

Performance Verification Guide

DS2000 Series Digital Oscilloscope

Feb. 2014

RIGOL Technologies, Inc.

Guaranty and Declaration

Copyright

© 2012 RIGOL Technologies, Inc. All Rights Reserved.

Trademark Information

RIGOL is a registered trademark of RIGOL Technologies, Inc.

Publication Number

PVA13103-1110

Notices

- **RIGOL** products are protected by patent law in and outside of P.R.C.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at company's sole decision.
- Information in this publication replaces all previously corresponding material.
- **RIGOL** shall not be liable for losses caused by either incidental or consequential in connection with the furnishing, use or performance of this manual as well as any information contained.
- Any part of this document is forbidden to be copied or photocopied or rearranged without prior written approval of **RIGOL**.

Product Certification

RIGOL guarantees this product conforms to the national and industrial standards in China as well as the ISO9001:2008 standard and the ISO14001:2004 standard. Other international standard conformance certification is in progress.

Contact Us

If you have any problem or requirement when using our products or this manual, please contact **RIGOL**.

E-mail: service@rigol.com Website: www.rigol.com

General Safety Summary

Please review the following safety precautions carefully before putting the instrument into operation so as to avoid any personal injuries or damages to the instrument and any product connected to it. To prevent potential hazards, please use the instrument only specified by this manual.

Use Proper Power Cord.

Only the power cord designed for the instrument and authorized by local country could be used.

Ground The Instrument.

The instrument is grounded through the Protective Earth lead of the power cord. To avoid electric shock, it is essential to connect the earth terminal of power cord to the Protective Earth terminal before any inputs or outputs.

Connect the Probe Correctly.

Do not connect the ground lead to high voltage since it has the isobaric electric potential as ground.

Observe All Terminal Ratings.

To avoid fire or shock hazard, observe all ratings and markers on the instrument and check your manual for more information about ratings before connecting.

Use Proper Overvoltage Protection.

Make sure that no overvoltage (such as that caused by a thunderstorm) can reach the product, or else the operator might expose to danger of electrical shock.

Do Not Operate Without Covers.

Do not operate the instrument with covers or panels removed.

Use Proper Fuse.

Please use the specified fuses.

Avoid Circuit or Wire Exposure.

Do not touch exposed junctions and components when the unit is powered.

Do Not Operate With Suspected Failures.

If you suspect damage occurs to the instrument, have it inspected by qualified service personnel before further operations. Any maintenance, adjustment or replacement especially to circuits or accessories must be performed by **RIGOL** authorized personnel.

Keep Well Ventilation.

Inadequate ventilation may cause increasing of temperature or damages to the device. So please keep well ventilated and inspect the intake and fan regularly.

Do Not Operate in Wet Conditions.

In order to avoid short circuiting to the interior of the device or electric shock, please do not operate in a humid environment.

Do Not Operate in an Explosive Atmosphere.

In order to avoid damages to the device or personal injuries, it is important to operate the device away from an explosive atmosphere.

Keep Product Surfaces Clean and Dry.

To avoid the influence of dust and/or moisture in air, please keep the surface of device clean and dry.

Electrostatic Prevention.

Operate in an electrostatic discharge protective area environment to avoid damages induced by static discharges. Always ground both the internal and external conductors of the cable to release static before connecting.

Handling Safety

Please handle with care during transportation to avoid damages to buttons, knob interfaces and other parts on the panels.

Safety Terms and Symbols

Terms on the Product. These terms may appear on the Product:

DANGER	indicates an injury or hazard may immediately happen.
WARNING	indicates an injury or hazard may be accessible potentially.
CAUTION	indicates a potential damage to the instrument or other property might
	occur.

Symbols on the Product. These symbols may appear on the product:

<u>^</u>

+

Hazardous Voltage

Safety Warning Pro

Protective Earth Terminal

Chassis Ground

Test Ground

Contents

Guaranty and Declaration	I
General Safety Summary	II
Safety Terms and Symbols	IV
Document Overview	VI
Chapter 1 Overview	1-1
Test Preparations	1-1
Self-test	1-1
Self-calibration	1-1
Test Result Record	1-2
Chapter 2 Performance Verification Test	2-1
Impedance Test	2-2
DC Gain Accuracy Test	2-3
Bandwidth Test	2-5
Bandwidth Limit Test	2-7
20MHz Bandwidth Limit Test	
100MHz Bandwidth Limit Test (only for DS2202)	
Time Base Accuracy Test	
Zero Point Offset Test	
Appendix Test Record Form	1

Document Overview

This manual guides users to correctly test the performance of **RIGOL** DS2000 series digital oscilloscope.

Main topics in this manual:

Chapter 1 Overview This chapter introduces the preparations and precautions of the performance verification test.

