XM670K-XM679K Controllers for Multiplexed Cabinets Installation and Operation Manual

Emerson Climate Technologies Retail Solutions 1065 Big Shanty Road NW, Suite 100 Kennesaw, GA 30144 USA

Phone: **770-425-2724** Fax: 770-425-9319

Table of Contents

1 INTRODUCTION	I
1.1. General Warning	1
2 OVERVIEW	1
2.1. General Description	1
2.2. Ordering Code	1
3 USER INTERFACE	2
3.1. KEYS AND FUNCTIONS	
3.2. USE OF LEDS	
3.3. HOW TO ENTER THE FAST ACCESS MENU	
3.5. How to See and Modify the Setpoint	
3.6. How to Start a Manual Defrost.	
3.7. How to Enter the Parameters List PR1	
3.8. How to Enter the Parameters List PR2	
3.9. HOW TO ASSIGN A MODBUS ADDRESS	
3.11. ON/OFF FUNCTION	
4 FAST ACCESS MENU	
5 SECTION MENU	
6 REAL TIME CLOCK FUNCTIONS (IF PRESENT)	6
6.1. TO SET THE CURRENT TIME AND DAY	
6.2. TO SET ENERGY SAVING TIMES	
6.3. TO SET TIMED DEFROST PARAMETERS	
7 ELECTRONIC EXPANSION VALVE MENU (FOR MODEL XM679K ONLY)	
8 CONTROLLING LOADS	8
8.1. SOLENOID VALVE	
8.2. STANDARDS REGULATION AND CONTINUOUS REGULATION	
8.2.1. First Kind of Regulation: Standard Regulation	
8.3. Defrost	
8.3.1. Defrost starting	
8.3.2. Defrost Ending	
8.4. FANS	
8.4.1. Control With Angles Output (If Present)	
8.4.2. Control With Analog Output (If Present)	
8.6. AUXILIARY OUTPUT	
9 PARAMETERS LIST	11
10 DIGITAL INPUTS	
10.1. GENERIC ALARM (EAL)	
10.2. SERIOUS ALARM MODE (BAL)	
10.3. Pressure Switch (PAL)	

10.4. Door Switch Input (dor)	
10.5. START DEFROST (DEF)	
10.6. RELAY AUX ACTUATION (AUS)	
10.7. RELAY LIGHT ACTUATION (LIG)	
10.8. REMOTE ON/OFF (ONF)	
10.9. KIND OF ACTION (HTR)	
10.11. ENERGY SAVING INPUT (ES)	
10.12. Configurable Input - Holiday Function (HDY)	
10.13. DIGITAL INPUTS POLARITY	
11 INSTALLATION AND MOUNTING	
12 ELECTRICAL CONNECTIONS	
12.1. Probe Connections	22
13 RS485 SERIAL LINE	23
14 HOW TO USE THE HOT KEY	23
14.1. DOWNLOAD (FROM THE HOT KEY TO THE DEVICE)	23
14.2. UPLOAD (FROM THE DEVICE TO THE HOT KEY)	23
15 ALARM SIGNALS	24
15.1. EE ALARM	25
15.2. ALARM RECOVERY	
16 TECHNICAL DATA	26
17 UL RATINGS	28
18 CONNECTIONS	29
18.1. Wiring Guidelines	29
18.2. XM670K - WIRING DIAGRAM	29
18.3. XM679K - 230VAC VALVES/WIRING DIAGRAM	
18.4. XM679K - 24VAC VALVES/WIRING DIAGRAM	31
19 E2 MODBUS NETWORK WIRING	
20 WIRING LAYOUT FOR SHARING A PRESSURE TRANSDUCER ON A LAN	
21 PRESSURE TRANSDUCER SETUP (XM679K ONLY)	
21.1. RS485 NET MONITORING TEMPERATURES	
21.1.1. RS485 Connection	
21.2. How to Enable a Pressure Probe to Share Across the LAN	
22 ECT MODBUS NETWORKING TO E2S	
22.1. COM PORT ASSOCIATIONS - E2 VERSIONS 3.XX AND BELOW	
22.2. COM PORT ASSOCIATIONS - E2 VERSIONS 4.0 AND ABOVE	
22.3. E2 SETUP OF DEVICES	
22.3.1. Set Up Network Ports	
22.4. Wiring Types	
22.5. MODBUS TERMINATION BLOCKS	
23 DEFAULT SETTING VALUES	
43 DETAULI SETTINU VALUES	417

1 Introduction

2 Overview

1.1. General Warning

Please read the following safety precautions and warnings before using this manual:

CAUTION!

• This manual is part of the product and should be kept near the device for easy and quick reference.

- The device should not be used for purposes different from those described in this manual. It cannot be used as a safety device.
 - Check the application limits before proceeding.

SAFETY PRECAUTIONS AND WARNINGS!

• Check that the supply voltage is correct before connecting the device.

- Do not expose to water or moisture: use the controller only within the operating limits and avoid sudden temperature changes with high atmospheric humidity to prevent condensation from forming.
- Warning! Disconnect all electrical connections before performing any kind of maintenance.
- Fit the probe where it is not accessible by the end user. The device must not be opened.
- In case of failure or faulty operation, send the device back to the distributor or to Emerson Retail Solutions (see address) with a detailed description of the fault.
- Verify the maximum current that can be applied to each relay (see Section 16, Technical Data).
- Ensure that the wires for probes, loads, and the power supply are separated and far enough from each other without crossing or intertwining.
- In case of applications in industrial environments, the use of main filters (our mod. FT1) in parallel with inductive loads could be useful.

2.1. General Description

Models XM670K-XM679K are high level microprocessor based controllers for multiplexed cabinets, suitable for applications on medium or low temperature. It can be inserted in a Local Area Connection (LAN) of up to eight (8) different sections that can operate depending on the programming, as stand alone controllers or by following the commands coming from the other sections.

XM670K/XM679K controllers can have six (6) relay outputs to control the solenoid valve, defrost that can be either electrical or hot gas, evaporator fans, lights, auxiliary output, alarm output and an output to drive pulsed electronic expansion valves (applicable for XM679K only).

The controllers can also have up to four (4) probe inputs: the first one for temperature control, the second for defrost end temperature control of the evaporator, the third for the display, and the fourth probe input can be used for applications with virtual probe or for inlet/outlet air temperature measurement. Model XM679K can exclusively have two (2) other probes that can be used for superheat measurement and regulation. Both XM670K and XM679K controllers are also equipped with three digital inputs (free contact) that are fully configurable through parameters.

The Hot Key connector allows simple programming of the controllers. Direct serial output RS485 MODBUS-RTU compatible permits a simple XWEB interfacing. Real Time Clocks (RTC) are available as options. Depending on the model, the Hot Key connector can also be used to connect X-REP display.

2.2. Ordering Code

Device Name	Dixell Code	Emerson Code
XM670K- XM679K	X0MGIIIMD5NA-000	318-6700

Table 2-1 - Product Ordering Code

General Warning Introduction • 1

3 User Interface

Figure 3-1 - XM670K - XM679K Front Panel

F	Measurement unit		
BAR	Measurement unit		
PSI	Measurement unit		
Key Combin	Key Combinations		
V + A	Locks/Unlocks the keyboard		
SET+♥	Switches mode to programming mode		
SET + 🛆	Exits the programming mode		

Table 3-1 - XM670K/XM679K Front Panel Keys and Functions

3.1. Keys and Functions

Table 3-1 lists the keys that are found on the front panel of XM670K-XM679K controllers and the function of each:

Kev	Function	
Key		
SET	Press to display the target setpoint, to select a parameter in programming mode, or to confirm an operation. Pressing this key for 3 seconds while the minimum or maximum temperature is displayed will erase the temperature currently displayed.	
\(\)	Press this key to browse the parameter codes in programming mode or increases the displayed value. Pressing this key for 3 seconds will give you access to the Section menu.	
>	Press this key to access the fast access menu, browse the parameter codes in programming mode, decrease the displayed value, or activate or deactivate an auxiliary output.	
**	Starts a defrost when pressed for 3 seconds.	
	Switches the room light ON and OFF.	
()	Press for 3 seconds to switch the device ON and OFF.	
~ C	Measurement unit	

Table 3-1 - XM670K/XM679K Front Panel Keys and Functions

3.2. Use of LEDS

Each LED function is described in *Table 3-2*:

LED	Mode	Function
*	ON	Compressor and valve regulation enabled. To see the valve opening percentage, enter the fast access menu.
	Flashing	Anti-short cycle delay enabled
쐈	ON	Defrost enabled
****	Flashing	Drip time in progress
(!))	ON	An alarm is occurring
(\$	ON	Energy saving enabled
	ON	Fans enabled (fans are running)
*	Flashing	Door opened or delay after defrost
AUX	ON	Auxiliary relay ON
°C/°F/Bar/PSI	ON	Measurement unit
O/ F/Bai/FOI	Flashing	Programming phase
• 00	ON	The controller is working in ALL mode
-	Flashing	The controller is working in remote virtual display mode
(Flashing	During the CLOCK modification (if clock is present)

Table 3-2 - LEDs

3.3. How to Enter the Fast Access Menu

- 1. Press and release the UP button.
- 2. The First Label will be displayed. Press the UP or DOWN button to navigate the menu.

3.4. How to See the MAX and MIN Temperature Recorded

- 1. Press and release the UP button.
- The First Label will be displayed. Press the UP or DOWN button to navigate the menu. Search the L°t label and press SET to see minimum temperature; search the H°t label and press SET to see maximum temperature.

3.5. How to See and Modify the Setpoint

- 1. Press the SET button for 3 seconds to show the setpoint value.
- 2. The measurement unit starts blinking.
- 3. To change the setpoint value, press the UP or DOWN button for 10 seconds.
- 4. To store the new setpoint value, press the SET key again or wait 10 seconds.

3.6. How to Start a Manual Defrost

Press the **DEF** key for more than 3 seconds to start a manual defrost.

3.7. How to Enter the Parameters List PR1

To enter the parameter list in **Pr1** (user accessible parameters):

- 1. Enter the programming mode by pressing the SET and DOWN buttons for a few seconds (wait for the measurement unit to start blinking).
- 2. The controller will show the first parameter present in **Pr1**.

3.8. How to Enter the Parameters List PR2

To access the parameter list in **Pr2**:

- 1. Enter the **Pr1** level. Follow the steps in **Section 3.7.,** *How to Enter the Parameters List PR1*.
- 2. Select **Pr2** parameter and press the SET key.
- 3. The **PAS** flashing message will display, followed shortly by "**0** --" with a flashing zero.
- 4. Use the UP or DOWN button to input the security code in the flashing digit. Confirm the security code by pressing SET. The security code is **321**.
- 5. If the security code is correct, the access to **Pr2** is enabled by pressing SET on the last digit.

Another way to enter the programming mode is by pressing the SET and DOWN buttons for 30 seconds immediately after switching the controller ON.

NOTE: Each parameter in Pr2 can be removed or put into Pr1 (user level) by pressing SET + DOWN buttons. When a parameter is present in Pr1, the Alarm LED will be display.

3.9. How to Assign a MODBUS Address

- 1. To enter the programming mode, press and hold the SET and DOWN buttons together until the temperature measurements start blinking.
- 2. Scroll through the parameters using the UP or DOWN button until **Adr** is displayed.
- 3. Press and hold SET to select Adr.
- Use the arrow keys to choose the address number of the device.
- Press and hold SET again to select the desired number and save.
- 6. To exit, press the SET and UP arrow keys together.

3.10. How to Change the Parameter Value

- 1. Enter the programming mode.
- Select the required parameter using the UP or DOWN button.
- 3. Press the SET key to display the parameter value (measurement unit starts blinking).
- 4. Use the UP or DOWN button to change the value.
- 5. Press SET to store the new value and move to the next parameter.
- 6. To exit, press SET + UP keys or wait 15 seconds without pressing a key.

NOTE: The set value is stored even when the time-out expires and ends the procedure.

3.11. ON/OFF Function

By pressing the **ON/OFF** key, the controller shows OFF. During the OFF status, all the relays are switched OFF and the regulations are stopped; if a monitoring system is connected, it does not record the controller data and alarms.

NOTE: During the OFF status, the Light and AUX buttons are active.

4 Fast Access Menu

FAST AC	FAST ACESS MENU		
HM	Fast Access Menu to Clock Settings	(If present)	
An	Fast Access to Analog Output Reading	(If present)	
SH	Superheat	Shows the actual superheat value (Only XM679K)	
oPP	Valve opening percentage	Shows the actual opening percentage of the valve (Only XM679K)	
dP1	Probe 1 value displaying	Shows the temperature measured by probe 1	
dP2	Probe 2 value displaying	Shows the temperature measured by probe 2	
dP3	Probe 3 value displaying	Shows the temperature measured by probe 3	
dP4	Probe 4 value displaying	Shows the temperature measured by probe 4	
dP5	Probe 5 value displaying	Shows the temperature measured by probe 5	
dP6	Probe 6 value displaying	Shows the temperature measured by probe 6	
dPP	Pressure probe value	Shows the value of pressure measured by pressure transducer (Only XM679K)	
rPP	Remote pressure probe value	Shows the value of pressure received by remote pressure probe connected to other XM600K device (Only XM679K)	
L°t	Minimum measured temperature	Shows the minimum temperature read by the regulation probe	
H°t	Maximum measured temperature	Shows the maximum temperature read by the regulation probe	
dPr	Virtual regulation probe value	Shows the value measured by the virtual regulation probe	
dPd	Virtual defrost probe value	Shows the value measured by the virtual defrost probe	
dPF	Virtual fans probe value	Shows the value measured by virtual fan probe	
rSE	Real setpoint	Shows the setpoint used during the energy saving cycle or during the continuous cycle	

Table 4-1 - Fast Access Menu

ON/OFF Function Fast Access Menu • 5

5 Section Menu

This menu allows the user to access to a particular feature of the XM series related to the LAN (Local Area Network) of controllers. Depending on the programming of this menu, a single keyboard can control either the module of the local section of the LAN or ALL. The possibilities are: LOC: the keyboard controls and display the value, the status, and the alarms of the local section of the LAN; and ALL: the command given by the keyboard are effective on all the sections of the LAN.

- 1. Press the UP key for more than 3 seconds.
- 2. The label corresponding to the section controlled by the keyboard will be displayed.
- 3. Using the UP or DOWN key, select the section you want to control.
- 4. Press the SET key to confirm and exit.

