

 www.cypress.com Document No. 001-76348 Rev. ** 1

AN76348

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based
Design

Author: Rama Sai Krishna V
Associated Project: No

Associated Part Family: CYUSB3014
Software Version: None

Related Application Notes: For a complete list of the application notes, click here.

If you have a question, or need help with this application note, contact the author at
rskv@cypress.com

Abstract
AN76348 tells you how to modify the top-level application to migrate an EZ-USB® design based on FX2LP™ to one
based on FX3™. This application note highlights the differences between FX3 and FX2LP in architecture, hardware
level, and firmware framework using a bulkloop example.

Contents
Introduction ... 2
Architectural Differences ... 2
Serial Interfaces .. 2
GPIF versus GPIF II .. 2
Differences in Hardware Level .. 3

Booting Options .. 3
Crystal / Clock .. 3
Power Supply Configurations and Decoupling
Capacitance ... 3

Differences in Software Level .. 4
Development Tools .. 4
Applications in PC .. 4

FX2LP and FX3 Firmware Framework 4
BulkLoop Example on FX2LP ... 4
Programmer’s View of FX3 ... 5
FX3 Firmware Stack .. 6

Firmware Framework.. 6
Firmware API Library .. 6
Embedded Real Time OS... 6

BulkLoop Example on FX3 .. 6
Tool Chain Initialization .. 7
Device Initialization ... 7

Application Definition .. 8
Application Code .. 8
Application Thread ... 9
Debug Initialization ... 9
Application Initialization .. 10

Available Collateral ... 11

http://www.cypress.com/
mailto:rskv@cypress.com

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 2

Introduction
Cypress EZ-USB FX3 is the next generation USB 3.0
peripheral controller, which provides highly integrated and
flexible features that enable developers to add USB 3.0
functionality to any system.

EZ-USB FX3 has a fully configurable, parallel, general
programmable interface called GPIF II, which can connect
to an external processor, ASIC, or FPGA. The GPIF II is
an enhanced version of the GPIF in FX2LP, Cypress’s
flagship USB 2.0 product. GPIF II provides easy and
glueless connectivity to popular interfaces, such as
asynchronous SRAM, asynchronous and synchronous
address data multiplexed interface, and many others.

EZ-USB FX2LP based design cannot be used as it is with
the EZ-USB FX3 as both of these are totally different
devices. But the top level application can be modified to
work with EZ-USB FX3. A simple example, bulkloop is
used to explain the differences in the firmware
frameworks. EZ-USB FX3 has many enhancements over
EZ-USB FX2LP; later sections give more details of these.

Note This application note is targeted to the customers
who already worked with EZ-USB FX2LP device. So, this
application note has been written by assuming that you
are already familiar with the FX2LP device.

Architectural Differences
The following table lists the differences between EZ-USB
FX3 and EZ-USB FX2LP.

Feature EZ-USB FX2LP EZ-USB FX3

Core 8051 ARM926EJ

CPU speed 48 MHz 200 MHz

RAM 16 KB 512 KB

Endpoints 7 32

serial interfaces
supported I2C, UART I2C, UART, I2S, SPI

Flexible
programmable
interfaces

GPIF, 48 MHz, 8/16 –
bit interface

GPIF II, 100 MHz,
8/16/32 – bit
interface

USB USB 2.0 device USB 3.0 device,
USB 2.0 OTG

Speeds
supported High speed, full speed Super speed, high

speed, full speed

GPIOs Up to 40 Up to 60

JTAG debugger
interface Not available Supported.

Serial Interfaces
More details on the serial interfaces supported by FX2LP
and FX3 are listed in the following table.

Serial
Interface

EZ-USB FX2LP EZ-USB FX3

I2C master only at 100
and 400 kHz

master only at 100 kHz,
400 kHz and 1 MHz

UART supports only
115.2 K baud and
230.4 K baud

range of baud rates from
300 bps to 4608 Kbps

I2S not supported I2S Master as transmitter
only; sampling
frequencies supported by
the I2S interface are
32 kHz, 44.1 kHz, and
48 kHz

SPI not supported SPI Master; maximum
frequency of operation is
33 MHz

GPIF versus GPIF II
EZ-USB FX3 offers a high-performance general
programmable interface, GPIF II. This interface enables
functionality similar to but more advanced than FX2LP's
GPIF and Slave FIFO interfaces.

The GPIF II is a programmable state machine that enables
a flexible interface that may function either as a master or
slave in industry standard or proprietary interfaces. Both
parallel and serial interfaces may be implemented with
GPIF II.