Chapter 2 Performance Verification Test This chapter introduces the limit, test devices required as well as test method and procedures of each performance.

Appendix Test Record Form

In the appendix, a test record form is provided for recording the test results so as to determine whether each performance fulfills the requirement.

Format Conventions in this Manual:

Front Panel Key: denoted by "Text Box + Button Name (Bold)", for example, Utility.

Menu Softkey: denoted by "Character Shading + Menu Word (Bold)", for example, Self-Cal.

Operation Step: denoted by an arrow " \rightarrow ", for example, Utility \rightarrow Self-Cal.

Content Conventions in this Manual:

In this manual, DS2202 is taken as an example to illustrate the performance verification method. The introductions in this manual are applicable to all the models of the DS2000 series.

Model	DS2202	DS2102	DS2072
Analog Bandwidth	200 MHz	100 MHz	70 MHz
Channels	2	2	2
Max Real-time Sample Rate	2 GSa/s		
Standard Memory Depth	14 Mpts		
Waveform Capture Rate	Up to 50 000 wfs/s		

Chapter 1 Overview

Test Preparations

The following preparations should be done before the test:

- 1. Self-test: perform self-test to make sure that the oscilloscope can work normally;
- 2. Warm-up: warm the oscilloscope up for at least 30 minutes;
- 3. Self-calibration: calibrate the oscilloscope.

Self-test

When the oscilloscope is in power-on state, press the power key is at the lower left corner of the

front panel to start the oscilloscope. During the start-up, the instrument performs a series of self-test items and users can hear the sound of relay switching. The welcome screen is displayed after the self-test is finished.

If the self-test fails, make sure that the problems are found and resolved and do not perform self-calibration and performance test until the instrument passes the self-test.

Self-calibration

Before performing self-calibration, make sure that the oscilloscope has been warmed up for 30 minutes. Then, follow the steps below to perform the self-calibration.

- 1. Disconnect the connections of the two channels.
- Press Utility → Self-Cal; then press Start and the oscilloscope starts to execute the self-calibration program as shown in the figure below.

RIGOL	AUTO H 1.0000s 1.0005s/2	/ т / 🕹	1 0.00 V
HORIZON		тытү	Start
TAL	Last Calibration Time: 2012-04-10 16:44:41	AL U	Exit
- - - - - 	NOTE:	SELF (
- 	Please ensure that no signals access to the input channels!		
		,	
1 = 1.00	2 = 1.00 V	7	•숙 13:43

- 3. The self-calibration takes about 5 minutes. "Calibration finished, please restart the oscilloscope!" will be displayed when the self-calibration finishes and at this point, please restart the oscilloscope.
- 4. Press Acquire → Acquisition and use ♥ to select "Average". Then, press Averages and use ♥ to set the number of averages to 16.
- 5. Press down the **VERTICAL** Description where the vertical positions of the two channels to zero. View the distance between the waveform of each channel and the screen center at 1 mV/div scale. When this distance is greater than 0.2 div, please perform self-calibration again until the calibration succeeds (note: make sure that the instrument passes the self-calibration before performing the performance verification test; otherwise, the test results might not be accurate).

Test Result Record

Record and keep the test result of each test. In the Appendix of this manual, a test result record form which lists all the test items and their corresponding performance limits as well as spaces for users to record the test results, is provided.

Tip:

It is recommended that users photocopy the test record form before each test and record the test results in the copy so that the form can be used repeatedly.

Chapter 2 Performance Verification Test

This chapter introduces the performance verification test method and procedures of DS2000 series digital oscilloscope by taking DS2202 as an example. You can perform the following tests in any order. In this manual, the test device used is Fluke 9500B. You can also use other devices that fulfill the specification requirements for the test.

Device Specification		Recommended Model	
	Output range of DC voltage:		
Oscilloscope	1 MΩ: 1 mV to 200 V		
Calibrator	50 MΩ: 1 mV to 200 V	FILKE 9500B	
	The rise time of fast edge signal: \leq 150 ps		
Digital Multimator	The resistance measurement accuracy is		
Digital Multimeter	higher than $\pm 0.1\%$ of reading	RIGUL DIVI3038/3008	
Test Cable	BNC (male) to Dual-banana Plug Cable		
Signal Generator	Frequency Accuracy: ±1 ppm	RIGOL DG5000 series	
Test Cable	BNC (m)-BNC (m) cable		

Recommended Device List:

Note:

- 1. Make sure that the oscilloscope passes the self-test and self-calibration before executing performance verification test.
- 2. Make sure that the oscilloscope has been warmed up for at least 30 minutes before executing any of the following tests.
- 3. Please reset the instrument to the factory setting before or after executing any of the following tests.