6 Real Time Clock Functions (If Present)

The following functions are available only if the Real Time Clock (RTC) is present. To access the real time clock submenu:

- 1. Enter the programming mode by pressing the SET and DOWN keys for few seconds (measurement unit starts blinking).
- 2. The controller will show the RTC label.
- 3. Press SET. You are now in the RTC function menu.

6.1. To Set the Current Time and Day

Hur	Current hour	(0 to 23 h)
Min	Current minute	(0 to 59 min)
dAY	Current day	(Sun to SAt)
Hd1	First weekly holiday	(Sun to nu) Set the first day of the week which follows the holiday times.
Hd2	Second weekly holiday	(Sun to nu) Set the second day of the week which follows the holiday times.
Hd3	Third weekly holiday	(Sun to nu) Set the third day of the week which follows the holiday times.

Table 6-1 - Current Time and Day Parameters

NOTE: Hd1, Hd2, and Hd3 values can be set also as "nu" (Not Used).

6.2. To Set Energy Saving Times

ILE	Energy Saving cycle start during workdays	(0 to 23 h 50 min) During the Energy Saving cycle, the setpoint is increased by the value in HES so that the operation setpoint is SET + HES.
dLE	Energy Saving cycle length during workdays	(0 to 24 h 00 min) Sets the duration of the En- ergy Saving cycle on workdays.
ISE	Energy Saving cycle start on holidays	(0 to 23h 50 min)
dSE	Energy Saving cycle length on holidays	(0 o 24h 00 min)
HES	Temperature increase during the Energy Saving cycle	(-30 to 30°C/ -54 to 54°F) Sets the increasing value of the setpoint during the Energy Saving cycle.

Table 6-2 - Energy Saving Times Parameters

6.3. To Set Timed Defrost Parameters

Ld1 to Ld6	Workday defrost start	(0 to 23h 50 min) These parameters set the beginning of the eight programmable defrost cycles during workdays. For example, when Ld2=12.4, the second defrost starts at 12.40 during workdays.
Sd1 to Sd6	Holiday defrost start	(0 to 23h 50 min) These parameters set the beginning of the eight programmable defrost cycles during holidays. For example, when Sd2=3.4, the second defrost starts at 3.40 on holidays.

Table 6-3 - Timed Defrost Parameters

NOTE: To disable a defrost cycle, set it to nu (not used). For example, if Ld6=nu, the sixth defrost cycle is disabled.

7 Electronic Expansion Valve Menu (For Model XM679K Only)

- Enter the programming mode by pressing the SET and DOWN buttons for a few seconds (measurement unit starts blinking).
- 2. Press the UP or DOWN key until the controller displays the EEU label.
- 3. Press SET. You are now in EEV function menu.

8 Controlling Loads

8.1. Solenoid Valve

The regulation is performed based on the temperature measured by the thermostat probe that can be a physical probe or a virtual probe obtained by a weighted average between the two probes (see **Section 9,** *Parameters List*) with a positive differential from the setpoint. If the temperature increases and reaches setpoint plus the differential, the solenoid valve is opened and then it is closed when the temperature reaches the setpoint value again.

In case of fault in the thermostat probe, the opening and closing time of the solenoid valve are configured by **Con** and **CoF** parameters.

8.2. Standards Regulation and Continuous Regulation

The regulation can be performed in two ways:

- Standard regulation is reaching the best superheat via a classic temperature regulation obtained using hysteresis.
- Continuous regulation permits the use of the valve to realize a high performance temperature regulation with a good factor of superheat precision. *This only can be used only in centralized plants and it is available only with electronic expansion valve by selecting the CrE=Y parameter.*

In any case, the regulation is performed via the PI regulator that gives the opening percentage to the valve via PWM modulation explained as follows: Opening Percentage is obtained from the average of the Opening Time with respect to the **CyP** time period (see *Figure 8-1*).

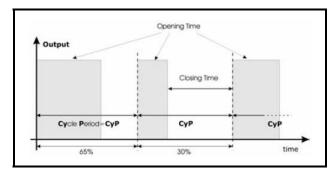


Figure 8-1 - Regulation via PI Regulator

Opening percentage is the percentage of the cycle period where the valve is open. For example, if **CyP=6s** (standard value) and the valve is opened at **50%**, this means that the valve is opened for 3 seconds during the cycle period.

8.2.1. First Kind of Regulation: Standard Regulation

In this case, the **Hy** parameter is the differential for the standard ON/OFF regulation. In this case, the **int** parameter is neglected. The regulation follows the diagram shown in *Figure 8-2*:

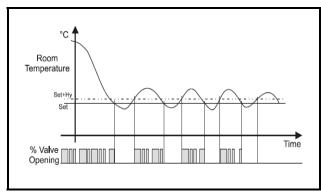


Figure 8-2 - First Kind of Regulation

8.2.2. Second Kind of Regulation: Continuous Regulation (For Model XM679K Only)

In this case, the **Hy** parameter is the proportional band of PI in charge of room temperature regulation. It is advisable to use at least **Hy**=5.0°C/10°F.

The **int** parameter is the integral time of the same PI regulator. Increasing the **int** parameter will cause the PI regulator to react more slowly, and is true vice versa. To disable the integral part of regulation, set **int=0**.

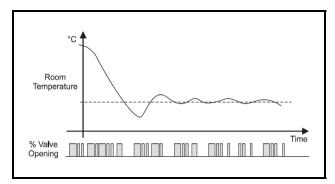


Figure 8-3 - Second Kind of Regulation

8.3. Defrost

8.3.1. Defrost starting

In any case, the device checks the temperature that is read by the configured defrost probe before starting defrost procedure. After that:

- If RTC is present, two defrost modes are available through the tdF parameter: defrost with electrical heater and hot gas defrost. The defrost interval is controlled by parameter EdF: (EdF = rtc) defrost is made in real time depending on the hours set in the parameters Ld1..Ld6 in workdays, and in Sd1...Sd6. On holidays: (EdF = in) the defrost is made every IdF time.
- Starting defrost cycles can be operated locally (manual activation by means of the keyboard or digital input or end of interval time) or the command can come from the Master defrost unit of the LAN. In this case, the controller will operate the defrost cycle following the parameters it has programmed, but at the end of the drip time it will wait until all the other LAN controllers finish their defrost cycle before the normal regulation of the temperature is restarted according to the **dEM** parameter.
- Every time any of the LAN controllers begin a defrost cycle, it issues the command to the network making all the other controllers start their own cycle. This allows a perfect synchronization of the defrost in the whole multiplexed cabinet according to LMd parameter.
- By selecting the dPA and dPb probes and changing the dtP and ddP parameters, defrost can be started when the difference between the dPA and dPb probes is lower than dtP for all ddP time. This is useful to start defrost when a low thermal exchange is detected. If ddP=0, this function is disabled.

Defrost Controlling Loads • 9

8.3.2. Defrost Ending

- When defrost is started via RTC, the maximum defrost duration is obtained from the Md parameter and the defrost end temperature is obtained from the dtE parameter (and the dtS if two defrost probes are selected).
- If **dPA** and **dPb** are present and **d2P=y**, the controller stops the defrost procedure when **dPA** is higher than the **dtE** temperature and **dPb** is higher than the **dtS** temperature.

At the end of defrost, the drip time is controlled through the **Fdt** parameter.

8.4. Fans

8.4.1. Control With Relay

The fan control mode is selected by means of the **FnC** parameter:

- C-n = running with the solenoid valve, OFF during defrost
- **C-y** = running with th1e solenoid valve, ON during defrost
- **O-n** = continuous mode, OFF during defrost
- O-y = continuous mode, ON during defrost

An additional parameter **FSt** provides the setting of temperature, detected by the evaporator probe, above which the fans are always OFF. This ensures that air is circulated only if the temperature is lower than set in **FSt**.

8.4.2. Control With Analog Output (If Present)

The modulating output (**trA=rEG**) works in a proportional manner (excluding the first **AMt** seconds where the fans speed is the maximum). The regulation setpoint is relative to the regulation setpoint and is indicated by the parameter **ASr**, the proportional band is always located above the **SET+ASr** value and its value is **PbA**. The fans are at minimum speed (**AMi**) when the temperature read by the fan probe is **SET+ASr** and the fans are at maximum speed (**AMA**) when the temperature is **SET+ASr+PbA**.

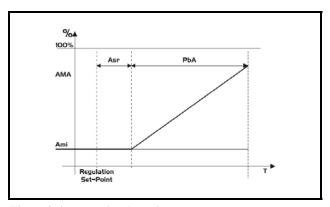


Figure 8-4 - Control with Analog Output

8.5. Anti-Sweat Heaters (If Present)

This control is performed when **trA=AC**. In this case, there are two ways to control the anti-sweat heaters:

- Without real dewpoint information: in this case, the default value for dewpoint is used (**SdP** parameter).
- Dewpoint received from the XWEB5000 system: the SdP parameter is overwritten when the valid value for dewpoint is received from XWEB.

The P4 probe is used to perform the regulation and it should be placed on the showcase glass. In case of P4 error or if P4 is absent, the output is at **AMA** value for the **AMt** time then the output is at 0 value for the time **255-AMt** time performing a simple PWM modulation.

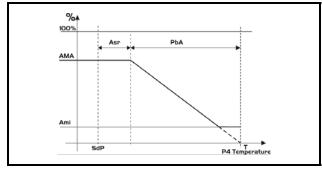


Figure 8-5 - Anti-Sweat Heaters

8.6. Auxiliary Output

The auxiliary output is switched ON and OFF by means of the corresponding digital input or by pressing and releasing the DOWN key.

9 Parameters List

REGULATION		
rtC	Access to CLOCK submenu (if present)	
EEU	Access to EEV submenu (only XM679K);	
Ну	Differential: (0.1 to 25.5°C; 1 to 45°F) This is the intervention differential for setpoint, this value is always positive. Solenoid valve Cut IN is Setpoint Plus Differential (Hy). Solenoid valve Cut OUT is when the temperature reaches the setpoint.	
Int	Integral time for room temperature regulation (Only XM679K): (0 to 255 s) This is the integral time for room temperature PI regulator. 0= no integral action.	
CrE	Continuous regulation activation (Only XM679K): (n to Y) n= standard regulation; Y= continuous regulation. Use it only in centralized plants;	
LS	Minimum setpoint limit: (-55.0°C to SET; -67°F to SET) Sets the minimum acceptable value for the setpoint.	
US	Maximum setpoint limit: (SET to 150°C; SET to 302°F) Set the maximum acceptable value for setpoint.	
OdS	Outputs activation delay at start up: (0 to 255 min) This function is enabled at the initial start up of the device and inhibits any output activation for the time set in the parameter. (AUX and Light can work)	
AC	Anti-short cycle delay: (0 to 60 min) The interval between the solenoid valve stop and the following restart.	
CCt	Compressor ON time during continuous cycle: (0.0 to 24.0h; resolution 10min) Allows to set the length of the continuous cycle: compressor stays on without interruption for the CCt time. Can be used, for instance, when the room is filled with new products.	
CCS	Setpoint for continuous cycle: (-55 to 150°C / -67 to 302°F) it sets the setpoint used during the continuous cycle.	
Con	Solenoid valve ON time with faulty probe: (0 to 255 min) The time during which the solenoid valve is active in case of faulty thermostat probe. With COn=0 solenoid valve is always OFF.	
CoF	Solenoid valve OFF time with faulty probe: (0 to 255 min) time during which the solenoid valve is off in case of faulty thermostat probe. With COF=0 solenoid valve is always active	
	DISPLAY	
CF	Temperature measurement unit: °C = Celsius; °F = Fahrenheit. CAUTION! When the measurement unit is changed the parameters with temperature values have to be checked.	
PrU	Pressure mode: (rEL or AbS) it defines the mode to use the pressure. CAUTION! the setting of PrU is used for all the pressure parameters. If PrU = rEL all pressure parameters are in relative pressure unit, if PrU = AbS all pressure parameters are in absolute pressure unit. (Only XM679K)	
PMU	Pressure measurement unit: (bAr - PSI - MPA) it selects the pressure measurement units. MPA= the value of pressure measured by kPA*10. (Only XM679K)	
PMd	Way of displaying pressure: (tEM - PrE) it permits showing the value measured by pressure probe with tEM= temperature or by PrE= pressure; (Only XM679K)	
rES	Resolution (for °C): (in = 1°C; dE = 0.1 °C) allows decimal point display;	
Lod	device display: (nP; P1; P2, P3, P4, P5, P6, tEr, dEF) it selects which probe is displayed by the device. P1, P2, P3, P4, P5, P6, tEr= virtual probe for thermostat, dEF= virtual probe for defrost.	

