< ECHELON

i.LONe SmartServer 2.0
Programming Tools User’s Guide

y 4
oy
- ®

078-0349-01D

Echelon, i.LON, LON, LONWORKS, LonTalk, Neuron, LONMARK,
3120, 3150, LNS, LonMaker, and the Echelon logo are
frademarks of Echelon Corporation registered in the United
States and other countries. LonPoint and LonSupport are
frademarks of Echelon Corporation.

Other brand and product names are trademarks or
reqistered trademarks of their respective holders.

Neuron Chips, LonPoint Modules, and other OEM Products
were not designed for use in equipment or systems which
involve danger to human health or safety or a risk of property
damage and Echelon assumes no responsibility or liability for
use of the Neuron Chips or LonPoint Modules in such
applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested by
Echelon. It is the responsibility of the customer to determine
the suitability of these parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR ANY
PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR
EQUIVALENTS.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation,

Printed in the United States of America.
Copyright ©1997-2009 by Echelon Corporation.
Echelon Corporation

www.echelon.com

Preface

http://www.echelon.com/

Table of Contents

P B G e viii
RVAT] (oo T3 = SRS iX
PUMDOSE .ttt e e e et e e e e e e e st abe e e e e e e e e e nnne iX
F 0 Lo 11T ool TP iX
/[0 o [PP PPUPPURPPPR iX
i.LON SmartServer 2.0 Programming Tools VErsionscccccvvveeeeeeeeiecnnns iX
i.LON SmartServer 2.0 Programming Tools Applications...........cccccccceeeunnnee. iX
Hardware REQUITEMENLES...........uuiiiieie it e e e s st r e e e e e e e nanneees X
SmartServer REQUIFEMENTSuuuiiiiieee e e e s s e e e e snrerr e e e e e X
Creating FPM Application LICENSEScccuvvieiiieee i ee et en e e e e Xi
i.LON SmartServer 2.0 DOCUMENTALIONcoiuiiieiiiiiii e Xi
Related REAAINGeviiiiiiiiiiiiiie e Xi
CONIENT .. Xii
For More Information and Technical SUPPOIt..........cccceviiiiiiiiiiiiie e Xiii

1 INtrOdUCTHION oo 1
Overview of Freely Programmable Modulescccovveereeeeiiiiiciiiieeeee e 2

FPIM Ty S .ttt 2
Creating and Deploying FPMSccooiiiiiiiiieee e 2
Using Eclipse Environment Commands............coouuereiiiieeiniiene s 3
Debugging FPMS ... 4
Creating FPM Application LICENSESccccoiiiiiiiiiiiiiaeeeeiiiieeee e 5
Quick-Start FPM EXEICISEcccoeviiiiiiieeee 6
Step 1: Creating and Copying the FPM Template...........ccccccceeeeiiiininnen, 7
Step 2: Creating and Copying the Device Interface (XIF) File.................. 8
Step 3: Creating the FPM Projectcveveei i 9
Step 4: Writing the FPM Applicationccoovviiiiiiieie i 12
Step 5: Deploying the FPM Application on a SmartServer.................... 13
Uploading the FPM Applicationcccvveeveeee e 13
Creating an Internal FPM devViCe.........ccoociviiiiiiiiieiiiiee e 15
Step 6: Testing the FPM Application............ccccceiiiiiiiiiiiieiiec e 17
Step 7: Connecting the FPM Data POiNtSccuveeeiiiiiiiiiiiieeeeeeeeee 17

2 Installing i.LON SmartServer 2.0 Programming Tools................. 23

Installation and Upgrading OVEIVIEW..........ccceiiicviieeieeee e csiiieeee e e e e e s 24
Installing i.LON SmartServer 2.0 Programming TOOIS...........cccccuveeeennne 24
Upgrading the i.LON SmartServer 2.0 Programming Tool 29

IMpPorting FPM ProjeCtSc.vvviiiiiiiii e 30
Converting FPM Projects to the Release 4.03 Configuration........... 33
Uninstalling i.LON SmartServer 2.0 Programming ToOISccuuueee. 39

3 Creating FPM Templatescoovvvviiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 41

Creating FPM Templates OVEIVIEWccceeiiiiiieiiiiiee it 42
Creating User-Defined Functional Profile Templatesccccoocveeeenee 42
Adding Network Variable and Configuration Property Types 48
Generating and Copying the Updated FPM Resource File Set.............. 53

4 Creating FPM Device Interface (XIF) Filescccccoocieiiiiiiiiiiiennenn. 55

Creating FPM Device Interface (XIF) Files OVervieWw..........ccccocveeeiviieeeennene 56

Creating a Model File.........occuiiiiiiiii e 56
Declaring Network Variables ..., 56
Declaring Configuration Propertiesccccceeeviiiiiiieeeieee e 57
Declaring Functional BIOCKScccooiiiiiiiiiiiieiiieeee e 58

i.LON SmartServer 2.0 Programming Tools User's Guide

Using INClUde DiIr€CHVESc.uviiiiieee e ie e 59

Example Model Fil€S ..o 59
Saving your Model Filecooiiiiiiiii e 62
Generating a Device Interface (XIF) File ... 63
Using Long and Short Command Switch FOrmscccccceevvviivnnee. 64
Other Command SWILCNES. ... 64
Creating FPIMS ... 65
Creating FPMS OVEIVIEW.ocuiiiiiiiieie ettt 66
Creating NeW FPM ProjectS.......coouiiiiiiiiiie ittt 67
Viewing the Resource Files on a SmartServer...........ccocceevviveeeenee 67
Creating an FPM ... 68
Updating Data Point Declarationsccccceeeiiiiiiiiieeeieee i 72
Using UFPT Local Variables..............oooiiiiiiii e 75
Writing an FPM Application...........c.ccceveeiiiiiiiiiieiee e 76
The Writing the FPM Application Initialize() Routine.................o..... 76
Writing the FPM Application Work() Routine........ccccccoeoeviiiiiiieneennn. 78
Writing the FPM Application OnTimer() Routingcccccvvveeeeennn. 84
Writing the FPM Application Shutdown() Routine..............ccccceeeeee.. 85
WIHtING @N FPM DEIVET ...cciiie e it e e snraean e e 86
Writing the FPM Driver Initialize() Routingcccccovviiieiiniieeeene 86
Writing the FPM Driver Work() Routine..........ccoovvieeiiiiieciieee e 87
Writing the FPM Driver OnTimer() Routineccccceeeiiiiiiiiiiieenenn. 87
Writing the FPM Driver Shutdown() ROUtiNgcveviiiiiiiiiiiienennn. 88
Compiling 8N FPM.....cooiiiii et 89
Checking Compile and Warning Errors.........ccccccoeovvvcvvieeeeee e, 89
Using Non-Latin Characterscccccceviiiiieeiee e 90
DebUggiNg FPMS ...t 91
Using Wind River Workbenchcoociiii e 92
Using FPM Development GUIdelingscccccevvvievviiieeeee i, 101
USING SNMP SUPPOIT.....cvtiiiiiieeei e e e e e e e e e e e e e snneees 102
Example FPM Applications and DIiVerS...........ccceeeviiiieiiiniieeesiiieeeens 102
Deploying FPMs on a SmartServer........cccccccvvvviieiiiiiiieciieecieeeee, 105
FPM Deployment OVEIVIEW.........uuviieeeiiiiiiiieeee e e e e e siineeeee e e e s e snninnaeeeaee e s e 106
Uploading FPM Applications and DFVErScccccovviiciiiieereee e 107
Deploying FPM AppliCations..........ccovviiiiiiiiieeee e 111
Deploying FPM DIIVEIS.cccoiiiiiieiiiiiee ittt 111
Selecting a Network Management ServiCeoccovvevveeeeiniieeeinineenn 112
Using LNS Network Management ServiCescccccvvveeeeinvneeen. 112
Using Standalone Network Management.............cccceeeeeeeniniiinnnnn. 113
Adding FPM Devices to the SmartServerccccccooviiiieeeiiieeeiicinie 114
Using a Static Device INterfacecccvveeeieieiiiiiiiiieeee e 114
Using a Dynamic Device Interfacecccccceeeeeeiiiiciiieeeee e, 117
CommissioNiNg FPM DEVICEScccuvviiiieie e st e esiinnee e e 120
Commissioning FPM Devices with the SmartServer...................... 120
Commissioning FPM Devices with the LonMaker Tool.................. 120
Recommissioning FPM DEVICES..........cccuvereieeeiiiiiiiieeeee e 121
Testing FPM APPlICAtiONSuvviiieeeeiiiciieieee e 122
Connecting FPM Data POINtS..........ooiiiiiiiieiiieie e 122
Creating LONWORKS CONNECHIONSccciiiiiieiniiiiee i 123
Creating Web Connections...........ccooiiiiiiiiiie e 127
Creating Custom FPM Configuration Web Pagescccooeeeieeinnnns 133
UPAAtING FPMS ...t 138
Updating Data Point Declarationscccccceeeviiiiiiiiieeeee e, 138
Updating FPM Applications and Drivers............cccoccvvvveeeeeeeevecvnnnn, 139

Preface

Updating Device INterfacesccccccvvvcvieiiiiie e 139

Deploying FPMs on Multiple SmartServers..........ccccvvvvveeeeeievcciiieeeee e 142
Deploying Licensed FPM AppliCationScceveiiiiiiieiiiiiec e 143
7 Creating FPM Application LiCeNsesccccccccvvvvvviiiiiiiiiieciien, 145
LiCENSING OVEIVIEW ...veviiiieeiiiiiiiiiie et e e e s s sstteee e e e e e e e e st e e e e e e s e snnnnnneeneeeeenanns 146
Creating an FPM Licensing TOOL.........ccuevvieeiiiiiiiiieec e e e 146
Creating a License Generator Configuration File............cccccc..ooees 146
Creating a Security DLL File.........cooiiiiie e 149
Enabling License Validation in an FPM Application............c.ccccovevveeens 150
Step 1: Inserting Include Directives and Macro Definitions............ 152
Step 2: Declaring Data Variables ..., 153
Step 3: Creating the License Validation Routine.............cccccceenes 154
Step 4: Writing the License Validation Algorithmcccccooes 156
Step 5: Implementing the License Validation Call Mechanism 160
Step 6: Compiling the Licensed FPM Applicationccccccceeuis 160
Building the Release Version of a Licensed FPM Application.............. 160
Creating FPM Application LICENSEScceveeiviiiiiiiieie e eeciieeeee e e 161
Supplying FPMS t0 CUSIOMETScccuviiiiiieee e ecieieee e e e 164
8 Localizing the SmartServer Web Interfacecccccccevvveevvveeninnnnn. 167
Language Localization OVEIVIEWcccvvveeeeeeeiiiiiiiieeeeeeeeescinnneeee e e e e 168
Creating a Language Localization Project.........ccccccceeeeviviiiiinieeeeeeeeeinns 168
Creating Localized Custom SmartServer Web Pages........cccccceeeeeennnns 172
Translating Common Properti€s........cccveeviecueieieeeeeeeiicinieeeeeeeee s 173
Translating Embedded Application Properties...........cccccccvveeerinnnns 178
Creating a Localized Custom SmartServer Web Page................... 179
Creating Localized FPM Configuration Web Pagesc.ccccceevinneen. 182
Localizing the Language of the SmartServer Web Interface................. 185
Translating Property Files.........occuuiiiiiiiiiiieeeiiieeeee e 185
Creating New Language Folders..........coooiuiiiiiiiiiiiiiiiiiieeeeees 185

Editing the index.htm File to Enable a New Language on the
SMAMSEIVEL ... 186
Translating the Welcome.htm File............occciiiiei e 187
Translating the Menu.htm File..........ccccco oo, 191
Translating the Sidebar.htm Filecoooiiiiii e 198
Viewing the Localized SmartServer Web Interface........................ 201
Appendix A FPM Programmer’s Reference.........ccooeevveeeieeiiicieicnnns 203
OVEIVIEW ...ttt ettt sttt e sttt e e ettt e e e sn bt e e e sttt e e e sbe e e e e s nnsbeeesnnseeeeas 204
=L 10] 0] = ST 1 PR 204
ROULINES ..ttt e e e et e e e snbee e e e eneee 204
a1 = 1T (SRS 205
FPM Application EXamplecevveeoiniiciiiiieceee e 205
FPM Driver EXamplecooiiiiiiiiiieiiece e 205
WVOTK() weeeeiiteeee ettt 205
FPM Application EXample ... 206
FPM Driver EXamPIecoooiiiiiiiiaeeeiiieeee e 206
100 1 N0 L=) PP UP TR UTPPPTRR 206
FPM APPIICALIONoviiiiiiiicc e 207
FPIM DIIVEI ...ttt ettt aee e 207
I 10 o (0111 T) R URERRR 208
FPM Application EXampleoeevveeeiiiiciiieecee e 208
FPM Driver EXamPlecooioiiiiiieie e a e 208
MELNOAS ...t 208
Variable TYPES ..ooieiiiiiie e 208

i.LON SmartServer 2.0 Programming Tools User's Guide

Vi

Internal FPM Data Point Methods...........ccuvveeeiiiiiiiiiee e 209

1O o T oo 1= o [) TSSO 209
NOtIFYONANUPAALES() ...evveeeeiiiieee ettt 210
Propagate().......coeuiueeeee ettt 210
WVITEE() ettt ettt e e 211
RESEIPIIONTY() .. ettt 211
FPM Application Data Point Property Methodscccccceeiiiiiinnen. 212
GetDpPropertyAsString(UCPTNAME)........uuuiiiiiiieieiiiiiieieeeee e 212
GetDpPropertyAsString(UCPTAIIASNamMe)oooevcvviveeeeeeeniennns 213
GetDpPropertyAsTimeSpec(UCPTlastUpdate)..........cccccceeeeeeninnns 213
GetDpPropertyAsPointStatus(UCPTStatus)cccceevvivciviieeeeeeeenins 214
GetDpProperty AsInt(UCPTPIONLY) vooeeoeieiiieeeeeee e e e 215
SetDpProperty (UCPTALIASNAME)ccccvvvvieeeeee e icciiieieeeee e 215
SetDpProperty (UCPTPIOMEY)vvveiiiieeiiiiee et 216
FPM Driver Data Point Property Methodsccccovvieiiiiiiieiiiiiienens 216
SetDpProperty(defOULPUL)eevii i 216
SetDPPrOPerty(PEISIS) ...euiiie it 217
SetDpProperty(POIIRALE)cooiiiiiee e 217
SetDPPrOPerty(UNIt)eeeu e 217
UFPT Local Variablescooiiiiiiiiiiiiie e 217
External SmartServer Data Point Methods...........cccocvveeiiiiiiee e, 218
[RSO PRSP 218

[=T Lo |) PSR 219

K0T (=T S 220
TIMEr MELNOAS ... 221
STANT() -+ eeeeeeeee ettt 221
START _TIMER() cieiotteiie ettt ettt 221
EXPIrQA() «vveeeeereeee ettt 222
(o] o JN) PRSP 223
SOPAITIMEIS() .ottt a e e 223
ISRUNNING() ittt e e e 223

LCT= 11 (ol LT (S PRPRPR 224
GetTimeoUIMIllIS() ...cvvvviieeee e e 224
REDOOt MENOM.ccoiiiiiii e 224
RS-232 Interface Methodscuveeiiiiiiii i 225
(Y228 22 o) o= o 1 SRR 225
FS232_T0CH () .neeeeee ittt 226
FS232_FEAA() «.uveeeeeierieie ittt 227
FS232_ WITEE() . eveeeeeiereee e ettt ettt e 228
FS232_ClOSE() .eeeee ittt 229
RS-485 Interface Methodscc.uueiiiiiiiiii e 229
FSABS OPEIN() 1oeeiiiieiieiie e ettt e et e e e e e e e e e e e nanes 229
rS485 SEtPAraMS() «vvveeeeeeeeeiiiiriiiiee e e e e s ettt e e e e e e e s et r e e e e e e eannees 230
(TS 1 ST o Yo i [SRR 230
rs485 setbuffersize().....cccuiiiiiiiiiiiii e 231

(ST 1T (=T Vo [SRR 231
FSAB5 WITLE() . eeeeeeieeeereeee e e e e e s e et e et e e e s s s e e e e e e e e s s e e e e e e e e e ennnnes 232

(ST 1Yol (o 7=) RSP 232
File ACCESS MEethOASuviiiiieiiii e 233
FOPEN() 1ot 233
FIEAA() -vveee ettt 234
FSEEK() +eveeeee ettt a e 235

L 10=T PR PRR 235

{03 (0 1T=) U RRPPR 236
Appendix B FPM Development and Deployment Checklist 237

Preface

APPENTIX C FPM FAQ ..ot 241

i.LON SmartServer 2.0 Programming Tools User's Guide Vil

Preface

You can use i.LON SmartServer 2.0 Programming Tools to create custom embedded
applications and drivers, which are referred to as freely programmable modules (FPMs),
for your SmartServer. FPMs let you customize the embedded software of the
SmartServer to meet your specific needs. Using i.LON SmartServer 2.0 Programming
Tools, you can write FPMs in C or C++, compile them, and then upload them to your
SmartServer. You can then deploy your FPMs on SmartServers that have an FPM
programming license installed on them. You can also create FPM application licenses
and use them to protect your FPM applications and make them available to customers for
order.

viii Preface

Welcome

The SmartServer includes i. LON SmartServer 2.0 Programming Tools for creating custom C/C++
applications and drivers (called freely programmable modules [FPMs]) that you can use to customize
the functionally of the SmartServer. You can use your FPMs for a number of applications, including
energy optimization, data analysis, lighting control, and room control. You can also use the i.LON
SmartServer 2.0 Programming Tools to translate the SmartServer Web interface into a number of
different languages (language localization).

Purpose

This guide describes how to create and use FPMs on your SmartServer, and how to localize the
language of the SmartServer Web interface.

Audience

This guide is intended for system designers and integrators with an understanding of control networks
and the ability to program in C or C++, and for language localization developers.

Models

This guide is intended for FT-10 and PL-20 models of the SmartServer hardware on which FPM
Programming is licensed. This includes models of the SmartServer on which the FPM programming
license is pre-installed (model numbers 72101R-439, 72101R-440, 72102R-445, 72103R-439, and
72103R-445), and all other models of the SmartServer hardware for which the FPM programming
license (Echelon part number 72161) has been ordered and installed.

I.LON SmartServer 2.0 Programming Tools Versions

The i.LON SmartServer 2.0 DVD includes a demo version of the i.LON SmartServer 2.0 Programming
Tools. You can use the demo version to write an unlimited number of FPMs. To compile your FPMs
and deploy them on your SmartServer, you must order an i.LON SmartServer 2.0 Programming Tools
DVD. To order the i.LON SmartServer 2.0 Programming Tools DVD (Echelon part number 72111-
409), contact your Echelon sales representative.