Impedance Test

Specification:

Input Impedance	0.99 MΩ to 1.01 MΩ	
-----------------	--------------------	--

Test Devices: Fluke 9500B or Digital Multimeter and BNC (male) to Dual-banana Plug Cable. In this manual, the test device is Fluke 9500B.

Test Procedures:

1. Impedance test of CH1 and CH2

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in figure below.

- 2) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate VERTICAL @ SCALE to set the vertical scale of CH1 to 100 mV/div.
- 3) Enable the Fluke 9500B and select the resistance measurement function, read and record the resistance measurement value.
- 4) Rotate **VERTICAL** O SCALE to adjust the vertical scale of CH1 to 500 mV/div; then, read and record the resistance measurement value.
- 5) Turn CH1 off. Repeat the above test steps to test CH2 and record the test results.

2. Impedance test of [EXT TRIG] channel:

- 1) Disconnect the connections of the two input channels.
- 2) Connect the active head of Fluke 9500B to the external trigger channel **[EXT TRIG]** of the oscilloscope.
- 3) Enable the Fluke 9500B and select the resistance measurement function, read and record the resistance measurement value.

Channel	Vertical Scale	Test Result	Limit	Pass/Fail
CH1	100 mV/div			
	500 mV/div			
CH2	100 mV/div		\geq 0.99 M Ω and \leq 1.01 M Ω	
	500 mV/div			
EXT TRIG				

Test Record Form:

DC Gain Accuracy Test

Specification:

DC Gain Accuracy	≤2%×Full Scale				
Explanation:					
Full Scale = 8 div×vertical s	scale. Relative error of each scale: (Vavg1–Vavg2)–(V _{out1} -V _{out2}) /Full Scale×100%≤2%;				
otherwise, the test fails. Fo	otherwise, the test fails. For example, when the vertical scale is 1 V/div, input DC signals with +3 V_{DC} and -3 V_{DC}				
voltages respectively, the va	alues of Vavg1 and Vavg2 are +3.06 V and -3.04 V respectively, the relative error is				
(+3.06 V-(-3.04 V))-(+3 V	-(-3 V)) //(1 V/div*8 div) × 100% = 1.25% and the test passes.				

Test Device: Fluke 9500B

Test Procedures:

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in figure below.

- 2) Enable the Fluke 9500B and set the output impedance to 1 M Ω .
- 3) Output a DC signal with $+1.5 \text{ mV}_{DC}$ voltage (V_{out1}) from Fluke 9500B.
- 4) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate VERTICAL @ SCALE to set the vertical scale to 500 μV/div.
 - c) Rotate **HORIZONTAL** \bigcirc **SCALE** to set the horizontal time base to 10 µs.
 - d) Rotate **VERTICAL** OPOSITION to set the vertical position to 0.
 - e) Press Acquire → Acquisition and use ↓ to select "Average". Then, press Averages and use ↓ to set the number of averages to 32.
- Press MENU → Vavg at the left of the screen to enable the average measurement function of the oscilloscope. Read and record Vavg1.
- 6) Adjust Fluke 9500B to output a DC signal with -1.5 mV_{DC} output voltage (V_{out2}).
- Press MENU → Vavg at the left of the screen to enable the average measurement function of the oscilloscope. Read and record Vavg2.
- Calculate the relative error of the vertical scale: |(Vavg1–Vavg2)–(V_{out1}-V_{out2})|/Full Scale×100%.
- 9) Keep other settings of the oscilloscope unchanged:
 - a) Set the vertical scale to 1 mV/div, 2 mv/div, 5 mV/div, 10 mV/div, 20 mV/div, 50 mV/div, 100 mV/div, 200 mV/div, 500 mV/div, 1 V/div, 2 V/div, 5 V/div and 10 V/div respectively.
 - b) Adjust the output voltage of Fluke 9500B to ±3 div respectively.
 - c) Repeat steps 1), 2), 3), 4), 5) and 6) and record the test results.

- d) Calculate the relative error of each scale.
- 10) Turn CH1 off. Repeat the above test steps to test CH2 and record the test results.

Test Record Form:

Channel Vertical Cools		Test Result			Limit	
Charmer	vertical Scale	Vavg1	Vavg2	Calculation Result ^[1]	LIMIL	Pass/rall
	500 µV/div					
	1 mV/div					
	2 mV/div					
	5 mV/div					
	10 mV/div					
	20 mV/div					
0111	50 mV/div					
CHI	100 mV/div					
	200 mV/div					
	500 mV/div				- - - ≤ 2%	
	1 V/div					
	2 V/div					
	5 V/div					
	10 V/div					
	500 µV/div					
	1 mV/div					
	2 mV/div					
	5 mV/div				-	
	10 mV/div					
	20 mV/div					
0110	50 mV/div					
CH2	100 mV/div					
	200 mV/div				-	
	500 mV/div					
	1 V/div				-	
	2 V/div					
	5 V/div					
	10 V/div					

Note^[1]: the calculation formula is $|(Vavg1-Vavg2)-(V_{out1}-V_{out2})|/Full Scale \times 100\%$; wherein, V_{out1} and V_{out2} are 3 and -3 times of the current vertical scale respectively.

