of the KeyboardEvent (formerly Event) object are now
keyCode and charCode.

In drag-and-drop examples in Flex 1.x, you could use Key.isDown() to detect a key that was
pressed during the operation. In Flex 2, you use the shiftKey, ctrlKey, and altKey
properties on the KeyboardEvent object to detect keys that are pressed during the operation.

118 Events

119

7
CHAPTER 7

Styles and Skinning

This topic describes styleable objects; new skinning workflow; and CSS rules. For information
about changes to individual classes such as ProgrammaticSkin, see Chapter 3, “Flex Classes,”
on page 41.

Contents
Using styles .119

Using skinning. 124

Using embedded fonts . 126

Themes . 127

Using styles
There are some changes to the way you use styles. For example, the use of style properties is
now more strictly enforced. If you try to apply a style to a component that does not support
that style, Flex throws and error. Also, you cannot use the StyleManager.styles property to
change styles for entire classes in Adobe Flex Software Development Kit (SDK) 2. Finally,
some of the color value formats have changed.

This section describes these changes.

120 Styles and Skinning

Using the StyleManager
When you use the StyleManager to apply styles to entire classes, you must now access the class
with the getStyleDeclaration() method. For example:

Flex 1.x:
StyleManager.styles.Button.setStyle("color","red");

Flex 2:
StyleManager.getStyleDeclaration("Button").setStyle("color","red");

You can no longer set or get styles as properties of a component or class. You now use
setStyle() and getStyle(). This also applies to using StyleManager. While accessing styles
this way was discouraged in Flex 1.5, it was not prohibited until now.

Flex 1.x:
var c = myButton.color;
StyleManager.styles.TextArea.color = "red";

Flex 2:
var c:Number = myButton.getStyle("color");
StyleManager.getStyleDeclaration("TextArea").setStyle("color","red");

In addition, you can no longer create a CSSStyleDeclaration object and then apply it to a type
of control, as the following example shows:
public var styleObj:CSSStyleDeclaration = new CSSStyleDeclaration();
styleObj.setStyle("color","red");
styleObj.setStyle("fontFamily","Tahoma");
StyleManager.styles.Accordion = styleObj;

You must now use the setStyle() method; for example:
StyleManager.getStyleDeclaration("Accordion").setStyle("color","red");
StyleManager.getStyleDeclaration("Accordion").setStyle("fontFamily","Tahoma

");

You can also use the StyleManager.setStyleDeclaration() method.

The getNonInheritingStyle() and getInheritingStyle() methods were removed. You
can now use the getStyle() method instead.

Using styles 121

Changed style properties
The following table shows changes to the CSS style property names:

Missing style properties
If you applied a style property to a component that did not support that style property, Flex
would fail silently. Now, Flex enforces style setting and throws compilation errors when you
try to apply a style to a component that does not support that style. You should check the
component’s entry in Adobe Flex 2 Language Reference to see the legal styles for each
component you use.

In Flex 1.5:
<mx:Button label="my link" borderStyle="solid"/>

In Flex 2, the compiler throws an error for the borderStyle style because it’s not a valid style
on a Button control.

Using colors
The support color value formats have changed. Which format is supported depends on
whether you are setting the color in CSS or using the setStyle() method. This section
describes the valid and invalid formats.

Color value formats in CSS
In CSS, color values must be un-quoted, and can be in either the #RRGGBB format or a
constant (for example, red). These rules apply to CSS whether you are using the <mx:Style>
tag or an external CSS file. Previously, you could use the 0xRRGGBB notation or quoted values.

Flex 1.x Name Flex 2 Name

drop-shadow drop-shadow-enabled

margin-bottom padding-bottom

margin-left padding-left

margin-right padding-right

margin-top padding-top

tool-tip-offset data-tip-offset

tool-tip-precision data-tip-precision

tool-tip-placement data-tip-placement

track-highlight show-track-highlight

122 Styles and Skinning

The following are the valid color value formats in CSS:
.b1 { color: red; }
.b2 { color: #66CC66; }
.b3 { color: rgb(22%,22%,77%); }
.b4 { color: rgb(255,0,0); }
.b5 { color: "0xFFFF00"; }

The following are the invalid color value formats in CSS:
.b6 { color: 0xFFFF00; } /* Results in a compiler error. */
.b7 { color: "red"; } /* Fails silently; color is black. */
.b8 { color: "#FFFF00"; } /* Fails silently; color is black. */
.b9 { color: 100%, 0%, 0% ; } /* Results in a compiler error. */

If the format does not conform to CSS syntax, Flex throws a compiler error and the
application will not run. If the format does conform to CSS syntax but is uses invalid values,
Flex throws a run-time error.

Color value formats using the StyleManager and setStyle()
method
The validity of color formats is different when using the setStyle() method or when setting
colors with the StyleManager.

The following are valid color formats when you use the setStyle() method or the
StyleManager:
b1.setStyle("color",0x33CCFF);
b2.setStyle("color","0x33CCFF");
b3.setStyle("color","red");
b4.setStyle("color","#66CC66");

The following are invalid color formats when you use the setStyle() method or the
StyleManager:
b5.setStyle("color",red);
b6.setStyle("color",rgb(0,255,0));
b7.setStyle("color",rgb(77%,22%,0%));
b8.setStyle("color",#66CC66);

CSS class selectors
The CSS syntax for class selectors is more strict. Class selectors now require a period as a
prefix to the class selector name. In Flex 1.5, if a selector did not have a period prefixing its
name, Flex interpreted it as a type selector, but then allowed you to use it as a class selector at
run time.

Using styles 123

For example:
<mx:Style>

// The following class selector fails in Flex 2 if
// there is no associated class:
myClass {

color: red;
}
// The following class selector works fine in Flex 2:
.myOtherClass {

color: red;
}

</mx:Style>

You must include the period when you use the getStyleDeclaration() method.

Global style sheet
The global style sheet, global.css, was removed. Flex now uses a default style sheet,
defaults.css, which is in the frameworks.swc file.

If you are migrating an existing 1.5 application that depended on the global.css file, you can
still use global.css, but you must compile it into a theme (importing global.css is no longer
automatic). For more information on compiling themes, see Chapter 18, “Using Styles and
Themes,” in the Flex 2 Developer’s Guide.

Using type selectors
Properties set in type selectors now obey object-oriented inheritence rules. If you define a type
selector for a class, Flex applies all properties in that type selector to that class, as well as
subclasses of that class. For example, VBox is a subclass of Box, which is a subclass of
Container.

If you define the following type selectors, VBox controls inherit the values of the fontSize
and fontStyle properties.
<mx:Style>

Container { fontSize:14 }
Box { fontStyle: bold }
VBox { color:red }

</mx:Style>

Previously, properties set in type selectors that were parents of a class did not apply to that
class, unless that class was a child object in the application’s display list.

124 Styles and Skinning

Using units
Flex no longer supports using the plus (+) and minus (-) unit modifiers.

Flex no longer supports the em and ex unit types.

Using skinning
Previously, you defined graphical skins as symbols in a FLA file, exported the FLA file as a
SWC file from the Flash IDE, and added it to your Flex source path. The symbols in the new
SWC file replaced existing symbols in Flex component skins.

Now, all skins are specified as style properties that can be set through CSS or inline. Do not
use the symbol substitution method of defining new skins.

To use a programmatic skin, add the class to your ActionScript source path when you
compile. Then use the ClassReference() statement to reference that class in your
application’s CSS. For example, if you have MySkins/MyButtonSkin.as, you use the following
syntax to reference the class:
Button {

upSkin: ClassReference("MySkins.MyButtonSkin");
}

You use the Embed() statement to reference graphic skins in CSS.

Many style properties that referred to skins are now deprecated. For example, the
brokenImage property is obsolete and was replaced by the brokenImageSkin style property.
This style property is of type Class. Flex throws an error if you try to apply a style to a
property that no longer exists. For a list of available skin style properties, see the control’s
entry in the Adobe Flex 2 Language Reference.

The drawing methods such as moveTo() that you would use in programmatic skinning are
now accessed through the graphics property of the MovieClip object. To use them you must
import the flash.display.* package.

Using skinning 125

Skinning assets
The assets that Flex includes for you to use as a basis for reskinning components are changed.

Drawing programmatic skins
The drawing methods are moved to the Graphics class, which is accessible through the
graphics property.

For example, in Flex 1.x:
function draw() {

clear();
moveTo(0,0);
lineTo(10,10);

}

In Flex 2:
import flash.display.Graphics;
function updateDisplayList(...) {

var g:Graphics = graphics;
g.clear();
g.moveTo(0,0);
g.lineTo(10,10);

}

Flex 1.x included: Flex 2 includes:

• Sample programmatic skins in the
flex_install_dir/resources/themes/
programmatic directory.

• HaloClassic skins for users who want the
original look and feel of Flex applications.

• Graphical skins in the pulseBlue.fla and
pulseOrange.fla theme files in the
flex_install_dir/resources/themes/graphic
directory.

• Halo programmatic skins, which are in the
mx.skins.halo package.

•

• Graphical Aeon theme files, which are located
in the framework/themes directory.

126 Styles and Skinning

Using embedded fonts
You mjust use some differences in the syntax for embedded fonts. In addition, the default font
manager is changed.

The default font manager is actually both the Batik font manager and the JRE font manager.
You set them in the list of font managers in the flex-config.xml file. This is a reverse ordered
precedence. The preferred Batik font manager doesn’t handle all embedded font commands,
so what it doesn’t handle, it passes to the JRE font manager. In Flex 1.5, the default font
manager was the JRE Font Manager.

The following example shows the default setting for fontmanagers in Flex 1.5 (note that Batik
is commented out):
<fonts>

<managers>
<manager-class>macromedia.fonts.JREFontManager</manager-class>
<!-- <manager-class>macromedia.fonts.BatikFontManager</manager-class>
-->

</managers>
</fonts>

The following example hows the default font manager in Flex 2:
<fonts>

<managers>
<manager-class>flash.fonts.JREFontManager</manager-class>
<manager-class>flash.fonts.BatikFontManager</manager-class>

</managers>
</fonts>

Syntactically, you must now specify the font face in the selector or you receive a warning
similar to the following:
“An embedded font was found for family 'myFont' but it did not have the

requested plain font face.”

N
O

T
E

The class names of the font managers are changed from macromedia.* to flash.*.

Themes 127

In Flex 1.5, you could use the following syntax to embed a bold italic font face:
@font-face {

src: url("GOTHICBI.TTF");
font-style: italic;
font-weight: bold;
font-family: myFont;

}
.myStyleBoldItalic {

font-family: myFont;
}

In Flex 2, you still use the @font-face rule to embed the font:
@font-face {

src:url("GOTHICBI.TTF");
font-style: italic;
font-weight: bold;
font-family: myFont;

}

But you then add descriptors to the class or type selector to use the embedded font face:
.myStyleBoldItalic {

font-family: myFont;
font-weight: bold;
font-style: italic;

}

Themes
You can no longer export SWC files from Flash IDE and use the symbols in that SWC as part
of a theme file in Flex. You must instead use the compc utility to compile a theme SWC file
from CSS files and graphics.

