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Introduction

S-functions (system-functions) provide a powerful mechanism for extending
the capabilities of Simulink®. The introductory sections of this chapter describe
what an S-function is and when and why you might use one. This chapter then
presents a comprehensive description of how to write your own S-functions.

S-functions allow you to add your own algorithms to Simulink models. You can
write your algorithms in MATLAB® or C. By following a set of simple rules, you
can implement your algorithms in an S-function. After you have written your
S-function and placed its name in an S-Function block (available in the
Nonlinear Block sublibrary), you can customize the user interface by using
masking.

You can also customize the code generated by the Real Time Workshop® for
S-functions by writing a Target Language Compiler™ (TLC) file. See the
Target Language Compiler Reference Guide and the Real-Time Workshop
User’s Guide for more information.

What Is an S-Function?

An S-function is a computer language description of a dynamic system.
S-functions can be written using MATLAB or C. C language S-functions are
compiled as MEX-files using the mex utility described in the Application
Program Interface Guide. As with other MEX-files, they are dynamically linked
into MATLAB when needed.

S-functions use a special calling syntax that enables you to interact with
Simulink’s equation solvers. This interaction is very similar to the interaction
that takes place between the solvers and built-in Simulink blocks.

The form of an S-function is very general and can accommodate continuous,
discrete, and hybrid systems. As a result, nearly all Simulink models can be
described as S-functions.

S-functions are incorporated into Simulink models by using the S-Function
block in the Nonlinear Block sublibrary. Use the S-Function block’s dialog box
to specify the name of the underlying S-function, as illustrated in the figure
below:
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S-Function dialog box

Block Parameters: 5-Function
S-Function
Uszer-definable block. Blocks may be wiitten in M, C or Fortran and must
conform to S-function standards. tx.u and flag are automatically passed to
the S-function by Simulink. “Extra" parameters may be specified in the
"S-function parameters' field.
Parameters

S-function name:

|m_l,lsfun

A model that includes
two S-Function blocks

S-function parameters:

|
Apply | Fewvert Help | Cloze

File Edit Simulation Format

S-Functionl dialog box

S-Function

Block Parameters: 5-Functionl

S-Function

Uszer-definable block. Blocks may be wiitten in M, C or Fortraers
conform ta S-function standards. tx.u and flag are aytemiatically passed to
the S-function by Simulink. “Extra" parameters raf be specified in the
"S-function parameters' field.

S-Function1

Parameters
S-function name:
|m_l,lsfun

S-function parameters:

Apply | Fewvert | Help | Cloze |

S-functi(_)n
source file

*

* MYSFUN
*

*

/* The follo
#define S_FU

C MEX-file
or

function[sys
% mysfun M-file

o°

switch(flag)

- M-file

Figure 1-1: The Relationship Between an S-Function Block, Its Dialog Box,
and the Source File That Defines the Block’s Behavior

In this example, the model contains two instances of an S-Function block. Both
blocks reference the same source file (mysfun, which can be either a C MEX-file
or an M-file). If both a C MEX-file and an M-file exist with the same name, the
C MEX-file takes precedence and is the file that the S-function uses.

You can use Simulink’s masking facility to create custom dialog boxes and
icons for your S-Function blocks. Masked dialog boxes can make it easier to
specify additional parameters for S-functions. For discussions of additional

parameters and masking, see Using Simulink.

1-3
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When to Use an S-Function

The most common use of S-functions is to create custom Simulink blocks. You
can use S-functions for a variety of applications, including:

® Adding new general purpose blocks to Simulink

® Incorporating existing C code into a simulation

® Describing a system as a mathematical set of equations

® Using graphical animations (see the inverted pendulum demo, penddemo)
An advantage of using S-functions is that you can build a general purpose block

that you can use many times in a model, varying parameters with each
instance of the block.

How S-Functions Work

Each block within a Simulink model has the following general characteristics:
a vector of inputs, u, a vector of outputs, y, and a vector of states, x, as shown
by this illustration:

u X y
(input) . (states) I (output)

The state vector may consist of continuous states, discrete states, or a
combination of both. The mathematical relationships between the inputs,
outputs, and the states are expressed by the following equations:

y = fo(t,x, u) (output)
Xe = fy(t, X, u) (derivative)
Xd,,, = f (Lt x, u) (update)

k+

= +
where x X. Xy

In M-file S-functions, Simulink partitions the state vector into two parts: the
continuous states and the discrete states. The continuous states occupy the
first part of the state vector, and the discrete states occupy the second part. For
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blocks with no states, x is an empty vector. In MEX-file S-functions, there are
two separate state vectors for the continuous and discrete states.

Simulation Stages and S-Function Routines

Simulink makes repeated calls during specific stages of simulation to each
block in the model, directing it to perform tasks such as computing its outputs,
updating its discrete states, or computing its derivatives. Additional calls are
made at the beginning and end of a simulation to perform initialization and
termination tasks.

The figure below illustrates how Simulink performs a simulation. First,
Simulink initializes the model; this includes initializing each block, including
S-functions. Then Simulink enters the simulation loop, where each pass
through the loop is referred to as a simulation step. During each simulation
step, Simulink executes your S-function block. This continues until the
simulation is complete:

1-5
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Initialize model

Calculate time of next sample hit
(only for variable sample time blocks)

Calculate outputs
in major time step

L

Update discrete states
in major time step

Calculate derivatives
Calculate outputs .
> Integration

(minor time step)

Simulation loop

Calculate derivatives
Locate zero crossings

At termination perform
any required tasks.

Figure 1-2: How Simulink Performs Simulation

1-6
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Simulink makes repeated calls to S-functions in your model. During these
calls, Simulink calls S-function routines (also called methods), which perform
tasks required at each stage. These tasks include:

¢ Initialization — Prior to the first simulation loop, Simulink initializes the
S-function. During this stage, Simulink:

= |nitializes the SimStruct, a simulation structure that contains
information about the S-function.

= Sets the number and size of input and output ports.
= Sets the block sample time(s).
= Allocates storage areas and the sizes array.

e Calculation of next sample hit — If you've selected a variable step
integration routine, this stage calculates the time of the next variable hit,
that is, it calculates the next stepsize.

e Calculation of outputs in the major time step — After this call is complete,
all the output ports of the blocks are valid for the current time step.

e Update discrete states in the major time step — In this call, all blocks should
perform once-per-time-step activities such as updating discrete states for
next time around the simulation loop.

¢ Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,
Simulink calls the output and derivative portions of your S-function at minor
time steps. This is so Simulink can compute the state(s) for your S-function.
If your S-function (C MEX only) has nonsampled zero crossings, then
Simulink will call the output and zero crossings portion of your S-function at
minor time steps, so that it can locate the zero crossings.

Overview of M-File and € MEX S-Functions

In M-file S-functions, the S-function routines are implemented as M-file
subfunctions. In C MEX S-functions, they are implemented as C functions. All
the S-function routines available to M-file S-functions exist for C MEX
S-functions as well. However, Simulink provides a larger set of S-function
routines for C MEX S-functions. If an S-function routine exists for both M-file
and C MEX S-functions, its name is the same for both.

For an M-file S-function, Simulink passes a flag parameter to the S-function.
The flag indicates the current simulation stage. You must write M-code that

1-7
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calls the appropriate functions for each flag value. For a C MEX S-function,
Simulink calls the S-function routines directly. This table lists the simulation
stages, the corresponding S-function routines, and the associated flag value
for M-file S-functions.

Table 1-1: Simulation Stages

Simulation Stage S-Function Routine Flag (M-File
S-Functions)

Initialization mdlInitializeSizes flag = 0
Calculation of next sample md1GetTimeOfNextVarHit flag = 4
hit (optional)

Calculation of outputs md1lOutputs flag = 3
Update discrete states mdlUpdate flag = 2
Calculation of derivatives mdlDerivatives flag = 1
End of simulation tasks mdlTerminate flag = 9

C MEX S-function routines must have exactly the names shown in Table 1-1.
In M-file S-functions, you must provide code that, based on the flag value, calls
the appropriate S-function routine. A template M-file S-function, sfuntmpl.m,
is located in matlabroot/toolbox/simulink/blocks. This template uses a
switch statement to handle the flag values. All you have to do is place your
code in the correct S-function routine.

In C MEX S-functions, Simulink directly calls the correct S-function routine for
the current simulation stage. A template S-function written in C called
sfuntmpl.c, located under simulink/src, is supplied with Simulink. For a
more amply commented version of the template, see sfuntmpl.doc in the same
directory.

Note We recommend that you use the M-file or C MEX-file template when
developing S-functions.




Introduction

S-Function Concepts

Understanding these key concepts should enable you to build S-functions
correctly:

¢ Direct feedthrough
* Dynamically sized inputs
® Setting sample times and offsets

Direct Feedthrough
Direct feedthrough means that the output or the variable sample time is

controlled directly by the value of an input port. A good rule of thumb is that
an S-function input port has direct feedthrough if:

¢ The output function (md10utputs or flag==3) is a function of the input u.
That is, there is direct feedthrough if the input u is used in equations defined
in md10Outputs. Outputs may also include graphical outputs, as in the case of
an XY Graph scope.

¢ It is a variable sample time S-function (calls md1GetTimeOfNextVarHit or
flag==4) and the computation of the next sample hit requires the input u.

An example of a system that requires its inputs (i.e., has direct feedthrough) is
the operation y = k x u, where u is the input, k is the gain, and y is the output.

An example of a system that does not require its inputs (i.e., does not have
direct feedthrough) is this simple integration algorithm

Outputs: y = x

Derivative: X = u

where x is the state, x is the state derivative with respect to time, u is the input
and y is the output. Note that xis the variable that Simulink integrates. It is

very important to set the direct feedthrough flag correctly because it affects the
execution order of the blocks in your model and is used to detect algebraic loops.

Dynamically Sized Inputs

S-functions can be written to support arbitrary input widths. In this case, the
actual input width is determined dynamically when a simulation is started by
evaluating the width of the input vector driving the S-function. The input

1-9
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width can also be used to determine the number of continuous states, the
number of discrete states, and the number of outputs.

Within an M-file S-function, to indicate that the input width is dynamically
sized, specify a value of -1 for the appropriate fields in the sizes structure,
which is returned during the md1InitializeSizes call. You can determine the
actual input width when your S-function is called by using length(u). If you
specify a width of 0, then the input port will be removed from the S-function
block. Handling of port widths is similar for C MEX S-function. C MEX
S-functions also let you have multiple input/output ports.

For example, the illustration below shows two instances of the same
S-Function block in a model.

hux ——f]  mystem

e S-Function
®—> system
Clock S-Function

The upper S-Function block is driven by a block with a three-element output
vector. The lower S-Function block is driven by a block with a scalar output. By
specifying that the S-Function block has dynamically sized inputs, the same
S-function can accommodate both situations. Simulink automatically calls the
block with the appropriately sized input vector. Similarly, if other block
characteristics, such as the number of outputs or the number of discrete or
continuous states, are specified as dynamically sized, Simulink defines these
vectors to be the same length as the input vector.

C MEX S-functions give you more flexibility in specifying the widths of input
and output ports. See “Creating More Complex C MEX S-Functions” on page
3-10.

Setting Sample Times and Offsets

Both M-file and C MEX S-functions allow a high degree of flexibility in
specifying when an S-function executes. Simulink provides the following
options for sample times:
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¢ Continuous sample time — For S-functions that have continuous states and/
or nonsampled zero crossings. For this type of S-function, the output changes
in minor time steps.

® Continuous but fixed in minor time step sample time — For S-functions that
need to execute at every major simulation step, but do not change value
during minor time steps.

¢ Discrete sample time — If your S-Function block’s behavior is a function of
discrete time intervals, you can define a sample time to control when
Simulink calls the block. You can also define an offset that delays each
sample time hit. The value of the offset cannot exceed the corresponding
sample time.

A sample time hit occurs at time values determined by this formula
TimeHit = (n * period) + offset

where n, an integer, is the current simulation step. The first value of n is
always zero.

If you define a discrete sample time, Simulink calls the S-function md10utput
and md1lUpdate routines at each sample time hit (as defined in the above
equation).

® Variable sample time — A discrete sample time where the intervals between
sample hits can vary. At the start of each simulation step, S-functions with
variable sample times are integrated for the time of next hit.

¢ Inherited sample time — Sometimes an S-Function block has no inherent
sample time characteristics (that is, it is either continuous or discrete,
depending on the sample time of some other block in the system). You can
specify that the block’s sample time is inherited. A simple example of this is
a Gain block that inherits its sample time from the block driving it.

A block can inherit its sample time from:
= The driving block

= The destination block

= The fastest sample time in the system

To setablock’s sample time as inherited, use -1 as the sample time. For more
information on the propagation of sample times, see “Sample Time Colors” in
Using Simulink.

1-11
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S-functions can be either single or multirate; a multirate S-function has
multiple sample times.

Sample times are specified in pairs in this format: [sample_time,
offset_time]. The valid sample time pairs are

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample _time_period, offset]
[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS SAMPLE_TIME = 0.0
FIXED_IN_MINOR_STEP_OFFSET = 1.0
VARIABLE_SAMPLE_TIME = -2.0

and the italics indicate a real value is required.

Alternatively, you can specify that the sample time is inherited from the
driving block. In this case the S-function can have only one sample time pair

[INHERITED_SAMPLE_TIME, 0.0]

or
[ INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

where
INHERITED_SAMPLE_TIME = -1.0
The following guidelines may help you specify sample times:
® A continuous S-function that changes during minor integration steps should

register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

® A continuous S-function that does not change during minor integration steps
should register the
[CONTINUOUS SAMPLE_TIME, FIXED IN_MINOR_STEP_OFFSET] sample time.
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® A discrete S-function that changes at a specified rate should register the
discrete sample time pair, [discrete_sample time period,offset],
where

discrete_sample period > 0.0

and
0.0 < offset < discrete_sample_period

® A discrete S-function that changes at a variable rate should register the
variable step discrete sample time:

[VARIABLE_SAMPLE_TIME, 0.0]

The md1GetTimeOfNextVarHit routine is called to get the time of the next
sample hit for the variable step discrete task.
If your S-function has no intrinsic sample time, then you must indicate that
your sample time is inherited. There are two cases:

¢ An S-function that changes as its input changes, even during minor
integration steps, should register the [ INHERITED_SAMPLE_TIME, 0.0]
sample time.

* An S-function that changes as its input changes, but doesn’t change during
minor integration steps (that is, remains fixed during minor time steps),
should register the
[ INHERITED SAMPLE_TIME, FIXED_ IN_MINOR_STEP_OFFSET] sample time.

For example, most discrete-time S-functions must register this sample time
when inheriting the input sample time.

Sample S-Functions

It may be helpful to examine some sample S-functions as you read the next
chapters. Examples are stored in these subdirectories under the MATLAB root
directory:

e M-files: toolbox/simulink/blocks
® C MEX-files: simulink/src

1-13
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The simulink/blocks directory contains many M-file S-functions. Consider
starting off by looking at these files.

Table 1-2: Example M-File S-Functions

Filename

Description

csfunc.m
dsfunc.m

vsfunc.m

mixed.m

vdpm.m

simom.m

simom2.m

limintm.m

Defines a continuous system in state-space format.
Defines a discrete system in state-space format.

Illustrates how to create a variable step block. This
block implements a variable step delay in which the
first input is delayed by an amount of time
determined by the second input.

Implements a hybrid system consisting of a
continuous integrator in series with a unit delay.

Implements the Van der Pol equation.

An example state-space M-file S-function with
internal A, B, C, and D matrices. This S-function
implements

dx/at = Ax + By
y = Cx + Du

where x is the state vector, u is the input vector, and
y is the output vector. The A, B, C, and D matrices
are embedded in the M-file.

An example state-space M-file S-function with
external A, B, C, and D matrices. The state-space
structure is the same as in simom.m, but the A, B, C,
and D matrices are provided externally as
parameters to this file.

Implements a continuous limited integrator where
the output is bounded by lower and upper bounds
and includes initial conditions.

1-14
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Table 1-2: Example M-File S-Functions (Continued)

Filename

Description

sfun_varargm.m

vliimintm.m

vdlimintm.m

This is an example M-file S-function showing how to
use the MATLAB vararg facility.

An example of a continuous limited integrator
S-function. This illustrates how to use the size entry
of -1 to build an S-function that can accommodate a
dynamic input/state width.

An example of a discrete limited integrator
S-function. This example is identical to vlimint.m,
except that the limited integrator is discrete.

The simulink/src directory also contains examples of C MEX S-functions,
many of which have an M-file S-function counterpart. These C MEX
S-functions are listed in this table.

Table 1-3: Example C MEX S-Functions

Filename

Description

timestwo.c

csfunc.c

dsfunc.c

dlimint.c

vsfunc.c

mixed.c

A basic C MEX S-function that doubles its input.

An example C MEX S-function for defining a
continuous system.

An example C MEX S-function for defining a
discrete system.

Implements a discrete-time limited integrator.

Illustrates how to create a variable step block in
Simulink. This block implements a variable step
delay in which the first input is delayed by an

amount of time determined by the second input.

Implements a hybrid dynamical system consisting
of a continuous integrator (1/s) in series with a unit
delay (1/2).

1-15
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Table 1-3: Example C MEX S-Functions (Continued)

Filename Description

mixedmex.c Implements a hybrid dynamical system with a
single output and two inputs.

quantize.c An example MEX-file for a vectorized quantizer
block. Quantizes the input into steps as specified by
the quantization interval parameter, q.

resetint.c A reset integrator.
sftable2.c A two-dimensional table lookup in S-function form.
sfun_dynsize.c A simple example of how to size outputs of an

S-function dynamically.

sfun_errhndl.c A simple example of how to check parameters using
the md1CheckParams S-function routine.

sfun_fcncall.c An example of an S-function that is configured to
execute function-call subsystems on the first and
third output element.

sfun_multiport.c An example of an S-function that has multiple input
and output ports.

sfun_multirate.c An example of an S-function that demonstrates how
to specify port-based sample times.

sfun_zc.c An example of an S-function that has nonsampled
zero crossings to implement abs(u). This
S-function is designed to be used with a variable

step solver.
sfun_zc_sat.c Saturation example that uses zero crossings.
sfunmem.c A one integration-step delay and hold “memory”
function.
vdpm.c Implements the van der Pol equation.

1-16
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Table 1-3: Example C MEX S-Functions (Continued)

Filename

Description

simomex.c

stspace.c

stvctf.c

stvdct.f

limintc.c

vdlmint.c

vlimint.c

Implements a single output, two input state-space
dynamical system described by these state-space
equations

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is vector of inputs, and
y is the vector of outputs.

Implements a set of state-space equations. You can
turn this into a new block by using the S-Function
block and mask facility. This example MEX-file
performs the same function as the built-in
State-Space block. This is an example of a MEX-file
where the number of inputs, outputs, and states is
dependent on the parameters passed in from the
workspace. Use this as a template for other
MEX-file systems.

Implements a continuous-time transfer function
whose transfer function polynomials are passed in
via the input vector. This is useful for continuous
time adaptive control applications.

Implements a discrete-time transfer function whose
transfer function polynomials are passed in via the
input vector. This is useful for discrete-time
adaptive control applications.

Implements a limited integrator.

Implements a discrete-time vectorized limited
integrator.

Implements a vectorized limited integrator.
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Introduction

An M-file that defines an S-Function block must provide information about the
model; Simulink needs this information during simulation. As the simulation
proceeds, Simulink, the ODE solver, and the M-file interact to perform specific
tasks. These tasks include defining initial conditions and block characteristics,
and computing derivatives, discrete states, and outputs.

Simulink provides a template M-file S-function that includes statements that
define necessary functions, as well as comments to help you write the code
needed for your S-function block. This template file, sfuntmpl.m, is in the
directory toolbox/simulink/blocks under the MATLAB root directory.

M-file S-functions work by making a sequence of calls to S-function routines,
which are M-code functions that perform tasks required by your S-function.
This table lists the S-function routines available to M-file S-functions.

Table 2-1: M-File S-Function Routines

S-Function Routine Description

mdlInitializesizes Defines basic S-Function block
characteristics, including sample times,
initial conditions of continuous and discrete
states, and the sizes array.

mdlDerivatives Calculates the derivatives of the continuous
state variables.

mdlUpdate Updates discrete states, sample times, and
major time step requirements.

md1lOutputs Calculates the outputs of the S-function.

md1lGetTimeOfNextVarHit Calculates the time of the next hit in

absolute time. This routine is used only
when you specify a variable discrete-time
sample time in mdlInitializeSizes.

mdlTerminate Performs any necessary end of simulation
tasks.
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Building S-functions can be thought of as two separate tasks:

¢ Initializing block characteristics, including number of inputs, outputs, initial
conditions of continuous and discrete states, and sample times

® Placing your algorithms in the appropriate S-function routine

Defining S-Function Block Characteristics

For Simulink to recognize an M-file S-function, you must provide it with
specific information about the S-function. This information includes the
number of inputs, outputs, states, and other block characteristics.

To give Simulink this information, call the simsizes function at the beginning
of mdlInitializeSizes:

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the
sizes structure with information about the S-function. The table below lists
the sizes structure fields and describes the information contained in each
field.

Table 2-2: Fields in the sizes Structure

Field Name Description
sizes.NumContStates Number of continuous states
sizes.NumDiscStates Number of discrete states
sizes.NumOutputs Number of outputs
sizes.NumInputs Number of inputs
sizes.DirFeedthrough Flag for direct feedthrough
sizes.NumSampleTimes Number of sample times

After you initialize the sizes structure, call simsizes again:
Sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds
the information for use by Simulink.
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A Simple M-File S-Function Example

The easiest way to understand how S-functions work is to look at a simple
example. This block takes an input scalar signal, doubles it, and plots it to a
scope:

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

The M-file code that contains the S-function is modeled on an S-function
template called sfuntmpl.m, which is included with Simulink. By using this
template, you can create an M-file S-function that is very close in appearance
to a C MEX S-function. This is useful because it makes a transition from an
M-file to a C MEX-file much easier.

Below is the M-file code for the timestwo.m S-function:

function [sys,x0,str,ts] = timestwo(t,x,u,flag)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case O
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization

case 3
sys = mdlOutputs(t,x,u); % Calculate outputs

case {1, 2, 4, 9}
sys = []; % Unused flags

otherwise
error([ 'Unhandled flag = ',num2str(flag)]); % Error handling
end;
% End of function timestwo.
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The first four input arguments, which Simulink passes to the S-function, must
be the variables t, x, u, and flag:

® t, the time

® x, the state vector (required even if, as in this case, there are no states)

® u, the input vector

® flag, the parameter that controls the S-function subroutine calls at each
simulation stage

Simulink also requires that the output parameters, sys, x0, str, and ts be
placed in the order given. These parameters are:

® sys, a generic return argument. The values returned depend on the flag
value. For example, for flag = 3, sys contains the S-function outputs.

® x0, the initial state values (an empty vector if there are no states in the
system). x0 is ignored, except when flag = 0.

® str, reserved for future use. M-file S-functions must set this to the empty
matrix, [].

® ts, atwo column matrix containing the sample times and offsets of the block.
Continuous systems have their sample time set to zero. The hybrid example,

which starts on page 2-14, demonstrates an S-function with multiple sample
times.

Sample times should be declared in ascending order. For example, if you
want your S-function to execute at [0 0.1 0.25 0.75 1.0 1.1 1.25, etc.], set ts
equal to a two row matrix:

ts = [.25 0; 1.0 .1];

For more discussion of sample times, see “Sample Time Colors” in Using
Simulink.
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Below are the S-function subroutines that timestwo.m calls:

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

function [sys,x0,str,ts] = mdlInitializeSizes

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 1;

sizes.NumInputs= 1;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1;

% Load the sys vector with the sizes information.

Sys = simsizes(sizes);

[}
“

x0 = []; % No continuous states
str = []; % No state ordering
ts = [-1 0]; % Inherited sample time

% End of mdlInitializeSizes.

function sys = mdlOutputs(t,x,u)
Sys = 2*u;

% End of mdlOutputs.
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To test this S-function in Simulink, connect a sine wave generator to the input
of an S-Function block. Connect the output of the S-Function block to a Scope.

Double-click on the S-Function block to open the dialog box:

Block Parameters: 5-Function
— S-Function

Uszer-definable block. Blocks may be wiitten in M, C or Fortran and must
conform to S-function standards. tx.u and flag are automatically passed to
the S-function by Simulink. “Extra" parameters may be specified in the
"S-function parameters' field.

=
F

S-function name:
Itimestwo

S-function parameters:

Apply Fewvert Help Cloze

Enter the function name here. In this
example, type timestwo.

| If you have additional parameters to

You can now run this simulation.

pass to the block, enter their names
here, separating them with commas. In
this example, there are no additional
parameters.
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Examples of M-File S-Functions

The simple example discussed above (timestwo) has no states. Most
S-Function blocks require the handling of states, whether continuous or

discrete. The sections that follow discuss four common types of systems you can
model in Simulink using S-functions:

® Continuous
® Discrete

e Hybrid

® Variable-step

All examples are based on the M-file S-function template found in sfuntmpl.m.
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Example - Continuous State S-Function

Simulink includes a function called csfunc.m, which is an example of a
continuous state system modeled in an S-function. Here is the code for the
M-file S-function:

function [sys,x0,str,ts] = csfunc(t,x,u,flag)

% CSFUNC An example M-file S-function for defining a system of
% continuous state equations:

% x' = Ax + Bu

% y = Cx + Du

A=[-0.09 -0.01
1 0];
B=[ 1 -7
0 -21;
C=[ 0 2
1 -51;
D=[-3 0
1 0];

% Dispatch the flag.
switch flag,

case 0
[sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D); % Initialization

case 1
sys = mdlDerivatives(t,x,u,A,B,C,D); % Calculate derivatives

case 3
sys = mdlOutputs(t,x,u,A,B,C,D); % Calculate outputs

case { 2, 4, 9 } % Unused flags
sys = [];
otherwise
error([ 'Unhandled flag = ',num2str(flag)]); % Error handling
end
% End of csfunc.
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% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D)

% Call simsizes for a sizes structure, fill it in and convert it
% to a sizes array.

sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes
Sys = simsizes(sizes);

nomnonon
- = NDMNDODN

H % Matrix D is nonempty.

o°

% Initialize the initial conditions.

o°

x

0 = zeros(2,1);

o°

o°

str is an empty matrix.

o°

str = [1;

o°

o°

Initialize the array of sample times; in this example the sample
time is continuous, so set ts to 0 and its offset to O.

o°

o°

ts = [0 0];
% End of mdlInitializeSizes.

o°

mdlDerivatives
% Return the derivatives for the continuous states.

o°

o°

function sys = mdlDerivatives(t,x,u,A,B,C,D)
sys = A*xX + B*u;

2-10



Examples of M-File S-Functions

% End of mdlDerivatives.

o°

md1lOutputs
Return the block outputs.

o® o° o

oO

function sys = mdlOutputs(t,x,u,A,B,C,D)
sys = C*x + D*u;
% End of mdlOutputs.

The above example conforms to the simulation stages discussed earlier in this
chapter. Unlike timestwo.m, this example invokes md1Derivatives to
calculate the derivatives of the continuous state variables when flag = 1. The
system state equations are of the form

x'= AX + Bu
y = Cx + Du

so that very general sets of continuous differential equations can be modeled
using csfunc.m. Note that csfunc.mis similar to the built-in State-Space block.
This S-function can be used as a starting point for a block that models a
state-space system with time-varying coefficients.

Each time the md1Derivatives routine is called it must explicitly set the value
of all derivatives. The derivative vector does not maintain the values from the
last call to this routine. The memory allocated to the derivative vector changes
during execution.

Example - Discrete State S-Function

Simulink includes a function called dsfunc.m, which is an example of a discrete
state system modeled in an S-function. This function is similar to csfunc.m, the
continuous state S-function example. The only difference is that md1lUpdate is
called instead of md1Derivative. mdlUpdate updates the discrete states when
the flag = 2. Note that for a single-rate discrete S-function, Simulink calls the
mdlUpdate, mdlOutput, and md1GetTimeOfNextVarHit (if needed) routines only
on sample hits. Here is the code for the M-file S-function:
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function [sys,x0,str,ts] = dsfunc(t,x,u,flag)
An example M-file S-function for defining a discrete system.
This S-function implements discrete equations in this form:
x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

d° % o° o° o°

o°

Generate a discrete linear system:
A=[-1.3839 —-0.5097

1.0000 0];
B=[-2.5559 0
0  4.2382];
c=[ 0 2.0761
0  7.7891];
D=[ -0.8141 —2.9334
1.2426 0];

switch flag,
case 0
sys = mdlInitializeSizes(A,B,C,D); % Initialization

case 2
sys = mdlUpdate(t,x,u,A,B,C,D); % Update discrete states

case 3
sys = mdlOutputs(t,x,u,A,B,C,D); % Calculate outputs

case {1, 4, 9} % Unused flags
sys = [1];
otherwise
error(['unhandled flag = ',num2str(flag)]); % Error handling

end
% End of dsfunc.

function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D)
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% Call simsizes for a sizes structure, fill it in, and convert it

% to a sizes array.