Bandwidth Test

Specification:

Amplitude Loss	-3 dB to 1 dB		
Explanation:			
Amplitude loss (dB) = $20 \times Ig^{(Vrms2/Vrms1)}$.			

Test device: Fluke 9500B

Test Procedures:

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in figure below.

- 2) Enable the Fluke 9500B and set the output impedance to 1 M Ω .
- 3) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate **HORIZONTAL** O SCALE to set the horizontal time base to 200 ns.
 - c) Rotate VERTICAL @ SCALE to set the vertical scale to 100 mV/div.
 - d) Rotate HORIZONTAL OPENITION and VERTICAL OPENITION to set the horizontal position and vertical position to 0 respectively.
 - e) Rotate TRIGGER @ LEVEL to set the trigger level to 0 V.
- 4) Output a sine signal with 1 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms1.
- 6) Output a sine signal with 200 MHz frequency (100 MHz for DS2102; 70 MHz for DS2072) and 600 mVpp amplitude from Fluke 9500B.
- 7) Rotate **HORIZONTAL** Of the oscilloscope to set the horizontal time base to 5 ns.
- Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms2.
- 9) Calculate the amplitude loss: amplitude loss (dB) = $20 \times lg^{(Vrms2/Vrms1)}$.
- 10) Keep the other settings of the oscilloscope unchanged and set the vertical scale to 200 mV/div and 500 mV/div respectively.
- 11) Output sine signals with 1 MHz frequency and 1.2 Vpp/3 Vpp amplitude from Fluke 9500B respectively.
- 12) Repeat step 5).
- 13) Output sine signals with 200 MHz frequency (100 MHz for DS2102; 70 MHz for DS2072) and

- 1.2 Vpp/3 Vpp amplitude from Fluke 9500B respectively.
- 14) Repeat steps 7), 8) and 9).
- 15) Turn CH1 off. Test CH2 according to the above test steps and record the test results.

Test Record Form:

Channel	Vertical Scale	Test Result	Limit	Pass/Fail
	100 mV/div	Vrms1		
		Vrms2		
		Amplitude Loss ^[1]		
		Vrms1		
CH1	200 mV/div	Vrms2		
		Amplitude Loss		
		Vrms1		
	500 mV/div	Vrms2		
		Amplitude Loss	\sim 2 dD and < 1 dD	
	100 mV/div	Vrms1		
		Vrms2		
		Amplitude Loss		
	200 mV/div	Vrms1		
CH2		Vrms2		
		Amplitude Loss		
		Vrms1		
	500 mV/div	Vrms2		
		Amplitude Loss		

Note^[1]: amplitude loss (dB) = 20×lg^(Vrms2/Vrms1).

Bandwidth Limit Test

Bandwidth limit test verifies the 20 MHz bandwidth limit and 100 MHz bandwidth limit functions respectively.

The bandwidth limits available for oscilloscopes with different bandwidths are different.

Model	Bandwidth Limit
DS2202	20 MHz/100 MHz
DS2102	20 MHz
DS2072	20 MHz

20MHz Bandwidth Limit Test

Specification:

Amplitude Loss	-3 dB to 1 dB
Explanation:	
Amplitude Loss (dB) =	= 20×Ig ^(Vrmsn/Vrms1) . Wherein, Vrmsn represents Vrms2 and Vrms3.

Test Device: Fluke 9500B

Test Procedures:

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in the figure below.

- 2) Set the output impedance of Fluke 9500B to 1 M Ω .
- 3) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate VERTICAL @ SCALE to set the vertical scale to 100 mV/div.
 - c) Rotate HORIZONTAL @ SCALE to set the horizontal time base to 200 ns.
 - d) Rotate HORIZONTAL OPENITION and VERTICAL OPENITION to set the horizontal position and vertical position to 0 respectively.
 - e) Rotate TRIGGER @ LEVEL to set the trigger level to 0 V.
- 4) Press CH1 \rightarrow BW Limit and use \checkmark to select "20 MHz" bandwidth limit.
- 5) Output a sine waveform with 1 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- 6) Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms1.
- 7) Output a sine waveform with 20 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- Rotate HORIZONTAL OF the oscilloscope to set the horizontal time base to 20 ns.
- Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms2.
- 10) Calculate the amplitude loss and compare it to the specification: Amplitude Loss (dB) = $20 \times lg^{(Vrms2/Vrms1)}$. Amplitude loss should be in the range of the specification at this point.
- 11) Output a sine waveform with 50 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- 12) Rotate **HORIZONTAL** Of the oscilloscope to set the horizontal time base to 10 ns.
- Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms3.

