

Galil Programming Manual Version 3.0

© 2003 Electromate Industrial Sales Ltd. www.electromate.com - sales@electromate.com TOLL FREE PHONE (877)SERV098 - TOLL FREE FAX (877)SERV099

TABLE OF CONTENTS

Program Flow:

Programming Instruction Format	6
Tuning Parameters	7
Programming Environments	
Interrogating Status Commands	
Conditional Statements	51
Loops	52
Trippoints	53
Automatic Subroutines	74
Multitasking	

Motion Programming:

Tuning Your Servo System	8
System Set-Up	
S Curve Profiling	12
Operation Under Torque Limit	13
Notion Control Modes	15
Independent Axis Positioning	
Independent Motion Commands	17
Stored Programs	
Jogging	20
Linear Interpolation	21
Controlling Linear Interpolation From A Host Program	23
Coordinated Motion Sequences	
Converting To User Units	28
Programming In User Units	
Specifying Linear Segments	31
Specifying Arc Seqments	32
Circular Interpolation	33
Contour Mode	35
Contouring	43
Gearing Resolution	
Mathematic And Functional Expressions	
I/O Interface	
Input/Output Interface	
Uncommitted Inputs	
Input Interrupt Functions/Subroutines	
Using IF, ELSE And ENDIF Constructs	
Uncommitted Outputs	65
Analog Inputs	
Input Of Data	
Output Of Data	
Control Variables	69

Control Variables and Offset	72
Symbolic Variables	73
Special Labels	
Displaying Binary Numbers	76
Limit Switch Routines	
Electronic Gearing	103
Tangent Motion	130
Proportional Motion	131
Infinite Array Recording	147

Application Example:

Linear Interpolation	22
XY Racetrack	
Converting To User Units	29
Circular Interpolation	
Spiral Trajectory	
Creating A Spiral Motion Path	40
Contour Mode	
Elliptical Motion	
Elliptical Motion With Gearing	
Spiral Motion With Gearing	
Trippoints	54
Input Interrupt	62
Starting Motion From A Switch Input	63
Bouncing off A Limit Switch	78
Making Jumps Out Of Automatic Subroutines	80
Stop At A Mechanical Limit	
Pause Motion	
Motion Complete Timeout	83
Correcting Wrong Operator Input Data	84
Using The Term-H/P Pendant	
Point-To-Point Move	87
Pick And Place	
Press Fitting Machine	90
Autostart Cut To Length	92
Position Follower I	95
Position Follower II	
Position Follower III	97
Continuous Move	98
Generating A Helical Motion Profile	
Helical Motion	102
Rotating Knife	104
Rotating Knife 2	106
Web Tension Control	108
Web Processing	111

Continuous Cutting Of Moving Webs By Waterjet	
Web Cutting With Fixed Cut Length	
Tension Control By Electronic Gearing	
Gearing Acceleration	
Synchronizing Two Conveyor Belts With Trapezoidal Velocity Correction	
Gearing Acceleration (Superimposed Profile Method)	122
Wire Cutter	124
Variable Length Ecam Motion	125
Cutting Material On Moving Belt	127
Flying Shears	128
Constant Force	
Joystick Control	135
Joystick With Nonlinear Function	
Backlash Compensation	
Teach Mode	
Multitasking	
Using Multi-tasking To Produce Waveform Output	
Arrays	
Array Data Storage	
Method To Increase Array Space	
Recording	
Record And Play Back	
Feedrate Override	
Variable Feedrate	
Routine For Monitoring Encoder Failure	164
Step Motor Monitor Routine	
Step Motor Position Maintenance	
Step Motor In Position Routine	
Step Motor Stall Detect	

Appendices:

DMC-1200/13x8/1600/1700/1800/2000/2100 Series Controllers	
DMC-1410/1411/1412/1414 Series Controller	169
DMC-1415/1416/1425 Series Controller	170
DMC-3425 Series Controller	171
DMC-1000/1300/1500 Series Controller	172
DMC-700 Series Controller	173
DMC-600 Series Controller	174
DMC-400 Series Controller	175

Disclaimer

This guide is designed to assist users in understanding the Galil motion controller programming language, and by no means, should serve to replace the factory published Hardware User Manuals. This Manual should be used in conjunction with all other factory supplied documentation.

The production of this Reference Guide is a culmination of 15 years of Galil programming experience by the staff of Electromate. Considering the multitude of potential programming solutions, this guide should by no means serve as a complete programming guide, nor do we guarantee it's syntax accuracy.

Numerous application examples throughout this Reference Guide are specific to certain advanced level controllers, so please refer to the Command Summary Appendices for appropriate controller selection.

No part of this Reference Guide may be reproduced by any means, nor transmitted, nor translated without written permission from Electromate Industrial Sales Ltd. Errors and omissions excepted. Subject to change without notice.

© 1999-2003 Electromate Industrial Sales Ltd.

- •Two-letter, English-like commands
- Must be upper case (CAP LOCK on)
- Commas separate X, Y, Z, W parameters
- Multiple commands per line allowable if separated by semicolon (i.e. PR50;SP10;BG;TPX)
- All Galil controllers perform quadrature decoding of the encoder input signal to provide 4 X interpolation IE. the command to move a motor with a 500 ppr resolution encoder is PR 2000
- Example:
 - TP XTell position of X axis onlyST XWStop X and W axesSP 100,200Set Speed for X and Y axesPR,,,4000Set position for W axis onlyBGBegin motion on all axes

Tuning Parameters

Designates the proportional constant in the controller filter	KP
Designates the derivative constant in the controller filter	KD
Sets the integral gain of the control loop	KI
Sets the acceleration feedfordward coefficient	FA
Sets the velocity feedforward coefficient	FV
Sets a bias voltage in the motor command output	OF
Smoothing time constant which filters the acceleration	IT / VT
& deceleration functions in independent/vector moves	
Sets the gain of the control loop	GN
Sets the compensating zero function in the control loop	ZR
Sets the integral gain of the control loop	KI

Rule of Thumb: Tuning is a 'trial and error' process-

For systems with high oscillation, decrease GN and increase ZR in tandem or decrease KP and increase KD in tandem

For systems with underdamped conditions, increase GN and decrease ZR in tandem or increase KP and decrease KD in tandem

For systems with poor accuracy, gradually increase KI

For systems with high frequency ringing, increase KD

A typical tuning parameter set-up will have a KD of 5 to 10 times KP, and a KI =1 (or KI=2)

Motion Programming: Tuning Your Servo System

Adjusting the tuning parameters are required when using servo motors (standard or sinusoidal commutation). The system compensation provides fast and accurate response and the following presentation suggests a simple and easy way for compensation. More advanced design methods are available with software design tools from Galil, such as the Servo Design Kit (SDK software)

The filter has three parameters: the damping, KD; the proportional gain, KP; and the integrator, KI. The parameters should be selected in this order.

To start, set the integrator to zero with the instruction

Instruction	Interpretation
KI 0 (CR)	Integrator gain

and set the proportional gain to a low value, such as

Instruction	Interpretation
KP 1 (CR)	Proportional gain
Instruction	Interpretation
KD 100 (CR)	Derivative gain

For more damping, you can increase KD (maximum is 4095). Increase gradually and stop after the motor vibrates. A vibration is noticed by audible sound or by interrogation.

If you send the command

Instruction	Interpretation
TE X (CR)	Tell error

a few times, and get varying responses, especially with reversing polarity, it indicates system vibration. When this happens, simply reduce KD.

Next you need to increase the value of KP gradually (maximum allowed is 1023). You can monitor the improvement in the response with the Tell Error instruction

> Instruction KP 10 (CR)

Interpretation Proportion gain

Instruction TE X (CR) Interpretation Tell error

As the proportional gain is increased, the error decreases.

Again the system may vibrate if the gain is too high. In this case, reduce KP. Typically, KP should not be greater than KD/4 to KD/10 (Only when the amplifier is configured in the current mode).

Finally, to select KI, start with zero value and increase it gradually. The integrator eliminates the position error, resulting in improved accuracy. Therefore, the response to the instruction

Instruction TE X (CR) Interpretation Tell error

becomes zero. As KI is increased, its effect is amplified and it may lead to vibrations. If this occurs, simply reduce KI. Repeat tuning for the Y, Z and W axes.

Here are a few examples for tuning and using your controller. These examples have remarks next to each command - these remarks must not be included in the actual program.

This example assigns the system filter parameters, error limits and enables the automatic error shut-off.

Instruction	Interpretation
KP10,10,10,10,10,10,10,10	Set gains for A, B, C, D, E, axes
KP10,10,10,10,10,10,10	Set gains for A, B, C,
KP*=10	D, E, and H axes Alternate method for setting gain on all axes
KPX=10	Alternate method for setting X
KPA=10	(or A) axis gain Alternate method for setting A (or X) axis gain

The X, Y, Z and W axes can also be referred to as the A, B, C, and D axis.

Instruction	Interpretation'
OE 1,1,1,1,1,1,1,1	Enable automatic Off on Error function for all axes
ER*=1000	Set error limit for all axes to 1000 counts
KP10,10,10,10,10,10,10,10	Set gains For A, B, C, D, E, and H axes
KP*=10	Alternate method for setting gain on all axes
KPX=10	Alternate method for setting X (or A) axis gain
KPA=10	Alternate method for setting A
KPZ=10	Alternate method for setting Z axis gain

KPH=10

Alternate method for setting D axis gain Alternate method for setting H axis gain

Motion Programming: Using the IT and VT Commands(S curve profiling):

When operating with servo motors, motion smoothing can be accomplished with the IT and VT command. These commands filter the acceleration and deceleration functions to produce a smooth velocity profile. The resulting velocity profile, known as S curve, has continuous acceleration and results in reduced mechanical vibrations.

The smoothing function is specified by the following commands:

Instruction

Interpretation

IT x,y,z,w VT n Independent time constant Vector time constant

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command, VT, is used to smooth vector moves of the type VM and LM.

The smoothing parameters, x,y,z,w and n are numbers between 0 and 1 and determine the degree of filtering. The maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Smaller values of the smoothing parameters imply heavier filtering and smoother moves.

The following example on the next page illustrates the effect of smoothing.

Note that the smoothing process results in longer motion time.

Example - Smoothing

Instruction

PR 20000 AC 100000 DC 100000 SP 5000 IT .5 BG X

Interpretation

Position Acceleration Deceleration Speed Filter for S-curve Begin

Motion Programming: Operation Under Torque Limit

The magnitude of the motor command may be limited independently by the instruction TL.

Instruction	Interpretation
TL 0.2	Set output limit of
	X axis to 0.2 volts
JG 10000	Set X speed
BG X	Start X motion

In this example, the X motor will probably not move since the output signal will not be sufficient to overcome the friction. If the motion starts, it can be stopped easily by a touch of a finger.

Increase the torque level gradually by instructions such as

Instruction	Interpretation
TL 1.0	Increase torque limit 1 volt
TL 9.98	Increase torque limit to maximum,
	9.98 volts

The maximum level of 10 volts provides the full output torque.

Programming Environments

A variety of device drivers are available for most Galil controllers via the source code subdirectory located on the COM-Disk, specifically:

- Visual Basic
- C, C++
- DOS
- Pascal, Turbo Pascal
- BASIC
- Windows 3.X/ 95/ 98/ NT/ 2000 and CE
- QNX
- OCX/ OLE Controls
- DLL'S
- Labview, Wonderware, Think And Do
- Delphi, HP VEE, Linux

A variety of translator software packages are also supported, including:

CAD (any DXF file) File Conversion HPGL Code Conversion Visual Basic/ Active X ECAM DDE

Motion Control Modes

Independent move	PR, PA
Jog Mode	JG
Vector Mode - Linear and Circular	VM
Linear Interpolation	LM
Contour Mode	СМ
Electronic Gearing	GA
Electronic CAM	EA
Elliptical Move	ES
Gantry Mode	GM
Tangential Move	TN
Homing Commands	HM, FE, FI
S-Curve Move	IT, VT

Motion Programming: Independent Axis Positioning

- Motion between specified axes is independent
- User specifies:

PR or PA	Relative or Absolute Position [counts]
SP	Slew speed [counts/sec]
AC	Acceleration [counts/sec ²]
DC	Deceleration
IT	S-Curve filter
BG	Begin

- BG command begins motion
- Can change SP, AC, DC during motion
- Can change direction during motion
- Example:

Instruction

PR 1000,4000 SP 2500,2500 AC 100000,100000 DC 50000,50000 BG XY

Interpretation

Specify relative position Specify slew speed Specify acceleration Specify deceleration Begin motion

Motion Programming: Independent Motion Commands

A motion controller can be "told" by a host computer to perform a move by any of the controlled motors. The most simple move is one with a trapezoidal velocity profile as illustrated below. This move is characterized by the parameters: distance, slew velocity, and acceleration and deceleration rates.

Trapezoidal Velocity Profile

The most basic form of specifying these motion parameters is by "units of position resolution." For example, let the encoder resolution be 4000 counts per turn and suppose the objective is to rotate the motor one revolution along a trapezoidal velocity, with a total motion time of 0.3 sec with acceleration and deceleration times of 0.1 sec each. Simple calculation indicates that the slew velocity equals 5 revolutions per second and that both acceleration and deceleration rates are 50 revolutions/sec².

The motion parameters can be expressed in terms of units of resolution as a distance of 4000 counts, a slew velocity of 20,000 counts/sec, and acceleration and deceleration rates of 200,000 counts/sec². The motion parameters must be transmitted from the host computer to the motion controller. The special instructions used by the controller, along with their interpretation, are given below.

Instruction

PR 4000 SP 20000 AC 200000 DC 200000 BGX

Interpretation

Relativedistance Speed rate Acceleration rate Deceleration rate Start motion of X motor

All that is needed is that the host computer sends the characters indicated by the program shown above and the motion starts immediately.

Another type of simple motion is the jog move. Here the motor is commanded to run indefinitely at a specified speed. The motion parameters in this case are limited to the speed, acceleration, and deceleration. These parameters can be expressed in units of resolution as illustrated below.

Consider a system where the resolution of the encoder is 4000 counts/turn and where the motor is required to run at a speed of 600 rpm, or 10 revolutions/sec, and must accelerate to that speed over 100 msec. Simple calculations show that the speed rate is 40,000 counts/sec and that the acceleration rate is 400,000 counts/sec².

The instructions used to generate such a motion, along with their interpretations, are shown in following example.

Instruction

Interpretation

JG 40000 AC 400000 BGX Jog speed Acceleration rate Start X motion

The instructions to execute the motion can be issued directly from the host computer or external operator interface, resulting in an immediate move. This mode, the immediate mode, requires the continuous involvement of the interface. This requirement is often undesirable because the host may have to perform other functions simultaneously. An alternative method is to combine several motion commands into a complete application program which is downloaded to the controller memory. This method reduces or eliminates the involvement of the host computer. The controller can receive its instructions from stored programs. To start the motion, the host sends a short command, such as "Execute Program A." The controller will then receive the instructions from its memory without the intervention of the host computer.

To illustrate the concept, consider the move described in the previous example. To perform the same move from a stored program, the host modifies the program by adding a label, #A, for example, and an end statement, EN. The resulting program is as follows:

Instruction	Interpretation
#A	Program label
PR 4000	Distance
SP 20000	Speed
AC 200000	Acceleration
DC 200000	Deceleration
BGX	Start X motion
EN	End of program

The host downloads this program to the controller memory, where the program remains inactive. To execute the program, the host sends the command:

XQ#A

which causes the controller to execute the program labeled #A.

The controller can receive commands from both the host computer and the stored program and execute these instructions simultaneously.

- Changes motion 'on the fly'
- User specifies:

JG	Jog speed and direction
AC	Acceleration
DC	Deceleration
IT	S-Curve filter
BG	Begin
ST	Stop

- Can change JG, AC, DC during motion
- Example:

Instruction	Interpretation
JG - 1000	Specify jog speed
AC 200000	Specify acceleration rate
DC 200000	Specify deceleration rate
BG X	Begin motion

- For coordinated motion between 2 to 8 axes on advanced level controllers
- Allows infinite paths
- User specifies:

LM	Linear Interpolated Axes
LI	Linear segments – incremental distances
VS	Vector speed
VA	Vector acceleration
VD	Vector deceleration
VT	S-curve filter
LE	End segment
BGS	Begin sequence

• Example:

Instruction LM XYZW VS 5000 VA 100000 VD 100000 LI 100,200,300,400 LI -500,-200,0,300 LE	Interpretation Linear Interpolate on X,Y,Z,W Specify vector speed Specify vector acceleration Specify vector deceleration Linear segment Next linear segment End
LE	
BGS	Begin motion sequence

Application Example: Linear Interpolation

• Linear Interpolation Program:

VP 40000,30000	Specify vector path
VS 100000	Define feed rate vector velocity
VA 1000000	Define vector acceleration
VD 1000000	Define vector deceleration
VE	End of motion
BGS	Start motion

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Motion Programming: Controlling Linear Interpolation from a Host Program

When operating in linear interpolation mode, up to 511 linear interpolation segments can be specified before execution. These segments are saved in the sequence buffer. As segments are executed, the sequence buffer allows for additional segments to be added. Using array space on the controller, it is possible to extend the linear interpolation buffer. The following sample program demonstrates how to use array space to hold linear interpolation points in 2 sets of arrays, called set A and set B. The maintenance program, #FILLPTS, monitors the sequence buffer. As space becomes available in the sequence buffer, the monitor program adds additional points from the arrays. The monitor program uses the A set of arrays first, then the B set of arrays. The set of arrays which are not being used for filling the sequence buffer can be updated with additional points by a host program and quick information exchange by use of the download array function, QD.

This program uses 3 axes of linear interpolation as an example. This method could also be extended for additional axes or vector mode.

This monitor program resides in the controller. LI commands would be sent to start the move. The monitor program sets the state variables, AWAIT and BWAIT to 0 to let the host program know when it can download additional segments. The command QD can be used by the host program to download array elements to the controller while the move is executing. (First to the A arrays: XPOSA, YPOSA, ZPOSA then to the B arrays: XPOSB, YPOSB, ZPOSB). The last segment can be signified by including a final segment with length that is out of the normal operating range such as 1000000. When the program sees this value, it gives the last LI element and ends the program.

#FILLPTS

DM XPOSA[1000],YPOSA[1000],ZPOSA[1000] DM XPOSB[1000],YPOSB[1000],ZPOSB[1000] #MONITOR JP#MONITOR, (_SCX<>100)

JP#MONITOR, (_SCY<>100)

Buffer maintenance program. Define arrays

Monitor Routine Loop until Vector Mode Executing Loop until Vector Mode Executing

S

ELECTROMATE JP#MONITOR, (_SCZ<>100)

CTR=0 AWAIT=-1 BWAIT=-1

#FILLA

JP#FILLA,AWAIT=-1

AWAIT=1

Loop until Vector Mode Executing Define counter variable

Define buffer state variables Routine to fill LI Buffer W/ arrays "A" Wait until buffer has been filled Set buffer state variable

Motion Programming: Coordinated Motion Sequences

- For linear and circular interpolation on any set of two axes
- Motion between path segments is continuous
- User specifies:

VM	Plane of motion
VP	Linear segment
CR	Arc segment
VS	Vector speed
VA	Vector acceleration
VD	Vector deceleration
VT	S-Curve filter
VE	End segment
BGS	Begin sequence

- Up to 511 segments can be given prior to motion
- Can send additional segments during motion
- Can change VS and VA during motion

Coordinated Motion

Motion controllers can generate various types of motion. One of the most common types is the coordinated motion between two axes, for example, X and Y. In this instance, the controller generates motion of both motors in a manner that results in straight lines and circular arcs. This motion is quite common in computer numeric control (CNC) and other industrial applications.

Coordinated motion is defined by the path and by the velocity profile along the path. The first step is to select the two axes that define the motion plane using the VM instruction. For example, VMXY defines the plane of coordinated motion as the XY plane.

The second step defines the motion path, which consists of a collection of straight lines and circular arcs. Straight lines are defined with the instruction

where (m,n) are the coordinates of the endpoint. Circular arcs are defined with the instruction

CR R, θ, δ

where R indicates the radius, θ defines the starting angle, and δ defines the width of the arc.

The complete path may consist of a collection of such motion segments, as illustrated by the following XY Racetrack example. There is no limit to the number of segments that can be specified and additional segments can be sent during motion. This allows the controller to control motion along very long paths without stopping.

In addition to the motion path, the user can specify the vector speed (feedrate). In most applications, the feedrate is set to a constant value. However, the velocity can also be reduced around corners, for example.

Similarly, the acceleration and deceleration rates along the motion can be specified. The instructions for the vector velocity, acceleration, and deceleration are VS, VA, and VD respectively.

The generation of a coordinated move is illustrated by the following example.

Consider the motion path described by the figure below and write a program to generate it. The motion is in the XY plane, the radius of the corners is 1000 counts, the vector speed is 20,000 count/sec, and the vector acceleration and deceleration rates are both 100,000 count/sec².

The instructions and their interpretations are shown below.