Sizes = simsizes;

sizes.NumContStates =0

sizes.NumDiscStates = 2

sizes.NumOutputs = 2;
2
1
1

sizes.NumInputs

sizes.DirFeedthrough
sizes.NumSampleTimes
Sys = simsizes(sizes);

; % Matrix D is non-empty.

x0 = ones(2,1); % Initialize the discrete states.
str = []; % Set str to an empty matrix.
ts = [1 0]; % sample time: [period, offset]

% End of mdlInitializeSizes.

function sys = mdlUpdates(t,x,u,A,B,C,D)
sys = A*X + B*u;
% End of mdlUpdate.

function sys = mdlOutputs(t,x,u,A,B,C,D)
sys = C*x + D*u;
% End of mdlOutputs.

The above example conforms to the simulation stages discussed earlier in
chapter 1. The system discrete state equations are of the form

(
(

so that very general sets of difference equations can be modeled using
dsfunc.m. This is similar to the built-in Discrete State-Space block. You can
use dsfunc.mas a starting point for modeling discrete state-space systems with
time-varying coefficients.

x(n+1) = Ax(n) +

Bu(n)
y(n) = Cx(n) + Du(n)
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Example - Hybrid System S-Functions

Simulink includes a function called mixedm.m, which is an example of a hybrid
system (a combination of continuous and discrete states) modeled in an
S-function. Handling hybrid systems is fairly straightforward; the flag
parameter forces the calls to the correct S-function subroutine for the
continuous and discrete parts of the system. One subtlety of hybrid S-functions
(or any multirate S-function) is that Simulink calls the md1lUpdate, md10utput,
and md1GetTimeOfNextVarHit routines at all sample times. This means thatin
these routines you must test to determine which sample hit is being processed
and only perform updates that correspond to that sample hit.

mixed.m models a continuous Integrator followed by a discrete Unit Delay. In
Simulink block diagram form, the model looks like this:

O 0

In Out

Integrator Unit Dalay
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Here is the code for the M-file S-function:

function [sys,x0,str,ts] = mixedm(t,x,u,flag)

A hybrid system example that implements a hybrid system
consisting of a continuous integrator (1/s) in series with a
unit delay (1/z).

o® o° o° o°

o°

Set the sampling period and offset for unit delay.
dperiod = 1;
doffset = 0;
switch flag,

case 0O % Initialization
[sys,x0,str,ts] = mdlInitializeSizes(dperiod,doffset);

case 1
sys = mdlDerivatives(t,x,u); % Calculate derivatives

case 2
sys = mdlUpdate(t,x,u,dperiod,doffset); % Update disc states

case 3
sys = mdlOutputs(t,x,u,doffset,dperiod); % Calculate outputs
case {4, 9}
sys = [1; % Unused flags
otherwise
error(['unhandled flag = ',num2str(flag)]); % Error handling
end

% End of mixedm.

o°

o°

mdlInitializeSizes

Return the sizes, initial conditions, and sample times for the
S-function.

o® o° o°

of

function [sys,x0,str,ts] mdlInitializeSizes(dperiod,doffset)
sizes = simsizes;

sizes.NumContStates = 1;

sizes.NumDiscStates = 1;
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sizes.NumOutputs

sizes.NumInputs

sizes.DirFeedthrough =

sizes.NumSampleTimes

Sys = simsizes(sizes);

x0 = ones(2,1);

str = [1;

ts = [0, 0 % sample time
dperiod, doffset];

% End of mdlInitializeSizes.

|
NO = =

mdlDerivatives
Compute derivatives for continuous states.

o® of

o°

o°

function sys = mdlDerivatives(t,x,u)
Sys = u;
% end of mdlDerivatives.

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time
% step requirements.

function sys = mdlUpdate(t,x,u,dperiod,doffset)

% Next discrete state is output of the integrator.

% Return next discrete state if we have a sample hit within a

% tolerance of 1e-8. If we don't have a sample hit, return [] to
% indicate that the discrete state shouldn't change.

if abs(round((t-doffset)/dperiod)-(t-doffset)/dperiod) < 1e-8
sys = x(1); % mdlUpdate is "latching" the value of the
continuous state, x(1), thus introducing a delay.

o°

else
sys = [1; % This is not a sample hit, so return an empty
end % matrix to indicate that the states have not

o°

changed.
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% End of mdlUpdate.

o°

md1lOutputs
Return the output vector for the S-function.

° o° o° o°

o° o

function sys = mdlOutputs(t,x,u,doffset,dperiod)
Return output of the unit delay if we have a
sample hit within a tolerance of 1e-8. If we
don't have a sample hit then return [] indicating
that the output shouldn't change.

O\o O\o O\o 0\0

o°

if abs(round((t-doffset)/dperiod)-(t-doffset)/dperiod) < 1e-8

sys = x(2);
else
sys = []; % This is not a sample hit, so return an empty
end % matrix to indicate that the output has not changed

% End of mdlOutputs.

Example - Variable Step S-Functions

This M-file is an example of an S-function that uses a variable step time. This
example, in an M-file called vsfunc.m, calls md1GetTimeOfNextVarHit when
flag = 4. Because the calculation of a next sample time depends on the input
u, this block has direct feedthrough. Generally, all blocks that use the input to
calculate the next sample time (flag = 4) require direct feedthrough. Here is
the code for the M-file S-function:
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function [sys,x0,str,ts] = vsfunc(t,x,u,flag)

This example S-function illustrates how to create a variable
step block in Simulink. This block implements a variable step
delay in which the first input is delayed by an amount of time
determined by the second input:

d° % o° o° o°

o°

dt = u(2)
y(t+dt)

o°

Il
ot
—
~+
~

o°

switch flag,

case 0
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization

case 2
sys = mdlUpdate(t,x,u); % Update Discrete states

case 3
sys = mdlOutputs(t,x,u); % Calculate outputs

case 4
sys = mdlGetTimeOfNextVarHit(t,x,u); % Get next sample time

case { 1, 9}
sys = []; % Unused flags
otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end
% End of vsfunc.
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

function [sys,x0,str,ts] = mdlInitializeSizes

% Call simsizes for a sizes structure, fill it in and convert it
% to a sizes array.

2-18



Examples of M-File S-Functions

sizes = simsizes;

sizes.NumContStates =0
sizes.NumDiscStates = 1
sizes.NumOutputs =1;
sizes.NumInputs =2
sizes.DirFeedthrough = 1

o°

flag=4 requires direct feedthrough
if input u is involved in
calculating the next sample time
hit.

o® o° o°

sizes.NumSampleTimes
Sys = simsizes(sizes);

13

o°

% Initialize the initial conditions.

x0 = [0];

% Set str to an empty matrix.

str = [1;

% Initialize the array of sample times.

ts = [-2 0]; % variable sample time

% End of mdlInitializeSizes.

% mdlUpdate

% Handle discrete state updates, sample time hits, and major time
% step requirements.

function sys = mdlUpdate(t,x,u)
sys = u(1);
% End of mdlUpdate.

o°

md1lOutputs
Return the block outputs.

o o° o° o°

o°
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function sys = mdlOutputs(t,x,u)
sys = x(1);
end mdlOutputs

o°

o°

mdlGetTimeOfNextVarHit
Return the time of the next hit for this block. Note that the
result is absolute time.

o° o° o°

o°

o°

function sys = mdlGetTimeOfNextVarHit(t,x,u)
sys =t + u(2);
% End of mdlGetTimeOfNextVarHit.

md1GetTimeOfNextVarHit returns the “time of the next hit,” the time in the
simulation when vsfunc is next called. This means that there is no output from
this S-function until the time of the next hit. In vsfunc, the time of the next hit
issettot + u(2), which means that the second input, u(2), sets the time when
the next call to vsfunc occurs.

Passing Additional Parameters

Simulink always passes t, x, u, and flag into S-functions. It is possible to pass
additional parameters into your M-file S-function. For an example of how to do
this, see 1imintm.m in the toolbox/simulink/blocks directory.
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Introduction

A C MEX-file that defines an S-Function block must provide information about
the model to Simulink during the simulation. As the simulation proceeds,
Simulink, the ODE solver, and the MEX-file interact to perform specific tasks.
These tasks include defining initial conditions and block characteristics, and
computing derivatives, discrete states, and outputs.

C MEX-file S-functions have the same structure and perform the same
functions as M-file S-functions. In addition, C MEX S-functions provide you
with more functionality than M-file S-functions. Simulink includes a template
file for writing C MEX S-functions, called sfuntmpl.c and a more complete
version called sfuntmpl.doc (both located in simulink/src).

The general format of a C MEX S-function is shown below:

#define S_FUNCTION_NAME your_sfunction_name_here
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)
{
}

<additional S-function routines/code>

static void mdlTerminate (SimStruct *S)
{

}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a
MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration

function */
#endif

mdlInitializeSizes is the first routine Simulink calls when interacting with
the S-function. There are several other md1* routines within an S-function. All
S-functions must conform to this format. This means that different S-functions
can implemented using S-function routines of the same name but different
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contents. After Simulink calls md1InitializeSizes, it then interacts with the
S-function through various other routines (all starting with md1). At the end of
a simulation, md1Terminate is called.

Unlike M-file S-functions, there is not an explicit flag parameter associated
with each C MEX S-function routine. This is because Simulink automatically
calls each S-function routine at the appropriate time during its interaction
with the S-function. Also, there are S-function routines associated with C MEX
S-functions that don't have counterparts in M-file S-functions.

Simulink maintains information about the S-function in a data structure called
the SimStruct. The #include file, simstruc.h, that defines the SimStruct
provides macros that enable your MEX-file to set values in and get values (such
as the input and output signal to the block) from the SimStruct. The statement
that includes the definition of the SimStruct is shown in “Statements Required
at the Top of S-Functions” on page 3—-10. The macros that access the SimStruct
are described in “The C MEX S-Function SimStruct” on page 3—97. Commonly
used macros that are used to access the SimStruct are described in the
following sections.
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Writing Basic € MEX S-Functions

This section discusses basic C MEX S-functions, where basic means an
S-function that contains only the required S-function routines. However, the
contents of the routines can be as complex as you like. You have the freedom to
place any logic in S-function routines as long as the routines conform to their
required formats. This section presents a basic C MEX S-function by showing
how to implement an S-function that takes its input and multiplies it by two
(see matlabroot/simulink/src/timestwo.c).

In the following model, the timestwo S-function is used to double the amplitude
of a sine wave and plot it in a scope:

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

Within the block dialog for the S-function, timestwo has been specified as the
name; the parameters field is empty.

The timestwo S-function contains the S-function routines shown in this figure:
Start of simulation

| mdlinitializeSizes |

Initialization v
‘ mdlInitializeSampleTimes ‘

—P‘ md1Outputs ‘

Simulation
loop

‘ mdlTerminate ‘
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To incorporate this S-function into Simulink, create a source file called
timestwo.c and place the S-function routines of the above figure in it. Typing

mex timestwo.c

at the command line directs MATLAB to compile and link the timestwo.c file.
This creates a dynamically loadable executable for Simulink’s use.

The resulting executable is referred to as a MEX S-function, where MEX
stands for “MATLAB EXecutable.” The MEX-file extension varies from
platform to platform. For example, in Microsoft Windows, the MEX-file
extension is .d11.

This table shows the descriptions of the S-function routines required in the
timestwo S-function.

Table 3-1: S-Function Routines Called
During Simulation of the timestwo Example

S-Function Routine Description

mdlInitializeSizes Simulink calls this routine while editing
the model to determine the number of
input and output ports. Simulink also
calls it at the start of simulation to
inquire about the sizes of the ports and
any other objects (such as the number of
states) needed by the S-function.

mdlInitializeSampleTimes Simulink calls this routine to set the
sample time(s) of the S-function. In this
example, it executes whenever the
driving block executes. Therefore, it has a
single inherited sample time,
SAMPLE_TIME_INHERITED.
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Table 3-1: S-Function Routines Called
During Simulation of the timestwo Example (Continued)

S-Function Routine

Description

md1lOutputs

mdlTerminate

Calculation of outputs. For our timestwo
S-function, md10utputs takes the input,
multiplies it by two, and writes the
answer to the output. This routine is
called during the simulation loop each
time the output of timestwo needs to be
updated. For the above block diagram, it
is called at every time step.

Perform tasks at end of simulation. The
timestwo S-function has no termination
tasks to perform; therefore, this routine is
empty.
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The contents of timestwo.c are shown below.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

#include “simstruc.h”

static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams (S, 0);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, DYNAMICALLY SIZED);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes (S, 1);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}

static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0.0);
}

static void mdlOutputs(SimStruct *S, int_T tid)

{
int T i;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y ssGetOutputPortRealSignal(S,0);
int_T width = ssGetOutputPortWidth(S,0);

for (i=0; i<width; i++) {
*y++ = 2.0 *(*uPtrs[i]);
}
}

static void mdlTerminate (SimStruct *S){}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include “simulink.c” /* MEX-file interface mechanism */

#else

#include “cg_sfun.h” /* Code generation registration function */
#endif
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There is more information that the timestwo.c example requires:

® Defines and includes — The example specifies the name of the S-function

(timestwo) and that the S-function is in the level 2 format (for more
information about level 1 and level 2 S-functions, see “Converting Level 1 C
MEX S-Functions to Level 2” on page 3-118). After defining these two items,
the example includes simstruc.h, which is a header file that gives access to
the SimStruct data structure and the MATLAB Application Program
Interface (API) functions:

#define S_FUNCTION_NAME timestwo

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

mdlInitializeSizes specifies the following for the timestwo example:

= Zero parameters—This means that the S-function parameters field of the
S-functions’s dialog box must be empty. If it contains any parameters,
Simulink will report a parameter mismatch.

= One input port and one output port—The widths of the input and output
port are dynamically sized. This tells Simulink to multiply each element
of the input signal to the S-function by two and to place the result in the
output signal. Note that the default handling for dynamically sized
S-functions for this case (one input and one output) is that the input and
output widths are equal.

= One sample time. You must specify the actual value of the sample time in
the mdlInitializeSampleTimes routine.

= The code is exception free. Specifying exception free code speeds up
execution of your S-function. Care must be taken when specifying this
option. In general, if your S-function isn't interacting with MATLAB, it is
safe to specify this option. For more details, see “Error Handling” on page
3-12.

mdlInitializeSampleTimes:

= The sample time is inherited from the driving block. This means that the
S-function will run whenever it receives input from the block that is
connected to the S-function block’s input port.
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® mdlOutput:

= The numerical calculation. md10utputs tells Simulink to multiply the
input signal by 2.0 and place the result in the output signal.

= To access the input signal, use:
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

where uPtrs is a vector of pointers and must be accessed using:
*uPtrs[i]

For more details, see “Data View of S-Functions” on page 3-19.
= To access the output signal, use
real T *y = ssGetOutputPortRealSignal(S,0);

This returns a contiguous array for the block’s outputs.

= The S-function loops over the width of the signal passing through the
block. To access the width, you can check the input or output port width.
Here the output port width was evaluated.

® mdlTerminate:
= This is a mandatory S-function routine. However, the timestwo S-function
doesn’t need to perform any termination actions, so this routine is empty.

¢ At the end of the S-function, specify code that attaches this example to either
Simulink or the Real-Time Workshop:

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else

#include "cg_sfun.h"
#endif
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Creating More Complex C MEX S-Functions

There are numerous S-function routines available for use in C MEX
S-functions. Simulink provides template C MEX-file S-functions that include
statements that define the necessary functions, as well as comments that
should help you write the code needed for your S-function block. The template
file, sfuntmpl.c, which can be found in the directory simulink/src below the
MATLAB root directory, contains commonly used S-function routines. A
template containing all available routines (as well as more comments) can be
found in sfuntmpl.doc in the same directory.

Note We recommend that you use the C MEX-file template when developing
MEX S-functions. See section “Converting Level 1 C MEX S-Functions to
Level 2” on page 3-118.

Statements Required at the Top of S-Functions

For S-functions to operate properly, each source module of your S-function that
accesses the SimStruct must contain the following sequence of defines and
include

#define S_FUNCTION_NAME your_sfunction_name_here
#define SFUNCTION_LEVEL 2
#include "simstruc.h"

Where your_sfunction _name_here is the name of your S-function (i.e., what

you enter in the Simulink S-Function block dialog). These statements give you
access to the SimStruct data structure that contains pointers to the data used
by the simulation. The included code also defines the macros used to store and
retrieve data in the SimStruct, described in detail in “The C MEX S-Function
SimStruct” on page 3—-97. In addition, the code specifies that you are using the
level 2 format of S-functions.

Note All S-functions from Simulink 1.3 through 2.1 are considered to be level
1 S-functions. They are compatible with Simulink 3.0, but we recommend that
you write new S-functions in the level 2 format.
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The following headers are included by matlabroot/simulink/include/

simstruc.h when compiling as a MEX-file.

Table 3-2: Header Files Included by Simstruc.h When Compiling as a MEX-File

Header File

Description

matlabroot/extern/include/tmwtypes.h

matlabroot/extern/include/mex.h

matlabroot/extern/include/matrix.h

General data types, e.g.,
real T

MATLAB MEX-file API
routines

MATLAB MEX-file API
routines

When compiling your S-function with for use with the Real-Time Workshop,

simstruc.h includes.

Table 3-3: Header Files Included by Simstruc.h When Used

by the Real-Time Workshop

Header File

Description

matlabroot/extern/include/tmwtypes.h

matlabroot/rtw/c/libsrc/rt_matrx.h

General types, e.g. real T

Macros for MATLAB API
routines

Statements Required at the Bottom of S-Functions
Include this trailer code at the end of your C MEX S-function main module

only:

#ifdef MATLAB_MEX FILE
#include "simulink.c"
#else

#include "cg_sfun.h"
#endif

These statements select the appropriate code for your particular application.

/* Is this being compiled as MEX-file? */
/* MEX-file interface mechanism */

/* Code generation registration func */
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® simulink.c is included if the file is being compiled into a MEX-file.

® cg_sfun.h is included if the file is being used in conjunction with the
Real-Time Workshop to produce a stand-alone or real-time executable.

Note This trailer code must not be in the body of any S-function routine.

Conditionally Compiling S-Functions

S-functions can be compiled in one of three modes identified by the presence of
one of the following defines.

® MATLAB_MEX_FILE — Indicates that the S-function is being built as a
MEX-file for use with Simulink.

® RT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a real-time application using a fixed-step
solver.

® NRT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a nonreal-time application using a
variable-step solver.

Error Handling

When working with S-functions, it is important to handle unexpected events
correctly such as invalid parameter values.

In the timestwo example above, there was no need for significant error
handling. The only piece of code that performed error handling was the early
returninmdlInitializeSizes. Here Simulink issues a parameter mismatch
if you entered parameters in the dialog box. If your S-function has parameters
whose contents you need to validate, use the following technique to report
errors encountered:

ssSetErrorStatus(S, "error encountered due to ...");
return;
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Note that the second argument to ssSetErrorStatus must be persistent
memory. It cannot be a local variable in your procedure. For example, the
following will cause unpredictable errors:

md1lOutputs()

{
char msg[256]; {ILLEGAL: to fix use "static char msg[256];"}
sprintf(msg, "Error due to %s", string);
ssSetErrorStatus(S,msg);
return;

}

The ssSetErrorStatus error handling approach is the suggested alternative to
using the mexErrMsgTxt function. The function mexErrMsgTxt uses exception
handling to immediately terminate S-function execution and return control to
Simulink. In order to support exception handling inside of S-functions,
Simulink must set up exception handlers prior to each S-function invocation.
This introduces overhead into simulation.

Exception Free Code

You can avoid this overhead by ensuring that your S-function contains entirely
exception free code. Exception free code refers to code that never long jumps.
Your S-function is not exception free if it contains any routine that, when
called, has the potential of long jumping. For example mexErrMsgTxt throws an
exception (i.e., long jumps) when called, thus ending execution of your
S-function. Using mxCalloc may cause unpredictable results in the event of a
memory allocation error since mxCalloc will long jump. If memory allocation is
needed, use the stdlib.h calloc routine directly and perform your own error
handling.

If you do not call mexErrMsgTxt or other API routines that cause exceptions,
then use the SS_OPTION_EXCEPTION_FREE_CODE S-function option. This is done
by issuing the following command in the md1InitializeSizes function:

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE) ;

Setting this option will increase the performance of your S-function by allowing
Simulink to bypass the exception handling setup that is usually performed
prior to each S-function invocation. Extreme care must be taken to verify that
your code is exception free when using SS_OPTION_EXCEPTION_FREE_CODE. If
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your S-function generates an exception when this option is set, unpredictable
results will occur.

All mex* routines have the potential of long jumping. In addition several mx*
routines have the potential of long jumping. To avoid any difficulties, use only
the API routines that retrieve a pointer or determine the size of parameters.
For example, the following will never throw an exception: mxGetPr, mxGetData,
mxGetNumberOfDimensions, mxGetM, mxGetN, and mxGetNumberOfElements.

Code in run-time routines can also throw exceptions. Run-time routines refer
to certain S-function routines that Simulink calls during the simulation loop
(see “The Calling Sequence for S-Functions” on page 3-16). The run-time
routines include:

® md1lGetTimeOfNextVarHit
® md1lOutputs

® ndlUpdate

® mdlDerivatives

If all run-time routines within your S-function are exception free, you can use
this option:

ssSetOptions(S, SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE) ;

The other routines in your S-function do not have to be exception free.

ssSetErrorStatus Termination Criteria

When you call ssSetErrorStatus and return from your S-function, Simulink
stops the simulation and posts the error. To determine how the simulation
shuts down, refer to the flow chart figure on page 3-16. If ssSetErrorStatus is
called prior to md1Start, no other S-function routine will be called. If
ssSetErrorStatus is called in md1Start or later, md1Terminate will be called.
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Overview of the C MEX S-Function Routines

The following figure shows the calling structure, including optional S-function
routines (methods), of a C MEX S-function:
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mdlInitializeSizes p.3-28

‘ md1SetInputPortWidth/md1SetOutputPortWidth p. 3-35 ‘
c ‘ md1SetInputPortSampleTime/md1SetOutputPortSampleTime P-3-33 ‘
8 v
E | mdlInitializeSampleTimes p. 3-36 |
=
= ‘ md1lSetWorkWidths p. 3-46 ‘
c
\ mdlStart  p.3-48 \
‘ mdlInitializeConditions p. 3-48 ‘
o v ‘ Called when parameters are changed
> mler‘ocessPaiameter‘s p. 3-26 during a simulation.
| nlgetTincomextvarkit p. 350 | - On called f your S-function has a
v _ -
< | mdlInitializeConditions p.3-48 | - Called here if your S-function
N v resides in an enabled subsystem
™l o . configured to reset states, and the
2 g |__md1outputs (major time step) p. 3-50 | subsystem has just enabled. It is
o) =] .
8 ol 85 v also called at the start of simulation.
E E E <3 ‘ md1lUpdate (major time step) p. 3-51 ‘
o o =9 - - .
= § @ z s v Integration (minor time step)
—_ < o C
S ol = 3 i i - .
g % o> E % ‘ mdlDerivatives p. 3-51 ‘ Integration stages. Only
7] @ g S ¢ performed if your
S| o g-% mdlOutputs  p. 3'50‘ ¢ S-function has continuous
T E S £ states.
TS =7 —ﬂ mdlDerivatives p. 3-51}7
- v Zero crossing finding. Only
4{ mdlOutputs  p.3-50 F performed if your
S-function has nonsampled
4% mdlZeroCrossings Pp.3-52 }7 zero crossings.

y

mdlTerminate p. 3-53 | Legend: required

——— optional

Figure 3-1: The Calling Sequence for S-Functions
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The following sections discuss each of these routines and give an overview of
the more common macros used to access the SimStruct data structure. A full
list of the macros is given in “The C MEX S-Function SimStruct” on page 3-97.

Alternate Calling Structure for the Real Time Workshop

If you use the Real-Time Workshop to generate code for a model that contains
S-functions, Simulink does not go through the entire calling sequence outlined
above. Initialization proceeds as outlined above until Simulink reaches the
mdlInitializeConditions routine. After calling mdlInitializeConditions,
Simulink calls md1RTW, an S-function routine unique to the Real-Time
Workshop, md1Terminate, and exits. This picture shows the calling sequence:

| mdlInitializeSizes P. 3-28|

| mdlSetInputPortWidth/md1SetOutputPortWidth p.3-35 |

v

’ mdlSetInputPortSampleTime/md1SetOutputPortSampleTime P. 3-33 ‘

v

| mdlInitializeSampleTimes p.3-36 |

| md1SetWorkWidths p. 3-46 |

| mdistart  p.3-48 |

| mdiinitializeconditions p.3-48 |

‘ mdlRTW p. 3-54 ‘ For code generation only

| mdlTerminate p. 3-53 |

Figure 3-2: S-Function Calling Sequence when Simulink is Used with the
Real-Time Workshop

For more information about the Real-Time Workshop and how it interacts with

S-functions, see The Real-Time Workshop User’'s Guide and The Target
Language Compiler Reference Guide.
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Alternate Calling Structure for External Mode

When running Simulink in external mode, the calling sequence for S-function
routines changes. This picture shows the correct sequence for external mode:

| mdlInitializeSizes P. 3-28|

] md1lSetInputPortWidth/md1SetOutputPortWidth p-3-35\

v

‘ md1SetInputPortSampleTime/md1lSetOutputPortSampleTime P- 3-33 ‘

v

| mdlInitializeSampleTimes Pp. 3-36 |

v

| md1SetlorkWidths p. 3-46 |

| mdistart  p.3-48 |

v

Q.
o
o2 | mdiinitializeconditions p.3-48 |
R
e g v
TE md1lRTW p. 3-54 ‘ For code generation only
£ 5
235
= y
e | - 3-53
8 mdlTerminate P.

Figure 3-3: S-Function Calling Sequence when Simulink Runs in External
Mode

Simulink calls mdIRTW once when it enters external mode and again each
time a parameter changes or when you select Update Diagram under your
model’s Edit menu.

Note Running Simulink in external mode requires the Real-Time Workshop.
For more information about external mode, see the Real-Time Workshop
User’s Guide.
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Data View of S-Functions

S-function blocks have input and output signals, parameters, internal states,
plus other general work areas. In general, block inputs and outputs are written
to, and read from, a block 1/O vector. Inputs can also come from

¢ External inputs via the root inport blocks

® Ground if the input signal is unconnected or grounded

Block outputs can also go to the external outputs via the root outport blocks. In
addition to input and output signals, S-functions can have:

® Continuous states

® Discrete states

e Other working areas such as real, integer or pointer work vectors

S-function blocks can be parameterized by passing parameters them using the
S-function block dialog box.

The following picture shows the general mapping between these various types
of data:

External < » External
Epo%lits Lo Block 1/0 ; ! (Org;,? uts
inport Co outport
blocks) Lo L blocks)
fEoma] 3 Eek [
e Y Work
1 v Vectors,
RWork,
IWork,

----{ States Parameters| | PWork,

Figure 3-4: The Relationships Among S-Functions and S-Function Data
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The length of the various signals and vectors is configured in the
mdlInitializeSizes routine. The signals as well as their length can be
accessed in S-function routines that are called during the simulation loop.

During the simulation loop, accessing the input signals is performed using:

InputRealPtrs uPtrs = ssGetInputPortRealSignalPtrs(S,portIndex)

This is an array of pointers, where portIndex starts at 0. There is one for each
input port. To access an element of this signal you must use:

*uPtrs[element]

as described by this figure:

Input 1 - S-function
Input 2 | Block

To Access Input 1:
InputRealPtrs uPtrs0 = ssGetInputPortRealSignalPtrs(S,0)

uPtrso —p{ 1
[ >
To Access Input 2:
InputRealPtrs uPtrsi1 = ssGetInputPortRealSignalPtrs(S,1)
uPtrsi —p{ P |
- P |
[ »
Block 1/0
Vector

Figure 3-5: Accessing Input Data from S-Function Input Ports

Note that input array pointers may point at noncontiguous places in memory.
You can retrieve the output signal by using this code:

real T *y = ssGetOutputPortSignal(S,outputPortIndex);
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Accessing Input Signals of Individual Ports

This section describes how to access all input signals of a particular port and
write them to the output port. The figure above shows that the input array of
pointers may point to noncontiguous entries in the block 1/0 vector. The output
signals of a particular port form a contiguous vector. Therefore, the correct way
to access input elements and write them to the output elements (assuming the
input and output ports have equal widths) is to use this code:

int_T element;

int_T portWidth = ssGetInputPortWidth(S,inputPortIndex);

InputRealPtrs uPtrs = ssGetInputPortRealSignalPtrs(S,inputPortIndex);
real T *y = ssGetOutputPortSignal(S,outputPortIdx);

for (elemet=0; element<portWidth; element++) {
y[element] = *uPtrs[element];

}

A common mistake is to try and access the input signals via pointer arithmetic.
For example, if you were to place

real_T *u = *uPtrs; /* Incorrect */

just below the initialization of uPtrs and replace the inner part of the above
loop with

*y++ = *y++; /* Incorrect */

the code compiles, but the MEX-file may crash Simulink. This is because it is
possible to access invalid memory (which depends on how you build your
model). When accessing the input signals incorrectly, a crash will happen when
the signals entering your S-function block are not contiguous. Noncontiguous
signal data occur when signals pass through virtual connection blocks such as
the Mux or Selector blocks.