The original Halo skins are repackaged into a theme so that you can change the appearance of
your Flex applications back to the Flex 1.x look and feel.

For more information on creating and using themes, see the Flex 2 Developer’s Guide.

128 Styles and Skinning

129

8
CHAPTER 8

Behaviors

This topic describes the new architecture for behaviors in Macromedia Flex and syntax
changes from Flex 1.5. For detailed information, see Chapter 17, “Using Behaviors,” in the
Flex 2 Developer’s Guide and Chapter 15, “Creating Effects,” in Creating and Extending Flex
Components.

Contents
Overview. 130

New Behaviors syntax. .131

130 Behaviors

Overview
Flex implements effects using an architecture in which each effect is represented by two
classes:

■ Factory class Creates an object of the instance class to perform the effect on the target.
You create instances of the factory class in your application, and configure it with the
necessary properties to control the effect, such as the zoom size or effect duration. You
then assign the factory class instance to a target component, as the following example
shows:
<!-- Define factory class. -->
<mx:WipeDown id="myWD" duration="1000"/>
<!-- Assign factory class to effect targets.-->
<mx:Button id="myButton" mouseDownEffect="{myWD}"/>
<mx:Button id="myOtherButton" mouseDownEffect="{myWD}"/>

By convention, the name of a factory class is the name of the effect, such as Zoom or Fade.
■ Instance class Implements the effect logic. When an effect trigger occurs, or when you

call the play() method to invoke an effect, the factory class creates an object of the
instance class to perform the effect on the target. When the effect ends, Flex destroys the
instance object. If the effect has multiple target components, the factory class creates
multiple instance objects, one per target.
By convention, the name an instance class is the name of the effect with the suffix
Instance, such as ZoomInstance or FadeInstance.

When you use effects in your application, you are only concerned with the factory class; the
instance class is an implementation detail. However, if you want to create custom effects
classes, you must implement a factory class and an instance class. For more information, see
Chapter 15, “Creating Effects,” in the Creating and Extending Flex Components book.

New Behaviors syntax 131

New Behaviors syntax
This section describes the syntax changes to behaviors.

The name property is now the id property
You now use the id property with effects, instead of the name property:

Flex 1.5:
<mx:Zoom name="small" duration="100"/>

Flex 2:
<mx:Zoom id="small" duration="100"/>

The <mx:Effect> tag is no longer necessary
The <mx:Effect> tag is no longer necessary in Flex:

Flex 1.5:
<mx:Effect>

<mx:Zoom name="big" duration="100"/>
<mx:Zoom name="small" duration="100"/>

</mx:Effect>

Flex 2:
<mx:Zoom id="big" duration="100"/>
<mx:Zoom id="small" duration="100"/>

Renamed the playEffect() and endEffect() methods
The playEffect() and endEffect() methods have been renamed. The new names are
play() and end().

132 Behaviors

Use binding in MXML to specify the effect
In Flex 1.5, you assigned the effect to an effect trigger property with no data binding:
<mx:Button id="myButton" creationCompleteEffect="myWL"/>
<mx:Button id="myOtherButton" creationCompleteEffect="myWL"/>

In Flex 2, you use data binding to assign an effect to a target:
<mx:Button id="myButton" creationCompleteEffect="{myWL}"/>
<mx:Button id="myOtherButton" creationCompleteEffect="{myWL}"/>

The show property is now the showTarget property
You now use the MaskEffect.showTarget property with effects, instead of the
MaskEffect.show property:

Flex 1.5:
<mx:WipeUp id="wipeup" duration="1000" show="true"/>

Flex 2:
<mx:WipeUp id="wipeup" duration="1000" showTarget="true"/>

New properties added for the Zoom effect
The Zoom effect has new properties for Flex 2. The zoomTo property has been changed to
zoomHeightTo and zoomWidthTo, and the zoomFrom property has been changed to
zoomHeightFrom and zoomWidthFrom.

Also two more properties have been added to the Zoom effect:

originX, originY Specify the x-position and y-position of the origin, or registration point, of
the zoom. The default value is the coordinates of the center of the effect target.

New Behaviors syntax 133

Change to the range of several effect properties
For the Zoom, Fade and Dissolve effects, the range of the alpha, scaleX, scaleY,
zoomHeightFrom, zoomWidthFrom, zoomHeightTo, and zoomWidthTo properties have
changed. You used to set these values as percentages using integer values, where 0
corresponded to 0%, and 100 to 100%. You now specify them as decimal values, where 0.0
corresponded to 0%, and to 1.0 corresponded to 100%.

Flex 1.5:
<mx:Effect>

<mx:Zoom name="big" zoomTo="105" duration="100"/>
<mx:Zoom name="small" zoomTo="100" duration="100"/>

</mx:Effect>

Flex 2:
<mx:Zoom id="big" zoomHeightTo="1.05" zoomWidthTo="1.05"duration="100"/>
<mx:Zoom id="small" zoomHeightTo="1.0" zoomWidthTo="1.0" duration="100"/>

Using the setStyle() method to set effects
The return value to the getStyle() method has changed when used with a behavior. Because
trigger properties for behaviors are implemented as styles, you can use the setStyle() and
getStyle() methods to manipulate triggers and their associated effects. The setStyle()
method has the following signature:
setStyle("trigger_name", effect)

where:

trigger_name String indicating the name of the trigger property; for example,
mouseDownEffect or focusInEffect.

effect The effect associated with the trigger. The data type of effect is a String containing
the name of the effect, an Effect object, or an object of a subclass of the Effect class.

The getStyle() method has the following signature:
return_type getStyle("trigger_name")

where:

trigger_name String indicating the name of the trigger property.

return_type An Effect object, or an object of a subclass of the Effect class.

For detailed information, see Chapter 17, “Using Behaviors,” in the Flex 2 Developer’s Guide.

134 Behaviors

New events for effect classes
You can now associate event listeners with effects, rather than with effect targets. All effect
classes now support the following event types:

effectStart Dispatched when the effect starts playing. The type property of the event
object for this event is set to EffectEvent.EFFECT_START.

effectEnd Dispatched after the effect stops playing, either when the effect finishes playing
or when the effect has been interrupted by a call to the endEffect() method. The type
property of the event object for this event is set to EffectEvent.EFFECT_END.

Every effect class that is a subclass of the TweenEffect class, such as the Fade and Move effects,
supports the following events:

tweenStart Dispatched when the tween effect starts. The type property of the event object
for this event is set to TweenEvent.TWEEN_START.

tweenEnd Dispatched when the tween effect ends. The type property of the event object
for this event is set to TweenEvent.TWEEN_END.

tweenUpdate Dispatched every time a TweenEffect class calculates a new value. The type
property of the event object for this event is set to TweenEvent.TWEEN_UPDATE.

Change to overriding the endEffect() method
You no longer have to call listener.onEffectEnd() in an override of the endEffect()
method. Now, the EffectInstance.endEffect() method calls the instance class’s
endEffect() method, which calls the EffectInstance.finishEffect() method to
dispatch the EffectEvent.END_EFFECT event and call listener.onEffectEnd().

135

9
CHAPTER 9

Data Services

This topic describes how to migrate HTTPService, WebService, and RemoteObject
components.

Contents
About Data Services . 135

Migrating HTTPService components . 140

Migrating WebService components . 143

Migrating secure data services . 145

Mapping Java types for RemoteObject. 150

Accessing request/response data with RemoteObject . 152

About Data Services
Configuration of data service components, now called Remote Procedure Call (RPC)
components, in Flex has changed significantly in Adobe Flex 2.0. Adobe Flex Data Services
now refers to the server-side feature set that includes RPC services, the Message Service, and
the Data Management Service. Without Flex Data Services, you can use HTTPService and
WebService tags, but you can access resources only on a server that is in the same domain as
the Flex application or from a server that has a crossdomain.xml file installed on it. This file
must allow access to the requesting application’s domain. For more information about
crossdomain.xml files, Chapter 4, “Applying Flex Security,” in Building and Deploying Flex
Applications.

For more information on using RPC components, see Flex 2 Developer’s Guide.

136 Data Services

Flex 2 separates the definitions of services into a new file, services-config.xml. This file
contains definitions of the services and security constraints that were previously in the flex-
config.xml file. Optionally, it can include other configuration files by reference. The services-
config.xml file is located in the flex_deploy_dir/flex/WEB-INF/flex directory of a web
application in which you are using Flex Data Services. If you use the command-line compiler,
you must point to this file with the -services option.

The underlying architecture for communicating with the server for each type of service is
based on a new messaging framework in Flex 2. As a result, you use message channels to
communicate with the service. You configure channels in the services-config.xml file. The
new new messaging framework uses channels to connect clients to endpoints; requests are
made by sending messages over channels to endpoints of a message broker that directs the
messages to the correct service.

For information about the client-side configuration of RPC components, see Chapter 45,
“Using RPC Components,” in the Flex 2 Developer’s Guide. For information about the server-
side configuration of RPC service destinations, see Chapter 46, “Configuring RPC Services”
in the Flex 2 Developer’s Guide.

Proxy use policy
In Flex 1.5, there was as setting that let you override the proxy. This was the <proxy-use-
policy> setting in the flex-config.xml file. If you set it to client, Flex checked the value of
the useProxy attribute on the service tag. The default was to use the proxy. If you set it to
always, Flex used the proxy regardless of the value of the useProxy attribute. If you set it to
never, Flex did not use the proxy regardless of the value of the useProxy attribute.

The <proxy-use-policy>client</proxy-use-policy> setting does not exist in Flex 2.
Flex behaves as if the value is client, which means that Flex checks the value of the
useProxy attribute on the service tag. The default value is false. If this value is not set, Flex
does not use the proxy.

Channels
Flex now requires that you specify a channel to define the way data is transported for each
RPC service destination. Service requests and responses are now messages. Messages are sent
and received on a channel, which represents a logical connection to a destination. Channels
define a protocol and a port.

Each channel corresponds to one network transfer protocol that Flash Player supports. For
example, the AMF channel uses the AMF format over HTTP and the HTTP channel uses a
text-based format over HTTP.

Migrating RemoteObject components 137

Channels are defined in the channels section of the services-config.xml file. There are several
predefined channels that you can assign to your RPC service destinations. For more
information about channels, see Chapter 43, “Configuring Data Services,” in the Flex 2
Developer’s Guide.

Logging
The <web-service-proxy-debug>, <http-service-proxy-debug>, and <remote-
objects-debug> tags in flex-config.xml are no longer used in Flex 2. These were used for
both client-side and server-side debugging. There is no complete replacement for these. There
is a new client-side logging API; for more information, see Chapter 11, “Logging,” in Building
and Deploying Flex 2 Applications. There is also server-side logging that you can set in services-
config.xml to log Remoting Service and Proxy Service traffic; for more information, see
Chapter 43, “Configuring Data Services,”in the Flex 2 Developer’s Guide.