I.LON SmartServer 2.0 Programming Tools Applications

Installing the demo or full version of the i.LON SmartServer 2.0 Programming Tools adds the
following programs to your computer:

e i.LON SmartServer 2.0 Programming Tool. A pre-configured Eclipse Development Kit that
includes FPM template files, the FPM library, a tool for creating the C structures of user-defined
UNVTs, a C++ compiler, and a CYGWIN environment. You must have the full version of the
i.LON SmartServer 2.0 Programming Tools to compile and upload FPMs to your SmartServer
with the i.LON SmartServer 2.0 Programming Tool.

e i.LON SmartServer 2.0 LonWorks Interface Developer tool. A command line interface that
converts a model file (.nc extension) to a device interface (XIF) file. You must create a XIF for
your FPM in order to deploy it on your SmartServer. See Chapter 4 for more information on
creating XIFs with this tool.

e i.LON License Generator. A tool for creating licenses that help protect your FPM application
from piracy or unauthorized use. The i.LON License Generator includes the following three
components:

o The main executable (iLONLicenseGen.exe) that provides a user interface for entering the
values used to generate an FPM license.

i.LON SmartServer 2.0 Programming Tools User's Guide iX

o A sample license generator configuration file (an XML file named
iLONL icenseGenValuesSample.xml) that demonstrates the structure of the i.LON License
Generator user interface and provides sample pre-defined values.

o A sample security DLL file (LicenseSecurityHMACMDO5.dlII) that takes the values entered
in the i.LON License Generator user interface and creates an FPM license.

See Chapter 7 for more information on creating FPM application licenses.

Hardware Requirements

Requirements for the running the i. LON SmartServer 2.0 Programming Tools are listed below:

e Microsoft” Windows Vista® or Microsoft Windows® XP. Echelon recommends that you install
the latest service pack available from Microsoft for your version of Windows.

e Intel® Pentium® IV 1.5GHz processor or faster, and meeting the minimum Windows requirements
for the selected version of Windows.

e 1 GB RAM minimum.

Note: Windows Vista testing for the i. LON SmartServer 2.0 Programming Tools has been
performed on computers that have a minimum of 2 GB of RAM. For complete Windows Vista
requirements, refer to www.microsoft.com/windows/windows-vista/get/system-requirements.aspx.
You can use Microsoft’s Vista Upgrade Advisor to determine upgrade requirements for a
particular computer. To download this tool, go to the Microsoft Web site at
www.microsoft.com/windows/windows-vista/get/upgrade-advisor.aspx.

e 300 megabytes (MB) free hard-disk space, plus the minimum Windows requirements for the
selected version of Windows.

e DVD-ROM drive.

e 1024x768 or higher-resolution display with at least 256 colors.
e Mouse or compatible pointing device.

e Microsoft Internet Explorer 7 or higher or Mozilla Firefox.

e Terminal emulator such as Windows HyperTerminal. If you are using Windows Vista, you need
to install a terminal emulation application on your computer (Windows HyperTerminal is not
included with Windows Vista). You can license Windows HyperTerminal from Hilgraeve; install
puTTy, which is included on the root directory of the i.LON SmartServer 2.0 DVD and the i. LON
SmartServer 2.0 Programming Tools DVD; or download another free terminal emulator to your
computer.

SmartServer Requirements

You can run FPMs on the SmartServer hardware (they cannot be run on i.LON 100 €3 server
hardware). A SmartServer image and an FPM programming license must be installed on the
SmartServer hardware.

You can run existing FPMs built with the i. LON SmartServer 1.0 Programming Tool (Release 4,
Release 4.01, or Release 4.02 FPMs) on a SmartServer 2.0. If you want to upgrade existing FPMs
built with the i.LON SmartServer 1.0 Programming Tool, you must convert them to the Release 4.03
configuration using the i.LON SmartServer 2.0 Programming Tool. After you convert your existing
FPMs to the Release 4.03 configuration, you can modify, rebuild, and upload them with the i. LON
SmartServer 2.0 Programming Tool, and run them on your SmartServer 2.0.

To run your FPMs on your SmartServer, your SmartServer must have an FPM programming license
installed on it. If you do not have a SmartServer model that includes a pre-installed FPM
programming license, you can order a FPM programming license from the i.LON SmartServer 2.0

X Preface

http://www.microsoft.com/windows/windows-vista/get/system-requirements.aspx
http://www.microsoft.com/windows/windows-vista/get/upgrade-advisor.aspx

Web site at www.echelon.com/products/cis/activate. To run Echelon first-party FPMs or third-party
FPMs on your SmartServer, your SmartServer must also have a separate FPM application license from
Echelon or the third-party FPM vendor.

Creating FPM Application Licenses

You can create FPM application licenses for your FPMs to protect your FPMs from unauthorized use
and piracy, and to make your FPMs available to customers for order. The i.LON SmartServer 2.0
Programming Tools includes the components required to create a FPM licensing tool. Once you create
your FPM licensing tool, you can use it to create FPM application licenses that must be installed on a
SmartServer in order for it to run your FPMs. Customers who want to implement your licensed FPMs
on their SmartServers must order your FPM application license and install it on their SmartServers.

I.LON SmartServer 2.0 Documentation

The documentation for the SmartServer is provided as Adobe Acrobat PDF files and online help files.
The PDF file for this document is installed in the Echelon i.LON SmartServer 2.0 Programming
Tools program folder when you install the i. LON SmartServer 2.0 Programming Tools software. You
can also download the latest SmartServer documentation, including the latest version of this guide,
from Echelon’s Website at www.echelon.com/support/documentation/manuals/cis.

This user’s guide, the online help files, and the following documents comprise the SmartServer
documentation suite:

e i.LON SmartServer 2.0 User’s Guide. Describes how to configure the SmartServer and use its
applications to manage control networks

e Echelon Enterprise Services 2.0 User’s Guide. Describes how to use the i.LON AdminServer to
rapidly and automatically deploy and install LONWORKS networks and how to use the LNS Proxy
Web service to manage LNS networks.

e i.LON Vision 2.0 User’s Guide. Describes how to create custom Web pages for monitoring and
controlling LONWORKS networks and other control networks.

e i.LON SmartServer 2.0 Power Line Repeating Network Management Guide. Describes how to
install a PL-20 repeating network and how to use the SmartServer to prepare, maintain, monitor
and control, and connect the network.

e i.LON SmartServer 2.0 Programmer’s Reference. Describes how to configure the SmartServer
using XML files and SOAP calls. This allows you to create your own applications that you can
use to configure the SmartServer.

e i.LON SmartServer 2.0 Hardware Guide. Describes how to assemble, mount, and wire the
SmartServer hardware.

e i.LON SmartServer 2.0 Quick Start Guide. Contains all the information you will need to connect
the SmartServer hardware, install the i.LON SmartServer 2.0 software, and configure the
SmartServer using the SmartServer configuration Web pages.

e |P-852 Channel User’s Guide. Describes how to configure an IP-852 channel with the Echelon

LONWORKS®/IP Configuration Server. You will need this information if you plan to use the
i.LON as an IP-852 router.

Related Reading

The following additional documents may be useful if you are using certain features of the SmartServer.
You can download these documents from Echelon’s Web site at www.echelon.com/docs.

o NodeBuilder Resource Editor User’s Guide. Describes how to use the NodeBuilder Resource
Editor to create and edit functional profile templates.

i.LON SmartServer 2.0 Programming Tools User's Guide Xi

http://www.echelon.com/products/cis/activate
http://www.echelon.com/support/documentation/manuals/cis
http://www.echelon.com/docs

Neuron C Programmer’s Guide. Describes how to write programs using the Neuron® C Version
2.1 language.

Neuron C Reference Guide. Provides reference information for writing programs using the
Neuron C language.

LONMARK Resource Files, version 13.00. Documents the standard network variable types
(SNVTs), standard configuration property types (SCPTs), and standard enumeration types that you
can declare in your FPM applications and drivers. You can go to types.lonmark.org/index.html to
check the current LONMARK standard resource file.

Content

This guide includes the following content:

Xii

Introduction. Provides an overview of freely programmable modules (FPMs) and explains the
types of tasks FPMs can perform. Describes the types of custom embedded applications and
drivers you can create with FPMs. Explains how to create and configure FPMs. Summarizes how
to create FPM application licenses in order to protect your FPM applications and make them
available to customers for order. Provides a quick-start exercise that you can use to create a
simple FPM application.

Installing the i.LON SmartServer 2.0 Programming Tools. Describes how to install, upgrade, and
uninstall the i.LON SmartServer 2.0 Programming Tools.

Creating FPM Templates. Describes how to use the NodeBuilder Resource Editor to create the
user-defined functional profile templates (UFPTs) to be used by your FPMs. Explains how to
upload the UFPTs to your SmartServer so that you can begin writing your FPMs.

Creating FPM Device Interface (XIF) Files. Describes how to create a static device interface
(XIF) file for your FPM. This step is required if you are integrating your FPM applications with
the LonMaker tool or another LNS network tool. Describes how to write a model file that
declares the network variables and configuration properties in your FPM and a functional block
implementing an instance of the UFPT used by your FPM. Explains how to use the i.LON
SmartServer 2.0 LONWORKS Interface Developer tool to convert your model file to a device
interface (XIF) file and how to copy the XIF to your SmartServer.

Creating FPMs. Describes how to use the i.LON SmartServer 2.0 Programming Tool to create a
new FPM project, and then write, compile, and debug FPM applications and FPM drivers.

Deploying FPMs on a SmartServer. Describes how to use the i. LON SmartServer 2.0
Programming Tool to upload FPMs to one or more SmartServers. Explains how to select a
network management service (LNS or Standalone) for running your LONWORKS network.
Describes how to create, commission, and connect, and test FPM devices on the SmartServer.
Describes how to create a custom configuration Web page for FPM applications. Explains how to
update an FPM application. Describes how to deploy licensed FPMs.

Creating FPM Application Licenses. Describes how to create FPM application licenses so that
customers can order and implement your FPMs on their SmartServers. Describes how to build an
FPM licensing tool. Explains how to enable license validation in your FPM application.
Describes how to create FPM application licenses. Lists the files you need to provide to
customers who order your licensed FPM applications.

Localizing the SmartServer Web Interface. Describes how to translate custom SmartServer Web
pages and the entire SmartServer Web interface to a different language.

Appendices. Includes a programmer’s reference for writing FPM applications and drivers, a
checklist outlining the FPM development and deployment process, and an FAQ.

Preface

http://types.lonmark.org/index.html

For More Information and Technical Support

The i.LON SmartServer 2.0 Programming Tools ReadMe document provides descriptions of
known problems, if any, and their workarounds. To view the i.LON SmartServer 2.0 Programming
Tools ReadMe document, click Start, point to Programs, point to Echelon i.LON SmartServer 2.0
Programming Tools, and then select i.LON SmartServer 2.0 Programming Tools - ReadMe. You
can also find additional information about the SmartServer at the i. LON Web page at
www.echelon.com/ilon.

If you have technical questions that are not answered by this document, the SmartServer 2.0 online
help, or the i.LON SmartServer 2.0 Programming Tools ReadMe document, you can contact
technical support. Free e-mail support is available or you can purchase phone support from Echelon or
an Echelon support partner. See www.echelon.com/support for more information on Echelon support
and training services.

You can also view free online training or enroll in training classes at Echelon or an Echelon training
center to learn more about developing devices. You can find additional information about device
development training at www.echelon.com/training.

You can obtain technical support via phone, fax, or e-mail from your closest Echelon support center.
The contact information is as follows (check www.echelon.com/support for updates to this
information):

Region Languages Supported Contact Information

The Americas English Echelon Corporation
Japanese Attn. Customer Support
550 Meridian Avenue

San Jose, CA 95126

Phone (toll-free): 1.800-258-
4LON (258-4566)

Phone: +1.408-938-5200
Fax: +1.408-790-3801
lonsupport@echelon.com

Europe English Echelon Europe Ltd.
German Suite 12

French Building 6

Italian Croxley Green Business Park
Hatters Lane

Watford

Hertfordshire WD18 8YH
United Kingdom

Phone: +44 (0)1923 430200
Fax: +44 (0)1923 430300
lonsupport@echelon.co.uk

Japan Japanese Echelon Japan

Holland Hills Mori Tower, 18F
5-11.2 Toranomon, Minato-ku
Tokyo 105-0001

Japan

Phone: +81.3-5733-3320

Fax: +81.3-5733-3321
lonsupport@echelon.co.jp

i.LON SmartServer 2.0 Programming Tools User's Guide Xiii

http://www.echelon.com/ilon
http://www.echelon.com/support
http://www.echelon.com/training/
http://www.echelon.com/support
mailto:lonsupport@echelon.com
mailto:sales@echelon.co.uk
mailto:lonsupport@echelon.co.jp

Region Languages Supported Contact Information

China Chinese Echelon Greater China
English Rm. 1007-1008, IBM Tower
Pacific Century Place
2A Gong Ti Bei Lu
Chaoyang District

Beijing 100027, China
Phone: +86-10-6539-3750
Fax: +86-10-6539-3754
lonsupport@echelon.com.cn

Other Regions English Phone: +1.408-938-5200
Japanese Fax: +1.408-328-3801
lonsupport@echelon.com

Xiv Preface

mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com

1

Introduction

This chapter provides an overview of freely programmable modules (FPMs) and
explains the types of tasks FPMs can perform. It describes the types of custom
embedded applications and drivers you can create with FPMs. It explains how to
create and configure FPMs. It summarizes how to create FPM application licenses in
order to protect your FPM applications and make them available to customers for
order. It provides a quick-start exercise that you can use to create a simple FPM
application.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 1

Overview of Freely Programmable Modules

Freely Programmable Modules (FPMs) are custom C/C++ applications and drivers that you can use to
customize the functionality of the SmartServer. You can use FPM applications to supplement the
built-in applications on the SmartServer and provide solutions for a number of applications, including
energy optimization, data analysis, lighting control, and room control. You can use FPM drivers as
gateways to legacy systems or nonnative networks such as BACnet and CAN (requires an external
interface, sold separately). You can then use your FPM drivers to send data from the SmartServer’s
RS-232 or RS-485 ports to a built-in application on the SmartServer (for example, a Scheduler or a
Data Logger) or a custom SmartServer Web page.

An FPM can perform the following tasks:

Create data points on the SmartServer.

Execute code upon data point updates.

Read and write data to data points.

Control timers and execute code upon their expiration.

Read and write data to the RS-232 serial port on the SmartServer.
Read and write data to the RS-485 serial port on the SmartServer.

FPM Types

You can create two types of FPMs: FPM applications and FPM drivers. An FPM application reads and
writes values to the data points declared in it, executes code upon data point updates, reads data point
properties, and controls timers and executes code upon their expiration. A simple example of an FPM
application would be one that reads two data points and adds their values together.

An FPM driver creates data points on the SmartServer (not in the LNS database) and provides values

for them by reading and writing to the RS-232 and RS-485 ports on the SmartServer. You can use an
FPM driver to create gateways for nonnative devices. An FPM driver can then be used to supply data
from the RS-232 or RS-485 ports to a built-in application or custom Web page on the SmartServer.

Creating and Deploying FPMs

You can create FPMs using the i.LON SmartServer 2.0 Programming Tool, which includes a pre-
configured C/C++ Eclipse environment and all the tools needed to write, compile, and upload, your
FPMs. After you create your FPMs, you can deploy them on your SmartServer.

Before you can begin writing your FPMs, you need to use the NodeBuilder Resource Editor to create a
user-defined functional profile template (UFPT), which defines the set of network variables and
configuration properties to which your FPM will read and write.

You can write an unlimited number of FPMs using the demo or full versions of the i. LON SmartServer
2.0 Programming Tool. To compile your FPMs and deploy them on your SmartServer, you must use
the full version of the i. LON SmartServer 2.0 Programming Tool, which is included on the i. LON
SmartServer 2.0 Programming Tools DVD. To order the i.LON SmartServer 2.0 Programming Tools
DVD (Echelon part number 72111-409), contact your Echelon sales representative.

To begin running your FPMs on your SmartServer, an FPM programming license must be installed on
your SmartServer. To order an FPM programming license for your SmartServer, go to the i. LON
SmartServer 2.0 Web site at www.echelon.com/products/cis/activate. If you plan on using licensed
Echelon first-party FPMs or licensed third-party FPMs on your SmartServer, you must also order a
separate FPM application license from Echelon or the third-party FPM vendor.

To deploy an FPM application on the SmartServer, you upload the FPM executable module to the
SmartServer, and then add an internal device to the SmartServer. The internal device must use a static
interface if you are integrating your FPM applications with another LNS application such as the
LonMaker tool. If you are running your network with the SmartServer operating as a standalone
network manager, the internal device can use a static or dynamic interface.

2 Introduction

http://www.echelon.com/products/cis/activate

You can create up to 10 internal FPM devices on the SmartServer. Each internal FPM device may
have multiple functional blocks, and the functional blocks may represent different instances of the
same FPM application or they may represent instances of different FPM applications. For example,
you can create an internal device that has two functional blocks that are both instances of the same
FPM application for adding the values of two data points. Alternatively, you can create an internal
FPM device that has two functional blocks, where one is an instance of an FPM application that adds
data point values, but the other is an instance of an FPM application that subtracts data point values.

See Quick-Start FPM Exercise later in this chapter to create a simple FPM application and deploy it on
your SmartServer.

Using Eclipse Environment Commands

The Eclipse environment includes a Content Assist command (CTRL + SPACEBAR), an Open
Declaration command (F3), and ToolTips that you can use when writing your FPMs.

You can use the Content Assist command (CTRL + SPACEBAR) when typing elements in the FPM
API to open a dialog that lists all the applicable code elements for the snippet you typed. When the
dialog opens, you can either continue typing to filter the list, double-click the element to be inserted, or
press ESC to close the dialog.

[£] *UFPTHYACContraller.cpp £3 =0
LU=y I A
170/

7iroid CUFPTHVACController: :Work()
TEA
2173 if [nwiHVACHMode == hvac__t::l
T hwac_t -~
8 HWAC_ALTO
____________________________ o HVAC_CALIBRATE e
CUFPTHVACCOntroller: :CnTimer o Hyac CoOoL
This is the default timer ca g H\.-'P.C_DEHUMID E use
the timer-calls end up here. g HVP.C_ECONOMV reed,
can be identified by utilizi DfWAdiMERQﬁOOL bt
o HWaC_EMERG_HEAT
if fw oTimerl.Expired(l) o HYAC_EMERG_STEAM
b B HYAC_FAN_OMNLY o
Press 'Crl+Space’ to show Template Proposals

b

i ——_——
192/ CUFPTHVACController::OnMyTimer ()
193// This is A samnle far a nser defined fimer ewent handler. Tf 'START ¥

You can use the Open Declaration command (F3) to navigate to the declaration of the selected
element. This is particularly useful for elements in Echelon’s FPM API. For example, you can use
this command on the internal data point Wr i te () method, and the method is detailed in the FPM
header file that opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 3

[€] *UFPTHVACCortraler.cpp m =0

S4 Explicitly write the vwalue of an internally DECLARE (jd wariable. MNormally this A~
/¢ hecause vhenever an internal wvarisble's wvalue was modified, the change will he
/¢ propagated to the dataserver after the Work() or timer routine(s) are finished
/¢ Caution: the implementation of this mwethod is wery resource conswning, so use
/f Bparsm rVar internally DECLARE (jd wvariable.

ff Breturn status indicating if the execution of the method caused an error (]
I went through (O]
STATUS Write (CWariable& rWVar);

/¢ Reset the pricrity of an internally DECLARE()d wvariakle.
f4 Caution: the implementation of this mwethod is wery rescurce consuming, =So use

/¢ Bparam rVar internally DECLARE()d wvariable.
// BnPricduthority the pricrity of this block-instance used for seti) and reset()
/¢ Breturn status indicating if the execution of the method caused an err
I went through (O]
STATUS ResetPriority(CVarishles rVar, unsigned short nPrickuthority):

15

#4 == Timer methods

public:

/¢ Convenience method to stop all timers that are currently run by this block-ins
J¢ Brecturn true if all block-instance timers could be stopped, otherwise false. y
hool StopldllTimersi):

W

= | »

You can move your mouse pointer over an object in your FPM to open a tooltip that provides a
description and the API of the selected object.