- 14) Calculate the amplitude loss and compare it to the specification: Amplitude Loss (dB) = $20 \times lg^{(Vrms3/Vrms1)}$. Amplitude loss should be lower than -3 dB at this point.
- 15) Keep other settings of the oscilloscope unchanged and set the vertical scale to 200 mV/div.
- 16) Output a sine waveform with 1 MHz frequency and 1.2 Vpp amplitude from Fluke 9500B.
- 17) Repeat step 6).
- 18) Output a sine waveform with 20 MHz frequency and 1.2 Vpp amplitude from Fluke 9500B.
- 19) Repeat step 8), 9) and 10).
- 20) Output a sine waveform with 50 MHz frequency and 1.2 Vpp amplitude from Fluke 9500B.
- 21) Repeat step 12), 13) and 14).
- 22) Keep other settings of the oscilloscope unchanged and set the vertical scale to 500 mV/div.
- 23) Output a sine waveform with 1 MHz frequency and 3 Vpp amplitude from Fluke 9500B.
- 24) Repeat step 6).
- 25) Output a sine waveform with 20 MHz frequency and 3 Vpp amplitude from Fluke 9500B.
- 26) Repeat step 8), 9) and 10).
- 27) Output a sine waveform with 50 MHz frequency and 3 Vpp amplitude from Fluke 9500B.
- 28) Repeat step 12), 13) and 14).
- 29) Turn CH1 off. Test CH2 according to the above test steps and record the test results.

Channel	Vertical Scale	Test Result	Limit	Pass/ Fail
	100	Vrms1 Vrms2		
	100 ma\//div/	vrms3		
	mv/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	$\ge -3 \text{ dB}$ and $\le 1 \text{ dB}$	
		Amplitude Loss ^[1] (dB) = $20 \times Ig^{(Vrms3/Vrms1)}$	≤ 3 dB	
		Vrms1		
		Vrms2		
СН1	200	Vrms3		
0111	mV/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
		Vrms1		
		Vrms2		
	500 mV/div	Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
	100 mV/div	Vrms1		
		Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
		Vrms1		
		Vrms2		
<u>cup</u>	200	Vrms3		
CHZ	mV/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
		Vrms1		
		Vrms2		
	500	Vrms3	•	
	mV/div	Amplitude Loss ^[1] (dD) 20. Lc(Vrms2/Vrms1)	≥ -3 dB	
		$A = 20 \times 10^{\circ}$	 and $\leq 1 \text{ dB}$	
		Amplitude Loss ^[1] (dB) = $20 \times Ig^{(Vrms3/Vrms1)}$	 ≤ 3 dB	

Test Record Form:

Note^[1]: amplitude loss (dB) = $20 \times lg^{(Vrmsn/Vrms1)}$. Here, Vrmsn represents Vrms2 and Vrms3.

100MHz Bandwidth Limit Test (only for DS2202)

Specification:

Amplitude Loss	-3 dB to 1 dB			
Explanation:				
Amplitude Loss (dB) = $20 \times lg^{(Vrmsn/Vrms1)}$. Wherein, Vrmsn represents Vrms2 and Vrms3.				

Test Device: Fluke 9500B

Test Procedures:

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in the figure below.

- 2) Set the output impedance of Fluke 9500B to 1 M Ω .
- 3) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate **VERTICAL** O SCALE to set the vertical scale to 100 mV/div.
 - c) Rotate **HORIZONTAL** O SCALE to set the horizontal time base to 200 ns.
 - d) Rotate HORIZONTAL OPSITION and VERTICAL OPSITION to set the horizontal position and vertical position to 0 respectively.
 - e) Rotate **TRIGGER** @ LEVEL to set the trigger level to 0 V.
- 4) Press **CH1** \rightarrow **BW Limit** and use \checkmark to select "100 MHz" bandwidth limit.
- 5) Output a sine waveform with 1 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- 6) Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms1.
- 7) Output a sine waveform with 100 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- Rotate HORIZONTAL SCALE of the oscilloscope to set the horizontal time base to 5 ns.
- Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms2.
- 10) Calculate the amplitude loss and compare it to the specification: Amplitude Loss (dB) = $20 \times lg^{(Vrms2/Vrms1)}$. Amplitude loss should be in the range of the specification at this point.
- 11) Output a sine waveform with 200 MHz frequency and 600 mVpp amplitude from Fluke 9500B.
- 12) Rotate **HORIZONTAL** Of the oscilloscope to set the horizontal time base to 2 ns.