Migrating RemoteObject components
The server-side configuration for RemoteObject components is now in the <remoting-
service> section of the services-config.xml file. In Flex 1.5, you configured RemoteObjects
in the <remote-objects> section of the flex-config.xml file.

To bind service results in Flex 2, you use the lastResult property of the service as the
binding source, as the following example shows:
<mx:Text text="{tempService.getTemp.lastResult}"/>

In Flex 1.5, the result property was the binding source.

Unnamed RemoteObject
You can no longer use unnamed RemoteObjects. You must configure them in the
<remoting-service> section in the services-config.xml configuration file or a file that it
includes by reference. Adobe generally defines the Remoting Service in the remoting-
config.xml file, which is included by reference in the services-config.xml file.

In Flex 1.5, you could specify source="object_name" and the object’s statefulness on the
RemoteObject tag. In Flex 2, you configure the object name and its statefulness in the
configuration file.

138 Data Services

The syntax for statefulness has changed. In Flex 1.5, you set the type to either stateless-
class or stateful-class. In Flex 2, you set the scope attribute to application, session,
or request. The default was stateless-class, and is now request, which is equivalent to
stateless.

Flex 1.5 syntax
In Flex 1.5, you could specify the RemoteObject component’s source and type in the MXML
tag, while adding an entry in the <remote-objects> whitelist.

MXML tag:
<mx:RemoteObject id="MyService" source="credit.CreditCardAuth"

type="stateless-class"/>

flex-config.xml file:
<remote-objects>

<whitelist>
<unnamed>

<source>credit.*</source>
</unnamed>

</whitelist>
</remote-objects>

Flex 2 syntax
In Flex 2, every remote object must be configured as a Remoting Service destination in the
services-config.xml file, or a file that it includes by reference, such as the remoting-config.xml
file. You reference a destination in the destination property of the <mx:RemoteObject> tag.

MXML tag:
<mx:RemoteObject id="MyService" destination="SalaryEmployeeRO"/>

remoting-config.xml file:
<remoting-service>

<destination id="SampleEmployeeRO" adapter="java-object">
<properties>

<source>samples.explorer.EmployeeManager</source>
<scope>application</scope>

</properties>
</destination>

</remoting-service>

Migrating RemoteObject components 139

Named RemoteObject
This section describes how to migrate your named RemoteObject tags from Flex 1.5 to
Flex 2.

Flex 1.5 syntax
In Flex 1.5, you used the named attribute to identify which named RemoteObject to use.

MXML tag:
<mx:RemoteObject id="employeeRO" named="SalaryRO">

<mx:method name="getList"/>
</mx:RemoteObject>

flex-config.xml file:
<remote-objects>

<whitelist>
<named>

<object name="SalaryRO">
<source>samples.explorer.SalaryManager</source>
<type>stateful-class</type>

</object>
</named>

</whitelist>
</remote-objects>

Flex 2 syntax
In Flex 2, you use the destination attribute to identify which Remoting Service destination
to use. In the configuration file, you define a destination.

MXML tag:
<mx:RemoteObject id="employeeRO" destination="SalaryEmployeeRO">

<mx:method name="getList"/>
</mx:RemoteObject>

remoting-config.xml file:
<remoting-service>

<destination id="SampleEmployeeRO">
<properties>

<source>samples.explorer.EmployeeManager</source>
<scope>session</scope>

</properties>
</destination>

</remoting-service>

140 Data Services

Migrating HTTPService components
This section describes how to migrate your HTTPService from Flex 1.5 to Flex 2.0 syntax.

For HTTPService tags, you specify the URL of the service in the url property of the tag.

The following examples shows and HTTPService tag that contacts a service directly:
...
<mx:HTTPService

id="yahoo_web_search"
url="http://api.search.yahoo.com/WebSearchService/V1/webSearch"

/>
...

You now configure HTTP services in the <proxy-service> section of the services-config.xml
file or a file that it includes by reference. Adobe generally defines the Proxy Service in the
proxy-config.xml file, which is included by reference in the services-config.xml file.
Previously, it was configured in the <http-service-proxy> section of the flex-config.xml
file.

To bind service results in Flex 2, you use the lastResult property of the service as the
binding source, as the following example shows:
<mx:Text text="{yahoo_web_search.lastResult}"/>

In Flex 1.5, the result property was the binding source.

Unnamed HTTPService
This section describes how to migrate your unnamed HTTPService tags from Flex 1.5 to
Flex 2.

For unnamed HTTPService tags that set useProxy="false", the default value, you are not
required to make any changes. These tags already ignore all server-side configuration.

Migrating HTTPService components 141

Flex 1.5 syntax
In Flex 1.5, you added a URL pattern to the whitelist that matched the url of the
HTTPService tag.

MXML tag:
<mx:HTTPService id="MyService" url="http://myServer.com/services/my.jsp"/>

flex-config.xml file:
<http-proxy>

<whitelist>
<unnamed>

<url>http://myServer.com/services/*</url>
</unnamed>

</whitelist>
</http-proxy>

Flex 2 syntax
In Flex 2, the MXML tag syntax is almost the same, but you must also set the value of the
useProxy property to true. Flex 2 does not support the protocol property that was available
in Flex 1.5; the channel defines the protocol. Flex Data Services uses either the defaultHTTP
or defaultHTTPS destination depending on whether the URL starts with HTTP or HTTPS,
respectively.

In the services-config.xml file or a file that it includes by reference, such as the proxy-
config.xml file, you add a dynamic-url to the defaultHTTP destination for an
HTTPService. The URL pattern must match the URL used in the MXML tag.

MXML tag:
<mx:HTTPService id="MyService" url="http://myServer.com/services/my.jsp"

useProxy="true"/>

proxy-config.xml file:
<destination id="defaultHTTP">

<properties>
<dynamic-url>http://myServer.com/services/*</dynamic-url>

...
</properties>

</destination>

142 Data Services

Named HTTPService
This section describes how to migrate named HTTPService tags from Flex 1.5 to Flex 2
syntax.

Flex 1.5 syntax
In Flex 1.5, a named HTTPService was defined as a named whitelist entry in the <http-
service-proxy> section. You used the serviceName attribute of the HTTPService tag to
identify it.

MXML tag:
<mx:HTTPService id="MyService" serviceName="Salary" protocol="https"/>

flex-config.xml file:
<http-service-proxy>

<whitelist>
<named>

<service name="Salary">
<url>https://www.myServer.com/services/salary.jsp</url>

</service>
</named>

</whitelist>
</http-service-proxy>

Flex 2 syntax
In Flex 2, you use the destination attribute of the HTTPService tag to identify the named
service in your MXML files. You also must set the value of the useProxy property to true.
Flex 2 does not support the protocol property; the channel defines the protocol.

MXML tag:
<mx:HTTPService id="employeeHTTP" destination="Salary" useProxy="true"/>

proxy-config.xml file:
<proxy-service>

<destination id="Salary">
<properties>

<url>https://www.myServer.com/services/salary.jsp</url>
</properties>

</destination>
</proxy-service>

Migrating WebService components 143

Migrating WebService components
The default value of the useProxy property is false. The WebService tags are now
configured in the <proxy-service> section of the services-config.xml file or a file that it
includes by reference. They were previously described in the <web-service-proxy> section
of the flex-config.xml file.

To bind service results in Flex 2, you use the lastResult property of the service as the
binding source, as the following example shows:
<mx:Text text="{tempService.getTemp.lastResult}"/>

In Flex 1.5, the result property was the binding source.

Unnamed WebService
This section describes how to migrate unnamed WebService tags from Flex 1.5 to Flex 2.

For unnamed WebServices tags that set useProxy="false", you are not required to make any
changes. These tags already ignore all server side configuration.

Flex 1.5 syntax
In Flex 1.5, you added an unnamed whitelist entry to the <web-service-proxy> section of
the configuration file.

MXML tag:
<mx:WebService id="MyService" wsdl="http://myServer.com/services/my.wsdl"/>

flex-config.xml file:
<web-service-proxy>

<whitelist>
<unnamed>

<url>http://myServer.com/services/*</url>
</unnamed>

</whitelist>
</web-service-proxy>

Flex 2 syntax
In Flex 2, the MXML tag syntax for an unnamed WebService is almost the same, but you
must also set the value of the useProxy property to true. Flex 2 does not support the
protocol property that was available in Flex 1.5; the channel defines the protocol. In the
configuration file, you must specify a channel and an adapter that matches the value of the
wsdl attribute.

144 Data Services

MXML tag:
<mx:WebService id="MyService" wsdl="http://myServer.com/services/my.wsdl"

useProxy="true"/>

services-config.xml file:
<destination id="defaultHTTP">

<properties>
<wsdl>{context.root}/services/ContactManagerWS?wsdl</wsdl>
<soap>{context.root}/services/ContactManagerWS</soap>

</properties>
<adapter ref="soap-proxy"/>

</destination>

Named WebService
This section describes how to migration your named WebService tags from Flex 1.5 to Flex 2.

Flex 1.5 syntax
In Flex 1.5, you referred to a named WebService with the serviceName attribute of the
<mx:WebService> tag. In the configuration file, you defined a service’s WSDL and endpoint
as entries in the whitelist.

MXML tag:
<mx:WebService id="employeeWS" serviceName="SalaryWS">

<mx:operation name="getList"/>
</mx:WebService>

flex-config.xml file:
<web-service-proxy>

<whitelist>
<named>
<service name="SalaryWS">

<wsdl>{context.root}/services/SalaryWS.wsdl</wsdl>
<endpoints>

<endpoint>{context.root}/services/SalaryWS</endpoint>
</endpoints>

</service>
</whitelist>

</web-service-proxy>

Migrating secure data services 145

Flex 2 syntax
In Flex 2, you refer to named WebServices with the destination attribute of the
<mx:WebService> tag. In the configuration file, you define the location of the WSDL file
and the endpoint as part of the service destination.

MXML tag:
<mx:WebService id="employeeWS" destination="SalaryWS">

<mx:operation name="getList"/>
</mx:WebService>

services-config.xml file:
<proxy-service>

<destination id="SalaryWS">
<properties>

<wsdl>{context.root}/services/SalaryWS?wsdl</wsdl>
<soap>{context.root}/services/SalaryWS</soap>

</properties>
<adapter ref="soap-proxy"/>

</destination>
</proxy-service>

Migrating secure data services
This section describes the changes you must make to your destination definitions in order to
use secured data services in your Flex applications.

Migrating services that use run-as
Third-party service endpoints may require authentication information. In Flex 1.5, you used
the run-as element to pass credentials to remote endpoints. In Flex 2, you use remote-
username and remote-password elements to specify credentials that a remote endpoint
requires.