Instruction

Interpretation

#M VM XY VP 6000,0 CR 1000,270,180 VP -6000,2000 CR 1000,90,180 VP 0,0 VE VS 20000 VE VS 20000 VA 100000 VD 100000 BGS EN Label Specify XY plane Move to Point B Move to Point C Move to Point D Move to Point E Return to Point A End of path Vector speed Vector acceleration Vector deceleration Start motion End program

Motion Programming: Converting to User Units

Variables and arithmetic operations make it easy to input data in desired user units such as inches or RPM.

The position parameters such as PR, PA and VP have units of quadrature counts. Speed parameters such as SP, JG and VS have units of counts/sec. Acceleration parameters such as AC, DC, VA and VD have units of counts/sec². The controller interprets time in milliseconds.

All input parameters must be converted into these units. For example, an operator can be prompted to input a number in revolutions. A program could be used such that the input number is converted into counts by multiplying it by the number of counts/revolution.

A sample program is found on the following page.

Instruction

#RUN IN "ENTER # OF REVOLUTIONS",N1 PR N1*2000 IN "ENTER SPEED IN RPM",S1 SP S1*2000/60

IN "ENTER ACCEL IN RAD/SEC2",A1 AC A1*2000/(2*3.14)

BG EN

Interpretation

Label Prompt for revs Convert to counts Prompt for RPMs Convert to counts/sec Prompt for ACCEL Convert to counts/sec2 Begin motion End program

Motion Programming: In User Units

• Position and speed scale factors are allowable for ease of programmability. User defined variables can also be used for the same function.

Example 1:

Load is coupled to a motor through a 10 pitch (10 turns per inch) leadscrew. Desired motion is 1 inch at slew speed of 3.75 inches per sec and acceleration of 100 inches/sec 2. Assume a 1000 line encoder.

PS = (1000 lines/rev)x(4 counts/line)x(10 rev/inch) = 40,000 counts/user_unit

SS = (3.75 in/sec)x(1000 lines/rev)x(4 counts/line)x(10 rev/inch) = 150,000 (counts/sec)/(user_unit/sec)

Motion Program PS 40000 SS 150000 PR 1 SP 3.75 AC 100 BG

Example 2:

Run a motor a distance of 30 revolutions at a slew speed of 500 RPM and acceleration of 300 rev/sec². Assume a 500 lines per rev encoder.

PS = (500 lines/rev)x(4 counts/line) = 2,000 counts/user_unit SS = (500 lines/rev)x(4 counts/line)/(60 sec/min) = 33 (counts/sec)/(user_unit/min)

Motion Program PS 2000 SS 33 AC 300 SP 500 PR 30 BG

Motion Programming: Specifying Linear Segments

• Specify linear segments as destination coordinate with respect to start of move

Segment AB	
Segment BC	

VP 2000,4000 VP 2000,6000

Motion Programming: Specifying Arc Segments

• Specify circular segment as radius, starting angle and travel angle. Clockwise rotation is negative travel.

Segment AB \Rightarrow CR 1000,0,90

To Specify a circular arc:

R = radius

- Θ = angle of radius at starting point
- D = traversed angle

Example:

Instruction CR 1000,45,120

X,Y,V,M BGS Interpretation Define circle of radius 1000 counts Specify Vector Motion Path Begin sequence

The Required Path

Radius of corners = 1000 counts

The contouring mode is the ideal vehicle for generating motion that is expressed as a function of time. Suppose, for example, that the motion involves three axes, X, Y, and Z, and that the time-dependent position functions are X(T), Y(T), and Z(T).

The procedure for generating motion starts with specifying the time interval, DT, and by evaluating the functions X, Y, and Z at those times. Later, the position increments, DX, DY, DZ, are computed and specified.

Note that the computations outlined above can be performed in the host computer, or optionally in advanced level controllers. The computation process is illustrated below.

The design objective is to drive an XY table along a spiral trajectory according to the following functions expressed in resolution counts.

 $X(T) = T \cos 0.03T$ $Y(T) = T \sin 0.03T$ for 0<T<12,000 ms

The time, T, is in milliseconds and the argument, .03T, is in degrees. As a result, the largest argument is 360° corresponding to one revolution.

To generate the motion, we start with the selection of the time interval, DT. Note that in the contour mode we approximate the path by straight line segments. If the time interval is DT ms, the width of each segment in degrees is

 $\alpha = 0.03 \text{DT}$

For example, if DT = 32 ms, the width of each segment is 0.96°, which is very precise. Since the total motion time is 12000 ms, the total number of increments is 375.

Now both X and Y are computed at the times 0,32,64,96...ms, to determine the required positions. Later, the increments between these points are computed.

Some motion controllers have the capability to perform the computation independently without host intervention. To illustrate the process, consider the operation by a DMC-1700 controller, as shown in the flowchart below and the following motion program.

The first block A sets the initial time, T = 0, and initial positions of X and Y. It also sets the controller in the contour mode with a time interval of 32 ms.

Flowchart for Spiral Trajectory Example

The second block, B, increments the time and computes X and Y. The values of X and Y may include integers and fractions. If the fractions are rounded differently in different parts of the operation, it may produce an error.

To avoid that possibility, it is advisable to limit the operation to the integer part of X and Y, which are denoted XC and YC.

The block C determines the increment as the difference between the current values, XC and YC, and the previous values, XP and YP. The increments are denoted DX and DY.

The computed increments are then specified as a motion command and the process is repeated until the time reaches its limit. The actual program and the interpretation are given on the following page.

Instruction	Interpretation
#A T = 0 XP = 0 YP = 0 CMXY DT 5 #LOOP T = T+32 A = T*0.03 $X = @ \cos[A] *T$ $Y = @ \sin[A] *T$ XC = @ INT[X] YC = @ INT[Y] DX = XC-XP DY = YC-YP CD DX,DY WC XP = XC YP = YC JP#LOOP,T<12000 DT 0; CD0 EN	Label Initial time Initial value of X Initial value of Y Set contour mode Time interval is $2^5 = 32$ ms Label New time Argument in degrees Compute X Compute Y Integer part of X Integer part of X Increment of X Increment of Y Command motion End of segment Update XP Update YP Repeat if necessary End contour End of program

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Application Example: Controlling Contour Mode from a Host Program

This notes discusses the use of a host program to manage the execution of contour mode. The term host program refers to a program which is executed on the host computer and interacts with the controller.

Background

The contour buffer holds 1 element. To begin contour motion, issue the first contour point. To keep the controller from beginning the next contour point, issue the command WC ("wait for contour"), and then the next contour point. The second point will reside in the contour buffer until the first contour point is complete. The user can monitor the contour buffer by issuing the command CM ? or by checking the value of the operand, _CM. 1 means the buffer is full, 0 means the buffer is empty.

Example

This example demonstrates 2 axes of contour motion. Contour mode is begun by issuing the following:

CMXY	Contour mode for X and Y axes
DT 8	Time between points = 256 msec
CD 10000,10000	1 ST contour point
WC	Wait for next contour point
CD 10000,10000	2 ND contour point

The controller begins executing the first contour point and the second point has been placed in the contour buffer. The value returned by CM ? will be 1 until the first point is complete and the second point is being executed. If the command WC is issued after the second "CD" command, the controller will not respond until the first point is complete and there is room in the buffer. The host program will be able to send additional contour points when it receives a response from the controller. This is the simplest method for controlling the issuance of contour points. Another method is available which maintains open communications to the controller*. In this case, a monitor program that executes on the controller can be used to notify the host program when it is time to send the next contour point. Here is an example of such a program:

Monitor Program

#MONITOR ACK=0 the host program	Monitor Program Variable to set the state of
JP#MONITOR, (_SCX<>50)&(_SCY<>50)	Loop until Contour Mode Executing
#LOOP	Loop while contour buffer
is 1 (full)	
JP#LOOP,_CM=1	
UI10	Issue a user interrupt
(10 was chosen at random)	
#WAIT	Wait for host program to set
	ACK variable
JP#WAIT,ACK=0	
JP#MONITOR,ACK=-1 ACK=0	Jump back to beginning of program Set ACK back to 0

The monitor program waits for contour motion to begin and then monitors the contour buffer for availability. When room is available, the controller will generate an interrupt. The program on the host computer would need to respond to this interrupt by sending the commands:

WC CD <value>,<value> ACK=1 or ACK = -1

JP#MONITOR

ΕN

The variable ACK lets the monitor program know that the interrupt was accepted. When ACK is set to 1 the host program has additional contour points and when ACK is set to -1, the host program does not have additional contour points. When done, the monitor program will jump back to the main loop and wait for contour mode to start again.

*The controller will not be able to accept additional commands if a WC command is issued while the contour buffer is full. When the contour buffer becomes empty, the controller will respond.

Application Example: Creating a Spiral Motion Path

There are two methods for producing spiral motion with a Galil controller. The first method, demonstrated in the example program below, utilizes gearing and the CR command. Notice that the X and Y are "dummy" axes in the sense that they're only used to initiate the vector mode. The Z and W axes are incrementally geared off the X and Y commanded positions to produce the spiral motion. The gear ratios start at 1 and increment by 0.5 every 50 ms. The resulting profile is show in Figure 1.

#A DP*=0 VMXY CR500,0,1800 VE GA,,CX,CY GR,,1,1 N=1 BGS #B WT50 N=N+.5GR,,N,N JP#C, _CS=1 JP#B #C ΕN

Figure 1. View from WSDK of the first Spiral Method

Unfortunately, most users cannot spare "dummy" axes for the first method of spiral motion. The alternative method is to use very small VP segments to produce the profile. The example program below contains an iterative loop that calculates the coordinates for each vector segment. The radius of the spiral is incremented by 2 counts, and the X and Y positions are calculated using sine and cosine. Notice that the angles are incremented by 12 degrees. This is because smaller angle increments create vector segments that are too short for the controller to calculate. In order to allow for smaller angle increments, the starting radius must be larger.

Below is some example code for the second method of spiral motion. Also, Figure 2 shows the resulting profile in a WSDK screen shot.

```
#A
DP*=0
DM XVAL[1000],YVAL[1000],R1[1000]
R1[0]=200
YVAL[0]=0
XVAL[0]=200
CSS
CAS
VMXY
VP XVAL[0],YVAL[0]
M=1
```


BGS #B R1[M]=200+(2*M) XVAL[M]=R1[M]*@COS[(12*M)] YVAL[M]=R1[M]*@SIN[(12*M)] VP XVAL[M],YVAL[M] M=M+1 JP#B,M<1000 VE EN

Figure 2. Screen Shot for the second method of Spiral Motion

Contouring

- 1. To generate arbitrary position trajectories
- 2. To create precise synchronization between axes

Instruction #POINTS DM POS[16]	Interpretation Program defines X points Allocate memory
DM DIF[15]	Allocate memory
C=0 T=0	Set initial conditions, C is index T is time in ms
#A	
V1=50*T	
V2=3*T	Argument in degrees
V3=-955*@SIN[V2]+V1V4=@INT[V3] POS[C]=V4 T=T+8	Compute position Integer value of V3
C=C+1 JP #A,C<16	
#B	Program to find position differences
C=0 #C	
D=C+1 DIF[C]=POS[D]-POS[C]	Compute the difference and store
C=C+1 JP #C,C<15	
EN	End first program
#RUN CMX	Program to run motor Contour Mode
DT3	4 millisecond intervals
C=0 #E	
CD DIF[C] WC	Contour Distance is in DIF
C=C+1	Wait for completion
JP #E,C<15 DT0	
CD0	Stop Contour
EN	End the program

Application Example: Contour Mode

<u>Example</u>

Generate motion along an ellipse

X = 4000 cos 360 T/1200

Y = 3000 sin 360 T/1200

period is 1200 ms

Method:

Divide the motion time into 16 ms intervals and use contouring

Instruction	Interpretation
# CONTOUR	Label
T = 0	Initial time
XP = 4000	Initial positions
YP = 0	
CMXY	Set mode
DT 4	T = 16 ms
#LOOP	
T = T + 16	-
$A = T^* 0.3$	Compute phase
X = @cos[A]*4000	Compute X
Y = @sin[A]*3000	Compute Y
IX = @INT[X]	Find integer part of X
IY = @INT[Y]	Find integer part of Y
DX = IX-XP	Compute increment X
DY = IY-YP	Compute increment Y
XP = IX	Update previous value
YP = IY	
CD DX, DY	Contour command
	Wait for contour data
JP #LOOP, T<1200	Repeat process
CD0,0 DT0	End contour
-	
EN	

Application Example: Elliptical Motion with Gearing

- Generate an ellipse motion using gearing.
- Note the equations

Circle $X^2+Y^2=R^2$ Ellipse $X^2+y^2/N^2=R^2$

- Generate a circle with XN axes.
- Define N as the master.
- Define Y as a slave with a programmable gear ratio.
- Example:

Generate an ellipse where X moves between +/-10000 and Y moves between +/-8000.

Program

Interpretation

#ELLIPSE	Label
VMXN	Vector mode
GAY=N	Set master
GR, 0.8	Define ratio
CR 10000,0,360	Command a circle
VE	Vector end
VS20000	Begin sequence
EN	End program
	Enu program

Application Example: Spiral Motion with Gearing

- 1. Generate a spiral motion of two turns.
- 2. Starting radius 10000 counts.
- 3. Radius increases 2000 counts per turn.
- 4. Vector speed must be constant.

Procedure:

- 1. Set vector mode with ZN. Command a circle with ZN.
- 2. Gear X to Z and Y to N, same ratio.
- 3. Start with gear ratio 1.
- 4. Increase the gear ratio linearly per rotation.
- 5. Update 200 times per turn or every 314 counts.
- 6. Reduce vector speed, VS, as reciprocal of gear ratio.

#SPIRAL	Label Program
VMZN	Vector mode
GA Z,N	Gearing
GR1,1	Initial ratio
CR 10000,0,720	Define circle
VS 2000	Vector speed
VA 100000	Vector acceleration
VD 100000	Vector deceleration
VE	Vector end
BGS	Begin sequence
G=1.0	Initial gear ratio
#L	Label subroutine
AV314	At every 1.8°
G=G+0.01	Increase gear ratio
GR G,G	Update gear ratio
V=2000/G	Calculate Speed
VSV	Update speed
JP#L, G<1.4	Repeat 400 times or 2 turns
EN	End program

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Motion Programming: Gearing Resolution

Specifying Values for Gearing:

When using gearing, the gear ratio is specified as a decimal value in the range of +/-127.9999 with a minimum value of .0001. The actual gear ratio is represented in the binary number system. The fractional value has a minimum resolution of 1 part in 65536 (2 16). This means that the actual gear ratio will have a minimum resolution of 1.52587890625e-5. All fractional values of gearing will be converted to the nearest factor of 1 part in 65536.

To convert decimal values to actual value used by controller:

Step 1. Determine the decimal value to be used for gearing. Gearing values which are specified as decimal will be truncated to 4 places - for example .12345 will be truncated to .1234. Gearing values which are specified as ratios will be calculated to 5 places - for example, 1/3 will be calculated as .33333

Step 2. Multiply the decimal value by 65536.

Step 3. Round the result to the nearest integer value.

Step 4. The actual gear ratio will be the resultant value divided by 65536.

Example: User inputs gear ratio of .4

The actual gear ratio would be:

.4*65536 =26214.4

The rounded value of the result is 26214

The actual value would be 26214/65536 = 0.3999938964844

 Arithmetic, algebraic and trigonometric - * / & () @ SIN @ COS @ FRAC @ INT @ RND @ SQR @ IN @ AN @ COM[X] @ ACOS[X] 	functions supported. Addition Subtraction Multiplication Division And Or Parenthesis Sine Absolute value Fraction portion Integer portion Rounds number Square root Digital input Analog input 1's compliment of X Arc sine of X
@ATAN[X]	Arc tangent of X
@OUT[X]	State of digital output X

ТР	Tell Position
TE	Tell Error
TV	Tell Velocity (Average velocity)
ТС	Tell error code (Reason for ?)
RP	Report Command Position (Useful for open loop step motors)
KP?	Returns value of parameter
V1=	Returns value of variable

- Special commands that cause program to branch on specified condition.
- Format: JP #DESTINATION,CONDITION
- Destination: Any valid label up to seven characters
- Conditions: < less than
 - > greater than
 - = equal to
 - <= less than or equal to
 - >= greater than or equal to
 - <> not equal
- Examples:

JP #STOP,ERROR>100	Jump to #STOP if ERROR is greater than 100
JS #B,V1+V2<0	Jump to subroutine #B if V1+V2 is less than zero

- Use Jump instruction, JP
- Use variable for loop counter
- Example:

Instruction n=0 #LOOP MG "LOOP COUNT=",n n=n+1 JP #LOOP,n<10 EN Interpretation Initialize loop counter Label Print Increment counter Loop 10 times End program

Motion control programs often include several functions. These functions are scheduled by delaying the execution of each function until a certain condition occurs. These conditions are called trippoints.

For example, the "after distance" (AD) trippoint delays the execution of a function until after the motor moves a certain distance. Similarly, the execution of a function may be delayed until a move has been completed (AM), an input signal changes states (AI), or by a pure time delay (WT).

• Special commands that halt program execution until a specified event occurs.

AD	After distance
AR	After relative distance
AP	After absolute position
AI	After input
AM	After motion complete
WT	After time elapsed (wait)
AT	After time relative to previous AT
AS	After speed
AV	After vector distances
WC	Wait for contour data

• Example:

Instruction	Interpretation
#A	Label
PR 1000	Position 1000
BGX	Begin
AM X	Wait for motion done
PR -1000	Position -1000
BGX	Begin
EN	End Program

For complex motion profile:

Execution time is specified by trippoints

AD n	After distance
AP n	At position
AMX	After move of X
WT 500	Wait 500 ms
AI 3	After Input 3

Combine trippoints with:

JP - Jump on Condition JP #A,_TEY = 0 JP #B,_TPX>100 JP #C,_TPX-_TPZ<2

ELECTROMATE Example:		
I1		
VELOCITY 4000 2000	-4000	TIME

Requirements

After start pulse, move forward a distance of 4000 counts at an initial speed of 4000 ct/s. After a distance of 2000, lower the speed to 2000. After the completion of the forward motion, wait for 100 ms and move backwards at a speed of 4000 ct/s.

Trippoints AI1 AD 2000 AMX WT 100

Instruction

#A PR 4000 SP 4000 AC 10000 DC 10000 Al1 BGX AD 2000 SP 2000 AMX WT 100

Interpretation

Label Distance Speed Acceleration Deceleration Wait for Input 1 Start X motion Wait until distance = 2000 New Speed Wait until move is complete Wait 100 ms

SP 4000 PR -4000 BGX AMX JP #A EN New speed Distance Start motion Wait for motion completion Start the cycle again End

It is often desirable to synchronize motion with input/output (I/O) events, which enables the controller to control a complete process. As such, the controller can read input signals, both digital and analog, and can generate digital or analog output signals. Inputs may be control signals from digital push-buttons or analog potentiometers. Outputs can be used to activate solenoids or valves or to turn on indicator lights.

Input signals can be read by the controller and their values can be stored in control variables. These may be used later in motion programs.

The reading of digital inputs may be performed with the instruction:

DIGITAL = @ IN[2]

which reads the digital input #2 and stores its content, 0 or 1, in the variable DIGITAL. Analog signals are similarly read with the instruction:

ANALOG = @AN[3]

which reads analog input #3.

Digital output signals are generated by setting or clearing a bit with the instructions: SB 3

CB 3

which sets and clears output bit #3.

The interface with the inputs and the generation of the output signals allows the controller to perform complete process control without a host computer intervention. This is illustrated by the following example.

Consider the simple case where the motion of X must be delayed until the start pulse is given (applied to input 1). When the motion is completed, an output signal (output 1) must be given for one second.

Instruction

PR 7000 SP 5000 AI 1 BGX AMX SB 1 WT 1000 CB 1 EN

Interpretation

Distance Speed Wait for start signal Start motion Wait for completion Set output 1 high Wait 1 second Clear output 1 End of program

Digital Inputs

Sensors, Switches Start/Stop Signals

To Read Inputs

V1 = @IN [1] Al2 JP#B,@IN[3]=1 II4 Define variable Wait for input #2 to go high Conditional jump Input interrupt

<u>Outputs</u>

To activate devices Status reporting

To Change Outputs

SB1	Set Output Bit 1
CB2	Clear Output Bit 2
OB3,I1&I2	Programmable output

Analog Inputs can be Unipolar/Bipolar ±10v Type 12 Bit resolution (16 Bit optional)

To read tension, force, temperature, potentiometers, etc.

TENSION=@AN[2]

- 8 or more isolated digital inputs (n=1 through 8), expandable with expansion I/O modules
- +5 Volt to +24 Volt inputs permissible
- Available commands:

Al n	Wait for input n high
Al -n	Wait for input n low
JP #A,@IN[n]=1	Jump if input n high
ll n	Interrupt if input n occurs

• After Input Example:

#JOG	Jog program
JG1000	Jog speed
AI 1	After input 1 high
BG X	Begin motion
AI -1	After Input 1 low
ST X	Stop motion
MG@IN[1]	Display state of digital input #1

NOTE:

Al halts program sequencer until designated input condition occurs.

Motion Programming: Input Interrupt Functions/Subroutines

The controller provides an input interrupt function which causes the program to automatically execute the instructions following the #ININT label. This function is enabled using the II m,n,o command. The m specifies the beginning input and n specifies the final input in the range. The parameter o is an interrupt mask. If m and n are unused, o contains a number with the mask. A 1 designates that input to be enabled for an interrupt, where 2^0 is bit 1, 2^1 is bit 2 and so on. For example, II,,5 enables inputs 1 and 3 ($2^0+2^2=5$).