The features of the GPIF II are summarized as follows:

 Functions as master or slave

 Provides 256 firmware programmable states

 Supports 8 bit, 16 bit, and 32 bit parallel data bus

 Enables interface frequencies up to 100 MHz.

 Supports 14 configurable control pins when 32 bit
data bus is used. All control pins can be either
input/output or bidirectional.

 Supports 16 configurable control pins when 16 or 8
data bus is used. All control pins can be either
input/output or bidirectional.

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 3

Differences in Hardware Level
Booting Options
EZ-USB FX2LP can boot from USB and I2C only. But
EZ-USB FX3 can load boot images from various sources,
selected by the configuration of the PMODE pins. The
boot options for EZ-USB FX3 are listed as follows:

 Boot from USB

 Boot from I2C

 Boot from SPI (SPI devices supported are M25P16
(16 Mbit), M25P80 (8 Mbit), and M25P40 (4 Mbit) or
their equivalents

 Boot from GPIF II Async ADMUX mode

 Boot from GPIF II Sync ADMUX mode

 Boot from GPIF II Async SRAM mode

PMODE[2:0] Boot From

F00 Sync ADMUX (16-bit)

F01 Async ADMUX (16-bit)

F11 USB boot

F0F Async SRAM (16-bit)

F1F I2C, On Failure, USB boot is
enabled

1FF I2C only

0F1 SPI, on Failure, USB boot is
enabled.

If an external EEPROM is used on the I2C bus for firmware
image booting, 1 kΩ pull-up resistors should be placed on
the SCL and SDA lines for up to 1 MHz EEPROM
communication.

We recommend adding pull-up and pull-down options on
the PMODE [2:0] signals and load the combination
needed for preferred booting option. Adding the options
gives the flexibility to debug the system during early
development.

Crystal / Clock
EZ-USB FX2LP supports only crystal input, where as
EZ-USB FX3 supports external clock input along with the
crystal support. The following table lists the details of the
clock or crystal inputs that these two devices accept.

 EZ-USB FX2LP EZ-USB FX3

External
clock

Not supported 19.2, 26, 38.4, and
52 MHz

Crystal 24MHz 19.2 MHz

Based on the clocking option that is used, the FSLC[2:0]
lines can be tied to power, through a weak pull-up resistor,
or to ground. The following table shows the values of
FSLC[2:0] for the different clocking options.

FSLC[2] FSLC[1] FSLC[0] Crystal/Clock

0 0 0 19.2 MHz crystal

1 0 0 19.2 MHz input clock

1 0 1 26 MHz input clock

1 1 0 38.4 MHz input clock

1 1 1 52 MHz input clock

Power Supply Configurations and
Decoupling Capacitance
The table below shows the different power domains and
the voltage settings on each of these domains for FX3.

Parameter Description Min

(V)
Max
(V)

Notes

VDD Core voltage
supply

1.15 1.25 1.2 V
typical

AVDD Analog voltage
supply

1.15 1.25 1.2 V
typical

VIO1 GPIF II I/O power
domain

1.7 3.6 1.8, 2.5
and 3.3 V
typical

VIO2 IO2 power domain 1.7 3.6 1.8, 2.5
and 3.3 V
typical

VIO3 IO3 power domain 1.7 3.6 1.8, 2.5
and 3.3 V
typical

VIO4 UART/SPI/I2S
power domain

1.7 3.6 1.8, 2.5
and 3.3 V
typical

VIO5 I2C and JTAG
supply domain

1.15 3.6 1.2, 1.8,
2.5 and 3.3
V typical

VBATT USB voltage
supply

3.2 6 3.7 V
typical

VBUS USB voltage
supply

4.1 6 5 V typical

CVDDQ Clock voltage
supply

1.7 3.6 1.8, 3.3 V
typical

U3TXVDDQ USB3.0 1.2 V
supply

1.15 1.25 1.2 V
typical

U3RXVDDQ USB3.0 1.2 V
supply

1.15 1.25 1.2 V
typical

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 4

In the case of FX2LP, we need to provide 0.1-μF ceramic
capacitors to decouple device power input pins. The
specific recommendation for the ceramic capacitor nearest
to each EZ-USB FX3 power pin is given in the following
table.

Cap Value (µF) Number of Caps Pin Name

0.1, 0.01 4 of each VDD

0.1, 2.2 1 of each AVDD

0.1, 22 1 of each U3TXVDDQ

0.1, 22 1 of each U3RXVDDQ

0.1, 0.01 1 of each CVDDQ

0.1, 0.01 1 of each per supply VIO1-5

Differences in Software Level
Development Tools
The FX2LP firmware frameworks were written using Keil
uVision2 IDE.

