
Order this document
by EB183/D

REV. 1.0

Motorola Semiconductor Engineering Bulletin

EB183
Erasing and Programming the FLASH EEPROM
on the MC68HC912B32

By Matt Ruff
M68HC11 and M68HC12 Applications
Austin, Texas

Introduction

This document outlines basic routines to program the FLASH EEPROM
through the background debug mode interface (BDM) using a Motorola
serial debug interface (SDIL) and the SDBUG12 (version 2.15) software
from P & E Microcomputer Systems, Inc.

One of the reasons the MC68HC912B32 device is so useful is that it
contains 32 Kbytes of embedded FLASH EEPROM. This module serves
as electrically programmable and erasable, non-volatile ROM emulation
memory, allowing for storage of program code which must be executed
frequently, must execute at high speeds, or which might need to be
upgraded in the field at a later time. Commonly used code segments,
such as standard subroutines or even operating systems, as well as
static data tables can be stored in the FLASH EEPROM.
© Motorola, Inc., 1998 EB183 — Rev. 1.0

Engineering Bulletin
FLASH EEPROM Control Block

The FLASH EEPROM is controlled by a 4-byte register block, which is
located at address $00F4 upon reset. Within this block are four single-
byte registers:

• Lock control register (FEELCK)

• Module configuration register (FEEMCR)

• Module test register (FEETST)

• Module control register (FEECTL)

For more detail on these control registers, refer to Section 7.4 FLASH
EEPROM Registers of the MC68HC912B32 Technical Summary
(Motorola order number MC68HC912B32TS/D). The sequence of how
to use these registers is covered later in this document.

FLASH EEPROM
Lock Control
Register

The FEELCK register (located at $00F4) contains only the LOCK bit
(bit 0), which allows or prevents writing to the FEEMCR register. This
must be cleared in order to change the FEEMCR. Note that it is cleared
out of reset.

Address: $00F4

Bit 7 6 5 4 3 2 1 Bit 0

Read:
0 0 0 0 0 0 0 LOCK

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 1. FLASH EEPROM Lock Control Register (FEELCK)
EB183 — Rev. 1.0

2 MOTOROLA

Engineering Bulletin
FLASH EEPROM Control Block
FLASH EEPROM
Module
Configuration
Register

The FEEMCR register (located at $00F5) contains only the BOOTP bit
(bit 0), which protects the 2-Kbyte boot block (1 Kbyte in early mask sets
G86W or G75R) located at $7800–$7FFF or $F800–$FFFF, depending
on the mapped location of the FLASH array at power-up. This bit must
be cleared, after the FEELCK (LOCK bit) is cleared, in order to write or
erase the boot block.

FLASH EEPROM
Module Test
Register

The FEETST register (located at $00F6) has no effect and always reads
0 in normal modes of operation.

Address: $00F5

Bit 7 6 5 4 3 2 1 Bit 0

Read:
0 0 0 0 0 0 0 BOOTP

Write:

Reset: 0 0 0 0 0 0 0 1

Figure 2. FLASH EEPROM Module Configuration Register (FEEMCR)

Address: $00F6

Bit 7 6 5 4 3 2 1 Bit 0

Read:
0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3. FLASH EEPROM Module Test Register (FEETST)
EB183 — Rev. 1.0

MOTOROLA 3

Engineering Bulletin
FLASH EEPROM
Control Register

The FEECTL register (located at $00F7) controls the actual
programming and erasing of the FLASH EEPROM. In this register, five
bits are used to control the FLASH. All bits are 0 upon reset.

FEESWAI

FEESWAI (bit 4) controls the behavior of the FLASH EEPROM clock
while in wait mode.

SVFP

SVFP (bit 3), the VFP status bit, is set when VFP is at or above normal

programming voltage levels; clear otherwise (read only)

ERAS

ERAS (bit 2), when set, configures the array for erasure.

LAT

LAT (bit 1), when set, enables the programming latches.

ENPE

ENPE (bit 0), when set, applies the programming/erase voltage to the
array.