The changes in this section apply to the HTTPService, WebService, and RemoteObject
services.

146 Data Services

Flex 1.5 syntax
In Flex 1.5, you specified run-as credentials as user and password attributes to pass through
credentials to a service.

flex-config.xml file:
<web-service-proxy>

<whitelist>
<named>

<service name="MyService">
<wsdl>http://somewhere.com/webservice.wsdl</wsdl>
<endpoint>http://somewhere.com/myservice</endpoint>
<run-as user="user1" password="opensaysme"/>

</service>
</named>

</whitelist>
</web-service-proxy>

Flex 2 syntax
In Flex 2, you set the remote-username and remote-password elements in the destination
definition.

services-config.xml file:
<destination id="samplesProxy">

<properties>
<url>

http://someserver/SecureService.jsp
</url>
<remote-username>johndoe</remote-username>
<remote-password>opensaysme</remote-password>

</properties>
</destination>

Alternatively, you can pass remote credentials from an RPC component in the component’s
setRemoteCredentials(remoteUsername, remotePassword) method from the client at
run time.

Migrating secure data services 147

Migrating services that use Basic authentication
For Basic authentication, you must change the value of the security constraint’s url-pattern
in the web.xml file. This section assumes that you have already migrated the service’s
destination, as described in previous sections.

Flex 1.5 syntax
In Flex 1.5, for WebService and HTTPService, you specified the /flashproxy/service_name as
the url-pattern, as the following example shows:
<web-app>

...
<security-constraint>

<web-resource-collection>
<web-resource-name>Protected Page</web-resource-name>
<url-pattern>/flashproxy/MyService</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

</security-constraint>

<security-role>
<role-name>manager</role-name>

</security-role>
<login-config>

<auth-method>BASIC</auth-method>
</login-config>

</web-app>

For RemoteObject, you specified /amfgateway/service_name as the url-pattern.

148 Data Services

Flex 2 syntax
In Flex 2, you specify the URI of the channel endpoint for which you want to require
authentication as the url-pattern. You use the value of the channel definition’s endpoint
URI in the services-config.xml file. The boldface text in the following example shows a URI
that requires authentication:
<web-app>

...
<security-constraint>

<web-resource-collection>
<web-resource-name>Protected Channel</web-resource-name>
<url-pattern>/messagebroker/amf</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

</security-constraint>
<security-role>

<role-name>manager</role-name>
</security-role>
<login-config>

<auth-method>BASIC</auth-method>
</login-config>

</web-app>

Migrating services that use custom authentication
This section describes how to migrate a RemoteObject tag that used custom authentication
from Flex 1.5 to Flex 2. This section assumes that you have already migrated the named
RemoteObject as described in “Named RemoteObject” on page 139.

You could previously only use custom authentication with named RemoteObjects. Now you
can use custom authentication with all service types. You do not modify web.xml to lock
down a URL in this sort of authentication.

Migrating secure data services 149

Flex 1.5 syntax
In Flex 1.5, you specified the type of authentication and the role in the named service
definition in the flex-config.xml file:
<named>

<object name="myobj">
<use-custom-authentication>true</use-custom-authentication>
<roles>

<role>sampleusers</role>
</roles>

</object>
</named>

Flex 2 syntax
In Flex 2, you define the security constraint in the services-config.xml file:
<service-config>

<services>
... // Destinations are defined here.

</services>
<security>

<security-constraint id="sample-users">
<auth-method>Custom</auth-method>
<roles>

<role>sampleusers</role>
</roles>

</security-constraint>
</security>

</service-config>

You then refer to that security constraint in your destination definition, which is also in the
services-config.xml file or a file that it includes by reference:
<destination>

...
<security>

<security-constraint ref="sample-users"/>
</security>

</destination>

150 Data Services

Login commands
For custom authentication, Flex uses a custom login adapter, known as a login command, to
check a principal’s credentials and let that principal log into the application server. A login
command must implement the flex.messaging.security.LoginCommand API.

Flex 1.5 and Flex 2 include default login command implementations for Adobe JRun, BEA
WebLogic, IBM WebSphere, Apache Tomcat, and Oracle. In Flex 1.5, these were stored in
the gateway-config.xml file. You could add your own custom login commands to that file.

In Flex 2, the gateway-config.xml file no longer exists. The default login commands are now
in the <security> block of the services-config.xml file. To migrate custom login commands,
you must move them to this location. Use the TomcatLoginCommand class for either Tomcat
or JBoss.

The following example shows the <security> section of the services-config.xml file. This is
where you move custom login commands. You should enable only one login command at a
time; comment out all others.
<security>

<login-command class="flex.messaging.security.JRunLoginCommand"
server="JRun"/>

<!--
<login-command class="flex.messaging.security.TomcatLoginCommand"

server="Tomcat"/>
<login-command class="flex.messaging.security.WeblogicLoginCommand"

server="Weblogic"/>
<login-command class="flex.messaging.security.WebSphereLoginCommand"

server="WebSphere"/>
-->
</security><>

Mapping Java types for RemoteObject
When an ActionScript type is not handled implicitly, you can map it to a typed Java class of
the same name on the server.

In Flex 1.5, you create a static variable in the ActionScript class that uses the
Object.registerClass() method to specify the fully qualified name of the corresponding
Java class on the server. The first parameter of the registerClass() method is the fully
qualified name of the Java class; the second parameter is the fully qualified name of the
ActionScript class.

Mapping Java types for RemoteObject 151

Object.registerClass() is not available in Flex 2. ActionScript 3 provides the
flash.net.registerClassAlias. To simplify using this class Flex 2, you can specify a remote class
in the [RemoteClass(alias="remoteclassname")] metadata tag above the class definition
in your ActionScript class.

Flex 1.5 ActionScript class example:
class com.Product {

public var id:Number;
public var name:String;
public var price:Number;
public var description:String;
public static var regClass = Object.registerClass("com.Product",

com.Product);

public function Product() {
}

public function toString():String {
return "id = " + id + " name = " + name + " price = $" + price;

}
}

In Flex 2, your code should look like this:
package samples.customer
{

[RemoteClass(alias="samples.customer.Customer")]
public class Customer {

public var custId:int;
public var firstName:String = "";
public var lastName:String = "";
public var cellPhone:String = "";
public var email:String = "";
public var partySize:int;
public var tableReady:Boolean = false;

}
}

152 Data Services

Accessing request/response data with
RemoteObject
A Java object that you call using the <mx:RemoteObject> tag has access to request, response,
and servlet data. For Flex 1.5, from within a Java object, you can call the following methods:

In Flex 2, this API no longer exists. The flex.messaging.FlexContext class provides equivalent
methods. Flex Data Services provides enhancements for working with session data in the
following classes:

■ flex.messaging.FlexContext
■ flex.messaging.FlexSession
■ flex.messaging.FlexSessionListener
■ flex.messaging.FlexSessionAttributeListener
■ flex.messaging.FlexSessionBindingEvent
■ flex.messaging.FlexSessionBindingListener

These classes are included in the the public Flex Data Services Javadoc documentation. For
information, see Chapter 43, “Configuring Data Services,” in the Flex 2 Developer’s Guide.

Method Description

flashgateway.Gateway.getHttpRequest() Returns the HttpServletRequest object for the
current request. Adobe recommends that you
access session data and other request data
through the getHttpRequest() method.

flashgateway.Gateway.getHttpResponse() Returns the HttpServletResponse object for the
current request.

flashgateway.Gateway.getServletConfig() Returns the ServletConfig object for the calling
servlet.

http://www.macromedia.com/go/flex2_dataservice_javadoc

153

10
CHAPTER 10

Configuration and Command
Line Tools

The flex-config.xml file has undergone significant changes for Adobe Flex 2. In addition, the
mxmlc, compc, and fdb utilities are also changed. This topic describes these changes.

Contents
Configuration files. 154

Security. 155

Command-line compilers . 156

fdb debugger . 158

154 Configuration and Command Line Tools

Configuration files
The Flex server relied on configuration files in the WEB-INF/flex directory. The following
table describes changes to those configuration files:

Configuration file Flex 1.5 Flex 2

flash-unicode-
table.xml

Lists convenient mappings of the
Flash MX 2004
UnicodeTable.xml character
ranges for use in the Flex
configuration file.

No changes.

flex-config.xml Configures Flex. You use this file
to define debugging, compiler,
cache, proxy, logging, font and
other settings for Flex.

This file now contains only
compiler settings.

gateway-config.xml Configures the Adobe Flash
Remoting gateway. You can
configure service adapters,
security, logging, and other
settings for Flash Remoting using
this file.

Not in Flex 2. The settings have
been move to the services-
config.xml file.
For more information, see
Chapter 9, “Data Services,” on
page 135.

global.css Defines default styles used
across all Flex applications.

This file has been replaced with
the defaults.css file inside the
frameworks.swc file. It is not
intended for developers to edit,
but can be used as a template
from which to define custom
themes.

license.properties Stores license key. Not in Flex 2.

mxml-manifest.xml Map components to
namespaces.

Not in Flex 2.

Security 155

The following configuration files were renamed since Flex 2 Beta 2:

Security
This section describes changes to Flex security.

Flex changes
You do not define the security of web services and other data services in the flex-config.xml
file. You now define them in the services-config.xml and related files.

ActionScript changes
The following general changes were made to ActionScript:

■ The System.security.* package is now named Security.*.
■ The Security.allowDomain() and Security.allowInsecureDomain() methods no

longer open up all SWF files in the caller’s domain; instead they now affect only the
calling SWF file itself.

■ Setting Security.exactSettings no longer affects all SWF files in the caller’s domain; instead
it now affects only the calling SWF file itself.

■ The LocalConnection allowDomain() and allowInsecureDomain() methods are no
longer callback methods for authors to define; instead they are now built-in methods for
authors to call, and follow the same semantics as the Security.allowDomain() and
Security.allowInsecureDomain() methods.

■ When you use XMLSocket.connect to contact a server outside a SWF file’s own domain,
the default policy file location is no longer on an HTTP server in the same domain;
instead it is now an XMLSocket policy file obtained from the same port as the main
connection attempt. You can use the Security.loadPolicyFile() method to override
this default location in the same way you used it in Flex 1.5.