In the case of FX3, a set of development tools is provided
with the SDK, which includes the GPIF II Designer and the
third party ARM software development tool provides an
integrated development environment (Eclipse IDE) with
compiler, linker, assembler, and JTAG debugger. You can
download the FX3 SDK from the following link:

http://www.cypress.com/?id=3521&rtID=119

Details on the GPIF II designer are beyond the scope of
this document.

Applications in PC
CyControl.exe: We have a new Control Center
application that comes along with the FX3 SDK. The
application can be used to program both FX2LP and FX3.
Using this application we can download the code in to
RAM or program the EEPROM connected to FX3 device.

Streamer.exe: We have a streamer application for FX3,
similar to the one we have for FX2LP. Using this
application we can measure the throughput numbers for
ISO and BULK streams.

BulkLoop.exe: Additional to the two applications
mentioned previously, we have BulkLoop application for
FX3. This application can be used to test the bulkloop
example. The application also has options to send
different types of data to run this bulkloop test.

All these applications can be found in the below
mentioned path once you install the FX3 SDK in the
default location:

C:\Program Files\Cypress\EZ-
USB FX3 SDK\1.0\application\c_sharp

FX2LP and FX3 Firmware Framework
Any of our firmware examples will be frameworks based
so that you can start with one of those, or start by copying
one of the examples that has been given to you.

Differences in the firmware framework are explained
below using the bulkloop example.

Bulkloop example can be found in the location
(Cypress\USB\Examples\FX2LP\Bulkloop) after installing
the FX2LP DVK.

BulkLoop Example on FX2LP
If you look at the FX2LP’s firmware framework you will be
noticing the following mentioned files:

 fw.c: This is the main frameworks source file. It
contains main(), the task dispatcher, and the SETUP
command handler. For most firmware projects, there
is no need to modify this file. There are total four
dispatcher functions called in the main(). They are
TD_Init(), TD_Poll(), TD_Suspend(), and
TD_Resume().
TD_Init() is called once during the initialization of the
frameworks. TD_Poll() is called repeatedly during
device operation. The function should contain a state
machine that implements the user's peripheral
function.

 bulkloop.c: This source file contains initialization and
task dispatch function definitions that are called from
fw.c. This is where you will customize the frameworks
for your specific device. In this case, for bulkloop
transfers.

 dscr.a51: Assembly file that contains your device's
custom descriptors.

 USBJmpTb.OBJ: Object code that contains the ISR
jump table for USB and GPIF interrupts.

 EZUSB.LIB: The EZ-USB library is an 8051 .LIB file
that implements functions that are common to many
firmware projects. Typically, there is no reason to
modify these functions so they are provided in library
form. However, the kit includes the source code for
the library in the event that you need to modify a
function or if you just want to know how something is
done.

The bulkloop application code is implemented in the
TD_Poll() function in bulkloop.c. Bulkloop is a simple
application that can be tested with the help of
CyConsole/Control Center and FX2LP DVK. You can see
EP2 and 4 are configured as OUT EPs, EP6 and 8 are
configured as IN EPs after downloading the bulkloop
firmware into FX2LP DVK using CyConsole. Now you can
test this example by sending some bytes of data into EP2

http://www.cypress.com/
http://www.cypress.com/?id=3521&rtID=119

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 5

and you can read the same data back from EP6. Similarly
you can send some bytes to EP4 and read it back from
EP8.

Programmer’s View of FX3
The FX3 comes with the easy-to-use EZ-USB tools
providing a complete solution for fast application
development. Cypress EZ-USB FX3 is a user
programmable device and is delivered with a complete
software development kit.

The FX3 device can be set up to:

 Configure and manage USB functionality, such as
charger detection, USB device/host detection, and
endpoint configuration

 Interface to different master/slave peripherals on the
GPIF interface

 Connect to serial peripherals (UART, SPI, GPIO, I2C,
I2S)

 Set up, control, and monitor data flows between the
peripherals (USB, GPIF, and serial peripherals)

 Perform necessary operations, such as data
inspection, data modification, header / footer information,
addition/deletion

The two other important entities that are external to the
FX3 are:

 USB host/device

 When the FX3 is connected to a USB host, it
functions as a USB device. The FX3 enumerates
as a super-speed, high-speed, or full-speed USB
peripheral corresponding to the host type.

 When a USB device is connected, the FX3 plays
the role of the corresponding high-speed,
full-speed, or low-speed USB host.