Table 9-1 - XM670K to XM679K Parameters List

red	Remote display: (nP; P1; P2, P3, P4, P5, P6, tEr, dEF) it selects which probe is displayed by the X-REP. P1, P2, P3, P4, P5, P6, tEr= virtual probe for thermostat, dEF= virtual probe for defrost.	
dLy	Display delay: (0 to 24.0 m; resolution 10s) when the temperature increases, the display is updated of 1 °C/1°F after this time.	
rPA	Regulation probe A: (nP; P1; P2, P3, P4, P5) first probe used to regulate room temperature. If rPA = nP the regulation is performed with real value of rPb.	
rPb	Regulation probe B: (nP; P1; P2, P3, P4, P5) second probe used to regulate room temperature. If rPb = nP the regulation is performed with real value of rPA	
rPE	Regulation virtual probe percentage: (0 to 100%) it defines the percentage of the rPA respect to rPb. The value used to regulate room temperature is obtained by: value_for_room = (rPA*rPE + rPb*(100-rPE))/100	
	ELECTRONIC EXPANSION VALVE SUBMENU (Only XM679K)	
FtY	Kind of gas (R22, 134, 404, 407, 410, 507, CO2): Type of gas used by plant. Fundamental parameter for correct functioning of all system.	
SSH	Superheat setpoint: [0.1°C to 25.5°C] [1°F to 45°F] This is the value used to regulate superheat	
СуР	Cycle Period: (1 to 15s) Allows to set cycle time;	
Pb	Proportional band: (0.1 to 60.0 / 1 to 108°F) PI proportional band;	
rS	Band Offset: (-12.0 to 12.0°C / -21 to 21°F) PI band offset;	
inC	Integration time: (0 to 255s) PI integration time;	
PEO	Probe Error opening percentage: (0 to 100%) if a temporary probe error occurs, valve opening percentage is PEo until PEd time is elapsed;	
PEd	Probe Error delay before stopping regulation: (0 to 239 sec On = unlimited) if probe error duration is bigger than PEd then valve totally closes. Pf message displays. If PEd = On valve opening is PEo until probe error finishes;	
OPE	Start opening Percentage: (0 to 100%) Valve opening percentage when start function is active. This phase duration is SFd time;	
SFd	Start Function duration: (0.0 to 42.0 min: resolution 10s) Sets start function duration and post-defrost duration. During this phase the alarms are neglected;	
OPd	Opening Percentage after defrost phase: (0 to 100%) Opening valve percentage when after defrost function is active. This phase duration is Pdd time;	
Pdd	Post Defrost Function duration: (0.0 to 42.0 min: resolution 10s) Sets start function duration and post-defrost duration. During this phase the alarms are neglected;	
MnF	Maximum opening percentage at normal Functioning: (0 to 100%) during regulation it sets the maximum valve opening percentage;	
dCL	Delay before stopping valve regulation: (0 to 255s) When the cooling request goes off, the electronic valve regulation can go on for the dCL time in order to prevent uncontrolled superheat variation;	
Fot	Forced opening percentage: (0 to 100% - nu) it permits to force the valve opening to the specified value. This value overwrites the value calculated by PID algorithm. CAUTION! To obtain the correct superheat regulation you have to set Fot = nu;	

Table 9-1 - XM670K to XM679K Parameters List

tPP	Type of Pressure Transducer: (PP - LAn) it sets type of pressure transducer to use: PP= 4 to 20mA pressure transducer or ratiometric transducer 0 to 5V depending on P5C parameter, LAn= the pressure signal arrives from another XM600K; Referred to Pb5	
PA4	Probe value At 4mA or At 0V: (-1.0 to P20 bar / -14 to PSI / -10 to P20 kPA*10) pressure value measured by probe at 4mA or at 0V (related to PrM parameter) Referred to Pb5	
P20	Probe value 20mA or At 5V: (PA4 to 50.0 bar / 725 psi / 500 kPA*10) pressure value measured by probe at 20mA or at 5V (related to PrM parameter) Referred to Pb5	
LPL	Lower Pressure Limit for superheat regulation: (PA4 to P20 bar / psi / kPA*10) when suction pressure comes down to LPL the regulation is performed with a LPL fixed value for pressure, when pressure comes back to LPL the normal pressure value is used. (related to PrM parameter)	
МОР	Maximum Operating Pressure threshold: (PA4 to P20 bar / psi / kPA*10) if suction pressure exceeds maximum operating pressure value, device signals situation with MOP alarm. (related to PrM parameter)	
LOP	Lowest Operating Pressure threshold: (PA4 to P20 bar / psi / kPA*10) If the suction pressure comes down to this value, a low pressure alarm is signaled with LOP alarm. (related to PrM parameter)	
dML	delta MOP-LOP: (0 to 100%) When a MOP alarm occurs, the valve will close of the dML percentage every cycle period until MOP alarm is active. When LOP occurs, the valve will open of the dML percentage every cycle period until LOP alarm is active.	
MSH	Maximum Superheat alarm: (LSH to 80.0°C / LSH to 144°F) When the superheat exceeds this value, a high superheat alarm is signaled after interval SHd.	
LSH	Lowest Superheat alarm: (0.0 to MSH °C / 0 to MSH °F) When the superheat goes down to this value, a low superheat alarm is signaled after interval SHd.	
SHy	Superheat alarm Hysteresis: (0.1 to 25.5°C/1 to 45°F) Hysteresis for superheat alarm deactivation.	
SHd	Superheat alarm activation delay: (0.0 to 42.0 min: resolution 10s) When a superheat alarm occurs, the time SHd have to pass before signaling the alarm.	
FrC	Fast-recovery Constant: (0 to 100 s) permits to increase integral time when SH is below the setpoint. If FrC=0 fast recovery function is disabled	
	DEFROST	
dPA	defrost Probe A: (nP; P1; P2, P3, P4, P5) first probe used for defrost. If rPA = nP the regulation is performed with real value of dPb.	
dPb	defrost Probe B: (nP; P1; P2, P3, P4, P5) second probe used for defrost. If rPB = nP the regulation is performed with real value of dPA.	
dPE	defrost virtual probe percentage: (0 to 100%) it defines the percentage of the dPA respect to dPb. The value used to regulate room temperature is obtained by: value_for_defrost= (dPA*dPE + dPb*(100-dPE))/100	
tdF	Defrost type: (EL - in) EL = electrical heater; in = hot gas;	
EdF	Defrost mode: (rtc - in) (only if RTC is present) rtc= defrost activation via RTC; in= defrost activation with idf.	
Srt	Heater setpoint during defrost: (-55.0 to 150.0°C; -67 to 302°F) if tdF=EL during the defrost the defrost relay perform an ON/OFF regulation with Srt as setpoint.	
Hyr	Differential for heater: (0.1°C to 25.5°C, 1°F to 45°F) the differential for heater;	
	I .	

Table 9-1 - XM670K to XM679K Parameters List

tod	Time out for heater: 0 to 255 (min.) if the defrost probe temperature is bigger than Srt for all tod time the defrost ends although the defrost probe temperature is lower than dtE or dtS. It permits to reduce defrost duration;		
dtP	Minimum temperature difference to start defrost: [0.1°C to 50.0°C] [1°F to 90°F] if the difference between the two defrost probes stays lower than dtP for all ddP time the defrost is activated.		
ddP	Delay before starting defrost (related to dtP): (0 to 60 min) delay related to dtP.		
d2P	Defrost with two probes: (n - Y) n= only the dPA probe is used to defrost management; Y= defrost is managed with dPA probe and dPb probe. Defrost can performed only if both probe value are lower than dtE for dPA probe and dtS for dPb probe;		
dtE	Defrost termination temperature (Probe A): (-55.0 to 50.0°C; -67 to 122°F) (Enabled only when the evaporator probe is present) sets the temperature measured by the evaporator probe dPA which causes the end of defrost.		
dtS	Defrost termination temperature (Probe B): (-55.0 to 50.0°C; -67 to 122°F) (Enabled only when the evaporator probe is present) sets the temperature measured by the evaporator probe dPb which causes the end of defrost.		
IdF	Interval between defrosts: (0 to 120h) Determines the time interval between the beginning of two defrost cycles.		
MdF	Maximum duration of defrost: (0 to 255 min) When dPA and dPb aren't present, it sets the defrost duration, otherwise it sets the maximum duration for defrost;		
dSd	Start defrost delay: (0 to 255 min) This is useful when different defrost start times are necessary to avoid overloading the plant.		
dFd	Display during defrost: rt = real temperature; it = temperature reading at the defrost start; Set = setpoint; dEF = "dEF" label.		
dAd	Defrost display time out: (0 to 255 min) Sets the maximum time between the end of defrost and the restarting of the real room temperature display.		
Fdt	Drain down time: (0 to 255 min.) time interval between reaching defrost termination temperature and the restoring of the control's normal operation. This time allows the evaporator to eliminate water drops that might have formed due to defrost.		
dPo	First defrost after start-up: y = Immediately; n = after the IdF time		
dAF	Defrost delay after continuous cycle: (0 to 23.5h) time interval between the end of the fast freezing cycle and the following defrost related to it.		
	FAN		
FPA	Fan probe A: (nP; P1; P2, P3, P4, P5) first probe used for fan. If FPA = nP the regulation is performed with real value of FPB;		
FPB	Fan probe B: (nP; P1; P2, P3, P4, P5) second probe used for defrost. If FPB = nP the regulation is performed with real value of FPB;		
FPE	Fan virtual probe percentage: (0 to 100%) Defines the percentage of the FPA with respect to FPb. The value used to regulate room temperature is obtained by: value_for_defrost= (FPA*FPE + FPb*(100-FPE))/100		
FnC	Fan operating mode: C-n = running with the solenoid valve, OFF during the defrost; C-y = running with the solenoid valve, ON during the defrost; O-n = continuous mode, OFF during the defrost; O-y = continuous mode, ON during the defrost.		

Table 9-1 - XM670K to XM679K Parameters List

For temperature differential avoiding short cycles of fans (0.0°C to 50.0°C; 0°F to 90°F) If the difference of temperature between the evaporator and the room probes is more than the value of the Fct parameter, the fans are switched on. FSt	Fnd	Fan delay after defrost: (0 to 255 min) The time interval between the defrost end and evaporator fans start.
temperature between the evaporator and the room probes is more than the value of the Fct parameter, the fans are switched on. FSt Fan stop temperature: (-50 to 110°C; -58 to 230°F) setting of temperature, detected by evaporator probe, above which the fan is always OFF. FIND Differential to restart fan: (0.1°C to 25.5°C) (1°F to 45°F) when stopped, fan restarts when fan probe reaches FSt-FHy temperature. Fod Fan activation time after defrost: (0 to 255 min.) it forces fan activation for indicated time. Fan ON time: (0 to 15 min) with Fne = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan ON cycling time when the compressor is off. With Fon =0 and FoF ? 0 the fan are always off, with Fon=0 and FoF =0 the fan are always off. Fan OFF time: (0 to 15 min) with Fne = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan off cycling time when the compressor is off. With Fon =0 and FoF =0 the fans are always off, with Fon=0 and FoF =0 the fans are always off. **With Fon=0 and FoF =0 the fans are always off.** MODULATING OUTPUT (ANOUT) If Present Kind of regulation with PWM output: (UAL - rEG - AC) it selects the functioning for the PWM output if CoM is not equal to OA? UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm described in fan section; AC= anti-sweat heaters control (require the XWEB5000 system). SOA Fixed value for analog output: (0 to 100%) value for the output if IrA = UAL. SdP Default value for bew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. AST Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). AMI Minimum value for analog output: (0 to AMA) Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan seat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255	1110	•
above which the fan is always OFF. FII Differential to restart fan: (0.1°C to 25.5°C) (1°F to 45°F) when stopped, fan restarts when fan probe reaches Fst-FHy temperature. Fod Fan activation time after defrost: (0 to 255 min.) it forces fan activation for indicated time. Fan ON time: (0 to 15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan ON cycling time when the compressor is off. With Fon = 0 and FoF ? 0 the fan are always off, with Fon=0 and FoF = 0 the fan are always off. Fan OFF time: (0 to 15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan off cycling time when the compressor is off. With Fon = 0 and FoF = 0 the fans are always off, with Fon=0 and FoF = 0 the fans are always off. **MODULATING OUTPUT (AnOUT) If Present **MODULATING OUTPUT (AnOUT) If Present Kind of regulation with PWM output: (UAL - rEG - AC) it selects the functioning for the PWM output if COM is not equal to OA7. UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm described in fan section, AC= anti-sweat heaters control (require the XWEB5000 system). SOA Fixed value for Dew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. AST Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). AMI Minimum value for analog output: (0 to AMA) MAA MAA Maximum value for analog output: (0 to AMA) Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. **ALARMS** rAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature High temperature alarm setting: (ALC=rE, 0 to 50°C or 90°F / ALC=Ab, ALL to 150°C or -67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm	FCt	temperature between the evaporator and the room probes is more than the value of the Fct parameter, the fans
FSt-FHy temperature. Fod Fan activation time after defrost: (0 to 255 min.) it forces fan activation for indicated time. Fan ON time: (0 to 15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan ON cycling time when the compressor is off. With Fon = 0 and FoF ? 0 the fan are always off, with Fon=0 and FoF = 0 the fan are always off. Fan OFF time: (0 to 15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan off cycling time when the compressor is off. With Fon = 0 and FoF = 0 the fans are always off, with Fon=0 and FoF = 0 the fans are always off. **WODULATING OUTPUT (AnOUT) If Present** Kind of regulation with PWM output: (UAL - rEG - AC) it selects the functioning for the PWM output if CoM is not equal to OA7. UAL—the output is at FSA value; rEG—the output is regulated with fan algorithm described in fan section; AC= anti-sweat heaters control (require the XWEB5000 system). SOA Fixed value for analog output: (0 to 100%) value for the output if trA = UAL. SdP Default value for Dew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMI Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMI Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. **Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature High temperature alarm setting: (ALC = rE, 0 to 50°C or 90°F / ALC = Ab, ALL to 150°C or 302°F) when this temperature alarm setting: (ALC = rE, 0 to 50°C or 90°F / ALC = Ab, ALL to 150°C or -67°F to ALU) when this temperature al	FSt	
Fan ON time: (0 to 15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). Sets the evaporator fan ON cycling time when the compressor is off. With Fon =0 and FoF ? 0 the fan are always off, with Fon=0 and FoF =0 the fan are always off. FoF	FHy	
evaporator fan ON cycling time when the compressor is off. With Fon =0 and FoF ? 0 the fan are always off, with Fon=0 and FoF =0 the fan are always off. FoF FoF FoF FoF FoF FoF FoF FoF FoF F	Fod	Fan activation time after defrost: (0 to 255 min.) it forces fan activation for indicated time.
evaporator fan off cycling time when the compressor is off. With Fon =0 and FoF =0 the fans are always off, with Fon=0 and FoF =0 the fans are always off. ### MODULATING OUTPUT (AnOUT) If Present Kind of regulation with PWM output: (UAL - rEG - AC) it selects the functioning for the PWM output if CoM is not equal to OA7. UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm described in fan section; AC= anti-sweat heaters control (require the XWEB5000 system). SOA Fixed value for analog output: (0 to 100%) value for the output if trA = UAL. SdP Default value for Dew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. ASr Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMI Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMI AMA Maximum value for analog output: (Ami to 100) AMI ANA Maximum value for analog output: (Ami to 100) ALARMS Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ### LARMS Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm related to the absolute temperature. ### LIB High temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALU Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	Fon	evaporator fan ON cycling time when the compressor is off. With Fon =0 and FoF? 0 the fan are always off,
Kind of regulation with PWM output: (UAL - rEG - AC) it selects the functioning for the PWM output if CoM is not equal to OA7. UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm described in fan section; AC= anti-sweat heaters control (require the XWEB5000 system). SOA Fixed value for analog output: (0 to 100%) value for the output if trA = UAL. SdP Default value for Dew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. ASr Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMI Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMI Anti-sweat heaters cycle period (trA=AC) / Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. **ALARMS** **Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature **ALARMS** TAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm related to the absolute temperature. ALC Temperature alarm setting: (ALC=rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature alarm setting: (ALC=rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarm setting: (ALC=rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. ALL Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	FoF	evaporator fan off cycling time when the compressor is off. With Fon =0 and FoF =0 the fans are always off,
trA CoM is not equal to OA7. UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm described in fan section; AC= anti-sweat heaters control (require the XWEB5000 system). SOA Fixed value for analog output: (0 to 100%) value for the output if trA = UAL. SdP Default value for Dew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. ASr Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMI Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) Anti-sweat heaters cycle period (trA=AC) / Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. **ALARMS** **rAL** Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature **ALARMS** TAL** Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALC** High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature alarms setting: (O.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of		MODULATING OUTPUT (AnOUT) If Present
Default value for Dew point: (-55.0 to 50.0°C; -67 to 122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC. AST Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMI Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMI ANT ANTI-Sweat heaters cycle period (trA=AC) / Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. **ALARMS** **Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature **ALARMS** **ALARMS** **Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm related to the absolute temperature. **ALARMS** **ALARMS** **ALARMS** **Imperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. **ALARMS** **ALARMS** **Imperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. **ALARMS** **Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of the point is the point of temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of the point is the point of temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of the point is the point of the point is the point in the point is the point in the	trA	CoM is not equal to OA7. UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm
no supervising system (XWEB5000). Used only when trA=AC. ASr Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C to 25.5°C) (-45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMi Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMt Anti-sweat heaters cycle period (trA=AC) / Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. **ALARMS** Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature **ALARMS** ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. AHV Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	SOA	Fixed value for analog output: (0 to 100%) value for the output if trA = UAL.
ASF 45°F to 45°F). PbA Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F) AMI Minimum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMt Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. ALARMS rAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. ALL Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	SdP	
AMA Maximum value for analog output: (0 to AMA) AMA Maximum value for analog output: (Ami to 100) AMt Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. ALARMS rAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. AHV Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	ASr	
AMA Maximum value for analog output: (Ami to 100) AMt Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. ALARMS Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. AHV Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	PbA	Differential for anti-sweat heaters: (0.1°C to 25.5°C) (1°F to 45°F)
Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): (0 to 255 s) when the fan starts, during this time the fan is at maximum speed. ALARMS rAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, -55°C or -67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. ALL Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	AMi	Minimum value for analog output: (0 to AMA)
TAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC = rE, 0 to 50 °C or 90°F / ALC = Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. ALL Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	AMA	Maximum value for analog output: (Ami to 100)
Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) Selects the probe used to signal alarm temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. ALV Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	AMt	
temperature ALC Temperature alarm configuration: rE = High and Low alarms related to Setpoint; Ab = High and low alarms related to the absolute temperature. High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC= rE, 0 to 50 °C or 90°F / ALC= Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of		ALARMS
related to the absolute temperature. ALU High temperature alarm setting: (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC = rE, 0 to 50 °C or 90°F / ALC = Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	rAL	
this temperature is reached and after the ALd delay time the HA alarm is enabled. ALL Low temperature alarm setting: (ALC = rE, 0 to 50 °C or 90°F / ALC = Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	ALC	
this temperature is reached and after the ALd delay time, the LA alarm is enabled. Differential for temperature alarm: (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of	ALU	
AHV	ALL	
	АНу	