A low input on any of the specified inputs will cause automatic execution of the #ININT subroutine. The Return from Interrupt (RI) command is used to return from this subroutine to the place in the program where the interrupt had occurred. If it is desired to return to somewhere else in the program where the interrupt had occurred. If it is desired to return to somewhere else in the program after the execution of the #ININT subroutine, The Zero Stack (ZS) command is used followed by unconditional jump statements.

IMPORTANT: Use the RI instruction (not EN) to return from the #ININT subroutine.

Instruction

#A II 1 JG 30000,-20000 BG XY #B TP XY WT 1000 JP #B EN **#ININT** MG"Interrupt occurred" ST XY #LOOP JP #LOOP,@IN[1]=0 JG 15000,10000 WT 300 BG XY **RI 1**

Interpretation

Label #a Enable input 1 for interrupt function Set speeds on X and Y axes Begin motion on X and Y axes Label #B Report X and Y axes positions Wait 1000 milliseconds Jump to #B End of program Interrupt subroutine **Display message** Stops motion on X and Y axes Loop until Interrupt cleared Conditional jump Specify new speeds Wait 300 milliseconds Begin motion on X and Y axes Return from Interrupt subroutine

Application Example: Starting Motion From A Switch Input

Motor X must turn at 4000 count/sec when the user flips a panel switch to on. When panel switch is turned to off position, motor X must stop turning.

Solution: Connect panel switch to input 1 of controller. High on input 1 means switch is in on position.

Instruction

Interpretation

#S;JG 4000 AI 1;BGX AI -1;STX AMX;JP #S EN; Set speed Begin after input 1 goes high Stop after input 1 goes low After motion, repeat

Motion Programming: Using IF, ELSE and ENDIF Constructs

Instruction #TEST	<u>Interpretation</u> Begin Main Program "TEST"
II,,3	Enable input interrupts on input 1 and input 2
MG "WAITING FOR INPUT 1, INPUT 2" #LOOP	Output message Label to be used for
JP#LOOP EN #ININT	endless loop Endless loop End of main program Input Interrupt Subroutine
IF (@IN[1]=0)	IF conditional statement
IF (@IN[2]=0)	based on input 1 2 nd IF conditional statement executed if 1 st IF conditional true
MG "INPUT 1 AND INPUT 2 ARE ACTIVE"	Message to be executed if 2 nd If
ELSE	conditional is true ELSE command for 2 nd IF conditional
MG"ONLY INPUT 2 IS ACTIVE"	statement Message to be executed if 2 nd IF conditional
ENDIF	statement End of 1 st conditional
#WAIT	statement Label to be used for
JP#WAIT,(@IN[1]=0) (@IN[2]=0)	a loop Loop until both input 1 and input 2
RIO	are not active End input Interrupt Routine without restoring trippoints

- 8 or more digital outputs (n=1 through 8), expandable with expansion I/O modules
- Up to +28 Volt 500 mA isolated outputs available
- Defined by:
 - SB n CB n OP n OB n, expression

Set Bit n Clear Bit n Define all 8 bits Make output n equal to value of expression (0 or1)

• Example:

Instruction	Interpretation
#POS PR 1000 BG X AM X SB1 OB 2,I1&I3	Label Position Begin motion After motion Set Bit 1 Output 2 is equal to Input 1 and Input 3
EN	End program

I/O Analog Inputs

- 7 Analog inputs (n=1 through 7), expandable with I/O expansion modules
- ± 10 Volt resolved over 12 bits (16 bit resolution optional)
- Available commands:

V1=@AN[n]

Read analog input (in volts)

• Analog Input Example:

Instruction

#JOYSTK JG0 #LOOP V1=@AN[1] JG V1*1000 JP #LOOP EN

Interpretation

Joystick Jog mode Loop Read analog input Change jog speed Repeat End program

I/O Input of Data

- IN command used to prompt operator to enter data
- Example:

IN "Enter Length",L1 Entered value assigned to L1. Sends prompt.

IN "Enter Name",N{s} Entered characters assigned to string variable,N. Sends prompt.

• Input Prompt Example:

Instruction

#ROTATE IN "ENTER # OF REVS",R IN "ENTER SPEED (RPM)",S PR R*4000 SP S*4000/60 BG EN

Interpretation

Program label Prompt for revs Prompt for speed Position command Speed command Begin motion End program

- MG command used to send a message
- Examples:

MG "HELLO THERE"	Displays message
MG "POSITION =",_TPX	Displays Message
and prints actual position	
MG "Variable =",V1{F6.1}	Displays message

and value of variable V1 with format 6 integers and one decimal

Control Variables

Many motion applications include variable parameters. For example, a cut-to-length application often requires that the cut length be variable. The motion process is the same, but the length is changing. To accommodate these applications, advanced controllers provide symbolic variables. A program can be written in which certain parameters, such as position or speed, are defined as variables. The variables can later be assigned by the operator or determined by program calculations. Variables allow the motion controller to perform certain mathematical functions and to make decisions accordingly. This capability increases the performance of the motion controller and allows it to perform some (background PLC) supervisory functions in addition to the simple motion control.

A variable can be defined as a constant or can be equated to a controller parameter. For example, the instruction:

sets the value of the variable V to 3. The instruction:

$$P = TPX$$

reads the position of the X motor and equates the variable P to that value. Variables can be defined in a variety of ways. For example, the instruction:

YERROR = _TEY

equates the variable YERROR to the position error of the Y motor.

Once the variable is defined, it can be used in mathematical operations. The controller can perform mathematical functions which typically include algebraic, trigonometric, and logical operations.

When the operation is completed, the controller can use the computation result to adjust the system parameters. For example, the results can be used to change the speed, set the distance, or change the filter gain. The use of variables is best illustrated by the following example.

The following program shows an example where the X motor follows the position of the Y motor. This is done by driving the X motor at a speed proportional to the position difference.

Instruction

#FOLLOW DP 0,0 JG 0 BGX #LOOP VE=_TPY-_TPX VEL=VE*10 JG VEL JP #LOOP EN

Interpretation

Program name Define X,Y position as zero Set initial X speed to zero Start X Label Find the position difference Compute the speed Modify the speed Repeat the process End of program

Control variables allow motion controllers to perform mathematical functions and change the motion parameters according to the computation results.

Examples:

V1 = 3.7	Constant
VP =_TPX	Position of X
VE =_TEY	Position error of Y
INPUT=@IN[5]	Digital Input 5
ANALOG=@AN[2]	Analog Input 2

Manipulation

VA = VB*3+VC RESULT = @SIN[V6]

<u>Assignment</u>

PR V4 JG VEL

<u>Variables</u>

Allows writing a motion program in generic form and specifying parameters in a given case.

PROGRAM #MOVE PR DIST BGX EN

To run: DIST = 3000 XQ# MOVE

Allows mathematical functions and correction

ERROR = 1000 - _DEX PR ERROR * 2 BGX

Variables can also serve as "mailboxes" for communication between a host computer and the controller

<u>HOST</u>
←V = 3000
←E =
→23

Motion Programming: Control Variables and Offset

Objective: Illustrate the use of variables in iterative loops and use of multiple instructions on one line.

Instruction	Interpretation
#A DP0 V1=8; V2=0	Set initial values Define home position Initializing variables to be
#B OF V1 WT 200 V2=_TP JP#C,@ABS[V2]<2 MG V2 V1=V1-1 JP #B #C;EN	used by program Program label #B Set offset value Wait 200 msec Set variable V2 to the current position Exit if error small Report value of V2 Decrease Offset Return to top of program End

This program starts with a large offset and gradually decreases its value, resulting in decreasing error.

- For inputting or changing parameters in a program
- Up to 254 user-defined variables
- Each variable defined by a name, up to eight characters
- Range: ±2,147,483,647.9999 for numeric variables Six characters for string variables
- Examples:

POSX=500.98	Assigns value 500.98 to the variable, POSX
PR POSX*2	Multiply variable, POSX, by 2 and assign to X axis position command
VAR="CAT"	Assign the string, CAT, to the variable named VAR

- Most controllers can monitor certain conditions in the background (i.e. secondary PLC functions)
- Automatic monitoring is enabled by using the following special labels:
 - #LIMSWILimit switch active#ININTDesignated input goes low#POSERRPosition error exceeds ER limit#CMDERRBad command given
- An applications program must be running for automatic monitoring.

Galil controllers have some special labels, which are used to define input interrupt subroutines, limit switch subroutines, error handling subroutines, and command error subroutines.

<u>Instruction</u>	Interpretation
#AUTO	Label for autoprogram start
#ININT	Label for Input Interrupt subroutine
#LIMSWI	Label for Limit Switch subroutine
#POSERR	Label for excess Position
	Error subroutine
#MCTIME	Label for timeout on Motion
	Complete turn point
#CMDERR	Label for incorrect command
	subroutine
#COMINT	Label for communication
	interrupt subroutine

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Motion Programming: Displaying Binary Numbers

The following program displays an 8 bit number in binary format. In this example, the first 8 general inputs are displayed as binary.

#TELL M=0 N=_TI0 O=0 P=0 Q=128 #LOOP O=(N&Q) P=(10*P)+@INT[(O/Q)] Q=Q/2 JP#LOOP,Q>=1 MGP {F8.0} JP#TELL EN Galil controllers provide forward and reverse limit switches which inhibit motion in the respective direction. There is also a special label for automatic execution of a limit switch subroutine. The #LIMSWI label specifies the start of the limit switch subroutine. This label causes the statements following to be automatically executed if any limit switch is activated and that axis motor is moving in that direction. The RE command ends the subroutine.

The state of the forward and reverse limit switches may also be tested during the jump-oncondition statement. The _LR condition specifies the reverse limit and _LF specifies the forward limit. X, Y, Z, or W following LR or LF specifies the axis. The CN command can be used to configure the polarity of the limit switches.

Example – using Limit Switch subroutine

Instruction

#A;JP#A;EN #LIMSWI V1=_LFX V2=_LRX JP#LF,V1=0 JP#LR,V2=0 JP#END #LF

Interpretation

Dummy Program Limit Switch Utility Check if forward limit Check if reverse limit Jump to #LF if forward Jump to #LR if reverse Jump to end #LF

MG "FORWARD LIMIT" STX;AMX PR-1000;BGX;AMX JP#END #LR MG "REVERSE LIMIT" STX;AMX PR1000;BGX;AMX #END RE

Send message Stop motion Move in reverse End #LR Send message Stop motion Move forward End Return to main program

NOTE: An applications program must be executing for #LIMSWI to function.

Application Example: Bouncing off of a limit switch

When using a pulse type switch with the HM command, the motor will always begin motion in the same direction, irrespective of the position of the motor. One method for using a pulse type or momentary home switch is to implement a routine to "bounce off" of the limit switches. In this method, the motor is commanded to HOME. If the motor is on the 'wrong' side of the home switch, the motor will eventually hit the limit switch. If this happens, the controller will move the motor to the other side of the home switch and re-issue the HOME command.

Figure 1. This figures shows the method of bouncing off of the limit switch.

The Program:

#BOUNCE HSTATE = 0

XFDIST=<value to be inserted> XRDIST=<value to be inserted> #HOMEX HMX;BGX;HSTATE=1 ;Variable to identify status of homing ;See Note below. ;See Note below. ;Home X routine ;Begin motion, set status variable

AMX:HSTATE=0 :After motion complete. clear status variable EN :End of homing routine **#LIMSWI** ;Limit switch subroutine :Bounce off forward JP#FWDX,(_LFX=0)&(HSTATE=1) limit switch if homing JP#REVX,(LRX=0)&(HSTATE=1) :Bounce off reverse limit switch if homing MG "HIT LIMIT SWITCH" ;Otherwise, return a message AB0 : and abort motion **#FWDX** :Forward Bounce Routine AMX ;Wait for motion to stop after hitting limit :Move off of limit to other PRX=XFDIST side of home BGX :Begin motion AMX ;Wait for motion to complete HMX ;Re-home X axis ;Begin motion on X BGX axis RE1 :Return from routine & re-enable trippoint #REVX :Reverse Bounce Routine AMX ;Wait for motion to stop after hitting limit PRX=XRDIST :Move off of limit to other side of home BGX :Begin motion :Wait for motion to complete AMX HMX :Re-home X axis BGX ;Begin motion on X axis RE1 :Return from routine & re-enable trippoint

Notes:

This program includes two routines for bouncing off of both limit switches. Once the system is configured the homing routine will only require one 'bounce' routine (#FWDX or #REVX). This program can be reduced once the required routine has been identified. The values for XFDIST and XRDIST must be opposite polarity

For example, XFDIST might be - 3000 CTS, and XRDIST might be 10000 CTS.

Application Example: Making Jumps Out of Automatic Subroutines

The automatic subroutines, LIMSWI, POSERR and ININT must be properly terminated to be reenabled. LIMSWI and POSERR must be ended with the command RE or a ZA command must be given. The subroutine #ININT must be ended with the command RI. RE and RI are used to end the subroutine just as EN is used to end other subroutines.

To make and unconditional jump from #ININT, there are two methods for re-enabling the interrupt capability; 1)Re-issue the command II. 2) Use a 'null' routine. This routine allows for the execution of the RI command before the unconditional jump.

#ININT Example:

#TEST II1	Test routine Set Input Interrupt on input 2
#LOOP1	Simple loop function
MG"WAITING FOR	Message
INTERRUPT"	-
WT1000	Wait 1000msec
JP#LOOP1	Jump to subroutine
EN	Endprogram
#DONE	Routine to execute when
	interrupt cleared
MG"DONE WITH INTERRUPT"	Message
JP#LOOP1	Jump to subroutine
EN	End
#ININT	Input Interrupt routine
MG"INTERRUPT ON INPUT"	Display message
#WAIT	Wait for input to be
	cleared
JP#WAIT,@IN[1]=0	Conditional jump
	statement
JS#RESETI	Call'null' subroutine
ZS	Zero stack
JP#DONE	Jump to #DONE routine
EN	End of ININT subroutine
#RESETI	Null routine
RI1	ININT ending
	command (re-enables
	#ININT)

Application Example: Stop at a Mechanical Limit

- Drive the motor at initial speed of 10000 ct/s, with acceleration and deceleration set at 100000 ct/s²
- Expect a mechanical stop after 20,000 counts.
- Slow down to a speed of 2000 ct/s before the mechanical stop.
- Start deceleration at 20000 480 = 19,520.
- Detect the mechanical stop by observing the following error.
- When stop is detected apply a constant force corresponding to 2 volts motor command. (Amplifier is in current mode).
- Stop the motion of motor.

<u>Program</u>	Interpretation
#STOP AC 100000 DC 100000 JG 10000 BGX AD 19520 JG 2000 #I	Label Acceleration Deceleration Speed Start motion Wait for point Deceleration
JP#L,_TEX<100 TL 2 STX EN	Check for error Limit output Stop Motion End

Task: When input is triggered, decelerate vector motion to a stop, when input is de-activated, resume motion

- Create #ININT subroutine in Program
- Use General Use Input to generate interrupt
- Set Vector Speed, VS, to zero
- Pause while interrupt remains active

Instruction

Interpretation

II1 #LOOP VP -4000,0 CR 1500,270,-180 VP 0,3000 CR 1500,90,-180 VE BGS AMS JP#LOOP EN #ININT N=_VS VS 0 #PAUSE JP#PAUSE, @IN[1]=0 VSN	Set X axis only for vector motion Label program Define vector move Define arc segment Define vector move Define arc segment Vector end Begin sequence After move sequence Repeat motion when done End program Input Interrupt routine Save Current Vector Speed Set Speed to 0 Wait while input is active Conditional jump Resume
	<i>,</i> ,

Application Example: Motion Complete Timeout

This simple program will issue the message "X fell short" if the X axis does not reach the commanded position within 1 second of the end of the profiled move.

Instruction

#BEGIN TW 1000 PA 10000 BGX MCX EN #MCTIME MG "X fell short" EN

Interpretation

Begin main program Set the time out to 1000ms Position Absolute command Begin motion Motion Complete trip point End main program Motion Complete Subroutine Send out a message End subroutine without restoring trippoint

Application Example: Correcting Wrong Operator Input Data

Instruction

ZS1

ZS0

EN1

JP #BEGIN

#DONE

#BEGIN IN "ENTER SPEED", SPEED JG SPEED;BGX; JP #BEGIN EN #CMDERR JP#DONE,_ED<>2 JP#DONE,_ED<>2 JP#DONE,_TC<>6 MG "SPEED TOO HIGH" MG "TRY AGAIN"

Interpretation

- Begin main program Prompt for speed Begin motion Repeat End main program Command error utility Check if error on line 2 Check if out of range Send message Send message
- Adjust stack Return to main program End program if other error Zero stack End program and restore trippoint

The above program prompts the operator to enter a jog speed. If the operator enters a number out of range (greater than 8 million), the #CMDERR routine will be executed prompting the operator to enter a new number.

DMC-2000	

Application Example: Using the Term-H/P Pendant

Here is an example that uses the hand held terminal to monitor when a key is being held down. In this example, the function keys F1 - F4 are being used to increase and decrease the X and Y jog speed. As the key is held down, the jog speed (s) is continuously changed until the key is released. The F5 key is used to stop the motion on both the X and Y axes. The terminal has to be set up for fast repeat function which causes the terminal to send out characters every 50msec. When holding down a key, the first character is not repeated until after approximately 2 seconds, so there is a special case for when the key is first held down. When the key is held down, the communication interrupt jumps to the Increase, Decrease, or STOP routine. In the each routine, the controller clears the communication buffer (P2CH), sets a new speed if F1, F2, F3 or F4 was depressed and waits for 50msec. If the communication interrupt does not take control within the 50msec, then the key must have been released and the next command causes the system to stop (ST command).

The terminal was configured with the Key Click Disabled to avoid the sound generated when holding the key down.

#F4TEST FIRST=1 CC 9600,0,0,0 MG {P2},{^27},"V" SPEEDX=10000 SPEEDY=10000 JG SPEEDX, SPEEDY BGXY CI2 #LOOP WT 1000 MG "PRESS F4 TO HOLD, THEN STOP" JP#LOOP EN **#COMINT** ZS JP#STOP1,(P2CH=F4) & (FIRST=1) JP#STOP.(P2CH=F4)

JP#LOOP EN #STOP1 FIRST=0 CI -1 CI 2 WT2000 ST EN #STOP CI -1 CI 2 WT100 ST EN

- Requirements: Drive a motor toward a mechanical stop and apply a constant force. The distance to the stop is between 8000 and 8500 counts.
- Apply a force of 20 lbs. This equals, for example, 1.6 Amp and 0.8 Volts of amplifier command.

Pick and Place

An automated IC insertion machine is used to pick up a part at an X,Y location and move it to the proper location on the circuit board. A PC-based controller needs to move an XY table along a straight line to the specified locations. The pick-up head is controlled by the Z axis which raises the head during movement and lowers the head during placement.

Requirements

System resolution: 0.1 micron Accuracy: 1micron Speed: 40,000 counts/sec PC-based

Operation

The motion requirement is to pick up a part at coordinate X1, Y1 and to place it at coordinate X2, Y2. Once the coordinates are specified, the controller drives the XY table on a straight line to the pick-up location. Once there, the pick-up head, which is controlled by the Z axis, is lowered and the holding solenoid is activated. Next, the pick-up head is raised, the table is driven to the new location, and the pick-up head is lowered. Finally, the solenoid is released and the pick-up head is raised again.

The motion program includes two parts. The first, #INITIAL, is performed once to initialize the system. Consecutive moves are executed with the program #PICK.

Specifically, the controller computes the differences, DX, DY, between the starting position, X0, Y0, and the pick-up position, X1, Y1. It then commands the XY axes to move on a straight line with the VP DX, XY instruction. Upon completion, the Z axis is lowered and then the output bit 1, which activates the solenoid, is energized. The process is repeated to move the motor to the new coordinate. The instructions are given in the following program.

Instruction	Interpretation
#INITIAL HMXY BGXY AMXY X0=0 Y0=0 #PICK DX=X1-X0 DY=Y1-Y0 VP DX,DY	Label Drive X and Y to home Start motion Wait until completion Define starting position as zero Define starting position as zero Label Find X difference Find Y difference Command motion

VS 40000 VA 200000 VD 200000 VE BGS AMS PR,,-50000 SP,,20000 AC,,80000 DC.,80000 BGZ AMZ SB 1 WT 20 PR,,50000 BGZ DX=X2-X1 DY=Y2-Y1 VP DX, DY VE AMZ BGS AMS PR,,-50000 BGZ AMZ CB 1 WT 20 PR.,50000 BGZ X0=X2Y0=Y2 ΕN

Vector speed Vector acceleration Vector deceleration End of move Start XY motion Wait for motion completion Move head down (Z-axis) Z speed Z acceleration Z deceleration Start Z motion Wait for Z motion completion Set output bit -- solenoid Wait 20 ms Raise head Start Z motion Compute the X difference Compute the Y difference Motion command End of move Wait for Z completion Start XY motion Wait for XY completion Lower head Start head motion Wait for Z motion completion Clear output bit -- release solenoid Wait 20 ms Raise head Start Z motion Update starting X position Update starting Y position End program

Application Example: Press Fitting Machine

A linear slide moves a machined component under an automated tool that inserts a bearing into the part. The objective is to ensure the insertion force falls within a specified range. The actual force required will be recorded for each insertion with an analog strain gage. If the force required falls outside the range, the assembly must be rejected. A PC will be used as the operator station using Visual Basic for the operator interface.

