

# **Advisor MASTER**

# integrated intrusion and access control system designers manual

Version 1.11, January 2005



GE imagination at work

Aritech is a GE Security brand.

#### Copyright

(c) 2004 GE Security B.V.. All rights reserved. GE Security B.V. grants the right to reprint this manual for internal use only. GE Security B.V. reserves the right to change information without notice.

# CONTENTS:

| 1 | Syst       | em components                                                                   | 5  |
|---|------------|---------------------------------------------------------------------------------|----|
|   | 1.1        | Control panels                                                                  |    |
|   | 1.2        | User Interface                                                                  | 11 |
|   | 1.3        | DGP Expansion modules                                                           | 16 |
|   | 1.4        | System accessories                                                              | 22 |
|   | 1.5        | ATS8100 – TITAN Software                                                        |    |
| • | •          |                                                                                 | 07 |
| 2 | 2.1        | em power supply<br>System power supply                                          |    |
|   | 2.1        |                                                                                 |    |
|   |            | System equipment power consumption.                                             |    |
|   | 2.3<br>2.4 | Wiring<br>Connecting other power supplies                                       |    |
| 3 | Com        | nunications                                                                     | 22 |
| 3 | 3.1        | System bus                                                                      |    |
|   | 5.1        | 3.1.1 Wiring                                                                    |    |
|   |            | 3.1.2 Device Addressing                                                         |    |
|   |            | 3.1.3 Bus topology                                                              |    |
|   | 3.2        | Local bus                                                                       |    |
|   | 3.2        | 3.2.1 ATS1250/60 access control DGP                                             |    |
|   |            | 3.2.2 ATS1250/00 access control DGP                                             |    |
|   |            |                                                                                 |    |
|   |            | 3.2.3 ATS1230 Wireless devices DGP                                              | 40 |
|   | ~ ~        | 3.2.4 ATS1105 and ATS1170 RAS station reader interface                          |    |
|   | 3.3        | PC connection.                                                                  |    |
|   |            | 3.3.1 Service connection                                                        |    |
|   |            | 3.3.2 PC direct connection.                                                     |    |
|   |            | 3.3.3 Increasing the range between the control panel and PC.                    |    |
|   |            | 3.3.4 Modem connection                                                          |    |
|   | 3.4        | Control Panel Network                                                           |    |
|   |            | 3.4.1 Control panel bus topology and wiring                                     |    |
|   |            | 3.4.2 Examples of CP networks connected by various communications interfaces    |    |
|   | 3.5        | Reporting events to the CS station                                              | 52 |
| 4 | Con        | guration of the Advisor MASTER Integrated System                                | 54 |
| - | 4.1        | Control panel selection and configuration                                       |    |
|   |            | 4.1.1 The procedure of selecting and configuring the alarm system control panel |    |
|   | 4.2        | Configuring the DGP expansion modules.                                          | 59 |
|   | 4.3        | Areas                                                                           |    |
|   | 4.4        | Access control                                                                  |    |
|   | 7.7        | 4.4.1 Basic Access Control in the Control Panel                                 |    |
|   |            | 4.4.2 Advanced Access Control of the ATS1250 DGP.                               |    |
|   |            | 4.4.3 Advanced Access Control of the ATS1250 DGP                                |    |
|   | 4.5        | Cards and Readers                                                               |    |
|   | ч.5        | 4.5.1 Advisor MASTER System Readers                                             |    |
|   |            | 4.5.2 Other readers                                                             |    |
|   |            | 4.5.2 Other readers                                                             |    |
| 5 | Netw       | ork System Configuration                                                        |    |
| - |            |                                                                                 |    |
| 6 |            | system Smart Cards                                                              |    |
|   | 6.1        | Readers and cards                                                               |    |
|   | 6.2        | Programmer and software                                                         |    |
|   | 6.3        | Credit Applications                                                             |    |
|   | 6.4        | Safeguards                                                                      | 73 |
| 7 | Tech       | nical design data                                                               | 75 |
|   |            | 7.1.1 Housings dimensions                                                       | 75 |

| 7.1.2 | Space in Hosings                         | 75 |
|-------|------------------------------------------|----|
| 7.1.3 | Dimensions of devices PCB.               | 76 |
| 7.1.4 | Control Panel and Memory configurations. | 77 |
| 7.1.5 | Current consupption.                     | 79 |
| 7.1.6 | Card Readers Technical Data.             | 82 |

# **1** SYSTEM COMPONENTS.

## 1.1 Control panels

The main element of the Advisor MASTER system is the control panel. The idea behind the Advisor MASTER system is to supply a product with the best possible functional parameters for the end user, as well as for the installing technician. The control panel, as a product, is supplied as a set, consisting of:

Control panel mainboard;

- Metal housing;
- Mains power transformer;
- Mains power connector, equipped with a fuse;
- Battery connection cables;
- A set of 4k7 Ohm end of line resistors;
- User and installation manuals.

## Common characteristics of the ATS system control panels:

- Housing -There are three types of housing for the control panel and ATS expansions. All of them have a common characteristic set of holes and mounting points, which pattern enables the installation of every control panel type and/or other expansions and system accessories. The space allocation details for the different housing types, are contained in the appendices. Power unit -All control panels are equipped with the same switched mode power supply unit, providing 2,2A @ 13,8V DC, enabled for buffered mode (battery back-up). The details for planning of the emergency power supply, batteries etc. can be found in chapter 2. The control panels as well as other equipment parts have standardised sizes and Mainboards placement of their mounting points. This enables the installation in any system housing. The control panel terminal blocks are detachable, which simplifies connection of the circuits. Dialler -A telephone communicator comes as standard, enabling communications with monitoring stations (CS) as well as modem connections with a PC. The baud rate is limited. The configuration details can be found in section 3.3. The MI bus-The control panel can be extended with additional communications equipment via the MI bus. The available modules enable communication with CS stations via GSM or ISDN networks, as well as voice reporting. The configuration details can be found in section 3.5. Service connection – Regardless of the type of control panel, each is equipped with a RS232 connector, allowing for service communications with the configuration program (TITAN). This connection is time-limited. For permanent connections, an appropriate expansion needs to be used. System timer-The central unit is equipped with an autonomous Real Time Clock (RTC) circuit, synchronized via a quartz frequency generator. It ensures an exact measurement of time regardless of the CPU load, frequency of the mains power, or other external occurrences. The systematic time correction can be set through the configuring software as -119 to 119 seconds per day. All system inputs are processed by a A/D converter and then analysed as to their state Alarm zonesthrough the control panel, or DGP processor. There are 8 or 16 alarm zone connections on the control panel mainboard. Their number can be increased using the ATS1202 expansion. End of line resistors - The system supports three types of EOL resistors: 2k2, 4k7 and 10k. By default, the 4k7Ohm resistor is used.
- Signal outputs Each control panel has 3 high-current, monitored signal outputs, allowing the attachment of an external/internal siren or a signal lamp (beacon).

- Memory The inbuilt memory of the control panel is sufficient to support a typical, medium complexity alarm system (50 users, 250 events, 10 alarm groups). The control panel memory can be expanded using the appropriate modules.
- System bus The RS485 system bus enables the attachment of manipulators (RAS stations), as well as alarm and access control expansions. The same interface is used to connect the control panels into a network, or to the local bus of other equipment.

#### Expansions:

The MI bus – ISDN and GSM communicators, and a voice reporting module.

- Memory The control panel supports installation of one of three available memory modules. They increase the amount of users, logged events, alarm settings and access control groups supported by the system, as well as decreasing the reaction time of the system.
- PC and printer interface Enables the user to permanently connect the control panel to a PC, connect the control panels in a network to the PC and connect the control panel to a remote system for programming, maintenance and monitoring.
- Alarm zones The onboard alarm zone connectors can be expanded using the ATS1202 expansion up to a total of 32 alarm zones. Further lines are available through the use of DGP expansions connected to the system bus.
- System outputs The control panel connector supports 4 'OC' outputs. By connecting a synchronous expansion card (ATS1811/20) to the output slot, the maximum relay output count can be increased to 128 and the 'OC' count can be increased to 256, limited by the maximum expansion module count, the available housing space, and the supplied power. Additionally, the control panels are equipped with a NC/NO relay (not supported by the ATS2000).
- System bus Enables the connection of 16 manipulators (RAS stations) and 15 expanders (DGP modules) allowing the use of all alarm zones and additional access control functions elevator and door controllers.

The central unit of the Advisor MASTER system that defines its capacity, and through the availability of some expansions, its functionality is the control panel. The Advisor MASTER system offers three types of control panels – ATS2000, ATS3000 and ATS4000/4518. The differences between them are in the available zone quantity, and the availability of some expansions. This way, the system, regardless of its size or the control panel used provides the same functions, uses the same software, can be connected to the same equipment and a configuration created for one panel, can be freely used on all types of ATS control panels

## 1.1.1.1 ATS4000

16 alarm zones on board expandable to max. 32 zones; 256 zones in the system 16 independent areas 74-138 Alarm Groups 10-120 Door Groups 50-67k users 250-1000 alarm events 10-1000 access control events M - ATS1643 housing Programming controlled power output Expansions: Memory Computer, printer interface Communications Input/Output

The ATS4000 control panel is the basic control panel type of the Advisor Master system. The other central units are modifications of this device. Because of that, in the following chapters the application examples are shown using the ATS4000.

Table 1-1 Expansion modules, available for ATS4000.

| Expansion                                                                | Description                                                                       | Q-ty      | Size  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|-------|--|--|
| Memory – moun                                                            | Memory – mounted in the slot on the mainboard, only one of the following modules. |           |       |  |  |
| ATS1830                                                                  | 1Mb                                                                               |           | -     |  |  |
| ATS1831                                                                  | 4Mb, IUM                                                                          | 1         | -     |  |  |
| ATS1832                                                                  | 8Mb, IUM                                                                          |           | -     |  |  |
| Computer, printe<br>following module                                     | er interfaces – mounted directly on the mainboard, o es.                          | nly one o | f the |  |  |
| ATS1801                                                                  | Computer, printer interface (two RS232 ports)                                     | 1         | B+    |  |  |
| ATS1802                                                                  | Printer interface(RS232 port)                                                     |           | B+    |  |  |
| Communications- MI bus , mounted in housing slots, below the mainboard . |                                                                                   |           |       |  |  |
| ATS7100                                                                  | ISDN communicator;                                                                | 1         | А     |  |  |
| ATS7200                                                                  | Voice reporting;                                                                  | 2         | В     |  |  |
| ATS7300                                                                  | GSM communicator;                                                                 | 1         | B+    |  |  |
| Inputs- mounted                                                          | d in available housing slots.                                                     |           |       |  |  |
| ATS1202                                                                  | ATS1202 8 alarm zone expansion.                                                   |           | В     |  |  |
| Outputs- mounted in available housing slots.                             |                                                                                   |           |       |  |  |
| ATS1810                                                                  | 4 relay outputs.                                                                  | 1         | В     |  |  |
| ATS1811                                                                  | 8 relay outputs.                                                                  | 16        | BB    |  |  |
| ATS1820                                                                  | 16 open collector outputs.                                                        | 16        | B+    |  |  |

Table 1-2 ATS4000 housing space.

| M – ATS1641 housing |                  |                     |                           |  |
|---------------------|------------------|---------------------|---------------------------|--|
| Battery             | Capacity         | Free housing slots  | Free slots below the MBC* |  |
| BS127N              | 7,2Ah            | 4xB or 2xB+ or 2xBB |                           |  |
| 2xBS127N            | 14,4Ah           | 4xB or 2xB+ or 2xBB | 6xB or 4xB+ or 2xA        |  |
| BS131N              | 18Ah 2xB or 1xBB |                     |                           |  |

\*- Communication expansions can be mounted below the mainboard (Mother Board Circuit)

#### 1.1.1.2 ATS4500

ATS4000 mainboard: 16 alarm zones on board expandable to max. 32 zones; 256 zones in the system 16 independent areas 138 Alarm Groups 120 Door Groups 11k-67k users 1000 alarm events 1000 access control events L – ATS1644 housing Programming controlled power output Expansions: Memory Computer, printer interface Communications Input/Output

The ATS4500 control panel is equipped with the ATS4000 mainboard equipped with the basic ATS1830 1Mb memory expansion and a L – type housing. The extended memory and the larger housing, allowing the installation of more expansions, as well as a larger battery, make the ATS4500 a control panel best suited for systems providing access control.

The expansions for ATS4500 are identical with the ones for ATS4000 shown in Table 1-1, the difference being the ATS4500's pre-installed ATS1830 memory expansion.

#### Table 1-3 ATS4500 housing space.

|          | L – ATS1642 housing |                               |                           |  |  |  |
|----------|---------------------|-------------------------------|---------------------------|--|--|--|
| Battery  | Capacity            | Free housing slots            | Free slots below the MBC* |  |  |  |
| BS127N   | 7,2Ah               |                               |                           |  |  |  |
| 2xBS127N | 14,4Ah              |                               |                           |  |  |  |
| BS131N   | 18Ah                | 6xB or 3xBB or 4xB+ or<br>2xA | 6xB or 4xB+ or 2xA        |  |  |  |
| BS129N   | 26Ah                | 277                           |                           |  |  |  |
| 2xBS129N | 52Ah                |                               |                           |  |  |  |

\*- Communication expansions can be mounted below the mainboard (Mother Board Circuit)

## 1.1.1.3 ATS3000

8 alarm zones on board expandable to max. 32 zones; 64 zones in the system 8 independent areas 74 -138 Alarm Groups 10 -120 Door Groups 50k-67k users 250 - 1000 alarm events 10 - 1000 access control events S - ATS1642 housing Programming controlled power output Expansions: Memory Computer, printer interface Communications Input/Output

In this control panel, not all expansion combinations are available. Due to the layout of the device, it is not possible to install both the ATS1831/32 memory expansions and the ATS1801/02 computer/printer interface.

Apart from that, the control panel is supplied in a smaller housing. This does not lead to less space for expansions, because the control panel's mainboard is much smaller.

| Expansion                                                                         | Description                                                                                                                                                               | Q-ty                 | Size |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|--|--|--|
| Memory – mounted in the slot on the mainboard, only one of the following modules. |                                                                                                                                                                           |                      |      |  |  |  |
| ATS1830                                                                           | 1Mb                                                                                                                                                                       |                      | -    |  |  |  |
| ATS1831                                                                           | 4Mb, IUM, interchangeable with ATS1801/02                                                                                                                                 | 1                    | -    |  |  |  |
| ATS1832                                                                           | 8Mb, IUM, interchangeable with ATS1801/02                                                                                                                                 |                      | -    |  |  |  |
|                                                                                   | I Computer, printer interfaces – mounted directly on the mainboard, only one of the following modules can be installed, and not in conjunction with the memory expansions |                      |      |  |  |  |
| ATS1801                                                                           | ATS1801 Computer, printer interface (two RS232 ports)                                                                                                                     |                      |      |  |  |  |
| ATS1802                                                                           | Printer interface(RS232 port)                                                                                                                                             | nterface(RS232 port) |      |  |  |  |
| Communication                                                                     | s– MI bus , mounted in housing slots, below the mai                                                                                                                       | nboard .             |      |  |  |  |
| ATS7100                                                                           | 0 ISDN communicator;                                                                                                                                                      |                      | A    |  |  |  |
| ATS7200                                                                           | Voice reporting;                                                                                                                                                          | 2                    | В    |  |  |  |
| ATS7300                                                                           | ATS7300 GSM communicator;                                                                                                                                                 |                      | B+   |  |  |  |
| Inputs- mounted in available housing slots.                                       |                                                                                                                                                                           |                      |      |  |  |  |
| ATS1202 8 alarm zone expansion.                                                   |                                                                                                                                                                           | 3                    | В    |  |  |  |
| Outputs- mounted in available housing slots.                                      |                                                                                                                                                                           |                      |      |  |  |  |
| ATS1810 4 relay outputs.                                                          |                                                                                                                                                                           |                      | В    |  |  |  |
|                                                                                   |                                                                                                                                                                           |                      |      |  |  |  |

Table 1-4 Expansion modules, which can be installed in the ATS3000 control panel.

| Expansion | Description                | Q-ty | Size |
|-----------|----------------------------|------|------|
| ATS1811   | 8 relay outputs.           | 16   | BB   |
| ATS1820   | 16 open collector outputs. | 16   | B+   |

Table 1-5 ATS3000 housing space..

| M – ATS1641 housing |          |                    |                           |  |
|---------------------|----------|--------------------|---------------------------|--|
| Battery             | Capacity | Free housing slots | Free slots below the MBC* |  |
| BS127N              | 7,2Ah    | 6xB or 3xBB or 1xA |                           |  |
| 2xBS127N            | 14,4Ah   | 6xB or 3xBB or 1xA | 4xB or 2xB+ or 1xA        |  |
| BS131N              | 18Ah     | 4xB or 2xBB or 1xA |                           |  |

\*- Communication expansions can be mounted below the maiboard (Mother Board Circuit)

#### 1.1.1.4 ATS2000

8 alarm zones on board expandable to max. 32 zones; 32 zones in the system 4 independent areas 74 Alarm Groups 10 Door Groups 50 users 250 alarm events 10 access control events S – ATS1641 housing Expansions: Communications Input/Output

The central panel does not include slots for memory expansion and computer/printer interface ATS1801 as well as a programming controlled power source. Additionally, the connector clamps in this model are fixed.

The mainboard is the same size, and is supplied in the same housing as the ATS3000. Because of that the parameters for batteries and available expansion space are the same in ATS2000 and ATS3000 – see Table 1-5.

| Expansion                                    | Description                                                              |    | Size |  |  |
|----------------------------------------------|--------------------------------------------------------------------------|----|------|--|--|
| Communications                               | Communications- MI bus , mounted in housing slots, below the mainboard . |    |      |  |  |
| ATS7100                                      | ISDN communicator;                                                       | 1  | А    |  |  |
| ATS7200                                      | Voice reporting;                                                         | 2  | В    |  |  |
| ATS7300                                      | GSM communicator;                                                        | 1  | B+   |  |  |
| Inputs- mounted                              | Inputs- mounted in available housing slots.                              |    |      |  |  |
| ATS1202                                      | 8 alarm zone expansion.                                                  |    | В    |  |  |
| Outputs- mounted in available housing slots. |                                                                          |    |      |  |  |
| ATS1810                                      | 4 relay outputs.                                                         | 1  | В    |  |  |
| ATS1811                                      | 8 relay outputs.                                                         | 16 | BB   |  |  |
| ATS1820                                      | 16 open collector outputs.                                               | 16 | B+   |  |  |

Table 1-6 Expansion modules, which can be installed in the ATS2000 control panel.

## 1.1.1.5 Comparison of most important characteristics

| Parameter                 | Value                          |
|---------------------------|--------------------------------|
| Input expansions          | Up to 32 zones                 |
| Output expansions         | No limit                       |
| Power source              | 2,2A @ 13,8V DC                |
| Inbuilt PC communications | RS232 – service port           |
| System bus                | RS485                          |
| Inbuilt communications    | Analogue dialler               |
| Communication expansions  | ISDN, GSM, voice module        |
| Time measurement          | Real-time clock circuit RTC    |
| Alarm zones               | A/D converter                  |
| End of line resistor      | 2k2, 4k7, 10k software defined |

Table 1-7 Common characteristics of the control panels.

Table 1-8 Control panel characteristics.

| Parameter                   | ATS4500 | ATS4000  | ATS3000          | ATS2000 |
|-----------------------------|---------|----------|------------------|---------|
| Onboard zones               | 16      | 16       | 8                | 8       |
| With zone expansions fitted | 32      | 32       | 32               | 32      |
| System capacity – zones     | 256     | 256      | 64               | 32      |
| Areas                       | 16      | 16       | 8                | 4       |
| Alarm groups                | 138     | 70-138   | 70-138           | 70      |
| Door groups                 | 120     | 10-120   | 10-120           | 10      |
| Users                       | 11k-67k | 50-67k   | 50-11k-67k*      | 50      |
| Alarm event log             | 1000    | 250-1000 | 250-1000         | 250     |
| Access control log          | 1000    | 10-1000  | 10-1000          | 10      |
| IUM ATS1831/32 memory       | Yes     | Yes      | ATS1831/32       | No      |
| Computer/printer interface  | Yes     | Yes      | or<br>ATS1801/02 | No      |
| Housing type                | L       | М        | S                | S       |
| Mainboard type              | С       | С        | C-               | C-      |
|                             |         |          |                  |         |

\*- The ATS1831/32 memory expansion is interchangeable with ATS1801/02

Table 1-9 Important technical characteristics.

| Parameter                        | Value             |
|----------------------------------|-------------------|
| Mains power supply               | 230VAC            |
| Max. mains power required        | 58VA              |
| Mains transformer output voltage | 23VAC             |
| PSU output voltage               | 13,8V DC (+/-10%) |
| PSU output current               | 2,2A              |
| Output current load:             |                   |
| The lamp and sirens              | 1A                |
| Relays                           | 2A                |
| OC type                          | 50mA              |
| Mainboard power consumption      | 170mA             |
| Operating temperature            | 0-50 deg.C        |

## **1.2 User Interface**

The user interface – manipulators, readers – is the only system element the user has direct contact with. It serves to inform the user of the state of the system, allow taking system control actions, and serves as a basic programming and maintenance channel for the installing technician and programmer. The Advisor MASTER system offers a whole range of RAS equipment, differing in appearance and functionality. It can also be made compatible with equipment by other manufacturers, through the use of the ATS1170 Wiegand interface.

The unique function offered by the ATS system is alarm system control – arming and disarming the alarm – through the readers and user cards. This is enabled by integrating the access control and alarm systems.

Each piece of RAS equipment can be used in the ATS system to unidirectionally control the access control passage. To ease the use of manipulators to control the doors, they have been equipped with appropriate hardware features – lock control output, door access switch (RTE) input – and software functions, through which access control on the control panel level can be provided for budget sensitive applications.

## **RAS stations characteristics:**

Alarm system control – Arming and disarming the system is the basic function of each RAS unit. Beyond that, LCD-equipped units can serve to validate alarms, suspend zones, browse the event log etc. – the common maintenance tasks in an alarm system. It is required that there is at least one LCD manipulator present in the system configured for alarm system maintenance.

Basic programming interface – LCD manipulators are the basic programming interface for the system. It is strongly recommended that at least one LCD manipulator in the system is configured for programming the system.

State LEDs – The RAS stations are equipped with LED diodes, which serve to display the state of the system. Commonly there are 3 diodes:

Green – Power On

Orange – unit failure

Red – alert.;

In some equipment the red diode also displays the state of the RAS station area. In that case the system state is encoded as follows:

Alert - The diode is pulsing;

Arming– The diode is lit continuously, if any of the station's zones is armed

Disarmed–The diode is not lit, provided all zones of the RAS station are disarmed.

System bus– The RAS units are connected via the RS485 bus – addressed and queried (polled) by the control panel. Each unit except ATS1190/92 is capable of terminating the bus.

Output- Dedicated for controlling the execution units for control panel managed access control.

Input– Dedicated for the exit button in access control.

- Access control integration– Each unit can be used as an access control interface in control panel as well as locally in the access control DGP. Access control carried out in the control panel can use the dedicated inputs and outputs of the RAS station.
  - Additional equipment such as the ATS1340 door connection box as well as software programming capabilities blocking the door alarm zone etc., is typical for access control.
- CCTV integration Control of a multiplexer a DVMR/DTX recorder is accessible only through LCD manipulators.

| Product | Description                                                                           | User interface |    |       |  |  |
|---------|---------------------------------------------------------------------------------------|----------------|----|-------|--|--|
|         |                                                                                       | Alarm          | AC | Prog. |  |  |
| ATS1100 | Keypad, 2*16 characters LCD/8 zone LEDs                                               | х              | х  | х     |  |  |
| ATS1105 | Keypad, 2*16 characters LCD /8 zone LEDs with Wiegand reader interface.               | х              | х  | x     |  |  |
| ATS1110 | Keypad, 2*16 characters LCD/16 zone LEDs                                              | х              | х  | х     |  |  |
| ATS1111 | Keypad, 4*16 characters LCD/16 zone LEDs                                              | х              | х  | х     |  |  |
| ATS1115 | Keypad, 2*16 characters LCD/16 zone LEDs with inbuilt ATS card reader.                | х              | х  | x     |  |  |
| ATS1116 | Keypad, 2*16 characters LCD/16 zone LEDs with inbuilt ATS card reader.                | х              | х  | x     |  |  |
| ATS1155 | Outdoor, vandal-proof keypad (metal), 3 diodes, detached electronics                  | х              | х  |       |  |  |
| ATS1151 | LED keypad (3 diodes) in metal housing, no LCD                                        | х              | х  |       |  |  |
| ATS1156 | LED Manipulator (3 diodes) in metal housing with ATC600 magnetic card reader (no LCD) | х              | х  |       |  |  |
| ATS1190 | Proximity reader (does not require an interface)                                      | х              | х  |       |  |  |
| ATS1192 | High resistance proximity reader (does not require an interface) indoor/outdoor       | х              | х  |       |  |  |
| ATS1170 | Wiegand reader interface (single door controller) – PCB B+                            | х              | х  |       |  |  |

Table 1-10 RAS device list (System Bus devices)

## 1.2.1.1 ATS1100/05

LCD 2x16 characters 8 area state display diodes 3 system state diodes 4 programmable function keys Opening and pry-off tamper alarm ATS1105 contains a Wiegand equipment interface.