Flex 1.x Name Flex 2 Name

flex-enterprise-services.xml, became fds-config.xml services-config.xml

flex-data-service.xml, became fds-data-management.xml, data-management-config.xm

flex-message-service.xml, became fds-messaging.xml, messaging-config.xml

flex-remoting-service.xml, became fds-remoting.xml, remoting-config.xml

flex-proxy-service.xml, became fds-proxy.xml, proxy-config.xml

156 Configuration and Command Line Tools

Command-line compilers
The mxmlc and compc compilers are changed for Flex 2. This section describes these changes.

mxmlc
The mxmlc utility compiles SWF files from your MXML and ActionScript files. The mxmlc
options that are no longer available include the following:

■ batch

■ contextroot

■ encoding

■ genlibdir

■ headless

■ loglevel

■ profile

■ file-specs

■ systemclasses

■ version

■ webroot

The names of many mxmlc command-line compiler options were changed to be more
consistent or descriptive. The changes include the following:

Flex 1.x Name Flex 2 Name Comment

aspath became
actionscript-classpath

source-path

configuration config

debugpassword debug-password

global-css-url defaults-css-url

g debug No longer generates a SWD file. The
resulting SWF file contains the debug
code. Also, there is no longer a
framework_debug.swc file. All the debug
logic is built into the framework.swc file.
As a result, you no longer need to specify
a value for the debug-library-path option.
This option was removed.

libpath library-path

Command-line compilers 157

In addition, because the data services subsystem changed, mxmlc no longer takes the
following options:

■ gatewayurl

■ gatewayhttpsurl

■ proxyurl

■ proxyhttpsurl

■ proxyallowurloverride

■ remoteallowurloverride

■ webserviceproxydebug

The maximum value for the default-script-limits option is now 60 seconds. This option
did not impose a maximum value in Flex 1.x.

The file-specs option has been removed. You do not need to specify -file-
specs=filename.mxml because it is the default option. If the last option uses a space-
separated list, you can terminate the list with -- before adding the MXML file name; for
example:
mxmlc -option arg1 arg2 arg3 -- MyApp.mxml

For a complete list of the mxmlc options, see Building and Deploying Flex 2 Applications.

compc
The compc utility compiles SWC files. The compc parameters have changed significantly. For
usage information, see the command-line help or the Building and Deploying Flex 2
Applications.

SWC files created by the Flex 1.x compiler or by previous versions of Flash do not work in
Flex 2. If you try to use a SWC file that was generated by an earlier version of compc or
output from the Flash IDE, Flex displays a compiler error similar to the following:
Unable to parse SWC catalog for C:\JRun4\servers\flex2\flex\WEB-

INF\flex\user_classes\ModalText.swc: Unknown element in swc section in
catalog.xml: componentPackage

0 (optimize) optimize The optimize option no longer
suppresses trace() method output. You
must manually remove the output.

report link-report

usenetwork use-network

Flex 1.x Name Flex 2 Name Comment

158 Configuration and Command Line Tools

fdb debugger
This section describes changes to the fdb debugger. For more information on using fds, see
Chapter 12, “Using the Command-Line Debugger,” in Building and Deploying Flex 2
Applications.

SWD files
The fdb debugger no longer uses SWD files. Instead, Flex generates debuggable SWF files by
using the debug option with the mxmlc and compc command line compilers. There is no
longer a framework_debug.swc file. All the debug logic is built into the framework.swc.

Breakpoints
This section describes changes to breakpoints for Flex 2.

Player lock out
When you encounter a breakpoint with the fdb debugger, Flash Player locks out user
interaction. You cannot click on anything playing or access its menu options; you also cannot
close Flash Player and it does not redraw its display.

The reason for this behavior is to make breakpoints more predictable. For example, when you
are locked out of Flash Player, no other messages such as focus-change messages or user
interactions can change the results of the debugging session.

Deferred breakpoints
The fdb utility now supports deferred breakpoints. What this means is that if you try to set a
breakpoint, and the breakpoint location that you specified seems to indicate a filename or
function name that is not yet loaded into the Flash player, the fdb no longer reports an error;
instead, it remembers the breakpoint. If Flash Player eventually loads a movie that has code
from the source file that was specified in the earlier break command, fdb adds the breakpoint.

fdb debugger 159

run command
On Windows, you can enter either run foo.swf, in which case fdb launches Flash Player, or
run, in which case fdb displays the “Waiting for Player to connect” message; at that point, you
must manually launch Flash Player.

On the Macintosh, the run foo.swf command is no longer supported; fdb cannot launch
Flash Player. The only supported form of the command on the Macintosh is run, after which
you must manually launch Flash Player.

print command
Flex 2 includes the following changes to the output of the print command:

■ If a member of an object is an integer, its value is printed in both decimal and
hexadecimal.

■ If set $displayattributes was specified before the print command is executed, the
list of attributes that are displayed is different. The new list of attributes is:
■ dont_enumerate

■ read_only

■ local

■ argument

■ getter

■ setter

■ dynamic

■ static

■ private

■ public

■ internal

■ has_namespace

Commands no longer supported
The following features of the fdb debugger in Flex 1.5 are no longer supported in Flex 2:

■ Watchpoints: the watch, awatch, and rwatch commands.
■ Disassembly: the disassemble command.
■ On the Macintosh only, the run command.

160 Configuration and Command Line Tools

161

1 1
CHAPTER 11

Customizing Components

This topic describes modifications to the process of creating components in ActionScript in
Adobe Flex.

This topic only contains an overview of the major changes to the process from Flex 1.5 to Flex
2.0. For detailed information on creating custom components, see Creating and Extending
Flex 2 Components.

Contents
UIObject class removed .161

Class variables changed .161

Specifying the package. 162

Defining the class . 162

Defining the constructor . 162

Creating bindable properties . 162

Overriding a method . 163

Clip parameters removed . 163

Initialization sequence changed . 163

Renamed invalidateStyle() . 163

UIObject class removed
The UIObject class has been removed for Flex 2.

Class variables changed
Remove the symbolName and symbolOwner class variables. Symbols are no longer important
because display objects can be instantiated using the new operator.

162 Customizing Components

Specifying the package
Define your custom components within an ActionScript package. The package reflects the
directory location of your component within the directory structure of your application.
package myComponents
{

// Class definition goes here.
}

Defining the class
The class definition must be prefixed by the public keyword, as the following example shows:
// Class definition goes here.
public class MyButton extends Button {

// Define properties, constructor, and methods.

}

Defining the constructor
If the class is missing a constructor, add it. A constructor for a child class of UIComponent
must have no required arguments; it can only have optional ones.

Here is a typical constructor:
public function Button() {

super();
className = "Button";
btnOffset = 0;

}

Creating bindable properties
In Flex 1.5, you use the [ChangeEvent] metadata tag to define a property as bindable. In Flex
2.0, you use the [Bindable] metadata tag. For more information, see Creating and Extending
Flex 2 Components.

Renamed invalidateStyle() 163

Overriding a method
If the method is overriding a method in a superclass, add the override keyword as the first
attribute:
override public function createChildren():void

If the getter/setter is overriding a getter/setter in a superclass, add the override keyword as
the first attribute:
override public function get label():String
override public function set label(value:String):void

By convention, setters should use the identifier value for their argument.

Clip parameters removed
Remove anything related to the clipParameters variable.

Initialization sequence changed
In Flex 1.5, the component initialization sequence was as follows:

1. Constructor

2. init()

3. createChildren()

4. commitProperties()

5. measure()

6. layoutChildren()

7. draw()

In Flex 2.0, the init() method has been removed, and the new updateDisplayList()
method replaces the layoutChildren() and draw() methods. You can move logic that was
formerly in the init() method to the constructor. For a complete description of the
initialization sequence for Flex 2, see Chapter 10, “Creating Advanced Visual Components in
ActionScript,” in Creating and Extending Flex 2 Components.

Renamed invalidateStyle()
The invalidateStyle() method has been renamed to styleChanged().

164 Customizing Components

165

12
CHAPTER 12

Additional Migration Issues

This topic describes miscellaneous migration issues, including charting and Runtime Shared
Libraries (RSLs).

Contents
HistoryManager . 165

Charting . 165

Cell renderers . 169

Validators . 170

Embedding resources . 172

HistoryManager
To migrate applications from Flex 1.5 to Flex 2, your application must implement the
mx.core.IHistoryState interface; for example:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

implements="mx.core.IHistoryState">

Also, you must declare the saveState() and loadState() methods as public. Otherwise,
they are not visible to the HistoryManager.

Charting
Flex Charting have undergone major changes for Flex 2. This section describes some
migration issues for charts for Flex 2.

Charting classes rely heavily on DataProviders and Arrays. Changes to these classes are
described throughout this document.

The name property on chart series and chart axes is now displayName.

166 Additional Migration Issues

Skins
Skins are now called renderers. For example, the CandlestickSkin class is now
CandlestickRenderer.

Renderers
Some functionality for the AxisRenderer was moved to other axis objects.

The labelFunction property, which was a property of AxisRenderer, is now a property of the
axis type (such as CategoryAxis). The signature for the function is changed as well. Instead of
a single parameter, the labelFunction() function now takes up to four. The new signature
is as follows:
labelFunction(categoryValue:Object, previousCategoryValue:Object,

axis:axis_type, categoryItem:Object);

For more information on using the labelFunction property, see the Flex 2 Developer’s Guide.

The title property was also moved to the individual axis rather than the axis renderer. For
example, in Flex 1.x you defined both the horizontalAxis and the horizontalAxisRenderer, as
the following example shows:
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider="{expenses}" categoryField="Month"/>
</mx:horizontalAxis>
<mx:horizontalAxisRenderer>

<mx:AxisRenderer title="Expenses" labelFunction="defineLabel"/>
</mx:horizontalAxisRenderer>

In Flex 2, you set the title and labelFunction properties on the horizontalAxis:
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider="{expenses}" categoryField="Month"
title="Expenses" labelFunction="defineLabel"/>

</mx:horizontalAxis>

You no longer use renderers to change the appearance of ChartItems. In Flex 1.x, for example,
you could specify a CrossRenderer or TriangleRenderer to draw a ChartItem as a cross or a
triangle:
<mx:PlotSeries>

<mx:renderer>
<mx:CrossRenderer/>

</mx:renderer>
</mx:PlotSeries>

Charting 167

In Flex 2, you set the value of the series’ itemRenderer property to a skin class that draws the
ChartItem’s icon:
<mx:PlotSeries itemRenderer="mx.charts.skins.halo.CrossSkin"/>

In addition, you can no longer use the AssetRenderer to use graphics in your charts. Instead,
you must use a class that implements the IDataObject interface.

Binding
In many cases, you declare a data provider object and bind the chart to that data provider. In
Flex 2, you must add the [Bindable] metadata tag to the variable declaration, otherwise Flex
does not bind to the data. For example:
<mx:Script>

[Bindable] // Add this in Flex 2
public var expenses:Object = [{ ... }, { ... }, { ... }];

</mx:Script>
<mx:BubbleChart maxRadius="50" dataProvider="{expenses}"

mouseDown events
In Flex 1.5, mouseDown events included hitData structures, even if no data was under the
mouse’s pointer. In this case, the hitData property existed, but it was null. This behavior was
a way to check for the existence of a click on a chart control.

