[ntermec Fingerpr

It

0.1

’ntermec
A UNOVA

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION

1. Contents

1. INTRODUCTION

2. GETTING STARTED

3. CREATING A SIMPLE LABEL

4. TERMINOLOGY AND SYNTAX

Intermec Fingerprint 6.13
Programmer's Guide
Edition 2, September 1998
Part No. 1-960366-01

L. CONEENTS....coiiiiiiiii et e ettt 1
2. PrEfACE. ... 6
3. News inFiNgerprint 6.13........coooiiiiiiiiiie e 7.
1. Computer CONNECHIONcciieeiiei ittt e e e e e e e e e e 9
2 Check Paper SUPPIY......uuriiiiiiiie ettt a e 9
3. TUM ONthe PHINEL......viiiie et 10
4. ShellStartup Program.............eieiiiriiioiiiiiiie e 10
5. Stand-AlONEPTOgIaM.......cciiiiiiiie ettt 10
6. NO Startup Program...........ceeuieioiiiiiiiiiiie e 11
7. Custom-Made Startup Programy..........cccevveeeeeiiiiiiiiiiiiieeeeeeee e 11
8. Breaking a Startup Program...........ccceeeveeeeeiiiiiiiiiiieeeeeeee e seesivnnees 11
9. Bypassing a Startup Program...........ccceeveeeeeeieiiiiiiiiiiieeeeeeee e e e e 12
10. COMMUNICALION TESL....cei i 13
IO 0110 To (U1 170] o RSP 14
2. PriNtiNG @ BOX.....uuuviiiiiiiiie e e e e s sttt a e e e e 14
3. Printing @ IMage.......cccciiiiiiiiiie et 15
4, Printing @ Bar COUR........cccoiiiiiiiiiiiiie e 15
5. Printing Human Readables..............cccooiiiiiiiiiieee 15
6. PrINtNG TOXE....eeeiiiiiiiiiee it 16
7. Listing the Programm............eeeeeeeeeeiiiiiiiiieeie e e e sssvn e e e e e 16
8. Changing a Program LiNE...........ceviiieeeiiiiiiiiiiieeee e 16
9. Saving the Program.........ccccuuiiiiiiee e 17
10. Error HANAING. ..ccooiieiiii et 17
11. RenumMbEriNg LINES....ccoiiiiiiiiiiiiiiiee e 17
12. Merging PrOgramS........coiiiuuriiieiiiiiie e ettt 18
13.USING the PriNt KEY.......uuviiiiiiieie et a e 18
R I =TSSP PPTPTTPPPO 19
A r= 1= 0 1T £ PP 19
G TR U X o S PRSP 20
4, Other INSUCHONS.......eiieiiiiiiie ettt e e 20
B EXPIESSIONS. .. ceiiieeee it i ettt ettt e e e e e e e e e e e e e e e e e e e raeaaeaeaaa e 20
B. CONSLANIS.... . 21
7. VaN@DIES. ..o 21
8. KEYWOIT LIST....eeiiiiiiiiiiiei ittt 22
0. OPEIALOIS. ..o i ittt 23
e ArithmetiC OPEratorS...........coiciviiieiie e 23
e Relational OPEratorS.........ccieeeieiiiiciiiiieeee e e 23
e LOgiCal OPEIatOrS.......cccuvriiieiieeeee e e e e e e e e e e eaaaae s 23
L0, DBVICES. ...ttt ettt e e e e e e e ettt e e e e e e e e e e e e e eaeaae s 25
Continued!

1

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

1. Contents, cont'd.

5. FINGERPRINT PROGRAMMING

6. FILE SYSTEM

IO 0110 To (U1 170] o RSP 26
2. Editing MethOdS:.......ccoiiiiiiiie e 26
* Line-by Line Method (non-intelligent terminal).............cccccocoveee. 26
e Copy & Paste Method/Nindows Notepad/Terminal..................... 27
* Send Text MethodWindows Text file viaTerminag) 27
3. IMMediate MOAE........ociiiiiie e 27
4. Programming MOGE........ccccuuiiiiiiiiee e a e 29
e Programming with Lin€ NUMDEIS..........covvieeeiiiiiiiiiiiiieiieeee e, 30
* Programming without Line NUMbDEIS...........ccoiviiiiiiiniiiiee i, 31

e Programming INStrUCHONS.c.cuuviiiiiiiiiieciieeee e 32
5. Conditional INStrUCtIONS.........c.uviiiiiiiiiee e 33
6. Unconditional Branching............cccevveeeeeiiiiiiiiiiiiiiceee e 34
7. Branching to SUDIOULINES...........ueeiiiiieeeiiiiiiieeee e 35
8. Conditional BranChiNg..........ceeeeeeiiiiiiiiiiiiiieeee e 36
0. LOOPS ettt 40
10. Program SHUCTULEccieiiiiiiiiiieee ettt 42
L0 EXECULION. ..ttt e ettt e e e e et e e e e e e e e e e e e e e eeeaeeeas 43
12. BreaKing EXECULION........uuiviiiiiee e ettt e e e 44
13. Saving the Program............eeeeeee i 46
e Saving in Printer ("ram:" and "cardl:Y).......ccccviiiiieeeiiiiiee 46
o Naming the Program............ocueeieoiiiiiieiiiiie e 46
o Protecting the Programm..............eeeoiiiiiieiiiiiiie e a7
* Saving Without Line NUMDEIS..........cooooiiiiiiiiiii e a7
e MaKiNg CRaNQES.uuvviieieeeiie it a7
© MaKING @ COPY.riiiiiieeiiiiiciiiii ettt e e e e e e e e reaaa s a7
* RENamMIiNg a PrOgral........ccooouuiriiaiiiiiiie it 48
» Saving in EPROM and Non DOS-formatted Memory Cards..... 48
o Creating a Startup Program..........cccocueeeeiiniiieee i 48
14. Rebooting the PriNter...........oviiiiiiiiie e 49
L. Printer'S MEMOIY.......uvuieiiiieeeeieiieciiiitee et e e e e e e e e e st e e e e e e e e e e e snanaeees 51
* ROM MeMOTY ("TOM™).ceiiiiiiiiie ettt 51
* RAM MeMOIY ("TAM:™).ceeiiiiiiieee ettt 52
» DOS-formatted Memory Cards ("cardL:).......ccccovvvveeeeiniineeennnns 53
e CUITENE DIFECIONY....cci ittt e e e 53
e Checking Fre€ MEmMOKY........uvvviiiiieeeee et 53
e Providing More Free MemOIY.........ccccuuiiiiiiiiiieeiieee e ee e 53
* Formatting Memory Cards or RAM Memory.........ccccccevvveeeennnnnn. 53
2. FHlES e 54
© FlE T PSS i 54
© FIlE NAMES ... 54
e LiStiNg FlES. ... 54
3. Program FilES.......ccooi oot 55
o Program File TYPESccoiiiiiiiiiiiiiee et 55
© INSHTUCHIONS ... eee et e e e e e e e e e e e e 55
A, DAt FIlES....ceiiieeeeee et 56
e Data File TYPES.....ccceiiiieiiie et 56
© INSEIUCHIONS ... ettt s e e e 56
5. IMAGE FlES .o 57
6. OULiNE FONE FIlES.....uuiieiiiiiee e 57
7. Transferfing TeXt FleS. ... 57
8. Transferring Binary Files using Kermit.............ccccceeiiiiiieeiiiiieeeen. 58
9. Transferring Files Between Printers........ccccccccveiviiiiiiiiiieeceeee e, 59
L0, AITAYS ettt e 60
Continued!

2

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

1. Contents, cont'd.

7. INPUT TO FINGERPRINT

8. OUTPUT FROM FINGERPRINT

9. DATA HANDLING

10. LABEL DESIGN

11. PRINTING CONTROL

1. Standard /O Channel.............coouiiiiiiiiiiiee e 63
2. Input From Host (std IN channel only)...........ccccoviiiiee e, 63
3. Input From Host (any channel)..........ccoooiviiiiiiee e 63
4. Input From a Sequential File...........ccoooiiiiiiii e, 64
5. Input From a Random File..........ccueviiiiiiiiiie e 67
6. Input From Printer's Keyboard..............ccoccviiiiiiiiee e 69
7. CommuNiCation CONLIQL........coiiiiiiiiie e 71
8. Background CommuNiCatiOn............ccccuvrviiiieeeee e 73
9. RS 422/485 COMMUNICALION.c.eeiiiiiiiiiiiie e e e e e e 78
© RS 422 e 78
© RS 48D e a e 79
© PrOMOCOIS. ...ttt 81
10. External EQUIPMENT.......ciiii i 82
e Industrial Interface Board.............cccuvvieiiiiiiiie e 82
1. Output to Std Out Channel............coccuvviiiiiiiiiiie e 83
2. Redirecting Output from Std Out Channel to File.......................... 85
3. Output and Append to Sequential Files............ccccvveveeeeeeiiiiiciene, 86
4. Output to RaNdOmM FilES........cccvuiiiiiieieee e 87
5. Output to Communication Channels..............oooooiiiiiiiiiieeeninies 92
6. OULPUL L0 DISPIAY......eeeeieiiiiieiieiieee e 92
1. Preprocessing INPUt DataL.........cevviieeeeiiiiiiiiiieieeeeee e 93
2. INPUt Data CONVEISION.......ccciiiiiieeeiiiiiee et e e sttt e e e eibeee e e e seaeeee e 95
3. TIME AN DALE......eeeiiiiiieiee et a e 98
4. Random Number GeneratiQn...............eueeeiieeeeeiiiiiiiiiiieeeae e e 101
1. Creating @ LaYOUL........cccceiiiiiiiiiiiiiiee e e e 102
L T o 1Y o1 USSP 102
© OGN Lo 103
LI e o] {0 |10 F= 1= TS PEREURR 103
e UNitS Of MEASUIE......cee i 103
¢ INSEItION POINE.....eeiiiiiiiiiiie e 103
L AN 1o [0 01T o | RSSO PPRI 104
1 (=T ox 110] PR SR 105
© LAYOUL FlES....ciiiiiiiie e 106
o Checking Current POSItIQNuuevieiiiieieeeiiieee e 106
2. TeXtFIEIU. . 107
3. Bar Code Field.......ccoiiiiiiiiiiiiiie e 109
O 1T To L= 1= o USSP 111
5. BOX FIEIH. .. 112
B. LiNE FIeld.. ... 113
7. LAYOUL FlES ..o 114
¢ INFOAUCTION. ... e 114
e Creating a Layout Fil@...........ccooiiiiiiiiiiiiiccce e 114
 Creating a Logotype Name File............cccceeeeiiiiiiiiiiiiiiiieceee e, 117
e Creating a Data File or Array..........cccccuvvieeeieeee e 118
* Creating an Error File and AITay...........cooccveieiininiee e 119
e Using the Files in a LAYOUT statement...........cccccvveeveeeeeeninnnn. 120
L. PaPer FEEM......ccoi i 121
2. Preparing the Printing...........cceeeiiiiiiiiiiiiiee e e e 123
3 PHINIING. et 123
4. Length of Last Feed Operation...........ccocuueeeeiiiiiiieeeiiiiieeeniiieeeeens 125
5. BatCh PrintiNg......ocvvveiiiiiiiii et 125
Continued!

3

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

1. Contents, cont'd.

12. FONTS

13. BAR CODES

14. IMAGES

15. PRINTER FUNCTION CONTROL

16. ERROR HANDLING

17. REFERENCE LISTS

L. BIitMap FONES. ...t 128
2. Converting Outline Fonts VIBOOIDOX........c.cccveeeeiiiiiiiiiiiiieeeeeennn, 129
3. Converting Outline Fonts viacalable Fonts Kit................ccccco..... 129
4, Concerting ATF fONTS.........uiiiiiiiii e 129
5. LIStNG FONS ...ttt 130
6. SPECIAl FONLS......ciiiiiiiiiiie ettt e e e e e 130
1. Standard Bar COUES......ccuiiiiiiiiiiiiiiiiiiee et e e 131
2. Special Bar COUBS.......ocuiiiiiiiiiiee et 132
1. Images vs Image FileS..........ccooiiiiiiiiiiiiicc e 133
2. Standard IMAgES........ccooiiiiiiiiiiiiie e 133
3. Downloading Image Files..............eeeiiiiieiiiiiieeeee e 133
4. Listing and Removing IMagesS.......cueeeiieeeeeiiiiiiiieieeee e 134
L. KeYDO0Ard.......cceviiiieiiice e 135

 Controlling the Printer in the Setup, Test, and Immediate Modes ... 135

e ENabling the KeYS.......coouiiiiiiii e 135

o Key Id. NUMDETS.coiiiiiiiiiiiii e 136

o Key-initiated BranChing.............ccoiiiiieiiiiiiicieee e 137

e Audible K&y RESPONSE.cccvviiiiiiiie e 137

« Input from Printer's Keyboard............ccccceeeeveiiiiiiiiiiiieiec e, 137

e Remapping the Keyboard..............cccccoviiiiiiiiiiiiiieee e, 138
2. DISPIAY ...t 141

© OUIPUL O DISPIAY......eveeeeeiiiitiiee ettt 141

© CUISON CONIOL....uiiiiiiieee et 142
3. LED CONtrOl LAMPS...uuiiiiiiiiieeeeeiiiciiiiie e e e e e e e e e st ree e e e e e e e e e e 144
A, BUZZEI ... 145
5. ClOCK/CAIENUAL........cueeiie et 146
6. PrINTEr SETUD.....eeiiiiiiiiiie et 147

e Reading the Current SEtUP.........cueeveeiiiiiieeeiieeee e 147

o Creating a Setup File........coooiiiiiii e 148

e Changing the Setup using a Setup File............ccccovvivieenneeen, 148

e Changing the Setup using a Setup String.........cccccvvveveeeeeeninnnn, 148

e PRSETUP.PRG Utility Programi..........cccccvvevieeeeeeiiiiiiiiiieeeeeeeenn 149

e DISPSET2.PRG Utility Program...........ccccceeevviuviieeeiiiiiee s 150
7. System Variables... ... 154
8. PrINtN@A.......ueeeiiiiii e 156
9. Transfer RIDDON.........cooiiiiiii e 158
10, MEMOIY TSt ittt aeee 159
12, VErSioN CRECKoiuuiiiieiiiieiie et 160
1. Standard Error-HandliNg..........cooovviiiiiiiiiiiie e 161

© EITOr MESSAQES. ...cvvviiieiiieiii ettt ettt e e e e eee 161
2. Tracing Programming ErTOLS..........uvvivieeeeeiiiiiiiiiieeeee e e 162
3. Creating an Error-Handling ROULINE............ccvvvveeeiiiiiiiiiiiiieeeeeeeen, 163
4. Error-handling Program...........eeeooieeeeeiiiiieee et 164

* ERRHAND.PRG Utility Program...........ccccceeeeiiiiieeeiiniieee e, 164

« Listing of ERRHAND.PRG Utility Program............ccccccovvveeeeenne 166

e Extensions to ERRHAND.PRG Utility Program............c..cc....... 169
1. Instructions in alphabetical order...........cccccvvveeeiiiiiiiiiiieeeeeeee, 170
2. Instructions by Field of Application..............ccooceiiiiiiiieiiiiiiee e 175

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

Information in this manual is subject to change without prior notice and does not represent a commitmer
on the part of Intermec Printer AB.

© Copyright Intermec PTC AB, 1998. All rights reserved. Published in Sweden.

EasyCoder, Fingerprint, and LabelShop are trademarks of Intermec Technologies Corp..
Apple is a registered trademark of Apple Computer, Inc.

Bitstream is a registered trademark of Bitstream, Inc.

Centronics is a registered trademark of Centronics Data Computer Corp.

Crosstalk and DCA are registered trademarks of Digital Communications Associates, Inc.
IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation.
Speedo is a trademark of Bitstream, Inc.

TrueType is a registered trademark of Apple Computer, Inc.

Unix is a registered trademark of Novell-USG.

Windows is a trademark of Microsoft Corporation.

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

2. Preface

Intermec Fingerprinis a Basic-inspired, printer- that are common for allhtermec Fingerprint
resident programming language that has been @éempatible printer models from Intermec.

veloped for use with computer-controlled direch
thermal and thermal transfer printers manufactur
by Intermec Technologies Carp

information needed by the operator, like howto

the printer, how to load the paper supply and
how to maintain the printer, can be found in the
Thelntermec Fingerprinfirmware is an easy-to- Operator's GuidandJser's Manuafor the printer
use intelligent programming tool for label formatmodel in question and in the software manuals, e.g.
ting and printer customizing, which allows you tdntermec Shelbr Intermec Stand-Alone Concept
design your own label formats and write your OWfhe Technical Manualfor each printer model
printer application software. provides information on installation, setup, den-
You may easily create a printer program by yousity, paper specifications, positioning, and other
self that exactly fulfils your own unique requiretechnical data, which are specific for the printer
ments. Improvements or changes due to new dgedel in question. It also includes information on
mands can be implemented quickly and witho@ptional equipment like interface boards, sensors,
vast expenses. cutters, and memory cards.

This version (6.13) of thintermec Fingerprint Intermec Fingerprint 6.13upports:

programming language has been further enhancetiitermec Shell 4.01 Enhanced & Standard

by a number of new program instructions. It alsoStartup program fdeasyCodeprinters with or
includes théntermec Direct Protocdbr combin-| without a built-in keyboard

ing variable input data from a host with predefined Intermec Stand-Alone Concept

label layouts, but is still compatible with all its Startup program foEasyCoder Stand-Alone
forerunners. A concise list of new features is foundprinters, i.e. for printers without permanent
on next page. computer connection.

: : - * Intermec LabelSho
This tutorial manual describes how to start up A series of Iabel-egiting program for varrious

Intermec Fingerprinprogramming and how to use versions oMS Windows.

the various instructions in their proper cont Xi.l. Intermec Windows Drivers

e eatonbe] " For using anEasyCoderpinter wih mos
y. programs run under various versions N6

in a separatBrogrammer’s Guide Windows

Thelntermec Fingerprint Reference Manuan-
tains detailed information on all programming inFor the sake of brevity, in this manual, liermec
structions in thdntermec Fingerprintprogram-| brand will be implied in the names suclrasrmec
ming language in alphabetical order. It also cotFingerprint, Intermec Shelintermec LabelShop
tains other types of program-related informatioimntermec EasyCodestc.

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

3. News in Fingerprint 6.13 Compared to the last published version of Fingerprint Program-
mer's Guide, i.e. Fingerprint 6.0, this new version contains the
following improvements and enhancements:

» GeneralFingerprint enhancements:
New setup option for high resistance transfer ribbon (UBI HR
31) forEasyCoder 50%ith 11.81 dots/mm printhead density.

A paper cutter can now be fitted on all modelsadyCoder 501

» Corrections and improvements of RS 422/485 interface:
Previously, to decide between RS 422 and RS 485, the XON/
XOFF option “Data to host” was used. This has been changed
to look at “Data from host” instead, so as to allow the host to send
binary data on RS 422 to the printer with XON/XOFF flow
control.

RS 422 (4-wire):

PROT_ADDR=DISABLE; XON/XOFF DATA FROM HOST=ENABLE
RS 485 (2-wire) point-to-point;

PROT_ADDR=DISABLE; XON/XOFF,DATA FROM HOST=DISABLE
RS 485 (2-wire) multidrop loop:

PROT_ADDR=ENABLE; XON/XOFF DATA FROM HOST=DISABLE

Not used:
PROT_ADDR=ENABLE; XON/XOFF,DATA FROM HOST=ENABLE

Previously, when

PROT_ADDR=DISABLE; XON/XOFF,DATA FROM HOST=DISABLE

was selected, the printer was erroneously put into send mode.
The only way around this was to send a character to the port.
Now, the interface is set to reception mode and the dummy write
is no longer necessary.

» Improvements of RS 485 interface:
After the port has been set for transmission, a delay for at least
10 msisinserted before writing the data. This is done to take care
of a hardware deficiency, which states that a stabilization time
is needed after the loop has been turned.

A possible break character is taken carersfif_ADDR=ENABLE
and break handling for the RS 485 channel is enabled.

Previously, itwas not possible to use addressees over 9, when the
printer was appointed “master”. Now, it is possible to use
addresses 0 — 31.

Continued!

7

Intermec Fingerprint 6.13 — Programmer's Guide

1. INTRODUCTION, cont'd.

3.

News in Fingerprint
6.13, cont'd.

Extended Instructions:

ERROR

This statement now can set a specified error, in addition to
enabling error-handling and creating error messages in the
Direct Protocol

FILE& LOAD

An optional leading parameter has been added that specifies the
number of characters to ignore before the real data. This makes
it possible to use the instruction as an MS/DOS command (CR/
LF problem). The instruction is compatible wimgerprint

6.0.

IMAGE LOAD

An optional leading parameter has been added that specifies the
number of characters to ignore before the real data. This makes
it possible to use the instruction as an MS/DOS command (CR/
LF problem). The instruction is compatible wimgerprint

6.0.

LAYOUT

Two layout types have been added:

E = Bar code extended field, sets up complex bar code in regard
of:

- Security

- Aspect height

- Aspect width

- Rows in bar code

- Column in bar code

- Truncation

This corresponds to the 6 last parameters in the BARSET
statement.

J = Baradjust (adjust left or adjust right)

This corresponds to the BARADJUST statement.

SYSVAR
New parameter. SYSVAR (25). Not intended for public use.

VERSIONS
Support€EasyCoder 401 Linerlessxd CPU board 1-040700-
30.

New Instruction:

FONT LOAD

This instruction downloads and converts .ATF fonts to the
printer's internal font format.

Remaining bugs and limitations:
Please refer tmtermec Fingerprint 6.1Reference Manual.

Intermec Fingerprint 6.13 — Programmer's Guide

2. GETTING STARTED

1. Computer Connection TheFingerprintfirmware is stored in two EPROM packages fitted
on the printer's CPU board at delivery (IC-1 & IC-EasyCoder
201 11, 1C-100 & IC-101 inEasyCoder 401/501/60INo floppy
disks or operative system, like e.g. MS-DOS, is required. The
printer only needs to be connected to a mains supply.

Unless the printer is fitted with a program that allows it to be used
independently (“stand-alone”), you must also connect it to some
kind of device, which can transmit characters in ASCII format. It

can be anything from a non-intelligent terminal to a mainframe

computer system.

For programming the printer, you need a computer with a screen
and an alphanumeric keyboard, that provides two-way serial com-
munication, preferably using RS 232C, (e.g. a personal computer
with Microsoft Windows 3.2L Use e.gWindows Notepadr
Write for writing programs an@/indows Termingior communi-
cation with the printer.

Connect the printer and host as described ifielsbnical Manual
for the printer model in question. If the printer has several commu-
nication ports, it is recommended to use the serial port "uart1:" for
programming, which by default is set up for RS 232C. Other serial
communication ports could also be used, seBdblenical Manual

1. Although most examples in this manuafc’r the printer model in question.

assumes ?oggrséti%nsnyig?eMsschigg%ﬂ is possible to set up the printer's communication protocol to fit the
used, e.g. Windows 95, Windows NTﬁost computer. However, until you have become familiar with the

DOS, Mac 0S, 0S-2 etc, as long you havingerprintconcept, itmay be easier to adapt the hostto the printer's

aterminal programthat can communicatedefault setup parameters:
with the printer and some kind of word

processing program. Default communication setup on "uartl:"
_ » Baud rate: 9600
[J Communication Setup « Parity: None
Also see: «Ch ' ter | th: 7
+ Chapter 15.6 aracter length.
» Technical Manual * No. of stop bits: 2
* Flow control: XON/XOFF to and from host
* New line: CRI/LF (Carriage Return + Line Feed)
2. Check Paper Supply Check that the printer has an ample supply of paper or other
receiving material and, when applicable, of thermal transfer ribbon.
[7 Paper and Ribbon Load Refer to theOperator's Guideor theUser's Manuafor loading
Also see: Instructions.

* Operator's Guide
 User's Manual

(e}

Intermec Fingerprint 6.13 — Programmer's Guide

2. GETTING STARTED, contd.

3. Turn On the Printer

4. Shell Startup Program

[J] Shell Startup Programs
Also see:
* Intermec Shell Startup manuals

5. Stand-Alone Program

[J Stand -Alone Program

Also see:

* Intermec Stand-Alone Concept,
Operating Instructions

Checkthatthe printhead is lowered. Turn on the main switch, which
usually isfitted on the printer's rear plate and check that the “Power”
control lamp comes on. Then watch the display window. What
happens next depends on what kind of startup file there is in the
printer.

WARNING!
Make sure that any paper cutter is locked in closed position.
The cutter may be activated when the power is turned on!

After a short while, when the printer has performed certain self-
diagnostic tests and loaded the startup program, a countdown menu
will usually be displayed:

ENTER=SHELL or PRINT=SHELL
5sec. v.4.01 5.sec] v.4.01

These menus indicate that the printer is fitted with one &ttleé
startup programs (standard or enhanced). Wait until the 5 seconds
countdown is completed. Then, by default, this menu will be
displayed:

Fingerprint
6.13

This or similar messages indicates that the printer has entered the
immediate mode @fingerprint, where you can start your program-
ming. Please proceed at chapter 2.10.

If the Shellcountdown menus are shown, but are followed by any
other message thdintermec Fingerprint 6.xx; some other
application has already been select&hiall Refer to théntermec
ShellStartup Manuals for information on how to selecRinger-

print option.

If the following menu is displayed after power-up, the printer is
fitted with theStand-Alongrogram (also indicated by the special
keyboard on the printer):

Select Mode
1:Run 2:S&

You can break the Stand-Alone program and enter the immediate
mode ofFingerprintby pressing theG> + <Pause> keys Easy-
Coder 201 lISA or <Shift> + <Pause> keys EasyCoder 501 A
and then enter the password 1138. The printer will enter the
immediate mode with the communication parameters reset to
default values. Proceed at chapter 2.10.

Continued!

10

Intermec Fingerprint 6.13 — Programmer's Guide

2. GETTING STARTED, contd.

6. No Startup Program

7. Custom-Made
Startup Program

8. Breaking a Startup
Program

[] Breaking a Program
Also see:
» Chapter5.12

If the printer is not fitted with any startup program at all, the display
window should show the following message directly after power-
up:
Fingerprint
6.13

This means that the printer has entdfggyerprint'simmediate
mode. Proceed at chapter 2.10.

If any other kind of message is displayed than those illustrated
above, the printer is provided with some kind of custom-made
startup program, which you must break before you can start
programming.

« Ifthe printeris equipped with a keyboard, or if the way of breaking
the program is known, go on to chapter Bgeaking a Startup
Program”.

* If the printer is not equipped with a keyboard and the method of
breaking the program is not known (or is missing), go on to
chapter 2.9,Bypassing a Startup Program”

The following method requires that the printer is either fitted with
a keyboard or that the way of breaking the program is known.

Default Method (break from keyboard)
 Press the€> key and keep it pressed down while also pressing
the Pause key.

Other Methods

» The program may be provided with other means for breaking the
program, e.g. by sending a certain character from the host or by
pressing another key or combination of keys. Break from keyboard
may also be disabled completely.

When a break interrupt has been executed and you have entered the
immediate mode, there will be no change inthe printer's display, but

a message should appear on the screen of the host, provided you
have a working two-way communication:

User break in line XXXX

How to go on

* If you cannot break the program from the keyboard and do not
know how to break the program from the host, go on to chapter
2.9.

* Ifyou have succeeded in breaking the program, proceed at chapter
2.10.

11

Intermec Fingerprint 6.13 — Programmer's Guide

2. GETTING STARTED, contd.

9. Bypassing a Startup

Program

[J Test Mode
Also see:
» Service Manual

The following methods are only recommended as a last resort,
when there is no other way of breaking a startup program.

By default, there is no facility for breaking a startup file in a printer
without a keyboard. Although a break interrupt can be issued from
the host, this option is disabled by default. Thus, the startup file
should always be provided with some facility for issuing a break
interrupt from the host. Refer to the instructions for the program in
question.

If such a facility still is missing, or you do not have the required

information, you may use the Test Mode to bypass the startup

program, provided your printer is fitted with a keyboard:

* Turn off the printer.

* Lift the printhead.

* Press theRrint > key and keep pressing it while you turn on the
power. Do not release th@kint > key yet.

« After half a minute or less, the printer will enter the Test Mode,
which is indicated by this message:

TESTMODE:
TESTPRINT

* Nowyou canrelease thBrint > key. The Test Mode is primarily
intended for factory and service tests (sesStmwice Manudl
but it also contains another facility which is very convenient in
this situation.

* Press the 8etup> or <Save> key. A new message is displayed:

Fingerprint
6.13

The printer has now enterethgerprint'simmediate mode, ignor-

ing the startup file. The communication parameters have been reset
to their default values and the standard IN/OUT channel has been
set to "uartl:".

If nothing else works, you may neeg
remove the configuration EPROM's
memory card containing the start
program.

Furthermore, if the startup progra
resides in the RAM memory, you ma
forced to erase the entire RAM mem
by removing all RAM packages from
CPU-board, wait for a few minutes a
thenreinstallthe RAM packages. Fina
restart the printer. Note that this m
cause valuable data to be lost!

I toNote that this does only apply until you restart the printer without
or entering the Test Mode. Then the startup file with its original setup
HPand choice of communication channel will become effective again.
However, after entering Fingerprint via the Test Mode you can
™ KILL the startup program and — if so desired — recreate it later, see

’;tr);chapter 5.13 “Creating a Startup Program”.

the

nd Proceed at chapter 2.10.
lly

ay

12

Intermec Fingerprint 6.13 — Programmer's Guide

10. Communications Test

[0 Version Check
Also see:
 Chapter 15.11

[J Communication Setup
Also see:

 Chapter 15.6

* Technical Manual

[J Verbosity
Also see:

o Chapter 7.7
 Chapter 15.7

[0 Intermec Shell
Also see:
* Intermec Shell Startup manuals

[J] Text Field Printing
Also see:
 Chapter 10.2

[J Character Sets

Also see:

e Chapter9.1

* Intermec Fingerprint Reference
Manual

Check that you have entered the immediate mode and have a
working two-way serial communication by sending a simple
instruction from the host to the printer. On the keyboard of the host,
type:

? VERSION$ [(O = Carriage Return key)

The printer should respond immediately by returning the version of
the installed=ingerprintfirmware to the screen of the host, e.g.:
Fingerprint 6.13

Ok

This indicates that the communication is working both ways.

If the communication does not work, turn off the printer and check
the connection cable and CPU board straps. Also check if the
communication setup in the host corresponds to the printer's setup
and if the connection is made between the correct ports. Check the
verbosity level. Then try the communication test again.

Another possible cause of error may be that another communication
channel than "uartl:" has been selectedriiogerprintin Shell
Reselect thEingerprintapplication for "uart1:" as described in the
Shellstartup manuals.

Once you know that the communication is working, you may go on
and send a line of text to make sure that characters transmitted from

the terminal are interpreted as expected by the printer's firmware:
FONT "SWO030RSN" [

PRTXT "ABCDEFGHIJKLM" [

PRINTFEED [

Each line will be acknowledged by “Ok” on the screen, provided
that it has been entered correctly, that there is a working two-way
serial communication, and that the verbosity is on. When you press
the “Carriage Return” key the third time, the printer will feed out a
label, ticket, tag or piece of strip with the text printed near the lower
left corner of the printable area.

BCDEFGHIIJKLM

Try using other characters between the quotation marks in the third
line, especially typical national characters like AAOU¢ ¢¥c etc.
Should any unexpected characters be printed, you may need to
select another character set, see NASC statement in chapter 9.1, or
switch from 7-bit to 8-bit communication.

13

Intermec Fingerprint 6.13 — Programmer's Guide

3. CREATING A SIMPLE LABEL

1. Introduction To get a quick impression of hokingerprint works, start by
creating a simple label following the step-by-step instructions
below. Later in this manual, the various functions will be explained
in greater detail. You can also look up the instructions in the
Intermec Fingerprint 6.13 Reference Manual

Use aword processing program, @/indows Notepadb enter the
L1 Carriage Return Character program lines. Use a space character to separate the line number
.A'Sé%;efér i1 from the instruction that follows. Finish each line with a carriage

prer return character, indicated bybelow.

When you have entered a batch of program lines, copy the lines and
paste them into acommunication program\&igdows Terminal
which is connected to the printer (see chapter 2.11).

The printer will not execute the program until you have entered
RUN + Carriage Return.

2. Printing a Box Let us start by printing a box 400 dots high and 300 dots wide with
a line thickness of 10 dots. The box is inserted at position X=10,
Y=10:

NEW

10 PRPOS10,10 O

20 PRBOX400,300,10 O
200 PRINTFEED O

[J Box Field Printing
Also see:
 Chapter 10.5

300 END O

RUN O

Note: The printer does not execute the program until you have typed
RUN.

Y

A =

+ — v,

Note:

This example is designed to be run on any present Fingerprint 6.13-compatible
EasyCoder printer connected to a terminal or computer and loaded with a paper
web (preferably labels) according to the following specifications.

Label size:
Width: >528mm (2.08")
Length: =70 mm (2.75"

Continued!

14

Intermec Fingerprint 6.13 — Programmer's Guide

3. CREATING A SIMPLE LABEL, contd.

3. Printing an Image

[J Image Field Printing
Also see:
 Chapter 104

4. Printing a Bar Code

[J Bar Code Field Printing
Also see:
 Chapter 10.3

5. Printing Human
Readables

Now we add the image "GLOBE.1" after changing the position
coordinates to X=25,Y=25.

30 PRPOS2525 O
40 PRIMAGE "GLOBE.1" O
RUNO

(¥

Before you printa bar code, you need to choose a bar code type. We
will use Code 39, which allows alphanumeric input. Note there is
no blank space in the bar code name in the BARTYPE instruction.
50 PRPOS75250 O

60 BARTYPE "CODE39" [

70 PRBAR"ABC" 0
RUN O

Ml
(¥

To get the bar code input data printed as human readable text under
the bar code, add these lines:

1 BARFONT ONO
2 BARFONT "SWO30RSN" [
RUNDO

| e——— |
ABC

Continued!

15

Intermec Fingerprint 6.13 — Programmer's Guide

3. CREATING A SIMPLE LABEL, contd.

6. Printing Text Add a line of text at position X=25,Y=200:
ield Printi 80 PRPOS25200 [
ﬂsoriéf’e’d printing 90 FONT "SWO30RSN" [
' 100 PRTXT "My FIRST Label" O
 Chapter 10.2 RUN D

My FIRST label

(¥

ABC

7. Listing the Program To view the whole program, type:
LIST O

O Program Editing and Listing The program lines will be listed in ascending order on your
Also see: terminal's screen:

o Chapter 5.4
1 BARFONT ON
2 BARFONT "SWO030RSN"
10 PRPOS 10,10
20 PRBOX 400,300,10
30 PRPOS 25,25
40 PRIMAGE "GLOBE.1"
50 PRPOS 75,250
60 BARTYPE "CODE39"
70 PRBAR "ABC"
80 PRPOS 25,200
90 FONT "SWO030RSN"
100 PRTXT "My FIRST label"

200 PRINTFEED
300 END
ok
8. Changing a Program If you want to change a program line, simply rewrite the line using
Line the same line number. For example, move the text to the right by

rewriting line number 80 with new coordinates:

80 PRPOS75200 O
RUNDO

My FIRST label

@ Continued!

ABC

16

Intermec Fingerprint 6.13 — Programmer's Guide

3. CREATING A SIMPLE LABEL, contd.

9. Saving the Program If you want to save your first attempt, issue the following instruc-
. tion:

[Saving

Also see: SAVE "LABEL1" [

» Chapter5.13 - . . , .
Your program will be saved in the printer's memory under the name:
LABEL1.PRG

10. Error Handling The program above is very simple and there is a very small risk of

encountering any errors. When writing more complex programs,
you might find use for an errorhandler. For that purpose we have

[J ERRHAND.PRG installed a program called ERRHAND.PRG in the standard Con-

A'%% See. 164 figuration EPROM's. Should your printer not contain any error-

» Chapter 16 handling program, you will find ERRHAND.PRG listed in chapter
16.4.

ERRHAND.PRG contains subroutines that e.g. displays the type of
error on the printer's LCD display (e.g. "OUT OF PAPER" or
"HEAD LIFTED"), prints the error number on your screen, and
assigns subroutines to some of the keys on the keyboard (if any).
There is also a subroutine that performs a PRINTFEED with error-
checking. The ERRHAND.PRG occupieslines 10, 20 and 100000—

1900000.
11. Renumbering Lines If ERRHAND.PRG is merged with the program you just wrote,
_ _ lines 10 and 20 in your program will be replaced with lines 10 and
[0 Renumbering Program Lines 20 from ERRHAND.PRG. Therefore you have to renumber your

Also see:

. Chapter 5.4 program, so that your program begins with an unoccupied number,

e.g. 50, before ERRHAND.PRG is merged:

RENUM 50,1,10 [
Ok

LIST O

50 BARFONT ON

60 BARFONT "SWO030RSN"
70 PRPOS 10,10

80 PRBOX 400,300,10

90 PRPOS 25,25

100 PRIMAGE "GLOBE.1"
110 PRPOS 75,250

120 BARTYPE "CODE39"
130 PRBAR "ABC"

140 PRPOS 25,200

150 FONT "SWO030RSN"
160 PRTXT "My FIRST label"
170 PRINTFEED

180 END

ok

Continued!

17

Intermec Fingerprint 6.13 — Programmer's Guide

3. CREATING A SIMPLE LABEL, contd.

12. Merging Programs

O Merging programs
Also see:

 Chapter 6.3

13. Using the Print Key

[J Branching and Loops
Also see:

 Chapter 5.6 (GOTO)
 Chapter 5.7 (GOSUB)

Note:
The designations of the keys and but
in ERRHAND.PRGefer to the standar
type of keyboard of the “Enhance

models.

Now your label-printing program LABEL1.PRG will not interfere
with ERRHAND.PRG and you can merge the two programs into
asingle program. Infact, you will create a copy of ERRHAND.PRG
which is merged into LABEL1.PRG. Thus the original
ERRHAND.PRG can be merged into more programs later:

MERGE "rom:ERRHAND.PRG" [J

Instead of using a PRINTFEED statement, we will use a subroutine
in ERRHAND.PRG. Because ERRHAND.PRG assigns functions
to e.g. the PRINT key, you can create a loop in the program so you
will get a label every time you press the PRINT key.

160 GOSUB 500000 [

170 GOTO 170 O
RUNDO

If your printer is fitted with a membrane keyboard, try pressing

tonglifferent buttons on the printer's keyboard. Only those, to which
d functions been assigned in ERRHAND.PRG (i.e. tRause,
d" <Print>, <Setup> and Feed> keys), will work.

You can break the program by simultaneously pressingGhe <
and Pause> keys.

Save the program again using the same name as before:
SAVE "LABEL1"

The previously saved program "LABEL1.PRG" will be replaced
by the new version.

With this example, we hope you have got a general impression of
the basic methods for Intermec Fingerprint programming and that
you also see the advantages of using ERRHAND.PRG or a similar
program for errorhandling and initiation.

ERRHAND.PRG can easily be modified to fit into more complex
programs and we recommend that you use it when writing your
programs until you feel ready to create errorhandling programs
yourself (see chapter 16 “Error Handling”).

18

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX

1. Lines

Note:

If you enter a carriage return on yo
terminal, the printer will, by defaul
echo back a Carriage Return + a Li
Feed (ASCII 13 + 10 decimal). Usi
the setup option “New Line", you m
restrict the printer only to echo ba
eithera Carriage Return (ASCII 13 de
or a Line Feed (ASCII 10 dec.).

ur
t,
ne
ng
ay
ck
c.)

[J Programming Mode
Also see:
 Chapter 5.4

[J Immediate Mode
Also see:
e Chapter5.3

[J Intermec Direct Protocol

Also see:

* Intermec Direct Protocol,
Programmer's Guide

2. Statements

[J Keywords
Also see:
 Chapters 4.7and 4.8

You will always use one or several lines to give the instructions to
the printer, regardless whether you work in the immediate mode, in
the programming mode, or in tBérect Protocol The difference

Is that in the programming mode, the linesaweays numbered
(visibly or invisibly), whereas in the immediate mode and the
Direct Protoco| they must not be numbered.

A line may contain up to 300 characters. A line must always be
terminated by a Carriage Return character (ASCII 13 decimal), see
note. When the line reaches the right edge of the screen of the host,
it will usually wrap to the next screen line.

Theoretically, line numbers up to > 2 billion can be used. If you
choose to enter the line numbers manually, start by numbering the
lines from 10 and upwards with an increment of 10, i.e. 10, 20, 30,
40 etc. That makes it possible to insert additional lines (e.g.
11,12,13...etc.), when the need arises. However, the line numbers
are your own decision, since you must type them yourself.

You can also omit line numbers at edition and let the software
number the lines automatically. Such line numbers will not be
visible before the program is listed.

After having typed the line number, use a blank space to separate
it from the statement or function that follows. That makes it easier
to read the program without having to list it.

Several instruction may be issued on the same line, provided they
are separated by colons (), e.g.:

100 FONT "SWO30RSN":PRTXT "HELLO"

This is especially useful in the immediate mode (see chapter 5.3)
and in theDirect Protoco] where you can send a complete set of
instructions as a single line, e.g.:

PP100,250:FT"SWO050BSN":PT"Text 1":PF O

It is not possible to alter a line after it has been transmitted to the
printer. If you want to change such aline, you must send the whole
line again using the same line number, or delete it uSEYETE
statement (see chapter 5.4).