Dimensions (LxHxD, mm): 168x126x40

The ATS1100/05 unit is one of the most basic RAS stations of the ATS system, granting access to all control, management and programming functions of the system. The limited amount of diodes does not allow display of the status of all areas at once on a single device. By choosing (using a DIP switch) the area range for display, the manipulator can be configured to display zones 1-8 and 9-16. Like all RAS devices the ATS1100/05 has an input port for the exit button, and an output port for door lock control from the control panel. Additionally, the ATS1105 is equipped with a Wiegand reader interface. It enables the connection of such a reader without installing an additional Wiegand interface – ATS1170.

The device address as well as bus termination, and other functions for example: keyboard and display backlight, can be set using DIP switches. The connector clamps and the DIP switches can be found after removing the unit's cover.

## 1.2.1.2 ATS1110/11

LCD display 2x16 characters ATS1110 LCD display 4x16 characters ATS1111 16 area state diodes 3 system state diodes Pry-off tamper alarm Dimensions (LxHxD mm): 92x165x25.4 (closed cover)

The ATS1110/11 unit is one of the most basic RAS stations of the ATS system, providing, through the LCD display, access to all system functions. The design of the unit enables access to connector clamps and the DIP switches without opening the device housing. The manipulator is attached to the surface via a metal plate. Assembling device on the mounting bracket, using only one screw. This is a major simplification of the installation process.

The DIP switch serves to set the device address and to set the bus termination. Other settings (diode light settings, LCD backlight, output control etc.) are set via the control panel programming menu.

## 1.2.1.3 ATS1115/16

LCD Display 2x16 characters ATS1115 LCD Display 4x16 characters ATS1116 16 area state diodes 3 system state diodes Pry-off tamper alarm Dimensions (LxHxD mm): 92x165x25,4 (closed cover)

This is an advanced product, containing an integrated ATS Smart Card reader. The integration allows the device to use only one bus address instead of two. The access control function "Card and PIN" of the ATS1250 can be provided by one device.

The LCD display provides access to all system functions. The design of the unit enables access to connector clamps and the DIP switches without removing the device switches. The manipulator is attached to the surface via a metal plate. Assembling device on the mounting bracket, using only one screw. This is a major simplification of the installation process.

The DIP switch serves to set the device address and to set the bus termination. Other settings (diode light settings, LCD backlight, output control etc.) are set via the control panel programming menu.

## 1.2.1.4 ATS1155

3 system state diodes 1 area state diode\* Tamper switch input Detached keyboard and electronics. Dimensions (LxH, mm): 118x75

\*- the red state diode serves to display the RAS station area state as well.

The ATS1155 keyboard is a solution for areas with high risk of vandalism. The metal, damage resistant keyboard and the electronics part of the device are mounted separately. Additional system state diodes can be mounted separately as well. The set consists of the keyboard, a PCB board and connection cables.

The address and bus termination are set using a DIP switch.

## 1.2.1.5 ATS1151/56

3 system state diodes 1 area state diode\* Inbuilt magnetic card reader (ACT600 cards) Opening and pry-off tamper alarm Metal cover Suitable for outdoor use Dimensions (LxHxD mm) ATS1151: 96x67x28 Dimensions (LxHxD mm) ATS1156: 96x96x40

\*- the red state diode serves to display the RAS station area state as well.

The cover design has been proven in the ACC series access control systems from Aritech. The design, as well as a heater integration option, enables the unit to be installed outdoors even in low temperatures.

## 1.2.1.6 ATS1190/92

2 system state diodes (programmable) Reader configurable via a proximity card, or internal programming menu. Optical pry-off tamper alarm Suitable for outdoor use Vandal-proof design RS485 or Wiegand interface, automatically detected Dimensions (LxHxD mm) ATS1190: 36x110x20 Dimensions (LxHxD mm) ATS1192: 42x150x16

Due to its characteristics and price, the ATS1190/92 is a very attractive solution for small to medium systems. A synthetic, water-proof resin that fills the housing makes the unit resistant to damage, as well as severe weather conditions.

Compatible with:

| ATS147x | cards |
|---------|-------|
|         |       |

ATS1621 programmer

Additional accessories for the ATS1190 Reader are replaceable covers in white, red, grey, beige and black.

## 1.2.1.7 ATS1170

2 reader state diodes Tamper input Wiegand or Clock-Data reader interface Door lock relay output Supports autonomous mode for 20 cards Dimensions: B+

Wiegand type card reader interface used to connect readers from other manufacturers and systems to the ATS system. This unit supports autonomous mode, independent of

the control panel. To prepare the unit for that mode, the unit has to be programmed with up to 20 user cards. The programming interface is accessible locally via setting the appropriate DIP switches.

## 1.2.1.8 Listing of the most important parameters

| Parameter          | ATS1100 | ATS1105 | ATS1110 | ATS1111 | ATS1115 | ATS1116 | ATS1151 | ATS1156 | ATS1155 | ATS1190 | ATS1192 | ATS1170 |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Display            | 2x16    | 2x16    | 2x16    | 4x16    | 2x16    | 4x16    | -       | -       | -       | -       | -       | -       |
| State diodes       | 3       | 3       | 3       | 3       | 3       | 3       | 3       | 3       | 3       | 2       | 2       | 2       |
| Area diodes        | 8       | 8       | 16      | 16      | 16      | 16      | 1*      | 1*      | 1*      | (1)     | (1)     | -       |
| Function keys      | 4       | 4       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       |
| Integrated reader. | -       | -       | -       | -       | SC      | SC      | -       | MC      | -       | SC      | SC      | -       |
| Reader interface   |         | Yes     |         |         |         |         |         |         |         |         |         | Yes     |
| Bus termination.   | Yes     | -       | -       | Yes     |
| Autonom. mode      | -       | -       | -       | -       | -       | -       | -       | -       | -       | Yes     | Yes     | Yes     |
| OC output          | Yes     |
| RTE input          | Yes     |

Table 1-11 Listing of the RAS stations characteristics.

\*- the red state diode serves to display the RAS station area state as well.

SC - SmartCard - ATS SmartCard reader

MC - MagneticCard - ACT600 Magnetic card reader

| Parameter         | ATS1100 | ATS1105          | ATS1110 | ATS1111 | ATS1115 | ATS1116 | ATS1151  | ATS1156 | ATS1155 | ATS1190 | ATS1192 | ATS1170 |
|-------------------|---------|------------------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|
| Max Power cons    | 185     | 195              | 9       | 95      |         | 65      | 45       | 45      | 70      | 5       | 0       | 95      |
| Avg. Power cons   | 73      | 78               | 32      |         | 8       | 6       | 34       | 39      | 70      | 29      |         | 65      |
| Operating voltage |         | 10.5 – 13.8 V DC |         |         |         |         |          |         |         |         |         |         |
| Min voltage       | 7.19    | 7.25             |         | 7.4     |         |         | 7.35 9.6 |         |         | .6      | 7.99    |         |
| OC output load    |         | 50mA (12VDC)     |         |         |         |         |          | 1A*     |         |         |         |         |
| IP rating         | IP      | 30               |         | IP30    |         |         | IP30     | IP30    | IP30    | IP54    | IP54    | -       |
| Temp. max. °C     | 5       | 0                | 50      |         | 50      |         | 70 50.   |         | 50.     | 50. 66  |         | 50      |
| Temp. min. °C     | (       | C                | (       |         | 0       |         | -2       | 25      | 0       | -3      | 5       | 0       |
| Humidity          | 95      | 5%               |         | 95      | 5%      |         | 93% 95   |         | 95%     | 6 93%   |         | 95%     |

\*- max. load of the relay connectors

## 1.3 DGP Expansion modules

The DGP expansion modules are system bus devices and are designed to expand the system capabilities. The main task of the DGP is to connect faraway alarm zones, providing a local power source and system outputs. The DGP idea encompasses also access control expansions that enhance the system's functionality in its work area. Distributed intelligence philosophy allows systems configured from DGP and RAS devices to cover a wide range of most complicated applications.

## 1.3.1.1 ATS1201 alarm zone DGP

8 alarm zones on board 32 alarm zones when maximally expanded 8 OC type outputs 16 outputs when maximally expanded. High–current, monitored siren output Integrated switched mode power supply 2,2A Auxiliary battery back-up M – ATS1641 housing A type mainboard

The basic DGP device, providing remote ATS zone handling. Full support of the selected area is provided by the integrated power supply (2A) with battery back-up feature, a housing big enough to hold additional expansions, and an option of controlling a siren. Note that this device allows the alarm system to take advantage of the whole range of alarm zone addresses.

The configuration of the device is done via correct setting of the DIP switches.

| Expansion          | Description                   | Amt. | Size |
|--------------------|-------------------------------|------|------|
| Inputs – installed |                               |      |      |
| ATS1202            | 8 alarm zone expansion        | 3    | В    |
| Outputs – installe | ed in available housing slots |      |      |
| ATS1810            | 4 relay outputs               | 2    | В    |
| ATS1811            | 8 relay outputs               | 2    | BB   |
| ATS1820            | 16 open collector outputs.    | 1    | B+   |

Table 1-13 DGP ATS1201 compatible expansion modules:

Table 1-14 DGP ATS1201housing space

| M – ATS1641 housing                 |        |                     |  |  |  |
|-------------------------------------|--------|---------------------|--|--|--|
| Battery Capacity Free housing slots |        |                     |  |  |  |
| BS127N                              | 7,2Ah  | 8xB or 4xBB or 4xB+ |  |  |  |
| 2xBS127N                            | 14,4Ah | 8xB or 4xBB or 4xB+ |  |  |  |
| BS131N                              | 18Ah   | 4xB or 2xBB or 2xB+ |  |  |  |

## 1.3.1.2 ATS1203 alarm zone DGP

8 alarm zones on board 32 alarm zones when maximally expanded 8 OC type outputs 32 outputs when fully expanded. High – current, monitored siren output Integrated switched mode power supply 3A Auxiliary battery back-up M – ATS1641 housing

A new advanced DGP device, the ATS1203 provides support for a remote ATS area. Full support of the selected area is provided by the more powerful integrated power supply (3A) with battery back-up feature, a housing big enough to hold additional expansions, and an option of controlling a siren. Note that this device allows the alarm system to take advantage of the complete range of alarm zone addresses.

In contrast to ATS1201 all device settings are configurable remotely via a control panel programming menu, or using the TITAN software.

| Expansion          | Description                   | Amt. | Size |
|--------------------|-------------------------------|------|------|
| Inputs – installed | l in available housing slots  |      |      |
| ATS1202            | 8 alarm zone expansion        | 3    | В    |
| Outputs – installe | ed in available housing slots |      |      |
| ATS1810            | 4 relay outputs               | 2    | В    |
| ATS1810            | 8 relay outputs               | 4    | BB   |
| ATS1820            | 16 open collector outputs.    | 2    | B+   |

Table 1-15 DGP ATS1203 compatible expansion modules

Due to the fact that both the ATS1203 and ATS1201 come in an identical housing, and the dimensions of their circuit boards are the same, the parameters for configuring the batteries and additional housing space are the same for both models, and can be found in Table 1-14.

## 1.3.1.3 ATS1210/11/20 alarm zone DGP

8 onboard zones – 4 for zones on ATS1220 8 OC outputs 16 outputs when fully expanded (lack of housing space) Power supply: 12V DC ATS1210 – metal housing – ATS1643 ATS1211/20 – plastic housing – ATS1644 Dimensions: B+

This module is supplied with power directly form the system bus, or an external power source – the power supply planning details are outlined in chapter 2. The housing supplied with the units don't provide space for any expansions. Any output expansion plans must be preceded by a housing replacement.

| Table 1-16 ATS1210/11/20 DGP compatible expansion modules |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| Expansion          | Description                  | Amt. | Size |
|--------------------|------------------------------|------|------|
| Outputs – installe | d in available housing slots |      |      |
| ATS1810            | 4 relay outputs              | 2    | В    |
| ATS1810            | 8 relay outputs              | 4    | BB   |
| ATS1820            | 16 open collector outputs.   | 2    | B+   |

## 1.3.1.4 ATS1230 Wireless devices DGP

16-32 programmable channels/Wireless devices Device learning function Operating Frequency: 433MHz Power supply: 12V DC Lack of bus terminator Dimensions (LxHxD mm): Housing: plastic

The device is suitable for locations inaccessible by standard wired solutions. A wide range of wireless devices – transmitters – detailed in the table below shows that this product can support all security related tasks. The only difficulty is the lack of the bus terminator, meaning the maximum distance of the ATS1230 module from the control panel is 300m. For larger distances, an additional terminating resistor needs to be used. The data bus details are provided in section 3.1.

Table 1-17 DGP ATS1230 compatible list of transmitters.

| Product    | Description                                                                                   | Range m |
|------------|-----------------------------------------------------------------------------------------------|---------|
| RF320I4    | Wireless magnetic sensor (or a transmitter for a wired sensor – type NO/NC), sabotage         | 300     |
| RF352l4    | Remote control, keyfob 2 buttons                                                              | 150     |
| RF354I4    | Remote control, keyfob 4 buttons                                                              | 150     |
| RF356l4    | Wireless panic button in form of a wristwatch.                                                | 150     |
| RF360I4    | Water resistant wireless panic button, belt clip or neck leash.                               | 300     |
| RF425l4    | Wireless PIR sensor, EV425, 9/16m, 9 screens, opening and tear-out sabotage alarm             | 300     |
| RF425I4PI  | Wireless PIR sensor, EV425, 9/16m, 9 screens, opening and tear-out sabotage alarm, PI version | 300     |
| RF572NSTI4 | Wireless optical-thermal smoke detector, sabotage alarm, internal siren                       | 300     |
| RF620I4    | Wireless inertia and magnetic sensor, sabotage alarm, white                                   | 300     |
| RF620I4B   | Wireless inertia and magnetic sensor, sabotage alarm, brown                                   | 300     |
| RF903l4    | Wireless glassbreak detector, acoustic, plaster mounted, sabotage alarm                       | 300     |
| RF900l4    | Diagnostic wireless sensor testing kit, 433MHz.                                               | 300     |

## 1.3.1.5 ATS1290 addressable devices DGP.

32 Point ID<sup>®</sup> addressable devices 32 system outputs PID bus learning mode Power supply: 12V DC

This new device in the Advisor MASTER system allows the use of the local communications bus interface of the DGP module to connect sensors to the alarm system. To communicate with the devices, an open architecture Point ID<sup>®</sup> interface is used. The bus planning details, recommended wiring etc. can be found in section 3.2.2. In addition to the DGP module a whole range of, Point ID compatible, devices is available, and listed in the table below.

The device can be programmed via the remote device menu. The DIP switches serve only to supply the DGP module address, and to activate the bus terminator.

The use of addressable sensor technology significantly reduces the cost of system wiring by simplifying it, reducing the installation time, the amount of materials used etc.

| Product    | Description                                                                    | Inputs | Outputs |
|------------|--------------------------------------------------------------------------------|--------|---------|
| SI-AD      | Universal, single input Point ID module                                        | 1      | 0       |
| AD011      | Universal Point ID module, 1I/10C                                              | 1      | 1       |
| AD044      | Universal Point ID module, 4I/4O, monitored, externally powered, relay outputs | 4(+4)  | 4       |
| AD111      | Point ID module, 1I/1OC installable inside the sensor.                         | 1      | 1       |
| AP750-AD   | PIR sensor, range: 15,2m; 7 curtains;                                          | 1      | 1       |
| EV435-AD   | PIR sensor, 9/16m, 9 curtains, Point ID interface                              | 1      | 1       |
| EV435AM-AD | PIR sensor, 9/15m, 7 curtains, antimasking,<br>Point ID interface              | 2      | 2       |

Table 1-18 List of available Point ID devices

#### 1.3.1.6 ATS1250 4 door Access Control DGP

4 bi-directional passages
4 direct Wiegand reader inputs
16 remote readers on the local bus
16 onboard alarm zones
4 door lock control relay outputs
up to 48 additional outputs
Advanced access control functions
48 macrodefinitions
Full local copy of the user database
Autonomous operation mode
Integrated 4,5A switching mode power supply
Auxiliary battery back-up
L type housing
Dimensions: D

A 4 door controller provides advanced access control functions for the users of the Advisor MASTER system. The device has been designed to work independently of the control panel unit. The autonomy of the controller is assured by a full local copy of all the system settings, including both user and card databases. Additionally the equipment has been designed to directly control locks, entry buttons (RTE), readers, door and lock alarm zones, tamper alarms etc. This ensures, that even when communication problems with the control panel occur, the controlled passages will function flawlessly. Communications with the control panel is not necessary for proper functioning of the passages, although the available DGP mainboard inputs, dedicated to access control tasks, can be

programmed to act as alarm zones of the alarm system. The readers and access control keyboards of the ATS1250 DGP can be used to the alarm system control functions. Configuration details using the ATS1250 device can be found in section 4.4.2.

Table 1-19 DGP ATS1250 compatible expansion modules

| Expansion                                   | Description                                            | Amt.     | Size    |  |  |
|---------------------------------------------|--------------------------------------------------------|----------|---------|--|--|
| Memory – mount                              | ted in the slot on the mainboard, only one of the foll | owing mo | odules. |  |  |
| ATS1830                                     | 1Mb – pre-installed                                    |          | -       |  |  |
| ATS1831                                     | 4Mb, IUM                                               | 1        | -       |  |  |
| ATS1832                                     | 8Mb, IUM                                               |          | -       |  |  |
| Outputs- mounted in available housing slots |                                                        |          |         |  |  |
| ATS1810                                     | 4 relay outputs                                        | 2        | В       |  |  |
| ATS1811                                     | 8 relay outputs                                        | 6        | BB      |  |  |
| ATS1820                                     | 16 open collector outputs                              | 3        | B+      |  |  |

| Table 1-20 | DGP ATS1250.housing space |
|------------|---------------------------|
|------------|---------------------------|

| L – ATS1642 housing |          |                     |  |  |  |
|---------------------|----------|---------------------|--|--|--|
| Battery             | Capacity | Free housing slots  |  |  |  |
| BS127N              | 7.2Ah    |                     |  |  |  |
| 2xBS127N            | 14.4Ah   |                     |  |  |  |
| BS131N              | 18Ah     | 6xB or 3xBB or 4xB+ |  |  |  |
| BS129N              | 26Ah     |                     |  |  |  |
| 2xBS129N            | 52Ah     |                     |  |  |  |

## 1.3.1.7 ATS1260 4 lift Access Control DGP.

4 elevators (lifts) 64 elevator floors 4 direct Wiegand reader inputs 16 remote readers on the local bus 15 local DGP (256 zones – one for every floor in each elevator) 16 dedicated onboard inputs 4 relay outputs (expandable to 256) Advanced access control functions 48 macrodefinitions Full local copy of the user database Autonomous operation mode Integrated 4.5A switched mode power supply Auxiliary battery back-up L type housing Dimensions: D

The lift controller was based on the ATS1250 4-door controller hardware. The device is supplied as a set ATS1250+ATS1260UP – a lift controller software and instruction manual package and the ATS1250. Because of that, the available space details in the ATS1260 housing, are identical with those of ATS1250, detailed in Table 1-20.

Contrary to the ATS1250 the elevator control DGP requires installation of additional local DGP modules in order o achieve the maximum amount of 256 floor request inputs (4 elevators x 64 floors), and 256 outputs for visualization of the selected floors. The ATS1260 DGP is compatible with every alarm zone DGP of the ATS system, and every RAS station of the ATS system, see Table 1-10), using the ATS1170 and the IUM function with every Wiegand interface reader, and 48-bit cards. The local bus design procedure has been outlined in section 3.2.1.

Table 1-21 ATS1260 DGP compatible expansion modules.

| Expansion                                    | Description                                            | Amt.     | Size    |  |  |
|----------------------------------------------|--------------------------------------------------------|----------|---------|--|--|
| Memory – mount                               | ted in the slot on the mainboard, only one of the foll | owing mo | odules. |  |  |
| ATS1830                                      | 1Mb – preinstalled                                     |          | -       |  |  |
| ATS1831                                      | 4Mb, IUM                                               | 1        | -       |  |  |
| ATS1832                                      | 8Mb, IUM                                               |          | -       |  |  |
| Outputs- mounted in available housing slots. |                                                        |          |         |  |  |
| ATS1810                                      | 4 relay outputs.                                       | 1        | В       |  |  |
| ATS1811                                      | 8 relay outputs.                                       | 16       | BB      |  |  |
| ATS1820                                      | 16 open collector outputs.                             | 16       | B+      |  |  |

## **1.3.1.8** Listing of the most important parameters.

Table 1-22 DGP device list (RS485 bus devices)

| Product | Description                                                                                  |
|---------|----------------------------------------------------------------------------------------------|
| ATS1201 | 8 zones (max.32) and 8 outputs (max.16) expander, integrated 2A power supply, M type housing |
| ATS1203 | 8 zones (max.32) and 8 outputs (max.32) expander, integrated 3A power supply, M type housing |
| ATS1210 | 8 zones and 8 outputs expander, plastic housing (ATS1644)                                    |
| ATS1211 | 8 zones and 8 outputs expander, metal housing (ATS1643)                                      |
| ATS1220 | 4 zones and 8 outputs expander, plastic housing (ATS1644)                                    |
| ATS1290 | 32 addressable sensors expander                                                              |
| ATS1230 | 433MHz wireless device receiver (up to 32 sensors and 16 remotes), plastic housing           |
| ATS1250 | 4-doors access controller, integrated 4,5A power supply, L type housing                      |
| ATS1260 | 4-elevators (64 floors) controller, set of ATS1250+firmware, requires additional DGP modules |

| Table 1-23 Listing of the alarm zone DGP characteristics |
|----------------------------------------------------------|
|----------------------------------------------------------|

| Parameter          | ATS1201 | ATS1203 | ATS1210/11 | ATS1220 | ATS1230    | ATS1290 |
|--------------------|---------|---------|------------|---------|------------|---------|
| Onboard zones      | 8       | 8       | 8          | 4       | 32*        | 32*     |
| Max. zones q-ty    | 32      | 32      | 8          | 4       | 32*        | 32*     |
| Onboard outputs    | 8 OC    | 8 OC    | 8 OC       | 8 OC    | -          | 32*     |
| Max. outputs q-ty  | 16      | 32      | 16**       | 16**    | -          | 32*     |
| Siren output       | Yes     | Yes     | -          | -       | -          | -       |
| Power supply       | 230V AC | 230V AC | 12V DC     | 12V DC  | 12V DC     | 12V DC  |
| Housing            | М       | М       | ATS1643    | ATS1643 | Plastic    | ATS1644 |
|                    |         |         | ATS1644    |         | 104x132x27 |         |
| Circuit board size | A       | A       | B+         | B+      | _          | B+      |

\*- addressable and wireless devices

\*\*-output expansions possible only after replacing the housing

| Parameter                   | ATS1250        | ATS1260            |
|-----------------------------|----------------|--------------------|
| Number of passages          | 4 doors        | 4 lifts/ 64 floors |
| Number of onboard reader IF | 4              | 4                  |
| Max. number of readers      | 16             | 16                 |
| Local DGP q-ty              | -              | 15                 |
| Onboard zones               | 16             | 16                 |
| Max. onboard zones          | 16             | 16                 |
| Max. zone quantity          | 16             | 256                |
| Onboard outputs             | 4 relay.+ 8 OC | 4 relay. + 8 OC    |
| Max. output quantity        | 48             | 256                |
| Siren output                | Yes            | Yes                |
| Power supply                | 230V AC        | 230V AC            |
| Housing                     | М              | М                  |
| Circuit board size          | A              | A                  |