TR cjces Pregests i) AUPTAC ol gpe L] PR emContrier g

=& | ¢ - SR EEEXE -
& L UFPTHVAC orts e LN, 3 -
L8 urPTHALControler.cop

& [N UPPTHACCsrEroler b

e SFFIOEDONN000AIN(E]UFF TMath

e POOOOOAIE Y] LT f gt
& a0 Inchdes [’ if snoedi iml hangEd [LE
o e Bl £

& (8 UPPTTempcortroler Ltk oo

& (6 urrTTemptontiober oo

& & UFPTTemgCortroler by

B
&

¥ Lotk Besturcs Wew 1]

= & 2 e Eha Vet

Server[IP-hddress! | 10,7 124,105 []
s

. |lo-ol;1ﬁn-mn‘:w-rm_w“°1. o Changed|
. it e T e e
s
1

if the variable's valus ag =odlfied, thatwise Taturss falaw
const CVarlablel eVar)
| weturn [CVariable: iDATASERVER UFDATE == tVes. eState); |
hoatforeikaitepssinbag_nkegy
Trexct fomecaba b it arekar ol by
Frootforeeibaitepe sty concar |'
= Contiguratnn Proparty Types ! Thia i t ulz Eiper - £ ‘m_cTiemsi.Scact az uamd 3- i 1
= B Furctiond Profle Temglstes | b »
R T I ——
& O swrroEtionoconi(s] | e
T soroonooonosnfs] | 2R
& O OrrpEOn0ens] Dewcriction = Rewrts Fath Locat... Typm

< Tusks [E] Comsate ©7 Preperties

Writabie St frdedt 1800

Debugging FPMs

The SmartServer uses a VxWorks® real-time operating system to run its embedded applications. If
you need a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4) or access to VxWorks
system calls not encapsulated in the Echelon FPM API, contact Wind River” sales at
www.windriver.com/company/contact/index.html for more information on ordering “WindRiver
Platform for Industrial Services V3.2 for MIPS32 Processors”.

If you plan on debugging your FPMs with Wind River Workbench, you need to backup and then delete
the current iLonSystem image on your SmartServer flash disk, copy the iLonSystemWdb or
iLonSystemWbdEnd image in the LonWorks/iLON/Development/Debug/ES Debug.<software
version> folder on your computer to your SmartServer flash disk, re-name the iLonSystemWdb or

4 Introduction

http://www.windriver.com/company/contact/index.html

iLonSystemWbdEnd image on your SmartServer to iLonSystem, reboot the SmartServer, create a
debug configuration of your FPM in the i.LON SmartServer 2.0 Programming Tool and upload it to
your SmartServer, and then connect the Workbench debugger to the iLonSystemWhbd or
iLonSystemWbdEnd image on your computer via the target server. For more information on how to
do this, see Chapter 5, Creating FPMs.

If you are not using Wind River Workbench to debug your FPMs, you can still perform some
debugging by adhering to the following guidelines when developing your FPMs:

1. Physically connect the computer running the i. LON SmartServer 2.0 Programming Tool to the
i.LON console port using an RS-232 null modem cable. This enables you to use a Terminal
emulator such as Windows HyperTerminal to view the i.LON console port and debug your FPMs
during runtime. After the FPM is initialized you can use Telnet to view the i.LON console port.

2. Back up the FPM project frequently. Always make a back up after you make significant changes
to an FPM application and successfully compile it.

3. Bracket comments around those portions of the FPM application that you have written. For
example, you can do the following:

// mycode —begin - -——-—-———————— -~
outl=1inl+in2;
// mycode—-end ————————————— -

4. Add your user help functions to the UFPT<FPM>_Ultils.cpp file (this file is created when you
create a new FPM project). This further isolates your code for debugging, and it enables you to
port the code over to another FPM project.

5. Insert printFf()statements in your code frequently. This enables you to do some debugging
with the console port of the i.LON during runtime, as the console port will receive the printf
() statements. For example, you can do the following:

printf ("[%s %i] value of %s: %d",

__FILE__,

__LINE__,
inl.GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname),
*inl);

Note: The console port displays the status of your FPM during a reboot.

It is especially important to follow these guidelines because the compiler errors you may receive may
only have a generic description that does not indicate which line of code caused the error. In addition,
the errors may not appear on the actual line of code causing the error; instead, an error may appear one
or two lines above the incorrect code.

Creating FPM Application Licenses

You can create FPM application licenses and make your FPMs available to customers, who can
implement your third-party FPMs on their SmartServers. To create FPM application licenses, you
need to create an FPM licensing tool, enable license validation in your FPM application, build a release
version of your licensed FPM, use the i.LON License Generator program to create FPM license files,
and then provide the FPM licenses and other required files to customers. Customers must order a
separate FPM application license from you to use one of your licensed FPMs on their SmartServers.

The i.LON SmartServer 2.0 Programming Tools includes an i.LON License Generator that you can use
to create your own FPM application licensing tool. The i.LON License Generator includes the i. LON
License Generator user interface, a sample security DLL file (LicenseSecurityHMACMD5.dII), and a
sample XML file (iLONLicenseGenValuesSample.xml) that provides the structure and sample pre-
defined values of the i.LON License Generator user interface. To create your FPM application
licensing tool, you need to build a security DLL file named LicenseSecurity.dll, and create a license
generator configuration file named iLONLicenseGenValues.xml that has pre-defined values for the
i.LON License Generator user interface. Note that if you cannot build the security DLL file, you can

i.LON SmartServer 2.0 Programming Tools User’'s Guide 5

just re-name the sample DLL file LicenseSecurity.dll; however, you are solely responsible for the
creation of the security DLL file.

You also need to modify your FPM application so that it can check whether a customer’s SmartServer
has a valid FPM license file for running your FPM. This entails writing a separate license validation
routine in your FPM application that (1) checks whether the Lock ID (MACID, LUID, or other user-
defined lock type) specified in the FPM license file matches the one on the customer’s SmartServer,
and (2) checks whether the license key in the FPM license file is valid.

Once you have created the security DLL and license generator configuration files and you have
enabled license validation in your FPM application, you can use the i.LON License Generator user
interface to create FPM application licenses. The FPM application license is an XML file that must be
on a SmartServer in order for it to run your licensed FPM. This means that you can make your FPMs
available to customers, while protecting your FPMs from unauthorized use or piracy.

A customer who orders a licensed FPM application from you must install the FPM application license
for that FPM on their SmartServer. If a customer attempts to run your FPM application without
installing the FPM license file on their SmartServer, the SmartServer will report a license error and the
FPM will not run on the SmartServer. This means that a customer running one of your FPMs must
have two licenses installed on their SmartServer: an FPM programming license from Echelon and the
FPM application license from your company that you generated for that FPM.

See Chapter 7, Creating FPM Application Licenses, for more information on creating FPM licenses
and enabling license validation in your FPM application.

Quick-Start FPM Exercise

The following section describes how to create a simple FPM application called UFPTMath and then
deploy, test, and connect the FPM on your SmartServer. The Math application adds two SNVT_count
input data points and stores the result in a SNVT_count output data point. To create, deploy, test, and
connect the Math FPM application, you perform the following steps:

1. With the NodeBuilder Resource Editor, create a user-defined functional profile template (UFPT)
for the FPM, and then generate your company’s FPM resource file set. Copy your company’s
updated FPM resource file set to the root/lonWorks/types/User/<YourCompany> folder on the
SmartServer flash disk.

2. With a text editor such as Notepad, create a model file (.nc extension) in which you declare all the
data points in the UFPT, and a functional block that implements an instance of the UFPT. With
the i.LON SmartServer 2.0 LonWorks Interface Developer tool, generate a device interface (XI F)
file from your model file. Copy the XIF to the root/lonWorks/Import/<YourCompany> folder on
the SmartServer flash disk.

3. With the i.LON SmartServer 2.0 Programming Tool, create a new FPM project from the UFPT
you created in step 1.

4. With the i.LON SmartServer 2.0 Programming Tool, write the FPM application and then build it.

Note: The full version of the i. LON SmartServer 2.0 Programming Tools must be installed on
your computer to build the FPM.

5. On your SmartServer, deploy the FPM. To do this you upload the FPM application to the
root/modules/User/<YourCompany>folder on the SmartServer flash disk. You then add a new

internal device to the SmartServer that uses the device interface (XIF) file that you created for the
FPM.

6. On your SmartServer, test the FPM. To do this, you open the View — Data Points Web page, add
the input and output data points in the FPM application, update one of the input data points, and
observe that the output data point is updated accordingly.

6 Introduction

Note: An FPM programming license must be installed on your SmartServer for the FPM to run
on your SmartServer. You can order a FPM programming license from the i. LON SmartServer
2.0 Web site at www.echelon.com/products/cis/activate

On your SmartServer, create Web connection between the data points declared in your FPM
application and the data points on the SmartServer, and then use the View — Data Points Web
page to test that the Web connections are updating the FPM data points.

Tip: Review the guidelines for creating FPMs that are listed in the Debugging FPMs section. You
should follow these guidelines in order to help debug your FPM applications.

Step 1: Creating and Copying the FPM Template

You can create the template to be used by the FPM. To create a new template, you create a new user-
defined functional profile template (UFPT) in the NodeBuilder Resource Editor (the NodeBuilder
Resource Editor is included with the i. LON SmartServer 2.0 software). After you create a new UFPT,
you select the standard and user-defined network variable and configuration property types (SNVTs,
UNVTs, SCPTs, and UCPTs) to which the FPM will read and write. Once you have added all the data
types to be use by the FPM, you generate the updated FPM resource file set in which the template was
created and copy your resource files to the root/lonWorks/types/User/<YourCompany> folder on the
SmartServer flash disk

To create the FPM template, and generate and copy the updated FPM resource file set, follow these
steps:

1.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

Start the NodeBuilder Resource Editor. To do this, click Start, point to Programs, point to
Echelon NodeBuilder Resources, and then click NodeBuilder Resource Editor.

Note: If NodeBuilder Resource Editor is not installed on your computer, you can install
NodeBuilder Resource Editor 3.14 from the i. LON SmartServer 2.0 DVD or the i.LON
SmartServer 2.0 Programming Tools DVD. See the i.LON SmartServer 2.0 User’s Guide for
more information on installing the NodeBuilder Resource Editor.

Create a new resource file set for your company. If you plan on integrating your FPM
applications with an LNS application such as the LonMaker tool, you need to create a new scope 5
resource file set. To create a new resource file set, follow these steps:

a.

Right-click your company’s resource file set and click New Resource File Set on the shortcut
menu. The New Resource File Set dialog opens

Note: If your company does not already have a folder under the LonWorks/types/User
directory on your computer, you need to create one. This folder will be used to store the
resource file set you will create for your FPMs. To create a new folder, right-click the
LonWorks/types/Ldrf.Cat file and then click Add Folder on the shortcut menu.

If you plan on integrating your FPM applications with an LNS application such as the
LonMaker tool, you should select 5 in the Scope box (this sets the scope to device class,
manufacturer, usage, and channel type).

In the manufacturer (MMMMM) field of the Program ID box, enter your 5-digit
manufacturer ID in hexadecimal format.

Note: If your company does not have a manufacturer ID, you can get a temporary
manufacturer ID from LonMark at www.lonmark.org/mid. In addition, if your company has
many FPM developers, it is recommended that you request temporary manufacturer IDs for
them. After you obtain your temporary manufacturer ID, you can enter it in the MMMMM
field of the Program ID box.

In the format (F) field of the Program ID box, enter 9 (this sets the Standard Development
Program ID flag).

http://www.echelon.com/products/cis/activate
http://www.lonmark.org/mid

e. Inthe channel (TT) field of the Program ID box, enter 04 if you have an FT-10 model of the
SmartServer or enter 10 if you have a PL-20 model of the SmartServer.

f. Inthe Resource File Set Name box, enter “FPM Development”, “FPM Examples”, or
something comparable

g. Click OK.

3. Expand the folder containing your company’s FPM resource file set, right-click the Functional
Profile Template folder, and then click New FPT on the shortcut menu.

4. Enter UFPTMath for the name of the new UFPT you created.

5. Double-click UFPTMath, or right-click it and click Open on the shortcut menu. The Modify
Functional Profile dialog opens.

6. Expand the LonWorks/types/STANDARD directory, expand the Network Variables folder, and
then click and drag the SNVT_count data point to the Mandatory NVs folder. In the Name
property, enter inl.

7. Repeat step 6, but name the new data point in2.
8. Repeat step 6, but name the data point outl and select Output under the NV Settings box.
9. Click OK.

10. Generate your company’s updated FPM resource file set. To do this, right-click your company’s
FPM resource file set, and then click Generate Resources Set on the shortcut menu. The
Generate Resources Set dialog opens.

11. Click Yes to generate the updated FPM resource file set.

12. Copy your company’s updated FPM resource file set from the LonWorks\Types\User\<Your
Company> folder on your computer to the root/LonWorks/Types/User/<Your Company> folder on
the SmartServer flash disk. Note that you may need to create your User/<YourCompany> folder
on the SmartServer flash disk before copying your resource file set.

For more information on creating UFPTs for your FPMs, see Chapter 3, Creating FPM Templates.
For more information on using the NodeBuilder Resource Editor, see the NodeBuilder Resource Editor
User’s Guide.

Step 2: Creating and Copying the Device Interface (XIF) File

You can create the device interface used by your FPM. To create the device interface, you use a text
or programming editor such as Notepad to write a model file (.nc extension). In this model file, you
declare all the network variables and configuration properties that you added to the UFPT, and you
declare a functional block that implements an instance of that UFPT. After you create the model file,
you open a Command Prompt window and use the i.LON SmartServer 2.0 LonWorks Interface
Developer tool to convert your model file to a device interface (XIF) file. You then copy the XIF (.xif
extension) to the root/lonWorks/Import/<YourCompany> folder on the SmartServer flash disk.

To create the device interface (XIF) file your FPM application, follow these steps:
1. Open a text or programming editor on your computer such as Notepad.

2. Enter or copy the following code, which does the following: declares the three SNVT_count
network variables in UFPTMath, declares a functional block that instantiates UFPTMath, lists
implementations of the three SNVT_count network variables in UFPTMath, and defines a name
and an external name for the functional block.

network input SNVT_count inl;
network input SNVT_count in2;
network output SNVT_count outl;

8 Introduction

fblock UFPTMath {
inl implements inl;
in2 implements in2;
outl implements outl;
} fbMathFunction external _name ("'Math Function'™);

Save your model file on your computer. This example stores a model file named “math.nc” in a
folder named “ModelFile” that has been created under the C:\LonWorks directory. The file path of
the source file in this example is therefore C:\LonWorks\ModelFile\math.nc.

Create a <YourCompany> folder for your company under the C:\LonWorks\Import folder if one
does not already exist. This is where the XIF generated by the i.LON SmartServer 2.0 LonWorks
Interface Developer tool is to be stored.

Install the full version of the i.LON SmartServer 2.0 Programming Tools from the i.LON
SmartServer 2.0 Programming Tools DVD if it is not already installed on your computer. This
will install the i. LON SmartServer 2.0 LONWORKS Interface Developer tool. You will use this
command line interface in the next step to generate the device interface (XIF) file used by your
FPM. For more information on installing the . LON SmartServer 2.0 LonWorks Interface
Developer tool, see Chapter 2, Installing i.LON SmartServer 2.0 Programming Tools.

Convert your model file to a XIF using the i. LON SmartServer 2.0 LonWorks Interface Developer
tool. To do this, open a Command Prompt window and then type the following command:

libilon --source=<model file path> --pid=<program ID> --
out=<destination path> --basename=<XIF name >

For this example, you would type the following at the command prompt (you need to replace the
sample program ID with your company’s program ID, and you need to replace the
“YourCompany” folder in the C:\LonWorks\Import directory with your company’s folder):

libilon --source=C:\LonWorks\ModelFile\Math.nc --
pid=9F:FD:3E:00:00:00:04:00 --out=C:\LonWorks\Import\YourCompany
--basename=Math

This creates device interface files named “Math” (.xif and .xfb extensions), and stores them in the
C:\LonWorks\Import\<YourCompany> folder.

Note: You need to separate the command switches (--source, --pid, ——out, and —
basename) with spaces, but you do not insert spaces between the command switch and the
specified argument.

Copy the XIF (.xif extension) generated in step 5 to the root/lonWorks/Import<YourCompany>
folder on the SmartServer flash disk. Note that you may need to create the <YourCompany>
folder on the SmartServer flash disk before copying the XIF.

For more information on creating XIFs for your FPMs, see Chapter 4, Creating FPM Device Interface
(XIF) Files.

Step 3: Creating the FPM Project

You can create the FPM project using the i.LON SmartServer 2.0 Programming Tool. To create a new
FPM project, you make your SmartServer accessible to the i. LON SmartServer 2.0 Programming Tool,
and then create a new FPM project from the resource file set you added to the SmartServer flash disk.
To create an FPM application, follow these steps:

1.

Start the i.LON SmartServer 2.0 Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer 2.0 Programming Tools, and then click i.LON
SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0 Programming Tool opens.

Locate the LonMark Resource View at the bottom left-hand corner of the document window.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 9

10

6.

In the Server/IP-Address box in the LonMark Resource View, enter the hostname or IP address
of your SmartServer and then click the Go button to the right.

Expand the SmartServer icon and then expand the LonMark folder. The resource files in the
root/lonWorks/types folder on your SmartServer flash disk are shown.

Expand your company’s FPM resource file set, expand the Functional Profile Templates folder,
right-click the <company program ID>.UFPTMath template, and then click New FPM
Application on the shortcut menu.

Lonfark ource

0 x
Server/IP-Address: [1.2 124 .82

= & 10.2.124.82
=% LonMark.

@ Irootflonworks/typesistandard byp

@ Iroot/lonworks/typesiuser fechelonfbas_contraller tvp

@ Troot/lorworks/typesiuser fechelonfde0131 byp

@ Troot/lorworks/typesiuser fechelonfde0519. byp

@ Iroot/lorworks/typesiuser fechelonfechelon. bvp

@ Trootflorworks/typesiuser fechelonfisilon.byvp

ﬂ Iroot/lorworks/bypesiuser fechelonfmbus_integrator. byvp

@ Troot/lonworks typesiuser fechelonfminikit. byp

@ Iroot/lonworks/typesiuser fyourcompany ffpm development . byp

f Configuration Property Types

Functional Profile Templates

'—:? #OFFDIE0000000000[3], UFPTHYAC Controller

':'? #OFFD3E0000000000[3]. UFPThyacTempSensor

B 0P FDIEOO000

% Metwork Variable Types

[N e e

,
-

52|
b

=)y Import all Declarations

The CDT Project dialog opens.

Introduction

£ CDT Project M=

CDT Project
Create COT project of selecked type

| ——

Project name: | 9FFDIEONN0O000400[S], UFPTMath

Use default location

Project bype: Toolchains:

0 FPM Application - SmartServer 2 VEWORKS 6.2
> FPM Application

@) [Mext = H Finish H Cancel]

7. If you will be deploying this example FPM on a SmartServer 2.0, click Finish to accept the
default settings. If you will be deploying this example FPM on a SmartServer 1.0, click FPM
Application, and then click Finish.