Table 9-1 - XM670K to XM679K Parameters List

ALd	Temperature alarm delay: (0 to 255 min) The time interval between the detection of an alarm condition and the corresponding alarm signaling.	
dLU	High temperature alarm (defrost probe): (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) When this temperature is reached and after the ddA delay time, the HAd alarm is enabled.	
dLL	Low temperature alarm (defrost probe): (ALC = rE, 0 to 50 °C or 90°F / ALC = Ab, - 55°C or - 67°F to ALU) when this temperature is reached and after the ALd delay time, the LAd alarm is enabled.	
dAH	Differential for temperature alarm (defrost probe): (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of temperature alarm.	
ddA	Temperature alarm delay (defrost probe): (0 to 255 min) time interval between the detection of an alarm condition and the corresponding alarm signaling.	
FLU	High temperature alarm (defrost probe): (ALC= rE, 0 to 50°C or 90°F / ALC= Ab, ALL to 150°C or 302°F) when this temperature is reached and after the FAd delay time the HAF alarm is enabled.	
FLL	Low temperature alarm (defrost probe): (ALC = rE, 0 to 50° C or 90° F / ALC = Ab, - 55° C or - 67° F to ALU) when this temperature is reached and after the FAd delay time, the LAF alarm is enabled.	
FAH	Differential for temperature alarm (defrost probe): (0.1°C to 25.5°C / 1°F to 45°F) Intervention differential for recovery of temperature alarm.	
FAd	Temperature alarm delay (defrost probe): (0 to 255 min) time interval between the detection of an alarm condition and the corresponding alarm signaling.	
dAO	Delay of temperature alarm at start-up: (0min to 23h 50min) The time interval between the detection of the temperature alarm condition after the device power on and the alarm signaling.	
EdA	Alarm delay at the end of defrost: (0 to 255 min) Time interval between the detection of the temperature alarm condition at the end of defrost and the alarm signaling.	
dot	Temperature alarm exclusion after door open:	
Sti	Stop regulation interval (Only XM679K): (0.0 to 24.0 hours: tens of minutes) After regulating continuously for Sti time, the valve closes for Std time to prevent ice from forming.	
Std	Stop duration (Only XM679K): (0 to 60 min.) Defines the stop regulation time after Sti. During this stop display shows StP message.	
OA6	Sixth relay configuration (CPr-dEF-Fan-ALr-LiG-AUS-db-OnF): CPr= relay works as a compressor or solenoid valve relay; dEF= relay works as defrost relay; Fan= relay works as a Fan relay; ALr= activation with alarm conditions; LiG= light activation; AUS= auxiliary relay, it can be switched ON/OFF also by key; db= dead band regulation (not compatible with CrE = y); OnF= ON/OFF functioning.	
	OPTIONAL OUTPUT (AnOUT) If Present	
OA7	Modulating output configuration (if CoM=0A7): (CPr - dEF - FAn - ALr - LiG - AUS - db) it selects the functioning of the modulating output in case of CoM=OA7: CPr= compressor; dEF= defrost; FAn= Fan; Alr= Alarm; LiG= Light; AUS= auxiliary; db= neutral zone (not available with CrE=Y)	
СоМ	Type of functioning modulating output: For models with PWM / O.C. output -> PM5= PWM 50Hz; PM6= PWM 60Hz; OA7= two state, it can be used as an open collector output For models with 4 to 20mA / 0 to 10V output -> Cur= 4 to 20mA current output; tEn= 0 to 10V voltage output	
AOP	Alarm relay polarity: cL= normally closed; oP= normally opened	
iAU	Auxiliary output is unrelated to ON/OFF device status: n= if the device is switched off also the auxiliary output is switched off; Y= the auxiliary output state is unrelated to the ON/OFF device status	
	•	

Table 9-1 - XM670K to XM679K Parameters List

DIGITAL INPUTS		
i1P	Digital input 1 polarity: (cL - oP) CL: the digital input is activated by closing the contact; OP: the digital input is activated by opening the contact.	
i1F	Digital input 1 function: (EAL - bAL - PAL - dor - dEF - AUS - LiG - OnF - Htr - FHU - ES - Hdy) EAL= external alarm; bAL= serious external alarm; PAL= pressure switch activation; dor= door open; dEF= defrost activation; AUS= auxiliary activation; LiG= light activation; OnF= switch on/off the device; Htr= change type of action; FHU= not used; ES= activate energy saving; Hdy= activate holiday function	
d1d	Time interval/delay for digital input alarm: (0 to 255 min.) Time interval to calculate the number of the pressure switch activation when i1F=PAL. If I1F=EAL or bAL (external alarms), "d1d" parameter defines the time delay between the detection and the successive signaling of the alarm. If i1F=dor this is the delay to activate door open alarm	
i2P	Digital input 2 polarity: (cL - oP) CL: the digital input is activated by closing the contact; OP: the digital input is activated by opening the contact.	
i2F	Digital input 2 function: (EAL - bAL - PAL - dor - dEF - AUS - LiG - OnF - Htr - FHU - ES - Hdy) EAL= external alarm; bAL= serious external alarm; PAL= pressure switch activation; dor= door open; dEF= defrost activation; AUS= auxiliary activation; LiG= light activation; OnF= switch on/off the device; Htr= change type of action; FHU= not used; ES= activate energy saving; Hdy= activate holiday function	
d2d	Time interval/delay for digital input alarm: (0 to 255 min.) Time interval to calculate the number of the pressure switch activation when i2F=PAL. If I2F=EAL or bAL (external alarms), "d2d"parameter defines the time delay between the detection and the successive signaling of the alarm. If i2F=dor this is the delay to activate door open alarm	
i3P	Digital input 3 polarity: (cL - oP) CL: the digital input is activated by closing the contact; OP: the digital input is activated by opening the contact.	
i3F	Digital input 3 function: (EAL - bAL - PAL - dor - dEF - AUS - LiG - OnF - Htr - FHU - ES - Hdy) EAL= external alarm; bAL= serious external alarm; PAL= pressure switch activation; dor= door open; dEF= defrost activation; AUS= auxiliary activation; LiG= light activation; OnF= switch on/off the device; Htr= change type of action; FHU= not used; ES= activate energy saving; Hdy= activate holiday function	
d3d	Time interval/delay for digital input alarm: (0 to 255 min.) Time interval to calculate the number of the pressure switch activation when i3F=PAL. If i3F=EAL or bAL (external alarms), "d3d" parameter defines the time delay between the detection and the successive signaling of the alarm. If i3F=dor this is the delay to activate door open alarm	
nPS	Pressure switch number: (0 to 15) Number of activation of the pressure switch, during the "d#d" interval, before signaling the alarm event (I2F= PAL). If the nPS activation in the did time is reached, switch off and on the device to restart normal regulation.	
odc	Compressor and fan status when open door: no = normal; Fan = Fan OFF; CPr = Compressor OFF; F_C = Compressor and fan OFF.	
rrd	Outputs restart after doA alarm: no = outputs not affected by the doA alarm; yES = outputs restart with the doA alarm	
	RTC SUBMENU (If Present)	
CbP	Clock Presence (n to y): it permits to disable or enable the clock;	
Hur	Current hour (0 to 23 h)	
Min	Current minute (0 to 59min)	
dAY	Current day (Sun to SAt)	

Table 9-1 - XM670K to XM679K Parameters List

Hd1	First weekly holiday (Sun to nu) Set the first day of the week that follows the holiday times.		
Hd2	Second weekly holiday (Sun to nu) Set the second day of the week that follows the holiday times.		
Hd3	Third weekly holiday (Sun to nu) Set the third day of the week that follows the holiday times.		
ILE	Energy Saving cycle start during workdays: (0 to 23h 50 min.) During the Energy Saving cycle, the setpoint is increased by the value in HES so that the operation setpoint is SET + HES.		
dLE	Energy Saving cycle length during workdays: (0 to 24h 00 min.) Sets the duration of the Energy Saving cycle on workdays.		
ISE	Energy Saving cycle start on holidays. (0 to 23h 50 min.)		
dSE	Energy Saving cycle length on holidays (0 to 24h 00 min.)		
HES	Temperature increase during the Energy Saving cycle (-30 to 30°C / -54 to 54°F) sets the increasing value of the setpoint during the Energy Saving cycle.		
Ld1 to Ld6	Workday defrost start (0 to 23h 50 min.) These parameters set the beginning of the eight programmable defrost cycles during workdays. Ex. When Ld2 = 12.4 the second defrost starts at 12.40 during workdays.		
Sd1 to Sd6	Holiday defrost start (0 to 23h 50 min.) These parameters set the beginning of the eight programmable defrost cycles on holidays. Ex. When $Sd2 = 3.4$ the second defrost starts at 3.40 on holidays.		
	ENERGY SAVING		
ESP	Energy saving probe selection: (nP - P1 - P2 - P3 - P4 - P5 - tEr).		
HES	Temperature increase during the Energy Saving cycle: (-30 to 30°C / -54 to 54°F) sets the increasing value of the setpoint during the Energy Saving cycle.		
PEL	Energy saving activation when light is switched off: (n to Y) n= function disabled; Y= energy saving is activated when the light is switched off and vice versa		
	LAN MANAGEMENT		
LMd	Defrost synchronization: y= the section send a command to start defrost to other controllers, n= the section don't send a global defrost command		
dEM	Type of end defrost: n= the of the LAN defrost are independent; y= the end of the defrost are synchronized;		
LSP	L.A.N. set-point synchronization: y= the section set-point, when modified, is updated to the same value on all the other sections; n= the set-point value is modified only in the local section		
LdS	L.A.N. display synchronization: y= the value displayed by the section is sent to all the other sections; n= the set-point value is modified only in the local section		
LOF	L.A.N. On/Off synchronization this parameter states if the On/Off command of the section will act on all the other ones too: y= the On/Off command is sent to all the other sections; n= the On/Off command acts only in the local section		
LLi	L.A.N. light synchronization this parameter states if the light command of the section will act on all the other ones too: y= the light command is sent to all the other sections; n= the light command acts only in the local section		
LAU	L.A.N. AUX output synchronization this parameter states if the AUX command of the section will act on all the other ones too: y= the light command is sent to all the other sections; n= the light command acts only in the local section		
LES	L.A.N. energy saving synchronization this parameter states if the energy saving command of the section will act on all the other ones too: y= the Energy Saving command is sent to all the other sections; n= the Energy Saving command acts only in the local section		

Table 9-1 - XM670K to XM679K Parameters List

LSd	Remote probe display: this parameter states if the section has to display the local probe value or the value coming from another section: y= the displayed value is the one coming from another section (which has parameter LdS = y); n= the displayed value is the local probe one.
LPP	Remote pressure probe: n= the value of pressure probe is read from local probe; Y= the value of pressure probe is sent via LAN.
StM	Solenoid activation via LAN: n= not used; Y= a generic cooling requests from LAN activate the solenoid valve connected to compressor relay.
	PROBE CONFIGURATION
P1C	Probe 1 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000
Ot	Probe 1 calibration: (-12.0 to 12.0°C/ -21 to 21°F) allows to adjust possible offset of the thermostat probe.
P2C	Probe 2 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000
OE	Probe 2 calibration: (-12.0 to 12.0°C/ -21 to 21°F) allows to adjust possible offsets of the evaporator probe.
P3C	Probe 3 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000
03	Probe 3 calibration: (-12.0 to 12.0°C/ -21 to 21°F) allows to adjust possible offset of the probe 3.
P4C	Probe 4 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000
04	Probe 4 calibration: (-12.0 to 12.0°C/ -21 to 21°F) allows to adjust possible offset of the probe 4.
P5C	Probe 5 configuration: (nP - Ptc - ntc - PtM - 420 - 5Vr) nP= not present; PtM= Pt1000; 420= 4 to 20mA; 5Vr= 0 to 5V ratiometric; (Only XM679K)
05	Probe 5 calibration: (-12.0 to 12.0°C/ -21 to 21°F) allows to adjust possible offset of the probe 5. (Only XM679K)
P6C	Probe 6 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000; (Only XM679K)
06	Probe 6 calibration: (-12.0 to 12.0°C/ -21 to 21°F) allows to adjust possible offset of the probe 6. (Only XM679K)
	SERVICE - READ ONLY
CLt	Cooling time percentage: it shows the effective cooling time calculated by XM600 during regulation
tMd	Time to next defrost: it shows time before the next defrost if interval defrost is selected
LSn	L.A.N. section number (1 to 5) Shows the number of sections available in the L.A.N.
Lan	L.A.N. serial address (1 to LSn) Identifies the device address inside local network of multiplexed cabinet controller.
Adr	RS485 serial address (1 to 247): Identifies the device address when connected to a MODBUS compatible monitoring system.
Rel	Release software: (read only) Software version of the microprocessor.
Ptb	Parameter table: (read only) it shows the original code of the dIXEL parameter map.
Pr2	Access to the protected parameter list (read only)

Table 9-1 - XM670K to XM679K Parameters List

10 Digital Inputs

The XM600 series of controllers can support up to three (3) configurable digital inputs that are free of voltage contact (depending on the models). They are configurable via **i**#F parameter.