A statement is an instruction, which specifies an operation. It con-
sists of akeyword (e.g. PRTXT), usually followed by one or several
parameters, flags, or input data, which further define the statement.

The keyword can be entered as uppercase or lowercase letters but
will always appear as uppercase letters, when the program is listed
on the screen of the host. Some keywords can be used in an
abbreviated form, e.g. PRTXT may also be entered as PT.

Continued!

19

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX, cont'd.

2. Statements, cont'd.

3. Functions

[J Keywords
Also see:
» Chapter4.7amd 4.8

[J Operators
Also see:
» Chapter 4.9

[J Conditional Instructions
Also see:
o Chapter5.5

4. Other Instructions

5. Expressions

You may use a blank space to separate the keyword from the rest of
the statement, which must be entered exactly according to the
specified syntax. Note that in some cases, a space character is a
compulsory part of the keyword, e.g. LINEPUT. When suchiis

the case, itis indicated by the syntax description iRitigerprint
Reference Manual

Afunctionis aprocedure, whichreturns avalue. A function consists
of a keyword combined with values, flags, and/or operators. The
keyword can be entered as uppercase or lowercase letters, but it will
always appear as uppercase letters, when the programis listed onthe
screen. Values, flags, and operators must be enclosed by parenthe-
ses (). The operators will be explained later on.

Examples:

CHR$(65) Keyword with parameter

TIMES("F") Keyword with flag

ABS (20*5) Keyword with arithmetic operator (*) and
values

IF(PRSTAT AND 1)... Keywords, logical operator (AND) and
value

A function can be entered inside a statement or on a line containing
other instructions. They are often used in connection with condi-
tional statements, e.g.:

320 IF (PRSTAT AND 1) THEN GOTO 1000

Blank spaces may be inserted to separate the function from other
instructions and also to separate the keyword from the rest of the
statement.

In addition to statements and functions, there are a few other types
of specialized instructions such as the DATE$ and TIMES$ vatri-
ables, the SYSVAR system array and the PCX2BMP external
command, which do not fit into the above-mentioned categories.

In the descriptions of the syntax for the various instructions, the
word “Expression” is used to cover both constants and variables.

Expressions are of two kinds:

* String expressiongre carriers of alphanumeric text, i.e. string
constants and string variables. Numbers are treated as text, not as
values.

» Numeric expressionsontain numeric values and operators, i.e.
numeric constants and numeric variables.

Continued!

20

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX, cont'd.

6. Constants

7.

Variables

Constants are fixed text or values. There are two kinds:

« String constants@re sequences of characters, i.e. text. If digits or
operators are included, they will be considered as text and will not
be processed. String constants must always be started and
terminated by double quotation marks ("..."), for example
"LABEL1.PRG'.

* Numeric constantsare fixed numeric values. Only decimal
integers are allowed, i.e. 1, 2, 3, 4, 5 etc. Decimal points (e.g.
1.56890765) are not supported. Values may be positive or
negative. Positive number may optionally be indicated by a
leading plus sign (+), whereas negative numbers always must be
indicated by a leading minus sign (-).

Note that certain characters, e.g. digits, can be either string
constants (text) or numeric constants (numbers). To allow the
firmware to detect that difference, string constants must always be
enclosed by double quotation marks (""), as opposed to numeric
constants.

Variables are value holders. There are two main types:

« String variablesare used to store strings entered as string constants
or produced byingerprintinstructions. Max. size is 64 kbytes.
String variables are indicated by a trailing $ sign.

Examples:

A$ = "EASYCODER PRINTER"

B$ = TIMES$

LET C$ = DATE$

Numeric variablesare used to store numbers, entered as numeric
constants, or produced Bingerprintinstructions or operations.
Numeric variables are indicated by a trailing % sign.

Examples:

A% = 150

B% = DATEDIFF ("981001",'981130")

LET C% =22

The name of a variable may consist of letters, numbers and decimal
points. The first character must always be a letter. No keywords or
keyword abbreviations must be used. However, completely em-

bedded keywords are allowed.

Examples:

LOC is a keyword
CLOCK$ ="ABC" is OK

LOC$ ="ABC" causes an error
LOCKS$ ="ABC" causes an error.

Continued!

21

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX, cont'd.

8. Keyword List The presently used keywords and keywords reserved for future

program enhancement are listed below.

BT FONTS LOAD PRBAR SPC

' BUSY FOR LOC PRBOX SPLIT

(CHDIR FOR APPEND AS | LOCATE PRIMAGE STEP

) CHECKSUM FOR INPUT AS LOF PRINT STOP

* CHR$ FOROUTPUT AS |LSET PRINT USING STORE

+ CLEANFEED FORMAT LTS& PRINTFEED STR$

, CLEAR FORMFEED MAG PRINTONE STRINGS

- CLL FRE MAP PRLINE SWAP

/ CLOSE FT MERGE PRPOS SYSTEM

; COM ERROR FUNCTEST MID$ PRSTAT SYSVAR

; COMBUF$ GET MOD PRTXT TAB

< COMSET GOSUB NAME PT TESTFEED
<= COMSTAT GOTO NASC PUT THEN

<> CONT HEAD NEW PX TICKS

= COPY HEX$ NEXT RANDOM TIMES

=< COUNT& HOLIDAY$ NI RANDOMIZE TIMEADD$
= CSRLIN IF NORIMAGE READ TIMEDIFF
> CSUM I NOT READY TO

>< CuTt IMAGE OFF REBOOT TRANSFER
>= DATA IMAGENAMES$ OFF LINE REDIRECT OUT TRANSFER$
? DATES$ IMAGES ON REM TRANSFERSET
ABS DATEADD$ IMMEDIATE ON BREAK REMOVE TROFF
ACTLEN DATEDIFF IMP ON COMSET RENUM TRON
ALIGN DELETE INKEY$ ON ERROR GOTO | RESET VAL

AN DEVICES INPUT ON KEY RESTORE VERBOFF
AND DIM INPUT$ ON LINE RESUME VERBON
AS DIR INSTR OPEN RESUME NEXT VERSIONS$
ASC ELSE INT OPT RETURN WEEKDAY
BARADJUST END INVIMAGE OPTIMIZE RIBBON WEEKNUMBER
BARFONT EOF IP OR RIGHT$ WEND
BARHEIGHT EQV KEY PB RND WHILE
BARMAG ERL KEYBMAP$ PEC2DATA RSET WRITE
BARRATIO ERR KILL PEC2LAY RUN XOR
BARSET FF LAYOUT PECTAB SAVE XYZZY
BARTYPE FIELD LBLCOND PF SET FAULTY DOT |\

BEEP FIELDNO LED PL SETSTDIO n

BF FILE& LEFTS PLAY SETUP

BH FILES LEN PM SGN

BM FIX LET PORTIN SORT

BR FONT LINE INPUT PORTOUT SOUND

BREAK FONTNAMES$ LIST PP SPACE$

22

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX, cont'd.

9. Operators

There are three main types of operators — arithmetic, relational, and
logical:

Arithmetic Operators (integers only)

+ Addition (e.g. 2+ 2 = 4)

- Subtraction (e.g. 41 = 3)

* Multiplication (e.g. 2* 3 = 6)

\ Integer division (e.g. 62 = 3)

MOD Modulo arithmetic (results in an integer value which is the
remainder of an integer division, e.g. 5SMOD2 = 1)

A Exponent (e.g. 5" 2 = 25)

Parentheses can be used to specify the order of calculation, e.g.:
7+5"2\8 = 10
(7+5"2)\8 = 4

Relational Operators

< less than

<= lessthan or equal to

<> notequalto

= equal to (also used as an assignment operator)
> greater than

>= greater than or equal to

Relational operators return:
-1 if relation is TRUE.
0 if relation is FALSE.

The following rules apply:

* Arithmetic operations are evaluated before relational operations.

* Letters are greater than digits.

» Lowercase letter are greater than their uppercase counterparts.

» The ASCII code “values” of letters increase alphabetically and
the leading and trailing blanks are significant.

* Strings are compared by their corresponding ASCII code value.

Logical Operators

AND conjunction
OR disjunction
XOR exclusive or
EQV equivalent

Logical operators combine simple logical expressions to form more
complicated logical expressions. The logical operators operate
bitwise on the arguments, e.g.:

1AND2=0
Logical operators can be used to connect relational operators, e.g.:
A%10 AND A%<100

Continued!

23

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX, cont'd.

9. Operators, cont'd.

Logical operators can also be used to mask bits, e.g.:
A%=A% AND 128

The principles are illustrated by the following tables, where A and
B are simple logical expressions.

Logical operator: AND

Logical operator;: OR

A B A AND B A B AORB
1 1 1 1 1 1
1 0 0 1 0 1
0 1 0 0 1 1
0 0 0 0 0 0

Logical operator: XOR

Logical operator: EQV

A B A XOR B A B AEQVB
1 1 0 1 1 1
1 0 1 1 0 0
0 1 1 0 1 0
0 0 0 0 0 1

24

Intermec Fingerprint 6.13 — Programmer's Guide

4. TERMINOLOGY AND SYNTAX, cont'd.

10. Devices

“Device” is a generic term for communication channels, various
parts of the printer's memory, and operator interfaces such as the
printer's display and keyboard.

Name No. Canbe OPENed for.. Remarks

[J Files

Also see:

e Chapter6 (File system)

 Chapter 7 (Input, Append, Random)
e Chapter8 (Output, Random)

Communication:

console; 0 Input/Output Printer's display/keyboard unit

uartl: 1 Input/Output Serial communication

uart2: 2 Input/Output Serial communication

uarts: 3 Input/Output Serial communication

centronics: 4 Input Parallel communication

rs485: 2 Input/Output Serial communication (RS 485)

prel: N/A Input/Output Serial communication (RS 485)

Memory:

rom: N/A Input (files only) Printer's internal EPROMSs plus
non DOS-formatted memory card

ram: N/A Input/Output/Append/ Printer's internal RAM memory

Random (files only)
cardl: N/A Input/Output/Append/ DOS-formatted memory card
Random (files only)

Special:

msg: N/A Input/Output Implementation of SITA/CUTE 2
par: N/A Input/Output Implementation of SITA/CUTE 2
bscrypt. N/A N/A Internal use only

null: N/A N/A Internal use only

cutter: N/A N/A Internal use only

ind: N/A N/A Internal use only

The devices can be listed by means of a DEVICES statement. All
devices will be listed regardless if they are installed or not.

Devices are referred to by name in connection with instructions
concerning directories (e.g. SAVE, KILL, FORMAT) and with
OPEN statements. Note that the names of all devices should end
with a colon (:) and the name should be enclosed by double
guotation marks, e.g. "ram:". Upper- or lowercase characters in the
name do not matter.

Ininstructions used in connection withcommunication (e.g. BREAK,
BUSY/READY, COMSET), the keyboard/display unit and the
communication channels are specified by numbers instead of
names:

"console:"

"uartl:"

"uart2:"/"rs485:"

“uart3:"

“centronics:"

AWNEFO
I mmnn

25

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING

1. Introduction

2. Editing Methods

[J Computer Connection
Also see:
e Chapter2.1

O Verbosity
Also see:

 Chapter 7.7
 Chapter 15.7

[] Error Messages
Also see:
 Chapter 16.1

The Fingerprint firmware works in two main modes,‘themedi-
ate Mode”and the'Programming Mode" A special case is the
Direct Protoco) which is described in a separ@@grammer's
Guideand will not be explained any further in this manual.

Immediate Modenplies that the instructions are executed at once
as soon as a carriage return is received. Most instructions can be
used, but the instructions cannot be saved after execution.

Programming Modes used to enter instructions in the form of
program lines. The lines can be manually provided with visible line
numbers at editing, or be automatically provided with invisible line
numbers by the printer's firmware. No execution is performed until
a RUN statement is issued in the Immediate Mode, i.e. on a line
without number. The program can be saved in the printer's memory
and used again.

To be able to program a printer, you need a terminal or host
computer with a screen and a keyboard and a working two-way
serial communication between printer and host, preferably RS
232C on communication channel "uartl:". The host must be able to
transmit and receive ASCII characters, e.g. by means of a commu-
nication program lik&Vindows Terminal

There are three main methods of writing and transmitting a program
to the printer:

e Line-by-Line Method
Ifyou have an “non-intelligent” terminal that just can transmitand
receive ASCII characters, you must write and send each line
separately.

Each line will be checked for possible syntax errors as soon as the
printer receives itand the printer will return either “Ok” or an error
message to the screen of the host, provided verbosity is on.

If you need to correct a mistake, you must rewrite the complete
line using the same line number. Thus, this method is not suited
for the programming without line numbers.

Note that even if most examples of computer connection in this

manual assumes a PC running under MS Windows 3.11, Finger-

print is by no means restricted to such computers. Other personal

computers and operating systems, such as DOS, Windows 95,
Windows NT, Mac OS, OS-2, Unix etc., as well as larger computer

systems, can be used following the same principles.

Continued!

26

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

2. Editing Methods, cont'd.

[J Verbosity
Also see:

» Chapter 7.7
 Chapter 15.7

[] Error Messages
Also see:
 Chapter 16.1

3. Immediate Mode

 Copy-and-Paste Method
If the host computer is fitted with both a communication program
(e.g.Windows Termingland a word-processing program (e.g.
Windows WriterWindows Notepgdyou can write the program,
partly or completely, in the word processor and fGepyand
Pasteit into the communication program.

Each line will be checked for possible syntax errors as soon as the
printer receives it and the printer will return an error message after
each line where an error has been detected, provided verbosity is
on.

If you need to correct a mistake, you can make the correction in
the word processor and then copy and paste the line into the
communication program. If you do not use line numbers, you
mustCopyandPastethe complete corrected program back to the
communication program.

Send Text Method

If the host computer is fitted with both a communication program
(e.g.Windows Terminaland a word-processing program (e.g.
Windows WriterWindows Notepggyou can write the program,
partly or completely, in the word processor and send the whole
text file to the printer by means of the communication program
(e.g."Transfers; Send Text Filein Windows Terminal

Each line will be checked for possible syntax errors as soon as the
printer receives it and the printer will return an error message after
each line where an error has been detected, provided verbosity is
on.

If you need to correct a mistake, you can make the correction in
the word processing program and then send the complete program
again via the communication program.

The Immediate Mode can be used for four main purposes:

* Printing of labels that you will never need to print again.

* Printing of labels, which have been edited and saved in the host
computer and are downloaded as text strings to the printer.

« Editing of programs to be executed in the programming mode.

* Issuing of instructions outside the execution of programs in the
programming mode, e.g. DELETE, LOAD, MERGE, NEW,
REBOOT or RUN.

Rather than creating programs in the Programming Mode, in some
cases you may want to edit the label in your host computer and
transmit the printing instructions and data to the printer in the form
of text strings.

Continued!

27

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

3. Immediate Mode,
cont'd.

[J] Standard Error-Handling
Also see:
 Chapter 16.1

[J Intermec Direct Protocol

Also see:

* Intermec Direct Protocol,
Programmer's Guide

To make the strings shorter, use Eiegerprint abbreviations.
Several statements can be issued on the same line separated by
colons (), or on separate lines.

Examples:

A line of text can be defined and printed this way....
PP160,250:DIR3:AN4:FT"SWO030RSN":PT"Hello":PF O

or this way...

PP160,250 [(print start position)
DIR3 [(print direction)
AN4 [(alignment)
FT"SWO30RSN" [(font select)
PT'Hello" O (text input data)
PF O (print one copy)

As soon as a carriage return is received, the firmware checks the
instructions for syntax errors. Provided there is a working two-way
communication and the verbosity is on, the printer will either return
an error message or “Ok” to the host.

This type of communication works well and is easy to learn, but it
does not take full advantage of the flexibility and computing
capacity offered by th&ingerprint printers. For example, you
cannot save the labels in the printer but must download each new
label, and all error-handling must be taken care of by the host.

Rather than using thienmediate Modethe Direct Protocolis
usually to prefer, since it allows variable input data to be combined
with predefined layouts, handles counters and contains a flexible
error-handler.

Beside printing text, bar codes and graphics, you can perform other
tasks in thémmediate Modas well, e.g. calculation. Try typing
this instruction on the keyboard of the host:

? ((5"2+5)\3)*5 0 (O=Carriage Return key)

The calculation will be performed immediately and the result will
be returned to the screen of the host:

50
Ok

Important:
To send an instruction from the terminal to the printer, press the
Carriage Return key. In the programming examples later pn in
this manual, this character will be omitted, but you must not fprget
to enter it via the keyboard of the host.

Continued!

28

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

3. Immediate Mode,
cont'd.

4. Programming Mode

Three keys are enabled in the ImmediMtale, obviously pro-
vided that the printer is fitted with the key(s) in question:

» The <Print> key or button produces a FORMFEED operation.
» The Feed> key produces a FORMFEED operation.

» The <Setup> key gives access to the Setup Mode.

When the printhead is lowered and tReixt > or <Feed> keys are
pressed, three possible error conditions can cause an error message
in English to be displayed:

 “Error 1005 -Press any key!-” (Out of paper)

 “Error 1031 -Press any key!-” (Next label not found)

 “Error 1027 -Press any key!-” (Out of ribbon)

Afterthe error has been attended to, the error message can be clearec
by pressing any of the above-mentioned keys.

When the printhead is lifted, th@rint > and €eed> keys will run

the printers mechanism in order to facilitate cleaning of the print
roller, i.e. the rubber-coated roller that drives the paper forward
under the printhead. The motor(s) will stop automatically when the
print roller has completed a few rotations.

TheProgramming Modés used to execute instructions entered in

the form of program lines. The firmware assumes input to the

Programming Modén two cases:

» When a line starts with a number.

 After an IMMEDIATE OFF statement has been executed. (See
“Programming without Line Numberdater in this chapter).

One or several lines make up a program, which can executed as
many times as you wish. A program can also be saved, closed,
copied, loaded, listed, merged, and killed, see chapter 6.3. All lines
have line numbers, that are either manually entered when the
program is edited, or provided automatically and invisibly by the
firmware when an IMMEDIATE ON statement has been executed.

Eachtime the printer receives a program line followed by a Carriage
Return character, the firmware checks the line for possible syntax
errors. If an error is encountered, an error message will be returned
to the host, provided there is a working two-way communication
and the verbosity is on.

The program is executed in ascending line number order when a
RUN statement is issued in themediate Modei.e. on a line
without any line number. However, various types of branching and
loops can be created in the program that makes the execution
deviate from a strict ascending order.

Continued!

29

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

4. Programming Mode,
cont'd.

[Autoexec-files (startup files)
Also see:
» Chapter5.13

Note that the editing of the program takes place iintineediate

Mode while the execution is performed in Pr@gramming Mode

Often, programs are made as an autoexec (startup) file that starts up
automatically when the printer is turned on, and keeps on running
infinitely.

Important:
To send an instruction from the terminal to the printer, press the
Carriage Return key. In the programming examples later pn in
this manual, this character will be omitted, but you must not fprget
to enter it via the keyboard of the host.

Programming with Line Numbers
In this case you will start each line by manually entering a line
number. We recommend that you start with line number 10 and use
an increment of 10 between lines to allow additional lines to be
inserted later. To make the program easier to read, you can use a
space character between the line number and the instruction. If not,
the firmware will insert a space character automatically, that will
appear when the program is LISTed. Let us use the calculation
example from thémmediate Moddt would look like this in the
Programming Mode
10 ? ((5"2+5)\3)*5 0
RUN O

yields:
15
Ok

Let us have a look at the lines:

 The first line consists of a line number (10) followed by an
optional space character and the instru@ti¢d"2+5)\3)*5
?is a shorthand form for the statement PRINT, which returns the
result of the calculation to the screen of the host). The line is
terminated by a Carriage Return character.

* Next line has no line number, and contains the statement RUN,
which orders the printer to execute all preceding numbered lines
in consecutive ascending order according to their line numbers.

 Theresult (15) will be displayed on the terminal's screen followed
by “Ok” to indicate that execution was successful.

In this manual, the programming examples will generally have line
numbers in order to make them easier to understand. For more
complex programs, programming without line numbers, as ex-
plained on next page, may be both easier and quicker.

Continued!

30

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

4. Programming Mode, Programming without Line Numbers
contd. You can choose to omit entering line numbers manually when
writing a program. This is a special case oRtegramming Mode
but in order to make the printer understand what you wantto do, you
must turn off themmediate Modey means of an IMMEDIATE
OFF statement. (Normally, the firmware interprets the lack of line
numbers anmediate Mode

Then you can write the program line by line without having to type
a line number at the start of each line. In other respects, you can
generally work just as in the normal programming mode.

[0 Branching the Program Execution However, a major difference is when you want to make the
Also see: execution branch to a certain line, e.g. by a GOTO statement. You
* Chapter5.6-58 cannot use line numbers to specify the line in question. Instead,

there is a feature called “line labels”. The line you want to refer to
must start with a line label, i.e. a number of characters appended by
acolon (). The line label must not start with a digit or interfere with
any keyword (see chapter 4.8).

When you want to refer to a line marked with a line label, just enter
the line label (without any colon), where you otherwise would have
put the line number.

Finish the program by issuing an IMMEDIATE ON statement

before you RUN it. The lines will automatically be numbered 10-
20-30-40-50 etc., but the line numbers will not be visible until you
LIST the program. Line labels will not be replaced by line numbers.

Two simple examples show the difference between using line
numbers and line labels:

Line Numbers Line Labels
IMMEDIATE OFF

10 GOSuUB1000 GOSuUBQ123

20 END END

1000 SOUND 440,50 Q123: SOUND 440,50

1010 RETURN RETURN
IMMEDIATE ON

RUN RUN

LIST LIST

10 GOSUB1000 10 GOSUB Q123

20 END 20 END

1000 SOUND 440,50 30 Q123: SOUND 440,50

1010 RETURN 40 RETURN

Continued!

31

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

4. Programming Mode,
cont'd.

Programming Instructions
There are a number of instructions that are used in connection with
the editing of programs in thirogramming Mode

NEW

Before you enter the first program line, always issue a NEW
statement in thémmediate Modéo clear the printer's working
memory, close all files and clear all variables.

Warning!
If there already is a program in the working memory, it will be
deleted and cannot be restored unless it has been SAVEd.

IMMEDIATE OFF

If you want to write the program without entering line numbers
manually, this statement should be issued ifntimeediate Mode
before the first line is entered.

REM (')

To make the program easier to understand, you can enter remarks
and explanations on separate lines or in lines containing other
instructions. Any characters preceded by REM, or its shorthand
version (single quotation mark), will not be regarded as part of the
program and will not be executed. REM statements can also be used
at the end of lines, if they are preceded by a colon (2).

END

Usually, subroutines are entered on lines with higher numbers than
the main program. Itis a good programming habit to finish the main
program with an END statement in order to separate it from the
subroutines. When an END statement is encountered, the execution
is terminated and all OPENed files and devices are CLOSEd.

IMMEDIATE ON

If you have issued an IMMEDIATE OFF statement before you
started to write the program, you must turn orrtireediate Mode
again by means of an IMMEDIATE ON statement before you can
start the execution, i.e. issue a RUN statement.

LIST

You can LIST the entire program, i.e. make the printer return the
lines to the screen of the host. You can also choose to list part of the
program or variables only. If you have edited the program without
line numbers, the numbers automatically assigned to the lines at
execution will now appear. LIST is usually issued irint@ediate

Mode

Continued!

32

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

4. Programming Mode,
cont'd.

5. Conditional Instructions

[0 TRUE and FALSE
Also see:
 Chapter 4.9 (Relational Operators)

DELETE

Program lines can be removed using the DELETE statement in the
Immediate ModeBoth single lines and ranges of lines in consecu-
tive order can be deleted.

RENUM

The program lines can be renumbered, e.g. to provide space for new
program lines, to change the order of execution, or to make it
possible to MERGE to programs. Line references for GOSUB,
GOTO and RETURN statements will be renumbered accordingly
(see chapter 5.6 —5.8).

Conditionalinstructions control the execution according to whether
a numeric expression is true or fals@mgerprint has one condi-
tional instruction, which can be used in two different ways:

* IF..THEN...[ELSE]

* IF..THEN...[ELSE]...ENDIF

IF..THEN...[ELSE]

If a numeric expression is TRUE, then a certain statement should
be executed, but if the numeric expression is FALSE, optionally
another statement should be executed.

This example allows you to compare two values entered from the
keyboard of the host.

10 INPUT "Enter first value ", A%

20 INPUT "Enter second value ", B%

30 C$="1l:stvalue > 2:nd value"

40 D$="1:stvalue < 2:nd value"

50 IF A%>B% THEN PRINT C$ ELSE PRINT D$
60 END

RUN

Another way to compare the two values in the example above is to
use three IF...THEN statements:

10 INPUT "Enter first value ", A%

20 INPUT "Enter second value ", B%

30 C$="First value is larger than second value
40 D$="First value is less than second value"
50 E$="First value and second value are equal"
60 IF A%>B% THEN PRINT C$

70 IF A%<B% THEN PRINT D$

80 IF A%=B% THEN PRINT E$

90 END

RUN

33

Intermec Fingerprint 6.13 — Programmer's Guide

5. Intermec FINGERPRINT PROGRAMMING, cont'd.

5. Conditional Instructions,
cont'd.

6. Unconditional
Branching

[] Keyboard Control
Also see:
 Chapter 15.1

IF..THEN...[ELSE]...ENDIF

Itis possible to execute multiple THEN and ELSE statements. Each
statement must be entered on a separate line and the end of the
instruction must be indicated by ENDIF on a separate line, e.g.:

10 TIME$="121500":FORMAT TIME$ "HH:MM"
20 A%=VAL(TIME$)
30 IF A%>120000 THEN
40 PRINT "TIME IS " TIMES$("F"); ". ";
50 PRINT "GO TO LUNCH!"
60 ELSE
70 PRINT"CARRY ON-";
80 PRINT "THERE'S MORE WORK TO DO!"
90 ENDIF
RUN
yields e.g.:
TIME IS 12:15. GO TO LUNCH!

GOTO

The most simple type of unconditional branching is the “waiting
loop”. This means that a program line branches the execution back
to itself, waiting for something to happen, for example a key being
pressed or a communication buffer becoming full.

This example shows how the program waits for the key F1 to be
pressed (line 30). Then a signal is emitted by the printer's buzzer:
10 ONKEY (10) GOSUB 1000

20 KEY (10)ON

30 GOTO30

40 END

1000 SOUND 880,100

1010 END

RUN

It is also possible to branch to a different line. This is useful when
you want create a waiting loop containing a number of lines, e.g.:
10 INPUT "Enter a number:", A%

20 IF A%<0 THEN GOTO 100 ELSE GOTO 200

30 GOTO10

40 END

100 PRINT "NEGATIVE VALUE"

110 GOTO 40

200 PRINT "POSITIVE VALUE"

210 GOTO40

RUN

GOTO nline 30 diverts the execution back to line 10 over and over
again until you type a value on the host (waiting loop). Depending
on whether the value is less than O or not, the execution branches
to one of two alternative lines (100 or 200), which print different
messages to the screen. In both cases, the execution branchestoline
40, where the program ends. Line 20 is an example of conditional
branching, which is explained in chapter 5.8.

34

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

7.

Branching to
Subroutines

GOSUB and RETURN

A subroutine is a number of program lines intended to perform a

specific task, separately from the main program execution. Branch-

ing to subroutine can e.g. take place when:

* An error condition occurs.

« A condition is fulfilled, such as a certain key being pressed or a
variable obtaining a certain value.

* A break instruction is received.

» Background communication is interrupted.

Another application of subroutinesis branching to one and the same
routine from different places in the same program. Thereby, you do
not need to write the routine more than once and can make the
program more compact.

The main instruction for branching to subroutines is the GOSUB
statement. There are also a number of instructions for conditional
branching to subroutines, which will be explained later in this
chapter.

After branching, the subroutine will be executed line by line until
a RETURN statement is encountered.

The same subroutine can be branched to as many times as you neec
from different lines in the main program. GOSUB remembers
where the last branching took place, which makes it possible to
return to the correctline inthe main program after the subroutine has
been executed. Subroutines may be nested, i.e. a subroutine may
contain a GOSUB statement for branching to a secondary subrou-
tine etc.

Subroutines should be placed on lines with higher numbers than the
main program. The main program should be appended by an END
statement to avoid unintentional execution of subroutines.

Example illustrating nested subroutines:
10 PRINT "This is the main program"

20 GOSUB 1000

30 PRINT "You're back in the main program"
40 END

1000 PRINT "This is subroutine 1"

1010 GOSUB 2000

1020 PRINT "You're back from subroutine 2 to 1"
1030 RETURN

2000 PRINT "This is subroutine 2"

2010 GOSUB 3000

2020 PRINT "You're back from subroutine 3 to 2"
2030 RETURN

3000 PRINT "This is subroutine 3"

3010 PRINT "You're leaving subroutine 3"

3020 RETURN

RUN

35

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

8. Conditional Branching Asthe name implies, conditional branching means that the program
execution branches to a certain line or subroutine when a specified
condition is fulfilled. The following instructions are used for
conditional branching:

IF..THEN GOTO...ELSE

L Relational Operators If a specified condition is TRUE, the program branches to a certain
'A"azgfér 49 line, but if the condition is FALSE, something else will be done.

Example:

10 INPUT "Enter a value: ",A%

20 INPUT "Enter another value: ",B%

30 IFA%=B% THEN GOTO 100 ELSE PRINT "NOT EQUAL"
40 END

100 PRINT "EQUAL"

110 GOTO40

RUN

ON...GOSUB

Depending on the value of a numeric expression, the execution will
branch to one of several subroutines. If the value is 1, the program
will branch to the first subroutine in the instruction, if the value is

2 it will branch to the second subroutine and so on.

Example:

10 INPUT "Press key 1, 2, or 3 on host: ", A%
20 ON A% GOSUB 1000, 2000, 3000

30 END

1000 PRINT "You have pressed key 1": RETURN
2000 PRINT "You have pressed key 2": RETURN
3000 PRINT "You have pressed key 3": RETURN
RUN

ON..GOTO

This instruction is similar to ON...GOSUB, but the program will
branch to specified lines instead of subroutines. This implies that
you cannot use RETURN statements to go back to the main
program.

Example:

10 INPUT "Press key 1, 2, or 3 on host: ", A%
20 ON A% GOTO 1000, 2000, 3000

30 END

1000 PRINT "You have pressed key 1": GOTO 30
2000 PRINT "You have pressed key 2": GOTO 30
3000 PRINT "You have pressed key 3": GOTO 30
RUN

Continued!

36

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

8. Conditional Branching,
cont'd.

[] Breaking the Execution
Also see:
 Chapter5.12

[0 Background Communication
Also see:
e Chapter7.8

ON BREAK..GOSUB

When a BREAK condition occurs on a specified device, the
execution will be interrupted and branched to a specified subrou-
tine. There, you can e.g. letthe printer emit a sound signal or display
a message before the program is terminated. You can also let the
program execution continue along a different path.

This example shows how the program is interrupted when the <C>
and <Pause> keys on the printer's keyboard are pressed. The
execution branches to a subroutine, which emits a siren-sounding
signal three times. Then the execution returns to the main program,
which is indicated by a long shrill signal. If the printer is not fitted
with a keyboard, you can isue a break interrupt by transmitting the
character “#" fromthe host on the communication channel"uart1:".
10 BREAK 1,35

20 BREAK1ON

30 ON BREAK 0 GOSUB 1000:REM Break from keyboard

40 ON BREAK 1 GOSUB 1000:REM Break from host (#)

50 GOTO 40

60 SOUND 800,100

70 BREAK 1 OFF:END

1000 FOR A%=1TO 3

1010 SOUND 440,50

1020 SOUND 349,50

1030 NEXT A%

1040 GOTO 60

RUN

ON COMSET...GOSUB

When one of several specified conditions interrupts the background
communication on a certain communication channel, the program
branches to a subroutine, e.g. for reading the buffer. The interrupt
conditions (end character, attention string and/or max. number of
characters) are specified by a COMSET statement .

Example:

1 REM Exit program with #STOP&
10 COMSETL"#""&","XYZ","=",50
20 ON COMSET 1 GOSUB 2000

30 COMSET 10N

40 IF A$ <>"STOP" THEN GOTO 40
50 COMSET 1 OFF

1000 END

2000 A$=COMBUF$(1)
2010 PRINT A$

2020 COMSET 1 ON
2030 RETURN

Continued!

37

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

8. Conditional Branching,
cont'd.

[Branching at Errors
Also see:
 Chapter 16.3

Two instructions are used to branch to and from an error-handling
subroutine when an error occurs:

ON ERROR GOTO

This statement branches the execution to a specified line when any
kind of error occurs, ignoring the standard error-trapping routine. If
line number is specified as 0, the standard error-trapping routine
will be used.

RESUME

The RESUME statement is used to resume the program execution
after an error-handling subroutine has been executed. RESUME is
only used in connection with ON ERROR GOTO statements and
can be used in five different ways:

RESUME Execution is resumed at the state-
ment where the error occurred.

RESUME 0 Same as RESUME.

RESUME NEXT Execution is resumed at the state-

ment immediately following the
one that caused the error.

RESUME <ncon> Execution is resumed at the speci-
fied line.

RESUME <line label> Execution is resumed at the speci-
fied line label.

This example shows branching to a subroutine when an error has
occurred. The subroutine determines the type of error and takes the
appropriate action. In this example only one error; “1019 Invalid
font” is checked. After the error is cleared by substituting the

missing font, the execution will be resumed.
10 ON ERROR GOTO 1000

20 PRTXT "HELLO"

30 PRINTFEED

40 END

1000 IF ERR=1019 THEN FONT "SWO030RSN" ELSE GOTO 2000
1010 PRINT "Substitutes missing font"

1020 FOR A%=1TO 3

1030 SOUND 440,50

1040 SOUND 359,50

1050 NEXT A%

1060 RESUME

2000 PRINT "Undefined error, execution terminated"
2010 END

RUN

Continued!

38

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

8.

Conditional Branching,
cont'd.

[0 Keyboard Control and Key Id. No:s
Also see:
 Chapter 15.1

ON KEY...GOSUB

Many FingerprintcompatibleEasyCodeprinter models are pro-
vided with a built-in keyboard. However, unless there is a program
running in the printer, e.g. tf&and-Alongrogram oiShel| the

keys have no purpose (with the exceptiorRiirt >, <Feed>, and
<Setup'Save> keys, which work in thenmediate Mode To make

use of the keyboard, each key must be enabled individually by
means of a KEY ON statement and then be assigned to a subroutine
using an ON KEY GOSUB statement. The subroutine should
contain the instructions you want to be performed when the key is
pressed.

In the statements KEY (<id.>), ON KEY (<id.>) OFF, and ON
KEY (<id.>) GOSUB..., the keys are specified by id. numbers
enclosed by parentheses, see chapter 15.1.

Note that ON KEY...GOSUB excludes input from the printer's
keyboard (see chapter 7.6) and vice versa.

This example shows how the two keys <F1> (id. No. 10) and <F2>
(id. No. 11) are used to change the printer's setup in regard of
printout contrast.

10 PRPOS 100,500

20 PRLINE 100,100

30 FONT "SWO30RSN"

40 PRPOS 100,300

50 MAG44

60 PRTXT "SAMPLE"

70 KEY (10) ON:KEY (11) ON

80 ONKEY (10) GOSUB 1000

90 ONKEY (11) GOSUB 2000

100 GOTO 70

110 PRINTFEED

120 END

1000 SETUP "CONTRAST,0"

1010 PRPOS 100,100 : PRTXT "Weak Print"
1020 RETURN 110

2000 SETUP "CONTRAST,10"

2010 PRPOS 100,100 : PRTXT "Dark Print"
2030 RETURN 110

RUN

39

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

9.

Loops

GOTO

One type of loop has already been described in connection with the
GOTO statement in chapter 5.6, where GOTO was used to refer to
the same line or a previous line. There are also two more advanced
type of loops:

FOR..NEXT

These statements are to used create loops, where a counter is
incremented or decremented until a specified value is reached. The
counter is defined by a FOR statement with the following syntax:

FOR<numeric variable>=<start value>TO<final value>[STEP<zinterval>]

All program lines following the FOR statement will be executed
until a NEXT statement is encountered. Then the counter will be
updated according to the optional STEP value, or by the default
value +1, and the loop will be executed again. This will be repeated
until the final value, as specified by TO <final value>, is reached.
Then the loop is terminated and the execution proceeds from the
statement following the NEXT statement.

FOR...NEXT loops can be nested, i.e. a loop can contain another
loop etc. Each loop must have a unique counter designation in the
form of a numeric variable. The NEXT statement will make the
execution loop back to the most recent FOR statement. If you want
toloop back to a different FOR statement, the corresponding NEXT
statement must include the same counter designation as the FOR
statement.

This example shows how five lines of text entered from the keyboard
of the host can be printed with an even spacing:

10 FONT "SWO30RSN"

20 FOR Y%=220 TO 100 STEP -30

30 LINEINPUT "Type text: ", TEXT$

40 PRPOS 100, Y%

50 PRTXT TEXT$

60 NEXT

70 PRINTFEED
80 END

RUN

Here is an example of two nested FOR...NEXT loops:
10 FOR A%=20 TO 40 STEP 20

20 FORB%=1TO?2

30 PRINT A%,B%

40 NEXT:NEXT A%

RUN
Yields:
20 1
20 2
40 1
40 2
Continued!

40

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

9. Loops, cont'd.

[J] Relational Operators
Also see:
e Chapter4.9

FOR...NEXT, cont'd.

This example shows how an incremental counter can be made:
10 INPUT "Start Value: ", A%

20 INPUT "Number of labels: ", B%
30 INPUT "Increment: ", C%

40 X%=B%*C%

50 FOR D%=1TO X% STEP C%
60 FONT "SWO30RSN"

70 MAG22

80 PRPOS 100,200

90 PRTXT"TEST LABEL"

100 PRPOS 100,100

110 PRTXT "COUNTER:"; A%

120 PRINTFEED

130 A%=A%+C%

140 NEXT D%

RUN

WHILE... WEND
These statements are used to create loops where series of statement
are executed provided a given condition is TRUE.

WHILE is supplemented by a numeric expression, that can be either
TRUE (-1) or FALSE (0). If the condition is TRUE, all subsequent
program lines will be executed until a WEND statement is encoun-
tered. The execution then loops back to the WHILE statement and
the process is repeated, provided the WHILE condition still is
TRUE. If the WHILE condition is FALSE, the execution bypasses
the loop and resumes at the statement following the WEND
statement.

WHILE...WEND statements can be nested. Each WEND state-
ment matches the most recent WHILE statement.

This example shows a program that keeps running in a loop (line
20-50) until you press the Y key on the host (ASCII 89 dec.), i.e. the
WHILE condition becomes true.

10 B%=0

20 WHILE B%<>89

30 INPUT "Want to exit? Press Y=Yes or N=No",A$

40 B%=ASC(A$)

50 WEND

60 PRINT "The answer is Yes"

70 PRINT "You will exit the program"

80 END

RUN

41

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

10. Program Structure Although Fingerprint gives the programmer a lot of freedom in
how to compose his programs, based on experience we recommend
that the structure below is more or less implemented, with the
obvious exception of such facilities that are not needed.

[0 Program Information
» Program information, e.g. program type, version, release date
and byline (REM).

[Initiation

Decides how printer will work and branch to subroutines.

» References to subroutines using e.g. ON BREAK GOSUB,
ON COMSET GOSUB, ON ERROR GOSUB, ON KEY
GOSUB.

* Printer setup using e.g. SETUP, RIBBON SAVE ON/OFF,
OPTIMIZE ON/OFF, LTS& ON/OFF, CUT ON/OFF, FOR-
MAT DATES$, FORMAT TIME$, NAME DATES$, NAME
WEEKDAY$, SYSVAR).

» Character set and map tables (NASC, MAP).

 Enabling keyboard (KEY ON, KEYBEEP, KEYBMAP$).

* Initial LED setting (LED ON/OFF).

* Open "console:" for output (OPEN)

* Assign string variables for each line in the display (PRINT#).

* Select current directory (CHDIR).

* Select standard 1/0O channel (SETSTDIO).

» Open communication channels (OPEN).

* Open files (OPEN).

* Define arrays (DIM).

[0 Main Loop
Executes the program and keeps it running in a loop.
» Reception of input data (INPUT, INPUT#, INPUTS$, LINE
INPUTH#).
* Printing routine (FORMFEED, PRINTFEED, CUT).
* Looping instructions (GOTO).

[0 Subroutines

* Break subroutines (BREAK ON/OFF, BREAK).

 Background communication subroutines (COM ERROR ON/
OFF, COMSET, COMSET ON/OFF, COMBUFS$,
COMSTAT).

 Subroutines for key-initiated actions.

 Subroutines for display messages.

» Error handling subroutines (ERR, ERL, PRSTAT).

* Label layouts subroutines.

42

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

11. Execution

[Standard Error-Handling
Also see:
 Chapter 16.1

To start the execution of the program currently residing in the
printer's working memory, issue a RUN statement imtineediate
Mode i.e. without a preceding line number. By default, the program
will be executed in ascending line number order — with the
exception of possible loops and branches — starting from the line
with the lowest number, but you can optionally start the execution
at a specified line.