Table 1-24 Listing of the access control DGP characteristics

Table 1-25 DGP technical characteristics

| Parameter            | ATS1201 | ATS1203 | ATS1210/11 | ATS1220  | ATS1230  | ATS1290  | ATS1250/60 |
|----------------------|---------|---------|------------|----------|----------|----------|------------|
| Max Power cons.      | 80      | 80      | 53         | 53       | 30       | 154      | 275        |
| Avg. Power cons.     | 75      | 75      | 50         | 45       | 30       | 53       | 275        |
| Operating voltage    | 230V AC | 230V AC | 12V DC     | 12V DC   | 12V DC   | 12V DC   | 230V AC    |
| Min. voltage         | ±10%    | ±10%    | 10.5V DC   | 10.5V DC | 10.5V DC | 10.5V DC | ±10%       |
| Power supply unit    | 2A      | 3A      | -          | -        | -        | -        | 4,5A       |
| OC output load       | 50mA    | 50mA    | 50mA       | 50mA     | -        | -        | 50mA       |
| Relay contacts load  | 1A@30V  | 1A@30V  | 1A@30V     | 1A@30V   | -        | -        | 1A@30V     |
| Door lock relay load | -       | -       | -          | -        | -        | -        | 2A@30V     |
| Temp. max. °C        | 50      | 50      | 50         | 50       | 60       | 50       | 50         |
| Temp. min. ⁰C        | 0       | 0       | 0          | 0        | 0        | 10       | 0          |
| IP rating            | IP30    | IP30    | IP30       | IP30     | IP30     | IP30     | IP30       |
| Humidity             | 95%     | 95%     | 95%        | 95%      | 90%      | 95%      | 95%        |

## 1.4 System accessories

## 1.4.1.1 System input and output modules.

| ATS1202 | 8 alarm zones.<br>Used for control panel and DGP expansion<br>Dimensions: B                                                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATS1810 | 4 relay outputs. Asynchronous device, not compatible with remaining output expansions. This module converts OC outputs into relay outputs. Dimensions: B                                                   |
| ATS1811 | 8 relay outputs. Synchronous device, enabling cascade linking to provide additional outputs.<br>Dimensions: BB                                                                                             |
| ATS1820 | 16 OC outputs. Synchronous device, enabling cascade linking of modules.<br>Dimensions: B+                                                                                                                  |
| ATS1821 | 8 OC outputs. Synchronous device, it's not possible to cascade link the modules.<br>Dedicated module for communications with external communicators not integrated with<br>the ATS system<br>Dimensions: B |

## 1.4.1.2 Alarm communicator modules.

| ATS7100 | ISDN-B communicator<br>Connected to the control panel through the MI bus<br>Supports all ATS reporting functions<br>Uses standard protocols (SIA, CID, etc.)<br>Supports all ISDN configurations<br>Allows remote connections to the TITAN software<br>In case of a reporting need, takes control over the ISDN line.<br>Dimensions: A                                                                                                                                                                                        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATS7200 | Voice reporting module.<br>Connected to the control panel through the MI bus<br>Supports voice reporting through all communication channels.<br>Total message duration 35sec.<br>8 voice messages (including greeting)<br>Flexible mapping of voice messages to events.<br>Up to 2 modules can be installed in the control panel.<br>Dimensions:: B+                                                                                                                                                                          |
| ATS7300 | GSM communicator<br>Connected to the control panel through the MI bus<br>Supports all ATS reporting functions<br>Uses standard protocols (SIA, CID, etc.)<br>Has an unique network delay adaptation function.<br>Network signal monitoring<br>External antenna<br>Integrated GSM phone module<br>Dimensions: B+<br><b>1.4.1.3</b> Computer and printer communication modules.                                                                                                                                                 |
| ATS1801 | Computer and printer interface<br>The device provides two RS232 ports for the computer and printer each.<br>The printer port is unidirectional, and serves to send the events to a serial printer and<br>to integrate the ATS system with CCTV systems that use DVMR digital recorders.<br>The computer port serves to directly, or remotely connect to a PC without time limits<br>with a broaden bandwidth (4800bps)<br>Module connects directly do the mainboard, does not use housing expansion slots.<br>Dimensions:: B+ |
| ATS1802 | Printer interface<br>This device provides one RS232 printer port.<br>The printer port is unidirectional, and serves to send the events to a serial printer and<br>to integrate the ATS system with CCTV systems that use DVMR digital recorders.<br>Module connects directly do the mainboard, does not use housing expansion slots.<br>Dimensions: B+<br><b>1.4.1.4 RS485 bus accessories.</b>                                                                                                                               |
| ATS1740 | Bus amplifier/isolator. Provides the RS485 bus signal amplification and galvanic insulation of the bus branch up to 1.5kV. Increases the range of the bus and allows implementation of complex RS485 bus networks.                                                                                                                                                                                                                                                                                                            |
| ATS1741 | Dimensions: B<br>Bi-directional RS485 – RS232 converter. The device converts bus signal for modem<br>communications, and for linking control panels in a network.<br>Dimensions: B+                                                                                                                                                                                                                                                                                                                                           |
| ATS1742 | Loop interface. Allows creation of a RS485 bus loop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Dimensions: BB

ATS1743 Fibre-optical converter. Converts the RS485 signal into optical signal, allowing the use of optical fibres in data bus construction.

Dimensions: B Parameters: Wavelength: 820nm Optical fibre: 62,5/125um multimode Converter: LED Flux budget: 15dB AGC: none

## 1.4.1.5 Memory modules.

The ATS system has three memory modules:

ATS1830 1Mb memory module.

ATS1831 4Mb memory module, hardware IUM.

ATS1832 8Mb memory module, hardware IUM. Functional details, and guidelines for choosing the right module are described in control panel configuration, section 4.1.

## 1.4.1.6 ATS system Wonder-Box housing

The ATS system housing provide a standard set of mounting points, which makes them compatible with every expansion. The expansions have standardised circuit board sizes. Because of that, they fit exactly into the housing slots, which can be flexibly used to build the system. Detailed information concerning the housing, the free space inside etc. can be found in the appendices at the end of this document.

#### 1.4.1.7 Miscellaneous accessories

- ATS1340
   Door connection box.

   Provides connectors for: a reader, an exit button, a door lock device, external power supply and the data bus..

   Is equipped with lock control relays

   ATS1621
   Smart card programmer

   ATS1630
   RS232 temporary service connection cable
- ATS1631 ATS18xx and ATS1202 expander connection cable
- ATS1632 ATS1801 RS232 direct connection cable

## 1.5 ATS8100 – TITAN Software

## 1.5.1.1 **Programming Tool**

The TITAN system provides a simple, Windows<sup>®</sup> compatible interface, which simplifies programming of the Advisor MASTER system control panel.

## 1.5.1.2 Data Sending/Receiving

A PC with a working TITAN system can be connected to the control panel either remotely (via the inbuilt PSTN communicator), or locally (through a RS232 connection). The RS232 connection can be time-limited (60 min) – if the inbuilt RS232 port is used – or permanent if an optional ATS1801 computer/printer interface is used. In any mode the TITAN system can retrieve and store the whole database or just one setting at a time.

The TITAN system can be used to make backups, and store archive copies of the data from 9999 independent systems on one PC. Each system can consist of 1024 control panels using the same user database.

## 1.5.1.3 Reports

An efficient report printing function makes it possible to create detailed programming sheets for all the system information contained in the TITAN database. This provides help in quick fault removal, system expansion, programming and maintenance. It provides the option of generating a large number of customised log reports. The reports can encompass any combination of date/hour ranges, manipulators, users and other parameters. ATS Smart Card programming, can be done in place, using the TITAN system in conjunction with an optional card programmer.

## 1.5.1.4 Remote diagnostics

Every ATS control panel, can be subjected to diagnostic sessions by the TITAN system, which gathers the reports. The parameters verified by the diagnostic software conform to the EN50131 standard and encompass analogue signal measurement such as input loop resistance as well as voltage and supplied current for all RAS stations and DGP modules connected to the data bus.

#### 1.5.1.5 Zone maps

Alarm map images (floor diagrams or drawings) can be configured to provide detailed information for any zone in the system. In case of zone activation, the information is displayed on the map, which enables the operator to manually control the alarm on the map. To simplify the TITAN system operation, a "Point & Click" interface has been implemented, using a context menu. All alarm events can be handled from the map level, and not only from the ALARM menu. Several operators can use the same TITAN system, each having appropriate access privileges, and being subjected to specific restrictions.

## 1.5.1.6 Real-time event logging

The real-time event log contains all triggered events, along with the date, hour, and event description. The information is then stored in the history database, which can be archived, reported and displayed as a permanently visible window.

## 1.5.1.7 Photo ID

The TITAN system provides a fully integrated Photo ID solution, which allows creation of user, guest or client identification cards with their photo. The photographs can be captured from a camera video stream, or imported in digital format. The TITAN system enables design and priming of any user card sets either with detailed information about the company and user (taken from the database), or without.

## 1.5.1.8 Control panel network monitoring

The TITAN system can support up to 16 COM ports simultaneously. Each COM port can support up to 16 ATS control panels. In total there can be 64 systems connected to the TITAN software at the same time. Each control panel is an independent security system that reports to a single TITAN system.

## 1.5.1.9 ATS8100UP – Update

The software is provided in two versions – full and update. That way users of older versions of the software can easily extend their systems with new features. The UP version has a full range of database tools, and can, if needed, update and repair existing databases without the need to import them after finishing the update.

## 1.5.1.10 Licence

In Poland the TITAN software is distributed free of charge, and the associated royalties are included in the price of the control panel modules necessary to use the system's functions. Nevertheless all licence provisions hold their power – see software appendix.

| Parameter                                                    | Value                                               |
|--------------------------------------------------------------|-----------------------------------------------------|
| System requirements:                                         | Windows OS( 95/98, NT, 2000 or XP                   |
|                                                              | Processor: Pentium 166 or better                    |
|                                                              | 32 MB RAM                                           |
|                                                              | 100 MB free hard drive space                        |
|                                                              | CD-ROM drive and mouse                              |
| Maximum number of connected PC's                             | 1 (TITAN is single workstation software)            |
| Maximum number of simultaneously<br>connected control panels | 64                                                  |
| Maximum number of control panels in the system:              | 1024                                                |
| Maximum number of systems in the database:                   | 9999 systems                                        |
| Maximum number of printers:                                  | Dependant on the number of assigned ports           |
| Communication ports in the PC:                               | Serial ports installed in the system (max. 16)      |
| Recommended connection cable for<br>ATS1801:                 | 4-wire shielded RS232 data cable (not twisted pair) |
| Recommended cable for the inbuilt RS232 port:                | ATS1630 (RS232 active cable)                        |
| Maximum wiring length for RS232:                             | 15 metres                                           |

Table 1-26 Technical characteristics

## **2** System power supply.

In every security system, the power supply design is an essential part. Providing the equipment with adequate working conditions in critical situations is vital for building security. Below are some of the critical aspects of the power supply problem, pertaining to system design:

- Power supply efficiency;
- Backup power batteries and their recharging;
- Power requirements of the equipment;
- Power transmission losses;
- Shielding and grounding.

Due to the area covered, and projected flexibility the Advisor MASTER system offers a distributed power supply system. The control panels, as well as the DGP (alarm and access control) are equipped with a switched mode power supply with current draw ranging from 2.2A to 4.5A (13.8V DC). Each device is designed to provide backup power, and to supply equipment connected directly, or through the system bus. This ensures the alarm system is constantly supplied from a local power source, connected to the central unit only through the data bus.

Each ATS system power supply is equipped with a backup power system. The batteries are charged from the main power supply. Because of that, it is necessary to secure a proper margin of power supply current draw to enable recharging of the batteries appropriately fast enough for system security level.

A unique feature about the ATS equipment is verification of not only the presence of a battery, but also its condition. During the battery test, the system switches to battery power for a while, checking how much power it drains from the battery (it measures the voltage drop, current and time). After restoring the mains power supply, the system verifies the amount of energy necessary to restore the battery to its starting state (measuring the voltage, current and time). Based on the gathered data, the system verifies battery life and, if necessary, sends an appropriate service report. The event log will of course contain the appropriate entries.

Another feature of the Advisor MASTER system power supply is a battery deep discharge protection, which ensures the batteries do not get broken by complete discharge. During a longer period of operating on battery power, if the supplied voltage drops below a certain level, the system goes into a suspended state after sending the appropriate reports to a SMA station and logging the appropriate entries in the event log. When the main power supply becomes available again, the system will restore itself to full functionality, send the appropriate reports to the SMA station and log the appropriate entries in the event log.

## 2.1 System power supply

The system power supplies are available in the control panels, the ATS1201/03 basic system DGP and ATS1250 Access control DGP. The use of a system power supply is recommended whenever possible, due to the advanced power supply monitoring functions and the capability of testing the batteries. The power requirement data for the equipment does not include the power requirements for expansions and other system devices connected to them. The average values are given for equipment in stand-by mode – normal zones state etc. The peak values pertain to the system in alarm state – shorted zones, increased data bus communications etc. but do not include power requirements for signal outputs, and other devices supplied by the system. The power supply design should provide adequate supply for those devices. To simplify the definition of power requirements, the following lists have been assembled:

| Device  | PSU<br>Current | Current consumption |         | Comment                      |
|---------|----------------|---------------------|---------|------------------------------|
|         | Draw           | Max.                | Average |                              |
| ATS2000 | 2.2A           | 250mA               | 170mA   | 250mA max. all inputs active |
| ATS3000 | 2.2A           | 250mA               | 170mA   |                              |
| ATS4000 | 2.2A           | 250mA               | 200mA   |                              |
| ATS4500 | 2.2A           | 250mA               | 200mA   |                              |
| ATS1201 | 2.2A           | 120mA               | 75mA    | 120mA max. all inputs active |
| ATS1203 | 3.0A           | 120mA               | 75mA    |                              |
| ATS1250 | 4.5A           | 275mA               | 275mA   | Access control device.       |

Table 2-1 Power supply efficiencies, and power requirements.

To simplify the work of the designer, we gathered data for the typical power supply and battery configurations and placed them in the table below (Table 2-3). The assumption for the evaluation in Table 2-3 is system security level 3 and 4 – The system is supplied in stand-by mode for 60 hours, and the batteries are recharged to 80% capacity in less than 12 hours (EN50131).

The battery configurations listed by housing and equipment size are gathered in Table 2-2.

| Housing        | ATS1640 | ATS1641 | ATS1642 | ATS1642 | Battery  | Recommended    |
|----------------|---------|---------|---------|---------|----------|----------------|
| Device         | ATS2000 | ATS4000 | ATS4500 | ATS1250 | capacity | configurations |
| Battery        | ATS3000 | ATS1201 |         | ATS1260 |          |                |
| Configurations |         | ATS1203 |         |         |          |                |
| BS127N         | X       | X       | X       | x       | 7.2Ah    | x              |
| BS130N         |         |         | x       | x       | 10Ah     |                |
| BS131N         | Х*      | Х*      | X       | x       | 18Ah     | x              |
| 2xBS127N       |         | X       |         | x       | 14.4Ah   | x              |
| BS129N         |         |         | X       | x       | 26Ah     | x              |
| 2xBS129N       |         |         |         | x       | 52Ah     | x              |

Table 2-2 Battery configurations for Advisor MASTER devices.

\*- lack of expansion space underneath the control panel/DGP mainboard

| Table 2-3 Security lev | el 3 and 4 equipment | power supply. |
|------------------------|----------------------|---------------|
|------------------------|----------------------|---------------|

| Device      | Battery<br>Ah | Device power<br>consumption<br>mA | Additional load<br>mA | Charging<br>current<br>mA |
|-------------|---------------|-----------------------------------|-----------------------|---------------------------|
| ATS2/3/4018 | 18            | 200                               | 85                    | 1715                      |
| ATS1201     | 7,2           | 75                                | 39                    | 1880                      |
|             | 18            | 75                                | 210                   | 1710                      |
|             | 25            | 75                                | 320                   | 1600                      |
| ATS1203     | 7,2           | 75                                | 40                    | 2685                      |
|             | 18            | 75                                | 220                   | 2500                      |
|             | 25            | 75                                | 330                   | 2395                      |
| ATS4500     | 18            | 200                               | 85                    | 1715                      |
|             | 25            | 200                               | 200                   | 1600                      |

## 2.2 System equipment power consumption.

Devices equipped with a power supply – control panels, and some DGP – have safety measures which prevent excessive battery discharging, switching them off if the voltage drops below 10.5V. For other devices, the minimum voltage required to operate correctly has been gathered in table Table 7-9 placed in the last chapter of the manual. The values for equipment connected to devices equipped with a power supply are only for orientation purposes.

Some devices have characteristic current consumption values depending on the connected equipment. In the table below the current consumption is given for the device with connected equipment. A detailed list of device parameters in different working conditions are given in chapter 7 of the manual in table Table 7-9.

| Device      | Connected |                                                                                     | Current con. mA |         |  |
|-------------|-----------|-------------------------------------------------------------------------------------|-----------------|---------|--|
|             | equipment |                                                                                     | Max.            | Average |  |
| ATS1100     | -         | Keypad, 2*16 characters LCD/8 zone LEDs                                             | 185             | 73      |  |
| ATS1105     | -         | Keypad, 2*16 characters LCD /8 zone LEDs with Wiegand reader interface.             |                 | 78      |  |
| ATS1105+    | ATS1410   | ATS1105 manipulator with a magnetic card reader connected                           | 195             | 150     |  |
| ATS1110     | -         | Keypad, 2*16 characters LCD/16 zone LEDs                                            | 95              | 32      |  |
| ATS1111     | -         | Keypad, 4*16 characters LCD/16 zone LEDs                                            | 95              | 32      |  |
| ATS1115     | -         | Keypad, 2*16 characters LCD/16 zone LEDs with inbuilt ATS card reader.              | 165             | 86      |  |
| ATS1116     | -         | Keypad, 2*16 characters LCD/16 zone LEDs with inbuilt ATS card reader.              | 169             | 86      |  |
| ATS1151     | -         | LED keypad (3 diodes) in metal housing, no LCD                                      | 45              | 34      |  |
| ATS1155     | -         | Outdoor, vandal-proof keypad (metal), 3 diodes, detached electronics                | 70              | 70      |  |
| ATS1156     | -         | LED Manipulator (3 diodes) in metal housing with ATC600 magnetic card reader        | 45              | 39      |  |
| ATS1170     | -         | Wiegand reader interface (single door controller) – PCB                             | 45              | 32      |  |
| ATS1170+    | ATS1190   | Interface with a proximity card reader connected.                                   | 95              | 65      |  |
| ATS1190     | -         | Proximity reader (does not require an interface)                                    | 50              | 29      |  |
| ATS1192     | -         | High resistance proximity reader (does not require an interface) indoor/outdoor use | 50              | 29      |  |
| ATS1202     | -         | 8 zones module for expander and control panel- PCB                                  | 10              | 9       |  |
| ATS1210/11  | -         | 8 zones and 8 outputs expander                                                      | 53              | 50      |  |
| ATS1210/11+ | ATS1810   | ATS1210 with 4 relay outputs module connected                                       | 130             | 70      |  |
| ATS1210/11+ | ATS1811   | ATS1210 with 8 relay outputs module connected                                       | 225             | 110     |  |
| ATS1210/11+ | ATS1820   | ATS1210 with 16 open collector outputs module<br>connected                          | 90              | 38      |  |
| ATS1220     | -         | 4 zones and 8 outputs expander                                                      | 53              | 45      |  |
| ATS1230     | -         | 433MHz wireless device receiver                                                     |                 | 39      |  |
| ATS1290     | -         | Point ID addressable sensor expander.                                               | 154             | 50      |  |
| ATS1740     | _         | Isolator/ RS485 bus repeater - PCB                                                  | 90              | 60      |  |
| ATS1741     | -         | RS485 / RS232 bus converter- PCB                                                    | 100             | 100     |  |
| ATS1742     | -         | RS485 bus loop interface – PCB                                                      | 86              | 86      |  |
| ATS1743     | -         | Fibre-optical bus converter- PCB                                                    | 60              | 36      |  |
| ATS1810     | -         | 4 relay NO/NC outputs module – PCB                                                  | 60              | 1       |  |
| ATS1811     | -         | 8 relay NO/NC outputs module – PCB                                                  | 170             | 20      |  |
| ATS1820     | -         | 16 open collector outputs module – PCB                                              | 50              | 20      |  |

Table 2-4 Characteristic power requirements for the ATS devices.

| Device  | Connected | •                                                                              |     | Current con. mA |  |
|---------|-----------|--------------------------------------------------------------------------------|-----|-----------------|--|
|         | equipment |                                                                                |     | Average         |  |
| ATS1801 | -         | Control panel RS232 computer/ printer interface (2 ports)                      | 60  | 20              |  |
| ATS1802 | -         | Control panel RS232 printer interface                                          | 60  | 20              |  |
| ATS1830 | -         | ATS3000/4000 control panel 1MB memory expansion                                | 30  | 3               |  |
| ATS1831 | -         | ATS4000/4500 control panel and ATS1250 controller 4MB Intelligent User Memory. | 30  | 10              |  |
| ATS1832 | -         | ATS4000,4518 control panel and ATS1250 controller 8MB Intelligent User Memory. | 30  | 10              |  |
| ATS7100 | -         | ISDN communicator module, B channel                                            | 92  | 45              |  |
| ATS7200 | -         | ATS Master control panel voice module (2+6 messages)                           | 50  | 23              |  |
| ATS7300 | -         | GSM communicator module                                                        | 110 | 20              |  |
| ATS1410 | -         | Magnetic card reader                                                           | 75  |                 |  |

## Several examples of power requirement calculations for expanded devices.

Table 2-5 Expanded ATS3000 control panel power requirements.

| Device  | Description                                                                               | Current consumption mA |         | Comment                                  |
|---------|-------------------------------------------------------------------------------------------|------------------------|---------|------------------------------------------|
|         |                                                                                           | Max.                   | Average |                                          |
| ATS3000 | Control panel 8 zones(max.64), 8<br>areas, with a dialler, S type power<br>supply housing | 250                    | 170     | Maximum current for all<br>zones shorted |
|         | Connected equ                                                                             | ipment                 |         |                                          |
| ATS1202 | 8 inputs module for expander and control panel- PCB                                       | 10                     | 9       |                                          |
| ATS1202 | 8 inputs module for expander and<br>control panel- PCB                                    | 10                     | 9       |                                          |
| ATS1801 | Control panel RS232 computer / printer interface (2 ports)                                | 60                     | 60      | One port active                          |
| ATS1830 | ATS3000/4018 control panel 1MB memory expansion                                           | 30                     | 1       |                                          |
| ATS1811 | 8 relay NO/NC outputs module for<br>control panels and expanders<br>ATS1201 – PCB         | 50                     | 20      |                                          |
|         | Additional equipment total:                                                               | 160                    | 99      |                                          |
|         | Together with the control panel:                                                          | 410                    | 269     |                                          |

Table 2-6 Expanded ATS4000 control panel power requirements.

| Device  | Description                                                                                     | Current<br>consumption mA |         | Comment         |  |  |
|---------|-------------------------------------------------------------------------------------------------|---------------------------|---------|-----------------|--|--|
|         |                                                                                                 | Max.                      | Average |                 |  |  |
| ATS4000 | Control panel 16 zones (up to 256), 16<br>areas, with a dialler, M type power<br>supply housing | 250                       | 200     |                 |  |  |
|         | Connected equipment                                                                             |                           |         |                 |  |  |
| ATS1801 | Control panel RS232 computer/ printer interface (2 ports)                                       | 60                        | 60      | One port active |  |  |
| ATS1830 | ATS3000/4018 control panel 1MB memory expansion                                                 | 30                        | 1       |                 |  |  |
|         | Additional equipment total:                                                                     | 90                        | 61      |                 |  |  |
|         | Together with the control panel:                                                                | 340                       | 261     |                 |  |  |

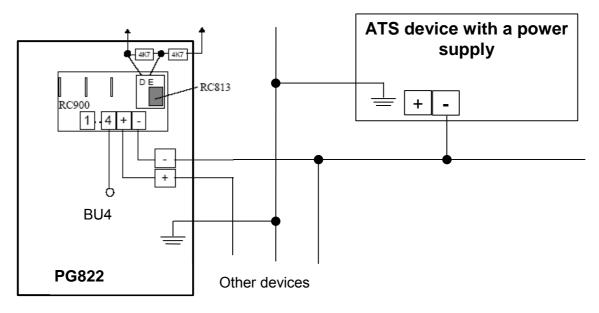
| Device  | Description                                                                                     | Current<br>consumption<br>mA |         | Comment                                         |
|---------|-------------------------------------------------------------------------------------------------|------------------------------|---------|-------------------------------------------------|
|         |                                                                                                 | Max.                         | Average |                                                 |
| ATS4500 | Control panel 16 zones (up to 256), 16<br>areas, with a dialler, L type power<br>supply housing | 250                          | 200     |                                                 |
|         | Connected equi                                                                                  | ipment                       |         | •                                               |
| ATS1202 | 8 inputs module for expander and control panel- PCB                                             | 10                           | 9       |                                                 |
| ATS1202 | 8 inputs module for expander and control panel- PCB                                             | 10                           | 9       |                                                 |
| ATS1811 | 8 relay NO/NC outputs module for<br>control panels and expanders<br>ATS1201 – PCB               | 50                           | 20      |                                                 |
| ATS1811 | 8 relay NO/NC outputs module for<br>control panels and expanders<br>ATS1201 – PCB               | 50                           | 20      |                                                 |
| ATS1831 | ATS4000,4518 control panel and<br>ATS1250 controller 4MB smart<br>memory module.                | 30                           | 10      |                                                 |
| ATS1801 | Control panel RS232 computer/ printer interface (2 ports)                                       | 60                           | 60      |                                                 |
| ATS7100 | ISDN communicator module, B channel                                                             | 120                          | 50      | Maximum current while initiating the connection |
|         | Additional equipment total:                                                                     | 330                          | 178     |                                                 |
|         | Together with the control panel:                                                                | 580                          | 378     | -                                               |

Table 2-7 Expanded ATS4500 control panel power requirements..

| Table 2-8 Expanded ATS1201 De | GP power consumption. |
|-------------------------------|-----------------------|
|-------------------------------|-----------------------|

| Device  | Description                                                                       | consu | Current Commen<br>consumption<br>mA | Comment |
|---------|-----------------------------------------------------------------------------------|-------|-------------------------------------|---------|
|         |                                                                                   | Max.  | Average                             |         |
| ATS1201 | 8 Inputs (max.32) and 8 outputs (max.16) expander, M type power supply housing    | 120   | 75                                  |         |
|         | Connected equi                                                                    | pment |                                     |         |
| ATS1202 | 8 inputs module for expander and<br>control panel- PCB                            | 10    | 9                                   |         |
| ATS1202 | 8 inputs module for expander and<br>control panel- PCB                            | 10    | 9                                   |         |
| ATS1202 | 8 inputs module for expander and<br>control panel- PCB                            | 10    | 9                                   |         |
| ATS1811 | 8 relay NO/NC outputs module for<br>control panels and expanders<br>ATS1201 – PCB | 50    | 20                                  |         |
| ATS1811 | 8 relay NO/NC outputs module for<br>control panels and expanders<br>ATS1201 – PCB | 50    | 20                                  |         |
|         | Additional equipment total:                                                       | 130   | 67                                  |         |
|         | Together with the control panel:                                                  | 250   | 142                                 |         |

## 2.3 Wiring.


The proper grounding and isolation of the devices is an important issue in each wide area system. All the system elements are equipped with a grounding connector, and should be connected to a common grounding point in the central station via a 2.5mm<sup>2</sup> wire. The data bus shield should be connected to common ground on one end only. The data shield should not under any circumstances be grounded on both ends of the transmitting wire. The design should plan to include appropriate power supply wiring including a grounding wire connected to all devices that require it. To separate a part of the system galvanically the ATS1470 isolating module has to be used, as it provides insulation up to 1.5kV. Using the module you have to remember that it needs to be connected to system grounding on the side it's powered from.