To verify that you are correctly accessing wide input signals, pass a replicated
signal to each input port of your S-function. This is done by creating a Mux
block with the number of input ports equal to the width of the desired signal
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entering your S-function. Then the driving source should be connected to each
input port as shown in this figure:

Source signal Mux —® S-function

Checking and Processing S-Function Parameters

You can provide parameters to S-functions that can be changed interactively
using the S-Function parameters field of the block’s dialog box. If you define
parameters interactively, follow these steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the
block’s dialog box.

2 InthemdlInitializeSizes function, use the ssSetNumSFcnParams macro to
tell Simulink how many parameters are passed in to the S-function. Specify
S as the first argument and the number of parameters you are defining
interactively as the second argument.

3 Access these input arguments in the S-function using the ssGetSFcnParam
macro. Specify S as the first argument and the relative position of the
parameter in the list entered on the dialog box (0 is the first position) as the
second argument.

When you run the simulation, specify parameter names or values in the
S-Function parameters field of the block’s dialog box. The order of the
parameters names or values must be identical to the order that you defined
them in step 1 above. If you specify variable names, they do not need to be the
same as the names used in the MEX-file.

For example, the following code is part of a device driver S-function. Four input
parameters are used: BASE_ ADDRESS_PRM, GAIN_RANGE_PRM, PROG_GAIN_PRM,
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and NUM_OF_CHANNELS_PRM. The code uses #define statements to associate
particular input arguments with the parameter names.

/* Input Parameters */

#define BASE_ADDRESS_PRM(S) ssGetSFcnParam(S, 0)
#define GAIN_RANGE_PRM(S) ssGetSFcnParam(S, 1)
#define PROG_GAIN_PRM(S) ssGetSFcnParam(S, 2)
#define NUM_OF_CHANNELS_PRM(S) ssGetSFcnParam(S, 3)

When running the simulation, enter four variable names or values in the
S-Function parameters field of the block’s dialog box. The first corresponds to
the first expected parameter, BASE_ADDRESS PRM(S). The second corresponds
to the next expected parameter, and so on.

The mdlInitializeSizes function contains this statement:

ssSetNumSFcnParams (S, 4);

Parameter Changes

To notify your S-function of parameter changes during a Simulink simulation,
the S-function must register an md1CheckParameters routine. This S-function
routine is called any time after md1InitializeSizes has been called. If you
want to process the changed parameters, register the md1ProcessParameters
routine. Typically this routine caches the parameters in work vectors.

The optional S-function routines, md1CheckParameters and
mdlProcessParameters are generally used together when writing an
S-function that contains parameters that can change during simulation. These
routines can only be used in a C MEX S-function.

S-functions that include these routines should verify that their code robustly
handles parameter changes when working with the Real-Time Workshop.
When S-functions are used with the Real-Time Workshop, that is, linked with
the generated code to form an executable, there is a global parameter vector
that you can modify by a number of external means. One such means is
external mode. When running in external mode, Simulink calls
md1lCheckParameters and md1ProcessParameters in your MEX-file. After
Simulink completes these calls, the external mode link changes the parameters
in the generated code executable directly in memory. For more information on
external mode, see The Real-Time Workshop User’s Guide.
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Typically, it is safe to have an md1CheckParameters in your S-function when it
is used with the Real-Time Workshop, providing that when parameter tuning
is performed, it is done using Simulink external mode. If you have an
md1ProcessParameters routine in your S-function code, you may need to inline
the S-function for it to work correctly in external mode. This is necessary
because only changes to the tunable parameters are passed to the generated
code. For more information on inlining S-functions, see the Target Language
Compiler Reference Guide.

The flowchart on page 3-16 shows that Simulink only calls
md1lCheckParameters when parameters are changed during simulation. Once
md1lCheckParameters verifies that parameter changes are correct, Simulink
calls md1ProcessParameters to translate the parameters into a more
convenient and efficient form, such as caching the values in the work vectors.
In general, your S-function doesn’'t need to have an md1ProcessParameters; it
is provided to help you speed up the execution of S-functions. This is achieved
by only evaluating the parameters when they change.

mdICheckParameters
Use md1CheckParameters to verify that parameter settings are correct:

#define MDL_CHECK_PARAMETERS /* define is required for use*/
#if defined (MDL_CHECK_PARAMETERS)

static void mdlCheckParameters(SimStruct *S)

{

I
#endif

md1lCheckParameters verifies new parameter settings whenever parameters
change or are re-evaluated during a simulation.

When a simulation is running, changes to S-function parameters can occur at
any time during the simulation loop; that is, either at the start of a simulation
step or during a simulation step. When the change occurs during a simulation
step, Simulink calls this routine twice to handle the parameter change. The
first call during the simulation step is used to verify that the parameters are
correct. After verifying the new parameters, the simulation continues using the
original parameter values until the next simulation step at which time the new
parameter values will be used. Redundant calls are needed to maintain
simulation consistency.
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Note You cannot access the work, state, input, output, and other vectors in
this routine. Use this routine only to validate the parameters. Additional
processing of the parameters should be done in md1ProcessParameters.

Example: mdICheckParameters. This example checks the first S-function
parameter to verify that it is a real nonnegative scalar:

#define PARAM1(S) ssGetSFcnParam(S,0)
#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */
#if defined (MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)
static void mdlCheckParameters(SimStruct *S)
{
if (mxGetNumberOfElements(PARAM1(S)) != 1) {
ssSetErrorStatus(S, ”Parameter to S-function must be a scalar”);
return;
} else if (mxGetPr(PARAM1(S))[0] < 0) {
ssSetErrorStatus(S, “Parameter to S-function must be non-negative”);
return;
}

}
#endif /* MDL_CHECK_PARAMETERS */

In addition to the above routine, you must add a call to this routine from
mdlInitializSizes to check parameters during initialization since
md1lCheckParameters is only called while the simulation is running. To do this,
inmdlInitializeSizes, after setting the number of parameters you expect in
your S-function by using ssSetNumSFcnParams, use this code:

static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams(S, 1); /* Number of expected parameters */
#if defined (MATLAB_MEX_FILE)
if (ssGetNumSfcnParams(s) == ssGetSFcnParamsCount(s) {
mdlCheckParameters(S);
if(ssGetErrorStates(S) != NULL) return;
} else {
return; /* Simulink will report a mismatch error. */

}
#endif

}
See matlabroot/simulink/src/sfun_errhdl.c for an example.
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mdIProcessParameters

md1lProcessParameters is an optional routine that Simulink calls after
md1lCheckParameters changes and verifies parameters. The processing is done
at the top of the simulation loop when it is safe to process the changed
parameters. This routine can only be used in a C MEX S-function.

The purpose of this routine is to process newly changed parameters. An
example is to cache parameter changes in work vectors. Simulink does not call
this routine when it is used with the Real-Time Workshop. Therefore, if you use
this routine in an S-function designed for use with the Real-Time Workshop,
you must write your S-function so that it doesn’t rely on this routine. To do this,
you must inline your S-function by using the Target Language Compiler. See
The Target Language Compiler Reference Guide for information on inlining
S-functions.

The synopsis is:

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */
#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

{

}
#endif /* MDL_PROCESS_PARAMETERS */
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Example: mdIProcessParameters. This example processes a string parameter that
md1lCheckParameters has verified to be of the form '+++' (where there could
be any number of '+' or '-' characters).

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */

#if

defined (MDL_PROCESS_PARAMETERS) && defined (MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

{

int T i
char_T *plusMinusStr;
int_T nInputPorts = ssGetNumInputPorts(S);

int_T *iwork = ssGetIWork(S);

if ((plusMinusStr=(char_T*)malloc(nInputPorts+1)) == NULL) {
ssSetErrorStatus (S, "Memory allocation error in mdlStart");
return;

}
if (mxGetString (SIGNS_PARAM(S),plusMinusStr,nInputPorts+1) != 0) {

free(plusMinusStr);
ssSetErrorStatus (S, "mxGetString error in mdlStart");
return;
}
for (i = 0; i < nInputPorts; i++) {
iwork[i] = plusMinusStr[i] == '+'? 1: -1;
}

free(plusMinusStr);

}
#endif /* MDL_PROCESS_PARAMETERS */

mdlProcessParameters is called from md1Start to load the signs string prior to
the start of the simulation loop:

#define MDL_START
#if defined(MDL_START)
static void mdlStart(SimStruct *S)

{
}

mdlProcessParameters(S);

#endif /* MDL_START */

For more details on this example, see matlabroot/simulink/src/
sfun_multiport.c

Defining S-Function Block Characteristics

The sizes structure in the SimStruct stores essential size information about
the S-Function block, including the number of inputs, outputs, states, and
other block characteristics. The sizes structure is initialized in the
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mdlInitializeSizes function. Supplied macros set values for the structure
fields. If a value is not specified, it is initialized to zero.

There are additional macros that get various values. For a complete list of
built-in macros that work with C language S-functions, see “The C MEX
S-Function SimStruct” on page 3-97.

mdlInitializeSizes

mdlInitializeSizes is the first routine Simulink calls when interacting with
an S-function. This routine specifies the sizes information Simulink uses to
determine the S-function block’s characteristics (number of inputs, outputs,
states, etc.).

The direct feedthrough flag for each input port can be set to either 1=yes or
0=no. It should be set to 1 if the input, u, is used in the md10utput or
md1GetTimeOfNextVarHit routine. Setting the direct feedthrough flag to O tells
Simulink that u will not be used in either of these S-function routines.
Violating this will lead to unpredictable results.

You can set the parameters NumContStates, NumDiscStates, NumInputs,
NumOutputs, NumRWork, NumIWork, NumPWork, NumModes, and NumNonsampledZCs
to a fixed nonnegative integer or tell Simulink to size them dynamically:

® DYNAMICALLY_SIZED — Sets lengths of states, work vectors, and so on to
values inherited from the driving block. It sets widths to the actual input
width, according to the scalar expansion rules unless you use
md1SetWorkWidths to set the widths.

® 0 or positive number — Sets lengths (or widths) to the specified value. The
default is 0.

In addition, you can use these macros to set and verify information in your
mdlInitializeSizes routine:

® Use ssGetInputPortConnected(S) and ssGetOutputPortConnected(S)
macros after setting the number of input and output ports to determine if the
ports are connected.

® Use ssSetSFcnParamNotTunable (S, paramIdx) when a parameter cannot

change during simulation, where paramIdx starts at 0. When a parameter
has been specified as “not tunable,” Simulink will issue an error during
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simulation (or the Real-Time Workshop external mode) if an attempt is made
to change the parameter.

¢ If your S-function outputs are discrete (e.g., can only take on the values, 1
and 2), then specify SS_OPTION_DISCRETE_VALUED OUTPUT.

® The ssGetPath (the Simulink full model path to the block) and
ssGetModelName (here model refers to the S-function name) are available for
use. If they are the same (that is, if
strcmp(ssGetPath(S),ssGetModelName (S))==0), then the S-function is
being executed from the MATLAB command line and is not part of a
simulation.

In mdllInitializeSizes, you also must specify the number of sample times for
your block. There are two ways of specifying sample times:

® Port-based sample times
* Block-based sample times

See “Setting Sample Times for C MEX S-Functions” on page 3-36 for a complete
discussion of sample time issues.
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The synopsis is

/* Function: mdlInitializeSizes =====

Abstract:

*

L I I T R R I R

/

The sizes information is used by Simulink to determine the S-function
block's characteristics (number of inputs, outputs, states, etc.).

The direct feedthrough flag can be either 1=yes or 0=no. It should be
set to 1 if the input, "u", is used in the mdlOutput function. Setting
this to 0 is tells Simulink that "u" will not be used in the

mdlOutput function. If you violate this, unpredictable results

will occur.

The NumContStates, NumDiscStates, NumInputs, NumOutputs, NumRWork,
NumIWork, NumPWork NumModes, and NumNonsampledZCs widths can be set to:
DYNAMICALLY_SIZED - In this case, they will be set to the actual
input width, unless you are have a
mdlSetWorkWidths to set the widths.
0 or positive number - This explicitly sets item to the specified
value.

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/*
* If the the number of expected input parameters is not equal
* to the number of parameters entered in the dialog box return.
* Simulink will generate an error indicating that there is a
* parameter mismatch.

*/

return;
}
ssSetNumContStates( S, 0); /* number of continuous states */
ssSetNumDiscStates( S, 0); /* number of discrete states */
/

*

* Configure the input ports. First set the number of input ports,
* then set for each input port index starting at 0, the width

* and wether or not the port has direct feedthrough (1=yes, 0=no).
* The width of a port can be DYNAMICALLY_SIZED or greater than zero.
* A port has direct feedthrough if the input is used in either

* the mdlOutputs or mdlGetTimeOfNextVarHit functions.

*/

if (!ssSetNumInputPorts(S, nInputPorts)) return;
ssSetInputPortWidth(S, inputPortIdx, width);
ssSetInputPortDirectFeedThrough(S, inputPortIdx, needsInput);

/*
* Configure the output ports. First set the number of output ports,
* then set for each output port index starting at 0, the width
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* of the output port which can be DYNAMICALLY SIZE or greater than zero.

*

/

if (!ssSetNumOutputPorts(S, nOutputPorts)) return;
ssSetOutputPortWidth (S, outputPortIdx, width);

/

L I B T R B

/

Set the number of sample times. This must be a positive, nonzero
integer indicating the number of sample times or it can be
PORT_BASED_SAMPLE_TIMES. For multi-rate S-functions, the
suggested approach to setting sample times is via the port

based sample times routine. When you create a multirate
S-function, care needs to be taking to verify that when

slower tasks are preempted that your S-function correctly
manages data as to avoid race conditions. When port based

sample times are specified, the block cannot inherit a constant
sample time at any port.

ssSetNumSampleTimes( S, 1);  /* number of sample times */

/*

* Set size of the work vectors.

*

ssSetNumRWork (
ssSetNumIWork (
ssSetNumPWork (
ssSetNumModes (
ssSetNumNonsampledZCs (

/

LR T R I R I R R R R R R I

/

, 0); /* number of real work vector elements */
, 0); /* number of integer work vector elements*/
0); /* number of pointer work vector elements*/
, 0); /* number of mode work vector elements */
, 0); /* number of nonsampled zero crossings */

wnmmwnon

Set any S-function options which must be OR'd together.

The available options are:

SS_OPTION_EXCEPTION_FREE_CODE - if your S-function does not use
mexErrMsgTxt, mxCalloc, or any other routines which can throw an
exception when called, you can set this option for improved
performance.

SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE - Similar to
SS_OPTION_EXCEPTION_FREE_CODE except it only applies to the "run-time"
routines: mdlGetTimeOfNextVarHit, mdlOutputs, mdlUpdate, and
mdlDerivatives.

SS_OPTION_DISCRETE_VALUED_OUTPUT - This should be specified if your
S-function has a discrete valued outputs. This is checked when
your S-function is placed within an algebraic loop. If your S-function
has discrete valued outputs, then its outputs will not be assigned
algebraic variables.

SS_OPTION_PLACE_ASAP - This is used to specify that your S-function
should be placed as soon as possible. This is typically used by
devices connecting to hardware.

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION - This is used to specify
that the input to your S-function input ports can be either 1 or
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the size specified by the port which is usually referred to as
the block width.

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME - This is used to disable
your S-function block from inheriting a constant sample time.

SS_OPTION_ASYNCHRONOUS - This option applies only to S-functions that
have no input ports and 1 output port. The output port must be
configured to perform function calls on every element. If any of
these requirements are not met, the SS_OPTION_ASYNCHRONOUS is
ignored. Use this option when driving function-call subsystems that
will be attached to interupt service routines.

SS_OPTION_ASYNC_RATE_TRANSITION - Use this when your s-function converts
a signal from one rate to another rate.

SS_OPTION_RATE_TRANSITION - Use this why your S-function is behaving
as a unit delay or ZOH. This option is only supported for these two
operations. An unit delay operation is identified by the presence
of mdlUpdate and if not present then the operation is ZOH.

/

L T R R . T

ssSetOptions( S, 0); /* general options (SS_OPTION_xx) */
} /* end mdlInitializeSizes */

For an example, see the timestwo S-function on page 3-7.

Masked Multiport S-Functions

If you are developing masked multiport S-function blocks whose number of port
varies based on some parameter, and if you want to place them in a Simulink
library, then you must specify that the mask modifies the appearance of the
block. To do this, before saving the library execute this command

set_param('block', 'MaskSelfModifiable','on")
at the MATLAB prompt. Failure to specify that the mask modifies the
appearance of the block will mean that when the library link is loaded, the
number of ports will not always match what is shown in the library.

Configuring Input and Output Port Properties

InmdlInitializeSizes, you can specify the port widths as a positive nonzero
integer. In this case, the corresponding input/output signal will have the
specified width when accessed by your S-function routines during the
simulation loop. However, if you specify
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION and a positive nonzero integer, N,
for an input port width, then the width of the corresponding signal will be
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either 1 or N. You can use ssGetInputPortWidth in the routines called during
the simulation loop to determine the actual port width being used.

You can also specify that input and/or output signals are dynamically sized (via
the DYNAMICALLY_SIZED define). Simulink determines the corresponding
widths when it propagates vector widths throughout your model. You can
influence the vector width propagation via the md1SetInputPortWidth and
md1SetOutputPort width routines. If your S-function doesn't specify these
routines, then the default scalar expansion rules apply.

The best way to understand the default scalar expansion rules is to consider a
an S-function implementing a sum block with three input ports. The block has
an overall width, called the block width, equal to the width of the output port.
Each input port can have a width of 1 or the block width providing that at least
one input port has a width equal to the block width. Each dynamically sized
work vector will be set to the block width. See matlabrooot/simulink/src/
sfun_multiport.c for an example.

If this handling of dynamically sized input and output signals doesn’t meet
your needs, then you need to use the optional routines md1SetInputPortWidth
and md1SetOutputPortWidth.

Note You must correctly specify the number of ports before setting any
properties. If you attempt to set a property of a port that doesn't exist, you will
be accessing invalid memory and Simulink will crash.

mdISetinputPortSampleTime

This routine is called with the candidate sample time for an inherited sample
time input port. If the proposed sample time is acceptable, the routine should
go ahead and set the actual port sample time using
ssSetInputPortSampleTime. If the sample time is unacceptable an error
should generated via ssSetErrorStatus. Note that any other inherited input or
output ports whose sample times are implicitly defined by the sample time of
the given port can also have their widths set via calls to
ssSetInputPortSampleTime or ssSetOutputPortSampleTime.
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When inherited port based sample times are specified, the sample time will be
one of the following:

e continuous: [0.0, 0.0]

e discrete: [period, offset] where 0.0 < period < inf and
0.0 <= offset < period

Constant, triggered, and variable step sample times will not be propagated to
S-functions with port based sample times.

This is the code synopsis for md1SetInputPortSampleTime:

#if defined (MDL_SET_INPUT_PORT_SAMPLE_TIME) && defined(MATLAB_MEX_FILE)

static void mdlSetInputPortSampleTime(SimStruct *S,

int T portIdx,
real T sampleTime,
real T offsetTime)

{

}
#endif /* MDL_SET INPUT_PORT SAMPLE_TIME */

See matlabrooot/simulink/src/sfun_multirate.c for an example.

mdlSetOutputPortSampleTime

This routine is called with the candidate sample time for an inherited sample
time output port. If the proposed sample time is acceptable, the routine sets the
actual port sample time using ssSetOutputPortSampleTime. If the sample
time is unacceptable an error is generated by ssSetErrorStatus. Note that any
other inherited input or output ports whose sample times are implicitly defined
by the sample time of the given port can also have their widths set by calls to
ssSetInputPortSampleTime or ssSetOutputPortSampleTime.

Normally, sample times are propagated forwards. However, if sources feeding
this block have an inherited sample time, then Simulink may choose to back-
propagate known sample times to this block. When back-propagating sample
times, Simulink calls this routine in succession for all inherited output port
signals.
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This is the code synopsis for mdSetOutputPortSampleTime:

#if defined(MDL_SET_OUTPUT_PORT_SAMPLE_TIME) && defined (MATLAB_MEX_FILE)
static void md1lSetOutputPortSampleTime (SimStruct *S,

int T portIdx,
real T sampleTime,
real T offsetTime)
{
}

#endif /* MDL_SET OUTPUT PORT SAMPLE_TIME */

See matlabrooot/simulink/src/sfun_multirate.c for an example.

mdISetinputPortWidth

During vector-width propagation Simulink calls md1SetInputPortWidth with
the candidate width for a dynamically sized port. If the proposed width is
acceptable, the routine sets the actual port width using ssSetInputPortWidth.
If the size is unacceptable an error is generated by ssSetErrorStatus. Note
that any other dynamically sized input or output ports whose widths are
implicitly defined by the width of the given port can also have their widths set
by calls to ssSetInputPortWidth or ssSetOutputPortWidth.

The synopsis is:

#define MDL_SET_INPUT_PORT_WIDTH /* Change to #undef to remove function. */
#if defined(MDL_SET_INPUT_PORT WIDTH) && defined (MATLAB_MEX_ FILE)

void mdlSetInputPortWidth(SimStruct *S, int portIndex, int width)

{

}
#endif /* MDL_SET_INPUT_PORT WIDTH */

For an example, see matlabroot/simulink/src/sfun_dynsize.c.

mdISetOutputPortWidth

md1SetOutputPortWidth works in the same way with output ports as
md1lSetInputPortWidth does with input ports.

The synopsis is:

#define MDL_SET_OUTPUT_PORT_WIDTH /* Change to #undef to remove function */
#if defined (MDL_SET_OUTPUT_PORT_WIDTH) && defined(MATLAB_MEX_FILE)

void mdlSetOutputPortWidth(SimStruct *S, int portlIndex, int width)

{

}
#endif /* MDL_SET_OUTPUT_PORT_WIDTH */

For an example, see matlabroot/simulink/src/sfun_dynsize.c.
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Setting Sample Times for C MEX S-Functions

Simulink supports blocks that execute at different rates. There are two
methods by which you can specify the rates (i.e., sample times):

® Block-based sample times
® Port-based sample times

In the case of block-based sample times, your S-function specifies all the
sample rates of the block and processes inputs and outputs at the fastest rate
specified if all the sample times are integer multiples of the fastest sample
time. (If your sample times are not multiples of each other, Simulink behaves
differently. See “Sample Time Colors” in chapter 9 of Using Simulink for more
information.) When using port-based sample times, your S-function specifies
the sample time for each input and output port. To compare the two methods,
consider two sample rates, 0.5 and 0.25 seconds respectively:

® In the block-based method, selecting 0.5 and 0.25 would direct the block to
execute inputs and outputs at 0.25 second increments.

¢ .In the port-based method, you could set the input port to 0.5 and the output
port to 0.25, and the block would execute inputs at 2Hz and outputs at 4Hz.

You should use port-based sample times if your application requires unequal
sample rates for input and output execution or if you don't want the overhead
associated with running input and output ports at the highest sample rate of
your block.

In typical applications, you will specify only one block-based sample time.
Advanced S-functions may require the specification of port-based or multiple
block sample times.

Block-based Sample Times

The next two sections discuss how to specify block-based sample times. You
must specify information in

® mdlInitializeSizes
® mdlInitializeSampleTimes

A third sections presents a simple example that shows how to specify sample
times in mdlInitializeSampleTimes.
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Specifying the Number of Sample Times in mdlInitializeSizes. To configure your
S-function block for block-based sample times, use

ssSetNumSampleTimes (S,numSampleTimes) ;

where numSampleTimes > 0. This tells Simulink that your S-function has
block-based sample times. Simulink calls md1InitializeSampleTimes, which
in turn sets the sample times.

Setting Sample Times and Specifying Function Calls in mdllnitializeSampleTimes.

mdlInitializeSampleTimes is used to specify two pieces of execution
information:

e Sample and offset times — In md1InitializeSizes, specify the number of
sample times you'd like your S-function to have by using the
ssSetNumSampleTimes macro. In mdlInitializeSampleTimes, you must
specify the sampling period and offset for each sample time.

Sample times can be a function of the input/output port widths. In
mdlInitializeSampleTimes, you can specify that sample times are a
function of ssGetInputPortWidth and ssGetGetOutputPortWidth.

® Function calls — In ssSetCallSystemOutput, specify which output elements
are performing function calls. See matlabroot/simulink/src/
sfun_fcncall.c for an example.

The sample times are specified as pairs [sample time, offset_time] by using
these macros:

ssSetSampleTime (S, sampleTimePairIndex, sample_time)
ssSetOffsetTime (S, offsetTimePairIndex, offset_time)

where sampleTimePairIndex starts at O.

The valid sample time pairs are (upper-case values are macros defined in
simstruc.h):

[CONTINUOUS_SAMPLE_TIME, 0.0 ]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample period, offset |
[VARIABLE_SAMPLE_TIME , 0.0 ]
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Alternatively, you can specify that the sample time is inherited from the
driving block in which case the S-function can have only one sample time pair:

[INHERITED_SAMPLE_TIME, 0.0 1
or
[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
The following guidelines may help aid in specifying sample times:
® A continuous function that changes during minor integration steps should

register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

® A continuous function that does not change during minor integration steps
should register the

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.

® A discrete function that changes at a specified rate should register the
discrete sample time pair

[discrete_sample_period, offset]

where
discrete_sample _period > 0.0

and
0.0 <= offset < discrete_sample_period

e A discrete function that changes at a variable rate should register the
variable step discrete [VARIABLE_SAMPLE_TIME, 0.0] sample time. The
md1GetTimeOfNextVarHit function is called to get the time of the next
sample hit for the variable step discrete task. The VARIABLE_SAMPLE_TIME
can be used with variable step solvers only.

If your function has no intrinsic sample time, then you must indicate that it is

inherited according to the following guidelines:

* A function that changes as its input changes, even during minor integration
steps, should register the [ INHERITED_SAMPLE_TIME, 0.0] sample time.

e A function that changes as its input changes, but doesn't change during
minor integration steps (that is, held during minor steps), should register the
[INHERITED SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.
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To check for a sample hit during execution (in md10utputs or md1lUpdate), use
the ssIsSampleHit or ssIsContinuousTask macro. For example, if your first
sample time is continuous, then you used the following code fragment to check
for a sample hit. Note that you would get incorrect results if you used
ssIsSampleHit(S,0,tid).

if (ssIsContinuousTask(S,tid)) {
}

If, for example, you wanted to determine if the third (discrete) task has a hit,
then you would use the following code-fragment:

if (ssIsSampleHit(S,2,tid) {
}

The synopsis is:

static void mdlInitializeSampleTimes(SimStruct *S)

{
} /* End of mdlInitializeSampleTimes. */

Example: mdlinitializeSampleTimes. This example specifies that there are two
discrete sample times with periods of 0.01 and 0.5 seconds.

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime(S, 0, 0.01);
ssSetOffsetTime(S, 0, 0.0);
ssSetSampleTime(S, 1, 0.5);
ssSetOffsetTime(S, 1, 0.0);

} /* End of mdlInitializeSampleTimes. */

Port-based Sample Times

The next three section discuss how to specify port-based sample times. You
must specify information in

e mdlInitializeSizes

® md1lSetInputPortSampleTime

® md1lSetOutputPortSampleTime
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Specifying the Number of Sample Times in mdlInitializeSizes. To specify port-based
sample times, use

ssSetNumSampleTimes (S, PORT_BASED_SAMPLE_TIMES)
with:

ssSetInputPortSampleTime (S, idx, period)
ssSetInputPortOffsetTime (S, idx, offset)
ssSetOutputPortSampleTime (S, idx, period)
ssSetOutputPortOffsetTime (S, idx, offset)

The inputPortIndex and outputPortIndex range from O to the number of
input (output) ports minus 1.

When you specify port based sample times, Simulink will call
md1SetInputPortSampleTime and md1SetOutputPortSampleTime to determine
the rates of inherited signals. Once all rates have been determined completed,
Simulink will also call md1InitializeSampleTimes to configure function-call
connections. If your S-function does not have any function-call connections this
routine should be empty.

Note mdlInitializeSizes should not contain any ssSetSampleTime or
ssSetOffsetTime calls when using port-based sample times.

mdISetinputPortSampleTime. Simulink calls this routine with the candidate
sample time for an inherited sample time input port. If the proposed sample
time is acceptable, the routine sets the actual port sample time using
ssSetInputPortSampleTime. If the sample time is unacceptable
ssSetErrorStatus generates an error. If any other inherited input or output
ports have sample times that are implicitly defined by the sample time of the
given port, then you can specify their widths by calls to
ssSetInputPortSampleTime or ssSetOutputPortSampleTime.