You can also execute a program that is not LOADed.

If a program has been written without line numbers, the lines will
be numbered 10-20-30-40-50.... etc.

The first program or hardware error that stops the execution will
cause an error message to be returned to the screen of the host,
provided there is a working two-way communicatidn case of
program errors, the number of the line where the error occurred will
also be reported by default, €gield out of label in line 1107

/. For a working two-way communi- After the error has been corrected, the execution must be restarted
cation, three conditions must be fulfilled: by means of a new RUN statement, unless a routine for dealing with

 Serial communication
« Std IN channel = Std OUT channel
« Verbosity on

Note:

the error in question is included in the program.

For demonstration purposes, we will now:

* write a short program without line numbers,
* execute it,

« and finally list it.

NEW

Ok
For programinstructions you can usually \\MEDIATE OFF
use upper- or lowercase characters atpy

will,i.e. “NEW” and “new” willwork the
same way.

REM This is a demonstration program
PRINT "This is the main program"
GOSUB subl
END
subl: PRINT "This is a subroutine":' Line label
RETURN
IMMEDIATE ON
Ok
RUN
yields:
This is the main program
This is a subroutine
Ok
LIST
yields:
10 REM This is a demonstration program
20 PRINT "This is the main program"
30 GOSUB SuUB1
40 END
50 SUBL: PRINT "This is a subroutine" : ' Line label
60 RETURN

43

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

12. Breaking Execution

In chapter 2Getting Started”at the beginning of this manual, the
methods of breaking a startup program was briefly explained.
Startup programs (autoexec files) start up automatically when the
printer is turned on and continues to run infinitely by means of some
kind of loop.

In printer models provided with a keyboard, you can — by default —
break a program by pressing ti@&>key and keep it pressed while
you also press down thé>guse> key. There is no such default
facility in printers without keyboard! Unless the startup program
contains facilities for breaking the execution or the printer is
provided with a keyboard, it will be impossible to make the printer
do something else but keep on running the same program. It will
also be difficult to check the printer if some kind of error occurs.

The only remaining way to stop a startup program, which contains
no break facilities, is to physically remove the part of the memory
where the program resides, i.e. the configuration EPROM pack-
ages, the RAM packages or amemory card. Therefore, itis strongly
recommended always to include break facilities in startup pro-
grams, especially when the programisto be used in a printer without
keyboard.

Four instructions can be used for providing a program with a break
interrupt facility:

BREAK Specifies an interrupt character.

BREAK...ON Enables break interrupt.

BREAK...OFF Disables break interrupt.

ON BREAK...GOSUB... Branches the execution to a sub-
routine when a break interrupt is
executed.

In all break-related instructions, the serial communication channels
and the keyboard are referred to by numbers:
0 ="console:" (i.e. the printer's keyboard)

1 ="uartl:"
2 ="uart2:"/"rs485:"
3 ="uart3:"

BREAK does not work on the parallel Centronics channel.

Continued!

44

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

12. Breaking Execution, BREAK
cont'd. The BREAK statement specifies an interrupt character by its
decimal ASCII value. BREAK can be separately specified for each
Note: serial communication channel and for the printer's built-in key-

Abreakinterrupt characteris savedinthe oard
no-save area of the RAM memory, ancp . ’ . .
will not be removed before the printer isThe interrupt character for all serial channels is by default ASCII 03

restarted, unless you specifically delete igec. (ETX). Also see BREAK...ON.
by a BREAK...OFF statement for the

device in question. The interrupt character from the printer's keyboard is by default
ASCII 158 dec. (€> + <Pause keys). Also see BREAK...ON.

BREAK...ON

Break interrupt for all serial communication channetisabled

by default, but can be enabled by means of a BREAK ON statement
for the channel in question.

Break interrupt from the keyboardasabledby default.

BREAK... OFF
The BREAK OFF statement revokes BREAK ON for the specified
device and deletes the specified break character from RAM.

ON BREAK ...GOSUB...

This instruction is not necessary for issuing a break interrupt, but is
useful for making the printer perform a certain task when a break
occurs, e.g. branch the execution to another part of the program,
show a message in the display, emit a warning signal, ask for a
password etc. ON BREAK... GOSUB... can be specified separately
for each serial communication channel and for the keyboard.

This example shows how a break interrupt will occur when you
pressthe X-key onthe hostconnectedto "uartl:". A signalis emitted
and a message appears in the printer's display.

10 BREAK 1,88

20 BREAK1ON

30 OPEN "console:" FOR OUTPUT AS 1

40 PRINT#1: PRINT #1

50 PRINT #1, "Press X"

60 PRINT #1, "to break program";

70 ONBREAK 1 GOSUB 1000

80 GOTO80
90 BREAK1OFF
100 END

1000 SOUND 880,50

1010 PRINT #1 : PRINT #1

1020 PRINT #1, "PROGRAM"
1030 PRINT #1, "INTERRUPTED",
1040 RETURN 90

RUN

45

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

13. Saving the Program

[J Current Directory
Also see:
 Chapter 6.1

Saving in Printer

When you are satisfied with the program, you can SAVE it in the
printer's RAM memory (“ram:") or in an optional DOS-formatted
memory card ("cardl:"), see chapter 6.1. Itis also recommended to
LIST the program back to the host and make backup copy, e.g. on
a floppy disk.

Naming the Program

When you save a program for the first time, you must give ita name
consisting of up to 30 characters including possible extension. If
you omit the extension, the software will add the extension “.PRG”
automatically. When naming the program, consider conventions
and restrictions imposed by the operating system of the host, e.g.
MS-DOS.

The following names are used for standardjerprint programs
and should not be used:

* AUTOEXEC.BAT (Startup program)

* DISPSET2.PRG (Setup for printers w/o keyboard)

* ERRHAND.PRG (Standard error-handler)

* FILELIST.PRG (Lists content of a file)

* LBLSHTXT.PRG (Used for Intermec LabelShop)

* LSHOPDEF.SUP (Default Setup for Intermec LabelShop)

* MKAUTO.PRG (Creates startup programs)

* PRSETUP.PRG (Prints current setup)

* SHELLEHD.PRG (Intermec Shell for Enhanced printers)

* SHELLSTD.PRG (Intermec Shell for printers w/o keyboard)

* UBIDEF.SUP (Fingerprint default setup)
* WIN1.PRG (Used for Intermec Windows Driver)
Examples:

SAVE "PROGRAM1"
saves the program as PROGRAM1.PRG in the current directory
(by default "ram:").

SAVE "card1:PROGRAM1.TXT"

saves the program as PROGRAML.TXT in a DOS-formatted
memory card inserted in the printer's optional memory card
adapter.

Continued!

46

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

13. Saving the Program,
cont'd.

Protecting the Program

When a program is SAVEJ, it can optionally be protected, i.e. it
cannot be listed after being loaded and program lines cannot be
changed, added or deleted. Once a program has been protected, it
cannot be deprotected. Thus, make an unprotected backup copy as
a safety measure, should you need to make any changes later.

Example (saves and protects the program as PROGRAM1.PRG in
the current directory (by default "ram:"):
SAVE "PROGRAM1.PRG",P

Saving Without Line Numbers

A program can also be SAVEd without line numbers to make it

easier to MERGE it with another program without risking that the

line numbers interfere. Both programs should make use of line
labels for referring to other lines, e.g. in connection with loops and
branching instructions.

Example (saves the program as PROGRAM1.PRG without line
numbers in the current directory (by default "ram:"):
SAVE "PROGRAM1.PRG",L

Making Changes

If you LOAD a program, possibly make some changes and then
SAVE the program under the original name and in the original
directory, the original program will be replaced.

Example (changes the value of a variable in a program and
replaces the original version with the changed version):

LOAD "PROGRAM1.PRG"

50 A%=300

SAVE "PROGRAM1.PRG"

Making a Copy
The easiestway to copy a program s to use a COPY statement. You
can optionally include directory references in the statement.

Example (copies a program from the ROM memory to the RAM

memory and gives the copy a new name):
COPY "rom:FILELIST.PRG","ram:COPYTEST.PRG"

By LOADINng a program and then SAVE it under a new name and/
or in another directory, you will create a copy of the original
program.

Example (creates a copy of the program LABEL1.PRG and gives
the copy the name LABEL2.PRG):

LOAD "LABEL1.PRG"
SAVE "LABEL2.PRG"

Continued!

47

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

13. Saving the Program,
cont'd.

/. There must not be more than one start

Renaming a Program
To rename a program, LOAD it, SAVE it under a new name, and
finally KILL the original program.

Example (renames LABEL1.PRG with the name LABEL2.PRG):
LOAD "LABEL1.PRG"

SAVE "LABEL2.PRG"

KILL "LABEL1.PRG"

Note: The same general principles also apply to files!

Saving in EPROM:s and Non DOS-formatted Memory Cards

Saving aprogram or file in the printer's read-only memory (“rom:"),
i.e. EPROM's, or non DOS-formatted memory cards requires
special equipment such as a PROM programmer and special
software Toolboy.

You can edit and test the program in the printer's working memory
as described earlier in this chapter. When it works properly, LIST

it back to the host computer. Save the file in the host and convert it
to a format suitable for the PROM programmer or the memory card
programming device.

Creating a Startup Program

The MKAUTO.PRG program is used to create so called startup
programs or autoexec-files, i.e. programs that will be LOADed and
RUN automatically as soon as the power to the printer is turned on.
Usually, a startup program contains some kind of loop which makes
it run infinitely, awaiting some input or action from the operator.
“Autoexec” programs are very useful for applications when one
single program is to be run all the time.

The MKAUTO.PRG program is included in dfingerprint
EPROMSs.

Startup files can be stored in RAM, ROM or in optional memory
cards. Eacpart of the memory can hold one startup'filethere

are more than one startup file in the printntsre memory, they
\évill be used with the following priority:

program in each part of the memory, i.e.
» DOS-formatted memory cards:
Max. one startup program per card.
* Printer's RAM memory:
Max. one startup program.
* Non DOS-formatted memory cards:
Max. one startup program per card.
* Printer's RAM memory:
Max. one startup program.

1. Inserted DOS-formatted memory card

2. Printer's RAM memory

3. Inserted Non DOS-formatted memory card
4. Printer's ROM memory

cardl:")
ram:")
rom:")
rom:")

(u
(n
(n
(n

The MKAUTO.PRG program consists of the following lines:
10 OPEN "AUTOEXEC.BAT"FOR OUTPUT AS 1

20 INPUT "Startup file name:",S$

30 PRINT#L,"RUN";CHR$(34);S$;CHR$(34)

40 CLOSE1l Continued!

48

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

13. Saving the Program, Creating a Startup Program, cont'd.
cont'd. A startup program can easily be created from an ordinary program
using the following method:
* After having written and tested the program, SAVE it.
* Enter the following statement:
RUN "rom:MKAUTO"
* The following prompt will be displayed on the screen:
STARTUP FILE NAME?
 Type the name of the program you just SAVEd (with or without
the extension .PRG) and press the Carriage Return key.
 “Ok” on the screen indicates that the operation is ready.

[0 Current Directory * The startup program will be stored inthe printer's current directory
Also see: (by default "ram:", i.e. the printer's RAM memory).
« Chapter6.1 « When you restart the printer, the new startup program will start

running, provided there is no other startup program with higher
priority (see previous page).

To undo the operation, use the statement:
KILL "AUTOEXEC.BAT"

This will not erase the original program, but it will no longer be used
as a startup program. Note that you cannot KILL startup programs
stored in EPROM:s or Non DOS-formatted memory cards.

In most cases startup programs are stored in EPROM's, which
requires special equipment, such as an EPROM programming
device and th&oolboxsoftware.

14. Rebooting the Printer Rebooting the printer has the same consequences as turning off and
then on the power.

REBOOT

The REBOOT statement allows you to reboot the printer from the

host or as a part of the program execution. A typical example of the
use of REBOOQOT in a program is found in Intermec Shell, where the

printer is automatically rebooted when a new application has been
selected.

When the printer is rebooted, or the power to the printer is turned

on, a number of things happens (refer to Rivgerprint 6.13

Reference ManugREBOOT statement for a complete list):

 The printer's working memory is erased, i.e. any program not
already SAVEd will be irrevocably lost, all buffers will be
emptied, all files will be closed, all date- and time-related formats
will be lost, all arrays will be lost and all variables will be set to
zero. Fonts and images stored in the no-save area of the printer's
RAM memory will be erased.

Continued!

49

Intermec Fingerprint 6.13 — Programmer's Guide

5. FINGERPRINT PROGRAMMING, cont'd.

14. Rebooting the Printer, * All parameters ifringerprintinstructions will be reset to default.
cont'd. » The printer performs a number of self-diagnostic tests, e.g.

printhead resistance check (certain models only) and memory
checksum calculations.

» The printer checks for possible optional devices like interface
boards, memory card adapter or cutter.

e The various parts of the printer's memory are searched for
possible startup programs in the following order:
1. Inserted DOS-formatted memory card ("cardl:").
2. Printer's RAM memory ("ram:").
3. Inserted Non DOS-formatted memory card (“rom:")
4. Printer's ROM memory ("rom:")
The first startup program encountered will be executed.

Note that rebooting does not change the printer's setup, unless any
physical changes has been done to the printer during the power-off
period, such as a change of printhead density or installation or
removal of an interface board.

50

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM

1. Printer's Memory

The printer's memory is divided in a number of parts, or directories:

» Read-Only Memory ("rom:")
This directory is designated "rom:" and consists of the 2, 4 or 6
EPROM packages fitted on the printer's CPU board plus any non
DOS-formatted memory card inserted in the printer's optional
memory card adapter. As the name implies can this part of the
memory only be read from, but not written to.

» Random Access Memory ("ram:")
The RAM memory is designated "ram:" and consists of 2 or 4
RAM packages fitted on the printer's CPU board. The RAM
memory can both be read from and written to.

* Memory Cards: ("cardl:")
The RAM memory can be supplemented with a DOS-formatted
memory card thatis inserted in the printer's optional memory card
adapter. Such a cardis referred to as "card1:" and can be both read
from and written to. (Note the distinction between DOS-formatted
and non DOS-formatted memory cards).

ROM Memory ("rom:")

ROM-Expansion
EPROMs

HOST
COMPUTER

A 4

\Y

READ-ONLY MEMORY RANDOM ACCESS MEMORY OPTIONAL DOS-FORMATTED MEMORY CARD
_________ “rom” "ram:" "cardl:"
; STORAGE MEMORY STORAGE MEMORY
1], Optional 5 i VT) i Y)
+ [Non DOS-formatted |f : (I b h [L h
MEMORY CARD || * * * *
; W PROGRAMS ‘ wuu FILES ‘ W PROGRAMS ‘ w“u FILES ‘
A A
Optional \ WORKING MEMORY
—

|

CURRENT PROGRAM ‘

Configuration
EPROMs

2

FINGERPRINTH PROCESSING
firmware N

Transmit
buffer

Serial interface L—=

= uartl: -
o Receive
4 * buffer

]
T =

\ 4

IMAGE BUFFER

¥

PRINTOUT

LABEL

Continued!

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

1.

Printer's Memory,
cont'd.

The Read-Only Memory in your printer consists of up to four parts:

 Two EPROM packages containing thimgerprint firmware,
which controls how the printer works. These EPROM:s are
common for alFingerprint 6.xxcompatible printers.

» Two Configuration EPROM's, which may contain fonts, images,
and certain programs and files, such asShgll Custom-made
versions can be ordered, containing e.g. application programs,
additional fonts and bar codes.

 Optionally, two ROM expansion EPROM's can be fitted in some
models. They may contain the same type offiles as the configuration
EPROM's, object files (e.g. two-dimensional bar codes), and/or
an optionalScalable Fonts Kit

* If the printer is fitted with a memory card adapter, a non DOS-
formatted, preprogrammed memory card can be inserted to
supplement the ROM memory.

There is no way you can affect the content of the Read-Only
Memory (rom:), other than changing the EPROM packages, or
optionally fitting another memory card. However, programs in
“rom:" can be copied to "ram:", where modifications can be
performed. The EPROM's require no currentto retain their content.

RAM Memory ("ram:")

The Random Access Memory in your printer has two main parts:

» The storage memory, where you store the programs and other
files that you create or download. Part of the storage memory is
a “no-save area”, the content of which is erased at power-up.

» The working memory, which contains the program you currently
are using. Part of the working memory must also be set aside for
various types of buffers:

— Image buffer: Used to level out differences of speed between the process-
ing of the printimage and the actual printing. Its size is decided by the setup.

— Receive/Transmit buffers: Each serial communication channel must have
one buffer of each kind. The size of each buffer is decided separately by the
setup.

— Communication buffers: In a program, you may set up one communication
buffer for each communication channel. This makes it possible to receive
data simultaneously from several sources to be fetched at the appropriate
moment during the execution of the program.

There is no fixed division between the working memory and the
storage memory, i.e. the more data in the storage memory, the less
working memory is left.

The RAM packages are battery backed-up in order to retain their
content when the power to the printer is off.

Continued!

52

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

1.

Printer's Memory,
cont'd.

DOS-Formatted Memory Cards ("cardl:")

A special case of the RAM memory is the DOS-formatted memory
card, which can be both read from and written to, just like RAM, but
is referred to as a special device ("cardl:"). In order to retain its
content when the power to the printer is off, each SRAM memory
card is fitted with an internal battery.

Current Directory

“Current directory” means the directory the Fingerprint firmware
will use unless you specifically instruct it to use another directory.
By default, the current directory is "ram:".

To appoint another directory as current directory, use a CHDIR
statement.

Example:

Changing directory from the default directory ("ram:") to "rom:"
and back.

10 CHDIR "rom:"

90 CHDIR "ram:"

Checking Free Memory

You can check the size of the RAM memory and see how much free
memory space there is by issuing a FILES, FONTS, or IMAGES
statement in the immediate mode.

Another way is to use the FRE function to making a small
instruction, that returns the number of free bytes, for example:

? FRE(1) yields e.g.:
391248

Providing More Free Memory

In order to free more memory space in RAM, you canuse a CLEAR
statement to empty all strings, set all variables to zero and reset all
arrays to default. If even more memory is required, you will have
to consider either to KILL some programs or files, or to REMOVE
some fonts orimages stored in RAM. If the printer is not fitted with

a maximum size RAM memory, you could also fit more or larger
RAM packages after having made backup copies on the host.

Formatting Memory Cards or RAM Memory

A RAM-type memory card, inserted in the printer's optional
memory card adapter, can be formatted to MS-DOS format by
means of a FORMAT statement. FORMAT can also be used to
format the printer's RAM memory, i.e. erasdildt in the storage
part of the RAM memory. No other data will be affected.

53

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

2. Files

[J] Fonts, Bar Codes and Images
Also see:

 Chapter 12 (Fonts)

 Chapter 13 (Bar codes)
 Chapter 14 (Images)

[J Current Directory
Also see:
» Chapter 6.1

Note:

File Types

Anumber of different types of files can be stored in the various parts
of the printer's memory. They can be divided into four main groups:
* Program Files

* Data Files

* Image Files

* QOutline Font Files

Object files, fonts, bar codes and images are not treated as files by
theFingerprintfirmware.

File Names

The name of a file may consist of up to 30 characters including
extension, but possible restrictions imposed by the operating sys-
tem of the host should be considered if the file is to be transferred.
Refer to chapter 5.13 for a list of file names reservelthfermec
Fingerprint utilities.

Listing Files

The files stored in the printer's memory can be listed by means of
the FILES statement. By default, the files stored in the current
directory will be listed. Optionally, another directory can be se-
lected by adding a reference to the FILES statement:

FILES lists all files in thecurrent directory.

FILES "rom:" lists all files stored in EPROM and in any
inserted non DOS-formatted memory card.

FILES "ram:" lists all files stored in the printer's RAM
packages.

FILES "cardl:" lists all files stored in any inserted DOS-

formatted memory card.

You can COPY afile to the standard OUT channel, where it will be
printed on the screen of the host, e.g.:

COPY " [device]filename ", "uartl:"

The FILELIST.PRG program also LISTs a line-orientated file to

in all Intermec Fingerprint EPROMSs.

[J Standard OUT channel
Also see:
 Chapter7.1

» On your terminal, enter:
RUN "rom:FILELIST.PRG "

* The printer will respond by prompting you to enter the name of
the file to be listed:

Filename?

* Enter the filename, possibly preceded by a directory reference,
e.g.:

"rom:**".

54

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

3. Program Files

[0 Standard OUT Channel
Also see:
e Chapter7.1

O Creating, Saving, Copying, Killing
and Executing Program Files

Also see:

 Chapter5.11and 5.13

Program File Types

Program files are used to run and control the printer and to produce
labels or other printouts. A program file is always composed of
numbered lines, although the numbers may be invisible during the
editing process (see chapter 5.4).

A special case of program files is startup files, i.e. files that
automatically start running whenthe printer is turned on (also called
“autoexec-files”). Startup files were explained in chapter 5.13
“Creating a Startup Program”.

Instructions
The following instructions are used for creating and handling
program files:

LOAD Copies a specified program file to the
printer's working memory.
LIST Lists the program file in the working

memory to the standard OUT channel,
usually the screen of the host.

MERGE Adds copy of a specified program file to
the program file currently residing in the
printer's working memory.

RUN Executes the instruction in the program
file. RUN must be issued in the Immedi-
ate Mode, i.e. not in a numbered line.

SAVE Saves a copy of the program file in the
working memory to the printer's RAM
memory ("ram:") or, optionally, to a non
DOS-formatted memory card ("cardl:").
If a file with the same name already exists
the thatdirectory, itwill be replaced by the

new file.

NEW Clears the working memory to allow a
new program file to be created.

COPY Copies a file to another name and/or di-
rectory.

KILL Deletes a file from the RAM memory or

from a DOS-formatted memory card.

55

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

4. Data Files

Data File Types
Data files are used by the program files for storing various types of
data and can be divided into several subcategories:

» Sequential Input Files See chapter 7.4

» Sequential Output Files Sekapter 8.3

» Sequential Append Files Sdeapter 8.3

» Random Access Files Sdepters 7.and 8.4

Instructions

The following instructions are used in connection with the creation

and handling of data files:

OPEN Creates and/or opens a file for a specified
mode of access and optionally specifies
the record size in bytes.

CLOSE Closes an OPENed file.

REDIRECT OUT Creates a file to which the output data will
be redirected (see chapter 8.2).

TRANSFERSET Sets up the transfer of data between two
files.

TRANSFER$ Executes the transfer of data between two
files according to TRANSFERSET.

COPY Copies a file to another name and/or di-
rectory.

KILL Deletes a file.

LOC Returns the position in an OPENed file.

LOF Returns the length in bytes of an OPENed
file.

56

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

5. Image Files

O Images
Also see:
 Chapter 14

6. Outline Font Files

[0 Fonts and Font Conversion
Also see:
 Chapter 12

7. Transferring Text Files

Imagefiles in .PCXformat can be downloaded to the printer's RAM
memory and at the same time be converted to imagesger-
print's internal bitmap format by means of the statement IMAGE
LOAD.

Image files in .PCX format that have been downloaded to the
printer's RAM memory usinéermit file transfer protocol (see
chapter 6.8) or stored in a DOS-formatted memory card cannot be
used to produce a printable image before they have been converted
to Fingerprint's internal bitmap format by means of the following
instruction:

RUN "pcx2bmp <name of .PCX file> <name of image>"

Image files in Intelhex format, or the formats UBIOO, UBIO1,
UBIO02, UBIO3 or UBI10, can be downloaded and converted to
images using the STORE IMAGE and STORE INPUT statements.

Images files can be listed by means of a FILES statements.

Outline font files are files iBpeedd*.SPD) orTrueTypg*. TTF)
format containing scalable outline fonts. Such files can be down-
loaded to the printer's RAM memory using Kermit file transfer
protocol (see chapter 6.8) or the FILE& LOAD instruction, or be
stored in a DOS-formatted memory card.

They can be used in some printer modelskagyCoder 401/501/
601 to produce customized bitmap fonts. This requires special
software (Scalable Fonts Kit) and a CPU board with 6 EPROM
sockets.

The Scalable Fonts Kit also allows fonts in *. ATF format to be
downloaded using the FONT LOAD statement.

TheConfigurationprogram in th& oolboxallows outline font files
to be transferred to EPROM:s or non DOS-formatted memory
cards.

Outline font files can be listed by means of a FILES statements.

Text files, e.g. program files and data files in ASCII format, can be
downloaded via a communication program in the host, e.g. Win-
dows Terminal (“Transfers; Send Text File”).

Text files can be transferred back to the host, e.g. for backup
purposes, by LOADINg the file and LISTing it to a communication
program in the host.

57

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

8. Transferring Binary
Files using Kermit

[J Standard IN and OUT Channels
Also see:
e Chapter7.1

Note that there is a 30 sec. time
between issuing the TRANSF
KERMIT "R" statement and the start
the transmission.

[] Arrays
Also see:

 Chapter 6.10

Outline font files and some image files come in binary format and
can be downloaded from the host to the printer or vice versa using
the Kermit file transfer protocol, which is commonly used for
binary transfer of data and is included in many communication
programs, e.gDCA CrosstalkMS Windows TerminaandMS
Works

Warning! Tests have shown that MS Windows Terminal versions
3.0 and 3.1 are unable to receive afile from the printer, even if they
are capable of sending a file to the printer.

More information on thékermit protocol can be found in the
manual of the communication program or in the reference volume
“Kermit — A File Transfer Protocol’by Frank da Cruz (Digital
Press 1987, ISBN 0-932376-88-6).

TRANSFER KERMIT

The TRANSFER KERMIT statement allows you to specify direc-
tion (Send or Receive), file name, input device and output device.
By default, a file name designated "KERMIT.FILE" will be
transferred on the standard IN or OUT channel.

out
ERExample:
of The printer is set up to receive a file on the standard IN channel.

TRANSFER KERMIT "R"

TRANSFER STATUS

After a file have been transferred by means of a TRANSFER
KERMIT statement, the transfer can be checked using the TRANS-
FER STATUS statement. The statement will place the result of the
check into two one-dimensional arrays:

5-element numeric array(requires a DIM stmt)

Element O returns: Number of packets

Element 1 returns: Number of NAKs

Element 2 returns: ASCII value of last character
Element 3 returns: Last error

Element 4 returns: Block check type used

2-element string array(requires no DIM stmt)
Element O returns: Type of protocol, i.e. "KERMIT"
Element 1 returns: Last file name received

Example:

10 TRANSFER KERMIT "R"

20 DIM A%(4)

30 TRANSFER STATUS A%,B$

40 PRINT A%(0), A%(1), A%(2), A%(4), A%(4)
50 PRINT B$(0), B$(1)

RUN

58

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

9. Transferring Files
Between Printers

Note:

If you want to transfer a file from one printer to another printer, start
by transferring the file to the host. Then disconnect the first printer
and download the file to the second printer (or have the two printers
connected to separate serial ports). After the transfer of programs
between two connected printers is completed, you can check if the
transfer was successful by means of a CHECKSUM function.

CHECKSUM
The CHECKSUM function uses an advanced algorithm on parts of

Donot confuse CHECKSUMwithCSUM, the printer's internal code. Thus, calculate the CHECKSUM on the

see chapter 6.10 “Arrays”.

program in the transmitting printer before the transfer. After the
transfer is completed, LOAD the program in the receiving printer
and perform the same calculation. If the checksums are identical,
the transfer was successful.

Note that the algorithm was changeéingerprint 4.0 Thus, the
CHECKSUM function will return other checksums in printers
using earlier versions &ingerprintthan 4.0 compared to printers
using 4.0 or later versions. If possible, use the gamgerprint
version in both printers.

Example:
This example calculates the checksum in the lines 10-90000 in the
program "DEMO.PRG".

LOAD "DEMO.PRG"
PRINT CHECKSUM (10,90000)

59

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

10. Arrays

Variables containing related data may be organized in arrays. Each
value in an array is called an element. The position of each element
is specified by a subscript, one for each dimension (max 10). Each
array variable consists of a name and a number of subscripts
separated by commas and enclosed by parentheses, for example
ARRAY$(3,3,3).

The number of subscripts in an array variable, the first time
(regardless of line number) it is referred to, decides its number of
dimensions. The number of elements in each dimension is by
default restricted to four (No. 0-3).

Four instructions are specifically used in connection with arrays:

DIM Specifies the size of an array in regard of
elements and dimensions.

SORT Sorts the elements in a one-dimensional
array in ascending or descending order.

SPLIT Splits a string into an array.

CSUM Returns the checksum for a string array.

DIM

If more than 4 elements are needed, or if you want to limit the size
of the array, a DIM statement can be used to specify the size of the
array in regard of the number of dimensions as well as the number
of elements in each dimension. In most cases, one- or two-
dimensional arrays will suffice.

This example shows how three 1-dimensional, 5-element arrays
can be used to return 125 possible combinations of text strings:
10 DIM TYPE$(4),COLOURS(4),SIZE$(4)

20 TYPE$(0)="SHIRT"

30 TYPE$(1)="BLOUSE"

40 TYPE$(2)="TROUSERS"

50 TYPE$(3)="SKIRT"

60 TYPE$(4)="JACKET"

70 COLOURS$(0)="RED"

80 COLOUR$(1)="GREEN"

90 COLOURS$(2)="BLUE"

100 COLOUR$(3)="RED"

110 COLOURS$(4)="WHITE"

120 SIZE$(0)="EXTRA SMALL"

130 SIZE$(1)="SMALL"

140 SIZE$(2)="MEDIUM"

150 SIZE$(3)="LARGE"

160 SIZE$(4)="EXTRA LARGE"

170 INPUT"Select Type (0-4): ", A%

180 INPUT"Select Colour (0-4): ", B%

190 INPUT"Select Size (0-4): ", C%

200 PRINT TYPE$(A%)+", "+COLOUR$(BY%)+", "+SIZE$(C%)
RUN

Continued!

60

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

10. Arrays, cont'd. SORT
The SORT statement is used to sort a one-dimensional array in
ascending or descending order according the character's ASCII
values in the Roman 8 character set. You can also choose between
sorting the complete array or a specified interval. For string arrays,
you can select by which character position the sorting will be
performed.

This example shows how one numeric array is sorted in ascending
order and one string array is sorted in descending order according
to the fifth character in each element:

10 FORQ%=0TO3

20 A$=STR$(Q%)

30 ARRAY%(Q%)=1000+Q%:ARRAY$(Q%)="No. "+A$

40 NEXT Q%

50 SORT ARRAY%,0,3,1

60 SORT ARRAY$,0,3,-5

70 FORI%=0TO3

80 PRINT ARRAY%(1%), ARRAY$(1%)

90 NEXTI1%
RUN
Yields:

1000 No.3

1001 No.2

1002 No.1

1003 No.0

SPLIT

The SPLIT functionis used to split a string expression into elements
in an array and to return the number of elements. A specified
character indicates where the string will be split.

In this example a string expression is divided into six parts by the
separator character “/” (ASCII 47 dec.) and arranged in a Six
element array:
10 A$="ONE/TWO/THREE/FOUR/FIVE/SIX"
20 X$="ARRAY$"
30 DIMARRAY$(6)
40 B%=SPLIT(A$,X$47)
50 FOR C%=0TO (B%-1)
60 PRINT ARRAY$(C%)
70 NEXT
RUN
Yields:
ONE
TWO
THREE
FOUR
FIVE
SIX

Continued!

61

Intermec Fingerprint 6.13 — Programmer's Guide

6. FILE SYSTEM, cont'd.

10. Arrays, cont'd. CSUM
The checksum for string arrays can be calculated according to one

E‘)gtﬁgmonme CSUMwith CHECKSUM of two different algorithms (LRC or DRC) and returned by means
see chapter 6.9. 'of the CSUM statement.

In this example, the checksum of a string array is calculated
according both to the LRC (Logitudinal Redundancy Check) and
the DRC (Diagonal Redundancy Check) algorithms:
10 FORQ%=0TO3
20 A$=STR$(Q%)
30 ARRAY$(Q%)="Element No. "+A$
40 NEXT
50 CSUM 1,ARRAY$,B%:PRINT "LRC checksum: ";B%
60 CSUM 2,ARRAY$,C%:PRINT "DRC checksum: ";C%
RUN
Yields:
LRC checksum: 0
DRC checksum: 197

62

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT

1. Standard I/O Channel

[J] Output from Intermec Fingerprint
See:
 Chapter8

The standard IN and standard OUT channels are the default
channels for input to the printer or output from the printer respec-
tively (in both cases "uartl:" by default). In most instructions, you
can override the standard IN or OUT channel by specifying another
channel. Usually, the same channel is used for both input and
output, but different channels can be specified.

SETSTDIO

You can appoint any of the following communication channels as
standard INand/or standard OUT channel by means of the
SETSTDIO statement:

1/. Do not select "console:" as both std in
and out channel, since it would only makeStandard IN channel Standard OUT channel

characters entered on the printer's key)

board appear in the display.

%/, The parallel communication channel 2
"centronics:" can only be used for input3

(one-way communication only).

2. Input from Host
(Std IN Channel only)

3. Input from Host
(Any Channel)

= "console:* 0 = "console:*

1 = "uartl:" (default) 1 = "uartl:" (default)
= "uart2:"/"rs485:" 2 = "uart2:"/"rs485:"
= "uart3:" 3 = "uart3:"

4 "centronics?

The std IN channel is used for sending instructions and data from
the host to the printer in order to control the printer in the immediate
mode, to write programs in the programming mode, to download
program files and to transmit input data.

Some instructions receives data on thenstthannel only:

INKEY$ Reads the 1:st character in the receive
buffer.

INPUT Receives input data during execution of a
program.

LINE INPUT Assigns an entire line to a string variable.

The following instructions are used to receive input flamy
communication channel (incl. the std IN channel). The same
instructions are also used to read sequential files, see chapter 7.4:

OPEN Opens a channel for sequential INPUT.

INPUT# Receives input data during execution of a
program on the specified channel.

INPUTS Reads a string of data from the specified
channel.

LINE INPUT# Assigns an entire line from the specified
channel to a string variable.

CLOSE Closes the channel.

63

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

4.

Input from a Sequential
File

Refer to chapter 7.3 for a summary of instructions used for reading
sequential files.

OPEN

Before any data can be read from a sequential file (or a communi-
cation channel other than the std IN channel), it must be OPENed
for INPUT and assigned a number, which is used when referred to
in other instructions. The number mark (#) is optional. Up to 10 files
and devices can be open at the same time.

Example: The file "ADDRESSES" is opened for input as number 1:
OPEN "ADDRESSES" FOR INPUT AS #1

After a file or device has been OPENed for INPUT, you can use the
following instructions for reading the data stored in it:

INPUT#

Reads a string of data to a variable. Commas can be used to assign
portions of the input to different variables. When reading from a
sequential file, the records can be read one after the other by
repeated INPUT# statements. The records are separated by com-
mas in the string. Once a record has been read, it cannot be read
again until the file has been CLOSEd and then OPENed again.

Example (reads six records in a file and places the data into six
string variables):
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "Record A","a""b","c"
30 PRINT #1, "Record B",1,2,3
40 PRINT #1, "Record C","X";"y";"z"
50 PRINT #1, "Record D,Record E,Record F"
60 CLOSE#1
70 OPEN"QFILE" FOR INPUT AS #1
80 INPUT #1, A$
90 INPUT #1, B$
100 INPUT #1, C$
110 INPUT #1, D$,E$,F$
120 PRINT A$
130 PRINT B$
140 PRINTC$
150 PRINT D$
160 PRINT E$
170 PRINT F$
180 CLOSE #1
RUN
Yields:
Record A a b c
RecordB 1 2 3
Record C xyz
Record D
Record E
Record F

Continued!

64

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

4.

Input from a Sequential
File, cont'd.

INPUT$

Reads a specified number of characters from the specified sequen-
tial file or channel. (If no file or channel is specified, the data on the
standard IN channel will be read). The execution is held up waiting
for the specified number of characters to be received. If a file does
not contain as many characters as specified in the INPUT$ state-
ment, the execution will be resumed as soon as all available
characters in the file have been received.

Sequential files are read from the start and once a number of

characters have been read, they cannot be read again until the file
is CLOSEd and OPENed again. Subsequent INPUT$ statements
will start with the first of the remaining available characters.

Example (reads portions of characters from a file OPENed as #1):
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 CLOSE#1
40 OPEN "QFILE"FOR INPUT AS #1
50 A$=INPUT$(10,1)
60 B$=INPUT$(5,1)
70 C$=INPUT$(100,1)
80 PRINT "Record 1:".A$
90 PRINT "Record 2:",B$
100 PRINT "Record 3:",C$
110 CLOSE#1
RUN
Yields:
Recordl: ABCDEFGHIJ
Record2: KLMNO
Record3: PQRTSUVWXYZ

LINE INPUT#

Works similar to INPUT#, but reads an entire line including all
punctuation marks to a string variable instead of reading just one
record. Note that commas inside a string will be regarded as
punctuation marks and will not divide the string into records
(compare with INPUT#).

Example (reads a complete line in a file and places the data into a
single string variable):

10 OPEN "QFILE" FOR OUTPUT AS #1

20 PRINT #1, "Record A,Record B,Record C"

30 CLOSE#1

40 OPEN "QFILE" FOR INPUT AS #1

50 LINEINPUT #1, A$

60 PRINT A$
70 CLOSE #1
RUN
Yields:
Record A,Record B,Record C
Continued!

65

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

4. Input from a Sequential
File, cont'd.

[J] Relational Operators
Also see:
e Chapter4.9

CLOSE

When afile is nolonger used, it can be closed by means of a CLOSE
statement containing the same reference number as the correspond-
ing OPEN statement. An END statement also closes all open files.

A few instructions facilitate the use of files for sequential input:

EOF (End of File)

The EOF function can connection with the statements INPUT#,
LINE INPUT#and INPUT$to avoid the error condition “Input past
end". When the EOF function encounters the end of a file, it returns
the value -1 (TRUE). If not, it returns the value O (FALSE).

Example:

10 DIM A%(10)

20 OPEN "DATA"FOR OUTPUT AS #1
30 FORI%=1TO 10

40 PRINT #1, 19*1123

50 NEXT %

60 CLOSE#1

70 OPEN "DATA"FOR INPUT AS #2
80 1%=0

90 WHILE NOT EOF(2)

100 INPUT #2, A%(1%):PRINT A%(1%)
110 1%=1+1:WEND

120 IF EOF(2) THEN PRINT "End of File"
RUN

LOC (Location)
The LOC function returns the number of 128-byte blocks, that have
been read or written since the file was OPENed.

This example closes the file "ADDRESSES" when record No. 100

has been read from the file:
10 OPEN "ADDRESSES" FOR INPUT AS #1

200 IF LOC(1)=100 THEN CLOSE #1

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN "PRICELIST" AS #5

20 PRINT LOF(5)

66

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

5.

Input from a Random
File

The following instructions are used in connection with input from

random files:

OPEN Creates and/or opens a file FoxNDOM
access and optionally specifies the record
length in bytes.

FIELD Creates a random buffer, divides it into
fields and assigns a variable to each field.

GET Reads a record from the buffer to the file.

CLOSE Closes an OPENed file.

LOC Returns the number of the last record read
by the use of a GET statements in the
specified file.

LOF Returns the length in bytes of the speci-
fied file.

OPEN

To read the data stored in a random file, you must OPEN it.

The example in this chapter uses the random file created in chapter
8.4, which can be graphically illustrated like this:

Record 1 Record 2 Record 3

[A[BIC] | [DIE[F[1]2[3[4[5]6]X[¥Y[Z] | [Q[R[S[8]4[5[3[1[[R[SIT[T[[U[VIW[9[8[7[6]54]
1234[1234[123456[1234[1234[123456[1234[1234[12345F6]|
Field1 Field2 Field3 Field1 Field2 Field3 Field1 Field2 Field3

10 OPEN"ZFILE" AS #1 LEN=14

The appending “LEN=14"refers to the length of each record which
IS 14 bytes (4 + 4 + 6). Do not confuse the “LEN” parameter in the
OPEN statement with the LEN function, see chapter 9.2.

FIELD
Then enter the same field definitions as when the data was put into
the file:

20 FIELD#1, 4 ASF1$, 4 AS F2$, 6 AS F3%

GET

Use a GET statement to copy the desired record from the file. Note
that you can select whatever record you want, as opposed to
sequential files, where you reads the records one after the other. In
this case, we will copy record No. 1 (compare with the illustration
above).

30 GET#11

If you like, you can copy data from other records in the same file by
issuing additional GET statements with references to the records in
question.

Continued!

67

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

5. Input from a Random
File, cont'd.

[0 VAL function
Also see:
e Chapter9.2

Now you can use the variables assigned to the fields in the record
by means of the FIELD statement to handle the data. Possible
numeric expressions converted to string format before being put
into the record can now be converted back to numeric format using
VAL functions. In our example, we will simply print the data on the
screen:

40 PRINT F1$,F2$,F3$

CLOSE
Finally, close the file and execute:

50 CLOSE#1
RUN

Yields:
ABC DEF 123456

Two instructions facilitate the use of random files:

LOC (Location)
The LOC function returns the number of the last record read by the
use of GET statement.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES"AS #1

200 IF LOC(1)=100 THEN CLOSE #1

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN"PRICELIST" AS #5

20 PRINT LOF(5)

68

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

6. Input from Printer's
Keyboard

Y. Input from arexternal alphanumeric

keyboard is a case of ASCII input on aN
communication channel, see chapter 7.1-

3.