The powering elements further away than 100m from the control panel or a power supplyequipped DGP, needs to be laid separately from the data bus. Having the power supply alongside the data bus can lead to voltage dropping below 10.5V which can hamper system stability. A further limit is the maximum current load (1A) of the power output.

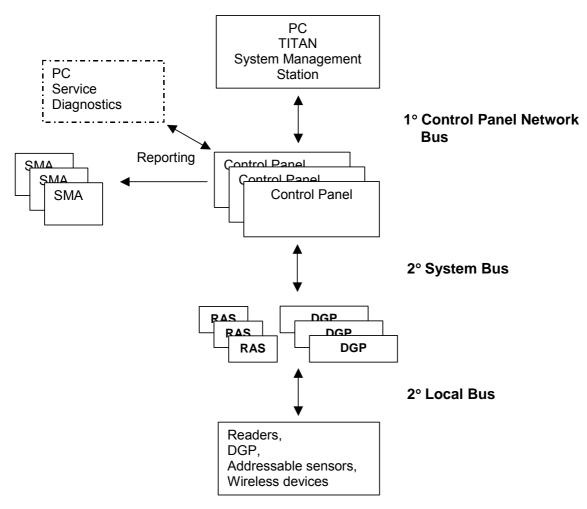
## 2.4 Connecting other power supplies.

When planning to connect another power supply, you have to ensure the proper connection to the system grounding and not connect the positive connectors to any other power supply. The system power supply in emergency situations requires that additional power sources ensure an adequate supply in case of mains power failure. For systems with higher security levels, the power supply needs to fulfil certain criteria of back up power duration and subsequent recharging of the batteries. Examples of calculations can be found in section 2.1. A further requirement is monitoring the mains power. For that, you need to provide one alarm zone, which will be activated in case of mains power failure. Drawing 2-1 shows an example of connecting an external power supply to the ATS system. A 2A @138V DC power supply with battery backup is used. It is supplied with a transformer and housing, in which a BS127N(7.2 Ah) or BS130N(10Ah) battery can be installed. The power supply can also be installed in an empty ATS housing and use a bigger battery, but the power supply circuit board is not compliant with the ATS mounting holes standard.

Mains power monitoring zone



Drawing 2-1 Connecting the PG822 power supply to the ATS system.

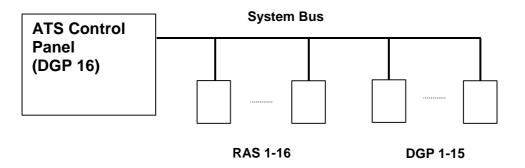

## **3 COMMUNICATIONS**

The alarm and access control system has extended communication capabilities. Viewed globally, the communications, that is, the bi-directional data transmission, should be divided into two aspects: system internal communications, and communications between the system and the outside world – reporting events to monitoring stations.

System internal communications (Drawing 3-1) has been divided into 3 basic parts:

- Control Panel Network Bus connecting the control panels to a computer with a managing program, connecting the panels into a network;
- System Bus communications between the control panel and RAS, DGP expansions;
- Local Bus communications of DGP and RAS with their peripheral equipment.

Due to its nature, the subject of Control Panel Network Bus has been divided into communication with a PC, and network operation of the control panels. Service connection with a PC has been described in the first part.




Drawing 3-1 Advisor MASTER system communications diagram.

## 3.1 System bus

The ATS system design assumes communications between system elements (DGP, RAS) with a master unit – the control panel (Drawing 3-2). Up to 16 RAS stations and 15 DGP devices can be connected to one control panel. The control panel itself is identified

as DGP number 16. The device number – its address – is set in each device attached to the bus by a DIP switch or through software. There are no limitations as to the sequence of addresses of the connected devices. The control panel queries each ATS system component connected to the system data bus. Lack of response to the polling signals sent triggers the tamper alarm with appropriate consequences. Therefore providing reliable communications between the control panel and peripheral equipment is very important to proper system function.



Drawing 3-2 Basic construction of the Advisor MASTER system bus.

The system bus communications are implemented using the RS485 interface – a serial data port with balanced and symmetric connection – one of the most interference resistant systems used in electronics.

| Parameter             | Value       |
|-----------------------|-------------|
| Interface             | RS485       |
| Transmission mode     | Half Duplex |
| Bandwidth (bps)       | 4800        |
| Range (m)             | 1500        |
| Loop resistance (Ohm) | 235         |

Table 3-1 Characteristic parameters of the system bus

The provided bandwidth is adequate due to the system of distributed processing implemented. Each system expansion has it's own processor, and all necessary data processing equipment for analyzing the system inputs. The RS485 interface range – 1500m – is guaranteed under optimal working conditions: with proper line fitting, and appropriate wiring.

Line fitting is done using resistors placed at the start and end of the transmission line. This operation secures a typical value for system bus resistance is 2350hm. All ATS system devices, except the ATS1190/92 Smart card readers, and hands free sensors expansion ATS1230, working with the system bus have inbuilt terminating resistors, activated via a jumper or DIP switch. Regardless of the circumstances the resistors can only be activated in the two most distant, opposite ends of the network.

## 3.1.1 Wiring

For proper data transmission only three wires are necessary, a twisted pair for D+ and Dsignals, and power supply 0V for reference – Drawing 3-3. Nevertheless, to achieve the maximum data transfer range, care about the proper technical parameters of the wires must be taken.

Suggested cables: The suggested cables for the ATS system bus- RS485, 4800bps - are:

- Belden 8723
- Aritech WCAT52

• Aritech WCAT54


Use of the abovementioned cables guarantees failure-free operation, and the maximum declared bus range – 1500m. For data bus wiring, other cables can be used if meet following requirements: cat 5, twisted pair, STP or FTP.

| Cable type                                       | Belden 8723  | WCAT52       | WCAT54       |
|--------------------------------------------------|--------------|--------------|--------------|
| Description                                      | Cat 5.       | Cat 5.       | Cat 5.       |
|                                                  | Shielded     | Shielded     | Shielded     |
|                                                  | Twisted Pair | Twisted Pair | Twisted Pair |
| Wire count                                       | 4            | 4            | 8            |
| Pair count                                       | 2            | 2            | 4            |
| Single wire resistance (Ohm/km)                  | 57,4         | 84           | 84           |
| Capacity between wires (nF/km)                   | 120          | 45           | 45           |
| Capacity between the wire and the shield (nF/km) | 200          | 100          | 100          |
| Maximum transmission range(m)                    | 1500         | 1500         | 1500         |

Table 3-2 Technical parameters of the suggested cables.

## 3.1.1.1 Shielding

The data cable shield needs to be connected to the system grounding. Every system ground needs to lead to a single point, and the shield cannot be grounded on both ends, due to the risk of current loops in the shield.



Drawing 3-3 Wire connections in the system bus

When using the ATS1470 isolators, the appropriate grounding rules need to be observed, and the shield needs to be connected properly. The shield has to be connected only to one cable, and only on the side of the system from which the isolator draws its power.

## 3.1.1.2 Power supply

Although such a solution has significant limitations, it is possible to supply peripheral equipment with power using the data bus. The Drawing 3-3 shows such a connection.. The power supply output efficiency of the data bus is limited to 1A (F4 resistor in the control panel). Much more restrictive is the transmission cable load limit. The acceptable voltage for the system components is 10.5V DC. In case of the WCAT52/54 cable a load of 100mA would cause the voltage to drop from 12V to 10.5V after only 89m of cable. In case of the Belden 8723 cable such a drop would occur after 131m due to it's lower resistance. Detailed calculations can be found in Table 3-3.

To increase the range, the number of power supply wires in the cable can be increased (in pairs of +12V and 0V), but this solution is not advisable, and under no circumstances should it exceed a distance of 100m

| Current mA | Belden | WCAT52/54 | WS108 |
|------------|--------|-----------|-------|
| 50         | 261m   | 179m      | 167m  |
| 100        | 131m   | 89m       | 83m   |
| 150        | 87m    | 60m       | 56m   |
| 200        | 65m    | 45m       | 42m   |
| 250        | 52m    | 36m       | 33m   |

Table 3-3 Data bus power supply – Maximum Range.

## 3.1.2 Device Addressing

All the functional ATS devices – DGP and RAS – communicate with the control panel using the data bus. The data bus address space (RS485 – 32 devices) is divided into two groups, DGP and RAS, addressed separately. The system bus compatible RAS and DGP device list can be found in Table 1-10 and Table 1-22.

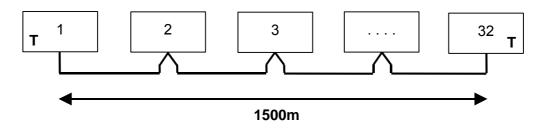
DGP addressing is carried out by setting the DIP switch on the PCB board of the device. There can be maximum 15 DGP devices in the system, numbered 1 to 15. For the DGP device to be visible in the system, it's pooling needs to be enabled. The ATS1250/60 devices accept addresses 1 to 12 due to the access control DGP count limit to 12 devices. The remaining addresses can be assigned to ATS1201/03/10/11/20 DGP units. The control panel is identified as DGP number 16. The DIP switch settings for the DGP module addresses are presented in Table 3-4. DGP module addressing is vital for alarm zone addressing space usage.

|        | DGP Ac        | RAS Address |         |
|--------|---------------|-------------|---------|
| Device | ATS1201/03    | ATS1250     | ATS11xx |
| Number | ATS1210/11    | ATS1260     |         |
|        | ATS1220       |             |         |
| 1      | 1000          | 1000        | 0000    |
| 2      | 0100          | 0100        | 1000    |
| 3      | 1100          | 1100        | 0100    |
| 4      | 0010          | 0010        | 1100    |
| 5      | 1010          | 1010        | 0010    |
| 6      | 0110          | 0110        | 1010    |
| 7      | 1110          | 1110        | 0110    |
| 8      | 0001          | 0001        | 1110    |
| 9      | 1001          | 1001        | 0001    |
| 10     | 0101          | 0101        | 1001    |
| 11     | 1101          | 1101        | 0101    |
| 12     | 0011          | 0011        | 1101    |
| 13     | 1011          | -           | 0011    |
| 14     | 0111          | _           | 1011    |
| 15     | 1111          | -           | 0111    |
| 16     | Control panel |             | 1111    |

Table 3-4 RAS and DGP addresses and numbers in the ATS system (DIP switch settings)

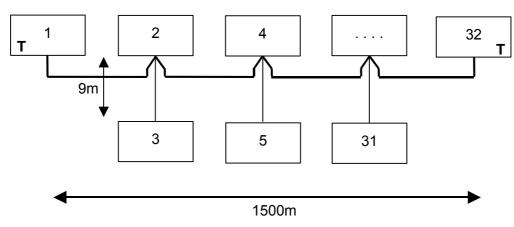
The RAS station addressing is done either through software, or by an appropriate setting of the DIP switch on the device's PCB board. The devices that can have their address set by programming are ATS1190 and ATS1192 – smart card readers. The default address value for their address is 16. There can be up to 16 RAS devices in the system, numbered 1 to 16. For the RAS devices to be visible in the system, they have to be activated by switching on the pooling of the appropriately numbered RAS device. By

default, after system memory restart, only the RAS number 1 is pooled. All RAS device activity is saved in the system according to their number. The RAS station number also defines the door number for central station based access control.


# 3.1.3 Bus topology

In accordance with the RS485 interface specification, the basic layout for the system bus is a cascade connection of 32 devices. 16 RAS devices and 15 DGP devices can be connected to the Advisor MASTER system data bus, which, along with the control panel, gives 32 sending/receiving devices connected to the RS485 interface.

The bus configuration limits are imposed by the signal propagation in complex networks. The signal "echoes" – a consequence of the signal bouncing in long network branches due to different branches delay time – can cause multiple responses from one module, which would be interpreted by the control panel as system sabotage. According to its design, a system of class 3 and 4 should recognize and react to subsystem shutdown attempts by switching devices. The echo effect can be mitigated through the use of ATS174x bus expansion modules. The maximum bus length limits come from timing dependencies of the device querying procedure. Any pooling errors or problems can be read from the system menu, or through the diagnostic module of the TITAN software. Each device connected to the ATS control panel has an inbuilt communication error counter (max 255). That information can be used to test the bus configuration after system installation.

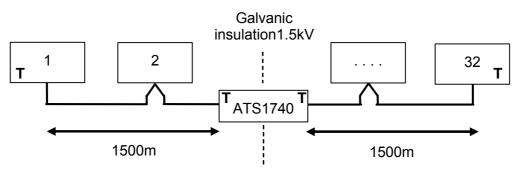

# 3.1.3.1 Standard configurations

Because using only the cascade connection of system devices could be problematic, some modifications of the cascade connection, as well as developing more complex networks is permissible using the system bus accessories – the ATS174x devices.



#### Drawing 3-4 Cascade connection

Standard data bus connections are the cascade connection and cascade connection with branches up to 1500m. The control panel can be located in an arbitrary location in the chain creating two branches. It has to be kept in mind that the total length of the bus cannot exceed 1500m.



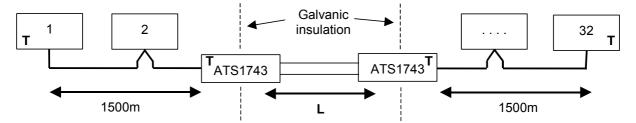

Drawing 3-5 Chain connection with branches from the main bus course.

# 3.1.3.2 Increasing the system bus range

#### • ATS1740 Repeaters - Isolators

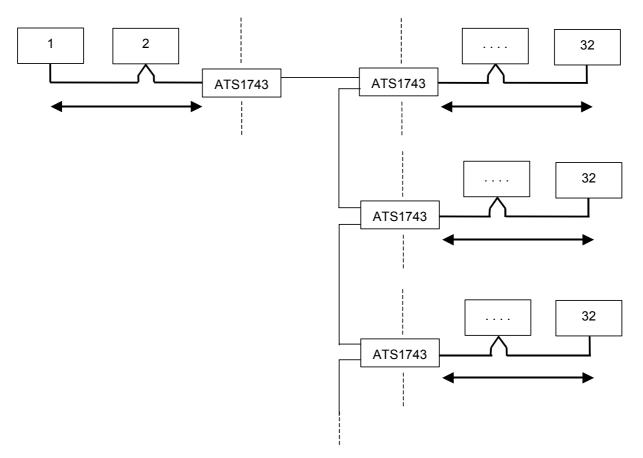
The system bus can be increased using the insulator/amplifier ATS1740. Each repeater increases the bus range by 1500m. The total bus range is limited to 6km which means that the maximum number of cascade connected repeaters is 3.




Drawing 3-6 Using the ATS1740 amplifier to increase the bus range.

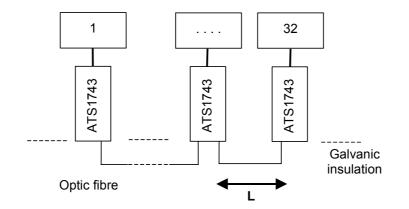
#### • ATS1743 Optical fibre interface.

Another method of increasing the bus range is by using optical fibres and the ATS1743 interface. The device uses the popular, and relatively cheap multi-mode 62,5/125um optical fibres, working in the lower infrared range – 820nm wavelength. It provides a cheap and tested solution to the bus range problem. The device can work in two modes:


- Point-To-Point with a double optical fibre this way 2 system branches, 1500m each, can be connected.
- Multi drop with a single optical fibre– in this way the whole system bus can be designed using only optical fibres, or more branches can be connected in a star configuration (see chapter *Star configuration*) or branched bus.

The maximum distance between two ATS1743 interfaces is dependant on the parameters of the installed optical fibre and on the quality of the connections. A typical value of optical budget for the connection is 15dB.

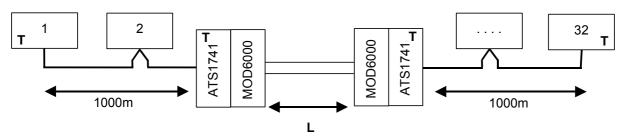



Drawing 3-7 Connecting two branches using two optical fibres via the ATS1743 interface.

A typical use of the fibre-optic modules, besides extending a single bus branch, is a branched bus configuration. The main bus is laid out using an optical channel, and the branches using the RS485 interface. This way, many branches can be designed that should total less than 6km in length and not exceed 1500m for a single branch. The fibre-optic bus length is dependent on the parameters of the fibre used.



Drawing 3-8 Optical bus with RS485.branches


Basing the bus design on optical fibres creates a need for every device to have its own power supply. This can be troublesome in a system with control panel driven access control, because every RAS controlled door would need to have its own power supply with battery back-up.



Drawing 3-9 Fibre-optic bus design using the ATS1743 interfaces

#### • Dedicated leased line modem

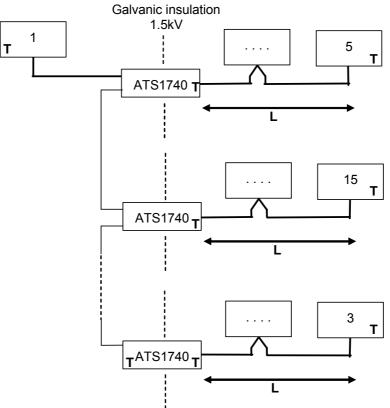
A modem connection on a dedicated line can be used to extend the bus range. Maximum range of the connection is 3km – minimum cat. 2 phone cable, line without amplifiers, MOD6000 modems. It is not permissible to use the internal phone network to connect the subsystems. Due to security concerns, the line must be dedicated to ensure permanent connection. Maximum length of connected bus branches is 1000m.



Drawing 3-10 Extending the bus, using modems and a dedicated leased line

# 3.1.3.3 Star configuration

More than two bus branches can be achieved using the ATS1470 repeater/insulator modules, or the fibre-optic modules. At the centre of the network is always the control panel.

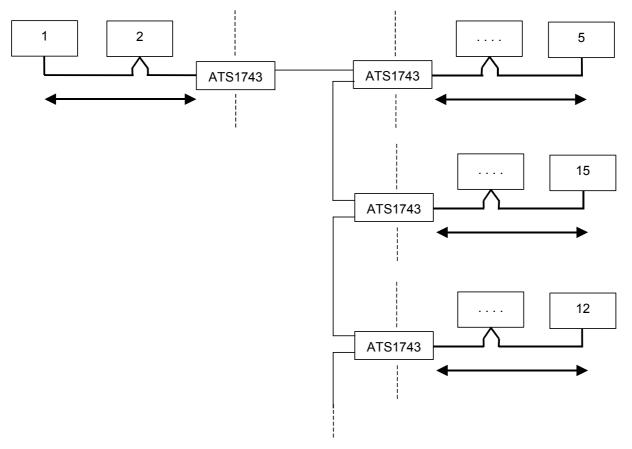

#### ATS1740 Amplifier modules

When creating a star configuration network using the ATS1470 repeater/insulator modules up to 6 branches can be connected, with up to 1000m length each.

Table 3-5 Branch length L (m) depending on the number of branches.

| Branch count<br>Number of<br>ATS1740 | Branch length<br>L (m) |
|--------------------------------------|------------------------|
| 1                                    | 1500                   |
| 4                                    | 1500                   |
| 6                                    | 1000                   |

Expanding single branches using additional ATS1470 amplifier/insulator modules is possible if the total bus length would not exceed 6km. If the planned bus range is larger than this limit, the use of ATS1743 fibre-optic modules should be taken into consideration.

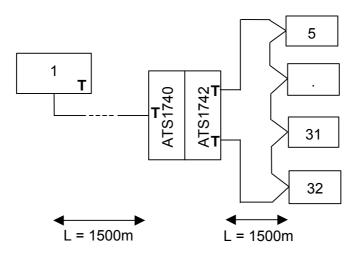



Drawing 3-11 Star configuration using ATS1740 insulators.

In case of replacing an older system with Advisor MASTER, the existing bus wiring can be adapted. In that case, using ATS1470 amplifier/insulator modules, up to 6 branches of non-twisted, non-shielded 300m cable can be connected.

## • ATS1743 fibre-optic modules

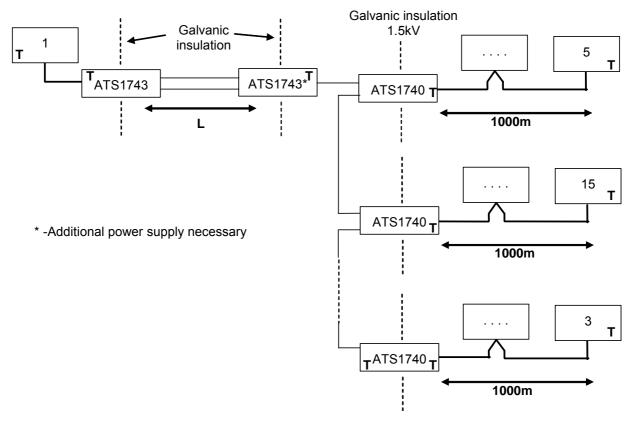
Using optical fibres for communications gives many possibilities for system expansion. Creating a star configuration using fibre-optic modules is justified if the star configuration is both extensive and remote, or if the available bus branch range is not sufficient. In that case, the modules can be used to expand the range of single branches.




Drawing 3-12 Star configuration using ATS1743 modules.

# 3.1.3.4 Other bus configurations

#### RS485 Loop


In the case of a risk of system bus severance, an ATS1742 loop interface can be used. The device provides bus cut signalling, and sustains communications with both bus branches after bus cut. The loop interface also has an amplifier, so the length of the loop is not dependant on the connection topology. Unfortunately extending the loop using the methods described in paragraph *Increasing the system bus range* is impossible. Therefore the maximum loop length is 1500m. Nevertheless all limitations mentioned there are valid.



Drawing 3-13 System bus loop configuration.

#### • Remote star

In case the need arises to design a remote star configuration too extensive to allow the use of the ATS1740 amplifier modules (the total of the branch length is more than 6km), the fibre-optic modules can be used – Drawing 3-14.



Drawing 3-14 Remote star configuration.