When you specify port based sample times as inherited, the sample time will
be one of the following:
e continuous: [0.0, 0.0]

e discrete: [period, offset] where 0.0 < period < inf and
0.0 <= offset < period
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Constant, triggered, and variable step sample times will not be propagated to
S-functions with port based sample times.

This is the code synopsis for md1SetInputPortSampleTime:

#if defined(MDL_SET_INPUT_PORT_SAMPLE_TIME) && defined(MATLAB_MEX_FILE)

static void mdlSetInputPortSampleTime(SimStruct *S,

int T portIdx,
real T sampleTime,
real T offsetTime)

{

}
#endif /* MDL_SET INPUT_PORT_SAMPLE_TIME */

See matlabrooot/simulink/src/sfun_multirate.c for an example.

mdISetOutputPortSampleTime. This routine is called with the candidate sample
time for an inherited sample time output port. If the proposed sample time is
acceptable, the routine sets the actual port sample time using
ssSetOutputPortSampleTime. If the sample time is unacceptable an error is
generated by ssSetErrorStatus. Any other inherited input or output ports
whose sample times are implicitly defined by the sample time of the given port
can also have their widths set by calls to ssSetInputPortSampleTime or
ssSetOutputPortSampleTime.

Normally, sample times are propagated forwards. However, if sources feeding
this block have an inherited sample time, then Simulink may choose to back-
propagate known sample times to this block. When back-propagating sample
times, Simulink calls this routine in succession for all inherited output port
signals.

This is the code synopsis for mdSetOutputPortSampleTime:

#if defined (MDL_SET_OUTPUT_PORT_SAMPLE_TIME) && defined(MATLAB_MEX_FILE)
static void mdlSetOutputPortSampleTime (SimStruct *S,

int T portIdx,
real T sampleTime,
real T offsetTime)

{
}
#endif /* MDL_SET_OUTPUT_PORT_SAMPLE_TIME */

See matlabrooot/simulink/src/sfun_multirate.c for an example.
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Multirate S-Function Blocks

In a multirate S-Function block, you can encapsulate the code that defines each
behavior in the md10utput and md1lUpdate functions with a statement that
determines whether a sample hit has occurred. The ssIsSampleHit macro
determines whether the current time is a sample hit for a specified sample
time. The macro has this syntax:

ssIsSampleHit (S, st_index, tid)

where S is the SimStruct, st_index identifies a specific sample time index, and
tid is the task ID (tid is an argument to the md10utput and md1lUpdate).

For example, these statements specify three sample times: one for continuous
behavior, and two for discrete behavior.

ssSetSampleTime (S, O, CONTINUOUS_SAMPLE_TIME) ;
ssSetSampleTime(S, 1, 0.75);
ssSetSampleTime(S, 2, 1.0);

In the md1Update function, the following statement would encapsulate the code
that defines the behavior for the sample time of 0.75 seconds:

if (ssIsSampleHit(S, 1, tid)) {
}

The second argument, 1, corresponds to the second sample time, 0.75 seconds.

Example - Defining a Sample Time for a Continuous Block. This example defines a
sample time for a block that is continuous in nature.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME) ;

ssSetOffsetTime(S, 0, 0.0);
}

You must add this statement to the md1lInitializeSizes function:

ssSetNumSampleTimes (S, 1);
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Example - Defining a Sample Time for a Hybrid Block. This example defines sample
times for a hybrid S-Function block.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)
{
/* Continuous state sample time and offset. */
ssSetSampleTime (S, O, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0.0);

/* Discrete state sample time and offset. */
ssSetSampleTime(S, 1, 0.1);
ssSetOffsetTime(S, 1, 0.025);

}

In the second sample time, the offset causes Simulink to call the md1Update
function at these times: 0.025 seconds, 0.125 seconds, 0.225 seconds, and so on,
in increments of 0.1 seconds.

The following statement, which indicates how many sample times are defined,
also appears in the md1InitializeSizes function:

ssSetNumSampleTimes (S, 2);

Configuring Work Vectors

If your S-function needs persistent memory storage, use S-function work
vectors instead of static or global variables. If you use static or global variables,
they are used by multiple instances of your S-function. This occurs when you
have multiple S-Function blocks in a Simulink model and the same S-function
C MEX-file has been specified. The ability to keep track of multiple instances
of an S-function is called re-entrancy.

You can create an S-function that is re-entrant by using work vectors. These
are persistent storage locations that Simulink manages for an S-function.
Integer, floating point (real), pointer, and general data types are supported.
The number of elements in each vector can be specified dynamically as a
function of the number of inputs to the S-function.
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Work vectors have several advantages:

® Instance specific storage for block variables
® Integer, real, pointer, and general data types
® Elimination of static and global variables and the associated multiple

instance problems

For example, suppose you'd like to track the previous value of each input signal
element entering input port 1 of your S-function. Either the discrete-state
vector or the real-work vector could be used for this, depending upon whether
the previous value is considered a discrete state (that is, compare the unit delay
and the memory block). If you do not want the previous value to be logged when
states are saved, use the real-work vector, rwork. To do this, in
mdlInitializeSizes specify the length of this vector by using ssSetNumRWork.
Then in either md1Start or md1InitializeConditions, initialize the rwork
vector, ssGetRWork. In md10utputs, you can retrieve the previous inputs by
using ssGetRWork. In md1Update, update the previous value of the rwork vector
by using ssGetInputPortRealSignalPtrs.

Use the macros in this table to specify the length of the work vectors for each
instance of your S-function in mdlInitializeSizes.

Table 3-4: Macros Used in Specifying Vector Widths

Macro Description

ssSetNumContStates Width of the continuous-state vector
ssSetNumDiscStates Width of the discrete-state vector
ssSetNumRWork Width of the real-work vector
ssSetNumIWork Width of the integer-work vector
ssSetNumPWork Width of the pointer-work vector
ssSetNumModes Width of the mode-work vector

ssSetNumnonsampledZCs

Width of the nonsampled zero-crossing
vector
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Specify vector widths in md1lInitializeSizes. There are three choices:

¢ O (the default). This indicates that the vector is not used by your S-function.

® A positive nonzero integer. This is the width of the vector that will be
available for use by md1Start, mdlInitializeConditions, and S-function
routines called in the simulation loop.

® The DYNAMICALLY_SIZED define. The default behavior for dynamically sized
vectors is to set them to the overall block width. Simulink does this after
propagating line widths and sample times. The block width is the width of
the signal passing through your block. In general this is equal to the output
port width.

If the default behavior of dynamically sized vectors does not meet your needs,
use md1lSetWorkWidths and the macros listed in Table 3-4: “Macros Used in
Specifying Vector Widths” on page 3—-44 to set explicitly the sizes of the work
vectors. Also, md1SetWorkWidths allows you to set your work vector lengths as
a function of the block sample time and/or port widths.

The continuous states are used when you have a state that needs to be
integrated by one of Simulink’s solvers. When you specify continuous states,
you must return the states’ derivatives in md1Derivatives. The discrete state
vector is used to maintain state information that changes at fixed intervals.
Typically the discrete state vector is updated in place in md1lUpdate.

The integer, real and pointer work vectors are storage locations that do not get
logged by Simulink during simulations. They maintain persistent data
between calls to your S-function.

Work Vectors and Zero Crossings

The mode-work vector and the nonsampled zero-crossing vector are typically
used with zero crossings. Elements of the mode vector are integer values. You
specify the number of mode-vector elements in mdlInitializeSizes using
ssSetNumModes (S,num). You can then access the mode vector using
ssGetModeVector. The mode vector is used to determine how the md10utput
routine should operate when the solvers are honing in on zero crossings. The
zero crossings or state events (i.e., discontinuities in the first derivatives) of
some signal, usually a function of an input to your S-function, are tracked by
the solver by looking at the nonsampled zero crossings. To register nonsampled
zero crossings, set the number of nonsampled zero crossings in
mdlInitializeSizes using ssSetNumNonsampledZCs(S, num). Then, define
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the md1ZeroCrossings routine to return the nonsampled zero crossings. See
matlabroot/simulink/src/sfun_zc.c for an example.

mdISetWorkWidths

The optional simulation only routine, md1SetWorkWidths, is called after input
port width, output port width, and sample times of the S-function have been
determined to set any state- and work-vector sizes that are a function of the
input, output, and/or sample times. This routine is used to specify the nonzero
work vector widths via the macros ssNumContStates, ssSetNumDiscStates,
ssSetNumRWork, ssSetNumIWork, ssSetNumPWork, ssSetNumModes, and
ssSetNumNonsampledZCs.

An Example Involving a Pointer Work Vector

This example opens a file and stores the FILE pointer in the pointer-work
vector.

The statement below, included inthemdlInititalizeSizes function, indicates
that the pointer-work vector is to contain one element:

ssSetNumPWork (S, 1) /* pointer-work vector */

The code below uses the pointer-work vector to store a FILE pointer, returned
from the standard 1/O function, fopen:

#define MDL_START /* Change to #undef to remove function. */
#if defined(MDL_START)
static void mdlStart(real_T *x0, SimStruct *S)
{
FILE *fPtr;
void **PWork = ssGetPWork(S);
fPtr = fopen("file.data", "r");
PWork[0] = fPtr;
}
#endif /* MDL_START */
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This code retrieves the FILE pointer from the pointer-work vector and passes it
to fclose to close the file:

static void mdlTerminate(SimStruct *S)
{
if (ssGetPWork(S) != NULL) {
FILE *fPtr;
fPtr = (FILE *) ssGetPWorkValue(S,0);
if (fPtr != NULL) {
fclose(fPtr);

}
ssSetPWorkValue(S,0,NULL);

Note If you are using md1SetWorkWidths, then any work vectors you use in
your S-function should be set to DYNAMICALLY SIZED inmdlInitializeSizes,
even if the exact value is known before md1IntializeSizes is called. The size
to be used by the S-function should be specified in md1SetWorkWidths.

The synopsis is:

#define MDL_SET_WORK_WIDTHS /* Change to #undef to remove function. */
#if defined (MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)

static void mdlSetWorkWidths(SimStruct *S)

{

}
#endif /* MDL_SET WORK WIDTHS */

For an example, see matlabroot/simulink/src/sfun_dynsize.c.

Memory Allocation

When creating an S-function, it is possible that the available work vectors don’t
provide enough capability. In this case, you will need to allocate memory for
each instance of your S-function. The standard MATLAB APl memory
allocation routines (mxCalloc, mxFree) should not be used with C MEX
S-functions. The reason is that these routines are designed to be used with
MEX-files that are called from MATLAB and not Simulink. The correct
approach for allocating memory is to use the stdlib.h (calloc, free) library
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routines. In md1Start allocate and initialize the memory and place the pointer
to it either in pointer-work vector elements

ssGetPWork(S)[i] = ptr;
or attach it as user data:

ssSetUserData(S,ptr);

In md1Terminate, free the allocated memory.

S-Function Initialization

The S-function routines discussed so far have dealt with defining the
S-function characteristics, such as the number of input and output ports and
their widths. This section describes how to initialize S-functions. This may
mean initializing the work vectors or the output signal of the S-function. With
the Real-Time Workshop, this may mean initializing hardware. The routines,
md1lStart and mdlInitializeConditions, perform initialization.

mdIStart

The optional routine, md1Start, is called once at the start of model execution.
Place one time initialization code here.

The synopsis is:

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)

static void mdlStart(SimStruct *S)

{

}
#endif /* MDL_START */

For an example, see matlabroot/simulink/src/sfun_multiport.c.

mdlInitializeConditions

You can initialize the continuous and discrete states for your S-function block
in the optional S-function routine md1InitializeConditions. The initial
states are placed in the state vector, ssGetContStates(S) and/or
ssGetNumDiscStates(S). You can also perform any other initialization
activities that your S-function may require.
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Simulink will call this routine in two places:

* At the start of simulation

e If it is present in an enabled subsystem configured to reset states. In this

case, Simulink will call md1InitializeConditions when the enabled
subsystem restarts execution to reset the states.

You can use the ssIsFirstInitCond(S) macro to determine whether the
current call is the first to mdlInitializeConditions.

The synopsis is:

#define MDL_INITIALIZE_CONDITIONS
#if defined (MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)
{

}
#endif /* MDL_INITIALIZE_CONDITIONS */

This example is an S-function with both continuous and discrete states; it

initializes both sets of states to 1.0:

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove
#if defined (MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)

/* Change to #undef to remove function */

function */

{
int i;
real_T *xcont = ssGetContStates(S);
int_T nCStates = ssGetNumContStates(S);
real T *xdisc = ssGetRealDiscStates(S);
int_T nDStates = ssGetNumDiscStates(S);

for (i = 0; i < nCStates; i++) {

*xcont++ = 1.0;

}

for (i = 0; i < nDStates; i++) {

*xdisc++ = 1.0;

}
}

#endif /* MDL_INITIALIZE_CONDITIONS */

For another example which initializes only the continuous states, see
matlabroot/simulink/src/resetint.c.
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S-Function Routines Called During Simulation

Conceptually, the way Simulink performs a simulation is that it executes the
blocks in your model in the order dictated by their connections. After executing
this list of blocks, the process is repeated until the end of simulation is reached.
This repeated execution of the blocks is referred to as the simulation loop.

Your S-functions interact with the Simulink during simulations by the
S-function routines outlined in the simulation loop of the flowchart presented
on page 3-16.

mdIlGetTimeOfNextVarHit

The optional routine, md1GetTimeOfNextVarHit, to be used with variable step
solvers, is called to get the time of the next variable sample time hit. This
function is called once for every major integration time step. It must return the
time of the next hit by using ssSetTNext. The time of the next hit must be
greater than ssGetT(S).

Note that the time of the next hit can be a function of the input signal(s).
The synopsis is:

#define MDL_GET TIME_OF NEXT VAR HIT /* Change to #undef to remove function */
#if defined (MDL_GET TIME_OF NEXT VAR HIT) && \

(defined (MATLAB_MEX_FILE) || defined(NRT))
static void mdlGetTimeOfNextVarHit(SimStruct *S)

{
ssSetTNext (S, <timeOfNextHit>);

}
#endif /* MDL_GET TIME_OF NEXT_VAR_HIT */

For an example, see matlabroot/simulink/src/vsfunc.c.

mdIOutputs

In the md10utputs routine, you compute the outputs of your S-function block.
Generally outputs are placed in the output vector(s), ssGetOutputPortSignal.
The synopsis is:

static void mdlOutputs(SimStruct *S, int_ T tid)

{
} /* end mdlOutputs */

The tid (task ID) argument is used in conjunction with multirate S-functions
to determine when a particular task has a sample hit.
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For an example of an md10utputs routine that works with multiple input and
output ports, see matlabroot/simulink/src/sfun_multiport.c.

mdlUpdate

The optional routine md1Update is called once for every major integration time
step. Discrete states are typically updated here, but this function is useful for
performing any tasks that should only take place once per integration step.

The md1lUpdate routine is called if you include this code in your S-function’s
main module:

#define MDL_UPDATE /* Change to #undef to remove function. */
#if defined(MDL_UPDATE)

static void mdlUpdate(SimStruct *S, int_T tid)

{

}
#endif /* MDL_UPDATE */

Use this code if your S-function has one or more discrete states or does not have
direct feedthrough.

The reason for this is that most S-functions that do not have discrete states but
do have direct feedthrough do not have update functions. Therefore, Simulink
is able to eliminate the need for the extra call in these circumstances.

If your S-function needs to have its md1Update routine called and it does not
satisfy either of the above two conditions, specify that it has a discrete state
using the ssSetNumDiscStates macro in the mdlInitializeSizes function.

The tid (task ID) argument is used in conjunction with multirate S-functions
to determine when a particular task has a sample hit.

For an example, see matlabroot/simulink/src/dsfunc.c.

mdIDerivatives

In the optional routine, md1Derivatives, you compute the S-Function block’s
derivatives for its continuous states. The derivatives are placed in the
derivative vector, ssGetdX(S). md1lDerivatives is called only during minor
time steps.

Each time the md1Derivatives routine is called it must explicitly set the value
of all derivatives. The derivative vector does not maintain the values from the
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last call to this routine. The memory allocated to the derivative vector changes
during execution.

The synopsis is:

#define MDL_DERIVATIVES /* Change to #undef to remove function. */
#if defined(MDL_DERIVATIVES)

static void mdlDerivatives(SimStruct *S)

{

}
#endif /* MDL_DERIVATIVES */

For an example, see matlabroot/simulink/src/csfunc.c.

mdlZeroCrossings

You can use the optional md1ZeroCrossings routine, when your S-function has
registered the CONTINUOUS SAMPLE_TIME and has nonsampled zero crossings
(ssGetNumNonsampledZCs(S) > 0). The md1lZeroCrossings routine is used to
provide Simulink with signals that are to be tracked for zero crossings. These
are typically:

® Continuous signals entering the S-function

* Internally generated signals that cross zero when a discontinuity would
normally occur in md1Outputs

Thus, the zero crossing signals are used to locate the discontinuities and end
the current time step at the point of the zero crossing. To provide Simulink with
zero crossing signal(s), md1ZeroCrossings updates the ssGetNonsampleZCs(S)
vector.

The synopsis is:

#define MDL_ZERO_CROSSINGS /* Change to #undef to remove function. */

#if defined (MDL_ZERO_CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))
static void mdlZeroCrossings(SimStruct *S)

{

}
#endif /* MDL_ZERO_CROSSINGS */

For an example, see matlabroot/simulink/src/sfun_zc.c.
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mdITerminate

In the md1Terminate routine, perform any actions that are necessary at the
termination of a simulation. For example, if memory was allocated in
mdlInitializeSizes or md1Start, this is the place to free it. Suppose your
S-function allocates a few chunks of memory and saves them in PWork. The
following code fragment would free this memory:

static void mdlTerminate (SimStruct *S)

{
int i;
for (1 = 0; i<ssGetNumPWork(S); i++) {
if (ssGetPWorkValue(S,i) != NULL) {
free(ssGetPWorkvValue(S,1i));
}
}
}

Using S-Functions With the Real-Time Workshop
In general, you can use S-functions in the Real-Time Workshop. However,
certain cases require these modifications to S-functions:

® Setting names of extra modules used in building your S-function

e Setting RTWdata for the S-function

® Adding an md1RTW function

S-Function Module Names for RTW Build’s

If your S-function is built with multiple modules, you must provide the build
process names of additional modules. You can do this through the Real-Time
Workshop template makefile technology, or more conveniently by using the
set_param MATLAB command. For example, if your S-function is built with
multiple modules, as in

mex sfun_main.c sfun_modulel.c sfun_module2.c

then specify the names of the modules without the extension using the
command:

set_param(sfun_block, 'SFunctionModules', 'sfun_modulel sfun_module2')
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The parameter can also be a variable as in

modules = 'sfun_modulel sfun_module2'
set_param(sfun_block, 'SFunctionModules', 'modules')

or a string to be evaluated (this is needed when the modules are valid
identifiers):

set_param(sfun_block, 'SFunctionModules',"'''sfun_modulei sfun_module2''")

S-Function RTWdata for Generating Code with RTW

There is a property of blocks called RTWdata, which can be used by the Target
Language Compiler when inlining an S-function. RTWdata is a structure of
strings that you can attach to a block. It is saved with the model and placed in
the model . rtw file when generating code. For example, this set of MATLAB
commands,

mydata.field1 = 'information for field1';
mydata.field2 = 'information for field2';
set_param(gcb, 'RTWdata',mydata)
get_param(gcb, 'RTWdata')

produces this result:

ans =

field1: 'information for fieldi'
field2: 'information for field2'

Inside the model.rtw for the associated S-function block is this information:

Block {
Type "S-Function"
RTwdata {
fieldl "information for field1"
field2 "information for field2"
}
mdIRTW

The md1RTW routine can help you inline (embed) your S-function in the
generated code. Inlining means to embed in your code in Real-Time Workshop
generated code. Typically, this is done for performance reasons. You may also
be required to inline your S-function if you have an md1ProcessParameters
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routine or your S-function has a “simulation mode” and a “real-time mode” such
as a hardware 1/0 S-function that simulates the 1/O device in Simulink and
interacts with the 1/0 device in real-time.

To inline an S-function in the generated code, you must use the Target
Language Compiler. Details on this can be found in the Real-Time Workshop
User’s Guide and Target Language Compiler Reference Guide. Inlining of
S-functions alters the code generation process by adding information to the
generated model . rtw file. This is achieved by adding an md1RTW routine to your
S-function. See simulink/src/sfuntmpl.doc for more details. For an example,
see simulink/src/sfun_multiport.c and toolbox/simulink/blocks/
sfun_multiport.tlc.
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Examples of C MEX-File S-Function Blocks

Most S-Function blocks require the handling of states, continuous or discrete.
The following sections discuss common types of systems that you can model in
Simulink with S-functions:

® Continuous state

® Discrete state

* Hybrid

® Variable step sample time

® Zero crossings

® Time varying continuous transfer function

All examples are based on the C MEX-file S-function template, sfuntmpl.c,
and sfuntmpl.doc, which contains a discussion of the S-function template.

Example - Continuous State S-Function

The matlabroot/simulink/src/csfunc.c example shows how to model a
continuous system with states in a C MEX S-function. In continuous state
integration, there is a set of states that Simulink’s solvers integrate using the
equations:

u > Xe > y
(input) (states) (output)
y = fo(t, X, u) (output)
Xe = fy(t, X ) (derivative)

S-functions that contain continuous states implement a state-space equation.
The output portion is placed in md10utputs and the derivative portion in
md1lDerivatives. To visualize how the integration works, refer back to the
flowchart on page 3-16. The output equation above corresponds to the
md1Outputs in the major time step. Next, the example enters the integration
section of the flowchart. Here Simulink performs a number of minor time steps
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during which it calls md10utputs and md1Derivatives. Each of these pairs of
calls is referred to as an integration stage. The integration returns with the
continuous states updated and the simulation time moved forward. Time is
moved forward as far as possible, providing that error tolerances in the state
are met. The maximum time step is subject to constraints of discrete events
such as the actual simulation stop time and the user-imposed limit.

Note that csfunc. c specifies that the input port has direct feedthrough. This
is because matrix D is initialized to a nonzero matrix. If D were set equal to a
zero matrix in the state-space representation, the input signal isn't used in
md1lOutputs. In this case, the direct feedthrough can be set to 0, which indicates
that csfunc.c does not require the input signal when executing md10utputs.
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matlabroot/simulink/src/csfunc.c

/* File : csfunc.c
Abstract:

Example C-MEX S-function for defining a continuous system.

*

*

*

*

* x' AX + Bu

* y = Cx + Du

*

* For more details about S-functions, see simulink/src/sfuntmpl.doc.
*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
*  $Revision: 1.2 $

*/

#define S_FUNCTION_NAME csfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real T A[2][2]={ { -0.09, -0.01 } ,

{1+ , 0 }
}s
static real T B[2][2]={ { 1 , -7 }o
{ 0 3 -2 }
};
static real T C[2][2]={ { O , 2 o
{ 1 3 -5 }
s
static real T D[2][2]={ { -3 , O Y
{1 ,0 }
s
/* *

* §-function routines *
* */

/* Function: mdlInitializeSizes ============

* Abstract:
* The sizes information is used by Simulink to determine the S-Function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
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return;

}

ssSetNumContStates(S, 2);
ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes (S,
ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs(S, 0);

1)

/* Take care when specifying exception free code -
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

/* Parameter mismatch will be reported by Simulink.

*/

see sfuntmpl.doc. */

}

/* Function: mdlInitializeSampleTimes

* Abstract:

* Specify that we have a continuous sample time.
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:
* Initialize both continuous states to zero.
*/

static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetContStates(S);

int_T 1p;

for (1p=0;1p<2;1p++) {
*x0++=0.0;
}
}

/* Function: mdlOutputs
* Abstract:

* y = Cx + Du

*/
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static void mdlOutputs(SimStruct *S, int_T tid)

{
real T *y = ssGetOutputPortRealSignal(S,0);
real T *X = ssGetContStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/* y=Cx+Du */
y[0]=C[0][0]*x[0]+C[O][1]*x[1]+D[0][0]*U(0)+D[O][1]*U(1);
y[11=C[1][0]*x[0]+C[1][1]1*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

#define MDL_DERIVATIVES
/* Function: mdlDerivatives ===== ===

* Abstract:
* xdot = Ax + Bu
*/
static void mdlDerivatives(SimStruct *S)
{
real T *dx = ssGetdX(S);
real T *X = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=Ax+Bu */
dx[0]=A[0][O]*X[O]+A[O][1]1*x[1]+B[O][0]*U(0)+B[O][1]1*U(1);
dX[11=A[1][0]*X[O]+A[11[11*x[1]+B[1][0]*U(0)+B[1]1[1]1*U(1);

}
/* Function: mdlTerminate ============ ====
* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif
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Example - Discrete State S-Function

The matlabroot/simulink/src/dsfunc.c example shows how to model a
discrete system in a C MEX S-function. Discrete systems can be modeled by the
following set of equations:

u > Xd > y
(input) (states) (output)

y = fo(t, x4 u) (output)

Xg+1 = fu(t,xg u)  (update)

dsfunc.c implements a discrete state-space equation. The output portion is
placed in md10utputs and the update portion in mdlUpdate. To visualize how
the simulation works, refer to the flowchart on page 3-16. The output equation
above corresponds to the md10utputs in the major time step. The update
equation above corresponds to the md1lUpdate in the major time step. If your
model does not contain continuous elements, the integration phase is skipped
and time is moved forward to the next discrete sample hit.

3-61



3 Writing S-Functions As C-MEX files

3-62

matlabroot/simulink/src/dsfunc.c

/* File : dsfunc.c
Abstract:

X(n+1) Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

$Revision: 1.3 $
/

#define S_FUNCTION_NAME dsfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element])

Copyright (c) 1990-1998 by The MathWorks,

Example C MEX S-function for defining a discrete system.

For more details about S-functions, see simulink/src/sfuntmpl.doc.

Inc. All Rights Reserved.

/* Pointer to Input Port0 */

static real T A[2][2]={ { -1.3839, -0.5097 } ,
{1 , 0 }
};
static real T B[2][2]={ { -2.5559, O o,
{ 0 , 4.2382 1}
}s
static real T C[2][2]={ { O , 2.0761 } ,
{ 0 , 7.7891 }
}s
static real T D[2][2]={ { -0.8141, -2.9334 } ,
{ 1.2426, O© }
}s
/* *
* §-function routines *
* */
/* Function: mdlInitializeSizes ============
* Abstract:
* The sizes information is used by Simulink to determine the S-Function
* block's characteristics (number of inputs, outputs, states, etc.).
*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
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return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 2);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

/* Function: mdlInitializeSampleTimes =

* Abstract:
* Specify that we inherit our sample time from the driving block.
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, 1.0);
ssSetOffsetTime(S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ====
* Abstract:
* Initialize both continuous states to zero.
*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetRealDiscStates(S);
int_ T 1p;

for (1p=0;1p<2;1p++) {

*x0++=1.0;

}
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/* Function: mdlOutputs =====

* Abstract:
* y = Cx + Du
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real T *y = ssGetOutputPortRealSignal(S,0);

real T *X = ssGetRealDiscStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* y=Cx+Du */
y[0]=C[0][0]*x[0]+C[O][1]*x[1]+D[O][0]*U(0)+D[O][1]1*U(1);
y[11=C[1][0]*x[0]+C[1]1[1]1*x[1]+D[1][0]*U(0)+D[1][1]1*U(1);

#define MDL_UPDATE
/* Function: mdlUpdate ===== ===

* Abstract:
* xdot = Ax + Bu
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real T tempX[2] = {0.0, 0.0};
real T *X = ssGetRealDiscStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/* xdot=Ax+Bu */
tempX[0]=A[O0][O]*X[O]+A[O][1]1*x[1]+B[O][0]*U(0)+B[O]I[1]1*U(1);
tempX[11=A[1][0]*X[O]+A[1]1[1]1*x[1]+B[1][0]*U(0)+B[1]1[1]1*U(1);
x[0]=tempX[0];
x[1]=tempX[1];
}
/* Function: mdlTerminate ============
* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif
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Example - Hybrid System S-Functions

The S-function, matlabroot/simulink/src/mixedm.c, is an example of a
hybrid (a combination of continuous and discrete states) system. mixedm.c
combines elements of csfunc.c and dsfunc.c. If you have a hybrid system,
place your continuous equations in md1Derivative and your discrete equations
in md1lUpdate. In addition, you need to check for sample hits to determine at
what point your S-function is being called.

In Simulink block diagram form, the S-function, mixedm.c looks like

O— 0

In Out

Integratar Unit Dalay

which implements a continuous integrator followed by a discrete unit delay.

Since there are no tasks to complete at termination, md1Terminate is an empty
function. md1Derivatives calculates the derivatives of the continuous states of
the state vector x, and md1Update contains the equations used to update the
discrete state vector, x.
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matlabroot/simulink/src/mixedm.c

/* File : mixedm.c

* Abstract:

*

* An example C MEX S-function that implements a continuous integrator (1/s)
* in series with a unit delay (1/z)

*

* For more details about S-functions, see simulink/src/sfuntmpl.doc.