Requirements

Force range: 1.00-25.50 lbs (programmable limits) Accuracy: ±0.0002 inch Resolution of motion: 40000 counts per inch (zero backlash ball nut on ball screw)

Solution

An advanced level controller is used to control the motion of the system. One axis is used to position the linear slide under the tool holding the bearing while the second axis controls the vertical position of the insertion press. Force measurements are made from a strain gage that outputs an analog voltage. This voltage will be read by one of the analog inputs of the controller and used to monitor the insertion pressure. If the force exceeds the upper limit at any time during the insertion, the motion will be aborted and the parts rejected. Likewise, if the insertion depth is

reached and the force remains below the minimum value the parts must be rejected.

Visual Basic is used to produce a user interface that displays the motion of the system and system status, as well as position and insertion pressure values. This program communicates to the controller through the VBX custom control produced by Galil Motion Control. A description of portions of the Visual Basic code follows:

When a form is first loaded, the code within the FORM_LOAD procedure is automatically executed. In this case communication is established and then the commands to be sent to the card during each polling interval are defined. Finally, the polling interval is set and the polling is enabled.

Sub Form_Load () 'sets up the communication dmcshell1.dmcaddress = "1000" dmcshell1.dmcconnect = True 'allows polling of the card for the position and pressure values dmcshell1.dmcinterrogate(0) = "TPX" dmcshell1.dmcinterrogate(1) = "TPY" dmcshell1.dmcinterrogate(2) = "MG @AN[1]" 'sets the time between polls and begins polling dmcshell1.dmcpollinterval = 200

dmcshell1.pollcontroller = True End sub

Three status variables are polled every 200 milliseconds: X position, Y position, and the value of analog input #1. Each response is placed into the correct panel by the following code.

```
Sub DMCShell1_DMCInterrogate (index As Integer,
response As String)
'routine is run each time a poll is completed
If index = 0 Then
press_pos_panel.caption = Val(response)
End if
If index = 1 Then
slide_pos_panel.caption = Val(response)
End if
If index = 2 Then
pressure_panel.caption = Val(response)
End if
End sub
```

If the button labeled "START" is pressed commands must be sent to download a DMC program and then execute it within the control card:

Sub start_button_Click () 'routine downloads the DMC file "press.dmc" to controller then executes it dmcshell1.filename = "press.dmc" dmcshell1.dmcfileoperation = 1 dmcshell1.dmccommand = "XQ" End sub

Application Example: Autostart Cut to Length

Cut to Length

A plastic strip is pulled from a feedroll and must be cut at a specified length. Also, the number of pieces must be programmable. The operation is done by advancing the web to a specified distance and activating the cutter.

The operation must be stand-alone. The operator has a hand-held terminal for selection the length and number of cuts.

Requirements

Range of cut: 6" to 36" System resolution: 0.0002" or 5000 counts per inch Slew speed: 12 inches/sec Acceleration/deceleration: 200 in/s² Cutting time interval: 200 ms Required accuracy: ± 0.001 " Stand-alone

Operation

An advanced level stand-alone controller prompts the operator to enter the length in inches, L, and the number of cuts, N.

To start the operation, a switch connected to input 1 is turned on. The cutting cycle includes the motion interval followed by the cutting interval. The actual cutting tool is controlled by toggling output 2 on the controller.

The operation ends when the number of cuts is completed or when input 1 is turned off, whichever occurs first.

As the operation is stand-alone with a single axis of motion, the DMC-2010 controller and Term-H-P2 hand-held pendant were selected. The control program below is downloaded to the controller via the RS232 or RS422 port and stored in non-volatile memory permitting standalone operation.

Motion Profile for Cut to Length Application:

Instruction

#AUTO CC9600,0,0,1 DPO.0 KI1;KD64;KP10 IN {P2} "ENTER CUT LENGTH IN INCHES", L Prompt for operator IN {P2} "ENTER NUMBER OF CUTS",N #WAIT JP #WAIT, @IN[1]=0 C=0 #LOOP PR L*5000 SP 60000 AC 1000000 BGX AMX SB2 WT 200 CB2 C=C+1JP #E,C=N

Interpretation

Label for autostart Configure for Term-H input Define home position Set tuning parameters Prompt for operator Label for wait Wait until input 1 is high Initialize cut counter Label for loop Convert inches to counts Speed in counts/sec Acceleration in counts/sec² Begin motion Wait for motion complete Activate cutter, set output 2 high Wait 200 msec Deactivate cutter, clear output 2 Increment cut counter Exit if done

Repeat if input 1 is still high Exit End program

Application Example: Position Follower I

Objective: The motor must follow an analog signal. When the analog signal varies by 10V, motor must move 10000 counts.

Approach 1 - Point-to-Point

Method: Read the analog input and command X to move to that point.

Instruction	Interpretation
#POINTS	Label
SP 7000	Speed
AC 80000	Acceleration
DC 80000	Deceleration
#LOOP	Label branch program
VP=@AN[1]*1000	Read analog input, compute
	position
PA VP	Command position
BGX	Start motion
AMX	After completion
JP #LOOP	Repeat
EN	End

Objective: The motor X follows the motor Y at a ratio of one-to-one.

Approach

Method: Force the follower to run at a speed that is proportional to the following error.

Instruction #FOLLOW
DP_TPY
AC 100000
DC 100000
JGO
BGX
#LOOP
E=_TPYTPX
JG E*20
JP #LOOP
EN

Interpretation Label

Set initial positions Acceleration Deceleration Set in jog mode Start motion

Following error Update speed Repeat End

Method: Modify the program to eliminate steady state following errors.

Instruction	Interpretation
#FOLLOW2 DP_TPY P=20 I=2 VI=0 AC 100000 DC 100000 JG0 BGX #LOOP E=_TPYTPX	Label Set initial conditions Proportional constant Integral constant Initial value of integrator Acceleration Deceleration Set X in jog mode Start motion Define subroutine Following error
VI=E*I+VI	Integral term
S=E*P+VI JGS	Total speed
JP#LOOP	Update speed Repeat
EN	End

Method: Read the analog input, compute the commanded position and the position error. Command the motor to run at a speed in proportion to the position error.

Instruction

#CONT AC 80000 DC 80000 JG 0 BGX #LOOP VP=@AN[1]*1000 VE=VP-_TPX VEL=VE*20 JG VEL JP #LOOP EN

Interpretation

Label Acceleration rate Deceleration rate Start jog mode Start motion Define subroutine Compute desired position Find position error Compute velocity Change velocity Change velocity End

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Application Example: Generating a Helical Motion Profile

Background:

It is possible to create a helical motion profile using any 3 (or more) axis controller. This is accomplished by commanding a coordinated circular move between 2 axes and gearing a third axis to the vector motion of the coordinated axes.

Program Example:

This example shows how to implement helical motion:

#HELIX **REM VARIABLES USED: REM PITCH** ENCODER CTS TRAVERSED/CIRCLE REM SPEED VECTOR SPEED OF CIRCLE **REM RATIO GEAR RATIO** SWEPT ANGLE OF CIRCLE **REM ANGLE REM LOOPCNT USED IF** ANGLE>32000 FOR LARGE TRAVERSES **REM LASTLOOP** ANGLE FOR LAST LOOP **#SETUP** PITCH= 360 RADIUS = 5000SPEED= 50000 VS SPEED RATIO= PITCH/(2*3.14159*RADIUS) Specify Vector Speed as Master for Z axis GA,,S **GR.**,RATIO IN "ENTER THE TRAVERSE DISTANCE (ENCODER CTS):", DIST ANGLE=360 * DIST/PITCH LOOPCNT=@INT[ANGLE/32000] LASTLOOP= 0JP#MOVE,ANGLE<32000 LASTLOOP=ANGLE - (LOOPCNT*32000) ANGLE=32000 #MOVE CNT=0 99


```
#LOOP
VMXY
CR RADIUS,0,ANGLE
VE
BGS
AMS
CNT=CNT+1
JP#LOOP,CNT<LOOPCNT
ANGLE=LASTLOOP
JP#LOOP,(CNT<(LOOPCNT+1)) & (LASTLOOP > 0)
EN
```

In the above example, a circle is created using the X and Y axes of the controller. The Z axis is geared to the coordinated motion of the X and Y axes to create the helix. The gear RATIO is determined by the PITCH of the helix and the circumference of the circle.

One unavoidable limitation of the circle (CR) command is that the maximum swept ANGLE of a circle must be less than 32,000 degrees. As a result, the program executes multiple passes of #LOOP for any calculated angle greater than 32,000 degrees.

Method to Increase Accuracy of Helical Motion

For the highest possible accuracy, it is recommended that the gear ratio be calculated using the formula **ratio=pitch/(2*pi*radius)** on a standard calculator. The resolution of the controller is limited to approximately four decimal places so the ratio you enter should be the gear ratio you calculate truncated to four decimal places. You will now need to calculate the amount of error you accumulate during the helical motion due to rounding so that the #CORRECT routine can compensate for it.

First, you need to determine the value of the gear ratio as internally represented by the controller. The controller stores decimal values as fractions with a resolution of 1/65,536. To determine the internal value of the gear ratio, multiply the entered gear ratio by 65,536, truncate any fractional part of the result, and divide by 65,536. You can also determine this directly by typing in a gear ratio (ex. GR ,,.0114) and then multiplying the _GRn operand by 10,000 and displaying the result (ex. MG _GRZ*10000). This result divided by 10,000 should give you the same result as the calculation method.

Next, determine the amount of error that results from the rounding of the gear ratio. To do this, you must calculate the distance which the geared axis will travel and compare it to the distance you specified using DIST. The actual distance traveled is equal to the internal ratio divided by the exact value of the ratio you calculated times DIST. Round this number to the nearest integer. Subtract this value from DIST and enter as DELTA. There is one more parameter to calculate: INTERVAL. INTERVAL is the number of counts it takes for the geared axis to

accumulate one count of error. It is equal to the actual distance calculated above divided by DELTA. This value should be rounded down to the nearest integer.

Example:

The following example shows the calculations performed for the sample program above:

PITCH=360 RADIUS=5000 DIST=3999

ANGLE = EXACT RATIO =

RATIO = INTERNAL RATIO: 360*DIST/PITCH = 3999 PITCH/(2*PI*RADIUS) = 0.011459155 \ Calculated value 0.0114 \Value entered in program RATIO*65536 = 747.1104 \ Truncate decimal part and divide by 65536

747/65536 = 0.011398315

ACTUAL DISTANCE = INTERNAL RATIO/EXACT RATIO * DIST = 0.011398315/0.011459155 * 3999 = 3977.768 \round to nearest integer = 3978 DELTA = DIST-ACTUAL DISTANCE = 3999-3978 = 21 INTERVAL = ACTUAL DISTANCE/DELTA = 3978/21 = 189.4286 \ round down = 189

Example:

Perform a helical move with 20 turns with 1000 count radius, and a vertical length of 2000 counts.

Note that the total length in the XY plane is $20 \cdot 2\pi R=125,664$ The Z move is 2000 Therefore, the gear ratio is 0.0159

<u>Instruction</u>

Interpretation

VM XY CR 1000,0,7200 VE VS 5000 VA 10000 VD 10000 GAS GR,,0.0159 BGS EN Specify vector plane Define arc segment Vector End Vector speed Vector acceleration Vector deceleration Define vector motion as master Define 2 axis gear ratio Begin sequence End program

- Allows 1 to 8 axes per controller to be electronically geared to master encoder
- Eliminates mechanical gears
- User specifies:

GAn where n=X	for main encoder as master n=CX for command position as master n=S for vector motion as master
GR	Gear Ratio(±127.9999 range)

- Can change Gear Ratio during motion
- Example:

Instruction	Interpretation
GA Y	Y is master
GR 5,,-2.5	X ratio = 5, Z ratio = -2.5
PR,1000	Master position
SP,100000	Master speed
AC,250000	Master acceleration
DC,250000	Master deceleration
BG Y	Begin Motion

103 ELECTROMATE INDUSTRIAL SALES LTD. TOLL FREE PHONE (877) SERVO98 • TOLL FREE FAX (877) SERVO99 SALES@ELECTROMATE.COM • WWW.ELECTROMATE.COM

Application Example: Rotating Knife

A rotating knife system, illustrated below, is used to cut webs of paper or plastics at a given length. The web moves independently and the knife is synchronized so that the blade moves at the same linear speed as the web during the cutting interval. When the cutting is completed, the knife is advanced or retarded in a manner that produces a required cut length.

Rotating Knife System

The method illustrated here applies with slight modifications to applications of printing on moving webs or applying labels.

Requirements

Web speed: Zero to 120 inches per second, independent motion (master) Knife circumference: (π x diameter) = 20 inch Required cut length: 16 to 40 inches, programmable Resolution of web encoder: 1000 counts/inch Resolution of knife: 10000 counts/rev or 500 counts/inch Required accuracy: 0.005 inch noncumulative error

The knife is driven by a motor and an external amplifier. An encoder senses the position of the moving web.

Operation

The knife motion is synchronized with the web motion by electronic gearing. This, by itself, produces a cut length of exactly 20 inches. To achieve other cut lengths, the knife must be advanced or retracted an additional distance. This is achieved by generating some secondary motion on top of the electronic gearing. For example, to achieve a cut length of 16 inches, the knife is advanced a distance of 4 inches with a programmable speed and acceleration, on top of the geared motion.

The cutting cycle is performed by the following program. It assumes that the operation starts with the web at rest and the knife at the "up" position. Further, it is assumed that the cutting interval is $\pm 45^{\circ}$ wide.

The correction motion is generated after the completion of the cutting cycle. The speed of the correction, S, equals 90% of the web speed in order to ensure that even under negative corrections, the knife never moves backward. The acceleration rate of the correction, A, is proportional to the square of the web speed to create an effect of cam-like motion.

In the given system, the web encoder is connected to the Y axis and the knife is controlled by the X axis.

The process continues as long as the input I1 is high. When I1 is turned off, the knife gearing is terminated and the knife is decelerated to a gradual stop at the up position.

#KNIFEL=23Required cut length in inchesDP 0Starting knife position = 0
DP 0 Starting knife position – 0
GAY Set Y as master
GR 0.5 Electronic gearing ratio
POINT = 6250 Point to start correction
C = (20-L)*500 Correction move in counts
MF POINT Wait for correction point
V = _TVY/200 Read web speed
PRC Correction distance
SP V*90 Correction speed
AC V*V*2.5 Correction acceleration
DC V*V*2.5 Correction deceleration
BGX Start correction
AMX Wait for completion of correction
POINT = POINT + 10000 Update next correction point
JP #LOOP, @IN[1]=1 Repeat if I1 = 1
PR 3750 Stopping distance
AC 60000000 Acceleration to stop mode
DC 600000 Stopping deceleration
SP _TVY/2 Transition speed
BGX Start transition
GR0 Stop gearing
EN End program

Application Example: Rotating Knife 2

- Knife circumference = 20"
- Desired cut length = 16"
- Knife encoder resolution = 4000 counts
- Conclusion, need to advance the knife 800 counts
- Contact interval = 90° = 1000 counts
- Starting condition -- Knife is up
- Distance to clear contact -- 2500 counts

Instruction

DP 0 GAY GR 1 V=2500 #WAIT JP #WAIT,_TPX<V #MOVE PR 800 SP 20000 BGX AMX V=V+4000 JP #WAIT EN

Interpretation

Define X position as zero Set paper (Y) as master Set gear ratio 1:1 Define variable Define subroutine Wait to clear contact Move correction distance Define distance Define speed Begin motion After motion of X axis Update contact end point Repeat cycle End program

Application Example: Web Tension Control

Web processing applications often require tension control. In the most demanding case, the web is pulled by an independent process, which may be continuous or start/stop. The tension is sensed by a load cell and the requirement is to supply the web from a feed roll under constant tension.

The same process applies to winding the web on a take-up roll under constant or variable tension.

Requirements

Speed of master: 0-20 inches/sec, start/stop Master encoder resolution: 400 counts/in Feed roll diameter: 3.5 - 16 inches Feed roll encoder resolution: 10,000 counts/rev Load sensor output: 0-10V for 0-20 oz Tension accuracy: ± 0.5 oz

Operation

The length of the web pulled by the master process is monitored by an encoder with a resolution of 400 counts/in. The feed roll is driven by a motor with a tachometer and an encoder of 10,000 counts/rev. The motor is driven by an external amplifier. The amplifier is configured in the velocity mode (closing inner velocity tach loop) for added stability in view of the heavy inertial load.

The feed roll motion is divided into two parts: coarse and fine motion. The coarse motion is achieved by gearing the feed roll to the master process and continuously estimating the gear

ratio. Since the ratio is not known precisely, this mode performs most of the required motion but not all of it.

The fine motion are correction moves performed on top of the electronic gearing in response to variations in tension. Here the errors in tension are monitored and the motor is driven at a proportional speed on top of the gearing.

It is assumed that the initial gear value, G, is known. The initial value can be computed or measured directly. The gear ratio may be continuously estimated by determining the ratio of the frequencies of the two encoders and filtering that ratio.

In the following program the feed-roll motor is controlled by the X axis and the master is monitored by the Y axis. The program consists of two parts: #GEAR, which estimates the gear ratio and performs the coarse mode, and #TRIM, which performs the fine move. The two programs are executed simultaneously by multitasking.

The load cell signal is applied to the analog input #1, and the required sensor level is 4 V. Accordingly, E, the difference between the sensor output and 4, is the error in tension. The motor is required to jog at a speed that is equal to 20 times E.

Instruction	Interpretation
Instruction#INITIAL GAYGRGJG0BGX $XP = _TPX$ $YP = _TPY$ #GEAR $Y = _TPX$ $JP #GEAR, Y = YP$ DX = X-XP DY = Y-YP $XP = X$	Interpretation Label Set Y as master Initial gear ratio Initial jog speed Begin motion Read initial X position Read initial Y position Label subroutine Read new Y Read new X Repeat if no Y motion Compute X increment Compute Y increment Update X position
XP = X $YP = Y$ $RATIO = DX/DY$ $G = (G*7+RATIO)/8$ GRG $JP#GEAR$ EN $#TRIM$ $E = @AN[1]-4$	Update X position Update Y position Ratio of increments Estimate gear Update gear Repeat cycle End program Label Tension error
	109

ELECTROMATE INDUSTRIAL SALES LTD. TOLL FREE PHONE (877) SERVO98 • TOLL FREE FAX (877) SERVO99 SALES@ELECTROMATE.COM • WWW.ELECTROMATE.COM

JG E*20 JP #TRIM EN Fine jog speed Repeat End program

Assume that the web is a plastic strip with printed labels. The objective is to cut the strip between the labels. The nominal length of each label is 40 cm. However, due to the elasticity of the web, the length may vary. To ensure cuts at the correct position, a periodic mark as added to indicate the exact cutting position. This mark is detected by a special sensor located exactly 40 cm ahead of the cutting knife.

To illustrate the control procedure, consider first The Blade Position Figure on the next page which defines positions along the rotating knife. Define point P_1 as the "up" position, which is defined initially as 0. The points P_2 and P_3 define the mark detection interval.

Under nominal conditions, where the length of the label is exactly 40 cm, the mark will be detected when the blade is exactly at the "down" position of P_1 + 5000. In that case, the correction is 2000 counts. This correction is made after the motor has reached the position P4. If the mark is detected at an earlier point, say P_1 + 4900, it indicates that the next label is short and, therefore, the correction move must be longer or, more specifically, 2100 counts. If no mark is detected between points P_2 and P_3 , the nominal correction of 2000 counts is used. The actual program is given below.

The reading of the blade position at the mark detection point is done with the "position latch" function. With this function, the motion controller can capture the position within a few microseconds, resulting in a precise reading. The program is given below along with the flowchart below

Definition of Blade Positions

Instruction

Interpretation

#MARK DP0 UP = 0GAY GR 0.1 SP 50000 AC 400000 DC 400000 #P2 JP#P2, TPX<UP+4000 ALX **#LATCH** JP#NOMARK,_TPX>UP+6000 JP#LATCH, ALX = 1E = UP + 5000- RLX JP#P4 **#NOMARK** $\mathbf{E} = \mathbf{0}$ #P4 JP#P4. TPX<UP+7000 D = 2000 + EPR D BGX AMX UP = UP + 10000JP#P2 ΕN

Label Define starting position as 0 Initial value UP position Set Y as master Gear ratio 0.1 Speed of correction Acceleration of correction Deceleration of correction Label subroutine Wait for point P2 Arm position latch Label subroutine If position >P3, skip Wait for latch Second correction,E Jump to subroutine Label subroutine Set E = 0Label subroutine Wait for Point P4 Compute motion distance Position correction Start Move Wait for end of correction Update position at UP Repeat the process End of program

Application Example: Continuous Cutting of Moving Webs by Waterjet

A moving sheet of plastic must be cut with a water jet along the pattern shown below. The process is continuous and the web does not stop.