Note: Avoid modifying the default project name. This ensures that the your FPM project has a

unique namespace by following the FPM naming convention, which is <company program
ID>.UFPT< FPT Name>.

8. A new UFPTMath FPM project folder with the name specified in step 4 is added to the C/C++
Projects view, and the source file view opens to the right of the C/C++ Projects view.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

11

9.

& C/C++ - UFPTMath.cpp - Eclipse SDK g@gl

File Edit Refactor Mavigate Search Project FPM Run Window Help

iD-EEe = B ANCRNCANE S0 R R R AR R RS R B[R crcs+ | ”
Rl Cic++ Projects 57 Navigator ERFoERR =] UFPTMath.cpp X =4
= SFFD3EO000000400[S]. UFPTMath using namespace SwartServer::FPM LIB VERSICH; ~

using namespace 79FFD3EDDDDDDDQDEﬁSiLTFPTMathJLFP,'

£
/4 =» section datapoint variable declarations. DO MOT REMOVE T
DECLARE | 0000000000000000 0 ::SHVT count, inl, INPUT DP |
DECLARE(_0000000000000000_0_: :SNYT_count, inZ, INPUT_DP)
DECLARE{ _0000000000000000_0_: :SHVT_count, outl, GUTPUT_DP)

% LonMark Resaurcs Yiew 52 R S s $Y o0 // <= section datapoint varisble declarations. DO HOT REMOVE T
ServerfIP-address: | 102,124,682 s
= &9 10.z.124.82
(=% LonMark A
@ [rootflonworks ftypes/standard.byp A4 ==r» the one and only instance
e [rootflonworks types user/echelon/bas_contraller.typ s
@ Jrootflonworks types/userfechelondc0131, typ static FPM::TStarter<CUFPTMath> STARTER| FPM MODULE NAME):
@ [rootflonwarks ftypesfuser/echelonidc0519. typ
e [rootflonworks types user/echelon/echelon.typ s
e [rootflonworks types/userechelon/isilon.typ 44 ==» extern "C" commands (tveicallv not neesded)]
@ [rootflonwarks typesfuser/echelonimbus_integrator. typ < >
@ Jrootflonworks typesjuserfechelonminidt. by [Probiems 1 Console | Properties %< o0
= @ Jrootflonworks types fuser/yourcompanyfpm development,typ F
@ Configuration Praperty Types Derrors, O warnings, 0 infos
=B Functional Profie Templates Doswpton
@ #9FFDIE0N0000400[5]. UFPTHYACControllsr
155 #9FFD3ED000000400[5] UFPTMath
(3 #9FFDAEONNO000400[5] UFPTMathidd
@ #9FFDIE0N0000400[5]. UFPTMathSubtract
Eﬁ #9FFD3E0000000400[S]. UFPTSwitchEncader
% Metwork Variable Types
< bd
H T Writable Smart Insert 28:2 Building workspace: (0%) FOE

You can observe that the Data Point Variable Declarations section automatically includes
DECLARE statements for each data point in the .UFPTMath template.

For more information on creating FPM projects, see Chapter 5, Creating FPMs.

Step 4: Writing the FPM Application

You can write the FPM application using the i.LON SmartServer 2.0 Programming Tool. This mainly
entails specifying the logic to be executed on the data points declared in the application. For this
exercise,75

12

you create a simple addition algorithm in the Work () routine of the UFPTMath.cpp file. Whenever
one of the input data points is updated, the algorithm adds the two input data points and stores the
result in the output data point. Note that the Work () routine is one of four routines in the FPM
application. The other three routines are Initialize(), OnTimer (), and Shutdown().

The Initialize() routine is executed when the FPM application is started or enabled. You
can initialize data point values and start timers in this routine.

The Work () routine is executed when data points declared in the FPM application are updated.
You can write values to the data points declared in your FPM application and read data point
properties in this routine.

The OnTimer () routine is executed when a timer created in the Initial ize() routine
expires. You can read data point properties in this routine.

The Shutdown () routine is executed when the FPM application is stopped or disabled. You can
stop timers and perform any required cleanup in this routine.

To write and build the FPM application, follow these steps:

1.
2.

In the UFPTMath.cpp file, find the Work () routine.

In the Work () routine, enter the following code:

Introduction

void CUFPTMath: :Work(Q)
if (Changed(inl) || Changed(in2))

outl=i1nl+1iIn2;
printf('%i +%i =%i1 \n", *inl, *in2, *outl);
by
}

3. Build the FPM application. To do this, click File and then click Save. The FPM executable
module (.app extension) is updated. If the build is not performed, click Project and then click
Build Project. You can then click Project and select Build Automatically so that your FPM
applications are built automatically when you save them.

Note: If a dialog appears prompting you to enter a license, you need to install the full version of
the i.LON SmartServer 2.0 Programming Tools on your computer in order to build your FPM
application. To order the full version of the i.LON SmartServer 2.0 Programming Tools, contact
your Echelon sales representative.

For more information on writing FPM applications and FPM drivers, see Chapter 5, Creating FPMs.

Step 5: Deploying the FPM Application on a SmartServer

You can deploy your FPM application on your SmartServer. To do this you upload your FPM
application to the SmartServer flash disk and then add a new internal device on the SmartServer tree
that uses the device interface (XIF) file that you created for the FPM in Step 2: Creating and Copying
the Device Interface (XIF) File.

Uploading the FPM Application
To upload the FPM application to your SmartServer, follow these steps:

1. Create a User/<YourCompany> folder under the root/modules folder on the SmartServer flash disk
if one does not already exist. This is where the executable module generated by the i.LON
SmartServer 2.0 Programming Tool should be stored.

2. Inthe C/C++ Projects view, expand the Release 4.03 folder, right-click the <company program
ID>.UFPTMath.app file, and then click Transfer to i.LON SmartServer in the shortcut menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 13

& CIC++ - 9FFDIE0000000400[5].UFPTMath/UFPTMath.cpp - Eclipse
Fle Edt Source Refactor Mavigate Search Run Project FPM Window Help

L
% C/C++ Projects &2

@ | -]
= SFFDEOD00000400[5) UFPTHYACConkroller
= 'b‘: 9FFD3END00000400[S]. LFPTMath

(=} Inchudes

== Release 4.03
@ ckdtic
ctdt.o - [mips/be]
UFPTMath_Utils, o - [mipsibe]
UFPTMath.o - [mipsfbe]

E] 1. UFPTMath. app
ctdt detdk.o

| & makefile

| @ obigcts,mk

“ LonMark Resource Yiew &3

G
&

ServerfIP-Address: | 10,2,124,165

= & 10.2.124.165

[=h 150 LonMark.
@ Trootflonworks typesibas_cantraller.t
@ froot/lonworks{typesiechelon.typ
ﬂ i
i i

Trootflorworks typesimbus_integrata
frootflonwarkstypesistandard.typ
frootlorweorks bypesjyourcompanyfd
5“ Configuration Property Types
Functional Profile Templates

=

o =D

J = e =2 -

L5 #oFFD3E0000000400[5].UF
55" #9FFD3E0000000400[5].UF
L5 #9FFD3E0000000400[5].UF
(5§ worFo3ED0OO0O0400[S].LR
L5 #9FFD3E0000000400[S].UF
= #QFFD?FHHHHHHH‘?HWFI\].I IF

<

G- E (TR > R AT R C A

&

= O/ [*uFPTHYACCantraller. [€) *UFPTMath.cop 22 1 =0
e v ZZusing mamespace _00D00D0000000000_O_;
e FPM_LIB VERSION:
pen 0400_5__ UFPTHath_APE
Open With

Exchude from build. .,
Build Canfigurations
Make Targets

[Copy

3 Delete

Move..,
Rename. .,

2y Impart...
£ Expatt...

Refresh
Add Bookmark...

(S #9rFo3E0000000400[S].UR 7 Remave From |.LOM SmartServer...

Run As
Debug As
Profile As
Team
Campare With
Replace With

R B B0 Q- I A

fiENVT _count, inl, 1
fEMNVT_zount, in2,]
Ui i ANWVT_count, outl,

| i TWTrenpt, nviopeh
eble declarations. DC

at accommodate wvalue
ed here:
int, _nInstanceMo)

perties

Es0UrCe Fath

|~

5

@
L]
L]
@
L]
L]
@
@
@
L]
L
L]
o
@
@
@
&

Type

| B cices |
5= outlin 2 =0d
R e k7
~

Jvaurcompany,device
SFFD3E0000000400%
_0000000000000000_C
SmartServer:iy0400
_SFFD3E0000000400_E
pinl : VYariable<_00000
in1 ! Wariable<_000000
pinZ : Yarisble<_00000
inZ : Wariable<_000000
pout! : Yariable<_000C
outl ; Yariable<_0000C
prviOptiY1 ¢ Variable <
MCPENY : Variable<_
STARTER. : FPM: TStart
Fr5tartFPM_UFPTMath
frStapFPM_LIFPTMath
FFPMLibYersion() : voir

The Install FPM Module dialog opens with the Deployment Settings window.

& Install FPM Module [#9FFD3EO000000400[5].UFPTMath.app | 3

Deployment Settings

Specify remote site server address, logon information, destination folder.

| Ftp Part:

FTP settings:

Host: |bo.2.124.82
User: | ilon
Password: | R

Destination Dir:

| Jmodulesfuser fyourcompany:

Passive Mode: []

Reboat: Fi

Default web-page: []

IF wou can connect ko the i LOM SmartServer but vou have difficulties
to setup a file transfer, vou should enable passive mode,

Create default Configuration web-page:
{webjronfig/Fby9FFOEENONNO00400(5]. UFPTMath, htm

Web Port:

Mext > || Finish

] [Cancel

Introduction

4. Enter the following information if different than the defaults:

e The IP address or hostname of the SmartServer to which the FPM is to be uploaded. The
default is the SmartServer IP address or hostname entered in the LonMark Resource View.

e The user name and password used to access the SmartServer FTP server. The default user
name and password are both “ilon”.

e The directory on your SmartServer flash disk to which your FPM application is to be stored.
The default directory is root/modules. You should create a root/modules/
User/<YourCompany> folder on the SmartServer flash disk and store your FPM application in
that folder.

e The port used to access the FTP server on your SmartServer. The default port is 21.

e The port used by your SmartServer to transmit and receive SOAP/HTTP requests. The
default port is 80, but you may change it to any valid port number. Contact your IS
department to ensure your firewall is configured to allow access on this port.

See Chapter 6, Deploying Freely Programmable Modules, for more information on the settings in
this dialog.

5. Click Finish. The FPM application is uploaded to your SmartServer. You can use the console
port to verify that the FPM is being uploaded to your SmartServer. Once the FPM application has
been uploaded, you can proceed to the next step, which is creating an internal FPM device.

Note: If FPM Programming is not licensed on your SmartServer, the console port will display
messages stating that the FPM license is invalid, the FPM feature is not properly licensed, and
FPM tasks cannot be created. You can order a FPM programming license from the i.LON
SmartServer 2.0 Web site at www.echelon.com/products/cis/activate.

Creating an Internal FPM device

After you upload your FPM application to the SmartServer, you can create an internal FPM device on
your SmartServer following these steps:

1. Expand the Net network, right-click the LON channel, and then select Add Device on the shortcut
menu.

Navigate

@ General O Driver
3 gls LAN
=l &=/ SmartServer
T Remote Access
B2 Net
[=€
= ¥ Virt(properties
2 my _mails nain.com
[+ & SmartSer Delete
2 10.1.0.21
(2 10.2.120

Rename

Add Device

Add Router

2. The Create Device dialog opens.
3. Enter a meaningful name for the device such as “Math Device”.

4. In the Location property, select Internal.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 15

http://www.echelon.com/products/cis/activate

16

5.

Expand the LonMark (XIF) folder, expand the root/lonworks/import/<YourCompany> folder,

and then select the XIF for your Math FPM.

i T

:h‘- f Add Device

Property Value

Name Net/LoN/Math Device
File Name /froot/lonWorks/Import/YourCompany/Math.xif

Location () External @ Internal

= @ LonMark (XIF)
Jroot/lonWorks/Import/Echelon/iLON100/
Jroot/lonWorks/Import/Echelon/LonPoint/Version2/
[froot/lonWorks/Import/Echelon/LonPoint/Version3/
Jroot/lonWorks/Import/Echelon/FPM/
Jroot/lonWorks/Import/YourCompany/

[¢ Math

Template

Select

F H EE

|

[OK][Cancel]

F |

Click OK. A Math Device (Internal) device is added to the bottom of the LON channel tree.

Click Submit. You must wait for the SmartServer to instantiate the XIF file used for the internal
Math device. The time it takes depends on the size of the XIF. Once the XIF has been
instantiated, you can expand the Math Device (Internal) device and the Math Function

functional block to show the data points in the FPM application.

Select Devices

@ General O Driver
2 gls LAN
-l & SmartServer
T Remote Access
=55, et
== LON

i iLON App (Internal)
4 LtalLdv (Internal)
@ RNI (Internal)

=l &5 Math Device (Internal)

= ¥ VirtCh
2 my mailserver.my domain.com

Introduction

Step 6: Testing the FPM Application

After you deploy an FPM application, you can test your FPM application using the View — Data
Points Web page. To do this, you open the View — Data Points Web page, add the input and output
data points in the FPM application, update one of the input data points, and observe that the output data
point is updated accordingly.

To test an FPM application on your SmartServer, follow these steps:
1. Click View and then click Data Points. The View — Data Points Web page opens.
2. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

3. Under the Math Function functional block, click the inl, in2, and outl data points. The data
points appear in the View — Data Points Web page.

. .
View - Data Points
Select Data Point
Show Graph
® General O Driver
52% LAN -~ Name Format Value Unit Priority Status
El & SmartServer 0 Net/LON/Math Device/Math Function/inl SNVT_count 0 B E] units 255 ONLINE
= Remote Access
B 55 Net 1 Net/LON/Math Device/Math Function/in2 SNWT_count 0 E] B units 255 OMLINE
== LON 2 | Net/LON/Math Device/Math Function/outl SNVT_count 0 units 255 ONLINE
2 iLON App (Internal) - B E]

& Ltaldv (Internal
@ RNI (Internal)
[l) Math Device (Internal
Bl 4 Math Function
: in1
in2
b outl

=} VirtFb

4. Enter a different value for either or both of the inl or in2 data points. Observe that outl data
point is updated and displays the sum of the inl or in2 data points.

View - Data Points
Select Data Point
Show Graph
& General O Driver
52% LAN -~ Name Format Value Unit Priority Status
El & SmartServer 0 Net/LON/Math Device/Math Function/inl SNVT_count 2 |v E] units 255 ONLINE
= Remote Access i :
25 Net 1 Net/LON/Math Device/Math Function/in2 SNVT_count 3 |w B units 255 ONLINE
== LON 2 | Net/LON/Math Device/Math Function/outl SNVT_count 5 units 255 ONLINE
E iLON App (Internal) - B E]

[@ Ltal dv (Internal
@ RNI (Internal)
El &) Math Device (Internal
E1{} Math Function
: in1
in2
| out1

= b VirtFb

For more information on testing FPMs, see Chapter 6, Deploying FPMs on a SmartServer.

Step 7: Connecting the FPM Data Points

After you verify that your FPM application is functioning properly, you can use Web connections or
LONWORKS connections to connect the data points declared in your FPM device to the data points on
the SmartServer or to the data point of external devices. Note that the SmartServer must be operating
in LNS mode (LNS Auto or LNS Manual) in order to create LONWORKS connections.

For this quick-start exercise, you will use Web connections to connect the data points in your FPM
application to data points on the SmartServer. To do this, you create three dynamic SNVT_count data
points, and you create Web connections between the data points declared in your FPM device and the
dynamic data points you created on the SmartServer, You can then use the View — Data Points Web
page to test that changes made to the dynamic data points on the SmartServer are updating the inl and

i.LON SmartServer 2.0 Programming Tools User’'s Guide 17

18

in2 data points declared in the FPM device and that the outl data point in the FPM device is updating
the dynamic data point on the SmartServer.

To connect the data points declared in your FPM to the data points on the SmartServer, follow these
steps:

1. Create a dynamic SNVT_count data point on the VirtFB functional block under the i.LON App
(Internal) device. To do this, follow these steps:

1. From the tree, expand the Net network, expand the LON channel, and then expand the i.LON
App (Internal) device to show the VirtFB functional block at the bottom of its tree.

2. Right-click the VirtFB functional block and then click Add Data Point on the shortcut menu.
Navigate

@ General O Driver
S gl LAN
= &= SmartServer
" Remote Access
= 5 et
B =< | ON
= £ iLON App (Internal)
(] Node Object
|2 Digital Input 1
(2] Digital Input 2
(4] Digital Qutput 1
(i) Digital Output 2
Real Time Clock
4 VirtFb
4 Lialdv
@ RNI (Int
= & Math D¢ Duplicate
= 4.F Math
in’
ind Rename

| ou

® 4} virtFl Add Data Point

Properties

Delete

3. The Add Data Point dialog opens.
4. In the Name property, enter a meaningful name such as “countl”.

5. In the Select property, expand the Dynamic icon, expand the root/lonworks/types directory,
expand the standard resource files folder, expand Network Variable Types, and then click the
SNVT_count data point.

Introduction

P Add Data Point

Property WValue

Name Net/LON/ILON App/\VirtFb/|count

Type #0000000000000000[0].SNVT_count
= [@ static A
= @ Dynamic =

= frootflonworks/ftypes/
= [# standard
)l Configuration Property Types
= 2 Network Variable Types
select % SNVT_ISO_7811
SNVT_ISO_7811#L0
ﬁ SNVT_abs_humid
) sNvT_abs_humid#sI
@ sNVT_abs_humid#Us
@ snvT_address
@ snvT_alarm v

[OK][Cancel]

r |

6. Click OK. A data point with the name you specified in step d is added underneath the VirtFB
functional block.

7. Click Submit.

2. Create two copies of the dynamic SNVT_count data point that you created in step 1.

a. Right-click the dynamic SNVT_count data point, and then click Duplicate Data Point on the
shortcut menu.

b. The Duplicate Data Point dialog opens.
c. Inthe Number of Copies property, enter 2.

P Duplicate Data Point
Property Value
Original Net/LON/ILON App/VirtFb/countl
Copy Mame Net/LON/ILON app/VirtFb/|Copy of count?
Number of
Copies 21
OK Cancel
| u))

i.LON SmartServer 2.0 Programming Tools User’'s Guide 19

20

d. Click OK. Two copies of the data point named “Copy of <DP name>" are added underneath
the VirtFB functional block. Note that the second data point copy will have an index
appended to its name.

e. Click Submit.

Re-name the two data point copies you created in step 2. To do this, follow these steps:
a. Right-click the first data point copy, and then click Rename on the shortcut menu.
b. The Enter Name dialog opens.

c. Enter a meaningful name for the first data point copy such as “count 2”.

B
P Enter Name
Pleaze enter Hame
|+:Dunt 2
OK Cancel
| I))

d. Click OK. The data point is re-named to the name specified in step c.
e. Click Submit.

f. Repeat steps a—e for the second data point copy. In step c, enter a meaningful name such as
“total count”.

From the tree in the sidebar (left) frame, right-click the “Net/LON/i.LON App
(Internal)/VirtFB/count1” data point and then click Add Binding in the shortcut menu.