*

*

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
*  $Revision: 1.4 $
*/
#define S_FUNCTION_NAME mixedm
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

/* *
* §-function routines *
* */

/* Function: mdlInitializeSizes ==================

* Abstract:
* The sizes information is used by Simulink to determine the S-Function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 1);
ssSetNumDiscStates(S, 1);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 1);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes (S, 2);
ssSetNumRWork (S, 0);
ssSetNumIWork (S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);
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/* Take care when specifying exception free code - see sfuntmpl.doc. */
ssSetOptions(S, SS_OPTION_EXCEPTION FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =
* Abstract:
* Two tasks: One continuous, one with discrete sample time of 1.0
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetSampleTime(S, 1, 1.0);

ssSetOffsetTime (
ssSetOffsetTime (

)

0! )
1, );

S, 0.0
s, 0.0
}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ====
* Abstract:
* Initialize both continuous states to zero.
*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *xCO = ssGetContStates(S);
real_T *xDO = ssGetRealDiscStates(S);

xCO[0] = 1.0;
xDO[0] = 1.0;
}
/* Function: mdlOutputs =
* Abstract:
* y = xD
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *y = ssGetOutputPortRealSignal(S,0);
real_T *xD = ssGetRealDiscStates(S);

/* y=xD */
if (ssIsSampleHit(S, 1, tid)) {
y[0]=xD[0];
}
}

#define MDL_UPDATE
/* Function: mdlUpdate ====

* Abstract:

* xD = xC

*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
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real T *xD = ssGetRealDiscStates(S);
real T *xC = ssGetContStates(S);

/* XD=xC */
if (ssIsSampleHit(s, 1, tid)) {
xD[0]=XxC[0] ;
}
}

#define MDL_DERIVATIVES
/* Function: mdlDerivatives ============================

* Abstract:
* xdot = U
*/
static void mdlDerivatives(SimStruct *S)
{
real T *dx = ssGetdX(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/* xdot=U */
dx[0]=U(0);
}
/* Function: mdlTerminate ==========
* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Example - Variable Step S-Function

The example S-function, vsfunc.c uses a variable step sample time. Variable
step-size functions require a call to md1GetTimeOfNextVarHit, which is an
S-function routine that calculates the time of the next sample hit. S-functions
that use the variable step sample time can only be used with variable step
solvers. vsfunc is a discrete S-function that delays its first input by an amount
of time determined by the second input.

This example demonstrates how to correctly work with the fixed and variable
step solvers when the equations (functions) that are being integrated change
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during the simulation. In the transfer function used in this example, the
parameters of the transfer function vary with time.

The output of vsfunc is simply the input u delayed by a variable amount of
time. md10utputs sets the output y equal to state x. md1lUpdate sets the state
vector x equal to u, the input vector. This example calls
md1GetTimeOfNextVarHit, an S-function routine that calculates and sets the
“time of next hit,” that is, the time when is vsfunc is next called. In
md1GetTimeOfNextVarHit the macro ssGetU is used to get a pointer to the input
u. Then this call is made:

ssSetTNext (S, ssGetT(S) (*ul[1]1));

The macro ssGetT gets the simulation time t. The second input to the block,
(*u[1]), isadded to t, and the macro ssSetTNext sets the time of next hit equal
to t+(*u[1]), delaying the output by the amount of time set in (*u[1]).
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matlabroot/simulink/src/vsfunc.c

/* File : vsfunc.c

* Abstract:

*

* Example C-file S-function for defining a continuous system.

*

* Variable step S-function example.

* This example S-function illustrates how to create a variable step
* block in Simulink. This block implements a variable step delay

* in which the first input is delayed by an amount of time determined
* by the second input:

*

* dt = u(2)

: y(t+dt) = u(t)

*

* For more details about S-functions, see simulink/src/sfuntmpl.doc.
*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.6 $

*

/

#define S_FUNCTION_NAME vsfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

/* Function: mdlInitializeSizes =====

* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates(S, 1);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 0);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);
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ssSetNumSampleTimes(S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc */

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

/* Function: mdlInitializeSampleTimes

* Abstract:
* Variable-Step S-function
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime (S, 0, VARIABLE_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:
* Initialize discrete state to zero.
*/

static void mdlInitializeConditions(SimStruct *S)

{
real_T *x0 = ssGetRealDiscStates(S);

x0[0] = 0.0;

#define MDL_GET TIME_OF_NEXT VAR HIT
static void mdlGetTimeOfNextVarHit(SimStruct *S)

{
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* Make sure input will increase time */
if (U(1) <= 0.0) {
/* If not, abort simulation */
ssSetErrorStatus (S, "Variable step control input must be "
"greater than zero")
return;

}
ssSetTNext (S, ssGetT(S)+U(1));
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/* Function: mdlOutputs =====
* Abstract:
* y=x
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real T *y = ssGetOutputPortRealSignal(S,0);
real T *x = ssGetRealDiscStates(S);

/* Return the current state as the output */
y[0] = x[O];

#define MDL_UPDATE
/* Function: mdlUpdate ============

* Abstract:
* This function is called once for every major integration time step.
* Discrete states are typically updated here, but this function is useful
* for performing any tasks that should only take place once per integration
* step.
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real T *X = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

x[0]=U(0);

/* Function: mdlTerminate =====

* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif
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Example - Zero Crossing S-Function

The example S-function, sfun_zc_sat demonstrates how to implement a
saturation block. This S-function is designed to work with either fixed or
variable step solvers. When this S-function inherits a continuous sample time,
and a variable step solver is being used, a zero crossings algorithm is used to
locate the exact points at which the saturation occurs.

matlabroot/simulink/src/sfun_zc_sat.c

-~
*

E I T R T N SN TN R R N R T

File : sfun_zc_sat.c
Abstract:

Example of an S-function that has nonsampled zero crossings to
implement a saturation function. This S-function is designed to be
used with a variable or fixed step solver.

A saturation is described by three equations

1) y = UpperLimit
2) y =u
3) y = LowerLimit

and a set of inequalities that specify which equation to use

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

A key fact is that the valid equation 1, 2, or 3, can change at

any instant. Nonsampled zero crossing (ZC)support helps the variable step
solvers locate the exact instants when behavior switches from one equation
to another.

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
$Revision: 1.5 $

#define S_FUNCTION_NAME sfun_zc_sat
#define S_FUNCTION_LEVEL 2

#include "tmwtypes.h"
#include "simstruc.h"
#ifdef MATLAB_MEX_FILE
# include "mex.h"
#endif
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/* *
* General Defines/macros *
* */

/* index to Upper Limit */
#define I_PAR_UPPER_LIMIT 0

/* index to Upper Limit */
#define I_PAR_LOWER_LIMIT 1

/* total number of block parameters */
#define N_PAR 2

/*

* Make access to mxArray pointers for parameters more readable.
*/

#define P_PAR_UPPER_LIMIT ( ssGetSFcnParam(S,I_PAR_UPPER_LIMIT) )
#define P_PAR_LOWER_LIMIT ( ssGetSFcnParam(S,I_PAR_LOWER_LIMIT) )
#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined (MATLAB_MEX_FILE)

/* Function: mdlCheckParameters =====

* Abstract:
* Check that parameter choices are allowable.
*/
static void mdlCheckParameters(SimStruct *S)
{
int_T i;
int_T numUpperLimit;
int_T numLowerLimit;

const char *msg = NULL;

/*
* check parameter basics
*/
for (1 =0; 1 < N_PAR; i++ ) {
if ( mxIsEmpty( ssGetSFcnParam(S,i) ) ||
mxIsSparse ( ssGetSFcnParam(S,i) ) ||
mxIsComplex( ssGetSFcnParam(S,i) ) ||
ImxIsNumeric( ssGetSFcnParam(S,i) ) ) {
msg = "Parameters must be real vectors.";
goto EXIT_POINT;

}
}
/*
* Check sizes of parameters.
*/

numUpperLimit = mxGetNumberOfElements( P_PAR_UPPER_LIMIT );
numLowerLimit = mxGetNumberOfElements( P_PAR_LOWER_LIMIT );
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if ( ( numUpperLimit != 1 ) &&
( numLowerLimit != 1 ) &&
( numUpperLimit != numLowerLimit ) ) {
msg = "Number of input and output values must be equal.";
goto EXIT_POINT;
}
/*
* Error exit point
*/
EXIT_POINT:

if (msg != NULL) {
ssSetErrorStatus (S, msg);

}

}
#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes =

* Abstract:
* Initialize the sizes array.
*/
static void mdlInitializeSizes(SimStruct *S)
{
int_T numUpperLimit, numLowerLimit, maxNumLimit;
/*
* Set and check parameter count.
*/

ssSetNumSFcnParams (S, N_PAR);

#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdlCheckParameters(S);
if (ssGetErrorStatus(S) != NULL) {
return;
}
} else {
return; /* Parameter mismatch will be reported by Simulink */
}
#endif

/*

* Get parameter size info.

*/

numUpperLimit = mxGetNumberOfElements( P_PAR_UPPER_LIMIT );
numLowerLimit = mxGetNumberOfElements( P_PAR_LOWER_LIMIT );

if (numUpperLimit > numLowerLimit) {
maxNumLimit = numUpperLimit;

} else {
maxNumLimit = numLowerLimit;

}
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/*

* states

*/

ssSetNumContStates (S, 0);
ssSetNumDiscStates(S, 0);

/*

* outputs

*  The upper and lower limits are scalar expanded
* so their size determines the size of the output
* only if at least one of them is not scalar.

*/

if (!ssSetNumOutputPorts(S, 1)) return;

if ( maxNumLimit > 1 ) {
ssSetOutputPortWidth(S, 0, maxNumLimit);
} else {
ssSetOutputPortWidth(S, 0, DYNAMICALLY_ SIZED);
}

/*

* inputs

* If the upper or lower limits are not scalar then
* the input is set to the same size. However, the
* ssSetOptions below allows the actual width to

* be reduced to 1 if needed for scalar expansion.
*/

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortDirectFeedThrough(S, 0, 1 );

if ( maxNumLimit > 1 ) {

ssSetInputPortWidth(S, 0, maxNumLimit);
} else {

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
}

/*

* sample times

*/

ssSetNumSampleTimes(S, 1);

/*

* work

*/

ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork (S, 0);
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Modes and zero crossings:
If we have a variable step solver and this block has a continuous
sample time, then
o One mode element will be needed for each scalar output
in order to specify which equation is valid (1), (2), or (3).
o Two ZC elements will be needed for each scalar output
in order to help the solver find the exact instants
at which either of the two possible "equation switches."
One will be for the switch from eq. (1) to (2);
the other will be for eq. (2) to (3) and vise versa.
otherwise
o No modes and nonsampled zero crossings will be used.

L S I I

/
ssSetNumModes (S, DYNAMICALLY SIZED);
ssSetNumNonsampledZCs (S, DYNAMICALLY SIZED);

/
options
o No mexFunctions and no problematic mxFunctions are called

o0 Scalar expansion of the inputs is desired. The option provides
this without the need to write mdlSetOutputPortWidth and
mdlSetInputPortWidth functions.

* Ok ok ok X X %k Ok

/
ssSetOptions(S, ( SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION));

} /* end mdlInitializeSizes */

so the exception free code option safely gives faster simulations.

/* Function: mdlInitializeSampleTimes
* Abstract:
* Specify that the block is continuous.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0);
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#define MDL_SET_WORK_WIDTHS

#if defined (MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)
/* Function: mdlSetWorkWidths =====
*  The width of the modes and the zero crossings depends on the width of the

* output. This width is not always known in mdlInitializeSizes so it is handled
*  here.

*/
static void mdlSetWorkWidths(SimStruct *S)
{
int nModes;
int nNonsampledZCs;
if (ssIsVariableStepSolver(S) &&
ssGetSampleTime(S,0) == CONTINUOUS_SAMPLE_TIME &&
ssGetOffsetTime(S,0) == 0.0) {
int numOutput = ssGetOutputPortWidth(S, 0);
/*
* modes and zero crossings
* 0 One mode element will be needed for each scalar output
* in order to specify which equation is valid (1), (2), or (3).
* o Two ZC elements will be needed for each scalar output
* in order to help the solver find the exact instants
* at which either of the two possible "equation switches"
* One will be for the switch from eq. (1) to (2);
* the other will be for eq. (2) to (3) and vise-versa.
*/
nModes = numOutput;
nNonsampledZCs = 2 * numOutput;
} else {
nModes = 0;
nNonsampledZCs = 0;
}
ssSetNumModes (S, nModes) ;
ssSetNumNonsampledZCs (S,nNonsampledZCs) ;
}

#endif /* MDL_SET_WORK WIDTHS */

/* Function: mdlOutputs =====
* Abstract:

*

* A saturation is described by three equations.

*

* (1) y = UpperLimit

* (2) y=u

* (3) y = LowerLimit

*

* When this block is used with a fixed-step solver or it has a noncontinuous
* sample time, the equations are used as is.

*

*

Now consider the case of this block being used with a variable step solver
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and having a continuous sample time. Solvers work best on smooth problems.
In order for the solver to work without chattering, limit cycles, or
similar problems, it is absolutely crucial that the same equation be used
throughout the duration of a MajorTimeStep. To visualize this, consider
the case of the Saturation block feeding an Integrator block.

To implement this rule, the mode vector is used to specify the
valid equation based on the following:

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

The mode vector is changed only at the beginning of a MajorTimeStep.

During a minor time step, the equation specified by the mode vector

is used without question. Most of the time, the value of u will agree
with the equation specified by the mode vector. However, sometimes u's
value will indicate a different equation. Nonetheless, the equation
specified by the mode vector must be used.

When the mode and u indicate different equations, the corresponding
calculations are not correct. However, this is not a problem. From

the ZC function, the solver will know that an equation switch occurred

in the middle of the last MajorTimeStep. The calculations for that

time step will be discarded. The ZC function will help the solver

find the exact instant at which the switch occurred. Using this knowledge,
the length of the MajorTimeStep will be reduced so that only one equation
is valid throughout the entire time step.

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y = ssGetOutputPortRealSignal(S,0);
int_T numOutput = ssGetOutputPortWidth(S,0);

int_T iOutput;

/*

* Set index and increment for input signal, upper limit, and lower limit
* parameters so that each gives scalar expansion if needed.
*/

int_T uldx = 0;

int_T wulnc = ( ssGetInputPortWidth(S,0) > 1 );

real_T *upperLimit = mxGetPr( P_PAR_UPPER_LIMIT );

int_T upperLimitInc = ( mxGetNumberOfElements( P_PAR_UPPER_LIMIT ) > 1 );
real_T *lowerLimit = mxGetPr( P_PAR_LOWER_LIMIT );

int_T lowerLimitInc = ( mxGetNumberOfElements( P_PAR_LOWER_LIMIT ) > 1 );

if (ssGetNumNonsampledZCs(S) == 0) {
/*
* This block is being used with a fixed-step solver or it has
* a noncontinuous sample time, so we always saturate.
*/
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for (iOutput = 0; iOutput < numOutput; iOutput++) {
if (*uPtrs[uldx] >= *upperLimit) {
*y++ = *upperLimit;
} else if (*uPtrs[uldx] > *lowerLimit) {
*y++ = *uPtrs[uldx];
} else {
*y++ = *lowerLimit;

}

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;
uldx += ulnc;

}

} else {
/*
* This block is being used with a variable-step solver.
*/
int_T *mode = ssGetModeVector(S);

/*

* Specify indices for each equation.

*/
enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/*
* Update the mode vector ONLY at the beginning of a MajorTimeStep.
*/
if ( ssIsMajorTimeStep(S) ) {
/*
* Specify the mode, that is, the valid equation for each output scalar.
*/
for ( iOutput = 0; iOutput < numOutput; iOutput++ ) {
if ( *uPtrs[uldx] > *upperLimit ) {
/*
* Upper limit eq is valid.
*/
mode[iOutput] = UpperLimitEquation;
} else if ( *uPtrs[uldx] < *lowerLimit ) {

/*
* Lower limit eq is valid.
*/
mode[iOutput] = LowerLimitEquation;
} else {
/*
* Nonlimit eq is valid.
*/
mode[iOutput] = NonLimitEquation;
}
/*
* Adjust indices to give scalar expansion if needed.
*/
uldx += ulnc;
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upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;

}

/*

* Reset index to input and limits.
*/

uldx = 0;

5
upperLimit = mxGetPr( P_PAR_UPPER_LIMIT );
lowerLimit = mxGetPr( P_PAR_LOWER_LIMIT );

} /* end IsMajorTimeStep */

/*
* For both MinorTimeSteps and MajorTimeSteps calculate each scalar
* output using the equation specified by the mode vector.
*/
for ( iOutput = 0; iOutput < numOutput; iOutput++ ) {
if ( mode[iOutput] == UpperLimitEquation ) {

/*
* Upper limit eq.
*/
*y++ = *upperLimit;
} else if ( mode[iOutput] == LowerLimitEquation ) {
/*
* Lower limit eq.
*/
*y++ = *lowerLimit;
} else {
/*
* Nonlimit eq.
*/
*y++ = *uPtrs[uldx];
}
/*
* Adjust indices to give scalar expansion if needed.
*/
uldx += ulnc;

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;

}

} /* end mdlOutputs */
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#define MDL_ZERO_CROSSINGS
#if defined(MDL_ZERO_CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))

~

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function: mdlZeroCrossings =====
Abstract:
This will only be called if the number of nonsampled zero crossings is
greater than 0, which means this block has a continuous sample time and the
the model is using a variable step solver.

Calculate ZC signals that help the solver find the
exact instants at which equation switches occur:

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if  u < LowerLimit then use (3)

The key words are help find. There is no choice of a function that will
direct the solver to the exact instant of the change. The solver will
track the zero crossing signal and do a bisection style search for the
exact instant of equation switch.

There is generally one ZC signal for each pair of signals that can

switch. The three equations above would break into two pairs (1)&(2)
and (2)&(3). The possibility of a "long jump" from (1) to (3) does
not need to be handled as a separate case. It is implicitly handled.

When a ZCs are calculated, the value is normally used twice. When it is
first calculated, it is used as the end of the current time step. Later,
it will be used as the beginning of the following step.

The sign of the ZC signal always indicates an equation from the pair. In the
context of S-functions, which equation is associated with a positive ZC and
which is associated with a negative ZC doesn't really matter. If the ZC is
positive at the beginning and at the end of the time step, this implies that the
positive equation was valid throughout the time step. Likewise, if the

ZC is negative at the beginning and at the end of the time step, this
implies that the negative equation was valid throughout the time step.

Like any other nonlinear solver, this is not fool proof, but it is an
excellent indicator. If the ZC has a different sign at the beginning and

at the end of the time step, then a equation switch definitely occured
during the time step.

Ideally, the ZC signal gives an estimate of when an equation switch
occurred. For example, if the ZC signal is -2 at the beginning and +6 at
the end, then this suggests that the switch occured

25% = 100%*(-2)/(-2-(+6)) of the way into the time step. It will almost
never be true that 25% is perfectly correct. There is no perfect choice
for a ZC signal, but there are some good rules. First, choose the ZC
signal to be continuous. Second, choose the ZC signal to give a monotonic
measure of the "distance" to a signal switch; strictly monotonic is ideal.
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static void mdlZeroCrossings(SimStruct *S)

{
int_T iOutput;
int_T numOutput = ssGetOutputPortWidth(S,0);
real T *zcSignals = ssGetNonsampledZCs(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/*

* Set index and increment for the input signal, upper limit, and

* limit parameters so that each gives scalar expansion if needed.

*/
int_T uldx =0;
int_T wulnc = ( ssGetInputPortWidth(S,0) > 1 );
real_T *upperLimit = mxGetPr( P_PAR_UPPER_LIMIT );
int_T upperLimitInc = ( mxGetNumberOfElements( P_PAR_UPPER_LIMIT
real_T *lowerLimit = mxGetPr( P_PAR_LOWER_LIMIT );

int_T 1lowerLimitInc = ( mxGetNumberOfElements( P_PAR_LOWER_LIMIT

/*

lower

) >1);

) >1);

* For each output scalar, give the solver a measure of "how close things

* are" to an equation switch.
*/
for ( iOutput = 0; iOutput < numOutput; iOutput++ ) {

~

The switch from eq (1) to eq (2)

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)

*
*
*
*
*
* is related to how close u is to UpperLimit. A ZC choice
* that is continuous, strictly monotonic, and is

* u - UpperLimit

* or it is negative.

*/

zcSignals[2*iOutput] = *uPtrs[uldx] - *upperLimit;

/* The switch from eq (2) to eq (3)

*

* if LowerLimit <= u <= UpperLimit then use (2)
* if u < LowerLimit then use (3)
*

* is related to how close u is to LowerLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - LowerLimit.

*/
zcSignals[2*iOutput+1] = *uPtrs[uldx] - *lowerLimit;

/*

* Adjust indices to give scalar expansion if needed.

*/
uldx += ulnc;

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;
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}

#endif /* end mdlZeroCrossings */

/* Function: mdlTerminate ==========

* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Example - Time Varying Continuous Transfer
Function

The stvctf S-function is an example of a time varying continuous transfer
function. It demonstrates how to work with the solvers so that the simulation
maintains consistency, which means that block maintains smooth and
consistent signals for the integrators despite the fact that the equations that
are being integrated are changing.
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matlabroot/simulink/src/stvctf.c

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

File

stvctf.c

Abstract:

Time Varying Continuous Transfer Function block

This S-function implements a continuous time transfer function
whose transfer function polynomials are passed in via the input
vector. This is useful for continuous time adaptive control
applications.

This S-function is also an example of how to "use banks" to avoid
problems with computing derivatives when a continuous output has
discontinuities. The consistency checker can be used to verify that
your S-function is correct with respect to always maintaining smooth
and consistent signals for the integrators. By consistent we mean that
two mdlOutput calls at major time t and minor time t are always the
same. The consistency checker is enabled on the diagnostics page of the
simulation parameters dialog box. The update method of this S-function
modifies the coefficients of the transfer function, which cause the
output to "jump." To have the simulation work properly, we need to let
the solver know of these discontinuities by setting
ssSetSolverNeedsReset. Then we need to use multiple banks of
coefficients so the coefficients used in the major time step output
and the minor time step outputs are the same. In the simulation loop
we have:
Loop:
0 Output in major time step at time t
o Update in major time step at time t
o Integrate (minor time step):
o Consistency check: recompute outputs at time t and compare
with current outputs.
o Derivatives at time t.
o0 One or more Output,Derivative evaluations at time t+k
where k <= step_size to be taken.
o Compute state, x.
ot=1t+ step_size.
End_Integrate
End_Loop
Another purpose of the consistency checker is used to verify that when
the solver needs to try a smaller step size that the recomputing of
the output and derivatives at time t doesn't change. Step size
reduction occurs when tolerances aren't met for the current step size.
The ideal ordering would be to update after integrate. To achieve
this we have two banks of coefficients. And the use of the new
coefficients, which were computed in update, are delayed until after
the integrate phase is complete.

See simulink/src/sfuntmpl.doc.

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
$Revision: 1.8 $
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*/

#define S_FUNCTION_NAME stvctf
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*
* Defines for easy access to the numerator and denominator polynomials
* parameters
*/

#define NUM(S) ssGetSFcnParam(S, 0)

#define DEN(S) ssGetSFcnParam(S,

#define TS(S) ssGetSFcnParam(S, 2)

#define NPARAMS 3

#define MDL_CHECK_PARAMETERS
#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)
/* Function: mdlCheckParameters =====

* Abstract:

* Validate our parameters to verify:

* o0 The numerator must be of a lower order than the denominator.
* o The sample time must be a real positive nonzero value.

*/
static void mdlCheckParameters(SimStruct *S)

{

int_T i;

for (i = 0; i < NPARAMS; i++) {

real_T *pr;

int T el;

int T nEls;

if (mxIsEmpty ( ssGetSFcnParam(S,1i)) |
mxIsSparse ( ssGetSFcnParam(S,1i)) |
mxIsComplex( ssGetSFcnParam(S,i)) |
ImxIsNumeric( ssGetSFcnParam(S,i)) ) {
ssSetErrorStatus (S, "Parameters must be real finite vectors");
return;

}
pr = mxGetPr(ssGetSFcnParam(S,1i));
nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));
for (el = 0; el < nEls; el++) {
if (!mxIsFinite(pr[el])) {
ssSetErrorStatus (S, "Parameters must be real finite vectors");
return;

}
if (mxGetNumberOfElements(NUM(S)) > mxGetNumberOfElements(DEN(S)) &&

mxGetNumberOfElements(DEN(S)) > 0 && *mxGetPr(DEN(S)) != 0.0) {
ssSetErrorStatus(S, "The denominator must be of higher order than "
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"the numerator, nonempty and with first "
"element nonzero");
return;

}

/* xxx verify finite */

if (mxGetNumberOfElements(TS(S)) != 1 || mxGetPr(TS(S))[0] <= 0.0) {
ssSetErrorStatus(S, "Invalid sample time specified");
return;

}

}
#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes =

* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

int_T nContStates;
int_T nCoeffs;

/* See sfuntmpl.doc for more details on the macros below. */

ssSetNumSFcnParams (S, NPARAMS); /* Number of expected parameters. */
#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdlCheckParameters(S);
if (ssGetErrorStatus(S) != NULL) {

return;
}
} else {
return; /* Parameter mismatch will be reported by Simulink. */
}
#endif
/*
* Define the characteristics of the block:
*
* Number of continuous states: length of denominator - 1
* Inputs port width 2 * (NumContStates+1) + 1
* Output port width 1
* DirectFeedThrough: 0 (Although this should be computed.
* We'll assume coefficients entered
* are strictly proper).
* Number of sample times: 2 (continuous and discrete)
* Number of Real work elements: 4*NumCoeffs
* (Two banks for num and den coeff's:
* NumBankOCoeffs
* DenBankOCoeffs

3-87



3 Writing S-Functions As C-MEX files

* NumBank1Coeffs

* DenBankiCoeffs)

* Number of Integer work elements: 2 (indicator of active bank 0 or 1
* and flag to indicate when banks
* have been updated).

*

* The number of inputs arises from the following:

* o 1 input (u)

* o the numerator and denominator polynomials each have NumContStates+1
* coefficients

*/
nCoeffs = mxGetNumberOfElements (DEN(S));

nContStates = nCoeffs - 1;

ssSetNumContStates (S, nContStates);
ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 1 + (2*nCoeffs));
ssSetInputPortDirectFeedThrough(S, 0, 0);

if (!ssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes (S, 2);
ssSetNumRWork (S, 4 * nCoeffs);
ssSetNumIWork (S, 2);
ssSetNumPWork (S, 0);

ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE) ;

} /* end mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes =====
* Abstract:
* This function is used to specify the sample time(s) for the
* S-function. This S-function has two sample times. The
* first, a continuous sample time, is used for the input to the
* transfer function, u. The second, a discrete sample time
* provided by the user, defines the rate at which the transfer
* function coefficients are updated.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
/*
* the first sample time, continuous
*/

ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME) ;
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ssSetOffsetTime(S, 0, 0.0);

/*

* the second, discrete sample time, is user provided
*/

ssSetSampleTime (S, 1, mxGetPr(TS(S))[0]);
ssSetOffsetTime(S, 1, 0.0);

} /* end mdlInitializeSampleTimes */

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions
* Abstract:
Initialize the states, numerator and denominator coefficients.

static void mdlInitializeConditions(SimStruct *S)

{

int T i,
int_T nContStates = ssGetNumContStates(S);
real_T *x0 = ssGetContStates(S);
int_T nCoeffs = nContStates + 1;
real_T *numBankO = ssGetRWork(S);
real_T *denBankO = numBank0 + nCoeffs;
int_T *activeBank = ssGetIWork(S);

/*

* The continuous states are all initialized to zero.