# 3.2 Local bus

# 3.2.1 ATS1250/60 access control DGP

#### 3.2.1.1 RS485

The ATS1250/60 access control DGP local bus has the same parameters as the system bus and is therefore subjected to the same design rules. All system bus specifications – the wiring, device addressing, topology etc. – hold their power when designing the access control DGP local bus.

Using the local bus, up to 16 readers and 15 DGP modules can be connected to the access control DGP. DGP expansions are used in the ATS1260 elevator controller only.

# 3.2.1.2 Wiegand/Clock&Data Interface

The ATS1250/60 controllers are equipped with 4 interfaces for direct connections with Wiegand and Clock&Data readers. The interface automatically recognizes type of connected reader.

The maximum distance from the reader to the controller is 70m - the wiring should be done using UTP/FTP cat. 5 cables. Connection D0 and D1 within single pair of wires should be avoided. It is recommended to pair the D0 and D1 signals with the ground. The

reader inputs have been doubled as local bus devices – readers (local bus RAS) with addresses from 1 to 4.

# 3.2.2 ATS1290 addressable sensor DGP

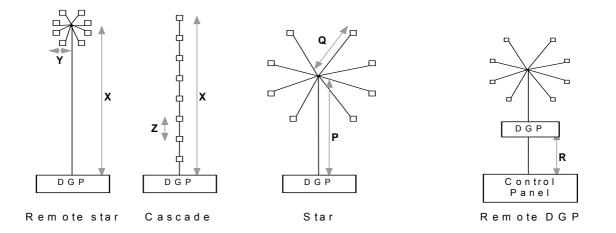
The ATS1290 addressable sensor DGP uses the PointID<sup>®</sup> interface for communications. It is a serial, bi-directional, open–topology interface. Its range is limited only by the load of the devices connected to the bus. The bus can have either two or four wires, depending on the power supply assumptions for the devices.

A supplement for the DGP is a set of sensors and other addressable devices, listed in Table 3-10. These are popular PIR sensors, also equipped with anti-masking capabilities, and a set of universal devices for use with standard alarm equipment.

Using the addressable device technology enables:

- Shortening of the installation time;
- Decreasing the cost and complexity of the wiring;
- Simplifying extensions for existing systems and projects.

Connecting advanced sensors, equipped with anti-masking, Walk-Test capabilities, or the control of LEDs, often requires cables with 6 or more wires. Besides, each sensor needs to be connected via a separate, cable, and should be properly installed. Often the wiring loom consists of tens of cables many wires each. Adding new elements often requires laying out a cable from the nearest expansion to the detector. The addressable device system is free from such limitations. Only one cable is necessary, laid out from sensor to sensor, DGP to connection box etc. in an arbitrary fashion. The cable can also be the same one that provides the system bus signal, and adding a new sensor consists of only connecting it to the nearest existing device.


| Parameter                | Value                      |
|--------------------------|----------------------------|
| Device communications    | Voltage based PPM          |
| DGP communications       | Synchronous CPM            |
| Addressing               | Device: DIP, DGP: learning |
| Packet transmission time | Device 8ms, DGP 4ms        |
| Number of wires          | 2/4                        |
| Number of devices        | 32 (256 addresses max.)    |
| Max. Length              | 1500m                      |
| Termination              | No                         |

| Table 3-6 Point ID interface parameters |
|-----------------------------------------|
|-----------------------------------------|

# 3.2.2.1 Wiring.

- Power supplied directly form bus two wire bus;
- Power supplied form an external source 4-wire bus.

Although there are no limitations as to the type of wires used for the bus, it is necessary to use wires with the lowest possible resistance and capacity to achieve the maximum bus length - 1500m. Drawing 3-15 shows several possible bus topologies used during testing.



# Drawing 3-15 Typical Point ID<sup>®</sup> configurations.

The cables in Table 3-7 have been listed by preference. When using shielded cables, the shield should be left unconnected, as this causes an increase of bus wiring capacity.

Table 3-7 Tested cable types.

| Product | Description                     | Diameter mm <sup>2</sup> |
|---------|---------------------------------|--------------------------|
| WCAT54  | FTP cat.5, 4 twisted pairs      | 0,22                     |
| WN108   | Unshielded, 8 non-twisted wires | 0,22                     |
| WS108   | Shielded, 8 non-twisted wires   | 0,22                     |

The two tables– Table 3-8 and Table 3-9 – contain the test result for different numbers of connected devices under different power demand conditions of the two and four wire system bus. The load is given in UL (1 Unit Load = 300 uA) – a typical load of one transmitter/receiver device of the Point ID<sup>®</sup> bus. All the available wires in the cable have been used for connections. The presented data clearly shows that the bus range depends mostly on the load of the connected devices.

The minimum bus voltage is 9,5VDC.

| Devices | Load | Cascade, Remote star. X (m) |       |        | Star Q (m) |       |        |
|---------|------|-----------------------------|-------|--------|------------|-------|--------|
| Q-ty    | UL   | WN108                       | WS108 | WCAT54 | WN108      | WS108 | WCAT54 |
| 32      | 1    | 1600                        | 1200  | 1600   | 200        | 160   | 200    |
| 16      | 16   | 200                         | 200   | 200    | 150        | 120   | 150    |
| 16      | 32   | 100                         | 100   | 100    | 100        | 75    | 100    |

Table 3-8 Characteristic lengths of w 2-wire Point ID<sup>®</sup> bus.

When using cables with less wire cores (less wire gauge), the range should be appropriately reduced. Example: WN104 – 4 wires,  $0.22 \text{mm}^2$  – the range is reduced by 50%. In case of twisted pair cables, the pair separation between PID+ and PID- should be avoided.

| Table | 3-9 Characteristic lengths of w 4-wire Poir | nt ID <sup>®</sup> bus. |
|-------|---------------------------------------------|-------------------------|
| Load  | Cascade, Remote star, X (m)                 | Star 0                  |

| Devices | Load | Cascade, Remote star. X (m) |       |        | Star Q (m) |       |        |
|---------|------|-----------------------------|-------|--------|------------|-------|--------|
| Q-ty    | UL   | WN108                       | WS108 | WCAT54 | WN108      | WS108 | WCAT54 |
| 32      | 1    | 400                         | 300   | 400    | 50         | 40    | 50     |
| 16      | 16   | 50                          | 50    | 50     | 35         | 30    | 35     |
| 16      | 32   | 25                          | 25    | 25     | 25         | 20    | 25     |

# 3.2.2.2 Device Addressing.

The Point  $ID^{\text{(B)}}$  interface address space contains 256 entries from 0 to 255. This allows addressing of a different number of devices depending on the number of supported inputs and outputs. The Point  $ID^{\text{(B)}}$  interface assumes sequent addressing of the inputs and outputs and providing direct access to them in the alarm system. Each device connected to the bus has an address definable by DIP switch settings – it is the address of the first input of the Point  $ID^{\text{(B)}}$  device – the following inputs and outputs are automatically assigned the proper addresses. The device maps the PID bus inputs to the system zones appropriate for the DGP address.

| Product    | Description                                    | Inputs | Outputs | PID Load         |
|------------|------------------------------------------------|--------|---------|------------------|
| SI-AD      | Universal, single input module                 | 1      | 0       | 1UL(330uA)       |
| AD011      | Universal IO module                            | 1      | 1       | 1UL(330uA)       |
| AD044      | Universal 4I/4O module, external power supply  | 4(+4)  | 4       | 1UL(330uA)       |
| AD111      | IO module, installed inside the sensor         | 1      | 1       | 1UL(330uA)       |
| AP750-AD   | PIR sensor, range: 7 screens, 15.2m;           | 1      | 1       | 1-10UL(250u-3mA) |
| EV435-AD   | PIR sensor, 9/16m, 9 screens                   | 1      | 1       | 16UL(4.8mA)      |
| EV435AM-AD | PIR sensor, 9/15m, 7 screens, anti-<br>masking | 2      | 2       | 16UL(4.8mA)      |

Table 3-10 Point ID<sup>®</sup> device load.

# 3.2.3 ATS1230 Wireless devices DGP

The ATS1230 wireless sensors DGP is a receiver for RF series devices – listed in Table 3-12. The characteristic parameters of the communications protocol are listed in Table 3-11.

| Parameter   | Value                     |
|-------------|---------------------------|
| Frequency   | 433Mhz                    |
| Terrenteria | Dete hetels en un skunste |

| Table 3-11 ATS1230 transmission | parameters. |
|---------------------------------|-------------|

| Frequency                | 433Mhz                        |
|--------------------------|-------------------------------|
| Transmission             | Data batch, asynchronous, ITI |
| Transmitter testing      | Random , max. 64 minutes      |
| Packet count             | 3, Alarm/Tamper 8             |
| Packet transmission time | 20ms                          |
| Time between packets     | Random 125 - 487ms            |
| Transmitter code bits    | 20 bits                       |
| Information per packet   | 66 bits                       |

Communications are unidirectional, the sensor sending packets 58-66 bits long, containing the identification data, and information about its state, at random time intervals no longer than 64 minutes. Each time 3 packets (8 in case of activation or sabotage) are sent at random intervals from 120ms to 450ms. It prevents an accidental signal overlapping from several transmitters. The receiver device also detects the lack of an antenna and radio signal.

Each transmitter has a unique, factory assigned, 20 bit code. The unique code used to identify the device is stored during the programming of the device. Because of that, it is impossible to substitute the device or to wrongly identify the device by the DGP. Apart from the code, the transmitter sends information about the state of the sensor (normal /alarm /tamper), and the battery condition. The RF devices use standard, commonly available lithium batteries. The average battery life is 4-5 years.

| Product    | Description                                                                                   | Range m |
|------------|-----------------------------------------------------------------------------------------------|---------|
| RF32014    | Wireless magnetic sensor (or a transmitter for a wired sensor – type NO/NC), sabotage         | 300     |
| RF352l4    | Remote control, keyfob 2 buttons                                                              | 150     |
| RF354I4    | Remote control, keyfob 4 buttons                                                              | 150     |
| RF356I4    | Wireless panic button in form of a wristwatch.                                                | 150     |
| RF360I4    | Water resistant wireless panic button, belt clip or neck leash.                               | 300     |
| RF42514    | Wireless PIR sensor, EV425, 9/16m, 9 screens, opening and tear-out sabotage alarm             | 300     |
| RF425I4PI  | Wireless PIR sensor, EV425, 9/16m, 9 screens, opening and tear-out sabotage alarm, PI version | 300     |
| RF572NSTI4 | Wireless optical-thermal smoke detector, sabotage alarm, internal siren                       | 300     |
| RF62014    | Wireless inertia and magnetic sensor, sabotage alarm, white                                   | 300     |
| RF620I4B   | Wireless inertia and magnetic sensor, sabotage alarm, brown                                   | 300     |
| RF903I4    | Wireless glassbreak detector, acoustic, plaster mounted, sabotage alarm                       | 300     |
| RF900I4    | Diagnostic wireless sensor testing kit, 433MHz.                                               | 300     |

Table 3-12 List of ATS1230 DGP compatible transmitters.

The device programming is very simple and consists of "learning" the DGP all the transmitters that it shall work with. The learning process consists of putting the DGP in transmitter storing mode, and activating the devices in order, in which they should appear in the system as alarm zones.

# 3.2.4 ATS1105 and ATS1170 RAS station reader interface

Both the RAS devices – ATS1105 and ATS1170 – have their own interface, for connecting a Wiegand/Clock&Data standard compliant reader. The ATS1170 has the reader type selectable by a DIP switch, and also can control the reader's LEDs and buzzer. Additionally it can locally store data for 20 cards in case of a loss of contact with the superior unit.

The maximum distance form the reader to the controller is 70m – the wiring should be done using UTP/FTP cat. 5 cables. Connection D0 and D1 within single pair of wires should be avoided. It is recommended to pair the D0 and D1 signals with the ground.

# 3.3 PC connection.

A modern system, regardless of its complexity should offer an ability to connect to a PC. The connection should enable communications with computer programs that provide automated system maintenance, system programming, managing and monitoring etc. This chapter summarises the basic information regarding the configuration of a PC connection for communications with appropriate utilities.

# 3.3.1 Service connection

Each ATS control panel has a RS232 service connector (J18), which enables a direct connection to a PC with the TITAN<sup>®</sup> software installed. This approach enables system programming and maintenance without additional costs (required equipment in

Table 3-14), which is especially important in small systems, that do not require advanced system monitoring functions. The connection has some limits:

- Have to be initiated from the system keyboard;
- Must be confirmed by the Master User Code;
- The connection is limited to 40min after that the connection is automatically discontinued.

Those limits, while protecting the system from unauthorized user access, define the use of the connection only for control panel programming and maintenance purposes.

| Parameter           | Value                |
|---------------------|----------------------|
| Interface           | RS232                |
| Cable length        | 10m                  |
| Bandwidth           | 4800bps              |
| Connection duration | 40min.               |
| Initiation          | Keyboard/Master User |
| Pooling             | Yes                  |

Table 3-13 J18 transmission parameters.

| <b>Required equipment</b> | Description                                |
|---------------------------|--------------------------------------------|
|                           | RS232 port programming cable (from the J18 |
|                           | service port)                              |

This approach enables system programming and maintenance without additional costs (the necessary equipment consists of a RS232 cable), which is especially important in small systems that do not require constant system monitoring functions.

# 3.3.2 PC direct connection

A permanent connection between the control panel and a computer with a managing program is established in a different way. Besides the ATS2000, all control panels are equipped with a connector (J11) for installing the ATS1801 computer interface. Using the ATS1801 interface, allows time – unlimited connection to a PC and system monitoring software. The connection is initiated by the managing software. The connection panel, and are the only parameters not available for modification by the managing software. They define the connection properties with regard to allowed operations depending on the system state – programming, system control in armed and disarmed state. In this mode, all the functions of the TITAN software are available.

| Parameter           | Value          |
|---------------------|----------------|
| Interface           | RS232          |
| Bandwidth           | 4800bps        |
| Connection duration | Not limited    |
| Initiation          | Titan software |
| Querying            | Yes            |

| Table 3-16 List of equipment for A | TS1801 direct connection. |
|------------------------------------|---------------------------|
|------------------------------------|---------------------------|

| Required equipment | Description                                                         |
|--------------------|---------------------------------------------------------------------|
| ATS1801            | Computer, printer interface (two RS232 ports) for the control panel |
| ATS1632            | PC-RS232 connection cable for the ATS1801 interface (5m)            |

The ATS1801 interface has two RS232 ports that enable communications with a computer and printer or a digital video recorder. The connection isn't time-limited and the connection security is ensured by a 10-digit security code that must be the same in the control panel, and the PC to activate the connection.

# 3.3.3 Increasing the range between the control panel and PC.

Often the control panel is located a considerable distance from the PC on which the system management program is running. Therefore the issue is vital for system design, and it is necessary to predict what elements are required to connect the control panel to the monitoring computer.

# 3.3.3.1 RS485

To increase the connection distance between the Advisor MASTER control panel, and the PC with the managing software the system bus accessories can be used. By converting the RS232 into RS485, we can achieve a maximum distance of 1500m. Bigger distances can be achieved by following the steps described above in section 3.1.3 paragraph Increasing the system bus range

| Table 3-17 Equipment list for remote RS485 conr | nection. |
|-------------------------------------------------|----------|
|-------------------------------------------------|----------|

| Required equipment | Description                                                         | Amt. |
|--------------------|---------------------------------------------------------------------|------|
| ATS1801            | Computer, printer interface (two RS232 ports) for the control panel | 1    |
| ATS1741            | RS485 / RS232 bus converter                                         | 2    |

#### 3.3.3.2 Modem and a dedicated leased line

Another solution is to use a leased phone line. Modems need to be installed on the control panel and computer side of the line.

| Required equipment | Description                                                         | Amt. |
|--------------------|---------------------------------------------------------------------|------|
| ATS1801            | Computer, printer interface (two RS232 ports) for the control panel | 1    |
| MOD6000            | External modem for communication with ARITECH systems.              | 2    |

# 3.3.3.3 TCP/IP

By using RS232 – TCP/IP converters, the Ethernet network can be used to communicate with the control panel. Although the bandwidth used by the Advisor MASTER system is small the security system communications need to be made using separate wiring. This is dictated by the need to protect the system from access by unauthorised persons.

Table 3-19 Equipment necessary for TCP/IP connection.

| Required equipment | Description                                                         | Amt. |
|--------------------|---------------------------------------------------------------------|------|
| ATS1801            | Computer, printer interface (two RS232 ports) for the control panel | 1    |
| ACA300             | TCP/IP to RS232 converter                                           | 1    |

A serial port emulator is supplied together with the ACA300. Using the program enables the use of a network card for communications with the TITAN<sup>®</sup> software, which only uses serial ports for communications.

# 3.3.4 Modem connection

The control panel communicators are equipped with a modem, which can be used for service communications, and for system programming. Using the inbuilt communication methods is limited by the small bandwidth, which excludes them from being used for system monitoring. Apart from that, it is the main reporting route to the CS station. As a result, blocking it for longer periods of time is not good practice.

The ATS system can be equipped with additional communications equipment that provides additional reporting channels. By design all communication routes for event reporting are equal. The same holds true for data transmissions.

| Communication<br>channels | Expansion | Bandwidth |  |  |
|---------------------------|-----------|-----------|--|--|
| PSTN                      | None      | 300bps    |  |  |
| ISDN                      | ATS7100   | 300bps    |  |  |
| GSM                       | ATS7300   | 1200bps   |  |  |

Table 3-20 Equipment and connection parameters for a modem connection.

All channels support connections in two modes:

- Multi-ring the control panel responds to a connection attempt after a given number of rings and tries;
- Call-back the control panel calls back a pre-programmed number after a given number of rings and tries;

Both modes are available on demand, or according to a pre-programmed connection schedule.

# 3.4 Control Panel Network

In cases when, due to any circumstances, one control panel is not enough to fill the requirements of the system, a network of control panels can be created by connecting them to a common computer system, equipped with system management and monitoring software. One computer system can support 64 control panels at the same time. Using time-limited connections, the TITAN software can support up to 1024 control panels, but at the same time only 64 control panels can be communicated with.

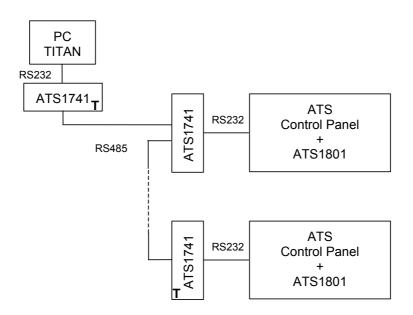
The basic control panel network configuration is the direct connection using the RS485 interface with the same communication parameters as the system bus. Using the available system bus accessories, a system bus branch is connected to the computer's serial port. Up to 16 control panels can be connected to the branch.

| Parameter                                             | Value |
|-------------------------------------------------------|-------|
| Number of connections (ports)                         | 16    |
| Number of control panels with active connection.      | 64    |
| Number of control panels connected to one port (max.) | 16    |
| Number of control panels in one TITAN system          | 1024  |

Table 3-21 Advisor MASTER control panel parameters.

# 3.4.1 Control panel bus topology and wiring

The basic control panel bus implementation is the RS485 interface. The design guidelines for the control panel bus are the same as the wiring– see 3.1.1 – and topology guidelines – see section 3.1.3 – for the system bus. Drawing3-17 shows a basic control panel network using the system bus interface and accessories.


To implement a single bus branch, the following components are necessary:

- Control panels with the ATS1801 interface;
- ATS1741 RS232-RS485 converters;

The table below (Table 3-22) shows how to select equipment necessary to connect the control panels this way.

Table 3-22 Equipment necessary to connect a network of N<16 control panels.

| Product | Description                                   | Amt. |
|---------|-----------------------------------------------|------|
| ATS1801 | Computer, printer interface (two RS232 ports) | Ν    |
| ATS1741 | RS485 / RS232 bus converter                   | N+1  |

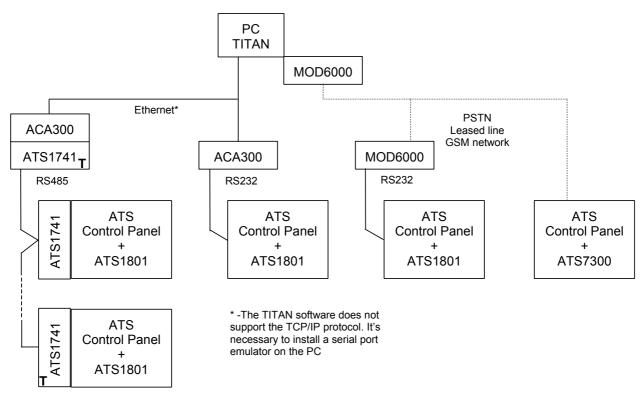


Drawing 3-16 Basic control panel networking bus design.

The flexibility of querying the control panel by the TITAN software (the poling time, and timeout is set by software) allows the design of more complex networks than those based only on the RS485 interface. For more complex implementations, the connections described in sections 3.3.2 and 3.3.3 can be used. The paragraphs contain information about direct connections between the computer and the control panel, as well as increasing the distance between them. The following paragraph shows an example of a control panel network using the Ethernet network and other connection methods.

# 3.4.2 Examples of CP networks connected by various communications interfaces.

All control panels in the system are queried according to a programmed schedule, which means a lack of response from any of the control panels will be stored in the system event log. Depending on the system functions, and the security level expected from the system, the control panel network can be implemented in various ways. The provided example shows only one of the methods.


The network design assumes:

- The monitoring station has a direct connection to the control panels in the given location.
- One of the control panels is located in a separate building, connected only by Ethernet wiring.
- Beyond the premises (eg: another city) are two additional control panels, which should be queried once a day, at a given time to synchronise the event log. One of them doesn't have access to a phone line.

The provided solution assumes communications between the PC monitoring station and the local control panel using TCP/IP local network, and further along using the RS485 interface and bus accessories. The remote control panel can be accessed using the Ethernet network, or connected directly. The control panels outside the premises can be contacted by modem using a phone connection (for the control panel with phone line access) and GSM connection (the control panel is equipped with the ATS7300 GSM communicator for connecting to the monitoring station and the CS reporting station).

The provided solution requires the use of 3 branches/ports of the TITAN software. Note that the maximum number of connections is 16 (older TITAN versions -4 only).

If the remote location would require a service connection – programming, diagnostics without event archival and system control – the modem can be left out and the inbuilt communicator can be used. This solution is not advisable, as it doesn't allow reporting events to the CS station during the connection to a system monitoring station.



Drawing3-17 Control panel network implementation diagram.

# 3.5 Reporting events to the CS station

Quick and effective reporting of events to several CS stations, using several communication channels is essential for systems with higher levels of security. The ATS system event reporting concept assumes availability of the same functions regardless of the control panel type. Up to 4 independent CS stations can be programmed in the Advisor MASTER system, each having 2 alternative phone numbers. The reporting can work in two modes:

- Serial The system sends the message until the first successful transmission to any
  of the programmed CS stations;
- Parallel The system sends reports to each programmed CS stations until all confirm receiving the message.

| Communication channels | Expansion |
|------------------------|-----------|
| PSTN                   | None      |
| ISDN                   | ATS7100   |
| GSM                    | ATS7300   |

Table 3-23 CS station communication channels and the necessary expansions

Every CS station can be programmed for reporting on different communication channel – the available channels are analogue (PSTN), digital (ISDN) and cellular (GSM) phone lines. Each channel supports every event transmission protocol implemented. Due to a timing conflict between the transmission protocol and the GSM network delay, the ATS7300 communicator has been equipped with an algorithm to disqualify the influence of the network delay on the CS station communications.

Table 3-24 ATS control panel reporting system parameters.

| Parameter              | Value                  |  |  |
|------------------------|------------------------|--|--|
| Number of CS stations  | 4                      |  |  |
| Phone number count     | 2 each CS (8 in total) |  |  |
| Communication channels | Analogue PSTN/ISDN/GSM |  |  |
| Number of protocols    | 17                     |  |  |

Besides the abovementioned communication characteristics, the system can freely shape the event reporting method. That option is available through the event class database, a programming option available in each control panel.

#### Table 3-25 Reporting protocols.

| Protocol                             | Remarks                     |  |  |  |
|--------------------------------------|-----------------------------|--|--|--|
| Tecom V1 phone communicator          | Used in Australia only      |  |  |  |
| Contact ID – Small                   |                             |  |  |  |
| Contact ID – Large                   |                             |  |  |  |
| SIA – Small                          |                             |  |  |  |
| SIA – Large                          |                             |  |  |  |
| XSIA – Small                         |                             |  |  |  |
| XSIA – Large                         |                             |  |  |  |
| 200 Baud FSK Format 1                |                             |  |  |  |
| 200 Baud FSK Format 2                |                             |  |  |  |
| 200 Baud FSK Format 3                |                             |  |  |  |
| 200 Baud FSK Format 4                |                             |  |  |  |
| 4x25 Enai                            |                             |  |  |  |
| Voice reporting with confirmation    | Requires the ATS7200 module |  |  |  |
| Voice reporting without confirmation |                             |  |  |  |
| Secure Stream                        |                             |  |  |  |
| Securitel serial number              |                             |  |  |  |
| Securitel PIN code                   |                             |  |  |  |

# 4 CONFIGURATION OF THE ADVISOR MASTER INTEGRATED SYSTEM

The design of an integrated system is limited to a configuration for a single control panel – the systems controlled by a single control panel. Designing larger systems – networked systems – consists of steps described in chapter 5 and multiple repeats of the procedure described here.