/. Some keys will not produce any ASCI|

values in Shifted position depending or]
printer model and choice of Shiftkey. Tes
using the programming example at the
end of this chapter!

All FingerprintcompatibleEasyCodeprinters are provided with

at least one key or button. Enhanced models have a set of numeric
keys supplemented with a number of function keys. This also
applies to th&asyCoder 201 1l S@Stand-Alone)EasyCoder 501
SA(Stand-Alone) has a full QWERTY keyboard, like a typewriter.
There are also separate alphanumeric keyboards available as op-
tions.

ote that input from the printer's keyboard excludes the use of ON
KEY...GOSUB statements (see chapter 5.8) and vice versa.

The following instructions are used in connection with input from
the printer's keyboard:

OPEN Opens the device "console:" for sequen-
tial INPUT.

INPUT# Reads a string of data to a variable.

INPUT$ Reads a limited number of charactersto a
variable.

LINE INPUT# Reads an entire line to a variable

CLOSE Closes the device.

The table below shows which ASCII characters the various keys
will produce in unshifted and shifted position, and which key will
work as Shift key by default. However, the keyboard can be
remapped (see later in this chapter).

Default ASCII decimal values for Enhanced Printers

Key | Unshifted|Shifted" | Notes
F1 1 129
F2 2 130
F3 3 131
F4 4 132
F5 5 133
C 8 N/A | Shift key by default
Enter 13 141 Unshifted Enter = Carriage Return
Feed 28 156
Setup 29 157
Pause 30 158 C+Pause is by default “Break from keyboard*
Print 31 159
. 46 174
0 48 176
1 49 177
2 50 178
3 51 179
: 4 52 180
5 53 181
6 54 182
7 55 183
8 56 184
9 57 185

Continued!

69

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

6. Input from Printer's The printable characters actually generated by the respective ASCII
Keyboard, cont'd. value depend on the selected character set (NASC) and possible
MAP statements, see chapter 9.1.

In case of INPUT# and LINE INPUT#, the input will not be
accepted until a carriage return (< Enter >) is issued.

This example demonstrates how the printable character and deci-
mal ASCII value of various keys on the printer's keyboard can be
printed to the screen of the host. You can break the program by
holding down the €> key and pressing Rause.

10 PRINT "Character”, "ASCII value"

20 OPEN "console:" FOR INPUT AS 1

30 A$=INPUT$(L,1)

40 B%=ASC(A$)

50 PRINT A$, B%

60 GOTO 30
70 CLOSE1
RUN

70

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

7. Communication Control

[J Communication
Also see:
« Technical Manual, Setup Parameters

The following instruction are used to control the communication
between the printer and the host or other connected devices:

BUSY/READY Transmits a busy or ready signal on the
specified communication channel.
ON LINE/OFF LINE Controls the SELECT signal on the paral-

lel communication channel ("centronics:").
VERBON/VERBOFF Turns printer's verbosity on/off.
SYSVAR(18) Selects the printer's verbosity level.

BUSY/READY

By means of these two statements, you can let the program
execution turn a selected communication channel on or off. There
Is a difference between serial and parallel communication.

» Serial communication
The type of busy/ready signal is decided in the Setup Mode (Ser-
Com; Flowcontrol), see the Technical Manual.
- When a BUSY statement is executed, the printer sends a busy
signal , e.g. XOFF or RTS/CTS low.
- When a READY statement is executed, the printer sends a
ready signal , e.g. XON or RTS/CTS high.

« Parallel communication
The parallel Centronics communication channel uses the BUSY/
READY statements to control the PE (paper end) signal on pin 12:
- BUSY = PE high

- READY = PE low
The status of the PE signal can be read by a PRSTAT statement,
for example:

IF (PRSTAT AND 4) GOTO.....ELSE GOTO.....

Note that issuing a READY statement is no guarantee that the
printer will receive data, since there may be other conditions that
hold up the reception, e.g. a full receive buffer.

ON LINE/OFF LINE

These two statements is only used for the parallel Centronics
communication channel and controls the SELECT signal (pin 13 on
the parallel interface board):

- ONLINE4 setsthe SELECT signal high (default)

- OFFLINE 4 sets the SELECT signal low

Continued!

71

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

7. Communication
Control, cont'd.

[J Standard IN/OUT Channel
Also see:
e Chapter7.1

VERBON/VERBOFF

These two statements control the printer's verbosity, i.e. the re-
sponse from the printer on the standard OUT channelto instructions
received on the standard IN channel. Both can be substituted by
SYSVAR (18), see below.

By default, verbosity is on (VERBON). The verbosity level is
controlled by the system variable SYSVAR(18).

All responses will be turned suppressed when a VERBOFF state-
ment is issued. However, VERBOFF does not suppress question
marks and prompts displayed as aresultofe.g. an INPUT statement.
Instructions like DEVICES, FILES, FONTS, IMAGES, LIST and
PRINT will also work normally.

Important:
RS 485 with “Prot addr enable” requires the verbosity to be turned
off (VERBOFF), see chapter 7.9 “RS 422/485 Communication”.

SYSVAR
The system variable SYSVAR is used for many purposes, one of
which is to control the verbosity level.

The verbosity level can be selected or read by specifying bits in
SYSVAR(18):

All levels enabled -1

No verbosity 0

Echo received characters 1

"Ok" after correct command lines 2

Echo INPUT characters from communication port 4

Error after failed lines 8

The levels can be combined, so e.g. 3 meansibatio received
characters”and"Ok after correct command line”

By default, all levels are enabled, i.e. SYSVAR(18) = -1.
VERBON statement enables all levels, i.e. SYSVAR(18) = -1.
VERBOFF statement disables all levels, i.e. SYSVAR(18) = 0.

When the printer receives a character, e.g. from the keyboard of the
host, by default the same character is echoed back on the standard
OUT channel, i.e. usually to the screen of the host. When an
instruction has been checked for syntax errors and accepted, the
printer returns “Ok”. Else an error message is returned.

This example demonstrates how the printer is set to only return

“Ok” after correct lines (2) or error messages after failed lines (8):
SYSVAR(18) = 10

72

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

8. Background
Communication

[] Memory and Buffers
Also see:
o Chapter 6.1

Background communication means that the printer receives data on
an IN channel while the program runs in a loop. The data are stored
in a buffer, that can be emptied at an appropriate moment by the
running program, which then can use the data. Note that back-
ground communication buffers are not the same as the receive
buffers. Any input received on a communication channel is first
stored in the channel's receive buffer, awaiting being processed.
After processing, the data may be stored in the background commu-
nication buffer.

The following instructions are used in connection with background
communication:
COMSET Decides how the background reception will
work in regard of:
- Communication channel.
- Start character(s) of message string.
- End character(s) of message string.
- Characters to be ignored.
- Attention string that interrupt reception.
- Max. number of characters to be received.
ON COMSET GOSUB Branchesthe programexecutiontoasubrou-
tine when background reception on a speci-
fied channel is interrupted.

COMSET ON Empties the buffer and turns on background
reception on the specified channel.

COMSET OFF Turns off background reception onthe speci-
fied channel and empties the buffer.

COM ERROR ON Enables error handling on a channel.

COM ERROR OFF Disables error handling on a specified chan-
nel (default).

COMSTAT Reads the status of the buffer of a channel.

COMBUF$ Reads data in the buffer of a channel.

LOC Returns the status of the buffers in a
channel.

LOF Returns the status of the buffers in a
channel.

To set up the printer for background communication, proceed as
follows:

« Startbyenabling the error handling for background communication
usinga COM ERROR ON statementand specifying the communi-
cation channel you intend to use:

0 ="console:"
1="uartl:"

2 ="uart2:"/"rs485:"
3 ="uart3:"

4 ="centronics:"

Continued!

73

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

8. Background
Communication, cont'd.

[J CHR$ Function
Also see:
e Chapter 9.2

It may be useful to create a few messages indicating what have
caused the interruption.

Example:

Error handling is enabled for communication channel "uart1:"
and messages will be printed to the standard out channel for all
conditions that can be detected by a COMSTAT function.

10 COM ERROR 1 ON

20 A%$="Max. number of characters"

30 B$="End char. received"

40 C$="Communication error"

50 D$="Attention string received"

Continue with a COMSET statement specifying:
- Which communication channel will be used (0—4, see above).

- Which character, or string of characters, will be used to tell the
printer to start receiving data?

- Which character, or string of characters, will be used to tell the
printer to stop receiving data?

- Which character or characters should be ignored, i.e. filtered out
from the received data?

- Which character, or string of characters, should be used as an
attention string, i.e. to interrupt the reception.

Start, stop, ignore and attention characters are selected
accordingto the protocol of the computing device that transmits
the data. Non printable characters, e.g. STX (Start of Text;
ASCII 02 dec.) and ETX (End of Text; ASCII 03 dec.) can be
selected by means of a CHR$ function. To specify no character,
use an empty string, i.e. ™.

- How many characters should be received before the transmis-
sion is interrupted? This parameter also decides the size of the
buffer, i.e. how much of the RAM memory will be allocated.

Example (designed to make the example easy to run rather than
to illustrate a realistic application):

Background reception on the serial channel "uart1:".

Start character: A

End character: CHR$ (90) i.e. the character “Z”.

Characters to be ignored: #

Attention string: BREAK

Max. number of characters in buffer: 20

60 COMSET 1,"A",CHR$(90),"#","BREAK",20

Continued!

74

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

8.

Background
Communication, cont'd.

Decide what will happen, when the reception is interrupted, by
specifying a subroutine to which the execution will branch, using
an ON COMSET GOSUB statement.

Interruption will occur when any of the following conditions is
fulfilled:

- an end character is received.

- an attention string is received.

- the maximum number of characters have been received.

Example:

When the reception of data on communication channel 1 ("uart1:")
is interrupted, the execution will branch to a subroutine starting
on line number 1000.

70 ON COMSET 1 GOSUB 1000

After returning fromthe subroutine, use a COMSET ON statement

to empty the buffer and turn on background reception again. e.g.:
80 COMSET 10N

When the reception has been interrupted, itis time to see what the
buffer contains. You can read the content of the buffer, e.g. to a

string variable, using a COMBUFS$ function:
1000 QDATA$=COMBUF$(1)

The COMSTAT function can be used to detect what has caused
the interruption. Use the logical operator AND to detect the
following four reason of interruption as specified by COMSET:

- Max. number of characters received (2).

- End character received (4).

- Attention string received (8).

- Communication error (32).

Example:

The various cases of interruption makes different messages to be
printed to the standard OUT channel.

1010 IF COMSTAT(1) AND 2 THEN PRINT A$

1020 IF COMSTAT(1) AND 4 THEN PRINT B$

1030 IF COMSTAT(1) AND 8 THEN PRINT C$

1040 IF COMSTAT(1) AND 32 THEN PRINT D$

If you want to temporarily turn off background reception during
some part of the program execution, you can issue a COMSET
OFF statement and then turn off the background reception again
using a new COMSET ON statement. Remember that the
COMSET ON/OFF statements empties the buffer and the content
will be lost if you do not read it first, using a COMBUF$ function.

Continued!

75

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

8.

Background
Communication, cont'd.

« After adding a few lines to print the content of the buffer (line
1050) and to create a loop that waits from input from the host (line
90), the entire example will look like this. You can run the
example by typing RUN and pressiggteron the keyboard of
the host. Then enter different characters and see what happens,
comparingwith the start character, stop character, ignore character,
attention string, and max. number of characters parameters in the
COMSET statement.

NEW

10 COM ERROR 1 ON

20 A$="Max. number of char. received"

30 B$="End char. received"

40 C$="Attn. string received"

50 D$="Communication error"

60 COMSET 1, "A",CHR$(90),"#","BREAK",20
70 ON COMSET 1 GOSUB 1000

80 COMSET 1 ON

90 IF QDATA$=""THEN GOTO 90

100 END

1000 QDATA$=COMBUF$(1)

1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATAS

1060 RETURN

RUN

Two instructions facilitate the use of background communication:

LOC (Locate)

The LOC function returns the status of the receive or transmitter

buffers in an OPENed communication channel:

- If the channel is OPENed for INPUT, the remaining number of
characters (bytes) to be read from the receive buffer is returned.

- Ifthe channelis OPENed for OUTPUT, the remaining free space
(bytes) in the transmitter buffer is returned.

The number of bytes includes characters that will be MAPped as
NULL.

This example reads the number of bytes which remains to be
received from the receiver buffer of "uart2:":

10 OPEN "uart2:" FOR INPUT AS #2

20 A%=LOC(2)

30 PRINTA%

Continued!

76

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

8.

Background
Communication, cont'd.

LOF (Length-of-File)

The LOF function returns the status of the buffers in an OPENed

communication channel:

- If a channel is OPENed for INPUT, the remaining free space
(bytes) in the receive buffer is returned.

- If a channel is OPENed for OUTPUT, the remaining number of
charactersto be transmitted from the transmitter bufferis returned.

The example shows how the number of free bytes in the receive

buffer of communication channel "uart2:" is calculated:
10 OPEN "uart2:" FOR INPUT AS #2

20 A%=LOF(2)

30 PRINT A%

80 COMSET1ON

90 IF QDATA$=""THEN GOTO 90

100 END

1000 QDATA$=COMBUF$(1)

1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATAS$

1060 RETURN

RUN

77

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

9. RS 422/485
Communication

[0 RS 422/485 Interface
Also see:
» Technical Manual

As an option, somé&asyCoderprinters can be fitted with an
interface board that provides either RS 422 or RS 485 on "uart2:".
Some models also have a built-in provision for RS 422 on "uart1:"
on the CPU board.

In neither of these protocols, there are any lines for hardware
handshake (RTS/CTS). Thus, in the printer's setup, the option
“RTS/CTS Enable/Disablefor "uart2:" has been replaced by the
option"Prot Addr Enable/Disable’which is only intended for RS
485, see below.

The strap onthe RS 422/485 interface board, that selects 2- or 4 wire
communication, only controls the hardware, but the firmware
cannot read this strap. Instead, 2- or 4-wire communication is
determined by the printer's setup on "uart2:" in regard<®N/
XOFF, Data from Host, Enable/Disabknd “Prot. Addr. Enable/
Disablé

RS 422

RS 422 is a point-to-point four-line screened cable connection
between a host computer and a printer, or between two printers.
Two lines transmit data and the other two receive data. No hardware
handshake can be used (4 lines only), but XON/XOFF or ENQ/
ACK can be used if so desired.

* RS 422 on "uartl:" (EasyCoder 401/501/601)
Optional driver circuit fitted on CPU board.
Either the standard IN/OUT channel should be set to 1 (default),
or the device "uartl:" should be OPENed for INPUT, e.g.:
OPEN "uartl:" for INPUT AS #1

* RS 422 on "uart2:" (optional RS 422/485 interface board)
Two voltage reference straps and two terminator straps must be
fitted on the interface board.

Set the printer's flowcontrol setup parameters as follows:
RTS/CTS: Always Disable

ENQ/ACK: Enable or Disable

XON/XOFF, Data from host: Always Enable

XON/XOFF, Data to host: ~ Enable or Disable

Prot. addr: Always Disable

Either the standard IN/OUT channel should be set to 2, or the

device "rs485:" should be OPENed for INPUT, e.g.:
OPEN "rs485:" for INPUT AS #1

Continued!

78

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

9. RS 422/485
Communication, cont'd.

O Verbosity
Also see:
 Chapter 7.7

RS 485

RS 485is only available on the optional RS 422/485 interface board
(communication port "uart2:"). Itis a 2-line screen cable point-to-
point or multidrop loop connection, where the two lines switch
between transmitting and receiving data according to instructions
from the software. By default, the port is set to receive data. Before
transmission of data, the port is switched to transmit. After the last
character has been transmitted, the port is switched back to receive.

e Point-to-Point

For a point-to-point RS 485 communication between a host
computer and a printer, or between two printers, no special
protocolis required. No handshake can be used, butcommunication
control must be taken care of by the application software.

Set the printer's flowcontrol setup parameters as follows:
RTS/CTS: Always Disable

ENQ/ACK: Always Disable

XON/XOFF, Data from host: Always Disable

XON/XOFF, Data to host: ~ Always Disable

Prot. addr: Disable

Either the standard IN/OUT channel should be set to 2, or the
device "rs485:" should be OPENed for INPUT, e.g.:

OPEN "rs485:" for INPUT AS #1

Multidrop Loop

This type of communication is intended for sending packets of
data from anaster unit (usually some kind of computer) to any

of a number of connected printersléves), according to a
destination address included in message. The addresses of the
printers are specified by straps on their RS 422/485 interface
boards.

Transmissions should consist of packets of data with a maximum
size of 255 bytes. Longer records must be divided into two packets
or more.

When a printer is set up fdProt addr. enable”, it will

automatically use a special protocol described later in this chapter,
but a connected host computer must be provided with some
application software that composes its transmissions accordingly.

No handshake can be used, but communication control must be
taken care of by the application software.

79

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

9.

RS 422/485
Communication, cont'd.

e Multidrop Loop, cont'd.

Set the printer's flowcontrol setup parameters as follows:
RTS/CTS: Always Disable
ENQ/ACK: Always Disable
XON/XOFF, Data from host: Always Disable
XON/XOFF, Data to host: Always Disable

Prot. addr: Enable
Setverbosityto off usinga VERBOFF statement or a SYSVAR(18)=0instruction.
Master Unit

The master unit controls the data flow in the loop and must always
haveaddress 0

In case of using eomputer as master, refer to the computer's
manual for information on how to appoint the computer master
and how to set its address to O.

In case of usingjarinter as master (e.g. in a printers-only loop),
the address 0 must be strapped and two voltage reference straps
must be fitted on the printer's RS 422/485 interface board.

Example showing communication between master and a slave
with the address 8:

OPEN "rs485:8" FOR OUTPUT AS #1

OPEN "rs485:8" FOR INPUT AS #2

PRINT #1,"SEND STATUS" (a status request is sent to Slave No. 8)
LINE INPUT #2, A$ (message is read from Slave No. 8)

Slave Units
Commonly, the master in a loop is a computer and the slaves are
printers, each with an individual address (1-31).

The computer controls the data flow by sending data to a specified
printer, or by sending a request to check if the master needs any
datafromthe printer. An application program must be created that
defines a protocol within the data record, which defines when a
slave is allowed to send data.

Inthe program of the slave printer, rs485 is OPENed for both input
and output. No destination address is required in the OPEN
statement, since addr€gs e. master) is automatically assumed.
When a complete packet of data is available, the application
program is able to read the data record sent from the master. If the
datais a status request, the printer can send data back to the master
The header record will automatically be added to the packet.

Example showing communication between slave and master:
OPEN "rs485:" FOR INPUT AS #1
OPEN "rs485:" FOR OUTPUT AS #2

LINE INPUT #1,A% (data from master are read)
PRINT #2, "DATA TO MASTER" (data are sent to master)
Continued!

80

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

RS 422/485
Communication, cont'd.

9.

Note:
Do not confuse this ESC character w
the ASCII ESCape character = AS

27 decimal).
be the same code as the START or

two-byte sequence:

If a byte = START,

send ESC+ASCII 220 dec.
If a byte = ESC,

send ESC+ASCII 221 dec.

ith

ClI
C

Protocols
All packets of data must be preceded by a header record, in which
all data are binary:

| START | DST | SRC | LEN | PROTO | CRC | <Data record/Request >

Header record: 5 bytes

START indicates the start of the header record. Either of the
following two characters can be used as start character:
STARTASCII 192 decimal, or
ESC ASCII 219 decimal, see note!

DST is the destination address 0—31 (1 byte).

If a byte somewhere in the packet should
ESERC
characters, it must be substituted by A EN

is the source address 0-31 (1 byte).
is the size in bytes of the data record, max. 249 characters
(1 byte).

PROTO specifies type of protocols 0 or 1 (1 byte), see below

CRC is the checksum of the header record (1 byte), i.e. the

inverted sum of DST+SRC+LEN+PROTO bytes.

« PROTO=0
This protocol is used for transfer of data. The syntax is:

\ START\ DST \ SRC \ LEN‘ PROTO=0 \ CRC \ <Data record> \

« PROTO=1
This protocol is used for communication check from a host
computer (cannot be sentfrom a printer!). Instead of a data record,
a REQUEST byte (0 or 1) appends the header record. Any printer
in the loop can be checked if it is on-line (REQUEST = 0), or
inquired for the number of seconds that have passed since its last
startup or reboot (REQUEST = 1). If the printer is on-line, it will
answer by returning the corresponding REQUEST byte, in the
latter case followed by the time expressed as a 10-digit value with
leading zeros.

Example 1. The host computer sends:

| START| DST| SRC| LEN | PROTO =1 CRC | REQUEST=0 |

The printer replies:

| START|DST| SRC| LEN | PROTO=1 | CRC |REQUEST=0 |

Example 2. The host computer sends:

| START|DST| SRC| LEN | PROTO=1| CRC | REQUEST=1 |

The printer replies:

| START| DST| SRC| LEN | PROTO=1 | CRC | REQUEST =L+time (nnnnnnnnnn)

81

Intermec Fingerprint 6.13 — Programmer's Guide

7. INPUT TO FINGERPRINT, cont'd.

10. External Equipment

Industrial Interface

TheFingerprintfirmware not only allows you to control the printer,
but various types of external equipment, like conveyor belts, gates,
turnstiles, control lamps etc. can be controlled as well by the
program execution. Likewise, the status of various external devices
can be used to control both the printer and other equipment. The
computing capacity of theéingerprintprinter can thus be used to
independently control workstations without the requirement of an
on-line connection to a host computer.

What makes this possible is tinelustrial Interface Boargwhich

is available as an option for mdshgerprintcompatibleEasy-
Coderprinter models. The board contains a female DB-15 connec-
tor with 4 IN ports and 4 OUT ports.

The IN ports are connected to optocouplers that allovsiiger-
print firmware to read their status, i.e. to detect whether a current
through the port is on or off.

The OUT ports are connected to four relays that can switch a current
on or off. The status of the relays can also be read.

There are two instruction solely used in connection with the
Industrial Interface Board

PORTOUT ON/OFF
This statement sets one of the four relays to either Open or Closed,
depending on how the Industrial Interface Board is strapped.

PORTIN
This function returns the status of a specified IN or OUT port:

IN ports (101, 102, 103, or 104)
-1 (true) indicates that the optocoupler detects a current.
0 (false) indicates that the optocoupler detects no current.

OUT ports (201, 202, 203, or 204)
-1 (true) indicates that PORTOUT ON is selected.
0 (false) indicates that PORTOUT OFF is selected.

Example:

The relay on OUT port 201 will be activated when a switch
connected to IN port 101 is turned on.

10 PORTOUT 201 OFF

20 IFPORTIN (101) THEN GOTO 1000 ELSE GOTO 10

1000 PORTOUT 201 ON

1010 GOTO 20

82

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT

1. Output to Std OUT
Channel

[Input to Fingerprint
See:
o Chapter7

[J] Standard Error-Handling
Also see:
 Chapter 16.1

O Verbosity
Also see:
o Chapter 7.7

The std. OUT channel is used for returning the printer's responses
to instructions received from the host. That is why the same device
usually is selected both standard IN and OUT channel (see
SETSTDIO statement in chapter 7.1). By default, "uartl:" is std
OUT channel.

After every instruction received on the std IN channel, the printer
will either return“Ok” or an error message (e.gr€ature not
implemented’or“Syntax Error”) on the std. OUT channel. If the

std OUT channel is connected to the host computer, this message
will appear on the screen.

The response can be turned off/on by means of VERBOFF/
VERBON statements, the verbosity level can be selected by
SYSVAR(18), and the type of error message can be selected by
SYSVAR(19).

Some instructions return data on theatd channel only:

DEVICES Lists all devices, regardless if they are
installed or not (also see chapter 4.10).

FILES Lists all files in the current directory or
another specified directory (also see chap-
ter 6.2).

FONTS Lists all bitmap fonts in the printer's entire
memory (also see chapter 12.5).

IMAGES Lists all images in the printer's entire
memory (also see chapter 14.4).

LIST Lists the current program in its entity or
within a specified range of lines (also see
chapter 5.4.

PRINT Prints the content of numeric or string

expressions and the result of functions
and calculations (see below).
PRINTONE Prints characters entered as ASCII values
(see below).
PRINT (or ?)
The PRINT statement prints a line on the std OUT channel, i.e.
usually the screen of the host. The PRINT statement can be
followed by one or several expressions (string and/or numeric).

Ifthe PRINT statement contains several expressions, these must be
separated by either commas (,) semicolons (;), or plus signs (+, only
between string expressions):

» A comma places the expression that follows at the start of next
tabulating zone (each zone is 10 characters long).

Example:
PRINT "Price","$10" Yields:
Price $10

Continued!

83

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

1.

Output to Std OUT
Channel, cont'd.

PRINT (or ?), cont'd.
» A semicolon places the expression that follows immediately
adjacent to the preceding expression.

Example:
PRINT "Price_";"$10" Yields:
Price_$10

* Aplus sign places the striegpression that follows immediately
adjacentto the preceding string expression (plus signs can only be
used between two string expressions).

Example:
PRINT "Price_"+"$10" Yields:
Price_$10

» Each line is terminated by a carriage return, as to make the next
PRINT statement being started on a new line. However, if a
PRINT statement is appended by a semicolon, the carriage return
will be suppressed and next PRINT statement will be printed
adjacently to the preceding one.

Example:

10 PRINT "Price_";"$10";

20 PRINT "_per_dozen"

RUN Yields:
Price_$10_per_dozen

* A PRINT statement can also be used to return the result of a
calculation or a function.

Example:

PRINT 25+25:PRINT CHR$ (65) Yields:
50

A

« Ifthe PRINT statement is not followed by any expression, a blank
line will be produced.

PRINTONE

The PRINTONE statement prints the alphanumeric representation
of one or several characters specified by their respective ASCII
values (according to the currently selected character set, see NASC
statement in chapter 9.1) to the standard OUT channel.

The PRINTONE statement is useful e.g. when a certain character
cannot be produced from the keyboard of the host.

PRINTONE is very similar to the PRINT statement and follows the
same rules regarding separating characters, i.e. commas and semi-
colons).

Example:
PRINTONE 80;114;105;99;101,36;32;49;48 Yields:
Price $ 10

84

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

2.

Redirecting Output
from Std Out Channel
to File

As described in chapter 8.1, by default some instructions return data
on the standard OUT channel. However, it is possible to redirect
such output to a file using the REDIRECT OUT statement, as
described below.

REDIRECT OUT
This statement can be issued with or without an appending string
expression:

* REDIRECT OUT <sexp>
The string expression specifies the name of a sequential file that
will be created and in which the output will be stored. Obviously,
in this case no data will be echoed back to the host.

* REDIRECT OUT
When no file name appends the statement, the output will be
directed back to the std. OUT channel.

Example:

The output is redirected to the file "IMAGES.DAT". Then the
images in the printer's memory is read to the file after which the
outputisredirected back to the standard OUT channel. Thenthe file
is copied to the communication channel "uart1:" and printed on the
screen of the host.

10 REDIRECT OUT "IMAGES.DAT"

20 IMAGES

30 REDIRECT OUT

RUN

Ok

COPY "IMAGES.DAT","uart1:"

Yields e.g.:
CHESS2X2.1 CHESS4X4.1
DIAMONDS.1 GLOBE.1

391084 bytes free 1352 bytes used
Ok

85

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

3. Output and Append to
Sequential Files

The following instructions are used in connection with output to

sequential files:
OPEN

PRINT#
PRINTONE#
CLOSE

LOC

LOF

Creates and/or opens a file for sequential
OUTPUT or APPEND and optionally
specifies the record length in bytes.
Prints data entered as numeric or string
expressions to the specified file.

Prints data entered as ASCII values to the
specified file.

Closes an OPENed file.

Returns the number of 128-byte blocks,
that have been written since the file was
OPENed.

Returns the length in bytes of the speci-
fied file.

To print data to a sequential file, proceed as follows:

OPEN

Before any data can be written to a sequential file, it must be opened.
Use the OPEN statement to specify the name of the file and the
mode of access (OUTPUT or APPEND).

« OUTPUT means that existing data will be replaced.

» APPEND means that new data will be appended to existing data.

In the OPEN statement you must also assign a number to the
OPENed file, which is used when the file is referred to in other
instructions. The number mark (#) is optional. Optionally, the
length of the record can also be changed (default 128 bytes). Up to
10 files and devices can be open at the same time.

Examples:

The file "ADDRESSES" is opened for output and given the refer-

ence number 1:

OPEN "ADDRESSES FOR OUTPUT AS #1
The file "PRICELIST" is opened for append and is given the

reference number 5:

OPEN "PRICELIST" FOR APPEND AS #2

Continued!

86

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

3. Output and Append to
Sequential Files, cont'd.

After afile or device has been OPENed for OUTPUT or APPEND,
you can use the following instructions for writing data to it:

PRINT#

Prints data entered as string or numeric expressions to a sequential
file. Expressions can be separated by commas or semicolons:

» Commas prints the expression in separate zones.

» Semicolons prints expressions adjacently.

There are two ways to divide the file into records:

» Each PRINT# statement creates a new record (see line 20-40 in
the example below).

« Commas inside a string divides the string into records (see line 50
in the example below).

Example:

10 OPEN "QFILE" FOR OUTPUT AS #1

20 PRINT #1, "Record A", "a", "b", "c"

30 PRINT #1, "Record B", 1, 2, 3

40 PRINT #1, "Record C", "x"; "y"; "z"

50 PRINT #1, "Record D,Record E,Record F"

PRINTONE#

Prints characters entered as decimal ASCII values according to the
selected character set to the selected file or device. This statement
is e.g. usefulwhen the host cannot produce certain characters. Apart
from using ASCII values instead of string or numeric expressions,
the PRINTONE# works in the same way as the PRINT# statement.

Example (prints two records "Hello” and “Goodbye” to “file1"):
10 OPEN "filel" FOR OUTPUT AS 55

20 PRINTONE#55,72;101;108;108;111

30 PRINTONE#55,71;111;111;100;98;121;101

CLOSE
After having written all the data you need to the file, CLOSE it using
the same reference number as when it was OPENed, e.g.:

10 OPEN "filel" FOR OUTPUT AS 55

20 PRINTONE#55,72;101;108;108;111

30 PRINTONE#55,71;111;111;100;98;121;101
40 CLOSE55

LOC (Location)
The LOC function returns the number of 128-byte blocks, that have
been written since the file was OPENed.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" FOR OUTPUT AS #1

200 IFLOC(1)=100 THEN CLOSE #1

Continued!

87

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

3.

Output and Append to
Sequential Files, cont'd.

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN "PRICELIST" FOR OUTPUT AS #5
20 PRINT LOF(5)

88

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

4. Output to Random Files The following instructions are used in connection with output to

random files:

OPEN Creates and/or opens afile for RANDOM
access and optionally specifies the record
length in bytes.

FIELD Creates a random buffer, divides it into
fields and assigns a variable to each field.

LSET/RSET Places data left- or right-justified into the
buffer.

PUT Writes a record from the buffer to the file.

CLOSE Closes an OPENed file.

LOC Returns the number of the last record
written by the use of a PUT statement in
the specified file.

LOF Returns the length in bytes of the speci-

fied file.

To write data to a random file, proceed as follows:

OPEN

Start by OPENIing a file for random input/output. Since random
accessis selected by default, the mode of access can be omitted from
the statement, e.g.:

10 OPEN"ZFILE"AS #1

Optionally, the length of each record in the file can be specified in
number of bytes (default 128 bytes):

10 OPEN"ZFILE" AS #1 LEN=14

FIELD

Next action to take is to create a buffer by means of a FIELD
statement. The buffer is given a reference number and divided into
a number of fields with individual length in regard of number of
characters. To each field, a string variable is assigned.

The buffer specifies the format of each record in the file. The sum
of the length of the different fields in a record must not exceed the
record length specified in the OPEN statement.

Inthe example below, 4 bytes are allocated to field 1, 4 bytes to field
2 and 6 bytestofield 3. Thefields are assigned to the string variables
Al1$, A2$ and A3$ respectively.

20 FIELD#1, 4 ASF1$, 4 AS F2$, 6 AS F3$

Graphically illustrated, the record produced in the line above will
look like this:

Record 1
[TTTTTTTTTTT]
1234(1234[123456
Field1 Field2 Field3

Continued!

89

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

4. Output to Random
Files, cont'd.

[J STR$ Function
Also see:
e Chapter 9.2

The file can consist of many records, all with the same format. (To
produces files with different record lengths, the file must be
OPENed more than once and with different reference numbers).

Now it is time to write some data to the file. Usually the data comes
from e.qg. the host or from the printer's keyboard. In this example,
we will type the data directly on the host and assign the data to string
variables:

30 QDATA1$="ABC"
40 QDATA2%="DEF"
50 QDATA3%="12345678"

Note that only string variables can be used. Possible numeric
expressions must therefore be converted to strings by means of
STR$ functions.

LSET/RSET

There are two instructions for placing data into a random file buffer:
o LSET places the data left-justified.

« RSET places the data right-justified.

In otherwords, ifthe input data consist of less bytes that the field into
which itis placed, it will either be placed to the left (LSET) or to the
right (RSET).

If the length of the input data exceeds the size of the field, the data
will be truncated from the end in case of LSET, and from the start
in case of RSET.

60 LSET F1$=QDATAl1$
70 RSET F2$=QDATA2$
80 LSET F3%$=QDATA3$

Using the graphic illustration from previous page, the result is
meant to be like this:

Record 1

AB[C] | [DIE[F[1[2[3[4]5]6]
1234[1234[12345 6|
Field1 Field2 Field3

Note that the first field is left-justified, the second field is right-
justified, and the third field is left-justified and truncated at the end
(digits 7 and 8 are omitted since the field is only six bytes long; if
the field had been right-justified, digits 1 and 2 had been omitted
instead).

PUT

Next step is to transfer the record to the file. For this purpose we use
the PUT statement. PUT is always followed by the number assigned
to the file when it was OPENed, and the number of the record in
which you want to place the data (1 or larger).

Continued!

90

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

4. Output to Random
Files, cont'd.

PUT, cont'd.

In our example, the file ZFILE was OPENed as #1 and we want to
place the data in the first record. Note that you can place data in
whatever record you like. The order is of no consequence.

90 PUT#11

Ifyouwant, you can continue and place datainto other records using
additional sets of LSET, RSET and PUT statements. Below is a
graphic example of a three-record file:

Record 1 Record 2 Record 3

A[B[C DEF[1[2[3[4[5[6[X[¥[Z R[S[8[4[5[3[1[[R[S[T[T] [UIVIW[9[8]7
1234[1234[123456[1234[1234[123456(1234[1234[123
Field1 Field2 Field3 Field1 Field2 Field3 Field1 Field2 Field3

654
456

CLOSE
When you are finished, close the file:

100 CLOSE#1

Nothing will actually happen before you execute the program using
a RUN statement. Then the data will be placed into the fields and
records as specified by the program, e.g.:

10 OPEN"ZFILE"AS #1 LEN=14
20 FIELD#1, 4 ASF1$, 4 AS F2$, 6 AS F3%
30 QDATA1$="ABC"

40 QDATA2$="DEF"

50 QDATA3%$="12345678"

60 LSET F1$=QDATA1$

70 RSET F2$=QDATA2$

80 LSET F3$=QDATA3$

90 PUT#11

100 CLOSE#1

RUN

LOC (Locate)

The LOC function returns the number of the last record read or
written by the use of GET or PUT statements respectively in an
OPENed file.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" AS #1

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN "PRICELIST" AS #5

20 PRINT LOF(5)

91

Intermec Fingerprint 6.13 — Programmer's Guide

8. OUTPUT FROM FINGERPRINT, cont'd.

5. Output to Output from aingerprint program can be directed to any serial
Communication communication channel OPENed for sequential OUTPUT follow-
Channels ing the same principles as for output to files (see chapter 8.3).

Note that in this case, the parallel communication channel
"centronics:" cannot be used (one-way communication only).

The communication channels are specified by name as follows:
e "vartl:" e'uart2:" e"uart3:"

A special case is communication via the RS 422/485 interface
board, where the communication channel "uart2:" is specified as
"rs485:[n]" or "prel:[n;]rs485:" (also see chapter 7.9).

The following instructions are used in connection with output to a
communication channel:

OPEN Opens a serial communication channel
for sequential output.

PRINT# Prints data entered as numeric or string
expressions to the selected channel.

PRINTONE# Prints data entered as ASCII values to the
selected channel.

CLOSE Closes an OPENed channel.

LOC Returns the remaining number of free

bytes in the transmitter buffer of the se-
lected communication channel.

LOF Returns the remaining numbers of char-
acters to be transmitted from the transmit-
ter buffer is returned.

COPY Copies afile toacommunication channel.

Example 1 (prints the records “Record 1” and “Record 2” to the
serial communication channel "uart3:"):

10 OPEN "uart3:" for OUTPUT AS #1

20 PRINT #1, "Record 1"

30 PRINTONE #1, 82;101;99;111;114;100;32;50

40 CLOSE#1

Example (prints the file "datafile” in a DOS-formatted memory

card to the serial communication channel "uart2:"):
COPY "cardl:datafile","uart2:"

6. Output to Display The only device, other than the serial communication channels, that
can be OPENedtoreceive output frdRmerprintprogram, is the
printer's LCD display ("console:"). Thisis explainedin chapter 15.2
together with other methods for controlling the display.

92

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING

1. Preprocessing Input
Data

[J COMSET statement
Also see:
e Chapter7.8

[1 ON KEY...GOSUB statement
Also see:
 Chapter 15.1

[J Character Sets

Also see:

« Intermec Fingerprint Reference
Manual for complete character set
tables.

All input data to the printer come in binary form via the various
communication channels. Text files are transmitted in ASCII
format, which upon reception will be preprocessed by the printer's
software according to two instructions as to provide full compatibil-
ity between the printer and the host:

MAP Remaps the selected character set.

NASC Selects a suitable character set

A character received by the printer on a communication channel
will first be processed in regard of possible MAP statements. Then
the character will be checked for any COMSET or ON KEY...
GOSUB conditions. When a character is to be printed, it will be
processed into a bitmap pattern that makes up a certain character
according to the character set selected by means of a NASC
statement.

MAP

The MAP statement is used to modify a character set or to filter out
undesired characters on a specified communication channel by
mapping them as Null (ASCII O dec).

If no character set meets your requirements completely (see NASC
below), select the set that comes closest and modify it using MAP
statements. Do not map any characters to ASCII values occupied by
characters used Fingerprintinstructions, e.g. keywords, opera-
tors, %, $, #, and certain punctuation marks. Mapped characters will
be reset to normal at power-up or reboot.

Example. You may want to use the German character set (49) and
7 bits communication protocol. However, you need to print £
characters, but have no need for the & character. Then remap the
£ character (ASCII 187 dec.) to the value of the & character (ASCII
38 dec.) . Type a series of & characters on the keyboard of the host
and finish with a carriage return:

10 NASC 49

20 MAP 38,187

30 FONT "SWO030RSN"

40 PRPOS 100,100

50 INPUT "Enter character;A$

60 PRTXTA$

70 PRINTFEED

RUN

Enter character? (see note!)

Note!

If you use 7 bit communication, the printer cannot echo back the
correct character to the host if its ASCII value exceeds 127, hence
“;” characters will appear on the screen. Nevertheless, the desired
“ £ characters will be printed on the label.

Continued!

93

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

1.

Preprocessing Input
Data, cont'd.

NASC

The NASC statement is used to select a character set that decides
how the various ASCII characters transmitted from thé \wddbe

printed. This instruction makes it possible to adapt the printer to
various national standards. By default, ASCII characters will be
printed according to the Roman 8 character set.

Suppose you order the printer to print the character ASCII 124 dec.

If you check the character set tables at the end éfitigerprint

6.13 Reference Manyalou will see that ASCII 124 will generate

the character “|” according to the Roman 8 character set, “U”
according to the French character set and fi according to the Spanish
setetc. The same applies to a number of special national characters,
whereas digits 0-9 and characters A—Z, a—z plus most punctuation
marks are the same in all sets. Select the set that best matches your
data equipment and printout requirements.

If none of the sets matches your requirements exactly, selectthe one
that comes closest. Then, you can make final corrections by means
of MAP statements, see above.

A NASC statement will have the following consequences:

* Text printing
Text on labels etc. will be printed according to the selected
character set. However, instructions that already has been processed
before the NASC statement is executed, will not be affected. This
implies that labels may be multilingual.

» LCD display
New messages in the display will be affected by a preceding
NASC statement. However, a message that is already displayed
will not be updated automatically. The display is able to show
most printable characters.

« Communication
Data transmitted from the printer via any of the communication
channels will not be affected, as the data is defined by ASCII
values, not as alphanumeric characters. The active character set
of the receiving unit will decide the graphic presentation of the
input data, e.g. on the screen of the host.

Bar code printing

The pattern of the bars reflects the ASCII values of the input data
andis notaffected by aNASC statement. The bar code interpretation
(i.e. the human readable characters below the bar pattern) is
affected by a NASC statement. However, the interpretation of bar
codes, that have been processed and are stored in the print buffer,
before the NASC statement is executed, will not be affected.

!/. We willnotconcern ourselves withhow _
your computer and its keyboard areThis example selects the Italian character set:
mapped. Refertotheir respective manualdNASC 39

94

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

2.