*/
for (i = 0; i < nContStates; i++) {

x0[1i] = 0.0;

numBankO[1i] 0.0;
denBank0[i] = 0.0;

}
numBankO[nContStates] = 0.0;
denBankO[nContStates] = 0.0;
/*
* Set up the initial numerator and denominator.
*/
{
const real_T *numParam = mxGetPr(NUM(S));
int numParamLen = mxGetNumberOfElements (NUM(S));
const real_T *denParam = mxGetPr(DEN(S));
int denParamLen = mxGetNumberOfElements (DEN(S));
real T den0 = denParam[0];

for (i = 0; i < denParamLen; i++) {
denBank0[i] = denParam[i] / denO;
}

for (i = 0; i < numParamLen; i++) {
numBankO[i] = numParam[i] / denO;
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}
}
/*
* Normalize if this transfer function has direct feedthrough.
*/

for (i = 1; i < nCoeffs; i++) {
numBankO[i] -= denBankO[i]*numBankO[O0];
}

/*

* Indicate bankO is active (i.e. bank1 is oldest).
*/

*activeBank = 0;

} /* end mdlInitializeConditions */

/* Function: mdlOutputs =====

* Abstract:
* The outputs for this block are computed by using a controllable state-
* space representation of the transfer function.
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
if (ssIsContinuousTask(S,tid)) {
int i;
real_T *num;
int nContStates = ssGetNumContStates(S);
real T *X = ssGetContStates(S);
int. T nCoeffs = nContStates + 1;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y = ssGetOutputPortRealSignal(S,0);
int. T *activeBank = ssGetIWork(S);
/*

* Switch banks since we've updated them in mdlUpdate and we're no longer
* in a minor time step.
*/
if (ssIsMajorTimeStep(S)) {
int_T *banksUpdated = ssGetIWork(S) + 1;
if (*banksUpdated) {

*activeBank = ! (*activeBank);
*banksUpdated = 0;
/*

* Need to tell the solvers that the derivatives are no
* longer valid.
*/

ssSetSolverNeedsReset (S);

}
num = ssGetRWork(S) + (*activeBank) * (2*nCoeffs);
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/*

* The continuous system is evaluated using a controllable state space
* representation of the transfer function. This implies that the
* output of the system is equal to:

*

* y(t) = Cx(t) + Du(t)

* = [ b1 b2 ... bnlx(t) + bOu(t)

*

* where b0, b1, b2, ... are the coefficients of the numerator

* polynomial:

*

* B(s) = b0 s*n + b1 s*n-1 + b2 s"n-2 + ... + bn-1 s + bn

*/

*y = *npum++ * (*uPtrs[0]);
for (i = 0; i < nContStates; i++) {
*y 4= *numt+ ¥ X+
}
}

} /* end mdlOutputs */

#define MDL_UPDATE
/* Function: mdlUpdate =

* Abstract:
* Every time through the simulation loop, update the
* transfer function coefficients. Here we update the oldest bank.
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
if (ssIsSampleHit(S, 1, tid)) {
int_T i;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
int T uldx = 1;/*1st coeff is after signal input*/
int T nContStates = ssGetNumContStates(S);
int T nCoeffs = nContStates + 1;
int_T bankToUpdate = !ssGetIWork(S)[O0];
real T *num = ssGetRWork(S)+bankToUpdate*2*nCoeffs;
real T *den = num + nCoeffs;
real T den0;
int_T allZero;
/*
* Get the first denominator coefficient. It will be used
* for normalizing the numerator and denominator coefficients.
*
* If all inputs are zero, we probably could have unconnected
* inputs, so use the parameter as the first denominator coefficient.
*

/
den0 = *uPtrs[uldx+nCoeffs];
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if (den0 == 0.0) {
den0 = mxGetPr(DEN(S))[0];

}
/*
* Grab the numerator.
*/
allZero = 1;
for (i = 0; (i < nCoeffs) && allZero; i++) {
allZero &= *uPtrs[uldx+i] == 0.0;
}

if (allZero) { /* if numerator is all zero */
const real_T *numParam = mxGetPr(NUM(S));
int_T numParamlLen = mxGetNumberOfElements(NUM(S));
/*
* Move the input to the denominator input and
* get the denominator from the input parameter.
*/
uldx += nCoeffs;
num += nCoeffs - numParamLen;
for (1 = 0; i1 < numParamLen; i++) {
*num++ = *numParam++ / den0;

}
} else {
for (i = 0; i < nCoeffs; it++) {
*num++ = *uPtrs[uldx++] / denO;
}
}
/*
* Grab the denominator.
*/
allZero = 1;
for (i = 0; (i < nCoeffs) && allZero; i++) {
allZero &= *uPtrs[uldx+i] == 0.0;
}

if (allZero) { /* If denominator is all zero. */
const real_T *denParam = mxGetPr(DEN(S));
int_T denParamLen = mxGetNumberOfElements(DEN(S));

den0 = denParam[0];

for (1 = 0; i < denParamLen; i++) {
*den++ = *denParam++ / denO;

}

} else {

for (1 = 0; 1 < nCoeffs; i++) {
*den++ = *uPtrs[uldx++] / denO;

}

/*
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}

* Normalize if this transfer function has direct feedthrough.
*/

num = ssGetRWork(S) + bankToUpdate*2*nCoeffs;

den = num + nCoeffs;

for (i = 1; i < nCoeffs; i++) {

num[i] -= den[i]*num[0];
}
/*
* Indicate oldest bank has been updated.
*/

ssGetIWork(S)[1] = 1;

} /* end mdlUpdate */

#define MDL_DERIVATIVES

/* Function: mdlDerivatives

* Abstract:

*

*

*/
static void mdlDerivatives(SimStruct *S)
{

int_T i;

int_T nContStates = ssGetNumContStates(S);

real T *X = ssGetContStates(S);

real T *dx = ssGetdX(S);

int_T nCoeffs = nContStates + 1;

int_T activeBank = ssGetIWork(S)[0];

const real_T *num = ssGetRWork(S) + activeBank*(2*nCoeffs);

const real_T *den = num + nCoeffs;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*

* The continuous system is evaluated using a controllable state-space
* representation of the transfer function. This implies that the

* next continuous states are computed using:

*

* dx = Ax(t) + Bu(t)

* = [-a1 -a2 ... -an] [x1(t)] + [u(t)]

* [ 1 0 ... 0] [x2(t)] + [0]

* [ 0o 1 ... 0] [x3(t)] + [0]

* [ . . ... .1 . +

* [ .1 . +

* [ . . ... .1 . + .

* [ 0O 0O ... 10] [xn(t)] + [0]

*

* where al, a2, ... are the coefficients of the numerator polynomial:
*

* A(s) = s*n + al s"n-1 + a2 s*n-2 + ... + an-1 s + an

The derivatives for this block are computed by using a controllable

state-space representation of the transfer function.
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*/
dx[0] = -den[1] * x[0] + *uPtrs[0];
for (i = 1; i < nContStates; i++) {
dx[i] = x[i-1];
dx[0] -= den[i+1] * x[i];
}

} /* end mdlDerivatives */

/* Function: mdlTerminate =================================
* Abstract:

* Called when the simulation is terminated.

* For this block, there are no end of simulation tasks.
*/

static void mdlTerminate(SimStruct *S)

{
} /* end mdlTerminate */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif
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Function-Call Subsystems

You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. A subsystem so
configured is called a function-call subsystem. To implement a function-call
subsystem:

* In the Trigger block, select function-call as the Trigger type parameter.

¢ In the S-function, use the ssCallSystemWithTid macro to call the triggered
subsystem.

* In the model, connect the S-Function block output directly to the trigger port.

Note Function-call connections can only be performed on the first output
port.

Function-call subsystems are not executed directly by Simulink; rather, the
S-function determines when to execute the subsystem. When the subsystem
completes execution, control returns to the S-function. This figure illustrates
the interaction between a function-call subsystem and an S-function:

void mdlOutputs(SimStruct *S, int_T tid) T T T T v
{ 1

if (!ssCallSystemWithTid(S,outputElement,tid)) {
return; /* error or output is unconnected */

} .
<next statement> ---------—---- - Fugctlotn-call
- subsystem

}... | !

In this figure, ssCallSystemWithTid executes the function-call subsystem that
is connected to the first output port element. ssCallSystemWithTid returns O
if an error occurs while executing the function-call subsystem or if the output
is unconnected. After the function-call subsystem executes, control is returned
to your S-function.

Function-call subsystems can only be connected to S-functions that have been
properly configured to accept them.
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To configure an S-function to call a function-call subsystem:

1 Specify which elements are to execute the function-call system in
mdlInitializeSampleTimes. For example

ssSetCallSystemOutput(S,0); /* call on 1st element */
ssSetCallSystemOutput(S,2); /* call on 3rd element */

2 Execute the subsystem in the appropriate md10utputs or mdlUpdates
S-function routines. For example:

static void mdlOutputs(...)
{
if (((int)*uPtrs[0]) % 2 == 1) {
if (!ssCallSystemWithTid(S,0,tid)) {
/* Error occurred, which will be reported by Simulink */
return;
}
} else {
if (!ssCallSystemWithTid(S,2,tid)) {
/* Error occurred, which will be reported by Simulink */
return;

}
}

}
See simulink/src/sfun_fcncall.c for an example.

Function-call subsystems are a powerful modeling construct. You can configure
Stateflow® blocks to execute function-call subsystems, thereby extending the
capabilities and integration of state logic (Stateflow) with dataflow (Simulink).
For more information on their use in Stateflow, see the Stateflow
documentation.
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The € MEX S-Function SimStruct

The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access macros.
It encapsulates all the data relating to the model or S-function, including block
parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each
S-function in the model has its own SimStruct associated with it. The
organization of these SimStructs is much like a directory tree. The SimStruct
associated with the model is the root SimStruct. The SimStructs associated
with the S-functions are the child SimStructs.

Note By convention, port indices begin at 0 and finish at the total number of
ports minus 1.

The following tables lists the macros that can be used by S-functions to access
the SimStruct.

Table 3-5: General SimStruct Macros

Macro Description

ssGetModelName (S) For an S-function block, this is the name of the S-function MEX-file
associated with the block (the term model in this context means an
algorithm defined by your S-function). In the root SimStruct, this
will be the name of the Simulink block diagram.

ssGetPath(S) For S-function blocks, this is the full Simulink path to the

S-function block. For the root SimStruct, this is equivalent to the
model name. Within a C MEX S-function, in md1lInitializeSizes,
if

strcmp (ssGetModelName (S),ssGetPath(S))==0

the S-function is being called from MATLAB and is not part of a
simulation.
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Table 3-5: General SimStruct Macros (Continued)

Macro Description

ssGetParentSS(S) This is typically not used in S-functions. It returns the parent
SimStruct or NULL if the S is the root SimStruct.

ssGetRootSS(s) This is typically not used in S-functions. It returns the root
SimStruct of the tree of SimStruct’s.

ssSetPlacementGroup This is an advanced feature typically used for Real-Time Workshop

(S,groupName)

device driver blocks. It is provided for S-functions that are either
sources (i.e., no input ports) or sinks (i.e., no output ports).
S-functions which share the same placement group name string
will be placed adjacent to each other in block execution (i.e., the
sorted list). The placement group should be set in
mdlInitializeSizes.
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Table 3-5: General SimStruct Macros (Continued)

Macro

Description

ssSetOptions
(S,options)

Used inmdlInitializeSizes to set any of the following options.
These options must be joined using the OR operator. For example:

ssSetOption(S, (SS_OPTION EXCEPTION_FREE_CODE |
SS_OPTION DISCRETE_VALUED OUTPUT));

SS_OPTION_EXCEPTION_FREE_CODE — If your S-function does not
use mexErrMsgTxt, mxCalloc, or any other routines that can throw
an exception when called, you can set this option for improved
performance.

SS_OPTION_DISCRETE_VALUED OUTPUT — Specify this if your
S-function has discrete valued outputs. This is checked when your
S-function is placed within an algebraic loop. If your S-function has
discrete valued outputs, then its outputs will not be assigned
algebraic variables.

SS_OPTION_PLACE_ASAP — Used to specify that your S-function
should be placed as soon as possible. This is typically used by
devices connecting to hardware.

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION — Used to specify
that the input to your S-function input ports can be either 1 or the
size specified by the port, which is usually referred to as the block
width.
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Table 3-5: General SimStruct Macros (Continued)

Macro

Description

ssSetOptions
(S,options)

(continued)

SS_OPTION_ASYNCHRONOUS — This option applies only to S-functions
that have 0 or 1 input ports and 1 output port. The output port
must be configured to perform function calls on every element. If
any of these requirements are not met, the
SS_OPTION_ASYNCHRONOUS is ignored. Use this option when driving
function-call subsystems that will be attached to interrupt service
routines.

SS_OPTION_ASYNC_RATE_TRANSITION — Use this when your
S-function converts a signal from one rate to another rate.

SS_OPTION_RATE_TRANSITION — Use this option when your
S-function is behaving as a unit delay or a ZOH. This macro
support these two operations only. It identifies a unit delay by the
presence of md1lUpdate; if md1Update is absent, the operation is
taken to be ZOH.
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Table 3-6: Error Handling and Status SimStruct Macros

Macros Description
ssSetErrorStatus For improved performance and error handling, your S-function
(S,"string") should report errors using:

ssSetErrorStatus(S, "error message");
return;

Be careful when using ssSetErrorStatus in your S-function. Error
string must be persistent memory; it cannot be a local variable.

ssGetSimMode (S) This macro can be used to determine the context in which your
S-function is executing. Current simulation modes are:

® SS_SIMMODE_NORMAL — Running a “normal” Simulink simulation

® SS SIMMODE_SIZES_ CALL_ONLY — Block edit (evaluation) to
obtain number of ports

® SS_SIMMODE_RTWGEN — Generating code
® SS_SIMMODE_EXTERNAL — External mode simulation

ssGetSolverName(S) This returns a char * name of the solver.

ssIsVariableStepSolver Returns 1 if the solver being used is a variable step solver. This is
(S) useful when creating S-functions that have zero crossings and an
inherited sample time.
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Table 3-7: Input and Output Port Signal SimStruct Macros

Macro

Description

ssSetNumInputPorts
(S,nInputPorts)

ssSetInputPortWidth
(S,inputPortIdx,width)

ssSetInputPortDirectFeedThrough
(S,inputPortIdx,dirFeed)

ssSetInputPortSampleTime
(S,inputPortIdx,period)

Used in mdlInitializeSizes to set to the number of
input ports to a nonnegative integer. It should be invoked
using:

if (!ssSetNumInputPorts(S,nInputPorts))
return;

where ssSetNumInputPorts returnsaO if nInputPorts is
negative or an error occurred while creating the ports.
When this occurs, and you return out of your S-function,
Simulink will display an error message.

Used in mdlInitializeSizes (after
ssSetNumInputPorts) to specify a nonzero positive
integer width or DYNAMICALLY_SIZED for each input port
index starting at 0.

Used in mdlInitializeSizes (after
ssSetNumInputPorts) to specify the direct feedthrough (0
or 1) for each input port index. If not specified, the
default direct feedthrough is 0. Setting direct
feedthrough to O for an input port is equivalent to saying
that the corresponding input port signal is not used in
md1lOutputs or md1GetTimeOfNextVarHit. If it is used,
you may or may not see a delay of one simulation step in
the input signal. This may cause the simulation solver to
issue an error due to simulation inconsistencies.

Used in mdlInitializeSizes (after
ssSetNumInputPorts) to specify the sample time period
as continuous or as a discrete value for each input port.
Input port index numbers start at 0 and end at the total
number of input ports minus 1. You should use this
macro only if you have specified port-based sample times.

3-102



The C MEX S-Function SimStruct

Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro

Description

ssSetInputPortOffsetTime
(S,inputPortIdx,offset)

ssSetInputPortOverWritable
(S,inputPortIdx,value)

Used inmdlInitializeSizes (after
ssSetNumInputPorts) to specify the sample time offset
for each input port index. You can use this macro in
conjunction with ssSetInputPortSampleTime if you have
specified port-based sample times for your S-function.

Used inmdlInitializeSizes (after
ssSetNumInputPorts) to specify whether the input port
is overwritable by an output port. The default is value=0,
which means that the input port does not share memory
with an output port. When value=1, the input port
shares memory with an output port.

Note that ssSetInputPortReusable and
ssSetOutputPortReusable must both be set to O,
meaning that neither port involved can have global and
persistent memory.
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Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro Description
ssSetInputPortReusable Used in mdlInitializeSizes (after
(S,inputPortIdx,value) ssSetNumInputPorts) to specify whether the input port

memory buffer can be reused by other signals in the
model. This macro can take on two values:

® Off (value=0) — specifies that the input port is not
reusable. This is the default.

® On (value=1) — specifies that the input port is
reusable.

In Simulink, reusable signals share the same memory
space. When this macro is turned on, the input port
signal to the S-function may be reused by other signals in
the model. This reuse results in less memory use during
Simulink simulation and more efficiency in the
Real-Time Workshop generated code.

You must use caution when using this macro; you can
safely turn it on only if the S-function reads its input port
signal in its md10Outputs routine and does not access this
input port signal until the next call to md10utputs.

When an S-functions’s input port signal is reused, other
signals in the model overwrite it prior to the execution of
mdlUpdate, md1lDerivatives, or other run-time
S-function routines. For example, if the S-function reads
the input port signal in its md1Update routine, or reads
the input port signal in the md10Outputs routine and
expects this value to be persistent until the execution of
its md1Update routine, turning this attribute on is
incorrect and will lead to erroneous results.

The default setting, off, is safe. It prevents any reuse of
the S-function input port signals, which means that the
inport port signals have the same value in any run-time
S-function routine during a single execution of the
simulation loop.
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Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro

Description

ssSetInputPortReusable
(S,inputPortIdx,value)

(continued)

ssSetNumOutputPorts
(S,n0OutputPorts)

ssSetOutputPortWidth
(S,outputPortIdx,width)

ssSetOutputPortSampleTime
(S,outputPortIdx,period)

ssSetOutputPortOffsetTime
(S,outputPortIdx,offset)

Note that this is a suggestion and not a requirement for
the Simulink engine. If Simulink cannot resolve buffer
reuse in local memory, it resets value=0 and places the
input port signals into global memory.

Used inmdlInitializeSizes to set to the number of
output ports to a nonnegative integer. It should be
invoked using:

if (!ssSetNumOutputPorts(S,nOutputPorts))
return;

where ssSetNumOutputPorts returns a0 if nOutputPorts
is negative or an error occurred while creating the ports.
When this occurs, and you return out of your S-function,
Simulink will display an error message.

Used inmdlInitializeSizes (after
ssSetNumOutputPorts) to specify a nonzero positive
integer width or DYNAMICALLY_ SIZED for each output port
index starting at 0.

Used inmdlInitializeSizes (after
ssSetNumOutputPorts) to specify the sample time period
as continuous or as a discrete value for each output port
index. This should only be used if you have specified
port-based sample times.

Used inmdlInitializeSizes (after
ssSetNumOutputPorts) to specify the sample time offset
value for each output port index. This should only be
used if you have specified the S-function’s sample times
as port-based.
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Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro

Description

ssSetOutputPortReusable
(S,outputPortIdx,value)

ssGetNumInputPorts(S)
ssGetInputPortWidth
(S,inputPortIdx)

ssGetInputPortDirectFeedThrough
(S,inputPortIdx)

Used inmdlInitializeSizes (after
ssSetNumOutputPorts) to specify whether output ports
have a test point. This macro can take on two values:

® Off (value=0) — specifies that the output port is not
reusable. This is the default.

® On (value=1) — specifies that the output port is
reusable.

In Simulink, reusable signals share the same memory
space. When this macro is turned on, the output port
signal to the S-function may be reused by other signals in
the model. This reuse results in less memory use during
Simulink simulation and more efficiency in the
Real-Time Workshop generated code.

When you mark an output port as reusable, your
S-function must update the output once in md10utputs.
It cannot expect the previous output value to be
persistent.

By default, the output port signals are not reusable. This
forces Simulink’s simulation engine (and the Real-Time
Workshop) to allocate global memory for these output
port signals. Hence this memory is only written to by
your S-function and persists between model execution
steps.

Can be used in any routine (except md1InitializeSizes)
to determine how many input ports you have set.

Can be used in any routine (exceptmdlInitializeSizes)
to determine the width of an input port.

Can be used in any routine (except
mdlInitializeSizes)to determine if an input port has
direct feedthrough.
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Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro

Description

ssGetInputPortRealSignalPtrs
(S,inputPortIdx)

ssGetInputPortSampleTime
(S,inputPortIdx)

ssGetInputPortOffsetTime
(S,inputPortIdx)

Can be used in any simulation loop (see p. 3-16)
S-function routine to access an input port signal. The
input port index starts at 0 and ends at the number of
input ports minus 1. This macro returns a pointer to an
array of pointers to the real_T input signal elements.
The length of the array of pointers is equal to the width
of the input port. For example, to read all input port
signals, use:

int T i,j;
int_T nInputPorts = ssGetNumInputPorts(S);
for (i = 0; i < nInputPorts; i++) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignal(S,1i);
int_T nu = ssGetInputPortWidth(S,i);
for (j =05 j < nu; j++) {
SomeFunctionToUseInputSignalElement (*uPtrs
[il);
}
}

Can be used in any routine (except mdlInitializeSizes)
to determine the sample time of an input port. This
should only be used if you have specified the sample
times as port-based.

Can be used in any routine (except mdlInitializeSizes)
to determine the offset time of an input port. This should
only be used if you have specified the sample times as
port-based.
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Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro

Description

ssGetInputPortBufferDstPort
(S,inputPortIdx)

ssGetNumOutputPorts(S)

ssGetOutputPortWidth
(S,outputPortIdx)

ssGetOutputPortSampleTime
(S,outputPortIdx)

Can be used in any run-time (see p. 3-14) S-function
routine to determine the index number of an output port
when the specified input port has been overwritten by
the output port. This can be used when you have
specified the following:

® The input port and some output port on an S-Function
are not test points (ssSetInputPortTestPoint and
ssSetOutputPortTestPoint)

® The input port is over writable
(ssSetInputPortOverWritable)

If you have this set of conditions, then one of your
S-functions’s output ports (provided its test point has
been turned off) may reuse the same buffer as the input
port. If this happens, then after model initialization, the
following macro returns the index of the output port that
reuses the specified input port’s buffer. If none of the
S-Function’s output ports reuse this input port buffer,
then this macro returns INVALID_PORT_IDX (= -1).

Can be used in any routine (except mdlInitializeSizes)
to determine how many output ports you have set.

Can be used in any routine (except
mdlInitializeSizes)to determine the width of an
output port where the output port index starts at 0 and
must be less than the number of output ports.

Can be used in any routine (except mdlInitializeSizes)
to determine the sample time of an output port. This
should only be used if you have specified port-based
sample times.
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Table 3-7: Input and Output Port Signal SimStruct Macros (Continued)

Macro

Description

ssGetOutputPortOffsetTime
(S,outputPortIdx)

ssGetOutputPortRealSignal
(S,outputPortIdx)

Can be used in any routine (except mdlInitializeSizes)
to determine the offset time of an output port. This
should only be used if you have specified port-based
sample times.

Can be used in any simulation loop routine,
mdlInitializeConditions, or mdlStart to access an
output port signal where the output port index starts at
0 and must be less than the number of output ports. This
returns a contiguous real T vector of length equal to the
width of the output port. For example, to write to all
output ports, you would use:

int T i,j;
int_T nOutputPorts = ssGetNumOutputPorts(S);
for (i = 0; i < nOutputPorts; i++) {
real T *y ssGetOutputPortRealSignal(S,1i);
int. T ny ssGetOutputPortWidth(S,1);
for (3 = 0; j < ny; j++) {
y[j] = SomeFunctionToFillInOutput();

}
}
Table 3-8: Parameter SimStruct Macros
Macros Description
ssSetNumSFcnParams Used inmdlInitializeSizes to set the number of S-function

(S,nSFcnParams)

ssGetSFcnParamsCount
(S)

parameters.

Used inmdlInitializeSizes to get the number of parameters
entered by in the S-function block dialog box.
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Table 3-8: Parameter SimStruct Macros (Continued)

Macros

Description

ssGetSFcnParam(S,index)

ssSetSFcnParamNotTunable
(S,index)

Used in any routine to access a parameter entered by in the
S-function block dialog box where index starts at 0 and is less
than ssGetSFcnParamsCount(S).

Used inmdlInitializeSizes to specify that a parameter doesn't
change during the simulation, where index starts at 0 and is less
than ssGetSFcnParamsCount (S). This will improve efficiency and
provide error handling in the event that an attempt is made to
change the parameter.

Table 3-9: Sample Time SimStruct Macros

Macro

Description

ssSetNumSampleTimes
(S,nSampleTimes)

ssGetNumSampleTimes (S)

ssSetSampleTime
(S,st_index, value)

ssSetOffsetTime
(S,st_index,value)

UsedinmdlInitializeSizes to set the number of sample times
your S-function has. This must be a positive integer greater
than 0.

Can be used in any routine (except mdlIntializeSizes) to get
the number of sample times your S-function has.

Used in mdlInitializeSizes to specify the “period” of the
sample time where st_index starts at O.

Used inmdlInitializeSizes to specify the “offset” of the
sample time where st_index starts at O.
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Table 3-9: Sample Time SimStruct Macros (Continued)

Macro Description

ssIsSampleHit(S,st_index, Used in md10utputs or md1lUpdate when your S-function has

tid) multiple sample times to determine what task your S-function
is executing in. This should not be used in single rate
S-functions or for the st_index corresponding to a continuous
task.

ssIsContinuousTask(S,tid) Used in md10Outputs or mdlUpdate when your S-function has
multiple sample times to determine if your S-function is
executing in the continuous task. This should not be used in
single rate S-functions, or if you did not register a continuous
sample time.
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Table 3-10: State and Work Vector SimStruct Macros

Macro

Description

ssSetNumContStates
(S,nContStates)

ssSetNumDiscStates
(S,nDiscStates)

ssSetNumRWork (S,nRWork)

ssSetNumIWork (S,nIWork)

Used inmdlInitializeSizes to specify the number of
continuous states as 0, a positive integer, or

DYNAMICALLY SIZED. If you specify DYNAMICALLY SIZED, then
you can optionally specify the true (positive integer) width in
md1SetWorkWidths, otherwise the width to be used will be the
width of the signal passing through the block. If your S-function
has continuous states, then it needs to return the derivatives of
the states in md1lDerivatives so that the solvers can integrate
them. Continuous states will be logged when you have clicked
the States checkbox on the Workspace 1/0 page of the
Simulation Parameters dialog box.

Used in mdlInitializeSizes to specify the number of discrete
states as 0, a positive integer, or DYNAMICALLY_SIZED. If you
specify DYNAMICALLY_SIZED, then you can optionally specify the
true (positive integer) width in md1SetWorkWidths, otherwise
the width to be used will be the width of the signal passing
through the block. If your S-function has discrete states, then it
should return the next discrete state (in place) in md1lUpdate.
Discrete states will be logged when you have clicked the States
checkbox on the Workspace 1/0 page of the Simulation
Parameters dialog box.

Used inmdlInitializeSizes to specify the number of real T
work vector elements as 0, a positive integer, or

DYNAMICALLY SIZED. If you specify DYNAMICALLY SIZED, then

you can optionally specify the true (positive integer) width in

md1SetWorkWidths, otherwise the width to be used will be the
width of the signal passing through the block.

Used in mdlInitializeSizes to specify the number of int T
work vector elements as 0, a positive integer, or
DYNAMICALLY_ SIZED. If you specify DYNAMICALLY SIZED, then
you can optionally specify the true (positive integer) width in
md1SetWorkWidths; otherwise the width to be used will be the
width of the signal passing through the block.
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Table 3-10: State and Work Vector SimStruct Macros (Continued)

Macro

Description

ssSetNumPWork (S,nPWork)

ssSetNumNonsampledZCs
(S,nNonsampledZCs)

ssSetNumModes (S, nModes)

ssGetNumContStates(S)

ssGetContStates(S)

ssGetdX(S)

Used in mdlInitializeSizes to specify the number of pointer
(void *) work vector elements as 0, a positive integer, or
DYNAMICALLY SIZED. If you specify DYNAMICALLY SIZED, then
you can optionally specify the true (positive integer) width in
md1SetWorkWidths, otherwise the width to be used will be the
width of the signal passing through the block.

Used in mdlInitializeSizes to specify the number of
nonsampled zero crossings (real T) as 0, a positive integer, or
DYNAMICALLY_ SIZED. If you specify DYNAMICALLY_ SIZED, then
you can optionally specify the true (positive integer) width in
md1SetWorkWidths, otherwise the width to be used will be the
width of the signal passing through the block.

Used in mdlInitializeSizes to specify the number of modes
(int_T's which are typically used with nonsampled zero
crossings) as 0, a positive integer, or DYNAMICALLY_SIZED. If you
specify DYNAMICALLY_SIZED, then you can optionally specify the
true (positive integer) width in md1SetWorkWidths, otherwise
the width to be used will be the width of the signal passing
through the block.

Can be used in any routine (except mdlInitializeSizes)to
determine the number of continuous states your S-function is
using.

Can be used in the simulation loop, mdlInitializeConditions,
or md1Start routines to get the real_T continuous state vector.
This vector has length ssGetNumContStates(S). Typically, this
vector is initialized in md1InitializeConditions and used in
mdlOutputs.