Address: $00F7

Bit 7 6 5 4 3 2 1 Bit 0

Read:
0 0 0 FEESWAI SVFP ERAS LAT ENPE

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 4. FLASH EEPROM Control Register (FEECTL)
EB183 — Rev. 1.0

4 MOTOROLA

Engineering Bulletin
Hardware Configuration
Hardware Configuration

Setting up the
Debugging
Hardware

Since programming the FLASH EEPROM takes a finite amount of time
and is dependent on a reliable programming voltage from an exterior
source, it is difficult to tell if the procedure worked immediately. To
simplify the debugging of the process, try using a few hardware tricks
that are listed in this bulletin. For debugging hardware, simply use an
light-emitting diode (LED) connected to a port pin on the
MC68HC912B32 device that blinks when an error is encountered, as
well as an LED attached to another port pin which lights when the
process is complete. For use with the code in this bulletin, connect a red
LED to PA0, with a 1-KΩ current limiting resistor to indicate errors. In like
manner, connect a green LED to PA1 to indicate that the process has
completed.

Setting up the
M68HC12B32EVB

Be sure to connect your VFP source to W8 on the M68HC12B32EVB
with the proper polarity. The ground should be connected to the pin
closest to the edge of the board and farthest from the microcontroller.
This applies VFP to the board, but the jumper on W7 actually transfers
VFP to the VFP pin (pin 69) on the microcontroller. When a jumper is
placed on the left two pins of W7 (with board facing so that silk screening
can be read), VFP is connected to the chip. When the jumper is moved
to the right, so that the center pin and right pin are shorted, then VDD is
applied to the chip. This is the default location, and a jumper should
always be located here to maintain the voltage on the VFP pin on the
MCU at VDD when programming and erasing are not occurring.

NOTE: VFP should be 11.4–11.8 volts for mask sets 1H91F and 3H91F. For all
other masks, use 11.4–12.6 volts (12 volts ±5%).
EB183 — Rev. 1.0

MOTOROLA 5

Engineering Bulletin
Software Considerations

Using SDBUG12 to manipulate the FLASH EEPROM requires some
special considerations. First, a few bugs in some versions of the
software can cause some confusion when manipulating the FLASH
memory array. The memory display windows sometimes do not refresh
properly, especially when manually erasing the array by manipulating
the control registers using the mm command. Once the erase voltage
has been applied by modifying the FEECTL register, the display often
shows all of the odd addresses as one value and all the even addresses
as another value. To fix this problem, issue a reset command from the
SDBUG12 command prompt to force SDBUG12 to refresh all of its
display windows from the microcontroller once the part comes out of
reset.

The routines that follow were tested with version 2.15 of SDBUG12
running on a Windows NT workstation in a DOS window. The problem
described in the preceding paragraph did not appear when executing
these routines. SDBUG12 displayed the proper values for the FLASH
array when the routines were allowed to run to completion. The code
segments included here can both be loaded into the RAM of the part,
using the load command in SDBUG12. Notice that the entry point of the
program routine is $80A and the entry point of the erase routine is $90A.
Once loaded into RAM, g 80A will begin the programming process or
g 90A will begin the erase process.

NOTE: Once the FLASH array has been erased or programmed, reloading the
DBUG12 monitor into the FLASH array is necessary if you wish to use
it, as manipulation of the array will destroy the monitor program code.
This can be accomplished with the bootloader in the boot block of the
part or by using Prog12s.

If using the M68EVB912B32 evaluation board, refer to Appendix E of the
Evaluation Board User’s Manual (Motorola order number
68EVB912B32UM/D), for further information on how to reload the
monitor program into the device using the on-board bootloader.
EB183 — Rev. 1.0

6 MOTOROLA

Engineering Bulletin
Erasing the FLASH Array
Erasing the FLASH Array

This code segment follows the recommended procedure for erasing the
FLASH array. Following the code is a flowchart which outlines this same
procedure. The general idea is to apply the erase voltage to the FLASH
module within the chip (by setting the ENPE bit), set the erase flag, write
to any location in the array, then check to make sure the entire array is
erased. If the whole array is erased, then the number of times the erase
voltage was applied to get this erasure will have been preserved in the
Nep variable. The erase voltage is then pulsed that many times again to
ensure that the array remains erased. This is 100% erase margin.

NOTE: In the following code, the STEP labels refer to Section 7.7 of the
MC68HC912B32 Technical Summary (Motorola order number
MC68HC912B32TS/D).