The core integrated system design issue is the translation of design requirements to the system implementation – the control panel type, and the type and number of necessary expansions. At it's most general, the design requirements for the Advisor MASTER system are shown in Table 4-1. Based on those parameters the control panel type, as well as the number of expansions in the system can be tentatively defined – see Table 4-2. The design limits lie mainly in the selection and configuration of the DGP expansions, which not always use all the available alarm zones – see section 4.2. Defining the control panel type and the placement of DGP expansions is also dependent on the functional requirements for the system.

| Parameter                  | Description                                                                                                                                                                                                                                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of alarm zones      | Defines the type and the number of control panels in the system, also<br>the type and number of expansions. The access control passage<br>zones need to be included if they are to be monitored.                                                                                |
| Number of areas            | Defines the type and number of control panels, also the number of manipulators and other devices in the system.                                                                                                                                                                 |
| Number of users            | For access control, defines the necessary system memory expansions and number of cards.                                                                                                                                                                                         |
| Number of manipulators     | The number of areas and access control functions define the type and number of manipulators present in the system                                                                                                                                                               |
| Unidirectional passages    | Doors with a reader on one side, and an exit button on the other;<br>define the number of readers and other access control expansions, as<br>well as the use of access control functions of the control panels.                                                                 |
| Bi-directional passages    | Doors with readers on both sides – antipassback function, card and PIN etc. Define the number of ATS1250 DGP, the number of readers an other access control accessories.                                                                                                        |
| Elevator control           | Defines the number of DGP expansions and the number of readers in the system;                                                                                                                                                                                                   |
| Number and type of readers | The number of readers, keyboards – dependant on the number and type of passages ; The type of readers – defines the number and type of expansions (memory, DGP etc.) and the card type.                                                                                         |
| Special functions:         |                                                                                                                                                                                                                                                                                 |
| System Monitoring          | Unlimited (HDD) common event log, system control, monitoring the system state, graphical user interface – maps.                                                                                                                                                                 |
| Event reporting            | Defines the channels and methods of communication with the CS stations.                                                                                                                                                                                                         |
| Integrated access control  | The use of access control functions in the system influences the use<br>of the expansion address range, but also the availability of additional<br>functions : user counting – automatic system arming and disarming,<br>changing access rights depending on user presence etc. |
| CCTV integration           | Registering events along with a video signal, controlling the video recorder from the ATS system keypad, controlling the CCTV system from the ATS system                                                                                                                        |

Table 4-1 Design parameters of the ATS integrated system.

The access control functions in the Advisor MASTER system are integrated with other system components. It allows the same devices that control the alarm system to verify user access rights. The same applies to alarm zones – the sensors used to check door opening can be used to secure the area in the alarm section. In this regard, the system is unified and consistent but needs to be carefully designed.

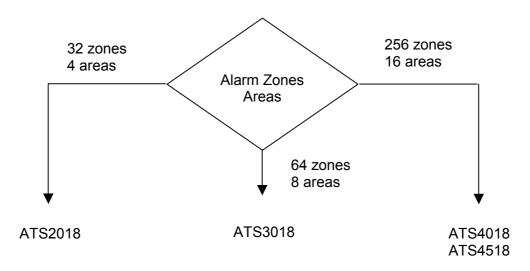
# 4.1 Control panel selection and configuration

The control panel selection should be based on the system design requirements – both the functional and quantitative. The most important parameters influencing the functionality of a system based on a given type of control panel are gathered in Table 4-2. Only a small number of parameters differentiates the use of a control panel in a system of a required functionality.

| Parameter                | ATS2000 | ATS3000      | ATS4000          |  |
|--------------------------|---------|--------------|------------------|--|
|                          |         |              | ATS4500          |  |
| Alarm zones              | 32(8)   | 64(8)        | 256(16)          |  |
| Areas                    | 4       | 8            | 16               |  |
| Users                    | 50      | 50-11k (67k) | 50-67k / 11k-67k |  |
| Manipulators             | 16      | 16           | 16               |  |
| DGP Expansions (AC)      | 15 (12) | 15 (12)      | 15 (12)          |  |
| Unidirectional passages* | 16      | 16           | 16               |  |
| Bi-directional passages  | 48      | 48           | 48               |  |
| Elevators/Floors         | 4/64    | 4/64         | 4/64             |  |
| Alarm event log          | 250     | 250-1000     | 250-1000         |  |
| AC event log             | 10      | 10 – 1000    | 10-1000          |  |
| Special functions        |         |              |                  |  |
| System monitoring        | No      | Yes**        | Yes              |  |
| Event printer            | No      | Yes**        | Yes              |  |
| Access control           | Yes*    | Yes**        | Yes              |  |
| CCTV integration         | No      | Yes**        | Yes              |  |
| Network capabilities     | No      | Yes**        | Yes              |  |
| Service connection       | Yes     | Yes          | Yes              |  |

\*- the limits of the ATS2000 results from hardware limitations - see section 1.1.

\*\*- the limits of the ATS3000 for access control systems results from the hardware limit of the possible configurations of memory and other expansions. – see section 1.1 – it is not possible to install the IUM ATS1831/32 memory expansion and the ATS1801 computer/ printer interface together.


Only two parameters are directly dependant on the control panel type – the maximum number of alarm zones, and system areas. Other parameters depend on the capability to install other expansions:

- The control panel memory expansion influences the size of the event log, the number of users, and indirectly the format of access control cards.
- The computer/printer interface influences the availability of a fast, permanent connection between the control panel and the computer or a control panel network. Lack of such an expansion excludes the control panel networking capability, monitoring, connecting the event printer etc.
- The number of zones and outputs in the control panel;
- Available reporting channels.

The control panel parameters and design requirements should be analysed in the following order:

- The characteristic values of the alarm system alarm zones, areas those parameters describe the capacity of a system based on a selected control panel. Although they depend on the DGP expansion configuration (number of alarm zones), the control panel type unequivocally defines their maximum number in the system.
- Computer or control panel network connection system monitoring, event printer, network operation – define the need to install the ATS1801/02 computer/printer interface.
- Users and access control range selection of a memory expansion influencing the number of users, access control card types and their range, the size of the event log etc.
- Alarm zones and system outputs expansions the type and size of the installed expansions influences the size of the control panel housing.
- Reporting communications (CS) appropriate communications modules need to be installed in the system.

# 4.1.1 The procedure of selecting and configuring the alarm system control panel



#### 4.1.1.1 Step I. Characteristic parameters – zones, areas

Drawing 4-1 System Capacity

The characteristic parameters of the control panels, independent of the installed expansions define the maximum system size, that is the number of alarm zones and areas of the alarm system. Alarm zones, areas – maximum system capacity, regardless of installed expansions.





#### \*- only ATS1830 memory- 1Mb

#### Drawing 4-2 Connecting the control panels to a computer, printer or CCTV system.

If any of the abovementioned functions is required, the control panel needs to be equipped with the ATS1801 module – the computer/printer interface; or ATS1802 – printer interface; This excludes the ATS2000 control panel – it doesn't provide a connector for the abovementioned modules, and limits the choice of memory expansions for the ATS3000 control panel.

Monitoring and managing the system from the computer station, either remote or local;

- Event printer;
- Digital recorder integration;
- Control panel network connection;

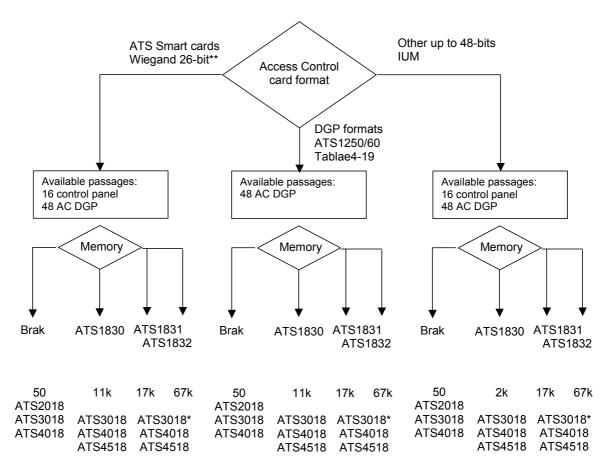
# 4.1.1.3 Step III. Users and access control range

Each memory expansion extends the system functionality through:

- Increasing the number of alarm groups from 70 to 138
- Increasing the number of door groups from 10 to 128
- Increasing the alarm log size from 250 to 1000 entries.
- Increasing the access control log from 10 to 1000 entries.

Besides that, the use of memory expansion modules increases the number of users in the system, and provides additional functions:

- IUM storing the whole (up to 48 bits) data stream of the card;
- Quick searching of the database-the ATS1831/32 expansions.


The IUM functions frees the system from limits imposed by the access card formats. Drawing 4-3 shows a diagram of the access card range, and the number of users in the system depending on the memory expansion. Detailed information about access cards can be found in section 4.4.

The Table 4-3 below contains the available memory expansions and user configurations. Because the access control DGP stores a local copy of the user database, the same memory expansion needs to be provided for both the DGP and the control panel. Not all memory and expansion configurations are available for every control panel. This is shown

on Drawing 4-3. However every configuration shown below is available for the ATS1250/60 access control DGP. The manual's appendices contain a table with all memory and control panel configurations.

| Configuration | Expansion     | Users |       |       | Card format            |
|---------------|---------------|-------|-------|-------|------------------------|
|               |               | Name  | PIN   | Card  |                        |
| Standard      | None          | 50    | 50    | 50    | Table 4-19             |
| TIUM          | None          | 50    | 50    | 50    | All up to 48-bits, IUM |
| MIUM          | ATS1830 – 1Mb | 200   | 2000  | 2000  | All up to 48-bits, IUM |
| LM            | ATS1830 – 1Mb | 200   | 1000* | 11000 | Table 4-19             |
| SIUM          | ATS1831 – 4Mb | 200   | 17000 | 17000 | All up to 48-bits, IUM |
| LIUM          | ATS1832 – 8Mb | 200   | 67000 | 67000 | All up to 48-bits, IUM |

\*- for users above 1000 the PIN codes are generated automatically, and cannot be changed.



\*- Unavailable if ATS1801/02 was selected in the previous step

\*\*-card format offering a small number of card and system codes. Not recomended.

Drawing 4-3 Access card range, and memory expansion application.

#### Additional system functions.

User verification functions are available in the system through the TITAN software, equipped with the Photo ID module, which allows storing of user photographs in the database. The photos can be supplied as a file, or made using a digital camera and added to the database on the fly. The photographs can be shown on screen whenever the user passes a door.

The TITAN software is equipped with access card personalisation functions. It provides a card design editor, which uses the information from the user database along with the

Photo ID database to cost effective and simple design and print custom, personalised access cards. The TITAN software works with every Windows compatible card printer.

#### 4.1.1.4 Step IV. Expanding alarm zones and system outputs.

The control panels allow extending the number of available alarm zones using DGP modules (described in section 4.2) and by using the ATS1202 control panel expansion. Connecting the ATS1202 modules in cascade up to 32 alarm zones can be achieved. Each ATS1202 module occupies one B – type slot in the housing.

If the design requires control panel outputs, relay output or OC output, expansions can be installed. Besides the power supply and free housing space, there are no limits as to the outputs supported by the control panel. The available expansion combinations can be found in 1.1.

The ATS4500 control panel is functionally identical with ATS4000. This model comes with the ATS1830 memory expansion preinstalled. The device is delivered with the ATS1644 housing, which provides ample space for additional expansions. The same memory expansion and housing are provided with the ATS1250/60 access control DGP. That's why it is a recommended combination for systems with higher security standards and integrated access control.

# 4.1.1.5 Step V. Central Station Reporting communications

Depending on the requirements for the system based on the CS station reporting, the appropriate communicator module needs to be selected. As all communication modules use a dedicated MI bus, and can be mounted under the control panel mainboard, this configuration step is independent of the rest.

# 4.2 Configuring the DGP expansion modules.

Further alarm system design is described for the ATS4000 control panel. This is the basic control panel type, from which the other types differ only by the size of the system, and the availability of certain expansions. Details can be found in section 1.1.

#### 4.2.1.1 Inputs

The address space of the alarm zones is divided between the control panel and the 15 remaining DGP modules. The division is predefined and does not depend on the installed control panel or other equipment. Thus, the alarm zone numbers are permanently fixed to the DGP expansions of a given address. Only the total number of zones is limited in a control panel, not the addresses. This simplifies the system design in terms of the area covered and the possibility of using any expansion types.

It has to be noted that the control panels and DGP modules are expandable up to 32 zones, and the address space division assumes 16 zone numbers per DGP. If the control panel or the DGP is expanded beyond 16 zones, the next zones occupy addresses from the next DGP address range. While there are no technical limitations for address doubling, it is not recommended because of good practice of security system design.

The opposite is a situation in which devices with less than 16 addresses are used. For example the ATS1220 provides only 4 alarm zones and cannot be expanded, meaning, the whole 16 zone range being reserved, 12 alarm zone addresses stay unused.

|            |     |         |         | •       |         |                                                                                       |
|------------|-----|---------|---------|---------|---------|---------------------------------------------------------------------------------------|
| Expansion  | Zo  | nes     |         | Outputs |         | Remarks                                                                               |
|            | MBC | ATS1202 | ATS1810 | ATS1811 | ATS1820 |                                                                                       |
| ATS1201    | 8   | 3x8     | 2x4     | 2x8     | 1x16    | Max outputs 16                                                                        |
| ATS1203    | 8   | 3x8     | 2x4     | 4x8     | 2x16    | Max outputs 32                                                                        |
| ATS1210/11 | 8   |         | 2x4     | 2x8     | 1x16    | The housing does not                                                                  |
| ATS1220    | 4   |         |         |         |         | allow installation of<br>additional expansions ,<br>device without a power<br>supply. |
| ATS1290    | 32  |         |         |         |         |                                                                                       |
| ATS1230    | 32  |         |         |         |         |                                                                                       |

Table 4-4 Available DGP modules and their expansions.

Planning for maximum DGP expansion the maximum system capacity -256 zones- can be achieved using 7 DGP modules. In an opposite case - using the mentioned 4 zone DGP - after installing all possible DGP modules -15 - all the expansions would make total of 60 alarm zones.

# 4.2.1.2 Outputs

A similar rule is valid for the division of the system output address space. The output addresses for a given DGP are defined by it's address – number – in the system. DGP can support a maximum of 16 outputs, which is the same as it's assigned zone address space. The control panel can support all the outputs, but due to power supply limits the number is capped at 150. A higher number of outputs can be made available by installing an additional power source.

Each system output is limited by a timezone. The system supports 16 areas, and for each one a separate external and internal siren. The ATS1201 DGP is equipped with dedicated, monitored siren output, addressed like the rest of the system outputs.

| Input Range | Output Range | DGP Address | Remarks                     |
|-------------|--------------|-------------|-----------------------------|
| 1-16        | 1-16         | 16 (CP)     | Control panel alarm zones   |
| 17-32       | 17-32        | 1           |                             |
| 33-48       | 33-48        | 2           |                             |
| 49-64       | 49-64        | 3           |                             |
| 65-80       | 65-80        | 4           |                             |
| 81-96       | 81-96        | 5           |                             |
| 97-112      | 97-112       | 6           |                             |
| 113-128     | 113-128      | 7           |                             |
| 129-144     | 129-144      | 8           |                             |
| 145-160     | 145-160      | 9           |                             |
| 161-176     | 161-176      | 10          |                             |
| 177-192     | 177-192      | 11          |                             |
| 193-208     | 193-208      | 12          |                             |
| 209-224     | 209-224      | 13          |                             |
| 225-240     | 225-240      | 14          |                             |
| 241-256     | 241-255      | 15          | Output 256 is not available |

Table 4-5 Alarm zone and output addressing in the ATS system.

# 4.2.1.3 Sirens

Each of the 16 areas can have two signallers defined: internal and external. Configuring the sirens in the system is the same as configuring the outputs: the event flag is assigned to an output. Apart from the control panel, the siren outputs are available in the ATS1201, ATS1203 and ATS1250/60 DGP. The signaller outputs are protected by fuses and monitored. By default the system is programmed to activate all external sirens in case of an alarm in any area.

| DGP | Output    | Description                                     |
|-----|-----------|-------------------------------------------------|
| 16  | 2, 15, 16 | Control panel : Lamp, internal, external Siren. |
| 1   | 32        | External siren                                  |
| 2   | 48        | External siren                                  |
| 3   | 64        | External siren                                  |
| 4   | 80        | External siren                                  |
| 5   | 96        | External siren                                  |
| 6   | 112       | External siren                                  |
| 7   | 128       | External siren                                  |
| 8   | 144       | External siren                                  |
| 9   | 160       | External siren                                  |
| 10  | 176       | External siren                                  |
| 11  | 192       | External siren                                  |
| 12  | 208       | External siren                                  |
| 13  | 224       | External siren                                  |
| 14  | 240       | External siren                                  |
| 15  | -         | Output 256 is not available                     |

Table 4-6 DGP siren address map.

# 4.3 Areas

The control panels, depending on their type, have 4, 8 or 16 independent areas. Each area can have independently set entry and exit times, internal and external sirens as well as the beacon, reporting method etc. Common areas can be created in two ways: connecting the areas or assigning zones from the common location to all areas. The area linking mechanism is also used to create a cascade of vault areas. The areas linked with the vault areas will be armed automatically once the vault areas are armed.

In systems where the number of independent areas exceeds 16, a network of control panels needs to be used.

In cases when a large number of one-zone areas is necessary, for example, a shopping mall with one zone for each shop, armed separately, the zone type 33 can be used -24h alarm and inhibit – which allows suspending of the zone using a keyswitch. This application requires a different method of zone wiring. This way, it's possible to achieve up to 256 such security spots on one ATS4000 control panel.

# 4.4 Access control

The access control functions are available in the control panel. The RAS stations in the control panel can control doors. Though access control implemented this way has some limitations of the functions provided, it's an affordable solution. It provides the basic system functions for 16 doors at an attractive price. If the system requirements are bigger, however, the ATS system can be equipped with a dedicated access control DGP, implementing the advanced functions of such a system while at the same time staying an integral part of the system. Four door – ATS1250 – and four lift – ATS1260 – modules are available. They act as a DGP, and to a single control panel, up to 12 access control DGP can be connected, which gives additional 48 doors per control panel. A detailed description of configuring the access control functions of the control panel and the ATS1250/60 DGP is provided in the following paragraphs.

The door, or elevator numbers are permanently assigned to the DGP addresses, a detailed list can be found below.

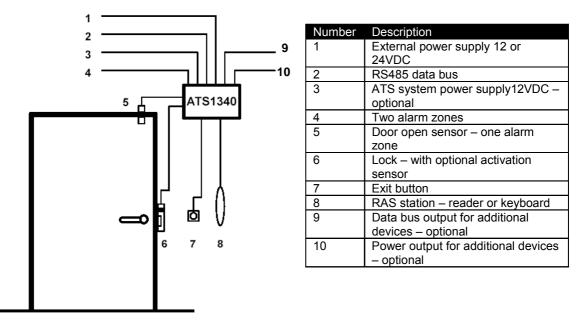

| Door number | Elevator<br>number | DGP<br>address | Remarks                                                             |
|-------------|--------------------|----------------|---------------------------------------------------------------------|
| 1-16        | None               | 16             | The RAS stations of the control panel – unidirectional door control |
| 17-20       | 17-20              | 1              | ATS1250/60 Access control DGP:                                      |
| 21-24       | 21-24              | 2              | Bi-directional door control,                                        |
| 25-28       | 25-28              | 3              | Advanced access control functions                                   |
| 29-32       | 29-32              | 4              |                                                                     |
| 33-36       | 33-36              | 5              |                                                                     |
| 37-40       | 37-40              | 6              |                                                                     |
| 41-44       | 41-44              | 7              |                                                                     |
| 45-48       | 45-48              | 8              |                                                                     |
| 49-52       | 49-52              | 9              |                                                                     |
| 53-56       | 53-56              | 10             |                                                                     |
| 57-60       | 57-60              | 11             | ]                                                                   |
| 61-64       | 61-64              | 12             | ]                                                                   |

Table 4-7 Passage and elevator addressing in the ATS system.

# 4.4.1 Basic Access Control in the Control Panel

The control panel has 16 RAS stations, of which every one can be used for unidirectional door control. Each RAS station is equipped with an exit button input, and a lock control output. The load of the outputs is limited to 50mA, so additional controlling equipment needs to be used. For that, the use of the ATS1340 connection box is recommended. It contains the appropriate connections to the system bus, power, RAS station, exit button, and executing devices. The control panel is not suited for powering the executing equipment (for example. electromagnetic locks), so the proper power supply needs to be included during the design phase.

The doors controlled by the RAS station can be monitored constantly by the alarm system, thanks to the programming option of suspending (shunting) the door zone. The access control system uses the same PIN codes, and the same devices as the alarm system. At the same time the access control devices can be used to control the alarm system. In particular, the card readers can use its user counting functions to change its state. Arming the system, for example, can be performed after the user uses the card three times while exiting.



Drawing 4-4 Control panel based access control.

The doors controlled by the control panel have some functional limits. The advanced access control functions required in high security standard installations are not available. The ATS1250 and ATS1260 are designed to implement those functions, controlling 4 doors and elevators respectively and providing all advanced access control functions.

| Function                                                  | Control Panel               | DGP ATS1250/60          |
|-----------------------------------------------------------|-----------------------------|-------------------------|
| Card disarms the system and opens the door                | Yes                         | Yes                     |
| Card x3 arms the system                                   | Yes                         | Yes                     |
| Card valid if are disarmed                                | Yes                         | Yes                     |
| Power supply with battery back-up for executing equipment | No                          | Yes                     |
| Card formats                                              | Wiegand-26 or IUM mode      | 12 formats and IUM mode |
| Two cards to open door                                    | No                          | Yes                     |
| PIN and card to open door                                 | No                          | Yes                     |
| Two PIN and two cards to open door                        | No                          | Yes                     |
| Bi-directional passage control                            | No                          | Yes                     |
| Security level change outside of the time window          | Only access or lack thereof | Yes                     |
| Card series                                               | 2                           | 40                      |
| Locating the user on premises                             | No                          | Yes                     |
| Anti-passback                                             | No                          | Yes                     |
| Lock chamber                                              | No                          | Yes                     |
| Limiting the number of users on premises                  | No                          | Yes                     |
| Macro functions for access control                        | No                          | Yes                     |

# 4.4.2 Advanced Access Control of the ATS1250 DGP.

The ATS1250 controllers support 4 doors, and all the functions listed in Table 4-8. The devices are equipped with controlling circuits for the executing equipment, adequate power supply with battery support, and a set of inputs for providing the basic functions (door monitoring, exit button etc.). By default, the ATS1250 is equipped with the basic memory expansion – ATS1830 – and 4 Wiegand interfaces. It enables the

implementation of all the basic access control functions without requiring additional expansions

The access control DGP– ATS1250/60 – stores a local copy of the user database and other settings pertaining to access control. This causes the reaction to the user presenting the card to be instantaneous even with a high number of users. The ATS1831/32 IUM modules used with 17k and 67k users support not only the card learning functions but also the quick searching of the database. This causes the system to respond within less than 0.5s.

| Parameter                     | Value                                                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------------------|
| Number of doors               | 4                                                                                                   |
| Number of interfaces on board | 4 – door entry readers 1 - 4 (local)                                                                |
| Number of readers             | 16 max.                                                                                             |
| Local bus                     | RS485 – the same as system bus                                                                      |
| Power supply                  | 4.5A                                                                                                |
| Batteries                     | 50Ah max.                                                                                           |
| Lock outputs                  | 2A@30V AC relay                                                                                     |
| Housing                       | ATS1642 – L                                                                                         |
| Offline mode                  | YES – full functionality                                                                            |
| Zones on board                | 16 (by default assigned to: 4 door zones, 4 exit buttons,<br>4 DOTL zones, 4 reader blocking zones) |
| Memory                        | ATS1830 – interchangeable with IUM ATS1831/32                                                       |
| Card series                   | 40                                                                                                  |
| Database                      | Local                                                                                               |
| Antipassback                  | Local                                                                                               |

Table 4-9 basic parameters of the ATS1250 access control DGP.