 GPIF II master/slave: GPIF II is a fully configurable
interface and can realize any application specific
protocol. Any processor, ASIC, DSP, or FPGA can be
interfaced to the FX3. FX3 bootloader or firmware
configures GPIF II to support the corresponding
interface.

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 6

FX3 Firmware Stack
Powerful and flexible applications can be rapidly built
using FX3 firmware framework and FX3 API libraries.

Firmware Framework
The firmware (or application) framework has all the startup
and initialization code. The firmware also contains the
individual drivers for the USB, GPIF, and serial interface
blocks. The framework:

 Defines the program entry point

 Performs the stack setup

 Performs kernel initialization

 Provides placeholders for application thread startup
code

Firmware API Library
The FX3 API library provides a comprehensive set of APIs
to control and communicate with the FX3 hardware. These
APIs provide a complete programmatic view of the FX3
hardware.

cyfxapi .a
A full-fledged API library is provided in the FX3 SDK. This
API is similar to EZUSB.LIB in case of FX2LP. You do not
have to manually link this library to your project. The path
of this library will be automatically added to your IDE
during the SDK installation.

cyfxapi.a and the corresponding header files provide all
the APIs required for programming the different blocks of
the FX3. The APIs provide for the following:

 Programming each of the individual blocks of the FX3
device - GPIF, USB, and serial interfaces

 Programming the DMA engine and setting up of data
flows between these blocks

 The overall framework for application development,
including system boot and init, OS entry, and
application init

 Threadx OS calls as required by the application

 Power management features

 Programming low-level DMA engine

 Debug capability

Embedded Real Time OS
The FX3 firmware framework makes use of an Embedded
Real-Time Operating System. The drivers for various
peripheral blocks in the platform are typically implemented
as separate threads and other OS services, such as

Semaphores, Message Queues, Mutexes, and Timers are
used for inter-thread communication and task
synchronization.

The framework gives hooks for the application logic to
configure the device behavior and to perform data
transfers through it. The application logic itself can be
implemented across multiple threads and make use of all
of the OS services that are used by the Cypress provided
drivers.

The ThreadX operating system from Express Logic is
used as the embedded RTOS in the FX3 device. All of the
functionality supported by the ThreadX OS is made
available for use by the application logic. Some constraints
on their use are placed to ensure the smooth functioning
of all of the drivers.

The ThreadX services are not directly exposed by the
firmware framework. This is to ensure that the application
logic is independent of the OS used and need not be
changed to accommodate a future changes in the
embedded OS. The OS services are made available
through a set of platform specific wrappers that are placed
around them.

BulkLoop Example on FX3
We can do much complex applications with the help of
FX3. But we are taking you through the steps of bulkloop
firmware development to understand the FX3 firmware
framework easily.

Bulkloop example can be found in the location
(Cypress\EZ-USB FX3 SDK\1.0\firmware\dma_examples\
cyfxbulklpauto) after installing the FX3 SDK.

The bulkloop example consists of the following files:

 cyfx_gcc_startup.S: FX3 startup code. Explained in
the later sections.

 cyfxbulklpauto.h: This file contains the defines used in
cyfxbulklpdscr.c

 cyfxbulklpdscr.c: This file contains the USB
descriptors. This file is similar to dscr.a51 in case of
FX2LP.

 cyfxtx.c: This file defines the porting required for the
ThreadX RTOS.

 This file shall be provided in source form and must be
compiled with the application source code

 cyfxbulklpauto.c: This file contains the main
application logic of the bulkloop example. The
application is explained in the subsequent sections.

The entry point for the FX3 firmware is
CyU3PFirmwareEntry() function. The function is
defined in the FX3 API library and is not visible to the user.

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 7

The firmware entry function performs the following actions:

 Invalidates the caches (which were used by the
bootloader)

 Initialize the memory management unit (MMU) and
the caches

 Initializes the SYS, FIQ, IRQ, and SVC modes of
stacks

 The execution is then transferred to the Tool chain
initialization (CyU3PToolChainInit()) function.

Tool Chain Initialization
The next step in the initialization sequence is the tool
chain initialization that is defined by the specific Toolchain
used and provides a method to initialize the stacks and the
C library.

As all the required stack initialization is performed by the
firmware entry function, the Toolchain initialization is over
ridden, that is, the stacks are not reinitialized.

The tool chain initialization function written for the GNU
GCC compiler for ARM processors is presented as an
example below. You can find this part of code in
cyfx_gcc_startup.S. You do not need to modify this file.

global CyU3PToolChainInit
CyU3PToolChainInit:

clear the BSS area
__main:
 mov R0, #0
 ldr R1, =_bss_start
 ldr R2, =_bss_end
1: cmp R1, R2
 strlo R0, [R1], #4
 blo 1b

 b main

In this function, only two actions are performed:

 The BSS area is cleared

 The control is transferred to the main().