10.1. Generic Alarm (EAL)

As soon as the digital input is activated, the controller will wait for the **did** time delay before signaling the **EAL** alarm message. The outputs status don't change. The alarm will stop as soon as the digital input is deactivated.

10.2. Serious Alarm Mode (bAL)

When the digital input is activated, the controller will wait for the **did** time delay before signaling the **bAL** alarm message. The relay outputs are switched OFF. The alarm will stop as soon as the digital input is deactivated.

10.3. Pressure Switch (PAL)

If the pressure switch has reached the number of activation of the **nPS** parameter during the interval time set by the **d#d** parameter, the **CA** pressure alarm message will be displayed. The compressor and the regulation are stopped. When the digital input is ON the compressor is always OFF. *If the nPS activation in the d#d time is reached, switch the controller OFF and ON to restart normal regulation.*

10.4. Door Switch Input (dor)

This input signals the door status and the corresponding relay output status through the **odc** parameter: **no** = normal (any change); **Fan** = Fan OFF; **CPr** = Compressor OFF; **F_C** = Compressor and fan OFF. Since the door is opened, after the delay time set through parameter **d#d**, the door alarm is enabled, the display shows the message **dA**, and the regulation restarts after **rrd** time. The alarm stops as soon as the external digital input is disabled again. With the door open, the high and low temperature alarms are disabled.

10.5. Start Defrost (dEF)

A defrost will start if the right conditions exist. After the defrost is finished, normal regulation will restart only if the digital input is disabled; otherwise, the controller will wait until the **MdF** safety time is expired.

10.6. Relay Aux Actuation (AUS)

This function enables the auxiliary relay to be turned ON and OFF by using the digital input as external switch.

10.7. Relay Light Actuation (LiG)

This function enables the light relay to be turned ON and OFF by using the digital input as external switch.

10.8. Remote ON/OFF (OnF)

This function switches the controller ON and OFF.

10.9. Kind of Action (Htr)

This function enables the change in the kind of regulation: from cooling to heating and vice versa.

10.10.FHU (Not Used)

This function enables the change in the kind of regulation: from cooling to heating and vice versa.

10.11.Energy Saving Input (ES)

The Energy Saving function allows you to change the setpoint value as the result of the **SET+ HES** (parameter) sum. This function is enabled until the digital input is activated.

10.12.Configurable Input - Holiday Function (HDY)

In Holiday function, the Energy Saving and defrost cycles follow holiday times (**Sd1**...**Sd6**).

10.13.Digital Inputs Polarity

The digital inputs polarity depends on the **I#P** parameters: **CL** (the digital input is activated by closing the contact) and **OP** (the digital input is activated by opening the contact).

11 Installation and Mounting

The CX660 keyboard should be mounted on a vertical panel, in a 29 mm x 71 mm hole, and secured using the special bracket supplied.

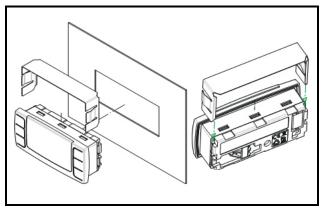


Figure 11-1 - Installation and Mounting of XM670K/XM679K

The temperature range allowed for correct operation is 0 to 60°C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt, or humidity. The same recommendations apply to probes. Allow air to circulate through the cooling holes.

12 Electrical Connections

The XM670K/XM679K controllers come with a screw terminal block to connect cables with a cross section up to 1.6 mm² for all the low voltage connections: the RS485, the LAN, the probes, the digital inputs, and the keyboard. Other inputs, power supply, and relay connections are provided with a Faston connection (5.0 mm). Heat-resistant cables have to be used. Before connecting cables verify that the power supply complies with the controller's requirements. Separate the probe cables from the power supply cables, from the outputs and the power connections. <u>Do not exceed the maximum current allowed on each relay; in case of heavier loads, use a suitable external relay.</u>

NOTE: Maximum current allowed for all the load is 16A.

12.1. Probe Connections

The probes should be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended that the thermostat probe be placed away from air streams to measure the average room temperature correctly. Place the defrost termination probe among the evaporator fans in the coldest place, (where most ice is formed) and far from heaters or from the warmest place during defrost to prevent premature defrost termination.

13 RS485 Serial Line

Each XM670K/XM679K controller has a direct RS485 connection that enables the controller to be linked to a network line that is MODBUS-RTU compatible with all monitoring systems.

14 How to Use the Hot Key

The XM series of controllers can upload or download the parameter list from its own E2 internal memory to the Hot Key using a TTL connector.

14.1. Download (From the Hot Key to the Device)

- 1. Turn OFF the controller using the ON/OFF key, insert the Hot Key and then turn the controller ON.
- The Hot Key parameter list is downloaded automatically into the controller memory (the doL message starts blinking).
- 3. After 10 seconds, the controller will restart and work with the new parameters.
- The controller displays end at the end of the data transfer if the controller is programmed correctly.
 An err displays if there is an error or failure in programming.

14.2. Upload (From the Device to the Hot Key)

- 1. When the XM unit is ON, insert the Hot Key and push the C2 key; the uPL message appears.
- 2. The UPLOAD begins; the **uPL** message will blink.
- 3. Remove the Hot Key. At the end of the data transfer phase, the controller will display end if the programming is correct. The err message will display if there is an error or failure in programming. In this case, press the SET key if you want to restart the programming or remove the unprogrammed Hot Key.

15 Alarm Signals

Message	Cause	Outputs
PON	Keyboard enabled	Outputs unchanged
POF	Keyboard locked	Outputs unchanged
rst	Alarm reset	Alarm relay reset
nOP	Probe not present	Compressor output according to parameter Con and COF
P1	First probe failure	Compressor output according to parameters Con and COF
P2	Second probe failure	Defrost end is timed
Р3	Third probe failure	Outputs unchanged
P4	Fourth probe failure	Outputs unchanged
P5	Fifth probe failure	Outputs unchanged
P6	Sixth probe failure	Outputs unchanged
HA	Maximum temperature alarm	Outputs unchanged
LA	Minimum temperature alarm	Outputs unchanged
HAd	Defrost high temperature	Outputs unchanged
LAd	Defrost low temperature	Outputs unchanged
FAd	Defrost low temperature	Outputs unchanged
HAF	Fan high temperature	Outputs unchanged
LAF	Fan high temperature	Outputs unchanged
StP	Stop due to regulation pauses (Sti and Std parameters)	Compressor and valve OFF
PAL	Lock due to pressure switch	All outputs OFF
rtc	RTC configured incorrectly	Outputs unchanged
rtf	RTC failure	Outputs unchanged
dA	Door open	Compressor and fans restarts according to rrd and odc
EA	External alarm	Outputs unchanged
CA	Serious external alarm (i1F=bAL)	All outputs OFF
EE	EEPROM failure	All outputs OFF
LOP	Minimum operating pressure reached	According to dML
MOP	Maximum operating pressure reached	According to dML
LSH	Minimum superheat alarm	Valve closed
MSH	Maximum superheat alarm	Outputs unchanged

Table 15-1 - Alarm Signals

15.1. EE Alarm

The controllers are provided with an internal check for data integrity. Alarm **EE** flashes when a failure in the memory data occurs. In such cases, the alarm output is enabled.

15.2. Alarm Recovery

Probe alarms, **P1** (probe1 faulty), **P2**, **P3**, **P4**, **P5**, and **P6** automatically stop 10 seconds after the probe restarts normal operation. Check connections before replacing the probe. Temperature alarms, **HA**, **LA**, **HAd**, **LAd**, **HAF**, and **LAF** automatically stop as soon as the thermostat temperature returns to normal values or when the defrost starts. External alarms **EAL** and **bAL** stop as soon as the external digital input is disabled.

EE Alarm Alarm Signals • 25

16 Technical Data

Bolimensions Case: Front: 35 mm x 77 mm Depth: 18 mm Panel Mount: 29 mm x 71 mm panel cut-out Protection Frontal: 1P65 Power Supply From XM600K power module Display 3 digits, red LED, 14.2 mm H Optional Output Buzzer POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Power Supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) (See Section 17, UL Ratings.) Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V Serial Output RS485 with MODBUS-RTU and LAN
Front: 35 mm x 77 mm Depth: 18 mm Panel Mount: 29 mm x 71 mm panel cut-out Protection IP20 Frontal: IP65 From XM600K power module Display 3 digits, red LED, 14.2 mm H Optional Output Buzzer POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Depending on the model: 12VAC − 24VAC + 110VAC ± 10% - 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. a.c. output up to 30W (Only XM679K) Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
IP20 Power Supply Fromtal: 1P65 Power Supply From XM600K power module Display Optional Output Buzzer POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Depending on the model: 12VAC − 24VAC − 110VAC ± 10% − 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Potional Output (AnOUT) Analog Output: 4 to 20mA or 0 to 10V Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Protection Frontal: 1P65 Power Supply From XM600K power module Display 3 digits, red LED, 14.2 mm H POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Depending on the model: 12VAC − 24VAC − 110VAC ± 10% − 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Acc. output up to 30W (Only XM679K) Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Frontal: IP65 Power Supply From XM600K power module Display 3 digits, red LED, 14.2 mm H POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Depending on the model: 12VAC - 24VAC - 110VAC ± 10% - 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. a.c. output up to 30W (Only XM679K) Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Display 3 digits, red LED, 14.2 mm H POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Depending on the model: 12 VAC − 24 VAC − 110 VAC ± 10% − 230 VAC ± 10% or 90 to 230 VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. a.c. output up to 30W (Only XM679K) Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Power Supply Depending on the model: 12VAC − 24VAC − 110VAC ± 10% − 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. a.c. output up to 30W (Only XM679K) Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
POWER MODULES Case 8 DIN Connections Screw terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm Faston Depending on the model: 12VAC − 24VAC − 110VAC ± 10% − 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Inputs Up to 6 NTC/PTC/Pt1000 probes Digital Inputs Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Case8 DINConnectionsScrew terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm FastonPower SupplyDepending on the model: 12VAC − 24VAC − 110VAC ± 10% − 230VAC ± 10% or 90 to 230VAC with switching power supplyPower Absorption9VA maxInputsUp to 6 NTC/PTC/Pt1000 probesDigital InputsThree (3) voltage-freeRelay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings.Three (3) voltage-freeValve Outputa.c. output up to 30W (Only XM679K)Optional Output (AnOUT) Depending on the modelPWM/ Open Collector outputs: PWM or 12VDC max 40mAAnalog Output: 4 to 20mA or 0 to 10V
ConnectionsScrew terminal block ≤ 1.6 mm² heat-resistant wiring and 5.0 mm FastonPower SupplyDepending on the model: 12VAC − 24VAC − 110VAC ± 10% − 230VAC ± 10% or 90 to 230VAC with switching power supplyPower Absorption9VA maxInputsUp to 6 NTC/PTC/Pt1000 probesDigital InputsThree (3) voltage-freeRelay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings.Analog Output (Only XM679K)Optional Output (AnOUT) Depending on the modelPWM/ Open Collector outputs: PWM or 12VDC max 40mAAnalog Output: 4 to 20mA or 0 to 10V
Power Supply Depending on the model: 12VAC - 24VAC - 110VAC ± 10% - 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Up to 6 NTC/PTC/Pt1000 probes Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Valve Output a.c. output up to 30W (Only XM679K) PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Power Supply 12VAC - 24VAC - 110VAC ± 10% - 230VAC ± 10% or 90 to 230VAC with switching power supply Power Absorption 9VA max Up to 6 NTC/PTC/Pt1000 probes Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Valve Output a.c. output up to 30W (Only XM679K) Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Inputs Up to 6 NTC/PTC/Pt1000 probes Three (3) voltage-free Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Valve Output a.c. output up to 30W (Only XM679K) Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Digital Inputs Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Valve Output a.c. output up to 30W (Only XM679K) Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Relay Outputs (Total current on loads MAX 16A) See Section 17, UL Ratings. Valve Output a.c. output up to 30W (Only XM679K) Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Continue of the model Continue of the model
Optional Output (AnOUT) Depending on the model PWM/ Open Collector outputs: PWM or 12VDC max 40mA Analog Output: 4 to 20mA or 0 to 10V
Depending on the model Analog Output: 4 to 20mA or 0 to 10V
That of Output: 4 to 20m to 10 to 10 to
Serial Output RS485 with MODBUS-RTU and LAN
-
Data Storing On the volatile memory (EEPROM)
Kind of Action 1B
Pollution Grade Normal
Software Class A
Operating Temperature 0 to 60°C
Storage Temperature -25°C to 60°C
Relative Humidity 20 to 85% (no condensing)