Input Data Conversion

There are a number of instruction for converting data in numeric or
string expressions. You will find them used in many examples in
this volume. The instructions will only be described in short terms.
For full information, please refer to tRegngerprint 6.13 Reference
Manual

ABS
The ABS function returns the absolute value of a numeric expres-
sion. Absolute value means that the value is either positive or zero.

Example:
PRINT ABS (10-15) Yields:
5

ASC
The ASC function returns the decimal ASCII value of the first
character in a string expression.

Example:
PRINT ASC("HELLO") Yields:
72

CHR$

The CHR$ function returns the readable character from a decimal
ASCII value. This function is useful when you cannot produce a
certain character from the keyboard of the host.

Example:
PRINT CHR$(72) Yields:
H

INSTR
The INSTR function searches a string expression for a certain
character, or sequence of characters, and returns the position.

Example:
PRINT INSTR ("Intermec”,"NT") Yields:
2

LEFT$

The LEFT$ function returns a certain number of characters fromthe
left side of a string expression, i.e. from the start. The complemen-
tary instruction is RIGHTS.

Example:
PRINT LEFT$('INTERMEC PRINTER",8) Yields:
INTERMEC

Continued!

95

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

2. Input Data Conversion,
cont'd.

Note:

When entering the price in the exampl 0

for SPACES$, make sure to use a perio

character (.) toindicate the decimal point.

LEN
The LEN function returns the number of characters including space
characters in a string expression.

Example:
PRINT LEN ("INTERMEC TECHNOLOGIES CORP.") Yields:
27

MID$

The MID$ function returns a part of a string expression. You can
specify start position and, optionally, the number of characters to be
returned.

Example:
PRINT MID$ ("INTERMEC PRINTER",10,2) Yields:
PR

RIGHT$

The RIGHTS$ function returns a certain number of characters from
the right side of a string expression, i.e. from the end. The comple-
mentary instruction is LEFTS$.

Example:
PRINT RIGHT$("INTERMEC PRINTER",7) Yields:
PRINTER

SGN
The SGN function returns the sign (1 = positive, -1 = negative or 0
= zero) of a numeric expression.

Example:
PRINT SGN(5-10) Yields:
-1

SPACE$
The SPACES$S function returns a specified number of space charac-
tersandis e.g. useful for creating tables with monospace characters.

Example:

10 FONT "MSO050RMN"

20 X%=100: Y%=300

30 FORQ%=1TO5

40 INPUT "Commodity: ", A$
50 INPUT "Price $:", B$

60 C$=SPACE$(15-LEN(A$))
70 PRPOS X%,Y%

80 PRTXT A$+C$+"$ "+B$
Y%=Y%-40

NEXT

110 PRINTFEED ,
Continued!

96

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

2.

Input Data Conversion,
cont'd.

STR$
The STR$ function returns the string representation of a numeric
expression. The complementary instruction is VAL.

Example:

10 A%=123

20 A$=STR$(A%)

30 PRINT A%+A%

40 PRINT A$+A$

RUN Yields:
246

123123

STRING$

The STRINGS$ function returns a specified number of a single
character specified either by its ASCII value or by being the first
character in a string expression.

Example:

10 A$="*THE END*"

20 FIRST$=STRING$(4,42)

30 LAST$=STRING$(4,A$)

40 PRINT FIRST$+A$+LASTS

RUN Yields:
Hooek THE END*

VAL
The VAL function returns the numeric representation of a string
expression. The complementary instruction is STR$.

VAL is for example used in connection with random files, which
only accept strings (see chapters 7.5 and 8.4). Thus numeric
expressions must be converted to string format using STR$ before
they are PUT in a random file and be converted back to numeric
values using VAL after you GET them back from the file.

Another application is when you want to calculate using data in a
string expression, e.g. when reading the printer's clock (also see
chapter 9.3).

Example of using the priner as an alarm clock (requires either a

real-time clock or that the time has been set manually):
10 INPUT "Set Alarm"; A%

20 B%=VAL(TIME$)

30 IF B%>=A% THEN GOTO 40 ELSE GOTO 20

40 SOUND 880,100: END

RUN

97

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

3.

Date and Time

The printer's CPU board is provided with an internal clock/calendar
without battery backup, i.e. the setting will be lost when the printer
is turned off.

FingerprintcompatibleeasyCodeprinters may also be fitted with

a real-time clock circuit (RTC) in a socket on the CPU board. The
RTC is battery backed-up and will keep on running even when the
printer is turned off.

If no RTC is installed and you try the read the date or time before
the internal clock has been set, an error will occur (error 1010
“Hardware Error”). Once either time or date has been set, the
internal clock will work until next power off or reboot. If only time
has been set, by default the current date will be Jan 01 1980 and if
only date has been set, by default the clock will start running at
00:00:00.

The built-in calendar runs from 1980 through 2048 and corrects
illegal values automatically, e.g. 981232 will be corrected to
990101.

Please refer to chapter 15.5 for information on howetthe
printer's clock/calendar.

The standard formats for date and time are:

Date: YYMMDDwhere...
YY are the two last digits of the year
MMare two digits representing the month (01-12)
DDare two digits representing the day (01-28|29|30|31)
Time: HHMMSSvhere...
HHare two digits representing the hour (00-23)
MMare two digits representing the minute (00-59)
ss are two digits representing the second (00-59)

In addition to the standard formats, other formats for date and time
can be specified by the following instructions:

FORMAT DATE$ Specifies the format of date strings re-
turned by DATE$ and DATEADDS in-
structions.

FORMAT TIME$ Specifies the format of date strings re-
turned by TIME$ and TIMEADDS in-
structions.

NAME DATE$ Specifies the names of the months.

NAME WEEKDAY$ Specifies the names of the weekdays.

Continued!

98

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

3. Date and Time, cont'd. The following instructions are used to read the clock/calendar:
<svar> = DATE$ Returns the current date in standard for-
mat to a string variable.

<svar> = DATES$("F") Returns the current date in the format
specified by FORMAT DATE® a string
variable.

<svar> = TIME$ Returns the current time in standard for-
mat to a string variable.

<svar> = TIME$("F") Returns the current time in the format
specified by FORMAT TIME$ to a string
variable.

DATEADD$ Adds or subtracts a number of days to/
from the current date or a specified date
and returns it in standard format, or the
format specified by FORMAT DATES.

TIMEADD$ Adds or subtracts a number of seconds to/
from the current time or a specified mo-
ment of time and returns it in standard
format, or the format specified by FOR-

MAT TIMES.

DATEDIFF Calculates the difference in days between
two specified dates.

TIMEDIFF Calculates the difference in seconds be-
tween two specified moments of time.

WEEKDAY Returnsthe weekday of a specified date as
a numeric constant (1-7).

WEEKDAY$ Returns the name of the weekday of a

specified date in plain text according to
the weekday names specified by NAME
WEEKDAYS$, or — if such a name is
missing — the full name in English.

WEEKNUMBER Returns the week number of a specified
date.
TICKS Returns the time passed since last startup

in Y100 seconds.

Note that in most instructions, you can specify the current date or
time by means of DATES$ or TIME$ respectively, e.g.:

WEEKDAY$ (DATES$)
TIMEDIFF (TIME$, "120000")

Continued!

99

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

3.

Date and Time, cont'd.

This example shows how the date and time is set in the immediate
mode (not required if the printer has an RTC). The date and time
formats are set and a table of the names of months is created.
Finally, anumber of date and time parameters are read and printed
to the standard OUT channel after being provided with some

explanatory text:
DATES$ = "980609" (Setting the date)
TIMES$ = "080000" (Setting the time)

10 FORMAT DATES$ "MMM/DD/YYYY"

20 FORMAT TIME$ "hh.mm pp"

30 NAME DATES$ 1, "Jan":NAME DATES$ 2, "Feb"

40 NAME DATES$ 3, "Mar":NAME DATES$ 4, "Apr"

50 NAME DATES$ 5, "May":NAME DATES$ 6, "Jun"

60 NAME DATES$ 7, "Jul:NAME DATES$ 8, "Aug"

70 NAME DATES$ 9, "Sep":NAME DATES$ 10, "Oct"

80 NAME DATES$ 11, "Nov":NAME DATES$ 12, "Dec"

90 A%=WEEKDAY(DATES)

100 PRINT WEEKDAY$(DATES$)+" "+ DATES$("F")+" "
+TIMES('F")

110 PRINT "Date:",DATE$("F")

120 PRINT "Time:", TIME$("F")

130 PRINT "Weekday:", WEEKDAYS$(DATES)

140 PRINT "Week No.:",WEEKNUMBER (DATES$)

150 PRINT "Day No.:", DATEDIFF ("950101",DATE$)

160 PRINT "Run time:", TICKS\6000;" minutes"

170 IF A%<6 THEN PRINT "This is ";WEEKDAY$(DATES$);
". Go to work!"

180 IF A%>5 THEN PRINT "This is ";WEEKDAY$(DATES$);
", Stay home!"

RUN

Yields e.g.:

Friday Jun/09/1998 08.00 am

Date: Jun/09/1998

Time: 08.00 am

Weekday: Friday

Week No.: 23

Day No.: 159

Run time: 1 minutes

This is Friday. Go to work!

This example shows how the TICKS function is used to delay the

execution for a specified period of time:

10 INPUT "Enter delay in sec's: ", A%

20 B%=TICKS+(A%*100)

30 GOSUB 1000

40 END

1000 SOUND 440,50 (Start signal)
1010 IF B%<=TICKS THEN SOUND 880,100 ELSE GOTO 1010

1020 RETURN

RUN

100

Intermec Fingerprint 6.13 — Programmer's Guide

9. DATA HANDLING, cont'd.

4. Random Number
Generation

TheFingerprintfirmware provides two instructions for generating
random numbers, e.g. for use in test programs.

RANDOM
The RANDOM function generates a random integer within a
specified interval.

This example tests a random dot on the printhead of a 8 dots/mm

EasyCoder 501 printer:

10 MIN%=HEAD(-7)*85\100: MAX%=HEAD(-7)*115\100

20 DOTNO%=RANDOM(0,832)

30 IF HEAD(DOTNO%)<MIN% OR HEAD(DOTNO%)>MAX% THEN
40 BEEP

50 PRINT"ERROR IN DOT "; DOTNO%

60 ELSE

70 BEEP

80 PRINT"HEADTEST: OK!"
90 ENDIF

RUN

RANDOMIZE

To obtain a higher degree of randomization, the random number
generator can be reseeded using the RANDOMIZE statement. You
can either include an integer in the statement with which the
generator will be reseeded, or a prompt will appear asking you to do
SO.

This example prints a random pattern of dots after the random

number generator has been reseeded:
10 RANDOMIZE

20 FORQ%=1TO 100

30 X%=RANDOM(50,400)

40 Y%=RANDOM(50,400)

50 PRPOS X%,Y%

60 PRLINES55

70 NEXT
80 PRINTFEED
RUN
Yields:
Random Number Seed (0 to 99999999) ? (prompt)

Very high degree of randomization is obtained in the random

integer generator is reseeded using e.g. TICKS:
10 RANDOMIZE TICKS

20 PRINT RANDOM (1,100)

RUN

101

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN

1. Creating a Layout Field Types

A label layout is made up of a number of fields. There are five

different types of fields:

* Text Field Atextfield consists of a single line of text.

* Bar Code Field A bar code field consists of a single bar
code, with or without a bar code interpre-
tation in human readable characters.

* Image Field Animage field is a picture, drawing, logo-
type or other type of illustration in the
internalFingerprint bitmap format.

* Box Field A box field is a square or rectangular
paper-coloured area surrounded by ablack
border line. If the border is sufficiently
thick, the whole area may appear black.

* Line Field Aline field is a black line that goes either

along or across the paper web. A short but
thick line can look like a black box.

There are no restrictions, other than the size of the printer's memory,
regarding the number of fields on a single label.

coTTTTTTTTTTTTETETTTR \ Bar Code Field
! (w. interpretation)

! ABC 4:'/ Box Field

: My FIRST label !

: . Text Field

: E Line Field

I ! Image Field
Continued!

102

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

1. Creating a Layout,
cont'd.

[J PRINTFEED Statement
Also see:
 Chapter 11.3

[J Printer Setup
Also see:
 Chapter 15.6

» Technical Manual

Origin

The positioning of all printable objects on the label, i.e. text fields,
bar code fields, images, boxes, and lines, uses a common system.
The starting pointis called “origin” and is the point on the paper that
corresponds to the innermost active dot on the printhead at the
moment when the PRINTFEED statement is executed.

The location of the origin is affected by the following factors:

» Position across the paper web (X-axis):
The position of the origin is determined by Xa8tartvalue in the
Setup Mode.

» Position along the paper web (Y-axis):
The position of the origin is determined by EBeed adjustment
in the Setup Mode and any FORMFEED<nexp> statements
executed before the current PRINTFEED statement or after the
preceding PRINTFEED statement.

Coordinates

Starting from origin, there is a coordinate system where the X-axis
runs across the paper web from left to right (as seen when facing the
printer) and the Y-axis runs along the paper web from the printhead
and towards the rear end of the paper.

Units of Measure

The unit of measure is always “dots”, i.e. all measures depend on
the density of the printhead. For example, in a printer with an 8 dots/
mm printhead, a dotis mm = 0.125 mm = 0.00492" or 4.92 mils.
This implies that a certain label, originally designed for 8 dots/mm,
will be printed smaller in an 11.81 dots/mm printer and larger in a
6 dots/mm printer.

Generally, a dot has the same size along both the X-axis and the Y-
axis. An exceptionis 11.81 dots/mm printers, where —for technical
reasons — there is a very small difference (see Technical Manual).

Insertion Point

The insertion point of any printable object is specified within this
coordinate system by means of a PRPOS<x-pos>,<y-pos> state-
ment. For example, “PRPOS 100, 200" means that the object will
be inserted at a position 100 dots to the right of the origin and 200
dots further back along the paper.

Continued!

103

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

1.

Creating a Layout,
cont'd.

Alignment

Once the insertion point is specified, you must also decided which
part of the object should match the insertion point. For example, a
text field forms a rectangle. There are 8 anchor points along the
borders and one in the centre. The anchor points are numbered 1—
9 and specified by means of an ALIGN statement. By specifying
e.g. ALIGN 1, you will place the lower left corner of the text field

at the insertion point specified by PRPOS.

The illustration below shows the anchor points for the various types
of fields. Refer to thimtermec Fingerprint 6.13 Reference Manual,
ALIGN statemerfor detailed information on the anchor points of
such bar codes, where the interpretation is an integrated part of the
bar code pattern, e.g. EAN and UPC codes.

7 8 9

O--—--@g--- O- - — —gg— — — — ©

|

| |
|

: b C f ‘

_ ,4J ,,,,, \ ,,,,,,, 4 B 4 L6 __base
i St B ine
B-—-—--—-—--—-- O -----]

1 2 3
7 8 9
BT T TR T IV TRIN T Tl I I O TR |
|
l |
4t 5 6
\ I |
|
01C39 _ _ _ _ _ _ oo !
1 2 3

(-]

]
I
1

ul
i
|
|
|

1,40r7 2,50r8 3,60r9
1,40r7 2,50r8 3,60r9
Continued!

104

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

1. Creating a Layout,

cont'd.

Origin

Dot-line
on printhead

Dot 0

Y-Coordinate

B O000ORMO000

Directions

Intermec Fingerprintllows printing in four different directions.
Using a DIR statement, you can rotate the printable object clock-
wise around the anchor point/insertion point with aiBfrement

(0°, 90, 180, or 270), as illustrated below:

&«
Q
.-" ’
iDIR 1
. ; - Insertion point =
Anchor point

'S
=s

X-sta?t

X-Coordinate

PAPER FEED
DIRECTION

Continued!

105

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

1.

Creating a Layout,
cont'd.

Layout Files

In addition to the method described above, there is an alternative
method using files for specifying the various fields and their input
data separately (see chapter 10.7). However, the various parameters
of the layout file are based on the same principles as described in
chapters 10.£10.6.

Checking Current Position

After having positioned and specified an object, you can find out the
current position of the insertion point by means of a PRSTAT
function. This implies that after having e.g. entered a line of text,
you can find out how long it will be and where any new object will
be placed unless a new position is specified.

* In print direction 1 or 3, PRSTAT (1) returns the absolute value
of the insertion point along the X-axis, whereas PRSTAT (2)
returns the Y-value of the last executed PRPOS statement.

* In print direction 2 or 4, PRSTAT (2) returns the absolute value
of the insertion point along the Y-axis, whereas PRSTAT (1)
returns the X-value of the last executed PRPOS statement.

Example:

An unknown number of logotypes will be printed with 10 dots
spacing across the paper web. The size of the logotype is not known.
To avoid an “field out of label” error, a limitation in regard of
paper width is included (line 80, change if necessary).

10 PRPOS 0,50

20 PRIMAGE "GLOBE.1"

30 X%=PRSTAT(1)

40 FORA%=1TO10

50 Z%=PRSTAT(1)

60 PRPOS Z%+10,50

70 PRIMAGE "GLOBE.1"

80 IF Z%>550 THEN GOTO 100

90 NEXT

100 PRINTFEED

110 END

RUN

Note:
The PRSTAT function can also be used for checking the printer's
status in regard of a number of conditions, see chapter 16.3.

106

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

2. Text Field

[J Fonts
Also see:
 Chapter 12

NORIMAGE
INVIMAGE

A text field consists of one or several alphanumeric characters on
the same line (max 300 characterermec Fingerprintannot

wrap textto a new line, but each line must be specified as a separate
text field.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a text field can contain the following instructions:

FONT (FT)

Specifies the bitmap font to be printed. There is no default font.
Therefore, afont muatwaysbe specified or an error condition will
occur. Once afont has been specified, it will be used in all text fields
until a new FONT statement is executed.

Optionally, the extension can be included in the font name. If so, the
extension of the selected font must match the print direction:
Extension .1 matches DIR 1 and DIR 3

Extension .2 matches DIR 2 and DIR 4

If no extension is specified in the font name, the software automati-
cally selects the font according to the selected direction.

In someEasyCodeprinters, outline fonts iBpeedandTrueType
format can be scaled and converted to bitmap fonts.

MAG

Bitmap fonts can be magnified 1-4 times independently in regard
of height and width. Scalable fonts can be scaled to a suitable size
when the bitmap font is generated.

NORIMAGE (NI / INVIMAGE (1)

Normally, text is printed in black on a paper-coloured background
(NORIMAGE). Using INVIMAGE the printing can be inversed so
the paper gives the colour of the characters, whereas the back-
ground will be black. The size of the background is decided by the
character cell. A NORIMAGE statement is only needed when
changing back from INVIMAGE printing.

PRTXT (PT)

Text can be entered in the form of numeric expressions and/or string
expressions. Two or more expression can be combined using
semicolons (;) or, in case of string expressions, by plus signs (+).
String constants must be enclosed by double quotation marks (...").
Variables are useful for printing e.g. time, date or various counters,
and when the same information is to appear in several places, e.g.
both as plain text and as bar code input data.

Continued!

107

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

2. Text Field, cont'd.

Summary:

Toprintatextfield, the following information and instructions must
be given (in most cases default values will substitute missing

parameters):

Purpose Instruction Default

X/Y Position PRPOS (PP) 0/0

Alignment ALIGN (AN) 1

Direction DIR 1

Typeface FONT (FT) na.

Magnification MAG 11

Style INVIMAGE(Il) no
NORIMAGE (NI) yes

Text PRTXT (PT) na.

Print a label PRINTFEED (PF) na.

Example:

10 PRPOS 100,200

20 ALIGN7

30 DIR 2

40 FONT "SWO30RSN"

50 MAG 2,2

60 INVIMAGE

70 PRTXT "HELLO"
80 PRINTFEED
RUN

Remarks

Number of dots

Select ALIGN1-9
SelectDIR1-4

e.g. "SWO30RSN"

Height 1-4, Width 14

White on black print
Blackprint(revokesINVIMAGE)

Resets parameters to default

108

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

3. Bar Code Field

[J Bar Codes
Also see:
 Chapter 13

As standardintermec Fingerprinsupports more than 30 of the
most common bar code symbologies. Other two-dimensional bar
codes and dot codes like PDF417, USD5, MaxiCode, and LEB are
available as options. Each bar code (optionally including its human
readable interpretation) makes up a bar code field.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a bar code field can contain the following instructions:

BARSET
This statement species the type of bar code and how it will be printed
and can, if so desired, replace the following statements:

BARHEIGHT (BH) Height of the bars in the code
BARRATIO (BR) Ratio between wide and narrow bars
BARTYPE (BT) Bar code type

BARMAG (BM) Enlargement

TheBARSETSstatement contains optional parameters for specifying
complex 2-dimensional bar or dot codes, e.g. PDF411r{teze
mec FingerprinReference Manual).

For common one-dimensional bar codes the following parameters

should be included in the statement:

* Bar code type Name must be given according to list in
chapter Appendix A.1 and be enclosed by
double quotation marks ("...").

Default: "INT20F5"

* Ratio (wide bars) Default: 3

* Ratio (narrow bars) Default: 1

 Enlargement Affects the bar pattern but not the inter-
pretation, unless the bar font is an inte-
grated part of the code, e.g. EAN/UPC.
Default: 2

 Height Height of the bars in dots.

Default: 100.

BARFONT...ON

Specifies the bitmap font or fonts to be used for the bar code
interpretation (human readables). You can e.g. specify one barfont
for printing across the web (DIR 1 & 3) and another for printing
along the web (DIR 2 & 4).

Optionally, the extension can be included in the barfont name. If so,
the extension of the selected barfont must match the print direction:
Extension .1 matches DIR 1 and DIR 3
Extension .2 matches DIR 2 and DIR 4

If no extension is specified in the font name, the firmware automati-
cally selects the barfont according to the selected direction.

Continued!

109

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

3. Bar Code Field, cont'd.

[0 Fonts
Also see:
 Chapter 12

BARFONT...ON, cont'd.
In someEasyCodeprinters, outline fonts iSpeedandTrueType
format can be scaled and converted to bitmap fonts.

By default, no barfont is selected. However, in some bar codes the
interpretation is an integrated part of the code, EAN/UPC.

The bar font(s) can also be specified in regard of:

* Distance Specifies the distance in dots between the
bottom of the bar pattern and the top of the
interpretation characters. Default: 6.

» Magnification (height) Specifies the magnification in regard of
height. Default: 1

» Magnification (width) Specifies the magnification in regard of
width. Default: 1

* ON Enables the printing of the interpretation.
Default: Disabled

BARFONT OFF
To disable bar code interpretation printing, use BARFONT OFF.

PRBAR (PB)

Input data to be used to generate the bar code can be entered in the
form of anumeric or expressions. String constants must be enclosed
by double quotation marks ("..."). Variables are useful for printing
e.g. time, date or various counters, and when the same information
is to appear in several places, e.g. both as plain text and as bar code

input data.

Summary

To printa bar code field, the following information and instructions
be must given (in most cases default values will substitute missing
information):

Purpose Instruction Default ~ Remarks

X/Y Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1-9
Direction DIR 1 SelectDIR1-4

Bar Code Select BARSET see above

Human Readables BARFONT..ON Off Can be omitted

Input Data PRBAR (PB) na.

Print a label PRINTFEED (PF) na. Resets parameters to default
Example:

10 PRPOS 50,500

20 ALIGN7

30 DIR4

40 BARSET "CODE39"2,1,3,120

50 BARFONT #2,"SW030RSN",5,1,1 ON
60 PRBAR"ABC"

70 PRINTFEED

RUN

110

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

4. Image Field

O Image Downloading
Also see:
 Chapter 14

Animage field is a field containing a picture or logotype, which has
been converted to the internal bitmap formdhtédrmec Finger-
print.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, an image field can contain the following instructions:

MAG
Images can be magnified 1-4 times independently in regard of
height and width.

NORIMAGE (NI) / INVIMAGE (1l)

Normally, images are printed as created, i.e. in black without any
background (NORIMAGE). Using INVIMAGE the black and
non-printed background can exchange colours. The size of the
background is decided by the size of the image. A NORIMAGE
statement is only needed when changing back from INVIMAGE
printing.

PRIMAGE (PM)

Specifies the image by name in the form of a string expression. A

string constant must be enclosed by double quotation marks ("...").

A string variable may be useful when the same image is to appear
in several places. The extension indicates the suitable directions:

Extension .1 matches DIR 1 and DIR 3

Extension .2 matches DIR 2 and DIR 4

Summary
To printanimage field, the following instructions must be given (in
most cases default values will substitute missing information):

Purpose Instruction Default ~ Remarks

X/Y Position PRPOS (PP) 0/0 Number of dots

Alignment ALIGN (AN) 1 Select ALIGN 1-9

Direction DIR 1 SelectDIR1-4

Magnification MAG 11 Height 14, Width 1-4

Style INVIMAGE (1I) no Black and white parts switched
NORIMAGE (NI) yes Normal (revokes INVIMAGE)

Image PRIMAGE (PM) na. .1 or.2 depending on direction

Print a label PRINTFEED (PF) na. Resets parameters to default

Example:

10 PRPOS 50,50

20 ALIGN9

30 DIR3

40 MAG22

50 INVIMAGE

60 PRIMAGE "GLOBE.1"
70 PRINTFEED

RUN

111

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

5.

Box Field

A box is a hollow square or rectangle that can be rotated with an
increment of 90 according to the print direction. If the line
thickness is sufficiently large, the box will appear to be filled
(another method is to print an extremely thick short line).

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a box field can only contain the following instruction:

PRBOX (PX)
Specifies the size of the box in regard of height, width and line
weight (thickness) in dots.

Summary

To print a box, the following information and instructions must be
given (in some cases default values will substitute missing informa-
tion):

Purpose Instruction Default Remarks

X/Y Position PRPOS (PP) 0/0 Number of dots

Alignment ALIGN (AN) 1 Select ALIGN 1-9

Direction DIR 1 SelectDIR1-4

Box spec:s PRBOX (PX) na. Height, width and line weight
in dots

Print a label PRINTFEED (PF) na. Resets parameters to default

Example:

10 PRPOS 250,250

20 ALIGN1

30 DIR3

40 PRBOX200,200,10
50 PRINTFEED
RUN

112

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

6.

Line Field

A line can be printed in right angles along or across the paper
according to the print direction.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a line field can only contain the following instruction:

PRLINE (PL)
Specifies the size of the line in regard of length and line weight
(thickness) in dots.

Summary

To print a line, the following information and instructions must be
given (in some cases default values will substitute missing informa-
tion):

Purpose Instruction Default Remarks

X/Y Position PRPOS (PP) 0/0 Number of dots

Alignment ALIGN (AN) 1 Select ALIGN 1-9

Direction DIR 1 SelectDIR1-4

Line spec's PRLINE (PL) na. Length and thickness in dots
Print a label PRINTFEED (PF) na. Resets parameters to default
Example:

10 PRPOS 100,100

20 ALIGN1

30 DIR4

40 PRLINE 200,10
50 PRINTFEED
RUN

113

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7.

Layout Files

Introduction

Many application, e.g. in connection with booking and ticketing,
require the label layout as well as variable input data and logotypes
to be sent to the printer as files or arrays. This method requires less
programming in the printer and less data to be transferred between
printer and host, but some kind of overhead program in the host, that
handles file transfers as well as the input of data, is of great help.

ThelIntermec Fingerprininstruction is a statement called LAY-
OUT. Before using this statement, a number of files or arrays must
be created.

Creating a Layout File

The basis of the method is a layout file in random format, that
contains a number of records of various types, each with a length of
52 bytes.

Each record starts with a 2-bytexadecimalelement number
(bytes 0—1) which is used to link the layout record with a variable
input record or a record in a layout name file as explained later.

Byte 2 contains a single character that specifies the type of record:

A = Logotype (specified by its name)

B = Bar Code

C = Character (i.e. plain text)

E = Bar code extended field
Correspondsto 6 last parameters in BARSET statement. Must
have lower element number than the corresponding barcode
record (B).

H = Bar Code Font

J = Baradjust (corresponds to BARADJUST statement)

L = Logotype (specified by its number)

S = Separation line

X = Box

The remaining bytes are used differently depending on type of
record and may specify direction, position, font etc. Each such
instruction corresponds to brtermec Fingerprininstruction, e.g.
direction corresponds to DIR statement, alignment to ALIGN, x-
and y-positions to PRPOS etc.

Text and bar code records can contain both fixed and variable data.
The fixed data (max. 20 characters) are entered in the layout record.
A parameter (bytes 43—-44) specifies how many characters (starting
from the first character) of the fixed data that will be printed or used
to generate the bar code. Possible variable data will be appended to
the fixed data at the position specified in bytes 43—44.

Continued!

114

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7. Layout Files, cont'd. Creating a Layout File, cont'd.

LOGOTYPE RECORD (by name):

Element No. (00—FF hex)
Type of record Not used

Direction (1-4) Normal (blank) or
Alignment (1-9) Inverse printing (I_)
X-Position (0-9999) Vertical mag.
Y-Position (0-9999) Horizontal mag.
(r Logotype name (10 char)r Not used - Not used

sanne O LA13E00] 800 JGLOBE. 1] | [| [[[[[[[[[[[[[[[[[[][]][]}

ByteNo. 0 1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE RECORD:
Element No. (00-FF hex) Char. to be printed
Type of record in byte 23-42
Direction (1-4) Wide/narrow bar
Alignment (1-9) ratio
X-Position (0-9999) Magnification
Y-Position (0-9999) Not used
B d (10 ch: "
F arcode name (10 ¢ ar)h Fixed Data (max. 20 char.) Tf Height

sanne OILIF1[7}1/00] [300 IQQ'?ESM | | JABGDEFCHI JIKLIMNOPQRST(3] [3111] [100)

ByteNo. 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

TEXT RECORD:
Element No. (00—FF hex) Char. to be printed
Type of record in byte 23-42
Direction (1-4) Normal (blank) or
Alignment (1-9) Inverse printing (I_)
X-Position (0-9999) Vertical mag.
Y-Position (0-9999) Horizontal mag.
r Font name (10 char.) r Fixed Text (max. 20 char.) = Not used

anne [O1{GI1130] 450 [SWO3DRSN. AJFi xeld Mext| | | [[[[[[o/ Ji] [1j1] [||

ByteNo. 0 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE EXTENDED FIELD RECORD:

Element No. (00-FF hex) Not used
Type of record
Security (0-9) Not used
Aspect height ratio (0-9)
Aspect width ratio (0-9) Not used
Rows (0- 99C | 0.99) Not used
olumns
r — Truncate (0-9) [Not used T Not used

oanpe OLE21] | HIO\IOHH\HIHHHHH\HHHHIHHIIHI

ByteNo. 0 1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Continued!

115

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7. Layout Files, cont'd. Creating a Layout File, cont'd.
BAR CODE INTERPRETATION RECORD:

Element No. (00—FF hex)
Type of record

Barfont on/off
0=0 Not used
1=0n Not used
Not used
No,tlgtsﬁge d Not used
T N0t usedﬁ Barfont name (10 char)) — Not used Tr Not used

Examp'ep\llHlllHH\H\%\5\0\33'\4\#\\HHH\HHHHHIHHIIHI

ByteNo. 0 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BARADJUST RECORD:
Element No. (00-FF hex) Not used
Type of record
Not used Not used
Not used
Baradjust left (0-9999) Not used
(Baradjusr right (0-9999) Not used
Not used
r Not used r = Not used

anne{OLP] [501 | 1801 [[[[[[[[{[[I[[[[[I[[I[[[I[[]TI]I][]]

ByteNo. 0 1 2 3 4 56 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LOGOTYPE RECORD (by number):
Element No. (00—FF hex)

Type of record Not used
Direction (1-4) Normal (blank) or
Alignment (1-9) Inverse printing (1_)
X-Position (0-9999) Vertical mag.
Y-Position (0-9999) Horizontal mag.
(Notused rLogotypeNumber(O-gg) (fNotused
Examp'e|0\1|L|1|3|3\0\0\|8\0\0\I\\HHHHl\HHH\HHHHHHHHlIlIHI

ByteNo. 0 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LINE RECORD:

Element No. (00—FF hex)
Type of record

Direction (1-4) Not used
Alignment (1-9) Not used
X-Position (0-9999) Not used
Y-Position (0-9999) Not used
(((F rLlne length (0-6000) = Line thickness (0-6000) ((TF Not used
eanse D1IS1II00] 100 300] | ([[[[l [[[[[[[[[[I[IITJ[[[[[[]]
ByteNo. 0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
BOX RECORD:
Element No. (00—FF hex)
Type of record Not used
Direction (1-4) Not used
Alignment (1-9) Not used
X-Position (0-9999) Not used
(((YPosmon (0-9999) ((T Line thickness
—BoxWidth (0-6000) [Box height (0-6000) | ©-999)
sanve O5PIAI000] 40 1300 | [[| [0l [[[T [[[[[[[[[II[[[[[[[B[]

ByteNo. 0 1 2 3 4 5 6 7 8 9 101112 13141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Continued!

116

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7. Layout Files, cont'd.

Creating a Layout File, cont'd.
This example shows how a small layout file can be composed:

10 OPEN "LAYOUT.DAT" FOR OUTPUT AS 2 Open random file
20 PRINT #2, "01H1 SWO30RSN.1 " Barfont record
30 PRINT #2, "02C11100 650 SWO030RSN.1Fixed Text 11122 Text record
40 PRINT #2, "02C11130 450 SWO030RSN.1Fixed Text 0 11 % Text record
50 PRINT #2, "03B17100 300 CODE39 ABC 3311 100" Bar code record
60 PRINT #2, "04A12300 800 GLOBE.1 11 Logotype record
70 PRINT #2, "05X11100 440300 100 5" Box record
80 PRINT #2, "06511100 100 300 " Line record
90 CLOSE 2 Close file

There are certain rules that should be observed:

» Each record must be exactly 52 bytes long and be appended by a
semicolon (;).

* Itis essential that the different types of data are entered exactly in
the correct positions. Any input in unused bytes will be ignored.

» The records are executed in the order they are entered. The
reference number at the start of each record does not affect the
order of execution. This implies that a barfont record will affect
all following bar code records, but not those already entered.

» When using bar code interpretation, do not enter a bar code record
directly after a record with inverse printing, since the bar code
interpretation will be inversed as well. A text or logotype record
without inverse printing between the bar code record and the
inversed record will reset printing to normal.

Creating a Logotype Name File

Next step is to create a logotype name file. This is a necessary step
even if you are not going to use any logotype in your layout (in this
case the file can be empty). In the layout file, you can set a logotype
record to use logotypes specified either by name or by number.

* If you specify logotype-by-name (record type A), the printer's
entire memory will be searched for an image with the specified
name. A logotype-by-name file is composed by a number of
records with a length of 10 bytes each that contain the image
names, e.g.:

10 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1
20 PRINT#1, "GLOBE.1 "

30 PRINT#1, "GLOBE.2 "

40 PRINT#1, "DIAMONDS.1"

50 PRINT#1, "DIAMONDS.2";

60 CLOSE 1

Note that the last record in a sequential file must be appended by
a semicolon (;).

Continued!

117

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7. Layout Files, cont'd.

Creating a Logotype Name File, cont'd.
* If you specify logotype-by-number (record type L), you must

have alogotype namefile. Alogotype-by-number file is composed
by a number of records with a length of 13 bytes each. The first
2 bytes is a reference number (0—99), the third byte is always a
colon (:) and the following 10 bytes are used for the image name:
10 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1

20 PRINT#1, "0 :GLOBE.1 "
30 PRINT#1, "1 :GLOBE.2 "
40 PRINT#1, "2 :DIAMONDS.1"
50 PRINT#1, "3 :DIAMONDS.2",

60 CLOSE 1

Note that the last record in a sequential file must be appended by
a semicolon (}).

Creating a Data File or Array
Youwillalso need a datafile or data array. Thisfile or array contains
variable data that will be placed in the position specified by the

IMPORTANT!

layout. Each data record starts witieaadecimaklement number

TheLAYOUTstatement requires that you (00-FF hex) that links the data to the layout record or records that
use the same format (eitherfiles or arraysktart with thesameelement number. Thus you can e.g. use a single

for both data and errors.

datarecordto generate a number of text fields with various locations

and appearances as well as to generate a bar code.

If you for some reason do not use variable data, you will still need
to create either an empty data file or an empty data array.

[Arrays
Also see: 10
 Chapter 6.10 20
30
40
50
60
70
80

* Create alata array like this:

DIM LAYDATAS$(7)
LAYDATAS$(0)="01Mincemeat"
LAYDATA$(1)="0AVeal"
LAYDATA$(2)="17Roast Beef"
LAYDATAS$(3)="3FSausages"
LAYDATA$(4)="02Venison"
LAYDATAS$(5)="06Lamb Chops"
LAYDATAS$(6)="7CPork Chops"

* You can createdata file with the same content in a similar way:

10
20
30
40
50
60
70
80
90

OPEN "LAYDATA.DAT" FOR OUTPUT AS 1
PRINT#1,"01Mincemeat"

PRINT#1,"0AVeal"

PRINT#1,"17Roast Beef"
PRINT#1,"3FSausages"
PRINT#1,"02Venison"

PRINT#1,"06Lamb Chops"
PRINT#1,"7CPork Chops";

CLOSE 1

Note that the last record in a sequential file must be appended by
a semicolon (;).

Continued!

118

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7. Layout Files, cont'd.

L] Arrays
Also see:
 Chapter 6.10

Creating an Error File or Array

The lastrequirementis an error file or array that can store any errors

that may occur. If you use a data array, you must use an error array,

and if you use a data file, you must use an error file. The following

errors will be stored and presented in said order:

1 If an error occurs in a layout record, the number of the record
(1...nn) and the error number is placed in the error array or file.

2 If a data record cannot be used in a layout record, an the index of
the unused data record (0...nn) plus the error code -1 is placed in
the error array or file.

* Error arrays must be large enough to accommodate all possible
errors. Thus, use a DIM statement to specify a one-dimensional
array with a number of elements that is twice the sum of all layout
records plus twice the sum of all data records. You should also
include some routine that reads the array, e.g.:

10 DIM QERR%(28)

20 QERR%(0)=0

190 IF QERR%(1)=0 THEN GOTO 260

200 PRINT "-ERROR- LAYOUT 1"

210 1%=0

220 IF QERR%(1%)=0 THEN GOTO 260

230 PRINT "ERROR";QERR%(I1%+1);" in record ";QERRY%(I%)
240 1%=1%+2

250 GOTO 220

260 PRINTFEED

* Error files require a little more programming to handle the error
message, e.g.:
220 OPEN "ERRORS.DAT" FOR INPUT AS 10
230 IF EOF(10) THEN GOTO 280 ELSE GOTO 240
240 FOR A%=1TO 28
250 INPUT #10, A$
260 PRINT A$
270 NEXT A%
280 PRINTFEED

Note thatthe loopinline 240 mustbe large enough to accommodate
all possible errors.

Continued!

119

Intermec Fingerprint 6.13 — Programmer's Guide

10. LABEL DESIGN, cont'd.

7. Layout Files, cont'd.

10 DIM QERR%(28)

20 LAYDATAS$(0)="02Var. input"
30 LAYDATAS$(1)="03 PRINTER"
40 QERR%(0)=0

Using the Files in a LAYOUT Statement

Now, you have allthe files you need to issue a LAYOUT statement.
This statement combines the layout file, the logotype file, the data
file/array, and the error file/array into a printable image. Depending
on whether you have selected to use data and error files or arrays,
the statement will have a somewhat different syntax:

Files:
LAYOUT F, <layout file>, <logotype file>,<data file>,<error file>

Arrays:
LAYOUT <layout file> <logotype file>,<data array>,<error array>

Note that you cannot omit any file or array, since the syntax requires
a file name or array designation in each position. If you, for
example, do notrequire any logotype, you must still create an empty
logotype file.

Example:
The example below shows a simple layout created using the layout
statement in combination with data and error arrays:

50 OPEN "LOGNAME.DAT"FOR OUTPUT AS 1

60 PRINT #1, "Intermec.1";
70 CLOSE1
80 REM:LAYOUT FILE

90 OPEN "LAYOUT.DAT" FOR OUTPUT AS 2

100 PRINT #2, "01H1 SWO30RSN.1

110 PRINT #2, "02C11100 650 SWO30RSN.1Fixed Text 11122
120 PRINT #2, "02C11130 450 SWO30RSN.1Fixed Text 0 11 "

130 PRINT #2, "03B17100 300 CODE39 ABC 3311 100"
140 PRINT #2, "04A12300 800 GLOBE.1 1 %
150 PRINT #2, "05X11100 440 300 100 5"

160 PRINT #2,"06S11100 100300 10 "

170 CLOSE 2

180 LAYOUT "LAYOUT.DAT","LOGNAM
190 IF QERR%(1)=0 THEN GOTO 260
200 PRINT "-ERROR- LAYOUT 1"

210 1%=0

220 IF QERR%(1%)=0 THEN GOTO 260

E.DAT",LAYDATA$,QERR%

230 PRINT" ERROR "; QERR%(I%+1): " in record ; QERR%(1%)

240 1%=1%+2
250 GOTO 220
260 PRINTFEED
RUN

120

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL

1.

Paper Feed

In order to provide maximum flexibility, there are a number of
instructions for controlling the paper feed without actually printing

any labels:

CLEANFEED Runs the printer's paper feed mechanism in
order to facilitate cleaning of the print roller.