In Flex 2, mouseDown events do not include the hitData structure unless the mouse is
positioned over a data point. Instead, you must use the mouseDownData event.

alpha
All aspects of charting that used an alpha property to represent transparency, such as Strokes
and Fills, now use 0 to 1 for a range of values rather than 1 to 100. For example:

Flex 1.x:
<mx:SolidColor color="0x7EAEFF" alpha="30"/>

Flex 2:
<mx:SolidColor color="0x7EAEFF" alpha=".3"/>

168 Additional Migration Issues

Legends
You now enclose the data provider for Legend controls in curley braces; for example:

Flex 1.x:
<mx:LineChart id="linechart">

...
</mx:LineChart>
<mx:Legend dataProvider="linechart"/>

Flex 2:
<mx:LineChart id="linechart">

...
</mx:LineChart>
<mx:Legend dataProvider="{linechart}"/>

Interfaces
All chart interfaces now follow the I* naming scheme, as the following table shows:

Flex 1.x Name Flex 2 Name

BoxRenderer IBoxRenderer

AreaRenderer IAreaRenderer

WedgeRenderer IWedgeRenderer

LineRenderer ILineRenderer

Fill IFill

Axis IAxis

AxisRenderer IAxisRenderer (the interface, not the class)

Cell renderers 169

Cell renderers
In Flex 1.5, a cell renderer had to implement the setValue() method to access the data
passed to the cell renderer:
<mx:VBox xmlns:mx="http://www.adobe.com/2003/mxml" width="198"

backgroundAlpha="0">
<mx:Script>

function setValue(str:String, item:Object) {
// Set values of the cell renderer controls.

}
</mx:Script>

<mx:HBox height="100%">
<mx:Image id="myImage" width="30"/>
<mx:Text text="{labelData}" width="150" height="100%"/>

</mx:HBox>
<mx:CheckBox label="Check"/>
<mx:TextInput/>

</mx:VBox>

In Flex 2, cell renderers and cell editors were renamed to item renderers and item editors. In
addition, the architecture was completely redesigned for Flex 2. For more information, see
Chapter 21, “Using Item Renderers and Item Editors,” in the Flex 2 Developer’s Guide.

In Flex 2, cell renderers receive a data property that contains the data for the item to render.
For example, for a cell of a DataGrid control, the data property contains a copy of the data
provider element for the entire row of the grid. You access the data property in your cell
renderer to initialize it, as the following example shows:
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="198"

backgroundAlpha="0">
<mx:HBox height="100%">

<mx:Image id="myImage" source="{data.imageLocal}" width="30"/>
<mx:Text text="{data.displayText}" width="150" height="100%"/>

</mx:HBox>
<mx:CheckBox label="Check" selected="{data.status}"/>
<mx:TextInput selected="{data.moreText}"/>

</mx:VBox>

In this example, you use data binding to set the values of the controls in the cell renderer,
where the fields of the data property correspond to fields of the data provider that populates
the DataGrid control.

170 Additional Migration Issues

Validators
In Flex 1.5, validators were usually triggered in response to an update of the destination of a
data binding expression. You typically assigned the validator to the destination of a data
binding expression, and triggered the validation when the destination of the data binding
expression was updated, as the following example shows:
<!-- Define a data model for storing the phone number. -->
<mx:Model id="userInfo">

<phoneNum>{phoneInput.text}</phoneNum>
</mx:Model>

<!-- Define the PhoneNumberValidator. -->
<mx:PhoneNumberValidator field="userInfo.phoneNum"/>

<!-- Define the TextInput control for entering the phone number. -->
<mx:TextInput id="phoneInput"/>

In Flex 2, validators are triggered by default by the valueCommit event, and you use data
binding to assign it to the interface control rather than to a model. The source property
specifies the name of the control, and the property property specifies the field of the control
to validate, as the following example shows:
<!-- Define the PhoneNumberValidator. -->
<mx:PhoneNumberValidator id="pnV" source="{phoneInput}" property="text" />

<!-- Define the TextInput control for entering the phone number. -->
<mx:TextInput id="phoneInput"/>

You can also use the validate() method of the validator to trigger a validator
programmatically. All validator classes now include a validate() method.

CreaditCardValidator constants moved to a new class
The constants that define the type of credit card to validate were moved from the
CreditCardValidator class to a new class named CreditCardValidatorCardType.

The constants were also renamed. In MXML, valid constants values are:

■ "American Express"
■ "Diners Club"
■ "Discover"
■ "MasterCard"
■ "Visa"

Validators 171

In ActionScript, you can use the following constants:

■ CreditCardValidatorCardType.AMERICAN_EXPRESS

■ CreditCardValidatorCardType.DINERS_CLUB

■ CreditCardValidatorCardType.DISCOVER

■ CreditCardValidatorCardType.MASTERCARD

■ CreditCardValidatorCardType.VISA

Deprecated methods, properties, and events
The following validator methods, properties, and events were deprecated:

Styles
When you change a validator’s error message style, you must now use a class selector rather
than a type selector. You do this by prepending a period to the errorTip style as the following
example shows:
<mx:Style>

// ErrorTip { borderColor: #00FFFF } // Flex 1.5
.errorTip { borderColor: #00FFFF } // Flex 2

</mx:Style>

Deprecated item New item

Validator.enable() and
Validator.disable() methods

Validator.enabled property

Validator.isValid() and
Validator.isStructureValid()

Validator.validate() method

Validator.hasErrors() You now examine the Event object from the
validation to determine if any errors occurred.

Validator.field You now use Validator.source and
Validator.property to specify the item to
validate.

UIComponent.validationFailed and
UIComponent.validationSucceeded events

UIComponent.valid and UIComponent.invalid
events, or Validator.valid and
Validator.invalid events

172 Additional Migration Issues

Embedding resources
In Flex 1.5, embedded resources were bound to Strings that were used to reference the
individual images by name. Although the preferred method of embedding resources in Flex 2
uses Class variables, you can still use String variables for some level of backward compatibility.
However, the various objects and tags that use your embedded assets expect them to be tied to
Class variables, so you need to use the getDefinitionByName() method to cast your string
variables. You also still need to use the [Bindable] metadata tag to declare the string variable
bindable.

For instance, the following application uses string variables and casting to display an
embedded image:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script>
<![CDATA[

[Embed(source="logo.gif")]
[Bindable]
public var imgStr:String;

]]>
</mx:Script>

<mx:Image source="{getDefinitionByName(imgStr)}"/>
</mx:Application>

Although this method works, Adobe recommends that you use Class variables instead. The
equivalent application, using a Class variable, is simpler:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script>
<![CDATA[

[Embed(source="logo.gif")]
[Bindable]
public var imgCls:Class;

]]>
</mx:Script>

<mx:Image source="{imgCls}"/>
</mx:Application>

Alternatively, when you use MXML, this becomes a one line application:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Image source="@Embed(source='logo.gif')" />
</mx:Application>

For more information, see Chapter 30, “Embedding Assets,” in the Flex 2 Developer’s Guide.

173

13
CHAPTER 13

Migration Patterns

This topic describes some common patterns in migrating ActionScript in Adobe Flex
applications.

Contents
Instantiating Flex controls. 174

Using mixins. 175

Variable enumeration and object introspection . 176

Using the drag-and-drop feature . 178

Using Timer . 182

Using the Preloader . 183

Accessing request data. 183

174 Migration Patterns

Instantiating Flex controls
In Flex 1.x, you created a Flex control in ActionScript by first including a reference to that
control, and then using the createEmptyObject(), createChild(), createChildren(),
createChildAtDepth(), or createClassChildAtDepth() method.

These methods were removed. In Flex 2, you use the new operator to create child controls and
attach the control to a container with the addChild() or addChildAt() method. For
example:

Flex 1.x:
var b:Button;
b = Button(createChild(Button, undefined, { label: "OK" }));

Flex 2:
var b:Button = new Button();
b.label = "OK";
addChild(b);

Similarly, in Flex 2 you would destroy the object with the destroyObject(),
destroyChild(), destroyChildAt(), or destroyAllChildren() method. These methods
are also deprecated. Instead, you use the removeChild() or removeChildAt() method.

The createComponent() method now takes only a descriptor as its first argument, rather
than either a descriptor or a descriptor index. If you know the index, use
childDescriptors[i] to get the descriptor itself.

For more information on creating and destroying Flex controls in ActionScript, see the Flex 2
Developer’s Guide.

Flex 1.x Flex 2

createComponent() method createComponentFromDescriptor()

createComponents() method createComponentsFromDescriptors()

Using mixins 175

Using mixins
You can no longer attach a function to a class, unless that class has prior knowledge of that
function. For example, you can no longer do this:
UIComponent.prototype.doSomething = myFunction

or this:
dataGridInstance.doSomething = myFunction

You can still declare a Function type property on an Object and then supply an
implementation of that function later. For example:
class MyButton extends Button {

var doSomething:Function;
public function processInput(condition:Boolean):void {
if (condition)

doSomething();
}

}

and then:
var b:MyButton = new MyButton();
b.doSomething = function () { ... };
b.processInput(true);

You can also apply mixins to dynamic classes without their prior knowledge, as the following
example shows:
dynamic class MyButton extends Button {

...
}

and then:
// You can mix in any function onto an instance of a dynamic class:
var b:MyButton = new MyButton();
b.anyFunctionNameYouCanImagine = function () { ... };

// After it's added, you can call the function as follows:
b.anyFunctionNameYouCanImagine();

The only class in the Flex class library that is dynamic is the Object class. In most cases, you
must create your own class.

176 Migration Patterns

Variable enumeration and object
introspection
In Flex 1.x (ActionScript 2.0), using a for-in loop on an object let you enumerate over all
properties on an object. In Flex 2 (which uses ActionScript 3.0), only dynamically added
properties are enumerated by for-in loops. Declared variables and methods of classes are not
enumerated in for-in loops. This means that most classes in the ActionScript API do not
display any properties in a for-in loop. The generic type Object is still a dynamic object and
displays properties in a for-in loop.

To list all of the public properties and methods of a class or class instance, use the
describeType() method and to parse the results use the E4X API. The describeType()
method is in the flash.system package. The method’s only parameter is the object that you
want to introspect. You can pass any ActionScript value to it, including all available
ActionScript types such as object instances, primitive types such as uint, and class objects. The
return value of the describeType() method is an E4X XML object that contains an XML
description of the object’s type. For more information about using E4X, see the Flex 2
Developer’s Guide.