Table 16-1- XM670K/XM679K Specifications

	NTC probe: -40 to 110°C (-58 to 230°F)
Measuring and Regulation Range	PTC probe: -50 to 150°C (-67 to 302°F)
	Pt1000 probe: -100 to 100°C (-148 to 212°F)
Resolution	0.1°C or 1°C or 1°F (selectable)
Accuracy (ambient temperature 25°C)	±0.5 °C ±1 digit

Table 16-1 - XM670K/XM679K Specifications

Alarm Recovery Technical Data • 27

17 UL Ratings

Relay Outputs UL Ratings	Ratings	Terminal	Relay Designation
	Evaporator Fan : 120/240 V, 50/60 Hz, 1/4 HP, 30k cycles 125 V, 50/60 Hz, 1/3 HP, 6k cycles 250 V, 50/60 Hz, 1/2 HP, 30k cycles	Terminals 9 and 10	RL1
	Compressor: 120 V/240 V, D300 Pilot Duty, 30k cycles	Terminals 11 and 12	RL4
	Auxiliary (not populated in XM66 series): 120/240 V, 50/60 Hz, 5 A, General Purpose, 6k cycles 120/240 V, 50/60 Hz, 3 A, Resistive, 100k cycles	Terminals 18 and 17	RL3
	Light: 120 V, 50/60 Hz, 5 A, General Purpose, 6k cycles, 120 Vac, 1000 W Tungsten, 6k cycles 240 Vac, 1400 W Tungsten, 6k cycles	Terminals 16 and 15	RL5
	Defrost : 120/240 V, 50/60 Hz, 10A, Resistive, 30k cycles 120/240 V, 50/60 Hz, C300, Pilot Duty, 30k cycles	Terminals 14 and 13	RL6
	Alarm (not populated on XM66 series): 120/240 V, 50/60 Hz, 5 A, General Purpose, 6k cycles 120/240 V, 50/60 Hz, 3 A, Resistive, 100k cycles	Terminals 1, 2 and 3	RL2
	Pulse Valve (not populated on Xm66 series): 230 V, 30 Watt	Terminals 4, 5 and 6	Triac

Table 17-1 - XM670K/XM679K UL Ratings

Temperature - Maximum ambient operating temperature 60°C

Pollution Degree - 2 (Normally only nonconductive pollution. However, a temporary conductivity caused by condensation may be expected.)

18 Connections

18.1. Wiring Guidelines

DEVICE TYPE	EMERSON RETAIL SOLUTIONS
ANALOG TEMP SENSOR DIGITAL INPUT	BELDEN #8761 #22-2 SHIELDED Retail Solutions <i>P/N 035-0002</i>
RS-485 NETWORK	BELDEN #8761 #22-2 SHIELDED Retail Solutions <i>P/N 035-0002</i> BELDEN #8641 #24-2 SHIELDED Retail Solutions <i>P/N 135-8641</i>
PRESSURE TRANSDUCER	**BELDEN #8771 #22-3 SHIELDED Retail Solutions <i>P/N 135-8771</i> **#8771 for alternate 600v rated wire use BELDEN #8618 16 AWG
POWER, LOADS, AND VALVE	Allows a maximum wire size of 14 AWG (2 mm ²).

Table 18-1 - Wiring Guidelines

18.2. XM670K - Wiring Diagram

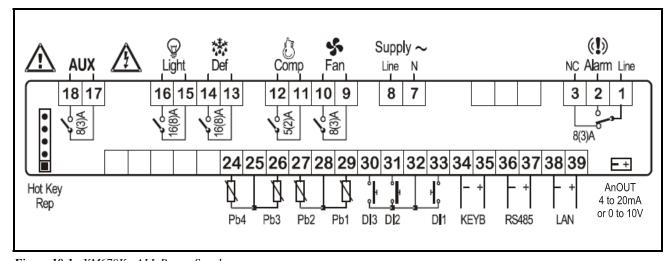


Figure 18-1 - XM670K - ALL Power Supply

Wiring Guidelines Connections • 29

18.3. XM679K - 230VAC Valves/Wiring Diagram

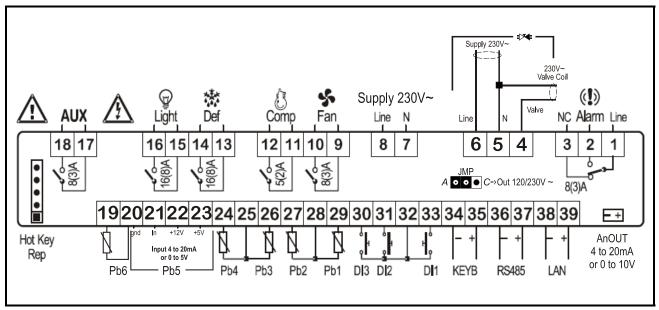


Figure 18-2 - XM679K - 230VAC Valves

18.4. XM679K - 24VAC Valves/Wiring Diagram

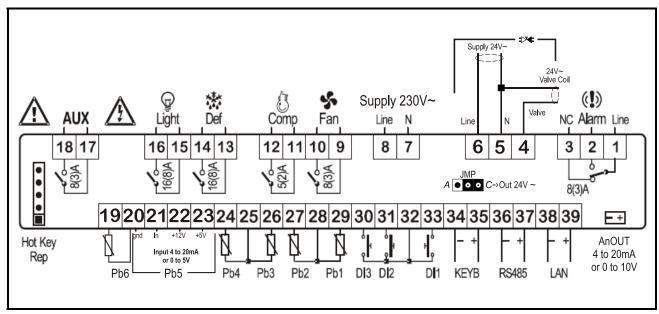


Figure 18-3 - XM679K - 24VAC Valves

NOTE: The jumper labeled as JMP is located inside the case of the controller. The JMP jumper should be closed only when driving the 24VAC valve.

19 E2 MODBUS Network Wiring

- Connect the MODBUS Network to the RS485 Connector on the E2 PIB board (Belden 8641 recommended).
- Note to wire the RS485 +/- polarity at the E2 in the <u>reverse</u> of the XR670K XR679K devices.
- Position the three termination jumpers to the UP (terminated) position to provide RS485 termination at the E2.
- Do not connect the shield of the MODBUS network to the E2 PIB center terminal. Instead, use a 100 ohm 1/2 watt resistor to connect the MODBUS cable shield to earth ground.
- At each XR670K XR679K device, wire the MODBUS cable to the RS485 +/- terminals and connect the MODBUS shield to the pin 18 terminal.
- Terminate the end of the MODBUS network at the last XR670K XR679K device on the daisy chain with the MODBUS termination block (*P/N 535-2711*), or by connecting a 150 ohm resistor between the MODBUS +/- terminals.

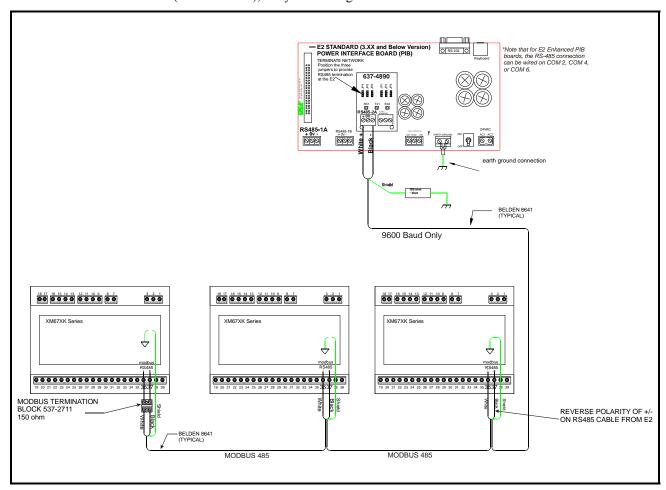
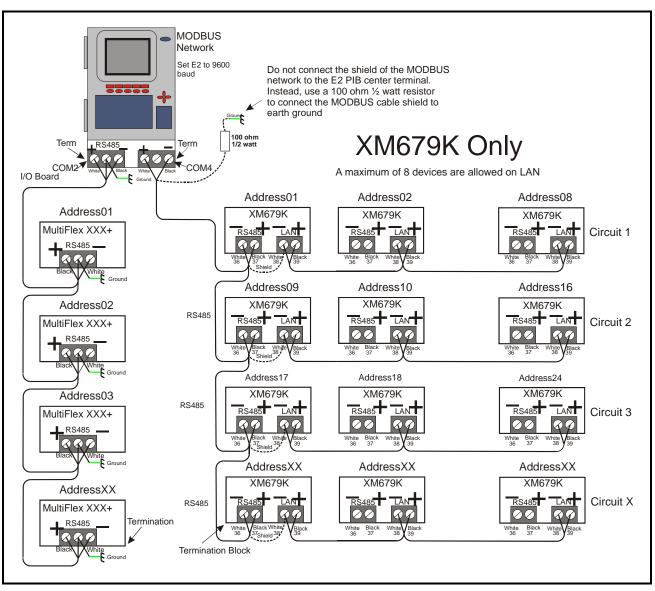
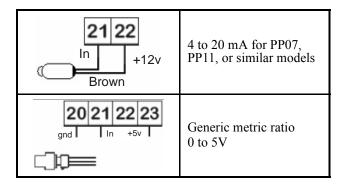
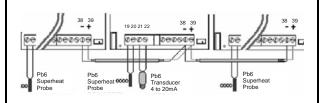


Figure 19-1 - XR670K - XR679K to E2 MODBUS Network Wiring

CAUTION! For the XR, XM, and XEV series of controllers, the shield wire must not come into contact with any other wire or ground source. If contact with other wires or devices does occur, the 485 MODBUS network will malfunction or connected devices will be damaged. This applies to all installations where the shield is tied to ground through a 100 ohm ½ Watt resistor.

20 Wiring Layout for Sharing a Pressure Transducer on a LAN


Figure 20-1 - Wiring Guidelines for Sharing a Pressure Transducer Across Multiple Units on the Same Circuit - XM679K Only

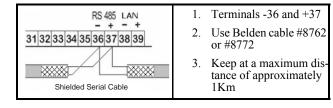
21 Pressure **Transducer Setup** (XM679K Only)

Virtual Pressure: In this example of programming, the master device is the regulator with the pressure probe connected.

Slave	Master	Slave
tPP = LAn LPP = n P5C = nP	tPP = PP LPP = Y P5C = 420 (transd.)	Tpp = LAn LPP = n P5C = nP

Press the arrow keys to access menu readings for pressure.

Once set up, check these readings:						
Slave device pressure: rPP: Shows the value of pressure received by remote pressure probe connected to other XM600K device.	Master device pressure: dPP = Shows the value of pressure measured by pressure transducer. dP5 = Shows the temperature value measured by probe 5.	Slave device pressure: rPP: Shows the value of pressure received by remote pressure probe connected to other XM600K device.				


Check for error messages. Error message examples:

- **dPP** = **Err**: in the Master device, the value of pressure read from the transducer is outside the acceptable range regarding parameters PA4- PA20; is connected incorrectly or it is not configured to parameter P5C.
- **PPF** = reading on the slave device LAN communication is not functional.
- **tPP** = **LAn**: in the master controller, LAN address sequences are not correct. LPP = Y means the address sequences are not correct.

Final Control From Superheat (SH) Reading Control Values:

- **dPP** = Shows the value of pressure measured by pressure transducer.
- **dP6** = Shows the temperature measured by probe 6. Corresponds to the outlet temperature of gas of the evaporator.
- **SH** = Shows the actual superheat value. It must have a consistent value for difference between the values **dP6** and **dP5**. If displaying **nA**, **err** or **nd**, the value is not calculable at the moment of the reading.

21.1. RS485 Net Monitoring **Temperatures**

21.1.1.RS485 Connection

Sharing a single pressure transducer across multiple controllers on a LAN:

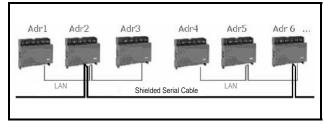


Figure 21-1 - Sharing a Pressure Transducer Between Devices on LAN

CAUTION! Do not connect the RS485 cable to all the instruments that are already connected on the LAN - only connect the RS485 to the master device of the LAN.

The parameter (**Adr**) also defines the number of configurations on the RS485 network (besides the **LAn**); its value must be only from 1 to the total number of devices present on the RS485 and the LAN networks.

CAUTION! The same value of the Adr parameter in different controllers creates malfunctioning in the monitoring system or problems on the synchronized defrosts.

21.2. How to Enable a Pressure Probe to Share Across the LAN

- 1. Enter the **Pr1** level. Follow the steps in **Section 3.7.,** *How to Enter the Parameters List PR1*.
- 2. Select **Pr2** parameter and press the **SET** key.
- 3. The **PAS** flashing message will display, followed shortly by "**0** --" with a flashing zero.
- 4. Use the **UP** or **DOWN** button to input the security code in the flashing digit. Confirm the security code by pressing **SET**. The security code is **321**.
- 5. If the security code is correct, the access to Pr2 is enabled by pressing **SET** on the last digit.
- 6. Navigate to the **LPP** of the Master device (the device where the pressure probe is connected) and select (**Y**). Set the **LPP** to (**N**) for all other slave devices.
- Navigate to tPP of the Master device and set it to PP (Pressure Probe). The slave devices tPP parameter will be set to LAn.
- 8. Navigate to **P5C** parameter (Pressure Probe will always be assigned to **P5C**) of the Master device and set it to Pressure Probe type. The slave devices **P5C** parameter will be set to **nP** (No Probe).

NOTE: If pressure is not being shared across the LAN, each XM679K will need its own Pressure Transducer. Please reference Figure 19-1 and Figure 20-1 wiring diagrams.

22 ECT MODBUS Networking to E2s

Connecting a XR670K - XR679K controller to an E2 requires the E2 to be version 2.84 or above. Contact Emerson Retail Solutions for upgrade information if the controller is a version before 2.84.