FORMFEED Feeds out a blank label or optionally feeds
out or pulls back a certain amount of paper
without printing.

TESTFEED Feeds out a blank label while adjusting the
label stop sensor or black mark sensor.

LBLCOND Overrides the paper feed setup.

The paper is feed past the printhead by a rubber-coated roller driven
by a stepper motor controlled by the firmware. The movement of

the paper is detected by the label stop sensor (LSS) or black mark
sensor (BMS), except when various types of paper strip are used.

The printer's setup in regard $rvice; Media Size; Lengénd
Service; Media Typis essential for how the paper feed will work.
There are four or five different typesiedia Typeoptions (also
see Technical Manual):

* Label (w gaps)

e Ticket (w mark) (some printer models only)

* Ticket (w gaps)

* Fix length strip

* Var length strip

When a FORMFEED, TESTFEED or PRINTFEED statement is
executed, the photoelectrical label stop sensor detects the frontedge
of each new label or the front edge of each detection gap (or the
alternative black mark sensor detects the front edge of each black
mark), as the paper is moved past the sensor in question.

By performing a couple of FORMFEED or TESTFEED operations
after loading a new supply of paper, the firmware is able to measure
the distance between the front edges of two consecutive labels,
thereby determining the label length, and can adjust the paper feed
accordingly. The same principle applies to tickets or tags with
detection gaps and tickets with black marks.

In case of paper strip, the LSS will only detect possible out-of-paper
conditions, and the amount of paper feed is decided in two different
ways:
* Fixed length strip
The amount of paper feed for each FORMFEED, TESTFEED
and PRINTFEED operation is decided by 8Bexrvice; Media
Size; Lengtlsetup.

Continued!

121

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL, cont'd.

1.

Paper Feed, cont'd.

* Variable length strip
At the execution of a PRINTFEED, the firmware will add a
sufficient amount of paper feed after the last printable object to
allowthe paperto be torn off. Note that e.g. a blank space character
or a“white” part of an image is also regarded as a printable object.
Thelength of TESTFEED and FORMFEED operations is decided
by theService; Media Size; Lengsetup.

TheDetection; Feedadjusietup allows you to perform two global
adjustments to the paper feed described above:

o Start Adjust

* Stop Adjust

By default, both are set to 0, which allows for proper tear-off
operation when there is no requirement of printing immediately at
the front edge of the label (or equivalent media).

« Start Adjust decides how much paper will be fed out or pulled
back before the FORMFEED, TESTFEED or PRINTFEED is
executed. Usually, there is a small distance between the dispenser
shaft or tear off edge and the printhead. Thus, if you want to start
printing directly at the front edge of the label, you must pull back
the paper before printing by means of a negative start adjust value.

* Stop Adjust decides how much extra or less paper will be fed out
afterthe FORMFEED, TESTFEED or PRINTFEED is executed.

Note that so far we have only discussed how the paper feed will
work regardless which program is run or what labels are printed.

There are several ways to let the program control the paper feed
without changing the setup:

» FORMFEED
As already mentioned, if the FORMFEED statement is issued
without any specification of the feed length, it will feed out a
complete blank label (or the equivalent). But if the FORMFEED
statement is specified as a positive or negative number of dots, it
can be used to substitute or modify the global Start Adjust and
Stop Adjust setup as a part of the program execution. It is
important whether the FORMFEED statement is executed before
or after the PRINTFEED statement:
- FORMFEEDbefore PRINTFEED corresponds to Start Adjust.
- FORMFEEDafter PRINTFEED corresponds to Stop Adjust.

- LBLCOND
The LBLCOND statement can be used to override the values for
the Start Adjust and/or Stop Adjust set in the Setup Mode. It can
also be used to disable the LSS/BMS for a specified length of
paper feed, e.g. to avoid text or pictures on the backside of a ticket
being mistakenly detected as black marks, orwhen using irregularly

shaped labels. Continued!

122

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL, cont'd.

1.

2.

3.

Paper Feed, cont'd.

Preparing the Printing

Printing

The relation between paper and printhead when the PRINTFEED
statement is executed decides all positioning along the Y-axis, i.e.
along the paper web. Likewise, the relation between the paper and
the cutting edge when a CUT statement is executed decides where
the paper will be cut off.

In some applications, it is essential that the printout is delivered
immediately after the printing has beentriggered, e.g. by anexternal
device, see chapter 7.10. The PRINTFEED NOT statement is used
for such purposes.

PRINTFEED NOT

This statement does not produce any printout, but prepares the
printer by preprocessing as much of the label layout as the size of
image buffer allows. Thus the printing can start as soon as a
PRINTFEED statement is executed. The larger the image buffer,

the more processing time is saved.

The following instructions are used in connection with the actual
printing:

CuT Activates the optional paper cutter.

CUT ON/OFF Enables/disables automatic cut-off opera-
tion in connection with each PRINTFEED
statement.

LTS& ON/OFF Enables/disables the label-taken sensor.

PRINT KEY ON/OFF Enables/disables PRINTFEED execution by
means of the Rrint > key.

PRINTFEED Prints a single label, ticket, tag or piece of
strip, or a batch of labels, tickets etc.

CcuT

Activates the optional paper cutter. As opposed to the CUT ON/
OFF statement (see below), this statement allows you to control the
cutter independently from the PRINTFEED statements. Since
there is alonger distance from the printhead to the cutting edge than
to the tear-off edge, the paper feed will need to be adjusted by means
of the Start- and Stopadjust setup or FORMFEED statements.

CUT ON/OFF

Enables/disables automatic cut-off initiated by each PRINTFEED
statement and also allows you to decide the distance in dots by
which the paper will be fed out before cutting and pulled back
afterwards.

Continued!

123

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL, cont'd.

3.

Printing, cont'd.

LTS& ON/OFF

These statements enables or disables the label-taken sensor, which
is an photoelectrical sensor that detects when a label has not been
removed from the printer's outfeed slot, and holds the printing until
the label has been removed.

PRINT KEY ON|OFF

These two instructions can only be issued in the Immediate Mode
and in thentermec Direct Protocahnd enables/disables a single
PRINTFEED operation to be automatically executed each time the
<Print> key is pressed.

PRINTFEED (PF)

At the execution of a PRINTFEED statement, the firmware proc-
esses all previously entered text fields, bar code fields, image fields,
box fields and line fields (see chapter 10) into a bitmap pattern. The
bitmap pattern controls the heating of the printhead dots and the
stepper motor that feeds the paper past the printhead. By default,
each PRINTFEED statement produces one single copy, but the size
of a batch of labels (or the equivalent) can optionally be specified.

The execution of a PRINTFEED statement (as opposed to
PRINTFEED NOT) resets these statements to their respective
default values:

ALIGN BARFONT BARFONT ON/OFF INVIMAGE
BARHEIGHT BARMAG BARRATIO MAG
BARTYPE DIR FONT PRPOS
BARSET

This does only affect new statements executed after the PRINTFEED
statement, but not already executed statements. The amount of
paper fed out at the execution of a PRINTFEED statements under
various conditions was discussed in chapter 11.1.

Example (printing five identical labels):
10 PRPOS 100, 100

20 FONT "SWO30RSN"

30 PRTXT"TEST LABEL"

40 PRINTFEED 5

RUN

Example (printing five copies of the same label layout with consecu-
tive numbering):

10 FORA%=1TO5

20 PRPOS 100, 100

30 FONT "SWO030RSN"

40 PRTXT "LABEL ":A%

50 PRINTFEED

60 NEXT A%

RUN

Continued!

124

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL, cont'd.

4.

5.

Length of Last Feed
Operation

Batch Printing

ACTLEN

This function returns the approximate length in dots of most
recently executed paper feed operation. It can for example be used
to determine the length of the labels before printing a list, so the list
can be divided into portions that fit the labels.

Example:

10 FORMFEED
20 PRINT ACTLEN
RUN

The terntBatch Printing” means the process of printing several
labels without stopping the paper feed motor between labels. The
labels may be exact copies or differ more or less in appearance.

For batch printing, the most critical factor is the time required to
process the print image, as specified by the program, into a bitmap
pattern and store it in the image buffer. The image buffer compen-
sates for differences between processing time and printing time. If
the label layout is too large as to be stored in its entity in the image
buffer, the layout will be divided into a number of segments across
the paper feed direction, that will be processed one after the other
and downloaded to the image buffer. As the buffer is emptied by
printing, a new segment can be processed and downloaded.

Alarge image buffer takes more time to process and fill, which may
delay the start of the printing, whereas a small image buffer may be
emptied before a new segment has been processed and down-
loaded. The print speed is also important. Obviously, the faster a
label is printed, the faster next segment or label must be processed.

There are a number of instructions that facilitate batch printing:

FIELDNO Divides the program into portions that can be
cleared individually.

CLL Clears part or all of the image buffer.

OPTIMIZE ON Enables optimizing. Three optimizing strat-
egies are available.

OPTIMIZE OFF Disables optimizing.

When using batch printing, consider this:

» The program must be written as to allow batch printing.

* In case of small differences between labels, make use of CLL and
FIELDNO instructions and write the program so the variable data
are processed last.

 Always use the OPTIMIZE "BATCH" ON strategy.

* Increase or decrease the size of the image buffer as to obtain a
smooth flow of data to the printhead.

Continued!

125

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL, cont'd.

5. Batch Printing, cont'd. Should any problems arise, e.g. the printer stops between labels, the

image buffer is probably too small. Increase the image buffer in the
Setup Mode, lower the print speed, or make the print image easier
to process. Vertical printing (DIR 2 & 4) is more demanding for text

in regard of buffer size and processing time. If possible, design the
label so most of the text is printed horizontally (DIR 1 & 3). The
print direction does not matter so much for bar codes, lines, boxes
and images. However, ladder style bar codes (DIR 2 & 4) generally
lowers the print speed.

CLL & FIELDNO

The image buffer stores the bitmap pattern of the label layout

between processing and printing. The size of the image buffer is

decided in the Setup Mode. The image buffer can be cleared
partially or completely by means of a CLL statement.

» Complete clearing is obtained by a CLL statement without any
reference to a field (see below) and is useful to avoid printing a
faulty label after certain errors have occurred.

* Partial clearing is used in connection with print repetition when
only part of the label should be modified between the copies. In
this case, the CLL statement must include a reference to a field,
specified by a FIELDNO function. When a CLL statement is
executed, the image buffer will be cleared from the specified field
to the end of the program.

In this example, the text “Month” is kept in the image buffer,
whereas the names of the months are cleared from the image buffer

as soon as they are printed, one after the other:
10 FONT "SWO030RSN"

20 MAG22

30 PRPOS 100,300

40 PRTXT"MONTH:"

50 PRPOS 100,200

70 A%=FIELDNO

80 PRTXT "JANUARY":PRINTFEED
90 CLLA%

100 PRPOS 100,200

110 PRTXT "FEBRUARY":PRINTFEED
120 CLL A%

130 PRPOS 100,200

140 PRTXT "MARCH":PRINTFEED
150 CLL A%

RUN

Continued!

126

Intermec Fingerprint 6.13 — Programmer's Guide

11. PRINTING CONTROL, cont'd.

5. Batch Printing, cont'd. OPTIMIZE ON/OFF

The OPTIMIZE ON statement is used to speed up batch printing.
There are three optimizing strategies:

"PRINT"

"STRING"

"BATCH"

The processing, which is performed before the print-
ing starts, is minimized on the basis of an analysis of the
preceding label's appearance.

All printable strings are converted to bitmap format,
which makes the printing faster, provided the strings
are not altered between copies. However, this requires
more RAM memory. Should any difficulties be en-
countered during printing, disable the "STRING"
optimizing strategy and try again.

The program execution will not wait for the label to be
printed, but proceeds as soon as the print image has
been transferred to the image buffer.

If no strategy is specified in the OPTIMIZE ON statement, both
"PRINT" and "STRING" optimizing strategies will be enabled at
the same time.

In case of batch printing with LTS& OFF and CUT OFF, the
"BATCH" optimizing strategy is automatically enabled.
OPTIMIZE OFF revokes OPTIMIZE ON.

Continued!

127

Intermec Fingerprint 6.13 — Programmer's Guide

12. FONTS

1.

Cell height

Bitmap Fonts

Cell width

}Ascender

Character
height

} Descender

%{—J%{_J
Char. width Spacing

Height of the character cell

DIR 1: SWO030RSN.1

DIR 4: SWO030RSN.2
PAPER FEED
C'NSHOEOMS -2 d1a

T'NSHOEOMS € HIa

Print directions and fontname
extensions.

Fonts inintermec Fingerprintcome in bitmap format and are
derived from scalable outline fontsSpeed®r TrueTypdormat.
Usually, each fontcomes in two versions, one has the exteriSion “
and is used for printing across the paper web (DIR 1 & 3), and
another with the extensior2' for printing along the paper web
(DIR 2 & 4). Fonts can be used both for printing plain text and bar
code interpretations in human readable characters (barfonts).

Note that there is no default font. Before a text or bar code inter-
pretation can be printed, a font must be specified using a FONT or
BARFONT statement. An exception is such bar codes where the
interpretation is an integrated part of the code, e.g. EAN and UPC.

If no extension is included in the name of the font or barfont, the
firmware will automatically select the version that fits the current
print direction.

Thelntermec FingerprinEPROM s fitted in the first pair of sockets
on the CPU board always contain the fonts "SW030RSN.1" and
"SWO30RSN.2.". The other EPROMs may contain additional
fonts.

Thelntermec Fingerprintont designation systemis made up by 10
characters providing information on the characteristics of the font:

vVnnnXYZ.d, where....
VV isatwo-character abbreviation of the font name, e.g. SW for
Swiss, MS for Monospaced, or PS for Prestige.

nnn is the height of the font matrix cell in dots incl. ascenders and

descenders.
X isthe style: R = Regular (Roman)
= ltalic
= Bold
= Bold ltalic

Y s the letter spacing: = Proportionally spaced.

S
= Monospaced
N

= Normal
= Compressed
E = Extended

is a separating period character between name and extension.

d is the extension, which specifies in which print directions the
font can be used: 1 = DIR1&DIR3
2 = DIR2&DIR4

Z is the character width:

Example:
SWO30RSN.Imeans Swiss,030dots highRegular, Proportio-
nally spacedNormal width, Directiorl & 3”.

Continued!

128

Intermec Fingerprint 6.13 — Programmer's Guide

12. FONTS, cont'd.

2. Converting Outline Font
Files via Toolbox

3. Converting Outline Font
Files via Scalable Fonts

Kit

4. Converting .ATF Fonts

Outline fontfiles irSpeeddormat can be converted to theermec
Fingerprint*. ATF format using th@ oolbox Fontgprogram. The

* ATF fonts can then be specified in regard of direction and range
of characters and be converted to binary filé&iolbox Configu-
ration, after which they are either stored as fonts in EPROM's or
memory cards, or downloaded to the printer's RAM memory, e.g.
using theKermit protocol (see chapter 6.8) or the FILE& LOAD
statement.

Fonts can be deleted from the RAM memory using a REMOVE
FONT statement.

Some printer models have a CPU board with a third pair of EPROM
sockets, e.gzasyCoder 401/501/60%uch printers can be fitted
with a“*Scalable Fonts Kit"which allows standard outline fontfiles

in Speed@andTrueTypdormats to be converted to bitmap fonts in
sizes and appearances decided by a FONT statement.

Fonts converted from outline font files by means of a FONT
statement can be given any name, but it is recommended to follow
thelntermec Fingerprintonvention regarding extensions.

Intermec Shell Enhancedovides an even easier way of converting
outline font files to bitmap fonts, provided the printer is fitted with
both a “Scalable Fonts Kit’and a keyboard. The operator is
prompted by messages in the display to specify the various para-
meters via the printer's keyboard (see the Technical Manual).

Fonts converted frorintermec Shelbre automatically given a
name based on the name of the original outline font file.

After conversion, the bitmap fonts will be stored in the printer's
RAM memory, either permanently or until next power up. Fonts
can be deleted from the RAM memory using a REMOVE FONT
statement.

In printers fitted with the two extra EPROMs of the scalable fonts
kit, itis possible to use the statement FONT LOAD to download and
convert fonts in .ATF format to the printer's memory, where they
can be saved either permanently or until next power-up. Fonts can
be deleted from the RAM memory using a REMOVE FONT
statement.

Continued!

129

Intermec Fingerprint 6.13 — Programmer's Guide

12. FONTS, cont'd.

5. Listing Fonts Regardless in which parts of the memory the different bitmap fonts
are stored, they can all be listed to the standard OUT channel by a
single statement, namely FONTS. This statement does not list
dedicated bar code fonts.

Another method of listing bitmap fonts is to use a FONTNAME$
function, which also will list dedicated barcode fonts.

Fontfiles can be listed to the standard OUT channel by means of the
FILES statement.

This example shows how all fonts can be listed:
10 A$=FONTNAMES$(0)

20 IFA$=""THENEND

30 PRINTA$

40 A$=FONTNAMES$(-1)

50 GOTO20

RUN

5. Special Fonts If you have special requests regarding fonts, these can be solved in
different ways:

* Orderasetofconfiguration EPROM:s oramemory card containing
the font(s) you require directly from your lobakermedistributor.

» UseToolboxto convert an outline font file to bitmap format and
downloaditto the desired part of the printer's memory (EPROM's,
RAM memory or memory card).

* Use the optiondScalable Fonts Kit"to convert an outline font
file to a bitmap font (certain printer models only).

» Use the FONT LOAD statement to download fonts in .ATF
format (certain printer models only).

Outline font files can be bought directly frantermec

For more information on the conversion of fonts, please refer to:

- Intermec Fingerprint 6.1Reference Manual, FONT and FONT
LOAD statements.

- Technical Manual; Scalable Fonts Kit (some printer models only)

- Toolbox4.0Programmer's Manual (only availabl&Jigl version).

130

Intermec Fingerprint 6.13 — Programmer's Guide

13. BAR CODES

1. Standard Bar Codes

A large number of commonly used bar code symbologies are
included in théntermec FingerprinEPROM s fitted in the first pair

of sockets on the CPU board. As an option, Configuration and
ROM-expansion EPROMs may contain additional bar codes ac-
cording to the customer's request. Bar codes cannot be downloaded
to the printer, but must be ordered frimermeand “burned” into
EPROMSs using e.g. thieoolbox Configuratioprogram.

Some bar codes require special barcode fonts, e.g. UPC and EAN
bar codes.

Bar codes cannot be listed by means oflatgrmec Fingerprint
instruction. As standardihtermec Fingerprint 6.18ontains the

following bar codes.

Bar Code Type Designation
Codabar "CODABAR"
Code 11 "CODE11"
Code 39 "CODE39"
Code 39 full ASCII "CODE39A"
Code 39 w. checksum "CODE39C"
Code 93 "CODE93"
Code 128 "CODE128"
DUN-14/16 "DUN"
EAN-8 "EANS"
EAN-13 "EAN13"
EAN-128 "EAN128"
Five-Character Supplemental Code "ADDON5"
Industrial 2 of 5 "C20F5IND"
Industrial 2 of 5 w. checksum "C20F5INDC"
Interleaved 2 of 5 "INT20F5"
Interleaved 2 of 5 w. checksum "I20F5C"
Interleaved 2 of 5 A "[20F5A"
Matrix 2 of 5 "C20F5SMAT"
MSI (modified Plessey) "MSI'
Plessey "PLESSEY"
Straight 2 of 5 "C20F5"
Two-Character Supplemental Code "ADDON2"
UCC-128 Serial Shipping Container Code | "UCC128"
UPC-5 digits Add-On Code "SCCADDON"
UPC-A "UPCA"
UPC-D1 "UPCD1"
UPC-D2 "UPCD2"
UPC-D3 "UPCD3"
UPC-D4 "UPCD4"
UPC-D5 "UPCD5"
UPC-E "UPCE"

UPC Shipping Container Code "UPCSCC"

Continued!

131

Intermec Fingerprint 6.13 — Programmer's Guide

13. BAR CODES, cont'd.

2.

Special Bar Codes

Special bar codes, such as PDF417, USD-5, MaxiCode and LEB
code, can be ordered frdmtermec either in the form of ready-
made configuration EPROM:s, or as “object files” that can be
burned into EPROM:s by means of the progfaolbox Configu-
ration and a EPROM programming device.

At the moment of the publishing of this manual, the following
optional bar codes were available:

Bar Codes Designation
€OUE LOK ..ottt "CODE16K"
COUE A9 ..o "CODE49"

LEB .o s ‘LEB"
MAXICOUE ..o "MAXICODE"
PDF 417 .ot "PDF417"
PRIlIPS oot "PHILIPS"
Philips (alternative designation) ... 'DOT CODE A"
USDDS .ttt "UsD5"

132

Intermec Fingerprint 6.13 — Programmer's Guide

14. IMAGES

1. Images vs Images Files

2. Standard Images

3. Downloading Image
Files

[J Downloading via Kermit
Also see:
e Chapter 6.8

[J Image Transfer Protocols

Also see:

¢ Intermec Fingerprint Reference
Manual

There is a similar distinction betweéimages” and “Image

Files”as with“Fonts” and“Font Files” (see chapter 12):

* “Image” is a generic term for all kinds of printable pictures, e.qg.
symbols, logotypes or other illustrations, inititernal bitmap
format ofIntermec Fingerprint

* “Image Files” are files in various bitmap formats that can be
converted to “Images” in the internal bitmap formantérmec
Fingerprint Images files can be stored in the printer's memory,
but cannot be used for printing before they have been converted
to “Images”.

As standard, thieatermec FingerprinEPROMs fitted in the first

pair of sockets on the CPU board contain the GLOBE.1 image for
training purposes and a few other images used for printing test
labels. Otherimages may be included inthe Configuration EPROMs
depending on application program or according to the customers
request. Such images can converted from images files in .PCX or
.PCC format by th&oolbox Configuratiorprogram and can be
“burned” into the configuration EPROMSs.

Image files in .PCX format can be downloaded to the printer's RAM
memory using th&ermitprotocol and then convertedmtermeds
internal image format by means of the instruction RUN "pcx2bmp”
(see chapter 6.5) .

Image files in .PCX format can also be both downloaded and
converted to images by means of the IMAGE LOAD statement.

The progranToolbox Imagean be used to convert and download
image files in .PCC or .PCX format to images and store them in the
printer's RAM memory.

Image files in Intel hex formats, or formats accordinigtermec
Fingerprintfile transfer protocols UBIOO, UBIO1, UBIO2, UBIOS,
or UBI10, can be downloaded to the printer's RAM memory using
the instructions STORE (obsolete), STORE IMAGE, STORE
INPUT and STORE OFF, e.g.:

10 STORE OFF

20 INPUT "Name:", N$

30 INPUT "Width:", W%

40 INPUT "Height", H%

50 INPUT "Protocol:", P$

60 STORE IMAGE N$, W%, H%, P$

70 STORE INPUT 100

80 STORE OFF

RUN

Continued!

133

Intermec Fingerprint 6.13 — Programmer's Guide

14. IMAGES, cont'd.

3. Downloading Image
Files, cont'd.

4. Listing and Removing
Images

The system variable SYSVAR allows you to check the result of an
image download by means of STORE or STORE INPUT:

* SYSVAR (16) reads the number of bytes received.

* SYSVAR (17) reads the number of frames received.

Both values are reset when a new STORE IMAGE statement is
executed.

The names of all images stored in the various parts of the printer's
memory can be listed to the std. OUT channel by means of an
IMAGES statement or a program using the IMAGENAMES$
function.

Image files can be listed to the std. OUT channel by means of a
FILES statement.

Images can be removed from the RAM memory usinga REMOVE
IMAGE statement.

134

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL

1. Keyboard

Note:

All Intermec FingerprintcompatibleEasyCodeprinters are pro-
vided with at least one key or butt@inhancednodels have a set

of numeric keys supplemented with a number of function keys. This
also applies teasyCoder 201 lIS¢Stand-Alone)EasyCoder 501
SA(Stand-Alone) has a full QWERTY keyboard, like a typewriter,
supplemented by numeric and function keys. Separate alphanu-

An external keyboard does notworkintheneric keyboards are available as options.

Setup and Test Modes.

The keys have three purposes:

* To control the printer in the Setup and Test Modes, and to some
extent also in the Immediate Mode.

 To enter input data in the form of ASCII characters.

» To make the program execution branch to subroutines according
to ON KEY...GOSUBstatements.

Note that input from the printer's keyboard (see chapter 7.6)
excludes the use of ON KEY...GOSUB statements (see chapter
5.8) and vice versa.

Controlling the Printer in the Setup, Test, and Immediate Modes
» The use of the keyboard in tBetup Modes described in the

Technical Manual for the printer model in question.

» The use of the keyboard in thest Modds described in the

Service Manual for the printer model in question.

¢ In a printer running in thenmediate Modeonly three keys are
working:

- The <Print> key or button produces a FORMFEED operation,
or — if the printhead is lifted — runs the printer's print roller a
number of rotations in order to facilitate cleaning
(CLEANFEED).

- The Feed> key works the same way as theriat > button.

- The <Setup> or <Save> key gives access to the Setup Mode.

* In the Immediate Mode, the printing of labels by means of the
print key can be enabled or disabled using a PRINT KEY ON/

OFF statement, also see chapter 11.3.

Enabling the Keys

Before a key can be used to make the execution branch to a
subroutine using an ON KEY...GOSUB statement, the key must be
enabled using a KEY...ON statement. Enabled keys can also be
disabled again using KEY...OFF statements.

However, the keyboard can also be used to enter input data
(provided "console:" is OPENed for INPUT), and also be used in
the Setup and Test Modes, regardless if the keys are enabled or not.

Continued!

135

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

1. Keyboard, cont'd.

Key Id. Numbers
The keys are specified by identification numbers in connections
with the following statements:

KEY...ON Enables the specified key.
KEY...OFF Disables the specified key.
ON KEY...GOSUB... Branches the program execution to a sub-

routine when the specified key is pressed.

Each key has two id. numbers, one fouitshifted position and
another for itshifted positiort. By default, the €> key works as
Shift key (compare with the shift key of a typewriter).

To select the shifted position of a certain key, keep the Shift key
(<C>) depressed while you press the desired key. The id. number
of the shifted key is equal to its unshifted id. numb&0Q For
example, the 1> key has id. number 10 in unshifted position, but
id. number 110 in shifted position.

The illustration below shows the default id. numbers of the key-

Y. Due to technical restrictions in the boards of th&nhancednodels oEasyCoder 201 Bbind501/601
keyboard decoding, some keys will noflhe id. number of theRrint > button or key also applies to printers
work in Shifted position depending on themodels without keyboard, such Basycoder 201 llSEasyCoder

combination of printer model and selecte

401, Easycoder 501%indEasyCoder 601S

Shift key.
If the keyboard is remapped (see later in this chapter), the id.
numbers will be affected.
Default |.d. numbers of the most common keyboard types
S | 8 0s] (18] in the EasyCoder printer line.
fatermec casycoder 2011 @5106) (Some printers only have a Print key or button)
:] M3 The C or Clear key (i.d. No. 20) works as a Shift key.
When pressed in connection with another key, it
(0] (1) (12] (13] (14) 20 0] 20 adds 100 to the i.d number of the other key.
17
3 Power 3 Res 3 Error "termec
EasyCoder
bs) (@] IEN]
(4] (5] (&)
2] E) _
(1) (12] (13) (z1) (0]
Continued!

136

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

1.

Keyboard, cont'd.

Key-initiated Branching

What will happen when an enabled key is pressed is decided by an
ON KEY...GOSUB statement, that branches the program execu-
tion to a subroutine, where additional instructions specify the action
to be taken. Refer to chapter 5.8 for further information and
additional program example.

Here is an example of how two keys (<F1>and <F2>) are enabled
and used to branch to different subroutines. The keys are specified

by their id. numbers (10 and 11 respectively):
10 KEY (10) ON: KEY (11) ON
20 ONKEY (10) GOSUB 1000
30 ONKEY (11) GOSUB 2000
40 GOTO40

50 END

1000 PRINT "You have pressed F1"
1010 RETURN 50

2000 PRINT "You have pressed F2"
2010 RETURN 50

RUN

Audible Key Response

Eachtime akey is pressed, the printer's beeper will, by default, emit
a short signal (1200 Hz for 0.03 sec). The frequency and duration
of the signal can be globally changediibkeys by means ofaKEY
BEEP statement. Obviously, setting the frequency or duration to 0
will turn off the signal for all keys.

Input from Printer's Keyboard

Provided "console:"is OPENed for sequential INPUT, the keys can
be used to enter ASCIl characters to the program using the
following instructions:

INPUT# reads a string of data to a variable.

INPUT$ reads a limited number of characters to a
variable.

LINE INPUT# reads an entire line to a variable.

Refer to chapter 7.6 for a table showing the ASCII values that the
various keys generate and for a program example. Note that input
from keyboard does not require any keys to be enabled.

Continued!

137

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

1. Keyboard, cont'd. Remapping the Keyboard
The keyboards of the various printer models are fully remapgpable
as to allow the printer to be adapted to special applications or
national standards. Thus you can decide which two ASCII charac-
1 - o ters each key will produce, with and without the Shift key being
T’hlhi{ﬁg',f; °2§r?nxt§eﬁt;‘y’”;m the Easy- activated, and which key will work as Shift key. The mapping also
Coder 401/501 cannot be remapped. decides the id. numbers for the keys.

The basis of the remapping process is the position number of each
key. The numbers vary between different types of keyboards, as
illustrated below.

Note the distinction between id. numbers and position numbers!

R R =
’ntermec EasyCoder 2011IE
I

[N R

56

T = R = g
’"termec ’ntermec EasyCoder 5015A

oo ”

[]

- -

OommE & DODEEDBEEENBEE &

The present keyboard mapping can be read to a string variable using
theKEYBMAPS$ instruction with the following syntax:

<string variable>=KEYBMAP$(n) where....

n=0 reads the unshifted characters.

n=1 reads the shifted characters.

n=2 reads the position of the Shift key.

This example reads the unshifted characters on the keyboard of an

EasyCoder 501 E. Non existing key positions get ASCII value 0:
10 PRINT "Pos","ASCII","Char."

20 A$=KEYBMAP$(0)

30 FORB%=1TO64

40 C$=MID$(A$,B%,1)

50 E%=ASC(C$)

60 PRINT B%,E%,C$

70 NEXT

RUN

Continued!

138

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

1.

Keyboard, cont'd.

Remapping the Keyboard, cont'd.
You can also use the KEYBMAP$ instruction to remap the
keyboard, using the following syntax:

KEYBMAPS$(n) = <string> where...

n=0 maps the unshifted characters in ascending pos. No. order.
n=1 maps the shifted characters in ascending pos. No. order.
n=2 maps the position of the Shift key.

The string that contains the desired keyboard map should contain
the desired character for each of 64 key positions (in ascending
order) regardless if the keyboard contains that many keys.

Characters, that cannot be produced by the keyboard of the host, can
be substituted by CHR$ functions, where the character is specified
by its ASCII decimal value according to the selected character set
(seeNASC statement). The same applies to special characters. See
table below.

Non-existing key positions are mapped as Null, i.e. CHR$(0).

The key appointed asSkift> key is specified by its keyboard
position number in a separate string.

The single ®rint >key ofEasyCoder 401/5G&nnot be remapped.

ASCII decimal values for Special Keys

Special key Unshifted Shifted Special key Unshifted Shifted
F1 1 129 Ins 18 146
F2 2 130 O 19 147
F3 3 131 O 20 148
F4 4 132 Feed 28 156
F5 5 133 Setup 29 157

C (Clear) 8 136 Pause 30 158
Enter 13 141 Print 31 159
Alt 14 142 Del 127 255
Save 15 143 Shift 144
Caps 17 145

In this example, the unshifted keyboard map is read back to the host.
The string is modified (<F1> is replaced by <Feed>) and used to
change the keyboard map.

10 A$ = KEYBMAP$(0)

20 B$ = CHR$(28) + MID$(A$,2)

30 KEYBMAP(0)=B$

40 END

Continued!

139

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

1.

Keyboard, cont'd.

Remapping the Keyboard, cont'd.

The following example illustrates the mapping of the keyboard for
an EasyCoder 201 lIE (unshifted keys only). Note the limit of max.
300 characters per program line that makes it necessary to divide

the string between two lines:

10 A$=CHR$(1)+CHR$(0)+CHR$(0)+CHRS(0)
+CHR$(0)+CHR$(2)+CHR$(0)+CHR$(0)+CHRS$(0)
+CHR$(0)+CHR$(3)+CHR$(0)+CHR$(0)+CHR$(0)
+CHR$(0)+CHR$(4)+CHR$(0)+CHR$(0)+CHR$(0)
+CHR$(0)+CHR$(5)+CHR$(0)+CHR$(0)+CHR$(0)
+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)
+CHR$(0)+CHR$(13)

20 A$=A$+CHR$(28)+CHR$(29)+CHR$(30)+CHR$(0)
+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)+CHRS$(0)
+."+" 1"+ 4"+ 7" +CHR$(0)+'0"+"2"+"5"+"8"
+CHR$(0)+CHR$(8)+"3"+"6"+"'9"+CHR$(0)
+CHR$(31)+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)
+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)

30 KEYBMAP$(0)= A$

40 END

140

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

2. Display

[Clearing the Display

Also see:

« “Cursor Control: Clearing the Display”
later in this chapter.

All presentintermec Fingerprincompatible printers frorinter-
mechave a 2 lines 16 characters LCO.{quid Crystal Display.

The Intermec Fingerprinfirmware uses it to show a number of
standardized messages, e.g. in the Setup and Test Modes, but it can
also be controlled by programming instructions (€aatput to
Display” below). The display is provided with a controllable
cursor, as described later in this chap@u(sor Control”).

Output to Display
Before you can print any text to the display, it must be opened for

sequential output, e.g.:
10 OPEN "console:" FOR OUTPUT AS 1

Then you should clear any previously displayed message by

sending two empty PRINT# or PRINTONE# statements:
20 PRINT#L:PRINT#1

Now you can send a string to each of the two lines. Note the
appending semicolon on the second line:

30 PRINT#1, "Upper line"

40 PRINT#1, "Lower line";

RUN

This will result in the following message being displayed:

Upper line
Lower line

As a alternative to sending two separate lines, you can also send a
single line consisting of max. 33 characters, where:

 Character 1-16 specifies the upper line

» Character No. 17 is not displayed at all

» Character No. 18—-33 specifies the lower line

* The line should be appended by a semicolon (;).

Using this method, the example above would look like this (under-
score characters indicate space characters):

10 OPEN "console:" FOR OUTPUT AS 1

20 PRINT#L:PRINT#1

30 PRINT#1,"Upper line Lower line"

RUN

141

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

2. Display, cont'd. Cursor Control

The cursor control instructions can be used for four purposes:

 Toclearthe display from messages (as an alternative to the double
PRINT#statement on line 20 in the example above).

 To enable or disable the cursor.

* To select cursor type (underscore or block/blink)

* To place the cursor at a specified position or to move it.

The cursor is either a black line under a character position in the
display, or a blinking block that intermittently blacks out the
character position:

Positon:'1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
et UPpPer line
crsor — Line2 | LOWer line
\

PBpper line
Lower line

Each cursor control command should start with the cha@8ler
(Control Sequence Introducer) = ASCII 155 decimal, or (in case of
7-bit communication) with the characteEESC’ + “[” (ASCII 27

+ 91 decimal).

Clearing the Display
Syntax: <CSI> + <Q|1|2>J>
where: CSI = ASCII 155 dec.
0 = From active position to end, inclusive (default)

1 = From start to active position, inclusive
2 = All of the display
J = Must always append the string

Example (clears all of the display):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2J"

Selecting Cursor Type
Syntax: <S> + <4p|5p>
where: CSI = ASCII 155 dec.
4p = Underscore
5p = Block/Blink (default)

Example (selects underscore-type cursor):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "4p";

Continued!

142

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

2.

Display, cont'd.

Cursor Control, cont'd.

Enabling/Disabling the Cursor
Syntax: <€CSI> + <Lp|3p>
where: CSI = ASCII 155 dec.
2p = Cursor On
3p = Cursor Off (default)

Example (enables the cursor):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2p'";

Note that a semicolon should append RR&NT#instructions in
order to avoid interfering with existing messages in the display.

Setting the Absolute Cursor Position
Syntax: €CSI> + <<v>;<h>H>
where: CSI = ASCII 155 dec.
v = lIsthe line (1 = Upper; 2 = Lower)
h = Is the position in the line (1-16)
H = Must always append the string
If v, h or both are missing, the default value is 1.

Example (setting the cursor in upper left position):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "H";

Example (setting the cursor in lower right position):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2;16H";

Move the Cursor Relative to Current Position
Syntax: €CSI><n>A |B|C|D
where: CSI = ASCII 155 dec.
n = Is number of steps relative to current position
(default = 1).
A-D= Is the direction, where A = Up, B = Down,

C = Forward, D = Backward

The relative movement must not place the cursor
outside the display area €216 positions) or the
instruction will be ignored.

Example (moving the cursor from the first position in the upper line
to the last position in the lower line):

10 OPEN "console:" FOR OUTPUT AS 1

20 PRINT#1, CHR$(155) + "1B";

30 PRINT#1, CHR$(155) + "15C",

143

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

3.

LED Control Lamps

Beside showing messages in the printer's display window (see
chapter 15.2, the program can use two of the three LED's (Light
Emitting Diodes) on the printer's front panel to notify the operator
by means of the following two statements:

LED...ON Turns the specified LED on.
LED...OFF Turns the specified LED off.

The printer's front panel contains three LED's labelled "Power”,

"Ready” (0), and "Error” (1):

» The “Power” LED is connected to the printer's power supply and
is litwhen the power is on. It cannot be controlled by the program.

* The two other LED's (“Ready” and “Error”) can be programmed
atwill using LED ON and LED OFF statements, even though the
printed text on the keyboard imposes certain restrictions.

Example:

In this example, the “Ready” LED (0) is lit until an error occur.
Thenthe “Error” LED (1) is litinstead. The “Error” LED remains
lit until the error is cleared. A suitable error can be generated by
running the program with the printhead lifted.

10 LEDOON

20 LED1OFF

30 ONERROR GOTO 1000

40 PRPOS 100,100

50 FONT "SWO30RSN"

60 MAG33

70 PRTXT"OK!"

80 PRINTFEED

90 LEDOON

100 LED 1OFF

110 END

1000 LED 0 OFF

1010 LED 1 ON

1020 RESUME

RUN

144

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

4. Buzzer

In addition to the visual signals given by means of the display and
the LED control lamps (see chapter 15.2 and 15.3), audible signals
can also be initiated by the program execution in order to notify the
operator.

The following instructions can be used:

BEEP Initiates a short signal of fixed frequency
and duration.
SOUND Initiates a signal vith variable frequency

and duration.

The printer is provided with a buzzer fitted on the CPU board. The
buzzer can be controlled by either a BEEP statement, which gives
a short shrill signal5800 Hz for 0.25 sec.), or by a SOUND
statement, which allows you to vary both the frequency and
duration. You can even compose your own melodies, if your
musical ear is not too sensitive!

In this example, a warning signal is emitted from the buzzer e.g.
when the error “printhead lifted” occurs and keeps sounding until

the error is cleared. A short beep indicates that the printer is OK.
10 ONERROR GOTO 1000

20 PRPOS 100,100

30 FONT "SWO30RSN"

40 MAG33

50 PRTXT"OK!"

60 PRINTFEED : BEEP

70 END

1000 SOUND 880,25 : SOUND 988,25 : SOUND 30000,10
1010 RESUME

RUN

145

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

5.

Clock/Calendar

The printer's CPU board is provided with an internal clock/calendar
without battery backup, i.e. the setting will be lost when the printer
is turned off.

Intermec Fingerprintompatible printers may be fitted with areal-
time clock circuit (RTC) in a socket on the CPU board. The RTC
is battery backed-up and will keep running even when the printer is
turned off.

If no RTC is installed and you try thead the dateor time before

the internal clock has been set, an error will occur (error 1010
“Hardware Error”). Once either timer date has been set, the
internal clock will work until next power off or reboot. If only time
has been set, by default the current date will be Jan 01 1980 and if
only date has been set, by default the clock will start running at
00:00:00.

Please refer to chapter 9.3 for information on how to read the
printer's clock/calendar, and on the standard formats for date and
time.

The following instructions are to set the clock/calendar:

DATES$ = <sexp> Sets the date (YYMMDD format)

TIMES = <sexp> Sets the time (HHMMSS format)

Example (setting the clock/calendar to 08.11.30 September 1,
1998):

DATES$ ="980901"
TIME$ = "081130"

Note that the values must always be entered as string expressions.
Possible numeric expressions can be converted to string format
using STR$ functions (see chapter 9.2).

146

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6. Printer Setup The printer's setup can be changed manually if the printer is
provided with a built-in keyboardEGhancedand Stand-Alone
models). Printers without a keyboa8tgndardnodels) are often

[J Intermec Shell Startup Programs delivered with some kind of startup program (Exgermec Shell

Also see: that allows setup parameters to be changed manuallynt&éhaec

. :\'}ltaer:’l]‘aﬁc Shell Standard Startup Shellstartup programs also allows the setup to be read or changed

« Intermec Shell Enhanced Startup from a connected terminal. This was discussed more thoroughly in
Manual chapter 2.