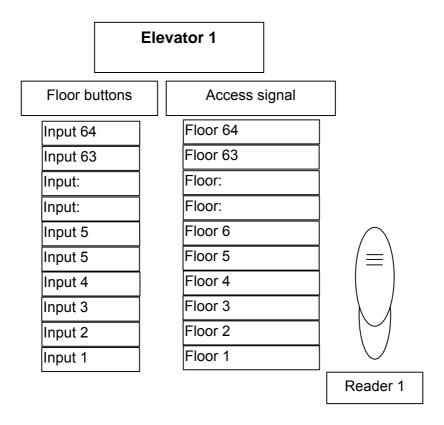
The antipassback function requires passage control on both sides that require readers/keypads on both sides of the door. The access control DGP has a RS485 local bus interface, which supports connecting of up to 16 identification devices. Those can be the RAS stations of the ATS system having the RS485 inbuilt and other devices through the ATS1170 if they are compatible with the Wiegand interface. The device function is defined by its address on the local bus. The first four addresses double up as the reader inputs. This is important if the controller is further away from the readers than 70m - see the bus wiring in section 3.2.1. – that enables them to be installed as local bus components.

Table 4-10 Reader/RAS station addressing on the local bus.

| Local passage | <b>RAS station local address</b> |        |  |
|---------------|----------------------------------|--------|--|
| address       | Input                            | Output |  |
| Door 1        | 1, 5                             | 9, 13  |  |
| Door 2        | 2, 6                             | 10, 14 |  |
| Door 3        | 3, 7                             | 11, 15 |  |
| Door 4        | 4, 8                             | 12, 16 |  |

Unused passage addresses can be used to install additional manipulators. The RAS station can be configured to emulate any control panel RAS station, to which the ATS1250/60 DGP is connected. Such a device will work exactly like the emulated RAS station, not excluding event log entries. This functionality is especially interesting in cases when the number of manipulators of the control panel is not sufficient.

The ATS1250 DGP board outputs are, by default, configured for access control functions. They support exit buttons, DOTL (Door Open Too Long) alarms, door monitoring etc. Their use must me analysed based on the implemented access control functions. The table below contains the default zone mappings of the access control functions to local addresses for the ATS1250 DGP.


| Table 4-11 Mapping zones to access control functions - local addres | sina. |
|---------------------------------------------------------------------|-------|
|                                                                     |       |

| Passage | Open door<br>blocked zone | Exit button | DOTL | Spare |
|---------|---------------------------|-------------|------|-------|
| Door 1  | 1                         | 3           | 16   | 2     |
| Door 2  | 4                         | 6           | 15   | 5     |
| Door 3  | 7                         | 9           | 14   | 8     |
| Door 4  | 10                        | 12          | 13   | 11    |

# 4.4.3 Advanced Access Control of the ATS1260 DGP

The elevator controller uses 256 inputs and 256 local outputs. They are used to control the elevators buttons (inputs) and enforcing access rights for the floors (outputs) As the controller supports 64 floors and 4 elevators, it needs to have 256 inputs and outputs. There are only 16 inputs on the controller's board, so additional inputs need to be provided by expanders – access control DGP – installed on the local bus.

Besides monitoring the choice of a floor by the user, the inputs can be used to monitor the elevator, registering stopping/opening the elevator doors. Also in this case, the whole input address range is needed.



Drawing 4-5 ATS1260 elevator control input and output diagram.

Mapping the inputs and outputs to a particular elevator can be found in Table 4-12.

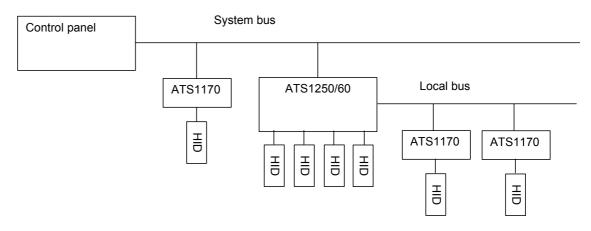
Designing the local DGP is no different from designing the system bus devices. The same devices as well as the same approach are used.

Table 4-12 Mapping zones and outputs in the elevator controller.

| Elevator – local<br>address | First input | First zone |
|-----------------------------|-------------|------------|
| Elevator 1                  | 1           | 1          |
| Elevator 2                  | 65          | 65         |
| Elevator 3                  | 129         | 129        |
| Elevator 4                  | 193         | 193        |

# 4.5 Cards and Readers

# 4.5.1 Advisor MASTER System Readers


The list of ATS system devices that can serve as user interface for access control is contained in Table 1-10. These are keyboards, readers, keyboards with integrated readers and the interface to connect other readers. Each of these devices can be used for user verification in access control and a significant simplification is the ability to connect them directly to the system or local bus. This decreases the complexity of the wiring and reduces the installation time. The smart cards and readers offered with the ATS system deserve special attention. They have been described in detail in chapter **6.** ATS system Smart Cards.

# 4.5.2 Other readers

Often the system design guidelines contain specific requirements as to the type of access control cards and readers. The ATS systems can use any reader compatible with the Wiegand hardware interface, and any card or token that sends a data stream of up to 48 bits. The details of using cards of different formats are described in paragraph 0. To connect a Wiegand interface reader to the ATS system the ATS1170 interface, or any of the reader outputs of the ATS1250/60 need to be used – it has to be kept in mind, that the maximum distance from the reader to the interface cannot exceed 70m, see section 3.2 which describes the wiring. The method of connecting the devices to the control panel – the system bus – or access control DGP – local bus and ATS125 reader inputs – has been detailed in the following paragraphs.

# 4.5.2.1 HID

HID readers use the Wiegand interface. They can be used in the Advisor Master system by connecting them to the system, to the direct reader inputs of the access control DGP, or through the ATS1170 to the system bus, as well as the access control DGP local bus – see Drawing 4-6. This method can be used to connect any Wiegand interface reader..



Drawing 4-6 Connecting the Wiegand interface readers to the ATS system.

Besides hardware compatibility, the user card compatibility needs to be ensured. The ATS system supports many access card formats - see Table 4-19 – but not all of them are supported by the control panel. The HID readers – see Table 4-13 – are compatible with the HID access control cards in the ATS Wiegand 32 bit format – see Table 4-14. Cards of this format are supported by the ATS1250/60 DGP, which means it's sufficient to program the card series for it to be active in the system. The control panel does not support this format directly so for them to be connected directly to the system bus, the IUM option of the ATS system needs to be used. This means that each card in the system will have to be read during installation and stored in the user database.

| Product | Description                                                                                            |
|---------|--------------------------------------------------------------------------------------------------------|
| ACI730  | Proximity card reader HID ProxPro Plus, range up to 20 cm, external                                    |
| ACI755  | Proximity card reader HID ProxPro, range up to 20 cm, external                                         |
| ACI757  | Proximity card reader HID ProxPro, range up to 20 cm, with keyboard                                    |
| ACI760  | Proximity card reader HID ProxPoint, range 5cm, low cost                                               |
| ACI765P | Proximity card reader HID MiniProx, range up to 10cm, miniature, external                              |
| ACI775  | Proximity card reader HID MaxiProx, range 70 cm, waterproof, external                                  |
| ACI795  | Proximity card reader HID, range up to 14 cm, in flat housing, external .<br>(optional colour – white) |

#### Table 4-14 HID cards

| Product   | Description                                                                      |
|-----------|----------------------------------------------------------------------------------|
| ACT725-xx | Proximity card for HID ProxCardII readers                                        |
| ACT736-xx | Dual card DuoProxII (magn.+ proximity HID), thin (ISO), printable                |
| ACT745-xx | ProxKeyII key fob, for HID readers                                               |
| ACT786-xx | Proximity card for HID ISO ProxII readers , thin (ISO), printable                |
| ACT790-xx | Active proximity HID identifier (with battery) for vehicles, Dimensions: 10*7 cm |

#### Table 4-15 Technical parameters of the HID readers.

| HID Parameter     | ACI730     | ACI755              | ACI757 | ACI760       | ACI766    | ACI775     | 795       |
|-------------------|------------|---------------------|--------|--------------|-----------|------------|-----------|
| Reader range      | 25cm       | 20                  | cm     | 7,6cm        | 14cm      | 73cm       | 14cm      |
| Keyboard          | -          | -                   | Yes    | -            | -         | -          | -         |
| Voltage           | 10-        | 28,5VDC             |        | 5-16VDC      | 5-16VDC   | 12/24VDC   | 5-16VDC   |
| Power cons.       | 100mA      | 100                 | mA     | 30mA         | 20mA      | 200mA      | 20mA      |
| Power cons., max. | 120mA      | 120mA               |        | 75mA         | 110mA     | 1,2A       | 115mA     |
| Dimensions        | 190x190x23 | 127x127x25          |        | 79,6x43,7x17 | 152x43x25 | 300x300x25 | 119x76x17 |
| Housing           |            | Polycarbonates UL94 |        |              |           |            |           |
| Operating temp.   | -30 – 65°C |                     |        |              |           |            |           |
| Operating freq.   | 125kHz     |                     |        |              |           |            |           |
| Humidity          | 95%        |                     |        |              |           |            |           |

#### 4.5.2.2 MIFARE

MIFARE readers –Table 4-16 – are connected to the ATS system exactly like any other Wiegand interface reader. (Ex. HID – see Drawing 4-6.) The offered readers are universal multi-protocol devices, identifying the MIFARE cards (smart cards) by the serial number of the card's chip. Readers of this type – often called serial readers – are used to integrate an existing installation, based on MIFARE smart cards, with the Advisor MASTER system.

The MIFARE card format - Table 4-17 – is not supported directly by any ATS module. Therefore, to use cards of this type, the IUM function needs to be used. This function allows storing the data stream (up to 48 bits) of the card in the user database. To program the cards, all of them must be read.

Table 4-16 MIFARE readers

| Product | Description                                                                                      |
|---------|--------------------------------------------------------------------------------------------------|
|         | MIFARE proximity card reader (requires Wiegand interface and IUM module), external               |
|         | MIFARE proximity card reader with keyboard (requires Wiegand interface and IUM module), external |

Table 4-17 MIFARE cards

| Product | Description                          |
|---------|--------------------------------------|
| ACT407  | MIFARE standard card (25 cards pack) |
| ACT430  | MIFARE standard key fob              |

Table 4-18 Technical parameters of the readers.

| MIFARE parameter  | ACI406 | ACI407 |
|-------------------|--------|--------|
| Reader range      | 5-6cm  | 5-6cm  |
| Keyboard          | -      | Yes    |
| Operating Voltage | 8-28.  | 5VDC   |
| Power cons.       | 100    | mA     |
| Power cons., max. | 100mA  |        |
| Dimensions        | 110x4  | 43x24  |
| Housing           | IP     | 47     |
| Operating temp.   | -40 —  | 55°C   |
| Operating freq.   | 13.56  | 6MHz   |
| Humidity          | 95     | 5%     |

# 4.5.3 Cards.

The ATS system supports many card types listed in the table below

Table 4-19 A list of available card formats.

| Format                              | Description                                                                                                                                     | <b>Control Panel</b> | ATS1250/60 |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|
| Wiegand 27 bit                      | Used with Indala ESP type readers<br>produced by ARITECH.                                                                                       |                      | x          |
| Aritech ASC                         | Used with ATS1190.                                                                                                                              | х                    | х          |
| Kastle 32 bit                       | Kastle format cards.                                                                                                                            |                      | х          |
| Wiegand 26 bit (ID =<br>16, FC = 8) | Standard 26 bit Wiegand readers, along<br>with ARITECH Wiegand readers. Has a 16<br>bit card number (0-65534) and 8 bit system<br>code (0-255). | x                    | x          |
| Indala ASC 27 bit                   | Indala ASP proximity reader family, which uses a 27 bit Wiegand format                                                                          |                      | x          |
| Indala ASC 26 bit                   | Not used in Europe                                                                                                                              |                      | x          |
| Wiegand 32 bit                      | 32 bit Wiegand format readers .Has a 16 bit card number and a 16 bit system code.                                                               |                      | x          |
| Mag.Card Aritech                    | Aritech/TECOM magnetic card format.                                                                                                             | х                    | х          |
| Mag.Card Midas                      | Midas magnetic card format.                                                                                                                     |                      | х          |
| C36 bit                             | C36 bit card format.                                                                                                                            |                      | x          |
| ATS Wiegand 30 bit                  | Aritech Wiegand 30 bit card format                                                                                                              |                      | x          |

| Format                                                | Description | <b>Control Panel</b> | ATS1250/60 |
|-------------------------------------------------------|-------------|----------------------|------------|
| ATS Wiegand 32 bit Aritech Wiegand 32 bit card format |             |                      | х          |

The control panel supports only formats supplied with the Advisor MASTER system. The flexibility of memory configurations of the system enables using all the cards mentioned in Table 4-19 in the control panel as well as throughout the system. Using the IUM Intelligent User Module and it's emulation the system can store any data stream of up to 48 bits read from the card in it's user database, regardless of it's format or the reader type. All ATS1250/60 store a local copy of the user database, so all devices of this type need to be equipped with the same memory expansion as the control panel to which they are connected.

# **5 NETWORK SYSTEM CONFIGURATION**

Designing the alarm system described in this chapter consists of translating the design requirements to the number and type of control panels, optionally the expansions used to build the system. In the most general view, the design requirements for an integrated system are outlined in Table 4-1. Based on those parameters, assuming full use of the system address space, the number of control panels can be assessed – see Table 5-1 – keeping in mind the design limits. They consist mostly of alarm expansion configuration, that is using the alarm zone address space – see section 4.2 – and passage configuration – see section 4.4.

Table 5-1 Assessing the number of control panels in a networked system.

| Parameter                 | ATS4000/4518                   | ATS3000                       |  |
|---------------------------|--------------------------------|-------------------------------|--|
| Number of alarm zones     | Number_of_Control_Panels x 256 | Number_of_Control_Panels x 64 |  |
| Number of areas           | Number_of_Control_Panels x 16  | Number_of_Control_Panels x 8  |  |
| Number of users           | 50 do 67000                    | 50 do 11000                   |  |
| Number of manipulators    | Number_of_Control_Panels x 16  | Number_of_Control_Panels x 16 |  |
| Result-alarm requirements | Max. From above                | Max. From above               |  |

| Parameter                         | ATS30/40/4518                 | Comment                                                                    |
|-----------------------------------|-------------------------------|----------------------------------------------------------------------------|
| Number of unidirectional passages | Number_of_Control_Panels x 16 | Simple unidirectional passages without additional functions                |
| Number of bi-directional passages | Number_of_Control_Panels x 48 | Bi-directional passages or<br>advanced functions required see<br>Table 4-8 |
| Result – AC requirements          | Max. From above               |                                                                            |

#### Total control panels: (Result-alarm requirements) + (Result-alarm requirements)

Depending on the expansions used, the maximum number of zones (unused zone address space) and doors supported by one control panel will change. In that case, the method of calculating the number of required control panels needs to be changed.

After finding the number of alarm zones, the appropriate zone and/or passage address range needs to be assigned to each, keeping in mind the control panel capabilities. After that the subsystems can be designed, as per paragraph 4.

Table 5-2 Capacity of the system with 64 ATS4000/4518 control panels.

| Parameter            | Value | Remarks                                                                                                                                          |
|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm zones          | 16384 | Completely expanded alarm system – 1024<br>unidirectional doors in the control panel manipulators,<br>lack of advanced access control functions. |
| Areas                | 1024  |                                                                                                                                                  |
| Users                | 67000 | Identical user databases in each control panel                                                                                                   |
| RAS stations         | 1024  | In certain situations the control panel manipulators can be doubled.                                                                             |
| Unidirectional doors | 1024  | Control panel manipulators                                                                                                                       |
| Bi-directional doors | 3072  | Completely expanded access control system – 3072 alarm zones                                                                                     |

# 6 ATS SYSTEM SMART CARDS.

The Smart card technology is an integral part of the ATS system. The ATS product list contains a whole range of products (cards, readers, key fobs programmer, etc.) providing a complete access control solution. Card programming and reader support are an integral part of the TITAN software. The program is supplied with additional tools, card and user support functions (Photo ID, card customization and printing, etc.), which makes the solution interesting especially for small and medium systems, due to it's attractive price, and flexibility of the solutions. An additional advantage of the solution is the autonomous mode capabilities of the ATS1190/92 readers, which can then work in credit applications, or be integrated with other access control, as well as working time registration systems.

# 6.1 Readers and cards

A set of readers can be easily adjusted for any application. The basic device is the ATS1190 reader. It has a discreet, inconspicuous shape, a white colour, and five other colours are available by swapping the device cover. Applications that require a heightened mechanical or weather resistance of the reader can use the ATS1192 reader, functionally identical with the ATS1190. Although both devices have a robust design – the housing is filled with an elastic polymer, protecting the electronics from environmental influence and possible mechanical damage – the ATS1192 additionally has a reinforced housing. This allows the housing resistance to be declared at the IP54 level.

| Product     | Description                                                                     | Interface     |
|-------------|---------------------------------------------------------------------------------|---------------|
| ATS1190     | Proximity reader (does not require an interface)                                | RS485/Wiegand |
| ATS1192     | High resistance proximity reader (does not require an interface) indoor/outdoor | RS485/Wiegand |
| ATS1115     | Keypad, 2*16 characters LCD/16 zone LEDs with inbuilt ATS card reader.          | RS485         |
| ATS1116     | Keypad, 2*16 characters LCD/16 zone LEDs with inbuilt ATS card reader.          | RS485         |
| Accessories |                                                                                 |               |
| ATS166x     | Reader cover – 10 pcs. – available colours:                                     |               |
|             | 0-white, 1-red, 2-gray, 3-beige, 4-black                                        |               |

Table 6-1 List of available readers

Complementing the offered readers is a wide range of cards and keyfobs. The cards conform to the ISO-Prox format and can be printed upon in all typical access card printers. Foreseeing the need to use the ATS system alongside other access control or time registration systems that use magnetic cards, we offer cards with a magnetic strip. The strip isn't programmed. Complementing the cards are three key fob types.

Table 6-2 Smart cards and key fobs.

| Product | Description                            |
|---------|----------------------------------------|
| ATS1471 | Smart keyfob– 1pc.                     |
| ATS1473 | Plastic smart keyfob–1pc.              |
| ATS1475 | Smart card, package – 10pcs.           |
| ATS1476 | Smart card with magnetic strip– 10pcs. |
| ATS1477 | Smart keyfob package – 10pcs.          |

| Parameter           | Value   |         |          |         |  |  |
|---------------------|---------|---------|----------|---------|--|--|
|                     | ATS1190 | ATS1192 | ATS1115  | ATS1116 |  |  |
| Reader range        | 6-12    | 2 cm    | 6-8      | cm      |  |  |
| Work temperature    | -35 —   | 60*C    | 0 – 50*C |         |  |  |
| Housing resistance  | IP      | 54      | IP30     |         |  |  |
| Current consumption | 30      | mA      | 86mA     |         |  |  |
| Voltage             |         | 12V     | DC       |         |  |  |
| Output load         | 50mA    |         |          |         |  |  |
| Credit applications | Y       | es      | NO*      |         |  |  |

Table 6-3 Characteristic parameters of the Smart card readers.

\*- a keyboard not connected to the system bus displays the "System error" message

# 6.2 **Programmer and software**

The programmer is sold as ATS1621 and contains all necessary equipment for use:

- Programmer
- RS232 cables for computer connection
- Power supply

The software for accessing the programmer, and controlling all the aspects of work with smart cards is an integral part of the TITAN program. It's equipped with a module for communication with the programmer, containing safeguards allowing only authorised users to access the equipment. It also contains the tools to program reader configuration cards, and a series of other additional functions and tools, not related directly with smart cards, but with cards in general:

- Photo ID module for gathering and storing user photographs;
- User verification capabilities the information is retrieved form the database whenever the user passes a secure door.
- Card customisation module, with a template wizard, and support for printing cards with information contained in the system database.
- Credit applications see section 6.3 below a function allowing the readers to be used outside of the security system, to control other equipment (Xerox access, coffee, gym etc.)

# 6.3 Credit Applications

Each card contains four memory banks for storing credit units, access to four locations and priority. Each reader can be assigned to one of four locations with priority from one of the 16 levels, and the number of consumed credits. The reader output needs to be configured for credit applications to assure the desired response the user presenting the card. The reader doesn't need to be connected to the system!

The user who received access rights to the location programmed in the reader will have the ability to use the device connected to the reader if his priority level is higher than the one programmed in the reader, and the number of credits on his card exceeds the number of credits withdrawn. Thanks to bi-directional communications card-reader, if the reader accepts the card, the proper changes to the amount of credits available are stored on it.

Using the TITAN software, the credit unit names and locations can be defined. This way, access to office equipment, canteens, gyms and other building facilities can be limited. This function is available in the TITAN software without additional licences and payments.

# 6.4 Safeguards

Due to the sensitivity of the problem, the security of the system using the ATS Smart technology is detailed in a separate chapter.

The reasons, why the programmable card and reader solution might seem insecure are:

- Availability of software and equipment for generating new cards the ability to generate a duplicate by unauthorised persons (external sabotage);
- The ability to program a duplicate of the card by an unauthorised employee (internal sabotage);
- Compromising security in case of card loss;
- Compromising security in case software and/or equipment (programmer) loss.

The ATS Smart card safeguards provide a high level of security for installations in which they are used.

#### • Securing equipment against unauthorized access;

The programmer requires a password when connecting to the computer. The default password is blank and is not verified to simplify the process for new users. However if a password is used, the programmer will later require password authentication every time the connection is made. The connection password is stored only in the programmer which decreases the risk of revealing the password in case of a hacker attack or equipment loss.

There are two methods for deleting the programmer memory: software function or use of the programmer erasing card. Although the software function requires the programmer to be connected with the TITAN software, the use of the card allows the programmer memory to be deleted without a computer connection. Due to the possibility of losing the connection password (forgetting, disloyal employees etc.), it is recommended that an erasing card be supplied with every system that uses a programmer.

#### • Card security;

The basic protection of the cards and readers is the 4 byte security code. It's set in the programmer activation phase and is remembered in the computer profile and it's internal memory. The card security code is stored in each programmed user and configuration card. The configuration cards, besides storing the programmed options in the accessed reader, also store the card security code. The reader ignores all tokens with a different security code than the one it's programmed with. The reader-card configuration is bidirectional and encrypted. Every time the reader receives 112 bits of information from the card.

Each attempt to change a user card once it's programmed requires password verification. Only programming blank cards does not require authentication.

An additional safeguard is the option to block programming of the security code. By blocking the change of the code, erasing the card is also blocked.

The security code cannot be read either form the card or from the reader. It can only be read from the programmer, and only if an active connection to the TITAN software is present – activating such a connection requires authorisation.

The programmer profile contains the range of system codes and programmed cards for the current system/profile. The system will only accept cards that have the system codes from this range. This is an additional protection for systems in which the programmed cards are supplied by the installing technician. This solution is widely used in many countries as it allows reducing the system costs.

• Card uniqueness.

Thanks to several safeguard parameters mentioned above:

- The security code of the card has 128<sup>4</sup> possible combinations.
- The values for the system codes can be from 0 to 2047
- The cards can have numbers from 1 to 65535

# There are $3.6*10^{16}$ different user cards.

A high level of uniqueness of each of the programmed card, along with the implemented safeguards, and limitations in the access to them, causes the card and reader system to provide a high level of security, taking into account all of the abovementioned risks.