Device Initialization
This is the first user defined function in the initialization
sequence. The function main() is the C programming
language entry for the FX3 firmware. Three main actions
are performed in this function.

1. Device initialization: This is the first step in the
main().
status = CyU3PDeviceInit (NULL);
if (status != CY_U3P_SUCCESS)
{

goto handle_fatal_error;
}

As part of the device initialization:
a. The CPU clock is setup. A NULL is passed as an

argument for CyU3PDeviceInit() that selects
the default clock configuration.

b. The VIC is initialized
c. The GCTL and the PLLs are configured.
The device initialization functions is part of the FX3
library

2. Device cache configuration: The second step is to
configure the device caches. The device has 8 KB
data cache and 8 KB instruction cache. In this
example, only instruction cache is enabled as the data
cache that is useful only when there is a large amount
of CPU based memory accesses. When used in
simple cases, the CPU can decrease performance
due to large number of cache flushes, and then cleans
and it also adds complexity to the code.
status = CyU3PDeviceCacheControl
(CyTrue, CyFalse, CyFalse);

{

goto handle_fatal_error;

}

3. I/O matrix configuration: The third step is the
configuration of the I/Os that are required. This
includes the GPIF and the serial interfaces (SPI, I2C,
I2S, GPIO, and UART).
io_cfg.isDQ32Bit = CyFalse;
io_cfg.useUart = CyTrue;
io_cfg.useI2C = CyFalse;
io_cfg.useI2S = CyFalse;
io_cfg.useSpi = CyFalse;
io_cfg.lppMode =
CY_U3P_IO_MATRIX_LPP_UART_ONLY;
/* No GPIOs are enabled. */
io_cfg.gpioSimpleEn[0] = 0;
io_cfg.gpioSimpleEn[1] = 0;
io_cfg.gpioComplexEn[0] = 0;
io_cfg.gpioComplexEn[1] = 0;
status = CyU3PDeviceConfigureIOMatrix
(&io_cfg);
if (status != CY_U3P_SUCCESS)
{
goto handle_fatal_error;
}

In this bulkloop example:
a. 16 bit data bus
b. GPIO, I2C, I2S, and SPI are not used
c. UART is used
The I/O matrix configuration data structure is
initialized and the

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 8

CyU3PDeviceConfigureIOMatrix function (in the
library) is invoked.

4. The final step in the main() function is invocation of
the OS. The invocation is done by issuing a call to the
CyU3PKernelEntry() function. This function is
defined in the library and is a non-returning call. This
function is a wrapper to the actual ThreadX OS entry
call. This function:
a. Initializes the OS
b. Sets up the OS timer

Application Definition
The function CyFxApplicationDefine() is called by
the FX3 library after the OS is invoked. In this function
application specific threads are created. This function is
similar to the TD_Poll() in FX2LP firmware, where we
write the application logic.

In the bulkloop example, only one thread is created in the
application define function. This is shown as follows:

/* Allocate the memory for the threads */
 ptr = CyU3PMemAlloc
(CY_FX_BULKLP_THREAD_STACK);

/* Create the thread for the application */
 retThrdCreate = CyU3PThreadCreate
(&BulkLpAppThread, /*
Bulk loop App Thread structure */

"21:Bulk_loop_AUTO",
/* Thread ID and Thread name */

BulkLpAppThread_Entry,
/* Bulk loop App Thread Entry function */
 0,
/* No input parameter to thread */
 ptr,
/* Pointer to the allocated thread stack */

CY_FX_BULKLP_THREAD_STACK,
/* Bulk loop App Thread stack size */

CY_FX_BULKLP_THREAD_PRIORITY,
/* Bulk loop App Thread priority */

CY_FX_BULKLP_THREAD_PRIORITY,
/* Bulk loop App Thread priority */
 CYU3P_NO_TIME_SLICE,
/* No time slice for the application thread */
CYU3P_AUTO_START
/* Start the Thread immediately */
);

Note that more threads (as required by the user
application) can be created in the application define
function. All other FX3 specific programming must be done
only in the user threads.

Application Code
In the bulkloop example, 1 Auto DMA channel is created
after setting up the Producer (OUT) and Consumer (IN)
endpoint. This DMA channel connects the two sockets of
the USB port. Two endpoints 1 IN and 1 OUT are
configured as bulk endpoints. The endpoint
maxPacketSize is updated based on the speed.