The following example introspects the Button control and prints the details to TextArea
controls:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

creationComplete="getDetails()">
<mx:Script><![CDATA[
import flash.system.*;

public function getDetails():void {
// Get the Button control’s E4X XML object description:
var classInfo:XML = describeType(button1);

// Dump the entire E4X XML object into ta2:
ta2.text = classInfo.toString();

// List the class name:
ta1.text = "Class " + classInfo.@name.toString() + "\n";

// List the object's variables, their values, and their types:
for each (var v:XML in classInfo..variable) {

ta1.text += "Variable " + v.@name + "=" + button1[v.@name] + " (" +
v.@type + ")\n";
}

Variable enumeration and object introspection 177

// List accessors as properties:
for each (var a:XML in classInfo..accessor) {

ta1.text += "Property " + a.@name + "=" + button1[a.@name] + " (" +
a.@type +")\n";
}

// List the object's methods:
for each (var m:XML in classInfo..method) {

ta1.text += "Method " + m.@name + "():" + m.@returnType + "\n";
}

}
]]></mx:Script>
<mx:Button label="Submit" id="button1"/>
<mx:TextArea id="ta1" width="400" height="200"/>
<mx:TextArea id="ta2" width="400" height="200"/>

</mx:Application>

The output displays accessors, variables, and methods of the Button control, and appears
similar to the following:
Class mx.controls::Button
...
Variable id=button1 (String)
Variable __width=66 (Number)
Variable layoutWidth=66 (Number)
Variable __height=22 (Number)
Variable layoutHeight=22 (Number)
...
Property label=Submit (String)
Property enabled=true (Boolean)
Property numChildren=2 (uint)
Property enabled=true (Boolean)
Property visible=true (Boolean)
Property toolTip=null (String)
...
Method dispatchEvent():Boolean
Method hasEventListener():Boolean
Method layoutContents():void
Method getInheritingStyle():Object
Method getNonInheritingStyle():Object

178 Migration Patterns

Using the drag-and-drop feature
When you convert drag-and-drop code, be aware of the following changes:

■ The doDrag() method takes an additional required attribute, mouse_event. This
attribute is the MouseEvent object that contains the mouse information for the start of the
drag.

■ All drag-and-drop-specific events are now DragEvent class events.
■ For a drop target to accept an item for dropping, it must call the acceptDragDrop()

method, not use the event.handled property.

The following example lets you drag one of two colored canvases onto a larger canvas to apply
the color to the larger canvas:

Flex 1.x:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script><![CDATA[
import mx.managers.Dragmanager;
function dragIt(event, text, format) {

var ds:mx.core.DragSource = new mx.core.DragSource();
ds.addData(text, format);
DragManager.doDrag(event.target, ds, mx.containers.Canvas,

{backgroundColor:event.target.getStyle('backgroundColor'),
width:30, height:30});

}
function doDragEnter(event) {

if (event.dragSource.hasFormat('color')) {
event.handled = true;

}
}
function doDragDrop(event) {

var data = event.dragSource.dataForFormat('color');
myCanvas.setStyle("backgroundColor", data);

}
]]></mx:Script>
<mx:HBox>

<mx:Canvas backgroundColor="#FF0000" borderStyle="solid" width="30"
height="30" mouseMove="dragIt(event, 'red', 'color')"/>

<mx:Canvas backgroundColor="#00FF00" borderStyle="solid" width="30"
height="30" mouseMove="dragIt(event, 'green', 'color')"/>

</mx:HBox>
<mx:Label text="Drag the item into this canvas"/>
<mx:Canvas id="myCanvas" backgroundColor="#FFFFFF" borderStyle="solid"

width="100" height="100" dragEnter="doDragEnter(event)"
dragDrop="doDragDrop(event)"/>

 </mx:Application>

Using the drag-and-drop feature 179

Flex 2:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script><![CDATA[
import mx.managers.DragManager;
// Import events package for MouseEvent:
import mx.events.*;
// Specify types for all arguments:
function dragIt(event:MouseEvent, text:String, format:String) {

var ds:mx.core.DragSource = new mx.core.DragSource();
ds.addData(text, format);
// New doDrag signature:
DragManager.doDrag(event.target, ds, event);

}
function doDragEnter(event:DragEvent) {

if (event.dragSource.hasFormat('color')) {
/? For a drop target to accept an item for dropping, it calls the
// acceptDragDrop() method and does not use the
// event.handled property:
DragManager.acceptDragDrop(event.target);

}
}
function doDragDrop(event:DragEvent) {

var data:Object = event.dragSource.dataForFormat('color');
myCanvas.setStyle("backgroundColor", data);

}
]]></mx:Script>
<mx:HBox>

<mx:Canvas backgroundColor="#FF0000" borderStyle="solid" width="30"
height="30" mouseMove="dragIt(event, 'red', 'color')"/>

<mx:Canvas backgroundColor="#00FF00" borderStyle="solid" width="30"
height="30" mouseMove="dragIt(event, 'green', 'color')"/>

</mx:HBox>
<mx:Label text="Drag the item into this canvas"/>
<mx:Canvas id="myCanvas" backgroundColor="#FFFFFF" borderStyle="solid"

width="100" height="100" dragEnter="doDragEnter(event)"
dragDrop="doDragDrop(event)"/>

 </mx:Application>

180 Migration Patterns

Other issues
In addition to the changes shown here, you might also encounter the issues described in this
section when you convert drag-and-drop code.

Accessing event targets
Because a TextArea control uses a Flash TextField control, and mouse events are dispatched by
Flash Player, not Flex, you must use the currentTarget property instead of the target
property in the doDrag() method when you start a drag from a TextArea control.

Detecting keys
Because ActionScript no longer has a Key class, and the Keyboard class replaces a limited set
of the Key class’s functionality, three new Boolean properties, ctrlKey, shiftKey, and
AltKey, were added to the DragEvent object. The new properties represent these keys’ states
when the user drags an item over a drop target. Typically, when a user holds the Shift,
Control, or Alt key down during a drag-and-drop operation, the user wants to change the
default behavior of the dragged item.

The following example checks if the user is pressing the Control key when dragging over the
target (to copy data), and sets the action in the DragManager to reflect its state.

Flex 1.5:
private function doDragOver(event:Event) {

event.target.showDropFeedback(event);
if (Key.isDown(Key.CONTROL)) {

...
} else if (Key.isDown(Key.SHIFT)) {

...
}

}

Flex 2:
private function doDragOver(event:DragEvent) {

event.target.showDropFeedback(event);
if (event.ctrlKey) {

...
} else if (event.shiftKey) {

...
}

}

Using the drag-and-drop feature 181

Controlling the feedback indicator
To control the feedback indicator that accompanies a drag proxy, you now use the new
showFeedback() and getFeedback() methods of the DragManager class. The indicator
shows what happens if you try to drop the item; for example, a red circle with a white x
represents an aborted drop, or a green circle with a white plus (+) indicates a valid drop.

In Flex 1.x, you could change the feedback indicator with the action property of the event.
In Flex 2, use the showFeedback() method to control the value of this property for all
DragManager-related events. To get this value on any DragEvent object, you now use the
getFeedback() method.

Setting actions
You no longer set the action property of the event object. Instead, you must call the
DragManager.setFeedback() method, as the following example shows.

Flex 1.5:
private function doDragOver(event:Event):Void {

// If the Control key is down, show the COPY drag feedback appearance.
if (event.ctrlKey) {

event.action = DragManager.COPY;
} else {

event.action = DragManager.MOVE;
}

}

Flex 2:
private function doDragOver(event:DragEvent):void {

// If the Control key is down, show the COPY drag feedback appearance.
if (event.ctrlKey) {

DragManager.showFeedback(DragManager.COPY);
} else {

DragManager.showFeedback(DragManager.MOVE);
}

}

182 Migration Patterns

Using Timer
The setInterval() and clearInterval() methods were deprecated in favor of the Timer
class. You can still use these methods; they are in the flash.util package.

When you use Timers, keep the following in mind:

■ When a Timer is first created with the new operator, it is stopped; you must use the
start() method to start it.

■ Instances of the Timer class dispatch events that you handle like any other event.

The following example creates and destroys a Timer object each time you click the Start and
Stop buttons. Setting the timer to null allows it to be garbage collected.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script><![CDATA[
import flash.util.Timer;
import flash.events.TimerEvent;

private var timer:Timer;

private function startTimer():void {
timer = new Timer(1000);
timer.addEventListener(TimerEvent.TIMER, timerHandler);
timer.start();

}
private function stopTimer():void {

timer.stop();
timer = null;

}
private function timerHandler(event:TimerEvent):void {

trace("timer");
}

]]></mx:Script>
<mx:Button label="Start Timer" click="startTimer();"/>
<mx:Button label="Stop Timer" click="stopTimer();"/>

</mx:Application>

You can also use the reset() method rather than the stop() method to stop the timer. The
difference between stop() and reset() is that stop() stops the timer but does not reset its
count, while reset() both stops and resets.

Accessing request data 183

Using the Preloader
The Application container supports an application preloader that uses a download progress
bar to show the download progress of an application SWF file. By default, the application
preloader is enabled. The preloader keeps track of how many bytes are downloaded and
continually updates the progress bar.

By default, the application preloader uses the DownloadProgressBar class in the mx.preloaders
package to display the download progress bar. To create a custom download progress bar, you
can either create a subclass of the DownloadProgressBar class, or create a subclass of the
flash.display.Sprite class that implements the mx.preloaders.IPreloaderDsiplay interface.

The operation of the download progress bar is defined by a set of events. These events are
dispatched by the Preloader class. A custom download progress bar must handle these events.

For more information, see Chapter 14, “Using the Application Container,” in the Flex 2
Developer’s Guide.

Accessing request data
You can pass request data to any Flex application by using flashVars variables in the
<object> and <embed> tags in the wrapper. If you are using Flex Data Services, you can
specify the request data as query string parameters. The server converts these to flashVars
variables when it generates the wrapper. The flashVars variables are a series of URL-encoded
name and value pairs, as the following example shows:
flashVars='firstname=Nick&middlename=D&lastname=Danger'

The way in which you access these variables is changed. In Flex 1.x, you could access the
values of flashVars variables by declaring a public global variable of the same name. Using
the previous example, you could access the values of the firstname, middlename, and
lastname variables in your Flex application by just declaring them, as the following example
shows:
<mx:Script>

var firstname; // Initialized to "Nick”.
var middlename; // Initialized to "D”.
var lastname; // Initialized to "Danger”.

</mx:Script>

184 Migration Patterns

In Flex 2, you must use the Application.application.parameters property to get the
values of these variables. The parameters property is an Object, which is a dynamic class that
you can use to store name and value pairs pass in as flashVars variables. The following
example sets variables by using the Flex 2 syntax:
<mx:Script>

public var fName:String = Application.application.parameters.firstname;
public var mName:String = Application.application.parameters.middlename;
public var lName:String = Application.application.parameters.lastname;

</mx:Script>

For more information on using the Application.application.parameters property, see Chapter
34, “Communicating with the Wrapper,” in the Flex 2 Developer’s Guide.