This is used in md1Derivatives to return the derivatives for
your continuous states. This vector has length
ssGetNumContStates(S).
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Table 3-10: State and Work Vector SimStruct Macros (Continued)

Macro Description

ssGetNumDiscStates(S) Can be used in any routine (except md1InitializeSizes)to
determine the number of discrete states your S-function is
using.

ssGetRealDiscStates(S) Can be used in the simulation loop, md1InitializeConditions,

or md1Start routines to get the real_T discrete state vector.
This vector has length ssGetNumDiscStates(S). Typically, this
vector is initialized in md1InitializeConditions, updated in
md1lUpdate, and used in md10utputs.

ssGetNumRWork (S) Can be used in any routine (except md1InitializeSizes)to
determine the number of real work vector elements your
S-function is using.

ssGetRWork (S) Can be used in the simulation loop, md1InitializeConditions,
or md1Start routines to get the real T work vector. This vector
has length ssGetNumRWork (S). Typically, this vector is
initialized in md1Start or mdlInitializeConditions, updated
in md1lUpdate, and used in md1Outputs.

ssGetNumIWork(S) Can be used in any routine (except md1InitializeSizes)to
determine the number of integer work vector elements your
S-function is using.

ssGetIWork(S) Can be used in the simulation loop, md1InitializeConditions,
or md1Start routines to get the int_T work vector. This vector
has length ssGetNumIWork (S). Typically, this vector is
initialized in md1Start or mdlInitializeConditions, updated
in md1lUpdate, and used in md10utputs.

ssGetNumPWork(S) Can be used in any routine (except md1InitializeSizes)to
determine the number of pointer work vector elements your
S-function is using.
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Table 3-10: State and Work Vector SimStruct Macros (Continued)

Macro

Description

ssGetPWork(S)

ssGetNumNonsampledZCs(S)

ssGetNonsampledZCs(S)

ssGetNumModes (S)

ssGetModeVector(S)

Can be used in the simulation loop, md1InitializeConditions,
or md1Start routines to get the pointer (void *) work vector.
This vector has length ssGetNumPWork (S). Typically, this vector
and its pointer contents are initialized in md1Start or
mdlInitializeConditions. Its contents are updated in
md1lUpdate, and used in md1Outputs.

Can be used in any routine (except mdlInitializeSizes)to
determine the number of nonsampled zero crossing vector
elements your S-function is using.

This is used in md1ZeroCrossings to return the zero crossing
signal values. The variable step solvers track the signals to
locate where it crosses zero. The simulation time steps taken
include these points. This vector has length
ssGetNumNonsampledZCs(S).

Can be used in any routine (except mdlInitializeSizes)to
determine the number of mode vector elements your S-function
is using.

Can be used in the simulation loop, mdlInitializeConditions,
or md1Start routines to get the mode (int_T) work vector. This
vector has length ssGetNumModes (S). Typically, this vector is
initialized in md1InitializeConditions if the default value of
zero isn't acceptable. It is then used in md1Outputs in
conjunction with nonsampled zero crossings to determine when
the output function should change mode. For example consider
an absolute value function. When the input is negative, negate
it to create a positive value, otherwise take no action. This
function has two modes. The output function should be
designed not to change modes during minor time steps. The
mode vector may also be used in the md1ZeroCrossings routine
to determine the current mode.
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Table 3-11: Simulation Information SimStruct Macros

Macro

Description

ssGetT(S)

ssGetTaskTime(S,st_index)

ssGetTStart (S)
ssGetTFinal(S)

ssIsMinorTimeStep(S)

ssIsMajorTimeStep(S)

ssSetStopRequested(S,val)

ssSetSolverNeedsReset(S)

Used in md10utputs and md1lUpdate to get the “base” simulation
time. If your S-function doesn’t have a single rate continuous
sample time, then this time may not be the “correct task time”
and your S-function will run deterministically in a multitasking
environment.

Used in md1Outputs or mdlUpdate to get the task time
corresponding to a sample time index.

Simulation start time.
Simulation stop time.

Used in md1Outputs to determine if the routine is being called
in a minor time step.

Used in md1Outputs to determine if the routine is being called
in a major time step.

Can be called in any simulation loop routine to specify that the
simulation should stop at the end of the current time step.

Used to inform the solvers that the equations which are being
integrated have changed. This macro differs slightly in format
from the other macros in that you don't specify a value; this
was by design so that invoking it always requests a reset.
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Table 3-12: Function-Call SimStruct Macros

Macro

Description

ssSetCallSystemOutput
(S,1index)

ssCallSystemWithTid
(S,index,tid)

Used in mdlInitializeSampleTimes to specify that the a the
specified output port element index is issuing a function call by
using ssCallSystemWithTid(S,index, tid). The index
specified starts at 0 and must be less than
ssGetOutputPortWidth(S,0).

Used in md10Outputs to execute a function-call subsystem
connected to the S-function. The invoking syntax is:

if (!ssCallSystemWithTid(S,index, tid)) {
/* Error occurred which will be reported by
Simulink */
return;

}
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Converting Level 1 C MEX S-Functions to Level 2

Level 2 S-functions were introduced with Simulink 2.2. Level 1 S-functions
refer to S-functions that were written to work with Simulink 2.1 and previous
releases. Level 1 S-functions are compatible with Simulink 2.2; you can use
them in new models without making any code changes. However, to take
advantage of new features in S-functions, level 1 S-functions must be updated
to level 2 S-functions. Here are some guidelines:

e Start by looking at simulink/src/sfunctmpl.doc. This template S-function
file concisely summarizes level 2 S-functions.
® At the top of your S-function file, add this define:
#define S_FUNCTION_LEVEL 2

® Update the contents of md1IntializeSizes, in particular add the following
error handling for the number of S-function parameters:
ssSetNumSFcnParams (S, NPARAMS); /*Number of expected parameters*/
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}

Set up the inputs using:
if (!ssSetNumInputPorts(S, 1)) return; /*Number of input ports */

ssSetInputPortWidth(S, 0, width); /* Width of input
port one (index 0)*/

ssSetInputPortDirectFeedThrough(S, 0, 1); /* Direct feedthrough
or port one */
Set up the outputs using:

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, width); /* Width of output port
one (index 0) */
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¢ |f your S-function has a nonempty md1InitializeConditions, then update
it to the following form

#define MDL_INITIALIZE_CONDITIONS

static void mdlInitializeConditions(SimStruct *S)
{

}

otherwise, delete the function.

= The continuous states are accessed using ssGetContStates. The ssGetX
macro has been removed.

= The discrete states are accessed using ssGetRealDiscStates(S). The
ssGetX macro has been removed.

= For mixed continuous and discrete state S-functions, the state vector no
longer consists of the continuous states followed by the discrete states. The
states are saved in separate vectors and hence may not be contiguous in
memory.

® The md10utputs prototype has changed from
static void mdlOutputs( real_T *y, const real T *x,
const real T *u, SimStruct *S, int_ T tid)
to:
static void mdlOutputs(SimStruct *S, int_T tid)
Since y, x, and u are not explicitly passed into Level-2 S-functions, you must
use:
= ssGetInputPortRealSignalPtrs to access inputs.
= ssGetOutputPortSignal to access the outputs.
= ssGetContStates or ssGetRealDiscStates to access the states.
* The md1lUpdate function prototype has been changed from
void mdlUpdate(real T *x, real_T *u, Simstruct *S, int_T tid)

to:
void mdlUpdate(SimStruct *S, int_T tid)
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¢ If your S-function has a nonempty md1lUpdate, then update it to this form:
#define MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid)

{
}

otherwise, delete the function.
® If your S-function has a nonempty md1Derivatives, then update it to this
form:

#define MDL_DERIVATIVES
static void mdlDerivatives(SimStruct *S, int_T tid)

{
}
otherwise, delete the function.

® Replace all obsolete SimStruct macros. See Table 3-13 for a complete list of
obsolete macros.

® When converting level 1 S-functions to level 2 S-functions, you should build
your S-functions with full (i.e., highest) warning levels. For example, if you
have gcc on a UNIX system, use these options with the mex utility:

mex CC=gcc CFLAGS=-Wall sfcn.c
If your system has Lint, use this code:

lint -DMATLAB_MEX_FILE -I<matlabroot>/simulink/include
-I<matlabroot>/extern/include sfcn.c

On a PC, to use the highest warning levels, you must create a project file
inside of the integrated development environment (IDE) for the compiler you
are using. Within the project file, define MATLAB_MEX_FILE and add

<matlabroot>/simulink/include
<matlabroot>/extern/include

to the path (be sure to build with alignment set to 8).

The following macros are obsolete. Each obsolete macro should be replaced
with the specified macro.
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Table 3-13: Obsolete SimStruct Macros

Obsolete Macro

Replace With

ssGetU(S), ssGetUPtrs(S)
ssGetY(S)
ssGetX(S)

ssGetStatus(S)

ssSetStatus(S,msg)
ssGetSizes(S)

ssGetMinStepSize(S)
ssGetPresentTimeEvent(S,sti)
ssGetSampleTimeEvent (S,sti)
ssSetSampleTimeEvent (S,t)
ssGetOffsetTimeEvent (S,sti)
ssSetOffsetTimeEvent (S,sti,t)
ssIsSampleHitEvent(S,sti,tid)
ssGetNumInputArgs(S)
ssSetNumInputArgs (S, numInputArgs)
ssGetNumArgs(S)
ssGetArg(S,argNum)

ssGetNumInputs

ssSetNumInputs

ssGetInputPortSignalPtrs(S,port)
ssGetOutputPortRealSignal(S,port)
ssGetContStates(S), ssGetRealDiscStates(S)

Normally not used, but ssGetErrorStatus(S) is
available.

ssSetErrorStatus(S,msg)

Specific call the desired item (i.e.,
ssGetNumContStates(S)).

No longer supported.
ssGetTaskTime (S,sti)
ssGetSampleTime(S,sti)
ssGetSampleTime(S,sti,t)
ssGetOffsetTime (S,sti)
ssSetOffsetTime(S,sti,t)
ssIsSampleHit (S,sti,tid)
ssGetNumSFcnParams (S)
ssSetNumSFcnParams (S, numInputArgs)
ssGetSFcnParamsCount (S)
ssGetSFcnParam(S,argNum)

ssGetNumInputPorts(S) and
ssGetInputPortWidth(S,port)

ssSetNumInputPorts(S,nInputPorts) and
ssSetInputPortWidth(S,port,val)
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Table 3-13: Obsolete SimStruct Macros (Continued)

Obsolete Macro

Replace With

ssGetNumOutputs

ssSetNumOutputs

ssGetNumOutputPorts(S) and
ssGetOutputPortWidth(S,port)

ssSetNumOutputPorts(S,nOutputPorts) and
ssSetOutputPortWidth(S,port,val)
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Introduction

This chapter describes how to create S-functions that work seamlessly with
both Simulink and the Real-Time Workshop. It begins with basic concepts and
concludes with an example of how to create a highly optimized direct-index
lookup table S-function block.

This chapter assumes that you understand these concepts:

® | evel 2 S-functions
® Target Language Compiler (TLC)
® The basics of how the Real-Time Workshop creates generated code

See The Target Language Compiler Reference Guide, and The Real-Time
Workshop User’s Guide for more information about these subjects.

A note on terminology: when this chapter refers actions performed by the
Target Language Compiler, including parsing, caching, creating buffers, etc.,
the name Target Language Compiler is spelled out fully. When referring to
code written in the Target Language Compiler syntax, this chapter uses the
abbreviation TLC.

Note The guidelines presented in this chapter are for Real-Time Workshop
users. Even if you do not currently use the Real-Time Workshop, we
recommend that you follow the guidelines presented in this chapter when
writing S-functions, especially if you are creating general-purpose S-functions.

Classes of Problems Solved by S-Functions

S-functions help solve various kinds of problems you may face when working
with Simulink and the Real-Time Workshop (RTW). These problems include:
¢ Extending the set of algorithms (blocks) provided by Simulink and RTW

¢ Interfacing legacy (hand-written) C-code with Simulink and RTW

® Generating highly optimized C-code for embedded systems

S-functions and S-function routines form an application program interface
(API) that allows you to implement generic algorithms in the Simulink
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environment with a great deal of flexibility. This flexibility cannot always be
maintained when you use S-functions with the Real-Time Workshop. For
example, it is not possible to access the MATLAB workspace from an S-function
that is used with the Real-Time Workshop. However, using the techniques
presented in this chapter, you can create S-functions for most applications that
work with the generated code from the Real-Time Workshop.

Although S-functions provide a generic and flexible solution for implementing
complex algorithms in Simulink, they require significant memory and
computation resources. Most often the additional resources are acceptable for
real-time rapid prototyping systems. In many cases, though, additional
resources are unavailable in real-time embedded applications. You can
minimize memory and computational requirements by using the Target
Language Compiler technology provided with the Real-Time Workshop to
inline your S-functions.

Types of S-Functions

The implementation of S-functions changes based on your requirements. This
chapter discusses the typical problems that you may face and how to create
S-functions for applications that need to work with Simulink and the

Real-Time Workshop. These are some (informally defined) common situations:

1 “I'm not concerned with efficiency. | just want to write one version of my
algorithm and have it work in Simulink and the Real-Time Workshop
automatically.”

2 “l have a lot of hand-written code that | need to interface. | want to call my

function from Simulink and the Real-Time Workshop in an efficient manner.

or said another way:

“l want to create a block for my blockset that will be distributed throughout
my organization. I'd like it to be very maintainable with efficient code. I'd
like my algorithm to exist in one place but work with both Simulink and the
Real-Time Workshop.”

3 “l want to implement a highly optimized algorithm in Simulink and the
Real-Time Workshop that looks like a built-in block and generates very
efficient code.”
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The MathWorks has adopted terminology for these different requirements.
Respectively, the situations described above map to this terminology:

1 Noninlined S-function
2 Wrapper S-function

3 Fully inlined S-function

Noninlined S-Functions

A noninlined S-function is a C-MEX S-function that is treated identically by
Simulink and the Real-Time Workshop. In general, you implement your
algorithm once according to the S-function API. Simulink and the Real-Time
Workshop call the S-function routines (e.g., nd10utputs) at the appropriate
points during model execution.

Significant memory and computation resources are required for each instance
of a noninlined S-function block. However, this routine of incorporating
algorithms into Simulink and the Real-Time Workshop is typical during the
prototyping phase of a project where efficiency is not important. The advantage
gained by foregoing efficiency is the ability to change model parameters and/or
structures rapidly.

Note that writing a noninlined S-function does not involve any TLC coding.
Noninlined S-functions are the default case for the Real-Time Workshop in the
sense that once you've built a C-MEX S-function in your model, there is no
additional preparation prior to clicking Build in the RTW Page of the
Simulation Parameters dialog box for your model.

Wrapper S-Functions

A wrapper S-function is ideal for interfacing hand-written code or a large
algorithm that is encapsulated within a few procedures. In this situation,
usually the procedures reside in modules that are separate from the C-MEX
S-function. The S-function module typically contains a few calls to your
procedures. Since the S-function module does not contain any parts of your
algorithm, but only calls your code, it is referred to as a wrapper S-function.

In addition to the C-MEX S-function wrapper, you need to create a TLC
wrapper that complements your S-function. The TLC wrapper is similar to the
S-function wrapper in that it contains calls to your algorithm.
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Fully Inlined S-Functions

A fully inlined S-function builds your algorithm (block) into Simulink and the
Real-Time Workshop in a manner that is indistinguishable from a built-in
block. Typically, a fully inlined S-function requires you to implement your
algorithm twice: once for Simulink (C-MEX S-function) and once for the
Real-Time Workshop (TLC file). The complexity of the TLC file depends on the
complexity of your algorithm and the level of efficiency you're trying to achieve
in the generated code. TLC files vary from simple to complex in structure.

Basic Files Required for Implementation

This section briefly describes what files and functions you'll need to create
noninlined, wrapper, and fully inlined S-functions.

* Noninlined S-functions require the C-MEX S-function source code
(sfunction.c).

* Wrapper S-functions that inline a call to your algorithm (your C function)
require an sfunction.tlc file.

¢ Fully inlined S-functions require an sfunction.tlc file. Fully inlined
S-functions produce the optimal code for a parameterized S-function. This is
an S-function that operates in a specific mode dependent upon fixed
S-function parameter(s) that do not change during model execution. For a
given operating mode, the sfunction.tlc specifies the exact code that will
be generated to implement the algorithm for that mode. For example, the
direct-index lookup table S-function at the end of this chapter contains two
operating modes — one for evenly spaced x-data and one for unevenly
spaced x-data.

= Fully inlined S-functions using the md1RTW S-function routine require the
placement of the md1RTW routine in your S-function MEX-file,
sfunction.c. The md1RTW routine lets you place information in model. rtw,
which is the file that is processed by the Target Language Compiler prior
to executing sfunction.tlc when generating code. This is useful in two
situations: when you want to rename tunable parameters in your
generated code, and when you want to introduce nontunable parameters
into your TLC file.

For S-functions to work correctly in the Simulink environment, a certain
amount of overhead code is necessary. When the Real-Time Workshop
generates code from models that contain S-functions (without sfunction.tlc
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files), it embeds some of this overhead code in the generated C code. If you want
to optimize your real-time code and eliminate some of the overhead code, you
must inline (or embed) your S-functions. This involves writing a TLC
(sfunction.tlc) file that directs the Real-Time Workshop to eliminate all
overhead code from the generated code. The Target Language Compiler, which
is part of the Real-Time Workshop, processes sfunction.tlc files to define
how to inline your S-function algorithm in the generated code.

Note The term inline should not be confused with the C++ inline keyword. In
MathWorks terminology, inline means to specify a textual string in place of
the call to the general S-function API routines (e.g., md10utputs). For example,
when we say that a TLC file is used to inline an S-function, we mean that the
generated code contains the appropriate C code that would normally appear
within the S-function routines and the S-function itself has been removed
from the build process.




Noninlined S-Functions

Noninlined S-Functions

Noninlined S-functions are identified by the absence of an sfunction.tlc file
for your S-function (sfunction.mex). When placing a noninlined S-function in
a model that is to be used with the Real-Time Workshop, the following
MATLAB API functions are supported:

mxGetEps
mxGetInf
mxGetM
mxGetN
mxGetNaN

mxGetPr — Note: using mxGetPr on an empty matrix does not return NULL;
rather, it returns a random value. Therefore, you should protect calls to
mxGetPr with mxIsEmpty.

mxGetScalar
mxGetString
mxIsSEmpty
mxIsFinite
mxIsInf

In addition, parameters to S-functions can only be of type double precision or
characters contained in scalars, vectors, or 2-D matrices. To obtain more
flexibility in the type of parameters you can supply to S-functions or the
operations in the S-function, you need to inline your S-function and (possibly)
use a md1RTW S-function routine.
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Writing Wrapper S-Functions

This section describes how to create S-functions that work seamlessly with
Simulink and the Real-time Workshop using the wrapper concept. This section
begins by describing how to interface your algorithms in Simulink by writing
MEX S-function wrappers (sfunction.mex). It finishes with a description of
how to direct the Real-Time Workshop to insert your algorithm into the
generated code by creating a TLC S-function wrapper (sfunction.tlc).

The MEX S-Function Wrapper

Creating S-functions using an S-function wrapper allows you to insert your C
code algorithms in Simulink and the Real-Time Workshop with little or no
change to your original C code function. A MEX S-function wrapper is an
S-function that calls code that resides in another module. In effect, the wrapper
binds your code to Simulink. A TLC S-function wrapper is a TLC file that
specifies how the Real-Time Workshop should call your code (the same code
that was called from the C-MEX S-function wrapper).

Suppose you have an algorithm (i.e., a C function), called my_alg that resides
in the file my_alg.c. You can integrate my_alg into Simulink by creating a
MEX S-function wrapper (e.g., wrapsfcn.c). Once this is done, Simulink will
be able to call my_alg from an S-function block. However, the Simulink
S-function contains a set of empty functions that Simulink requires for various
APIl-related purposes. For example, although only md10utputs calls my_alg,
Simulink calls md1Terminate as well, even though this S-function routine
performs no action.

You can integrate my_alg into the Real-Time Workshop generated code (i.e.,
embed the call to my_alg in the generated code) by creating a TLC S-function
wrapper (e.g., wrapsfcn.tlc). The advantage of creating a TLC S-function
wrapper is that the empty function calls can be eliminated and the overhead of
executing the md10utputs function and then the my_alg function can be
eliminated.
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Wrapper S-functions are useful when creating new algorithms that are

procedural in nature or when integrating legacy code into Simulink. However,
if you want to create code that is

¢ interpretive in nature in Simulink (i.e., highly-parameterized by operating
modes)

¢ heavily optimized in the Real-Time Workshop (i.e., no extra tests to decide
what mode the code is operating in)

then you must create a fully inlined TLC file for your S-function.
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This figure illustrates the wrapper S-function concept:

Real-Time Workshop

Simulink
Place the name of your S-function in wrapper.c, the generated
the S-function block’s dialog box. code, calls Md1Outputs,

wrapper.mdl which then calls my_alg.

wrapper.c

O— wrapsfcn —O

*see note below| MdlOutputs(...)

S-function : {
. my_alg();
In Simulink, the S-function : }
calls md10utputs, which
in turn calls my_alg. v
wrapsfcn.c In the TLC wrapper
s version of the
mdlOutputs(...) S-function, Md10utputs
—» { in wrapper.exe calls
my alg.
my_alg(); =49
}
md1lOutputs in my_alg.c
wrapsfcn.mex .
calls external real T my_alg(real T u)
function my_alg. {
y=f(u);
}

*The dotted line above would be the path taken if the S-function did not
have a TLC wrapper file. If there is no TLC wrapper file, the generated code

calls md10utputs.

Figure 4-1: How S-Functions Interface with Hand-Written Code
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Declare my_alg as
extern.

Using an S-function wrapper to import algorithms in your Simulink model
means that the S-function serves as an interface that calls your C code
algorithms frommd10utputs. S-function wrappers have the advantage that you
can quickly integrate large stand-alone C code into your model without having
to make changes to the code.

This is an example of a model that includes an S-function wrapper.

wrapper [_[Ofx]

File Edit “iew Simulation Format Tools

model: wrapper 4@

Scope
wrapsfcn (1

Sin S-Function Out

Figure 4-1: An Example Model That Includes an S-Function Wrapper

There are two files associated with wrapsfcn block, the S-function wrapper and
the C code that contains the algorithm. This is the S-function wrapper code for
this example, called wrapsfcn.c:

#define S_FUNCTION_NAME wrapsfcn

#define S_FUNCTION_LEVEL 2
#include “simstruc.h”

{ extern real T my_alg(real T u);

/*

* mdlInitializeSizes - initialize the sizes array
*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams( S, 0); /*number of input arguments*/
if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(s, 0, 1);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes( S, 1);
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Place the call to
my_algin
md1lOutputs.

/*

* mdlInitializeSampleTimes - indicate that this S-function runs

*at the rate of the source (driving block)

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

/*
* mdlOutputs - compute the outputs by calling my_alg, which
*resides in another module, my_alg.c

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y = ssGetOutputPortRealSignal(S,0);
*y = my_alg(*uPtrs[0]);

}

/*

* mdlTerminate - called when the simulation is terminated.

*/

static void mdlTerminate(SimStruct *S)

{

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include “simulink.c” /* MEX-file interface mechanism */

#else

#include “cg_sfun.h” /* Code generation registration function */

#endif

The S-function routine md10utputs contains a function call tomy_alg, which is
the C function that contains the algorithm that the S-function performs. This
is the code for my_alg.c:

#include "tmwtypes.h"
real T my_alg(real_T u)
{

return(u * 2.0);

}

The wrapper S-function (wrapsfcn) calls my_alg, which computesu * 2.0. To
build wrapsfcn.mex, use the following command:

mex wrapsfcn.c my_alg.c
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The TLC S-Function Wrapper

This section describes how to inline the call to my_alg in the Md1Outputs
section of the generated code. In the above example, the call tomy_alg is
embedded in the md10utputs section as:

*y = my_alg(*uPtrs[0]);

When creating a TLC S-function wrapper, the goal is to have the Real-Time
Workshop embed the same type of call in the generated code.

It is instructive to look at how the Real-Time Workshop executes S-functions
that are not inlined. A noninlined S-function is identified by the absence of the
file sfunction.tlc and the existence of sfunction.mex. When generating code
for a noninlined S-function, the Real-Time Workshop generates a call to
md1lOutputs through a function pointer that, in this example, then callsmy_alg.

The wrapper example contains one S-function (wrapsfcn.mex). You must
compile and link an additional module, my_alg, with the generated code. To do
this, specify

set_param( 'wrapper/S-Function', 'SFunctionModules', 'my_alg').

The code generated when using grt.tlc as the system target file without
wrapsfcn.tlc is:

<Generated code comments for wrapper model with noninlined wrapsfcn S-function>

#include <math.h>
#include <string.h>
#include “wrapper.h”
#include “wrapper.prm”

/* Start the model */
void MdlStart(void)
{
/* (no start code required) */

}

/* Compute block outputs */
void MdlOutputs(int_T tid)
{
/* Sin Block: <Root>/Sin */
rtB.Sin = rtP.Sin.Amplitude *
sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);
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Noninlined S-functions /* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */

. {
create a SimStruct simStruct *rts = ssGetSFunction(rtS, 0);
object and generate a sfcnOutputs(rts, tid);
call to the S-function }

routine md1Outputs.
/* Outport Block: <Root>/Out */

rtY.Out = rtB.S_Function;
}

/* Perform model update */
void MdlUpdate(int_T tid)
{
/* (no update code required) */

}

/* Terminate function */
void MdlTerminate(void)

{
Noninlined S-functions /* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */
. . {
requ'reaS]'mStPUCt SimStruct *rts = ssGetSFunction(rtS, 0);
object and the call to the sfcnTerminate (rts);
S-function routine }
mdlTerminate. }

#include “wrapper.reg”
/* [EOF] wrapper.c */

In addition to the overhead outlined above, the wrapper.reg generated file
contains the initialization of the SimStruct for the wrapper S-function block.
There is one child SimStruct for each S-function block in your model. This
overhead can be significantly reduced by creating a TLC wrapper for the
S-function.

How to Inline

The generated code makes the call to your S-function, wrapsfcn.c, in
Md1lOutputs by using this code:

SimStruct *rts = ssGetSFunction(rtS, 0);
sfcnOutputs(rts, tid);

This call has a significant amount of computational overhead associated with
it. First, Simulink creates a SimStruct data structure for the S-function block.
Second, the Real-Time Workshop constructs a call through a function pointer
to execute Md1Outputs, and then Md10utputs calls my_alg. By inlining the call
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to your C algorithm (my_alg), you can eliminate both the SimStruct and the
extra function call, thereby improving the efficiency and reducing the size of
the generated code.

Inlining a wrapper S-function requires an sfunction.tlc file for the
S-function; this file must contain the function call to my_alg. This picture
shows the relationships between the algorithm, the wrapper S-function, and
the sfunction.tlc file:

wrapper.c
my_alg.c
myalg() Md1Outputs
{ {
<C code here> -
} y = my_alg();
}
The wrapsfcn.tlc file tells the

Real-Time Workshop how to inline the
call to my_alg using this statement:

wrapsfcn.tlc

— B %<y> = my_alg(%<u>);

Figure 4-2: Inlining an Algorithm by Using a TLC File
To inline this call, you have to place your function call into an sfunction.tlc

file with the same name as the S-function (in this example, wrapsfcn.tlc).
This causes the Target Language Compiler to override the default method of
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placing calls to your S-function in the generated code. This is the wrapsfcn.tlc
file that inlines wrapsfcn.c:
File : wrapsfen.tlc

Abstract:
Example inlined tlc file for S-function wrapsfcn.c

o o o of
o o° o° o°

%implements “wrapsfcn” “C”

% Function: BlockTypeSetup ========= =
Abstract:
Create function prototype in model.h as:
“extern real T my_alg(real T u);”

o of
o°

o of
o° of

o9
o°

%sfunction BlockTypeSetup(block, system) void
This line is placed in %openfile buffer
wrapper.h. exterp real_T my_alg(real_T u);
%closefile buffer
%<LibCacheFunctionPrototype (buffer)>
%endfunction %% BlockTypeSetup

% Function: Outputs ================== =
% Abstract:
y = my_alg( u );

o of

o of
o°

o
—h o°

unction Outputs(block, system) Output
/* %<Type> Block: %<Name> */

%assign u = LibBlockInputSignal(0, ““, ““, 0)
Lo . %sassign y = LibBlockOutputSignal(0, ““, ““, 0)
This line is expanded %% PROVIDE THE CALLING STATEMENT FOR “algorithm”
and placed in 4 s<y> = my_alg(%<u>);
Md1Outputs within
wrapper.c. sendfunction %% Outputs

The first section of this code directs the Real-Time Workshop to inline the
wrapsfcn S-function block and generate the code in C:

%implements "wrapsfcn" "C"

The next task is to tell the Real-Time Workshop that the routine, my_alg, needs
to be declared external in the generated wrapper.h file for any wrapsfcn
S-function blocks in the model. You only need to do this once for all wrapsfcn
S-function blocks, so use the BlockTypeSetup function. In this function, you tell
the Target Language Compiler to create a buffer and cache the my_alg as
extern in the wrapper.h generated header file.
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Inlined call to the
function my_alg.

The final step is the actual inlining of the call to the function my_alg. This is
done by the Outputs function. In this function, you load the input and output
and call place a direct call to my_alg. The call is embedded in wrapper.c.