CyU3PUSBSpeed_t usbSpeed =
CyU3PUsbGetSpeed();

/* First identify the usb speed. Once that
is identified,
 * create a DMA channel and start the
transfer on this. */

/* Based on the Bus Speed configure the
endpoint packet size */
 switch (usbSpeed)
 {
 case CY_U3P_FULL_SPEED:
 size = 64;
 break;

 case CY_U3P_HIGH_SPEED:
 size = 512;
 break;

 case CY_U3P_SUPER_SPEED:
 size = 1024;
 break;

 default:
 CyU3PDebugPrint (4, "Error! Invalid
USB speed.\n");
 CyFxAppErrorHandler
(CY_U3P_ERROR_FAILURE);
 break;
 }

 CyU3PMemSet ((uint8_t *)&epCfg, 0,
sizeof (epCfg));

epCfg.enable = CyTrue;
 epCfg.epType = CY_U3P_USB_EP_BULK;
 epCfg.burstLen = 1;
 epCfg.streams = 0;
 epCfg.pcktSize = size;

 /* Producer endpoint configuration */
 apiRetStatus =
CyU3PSetEpConfig(CY_FX_EP_PRODUCER,
&epCfg);
 if (apiRetStatus != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4,
"CyU3PSetEpConfig failed, Error code =
%d\n", apiRetStatus);
 CyFxAppErrorHandler (apiRetStatus);
 }

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 9

 /* Consumer endpoint configuration */
 apiRetStatus =
CyU3PSetEpConfig(CY_FX_EP_CONSUMER,
&epCfg);
 if (apiRetStatus != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4,
"CyU3PSetEpConfig failed, Error code =
%d\n", apiRetStatus);
 CyFxAppErrorHandler (apiRetStatus);
 }
/* Create a DMA Auto Channel between two
sockets of the U port.
 * DMA size is set based on the USB speed.
*/
 dmaCfg.size = size;
 dmaCfg.count =
CY_FX_BULKLP_DMA_BUF_COUNT;
 dmaCfg.prodSckId =
CY_FX_EP_PRODUCER_SOCKET;
 dmaCfg.consSckId =
CY_FX_EP_CONSUMER_SOCKET;
 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;
 dmaCfg.notification = 0;
 dmaCfg.cb = NULL;
/*In case if we are going to use DMA Manual
then we need assign a call back function to
dmaCfg.cb. (dmaCfg.cb =
CyFxBulkLpDmaCallback;)
 dmaCfg.prodHeader = 0;
 dmaCfg.prodFooter = 0;
 dmaCfg.consHeader = 0;
 dmaCfg.prodAvailCount = 0;

 apiRetStatus = CyU3PDmaChannelCreate
(&glChHandleBulkLp,
 CY_U3P_DMA_TYPE_AUTO, &dmaCfg);
 if (apiRetStatus != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4,
"CyU3PDmaChannelCreate failed, Error code =
%d\n", apiRetStatus);
 CyFxAppErrorHandler(apiRetStatus);
 }

Application Thread
The Application entry point for the bulkloop example is the
BulkLpAppThread_Entry () function.

/* Entry function for the BulkLpAppThread.
*/
void
BulkLpAppThread_Entry (uint32_t input)
{
 /* Initialize the debug module */
 CyFxBulkLpApplnDebugInit();

 /* Initialize the bulk loop application */
 CyFxBulkLpApplnInit();

 for (;;)
 {
 CyU3PThreadSleep (1000);
 }
}

The main actions performed in this thread are:

 Initializing the debug mechanism

 Initializing the main bulkloop application
Each of these steps is explained as follows.

Debug Initialization
The debug module uses the UART to output the debug
messages. The UART has to be first configured before the
debug mechanism is initialized. This is done by invoking
the UART init function.

/* Initialize the UART for printing debug
messages */
apiRetStatus = CyU3PUartInit();

The next step is to configure the UART. The UART data
structure is first filled in and this is passed to the UART
SetConfig function.

/* Set UART Configuration */
uartConfig.baudRate =
CY_U3P_UART_BAUDRATE_115200;
uartConfig.stopBit =
CY_U3P_UART_ONE_STOP_BIT;
uartConfig.parity = CY_U3P_UART_NO_PARITY;
uartConfig.txEnable = CyTrue;
uartConfig.rxEnable = CyFalse;
uartConfig.flowCtrl = CyFalse;
uartConfig.isDma = CyTrue;
apiRetStatus = CyU3PUartSetConfig
(&uartConfig, NULL);

The UART transfer size is set next that is configured to be
infinite in size. So that the total debug prints are not limited
to any size.