22.1. COM Port AssociationsE2 Versions 3.xx andBelow

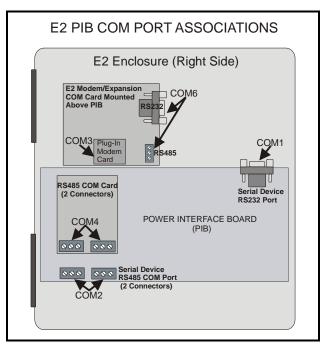


Figure 22-1 - Location of E2 Com Ports - E2 PIB Board (E2 versions 3.xx and Below)

An E2 has up to three COM ports that can be assigned for MODBUS communication: COM2, an RS485 port on the E2 power interface board, and COM4 and COM6, which are optional ports requiring expansion cards. <u>COM4 is recommended for MODBUS connection of XR670K - XR679K units.</u>

COM ports can only be used for one function; in other words, if COM2 is set up as the I/O network, you cannot connect MODBUS devices to COM2. En-

sure your E2 is equipped with an RS485 COM Card (*P/N* 637-4890) and configured in E2 General Services (, Serial tab) to enable COM4 or an E2 Expansion COM Card (*P/N* 637-4871) to enable COM6.

Connect the MODBUS network cable to the three-terminal connector on the COM port you wish to assign as MODBUS. Reverse polarity of +/- on RS485 cable from E2 to the device.

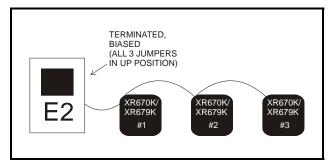


Figure 22-2 - MODBUS Networking

22.2. COM Port AssociationsE2 Versions 4.0 andAbove

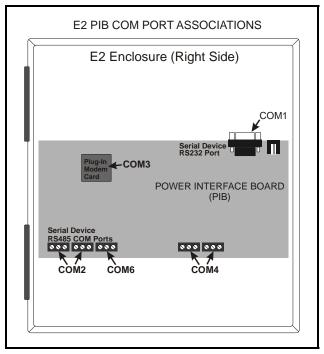


Figure 22-3 - Location of E2 Com Ports - E2 PIB Board (E2 versions 4.0 and Above)

An E2 has three COM ports that can be assigned for MODBUS communication (COM2). COM ports can only be used for one function; in other words, if COM2 is set up as the I/O network, you cannot connect MODBUS devices to COM2. Ensure your E2 is configured in E2 General Services (7 3 1, Serial tab) to enable COM4 or COM6.

Connect the MODBUS network cable to the three-terminal connector on the COM port you wish to assign as MODBUS. Reverse polarity of +/- on RS485 cable from E2 to the device.

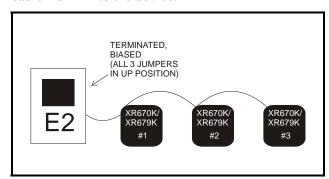


Figure 22-4 - MODBUS Networking

22.3. E2 Setup of Devices

22.3.1.Set Up Network Ports

Before setting up a device, the port on the E2 that has the MODBUS cable connected must be set up as a MODBUS port.

- 1. Log in to the E2 with Level 4 access.
- 2. Press followed by 7 3 1 General Controller Info
- 3. Press to open the **Serial** tab of the General Controller Info setup screens:

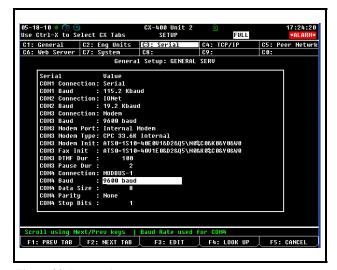


Figure 22-5 - Serial Communications Manager Screen

- 5. Four fields will become visible underneath the COM port connection field, which pertain to the way the device communicates:
- **Baud** Default setting is **19.2k**. The baud rate setting should be set to match the baud rate of the XR670K XR679K device (**9600**). (All devices connected to the same COM port should be set to the same baud rate.)
- Data Size Leave this field at the default value (8).
- Parity Leave this field at the default value (None).
- Stop Bits Leave this field at the default value (1).
- 6. Press to save changes and exit.

22.3.2.Add and Connect the Device

To enable communications between E2 and the XR670K - XR679K units, the devices must be added and addressed in E2.

- 1. Log in to the E2 with Level 4 access.
- 2. Press Pre

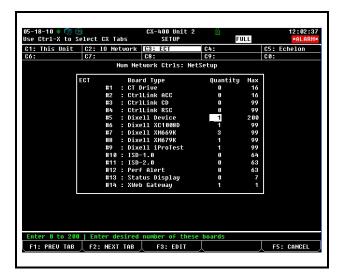


Figure 22-6 - Num Network Ctrls: NetSetup Screen

- In the Num Network Ctrls: NetSetup screen, under the ECT tab, enter the number of devices in the Quantity field. (Max shows the maximum number of devices allowed on the network.)
- 4. Press to return to the *Network Setup* menu, then select **Network Summary**.
- 5. Locate the units you added to the network list (press and to scroll through the list). If desired, enter a new name for each device in the **Name** field.

Figure 22-7 - Network Summary Screen

6. By default, each device in the network list has a board number of 0. To set the address and begin communication, choose the device and press In the list of MODBUS devices, choose the address number corresponding to the XR670K - XR679K

address set up through the front display, and press to select it. A window will open where you can specify the address of the controller. If a network ID has already been selected, its name will be shown next to the network ID in this list. If the network ID you are trying to assign has already been used, you must set the address on this device to a different number that is not being used.

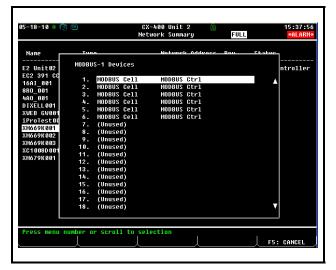


Figure 22-8 - List of MODBUS Devices

- 7. Repeat *Steps 5* and *6* until each device has a name and address.
- 8. When finished, press to return to the *Network Setup* menu, then press **Network Summary** (*Figure 22-7*). Locate the devices you set up, and look at each device's status in the **Status** field. You will see one of the following messages:
- Online The device is communicating normally.
- Offline The device is not communicating, has not been commissioned, is not functional, or is not powered up. Verify the device is powered up, wired correctly, and has the proper network address, baud rate, and parity.
- Unknown The device is not communicating or has not been commissioned. Verify the device is powered up, wired correctly, and has the proper network address, baud rate, and parity.
- No Port No port is set up in the E2 Serial Configuration Manager to be a MODBUS port.
- Wrong FW Rev This message is likely caused by the device having a firmware version older than the minimum revision required by E2 for communication. Replace the device with a new one or a device

that has the latest version of firmware on it.

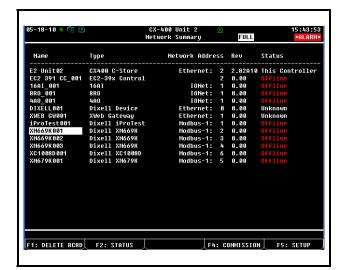


Figure 22-9 - Network Summary Screen

22.4. Wiring Types

Emerson Retail Solutions specifies Belden #8761 shielded twisted pair cables for use as MODBUS wiring (or Belden #82761 and Belden #88761 for plenum installations).

For MODBUS network wiring of XR670K - XR679K controllers to E2, Belden #8641 (*CPC P/N 135-8641*) is the recommended wire type to use.

If the recommended cable is not available in your area, be sure the wiring meets or exceeds the following specs:

Shielded?	Yes
Conductor Type	Twisted Pair
Gauge	18 - 24 AWG
Capacitance between signal wires	31 pF/ft or less (9.45 m) or less
Capacitance between signal and shield	59 pF/ft or less (17.98 m) or less
Maximum Length	4000 ft/18 to 22 AWG (1219.2 m) 2500 ft/24 AWG (762 m)
Nominal Impedance	120W±50W

22.5. MODBUS Termination Blocks

Because the XR670K/XR679K device has no onboard means of termination, use the MODBUS termination block (*P/N 535-2711*) for termination that can be wired to the end of the cable segment using the three-pin connector. Wire the two signal wires to the outside terminals, and connect the shield to pin 18 of the device, keeping the exposed shield wire length as short as possible (3 inches ideal maximum length).

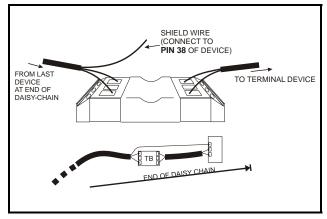


Figure 22-10 - MODBUS Termination Block (P/N 535-2711)

23 Default Setting Values

Label	Value	Menu	Description	Range	
SEt	2.0		Setpoint	LS - US	
REGULATION					
Ну	2.0	Pr1	Differential [0.1°C to 25.5°C] [1°F to 45°F]		
Int	150	Pr1	Integral time for room temperature regulation	0 to 255 s	
CrE	n	Pr1	Continuous regulation activation	n(0) - Y(1)	
LS	-30	Pr2	Minimum setpoint	[-55.0°C to SET] [-67°F to SET]	
US	20	Pr2	Maximum setpoint	[SET to 150.0°C] [SET to 302°F]	
odS	0	Pr1	Outputs activation delay at start up	0 to 255 (min.)	
AC	0	Pr1	Anti-short cycle delay	0 to 60 (min.)	
CCt	0.0	Pr2	Continuous cycle duration	0 to 24.0(144)(hour.10min)	
CCS	2.0	Pr2	Continuous cycle setpoint	[-55.0°C to 150.0°C] [-67°F to 302°F]	
Con	15	Pr2	Compressor ON time with faulty probe	0 to 255 (min.)	
CoF	30	Pr2	Compressor OFF time with faulty probe	0 to 255 (min.)	
CF	°C	Pr2	Measurement unit: Celsius, Fahrenheit	°C(0) - °F(1)	
PrU	rE	Pr2	Pressure Mode	rE(0) - Ab(1)	
PMU	bAr	Pr2	Pressure measurement unit	bAr(0) - PSI(1) - MPA(2)	
PMd	PrE	Pr2	Pressure displaying mode: temperature or pressure	tEM(0) - PrE(1)	
rES	dE	Pr2	Resolution (only °C): decimal, integer	dE(0) - in(1)	
Lod	P1	Pr2	Local display: default display	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - P6(6) - tEr(7) - dEF(8)	
rEd	P1	Pr2	Remote display: default display	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - P6(6) - tEr(7) - dEF(8)	
dLy	0	Pr1	Display delay	0 to 24.0(144) (Min.10s)	
rPA	P1	Pr1	Regulation probe A	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)	
rPb	nP	Pr1	Regulation probe B	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)	
rPE	100	Pr1	Virtual probe percentage (room temperature)	0 to 100 (100=rPA, 0=rPb)	
			ELECTRONIC EXPANSION VALV	/E	
Fty	404	Pr1	Kind of gas	R22(0) - 134(1) - 404(2) - 407(3) - 410(4) - 507(5) - CO2(6)	
SSH	8.0	Pr1	Superheat setpoint	[0.1°C to 25.5°C] [1°F to 45°F]	
СуР	6	Pr1	Cycle Period	1 to 15 s	

Table 23-1 - Default Setting Values

Label	Value	Menu	Description	Range	
Pb	5.0	Pr1	Proportional band for superheat regulator	[0.1°C to 60.0 °C] [1°F to 108 °F]	
rS	0.0	Pr1	Band Offset for superheat regulator	[-12.0°C to 12.0°C] [-12°C to 12°C] [-21°F to 21°F]	
inC	120	Pr1	Integration time for superheat regulator	0 to 255 s	
PEO	50	Pr1	Probe error opening percentage	0 to 100	
PEd	On	Pr1	Probe error delay before stopping regulation	0 to 239 s - On(240)	
OPE	85	Pr1	Start opening percentage	0 to 100	
SFd	1.3	Pr1	Start function duration	0 to 42.0(252)(min.10sec)	
OPd	100	Pr1	Opening percentage after defrost phase	0 to 100	
Pdd	1.3	Pr1	Post defrost function duration	0 to 42.0(252)(min.10sec)	
MnF	100	Pr1	Maximum opening percentage at normal functioning	0 to 100	
dCL	0	Pr1	Delay before stopping valve regulation	0 to 255 s	
Fot	nu	Pr1	Forced opening percentage	0 to 100 - "nu"(101)	
tPP	PP	Pr2	Type of pressure transducer	PP(0) - LAN(1)	
PA4	-0.5	Pr2	Probe value at 4 mA or at 0V	BAR: [PrM = rEL] -1.0 to P20 [PRM=Abs] 0.0 to P20 PSI: [PrM = rEL] -14 to P20 [PRM=Abs] 0 to P20 dKP: [PrM = rEL] -10 to P20 [PRM = Abs] 0 to P20	
P20	11.0	Pr2	Probe value at 20 mA or at 5V	BAR: [PrM = rEL] PA4 to 50.0 [PrM=AbS]PA4to 50.0 PSI: [PrM = rEL] PA4 to 725 [PrM=AbS]PA4to 725 dKP: [PrM = rEL] PA4 to 500 [PrM = AbS] PA4 to 500	
LPL	-0.5	Pr1	Lower pressure limit for superheat regulation	PA4 to P20	
MOP	11.0	Pr1	Maximum operating pressure threshold	LOP to P20	
LOP	-0.5	Pr1	Lowest operating pressure threshold	PA4 to MOP	
dML	30	Pr1	Delta MOP-LOP opening variation	0 to 100	
MSH	80.0	Pr1	Maximum superheat alarm threshold	[LSH to 80.0°C] [LSH to 144°F]	
LSH	1.0	Pr1	Minimum superheat alarm threshold	[0.0 to MSH °C] [0 to MSH °F]	
SHy	0.5	Pr1	Superheat alarm hysteresis	[0.1°C to 25.5°C] [1°F to 45°F]	
SHd	3.0	Pr1	Superheat alarm activation delay	0 to 42.0(252)(min.10sec)	
FrC	100	Pr1	Fast-recovery constant	0 to 100	
			DEFROST		
dPA	P2	Pr1	Defrost probe A nP(0) - P1(1) - P2(2) - P3(3) - P P5(5)		
dPb	nP	Pr1	Defrost probe B	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)	