Continuous Cutting Example

Operation

The unique feature of this system is that the plastic sheet moves continuously and independently at a variable speed. As a result, the motion of the X motor must equal the sum of two parts: motion 1 to follow the cutting pattern, and motion 2 to follow the moving web. This can be accomplished easily with the controller by separating the two moves. Part 2 is done by electronic gearing and part 1 is done by coordinated motion. The web motion is monitored by an independent encoder whose output is applied to the Z axis. Assuming that the resolution of all 3 encoders are the same, the X motor is then required to follow Z at a ratio of 1 to accomplish part 1 of the motion. The cutting cycle is shown below.

Cutting Cycle

The motion starts at the point A with the waterjet turned off (output bit 1 = 0). It moves toward point B, where the waterjet is turned on, and continues to C, D, E, F, and back to B which becomes the starting point of the next cycle.

In order to keep the waterjet location over the correct position, we must synchronize the cutting speed with the web speed. Note that the length of one cutting cycle, including the path from A to all the points, equals 20,680 counts. At the same time, the web advances 2400 counts. This implies that the vector speed, VS, must be equal to 8.616 times the speed of Y. This method, however, is not precise and will create some errors that can cause position drift of X. To eliminate this possibility, we define the starting point of the first cycle as X = 0. Later, we check the position of X at the start of all following cycles. If the starting position of X is positive, the cutting speed is slow and the speed is increased by a correction factor E.

Instruction	Interpretation
#WTRJET	Label
DP0	Define starting X position
GAZ	Set Z as master
GR1	X follows Z at 1:1
VMXY	Vector mode XY plane
#LOOP	Label subroutine
E = _TPX/2400	Drift correction factor
$SPEED = TVZ^{*}(1+E)$	Master speed
VS SPEED*8.616	Command vector speed
VP -2400,0	Motion AB
CR 1000,170,-90	Motion BC
VP -3400,7000	Motion CD
CR 1000,180,-180	Motion DE
VP -1400,1000	Motion EF
CR 1000,0,-90	Motion F to end
VE	End of motion
BGS	Start move
AV 2400	Wait for point B
SB1	Turn waterjet on
AMS	Wait for end of cycle
CB1	Turn waterjet off
JP #LOOP	Repeat the cycle
EN	End of program

- To cut at a given length, add PR command on top of gearing. Knife circumference=20" Desired cut length=16" Knife encoder resolution=4000 counts Knife must be advanced 4000/5=800 counts
- Position of knife to clear contact: 2500 counts

Instruction	Interpretation
#A DP0,0 GA,X GR,.25 V=2500	Label Define X and Y position 0 Define X axis ask master* Set Slave Gear Ratio 1 Position of Knife to advance
#LOOP MF,V PR,800 BGY AMY V=V+4000 JP#LOOP EN	Wait for knife to reach pos. Advance knife position Begin advancing movement Wait for move to complete Add 1 Rev to next position Repeat

*For DMC-1000, DMC-1500 controllers the gear command should be: GAX

Application Example: Tension Control by Electronic Gearing

Objective: Master may run independently. Drive the slave motor to keep the tension constant.

Method 1 - Traditional PID

Add a tachometer to slave motor for damping. Close the position loop with an analog signal.

Note: If master starts and stops, this method limits the acceleration rate.

Method 2 - Electronic Gearing

Add an encoder to slave motor. Control in electronic gearing. Adjust gear ratio according to tension sensor output.

Note: As tension increases, we need to increase the gear ratio. The gear ratio has a slowly changing base, B, and a rapidly changing temporary value R. Total gear ratio is G.

Note: This method is most effective when gear ratio changes slowly.

ELECTROMATE

Instruction

#TENSION GAX GR, 0.3 JG,0 BGY XQ#GEAR,1 #LOOP E=@AN[1]-4 JG,E*20 JP#LOOP EN

Instruction

#GEAR G=0.3 XP= TPX YP= TPY #LG X = TPXJP#LG,X=XP Y= TPY DX=X-XP DY=Y-YP XP=X YP=Y R=DY/DX $G = (G^{*}7 + R)/8$ GRG JP#LG ΕN

Interpretation

Label Define master Initial gear ratio Set slave in jog mode Start mode Execute gear estimation routine Label Compute tension error Trim the speed Repeat the process End

Interpretation

Gear program Initial gear value Initial X position Initial Y position Label Read new X position Verify that X motion is non-zero Read Y position Find X increment Find Y increment Update previous X position Update previous Y position Compute ratio Filter ratio and estimate gear Adjust gear ratio Repeat End

The following program can be used to slowly engage electronic gearing. This is useful when the master axis is already moving, allowing for a smooth transition on the slave axis.

This program users the X axis as a master and the Y axis as a slave for illustration. Line numbers 6, 15, 23, 27, 31 must be modified if gearing is between different axes.

Instruction

#SMGEAR TTL=10000 CT=TTL GO=10R=1 RATE=10 GA .X #LP3 JP#G,((CT=TTL)&(GO=1))|((CT=0)&(GO=-1)) JP#H, ((CT>0)&(GO=1))|((CT,TTL)&(GO=-1)) JP#STOP, GO=0 JP#LP3.GO=99 JP#TOOHI,@ABS[GO}>1 JP#LP3 **#STOP** GRY=0 CT=TTL JP#LP3 **#TOOHI** GO=99 JP#LP3 #G;JP#LP3,(RATE<1)|(RATE>10000);AT0 #H;CT=CT+((GO*-1)*RATE) GRY=(1-(CT/TTL))*R;AT-10 JP#LP3,(CT>=0)&(CT<=10000) JP#ZERO.CT<0 CT=10000 GRY=0 JP#LP3 #ZERO CT=0GRY=R JP#LP3 EN

The user is required to set the following variables:

- GO is used to engage and disengage the gearing. GO=1 engages gearing GO=-1 disengages gearing GO=0 disengages gearing immediately
- 2. R is the gear ratio between the master axis and the slave axis. The default value for R is 1.
- 3. RATE is used to set the amount of time to be used to engage gearing. The time is given by the equation: T=(10000/RATE)*10msec. This variable must be a value between 1 and 10000 and the default value 10 (T=10sec). If the master is moving at a constant rate, the acceleration of the slave axis can be calculated as:

per sec²

(SPEED_{master}*R*RATE)/(10000*.01)

Application Example: Synchronizing Two Conveyor Belts with Trapezoidal Velocity Correction.

Instruction

GAX GR,2 PR,300 SP,5000 AC,100000 DC,100000 BGY

Interpretation

Define master axis as X Set gear ratio 2:1 for Y Specify correction distance Specify correction speed Specify correction acceleration Specify correction deceleration Start correction

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Application Example: Gearing Acceleration (Superimposed profile method)

Normal operation of the controller has a slave axis instantaneously gearing to the master upon execution of the GRn command. This can be undesirable in certain situations, such as the case when the master is already moving at the time the GRn command is issued. In this situation, it may be beneficial to engage the slave according to some acceleration rate, therefore ramping up to the speed of the master.

The following application program superimposes, or blends, two motion profiles to provide this acceleration. The first profile is a PR move on the slave axis with a known AC and DC. This profile is combined with the GRn profile to give the final acceleration to the gear ratio.

The theory behind this is as follows. Setting the AC of a negative PR move to the maximum number will cause instantaneous acceleration. The profile will then follow the DC rate to complete the move. When this profile is added to the instantaneous acceleration of the positive GRn command, the resultant profile has the slave 'ramping' to the speed of the master according the DC rate set.

In this diagram, Q depends on the desired acceleration according to the equation, $Q=SP^2/2DC$

This opposite move counteracts the instantaneous acceleration of the GR command, resulting in the smooth acceleration. In order to ramp down, or decelerate from the gearing, a PR in the positive direction is given in conjunction with the GR0 command.

The limitation to this method is a slight jump in the motion as the gearing is engaged. This is due to the controller attempting to command the servo at the maximum acceleration. The magnitude of this jump is influenced by the speed of the master.

#GEARAMP START=0:STOP=0 AC67107840 GAY IN"SPEED OF THE MASTER (cts/sec)?", JOG **IN"FINAL GEAR RATIO?".RATIO** IN"TIME TO ACCELERATE (ms)?",RATE RATE=RATE/1000 SPEED=(JOG*RATIO) DECEL=SPEED/RATE DC DECEL;SP SPEED RAMP=(SPEED*SPEED)/(2* DCX) JG, JOG; BGY MG"TYPE START=1 TO ENGAGE" MG"OR TYPE STOP=1 TO ABORT" #LOOP;JP#LOOP,(START=0)&(STOP=0) JP#STOP,STOP=1 PR-RAMP;BGX;GR RATIO #VELOOP;JP#VELOOP,(SPEED=>_TVX)&(STOP=0) JP#STOP,STOP=1 MG"TYPE START=0 TO DISENGAGE" MG"OR TYPE STOP=1 TO ABORT" #LOOP2; JP#LOOP2, (START=1)& (STOP=0) JP#STOP,STOP=1 GR0;PRRAMP;BGX #VELOOP2; JP#VELOOP2, (_TVX>0)& (STOP=0) JP#STOP,STOP=1 WT1000 STY JP#GEARAMP **#STOP** AB1 JP#GEARAMP EN

An operator activates a start switch. This causes a motor to advance the wire a distance of 10". When the motion stops, the controller generates an output signal which activates the cutter. Allowing 100 ms for the cutting completes the cycle.

Suppose that the motor drives the wire by a roller with a 2" diameter. Also assume that the encoder resolution is 1000 lines per revolution. Since the circumference of the roller equals 2π inches, and it corresponds to 4000 quadrature, one inch of travel equals:

4000/2*π*=637 count/inch

This implies that a distance of 10 inches equals 6370 counts, and a slew speed of 5 inches per second, for example, equals 3185 count/sec.

The input signal may be applied to input 1, for example, and the output signal is chosen as output 1.

The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1. As soon as the pulse is given, the controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an additional 80 ms before returning to #A for a new cycle.

Instruction	Interpretation
#A Al1	Label
PR 6370	Wait for input 1 Distance
SP 3185	Speed
BGX	Start Motion
AMX	After motion is complete
SB 1	Set output bit 1
WT 20	Wait 20 ms
CB1	Clear output bit 1
WT 80	Wait 80 ms
JP #A	Repeat the process

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Application Example: Variable Length Ecam Motion

Set up the ECAM function so that X is the master and Y is the follower. The ECAM profile will be set up to move the Y axis at the beginning of the ECAM cycle. Then the Y axis will wait for the X axis to 'roll over' and the cycle will start again. To cut different lengths, all we do is stop the ECAM cycle, change the length of the X axis rollover, then engage the ECAM mode again.

Here is an example of that program:

Assumptions:

- 1) X length is 600 counts or greater
- 2) 4000 encoder counts per Y revolution

#INIT EAX EM LENGTH, 4000 EP 100,0	Execute this code only once at beginning Set X as ECAM master Sets the roll over point of X and Y Set interval for table for 100 master counts
ET[0]=,0 ET[1]=,1000 ET[2]=,2000 ET[3]=,3000	Enter ECAM table values. Y will start moving
ET[4]=,4000 LOOP=5 #B	Y stops moving a full revolution later
ET[LOOP]=,4000 LOOP=LOOP+1 JP#B,LOOP<255 FN	Fill in table with the end position
#START EB1	To start ECAM motion Enable ECAM

Engage ECAM

Insert code to change the variable 'LENGTH'

#CHANGE	To change the cut length
MF 3999	After position end of Y
	axis motion
EB0	Disable ECAM
EM	LENGTH,4000 Set new X
	rollover value
EB1	
EG,0	
EN	

Note: X axis can be moving during this entire operation.

- A plastic sheet is placed on a moving belt.
- The belt is driven open loop.
- The objective is to perform a circular cut on the sheet.
- Method:
 - Attach an encoder to the belt. Input to AUX X.
 - Belt encoder is master.
 - Y axis is geared to belt.
 - XY axes perform circular move.

#MOVE VMXY GAY=DX GRY=1 GMY=1 CR 5000,0,360 VS 7000 VA 100000 VD 100000 VE BGS	Label program Specify vector motion path Define master encoder gear axis Define y axis gearing Set gantry mode Perform circle Define vector speed Define vector acceleration Define vector deceleration Vector end Begin sequence
EN	End program

Flying Shears Example: Need to cut material in 12-inch intervals (60,000 counts per cycle). Flying shears must move forward 8 inches and return back rapidly.

Motion starts at X = 0Turn cutter on at X = 5000Turn cutter off at X = 35000Start motion back at X = 40000

Instruction

#SHEARS DP0 GAY GR1 #WAIT1 JP #WAIT1,_TPX<5000 SB1 #WAIT2 JP #WAIT2,_TPX<35000 CB1 #WAIT3 JP #WAIT3,_TPX<40000 PR -60000 AC 1000000 DC 1000000 SP_TVY*4 BGX AMX JP #WAIT1

Interpretation

Label program Define position zero Select Y as master Shears is slave Wait subroutine Shears between 0 - 5000 Turn cutter on Wait subroutine Shears between 5000 and 35000 Turn cutter off Wait subroutine Wait for end point Return move Define acceleration Define deceleration Speed proportional to master **Begin X motion** After move of X motion Repeat process

Motion Programming: Tangent Motion

When two motors perform coordinated motion in a plane, it is often desirable to control a third motor in a manner whereupon its angle remains tangent to the direction of motion. This feature is useful in applications such as cutting cardboard with a knife. As the knife moves in the plane, it is necessary to keep the blade angle tangent to the motion trajectory. The user must specify several parameters to generate the tangent motion. First, the user must select the motors for the different roles. For the rest of this discussion, assume that X and Y generate the motion in the plane and Z is the tangent motor.

The second parameter is the resolution of the Z motor (or the number of units of resolution that will turn the Z motor 1°). For example, if the encoder resolution is 3600 counts per revolution, this parameter is 10.

Finally, the position of the Z motor at which its angle is 0° in the XY plane must be given. These parameters define the requirements for the tangent motion completely.

To generate tangent motion by a controller, first select the axes with the instruction VM. For example, the instruction:

VM XYZ

selects the first two axes, X and Y, to form the motion in the plane, and the third axis, Z, to form the tangent motion. The remaining two parameters are defined with the instruction TN m,n. For example, the instruction

TN 20,700

sets the resolution to 20 counts per degree. This also indicates that when the Z motor is at the absolute position of 700 counts, its angle in the XY plane is 0°.

Motion Programming: Proportional Motion

Another useful feature of motion controllers is their ability to generate additional controlled motion in proportion to the vector speed. This feature is useful with the generation of helical motion whereby two axes form circular motion and a third axis moves at a proportional velocity in the vertical direction. Proportional velocity is also useful in applications such as dispensing glue. Suppose that the motion in the XY plane is performed at variable speed; in order to produce uniform amounts of glue per unit of length, it is necessary to drive the glue pump at a rate that is proportional to the vector speed in the XY plane.

Electronic gearing can be used to implement proportional motion is done by Electronic Gearing (See previous examples). Once the motion in the plane is defined, that motion is defined as the master motion and a third motor is required to follow it at a specific gear ratio. The procedure is illustrated by the following example.

Consider an XYZ system where the resolution is 100 counts/mm for all axes. The objective is to generate a helical motion with 10 full turns of 5 mm radius in the XY plane and a height of 20 mm in the Z direction. The vector speed in the XY plane is 20 mm/s, and both the vector acceleration and deceleration equal 1000 mm/s². The motion parameters can be expressed in units of resolution by the parameters

radius = 5 mm = 500 counts vector speed = 20 mm/s = 2000 counts/s accel/decel = 1000 mm/s² = 10^5 counts/s²

To determine the gear ratio, note that the path in the XY plane consists of 10 circles with a radius of 5 mm resulting in a total length of 314 mm. On the other hand, the motion in the Z direction is 20 mm. The ratio between the two motions is

ratio = 20/314 = 0.0637

which suggests a gear ratio of 0.0637

The required motion is generated by the following program.

Instruction

Interpretation

#HELICAL VMXY GAS GR,,0.0637 CR 500,0,3600 Label Define XY plane Select master motion Set Z as follower Define 10 circles

VE VS 2000 VA 100000 VD 100000 BGS EN End of path Vector speed Vector acceleration Vector deceleration Start motion End of program

These data points are sent to the motion controller that interpolates between them before performing the motion. The following discussion presents another application of the contouring mode.

Application Example: Constant Force

- Drive a motor against a load. Measure the force with an analog transducer. The objective is to maintain a constant force.
- Method 1: Modify the controller to accept analog feedback (standard option).

Suppose we need a force of 4 Volts

With 12 bit ADC

10 Volts = 2048 counts 4 Volts = 819 counts

PA 819 BGX Begin Motion

• Method 2: With standard controller, close the loop with incremental rotary encoder. Jog the motor continuously to hold the force constant. Make the jog speed proportional to the force error.

Instruction	Interpretation
#FORCE	Label program
JG 0	Set controller to jog mode
BGX	Begin motion
#LOOP	Label subroutine
E = 4 - @AN[1]	Compute proportional force error
V = E*1000	Define jog speed
JGV	Jog motor
JP #LOOP	Repeat process
EN	End program

• With multitasking, this program can be run in the background.

• Constant Force Example 2:

Drive the X motor against a slowly moving target and maintain a constant force between the two elements. The contact force is measured by a load cell whose output is applied

to analog input #1. Assume that the desired force level corresponds to a signal level of 5V and that forward motion increases the tension between the two elements.

The simplest control procedure is to run the motor in the jog mode where the motor runs continuously at a specified speed. The controller reads the analog signal to determine the force level and sets the speed of the motor in proportions with the error in the force level. The flowchart and program is shown below.

Instruction

Interpretation

#FORCE AC 100000 DC 100000 JG 0 BGX #LOOP ER=5-@AN[1] VEL=ER*100 JG VEL JP#LOOP	Label Acceleration rate Deceleration rate Set jog mode Start motion Label Measure error in force level Set velocity Update velocity Repeat the process
EN	End

Read the voltage of an X-Y joystick and drive the motors at proportional velocities.

10 Volts = 3000 rpm = 200,000 count/s

Speed/Analog Input = 200000/10=20000

Instruction

Interpretation

#JOYS JG 0,0 BG XY #LOOP VX=@AN[1]*20000 VY=@AN[2]*20000 JG VX, VY JP #LOOP EN

Label Set in Jog Mode Start motion Define subroutine Read joystick and compute speed X Read joystick and compute speed Y Change speeds Jump to subroutine End program

Application Example: Joystick with Nonlinear Function

Instruction

#NLNR	
JG 0	
BGX	
#L	
A=@AN[1]	
V=A*A*A+A*1000	
JGV	
JP#L	
EN	

Interpretation

Label program Set in Jog Mode Begin motion Define subroutine Read joystick Create nonlinear speed Update speed Jump to subroutine End program

Application Example: Single Axis Joystick Routine with Deadband

Task : Read the voltage of a single axis joystick and drive the motors at proportional velocity. Also, do not affect motor speed if analog input is less than .5 volts (tolerance for offset when joystick is in center position).

INSTRUCTION

INTERPRETATION

#JOYSTK JG0 BGX #LOOP V1=@AN[1] JP#GO,.5<@ABS[V1] V1=0 #GO JGX=V1*1000 JP#LOOP EN Label 'Joystick' Set Jog mode with Jog Speed 0 Begin motion on X axis Label 'Loop' Let V1 = value of analog input 1 Update speed if input is > .5 volts Otherwise, set jog speed to 0 Label Change jog speed Repeat End program

Application Example: Backlash Compensation

- An XY table is driven by two servo motors via leadscrews. The coupling has backlash. The system has two linear encoders and two rotary encoders.
- Effective where the objective is to move to a final point and stop precisely. Step 1 is to drive the motor with rotary encoders. After the move is complete, read the linear encoder and perform a correction.
- **Example:** Assume the resolution is 1 micron for both rotary and linear encoders. The objective is to move to the absolute position X=3000 Y=4000

Instruction	Interpretation
#DUAL	Label program
PA 3000,4000	Command motion
BGXY	Wait for completion
AMXY	After X & Y motion
WT20	Wait for settling
DX=3000DEX	Compute X correction
DY=4000DEY	Compute Y correction
PR DX, DY	Perform correction
BGXY	Begin motion
EN	End program

Objective: Record the position of a motor over 4 seconds in 16 ms intervals, and play back.

<u>Method:</u> Step 1 - Record positions and store in array Step 2 - Run in Contour Mode from array

Instruction Interpretation **#RECORD** Label program RA POS[251] Select the arrays RD_TPX Select data Record 251 times at 16=2⁴ ms intervals RC 4,251 ΕN End program **#RUN** To run the motor CMX Contour Mode DT4 Time interval C=0Initialize counter #LRUN Label subroutine D=C+1 Define variable DX=POS[D]-POS[C] Compute increment CD DX Contour data WC Wait for completion C=C+1Increment counter JP #LRUN,C<250 Repeat 250 times DT0 Stop Contour Mode CD0 Contour data EN End program

- Eight independent programs called "threads" can run simultaneously
- All threads have equal priority
- One thread can execute or halt another thread
- All trippoints in every thread available
- Main thread only uses INPUT command, IN. Input interrupts main thread only
- Useful for background PLC functions; truly independent motions
- Example:

Commands:

XQ #Label,n Execute Program Thread, where n=0 through 3 is thread number. 0 is main thread.