/* Set the UART transfer */
apiRetStatus = CyU3PUartTxSetBlockXfer
(0xFFFFFFFF);

Finally the Debug module is initialized. The two main
parameters are:

 The destination for the debug prints, which is the
UART socket

 The verbosity of the debug that is set to level 8, so all
debug prints that are below this level (0 to 7) will be
printed.
/* Initialize the Debug application */
apiRetStatus = CyU3PDebugInit
(CY_U3P_LPP_SOCKET_UART_CONS, 8);

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 10

Application Initialization
The application initialization consists of the following
steps:

USB Ini t ia l izat ion

 The USB stack in the FX3 library is first initialized. The
initialization is done by invoking the USB
Start function.
/* Start the USB functionality */
apiRetStatus = CyU3PUsbStart();

 The fast enumeration is the easiest way to setup a
USB connection, where all enumeration phase is
handled by the library. Only the class / vendor
requests need to be handled by the application. In
case of FX2LP, this enumeration part is handled in the
function SetupCommand(void) in fw.c.
The next step is to register for callbacks. In this
example, callbacks are registered for USB Setup
requests and USB Events.
CyU3PUsbRegisterSetupCallback(CyFxBulkLp
ApplnUSBSetupCB, CyTrue);

 /* Setup the callback to handle the
USB events. */

CyU3PUsbRegisterEventCallback(CyFxBulkLp
ApplnUSBEventCB);

The callback functions and the callback handling are
described in later sections.

 The USB descriptors are set and this is done by
invoking the USB set descriptor call for each
descriptor.
/* Set the USB Enumeration descriptors
*/
/* Device Descriptor */
apiRetStatus =
CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_DEVICE
_DESCR, NULL,
(uint8_t *)CyFxUSB20DeviceDscr);
The previous code snippet is for setting the Device
Descriptor. The other descriptors set in the example
are Device Qualifier, Other Speed, Configuration,
BOS (for Super Speed), and String Descriptors.

 The USB pins are connected. The FX3 USB device is
visible to the host only after this action.
Hence it is important that all setup is completed before
the USB pins are connected.
/* Connect the USB Pins */
/* Enable Super Speed operation */
apiRetStatus = CyU3PConnectState(CyTrue,
CyTrue);

USB Setup Cal lback
Since the fast enumeration model is used, only vendor
and class specific requests are received by the
application. Standard requests are handled by the
firmware library. Since there is no vendor or class specific
requests to be handled, the callback just returns CyFalse.

/* Callback to handle the USB setup
requests. */
CyBool_t
CyFxBulkLpApplnUSBSetupCB (
 uint32_t setupdat0, /* SETUP Data 0
*/
 uint32_t setupdat1 /* SETUP Data 1
*/
)
{
 /* Fast enumeration is used. Only
class, vendor and unknown requests
 * are received by this function. These
are not handled in this
 * application. Hence return CyFalse.
*/
 return CyFalse;
}

USB Event Cal lback
The USB events of interest are: Set Configuration, Reset,
and Disconnect. The bulkloop is started on receiving a
SETCONF event and is stopped on a USB reset or USB
disconnect.

/* This is the callback function to handle
the USB events. */
void
CyFxBulkLpApplnUSBEventCB (
 CyU3PUsbEventType_t evtype, /* Event
type */
 uint16_t evdata /* Event
data */
)
{
 switch (evtype)
 {
 case CY_U3P_USB_EVENT_SETCONF:
 /* Stop the application before re-
starting. */
 if (glIsApplnActive)
 {
 CyFxBulkLpApplnStop ();
 }
 /* Start the loop back function. */
 CyFxBulkLpApplnStart ();
 break;

 case CY_U3P_USB_EVENT_RESET:
 case CY_U3P_USB_EVENT_DISCONNECT:
 /* Stop the loop back function. */
 if (glIsApplnActive)
 {

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 11

 CyFxBulkLpApplnStop ();
 }
 break;

 default:
 break;
 }
}

DMA Setup
The DMA channel transfer is enabled:

/* Set DMA Channel transfer size */
 apiRetStatus = CyU3PDmaChannelSetXfer
(&glChHandleBulkLp,
CY_FX_BULKLP_DMA_TX_SIZE);
 if (apiRetStatus != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4,
"CyU3PDmaChannelSetXfer Failed, Error code
= %d\n", apiRetStatus);
 CyFxAppErrorHandler(apiRetStatus);
 }