Table 23-1 - Default Setting Values

Label	Value	Menu	Description	Range	
dPE	100	Pr1	Virtual probe percentage (defrost temperature)	0 to 100 (100=dPA, 0=dPb)	
tdF	EL	Pr1	Defrost type	EL(0) - in(0)	
EdF	in	Pr1	Defrost mode: Clock or interval	rtc(0) - in(1)	
Srt	150	Pr1	Heater setpoint during defrost	[-55.0°C to 150°C] [-67°F to 302°F]	
Hyr	2.0	Pr1	Differential for heater	[0.1°C to 25.5°C] [1°F to 45°F]	
tod	255	Pr1	Time out for heater	0 to 255 (min.)	
dtP	0.1	Pr1	Minimum temperature difference to start defrost	[0.1°C to 50.0°C] [1°F to 90°F]	
ddP	60	Pr1	Delay before starting defrost	0 to 60 (min.)	
d2P	n	Pr1	Defrost with two probes	n(0) - Y(1)	
dtE	8.0	Pr1	Defrost termination temperature (Probe A)	[-55.0°C to 50.0°C] [-67°F to 122°F]	
dtS	8.0	Pr1	Defrost termination temperature (Probe B)	[-55.0°C to 50.0°C] [-67°F to 122°F]	
idF	6	Pr1	Interval between defrosts	0 to 120 (hours)	
MdF	30	Pr1	Defrost Maximum duration	0 to 255 (min.)	
dSd	0	Pr1	Start defrost delay	0 to 255 (min.)	
dFd	it	Pr1	Display during defrost	rt(0) - it(1) - SEt(2) - dEF(3)	
dAd	30	Pr1	Defrost display time out	0 to 255 (min.)	
Fdt	0	Pr1	Drain down time	0 to 255 (min.)	
dPo	n	Pr1	Defrost at start-up	n(0) - Y(1)	
dAF	0.0	Pr1	Defrost delay after continuous cycle	0 to 24.0(144)(hours.10min)	
			FAN		
FPA	P2	Pr1	Fan probe A	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)	
FPb	nP	Pr1	Fan probe B	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)	
FPE	100	Pr1	Virtual probe percentage (fan management)	0 to 100 (100=FPA, 0=FPb)	
FnC	O-n	Pr1	Fan operating mode	C-n(0) - O-n(1) - C-y(2) - O-y(3)	
Fnd	10	Pr1	Fan delay after defrost	0 to 255 (min.)	
FCt	10	Pr1	Temperature differential to avoid short cycles of fans	[0.0°C to 50.0°C] [0°F to 90°F]	
FSt	2.0	Pr1	Fan stop temperature	[-55.0°C to 50.0°C] [-67°F to 122°F]	
FHy	1.0	Pr1	Fan stop differential	[0.1°C to 25.5°C] [1°F to 45°F]	
Fod	0	Pr1	Fan activation time after defrost (without compressor)	0 to 255 (min.)	
Fon	0	Pr1	Fan ON time	0to15 (min.)	
FoF	0	Pr1	Fan OFF time	0to15 (min.)	
trA	UAL	Pr2	Kind of regulation for modulating output	UAL(0) - rEG(1) - AC(2)	

Table 23-1 - Default Setting Values

Label	Value	Menu	Description	Range	
SOA	80	Pr2	Fixed speed for fan	AMi to AMA	
SdP	30.0	Pr2	Default Dew Point value	[-55.0°C to 50.0°C] [-67°F to 122°F]	
ASr	1.0	Pr2	Differential for fan / offset for anti sweat heater	[-25.5°C to 25.5°C] [-45°F to 45°F]	
PbA	5.0	Pr2	Proportional band for modulating output	[0.1°C to 25.5°C] [1°F to 45°F]	
AMi	0	Pr2	Minimum output for modulating output	0 to AMA	
AMA	100	Pr2	Maximum output for modulating output	AMi to 100	
AMt	200	Pr2	Time with fan at maximum speed	0 to 255 s	
			ALARM		
rAL	P1	Pr1	Probe for temperature alarm	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - tEr(6)	
ALC	Ab	Pr1	Temperature alarm configuration	rE(0) - Ab(1)	
ALU	10	Pr1	High temperature alarm setting	[0.0°C to 50.0°C or ALL to 150.0°] [0°F to 90°F or ALL to 302°F]	
ALL	-30	Pr1	Low temperature alarm setting	[0.0°C to 50.0°C or -55.0°C to ALU] [0°F to 90°F or -67°F to ALU°F]	
AHy	1.0	Pr1	Differential for temperature alarm	[0.1°C to 25.5°C] [1°F to 45°F]	
ALd	15	Pr1	Temperature alarm delay	0 to 255 (min.)	
dLU	150	Pr2	High temperature alarm setting (defrost probe)	[0.0°C to 50.0°C or dLL to 150.0°] [0°F to 90°F or dLL to 302°F]	
dLL	-55	Pr2	Low temperature alarm setting (defrost probe)	[0.0°C to 50.0°C or -55.0°C to dLU] [0°F to 90°F or -67°F to dLU°F]	
dAH	1.0	Pr2	Differential for temperature alarm (defrost probe)	[0.1°C to 25.5°C] [1°F to 45°F]	
ddA	15	Pr2	Temperature alarm delay (defrost probe)	0 to 255 (min.)	
FLU	150	Pr2	High temperature alarm setting (fan probe)	[0.0°C to 50.0°C or FLL to 150.0°] [0°F to 90°F or FLL to 302°F]	
FLL	-55	Pr2	Low temperature alarm setting (fan probe)	[0.0°C to 50.0°C or -55.0°C to FLU] [0°F to 90°F or -67°F to FLU°F]	
FAH	1.0	Pr2	Differential for temperature alarm (fan probe)	[0.1°C to 25.5°C] [1°F to 45°F]	
FAd	15	Pr2	Temperature alarm delay (fan probe)	0 to 255 (min.)	
dAo	1.3	Pr1	Delay of temperature alarm at start-up	0 to 24.0(144)(hours.10min)	
EdA	30	Pr1	Alarm delay at the end of defrost	0 to 255 min	
dot	15	Pr1	Temperature alarm exclusion after door open	0 to 255 min	
Sti	nu	Pr2	Stop regulation interval	"nu"(0) to 24.0(144)(hour.10min)	
Std	3	Pr2	Stop duration 1 to 255 min		
oA6	AUS	Pr2	Sixth relay output configuration	CPr(0) - dEF(1) - FAn(2) - ALr(3) - LiG(4) - AUS(5) - db(6) - OnF(7)	
oA7	ALr	Pr2	Modulating output configuration (if CoM=oA7)	CPr(0) - dEF(1) - FAn(2) - ALr(3) - LiG(4) - AUS(5) - db(6) - OnF(7)	

Table 23-1 - Default Setting Values

Label	Value	Menu	Description	Range	
СоМ	Cur	Pr2	Modulating output configuration	CUr(0) - tEn(1) - PM5(2) - PM6(3) - oA7(4)	
AOP	cL	Pr1	Alarm relay polarity	OP(0) - CL(1)	
iAU	n	Pr1	Auxiliary output independent from ON/ OFF state	n(0) - Y(1)	
			DIGITAL INPUTS		
i1P	cL	Pr1	Digital input 1 polarity	OP(0) - CL(1)	
i1F	dor	Pr1	Digital input 1 configuration	EAL(0) - bAL(1) - PAL(2) - dor(3) - dEF(4) - AUS(5) -LiG(6) - OnF(7) - Htr(8) - FHU(9) - ES(10) - Hdy(11)	
d1d	15	Pr1	Digital input 1 activation delay	0 to 255 (min.)	
i2P	cL	Pr1	Digital input 2 polarity	OP(0) - CL(1)	
i2F	LiG	Pr1	Digital input 2 configuration	EAL(0) - bAL(1) - PAL(2) - dor(3) - dEF(4) - AUS(5) -LiG(6) - OnF(7) - Htr(8) - FHU(9) - ES(10) - Hdy(11)	
d2d	5	Pr1	Digital input 2 activation delay	0 to 255 (min.)	
i3P	cL	Pr1	Digital input 3 polarity	OP(0) - CL(1)	
i3F	ES	Pr1	Digital input 3 configuration	EAL(0) - bAL(1) - PAL(2) - dor(3) - dEF(4) - AUS(5) -LiG(6) - OnF(7) - Htr(8) - FHU(9) - ES(10) - Hdy(11)	
d3d	0	Pr1	Digital input 3 activation delay	0 to 255 (min.)	
nPS	15	Pr1	Number of pressure switch activation before lock	0 to 15	
OdC	F-C	Pr1	Compressor and fan status when open door	no(0) - FAn(1) - CPr(2) - F-C(3)	
rrd	30	Pr1	Outputs restart after door open alarm	0 to 255 (min.)	
			CLOCK		
CbP	Y	Pr1	Clock presence	n(0) - Y(1)	
Hur		Pr1	Current hour		
Min		Pr1	Current minutes		
dAY		Pr1	Current day	Sun(0) - SAt(6)	
Hd1	nu	Pr1	First weekly day	Sun(0) - SAt(6) - nu(7)	
Hd2	nu	Pr1	Second weekly day	Sun(0) - SAt(6) - nu(7)	
Hd3	nu	Pr1	Third weekly day	Sun(0) - SAt(6) - nu(7)	
ILE	0.0	Pr1	Energy saving cycle start during workdays	0 - 23.5(143)(hours.10min)	
dLE	0.0	Pr1	Energy saving cycle length during workdays	0 to 24.0(144)(hours.10min)	
ISE	0.0	Pr1	Energy saving cycle start during holidays	0 - 23.5(143)(hours.10min)	
dSE	0.0	Pr1	Energy saving cycle length during holidays	0 to 24.0(144)(hours.10min)	
HES	0.0	Pr1	Temperature increasing during Energy Saving cycle	[-30.0°C to 30.0°C] [-54°F to 54°F]	
Ld1	nu	Pr1	Workdays First defrost start	0.0 to 23.5(143) - nu(144) (hours.10min)	

Table 23-1 - Default Setting Values

Label	Value	Menu	Description	Range
Ld2	nu	Pr1	Workdays Second defrost start	Ld1 to 23.5(143) - nu(144) (hours.10min)
Ld3	nu	Pr1	Workdays Third defrost start	Ld2 to 23.5(143) - nu(144) (hours.10min)
Ld4	nu	Pr1	Workdays Fourth defrost start	Ld3 to 23.5(143) - nu(144) (hours.10min)
Ld5	nu	Pr1	Workdays Fifth defrost start	Ld4 to 23.5(143) - nu(144) (hours.10min)
Ld6	nu	Pr1	Workdays Sixth defrost start	Ld5 to 23.5(143) - nu(144) (hours.10min)
Sd1	nu	Pr1	Holidays First defrost start	0.0 to 23.5(143) - nu(144) (hours.10min)
Sd2	nu	Pr1	Holidays Second defrost start	Sd1 to 23.5(143) - nu(144) (hours.10min)
Sd3	nu	Pr1	Holidays Third defrost start	Sd2 to 23.5(143) - nu(144) (hours.10min)
Sd4	nu	Pr1	Holidays Fourth defrost start	Sd3 to 23.5(143) - nu(144) (hours.10min)
Sd5	nu	Pr1	Holidays Fifth defrost start	Sd4 to 23.5(143) - nu(144) (hours.10min)
Sd6	nu	Pr1	Holidays Sixth defrost start	Sd5 to 23.5(143) - nu(144) (hours.10min)
			ENERGY SAVING	
ESP	P1	Pr1	Energy saving probe selection	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - tEr(6)
HES	0.0	Pr1	Temperature increasing during Energy Saving	[-30.0°C to 30.0°C] [-54°F to 54°F]
PEL	n	Pr1	Energy saving activation when Light switched off	n(0) - Y(1)
			LAN MANAGEMENT	
LMd	y	Pr2	Defrost Synchronization	n(0) - Y(1)
dEM	y	Pr2	Defrost end Synchronization	n(0) - Y(1)
LSP	n	Pr2	SET-POINT Synchronization	n(0) - Y(1)
LdS	n	Pr2	Display Synchronization (temperature sent via LAN)	n(0) - Y(1)
LOF	n	Pr2	ON/OFF Synchronization	n(0) - Y(1)
LLi	y	Pr2	Light Synchronization	n(0) - Y(1)
LAU	n	Pr2	AUX Synchronization	n(0) - Y(1)
LES	n	Pr2	Energy Saving Synchronization	n(0) - Y(1)
LSd	n	Pr2	Remote probe displaying	n(0) - Y(1)
LPP	n	Pr2	Pressure value sent in LAN	n(0) - Y(1)
StM	n	Pr2	Cooling request from LAN enable compressor relay	n(0) - Y(1)
			PROBE CONFIGURATIONS	
P1C	NtC	Pr2	P1 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)

Table 23-1 - Default Setting Values

Label	Value	Menu	Description	Range		
ot	0.0	Pr2	P1 calibration	[-12.0°C to 12.0°C] [-21°F to 21°F]		
P2C	NtC	Pr2	P2 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)		
οE	0.0	Pr2	P2 calibration	[-12.0°C to 12.0°C] [-21°F to 21°F]		
P3C	NtC	Pr2	P3 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)		
03	0.0	Pr2	P3 calibration	[-12.0°C to 12.0°C] [-21°F to 21°F]		
P4C	NtC	Pr2	P4 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)		
04	0.0	Pr2	P4 calibration	[-12.0°C to 12.0°C] [-21°F to 21°F]		
P5C	420	Pr2	P5 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3) - 420(4) - 5Vr(5)		
05	0.0	Pr2	P5 calibration	[-12.0°C to 12.0°C] [-21°F to 21°F]		
P6C	PtM	Pr2	P6 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)		
06	0.0	Pr2	P6 calibration	[-12.0°C to 12.0°C] [-21°F to 21°F]		
			SERVICE			
CLt		Pr1	ON/OFF percentage (C.R.O.)	(read only)		
tMd		Pr1	Time remaining before next defrost activation (only for interval defrost)	(read only)		
LSn		Pr1	Number of devices in LAN	1 to 8 (read only)		
LAn		Pr1	List of address of LAN devices	1 to 247 (read only)		
	OTHER					
Adr	1	Pr1	MODBUS address	1 to 247		
rEL		Pr1	Firmware release	(read only)		
Ptb	4	Pr1	Parameter table	(read only)		
Pr2		Pr1	PR2 menu access	(read only)		

Table 23-1 - Default Setting Values