Hxn Halt Execution of Thread

Complex applications often require several independent tasks to be executed at the same time. The controller allows simultaneous execution of up to four independent applications programs. This is an ideal feature for executing independent operations of PLC tasks in the background.

Each separate task is defined as task 0 through 3. Any task can be executed or halted from another task. For example, XQ#POS1,0 begins Task 0. HX0 halts Task 0. All controller commands, including event triggers and conditionals, can be used in each task. However, input interrupts and input prompts are available only in Task 0.

Multitasking--Example 1: Background PLC. Functions Example:

This example shows how four independent programs can be executed simultaneously from the controller memory. The main task #MAIN starts all the other tasks--#PLC1, #PLC2, #MOVE--after Input 1 is high. It halts all tasks when Input 1 goes low. #PLC1 sets Output 2 only when Input 2 and Input 3 are high. #PLC2 generates a waveform on Output 1 which is high for 10 msec and low for 40 msec. #MOVE moves the X axis 100 counts, repetitively. The program is illustrated on the following page:

Instruction	Interpretation
#MAIN	Main Program Task 0
Al1	After Input 1 high
XQ#PLC1,1	Execute Task 1
XQ#PLC2,2	Execute Task 2
XQ#MOVE,3	Execute Task 3
AI-1	After Input 1 low
HX	Halt all tasks
EN	End program
#PLC1	#PLC1 Task 1
OB2,@IN[2]&@IN[3]	Set Output 2 if Input 2 and 3 high
JP#PLC1	Loop
#PLC2	#PLC2 Task 2
AT0	Set reference time
#LOOP	Loop label
SB1;AT10	Set Output 1; wait 10 msec
CB1;AT-50	Clear Output 1; at 50 msec;
	reset timer
JP#LOOP	Loop
#MOVE	#MOVE Task 3
PR100;BGX;AMX	Move 100 counts
WT20;JP#MOVE	Wait 20 msec and repeat

Multitasking -- Example 2:

Instruction

Interpretation

#X PR 1000;BGX;AMX PR -1000;BGX;AMX JP #X #Y PR,500;BGY;AMY PR,-500;BGY;AMY JP #Y **#TIME** AT50;SB1;AT10;CB1 JP #TIME #MAIN JP #EXIT,@IN[1]=1 JP #MAIN #EXIT; HX ΕN

X-Thread Move 1000 Move -1000 **Repeat Motion** Y-Thread Move 500 Move -500 **Repeat Motion** I/O Thread Every 50 msec Set Bit 1 Repeat Main Thread If input 1 high, exit Loop if input 1 low Halt all threads End Program

- To execute:
 - XQ #MAIN,0 XQ #X,1 XQ #Y,2 XQ #TIME,3

Application Example: Using Multitasking To Produce a Waveform on Output 1 Independent of a Move

Instruction	Interpretation
#TASK1	Task1 label
AT0	Initialize reference time
CB1	Clear Output 1
#LOOP	Loop1 label
AT 10	Wait 10 msec from reference time
SB 1	Set Output 1
AT -40	Wait 40 msec from reference time,
	then initialize reference
CB 1	Clear Output 1
JP #LOOP1	Repeat Loop1
#TASK2	Task2 label
XQ #TASK1,1	Execute Task1
#LOOP2	Loop2 label
PR 1000	Define relative distance
BGX	Begin motion
AMX	After motion done
WT 10	Wait 10 msec
JP #LOOP2,@IN[2]=1	Repeat motion unless Input 2 is low
HX	Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the main thread (i.e. Thread 0). #TASK1 is executed within TASK2.

Arrays are structured memories where data can be stored and retrieved in a certain order. They are useful for storing sequences of position points or output signals.

An array is characterized by a name and a size. Each element in the array is identified by its index. For example, the array XPOS may have a size of 100 units. As a consequence, each point is identified as XPOS [N] where N varies between 0 and 99.

To store data in the array, we use an instruction such as:

XPOS $[5] = _TPX$

which reads the current position of the X axis and stores the value in the array. The value of the position may be later retrieved with instructions of the form:

X = XPOS [5]

which transfers the position value to the variable X. The use of arrays is illustrated by the following example.

The controller is required to move the X & Y axes of a positioning table to four positions characterized by their coordinates. The values of the required points are stored in the arrays XPOS and YPOS. Once the controller reaches the specified point, it must wait a certain amount of time before resuming the motion. The waiting time in milliseconds is stored in the array WAIT.

The program is described in two parts. The first part, #STORE, defines the arrays. The second part, RUN, performs the moves according to the requirements.

Instruction

Interpretation

#STORE DM XPOS [4], YPOS [4], WAIT [4] XPOS [0] = 100 XPOS [1] = 320 XPOS [2] = 450 XPOS [3] = 500 YPOS [3] = 500 YPOS [0] = -100 YPOS [1] = 20 YPOS [2] = 153 YPOS [3] = 200 WAIT [0] = 50 Label Define arrays Set values

WAIT [1] = 100 WAIT [2] = 60 WAIT [3] = 120 EN

Instruction

End program

Interpretation

#RUN AC 200000,200000 DC 200000,200000 SP 50000,50000 N = 0 #LOOP PA XPOS [N], YPOS [N] BGXY AMXY WT WAIT [N] N = N+1 JP#LOOP, N<4 EN Label Accelerations Decelerations Speeds Initial count Label subroutine Specify final position Start motion Wait for completion Wait for completion Wait specified time interval Increment index Repeat 4 times End program

Flowchart for Array Program

One of the main uses of the array is for recording motion as described in the following pages.

DMC-1200	DMC-1600	DMC-1700
DMC-1800	DMC-2000	

Motion Programming: Infinite Array Recording

The following note explains the ability to collect an infinite amount of data. Using the Record Array mode, data is captured and stored in the array space within the controller. The number of data points available is limited to 8000 for the OPTIMA Series controller; with the infinite record feature, the array space is limited only by the size of the hard drive on a host computer. To accomplish this, data is captured and written to the first array element, then the second, and third, and so on. When the end of the array is reached the controller will start at the first element of the array and overwrite the data contained there. This 'loop' will continue until a command is given to stop the Record Array function. The host computer must read the array elements before they are overwritten. This is done using the _RD command. _RD returns the current array element that was just written to by the Record Array function. By reading the array elements as fast as they are being recorded the system can record as much data as can fit in the hard drive. Here is a flow chart for the operation of the host computer program to read the captured data: (See Diagram on next page)

Here, the host computer reads one element at a time and is always looking at the state of the controller. If the array size is large and the capture rate slow, the host computer could look at the controller less often and upload more than one array element. Please note the command 'RC 3,-1' starts the recording from the host.

An example of the commands needed to set up infinite recording is below. These commands set up the Record Array function to capture the X axis position and store it in an array of 1000 elements:

DM POSX[1000] define array RA POSX[] specify which arrays to record RD _TPX specify data to be recorded ' TPX'

The host computer program starts the recording with the 'RC' command. To stop recording send the command: 'RC 0'

This example makes a coordinated linear move in the XY plane. The Arrays VX and VY are used to store 750 incremental distances which are filled by the program #LOAD.

Instruction

#LOAD DM VX [750],VY[750] CONT=0 N=0 #LOOP VX [COUNT]=N VY [COUNT]=N N=N+10 COUNT=COUNT+1 JP #LOOP,COUNT<750 #A LM XY CONT=0 #LOOP2;JP#LOOP2,_LM=0 JS#C,COUNT=500

LI VX[COUNT],VY[COUNT] COUNT=COUNT+1 JP#LOOP2,COUNT<750 LE AMS MG"DONE" EN #C;BGS;EN

Interpretation

Load Program **Define Array Initialize Counter** Initialize position increment Loop Fill Array VX Fill Array VY Increment position Increment counter Loop if array not full Label Specify linear mode for XY Initialize array counter If sequence buffer full, wait Begin motion on 500th segment Specify linear segment Increment array counter Repeat until array done End linear Move After Move sequence done Send Message End program **Begin Motion Subroutine**

Application Example: A Method To Increase Array Space For Use With Record Array

When using the record array function, it may be desirable to increase the total number of recorded data points in the controller's memory. The following method takes advantage of the fact that, often times, the recorded data elements are smaller than the array elements. In this case, the recorded data can be packed.

To illustrate, consider a system with one motor which has a complete travel of+/-30000 counts. If the motor position is to be recorded (_TPX), each data point will only require 16 bits of information (16 bits can represent the numbers up to +/-32767). Since each array element on the Galil controllers is 48 bits – each array element can hold 3 data elements.

An Example:

To further illustrate, the following program commands the X axis to move in a sinusoidal motion over a

#RECORD DP 0 DA *[]	Record Function Define Position De-allocate all arrays and variables
DM CB UFF[1002], FINBUFF[6000]	CBUFF record array, FINBUFF- final array
COUNT=0 CBUFF	Routine to clear
#CLRC CBUFF[COUNT]=0 COUNT=COUNT+1	
JP#CLRC, COUNT<1002 COUNT=0 FINBUFF	Routine to clear
#CLRA FINBUFF[COUNT]=0	
COUNT=COUNT+1	
JP#CLRA,COUNT<6000	Set Record Update Time to 2msec
RTIM=2	Set up sine motion on X axis (demo)
VMXN	
VS 1000	
CR 8000,0,36000	Set up record function on CBUFF
	•

ELECTROMATE

RA CBUFF[]	Record position Information
RD_TPX COUNT=0	Reset counter to zero Reset array index to
INDEX=0	zero Begin circular array recording
RC RTIM,-1002	(1002 pts) Begin Motion Sequence
BGS	Define temporary variable, TEMP
TEMP=0 HIGH=0	Define temporary
PTR=0	variable, HIGH Define temporary variable, PTR
#LOOP	Main Loop
PTR=_RD	Set PTR to last
WT 10	recorded array element Wait 10 msec
JP #ROLL, PTR <high< td=""><td>Jump to ROLL if</td></high<>	Jump to ROLL if
<i>.</i>	record array 'rolled over'
HIGH=PTR	If not, set HIGH to
JP#LOOP,(PTR<(30+INDEX))	last element recorded Loop until 30 points have been recorded
#UPDATE	Otherwise, update
TEMP=CBUFF[INDEX] JS#SIGN, TEMP<0 TEMP=(TEMP&32767)	the final array
FINBUFF[COUNT]=65536*TEMP	Pack first element into top of FINBUFF
INDEX=INDEX+1	Update index
TEMP=CBUFF[INDEX]	
JS#SIGN,TEMP<0	Set highest bit to 1 if negative
TEMP=(TEMP&32767)	C C
FINBUFF[COUNT]=FINBUFF[COUNT]+	
INDEX=INDEX+1	Pack 2 nd element into top of FINBUFF Update index
TEMP=CBUFF[INDEX]	

JS#SIGN,TEMP<0 TEMP=(TEMP&32767) FINBUFF[COUNT]=FINBUFF[COUNT]+(TEMP/65536)

Pack 3rd element into top of FINBUFF

INDEX=INDEX+1 COUNT=COUNT+1 JP#REPLAY,COUNT>=6000 **#CHECK** JP#UPDATE,(INDEX<(PTR-3)) JP#LOOP **#ROLL** TEMP=CBUFF[INDEX] JS#SIGN,TEMP<0 TEMP=(TEMP&32767) FINBUFF[COUNT]=65536*TEMP INDEX=INDEX+1 TEMP=CBUFF[INDEX] JS#SIGN,TEMP<0 **TEMP=(TEMP&32767)** FINBUFF[COUNT]=FINBUFF[COUNT]+TEMP

INDEX=INDEX+1 TEMP=CBUFF[INDEX] JS#SIGN,TEMP<0 **TEMP=(TEMP&32767)** FINBUFF[COUNT]=FINBUFF[COUNT]+(TEMP/65536) INDEX=INDEX+1 COUNT=COUNT+1 JPREPLAY,COUNT>=6000 JPROLL, INDEX<1002 INDEX=0 HIGH=0 JP#UPDATE **#REPLAY** Playback routine STX AMX

Controllers can record motion data at a fixed rate and store the data in an array. This data can be later used to duplicate the motion or to analyze it.

The recording process includes several steps: First the array where the data is stored must be specified, and later the type of data, such as position, position error, etc., must be defined before the actual recording is accomplished at a specified rate. The process is illustrated by the following example.

Write a program that records the position error of the Y axis every 16 msec, a total of 100 times, and stores the results in the array YERROR.

The actual recording is done with the instruction RC that has two parameters: the first parameter, n, defines the recording time interval as 2^n msec. In the given example, n = 4 results in 16 msec intervals. the second parameter sets the number of the recorded points.

Instruction

Interpretation

Label Storage array Data type Actual recording End program

The following example illustrates how recorded data can be used for analysis.

Use the position error data collected in the previous example to perform a statistical analysis on the position error of Y. Determine the maximum and the minimum values as well as the mean square value. The following program performs the required tasks and stores the results under the variables MAX, MIN, and MEAN.

Instruction	Interpretation
#STAT	Label
N = 0	Initial values
MAX = 0 MIN = 0	
SUM = 0 #LOOP	Label
E = YERROR [N]	Read position error
JP#MAX, E <max< td=""><td>Compare with MAX</td></max<>	Compare with MAX
MAX = E	Redefine MAX

- #MAX JP#MIN, E>MIN MIN = E #MIN SUM = E*E+SUM N = N+1 JP#LOOP, N<100 MEAN = SUM/100 ROOT = @ SQR[MEAN] EN
- Label Compare with MIN Redefine MIN Label Compute sum of squares Increment index Repeat 100 times Mean square Root mean square (RMS) End program

Flowchart for #STAT Program

Application Example: Record and Play Back

The contour mode is an effective tool for performing record and play-back types of motion. In these applications, the motion is originally generated by manual means. While the motion takes place, the positions of the motors are recorded. Later, the recorded positions are used as the reference positions for repeating the moves. The process in analogous to that of recording music and playing it back.

The first part of this process is recording the motion. It requires a controller with the ability to record and store the positions of the motors involved with the motion at the specified times. An advanced level controller, for example, performs the recording automatically at fixed time intervals and stores the data in it's array.

The recorded data can be used as the source for the repeated moves. The contour mode receives position commands from the stored data and performs it as required. To illustrate the process, consider the following example.

Record And Playback Example:

Consider a robot arm with three degrees of freedom. Each joint can be controlled with an independent motor. The objective is to move the arm manually along a certain trajectory with the motion lasting 12 seconds. The motion is to be repeated later automatically.

The first step is to select the time interval as a basis for the recording time. Because the motion is performed manually, it is unlikely to include abrupt changes in velocity. Therefore, we can record the motion at relatively long time intervals of $2^5 = 32$ ms without any loss of information. The number of sampling intervals, which is the ratio between the total motion time and sampling interval, equals

The recording is performed with the following program. It starts by defining the arrays and assigning them for the recorded data. Later, the type of recorded data is noted. In the given example, the positions of the three motors are requested. If we assume that the recording is to start upon a pulse on Input 1, the instruction AI1 delays the start of the recording to the required moment.

Instruction

Instruction	Interpretation
#RECORD DM XPOS[376], YPOS[376], ZPOS[376	Label 6]
	Define arrays
RA XPOS[376], YPOS[376], ZPOS[376	5]
	Assign arrays for
	recording
RD _TPX, _TPY, _TPZ	Define what to
	record
Al1	Wait for start pulse
RC 5,376	Start automatic recording
EN	End of program

The motion is generated by the contour mode. Note, however, that the recorded data is expressed in absolute positions whereas the contour mode commands are expressed in position increments. This implies that the position increments must be computed from the absolute positions before the start of the motion. The process is illustrated by the program flowchart on the next page and the program below.

Interpretation

#PLAY	Label
CMXYZ	Set contour mode
DT 5	Time interval 2 ⁵ = 32 ms
$\mathbf{C} = 0$	Set index
#LOOP	Define subroutine
D = C+1	Next index
DX = XPOS[D]-XPOS[C]	Compute increments
DY = YPOS[D]-YPOS[C]	
DZ = ZPOS[D]-ZPOS[C]	
CD DX,DY,DZ	Command contour segment
WC	End of segment
C = C+1	Increment index
JP#LOOP, C<375	Repeat if necessary
DT 0; CD0	End contour
EN	End of program

A desirable feature in the playback process is the ability to control the speed. The program shown above repeats the motion at the speed of recording. Speed variations can be performed in different ways; the advanced level controller allows changing the speeds by factors of 2 with the DT instruction. Note the third instruction of the program #PLAY. If that instruction is

changed to DT4, for example, it shortens the contour time interval to 16 ms, resulting in a velocity that is twice as high as the recording velocity.

Robot Arm Example

For finer changes in speed, the user can vary the sample time. The instruction DT5 sets the contour time interval to 32 sampling periods, with a default value of 1 ms each. Changing the sampling interval to 875 μ s, for example, shortens the contour time interval to 28 ms, resulting in a 14% increase in speed.

Application Example: Feedrate Override

In some cases it is desirable to give the machine operator the ability to adjust the machine speed. This ability is called feedrate override. This feature may be useful, for example, when starting a machine for the first time; the operator may wish to increase the speed gradually.

The method of speed control is often done by a potentiometer with an output voltage between 0V and 10V. When the potentiometer output is at the full 10V, the machine is supposed to run at full speed. In all other cases, the speed should be proportional to the potentiometer voltage.

To accomplish this function, motion controllers read the potentiometer voltage and adjust the feedrate in proportions.

Consider the motion path described by the following example starting at Point A and moving towards B. The motion is in the XY plane, the radius of the corners is 1000 counts, the vector speed is 20,000 counts/s and the vector acceleration and deceleration rates are both 100,000 counts/s².

The instructions and their interpretations are shown below.

Instruction	

Interpretation

Repeating the motion of the previous example with feedrate override, the operator generates a voltage in the range between 0V and 10V. This voltage is applied to Analog Input #1 to set a proportional feedrate.

The motion is generated by the two programs, #MOVE and #SPEED. Both programs operate simultaneously in multitasking. The program #SPEED reads the analog inputs and adjusts the vector speed continuously. In the second program, #MOVE, the vector speed is not specified. The two programs are listed below.

Instruction

Interpretation

#SPEED A = @AN[1] V = A*2000 VS V JP #SPEED EN Label Read analog voltage Set feedrate Update feedrate Repeat the process

Application Example: Variable Feedrate

Some motion control processes, such as an engraving, do not require a constant feedrate. In those cases, the objective is to complete the motion in the shortest time possible while keeping the position error within tolerance. The challenge is, therefore, to determine the highest velocity allowed under those conditions.

The position errors in typical motion control systems are proportional to the acceleration rates. This implies that, in order to limit the errors, we must limit the acceleration and deceleration rate.

Two types of acceleration exist: linear and centrifugal. Linear acceleration occurs when the XY motion control system changes its feedrate while moving along a straight line. Such an acceleration can be controlled directly and, therefore, can be easily limited. Centrifugal acceleration, on the other hand, is the radial acceleration that occurs when an XY system performs a move along a circular arc. Such an acceleration is a function of both the feedrate and the radius of the arc and, therefore, can be controlled indirectly by limiting the feedrate along the arc. The process of limiting the feedrate according to the radius of the arc and the allowed acceleration is shown below.

Note that the motion starts at Point A and moves toward Point B. The initial velocity is high because the first segment is a straight line. Upon reaching Point B1, the motion controller must start a gradual deceleration so that the velocity at Point B is low. After completing a circular arc, Point C, the speed is increased and later it is lowered again at Point D1. Finally, at Point E, the speed is raised to high level before the system comes to a stop at A.

In order to program such velocity changes, we need to determine the location of the transition points along the path.

For example, let the high and low speeds be 20,000 and 10,000 counts/s, respectively, and let the vector acceleration and deceleration rates be 100,000 counts/s². To determine the deceleration distance, note that the deceleration time is

Time=Speed change/Deceleration=10000/100000=0.1second

ΕN

Because the average speed on this interval equals 15,000 counts/sec, the deceleration interval is 1500 counts. Accordingly, the coordinates of the points B1 and D1 are (4500,0) and (-4500,2000) respectively.

To change the feedrate along the path, we break the segments AB and CD into two parts each and attach a vector speed to each segment by adding the symbol <n at the end of the segment instruction. This sets the attached speed to n counts/s. The resulting program is shown on the following page.

Instruction	Interpretation
#MOVE	Label
VMXY	Specify XY plane
VP 4500,0<20000	Move to Point B1 at speed 20000
VP 6000,0<10000	Move to Point B at speed 10000
CR 1000,270,180	Move to Point C - no speed change
VP -4500, 2000<20000	Move to Point D1 at
VP -6000,2000<10000	speed 20000 Move to Point D at speed 10000
CR 1000,90,180	Move to Point E
VP 0,0<20000	Move to Point A at speed 20000
VF	End of path
VA 100000	Vector acceleration
VD 100000	Vector deceleration
BGS	Start motion
200	oran motion

End of program

163 ELECTROMATE INDUSTRIAL SALES LTD. TOLL FREE PHONE (877) SERVO98 • TOLL FREE FAX (877) SERVO99 SALES@ELECTROMATE.COM • WWW.ELECTROMATE.COM

DMC-1200DMC-1600DMC-1700DMC-1800DMC-2000

Application Example: Routine for Monitoring Encoder Failure

An encoder failure or a broken encoder wire can cause the motor to run away. There are two main reasons for this:

1. A motor command has been given. In this case, the commanded position changes but the actual position remains constant since the encoder has failed. With a large position error, the controller will supply the motor amplifier with a large command signal. Use of the error limit, the Off-On-Error function, and the #POSERR automatic subroutine can be used to limit this problem.