- Press MENU → Vrms at the left of the screen to enable the root mean square measurement function of the oscilloscope. Read and record Vrms3.
- 14) Calculate the amplitude loss and compare it to the specification: Amplitude Loss (dB) = $20 \times lg^{(Vrms3/Vrms1)}$. Amplitude loss should be lower than -3 dB at this point.
- 15) Keep other settings of the oscilloscope unchanged and set the vertical scale to 200 mV/div.
- 16) Output a sine waveform with 1 MHz frequency and 1.2 Vpp amplitude from Fluke 9500B.
- 17) Repeat step 6).
- 18) Output a sine waveform with 100 MHz frequency and 1.2 Vpp amplitude from Fluke 9500B.
- 19) Repeat step 8), 9) and 10).
- 20) Output a sine waveform with 200 MHz frequency and 1.2 Vpp amplitude from Fluke 9500B.
- 21) Repeat step 12), 13) and 14).
- 22) Keep other settings of the oscilloscope unchanged and set the vertical scale to 500 mV/div.
- 23) Output a sine waveform with 1 MHz frequency and 3 Vpp amplitude from Fluke 9500B.
- 24) Repeat step 6).
- 25) Output a sine waveform with 100 MHz frequency and 3 Vpp amplitude from Fluke 9500B.
- 26) Repeat step 8), 9) and 10).
- 27) Output a sine waveform with 200 MHz frequency and 3 Vpp amplitude from Fluke 9500B.
- 28) Repeat step 12), 13) and 14).
- 29) Turn CH1 off. Test CH2 according to the above test steps and record the test results.

Test Record Form:

Vertical Scale	Test Result		Limit	Pass/ Fail
	Vrms1			
	Vrms2			
100	Vrms3			
mV/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$		\geq -3 dB and \leq 1 dB	
	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$		≤ 3 dB	
	Vrms1			
200	Vrms2			
mV/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$		≥ -3 dB and < 1 dB	
	Amplitude Loss ^[1] (dB) = $20 \times la^{(Vrms3/Vrms1)}$		< 3 dB	
	Vrms1			
500 mV/div	Vrms2			
	Vrms3			
	Amplitude Loss ^[1] (dB) = $20 \times Ig^{(Vrms2/Vrms1)}$		\ge -3 dB and \le 1 dB	
	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$		≤ 3 dB	
100 mV/div	Vrms1			
	Vrms2			
	Vrms3			
	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$		\geq -3 dB and \leq 1 dB	
	Amplitude Loss ^[1] (dB) = $20 \times lq^{(Vrms3/Vrms1)}$		≤ 3 dB	
	Vrms1			
	Vrms2			
200	Vrms3			
mV/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$		\geq -3 dB and < 1 dB	
	Amplitude Loss ^[1] (dB) = $20 \times la^{(Vrms3/Vrms1)}$		$\leq 3 dB$	
	Vrms1		2000	
	Vrms2			
500	Vrms3			
mV/div	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$		$\geq -3 dB$	
	Amplitude Loss ^[1] (dB) = $20 \times ln^{(Vrms3/Vrms1)}$		$\leq 3 \text{ dB}$	
	Vertical Scale	Vertical ScaleTest ResultScaleVrms11Vrms21100Vrms31mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1200Vrms31mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1500Vrms11mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1100Vrms21100Vrms11Mrplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1200Vrms31mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1200Vrms11200Vrms21200Vrms31Mrlitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Mrms1Vrms21500Vrms11Mrlitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 1 </td <td>Vertical ScaleTest ResultScaleVrms1Vrms2Image: Scale100Vrms3mV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)Amplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)Amplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)200Vrms1MV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)Amplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)200Vrms3mV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)500Vrms1MV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)500Vrms2100Vrms2mV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)100Vrms2100Vrms2mV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)200Vrms3mV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)4mplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)4mplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)4mplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)500Vrms3mV/divAmp</td> <td>Vertical ScaleImitScaleVrms1ImitNoteVrms2ImitNoteVrms2ImitNoteVrms2ImitMV/divAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)$\geq 3 dB$Amplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)$\geq 3 dB$NoteVrms2ImitNoteVrms2ImitAmplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)$\leq 3 dB$Amplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)$\leq 3 dB$Amplitude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)$\leq 3 dB$Multude Loss^[1] (dB) = 20×lg^(Vrms2/Vrms1)$\leq 3 d$</td>	Vertical ScaleTest ResultScaleVrms1Vrms2Image: Scale100Vrms3mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 200Vrms1MV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 200Vrms3mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 500Vrms1MV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 500Vrms2100Vrms2mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 100Vrms2100Vrms2mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 200Vrms3mV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 4mplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 4mplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 4mplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) 500Vrms3mV/divAmp	Vertical ScaleImitScaleVrms1ImitNoteVrms2ImitNoteVrms2ImitNoteVrms2ImitMV/divAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\geq 3 dB$ Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\geq 3 dB$ NoteVrms2ImitNoteVrms2ImitAmplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Amplitude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 dB$ Multude Loss ^[1] (dB) = 20×lg ^(Vrms2/Vrms1) $\leq 3 d$