Detailed information on the methods of manual setup and the
various setup parameters can be found ififteehnical Manual”
manual for the printer model in question.

If the printer has no built-in keybodyar if you want to change
some setup parameter either by remote control or as a part of the
program execution, you can use $EFupPstatement.

SETUP
TheSETUPstatement can be used in four different ways:
SETUP Makes the printer enter the Setup Mode.

Never use this statement in a printer
without keyboard as you can neither leave
the Setup Mode nor do anything else with-
out any keys!

SETUP WRITE Creates a copy of the printer's current
setup and saves it as a file in RAM under
a specified name or returns the current
setup to the specified communication
channel.

SETUP<file name> Changes one, several, or all of the setup
parameters in the printer's current setup
according to a setup file.

SETUP<string> Changes a single setup parameter

Reading the Current Setup

The easiest way to read the printer's current setup is tGsEFER
WRITE statement to return the setup to the serial communication
channel used for output to the host (usually "uart1:").

Example:
SETUP WRITE "uart1:"

/. An external keyboard cannot be usedin .
the Setup Mode. Continued!

147

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6.

Printer Setup,
cont'd.

Creating a Setup File
There are two ways of creating a setup file:
* Create a setup file usimgtermec Fingerprintnstructions:
- OPEN a file for sequential OUTPUT. See chapter 8.3
- Use a PRINT# statement to enter each parameters you want so
change. The input must follow the stipulated syntax exactly (see
the Intermec Fingerprint6.13 Reference Manual, SETUP
statement).
- CLOSE the file.
 Use theToolbox Setuprogram to create the file.

Changing the Setup using a Setup File

Use a SETUP<filename> statement to change the printer's setup. If
the setup file is stored in another part of the printer's memory than
the current directory, the file name should contain a reference to the
device in question.

In the following example, we will first save the current setup under

a new file name and then make a setup file that changes the size of
the transmit buffer on "uart1:" just alittle. Finally, we use the setup
file to change the printer's setup.

10 SETUP WRITE "SETUP1.SYS"

20 OPEN "SETUPTEST.SYS" FOR OUTPUT AS #1

30 PRINT#1,"SERVICE,MEMORY ALLOC,TRANS BUF UART1,310"

40 CLOSE #1

50 SETUP "SETUPTEST.SYS"

RUN

Changing the Setup using a Setup String

A single setup parameter can be changed without creating any file.
The SETUP statement should be followed by a string following
exactly the same syntax as the corresponding parameter in a Setup
file, but without any leading PRINT# statement.

The same change as in the example above would look this way when
using a setup string:
SETUP "SERVICE,MEMORY ALLOC,TRANS BUF UART1,310"

Continued!

148

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6. Printer Setup, PRSETUP.PRG Utility Program
contd. The program PRSETUP.PRG is included in some Configuration
EPROM:s and allows you to print the current setup values both on
the screen of your terminal/computer and on paper inyt@imec
Fingerprintprinter. For best result, labels or tickets should have a
length of at least 70 mrs /4").

1 ‘Prsetup.prg ver 1.2 92-06-26 (ew)

5 ON ERROR GOTO 500

6 F$="SWO020BSN.2":FONT F$

7 IF EFLAG%<>0 THEN F$="SWO030RSN.2"

10 SETUP WRITE "qzqw"

20 OPEN "gzgw"FOR INPUT AS # 1

30 FONTF$:DIR4

40 X%=50:Y%=10

50 LINEINPUT#1,A$

60 PRINT A$

65 EFLAG%=0

70 PRPOS X%, Y%

80 IFEFLAG%<>0 THEN PRINTFEED:FONT F$:
X% = 50: Y% = 10: DIR 4:GOTO 65

85 A%=SPLIT(A$,'B",44)

90 IF B$(0)="SER-COM" THEN PRTXT
B$(1)+","+B$(A%-2)+","+BS(A%-1):GOTO 95

91 PRTXT B$(A%-2)+","+B$(A%-1)

95 FOR1%=0TO A%

9% B$(1%)="

97 NEXT 1%

100 X% =X%+30

110 IFEOF (1)=0THEN GOTO 50

120 IF X% >50 THEN PRINTFEED

130 CLOSE#1

140 KILL "gzgw"

199 END

500 EFLAG%=ERR

510 RESUME NEXT

RUN

Continued!

149

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6. Printer Setup, DISPSET2.PRG Utility Program
contd. DISPSET2.PRGis included in many Configuration EPROM:s and

can be used for setting up such printers that are fitted with a display
but not a keyboard, e.gcasyCoder 201 IIS, EasyCoder 401
EasyCoder 501 &rdEasyCoder 601. DISPSET2.PRG allows
the label stop sensor (LSS) to be adjusted and —when necessary —
the printhead resistance to be set. It also provides the possibility of
reading the presentvalue of all other setup parametersinthe display.
DISPSET2.PRG is a part of th@ermec Shell Standarstartup
program for printers without keyboard. It also illustrates how to
solve the setup programming for printers with custom-made pro-
grams and no keyboard. Also refer toTleehnical Manuabf the

Note: printer model in question.

Printer model 910 is no longer produced.1000 'Display setup in slave printer 201/910
1010 '930301 GI New LSS for 501
1100 on error goto 9500:dim S$(9)
1110 open "CONSOLE:" for input as #11
1115 open "CONSOLE:" for output as #10
1117 print#10,"Print=Setup":print #10,T$
1120 DUMMY$=input$(loc(11),11):close #11
1130 QSTEPS$="FALSE":X$="S"
1140 on key(17) gosub 2000: key(17) on:'Print
1150 T1%=TICKS:OT$=""
1151 T$="0"+str$(500-(ticks-T1%))
1153 T$=right$(T$,3):T$=left$(T$,1)
1154 if OT$=T$ then goto 1160
1155 print #10:print #10,"Print=Setup":
print #10,T$+" Sec. left";:OT$=T$
1160 if (TICKS-T1%)<400 then goto 1151
1170 gosub 4800
1199 END
2000 setup write "SETUPO.SYS"
2010 on key(17) gosub 9200: key(17) on:'Print
2030 if (prstat and 1) then gosub 3000
else gosub 4000
2990 RETURN
2999 'Setup----------
3000 'Head up - LSS adj., HEAD RESISTANCE.
3005 setup write "XSETUPOX.SYS"
3010 open "XSETUPOX.SYS" for input as #5
3020 open "XSETUP1X.SYS" for output as #6
3030 gosub 9100: 'Read setup file
3040 if T$="EOF" then close #5:close #6:goto 3500
3050 S%=SPLIT(T$,X$,44)
3060 if S$(2)="HEAD RESIST" then gosub 3200
else goto 3030
3070 print #6,T$:close #5:close #6:goto 3500:
‘Copy to file #6.

Continued!

150

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6. Printer Setup, DISPSET2.PRG Utility Program, cont'd.
cont'd. 3200 D1$="HEAD RESISTANCE"D2$=S$(3)

3210 gosub 9000: 'Display

3220 if (prstat and 1) then gosub 3300

3299 RETURN

3300 'Change resistance

3310 QRES%=head(-8): 'Min

3315 D2$=str$(QRES%):
T$=S$H(0)+","+SH(1)+","+S$(2)+","+D2$

3320 gosub 9000: 'Display

3330 if (prstat and 1) then goto 3340 else RETURN

3340 QRES%=QRES%+10:QRES$=str$(QRES%)

3345 if (QRES%>head(-8) and right5(QRES$,1)<>"0")
then QRES$=Ieft8(QRES$,2)+"0"

3346 QRES%=val(QRES$)

3370 if QRES%>head(-9) then QRES%=head(-8)

3380 goto 3315

3499 RETURN

3500 'LSS- Adjust

3505 setup "XSETUP1X.SYS": kill "XSETUP1X.SYS"

3510 D1$="LSS ADJUST":D2%$="":gosub 9000

3520 D1$="LABEL <> GAP":QLSS%=SYSVAR(8)

3555 LASTF$="YES".gosub 3600

3560 if (prstat and 1)=0 then goto 3585

3565 if VERSIONS$(1)<>"501" then gosub 3800
else gosub 3900

3585 gosub 4000: 'Show par.

3590 RETURN

3600 'Display LSS receiver

3615 POS%=sysvar(1)\16:X1$=""

3617 LASTPOS%=POS%

3620 D2$=string$(pos%,X1$)+chr$(255)

3623 QLSS$=right$("00"+str$(QLSS%),3)

3625 D1$="LABEL <"+QLSS$+"> GAP"

3630 print#10:print#10,left$(D1$,16)

3640 print#10,left$(D2$,16);

3641 POS%=sysvar(1)\16

3643 if (prstat and 1) then LASTF$="NO" :goto 3645

3644 if (LASTF$<>"YES”) then TESTFEED:LASTF$="YES"

3645 if LASTPOS%<>POS% then goto 3617

3650 if QSTEP$<>"TRUE" then goto 3641

3660 QSTEP$="FALSE"

3690 RETURN

3800 'Change LSS, 101, 201 printer. Iss=0-3

3810 QLSS%=0

3820 if QLSS%>3 then QLSS%=0

3840 SYSVAR(8)=QLSS%

3850 gosub 3600

3855 QLSS%=QLSS%+1

3860 if (prstat and 1) then goto 3820 else RETURN

Continued!

151

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6.

Printer Setup,
cont'd.

DISPSET2.PRG Utility Program, cont'd.

3900
3910
3920
3930
3940
3950
3955
3960
3990
3999
4000
4005
4010
4025
4030
4040
4050
4100
4110
4122
4125
4130
4135
4136

4137
4138
4139
4140
4150
4200
4210
4222
4225
4230
4240
4250
4300
4310
4322
4325
4330
4340
4350
4400
4410
4422
4430
4440
4450

'‘Change LSS ,501 printer Iss = 0-7-127
QLSS%=0

if QLSS%=8 then QLSS%=7

if QLSS%>127 then QLSS%=0
SYSVAR(8)=QLSS%

gosub 3600

QLSS%=QLSS%+8

if (prstat and 1) then goto 3920 else RETURN
RETURN

'Head down - show parameters

'CONTRAST

open "SETUPO0.SYS" for input as #5

gosub 9100:'Read setup file
S%=SPLIT(T$,X$,44)

D1$=S%$(0):D2$=S$(1)

gosub 9000

if (prstat and 1) then goto 4800

'SER-COM

gosub 9100:'Read setup file

if left$(T$,7)<>"SER-COM" then goto 4210
S%=SPLIT(T$,X$,44)

if S$(2)<>"FLOWCONTROL" then goto 4138
if S$(3)<>"XON/XOFF" then goto 4137
D1$="U"+ight$(S$(1),1)+", X0, +mid$(S$(4),6):
D2$=S%(5):goto 4140
D1$=S$(1)+","+S$(3):D2$=S%(4):goto 4140

if S$(2)="CHAR LENGTH" then S$(2)="CHAR-LEN"
D1$=S$(1)+","+S$(2):D2$=S$(3)

gosub 9000

if (prstat and 1) then goto 4800 else goto 4110
‘FEEDADJ

gosub 9100:'Read setup file, ignore LSS
S%=SPLIT(T$,X$,44)

if S$(1)<>"FEEDADJ" then goto 4322
D1$=S%$(2):D2%$=S$(3)

gosub 9000

if (prstat and 1) then goto 4800 else goto 4210
'MEDIA SIZE

gosub 9100:'Read setup file
S%=SPLIT(T$,X$,44)

if S$(1)<>"MEDIA SIZE" then goto 4422
D1$=S%$(2):D2%$=S$(3)

gosub 9000

if (prstat and 1) then goto 4800 else goto 4310
'MEDIA TYPE

gosub 9100:'Read setup file
S%=SPLIT(T$,X$,44)

D1$=S%$(1):D2%$=S$(2)

gosub 9000

if (prstat and 1) then goto 4800

Continued!

152

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

6.

Printer Setup,
cont'd.

DISPSET2.PRG Utility Program, cont'd.

4500
4510

4522
4530
4540
4550
4600
4610
4622
4630
4640
4650
4700
4710
4720
4722
4725
4730
4740
4750
4800
4805
4810
4999
9000
9010
9020
9030
9040
9050
9100
9110
9120
9150
9200
9210
9299
9500
9599

'PAPER TYPE

gosub 9100:gosub 9100:

‘Read setup file, ignore head res.
S%=SPLIT(T$,X$,44)
D1$=S%$(2):D2%$=S$(3)

gosub 9000

if (prstat and 1) then goto 4800
'PERFORMANCE

gosub 9100:'Read setup file
S%=SPLIT(T$,X$,44)
D1$=S%$(1):D2%$=S%$(2)

gosub 9000

if (prstat and 1) then goto 4800
'MEMORY ALLOC

gosub 9100:'Read setup file

if T$="EOF" then close #5:goto 4000
S%=SPLIT(T$,X$,44)

if S$(1)<>"MEMORY ALLOC" then goto 4710
D13$=S%$(2):D2%$=S$(3)

gosub 9000

if (prstat and 1) then goto 4800 else goto 4710
print#10

print #10:print #10,version$;

close:kill "SETUPO.SYS" key(17) off
RETURN

'Display
print#10:print#10,left$(D1$,16)
print#10,left$(D2$,16);

if QSTEP$<>"TRUE" then goto 9030
QSTEPS$="FALSE"

RETURN

'Read setup file

if EOF(5) then T$="EOF":RETURN
line input #5,T$

RETURN

'Print key, step to next setup parameter
QSTEP$="TRUE"

RETURN

‘error rut.

RESUME NEXT

153

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

7.

System Variables

Some sensors and other conditions can be read or set by means of
the SYSVAR system variable.

SYSVAR

The following SYSVAR parameters are released for public use:

SYSVAR(1) returns the value of the LSS/BMS receiver.
SYSVAR(8) returns or sets the level of the LSS/BMS emitter.
SYSVAR(12) returns the value of the paper coultequires

an optional sensor, some printer models only)

SYSVAR(13) returns the value of the ribbon courftequires
an optional sensor, some printer models only)

SYSVAR(14) returns the number of errors since last power on.

SYSVAR(15) returns the number of errors since the previously
executed SYSVAR(15) instruction.

SYSVAR(16) returns the number of bytes received at the
execution of a STORE or STORE INPUT state-
ment.

SYSVAR(17) returns the number of frames received at the
execution of a STORE or STORE INPUT state-
ment.

SYSVAR(18) returns or sets the verbosity level.

SYSVAR(19) returns or sets the type of error messages trans-
mitted by the printer.

SYSVAR(20) returns O if the printer is set up for direct thermal
or 1 if set up for thermal transfer printing.

SYSVAR(21) returns the printhead density in dots/mm.

SYSVAR(22) returns the number of dots in the printhead.

SYSVAR(23) returns 1 if a transfer ribbon is detected, else 0.

SYSVAR(24) returns 1 ifapower-up has been performed since

last SYSVAR(24), else 0.

Parameters 1 and 8 can be used to control the LSS/BMS (label stop
sensor or black mark sensor), either automatically as a part of the
program execution, or remotely. They are also useful for setting up
printers with neither a keyboard nor a standard startup program
However, if the printer either has a keyboard and/or is provided with
Intermec Shelstartup program, it is easier to do this in the Setup
Mode.

Parameters 12 and 13 are intended for use with the optional sensor
kit available for som&asyCodeprinters.

Parameters 14 and 15 are primarily intended for service purposes.

Parameters 16 and 17 are used in connection with transfer ofimages
from the host to the printer and are explained in chapter 14.3.

Parameter 18 is used for returning or setting the printer's verbosity
level, i.e. the printer's response to received instructions as explained
in chapter 7.7.

Continued!

154

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

7.

System Variables,
cont'd.

Parameter 19 is used for returning or selecting one of four types of
error messages, see chapter 16.1.

Parameter 20 checks if the printer is printer is set up for direct
thermal printing or thermal transfer printing, which depends on the
choice of paper type in the Setup Mode, see the Technical Manual.

Parameters 21 and 22 are used to check the printhead in regard of
printhead density and number of dots respectively. Together with
parameter 20 and the VERSIONS$ function, see chapter 15.11, these
parameters allows the program to identify different printer models.
Thereby it is possible to design programs that will work in all
EasyCodeprinters.

Parameter 23 checks the status of the ribbon end sensor in thermal
transfer printers.

Parameter 24 is useful, when certain data, e.g. date and time
formats, are not generated as a part of the program execution. Since
such data are stored in the no-save area of the RAM memory, they
will be lost at power-up or reboot. Using SYSVAR(24), the printer
can be polled for power-ups, so lost data can be renewed.

For detailed explanations, please refer tdrite¥mec Fingerprint
6.13Reference Manual.

Example showing how the error type is setfrom the host and the new

setting is read back:
10 INPUT "Error type: ", A%

20 SYSVAR(19)=A% (sets error type)
30 B%=SYSVAR(19) (reads error type)
40 PRINT "The error type is set to: "; B%
RUN

Yields e.g.
Error type: 2

The error type is set to: 2

155

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

8.

Printhead

In addition to the setup, four instructions can be used to check and
control the thermal printhead.

SYSVAR
Two parameters in the system variable SYSVAR allows you to
check the printhead, also see chapter 15.7:

SYSVAR(20) returns if the printer is set up for direct thermal
or transfer printing.

SYSVAR(21) returns the printhead density in dots/mm.

HEAD

The HEAD function requires a CPU board that supports dot sensing

and allows you to:

* |dentify possible faulty dots by means of abnormal resistance
values. This applicationis closely connectedtothe SET FAULTY
DOT and BARADJUST statements, see below. Note that some
printhead errors, e.g. deglazed, cracked or dirty dots, will not be
detected by this function, since only the resistance is measured.

» Read the mean resistance value of the printhead, e.g. in order to
make a program that sets up the printhead resistance automatically
(this features is standard in some printer models).

SET FAULTY DOT

This statement is used to mark specified dots on the printhead as
faulty, either manually or automatically in connection with a
HEAD function. Then, using a BARADJUST statement (see
below), you can adjust the location of picket fence bar codes so the
dots marked as faulty will not affect the printing, i.e. the faulty dot(s)
will be situated between the bars.

You can also revoke all previous SET FAULTY DOT statements
by marking all dots as correct.

BARADJUST

This statement enables automatic horizontal relocation of picket
fence bar codes within specified limits. The firmware will keep
record of all dots marked as faulty (see SET FAULTY DOT above)
and relocate the bar code as to place the spaces between the bars ir
line with the faulty dot(s). Thereby, it will be possible to use the
printer pending printhead replacement.

Note thatthe BARADJUST statement cannot be used for ladder bar
codes, stacked bar codes (e.g. Code 16K), bar codes with horizontal
lines (e.g. DUN-14) and EAN/UPC bar codes.

Continued!

156

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

8.

Printhead, cont'd.

This example shows how a program can be made that checks the
printhead for faulty dots and warns the operator when a faulty dot

is encountered. Pending printhead replacement, the bar code is
repositioned to ensure continued readability. Such a program takes

a few seconds to execute (there may be more than a thousand dots
to check), so itis advisable either to restrict the dot check to the part
of the printhead that corresponds to the location of the bar code, or
to perform the test at startup only.

10 OPEN "console:" FOR OUTPUT AS 10

20 IF HEAD(-1)<>0 THEN GOTO 9000

30 BEEP:D1$="Printhead Error!":D2$="-GOSUB 2000

40 GOSUB 1000

50 BARADJUST 20,20

60 GOTO 9000

1000 FUNCTEST "HEAD", TMP$

1010 A$="": TMP%=INSTR(TMP$ A$)+1

1020 RETURN

1030 SET FAULTY DOT -1

1040 QMEAN%=HEAD(-7)

1050 QMIN%=QMEAN%*85\100

1060 QMAX%=QMEANY*115\100

1070 FOR 19%=0 TO WHEAD%-1

1080 QHEADY%=HEAD(I%)

1090 IF QHEAD%>QMAX% OR QHEAD%<QMIN% THEN SET FAULTY
DOT 1%

1100 NEXT

2000 PRINT #10 : PRINT #10, LEFT$(D1$,16)

2010 PRINT #10, LEFT$(D2$,16);

2020 RETURN

9000 PRPOS 200,20

9010 BARTYPE "CODE39"

9020 BARRATIO 2,1 : BARMAG 2

9030 BARHEIGHT 150

9040 PRBAR "1234567890"

9050 PRINTFEED

9060 END

157

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

9. Transfer Ribbon

SYSVAR
A number of parameters in the system variable SYSVAR can be
used to check the transfer ribbon, also see chapter 15.7:

SYSVAR(13) returns the value of the optional ribbon counter
(some models only).

SYSVAR(20) returns if the printer is set up for direct thermal
or transfer printing.

SYSVAR(23) returns if a transfer ribbon is fitted or not.

RIBBON SAVE ON/OFF

Some thermal transfer printers can be provided with a “Ribbon
Save Device”, i.e. a mechanism that stops feeding the ribbon while
blank parts of the labels are fed out, thereby reducing the consump-
tion of transfer ribbon. By default, ribbon save is enabled whenever
a ribbon save device is fitted in the printer. Using the statements
RIBBON SAVE OFF and RIBBON SAVE ON, you can disable
and enable this function at will.

Important:

Due to the increased risk of ribbon wrinkling, avoid using RIBBON
SAVE OFF in connection with negative start values or negative
FORMFEED statements, i.e. instructions that makes the printer
pull back the paper.

158

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

10. Memory Test

FUNCTEST

The FUNCTEST statement is used to perform the following tests

and place the result in a string variable:

* Test of the internal RAM memory

* Test of a specified EPROM package

 Test of amemory card (DOS-formatted or non DOS-formatted).

* Test of the printhead in regard of number of dots, head lifted or
possible errors.

Example using an EasyCoder 501 with 6 EPROM:s. The program

takes a few seconds to execute:
10 FUNCTEST "RAM" A$
20 FUNCTEST "ROM1",B$
30 FUNCTEST "ROM2",C$
40 FUNCTEST "ROM3",.D$
50 FUNCTEST "ROM4" E$
60 FUNCTEST "ROM5"F$
70 FUNCTEST "ROM6",G$
80 FUNCTEST "HEAD",H$
90 PRINT "RAM Test:","", A$
100 PRINT "Checksum IC-100:", B$
110 PRINT "Checksum IC-101:", C$
120 PRINT "Checksum IC-102:", D$
130 PRINT "Checksum IC-103:", E$
140 PRINT "Checksum IC-104:", F$
150 PRINT "Checksum IC-105:", G$
160 PRINT "Printhead Test:", H$
RUN

Yields e.g.:
RAM Test: RAM OK
Checksum IC-100: 9825
Checksum IC-101: CO08A
Checksum IC-102: 28A3
Checksum IC-103: 06B2
Checksum IC-104: 87D5
Checksum IC-105: CI1ED
Printhead Test: HEAD OK,SIZE:832 DOTS

FUNCTEST$

The FUNCTESTS$ function is very similar to the FUNCTEST
statement and is used for the same purposes. Due to the different
syntax, programming is more simple:

10 PRINT "RAM Test",", FUNCTEST$ ("RAM")

20 PRINT "Checksum IC-100:", FUNCTEST$ ("ROM1")

30 PRINT "Checksum IC-101:", FUNCTEST$ ("ROM2")

40 PRINT "Checksum IC-102:", FUNCTEST$ ("ROM3")

50 PRINT "Checksum IC-103:", FUNCTEST$ ("ROM4")

60 PRINT "Checksum IC-104:", FUNCTEST$ ('ROMS5")

70 PRINT "Checksum IC-105:", FUNCTEST$ ("ROM6")

80 PRINT "Printhead Test", FUNCTEST$ ("HEAD")

RUN

159

Intermec Fingerprint 6.13 — Programmer's Guide

15. PRINTER FUNCTION CONTROL, cont'd.

11. Version Check

VERSION$

The VERSIONS function returns one of three characteristics of the

printer:

VERSION$(0) returns the firmware version (e.g. “Inter-
mec Fingerprint 6.13")

VERSION$(1) returns the printer family (e.g. “501”).

VERSION$(2) returns the CPU board generation (e.g.

“hardware version #4”).

This instruction allows you to create programs that will work with
several different printer models. For example, you may use the
VERSIONS function to determine the type of printer and select the
appropriate one of several different sets of setup parameters.

Example (sets the setup according to the type of printer):
10 A$=VERSION$(1)

20 IFA$="101"THEN GOTO 1000

30 IFA$="201"THEN GOTO 2000

40 IF A$="401" THEN GOTO 3000

50 IF A$="501" THEN GOTO 4000

60 IFA$="601"THEN GOTO 5000

1000 SETUP "SETUP101.SYS"
1010 GOTO 70
2000 SETUP "SETUP201.SYS"
2010 GOTO 70
3000 SETUP "SETUP401.SYS"
3010 GOTO 70
4000 SETUP "SETUPS501.SYS"
4010 GOTO 70
5000 SETUP "SETUP601.SYS"
5010 GOTO 70

160

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING

1. Standard
Error-Handling

/. Foraworking two-way communication,
three conditions must be fulfilled:
 Serial communication

 Std IN channel = Std OUT channel

« Verbosity enabled.

Intermec Fingerprinis intended to be as flexible as possible. Thus,
there are very few fixed error-handling facilities, but instead there
are a number of tools for designing error-handling routines accord-
ing to the demands of each application.

The following error-handling facilities are always available:

 Out-of-Media Detection
Provided the printhead is lowered, the software will check for
three possible errors when either tHerint >or <Feed>keyon
the printeris pressed. If an error is detected, a message will appear
in the display:
- Error 1005 (Out of paper)
- Error 1031 (Next label not found)
- Error 1027 (Out of ribbon — thermal transfer printers only)

After the error has been attended to, the error message can be
cleared by pressing any of the keys.

 Syntax Check
Each program line or instruction that is received on the standard
IN channel will be checked for possible syntax errors before it is
accepted. Provided there is a working two-way communiéation
possible syntax errors will be transmitted to the host on the
standar@uT channel, e.gFeature notimplementeddr“Font
not found'

 Execution Check
Any program or hardware error that stops the execution will be
reported on the standapdTchannel, provided there is aworking
two-way communicationin case of program errors, the number
of the line where the error occurred will also be reported, e.qg.
“Field out of label in line 110" After the error has been corrected,
the execution must be restarted by means of an&statement,
unless there is a routine for dealing with the error condition
included in the program.

Error Messages

By means of the system variable SYSVAR(19), see chapter 15.7,
you can choose between four types of error messages as illustrated
by the following examples using error #19:

1. “Invalid font in line 10” (default)

2. “Error 19 in line 10: Invalid font”

3.“E19”

4. “Error 19 in line 10”

161

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

2. Tracing Programming
Errors

3. Creating an Error-
Handling Routine

/. Foraworking two-way communication,
three conditions must be fulfilled:
 Serial communication

 Std IN channel = Std OUT channel

« Verbosity enabled.

TRON/TROFF

Large program can be difficult to grasp. If the program does not
work as expected, it may depend on some programming error that
prevents the program from being executed in the intended order.
The TRON (Trace On) statement allows you to trace the execution.
When the program is run, each line number will be returned on the
standard OUT channel in the order of execution, provided you have
a working two-way communicatién

TROFF (Trace Off) disables TRON.

In most application programs, it is useful to include some kind of
error-handler. Obviously, how comprehensive the error-handler
needs to be depends on the application and how independent from
the host the printer will work. In this chapter, we will explain the
general principles and the related instructions, and in chapter 16.4
you will find an example on how an error-handling program can be
composed.

ON ERROR GOTO...

This statement is described in more detalil in the chapter 5.8. It is
used to branch the execution to a subroutiaeyfkind of error
occurs when a program is run. The major benefitis that the program
will not stop, but the error can be identified and dealt with. The
execution can then be resumed at an appropriate program line.

ERR

TheERRfunction returns the reference number of an error that has
occurred. The actual meaning of the numbers can be found in the
chaptefError Messages”in thelntermec Fingerprint 6.1Refer-

ence Manual.

ERL
TheERL function returns the number of the line on which an error
has occurred.

RESUME

This statement is used resume the execution after the error has been
taken care of in a subroutine. The execution can be resumed at the
statement where the error occurred, at the statement immediately
following the one where the error occurred, or at any other specified
line. Also see the chapter 5.8

Continued!

162

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

3. Creating an Error-
Handling Routine,
cont'd.

[Logical Operators
Also see:
e Chapter4.9

Example:

The four instructions described above can be used to branch to a
subroutine, identify the error, branch to a secondary subroutine
where the erroris cleared and resume the execution. In the example
only one error condition 1019 “Invalid Font” is taken care of, but
the same principles can be used for more errors. You can test the
example by either adding a valid font name or lifting the printhead
before running the program.

10 OPEN "console:" FOR OUTPUT AS 1

20 ONERROR GOTO 1000

30 PRPOS 50,100

40 PRTXT"HELLO"

50 PRINTFEED

60 A%=TICKS+400

70 B%=TICKS

80 IF B%<A% THEN GOTO 70 ELSE GOTO 90

90 PRINT#1:PRINT #1

100 END

1000 SOUND 880,50

1010 EFLAG%=ERR : ELINE%=ERL

1020 IF EFLAG%=1019 THEN GOTO 2000 ELSE GOTO 3000

2000 PRINT #1: PRINT #1

2010 PRINT #1, "Font missing"

2020 PRINT #1, "in line ", ELINE%;

2030 FONT "SWO30RSN": MAG 2,2 : INVIMAGE

2040 RESUME

3000 PRINT #1 : PRINT #1

3010 PRINT #1, "Undefined error"

3020 PRINT #1, "Program Stops!";

3030 RESUME NEXT

PRSTAT

Another instruction that can be used in connection with error-
handling is the PRSTAT function. In addition to returning the
current position of the insertion point (see chapter 10.1), it can also
return the printer's status in regard several conditions, using a
logical operator:

IF PRSTAT (AND 0) Ok

IF PRSTAT (AND 1) Printhead lifted

IF PRSTAT (AND 2) Label not removed (LTS only)
IF PRSTAT (AND 4) Printer out of paper

IF PRSTAT (AND 8) Printer out of transfer ribbon
IF PRSTAT (AND 16) Printhead voltage too high

IF PRSTAT (AND 32) Printer is feeding

Multiple simultaneous errors are indicated by the sum of the values
for each error, e.g. if both the printhead is lifted (1) and the printer

is out paper (4) and ribbon (8), it can be detected by:
IF PRSTAT (AND 13)

163

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

4. Error-Handling Program

ERRHAND.PRG Utility Program

The "ERRHAND.PRG" is primarily intended for use with printer
models fitted with a display and possible also amembrane keyboard
and is included in many Configuration EPROM:s. The program
contains routines for handling errors, managing the keyboard and
display, and for printing. Use ERRHAND.PRG to quickly get
started with your programming.

By merging ERRHAND.PRG with your program, the latter can
gain access to ERRHAND's subroutines. Do not use the lines 10—
20 and 100000—1900200 in your program, since those line numbers
are used by ERRHAND.PRG.

Example:

NEW

LOAD "XXX.PRG"

MERGE "ROM:ERRHAND.PRG"
RUN

If you have more than one application program that requires error-
handling in your printer, you will save valuable memory space by

keeping ERRHAND.PRG stored separately and merging it with

the current program directly after loading, compared with saving

ERRHAND.PRG merged with each program. The approximate

size of ERRHAND.PRG is 4 kilobyte.

Variables and subroutines in ERRHAND.PRG that your program
can use, or which you can modify, are:

Variables

* NORDIS1$ and NORDIS2$ at line 10 contain the main display
texts. You may replace them with your own text.

» DISP1$ and DISP2$ contain the actual text that will appear on the
printer's display on line 1 and 2 respectively.

Subroutines
* At line 160,000
The errors which normally may occur during printing are taken
care of:
Error 1005 Out of paper
Error 1006 No field to print
Error 1022 Head lifted
Error 1027 Out of transfer ribbon
Error 1031 Next label not found

The subroutine shows the last error that occurred, if any, and the
line number where the error was detected. The information is
directed to your terminal. Called by the statement GOSUB

160000.

Continued!

164

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

4. Error-Handling
Program, cont'd.

ERRHAND.PRG Utility Program, cont'd.
* At line 200,000

Error-handling routines, which can be called from routines where
error may occur, e.g.:
IF EFLAG% < > 0 THEN GOSUB 200000

The error-handling routine can be modified to handle other errors
than those previously mentioned.

At line 400,000
The FEED-routine executes a FORMFEED with error-checking.
Called by the statement GOSUB 400000.

At line 500,000
The PRINT-routine executes a PRINTFEED with error-checking.
Called by the statement GOSUB 500000.

At line 600,000

This subroutine clears the printer's display and makes the display
texts stored in the variables DISP1$ and DISP2$ appear on the
first and second line respectively in the display. Called by the
statement GOSUB 600000.

At line 700,000

The Init routine initiates error-checking, opens the console for
output and displays the main display texts (NORDIS1$ and
NORDIS2$). It also sets up the some of the keys on the keyboard
(if any) and assigns subroutines to each key. Called by the
statement GOSUB 700000.

At line 1,500,000

The Pause key (key No. 15) interrupts the program until the
same key is pressed a second time. Called by the statement
GOSUB 1500000.

At line 1,700,000
Routine for the Rrint> key (key No. 17), that calls subroutine
500,000. Called by the statement GOSUB 1700000.

At line 1,800,000

Routine for the Setup> key (key No. 18). Enters the Setup Mode
of the printer. Not suited for printers without a keyboard! Called
by the statement GOSUB 1800000.

* At line 1,900,000

Routine for the Eeed> key (key No. 19), that calls subroutine
400,000. Called by the statement GOSUB 1900000.

For more information, refer to the complete listing that follows.

Continued!

165

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

4. Error-Handling Listing of ERRHAND.PRG Utility Program
Program, cont'd. 10 PROGNOS$ = "Ver. 1.2 92-01-10"
15 NORDIS1$ = "TEST PROGRAM" :
NORDIS2$ = "VERSION 1.2"
20 GOSUB 700000 : 'Initiate

100000 ‘Error routine

100010 EFLAG% =ERR

100050 'PRINT EFLAG%:'Activate for debug

100060 LASTERROR% = EFLAG%

100200 RESUME NEXT

160000 'PRINT "Last error =";,LASTERROR%:
‘Activate for debug

160050 'IF LASTERROR% <>0 THEN PRINT "At line ";ERL

160100 LASTERROR% =0

160200 RETURN

200000 'Error handling routine

200010 IF EFLAG% = 1006 THEN GOTO 200040:
'Formfeed instead of print

200020 LED (1) ON: LED (0) OFF : BUSY

200030 SOUND 400, 10

200040 IF EFLAG% = 1031 THEN GOSUB 300000

200050 IF EFLAG% = 1005 THEN GOSUB 310000

200060 IF EFLAG% = 1006 THEN GOSUB 320000

200070 IF EFLAG% = 1022 THEN GOSUB 330000

200080 IF EFLAG% = 1027 THEN GOSUB 340000

200090 DISP1$=NORDIS1$: DISP2$ = NORDIS2$

200100 GOSUB 600000

200110 LED (1) OFF:LED (0) ON: READY

200400 RETURN

300000 ‘Error 1031 Next label not found

300010 DISP1$="LABEL NOT FOUND"

300020 DISP2$="ERR NO." + STR$ (ERR)

300030 GOSUB 600000

300040 EFLAG% =0

300050 FORMFEED

300060 IF EFLAG% = 1031 THEN GOTO 300040

300200 RETURN

310000 ‘Error 1005 Out of paper

310010 DISP1$ ="0OUT OF PAPER"

310020 DISP2$="ERR NO. "+ STR$ (ERR)

310030 GOSUB 600000

310040 IF (PRSTAT AND 1)=0 THEN GOTO 310040:
'Wait until head lifted

310050 EFLAG% =0

310060 IF (PRSTAT AND 1) =0 THEN FORMFEED
ELSE GOTO 310060

310070 IF EFLAG% = 1005 THEN GOTO 310040

310080 IF EFLAG% = 1031 THEN GOSUB 300000

310200 RETURN

320000 'Error 1006 No field to print

320010 GOSUB 400000

320200 RETURN

Continued!

166

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

4. Error-Handling
Program, cont'd.

Listing of ERRHAND.PRG Utility Program, cont'd.
330000 'Error 1022 Head lifted

330010 DISP1$="HEAD LIFTED"

330020 DISP2$="ERR NO." + STR$ (ERR)
330030 GOSUB 600000

330040 IF (PRSTAT AND 1) THEN GOTO 330040
330050 FORMFEED

330060 IF PCOMMAND% THEN GOSUB 500000
330200 RETURN

340000 ‘'Error 1027 Out of transfer ribbon

340010 DISP1$="0UT OF RIBBON"

340020 DISP2$="ERR NO." + STR$ (ERR)
340030 GOSUB 600000

340040 IF (PRSTAT AND 8) THEN GOTO 340040
340050 GOSUB 1500000

340200 IF PCOMMAND% THEN GOSUB 500000
349000 RETURN

400000 'Feed routine

400010 EFLAG% =0

400020 FORMFEED

400200 IF EFLAG% <> 0 THEN GOSUB 200000
400300 RETURN

500000 ‘Print routine

500010 EFLAG% =0

500020 PCOMMAND% =1

500030 PRINTFEED

500040 IF EFLAG% <> 0 THEN GOSUB 200000
500100 PCOMMAND% =0

500300 RETURN

600000 'Display handler

600010 PRINT # 10

600020 PRINT # 10

600030 PRINT # 10, DISP1$

600040 PRINT # 10, DISP2$;

600200 RETURN

700000 'Init routine

700010 ON ERROR GOTO 100000

700020 OPEN "console:" FOR OUTPUT AS # 10
700030 DISP1$=NORDIS1$: DISP2$ = NORDIS2$
700040 GOSUB 600000

700100 ON KEY (15) GOSUB 1500000 : 'PAUSE
700110 ONKEY (17) GOSUB 1700000 : 'PRINT
700120 ONKEY (18) GOSUB 1800000 : 'SETUP
700130 ONKEY (19) GOSUB 1900000 : 'FEED
700140 KEY (15) ON

700150 KEY (17) ON

700160 KEY (18) ON

700170 KEY (19) ON

700230 LED (0)ON

700240 LED (1) OFF

Continued!

167

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

4. Error-Handling Listing of ERRHAND.PRG Utility Program, cont'd.
Program, cont'd. 700300 PAUSE% =0
700500 RETURN
1500000 'Pause function
1500010 KEY (15) ON
1500020 PAUSE% = PAUSE% XOR 1
1500030 BUSY : LED (0) OFF
1500040 DISP1$ = "Press <PAUSE>":
DISP2$ = "to continue"
1500050 GOSUB 600000
1500060 IF PAUSE% =0 THEN GOTO 1500100
1500070 SOUND 131, 2
1500080 SOUND 30000, 20
1500090 IF PAUSE% THEN GOTO 1500070
1500100 READY : LED (0) ON
1500110 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
1500120 GOSUB 600000
1502000 RETURN
1700000 'Printkey
1700010 KEY (17) OFF
1700020 GOSUB 500000
1700030 KEY (17) ON
1700200 RETURN
1800000 'Setup key
1800010 KEY (18) OFF
1800020 LED (0) OFF
1800030 BUSY
1800040 SETUP
1800050 READY
1800060 LED (0) ON
1800080 KEY (18) ON
1800090 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
1800100 GOSUB 600000
1800200 RETURN
1900000 'Feed key
1900010 KEY (19) OFF
1900020 GOSUB 400000
1900030 KEY (19) ON
1900200 RETURN

Continued!

168

Intermec Fingerprint 6.13 — Programmer's Guide

16. ERROR-HANDLING, cont'd.

4. Error-Handling
Program, cont'd.

Extensions to ERRHAND.PRG Utility Program

The following subroutines aret included in ERRHAND.PRG,

but may be added manually to stop new input via the printer's

keyboard while a subroutine is executed:

» Turn off all keys before entering a subroutine by issuing the
statement GOSUB 900000.

» Turn on all keys after having completed a subroutine by issuing
the statement GOSUB 800000.

800000 Turn all keys on

800010 1% =0

800020 IF 1% > 21 THEN GOTO 800060
800030 KEY (1%) ON

800040 1% =1% + 1

800050 GOTO 800020

800060 RETURN

900000 Turn all keys off

9000101% =0

900020 IF 19 > 21 THEN GOTO 900060
900030 KEY (1%) OFF

900040 1% = 1% + 1

900050 GOTO 900020

900060 RETURN

169

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS

1. Instructions in Alphabetical Order

Instruction See chapter Purpose

ABS 9.2 Returning the absolute value of a numeric expression.

ACTLEN 114 Returning the length of the most recently execeeNTFEEDR
FORMFEEDOr TESTFEEDStatement.

ALIGN (AN) 10.1 Specifying which part (anchor point) of a text, bar code field, image
field, line or box will be positioned at the insertion point.

ASC 9.2 Returning the decimal ASCII value of the first character in a string
expression.

BARADJUST 15.8 Enabling/disabling automatic adjustment of bar code position in order
to avoid faulty printhead dots.

BARFONT (BF) 10.3,12.1 Specifying fonts for the printing of bar code interpretation.

BARFONT (BF) ON/OFF 10.3 Enabling/disabling the printing of bar code interpretation.

BARHEIGHT (BH) 10.3 Specifying the height of a bar code.

BARMAG (BM) 10.3 Specifying the magnification in regard of width of the bars in a bar code.