	Contents
	About Flex Documentation
	Contents
	Using this manual
	Accessing the Flex documentation
	Documentation set
	Viewing online documentation

	Typographical conventions

	Getting Started
	Contents
	Introduction
	Step 1: Find and replace
	Application namespace
	Void
	Newline
	Color value formats
	Application and container initialization
	Alpha and scale properties
	Event.currentTarget
	Uninitialized values
	Replace _root
	Alerts
	Effects/behaviors
	getURL() method

	Step 2: Add access modifiers
	Step 3: Add types
	Step 4: Update events
	Step 5: Import classes for package-level functions
	Step 6: Put all ActionScript components in packages
	Step 7: Update data services
	Step 8: Charts
	Step 9: Overrides
	Step 10: Binding
	Step 11: API updates

	ActionScript 2.0 to 3.0
	Contents
	Overview
	Usability improvements
	Capitalization of identifiers
	Package reorganization
	Accessors
	Internal functionality marked private
	Naming conflicts with Flex classes
	Integer constants in enumerations
	Abbreviations
	Consistent use of prefixes
	Type annotations
	The this keyword

	Classes and packages
	Using packages
	Package statement syntax
	Custom component packages

	Using classes
	Access modifiers
	Class identifiers

	super()

	Using external files
	include
	import
	Embed

	Initializing variables
	Default values
	About undefined
	About NaN

	Typing
	Explicit typing
	Type detection
	Primitive types
	Non-assignment expressions

	Global functions
	Explicit imports
	Function changes
	Deprecated features

	Miscellaneous
	MovieClip
	Arrays
	setInterval() and clearInterval()
	Metadata
	Constants
	Method signatures
	No arguments
	Variable number of arguments

	__proto__
	Primitive types
	Working with keys
	doLater() method
	LocalConnection

	Flex Classes
	Contents
	Core classes
	mx.core.Application
	mx.core.Container
	mx.core.ContainerAllChildrenList
	mx.core.ContainerScrollPolicy
	mx.core.MovieClipLoaderAsset
	mx.core.MXMLUIObject
	mx.core.Repeater
	mx.core.ScrollView
	mx.core.Skin*
	mx.core.UIComponent
	The alpha, scaleX, and scaleY properties
	The width and height properties
	The addEventHandler() method
	getURL() method
	The load and unload events
	Validation and layout methods
	Drawing methods
	Enumerated values are now constants
	life-cycle methods

	mx.core.UIObject
	mx.core.UITextFormat
	mx.core.View

	Containers
	mx.containers.Accordion
	mx.containers.accordionclasses.*
	mx.containers.ApplicationControlBar
	mx.containers.Box
	mx.containers.buttonbarclasses.ButtonBarButton
	mx.containers.Canvas
	mx.containers.ControlBar
	mx.containers.DividedBox
	mx.containers.dividedboxclasses.*
	mx.containers.Form
	mx.containers.FormHeading
	mx.containers.FormItem
	mx.containers.gridclasses.*
	mx.containers.GridRow
	mx.containers.HBox
	mx.containers.HDividedBox
	mx.containers.LinkBar
	mx.containers.NavBar
	mx.containers.Panel
	mx.containers.TabBar
	mx.containers.tabbarclasses.Tab
	mx.containers.TabNavigator
	mx.containers.Tile
	mx.containers.TitleWindow
	mx.containers.ToggleButtonBar
	mx.containers.ViewStack

	Controls
	mx.controls.Alert
	mx.controls.alertclasses.*
	mx.controls.Button
	mx.controls.ButtonBar
	mx.controls.ButtonBarButton
	mx.controls.CalendarLayout
	mx.controls.ColorPicker
	mx.controls.ComboBase
	mx.controls.ComboBox
	mx.controls.DataGrid
	mx.controls.dataGridClasses.DataGridColumn
	mx.controls.dataGridClasses.DataGridListData
	mx.controls.DateChooser
	mx.controls.DateField
	mx.controls.HorizontalList
	mx.controls.HRule
	mx.controls.HSlider
	mx.controls.Image
	mx.controls.Label
	mx.controls.Link
	mx.controls.List
	mx.controls.listclasses.*
	mx.controls.listclasses.DataProvider
	mx.controls.listclasses.ListBase
	mx.controls.listClasses.ListCellRenderer
	mx.controls.listClasses.TileListItemRenderer
	mx.controls.Loader
	mx.controls.Menu
	mx.controls.MenuBar
	mx.controls.menuclasses.*
	mx.controls.menuclasses.IMenuDataDescriptor
	mx.controls.menuclasses.MenuCellRenderer
	mx.controls.NumericStepper
	mx.controls.PopUpButton
	mx.controls.PopUpMenuButton
	mx.controls.RadioButton
	mx.controls.RadioButtonGroup
	mx.controls.RichTextEditor
	mx.controls.richtexteditorclasses.*
	mx.controls.scrollClasses.ScrollBar
	mx.controls.SimpleButton
	mx.controls.Slider
	mx.controls.sliderclasses.*
	mx.controls.sliderclasses.SliderToolTip
	mx.controls.TextArea
	mx.controls.textclasses.*
	mx.controls.TextInput
	mx.controls.TileList
	mx.controls.ToolTip
	mx.controls.Tree
	mx.controls.treeclasses.*
	mx.controls.treeclasses.DefaultDataDescriptor
	mx.controls.treeClasses.TreeCellRenderer
	mx.controls.VRule
	mx.controls.VSlider

	Effects
	mx.effects.AnimateProperty
	mx.effects.Effect
	mx.effects.EffectInstance
	mx.effects.MaskEffect
	mx.effects.Resize
	mx.effects.SetPropertyAction
	mx.effects.SetStyleAction
	mx.effects.SoundEffect
	mx.effects.Tween
	mx.effects.TweenEffect

	Events
	mx.events.ChildExistenceChangedEvent
	mx.events.CalendarLayoutChangeEvent
	mx.events.CollectionEvent
	mx.events.CursorEvent
	mx.events.DataGridCellRenderer
	mx.events.DataGridEvent
	mx.events.DateChooserEvent
	mx.events.DividerEvent
	mx.events.DropdownEvent
	mx.events.EventDispatcher
	mx.events.FlexEvent
	mx.events.IndexChangedEvent
	mx.events.ItemClickEvent
	mx.events.ListEvent
	mx.events.ListItemSelectEvent
	mx.events.LowLevelEvents
	mx.events.MenuEvent
	mx.events.MouseEvent
	mx.utils.events.ObjectEvent
	mx.utils.events.ObjectEventKind
	mx.events.SliderEvent
	mx.events.ToolTipEvent
	mx.events.TreeEvent
	mx.events.UIEventDispatcher

	Formatters
	mx.formatters.DateFormater
	mx.formatters.NumberBase
	mx.formatters.SwitchSymbolFormatter

	Interfaces
	Managers
	mx.managers.DepthManager
	mx.managers.DragManager
	mx.managers.FocusManager
	mx.managers.LayoutManager
	mx.managers.PopUpManager
	mx.managers.SystemManager

	Media controls
	mx.controls.MediaDisplay
	mx.controls.MediaController
	mx.controls.MediaPlayback
	mx.controls.VideoDisplay

	Printing
	mx.print.PrintJob
	mx.print.PrintJobType

	Resources
	mx.resource.*

	Service tags
	mx.servicetags.HTTPService
	mx.servicetags.RemoteObject
	mx.servicetags.WebService
	Callback URLs

	Skins
	mx.skins.halo.RectBorder
	mx.skins.halo.PopUpIcon
	mx.skins.ProgrammaticSkin
	mx.skins.RectBorder

	States
	mx.states.AddChild
	mx.states.SetEventHandler
	mx.states.SetProperty
	mx.states.SetStyle

	Utilities
	mx.utils.XMLUtil

	Validators
	mx.validator.Validator

	Data Providers
	Binding
	Contents
	About binding
	The <mx:Binding> tag must be a top-level tag
	Binding from a property
	Binding from all public properties in a class
	Binding from a single property
	Binding from a property defined by a setter and getter method
	Dispatching binding events from a custom component
	Binding with Flex component properties

	Binding with Arrays

	Events
	Contents
	About events
	Component startup life cycle
	Migrating the Event object
	Using the Event object
	Using the target property

	Using static constants
	Using function listeners
	Using the EventDispatcher class
	Maintaining scope
	Using setCapture()
	Keyboard events

	Styles and Skinning
	Contents
	Using styles
	Using the StyleManager
	Changed style properties
	Missing style properties
	Using colors
	Color value formats in CSS
	Color value formats using the StyleManager and setStyle() method

	CSS class selectors
	Global style sheet
	Using type selectors
	Using units

	Using skinning
	Skinning assets
	Drawing programmatic skins

	Using embedded fonts
	Themes

	Behaviors
	Contents
	Overview
	New Behaviors syntax
	The name property is now the id property
	The <mx:Effect> tag is no longer necessary
	Renamed the playEffect() and endEffect() methods
	Use binding in MXML to specify the effect
	The show property is now the showTarget property
	New properties added for the Zoom effect
	Change to the range of several effect properties
	Using the setStyle() method to set effects
	New events for effect classes
	Change to overriding the endEffect() method

	Data Services
	Contents
	About Data Services
	Proxy use policy
	Channels
	Logging

	Migrating RemoteObject components
	Unnamed RemoteObject
	Flex 1.5 syntax
	Flex 2 syntax

	Named RemoteObject
	Flex 1.5 syntax
	Flex 2 syntax

	Migrating HTTPService components
	Unnamed HTTPService
	Flex 1.5 syntax
	Flex 2 syntax

	Named HTTPService
	Flex 1.5 syntax
	Flex 2 syntax

	Migrating WebService components
	Unnamed WebService
	Flex 1.5 syntax
	Flex 2 syntax

	Named WebService
	Flex 1.5 syntax
	Flex 2 syntax

	Migrating secure data services
	Migrating services that use run-as
	Flex 1.5 syntax
	Flex 2 syntax

	Migrating services that use Basic authentication
	Flex 1.5 syntax
	Flex 2 syntax

	Migrating services that use custom authentication
	Flex 1.5 syntax
	Flex 2 syntax

	Login commands

	Mapping Java types for RemoteObject
	Accessing request/response data with RemoteObject

	Configuration and Command Line Tools
	Contents
	Configuration files
	Security
	Flex changes
	ActionScript changes

	Command-line compilers
	mxmlc
	compc

	fdb debugger
	SWD files
	Breakpoints
	Player lock out
	Deferred breakpoints

	run command
	print command
	Commands no longer supported

	Customizing Components
	Contents
	UIObject class removed
	Class variables changed
	Specifying the package
	Defining the class
	Defining the constructor
	Creating bindable properties
	Overriding a method
	Clip parameters removed
	Initialization sequence changed
	Renamed invalidateStyle()

	Additional Migration Issues
	Contents
	HistoryManager
	Charting
	Skins
	Renderers
	Binding
	mouseDown events
	alpha
	Legends
	Interfaces

	Cell renderers
	Validators
	CreaditCardValidator constants moved to a new class
	Deprecated methods, properties, and events
	Styles

	Embedding resources

	Migration Patterns
	Contents
	Instantiating Flex controls
	Using mixins
	Variable enumeration and object introspection
	Using the drag-and-drop feature
	Other issues
	Accessing event targets
	Detecting keys
	Controlling the feedback indicator
	Setting actions

	Using Timer
	Using the Preloader
	Accessing request data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