We do not have any CyFxBulkLpDmaCallback function
as we are using the Auto commit mode. But if you are
going to use the manual channel then we need to commit
the buffer in CyFxBulkLpDmaCallback function using
the below mentioned code.

if (type == CY_U3P_DMA_CB_PROD_EVENT)
 {
 /* This is a produce event
notification to the CPU. This notification
is
 * received upon reception of every
buffer. The buffer will not be sent
 * out unless it is explicitly
committed. The call shall fail if there
 * is a bus reset / usb disconnect or if
there is any application error. */
 status =
CyU3PDmaChannelCommitBuffer (chHandle,
input->buffer_p.count, 0);
 if (status != CY_U3P_SUCCESS)
 {
 CyU3PDebugPrint (4,
"CyU3PDmaChannelCommitBuffer failed, Error
code = %d\n", status);
 }
 }

You can download USBBulkLoopAuto.img (.img is the file
that you get after the project is built) to FX3 using
CyControl and test this bulkloop example using CyControl
or BulkLoop.exe.

For more details on the FX3 software development kit,
refer to the documents available in the path Cypress\EZ-
USB FX3 SDK\1.0\doc. (1.0 in this path is version of the
SDK, it may change in future).

Available Collateral
Development Kit
CYUSB3KIT-001 EZ-USB® FX3™ Development Kit

Datasheet
CYUSB3014

SDK
EZ-USB FX3 Software Development Kit

GPIF I I Designer
GPIF™ II Designer

Applicat ion Notes

 AN75705 - Getting Started with FX3

 AN68829 - Slave FIFO Interface for EZ-USB® FX3™:
5-Bit Address Mode

 AN65974 - Designing with the EZ-USB® FX3 Slave
FIFO Interface

 AN70707 - EZ-USB® FX3 Hardware Design
Guidelines and Schematic Checklist

 AN70193 - EZ-USB® FX3 SPI Boot Option

 AN73304 - Booting EZ-USB® FX3 over Synchronous
ADMux Interfaces

 AN73150 - Booting EZ-USB® FX3 over High-Speed
USB

 AN68914 - EZ-USB® FX3 I2C Boot Option

 Go to http://www.cypress.com to download the latest
version of the product collateral

About the Author
Name: Rama Sai Krishna V

Title: Applications Engineer Sr.

Background: Rama Sai Krishna holds an M.Tech in
Systems and Control Engg. from IIT
Bombay. He is currently working on
Cypress USB peripherals.

Contact: rskv@cypress.com

http://www.cypress.com/
http://www.cypress.com/?rID=58321
http://www.cypress.com/?rID=50120
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=59628
http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=59936
http://www.cypress.com/?rID=59936
http://www.cypress.com/?rID=51581
http://www.cypress.com/?rID=51581
http://www.cypress.com/?rID=53203
http://www.cypress.com/?rID=53203
http://www.cypress.com/?rID=52343
http://www.cypress.com/?rID=56489
http://www.cypress.com/?rID=56489
http://www.cypress.com/?rID=56486
http://www.cypress.com/?rID=56486
http://www.cypress.com/?rID=52340
http://www.cypress.com/
mailto:rskv@cypress.com

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 12

Document History
Document Title: Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design – AN76348

Document Number: 001-76348

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3565979 RSKV 03/30/2012 New application note

http://www.cypress.com/

Migrating from EZ-USB® FX2LP™ Based Design to EZ-USB FX3 Based Design

 www.cypress.com Document No. 001-76348 Rev. ** 13

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2012. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

http://www.cypress.com/
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=2308
http://www.cypress.com/?id=2308
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=1162
http://www.cypress.com/
http://www.cypress.com/go/locations

	Introduction
	Architectural Differences
	Serial Interfaces
	GPIF versus GPIF II
	Differences in Hardware Level
	Booting Options
	Crystal / Clock
	Power Supply Configurations and Decoupling Capacitance

	Differences in Software Level
	Development Tools
	Applications in PC

	FX2LP and FX3 Firmware Framework
	BulkLoop Example on FX2LP
	Programmer’s View of FX3
	FX3 Firmware Stack
	Firmware Framework
	Firmware API Library
	cyfxapi.a

	Embedded Real Time OS

	BulkLoop Example on FX3
	Tool Chain Initialization
	Device Initialization
	Application Definition
	Application Code
	Application Thread
	Debug Initialization
	Application Initialization
	USB Initialization
	USB Setup Callback
	USB Event Callback
	DMA Setup

	Available Collateral
	Development Kit
	Datasheet
	SDK
	GPIF II Designer
	Application Notes

	About the Author
	Document History
	Products
	PSoC® Solutions