BARRATIO (BR) 10.3 Specifying the ratio between the wide and the narrow bars in a bar code.

BARSET 10.3 Specifying a bar code and setting additional parameters to complex bar
codes.

BARTYPE (BT) 10.3 Specifying the type of bar code.

BEEP 15.4 Ordering the printer to emit a beep.

BREAK 5.12 Specifying a break interrupt character separately for the keyboard and
each serial communication channel.

BREAK ON/OFF 5.12 Enabling/disabling break interrupt separately for the keyboard and each
serial communication channel.

BUSY 7.7 Ordering a busy signal, e.g. XOFF, CTS/RTS or PE, to be transmitted
from the printer on the specified communication channel.

CHDIR 6.1 Specifying the current directory.

CHECKSUM 6.9 Calculating the checksum of arange of program lines in connection with
the transfer of programs.

CHR$ 9.2 Returning the readable character from a decimal ASCII code.

CLEANFEED 111 Running the printer's feed mechanism.

CLEAR 6.1 Clearing strings, variables and arrays to free memory space.

CLL 115 Partial or complete clearing of the print image buffer.

CLOSE 6.4,7.3-7.6,8.3-8.5 Closing one or several files and/or devices for input/output.

COM ERROR ON/OFF 7.8 Enabling/disabling error handling on the specified communication
channel.

COMBUF$ 7.8 Reading the data in the buffer of the specified communication channel.

COMSET 7.8 Setting the parameters for background reception of data to the buffer of
a specified communication channel.

COMSET OFF 7.8 Turning off background data reception and emptying the buffer of the
specified communication channel.

COMSET ON 7.8 Emptying the buffer and turning on background data reception on the
specified communication channel.

COMSTAT 7.8 Reading the status of the buffer of the specified communication channel.

COPY 5.13,6.2-6.4,8.5 Copying files.

CSUM 6.10 Calculating the checksum of an array of strings.

CuT 11.3 Activating an optional paper cutting device.

CUT ON/OFF 11.3 Enabling/disabling automatic cutting after PRINTFEED execution and
optionally adjusting the paper feed before and after the cutting.

DATES$ 9.3,155 Setting or returning the current date.

DATEADDS$ 9.3 Returning a new date after a number of days have been added to, or
subtracted from, the current date or optionally a specified date.

DATEDIFF 9.3 Returning the difference between two dates as a number of days.

DELETE 5.4 Deleting one or several consecutive program lines from the printer's
working memory.

DEVICES 4.10,8.1 Returning the names of all devices to the standard OUT channel.

Continued!

170

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

1. Instructions in Alphabetical Order, cont'd.

Instruction See chapter Purpose

DIM 6.10 Specifying the dimensions of an array.

DIR 10.1 Specifying the print direction.

END 54 Ending the execution of the current program or subroutine and closing
all OPENEed files and devices.

ENDIF 55 Ending multipler...THEN.. ELSE statements.

EOF 7.4 Checking for an end-of-file condition.

ERL 16.3 Returning the number of the line on which an error condition has
occurred.

ERR 16.3 Returning the code number of an error that has occurred.

FIELD 75,84 Creating a single-record buffer for a random file and dividing the buffer
into fields to which string variables are assigned.

FIELDNO 115 Getting the current field number for partial clearing of the print buffer
by acLL statement.

FILE& LOAD 6.6, 12.2 Reception and storing of binary files in the printer's RAM memory

FILES 6.1,6.2,8.1,125,14.4 Listing the files stored in one of the printer's directories to the standard
OUT channel.

FONT (FT) 10.2,12.1 Selecting afontfor the printing of the subseBBRERT statements, and
optionally generating a bitmap font from a scalable outline font in
Speedo or TrueType format.

FONT LOAD 6.6, 12.4 Converting and downloading fonts in .ATF format.

FONTNAMES$ 12.5 Returning the names of the bitmap fonts stored in the printer's memory.

FONTS 6.1,8.1, 125 Returning the names of all bitmap fonts stored in the printer's memory
to the standard OUT channel.

FOR 5.9 Creating aloop in the program execution, where a counter isincremented
or decremented until a specified value is reached.

FORMAT 6.1 Formatting the printer's RAM memory, or formatting a RAM-type
memory card to MS-DOS format.

FORMAT DATE$ 9.3 Specifying the format of the string returned by DATES$("F") and
DATEADDS(...,"F") instructions.

FORMAT TIME$ 9.3 Specifying the format of the string returned by TIMES$('F") and
TIMEADDS$(...,"F") instructions.

FORMFEED 11.1 Activating the paper feed mechanism in order to feed out or pull back
a certain length of the paper web.

FRE 6.1 Returning the number of free bytes in the printer's RAM memory.

FUNCTEST 15.10 Performing various hardware tests.

FUNCTEST$ 15.10 Performing various hardware tests.

GET 7.5 Reading a record from a random file to a random buffer.

GOSUB 5.7 Branching to a subroutine.

GOTO 5.6 Branching unconditionally to a specified line.

HEAD 15.8 Returning the result of a thermal printhead check.

IF..GOTO...[ELSE] 5.8 Conditional branching controlled by the result of a numeric expression.

IF..THEN...[ELSE] 55 Conditional execution controlled by the result of a numeric expression.

IMAGE LOAD 6.5, 14.3 Reception and conversion ofimage files in .PCX format to images in the
Intermec Fingerprintnternal bitmap format.

IMAGENAME$ 14.4 Returning the names of the images stored in the printer's memory.

IMAGES 6,1,8.1 Returning the names of all images stored in the printer's memory to the
standard OUT channel.

IMMEDIATE ON/OFF 54 Enabling/disabling the immediate moddriérmec Fingerprintin
connection with program editing without line numbers.

INKEY$ 7.2 Reading the first character in the receive buffer of the standard IN
channel.

INPUT (IP) 7.2 Receiving input data via the standard IN channel during the execution
of a program.

INPUT# 7.3,7.4,7.6,15.1 Reading a string of data from an OPENed device or sequential file.

Continued!

171

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

1. Instructions in Alphabetical Order, cont'd.

Instruction See chapter Purpose

INPUT$ 7.2-7.6,15.1 Returning a string of data, limited in regard of number of characters,
from the standard IN channel, or optionally from an OPENed file or
device.

INSTR 9.2 Searching a specified string for a certain character, or sequence of
characters, and returning its position in relation to the start of the string.

INVIMAGE (I1) 10.2,10.4 Inversing the printing of text and images from “black-on-white” to
“white-on-black.

KEY BEEP 15.1 Resetting the frequency and duration of the sound produced by the
beeper, when any key on the printer's keyboard is pressed down.

KEY ON/OFF 15.1 Enabling/disabling a specified key on the printer's front panel to be used
in connection with a®N KEY...GOSUBstatement.

KEYBMAP$ 15.1 Returning or setting the keyboard map table.

KILL 5.13,6.1,6.3-6.4 Deleting a file from the printer's RAM memory or from a DOS-
formatted memory card inserted in an optional memory card adapter.

LAYOUT 10.7 Handling of layout files.

LBLCOND 11.1 Overriding the paper feed setup.

LED ON/OFF 15.3 Turning a specified LED control lamp on or off.

LEFTS$ 9.2 Returning a specified number of characters from a given string starting
from the extreme left side of the string, i.e. from the start.

LEN 9.2 Returning the number of character positions in a string.

LET 4.7 Assigning the value of an expression to a variable.

LINE INPUT 7.2 Assigning an entire line, including punctuation marks, from the
standard IN channel to a single string variable.

LINE INPUT# 7.2,74,76,15.1 Assigning an entire line, including punctuation marks, from a sequential
file or a device to a single string variable.

LIST 54,6.3,8.1 Listing the current program completely or partially, or listing all
variables, to the standard OUT channel.

LOAD 5.13,6.3 Loading a copy of a program, residing in the current directory or in
another specified directory, into the printer's working memory.

LOC 6.4,7.4-7.5,7.8,8.3-85 Returning the current position in an OPENed file or the status of the
buffers in an OPENed communication channel.

LOF 6.4,7.4-75,7.8,8.3-85 Returning the length in bytes of an OPENed sequential or random file
or returning the status of the buffers in an OPENed communication
channel.

LSET 8.4 Placing data left-justified into a field in a random file buffer.

LTS& ON/OFF 11.3 Enabling or disabling the label taken sensor.

MAG 10.2,104 Magnifying a font, barfont orimage up to four times separately in regard
of height and width.

MAP 9.1 Changingthe ASClIvalue of acharacterwhenreceived on the standard IN
channel, or optionally on another specified communication channel.

MERGE 6.3 Merging a program in the printer's current directory, or optionally in
another specified directory, with the program currently residing in the
printer's working memory.

MID$ 9.2 Returning a specified part of a string.

NAME DATE$ 9.3 Formatting the month parameter in return strings of DATE$("F") and
DATEADD$(...,"F").

NAME WEEKDAY$ 9.3 Formatting the day parameter in return strings of WEEKDAY$.

NASC 9.1 Selecting a character set.

NEW 54,6.3 Clearing the printer's working memory in order to allow a new program
to be created.

NEXT 5.9 Creating aloop inthe program execution, where a counter isincremented
or decremented according t6@R statement.

NORIMAGE (NI) 10.2,10.4 Returning to normal printing afterisIMAGE statement has been

issued.

Continued!

172

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

1. Instructions in Alphabetical Order, cont'd.

Instruction See chapter Purpose

ON BREAK GOSUB 5.8,5.12 Branching to a subroutine, when a break interruptinstruction is received.

ON COMSET GOSUB 5.8,7.8 Branching to a subroutine, when the background reception of data on the
specified communication channel is interrupted.

ON ERROR GOTO 5.8,16.3 Branching to an error-handling subroutine when an error occurs.

ON GOSuUB 5.8 Conditional branching to one or several subroutines.

ON GOTO 5.8 Conditional branching to one of several lines.

ON KEY GOSUB 5.8,15.1 Branching to a subroutine when a specified key on the printer's front
panel is activated.

ON/OFF LINE 7.7 Controlling the SELECT signal on the Centronics communication
channel.

OPEN 6.4,7.3-7.6,8.3-8.5, 15.2 Opening a file or device — or creating a new file — for input, output or
append, allocating a buffer and specifying the mode of access.

OPTIMIZE ON/OFF 11.5 Enabling/disabling optimizing strategies for batch printing.

PCX2BMP 6.5, 14.3 Converting image files in .PCX format to the internal bitmap format of
Intermec Fingerprint

PORTIN 7.10 Reading the status of a port on the Industrial Interface Board.

PORTOUT ON/OFF 7.10 Setting one of four relays on the Industrial Interface Board to either
Open or Closed.

PRBAR (PB) 10.3 Providing input data to a bar code.

PRBOX (PX) 105 Creating a box.

PRIMAGE (PM) 104 Selecting an image stored in the printer's memory.

PRINT (?) 8.1 Printing of data to the standard OUT channel.

PRINT# 8.3,8.5,15.2 Printing of data to a specified OPENed device or sequential file.

PRINT KEY ON/OFF 11.3 Enabling/disabling printing of a label by pressing the Print key.

PRINTFEED (PF) 11.3 Printing and feeding out one or a specified number of labels, tickets, tags
or portions of strip, according to the printer's setup.

PRINTFEED (PF) NOT 11.2 Preparing the printing.

PRINTONE 8.1 Printing of characters specified by their ASCII values to the standard
OUT channel.

PRINTONE# 8.3,8.5 Printing of characters specified by their ASCII values to a device or
sequential file.

PRLINE (PL) 10.6 Creating a line.

PRPOS (PP) 10.1 Specifying the insertion point for a line of text, a bar code, an image, a
box or a line.

PRSTAT 10.1, 16.3 Returning the printer's current status or, optionally, the current position
of the insertion point.

PRTXT (PT) 10.2 Providing the input data for a text field, i.e. a line of text.

PUT 8.4 Writing a given record from the random buffer to a given random file.

RANDOM 9.4 Generating a random integer within a specified interval.

RANDOMIZE 9.4 Reseeding the random number generator, optionally with a specified
value.

READY 7.7 Ordering ready signal, e.g. XON, CTS/RTS or PE, to be transmitted fro
the printer on the specified communication channel.

REBOOT 5.14 Restarting the printer.

REDIRECT OUT 6.4,8.2 Redirecting the output data to a created file.

REM () Adding headlines and explanations to a program without including

REMOVE IMAGE/FONT
RENUM

RESUME

RETURN

6.1,12.2-12.4,14.4
54

5.8,16.3

5.7

them in the execution.
Removing a specified image or bitmap font from the printer's memory.

Renumbering the lines of the program currently residing in the printer's
working memory.

Resuming program execution after an error-handling subroutine has
been executed.

Returning to the main program after having branched to a subroutine
because of gaosuBstatement.

Continued!

173

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

1. Instructions in Alphabetical Order, cont'd.

Purpose

Instruction See chapter
RIBBON SAVE ON/OFF 15.9
RIGHT$ 9.2
RSET 8.4
RUN 5.11,6.3
SAVE 5.13,6.3
SET FAULTY DOT 15.8
SETSTDIO 7.1
SETUP 15.6
SGN 9.2
SORT 6.10
SOUND 154
SPACE$ 9.2
SPLIT 6.10
STORE 14.3
STORE IMAGE 14.3
STORE INPUT 14.3
STORE OFF 14.3
STR$ 9.2
STRINGS 9.2
SYSVAR

TESTFEED 11.1
TICKS 9.3
TIMES 9.3,15.5
TIMEADDS$ 9.3
TIMEDIFF 9.3
TRANSFER KERMIT 6.8
TRANSFER STATUS 6.8
TRANSFER$ 6.4
TRANSFERSET 6.4
TRON/TROFF 16.2
VAL 9.2
VERBON/VERBOFF 7.7
VERSION$ 15.11
WEEKDAY 9.3
WEEKDAY$ 9.3
WEEKNUMBER 9.3
WHILE...WEND 5.9

7.7,14.3,15.7-15.9, 16.1

Enabling/disabling the optional Ribbon Save mechanism.

Returning a specified number of characters from a given string starting
from the extreme right side of the string, i.e. from the end.

Placing data right-justified into a field in a random file buffer.

Starting the execution of a program.

Saving a file in the printer's RAM memory or optionally in a DOS-
formatted memory card.

Marking one or several dots on the printhead as faulty, or marking all
faulty dots as correct.

Selecting standard IN and OUT communication channel.

Entering the printer's Setup Mode, changing the setup by means of a
setup file or setup string, or creating a setup file containing the printer's
current setup values.

Returning the sign (positive, zero or negative) of a specified numeric
expression.

Sorting a one-dimensional array.

Making the printer's beeper produce a sound specified in regard of
frequency and duration.

Returning a specified number of space characters.

Splitting a string into an array according to the position of a specified
separator character and returning the number of elements in the array.

Storing protocol frames of image data in RAM.

Setting up parameters for storing an image in RAM.

Receiving and storing protocol frames of image data in RAM.

Terminating the storing of animage and resetting the storing parameters.

Returning the string representation of a numeric expression.

Repeatedly returning the character of a specified ASCII value, or the
first character in a specified string

Reading or setting various system variables.

Performing a formfeed to allow the label stop sensor to adjust itself
according to the presently loaded paper web.

Returning the time that has passed since the last power-up in the printer,
expressed in number of “TICKS” (1 TICK = 0.01 seconds).

Setting or returning the current time.

Returning a new time after a number of seconds have been added to, or
subtracted from, the current time or optionally a specified time.
Returning the difference in number of seconds between two specified
moments of time in number of seconds.

Transferring of data files usidgrmit communication protocol.

Checking |asRANSFER KERMIToperation.

Executing a transfer from source to destination as specified by a
TRANSFERSETstatement.

Entering setup for trRANSFERS$function.

Enabling/disabling tracing of the program execution.

Returning the numeric representation of a string expression.

Specifying the verbosity level of the communication from the printer on
the standard OUT channel (serial communication only).

Returning the version of th&ermec Fingerprintprogramming
language, printer family, or type of CPU board
Returning the weekday of a specified date.

Returning the name of the weekday from a specified date.

Returning the number of the week for a specified date.

Executing a series of statements in a loop providing a given condition
is true.

174

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

2. Instructions by Field of Application

Instruction Abbr. Type Purpose

SETUP AND PREFERENCES

General Intermec Fingerprint Control:

CHDIR<scon> Stmt Change current directory
MAP[<nexp>,]<nexp><nexp> Stmt Remapping

NASC<nexp> Stmt Select national character set

REBOOT Stmt Restart printer

SETUP [[WRITE<sexp>] | [<sexp>]] Stmt Printer setup

SYSVAR(<nexp>) Array Read or set various system variables
Setting the Clock/Calendar:

DATE$=<sexp> Var Setthe date

TIMES$=<sexp> Var Setthetime

OPERATOR INTERFACE

Keyboard Setup:

KEY(<nexp>)ON|OFF Stmt Enable/disable key on printer's keyboard
ON KEY(<nexp>)GOSUB<ncon>|<line label> Stmt Key-initiated branching

KEY BEEP<nexp>,<nexp> Stmt Set frequency and duration of key response
KEYBMAP$(<nexp>)=<sexp> Var Setthe keyboard map table

Output to Display:

OPEN "console:" FOR OUTPUT AS[#]<nexp> Stmt Open display for output
PRINT#<nexp>[,<<nexp>[<sexp>>[<,|;><<nexp|<sexp>>..][;]] Stmt Print data to display

CLOSE [#]<nexp> Stmt Close display for output

LED Control Lamps:

LED<nexp>ON|OFF Stmt Turn LED on or off

Audible Signals:

BEEP Stmt Emitabeep

SOUND<nexp>,<nexp> Stmt Produce sound

Breaking Program Execution:

BREAK<nexp>,<nexp> Stmt Specify break interrupt character
BREAK <nexp> ON|OFF Stmt Enable/disable break interrupt

ON BREAK<nexp>GOSUB<ncon>|<line label> Stmt Branching at break interrupt

PRINTER CHECKOUT AND CONTROL

Memory :

CLEAR Stmt Clear strings, variables and arrays
FORMAT<sexp>[,<nexp>[,<nexp>]] Stmt Format RAM memory or memory card
FRE(<<nexp>|<sexp>>) Func Return number of free bytes in RAM
FUNCTEST <sexp>,<svar> Stmt Checking RAM:s and ROM:s
FUNCTESTS (<sexp>) Func Checking RAM:s and ROM:s

REMOVE IMAGE|FONT<sexp> Stmt Remove image or font from RAM memory
Printhead:

BARADJUST<nexp>,<nexp> Stmt Enable/disable auto bar code repositioning
HEAD(<nexp>) Func Checking printhead dots

FUNCTEST <sexp><svar> Stmt Checking printhead

SET FAULTY DOT<nexp>[,<nexp>..] Stmt Marking dots as faulty for BARADJUST
SYSVAR(21]22) Array Read density or no. of dots

Transfer Ribbon:

RIBBON SAVE ON|OFF Stmt Turn ribbon save on or off
SYSVAR(13]2023) Array Read counter, mode or ribbon end sensor
Paper Supply:

SYSVAR(12) Array Read paper end sensor

175

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, contd.

2. Instructions by Field of Application, cont'd.

Instruction

Abbr. Type Purpose

PROGRAMMING:

Managing Programs and Files:
CHECKSUM(<nexp><nexp>)
COPY<sexp>[,<sexp>]
KILL<sexp>

LOAD<scon>

MERGE<scon>

NEW

SAVE<scon>[,P|L]

Listings:

DEVICES

FILES[<scon>]
FONTNAMES(<nexp>)
FONTS
IMAGENAME$(<nexp>)
IMAGES

LIST[[<ncon>[- <ncon>]]|,V]
VERSION$[(<nexp>)]
<svar>=KEYBMAPS$(<nexp>)

Program Editing and Execution:
DELETE<ncon>[-<ncon>]

END

IMMEDIATE ON|OFF

LIST[[<ncon>[- <ncon>]]|,V]

NEW

REM['<remark>

RENUM [<ncon>][,[<ncon>][,<ncon>]]
RUN[<<scon>|<ncon>>]
SAVE<scon>[,P|L]

Data Manipulation:

ABS(<nexp>)

ASC(<sexp>)

CHR$(<nexp>)
INSTR([<nexp>,]<sexp><sexp>]
LEFT$(<sexp><nexp>)

LEN(<sexp>)
[LET]<<nvar>=<nexp>>|<<svar>=<sexp>>
MID$(<sexp>,<nexp>[,<nexp>))
RANDOM (<nexp><nexp>)
RANDOMIZE [<nexp>]
RIGHT$(<sexp><nexp>)
SGN(<nexp>)

SPACES$(<nexp>)

STR$(<nexp>)
STRING$(<nexp>,<<nexp>|<sexp>>)
VAL(<sexp>)

Func
Stmt
Stmt
Stmt
Stmt
Stm

Stmt

Stmt
Stmt
Func
Stmt
Func
Stmt
Stmt
Func
Var

Stmt
Stmt
Stmt
Stmt
Stmt
Stmt
Stmt
Stmt
Stmt

Func
Func
Func
Func
Func
Func
Stmt
Func
Func
Stmt
Func
Func
Func
Func
Func
Func

Calculate checksum at program transfer
Copy file

Delete file

Load program

Merge programs

Clear the working memory

Save program

List devices to standard I/0 channel

List files to standard 1/0 channel

Return font name

List all fontnames to standard I/0 channel
Return image name

List allimagenames to standard 1/0 channel
List current program or all variables to std I/O
Returns S/W or H/W version or printer model
Read the keyboard map table

Delete program lines

Terminate program execution

Start/stop writing program w/o line numbers
List current program or all variables to std I/O
Clear the working memory

Remark

Renumber program lines

Execute program

Save program

Return the absolute value of an expression
Return ASCII code for 1:st char. in string
Convert ASCII code

Return position of character in string

Return characters from left side of string
Return number of characters in string
Assign a value to a variable

Return part of string

Generate a random integer

Reseed random number generator

Return characters from right side of string
Return sign of numeric expression

Return specified number of space characters
Return string representation of num. expr.
Return a number of repeated characters
Return numeric representation of string expr.

176

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

2. Instructions by Field of Application, cont'd.

Instruction Abbr. Type Purpose

PROGRAMMING, cont'd:
Branching and Conditionals:

END IF Stmt Ending multiple IF.. THEN...ELSE statements
FOR<nvar>=<nexp>TO<nexp>[STEP<nexp>) Stmt Creating a program loop
GOSUB<ncon>[<line label> Stmt Branch to subroutine

GOTO<ncon>|<line label> Stmt Unconditional branching
IF<nexp>[,][THEN]GOTO<ncon>|<line label>[ELSE<stmt>] Stmt Conditional branching
IF<nexp>[,JTHEN<stmt>[ELSE<stmt> Stmt Conditional execution

IF<nexp>[, JTHENO <stmt>[1....[<stmt] O [ELSEC <stmt>[1....[<stmt>]] JENDIF Stmt Conditional execution of multiple statements
NEXT[<nvar>] Stmt Creating a program loop

ON <nexp>GOSUB<ncon>|<line label>[,<ncon>|<line label>..] Stmt Cond. branching to one of many subroutines
ON <nexp>GOTO<ncon>|<line label>[,<ncon>|<line label>..] Stmt Conditional branching to one of several lines
RETURN[<ncon>|<line label>] Stmt Return from subroutine

WHILE<nexp>0 <stmt> [...<stmt>]] WEND Stmt Conditional execution of loop of statements
Arrays:

CSUM<ncon><svar>,<nvar> Stmt Calculate checksum of array of strings
DIM<<nvar>|<svar>>(<nexp>[,<nexp>..])..[.<<nvar>|<svar>>(nexp>[,<nexp>..])] Stmt Setarray dimensions
SORT<<nvar>|<svar>>,<nexp><nexp>,<nexp> Stmt Sort a one-dimensional array
SPLIT(<sexp>,<sexp>,<nexp>) Func Splitastring into an array

Clock/Calenadar Facilities:

<svar>=DATES$[('F)] Var Readthe date

<svar>=TIMES$[('F")] Var Readthetime
DATEADD$[(<sexp>,]<nexp>[,'F]) Func Add daystoadate
TIMEADD$|(<sexp>,]<nexp>[,"F]) Func Add seconds to a time
DATEDIFF(<sexp>,<sexp>) Func Calculate difference between dates
TIMEDIFF(<sexp>,<sexp>) Func Calculate difference between times
FORMAT DATES$<sexp> Stmt Specify date format

FORMAT TIME$<sexp> Stmt Specify time format

NAME DATE$<nexp> <sexp> Stmt Specify names of the months

NAME WEEKDAY$ Stmt Specify names of the weekdays
WEEKDAY(<sexp>) Func Return weekday of a date
WEEKDAY$(<sexp>) func Return name of the weekday for a date
WEEKNUMBER Func Return weeknumber for a date

TICKS Func Return time passed since startup
Error-handling:

ERL Func Erroronline

ERR Func Error code

ON ERROR GOTO<ncon>|<line label> Stmt Branch at error

PRSTAT[(<nexp>)] Func Returns printer status or current X/Y position
RESUME[<<ncon>[<line label>|<NEXT>|<0>>] Stmt Resume program execution after error
SYSVAR(19) Array Set type of error message

TRON Stmt Enable tracing

TROFF Stmt Disable tracing

COMMUNICATION:

Communication Control:

BUSY[<nexp>] Stmt Send busy signal on communication channel
READY[<nexp>] Stmt Send ready signal on communication channel
ON LINE<nexp> Stmt SELECT signal high (Centronics)

OFF LINE<nexp> Stmt SELECT signal low (Centronics)

REDIRECT OUT[<sexp>] Stmt Redirect output data to file
SETSTDIO<nexp>[,<nexp>] Stmt Set standard I/0 channels

SYSVAR(18) Array Set verbosity level

VERBON Stmt Verbosity on

VERBOFF Stmt Verbosity off

177

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

2. Instructions by Field of Application, cont'd.

Instruction

Abbr. Type Purpose

COMMUNICATION, cont'd.
Background Communication:

COM ERROR<nexp>ON|OFF Stmt Enable/disable error handling
COMBUF$(<nexp>) Func Read communication buffer
COMSET<nexp>,<sexp>,<sexp>,<sexp>,<sexp>,<nexp> Stmt Set communication parameters
COMSET<nexp>0ON|OFF Stmt Turn on/off background data reception
COMSTAT(<nexp>) Func Read communication buffer status

ON COMSET<nexp>GOSUB<nexp>|<line label> Stmt Branch at background comm. interrupt
FILE TRANSFER:

Binary Files:

TRANSFER K[ERMIT]<sexp>[,<sexp>[,<sexp>[,<sexp>]]] Stmt Data transfer using KERMIT
TRANSFER S[TATUS]<nvar>,<svar> Stmt Check last KERMIT transfer

FILE& LOAD<sexp>,<nexp>[,<nexp>] Stmt Receive and store binary files

Data Files:

TRANSFER$(<nexp>) Func Execute transfer and set time-out
TRANSFERSET[#]<nexp>,[#]<nexp> <sexp>[,<nexp>] Stmt Enter setup for file transfer using TRANSFER$
Image Files:

IMAGE LOAD<sexp>,<nexp>,<sexp>[,<nexp>]| Stmt Receive and convert .PCX files to images
RUN "pex2bmp [-][-v] <scon> [<scon>]" - Convertimage files in .PCX format
STORE<sexp> Stmt Store Intelhex frames of image data
STORE IMAGE[RLL][KILL]<sexp> <nexp>,<nexp>,[<nexp>],<sexp> Stmt Set up image storage parameters
STORE INPUT<nexp>[,<nexp>] Stmt Receiving and storing image data
STORE OFF Stmt End storing of image data
SYSVAR(16]17) Array Read no. of bytes/frames received
INPUT TO FINGERPRINT

Input from Standard IN Channel:

INKEY$ Func Read L:st character from std IN channel
INPUT[<scon><;|,>]<<nvar>|<svar>>[,<<nvar>|<svar>>..] IP Stmt Input to variables
INPUTS$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT[<scon>;]<svar> Stmt Input, entire line

Input from Host on Any Channel:

OPEN<sexp>FOR INPUT AS[#]<nexp> Stmt Open device
INPUT#<nexp>,<<nvar>|<svar>>[<<nvar>|<svar>..] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT#<nexp> <svar> Stmt Input, entire line
CLOSE[[#]<nexp>[,[#]<nexp>..]] Stmt Close device

LOC(<nexp>) Func Remaining no. of characters in receive buffer
LOF(<nexp>) Func Remaining free space in receive buffer
Input from Sequential File:

OPEN<sexp>FOR INPUT AS[#]<nexp> Stmt Open file

INPUT#<nexp> <<nvar>|<svar>>[,<<nvar>|<svar>..] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT#<nexp><svar> Stmt Input, entire line
CLOSE[[#]<nexp>[,[#]<nexp>..]] Stmt Close file

EOF(<nexp>) Func End of file

LOC(<nexp>) Func Return current position in file
LOF(<nexp>) Func Return length of file

Input from Random File:

OPEN<sexp>AS[#]<nexp>[LEN=<nexp>] Stmt Open arandom file
FIELD[#]<nexp><nexp>AS<svar>[,<nexp>AS<svar>..] Stmt Create a buffer for a random file
GET[#]<nexp><nexp> Stmt Read rec. from random file to random buffer
CLOSE[[#]<nexp>[,[#]<nexp>..]] Stmt Close file

LOC(<nexp>) Func Return current position in file or buffer
LOF(<nexp>) Func Return length of file

178

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

2. Instructions by Field of Application, cont'd.

Instruction

Abbr. Type Purpose

INPUT TO FINGERPRINT, cont'd.
Input from Printer's Keyboard

OPEN'console:" FOR INPUT AS[#]<nexp> Stmt Open keyboard for input or append
INPUT#<nexp>,<<nvar>|<svar>>[<<nvar>|<svar>..] Stmt Input to variables
INPUTS$(<nexp>[,<nexp>]) Func Input, limited no. of characters
LINE INPUT#<nexp><svar> Stmt Input, entire line
CLOSE [#]<nexp> Stmt Close keyboard for input
Industrial Interface:
PORTIN(<nexp>) Func Reading status of a specified port
PORTOUT(<nexp>)ON|OFF Stmt Set the relay on a specified port
OUTPUT FROM Intermec FINGERPRINT
Output to Standard OUT Channel :
PRINT[<<nexp>|<sexp>>[<,|;><<nexp>|<sexp>>...][]]] ? Stmt Print data to standard 1/0 channel
PRINTONE[<nexp>[<,|;:><nexp>..](]] Stmt Print ASCII characters to std I/O channel
Output to Any Communication Channel:
OPEN<sexp>[FOR <OUTPUT|APPEND> JAS[#]<nexp> Stmt Open device
PRINT#<nexp>[,<<nexp>[<sexp>>[<,|;><<nexp|<sexp>>..][;]] Stmt Print data to device
PRINTONE#<nexp>[,<nexp>[<,|;><nexp>..][]] Stmt Print ASCII characters to device
CLOSE[[#]<nexp>[,[#]<nexp>..]] Stmt Close device
LOC(<nexp>) Func Remaining free bytes in transmitter buffer
LOF(<nexp>) Func Remaining no. of char. in transmitter buffer
Output to a Sequential File:
OPEN<sexp>[FOR <INPUT|OUTPUT|APPEND>]AS[#]<nexp> Stmt Openfile
PRINT#<nexp>[,<<nexp>[<sexp>>[<,|;><<nexp|<sexp>>..][;]] Stmt Print data to sequential file
PRINTONE#<nexp>[,<nexp>[<,[;><nexp>..][]] Stmt Print ASCII characters to sequential file
CLOSE[[#]<nexp>[,[#]<nexp>..]] Stmt Close file
LOC(<nexp>) Func Current position in file
LOF(<nexp>) Func Length of file
Output to Random File:
OPEN<sexp>AS[#]<nexp>[LEN=<nexp>] Stmt Open a random file
FIELD[#]<nexp><nexp>AS<svar>[,<nexp>AS<svar>..] Stmt Create a buffer for a random file
LSET<svar>=<sexp> Stmt Place data in random file buffer (left justified)
RSET<svar>=<sexp> Stmt Place data in random file buffer (right justified)
PUT[#]<nexp>,<nexp> Stmt Write rec. from random buffer to random file
CLOSE[[#]<nexp>[,[#]<nexp>..]] Stmt Close file
LOC(<nexp>) Func Current position in file
LOF(<nexp>) Func Length of file
FORMATTING AND PRINTING
General Formatting Instructions:
ALIGN<nexp> AN Stmt Alignment
DIR<nexp> Stmt Select print direction
PRPOS<nexp><nexp> PP Stmt Set coordinates for insertion point
LAYOUT [F J<sexp>,<sexp><svar><nvar> Stmt Creating and using layout files
Text Printing:
INVIMAGE Il Stmt Inverse image printing
MAG<nexp><nexp> Stmt Magnification of font
NORIMAGE NI Stmt Return to normal image printing
FONT<sexp> FT Stmt Select bitmap font
FONT<sexp>[,<sexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>[,<sexp>

[:<nexp>[,<nexp>[,<sexp>]11III FT Stmt Scale outline font (range of ASCII values)
FONT<sexp>[,<sexp>[,<nexp>[,<sexp>[,<nexp>[,<sexp>[,<nexp> Continued

[.<nexp>[.<sexp>IIIII FT Stmt Scale outline font (string of characters}

PRTXT<<nexp>|<sexp>>[;<<nexp>|<sexp>>..][]] PT Stmt Input data to text field

179

Intermec Fingerprint 6.13 — Programmer's Guide

17. REFERENCE LISTS, cont'd.

2. Instructions by Field of Application, cont'd.

Instruction Abbr. Type Purpose
FORMATTING AND PRINTING, cont'd.
Bar Code Printing:
BARFONTI[#<ncon>,]<sexp>[,sexp>[,<nexp>[,nexp>[,nexp][l][ON] BF Stmt Specify bar code interpretation fonts
BARFONT ON BFON Stmt Enable bar code Interpretation
BARFONT OFF BF OFF Stmt Disable bar code interpretation
BARHEIGHT<nexp> BH Stmt Barcode height
BARMAG<nexp> BM Stmt Barcode magnification
BARRATIO<nexp>,<nexp> BR Stmt Wide/narrow bar ratio
BARSET[#<ncon>,][<sexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>

[;<nexp>[,<nexp>[,<nexp>[,<nexp>[.<nexp>]1IIII Stmt Specifying complex bar codes
BARTYPE<sexp> BT Stmt Bar code type
MAG<nexp><nexp> Stmt Magnification of barfont
PRBAR<<sexp>|<nexp>> PB Stmt Input data to bar code field
Image and Graphics Printing:
INVIMAGE Il Stmt Inverse image printing
MAG<nexp><nexp> Stmt Magnification of image
NORIMAGE NI Stmt Return to normal image printing
PRBOX<nexp>,<nexp><nexp> PX Stmt Create a box
PRIMAGE<sexp> PM Stmt Selecta preprogrammed image
PRLINE<nexp><nexp> PL Stmt Create aline
Printing and Paper Feed Control:
ACTLEN Func Read length of last paper feed
CLEANFEED<nexp> Stmt Running the printer's feed mechanism
CLL[<nexp>] Stmt Clear print buffer
CuT Stmt Activate optional cutting device
CUT <nexp> ON|OFF Stmt Enable/disable automatic cut-off
FIELDNO Func Get current field number for CLL
FORMFEED[<nexp>] FF Stmt Paper feed
LBLCOND<nexp><nexp> Stmt Overriding paper feed setup
LTS& ON|OFF Stmt Enable/disable label taken sensor
OPTIMIZE[<sexp>] ON|OFF Stmt Enable/disable optimizing for batch printing
PRINT KEY ON|OFF Stmt Enable/disable PRINTFEED using Print key
PRINTFEED<nexp> PF Stmt Print and feed out label or batch of labels
PRINTFEED NOT PFNOT Stmt Prepare printing
TESTFEED Stmt Auto adjustment of label stop sensor

180

	1. INTRODUCTION
	1. Contents
	2. Preface
	3. News in Fingerprint 6.13

	2. GETTING STARTED
	1. Computer Connection
	2. Check Paper Supply
	4. Shell Startup Program
	5. Stand-Alone Program
	6. No Startup Program
	7. Custom-Made Startup Program
	8. Breaking a Startup Program
	9. Bypassing a Startup Program
	10. Communications Test

	3. CREATING A SIMPLE LABEL
	1. Introduction
	2. Printing a Box
	3. Printing an Image
	4. Printing a Bar Code
	5. Printing Human Readables
	6. Printing Text
	7. Listing the Program
	8. Changing a Program Line
	9. Saving the Program
	10. Error Handling
	11. Renumbering Lines
	12. Merging Programs
	13. Using the Print Key

	4. TERMINOLOGY AND SYNTAX
	1. Lines
	2. Statements
	3. Functions
	4. Other Instructions
	5. Expressions
	6. Constants
	7. Variables
	8. Keyword List
	9. Operators
	10. Devices

	5. FINGERPRINT PROGRAMMING
	1. Introduction
	2. Editing Methods
	3. Immediate Mode
	4. Programming Mode
	5. Conditional Instructions
	6. Unconditional Branching
	7. Branching to Subroutines
	8. Conditional Branching
	9. Loops
	10. Program Structure
	11. Execution
	12. Breaking Execution
	13. Saving the Program
	Saving in Printer
	Naming the Program
	Protecting the Program
	Saving Without Line Numbers
	Making Changes
	Making a Copy
	Renaming a Program
	Saving in EPROM:s and Non DOS-formatted Memory Cards
	Creating a Startup Program

	14. Rebooting the Printer

	6. FILE SYSTEM
	1. Printer's Memory
	ROM Memory ("rom:")
	RAM Memory ("ram:")
	DOS-Formatted Memory Cards ("card1:")
	Current Directory
	Checking Free Memory
	Providing More Free Memory
	Formatting Memory Cards or RAM Memory

	2. Files
	File Types
	File Names
	Listing Files

	3. Program Files
	Program File Types
	Instructions

	4. Data Files
	Data File Types
	Instructions

	5. Image Files
	6. Outline Font Files
	7. Transferring Text Files
	8. Transferring Binary Files using Kermit
	9. Transferring Files Between Printers
	10. Arrays

	7. INPUT TO FINGERPRINT
	1. Standard I/O Channel
	2. Input from Host (std IN Channel only)
	3. Input from Host (Any Channel)
	4. Input from a Sequential File
	5. Input from a Random File
	6. Input from Printer's Keyboard
	7. Communication Control
	8. Background Communication
	9. RS 422/485 Communication
	RS 422
	RS 485

	10. External Equipment
	Industrial Interface

	8. OUTPUT FROM FINGERPRINT
	1. Output to Std OUT Channel
	2. Redirecting Output from Std Out Channel to File
	3. Output and Append to Sequential File
	4. Output to Random Files
	5. Output to Communication Channels
	6. Output to Display

	9. DATA HANDLING
	1. Preprocessing Input Data
	2. Input Data Conversion
	3. Date and Time
	4. Random Number Generation

	10. LABEL DESIGN
	1. Creating a Layout
	Field Types
	Origin
	Coordinates
	Units of Measure
	Insertion Point
	Alignment
	Directions
	Layout Files
	Checking Current Position

	2. Text Field
	3. Bar Code Field
	4. Image Field
	5. Box Field
	6. Line Field
	7. Layout Files
	Introduction
	Creating a Layout File
	Creating a Logotype Name File
	Creating a Data File or Array
	Creating an Error File or Array
	Using the Files in a LAYOUT Statement

	11. PRINTING CONTROL
	1. Paper Feed
	2. Preparing the Printing
	3. Printing
	4. Length of Last Feed Operation
	5. Batch Printing

	12. FONTS
	1. Bitmap Fonts
	2. Converting Outline Font Files via Toolbox
	3. Converting Outline Font Files via Scalable Fonts Kit
	4. Converting .ATF Fonts
	5. Listing Fonts
	5. Special Fonts

	13. BAR CODES
	1. Standard Bar Codes
	2. Special Bar Codes

	14. IMAGES
	1. Images vs Images Files
	2. Standard Images
	3. Downloading Image Files
	4. Listing and Removing Images

	15. PRINTER FUNCTION CONTROL
	1. Keyboard
	Controlling the Printer in the Setup, Test, and Immediate Modes
	Enabling the Keys
	Key Id. Numbers
	Key-initiated Branching
	Audible Key Response
	Input from Printer's Keyboard
	Remapping the Keyboard

	2. Display
	Output to Display
	Cursor Control

	3. LED Control Lamps
	4. Buzzer
	5. Clock/Calendar
	6. Printer Setup
	Reading the Current Setup
	Creating a Setup File
	Changing the Setup using a Setup File
	Changing the Setup using a Setup String
	PRSETUP.PRG Utility Program
	DISPSET2.PRG Utility Program

	7. System Variables
	8. Printhead
	9. Transfer Ribbon
	10. Memory Test
	11. Version Check

	16. ERROR-HANDLING
	1. Standard Error -Handling
	2. Tracing Programming Errors
	3. Creating an Error-Handling Routine
	4. Error-Handling Program
	ERRHAND.PRG Utility Program
	Listing of ERRHAND.PRG Utility Program
	Extensions to ERRHAND.PRG Utility Program

	17. REFERENCE LISTS
	1. Instructions in Alphabetical Order
	2. Instructions by Field of Application