Navigate

@ General O Driver
3¢k LAN
& SmartServer
T Remote Access
=55 Nt
B = LON

= [iLON App (Internal)
Node Object
% Digital Input 1

=+ [Z] Digital Input 2
(] pigital Output 1
(& Digital Output 2
Real Time Clock
= 4 VirtFb
countl
: count? Properties
= total c)
® @ Ltaldv (Intd Duplicate
@ RNI (Intern: pgjete
El & Math Device
B {¥ Math Fun Rename
! Change Functional Block #

5'|:
Y=

| out1 | add Binding
4¥ virtFb

® & virtch Show Value

Introduction

10.
11.
12.

13.

The Configure — Web Binder Web page opens and the hostnames of the local SmartServer and
any remote SmartServers added to the LAN, which are collectively referred to as Webbinder
Destinations, appear in the application frame to the right.

From the Webbinder Destinations tree on the right frame, expand the i. LON Webbinder
Destination icon, expand the Net network, expand the LON channel, and then expand the Math
Device (Internal) device, and expand the Math Function functional block to show its “in1”,
“in2”, and “outl” data points. Click the “Net/LON/Math Device (Internal)/Math Function/inl”
data point to specify it as the target data point. A reference to the target “inl1” data point is added
underneath the “count1” source data point in the tree in the left frame.

Select Source Data Point Select Target Data Points
@ General O Driver = & Web-Binder Destinations
EIQE LAN -~ E|-¢'r|§martServer
= & smartServer B et
T Remote Access El=< LON
55 Net i iLON App (Internal)
é!“_LO_N 4 Ltaldv (Internal)
B=) 3 RNI (Internal)
@ [£] Node Object =l &) Math Device (Internal)
& (£] Digital Input 1 = 4_F Math Function
(#] Digital Input 2 :!nl
(4] Digital Output 1 in2
(4] pigital output 2 [out1
(g5 Real Time Clock B VirtFb
= {3 VirtFb 8% virtCh
E‘countl
| SmartServer:Net/l ON/Math Device/Math Function/in1
‘ count2
= total count

Click Submit.

Following steps 4-7, create a Web connection between the “VirtFB/count2” data point in the tree
in the left frame (the source data point) and the “Math Function /in2” data point in the Webbinder
Destinations tree in the right frame (the target data point).

Following steps 4—7, create a Web connection between the “Math Function/out1” data point in the
tree in the left frame (the source data point) and the “VirtFB/total count” data point in the
Webbinder Destinations tree in the right frame (the target data point).

Click View and then click Data Points. The View — Data Points Web page opens.
Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

Under the Net/LON/ Math Device (Internal)/VirtFB functional block, click the countl, count2,
and total count data points to add them to the Web page.

If the inl, in2, and outl data points under the Net/LON/ Math Controller (Internal)/Math Function
functional block no longer appear in the Web page, click each of these data points to add them
back to the Web page.

Observe that the Math Function/outl data point has the same value as the VirtFB/total count
data point. The Web connection keeps these two data points synchronized.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 21

22

s s
View - Data Points
Show Graph
Name Format Value
0 Net/LON/Math Device/Math Function/inl SNVT_count
1 Net/LON/Math Device/Math Function/in2 SNVT_count
2 Net/LON/Math Device/Math Function/outl SNVT_count
3 | Net/LON/ILON App/VirtFb/countl SNVT_count
4 Net/LON/ILON App/VirtFb/count2 SNVT_count
5 Net/LON/iLON App/VirtFb/total count SNVT_count

[[i
B [[s
B [[unis
b [[s
b [[s
B [[unis

Priority

255

255

255

255

255

255

Status

ONLINE

ONLINE

ONLINE

NUL

NUL

ONLINE

14. Enter values for both the VirtFB/countl and VirtFB/count2 points. Observe the following:

e The Math Function/inl and Math Function/in2 data points in the FPM are updated to the
same values as the dynamic data points on the SmartServer to which they are connected. The
Web connections keep these sets of data points synchronized.

e The Math Function/outl FPM output data point is updated to reflect the sum of the inl and

in2 FPM input points.

e The VirtFB/total count data point on the SmartServer is updated to match the new sum

stored in the Math Function/outl FPM data point.

s s
View - Data Points
Show Graph
Name Format
0 Net/LON/Math Device/Math Function/inl SNVT_count
1 Net/LON/Math Device/Math Function/in2 SNVT_count
2 | Net/LON/Math Device/Math Function/outl SNVT_count
3 | Net/LON/ILON App/VirtFb/countl SNWT_count
4 Net/LON/iLON App/VirtFb/count2 SNVT_count
5 Net/LON/iILON App/VirtFb/total count SNWT_count

Value

[
=
[
s
=
-

Unit
units
units
units
units
units

units

Priority

255

255

255

255

255

255

Status

ONLINE

OMNLINE

ONLINE

OMNLINE

ONLINE

OMNLINE

For more information on using LONWORKS connections and Web connections to connect the data

points declared in an FPM device, see Chapter 6, Deploying FPMs on a SmartServer. For more

information on using the Web Binding application, including how to validate, delete, and add
attachments to bindings, see Chapter 4 of the i.LON SmartServer 2.0 User’s Guide.

Introduction

2

Installing i.LON SmartServer 2.0
Programming Tools

This chapter describes how to install, upgrade, and uninstall the i. LON SmartServer 2.0
Programming Tools.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 23

Installation and Upgrading Overview

The i.LON SmartServer 2.0 DVD includes a demo version of the i. LON SmartServer 2.0 Programming
Tools, which you can use to write FPM applications and drivers. You cannot use the demo version,
however, to compile and deploy the FPMs. To compile and deploy FPMs, you must use the full
version of the i.LON SmartServer 2.0 Programming Tools. The full version of the i. LON SmartServer
2.0 Programming Tools is included on the i.LON SmartServer 2.0 Programming Tools DVD (Echelon
part number 72111-409), which you can order from your Echelon sales representative.

Installing the demo or full version of the i.LON SmartServer 2.0 Programming Tools adds the
following programs to your computer:

e i.LON SmartServer 2.0 Programming Tool. A pre-configured Eclipse Development Kit that
includes FPM template files, the FPM library, a tool for creating the C structures of user-defined
UNVTs, a C++ compiler, and a CYGWIN environment. You must have the full version of the
i.LON SmartServer 2.0 Programming Tools to compile and upload FPMs to your SmartServer
with the i.LON SmartServer 2.0 Programming Tool.

e i.LON SmartServer 2.0 LonWorks Interface Developer tool. A command line interface that
converts a model file (.nc extension) to a device interface (XIF) file. You must create a XIF for
your FPM in order to deploy it on your SmartServer. See Chapter 4 for more information on
creating XIFs with this tool.

e i.LON License Generator. A tool for creating licenses that help protect your FPM application
from piracy or unauthorized use. The i.LON License Generator includes the following three
components:

o The main executable (iLONLicenseGen.exe) that provides a user interface for entering the
values used to generate an FPM license.

o A sample license generator configuration file (an XML file named
iLONL.icenseGenValuesSample.xml) that demonstrates the structure of the i.LON License
Generator user interface and provides sample pre-defined values.

o A sample security DLL file (LicenseSecurityHMACMDOS.dII) that takes the values entered
in the i.LON License Generator user interface and creates an FPM license.

See Chapter 7 for more information on creating FPM application licenses.

You can install the full version of the i.LON SmartServer 2.0 Programming Tools on a computer on
which the demo version has not been installed, or you can upgrade a demo version of the i. LON
SmartServer 2.0 Programming Tools to the full version. The following section describes how to install
the i.LON SmartServer 2.0 Programming Tool for both scenarios. You can also upgrade your i. LON
SmartServer 2.0 Programming Tools as updates become available.

Installing i.LON SmartServer 2.0 Programming Tools

24

To install the full version of the i. LON SmartServer 2.0 Programming Tools, follow these steps:

1. Insert the i.LON SmartServer 2.0 Programming Tools DVD into your DVD-ROM drive. If your
computer does not have a DVD-ROM, insert the i.LON SmartServer 2.0 Programming Tools
DVD on a network-accessible computer that has a DVD-ROM and copy the files on the DVD to a
shared network drive. You can then copy the LonWorks\iLON\Development folder from the
shared drive to your computer and install the i. LON SmartServer 2.0 Programming Tools.

2. Ifthe i.LON SmartServer 2.0 setup application does not launch immediately, click Start on the
taskbar and then and click Run. Browse to the setup.exe file on the root directory of the i.LON
SmartServer 2.0 Programming Tools DVD and click Open. The i.LON SmartServer 2.0 2. 0
main menu opens.

Installing i.LON SmartServer 2.0 Programming Tools

I Echelon i.LON SmartServer 2.0

= ECHELON

I.LON SmartServer 2.0
-~ ,i
| —

3. Click Install Products. The Install Products dialog opens.

Install Products

View ReadMe

Browse DVD Contents

Resources

Contact Us

I Echelon i.LON SmartServer 2.0 |z||:|'X|
Install Products - .
= ECHELON
Install the Echelon i.LON Vision .
SmartServer 2.0. i.LON Vision enables Echelon i.LON SmartServer 2.0 Software .
rapid user web page development on
the i.LON SmartServer 2.0. Echelon i.LON SmartServer 2.0 Programming Tools .

Echelon i.LON SmartServer 2.0 Enterprise Services .

Echelon i.LON Vision SmartServer 2.0 .
Echelen NedeBuilder Resource Editor .

Echelon LNS Server Service Pack 5 .

Beguired for running Echelon Senvices

Echelon LonMaker 3.1 SP 3 Update 2 .

Click here for more information

Microsoft Internet Explorer 8 .

Adobe Reader 9 .

Adobe SVG Viewer 3.03 .

4. Click Echelon i.LON SmartServer 2.0 Programming Tools.

5. If aprevious version of the i.LON SmartServer 2.0 Programming Tools (Release 4.0, 4.01, 4.02,
or the demo version of Release 4.03) is installed on your computer, the following dialog opens
prompting you to confirm that you want to upgrade to the i.LON SmartServer 2.0 Programming
Tools software. Click Yes to upgrade.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 25

26

6.

7.

8.

Echelon i.LON SmartServer 2.0 Programming Tools - InstallShield Wizard

P | A previous version of this product has been Found in your system, The installation will upgrade it automatically with
\f/ current wersion, Do you want ko proceed with upgrade (Yes) or cancel installation (No)?

I Es l [K] l

A dialog opens prompting to close all applications currently running on your computer. Close any
applications running on your computer, and then click OK.

Echelon i.LOM SmartServer 2.0 Programming Tools - InstallShield Wizard g|

1) It is strongly recommended to close any applications running on this PC befare installation.

The Echelon i.LON SmartServer 2.0 Programming Tools software installer opens.

i@ Echelon i.LON SmartServer 2.0 Programming Tools - InstallShield Wizard E|

1.LON

welcome to the InstallShield Wizard for
Echelon i.LON SmartServer 2.0 Programming
Tools

The Installshield(R) wWizard will install Echelon i.LOR
SmartServer 2,0 Pragramming Tools an your computer, To
continue, click Mext,

WARMIMG: This program is protected by copyright law and
international treaties,

I Mext =] [Cancel]

Read the information on the Welcome window and click Next. The License Agreement window

appears.

Installing i.LON SmartServer 2.0 Programming Tools

i@ Echelon i.LON SmartServer 2.0 Software - InstallShield Wizard &l

License Agreement

] L]
Please read the following license agreement o I G LO N

carefully,

i.LON® SmantServer 2.0 Software License Agreement

HOTICE

Thiz iz a legal agreement between yvou (™vou” *vour”) and Echelon
Corporation (“Echelon™), wOU MUST READ AMD AGREE TO THE TERMS OF THIS
SOFTWARE LICEMSE AGREEMEMT BEFORE AMY SOFTWARE CAM BE
DOWNLOADED OR IMSTALLED OR USED, BY CLICKIMG ©OM THE “ACCEPT®
BUTTON OF THIS SOFTWARE LICEMSE AGREEMENT, OR DiOWMLOADIMNG
SOFTWARE, OFR IMSTALLIMG SOFTWARE, OR USIMNG SOFTWARE, vOU ARE
AOGREEIMG T BE BOUMD BY THE TERMS AND COMDITIONS OF THIS
SOFTWARE LICEMSE AGREEMENMT. IF woU Do MOT ASREE WITH THE TERMS

ARIM RN TTT RIS S E THTS SrOETWADE | T ChSE ADECAMEMT TLCh ™l |

(%) 1 accept the terms in the license agreement

{31 do not accept the kerms in the license agreement

[< Back]I et =] [Cancel]

9. Read the license agreement (you can read a printed copy of this license agreement in Appendix E
of the i.LON SmartServer 2.0 User’s Guide). If you agree with the terms, click Accept the Terms
and then click Next. The Customer Information window appears. .

Customer Information

®; '
Please enter your information. I - LO N

User Mame:

Organization:

Echelon

Install this application For:

(%) Anyane who uses this computer (all users)
) only For me (User)

[< Back “ et =] [Cancel]

10. Enter your name and company name in the appropriate fields. The name and company may be
entered automatically based on the user currently logged on and whether other Echelon products
are installed on your computer. Click Next. The Destination Folder window opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 27

i@ Echelon i.LON SmartServer 2.0 Programming Tools - InstallShield Wizard rz|

Destination Folder q . LO N.
Click Mext to inskall ko this Folder, or click Change toinstall ko a different der.z .

G Install Echelon i.LOM Smart3erver 2.0 Programming Tools to:

CiiLondvorksiiLon\Development),

[< Back “ et =] [Cancel]

11. By default, the i.LON SmartServer 2.0 Programming Tools software will be installed in the
C:\LonWorks\iLON\Development directory, or it will be installed in the C:\Program
Files\LonWorks\iLON\Development directory if you have not previously installed any Echelon
or LONMARK products. You can click Change to select a different destination folder. Click Next.
The Setup Type window appears.

i& Echelon i.LON SmartServer 2.0 Programming Tools - InstallShield Wizard E|

Setup Type o . LO N-
Choose the setup type that best suits vour needs, I .

Please select a setup type,

(%) Complete

2

All program Features will be installed. (Requires the most disk
space,)

Choose which program features vou want installed and where they
will be installed, Recommended For advanced users.

[< Back]I Mext =] [Cancel]

12. Select the type of installation to be performed. It is recommended that you select Complete.
Click Next. The Ready to Install window appears.

Installing i.LON SmartServer 2.0 Programming Tools

i@ Echelon i.LON SmartServer 2.0 Programming Tools - InstallShield Wizard E|

Ready to Install the Program o . LO N.
| A

The wizard is ready to begin installation.

Click Install ko begin the installation,

IF wou wank to review or change any of wour installation settings, click Back, Click Cancel to
exit the wizard,

[< Back “ Install] [Cancel]

13. Click Install to begin the installation. After the i.LON SmartServer 2.0 Programming Tools have
been installed, a window appears stating that the installation has been completed successfully.

i Echelon i.LON SmartServer 2.0 Programming Tools - InstallShield Wizard E|

1.LON

Installshield Wizard Completed

The Installshield Wizard has successfully installed Echelon
i.LOM SmartServer 2.0 Programming Tools, Click Finish bo exit
the wizard,

Show the readme File

14. Click Finish. The i.LON SmartServer 2.0 Programming Tools ReadMe file appears. When you
finish reading the ReadMe file, close the window.

Upgrading the i.LON SmartServer 2.0 Programming Tool

You can upgrade your i.LON SmartServer 1.0 Programming Tools to the i. LON SmartServer 2.0
Programming Tools, and you can upgrade your i. LON SmartServer 2.0 Programming Tools to newer
versions as they become available. To upgrade your i. LON SmartServer 2.0 Programming Tools, you
do the following:

i.LON SmartServer 2.0 Programming Tools User’'s Guide 29

30

Browse to the LonWorks\iLON\Development\eclipse\workspace.fpm folder on your computer.
This folder contains your FPM projects and code. This folder is required if you later re-install the
i.LON SmartServer 2.0 Programming Tool and need to import and modify your existing FPM
projects or port code over to new FPM projects. See the next section, Importing FPM Projects,
for more information on how to import existing FPM projects to an updated version of the i.LON
SmartServer 2.0 Programming Tool.

Copy all your FPM projects and save them to the local drive of your computer, a USB drive, a
floppy disk, another removable media, or a shared network drive with read/write permissions.

Uninstall the current version of the i. LON SmartServer 2.0 Programming Tools on your computer.

Install the newest version of the i.LON SmartServer 2.0 Programming Tools following the steps
described in the previous section.

Import your existing FPM projects as described in the next section.

If you want to upgrade existing FPMs built with the i. LON SmartServer 1.0 Programming Tool
(Release 4, Release 4.01, or Release 4.02 FPMs), convert them as described in Converting FPM
Projects to the Release 4.03 Configuration later in this section.

Importing FPM Projects

After you upgrade the i.LON SmartServer 2.0 Programming Tools software, you can import your
existing FPM projects into the upgraded i.LON SmartServer 2.0 Programming Tool. To do this,
follow these steps:

1.

Start the i.LON SmartServer 2.0 Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer 2.0 Programming Tools, and then click i.LON
SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0 Programming Tool opens.

Click File and then click Import. The Import dialog opens with the Select window.

Select
N\

Choose import source, E - 5

Select an import source:

type Filker text

B ercral
= CiC++
(= Cus
(== Plug-in Development
= Team

@ Cancel

Expand the General folder, click Existing Projects into Workspace, and then click Next.

Installing i.LON SmartServer 2.0 Programming Tools

Select
E\J]
Create new projects from an archive file or directary.

Select an import source;

| type Filker text |

[=}-[= General
[archive File
99, Breakpoints

EL Preferences
= CfC++
= cvs
(== Plug-in Development
(= Team

The Import Projects window opens.

& Import rg|
Import Projects
Select a directory bo search for existing Eclipse projects. / j
<
(%) Select rook direckory: | | | [Browse. ..]
() Select archive file: | | Browse, ..
Projects:

Select Al
Deselect Al

DCopy projects into warkspace

Click Browse. The Browse for Folder dialog opens. Browse to the location of the backup copy

of the FPM project to be imported and then click OK.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

31

Browse For Folder

Select rook directory of the projects to import

[=N®]FFM Project Backup A
[C5) 9FFD3EOO00000400[5], LF
[C5) 9FFD3E0000000400[5], UF
[C3) 9FFD3E0000000400[5].UF —
|5 %IF Tool
[C2) Fusionwidget
[5) Hardware Guide
< |

B

%

Folder: | FFM Project Backup |

[Make MNew Folder l [OF l [Cancel l

6. The selected FPM projects are listed in the Import Projects dialog. Select the Copy Projects
into Workspace check box.

& Import

Import Projects —
Select a directory ko search For existing Eclipse projects, E l'-"

(%) Select root dirsctory: | C:\Documents and SettingstjduvaliMy Docume | Erowse...