;--
;--- FLASH EEPROM erase routine ---
;--- ---
;--- Rev. 1.0 April 16,1998 ---
;--- Changed to 100ms delay for tepulse ---
;--- Written November 6, 1997 ---
;--- ---
;--

;---- Equates -----------------------
FEELCK EQU $F4
FEEMCR EQU $F5
FEECTL EQU $F7
FEESTART EQU $8000 ;FLASH Start address
FEEEND EQU $FFFF ;FLASH End address
MAXNep EQU !5 ;5 pulses maximum
;---- Equates -----------------------

 ORG $0900
Nep DS 1 ;Number of programming pulses applied
MARGINF DS 1 ;Programming margin flag
ERASED DS 1 ;Array Erased Flag

 ORG $90A
START LDS #$B00 ;(Turn on Vfp supply to board here)
 LDX #$0000
 CLR Nep ;Clear number of pulses
 CLR MARGINF ;Clear margin flag
 CLR ERASED ;Clear erased flag
EB183 — Rev. 1.0

MOTOROLA 7

Engineering Bulletin
STEP2 MOVB #$06,FEECTL ;Set ERAS and set LAT in FEECTL
 BRCLR FEECTL,$08,ERROR ;If Vfp not present, output an error
 LDAB #$FF
STEP3 STAB FEESTART,X ;Write data to a valid Flash address
STEP4 BSET FEECTL,$01 ;Apply erase voltage (Set ENPE)
STEP5 JSR dly_100ms ;Delay time for erase pulse (Tepulse)
STEP6 BCLR FEECTL,$01 ;Remove erase voltage (Clear ENPE)
STEP7 JSR dly_10ms ;Delay for high voltage turn off (Tverase)
 LDAA #$01
 CMPA MARGINF ;Is margin flag set??
 BNE NOFLAG ;If not, go bump counter and check data

YESFLAG DEC Nep ;Decrement Nep
 LDAA #$00
 CMPA Nep ;Is Nep=0?
 BNE STEP4 ;If not, go to Step 4
 JSR READARRY ;Verify entire array is erased
 LDAA #$01
 CMPA ERASED ;Is the array erased?
 BEQ ERROR ;Erase failed, output an error
STEP10 BCLR FEECTL,$02 ;Clear LAT in FEECTL
 BRA DONE ;If so, quit.

NOFLAG INC Nep ;Increment number of erase pulses applied
 BSR READARRY ;Verify entire array is erased
 LDAA #$00
 CMPA ERASED ;Is it erased?
 BEQ SETMARF ;If so, set margin flag
 LDAB Nep
 CMPB #MAXNep ;Have we applied max number of pulses?
 BLS STEP4 ;If not, continue erasing
 BSR ERROR ;If so, we have a problem

SETMARF INC MARGINF ;Set Margin Flag
 BRA STEP4

DONE MOVB #$00,$0000 ;Clear Port A
 MOVB #$FF,$0002 ;Set DDRA to outputs
 MOVB #$02,$0000 ;Turn on PA1 to indicate complete
 BRA DONE ;(Turn off Vfp)
EB183 — Rev. 1.0

8 MOTOROLA

Engineering Bulletin
Erasing the FLASH Array
;--
;---- Read and Verify Erase subroutine ----
;--
READARRY LDY #$FFFF
 LDX #FEESTART
LOOP CPY 0,X ;Is this word erased?
 BNE EXITverf ;If not, leave without setting flag
 CPX #FEEEND ;Are we at the end of the array?
 BEQ EXITverf
 INX ;Go to the next address

 INX
 BRA LOOP
 INC ERASED ;Set erased flag
EXITverf RTS

;--
;--------- Error Subroutine -------------
;--
ERROR: MOVB #$00,$0000 ;Clear Port A
 MOVB #$FF,$0002 ;Set DDRA to outputs
BLINK MOVB #$01,$0000 ;Turn PA0 on for error output
 BSR dly_100ms
 BSR dly_100ms
 BSR dly_100ms
 MOVB #$00,$0000 ;Turn PA0 off
 BSR dly_100ms
 BSR dly_100ms
 BSR dly_100ms
 BRA BLINK ; Repeat ad nauseum....