# 7 TECHNICAL DESIGN DATA.

# 7.1.1 Housings dimensions.

Table 7-1 Available housings.

| Housing | Description                               | Dimensions |     |     |  |
|---------|-------------------------------------------|------------|-----|-----|--|
| Housing | Description                               | W          | L   | D   |  |
| ATS1640 | Empty metal housing – size S              | 315        | 388 | 85  |  |
| ATS1641 | Empty metal housing – size M              | 315        | 445 | 85  |  |
| ATS1642 | Empty metal housing – size L              | 475        | 460 | 160 |  |
| ATS1643 | Empty metal housing for expanders         | 126        | 166 | 37  |  |
| ATS1644 | Empty polycarbonate housing for expanders | 87         | 124 | 34  |  |

Dimensions in mm

Table 7-2 Housing equipment.

| Product | Description                                 | Trafo | Trafo output voltage |
|---------|---------------------------------------------|-------|----------------------|
| ATS1670 | Housing equipment for housing sizes S, M, L | 58VA  | 24V AC               |
| ATS1671 | Housing equipment for housing size L        | 120VA | 24V AC               |

Table 7-3 Products delivered with housings.

| Product | Description                                                   | Housing   | H. Equipment |
|---------|---------------------------------------------------------------|-----------|--------------|
| ATS1201 | Zone expansion DGP – 8 inputs (max.32) and 8 outputs (max.16) | ATS1641   | ATS1670      |
| ATS1203 | Zone expansion DGP – 8 inputs (max.32) and 8 outputs (max.32) | ATS1641   | ATS1670      |
| ATS1210 | Zone expansion DGP – 8 inputs and 8 outputs                   | ATS1644   |              |
| ATS1211 | Zone expansion DGP – 8 inputs and 8 outputs                   | ATS1643   |              |
| ATS1220 | Zone expansion DGP – 4 inputs                                 | ATS1644   |              |
| ATS1230 | Zone expansion DGP – 32 wireless devices                      | Dedicated |              |
| ATS1290 | Zone expansion DGP – 32 addressable devices                   | ATS1244   |              |
| ATS1250 | Access Control DGP – 4 door controller                        | ATS1642   | ATS1671      |
| ATS2000 | Control Panel 8 zones (max.32), 4 areas, dialer on board      | ATS1640   | ATS1670      |
| ATS3000 | Control Panel 8 zones (max.64), 8 areas, dialer on board      | ATS1640   | ATS1670      |
| ATS4000 | Control Panel 16 zones (max.256), 16 areas, dialer on board   | ATS1641   | ATS1670      |
| ATS4500 | Control Panel 16 zones (max.256), 16 areas, dialer on board   | ATS1642   | ATS1671?     |

# 7.1.2 Space in Hosings.

Table 7-4 Battery configurations.

| Housing                | ATS1640 | ATS1641    | ATS1642 | ATS1642 | Battery  | Recommended configurations |  |
|------------------------|---------|------------|---------|---------|----------|----------------------------|--|
| Device                 | ATS2000 | ATS4000    | ATS4500 | ATS1250 | capacity |                            |  |
| Battery configurations | ATS3000 | ATS1201/03 |         |         |          |                            |  |
| BS127N                 | x       | x          | X       | x       | 7,2Ah    | x                          |  |
| BS130N                 |         |            | х       | x       | 10Ah     |                            |  |
| BS131N                 | Х*      | <b>X</b> * | х       | X       | 18Ah     | x                          |  |
| 2xBS127N               |         | x          |         | X       | 14,4Ah   | x                          |  |
| BS129N                 |         |            | х       | x       | 26Ah     | x                          |  |
| 2xBS129N               |         |            |         | X       | 52Ah     | x                          |  |

\*- lack of space for expansions below Control Panel or DGP board.

Table 7-5 Space for expanders – Products delivered with housings.

| Housing | Product    | Battery | В | BB | B+ | Α    |
|---------|------------|---------|---|----|----|------|
| ATS1640 | ATS2000    | BS131N  | 4 | 2  | 2  | 1(2) |
| A131040 | ATS3000    | Other   | 6 | 3  | 4  | 1(2) |
|         | ATS4000    | BS131N  | 2 | 1  | 0  | 0(1) |
| ATS1641 |            | Other   | 4 | 2  | 2  | 1(2) |
| A131041 | ATS1201/03 | BS131N  | 6 | 2  | 2  | 1    |
|         | A131201/03 | Other   | 8 | 4  | 4  | 2    |
| ATS1642 | ATS1250    | -       | 6 | 3  | 4  | 2    |
| A101042 | ATS4500    | -       | 6 | 3  | 4  | 2(3) |

() - dialer and communication devices (pcb A) can be mounted under Control Panel PCB

Table 7-6 Space for expanders – Empty housings.

| Housing | В  | BB | B+   | Α | C- | С | D |
|---------|----|----|------|---|----|---|---|
| ATS1640 | 8  | 4  | 4    | 2 | 2  | 1 | - |
| ATS1641 | 10 | 5  | 6(8) | 3 | 2  | 1 | - |
| ATS1642 | 12 | 6  | 8    | 5 | 4  | 2 | 2 |
| ATS1643 | -  | -  | 1    | - | -  | - | - |
| ATS1644 | -  | -  | 1    | - | -  | - | - |

# 7.1.3 Dimensions of devices PCB.

Table 7-7 Dimensions of devices PCB

| Product | В     | BB     | B+        | A      | C-      | С       | D       |
|---------|-------|--------|-----------|--------|---------|---------|---------|
|         | 80x52 | 176x52 | 80x90     | 80x176 | 130x200 | 202x218 | 218x254 |
| ATS1170 |       |        | x         |        |         |         |         |
| ATS1201 |       |        |           | x      |         |         |         |
| ATS1202 | x     |        |           |        |         |         |         |
| ATS1203 | x     |        |           |        |         |         |         |
| ATS1210 |       |        | x         |        |         |         |         |
| ATS1211 |       |        | x         |        |         |         |         |
| ATS1220 |       |        | x         |        |         |         |         |
| ATS1290 |       |        | x         |        |         |         |         |
| ATS1250 |       |        |           |        |         |         | x       |
| ATS1740 | x     |        |           |        |         |         |         |
| ATS1741 |       |        | x         |        |         |         |         |
| ATS1742 |       | X      |           |        |         |         |         |
| ATS1743 | x     |        |           |        |         |         |         |
| ATS1801 |       |        | x         |        |         |         |         |
| ATS1802 |       |        | x         |        |         |         |         |
| ATS1810 | x     |        |           |        |         |         |         |
| ATS1811 |       | X      |           |        |         |         |         |
| ATS1820 |       |        | x         |        |         |         |         |
| ATS1830 |       |        | x         |        |         |         |         |
| ATS7100 |       |        |           | x      |         |         |         |
| ATS7110 |       |        |           | x      |         |         |         |
| ATS7200 | x     |        |           |        |         |         |         |
| ATS7300 |       |        | x         |        |         |         |         |
|         |       |        | Control F | anels  |         |         |         |
| ATS2000 |       |        |           |        | x       |         |         |

| Product | В | BB | B+ | Α | C- | С | D |
|---------|---|----|----|---|----|---|---|
| ATS3000 |   |    |    |   | x  |   |   |
| ATS4000 |   |    |    |   |    | x |   |
| ATS4500 |   |    |    |   |    | x |   |

# 7.1.4 Control Panel and Memory configurations.

# Table 7-8 Control Panel and Memory configurations.

| Control<br>Panel | Zone q-ty<br>(on board) | Areas | Event<br>Log | Access Control<br>Card Formats | Access<br>Control | Users. | IUM/Std. | AYS1801<br>AYS1802 | Memory<br>Expansion |
|------------------|-------------------------|-------|--------------|--------------------------------|-------------------|--------|----------|--------------------|---------------------|
| ATS2000          | 32(8)                   | 4     | 250          | None                           | (16 PIN)          | 50     | Std.     | N                  |                     |
| ATS2000          | 32(8)                   | 4     | 250          | ATS/Wiegand 26-bit             | 16+48             | 50     | Std.     | N                  |                     |
| ATS2000          | 32(8)                   | 4     | 250          | F. supp. by ATS1250            | 48                | 50     | Std.     | N                  |                     |
| ATS2000          | 32(8)                   | 4     | 250          | F. supp. by ATS1250            | 16+48             | 50     | IUM      | N                  |                     |
| ATS2000          | 32(8)                   | 4     | 250          | Other up to 48-bit             | 16+48             | 50     | IUM      | N                  |                     |
| ATS3000          | 64(8)                   | 8     | 250          | None                           | (16 PIN)          | 50     | Std.     | Y                  |                     |
| ATS3000          | 64(8)                   | 8     | 250          | ATS/Wiegand 26-bit             | 16+48             | 50     | Std.     | Y                  |                     |
| ATS3000          | 64(8)                   | 8     | 250          | F. supp. by ATS1250            | 48                | 50     | Std.     | Y                  |                     |
| ATS3000          | 64(8)                   | 8     | 250          | F. supp. by ATS1250            | 16+48             | 50     | IUM      | Y                  |                     |
| ATS3000          | 64(8)                   | 8     | 250          | Other up to 48-bit             | 16+48             | 50     | IUM      | Y                  |                     |
| ATS3000          | 64(8)                   | 8     | 1000         | None                           | (16 PIN)          | 11k    | Std.     | Y                  | ATS1830             |
| ATS3000          | 64(8)                   | 8     | 1000         | ATS/Wiegand 26-bit             | 16+48             | 11k    | Std.     | Y                  | ATS1830             |
| ATS3000          | 64(8)                   | 8     | 1000         | ATS/Wiegand 26-bit             | 16+48             | 17k    | Std.     | N                  | ATS1831             |
| ATS3000          | 64(8)                   | 8     | 1000         | ATS/Wiegand 26-bit             | 16+48             | 65k    | Std.     | N                  | ATS1832             |
| ATS3000          | 64(8)                   | 8     | 1000         | F. supp. by ATS1250            | 16+48             | 2k     | IUM      | Y                  | ATS1830             |
| ATS3000          | 64(8)                   | 8     | 1000         | F. supp. by ATS1250            | 48                | 11k    | Std.     | Y                  | ATS1830             |
| ATS3000          | 64(8)                   | 8     | 1000         | F. supp. by ATS1250            | 48                | 17k    | Std.     | N                  | ATS1831             |
| ATS3000          | 64(8)                   | 8     | 1000         | F. supp. by ATS1250            | 48                | 65k    | Std.     | N                  | ATS1832             |
| ATS3000          | 64(8)                   | 8     | 1000         | Other up to 48-bit             | 16+48             | 2k     | IUM      | Y                  | ATS1830             |
| ATS3000          | 64(8)                   | 8     | 1000         | Other up to 48-bit             | 16+48             | 17k    | IUM      | N                  | ATS1831             |
| ATS3000          | 64(8)                   | 8     | 1000         | Other up to 48-bit             | 16+48             | 65k    | IUM      | N                  | ATS1832             |
| ATS4000          | 256(16)                 | 16    | 250          | None                           | (16 PIN)          | 50     | Std.     | Y                  |                     |
| ATS4000          | 256(16)                 | 16    | 250          | ATS/Wiegand 26-bit             | 16+48             | 50     | Std.     | Y                  |                     |
| ATS4000          | 256(16)                 | 16    | 250          | F. supp. by ATS1250            | 48                | 50     | Std.     | Y                  |                     |
| ATS4000          | 256(16)                 | 16    | 250          | F. supp. by ATS1250            | 16+48             | 50     | IUM      | Y                  |                     |
| ATS4000          | 256(16)                 | 16    | 250          | Other up to 48-bit             | 16+48             | 50     | IUM      | Y                  |                     |
| ATS4000          | 256(16)                 | 16    | 1000         | None                           | (16 PIN)          | 11k    | Std.     | Y                  | ATS1830             |
| ATS4000          | 256(16)                 | 16    | 1000         | ATS/Wiegand 26-bit             | 16+48             | 11k    | Std.     | Y                  | ATS1830             |
| ATS4000          | 256(16)                 | 16    | 1000         | ATS/Wiegand 26-bit             | 16+48             | 17k    | Std.     | Y                  | ATS1831             |
| ATS4000          | 256(16)                 | 16    | 1000         | ATS/Wiegand 26-bit             | 16+48             | 65k    | Std.     | Y                  | ATS1832             |
| ATS4000          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 16+48             | 2k     | IUM      | Y                  | ATS1830             |
| ATS4000          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 48                | 11k    | Std.     | Y                  | ATS1830             |
| ATS4000          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 48                | 17k    | Std.     | Y                  | ATS1831             |
| ATS4000          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 48                | 65k    | Std.     | Y                  | ATS1832             |
| ATS4000          | 256(16)                 | 16    | 1000         | Other up to 48-bit             | 16+48             | 2k     | IUM      | Y                  | ATS1830             |
| ATS4000          | 256(16)                 | 16    | 1000         | Other up to 48-bit             | 16+48             | 17k    | IUM      | Y                  | ATS1831             |
| ATS4000          | 256(16)                 | 16    | 1000         | Other up to 48-bit             | 16+48             | 65k    | IUM      | Y                  | ATS1832             |
| ATS4500          | 256(16)                 | 16    | 1000         | None                           | (16 PIN)          | 11k    | Std.     | Y                  |                     |
| ATS4500          | 256(16)                 | 16    | 1000         | ATS/Wiegand 26-bit             | 16+48             | 11k    | Std.     | Y                  |                     |
| ATS4500          | 256(16)                 | 16    | 1000         | ATS/Wiegand 26-bit             | 16+48             | 17k    | Std.     | Y                  | ATS1831             |
| ATS4500          | 256(16)                 | 16    | 1000         | ATS/Wiegand 26-bit             | 16+48             | 65k    | Std.     | Y                  | ATS1832             |
| ATS4500          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 16+48             | 2k     | IUM      | Y                  | <u> </u>            |
| ATS4500          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 48                | 11k    | Std.     | Y                  | <u> </u>            |
| ATS4500          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 48                | 17k    | Std.     | Y                  | ATS1831             |
| ATS4500          | 256(16)                 | 16    | 1000         | F. supp. by ATS1250            | 48                | 65k    | Std.     | Y                  | ATS1832             |
| ATS4500          | 256(16)                 | 16    | 1000         | Other up to 48-bit             | 16+48             | 2k     | IUM      | Y                  | <u> </u>            |
| ATS4500          | 256(16)                 | 16    | 1000         | Other up to 48-bit             | 16+48             | 17k    | IUM      | Y                  | ATS1831             |
| ATS4500          | 256(16)                 | 16    | 1000         | Other up to 48-bit             | 16+48             | 65k    | IUM      | Y                  | ATS1832             |

# 7.1.5 Current consupmtion.

Table 7-9 ATS devices current consumption.

| Device  | Connected | Description                                                            | Current | cons. mA | Required                                                                                  | Notes                                                                                     |  |
|---------|-----------|------------------------------------------------------------------------|---------|----------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Device  | Expansion | Description                                                            | Max.    | Typical  | voltage V                                                                                 | Notes                                                                                     |  |
|         |           | System keynad LCD 2x16 sharastar dianlay                               |         | 73       |                                                                                           | All areas armed + Power status LED 220VAC                                                 |  |
| ATS1100 | -         | System keypad, LCD 2x16 character display,<br>8 area status LED        | 185     | 152      | 7,19                                                                                      | All areas armed + Power status LED 220VAC + LCD backlight                                 |  |
|         |           | System keypad, LCD 2x16 character display,                             |         | 78       |                                                                                           | All areas armed + Power status LED 220VAC                                                 |  |
| ATS1105 | -         | 8 area status LED with Wiegand reader interface                        | 185     | 166      | 7,25                                                                                      | All areas armed + Power status LED 220VAC + LCD backlight                                 |  |
|         | ATS1410   | ATS1105 system keypad with ATS1410 magnetic card reader connected      | 195     | 150      |                                                                                           | ATS1410 functions until keypad stops at 5.5Vdc                                            |  |
|         |           | System keypad, LCD 2x16 character display,                             |         | 32       |                                                                                           | All areas armed + Power status LED 220VAC                                                 |  |
| ATS1110 | -         | 16 area status LED                                                     | 95      | 91       | 7,4                                                                                       | All areas armed + Power status LED 220VAC + LCD backlight                                 |  |
|         |           | System keypad, LCD 4x16 character display,<br>16 area status LED       | 95      | 32       |                                                                                           | All areas armed + Power status LED 220VAC                                                 |  |
| ATS1111 | -         |                                                                        |         | 91       | 7,4                                                                                       | All areas armed + Power status LED 220VAC + LCD backlight                                 |  |
| ATS1115 |           | System keypad, LCD 2x16 character display,                             | 165     | 86       | - 7,4                                                                                     | All areas armed + Power status LED 220VAC (reader operates until 8.5 VDC)                 |  |
| AISTIIS | -         | 16 area status LED with ATS Smart Card reader                          | 105     | 103      | 7,4                                                                                       | All areas armed + Power status LED 220VAC + LCD backlight (reader operates until 8.5 VDC) |  |
| ATS1116 |           | System keypad, LCD 4x16 character display,                             | 169     | 86       | - 7,4                                                                                     | All areas armed + Power status LED 220VAC (reader operates until 8.5 VDC)                 |  |
|         | -         | 16 area status LED with ATS Smart Card reader                          | 109 7,4 | 7,4      | All areas armed + Power status LED 220VAC + LCD backlight (reader operates until 8.5 VDC) |                                                                                           |  |
| ATS1151 | -         | System keypad, 3 system status LED, metal housing, without LCD display | 45      | 34       | 7,35                                                                                      | Each LED lit add: +9mA;                                                                   |  |
| ATS1155 | -         | Outdoor keypad, vandal resistant metal housing, separate electronics.  | 70      | 70       | 7,35                                                                                      |                                                                                           |  |

| Device     | Connected | Description                                                                                      | Current | cons. mA | Required  | Notes                                                                                          |
|------------|-----------|--------------------------------------------------------------------------------------------------|---------|----------|-----------|------------------------------------------------------------------------------------------------|
| Device     | Expansion | Description                                                                                      | Max.    | Typical  | voltage V | Notes                                                                                          |
| ATS1156    | -         | System keypad, 3 system status LED, metal housing, with magnetic card reader (ACT600)            | 45      | 39       | 7,35      | Each LED lit add: +9mA;<br>Card swipe add: +5mA.                                               |
| ATS1170    | -         | Wiegand reader interface, PCB only                                                               | 45      | 32       | 9,6       |                                                                                                |
| A151170    | ATS1190   | Wiegand reader interface, with proximity reader connected                                        | 95      | 65       | 9,0       |                                                                                                |
| ATS1190    | -         | ATS proximity Smart Card reader (do not require interface)                                       | 50      | 29       | 7,99      |                                                                                                |
| ATS1192    | -         | ATS proximity Smart Card reader (do not require interface), vandal resistant housing             | 50      | 29       | 7,99      |                                                                                                |
| ATS1202    | -         | Zone expansion module 8 input for control panel and DGP, PCB                                     | 10      | 9        |           |                                                                                                |
|            | -         | Zone expansion DGP – 8 inputs and 8 outputs                                                      | 53      | 50       | 6,73      | Sends "Low Voltage" message at 10,5VDC                                                         |
| ATS1210/11 |           | ATS1210/11 with 4 relays module connected                                                        | 130     | 70       | 9,6       | All relays active. Minimum voltage to activate relays 10,3VDC. Pooling continues up to 5,5VDC. |
| A151210/11 |           | ATS1210/11 with 8 relays module connected                                                        | 225     | 110      | 9,6       | All relays active. Minimum voltage to activate relays 10,1VDC. Pooling continues up to 5,5VDC. |
|            | ATS1820   | ATS1210/11 with 16OC module connected                                                            | 90      | 38       | 6,73      | All outputs active without any additional load.                                                |
| ATS1220    | -         | Zone expansion DGP – 4 inputs                                                                    | 53      | 45       | 6,73      |                                                                                                |
| ATS1230    | -         | Zone expander DGP - wireless devices receiver,<br>433MHz freq. Up to 32 detectors and 16 keyfobs |         | 39       | 7,48      |                                                                                                |
| ATS1290    | -         | Zone expander DGP – addressable devices with Point ID bus. Up to 32 devices.                     | 53      | 50       | 9,5       | Without Point ID load, no addressable devices connected                                        |
| A131290    |           | ATS1290 with PID bus connected with max. load of 512UL                                           | 154     | 154      | 9,5       | PID bus with maximum specified load of 512UL (UL<br>Unit Load)                                 |

| Device  | Connected | Description                                      | Current cons. mA |         | Required  | Natas                                      |  |  |  |
|---------|-----------|--------------------------------------------------|------------------|---------|-----------|--------------------------------------------|--|--|--|
| Device  | Expansion | Description                                      | Max.             | Typical | voltage V | Notes                                      |  |  |  |
| ATS1740 | -         | ATS bus isolator/repeater – PCB                  | 90               | 60      | 4,75      |                                            |  |  |  |
| ATS1741 | -         | ATS bus converter RS485 / RS232 - PCB            | 100              | 100     | 6,1       |                                            |  |  |  |
| ATS1742 | -         | ATS bus loop interface RS485 - PCB               | 86               | 86      |           |                                            |  |  |  |
| A131742 | ATS1201   | DGP connected to bus loop                        | 155              | 97      | 6,79      |                                            |  |  |  |
| ATS1743 | -         | ATS bus converter RS485/Fibber optic - PCB       | 60               | 36      | 10,24     |                                            |  |  |  |
| ATS1810 | -         | Output expension module 4 roleve (NO/NC) DCD     | 1                | 1       |           | Prąd spoczynkowy                           |  |  |  |
| A151010 |           | Output expansion module 4 relays (NO/NC) – PCB   | 100              | 60      |           | All relays active                          |  |  |  |
| AT04044 | -         | Output expansion module 8 relays (NO/NC) – PCB - | 50               | 20      |           | Prąd spoczynkowy                           |  |  |  |
| ATS1811 |           |                                                  | 250              | 170     |           | All relays active                          |  |  |  |
| ATS1820 | -         | Output expansion module 16 OC – PCB              | 50               | 20      |           |                                            |  |  |  |
|         | -         | Computer and printer interface, 2 RS232 ports    | 25               | 20      |           | Prąd spoczynkowy                           |  |  |  |
| ATS1801 |           |                                                  | 60               | 60      |           | One port communication                     |  |  |  |
|         |           |                                                  | 150              | 137     |           | Two ports communication                    |  |  |  |
| 4704000 | -         | Printer interface, RS232 port                    | 20               | 60      |           | Prąd spoczynkowy                           |  |  |  |
| ATS1802 |           |                                                  | 100              | 60      |           | One port communication                     |  |  |  |
| ATS1830 | -         | Memory expansion module, 1MB                     | 30               | 3       |           |                                            |  |  |  |
| ATS1831 | -         | Memory expansion module, IUM, 4MB                | 30               | 10      |           |                                            |  |  |  |
| ATS1832 | -         | Memory expansion module, IUM, 8MB                | 30               | 10      |           |                                            |  |  |  |
| AT07400 | -         | ISDN communicator, B-channel                     | 50               | 45      |           | Prąd spoczynkowy                           |  |  |  |
| ATS7100 |           |                                                  | 120              | 92      |           | Connection active                          |  |  |  |
| ATS7200 | -         | ATS voice module, 2+6 messages                   | 50               | 23      |           |                                            |  |  |  |
|         |           | GSM communicator                                 |                  |         |           | 110mA current consumption during GSM       |  |  |  |
| ATS7300 |           |                                                  | 110              | 20      |           | transmission                               |  |  |  |
|         | -         | GSIM communicator                                |                  |         |           | Peek current consumption during connection |  |  |  |
|         |           |                                                  | 2A               |         |           | negotiating                                |  |  |  |
| ATS1410 | -         | Magnetic cards reader                            | 75               |         | 4,5       | While card swipe.                          |  |  |  |

Table 7-10 Proximity Readers Technical Data.

| Parameter                |              | ATS       | MIFARE     |           | ARE    | HID                |            |        |              |           |            |           |  |
|--------------------------|--------------|-----------|------------|-----------|--------|--------------------|------------|--------|--------------|-----------|------------|-----------|--|
|                          | ATS1190      | ATS1192   | ATS1115/16 | ACI406    | ACI407 | ACI730             | ACI755     | ACI757 | ACI760       | ACI766    | ACI775     | ACI795    |  |
| Reading range            | 6-12 cm      |           | 6-8 cm     | 5-6cm     | 5-6cm  | 25cm               | 20cm       |        | 7,6cm        | 14cm      | 73cm       | 14cm      |  |
| Keypad                   | -            |           | Tak        | -         | Tak    | -                  | -          | Tak    | -            | -         | -          | -         |  |
| Operating voltage        | 8-13,8VDC    |           | 9-13,8VDC  | 8-28,5VDC |        | 10-28,5VDC         |            |        | 5-16VDC      | 5-16VDC   | 12/24VDC   | 5-16VDC   |  |
| Current Cons.<br>Typical | 29mA         |           | 30mA       | 100       | )mA    | 100mA              | 100mA      |        | 30mA         | 20mA      | 200mA      | 20mA      |  |
| Current Cons.<br>Max.    | 50mA         |           | 165mA      |           |        | 120mA              | 120        | OmA    | 75mA         | 110mA     | 1,2A       | 115mA     |  |
| Dimensions               | 34x110x17    | 42x149x15 | 92x165x25  | 110x4     | 43x24  | 190x190x23         | 127x127x25 |        | 79,6x43,7x17 | 152x43x25 | 300x300x25 | 119x76x17 |  |
| Housing                  | IP54         |           | IP30       | IP47      |        | Polycarbonate UL94 |            |        |              |           |            |           |  |
| Operating temp.          | -35 – 60st.C |           | 0 – 50st.C | -40 - \$  | 55st.C | -30 – 65st.C       |            |        |              |           |            |           |  |
| Frequency                | 127kHz       |           | 127kHz     | 13,56     | 6MHz   | 125kHz             |            |        |              |           |            |           |  |
| Humidity                 | 95%          |           |            |           |        |                    |            |        |              |           |            |           |  |

Reading range for ACT7xx readers given for reader mounted on the diamagnetic surface and ACT724 card.