The Inlined Code

The code generated when you inline your wrapper S-function is similar to the
default generated code. The Md1Terminate function no longer contains a call to
an empty function and the Md10utputs function now directly calls my _alg:

void Md1lOutputs(int_T tid)

{

}

/* Sin Block: <Root>/Sin */
rtB.Sin = rtP.Sin.Amplitude *
sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

/* S-Function Block: <Root>/S-Function */
rtB.S_Function = my_alg(rtB.Sin);

/* Outport Block: <Root>/Out */
rtY.Out = rtB.S_Function;

In addition, wrapper.reg no longer creates a child SimStruct for the S-function
since the generated code is calling my_alg directly. This eliminates over 1K of
memory usage.
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Fully Inlined S-Functions

Continuing the example of the previous section, you could eliminate the call to
my_alg entirely by specifying the explicit code (i.e., 2.0*u) in wrapsfcn.tlc.
This is referred to as a fully inlined S-function. While this can improve
performance, if your C code is large this may be a lengthy task. In addition, you
now have to maintain your algorithm in two places, the C S-function itself and
the corresponding TLC file. However the performance gains may outweigh the
disadvantages. To inline the algorithm used in this example, in the Outputs
section of your wrapsfcn.tlc file, instead of writing

%<y> = my_alg(%<u>);

use:

%<y> = 2.0 * %<u>;

This is the code produced in Md1Outputs:

void Md1lOutputs(int_T tid)
{
/* Sin Block: <Root>/Sin */
rtB.Sin = rtP.Sin.Amplitude *
sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

/* S-Function Block: <Root>/S-Function */

Thisis the explicit  {  tg.s Function = 2.0 * rtB.Sin;
embedding of the

algorithm. /* Outport Block: <Root>/Out */

rtY.Out = rtB.S_Function;
}

The Target Language Compiler has replaced the call to my_alg with the
algorithm itself.

Multiport S-Function Example

A more advanced multiport inlined S-function example exists in
matlabroot/simulink/src/sfun_multiport.c and
matlabroot/toolbox/simulink/blocks/sfun_multiport.tlc. This
S-function demonstrates how to create a fully inlined TLC file for an S-function
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that contains multiple ports. You may find that looking at this example will aid
in the understanding of fully inlined TLC files.
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Fully Inlined S-Function with the mdIRTW Routine

You can make a more fully inlined S-function that uses the S-function md1RTW
routine. The purpose of the md1RTW routine is to provide the code generation
process with more information about how the S-function is to be inlined,
including:

* Renaming of tunable parameters in the generated code. This improves
readability of the code by replacing p1, p2, etc., by names of your choice.

® Creating a parameter record of a nontunable parameter for use with a TLC
file.

md1RTW does this by placing information into the model.rtw file. The md1RTW
routine is described in the text file matlabroot/simulink/src/sfuntmpl.doc.

As an example of how to use the md1RTW function, this section discusses the
steps you must take to create a direct-index lookup S-function. Look-up tables
are a collection of ordered data points of a function. Typically, these tables use
some interpolation scheme to approximate values of the associated function
between known data points. To incorporate the example lookup table algorithm
in Simulink, the first step is to write an S-function that executes the algorithm
in md10utputs. To produce the most efficient C code, the next step is to create
acorresponding TLC file to eliminate computational overhead and improve the
performance of the lookup computations.

For your convenience, Simulink provides support for two general purpose
lookup 1-D and 2-D algorithms. You can use these algorithms as they are or
create a custom lookup table S-function to fit your requirements. This section
demonstrates how to create a 1-D lookup S-function (sfun_directlook.c) and
its corresponding inlined sfun_directlook.tlc file (see the Real-Time
Workshop User’'s Guide and the Target Language Compiler Reference Guide for
more details on the Target Language Compiler). This 1-D direct-index lookup
table example demonstrates the following concepts that you need to know to
create your own custom lookup tables:

® Error checking of S-function parameters

e Caching of information for the S-function that doesn’t change during model
execution
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® How to use the md1RTW routine to customize the Real-Time Workshop
generated code to produce the optimal code for a given set of block
parameters

* How to generate an inlined TLC file for an S-function in a combination of the
fully-inlined form and/or the wrapper form

The Direct-Index Lookup Table Algorithm

The 1-D lookup table block provided in the Simulink library uses interpolation
or extrapolation when computing outputs. This extra accuracy is not needed in
all situations. In this example, you will create a lookup table that directly
indexes the output vector (y-data vector) based on the current input (x-data)
point.

This direct 1-D lookup example computes an approximate solution, p(x), to a
partially known function f(x) at x=x0, given data point pairs (x,y) in the form of
an x data vector and a y data vector. For a given data pair (e.g., the i'th pair),
y_i = f(x_i). It is assumed that the x-data values are monotonically increasing.
If X0 is outside of the range of the x-data vector, then the first or last point will
be returned.

The parameters to the S-function are:

XData, YData, XEvenlySpaced

XData and YData are double vectors of equal length representing the values of
the unknown function. XDataEvenlySpaced is a scalar, 0.0 for false and 1.0 for

true. If the XData vector is evenly spaced, then more efficient code is generated.
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The following graph illustrates how the parameters XData=[1:6],
YData=[1,2,7,4,5,9] are handled. For example, if the input (x-value) to the
S-function block is 3, then the output (y-value) is 7.

9 T T T T T T T T T

1 1 1 1 1 1 1 1 1 1
1 15 2 25 3 35 4 4.5 5 55 6

Figure 4-3: Typical Output from a Lookup Table Example

The Direct-Index Lookup Table Example

This section shows how to improve the lookup table by inlining a direct-index
S-function with a TLC file. Note that this direct-index lookup table S-function
doesn’t require a TLC file for it to work with the Real-Time Workshop. Here the
example uses a TLC file for the direct-index lookup table S-function to reduce
the code size and increase efficiency of the generated code.

Implementation of the direct-index algorithm with inlined TLC file requires
the S-function main module, sfun_directlook.c (see page 4-27) and a
corresponding lookup_index.c module (see page 4—-36). The lookup_index.c
module contains the GetDirectLookupIndex routine that is used to locate the



Fully Inlined S-Function with the mdIRTW Routine

index in the XData for the current x input value when the XData is unevenly
spaced. The GetDirectLookupIndex routine is called from both the S-function
and the generated code. Here the example uses the wrapper concept for sharing
C code between Simulink MEX-files and the generated code.

If the XData is evenly spaced, then both the S-function main module and the
generated code contain the lookup algorithm (not a call to the algorithm) to
compute the y-value of a given x-value because the algorithm is short. This
demonstrates the use of a fully inlined S-function for generating optimal code.

The inlined TLC file, which performs either a wrapper call or embeds the
optimal C code, is sfun_directlook.tlc (see page 4-38).

Error Handling
In this example, the md1CheckParameters routine on page 4-29 verifies that:

® The new parameter settings are correct.

® XData and YData are vectors of the same length containing real finite
numbers.

e XDataEvenlySpaced is a scalar.

® The XData vector is a monotonically increasing vector and evenly spaced if
needed.

Note that the md1InitilizeSizes routine explicitly calls md1CheckParameters
after it has verified the number of parameters passed to the S-function are
correct. After Simulink calls md1InitializeSizes, it will then call
md1lCheckParameters whenever you change the parameters or there is a need
to re-evaluate them.

User Data Caching

The md1Start routine on page 4-32 illustrates how to cache information that
does not change during the simulation (or while the generated code is
executing). The example caches the value of the XDataEvenlySpaced parameter
in UserData, a field of the SimStruct. The

ssSetSFcnParamNotTunable (S, XDATAEVENLYSPACED_PIDX) ;

linein mdlInitializeSizes tells Simulink to disallow changes to the
XDataEvenlySpaced parameter. During execution, md10utputs accesses the
value of XDataEvenlySpaced from the UserData rather than calling the
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mxGetPr MATLAB API function. This results in a slight increase in
performance.

mdIRTW Usage

The Real-Time Workshop calls the md1RTW routine while it (the Real-Time
Workshop) generates the model . rtw file. You can add information to the
model.rtw file about the mode in which your S-function block is operating to
produce optimal code for your Simulink model.

This example adds the following information to the model. rtw file:

® Parameters — these are items that can be modified during execution by
external mode. In this example, the XData and YData S-function parameters
can change during execution and are written using the function
ssWriteRTWParameters.

® Parameter settings — these are items that do not change during execution.
In this case the XDataEvenlySpaced S-function parameter cannot change
during execution (ssSetSFcnParamNotTunable was specified for it in
mdlInitializeSizes). This example writes it out as a parameter setting
(XSpacing) using the function ssWriteRTWParamSettings.

Example Model

Before examining the S-function and the inlined TLC file, consider the
generated code for the following model.

T

File Edit Yiew Sirmulation Format Tools |

Sine Wave S-Function Bt
Faremeters = [ 1:1: A, [-10:100,1

QOut2
S-Functioni .
Parameters = [-1 -5, 25,0, 1], [1:5,0




Fully Inlined S-Function with the mdIRTW Routine

This is the code that is
inlined for the top
S-function block in the
sfun_directlook_ex
model.

When creating this model, you need to specify the following for each S-function
block:

set_param(‘sfun_directlook_ex/S-Function’,’SFunctionModules’,’lookup_index’)
set_param(‘sfun_directlook_ex/S-Function1’,’SFunctionModules’,’lookup_index’)

This informs the Real-Time Workshop build process that the module
lookup_index.c is needed when creating the executable.

The generated code for the lookup table example model is
<Generated header for sfun_directlook_ex model>

#include <math.h>

#include <string.h>

#include “sfun_directlook_ex.h”
#include “sfun_directlook_ex.prm”

/* Start the model */
void MdlStart(void)
{
/* (no start code required) */

}

/* Compute block outputs */

void MdlOutputs(int_T tid)

{
/* local block i/o variables */
real T rtb_Sine_Wave;
real T rtb_buffer2;

/* Sin Block: <Root>/Sine Wave */
rtb_Sine Wave = rtP.Sine_Wave.Amplitude *
sin(rtP.Sine_Wave.Frequency * ssGetT(rtS) + rtP.Sine_Wave.Phase);

/* S-Function Block: <Root>/S-Function */

{
real_T *xData = &rtP.S_Function.XData[O];
real_T *yData = &rtP.S_Function.YData[O];
real_T spacing = xData[1] - xData[O];

if ( rtb_Sine_Wave <= xData[0] ) {
rtb_buffer2 = yData[O0];
} else if ( rtb_Sine_Wave >= yData[20] ) {
rtb_buffer2 = yData[20];
} else {
int T idx = (int_T)( ( rtb_Sine_Wave - xData[0] ) / spacing );
rtb_buffer2 = yData[idx];

}
}

/* Outport Block: <Root>/Outi */
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rtY.out1 = rtb_buffer2;

/* S-Function Block: <Root>/S-Functioni */

{
real_T *xData = &rtP.S_Functioni.XData[O0];
real_T *yData = &rtP.S_Functioni.YData[O0];
int_T idx;

idx = GetDirectLookupIndex(xData, 5, rtb_Sine_Wave);
rtb_buffer2 = yData[idx];
}

/* Outport Block: <Root>/Qut2 */
rtY.out2 = rtb_buffer2;

This is the code that is
inlined for the bottom /* Perform model update */
S-function block in the void MdlUpdate(int_T tid)

sfun_directlook_ex

/* (no update code required) */
model. }

/* Terminate function */
void MdlTerminate(void)

{

/* (no terminate code required) */

}

#include “sfun_directlook_ex.reg”

/* [EOF] sfun_directlook_ex.c */
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matlabroot/simulink/src/sfun_directlook.c
/*

File : sfun_directlook.c

Abstract:

Direct 1-D lookup. Here we are trying to compute an approximate
solution, p(x) to an unknown function f(x) at x=x0, given data point
pairs (x,y) in the form of a x data vector and a y data vector. For a
given data pair (say the i’th pair), we have y_i = f(x_1i). It is
assumed that the x data values are monotonically increasing. If the
x0 is outside of the range of the x data vector, then the first or
last point will be returned.

This function returns the “nearest” y0 point for a given x0. No
interpolation is performed.

The S-function parameters are:
XData - double vector
YData - double vector
XDataEvenlySpacing - double scalar 0 (false) or 1 (true)
The third parameter cannot be changed during simulation.

To build:
mex sfun_directlook.c lookup_index.c

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
* $Revision: 1.3 $

*/

#define S_FUNCTION_NAME sfun_directlook

#define S_FUNCTION_LEVEL 2

#include <math.h>
#include “simstruc.h”
#include <float.h>

#define XVECT_PIDX 0
#define YVECT_PIDX 1
#define XDATAEVENLYSPACED_PIDX 2
#define NUM_PARAMS 3

#define XVECT(S) ssGetSFcnParam(S,XVECT_PIDX)
#define YVECT(S) ssGetSFcnParam(S,YVECT_PIDX)
#define XDATAEVENLYSPACED(S) ssGetSFcnParam(S,XDATAEVENLYSPACED_PIDX)
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#if !defined(TRUE)
#define TRUE 1
#endif

#if !defined (FALSE)
#define FALSE 0

#endif

| *===========%
* typedef’s *
*:::::::::::*/

typedef struct SFcnCache_tag {
boolean_T evenlySpaced;
} SFcnCache;

/* ============ *
* Prototype define for the function in separate file lookup_index.c *
* ===== */

extern int_T GetDirectLookupIndex(const real T *x, int_T xlen, real_T u);

/* *
* Local Utility Functions *
* */

/* Function: IsRealVect ============

* Abstract:
* Verify that the mxArray is a real vector.
*/

static boolean_T IsRealVect(const mxArray *m)

{

if (mxIsNumeric(m) &&
mxIsDouble(m) &&
ImxIsLogical(m) &&
ImxIsComplex(m) &&
ImxIsSparse(m) &&
ImxISEmpty(m) &&
mxGetNumberOfDimensions(m) == 2 &&
(mxGetM(m) == || mxGetN(m) == 1))

real_T *data = mxGetPr(m);
int_T numEl = mxGetNumberOfElements(m);
int. T i,

for (i = 0; i < numEl; i++) {
if (!mxIsFinite(data[i])) {
return(FALSE);
}
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}

return (TRUE) ;
} else {

return (FALSE) ;
}

}
/* end IsRealVect */

/* *

* §-function routines *
* */

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */
#if defined (MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)
/* Function: mdlCheckParameters ==
Abstract:

This routine will be called after mdlInitializeSizes, whenever

parameters change or get re-evaluated. The purpose of this routine is

to verify that the new parameter settings are correct.

*

You should add a call to this routine from mdlInitalizeSizes
to check the parameters. After setting your sizes elements, you should:
if (ssGetSFcnParamsCount(S) == ssGetNumSFcnParams(S)) {
mdlCheckParameters(S);
}

L T R

/
static void mdlCheckParameters(SimStruct *S)

{

if (!IsRealVect(XVECT(S))) {
ssSetErrorStatus(S,”1st, X-vector parameter must be a real finite
“ vector”);
return;

if (!IsRealVect(YVECT(S))) {
ssSetErrorStatus(S,”2nd, Y-vector parameter must be a real finite ©

“vector”);
return;
}
/*
* Verify that the dimensions of X and Y are the same.
*/

if (mxGetNumberOfElements(XVECT(S)) != mxGetNumberOfElements(YVECT(S)) ||
mxGetNumberOfElements (XVECT(S)) == 1) {
ssSetErrorStatus(S,”X and Y-vectors must be of the same dimension “
“and have at least two elements”);
return;
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/*
* Verify we have a valid XDataEvenlySpaced parameter.
*/
if (!mxIsNumeric (XDATAEVENLYSPACED(S)) ||
! (mxIsDouble (XDATAEVENLYSPACED(S)) ||
mxIsLogical (XDATAEVENLYSPACED(S))) ||
mxIsComplex (XDATAEVENLYSPACED(S)) ||
mxGetNumberOfElements (XDATAEVENLYSPACED(S)) != 1) {
ssSetErrorStatus(S,”3rd, X-evenly-spaced parameter must be scalar “
“(0.0=false, 1.0=true)”);

return;
}
/*
* Verify x-data is correctly spaced.
*/
{
int_T i

boolean_T spacingEqual;
real T *xData = mxGetPr (XVECT(S));

int. T numel = mxGetNumberOfElements(XVECT(S));
/*
* spacingEqual is TRUE if user XDataEvenlySpaced
*/

spacingEqual = (mxGetScalar (XDATAEVENLYSPACED(S)) != 0.0);

if (spacingEqual) { /* XData is ‘evenly-spaced’ */
boolean_T badSpacing FALSE;
real T spacing xData[1] - xData[O];
real T space;

if (spacing <= 0.0) {
badSpacing = TRUE;

} else {
real_T eps = DBL_EPSILON;

for (1 = 2; i < numEl; i++) {
space = xData[i] - xData[i-1];
if (space <= 0.0 ||
fabs(space-spacing) >= 128.0*eps*spacing ){
badSpacing = TRUE;
break;

}
if (badSpacing) {
ssSetErrorStatus(S,”X-vector must be an evenly spaced “

“strictly monotonically increasing vector”);
return;
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} else { /* XData is ‘unevenly-spaced’ */
for (i = 1; i < numEl; i++) {
if (xData[i] <= xData[i-1]) {
ssSetErrorStatus(S,”X-vector must be a strictly ©
“monotonically increasing vector?”);
return;

}

}
#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes
* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block’s characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams (S, NUM_PARAMS); /* Number of expected parameters */

/
Check parameters passed in, providing the correct number was specified
in the S-function dialog box. If an incorrect number of parameters
was specified, Simulink will detect the error since ssGetNumSFcnParams
and ssGetSFcnParamsCount will differ.
ssGetNumSFcnParams - This sets the number of parameters your
S-function expects.
ssGetSFcnParamsCount - This is the number of parameters entered by
the user in the Simulink S-function dialog box.

L A T R R

/
#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdlCheckParameters(S);
if (ssGetErrorStatus(S) != NULL) {
return;

}
} else {
return; /* Parameter mismatch will be reported by Simulink */

}
#endif

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortTestPoint(S, 0, FALSE);
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ssSetInputPortOverWritable(S, 0, TRUE);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, DYNAMICALLY_ SIZED);

ssSetOutputPortTestPoint (S, 0, FALSE);
ssSetNumSampleTimes(S, 1);
ssSetSFcnParamNotTunable (S, XDATAEVENLYSPACED_PIDX) ;
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

} /* mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes ============
* Abstract:
* The lookup inherits its sample time from the driving block.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);
} /* end mdlInitializeSampleTimes */

#define MDL_START /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart ============
* Abstract:

* Here we cache the state (true/false) of the XDATAEVENLYSPACED parameter.
* We do this primarily to illustrate how to “cache” parameter values (or
* information that is computed from parameter values) that do not change
* for the duration of the simulation (or in the generated code). In this
* case, rather than repeated calls to mxGetPr, we save the state once.
* This results in a slight increase in performance.
*/
static void mdlStart(SimStruct *S)
{

SFcnCache *cache = malloc(sizeof (SFcnCache));

if (cache == NULL) {
ssSetErrorStatus (S, ”memory allocation error”);
return;

}
ssSetUserData(S, cache);
if (mxGetScalar (XDATAEVENLYSPACED(S)) != 0.0){

cache->evenlySpaced = TRUE;
}else{
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cache->evenlySpaced = FALSE;

}
#endif /* MDL_START */

/* Function: mdlOutputs ==
* Abstract:
* In this function, we compute the outputs of our S-function
* block. Generally outputs are placed in the output vector, ssGetY(S).
*/
static void mdlOutputs(SimStruct *S, int_T tid)

{
SFcnCache *cache = ssGetUserData(S);
real T *xData = mxGetPr (XVECT(S));
real T *yData = mxGetPr(YVECT(S));
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y = ssGetOutputPortRealSignal(S,0);
int_T ny = ssGetOutputPortWidth(S,0);
int_T xLen = mxGetNumberOfElements (XVECT(S));
int T i;
/*

* When the XData is evenly spaced, we use the direct lookup algorithm
* to calculate the lookup
*/
if (cache->evenlySpaced) {
real_T spacing = xData[1] - xData[O];
for (1 = 0; i < ny; i++) {
real T u = *uPtrs[i];

if (u <= xData[0]) {
y[i] = yData[O0];
} else if (u >= xData[xLen-1]) {
y[i] = yData[xLen-1];
} else {
int_T idx = (int_T)((u - xData[0])/spacing);
y[i] = yData[idx];

}
} else {
/*
* When the XData is unevenly spaced, we use a bisection search to
* locate the lookup index.
*/
for (1 = 0; 1 < ny; i++) {
int_T idx = GetDirectLookupIndex(xData,xLen,*uPtrs[i]);
y[i] = yData[idx];
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} /* end mdlOutputs */

/* Function: mdlTerminate =====
* Abstract:

* Free the cache that was allocated in mdlStart.

*/

static void mdlTerminate(SimStruct *S)

{

SFcnCache *cache = ssGetUserData(S);
if (cache != NULL) {
free(cache);

}

} /* end mdlTerminate */

#define MDL_RTW /* Change to #undef to remove function */
#if defined (MDL_RTW) && (defined(MATLAB_MEX_FILE) || defined(NRT))
/* Function: md1RTW =====
Abstract:
This function is called when the Real-Time Workshop is generating the
model.rtw file. In this routine, you can call the following functions
which add fields to the model.rtw file.

*

Important! Since this S-function has this mdlRTW routine, it must have
a correSponding .tlc file to work with the Real-Time Workshop. You will find
the sfun_directlook.tlc in the same directory as sfun_directlook.dll.

R N

/
static void md1lRTW(SimStruct *S)
{
/*
* Write out the [X,Y] data as parameters, i.e., these values can be
* changed during execution.
*/
{
real_T *xData = mxGetPr(XVECT(S));
int_T xLen mxGetNumberOfElements (XVECT(S));
real_T *yData = mxGetPr(YVECT(S));
int_T yLen = mxGetNumberOfElements (YVECT(S));

if (!ssWriteRTWParameters(S,2,

SSWRITE_VALUE_VECT,”XData”,””,xData,xLen,
SSWRITE_VALUE_VECT,”YData”,””,yData,ylLen)) {
return; /* An error occurred which will be reported by Simulink */
}
}
/*

* Write out the spacing setting as a param setting, i.e., this cannot be
* changed during execution.
*/

{
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boolean T even = (mxGetScalar (XDATAEVENLYSPACED(S)) != 0.0);

if (!ssWriteRTWParamSettings(S, 1,
SSWRITE_VALUE_QSTR,
“XSpacing”,
even ? “EvenlySpaced” : “UnEvenlySpaced”)){
return;/* An error occurred which will be reported by Simulink */

}

}
#endif /* MDL_RTW */

/* *
* Required S-function trailer *
* */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include “simulink.c” /* MEX-file interface mechanism */

#else

#include “cg_sfun.h” /* Code generation registration function */
#endif

/* [EOF] sfun_directlook.c */
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matlabroot/simulink/src/lookup_index.c

/*

*
*
*
*
*
*
*
*

/

File : loo
Abstract:

kup_index.c

Contains a routine used by the S-function sfun_directlookup.c to
compute the index in a vector for a given data value.

Copyright (c
$Revision: 1

) 1990-1998 by The MathWorks, Inc.
.38

#include “tmwtypes.h”

/

%k ok kR ok kR 3k Ok Ok % % ok % X % ok

int_T GetDirectLookupIndex(const

{
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Function: Get
Abstract:

All Rights Reserved.

DirectLookupIndex

Using a bisection search to locate the lookup index when the x-vector

isn’t eve

Inputs:
*X
xlen
u

Output:
idx

: Pointer to table, x[O0]
: Number of values in xtable
: input value to look up

nly spaced.

...X[xlen-1]

: the index into the table such that:

if u is negative
x[idx] <= u <
else
x[idx] < u <=

X[idx+1]
x[idx+1]

real T *x, int_T xlen

int_T idx = 0;

int_T bottom = 0;

int_T top = xlen-1;

/*

* Deal with the extreme cases first:

*

* 1] u <= x[bottom] then idx = bottom
* ii] u >= x[top] then idx = top-1

*

*

/

if (u <= x[bottom]) {
return(bottom);

} else if (u

>= x[top]) {

return(top);

}

/*

* We have: x[bottom] < u < x[top], onward

* with sear

ch for the appropriate index

, real T u)
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*/
for (55) {

idx = (bottom + top)/2;

if (u < x[idx]) {
top = idx;

} else if (u > x[idx+1]) {

bottom = idx +
} else {
/*

1

* We have: x[idx] <= u <= x[idx+1], only need

* to do two more checks and we have the answer.

*/

if (u < 0) {
/*
* We want
* if u ==
* then
* else
*/
return( (u

} else {
/*
* We want
* if u ==
* then
* else
*/
return( (u

}

right continuity, i.e.,
X[idx+1]

X[idx+1] <= u < x[idx+2]
Xx[idx ] <= u < x[idx+1]

== x[idx+1]) ? (idx+1) : idx);

left continuity, i.e.,
x[1idx]

x[idx-1] < u <= x[idx ]
x[idx ] < u <= x[idx+1]

== x[idx]) ? (idx-1) : idx);

} /* end GetDirectLookupIndex */

/* [EOF] lookup_index.c */
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matlabroot/toolbox/simulink/blocks/sfun_directlook.tlc

File : sfun_directlook.tlc
Abstract:
Level-2 S-function sfun_directlook block target file.
It is using direct lookup algorithm without interpolation.

o o o of of
o o° o° o o°

o
o°

Copyright (c) 1994-1998 by The MathWorks, Inc. ALl Rights Reserved.
$Revision: 1.3 $

o
o°

%simplements “sfun_directlook” “C”

% Function: BlockTypeSetup ======m=s=ssmsmss==s =
Abstract:
Place include and function prototype in the model’s header file.

o o of
o° o°

o
o°

o

function BlockTypeSetup(block, system) void

°
&

Add this external function’s prototype in the header of the generated
file.

° P
o o

o

%sopenfile buffer

extern int_T GetDirectLookupIndex(const real T *x, int_T xlen, real_T u);
%sclosefile buffer

%<LibCacheFunctionPrototype (buffer)>

%sendfunction

of

% Function: mdlOutputs ================== =
Abstract:
Direct 1-D lookup table S-function example.
Here we are trying to compute an approximate solution, p(x) to an
unknown function f(x) at x=x0, given data point pairs (x,y) in the
form of a x data vector and a y data vector. For a given data pair
(say the i’th pair), we have y_i = f(x_1i). It is assumed that the x
data values are monotonically increasing. If the first or last x is
outside of the range of the x data vector, then the first or last
point will be returned.

o
o°

o o o P o o o of
0 o® o° o° o° o o° o°

o
o°

o
o°

This function returns the “nearest” y0 point for a given xO.
No interpolation is performed.

o
o°

o
o°

The S-function parameters are:

XData

YData

XEvenlySpaced: 0 or 1
The third parameter cannot be changed during execution and is
written to the model.rtw file in XSpacing filed of the SFcnParamSettings
record as “EvenlySpaced” or “UnEvenlySpaced”. The first two parameters
can change during execution and show up in the parameter vector.

o o o o o o o of
0 o° o o° J° o o° o o°

o
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sfunction Outputs(block, system) Output
/* %<Type> Block: %<Name> */

{

%assign rollVars = [“U”, “Y”]

%% Load XData and YData as local variables

real_T *xData = %<LibBlockParameterAddr(Xbata, ““, ““, 0)>;

real_T *yData = %<LibBlockParameterAddr(YData, ““, ““, 0)>;

%assign xDataLen = SIZE(XData.Value, 1)

%% When the XData is evenly spaced, we use the direct lookup algorithm
%% to locate the lookup index.

%if SFcnParamSettings.XSpacing == “EvenlySpaced”

real T spacing = xData[1] - xData[0];

%roll idx = RollRegions, lcv = RollThreshold, block, “Roller”, rollVars
%assign u = LibBlockInputSignal(0, ““, lcv, idx)
%assign y = LibBlockOutputSignal(0, ““, lcv, idx)
if ( %<u> <= xData[O0] ) {
%<y> = yData[0];
} else if ( %<u> >= yData[%<xDataLen-1>] ) {
%<y> = yData[%<xDatalLen-1>];
} else {
int_T idx = (int_T)( ( %<u> - xData[0] ) / spacing );
%<y> = yData[idx];

}
%%
%% Generate an empty line if we are not rolling,
%% so that it looks nice in the generated code.
%%
%if lcv == “~
%sendif
%sendroll
%selse

%% When the XData is unevenly spaced, we use a bisection search to
%% locate the lookup index.
int_T idx;

%assign xDataAddr = LibBlockParameterAddr(XData, ““, ““, 0)

%roll idx = RollRegions, lcv = RollThreshold, block, “Roller”, rollVars
%assign u = LibBlockInputSignal(0, ““, lcv, idx)
idx = GetDirectLookupIndex(xData, %<xDatalLen>, %<u>);
%assign y = LibBlockOutputSignal(0, ““, lcv, idx)

<y> = yData[idx];

oP

oP
o°

%% Generate an empty line if we are not rolling,
%% so that it looks nice in the generated code.
%%

%if lcv == “¢
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sendif
%sendroll
sendif

}

%endfunction

%% EOF: sfun_directlook.tlc
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