() Select archive File: | |

Prajects:

AFFD3EN000000400[5]. UFPTHYACController (Z:Documents and 2 Select Al
AFFD3EN000000400[5]. UFPT3witchEncoder {C:\Documents and S

9FFD3E0000000400[S] UFPT TempContraller (C:\Documents and 5 | Deselect Al

< |

%

Zopy projects inko workspace
working sets

[Add project to working sets

® Finish] l Cancel

7. Click Finish.

8. If the Update Managed Build Project dialog opens, click Yes to convert the build settings to the
version 4.0 format

Installing i.LON SmartServer 2.0 Programming Tools

& Lipdate Managed Build Project El

9 The project SFFD3E0O00000400[5]. UFPTSwitchEncoder build settings are
‘““.r'/ stared in a format that is no longer supported (version 3.1.0).

w'ould vou like to conert it bo the newer wersion (4,0,007
MOTE: Converted projects can no longer be loaded by previous versions of

the Managed Euild System,
If vou select "Mo", project settings will NOT be available,

[Es] [K] l

9. The selected FPM projects appear in the C/C++ Projects View.

) Cjic++ Projects 53 = B

=

{3_—‘3' AFFD3EN000000400[5]. UFPTHYAC Contraller
h_—c,) AFFDZEN000000400[5]. UFPTSwikchEncader
=[5 9FFD3E0000000400[5].UFFTTempCantraller
[l Includes

= Release

EI UFPTTempCantraller_Lkls.cpp

@ UFPTTempContraller, cpp
UFPTTempContraller.h

R = R e

Converting FPM Projects to the Release 4.03 Configuration

If you want to upgrade existing FPMs built with the i. LON SmartServer 1.0 Programming Tool
(Release 4, Release 4.01, or Release 4.02 FPMs), you must first convert them to the Release 4.03
configuration. To do this, follow these steps:

1. Right-click the FPM project in the C/C++ Projects view, and click Properties on the shortcut
menu, or click the FPM project, click File, and then click Properties. The Properties dialog for
the FPM project opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 33

34

& Properties for 9FFD3E0000000400[5]. UFPTHVACController,

Resource
Builders
C/C++ Build
CfC++ General
Project References
Run/Debug Settings
Task Repository
WikiText

@

Resource v

Path: JIFFD3ENN00000400[5]. UFPTHYAC Contraller
Type: Project

Location: C:iLonwWorksiiLONDevelopmentieclipseiworkspace, Fpm| 9FFD3EN000000400[5], UFPT
HvACCantroller

Last modified: September 25, 2009 1:51:53 PM

Text file encoding
(®) Inhertited From conkainer (Cpl252)

O Other:

Mew et file line delimiter

(%) Inherited fram container

O Other:

[Restore DeFauIts] [Apply]

[Ok H Cancel]

Click C/C++ Build.

& Properties for 9FFD3E0000000400[5]. UFPTHVACController,

Resource
Builders

CfC++ General
Project References
Run/Debug Settings

Task Repository
WikiText

@

C/C+ + Build

Configuration: |Re|ease [Active] V| [Manage Configurations. ..

2 Buider settings | (@) Behaviour

Builder

Builder bype:
Use default build cormmand

| External builder v

Build cormand: |

Makefile generation
Generate Makefiles aukomatically

Build location

Build directory:

[Restore DeFauIts] [Apply]

[Ok H Cancel]

Click Manage Configurations. The Manage Configurations dialog opens.

Installing i.LON SmartServer 2.0 Programming Tools

& 9FFD3E0000000400[5].UFPTHVACControlle... @

Configur ation Description Stakus

[(94 H Cancel]

Click New. The Create New Configurations dialog opens.

& Create New Configuration fg|

Moke: The configuration name will be used as a direckory name in the file syskem, Please
ensure that it is valid Far wour plakForm,

Marne: | |

Description: | |

Copy settings From

(%) Existing configuration | Release b |

() Default configuration
(:) Import From projecks

() Impart: predefined

o o]

In the Name property, enter Release 4.03. If you are upgrading a debug configuration of an FPM,

enter Debug 4.03.

In the Default Configuration property, select Release 4.03. If you are upgrading a debug

configuration of an FPM, select Debug 4.03.

& Create New Configuration

Maote: The configuration name will be used as a direckary name in the File system, Pleass
ensure that it is valid for wour platform,

Mame: | Release 4,03 |

Description: | |

Copy settings From
(:) Exisking configuration

(%) Default configuration | 4.03(Re

O Import Fram projects

() Import predefined

oK] [Cancel

i.LON SmartServer 2.0 Programming Tools User’'s Guide

35

Click OK twice to return to the C/C++ Build window.

In the Configuration property, select Release 4.03. If you are upgrading a debug configuration of
an FPM, select Debug 4.03.

& Properties for 9FFD3E0000000400[5].UFPTHYACController: =3
| | | €/c++ Buid - -
Resource
Builders
CJ/C++ Build Configuration:] e

CfC++ General
Project References
Run/Debug Settings

Task Repository
WwikiTexk Euilder

= Builder settings | (@) Behaviour

Builder bype: |External builder w
Use deFault build command

Build cormand: |

Makefile generation
Generate Makefiles aukomatically

Build location

Build directory:

[Restore DeFauIts] [Apply]

® [Ok H Cancel]

If you are upgrading a release configuration of an FPM, Click OK to return to the C/C++ Projects
view, and then skip to step 10. If you are upgrading a debug configuration of an FPM, configure
its settings following these steps:

a. Expand C/C++ Build and then click Settings.

Installing i.LON SmartServer 2.0 Programming Tools

& Properties for 9FFD3E0000000400[5].UFPTHVACController,

| Settings

h
Resource
Builders
- CHC4+ Build Configuration: |Release 4,03 [Active] v
Build Variables
Discovery Options
Envonment B Tool Settings |.ﬁ' EBuild Steps EBuild Artifact Binary Parsers | @3 Error| 4 ¥
Settin
! cl,'chlGChain Fditﬂf =5 FPM Compiler Command: | cemips -¢ |
++ Gzeneral oy i
Project References g Preprocessar All options: | _pepl=pMIPSSE ~
Refactaring History (£ Symbols -DTOOL_FAMILY=gnu =
" ! @ Includes -DTOOL=sfgnu -D_WRS_KERNEL
RunDe ug_Settlngs (2 Optimization -DMIPSEE -DSCOFT_FLOAT
Task Repository 4 i -DILOM100 -DILON_PLATFORM -
WikiText (= Debugging =
@ Warning
22 Miscellaneous xpert settings:
5 Miscell Expert setti
B FPM MunchCompler Command
B e Muncher e | $1COMMAND} $4FLAGS} $40UTPUT_

= B8 FPM Linker
2 Libraries
(22 Miscellaneous

[Restore DeFauIts] [Apply]

@ [Ok H Cancel]

b. Click Debugging in the Tool Settings tab.
c. Inthe Level box, select Default (-g).

i.LON SmartServer 2.0 Programming Tools User’'s Guide

& Properties for 9FFD3E0000000400[5].UFPTHVACController,

| Settings f=10 -
Resource
Builders
(= C}C++ Build Configuration: |Release 4,03 [Active] v
Build Variables
Discovery Options
Environment
Settings
Tool Chain Editor
CJC++ General

B Tool Settings | & Build Steps " EBuild Artifact " Einary Parsers " @ Errorl € ¥

=B85 FPM Compiler
@ Preprocessor

Project References @ symbols Cther | |
Refactoring Histor
Run/Deb gs i . (2 Includes] &Prof (-pa)
unfLebug Sefiings S’;Ot i DPF-
Task Repositary [Optimization rof {-p)
WikiText @ Debugging
@ “Warning

2 Miscellaneous
B8 FPM MunchCompiler
B85 FPM Muncher
= B8 FPM Linker
2 Libraries
(22 Miscellaneous

[Restore DeFauIts] [Apply]

@ [Ok H Cancel]

d. Click OK to return to the C/C++ Projects view.

10. Set the build target for your FPM to the Release 4.03 or Debug 4.03 configuration. To do this,
right-click the FPM project in the C/C++ Projects view, point to Build Configurations, point to
Set Active, and then click Release 4.03 or click Debug 4.03 if you are upgrading a debug
configuration of an FPM.

& CICr o - Eclipse 4=
Fle ER Sowce Relacor Navigale Search Fu Projecd FPM Wik belo

ri- W E-E-EE- R-W- B-0-Q- mE - (B oo

P22 it Froects 1 il e = 0[5 gutin & Biake | = O

B v 0e DOGOGOHONE]LIFRTHY:
[SFFOIEDO00000400(5],UFPT SrdchEree
S FEOLO0UOO00HN] TR Templont
i gl nchudes Dpen i New Window
[Relnase
L) URPTTemuContober Ui, con
& L€ ureT TemuContoler, g s L
[rpTampteomclr. h :
Hsha Tergets v
Bk Project
Chran Progect

Galntn

LorMark Resource w11

= i Coev
ServeefiP-address: 102,174,123 <

BB 10,2124.023 3 Delele

£o ot

£ B,

£ hafrash
Tose Project.
o 45 v Frni
Debug 45 »
Profile s LS] Path locot.., Type

St Trareder to i LON SmantServer....

i Femave From | LON Smartisrver. .

Cexrenrt e
Tram .
Compaee With .

Restorn from Local History. .

Propertes aprner

38 Installing i.LON SmartServer 2.0 Programming Tools

11. You can upgrade your FPM application or driver, rebuild it, and then upload it to your
SmartServer 2.0.

Note: FPMs that have been upgraded to the Release 4.03 or Debug 4.03 configuration can only run on
a SmartServer 2.0 (a SmartServer with the Release 4.03 image). You cannot run an upgraded FPM on
a SmartServer 1.0 (a SmartServer with a Release 4.0, 4.01, or 4.02 image).

Uninstalling i.LON SmartServer 2.0 Programming Tools

If you need to uninstall the i.LON SmartServer 2.0 Programming Tools, you should back up the
LonWorks\iLON\Development\eclipse\workspace.fpm folder on your computer. This folder contains
your FPM projects and code. This folder is required if you later re-install the i. LON SmartServer 2.0
Programming Tools and need to modify your existing FPM applications or port code over to new FPM

projects.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 39

40

Installing i.LON SmartServer 2.0 Programming Tools

3

Creating FPM Templates

This chapter describes how to use the NodeBuilder Resource Editor to create user-
defined functional profile templates (UFPTs). It explains how to upload your
company’s updated FPM resource file set to your SmartServer so that you can create
an FPM project and begin writing your FPMs.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 41

Creating FPM Templates Overview

Before you can begin writing an FPM, you need to create its user-defined functional profile template
(UFPT) using NodeBuilder Resource Editor 3.13. Functional profile templates are LONMARK
specifications that enable you to specify the functionality required for a device. A functional profile
template defines the set of network variables and configuration properties within a functional block
that collectively perform a single device function. A functional profile template is defined in a
resource file with an .fpt extension.

For an FPM specifically, a functional profile template defines the data point types to be declared in an
FPM application or FPM driver.

To create a functional profile template for an FPM, you do the following:

1. Create a UFPT. You can create a new UFPT, or you can create one by copying an existing SFPT
to your resource file set.

2. Add the standard and user-defined network variable types (SNVTs and UNVTs) and configuration
property types (SCPTs and UCPTs) to which the FPM will read and write.

3. Generate the updated FPM resource file set in which the template was created and copy it to the
flash disk of your SmartServer.

For more detailed information on using the NodeBuilder Resource Editor to edit resource files and
create functional profile templates, network variables, and configuration properties, see the
NodeBuilder Resource Editor User’s Guide.

Note: If NodeBuilder Resource Editor is not installed on your computer, you can install NodeBuilder
Resource Editor 3.14.02 from the i.LON SmartServer 2.0 DVD or the i. LON SmartServer 2.0
Programming Tools DVD. See the i.LON SmartServer 2.0 User’s Guide for more information on
installing the NodeBuilder Resource Editor.

Creating User-Defined Functional Profile Templates

42

You can create a new UFPT in any scope 3, 4, 5, or 6 resource file set. Do not create or modify a
functional profile in a resource file set that does not have your manufacturer ID or is one that you do
manage. To create a new UFPT, follow these steps:

1. Start the NodeBuilder Resource Editor. To do this, click Start, point to Programs, point to
Echelon NodeBuilder Resources, and then click NodeBuilder Resource Editor. The Echelon
NodeBuilder Resource Editor opens.

=1 Echelon NodeBuilder Resource Editor

File Resource Wiew Help
B = = # O
C:ALonworks\Types\UzetEchelon\E chelan
g CiLonWorks)bypestiLdrf . Cat
-0 ChiLomwarksi Types
+ B STAMDARD (Scope 0t Standard)
-0 CiLonworks TypesiUserEchelon
el " ¥Fchelon (Scope 3: Echelon)
+ - Minikit (Scope 4 Examples, 1/0)
+-Egp MBUS_Inteqgrator (Scope i Echelon, Gateways)
+ - Isillon (Scope 4: Examples, Mulb-1jO module)
+ B dc0519 (Scope 41 Echelon, Generic Analog Gukpuk)
+ - DCO131 (Scope 4: Echelon, 0x011F)
+ B BAS_Controller (Scope 41 Echelon, Generic Controller)
+-@p 191 Lighting 2 (Scope 5 0xFFFSL, Lighting, General)
=0 ChiLonworksiModeBuilder | Examplesi Types
+ - NcExample (Scope i Examples, 1JO, General)

Creating FPM Templates

2. Create a <YourCompany> folder under the LonWorks\types\user directory on your computer if
one doesn’t already exist. To do this, follow these steps:

a. Right-click the LonWorks/types/Ldrf.Cat file and then click Add Folder on the shortcut
menu.

i Echelon NodeBuilder Resource Editor

File Resource iew Help

==/ 0 x # 0

C:hLonworkshypeshLdif. Cat

Add Folder. ..

S CLomdorks\ Types
+ i STANDARD (Scape | Mew Resource File Set,,,
=L Cr\Lomdorks\ TypesUse
+-fgp echelon (Scope 3: E
+-Egp Minikit (Scope 4: Ex
+-fgp MBUS_Integrator (3 Catalog Properties...
+-Eg Isillon (Scope 4: Ex,
+-fgp dc0519 (Scope 4: B Search...
¥
¥
¥

Refresh Catalog
Save all...

@ DCO131 (Scope 1€ POPOME.
8 BAS_Conbroller (Scg CPHons...
B 151 Lighting 2 (Scope 5: 0<FFFS1, Lighting, General)

b. Open the User folder, create a new folder named YourCompany, and then click Open twice.

Add Folder HE
Look in: |L’f} User j & =5 EE-
(CS)Echelon

[e==]

Canecel

c. The YourCompany folder appears at the bottom of the resource catalog view.

3. Create a new resource file set for your company. If you plan on integrating your FPM
applications with an LNS application such as the LonMaker tool, you need to create a scope 5
resource file set. To create a new resource file set, follow these steps:

a. Right-click your company’s resource file set and click New Resource File Set on the shortcut

menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

43

44

&4 Echelon NodeBuilder Resource Editor

File Resource Yiew Help
=] EE) O # O

C:ALomworksMypesh JeervourCompang

5 CiiLanworks|bypes|Ldrf. Cat
-0 CrilonWaorks) Types
+ B STANDARD (Scope 0: Standard)
=20 CiileantWorks) TypesiUseriEchelon
+-Ep echelon (Scope 3t Echelon)
B Minikit (Scope 4: Examples, /00
B MBUS_Integrator (Scope 4: Echelon, Gateways)
B Isillon (Scope 4 Examples, Multi-If0 module)
B do0519 (Scope 4: Echelon, Generic Analog Output)
B DCO131 (Scope 4 Echelon, 0x011F)
B BAS_Controller (Scope 4: Echelon, Generic Controller)
B 151 Lighting 2 {Scope 5: 0xFFFS1, nghtlng, General)
|

C:iLonty

5[F - [

Remove Dl

Search...

b. The New Resource File Set dialog opens.

MNew Resource File Set

General] Header]

Scope:

ou are about ba add four
new files to the catalog: Scope 3 - Manufacturer Clas

F'ru:ugram 1D:

R OO0 R . kg

RO000D sk ot Resource file get name:

MMM CCCC TT NN

Ox l_ 0oooa lil_l_ l_ Calculator...

RO0oo0:
R OO000 iz, frnt | AR

RO0000: . U Resource file set location:

|C: SLort'ork ghiypesi U zeryrourCompany

D ata version

b ajor: Firor;

I T

[

ak. | Cancel

If you plan on integrating your FPM applications with an LNS application such as the
LonMaker tool, you should select 5 in the Scope box (this sets the scope to device class,

manufacturer, usage, and channel type).

In the manufacturer (MMMMM) field of the Program ID box, enter your 5-digit

manufacturer ID in hexadecimal format.

Creating FPM Templates

Note: If your company does not have a manufacturer ID, you can get a temporary

manufacturer ID from LonMark at www.lonmark.org/mid. In addition, if your company has

many FPM developers, it is recommended that you request temporary manufacturer IDs for

them. After you obtain your temporary manufacturer ID, you can enter it in the MMMMM

field of the Program ID box.
e. In the format (F) field of the Program ID box, enter 9 (this sets the Standard Development

Program ID flag).

f. Inthe channel (TT) field of the Program ID box, enter 04 if you have an FT-10 model of the
SmartServer or enter 10 if you have a PL-20 model of the SmartServer.

g. Inthe Resource File Set Name box, enter “FPM Development”, “FPM Examples”, or

something comparable.

New Resource File Set E| E|

General] Header]

“Y'ou are about to add four
new files bo the catalog:

FPM Development.tup
FPr Development. fpt
FPM Developrient.frit

FPM Development.enu

Scope:

|Sc:c-|:-e 5 - Manufacturer, Device Clazs, Uzage and Channel Typej

Frogram 10
bbAAbA CCCC UL TT MM

F
o] 3 [FFD3E [0000 [oo [o04 [00 Calculator.

Resource file set name:
|FPM Dievelopment

Fesource file set location:

|E: SLonwiorkshypestl zery Y ourCompary
Data verzion
b ajor: Fimor;
1 a

Ok | Cancel |

h. Click OK.

4. Your company’s FPM resource file set is created and added to the resource catalog under the

<Your Company> folder in the LonWorks\types\user directory.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

45

http://www.lonmark.org/mid

&1 Echelon NodeBuilder Resource Editor,

File Resource Wiew Help
B = & #a O
C:ALontwork shtypestUserYourCarmpanytFPM Development
o CiLonworksitypesiLdrf.Cat
—-23 CiLonwarks Types
+ B STANDARD (Scope 00 Standard)
-2 Ci\LontWarks) TypesiUser\Echelon
+ @ echelon (Scope 3: Echelon)
B Minikit (Scope 4: Examples, [fO)
i MBUS_Integrator (Scope 4 Echelon, Gateways)
f8p Isillon (Scope 4 Examples, Mulki-If0 module)
i dc0S19 (Scope 4 Echelon, Generic Analog Oukput)
e DCO131 (Scope 4 Echelon, 0x011F)
89 BAS_Controller (Scope 4: Echelon, Generic Controller)
9 151 Lighting 2 (Scope 5 0xFFFS1, Lighting, General)
=20 Ci\LontWarks\typesiUseriVourCompany

O O

+1-_1 Metwork Yariable Types

+ D Configuration Property Types

+1-{_1 Functional Profile Templates
D Enumerations

+-_1 Language Files

+ D Formats

Create a UFPT. You can create a new UFPT, or you can create one by copying an existing SFPT
to your resource file set. To create a UFPT from an SFPT, skip to step 7. To create a new UPFT,
follow these steps:

a. Expand the folder containing your company’s FPM resource file set, right-click the
Functional Profile Template folder, and then click New FPT on the shortcut menu.