Note^[1]: amplitude loss (dB) = $20 \times lg^{(Vrmsn/Vrms1)}$. Wherein, Vrmsn represents Vrms2 and Vrms3.

Time Base Accuracy Test

Specification:

Time Base Accuracy ^[1]	$y^{[1]} \leq \pm (25 \text{ ppm} + 5 \text{ ppm/year} \times \text{completed years of service}^{[2]})$						
Note ^[1] : typical value.							
Note ^[2] : for the completed years of service of the instrument, calculate it according to the date in the verification							
certificate provided when the instrument left the factory.							

Test Devices: Fluke 9500B

Test Procedures:

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in the figure below.

- 2) Output a sine waveform with 1 MHz frequency and 1 Vpp amplitude from Fluke 9500B.
- 3) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate **VERTICAL** O SCALE to set the vertical scale to 200 mV/div.
 - c) Rotate VERTICAL OPOSITION to set the vertical position to 0.
 - d) Rotate HORIZONTAL @ SCALE to set the horizontal time base to 10 ns.
 - e) Rotate **HORIZONTAL** O **POSITION** to set the horizontal position to 1 ms.
- 4) Observe the display of the oscilloscope and measure the offset (Δ T) of the midpoint of the signal relative to the center of the screen.
- 5) Calculate the time base accuracy, namely the ratio of ΔT to the horizontal position of the oscilloscope. For example, if the offset of this test is 8 ns, the time base accuracy is 8 ns/1 ms=8 ppm.
- Calculate the limit of the time base accuracy using the limit formula "±(25 ppm + 5 ppm/year×completed years of service)".

Test Record Form:

Channel	Test Result ∆T	Calculation Result	Limit	Pass/Fail
			≤ ±(25 ppm + 5	
CH1			ppm/year×completed	
			years of service ^[1])	

Note^[1]: for the completed years of service of the instrument, calculate it according to the date in the verification certificate provided when the instrument left the factory.

Zero Point Offset Test

Zero point offset is defined as the offset of the crossing point of the waveform and the trigger level relative to the trigger position as shown in the figure below.

Specification:

Zero Point Offset	500 ps
-------------------	--------

Test Devices: Fluke 9500B

Test Procedures:

1) Connect the active head of Fluke 9500B to CH1 of the oscilloscope, as shown in the figure below.

- 2) Output a fast edge signal with 150 ps rise time and 600 mV amplitude from Fluke 9500B.
- 3) Configure the oscilloscope:
 - a) Press **CH1** in the vertical control area (VERTICAL) at the front panel to enable CH1.
 - b) Rotate **VERTICAL** O SCALE to set the vertical scale to 100 mV/div.
 - c) Rotate **HORIZONTAL** O SCALE to set the horizontal time base to 2 ns (for DS2102 and DS2072, set the horizontal time base to 5 ns).
 - d) Rotate **TRIGGER** <u>()</u> LEVEL to adjust the trigger level to the middle of the screen.
 - e) Rotate **VERTICAL** O POSITION and **HORIZONTAL** O POSITION to set the vertical position and horizontal position to appropriate values respectively.
- 4) Observe the display of the oscilloscope. Press Cursor → Mode → "Manual" to enable the manual cursor function to measure the zero point offset and record the measurement result.

- 5) Keep other settings unchanged and adjust the amplitude of the fast edge signal to 3 V.
- 6) Set the vertical scale to 500 mV/div. Measure the zero point offset according to the above method and record the test result.
- 7) Turn CH1 off. Repeat the above test steps to measure CH2 and record the test results.