2. The integrator gain term, KI, is non-zero. In this case, a very small position error will cause the controller to produce a motor command that increases to maximum until encoder counts are detected. Since the encoder has failed, the motor commanded will always increase to maximum and cause motor runaway. Use of the Integrator Limit, IL, can limit the maximum amount of signal that will be contributed by the Integrator Gain. (Note that use of IL can also effect the position

accuracy during motion). Use of a monitor routine can also detect when an encoder has failed. The following example routine can be executed on an unused thread to monitor the status of the X axis encoder.

This routine disables the X axis motor when the controller is producing a command signal above the level required to move the motor and position movement is not detected. The user must determine the minimum signal required to move the motor.

#BROKEN	Encoder failure monitor routine
OE 1	Enable Off-On-Error for X axis
FRICX=.2	FRIC = min torque to move motor
#LOOP	Loop until torque above
AT0	FRIC and motion is not detected. Reset timer
JP#LOOP,(@ABS[_TTX] <fricx) (@abs[_tvx]>0) AT20 JP#KILL,(@ABS[_TTX]>FRICX)&(@ABS[_TVX]=0)</fricx) (@abs[_tvx]>	during loop Wait 20 msec

JP#LOOP

#KILL AB1

MG "THE X AXIS MOTOR ENCODER HAS FAILED" EN

detected, kill motor Otherwise, continue looping Kill routine Abort current motion on X Display message

Application Example: Routines for Monitoring Step Motor Operation

Galil controllers operate step motors as part of an open-loop system. However, encoder inputs and application memory are provided which allow position maintenance and stall detection for step motors. An encoder is placed on the motor or load and is read using the DE command. The following application program checks for three conditions; the first condition is known as "In Position". This represents the motor and load reaching the commanded position or within the error band at the end of motion. The second condition is known as "Position Maintenance". Here the system is checked to make sure that if the motor is not asked to move, the load is not moving. The third condition is "Stall Detect". This check makes sure that the system has not stopped in the process of moving to the final destination. Please note that these examples show only X-axis operation, however, they can be expanded to other axes setup for step motor.

Monitor Routine

#MONITOR DDBNDX=10	Monitor Program Define Deadband variable
PSRX=0	Define Position Error variable
NPSFLG=0	Define In Position flag
STLFLGX=0 #STPMNT	Define Stall Detect Flag Routine for background execution
JS #INPSMNT, _BGX=0	If not moving, test In Position + Maintenance
JS #STLDTC,_BGX=1	If moving, test Stall Detect
JP#STPMNT	Loop

Pc	sition Maintenance #INPSMNT	Routine for In
	POSERR=_DEXTPX	Position and Maintenance Calculate error between command
	JP#ATPOS, @ABS [POSERR] <ddbndx< td=""><td>less than Deadband</td></ddbndx<>	less than Deadband
	NPSFLG=0	for X Clear In Position
	IP POSERR	Flag when error Increment the position by the amount of error
	EN	End of subroutine
In	Position	
	#ATPOS NPSFLG=1 EN	When In Position, Jump here Set the In Position Flag End of subroutine
Sta	all Detect	
	#STLDTC PSRX=_DEXTPX	Routine for Stall Detect Calculate error from pulses out vs. encoder
	JP#STLX, @ABS[PSRX]>DDBNDX	If error larger than Deadband, jump to Stall
	STLFLGX=0 EN	Ed of subroutine Jump here when error Stall occurs
	#STLX	Set the Stall Detect Flag for X axis
	STLFLGX=1 EN	End of subroutine

Appendix -- Optima Series DMC-1200, 13x8, 1600, 1700, 1800, 2000, 2100

Download array

SERVO MO ⁻ AF DV FA	FOR COMMANDS Analog feedback Dual loop operation Acceleration feedforward	QD QU RS VF
FV	Velocity feedforward	••
IL	Integrator limit	MATH/SP
KD	Derivative constant	@SIN[X]
KI	Integrator constant	@COS[X]
KP	Proportional constant	@COM[X]
NB	Notch Bandwidth	@ASIN[X]
NF	Notch Frequency	@ACOS[X
OF	Offset	@ATAN[X
PL	Pole	@ABS[X]
SH	Servo here	@FRAC[X
TL	Torque limit	@INT[X]
TM ZR	Sample time Zero	@RND[X]
21	2010	@SQR[X] @IN[X]
STEPPER M	IOTOR COMMANDS	@OUT[X]
KS	Stepper motor smoothing	X X
MT	Motor type	@AN[X]
RP	Report commanded position	x
TD	Step counts output	
TP	Tell position of encoder	INTERRO
DE	Define encoder position	LA
DP	Define reference position	LL
		LS
	S MOTOR COMMANDS	LV
BA	Brushless axis	MG
BB	Brushless phase	QR
BC BD	Brushless calibration Brushless degrees	QZ RP
BI	Brushless inputs	PL
BM	Brushless modulo	^R^V
BO	Brushless offset	SC
BS	Brushless setup	ТВ
BZ	Brushless zero	TC
		TD
I/O COMMAI	NDS	TE
AL	Arm Latch	TI
CB	Clear bit	TP
CI	Communication interrupt	TR
co	Configure I/O points	TS
EI	Enable interrupts	TT TV
OB	Input interrupt Define output bit	IV
OC OC	Output compare function	PROGRA
OP	Output compare function	DA
SB	Set bit	DL
Ŭ	User Interrupts	DM
		ED
SYSTEM CC	DNFIGURATION	ELSE
AO	Analog output (DMC-2100)	ENDIF
BN	Burn parameters	EN
BP	Burn program	HX
BV	Burn variables and arrays	IF
CC	Configure auxiliary port	IN
CE	Configure encoder type	JP
CN CO	Configure switches Configure I/O points	JS NO
CW	Data adjustment bit	RA
DE	Define dual encoder position	RC
DP	Define position	RD
DR	DMA/FIFO update rate	REM
DV	Dual velocity (dual loop)	UI
EI	Enable interrupts	UL
EO	Echo off	ZS
IA	Set IP address (DMC-2100)	
IH	Internet handle (DMC-2100)	ERROR C
IT	Independent smoothing	BL
LZ	Leading zeros format	ER
MO MT	Motor off Motor type	FL OE
PF	Position format	TL

Upload array Reset Variable format PECIAL FUNCTIONS Sine of x Cosine of x 1's compliment of x Arc sine of x Arc cosine of x X] X] Arc tangent of x Absolute value of x Fraction portion of x x] Integer portion of x Round of x Square root of x State of digital input x [] State of digital output Value of analog input OGATION COMMANDS List arrays List labels List program List variables Message command Data record Return DMA information Report command position Report latch Firmware revision information Stop code Tell Status Tell error code Tell dual encoder Tell error Tell input Tell position Trace program Tell switches Tell torque Tell velocity MMING COMMANDS Dealocate variables/arrays Download program Dimension arrays Edit program Conditional statement End of cond. Statement End program Halt execution If statement Input variable Jump Jump to subroutine No-operation-for remarks Record array Record interval Record data Remark program User interrupt Upload program Zero stack CONTROL COMMANDS Backward software limit Error limit Forward software limit Off-on-error function Torque limit

YW	Timeout for in-position
INDEPENDE	NT MOTION COMMANDS
AB	Abort motion
AC	Acceleration
BG	Begin motion
DC	Deceleration
FE	Find edge
FI	Find index
HM	Home
IP	Increment position
JG	Smoothing time constant
PA	Jog mode
PR	Position relative
SP	Speed
ST	Stop
TRIPPOINT AD AI AM AR AR AR AR AR AV MC MF MR WC WT	COMMANDS After distance After input After motion profiler After absolute position After relative distance At speed After vector distance Motion complete After motion-forward After motion-reverse Wait for contour data Wait for time
CONTOUR N	MODE COMMANDS
CD	Contour data
CM	Contour mode
DT	Contour time interval
WC	Wait for contour data
ECAM/GEAF	ING
EA	Ecam master
EB	Enable ECAM
EC	Ecam table index
EG	Ecam go
EM	ECAM cycle
EP	ECAM interval
EQ	Disengage ECAM
ET	Ecam table entry
GA	Master axis for gearing
GM	Gantry mode
GR	Gear ration for gearing
VECTOR/LIN CA CR CS ES LE LI LM ST TN VA VD VE VD VE VM VP VV VR VZ	VEAR INTERPOLATION Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode Stop motion Tangent Vector acceleration Vector deceleration Vector sequence end Coordinated motion mode Vector speed ration Vector speed

Smoothing time constant-vector

VT

PC/104, COMPACT PCI, ISA BUS, VME & USB/ ETHERNET/ RS232/ RS422/ RS485 CONTROLLERS

Appendix -- Econo Series DMC-1410, 1411, 1412, 1414

Tell position error

Tell input Tell position

Trace program

Reverse software limit Position error limit

Forward software limit

Tell switches

Tell torque Tell velocity

Off on error

Cosine Absolute value

Fraction portion

Return digital input

Integer portion

ERROR AND LIMITS

ARITHMETIC FUNCTIONS

Sine

Round Square root

Add

And Or

Subtract Multiply Divide

Parentheses BRUSHLESS MOTOR COMMANDS Brushless axis

Brushless phase Brushless calibration

Brushless degrees

Brushless inputs

. Brushless modulo

Brushless offset Brushless setup

ТΕ TI TP

TR

тs

TT TV

BL ER FL

OE

@SIN

@COS @ABS

@INT

@RND @SQR

@IN

+

1 &

| ()

BA BB BC

BD

Ы

BM

во

BS

@FRAC

		BP	Burn program (1412, 1414)	
MOTION		BV	Burn variables and array (1412, 1414)	
AB	Abort motion	СВ	Clear output bit	
AC	Acceleration	CC	Configure 2 nd RS232 port (1412, 1414)	
BG	Begin motion	CE	Configure encoder type	
CD	Contour data	CN	Configure switches	
СM	Contour mode	DA	Deallocate arrays	
DC	Deceleration	DE	Define dual encoder position	
DT	Contour time interval	DL	Download program	
EB	Enable cam mode	DM	Dimension arrays	
EG	Start cam motion	DP	Define position	
EM	Modulus for cam	ED	Edit mode	
EP	Master counts per table entry	EI	Enable ISA interrupts (1410, 1411)	
EQ	Stop cam motion	EO	Echo off	
ET	Cam table entry	LS	List program	
FE	Find edge	MO	Motor off	
FI	Find index	MT	Motor type	
GR	Gear ratio	OB	Define output bit	
HM	Home	OP	Output port	
IP	Increment position	PF	Position format	
iπ	Smoothing time constant-independent	QD	Download array	
JG	Job mode	QU	Upload array	
KS	Stepper smoothing	RA	Record array	
PA	Position absolute	RC	Record	
PR	Position relative	RD	Record data	
SP	Speed	RS	Reset	
ST	Stop	SA	Set address (1412, 1414)	
		SB	Set output bit	
		UI	User interrupt (1410, 1411)	
		UL	Upload program	
PROGRAM		VF	Variable format	
AD	Wait for specified distance			
AI	Wait for specified input			
AM	Wait for motion complete		DL FILTER SETTINGS	
AP	Wait for absolute position	DV	Damping for dual loop	
AR	Wait for relative distance	FA	Acceleration feedforward	
AS	Wait for "At Speed"	FV	Velocity feedforward	
AT	Wait for elapsed time	GN	Gain	
EN	End program	IL KD	Integrator limit	
HX	Halt task	KD	Derivative constant	
IN	Input variable			
		KI	Integrator constant	
1	Input interrupt	KP	Proportional constant	
JP	Input interrupt Jump to program location	KP OF	Proportional constant Offset	
JP JS	Input interrupt Jump to program location Jump to subroutine	KP OF SH	Proportional constant Offset Servo here	
JP JS MG	Input interrupt Jump to program location Jump to subroutine Message	KP OF SH TL	Proportional constant Offset Servo here Torque limit	
JP JS MG MC	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position"	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MC MF	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position	KP OF SH TL	Proportional constant Offset Servo here Torque limit	
JP JS MG MC MF MR	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MC MF MR NO	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MC MF MR NO RE	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from error subroutine	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MF MR NO RE RI	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from error subroutine Return from interrupt	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MF MR NO RE RI WC	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from error subroutine Return from interrupt Wait for contour data	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MF MR NO RE RI WC WT	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from error subroutine Return from interrupt Wait for contour data Wait for elapsed time	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MF MR NO RE RI WC WT XQ	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from error subroutine Return from interrupt Wait for contour data Wait for elapsed time Execute program	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MF MR NO RE RI WC WT XQ ZS	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from interrupt Wait for contour data Wait for elapsed time Execute program Zero subroutine stack	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time	
JP JS MG MF MR NO RE RI WC WT XQ	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from error subroutine Return from interrupt Wait for contour data Wait for elapsed time Execute program	KP OF SH TL TM ZR	Proportional constant Offset Servo here Torque limit Sample time Zero	
JP JS MG MF MR NO RE RI WC WT XQ ZS	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from interrupt Wait for contour data Wait for elapsed time Execute program Zero subroutine stack	KP OF SH TL TM	Proportional constant Offset Servo here Torque limit Sample time Zero	
JP JS MG MF MR NO RE RI WC WT XQ ZS	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from interrupt Wait for contour data Wait for elapsed time Execute program Zero subroutine stack	KP OF SH TL TM ZR STATUS	Proportional constant Offset Servo here Torque limit Sample time Zero Report command position	
JP JS MG MF MR NO RE RI WC WT XQ ZS	Input interrupt Jump to program location Jump to subroutine Message Wait for "In Position" Forward motion past position Reverse motion past position No operation Return from interrupt Wait for contour data Wait for elapsed time Execute program Zero subroutine stack	KP OF SH TM ZR STATUS RP	Proportional constant Offset Servo here Torque limit Sample time Zero	

		RP
		RL
		SC
CONFIG	SURATION	TB
AL	Arm latch	TC
BN	Save parameters in EEPROM	TD

Tell status Tell error code

Tell dual encoder position

Appendix -- Ethernet Econo Series DMC-1415, 1416, 1425

SERVO MO AF DV FA EL KD KI KP NB NF OF SH TL TM ZR	TOR COMMANDS Analog feedback Dual loop operation (1415/1416) Acceleration feedforward Integrator limit Derivative constant Integrator constant Proportional constant Notch frequency Offset Servo here Torque limit Sample time Zero
STEPPER M KS MT RP TD TP DE DP	MOTOR COMMANDS Stepper motor smoothing Motor type Report commanded position Step counts output Tell position of encoder Define encoder position Define reference position
BRUSHLES BA BB BC BD BI BM BO BS	S MOTOR COMMANDS Brushless axis Brushless phase Brushless calibration Brushless degrees Brushless inputs Brushless modulo Brushless offset Brushless setup
VO COMMA AL CB CI CO EI II OB OC OP SB	NDS Arm latch Clear bit Comfigure I/O points Enable interrupts Input interrupt Define output bit Output compare function Output port Set bit
SYSTEM CO BN BP CE CF CR CO CO CW DE DP DV EO IA IH IT LZ MB MO MT PF	ONFIGURATION Burn program Burn program Burn variables and arrays Configure encoder type Default port Configure switches Configure V/O points Data adjustment bit Define dual encoder position Define dual encoder position Define position Dual velocity (dual loop) Echo off Set IP address Internet handle Independent smoothing Leading zeros format ModBus Motor off Motor type Position format

QD	Download array
QU	Upload array
VF	Variable format
MATH/SPE/	ACIAL FUNCTIONS
@SIN[x]	Sine of x
@COS[x]	Cosine of x
@ASIN[x]	1's compliment of x
@ASIN[x]	Arc sine of x
@ATAN[x]	Arc cosine of x
@ATAN[x]	Arc tangent of x
@FRAC[x]	Absolute value of x
@INT[x]	Fraction portion of x
@RND[x]	Integer portion of x
@UN[x]	Square root of x
@UN[x]	State of digital input x
@AN[x]	Value of analog input x
INTERROGA LA LL LV MG QR QZ RP RL AR AR AV SC TB TC TD TC TD TE TI TP TR TS TT TV	ATION COMMANDS List arrays List arrays List program List variables Message command Data record Return data record Report command position Report latch Firmware revision information Stop code Tell status Tell error code Tell dual encoder Tell error Tell error Tell error Tell error Tell input Tell situs Tell situs Tell situs Tell error Tell input Tell situs Tell situs Tell situs
DA DL ELSE ENDIF EN IF JS NO REM UI UL ZS	MING COMMANDS Deallocate variables/arrays Download program Dimension arrays Conditional statement End of cond. statement End program If statement Input variable Jump Jump to subroutine No-operation-for remarks Remark program User interrupt Upload program Zero stack NTROL COMMANDS Backward software limit Error limit Forward software limit Off-on-error function Torque limit Timeout for in-position

	COMMANDS
AD	After distance
AI	After input
AM	After motion profiler
AP AR	After absolute position After relative distance
AS	At speed
AT	After time
AV	After vector distance
MC	Motion complete
MF	After motion-forward
MR	After motion-reverse
wc	Wait for contour data
wт	Wait for time
	ENT MOTION COMMANDS
AB	Abort motion
AC BG	Acceleration
DC	Begin motion
FE	Deceleration Find edge
FL	Find index
НМ	Home
IP	Increment position
іт	Smoothing time constant
JG	Jog mode
PA	Position absolute
PR	Position relative
SP	Speed
ST	Stop
	MODE COMMANDS
CD	Contour data
CM	Contour mode
DT	Contour time interval
wc	Wait for contour data
ECAM/GEA	RING
ECAM/GEA	
ECAM/GEA EA EB	Ecam master
EA	Ecam master Enable ECAM
EA EB	Ecam master Enable ECAM Ecam table index
EA EB EC	Ecam master Enable ECAM
EA EB EC EG	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval
EA EB EC EG EM EP EQ	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM
EA EB EC EG EM EP	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry
EA EB EC EG EM EP EQ ET GA	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing
EA EB EC EG EM EP EQ ET GA GM	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode
EA EB EC EG EM EP EQ ET GA	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing
EA EB EC EG EM EP EQ ET GA GR	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI (DMC-1425	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only)
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane
EA EB EC EG EM EP EQ ET GA GR VECTOR/LI (DMC-1425 CA	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI (DMC-1425 CA CR	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI (DMC-1425 CA CR CS	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation segment
EA EB EC EG EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES ES LE LI LI	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode
EA EB EC EG EM EP EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI LI ST	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing NEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation segment Linear interpolation mode Stop motion
EA EB EC EG EM EP EQ ET GA GM GR VECTOR/LI (DMC-1425 CA CR CS ES ES LE LI LI LM ST TN	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation segment Linear interpolation mode Stop motion Tangent
EA EB EC EG EQ ET GA GM GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI LM ST N VA	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode Stop motion Tangent Vector acceleration
EA EB EC EG EM EP EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI LI ST TN VA VD	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing NEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode Stop motion Tangent Vector deceleration
EA EB EC EG EM EP EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES LL LL LL LM ST TN VA VD VE	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation end Linear interpolation mode Stop motion Tangent Vector acceleration Vector deceleration
EA EB EC EG EQ ET GA GM GR VECTOR/LI (DMC-1425 CA CR CS ES ES LI LI LM ST N VA VD VE VM	Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation segment Linear interpolation mode Stop motion Tangent Vector acceleration Vector deceleration Vector sequence end Coordinated motion mode
EA EB EC EG EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI LM ST TN VA VD VE VM VP	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode Stop motion Tangent Vector acceleration Vector sequence end Coordinated motion mode Vector position
EA EB EC EG EM EP EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI LIM ST TN VA VD VE VM VV VV VV VV VV	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing NEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation end Linear interpolation mode Stop motion Tangent Vector acceleration Vector sequence end Coordinated motion mode Vector position
EA EB EC EG EQ ET GA GR VECTOR/LI (DMC-1425 CA CR CS ES LE LI LM ST TN VA VD VE VM VP	Ecam master Enable ECAM Ecam table index Ecam table index Ecam go ECAM cycle Ecam interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing INEAR INTERPOLATION Only) Define vector plane Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode Stop motion Tangent Vector acceleration Vector sequence end Coordinated motion mode Vector position