&4 Echelon NodeBuilder, Resource Editor,

File Resource Wisw Help

B D= © A
C:ALonworks'typesUsert'ourCompany FPM Development. fpt
g | Lonworks\bypesLdrf . Cat
=7 CiiLonworksi Types
+ Ep STANDARD (Scope O: Standard)
=-1 €:\Lonorks TypesiUser|Echelon
+ - echelon (Scope 3! Echelon)
+ @ Minikit (Scope 40 Examples, I/O0)
+|-flp MBUS_Integrator (Scope 4: Echelon, Gateways)
+ - Isillon (Scope 4t Examples, Mulki-IfO module)
+-fp dc0519 (Scope 4: Echelon, Generic Analog Cutput)
+-fp DCO131 (Scope 4: Echelon, 0x011F)
+ - BAS_Controller (Scope 4 Echelon, Generic Controller)
+-@p 151 Lighting 2 {Scope 5: 0xFFFS1, Lighting, Seneral)
=120 CiiLonworksibypesiUser| YourCompanty
= §# FPM Development (Scope 5t 0xFFD3E, 020000, Nebwork Management)
- Metwork Yariable Types
+ D Configuration Property Types
-2 [Ten
D Enumerations
-7 Language Files
¥ Formats

Report...

Properties

Note: Do not expand a resource file set that does not have your unique program ID or is one
that you do not manage.

b. A functional profile template icon (@) with a default name of UFPT<index> (<key>) is
added to the Functional Profile Templates folder.

c. Enter a meaningful name for the new UFPT. By convention, the functional profile name
should indicate the application set of the profile (for example, “UFPTHVACController”).
The name must start with “UFPT”, and by convention, there is no underscore following
UFPT; the first letter after UFPT is upper case (for SmartServer embedded applications only);
and the name uses mixed case. Functional profile names are limited to 64 characters,
including the “UFPT” prefix, and cannot contain spaces or dollar characters.

Creating FPM Templates

6. To create a UFPT from an SFPT, follow these steps:

a. Expand the STANDARD resource file set under the LonWorks\Types folder, expand the
Functional Profile Templates folder to show all the SFPTs in the folder, right-click a SPFT,
and then click Copy on the shortcut menu.

&1 Echelon NodeBuilder Resource Editor

File Resource Wiew Help
2 = i
CALonworkshTypeshSTANDARD. fpt

.g CiLonWorks\bypestiLdrf . Cat
-0 CiLomwarks) Types
—|-Egp STAMDARD (Scope O: Standard)

+-[27] Mekwork Yariable Types
+ D Configuration Property Types
=1-{_] Functional Profile Templates

& SFPTnodeChiect (0)

W SFPToperLoopSensar (1)

% SFPTclosedLoopSensor (2)

% SFPTopenLoopactuatar (30

% SFPTclosedloophctuatar (4)

% SFPTcalendar ()

% SFPTscheduler (7)

% SFPTanalogInpuk (5200

% SFPTanalogQutput (521)

% SFPTlightSensar (10100

% SFPTpressureSensor (10500

X SFPThvacTempSensor (1040)

% SFPTFrostSensor (10423 Open...

% SFPThvacRelativeHumiditySer

¥ SFPTraingensor (1051}

% SFPToccupancySensor (10607

% SFRTcozSensor (1070) Report...

% SFPTairvelocitySensar (1083)

% SFPTuilibyDataloggerRegistey
= CEDTykilibwtlabar (2901%

+

O O o O O e e S e M = e B

b. Right-click the Functional Profile Templates folder in your company’s FPM resource file
set and click Paste on the shortcut menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide a7

&4 Echelon NodeBuilder Resource Editor,

File Resource Wiew Help
B # 0O
C:SLonworkshtypesi U sersrourlCompanyFPM Development. fpk
g Crilonworks\bypesiLdrf. Cat
=121 C\LonWarks\Types
- STAMDARD (Scope O: Standard)

+-[_7] Metwork Yariable Types

+ D Configuration Property Types

+-{_1 Functional Profile Templates

+ [:l Enurnerations

+-[_1 Language Files

+-[_] Formats
-1 SiLontorks\ TypesiUseriEchelon
8 echelon {Scope 3: Echelon)
8 Minikit (Scope 4 Examples, ThO)
i MBUS_Integrator (Scope < Echelon, Gateways)
B Isillon (Scope 4: Examples, Mulb-I/0 module)
$8p dc0519 (Scope 4: Echelon, Generic Analog Output)
e DC0131 (Scope 41 Echelon, 0x011F)
B BAS_Controller (Scope 4: Echelon, Genetic Controller)
#8151 Lighting 2 (Scope 5: 0xFFFS1, Lighting, General)
-1 SiLontorksitypesiUserYourCompany

-|-E@p FPM Development {Scope 5: 0xFFD3E, 0x0000, MNetwork Management)
+-{1 Metwaork Yariable Types
+ [:l Configuration Property Types

R 3 e e A RE AR A e

--E3 Fui al P emplate
+-&% UFFTMath (20002) Mew FPT...
{Z3 Enumerations Search...
+-[_1 Language Files Repart...
+-[_7] Faormats

Properties

You can then add, delete, and edit the network variable and configuration property members

in the SFPT to fit your FPM application or driver.

&3 Echelon NodeBuilder Resource Editor,

File Resource Wiew Help
B ey = x| @ | @
C:\Lonw/orkshtypesiUserrouwrCompanyFPR Development. fpt
g CiiLonborksibypes|Ldrf. Cat
=107 CiilanwWarksi Types
+|-fp STANDARD (Scope 0: Standard)
=7 Ci\LanWarks\ TypesiUser\Echelon
+|-@ echelon (Scope 3: Echelon)
+-@y Minikit {Scope 4: Examples, 1O}
+|-fllp MBUS_Integrator (Scope 4 Echelon, Gateways)
+|-@y Isillon {Scope 4: Examples, Mulki-If0 module)
+|-flp dc0519 (Scope 4: Echelon, Generic Analog Output)
+-fy DCO131 {Scope 4: Echelon, 0x011F)
+|-flp BAS_Controller (Scope 4: Echelon, Generic Controller)
+|-@ I5I Lighting 2 {Scope 5: 0xFFFS1, Lighting, General)
-7 Cilonworks)bypesiUser| YourCompansy
—|-fy FPM Development {Scope 5: 0xFFD3E, 0x0000, Metwork Management)
+1-(Z7] Metwork Yatiable Types
+ D Configuration Property Types
-2 Functional Profile Templates
SRR LFFThvacTemps (1041}
—1-{_] Mandatory Nys
E{} rvoHYACTemp (Principal)
-1 Optional Mys
nvoFixPtTemp
g nwoFloatTemp
=-{{13 Mandatory CPs
nciMaxsendTime
neiMinDelta
nciMinsendTime
=-{{3 Optional CPs

@ neiTmpOffset
N L

Adding Network Variable and Configuration Property Types

48

You can add network variable and configuration property types to your UFPT. You can add types that
are defined in the standard scope O resource file set and types defined in your company’s FPM

Creating FPM Templates

resource file set (the resource file set that has your manufacturer ID). To add network variable and
configuration property types to your UFPT, follow these steps:

1. Double-click the new UFPT, or right-click it and click Open on the shortcut menu. The Modify
Functional Profile dialog opens.

¥ Modify Functional Profile UFPTHVACController,

File Edit Help
i | =3 UFPTHYACController =
[0 Mandatary Nyvs
+-(Z11 Configuration Properties {21 Optional Ny's Name UFPTHYACController
+-@p CALorw/orksMypesilsersy'ourl (2 Mandatom CPs
{21 Optional CPs FPT key: 20000

FPT index: 1
Principal MY Mo Principal MY
Mandatory NV count: 0
Optional NV count: 0
Mandatory CF count; 0
Optional CF count: 0
String infarmation
Sthing: Scope: 3 Index none
| Hew Link..
Comment; Scope: 3 Index none
| MNew Link..
[Make this item obsolete

< »

Scope: 3 Index: 1 Resaurce file: FPM Development Active set: FPM Development

2. Expand the LonWorks\types\STANDARD resource file set (or expand your company’s FPM
resource file set to add user-defined data types), expand the Network Variables or Configuration
Properties folder in the Resource (left) pane.

3. Click and drag the target data type to the Mandatory NVs or Mandatory CPs folder in the
Profile (center) pane if the device interface used by the FPM must implement the target data type,
or drag the target data type to the Optional NVs or Optional CPs folder if the FPM device
interface has the option of implementing or not implementing the target data type.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 49

50

Modify Functional Profile UFPTHVYACCo,
File Edit

H =

Help

SHWT _pwi_fact ~
SKYT pwn_fact f
ST _rac_chl
SNYT_rac_req
SNWT _reg_val
SHYT _reg_val_ts
SHWT _res

ST _res_f
SNYT_res_kilo
ST _ipm
SHYT_sbind_state
SNWT _scene
SMNWT_scene_cfg
SHYT_sched_val
SNWT _setting
SHYT _sma_obscur
ST _sound_db
ST _sound_db_f
SHYT_speed
SNWT_speed_f
SHYT _speed_mil
SNWT _state
SMWT _state_E4
SHYT_st_asc
SNYT _str_int

= = UFPTHWACController
s T _switch

{23 Optional N¥s

3 Mandatory CPs

{Z1 Optional CPs

g
SHWT _telcom
ST _temp
SNYT_temp_diff_p
SNYT _temp_t
SHWT _temp_p
SNWT _temp_ror

I, S ——,

< |

Scope: 3 Index: 1 Resource file: FPM Development

MName:

UFPTHYACController
20000

FPT kes:

FPT index 1

Principal Nv: Mo Principal Ny
Mandatory NV count:

Optional NV count: 1]

=)

Mandatary CF count,

=)

Optional CF count

String infarmation
String

| Mew Link.

Index: none

Scope: 3 Index none

Comment Scope: 3

| MNew Link,

™ Make this item obsolete

Cancel

Active set: FPM Development

The selected data type appears below the folder to which it was added in the Profile (center) pane,
and the selected data type can be edited in the Properties (right) pane.

Modify Functional Profile UFPTHVACCo
File Edit Help

H B=2oX

=10 UFPTHYACControllsr
=3 Mandator Ny's
it ACM ode
reviSetPoint
riTemp

#- @ ChLonworkshTypes\S TANDAR
i ChLonwokshtypesiUserVourl

rvoFumace_0nOff
{Z1 Optional Ny's

{21 Mandatory CPs

{21 Optional CPs

Scope: 5 Index: 5 Resource file: FPH Development

nvadirCanditioner_OnO|

Sevieepe [T =] T

String infarmation

Shing: Scope: 0 Index 91
Temperature T

New ||Link...
Comment; Scope: B Index none

| New Link.
Referenced type range override value
| Minimum -

Foimatted value:

-
Hame: [T emp Member: [#1 =]
Fieference: | ShT_temp_f =] Boope [0 4]
NV settings
I Principal K
& Input
™ Qutput

Cancel

Active set: FPM Development®

If you added a network variable to the functional profile template, enter the following information
in the Properties (right) pane and then skip to step 7:

Creating FPM Templates

Name Enter the name of the network variable within the functional profile
template. The name of the network variable may contain letters, digits, and
underscore characters, but it cannot start with a digit.

Optionally, you can insert “nvi” and “nvo” in front of input and output
network variable names, respectively, to simplify the identification of the
input and output network variables in the functional profile template. For
example, you can name a SNVT_temp input data point “nviSetPoint”, or
you can name a SNVT_switch output data point “nvoLamp OnOff”.

If you do not insert an “nvi” or “nvo” prefix, the name of the data point
should start with a capital letter and use mixed case. For example, you can
name a SNVT_temp input data point “SetPoint”, or you can name a
SNVT _switch output data point “Lamp_OnOff.

NV Settings
Principal NV Designates this network variable as the principal network variable of the
functional profile template. Each functional profile template may have one
principal network variable. The principal network variable is used to
determine the type of configuration properties with inherited types that apply
to the functional profile template.
Input/Output Specify whether the network variable is an Input or Output network

variable

6. If you added a configuration property to the functional profile template, enter the following
information in the Properties (right) pane:

Name Enter the name of the configuration property within the functional profile
template. The name of the configuration property may contain letters, digits,
and underscore characters, but it cannot start with a digit. Optionally, you
can insert “nci” in front of configuration property names to simplify the
identification of the configuration properties within the functional profile
template.

CP Settings

Array Specify whether the configuration property within the functional profile
Implementation template can be implemented as an array. You have the following three
choices:

e Prevent. Functional blocks created using this functional profile
template cannot implement this configuration property as an array. If
you select this option, the Min Array Size and Max Array Size
properties are unavailable. This is the default, and it applies to all
functional profiles created prior to NodeBuilder 3.1.

e Permit. Functional blocks created using this functional profile template
can implement this configuration property as an array at the discretion
of the implementer. If you select this option, set the Max Array Size to
limit the maximum size of the array. The Min Array Size property is
unavailable.

e Require. Functional blocks created using this functional profile
template must implement this configuration property as an array. If you
select this option, set the Max Array Size and Min Array Size
properties to limit the maximum and minimum size of the array.

CP Settings Select the following configuration property flags for the scenarios in which
the configuration property can be changed. See the LONMARK

i.LON SmartServer 2.0 Programming Tools User’'s Guide 51

52

Applies To

Application Layer Interoperability Guidelines for more information about
configuration property restriction flags.

e const_flag. The value of the configuration property cannot be changed.

Note: When you deploy the FPM on the SmartServer, the configuration
property is automatically set to be persistent. This means that the
configuration property’s default value is updated to match the current
value stored in the configuration property, and that configuration
property’s current value persists through reboots.

e device_spec_flg. The value of the configuration property is always
read from the device and can be modified independent of the LNS
database.

e mfg_flg. The configuration property value can only be changed when
the device is being licensed.

e 0bj_disabl_flg. The device must be disabled for the configuration
property value to be changed.

o offline_flg. The device must be offline for the configuration property
value to be changed.

o reset_flg. The device is reset after the configuration property value is
changed.

When a functional block implements a profile, each of the implemented
member configuration properties must specify at least those restriction flags
that are set in the profile. Restriction flags that are not set in the profile may
be set by the implementing property, unless this would cause an ambiguous
restriction flag set.

Specify the scope of the configuration property. The configuration property
can apply to the entire Functional Block or a network variable within the
functional profile template.

If the configuration property applies to the functional block, and the
functional block implements an inheriting type, the property will derive its
type from the principal network variable. A principal network variable must
be defined in this case.

If a configuration property is to apply to a specific network variable, select
the network variable from the Applies To list.

Creating FPM Templates

¥ Modify Functional Profile UFPTHVACController,

File Edit Help
=]
+ -l ortéorks\TypeshSTANDAF | =] UFPTHWACCantroller r
-y =L Mandatoy Wys
-1 MNetwork Yariables rviHVACKode Marme: ‘nciHysteresis M ember ‘#1 ::I
= [Configuration Properties nviSetPoint
@ UCPTHysteresis nviTemp Ref - g
rrvadirConditioner_On0l Fetenee: ‘UCPTH_‘,‘SIEIBSIS ﬂ cope: ‘5 ﬂ
rvoFurnace_OnOff CP settings
(23 Optional My Auray implementation:
Py k
= Mandatory CPs rEven ad
neiHysteresis = =
rciHeartbeat = =
neillffine [const_flg [value is never changed)]
neiThroltie [device_specific_flg [&hwaps read value from the device]
(21 Optional CPs
O mig_fig (Modify orly during marufacture)
[chbi_disabl_flg [Disable functional black befare madifying)]
Applies to: |Functlonal block j
String information
Shing; Scope: 5 Index none
| Mew Link...
Comment; Scope: 5 Index none
| New Link.
Type range overide and default value
o2
| Default x
Formatted value: B
< LN K >

Cancel

Scope: 5 Index: 5 Resource file: FPM Development Active set: FPM Development™

7. Repeat steps 3—6 for each data type to be added to the functional profile template.
8. Click OK.

Generating and Copying the Updated FPM Resource File Set

Once you create a UFPT and add all the required network variable and configuration property
members to it, you can generate the updated FPM resource file set in which the UFPT was created.
After you generate the updated FPM resource file set, you can copy it to the flash disk of your
SmartServer.

To generate the updated FPM resource file set and copy it to your SmartServer, follow these steps:

1. Right-click your company’s FPM resource file set, and then click Generate Resources Set on the

shortcut menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

53

54

2.

&1 Echelon ModeBuilder Resource Editor

File Resource Yiew Help
B = =] x i
C:Lonw orkshtypesiUser ourCompany\FPM Development

g CiiLonWorks\typesiLdrf.Cat
=23 C\LonWorks| Types
+ @iy STAMDARD (Scope 0¢ Standard)
=7 CiLonWorks| TypesiUseriEchelon
+ @ echelon {Scope 3: Echelon)
+- @y MiniKit (Scope 41 Examples, LJ0)
+-fp MBUS_Integrator (Scope 4: Echelon, Gateways)
+ @ Isillon (Scope 41 Examples, Multi-Ij< module)
+-fp dc0519 (Scope 4 Echelon, Generic Analog Oukput)
+-fgp DCO131 (Scope 4: Echelon, 0x011F)
+- e BAS_Contraller (Scope 4: Echelon, Generic Contraller)
+ - 151 Lighting 2 (Scope 5t 0xFFFSL, Lighting, General)
= 3 CiLonWorks|bypesiUser\YourCompary

- i [l mer 0])
- Metwork Yarisble Types Open...
+ D Configuration Property Types Search...
=-[Z3 Functional Profile Templates Report...
+ UFPTMath {20002}
+ UFPTHYACContraller (20004) Copy

[:I Enumerations
%[Language Files
+ D Formats

Set Version,

Propetties

The Generate Resources Set dialog opens.

" Generate Resource Files

The following filez have been opened in edit mode:

FPM Development.enu

FFh Development. fpt M

Generate files?

Wes Mo | Cancel |

™ Dan't show this message next time

Click Yes to generate the updated FPM resource file set.

Use FTP to access the root/lonworks/types/user directory on the flash disk of your SmartServer.
Create a User/<YourCompany> folder if it does not already exist in the root/lonworks/types
directory.

Browse to the LonWorks\Types\User\<Y ourCompany> folder on your computer, and then copy
your company’s .ENU, .fmt, .fpt, .Is, and .typ files to the
root/lonworks/types/user/<YourCompany> directory on the SmartServer.

Repeat step 5 for each SmartServer on which the FPM is to be used. Your company’s resource
files must be installed on a SmartServer in order to create a functional block representing the FPM
application on the SmartServer.

If you are using a static device interface (XIF) for your FPM, proceed to Chapter 4 to create a
model file for your FPM, convert the model file to a XIF file, and upload the XIF file to your
SmartServer. If you are using a dynamic XIF for your FPM, proceed to Chapter 5 to create a new
FPM project from the UFPT and begin writing the FPM.

Creating FPM Templates

4

Creating FPM Device Interface (XIF)
Files

This chapter describes how to write a model file that declares the network variables
and configuration properties in your FPM and a functional block implementing an
instance of the UFPT used by your FPM. It explains how to use the i.LON
SmartServer 2.0 LONWORKS Interface Developer tool to convert your model file to a
device interface (XIF) file and how to copy the XIF to your SmartServer.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 55

Creating FPM Device Interface (XIF) Files Overview

In order to deploy an FPM application on the SmartServer, you need to create a device interface (XIF)
file extension). The XIF exposes the logical interface of your FPM application so that network tools
such as the SmartServer and the LonMaker tool can manage it. The XIF specifies the number and
types of functional blocks, and the number, types, and directions of the network variables and
configuration properties in your FPM application. Note that the SmartServer only recognizes the text
file version of the XIF (.xif extension).