Test Record Form:

Channel	Fast Edge Signal Amplitude	Vertical Scale	Test Result	Limit	Pass/Fail
CH1	600 mV	100 mV/div			
	3 V	500 mV/div		< 500 mg	
CH2	600 mV	100 mV/div		\geq 500 ps	
	3 V	500 mV/div			

Appendix Test Record Form

RIGOL DS2000 Series Digital Oscilloscope Performance Verification Test Record Form

 Model:
 Tested by:
 Test Date:

Impedance Test:

Channel	Vertical Scale	Test Result	Limit	Pass/Fail
CH1	100 mV/div			
	500 mV/div			
CH2	100 mV/div		\geq 0.99 M Ω and \leq 1.01 M Ω	
	500 mV/div			
EXT TRIG				

01		Test Result			1	
Channel	Vertical Scale	Vavg1	Vavg2	Calculation Result ^[1]	Limit	Pass/Fall
	500 µV/div				-	
	1 mV/div					
	2 mV/div					
	5 mV/div					
	10 mV/div					
	20 mV/div					
0114	50 mV/div					
CHT	100 mV/div					
	200 mV/div					
	500 mV/div					
	1 V/div				_ _ _ ≤ 2%	
	2 V/div					
	5 V/div					
	10 V/div					
	500 μV/div					
	1 mV/div					
	2 mV/div					
	5 mV/div					
	10 mV/div					
	20 mV/div				-	
0110	50 mV/div					
CH2	100 mV/div					
	200 mV/div					
	500 mV/div					
	1 V/div					
	2 V/div				-	
	5 V/div					
	10 V/div					

DC Gain Accuracy Test:

Note^[1]: the calculation formula is $|(Vavg1-Vavg2)-(V_{out1}-V_{out2})|/Full Scale \times 100\%$; wherein, V_{out1} and V_{out2} are 3 and -3 times of the current vertical scale respectively.

Channel	Vertical Scale	Test Result		Limit	Pass/Fail
		Vrms1			
	100 mV/div	Vrms2			
		Amplitude Loss ^[1]			
		Vrms1			
CH1	200 mV/div	Vrms2			
		Amplitude Loss			
		Vrms1			
	500 mV/div	Vrms2		$ \geq$ -3 dB and \leq 1 dB	
		Amplitude Loss			
		Vrms1			
	100 mV/div	Vrms2			
		Amplitude Loss			
		Vrms1			
CH2	200 mV/div	Vrms2			
		Amplitude Loss			
		Vrms1			
	500 mV/div	Vrms2			
		Amplitude Loss			

Bandwidth Test:

Note^[1]: amplitude loss (dB) = 20×lg^(Vrms2/Vrms1).

20 M	Hz Ban	dwidth	Limit	Test:
------	--------	--------	-------	-------

Channel	Vertical Scale	Test Result	Limit	Pass/F ail
	100	Vrms1		
		Vrms2		
		Vrms3		
	mv/aiv	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
		Vrms1		
	200	Vrms2		
CH1	200	Vrms3		
	mv/aiv	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤3 dB	
		Vrms1		
	500 mV/div	Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
	100 mV/div	Vrms1		
		Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
	200 mV/div	Vrms1		
		Vrms2		
CH2		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
	500 mV/div	Vrms1		
		Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	

Note^[1]: amplitude loss (dB) = $20 \times lg^{(Vrmsn/Vrms1)}$. Wherein, Vrmsn represents Vrms2 and Vrms3.

100 MHz Bandwidth Limit Test	(only for DS2202):
------------------------------	--------------------

Channel	Vertical Scale	Test Result	Limit	Pass/F ail
		Vrms1		
	100 mV/div	Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
		Vrms1		
	200	Vrms2		
CH1	200	Vrms3		
	mv/aiv	Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤3 dB	
		Vrms1		
	500	Vrms2		
	500 mV/div	Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times Ig^{(Vrms3/Vrms1)}$	≤ 3 dB	
	100 mV/div	Vrms1		
		Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
	200 mV/div	Vrms1		
		Vrms2		
CH2		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	
	500 mV/div	Vrms1		
		Vrms2		
		Vrms3		
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms2/Vrms1)}$	\geq -3 dB and \leq 1 dB	
		Amplitude Loss ^[1] (dB) = $20 \times lg^{(Vrms3/Vrms1)}$	≤ 3 dB	

Note^[1]: amplitude loss (dB) = 20×Ig^(Vrmsn/Vrms1). Wherein, Vrmsn represents Vrms2 and Vrms3.

Time Base Accuracy Test:

Channel	Test Result ΔT	Calculation Result	Limit	Pass/Fail
CH1			±(25 ppm + 5 ppm/year×completed	
		years of service ^[1])		

Note^[1]: for the completed years of service of the instrument, calculate it according to the date in the verification certificate provided when the instrument left factory.

Zero Point Offset Test:

Channel	Fast Edge Signal Amplitude	Vertical Scale	Test Result	Limit	Pass/Fail
0.11	600 mV	100 mV/div		- ≤ 500 ps	
СНТ	3 V	500 mV/div			
CH2	600 mV	100 mV/div			
	3 V	500 mV/div			