Appendix -- Distributed Ethernet Series DMC-3425

	TOR COMMANDS
AF	Analog feedback
FA FV	Acceleration feedforward
FV IL	Velocity feedforward Integrator limit
KD	Derivative constant
KI	Integrator constant
KP	Proportional constant
NB	Notch bandwidth
NF	Notch frequency
OF	Offset
SH	Servo here
TL	Torque limit
тм	Sample time
ZR	Zero
	MOTOR COMMANDS
KS	Stepper motor smoothing
MT	Motor type
RP	Report commanded position
TD	Step counts output
TP	Tell position of encoder
DE	Define encoder position
DP	Define reference position
	•
BRUSHLES	SS MOTOR COMMANDS
BA	Brushless axis
BB	Brushless phase
BC	Brushless calibration
BD	Brushless degrees
BI	Brushless inputs Brushless modulo
BM BO	Brushless modulo Brushless offset
BS	Brushless setup
55	Brusilless setup
I/O COMMA	NDS
AL	Arm latch
СВ	Clear bit
CI	Communication interrupt
со	Configure I/O points
EI	Enable interrupts
II	Input interrupt
li OB	Input interrupt Define output bit
II OB OC	Input interrupt Define output bit Output compare function
II OB OC OP	Input interrupt Define output bit Output compare function Output port
II OB OC OP SB	Input interrupt Define output bit Output compare function Output port Set bit
II OB OC OP	Input interrupt Define output bit Output compare function Output port
II OB OC OP SB UI	Input interrupt Define output bit Output compare function Output port Set bit
II OB OC OP SB UI	Input interrupt Define output bit Output compare function Output port Set bit User interrupts
II OB OC OP SB UI SYSTEM C	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program
II OB OC OP SB UI SYSTEM C BN BP BV	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays
II OB OC OP SB UI SYSTEM C BN BP BV CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port
II OB OC SB UI SYSTEM C BN BP BV CC CC CE	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type
II OB OC SB UI SYSTEM C BN BP BV CC CE CN	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type Configure switches
II OB OC OP SB UI SYSTEM C BN BP BV CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type Configure switches Configure V/O points
II OB OC OP SB UI SYSTEM C BN BP CC CC CC CC CC CO CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type Configure switches Configure Witches Configure J/O points Data adjustment bit
II OB OC SB UI SYSTEM C BN BP BV CC CE CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type Configure switches Configure switches Configure switches Data adjustment bit Define dual encoder position
II OB OC OP SB UI SYSTEM C BN BP CC CC CC CC CC CO CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure and arrays Configure switches Configure switches Configure VO points Data adjustment bit Define dual encoder position
II OB OC OP SB UI SYSTEM C BN BP BV CC CC CC CN CO CW DP	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure switches Configure switches Configure I/O points Data adjustment bit Define dual encoder topsition DMA/FIFO update rate
II OB OC OP SB UI SYSTEM C BN BP BV CC CC CC CC CO CC CO CC CO CO CDP DP DP DR	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure and arrays Configure switches Configure switches Configure VO points Data adjustment bit Define dual encoder position
II OB OC OP SB UI SYSTEM C BN BP CC CC CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type Configure encoder type Configure WO points Data adjustment bit Define dual encoder position Define position
II OB OC OP SB UI SYSTEM C BN BV CC CC CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn variables and arrays Configure auxiliary port Configure encoder type Configure encoder type Configure V/O points Data adjustment bit Define dual encoder position Define position DMA/FIFO update rate Dual velocity (dual loop) Enable interrupts Echo off Set IP address
II OB OC OP SB UI SYSTEM C BN BP BV CC CC CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure encoder type Configure encoder type Configure V/O points Data adjustment bit Define dual encoder position Define dual encoder position Define position DMA/FIFO update rate Dual velocity (dual loop) Enable interrupts Echo off Set IP address Internet handle
II OB OC OP SB UI SYSTEM C BN BP BV CC CB CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure ancoder type Configure switches Configure switches Configure WO points Data adjustment bit Define dual encoder position DEADE interrupts Echo off Set IP address Internet handle Independent smoothing
II OB OC OP SB UI SYSTEM C BN BP BV CC CC CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn parameters Burn variables and arrays Configure auxiliary port Configure encoder type Configure encoder type Configure exwitches Configure V/O points Data adjustment bit Define dual encoder position DMA/FIFO update rate Dual velocity (dual loop) Enable interrupts Echo off Set IP address Internet handle Independent smoothing Leading zeros format
II OB OC OP SB UI SYSTEM C BN BP BV CC EC CN CC CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure encoder type Configure encoder type Configure encoder type Configure witches Configure V/O points Data adjustment bit Define dual encoder position Define dual encoder position Define position DMA/FIFO update rate Dual velocity (dual loop) Enable interrupts Echo off Set IP address Internet handle Independent smoothing Leading zeros format ModBus
II OB OC OP SB UI SYSTEM C BN BP BV CC CC CC CC CC CC CC CO CW DE DP DR DV EI EI EO IA IH IT LZ MB MO	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure auxiliary port Configure auxiliary port Configure encoder type Configure switches Configure switches Configure V/O points Data adjustment bit Define dual encoder position Define position DMA/FIFO update rate Dual velocity (dual loop) Enable interrupts Echo off Set IP address Internet handle Independent smoothing Leading zeros format ModBus
II OB OC OP SB UI SYSTEM C BN BP BV CC EC CN CC CC CC CC CC CC CC CC CC CC CC CC	Input interrupt Define output bit Output compare function Output port Set bit User interrupts ONFIGURATION Burn parameters Burn program Burn variables and arrays Configure encoder type Configure encoder type Configure encoder type Configure witches Configure V/O points Data adjustment bit Define dual encoder position Define dual encoder position Define position DMA/FIFO update rate Dual velocity (dual loop) Enable interrupts Echo off Set IP address Internet handle Independent smoothing Leading zeros format ModBus

QD	Download array
QU VF	Upload array Variable format
	JTED CONTROL COMMANDS
CH	Connect handle
LR	Launch slave record
NA	Specify # of axes
SA	Send slave command
QW	Slave record update rate
	ECIAL FUNCTIONS
	Sine of x
@COS[x]	Cosine of x 1's compliment of x
	Arc sine of x
@ACOS[
@ATAN[>	
	Absolute value of x
@FRAC[>	
@INT[x]	Integer portion of x Round of x
	Square root of x
@IN[x]	State of digital input x
@OUT[x]	State of digital output x
@AN[x]	Value of analog input x
INTERRO	GATION COMMANDS
LA	List arrays
LL	List labels
LS	List program
LV MG	List variables
QR	Message command Data record
QZ	Return DMA information
RP	Report command position
RL	Report latch
^R^V	Firmware revision information
SC TB	Stop code Tell status
TC	Tell error code
TD	Tell dual encoder
TE	Tell error
ті	Tell input
TP	Tell position
TR TS	Trace program Tell switches
TT	Tell torque
TV	Tell Velocity
PROGRA	MMING COMMANDS
DA	Deallocate variables/arrays
DL	Download program
DM	Dimension arrays
ELSE	Conditional statement
ENDIF EN	End of cond. statement
IF	End program If statement
IN IN	Input variable
JP	Jump
JS	Jump to subroutine
NO	No-operation-for remarks
REM UI	Remark program
	User interrupt Upload program
zs	Zero stack
ERROR	CONTROL COMMANDS
BL	Backward software limit
ER	Error limit
FL	Forward software limit

OE	Off-on-error function
TL	Torque limit
тw	Timeout for in-position
	POINT COMMANDS
AD	After distance
AI	After input
	After motion profiler
AR	After relative distance
AS	After motion profiler After absolute position After relative distance At speed After time After vector distance Motion complete After motion-forward After motion-reverse Wait for contour data
AT	After time
AV	After vector distance
MF	After motion-forward
MR	After motion-reverse
wc	Wait for contour data Wait for time
wт	Wait for time
	EPENDENT MOTION COMMANDS
AB	Abort motion Acceleration Begin motion Deceleration Find edge Find index
AC	Acceleration
BG	Begin motion
DC	Deceleration
	Find edge
нм	Home
IP	Increment position
IT	Smoothing time constant
JG	Jog mode
PA	Position absolute
SP	Speed
ST	Home Home Increment position Smoothing time constant Jog mode Position absolute Position relative Speed Stop
	ITOUR MODE COMMANDS
CD	Contour data
СМ	Contour mode
CM DT	Contour data Contour mode Contour time interval Wait for contour data
CM DT WC	Contour mode Contour time interval Wait for contour data
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA EB EC EG EG EP EQ ET GA	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing
CM DT WC ECA EB EC EG EG EC EG EC EG GM	Contour mode Contour time interval Wait for contour data M/GEARING
CM DT WC ECA EB ECG EGM ECG ET GA GR	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index ECAM cycle ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing
CM DT WC ECA EB EC EG EG ECA GR CR VEC	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION
CM DT WC ECA EB EC EG EG ECA GR CR VEC	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION
CM DT WC ECA EB EC EG EG ECA GR CR VEC	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION
CM DT WC ECA EB EC EG EG ECA GR CR VEC	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION
CM DT WC ECA EB EC EG EG ECA GR CR VEC	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION
CM DT WC ECA EB ECG EB ECG EB ECG ECC CCS ES ELI M	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM oycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode
CM DT WC ECA EB ECG EB ECG EB ECG ECC CCS ES ELI M	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM oycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode
CM DT WC ECA EB ECG EB ECG EB ECG ECC CCS ES ELI M	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM oycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode
CM DT WC ECA EB ECG EB ECG EB ECG ECC CCS ES ELI M	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM oycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode
CM DT WC ECA EB ECG EB ECG EB ECG ECC CCS ES ELI M	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam go ECAM cycle ECAM oycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation mode
CM DTW ECA EABECGEMPEETAGMG VCCSELLI LISTN VADVEVM	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam table index EcAM cycle ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation ned Linear interpolation segment Linear interpolation mode Stop motion Tangent Vector acceleration Vector deceleration Vector sequence end Coordinated motion mode
CM DTW ECA EA EB EC G EP EE FAGM GR VER CS EL LI LSTN VAD VP	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam table index ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation end Linear interpolation segment Linear interpolation mode Stop motion Tangent Vector acceleration Vector sequence end Coordinated motion mode
CM DTW ECA EABECGEMPEETAGMG VCCSELLI LISTN VADVEVM	Contour mode Contour time interval Wait for contour data W/GEARING Ecam master Enable ECAM Ecam table index Ecam table index EcAM cycle ECAM cycle ECAM interval Disengage ECAM Ecam table entry Master axis for gearing Gantry mode Gear ratio for gearing TOR/LINEAR INTERPOLATION Circular interpolation move Clear motion sequence Ellipse scaling Linear interpolation ned Linear interpolation segment Linear interpolation mode Stop motion Tangent Vector acceleration Vector deceleration Vector sequence end Coordinated motion mode

VT Smoothing time constant-vector

Appendix -- Legacy Series DMC-1000, 1300, 1500

	TION		VERAL CONFIGURATION	STA		
AB	Abort motion		Arm latch	RP		rt command position
AC	Acceleration		Burn	RL		rt latch
BG	Begin motion		Clear bit	SC	Stop	cod
CD	Contour data		Configure encoder type	ΤВ	Tell s	
CM	Contour mode	CN	Configure switches and stepper	тс	Tell e	error code
CR	Circle	DA	Deallocate arrays	TD	Tell d	lual encoder
CS	Clear motion sequence	DE	Define dual encoder position	ΤE	Tell e	error
DC	Deceleration	DL	Download	ΤI	Tell ir	nput
DT	Contour time interval	DM	Dimension arrays	TΡ	Tell p	osition
ES	Ellipse scaling	DP	Define position	TR	Trace	9
FE	Find edge	ED	Edit mode	TS	Tell s	witches
FI	Find index	EI	Enable interrupts	TT	Tell to	oraue
GA	Master axis for gearing	ΕO	Echo off	TV		elocity
	Gear ratio		List			
	Home		Motor off	ERR	OR A	ND LIMITS
IP	Increment position		Motor type			rse software limit
	Jog mode		Define output bit		Error	
	Linear interpolation end		Output port			ard software limit
LI	Linear interpolation distance		Position format		Off or	
	Linear interpolation mode		Record array	0L		i chui
	Position absolute		Record	EDI		
	Position relative		Record data	ED	OR	Edit mode
	Speed		Reset	<retu< td=""><td>irns</td><td>Save line</td></retu<>	irns	Save line
	Stop	-	Set bit	<cnt< td=""><td></td><td>Previous line</td></cnt<>		Previous line
	Tangent	-				
	Vector acceleration	UI	User interrupt Upload	<cnt< td=""><td></td><td>Insert line</td></cnt<>		Insert line
				<cnt< td=""><td></td><td>Delete line</td></cnt<>		Delete line
	Vector deceleration	VF	Variable format	<cnt< td=""><td>rl>Q</td><td>Quit editor</td></cnt<>	rl>Q	Quit editor
	Vector sequence end	~~.				
	Coordinated motion mode		NTROL FILTER SETTINGS			TIC FUNCTIONS
	Vector position		Damping for dual loop	@SI		Sine
VS	Vector speed		Acceleration feedforward	@C(Cosine
			Velocity feedforward	@AE		Absolute value
	DGRAM FLOW		Gain	@FF		Fraction portion
AD	After distance	IL	Integrator limit	@IN		Integer portion
AI		IT	Smoothing time constant - independent	@RI		Round
AM	After motion complete	KD	Derivative constant	@S0		Square root
AP	After absolute position	KI	Integrator constant	@IN		Return digital input
AR	After relative distance	KP	Proportional constant	@AN	1	Return analog input
AS	At speed	OF	Offset	+		Add
AT	After time	SH	Servo here	-		Subtract
AV	After vector distance	ΤL	Torque limit	*		Multiply
EN	End program	ΤМ	Sample time	/		Divide
	Halt task	VT	Smoothing time constant - vector	&		And
IN	Input variable	ZR	Zero	1		Or
11	Input interrupt			0		Parentheses
JP	Jump to program location			v		
	Jump to subroutine					
	Message					
	No operation					
	Return from error subroutine					
RI						
	Wait for contour data					
	Wait					
	Execute program Zero subroutine stack					
23	Leio Subiouline Slack					

PC AT/XT BUS CONTROLLER

Appendix -- Command Summary DMC-700 Series

MOTION AB Abort motion instantly AC Acceleration rate BG Begin motion CD Contour data CM Contour mode CR Circular segment CS Clear motion sequence DE Dual encoder position DP Define position DT Time increment for contour FE Find edge	CONTROL SETTINGS DR Sets DAC resolution FA Acceleration feedforward GN Gain KI Integrator MO Motor off OF Offset PS Position scale factor RS Reset controller SH Servo here SS Speed scale factor SV Servo
FI Find index	TL Torque limit
GA Master axis for gearing	TM Sample time
GR Gear ratio	VV Vector scale factor
HM Home	ZR Filter zero
IP Increment position	
JG Jog mode	PROGRAM FLOW
LE Specify linear end	AD Distance trippoint
LI Linear interpolation distance	AI Input trippoint
LM Linear interpolation mode	AM Motion complete trippoint
MF Frequency reference	AP Absolute position trippoint
MP Master position	AR Relative distance trippoint
MS Master/Slave mode	AS At speed trippoint
PA Position absolute	AV Vector distance trippoint
PR Position relative	JP Conditional jump
PV Proportional ratio	JS Conditional jump subroutine
RM Acceleration ramp	WC Wait for contour data
SP Slew speed	WT Programmable delay
ST Stop motion	ti i regiannasio aolay
TA S-curve profile	PROGRAMMING - GENERAL
TF Tell master frequency	AL Arm latch
TN Tangent axis	BN Burn program into memory
TV S-curve-vector move	DA Deallocate array space
VA Vector acceleration	DL Download program into memory
VM Coordinated mode	DM Define array dimension
VP Vector position	EN End program
VR Accel ramp-vector move	LS List program
VS Vector speed	NO NO OP
ZM Zero master	RA Automatic array capture
	RC Time interval for data capture
	RD Specify data for capture
	RI Return from interrupt subroutine
	RL Report latch
	TR Trace
	UL Upload program
	XQ Execute program
	ZS Zero subroutine stack
	#n Define program
	p.og.a

STAND-ALONE MOTION CONTROLLER

CO	MMUNICATION & I/O
00	0

- Clear output bit Configure COM Port 2 СВ
- СС
- CF Message delay CI Communication Interrupt
- EO Echo off
- Ш Input interrupt
- Invert limit switch IL
- IN
- Input prompt Write to IO bus 10
- MG Message
- OP
- Write output port
- Position display format PF SB
- Set output bit VF Variable format

ERROR HANDLING & STATUS

- ER Define error limit
- OE Automatic error shut-off
- RE Return from error subroutine
- Stop status Tell status bits Error code
- SC TB
- TC
- ΤE Tell error
- ТΙ Tell inputs
- TΡ Tell position
- тs Tell switches
- Tell torque TΤ

EDITOR

@IN

@AN

ED	Edit mode	
<return></return>	Save line	
<cntrl>P</cntrl>	Previous line	
<cntrl>l</cntrl>	Insert line	
<cntrl>D</cntrl>	Delete line	
<cntrl>Q</cntrl>	Quit editor	
ARITHME	TIC FUNCTIONS	
@SIN	Sine	
@COS	Cosine	
@ABS	Absolute value	
@FRAC	Fraction portion	
@INT	Integer portion	
@RND	Rounds	
@SQR	Square root	
@IO	I/O Bus data	

Returns digital input

Returns analog input

Appendix -- Command Summary DMC-600 Series

AB AC BG CR CR DP FE HM IP J G FP MS PA PR SP ST FF VP VS		COB FAGN KIMO OF LSS STL TTX PRO AD AI AA	
		LS NO RI TR UL XQ ZS #n	Ne Re Tr Uj

ROL SETTINGS

- Deadband Acceleration feedforward
- Gain
- ntegrator
- Aotor off
- Offset
- Pole
- Reset controller
- Servo here
- Servo
- orque limit
- Sample time

RAM FLOW

- Distance trippoint
- nput trippoint
- Notion complete trippoint
- Absolute position trippoint
- At speed trippoint
- Conditional jump
- Conditional jump subroutine
- rogrammable timer

RAMMING - GENERAL

- Download program into memory
- End program
- ist program
- lo OP
- eturn from interrupt subroutine
- race Jpload program
- Execute program Zero subroutine stack
- Define program

COMMUNICATION & I/O

- CB Clear output bit
- DC Decimal mode
- HX Hex mode
- Input interrupt Ш IN
- Input prompt
- MG Message
- OP Write output port SB Set output bit

ERROR HANDLING & STATUS

- ER Define error limit
- OE Automatic error shut-off
- RE Return from error subroutine
- Stop status Error code SC
- TC
- TE Tell error
- ΤI Tell inputs
- TP Tell position тs Tell switches
- TT Tell torque

EDITOR

ED Edit mode <return> Save line Previous line <cntrl>P <cntrl>l Insert line <cntrl>D Delete line <cntrl>Q Quit editor

PC AT/XT BUS CONTROLLER

Appendix -- Command Summary DMC-400 Series

CONT	ROL SETTINGS		STATU	STATUS		
DB	±127	Deadband compensation#	тс	Tell motion s	status#	
ER	0-1023	Following error tolerance#	TD	TD Tell position continuously#		
GN	1-255	Filter gain#		TE Tell position error#		
KI	0-127	Filter integration#	TI	I Tell inputs & controller status#		
OF	±127	Offset#	Bit			
			7	Executing sequence*		
PL	0-255	Filter pole (damping)#	6	Executing me	ove*	
TL	0-127	Torque limit#	5	FWD limit sw		
TM	500-65000	Control loop sample time#	4	REV limit sw	itch*	
ZR	0-255	Filter zero (damping)#	3	Remote/local*		
			2	Stop/start*		
MOTI	ON		1	Direction input		
FE		Find edge - homing	0	Excessive position error		
IM		Incremental positioning-continuous path	TP			
MO		Turn servos off	TS	TS Tell latched position#		
PA	±8x10 ⁶	Absolute positioning-profiled	TT	TT Tell motor torque#		
PR	±8x10 ⁶	Relative positioning-profiled	TV	TV Tell velocity#		
RP	0-255	Repetitive cycling-same direction				
RR	0-255	Repetitive cycling-alternate direction	OTHE	R		
SH		Turn servos on at current position	DC	Input parameters in decimal#		
SN	±8x10 ⁶	Index from run#	DH	±8x10 ⁶	Define home position	
SV		Turn servos on	DS	0 or 1	Define direction of motion by switch if 1	
VM	4-250000	Jogging mode-profiled#	HX		Input parameters in Hex#	
			LT	0 or 1	Latch position on input if 1#	
	ON PARAMETERS	OE	0 or 1		Turn motor off-on-error if 1#	
AB		Abort motion-instantaneous#	RD	0 or 1	Report ASCII "H" when motion complete if 1	
AC	0-1.3x10 ^x	Acceleration of velocity profile	RS		Resets controller	
BG		Begin motion	SM	0 or 1	Specifies sign/magnitude output if 1	
ES	0 or 1	Specifies end motion on switch if 1				
IP	±8x10 ⁶	New position while motor in motion#		JLT PARAMET		
SP	0-250000	Slew speed of velocity profile#			in a position-control servo mode unless MOF	
SS	0 or 1	Specifies start motion on switch if 1		is jumpered. The default values are: GN 8, ZR 232, PL 0, KI 0, ST		
		Stop motion-decelerate#	SP 327	768 and AC 65	536.	
WΤ	0-32000	Wait time between cycles#				

PC AT/XT BUS CONTROLLER