;---
;--------- Delay Subroutines (8MHz e clock) -------------
;---
dly_100ms: LDY #$000A ; Delay for 100ms (8MHz E clock)
DLOOP10: DEY
 BSR dly_10ms
 BNE DLOOP10
 RTS

dly_10ms: LDD #$3E7E ; Delay for 10ms (8MHz E clock)
DLOOP: SUBD #1
 BNE DLOOP
 RTS

 END
EB183 — Rev. 1.0

MOTOROLA 9

Engineering Bulletin
Figure 5. Erase Sequence Flow

START ERASE

SET LAT
SET ERAS

WRITE TO ARRAY

SET ENPE

READ

NO

ARRAY FAILED TO ERASE

ARRAY

CLEAR MARGIN FLAG

INCREMENT
nEP COUNTER

DECREMENT
nEP COUNTER

NO

YES

YES

TURN ON VFP

DELAY FOR DURATION
OF ERASE PULSE

(tEPULSE)

CLEAR ENPE

DELAY BEFORE VERIFY

IS
MARGIN FLAG

SET? NO

YES

NO

YES

ARRAY
ERASED?

SET
MARGIN FLAG

nEP = 0?

TURN OFF VFP

(tVERASE)

nEP = 5?

YES

NO

ARRAY ERASED

CLEAR ERASE PULSE COUNTER (nEP)

CLEAR LAT

ARRAY
ERASED?
EB183 — Rev. 1.0

10 MOTOROLA

Engineering Bulletin
Programming the FLASH Array
Programming the FLASH Array

The following code segment follows the recommended procedure for
programming the FLASH array. Following the code is a flowchart which
outlines this same procedure. The general idea is to apply the
programming voltage to the FLASH module within the chip (by setting
the ENPE bit), set the programming latches, write the desired byte/word
to the location in the array, then check to make sure the location is
programmed properly. If the data is correct, then the number of times the
programming voltage was applied to get this byte programmed will have
been preserved in the NPP variable. The programming voltage is then
pulsed that many times again to ensure that the byte/word remains
programmed. This is 100% programming margin. This whole process is
repeated for each byte/word to be programmed. The code segment
below simply copies a string of characters from RAM and stores it at the
beginning of the FLASH array.

NOTE: In the following code, the STEP labels refer to Section 7.6 of the
MC68HC912B32 Technical Summary (Motorola order number
MC68HC912B32TS/D).

;--
;--- FLASH EEPROM program routine ---
;--- ---
;--- Rev. 1.0 - April 23,1998 ---
;--- Fixed Tppulse = 25 µs and Tvprog = 10 µs ---
;--- Written November 6, 1997 ---
;--- ---
;--

;-------------- Equates -----------------
FEELCK EQU $F4
FEEMCR EQU $F5
FEECTL EQU $F7
FEESTART EQU $8000 ;FLASH Start address
FEEEND EQU $FFFF ;FLASH End address
MAXNpp EQU !50 ;50 pulses maximum

 ORG $0800
Npp DS 1 ;Number of programming pulses applied
MARGINF DS 1 ;Programming margin flag

 ORG $80A
EB183 — Rev. 1.0

MOTOROLA 11

Engineering Bulletin
START LDS #$B00 ;(Turn on your Vfp power supply to board)
 BRCLR FEECTL,$08,ERROR ;If Vfp not present, output an error
 LDX #$0000

LOOP CLR Npp ;Clear number of pulses
 CLR MARGINF ;Clear margin flag
STEP2 MOVB #$02,FEECTL ;Clear ERAS and set LAT in FEECTL
 LDAB DATA,X
STEP3 STAB FEESTART,X ;Write data to address
STEP4 BSET FEECTL,$01 ;Apply programming voltage (Set ENPE)
STEP5 JSR dly_22us ;Delay time for prog pulse (Tppulse)
STEP6 BCLR FEECTL,$01 ;Remove programming voltage (Clear ENPE)
STEP7 JSR dly_10us ;Delay for high voltage turn off (Tvprog)
 LDAA #$01
 CMPA MARGINF ;Is margin flag set??
 BNE NOFLAG ;If not, go bump counter and check data

YESFLAG DEC Npp ;Decrement Npp
 LDAA #$00
 CMPA Npp ;Is Npp=0?
 BNE STEP4 ;If not, go to Step 4
STEP9 LDAA FEESTART,X ;Read FEEPROM location to verify programming
 CMPA DATA,X ;Is it the same as the byte to be programmed?
 BNE ERROR ;Programming failed, output an error
STEP10 BCLR FEECTL,$02 ;Clear LAT in FEECTL
 INX
 CMPA #$00 ;Check to see if we're done
 BNE LOOP ;If not, go back to start!
 BRA DONE ;If so, quit.

NOFLAG INC Npp ;Increment number of prog pulses applied
 LDAA FEESTART,X ;Read FEEPROM location to verify programming
 CMPA DATA,X ;Is it the same as the byte to be programmed?
 BEQ SETMARF ;If so, set the margin flag
 LDAB Npp
 CMPB #MAXNpp ;Have we applied max number of pulses?
 BLS STEP4 ;If not, continue programming
 BSR ERROR ;If so, we have a problem

SETMARF INC MARGINF ;Set Margin Flag
 BRA STEP4

DONE MOVB #$00,$0000 ;Clear Port A
 MOVB #$FF,$0002 ;Set DDRA to outputs
 MOVB #$02,$0000 ;Turn on PA1 to indicate complete
 BRA * ;(Turn off Vfp supply - programming complete)
EB183 — Rev. 1.0

12 MOTOROLA

Engineering Bulletin
Programming the FLASH Array
;--
;--------- Error Subroutine -------------
;--
ERROR: MOVB #$00,$0000 ;Clear Port A
 MOVB #$FF,$0002 ;Set DDRA to outputs
BLINK MOVB #$01,$0000 ;Turn PA0 on for error output
 BSR dly_100ms
 BSR dly_100ms
 BSR dly_100ms
 MOVB #$00,$0000 ;Turn PA0 off
 BSR dly_100ms
 BSR dly_100ms
 BSR dly_100ms
 BRA BLINK ; Repeat ad nauseum....

;---
;--------- Delay Subroutines (8MHz e clock) -------------
;---
dly_100ms: LDY #$000A ; Delay for 100ms
DLOOP10: DEY
 BSR dly_10ms
 BNE DLOOP10
 RTS

dly_10ms: LDD #$3E7E ; Delay for 10ms
DLOOP: SUBD #1
 BNE DLOOP
 RTS

dly_22us: LDD #$0023 ; Delay for almost 22 µs
d_22u SUBD #1
 BNE d_22u
 RTS

dly_10us: LDD #$0010 ; Delay for 10 µs
d_10u SUBD #1
 BNE d_10u
 RTS

DATA FCB "Motorola Microcontrollers"
 FCB $00

 END
EB183 — Rev. 1.0

MOTOROLA 13

Engineering Bulletin
Figure 6. Program Sequence Flow

START PROG

SET LAT
CLEAR ERAS

WRITE DATA
TO ADDRESS

SET ENPE

READ

GET NEXT
ADDRESS/DATA

NO

LOCATION FAILED

LOCATION

CLEAR MARGIN FLAG

INCREMENT
nPP COUNTER

NO

DECREMENT
nPP COUNTER

NO

YES

YES

YES

TO PROGRAM

TURN ON VFP

DELAY FOR DURATION
OF PROGRAM PULSE

(tPPULSE)

CLEAR ENPE

DELAY BEFORE VERIFY

IS
MARGIN FLAG

SET? NO

YES

NO

YES

DATA
CORRECT?

SET
MARGIN FLAG

DATA
CORRECT?

nPP = 0?

DONE?

TURN OFF VFP

(tVPROG)

nPP = 50?

YES

NO

DONE PROG

CLEAR PROGRAM PULSE COUNTER (nPP)

CLEAR LAT
EB183 — Rev. 1.0

14 MOTOROLA

Engineering Bulletin
Conclusion
Conclusion

This bulletin gives an overview of the basics of erasing and programming
the FLASH array on the MC68HC912B32 microcontroller. Knowing
these basics, it is easy to progress to writing a bootloader, designing a
field programming unit, or anything else needed to manipulate the
FLASH memory.

For an example of a serial bootloader for this microcontroller, refer to
Serial Bootloader for Reprogramming the MC68HC912B32 FLASH
EEPROM (Motorola order number AN1718/D).
EB183 — Rev. 1.0

MOTOROLA 15

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Engineering Bulletin
EB183/D

© Motorola, Inc., 1998

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinigawa-Ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

	Introduction
	FLASH EEPROM Control Block
	FLASH EEPROM Lock Control Register
	FLASH EEPROM Module Configuration Register
	FLASH EEPROM Module Test Register
	FLASH EEPROM Control Register

	Hardware Configuration
	Setting up the Debugging Hardware
	Setting up the M68HC12B32EVB

	Software Considerations
	Erasing the FLASH Array
	Programming the FLASH Array
	Conclusion