To create a device interface (XIF) file for your FPM application, you do the following:

1. Create a model file (.nc extension) with a text or programming editor such as Notepad. In the
model file, you declare all the network variables and configuration properties in the UFPT used by
your FPM application, and you declare a functional block that implements an instance of that
UFPT.

2. Generate a XIF from your model file using the i.LON SmartServer 2.0 LonWorks Interface
Developer tool. Copy the XIF (.xif extension) to the root/lonWorks/Import/<YourCompany>
folder on the SmartServer flash disk.

Creating a Model File

56

The model file uses the Neuron C programming language to describe the functional blocks, network
variables, and configuration properties in an FPM application. You do not need to be proficient in

Neuron C to create a model file for an FPM because the model file does not include executable code.
The i.LON SmartServer 2.0 Programming Tools includes a command line interface called the i.LON
SmartServer 2.0 LonWorks Interface Developer tool that converts model files to XIFs. Note that the

model file uses Neuron C Version 2.1 declaration syntax.

You can use any of the following methods to create a model file:

Manually create a model file. A model file is a text file that you can create with any text or
programming editor such as Notepad. This section describes the basic Neuron C statements
required to declare network variables, configuration properties, and functional blocks in your
model file.

Reuse existing Neuron C code. You can reuse an existing Neuron C application that was
originally written for a Neuron Chip or a Smart Transceiver as a model file. The i.LON
SmartServer 2.0 LonWorks Interface Developer tool uses only the device interface declarations
from a Neuron C application program, and ignores all other code. You might have to delete some
code from an existing Neuron C application program, or exclude this code using conditional
compilation.

Automatically generate a model file. You can use the NodeBuilder Code Wizard, which is
included with Release 3 or later of the NodeBuilder Development Tool, to automatically generate
a model file. Using the NodeBuilder Code Wizard, you can define your device interface by
dragging functional profiles and type definitions from a graphical view of your resource catalog to
a graphical view of your device interface, and refine them using a convenient graphical user
interface. When you complete the device interface definition, click the Generate Code and Exit
button to automatically generate your model file. You can then use the main file produced by the
NodeBuilder Code Wizard as your model file. Note that the NodeBuilder Code Wizard is not
included with the i.LON SmartServer 2.0 Programming Tools, and it must be licensed separately.
See the NodeBuilder User’s Guide for details about using the NodeBuilder Code Wizard.

Declaring Network Variables

A network variable is a data item that a device application expects to get from other devices on a
network (an input network variable) or expects to make available to other devices on a network (an
output network variable).

Creating FPM Device Interface (XIF) Files

You must declare all the mandatory network variables in the UFPT you created for your FPM. You
may declare none to all of the optional network variables in the UFPT.

SYNTAX
You can declare a network variable in your model file using the following syntax:

network input || output type identifier;
The network keyword declares a network variable of a specific type with a specific identifier.

The input and output keywords define the direction of the network variable. The specified
direction must match the one defined for the referenced network variable in the UFPT.

The type property corresponds to the standard or user-defined network variable type (SNVT
or UNVT) used by the network variable. The specified data type must match the one defined
for the referenced network variable in the UFPT.

The identifier property is a reference to the network variable in the UFPT. The name
specified in this property is the one that will be used by network tools such as the SmartServer
and the LonMaker tool for the referenced network variable. The maximum length of the
identifier is 16 characters.

EXAMPLES

The follow example demonstrates how to create input and output network variables in your model
file:

network input SNVT_temp_T nviTemp;
network input SNVT_temp_ f nviSetPoint;
network input SNVT_hvac_mode nviHVACMode;

network output SNVT_switch nvoAC_OnOff;
network output SNVT_switch nvoFurnace OnOff;
network output SNVT_str_asc nvoStatus;

By convention, input network variable names have an nvi prefix, and output network variables
have an nvo prefix.

For more information on declaring network variables, see Chapter 3 of the Neuron C Programmer’s
Guide.
Declaring Configuration Properties

A configuration property is a data item that specifies the behavior of the FPM application or driver (its
network variables and functional blocks). Configuration properties are used for configuration data
such as set points, alarm thresholds, or calibration factors. The configuration properties in an FPM can
be set by a network management tool such as the SmartServer or the LonMaker tool.

You must declare all the mandatory configuration properties in the UFPT you created for your FPM.
You may declare none to all of the optional configuration properties in the UFPT.

SYNTAX

The syntax used for configuration property declarations is similar to that used for network variable
declarations except that the direction modifier is always input, and it includes a config_prop or
cp keyword (you can use either keyword) that follows the type declaration.

network input type cp name;
network input type config_prop name;

The network keyword declares a configuration property of a specific type with a specific
identifier.

The input keyword specifies that the configuration property is an input data point.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 57

58

The type property corresponds to the standard or user-defined network variable type (SCPT
or UCPT) used by the configuration property. The specified data type must match the one
defined for the referenced configuration property in the UFPT.

The config_prop or cp keyword declares the data type as a configuration property.

The identifier property is a reference to the configuration property in the UFPT. The name
specified in this property is the one that will be used by network tools such as the SmartServer
and the LonMaker tool for the referenced configuration property. The maximum length of the
identifier is 16 characters.

EXAMPLES
The follow examples demonstrate how to create configuration properties in your model file:

network input SCPTmaxSendTime cp nciHeartbeat;
network input SCPTmaxRcvTime cp nciOFfline;

network input SCPTminSendTime cp nciThrottle;
network input UCPTHysteresis cp nciHysteresis;

By convention, configuration property names have an nci prefix.

For more information on declaring configuration properties, see Chapter 4 of the Neuron C
Programmer’s Guide.

Declaring Functional Blocks

A functional block is a collection of network variables and configuration properties that are used
together to perform one task. These network variables and configuration properties are called the
functional block members. Each functional block implements an instance of a functional profile.

A functional profile is used to describe common units of functional behavior. Each functional profile
defines mandatory and optional network variables and configuration properties. A functional block
must implement all of the mandatory network variables and configuration properties defined by the
functional profile, and it may implement any or all of the optional network variables and configuration
properties defined by the functional profile.

SYNTAX
You can use the following syntax to declare functional blocks.

fblock FPT-identifier {fblock-member-list} identifier
[external name] [{fb-property-list}];

The fblock keyword declares a functional block for the FPT-identifier and identifier
properties.

The FPT-identifier property specifies the name of the UPFT implemented by the functional
block.

The fblock-member-list property lists each network variable reference declared in the model
file. Every mandatory network variable member in a UFPT must be implemented by network
variable reference in the model file. Each network variable in the model file can implement
only network variable member, and can only be associated with one functional block in the
model file. You can list a network variable reference and implement its corresponding
network variable member in the UFPT using the following syntax:

nv-reference implements nv-member-name

The identifier property is the name the declared functional block. This name is not exposed
to the SmartServer so you can enter any string in this property.

The external_name keyword declares a functional block name that is exposed to the
SmartServer. You can specify the external name keyword and then a descriptive, readable
name for the functional block. If you do not specify a functional block name with

Creating FPM Device Interface (XIF) Files

external_name property, the SmartServer uses the FPT key of the UFPT for the functional
block name. The FPT key is a unique ID (20000 or higher) defined for the UFPT within a
resource file set.

The fb-property-list is used to implement the configuration properties declared in the model
file that apply to the functional block. You can implement one or more functional block
configuration properties using the following syntax:

fb_properties
{cp-reference,cp-reference,cp-reference
}:
For more information on declaring functional blocks, see Chapter 5 of the Neuron C Programmer’s
Guide.

Using Include Directives

If a data point declared in your UFPT has a data type that references a system include file, you need to
insert an include directives at the beginning of your model file that in order for it to access that source
file. System include files are installed by the NodeBuilder Development Tool, and they are stored in

the LonWorks\NeuronC\Include directory on your computer by default. To insert an include directive
in your model file, you can use the bracketed form:

#include <filename.ext> //bracketed form

For example, if you declare a SNVT_temp_f data point in your model file, which has a float data type,
you need to insert the following include directives at the beginning of your model file:

#include <float.h>

Example Model Files

The following examples demonstrate how to create model files that instantiate a single functional
block; multiple functional blocks based on the same UFPT; and multiple functional blocks with unique
UFPTs.

Single Functional Block

The following example demonstrates a model file that declares all the mandatory network variable and
configuration property members in the UFPT, which consists of three input network variables, two
output network variables, and four functional block configuration properties (one of which is a user-
defined type). The example model file then declares a functional block that does the following: lists
network variable member implementations of all the declared input and output network variables,
declares an external functional block name to be used by the SmartServer, and implements the declared
configuration properties.

#include <float.h>

network input SNVT_hvac_mode nviHVACMode;
network input SNVT_temp_T nviSetPoint;
network input SNVT_temp_f nviTemp;

network output SNVT_switch nvoAC_OnOff;
network output SNVT_switch nvoFurnace_OnOff;

network input SCPTmaxSendTime cp nciHeartbeat;
network input SCPTmaxRcvTime cp nciOffline;

network input SCPTminSendTime cp nciThrottle;
network input UCPTHysteresis cp nciHysteresis;

fblock UFPTHVACController {
nviHVACMode implements nviHVACMode;

i.LON SmartServer 2.0 Programming Tools User’'s Guide 59

nviSetPoint implements nviSetPoint;
nviTemp implements nviTemp;
NnvoAC_OnOff implements nvoAirConditioner_OnOff;
nvoFurnace_OnOff implements nvoFurnace OnOff;
} fbHVACFunction external _name ('HVAC Function')

fb_properties {
nciHeartbeat,nciOffline,nciThrottle,nciHysteresis
}:
Multiple Functional Blocks with the Same UFPT

The following example demonstrates how to use a functional block array in a model file to create two
functional blocks that are instances of the same UFPT. You could then write a single FPM application
based on the UFPT. When you deploy the FPM application on the SmartServer and select the XIF
generated from this model file, the internal FPM device will include two functional blocks that are
separate instances of the same FPM application.

#define NUM_SWITCH_ENCODERS 2

network input SNVT_switch nviACSwitch[NUM_SWITCH_ENCODERS];
network input SNVT_switch nviFurnaceSw[NUM_SWITCH_ENCODERS];
network output SNVT _hvac mode nvoHVACMode[NUM_SWITCH_ ENCODERS];

fblock UFPTSwitchEncoder {
nviACSwitch[0] implements nviACSwitch;
nviFurnaceSw[0] implements nviFurnaceSwitch;
nvoHVACMode[0] implements nvoHVACMode;

} fbSwitchEncoder[NUM_SWITCH_ENCODERS] external name
('Digital Encoder');

Multiple Functional Blocks with Unique UFPTs

The following example demonstrates a model file that creates two functional blocks that are instances
of two different UFPTs. You could then write separate FPM applications for the UFPTs instantiated
by the model file. When you deploy the FPM application on the SmartServer and select the XIF
generated from this model file, the internal FPM device will include two functional blocks that are
instances of their respective FPM applications.

//////7//7//7//7/7First FB instantiated/////////7//7/7///////7//7/7/7
#include <float.h>

network input SNVT_hvac_mode nviHVACMode;
network input SNVT_temp_T nviSetPoint;
network input SNVT_temp_T nviTemp;

network output SNVT_switch nvoAC _OnOff;
network output SNVT_switch nvoFurnace_OnOff;

network input SCPTmaxSendTime cp nciHeartbeat;
network input SCPTmaxRcvTime cp nciOffline;

network input SCPTminSendTime cp nciThrottle;
network input UCPTHysteresis cp nciHysteresis;

fblock UFPTHVACController {

nviHVACMode implements nviHVACMode;
nviSetPoint implements nviSetPoint;

Creating FPM Device Interface (XIF) Files

nviTemp implements nviTemp;
nvoAC_OnOff implements nvoAirConditioner_OnOff;
nvoFurnace_OnOff implements nvoFurnace OnOff;

} fbHVACFunction external_name ('HVAC Function'™)

fb_properties {
nciHeartbeat,nciOfFfline,nciThrottle,nciHysteresis
};
/////////////second FB instantiated//////////////////77////77

network input SNVT_switch nviACSwitch;
network input SNVT_switch nviFurnaceSw;
network output SNVT_hvac_mode nvoHVACMode;

fblock UFPTSwitchEncoder {

nviACSwitch implements nviACSwitch;
nviFurnaceSw implements nviFurnaceSwitch;
nvoHVACMode implements nvoHVACMode;

} fbSwitchEncoder external_name (“'Digital Encoder'™);

Multiple Functional Blocks with Multiple UFPTs

The following example demonstrates how to use multiple functional block arrays in a model file to
create multiple sets of functional blocks that are instances of their respective UFPTs. You could then
write separate FPM applications for the UFPTs instantiated by the model file. When you deploy the
FPM applications on the SmartServer and select the XIF generated from this model file, the internal
FPM device will include arrays of the functional blocks that are separate instances of their respective
FPM applications.

#define NUM_HVAC FBs 2
#define NUM_SWITCH_ENCODER_FBs 2

#include <float.h>
//////7///7//7/First FB array instantiated////////////////////7//7/7777

network input SNVT_hvac_mode nviHVACMode[NUM_HVAC_FBs];
network input SNVT_temp_f nviSetPoint[NUM_HVAC_FBs];
network input SNVT_temp_f nviTemp[NUM_HVAC FBs];

network output SNVT_switch nvoAC_OnOFff[NUM_HVAC_ FBs];
network output SNVT_switch nvoFurnace OnOFff[NUM_HVAC FBs];

network input SCPTmaxSendTime cp nciHeartbeat[NUM_HVAC FBs];
network input SCPTmaxRcvTime cp nciOFfline[NUM_HVAC FBs];

network input SCPTminSendTime cp nciThrottle[NUM_HVAC_ FBs];
network input UCPTHysteresis cp nciHysteresis[NUM_HVAC FBs];

fblock UFPTHVACController {
nviHVACMode[0] implements nviHVACMode;
nviSetPoint[0] implements nviSetPoint;
nviTemp[0] implements nviTemp;
NvoAC_OnOff[0] implements nvoAirConditioner_ OnOff;
nvoFurnace_OnOff[0] implements nvoFurnace OnOff;
} fbHVACFunction[NUM_HVAC_FBs] external_name ('HVAC Function™)
Tb_properties {

i.LON SmartServer 2.0 Programming Tools User’'s Guide

61

62

nciHeartbeat[0],nciOFffline[0],nciThrottle[0],nciHysteresis|[0]
};

/////////7////second FB array instantiated////////////7///////////7/77/7

network input SNVT_switch nviACSwitch[NUM_SWITCH_ENCODER_FBs];
network input SNVT_switch nviFurnaceSw[NUM_SWITCH_ ENCODER_FBs];
network output SNVT_hvac_mode nvoHVACMode[NUM_SWITCH_ENCODER_FBs];

fblock UFPTSwitchEncoder {

nviACSwitch[0] implements nviACSwitch;
nviFurnaceSw[0] implements nviFurnaceSwitch;
nvoHVACMode[0] implements nvoHVACMode;

} fbSwitchEncoder[NUM_SWITCH_ENCODER_FBs] external_name ('Digital
Encoder™);

Multiple Functional Blocks with Multiple UFPTs and Same Data Point Names

The following example demonstrates how to use multiple functional block arrays in a model file to
create multiple sets of functional blocks that are instances of their respective UFPTs. In addition, this
example handles the scenario in which the data points in a UFPT have the same names. You could
then write separate FPM applications for the UFPTs instantiated by the model file. When you deploy
the FPM applications on the SmartServer and select the XIF generated from this model file, the
internal FPM device will include arrays of the functional blocks that are separate instances of their
respective FPM applications.

#define NUM_OF ADD FB 3
#define NUM_OF_SUB_FB 2

////7/7777777//First FB array instantiated//////////////////////7/77

network input SNVT_count inl[(NUM_OF ADD FB + NUM_OF_SUB FB)]:
network input SNVT_count In2[(NUM_OF_ADD FB + NUM_OF_SUB FB)];
network output SNVT_count outl[(NUM_OF _ADD FB + NUM_OF SUB_FB)];

fblock UFPTMathAdd {

inl[0] implements inl;

in2[0] implements iIn2;

outl[0] implements outl;

} fbMathAddFunction[NUM_OF ADD_FB] external_name ("'FpmAdd™);

//////7777/7//second FB array instantiated/////////////////////7777

fblock UFPTMathSubtract {

inl[NUM_OF _ADD FB] implements inl; //can"t use [0] for second FB
in2[NUM_OF_ADD_FB] implements in2; //so use next unused index
Outl[NUM_OF_ADD_FB] implements outl;

} fbMathSubtractFunction[NUM_OF SUB_FB] external_name ("'FpmSub™);

Saving your Model File

When you have finished creating your model, you need to save it as a Neuron C source file (.nc
extension) on your computer. The example above is stored in a model file named “HVAC.nc” in a
folder named “ModelFile” that has been created under the C:\LonWorks directory. The file path of the
source file in the example is therefore C:\LonWorks\ModelFile\HVAC.nc. You can then proceed to the
next section, which explains how to convert a model file to a XIF.

Creating FPM Device Interface (XIF) Files

In addition, you should create a <YourCompany> folder for your company under the
C:\LonWorks\Import folder if one does not already exist. This is where the XIF generated by the
i.LON SmartServer 2.0 LonWorks Interface Developer tool will be stored.

Generating a Device Interface (XIF) File

You can convert a model file to a XIF using the i. LON SmartServer 2.0 LonWorks Interface
Developer tool. This tool is a command line interface that requires you to type a few simple
commands to create the XIF. You just need to open a Command Prompt window and specify the file
path of your model file, your company’s program ID, and the destination file path where the XIF is to
be stored. Once it has been generated, you can copy the XIF (.xif extension) from the destination file
path to the root/lonWorks/Import/<YourCompany> folder on the SmartServer flash disk.

To generate a XIF and copy it your SmartServer, follow these steps

1.

Verify that the full version of the i. LON SmartServer 2.0 Programming Tools has been installed
on your computer. Installing the i.LON SmartServer 2.0 Programming Tools installs the i. LON
SmartServer 2.0 LONWORKS Interface Developer tool that you will use to create the XIF. For
more information on installing the i. LON SmartServer 2.0 Programming Tools, see Chapter 2.

Open a Command Prompt window and then type the following command:

libilon --source=<model file path> --pid=<program ID> —-
out=<destination path> --basename=<XIF name >

For the example HVAC.nc model file shown in the previous section, you would type the following
at the command prompt (you would need to replace the sample program ID with your company’s
program ID, and you would need to replace the “YourCompany” folder in the
C:\LonWorks\Import directory with your company’s folder):

libilon --source=C:\LonWorks\ModelFile\HVAC.nc --
pid=9F:FD:3E:00:00:00:04:00 --out=
C:\LonWorks\Import\YourCompany\HVAC --basename=HVAC

This creates device interface files named “HVAC” (.xif and .xfb extensions), and stores them in
the C:\LonWorks\Import\<Y ourCompany> folder.

Notes:

e The syntax used in the previous example demonstrates how to use the long form of the
command switches. Most command switches also have a short form that you can use. If you
wanted to use the short form of the required command switches used in the previous example,
you could type the following:

libilon -n=C:\LonWorks\ModelFile\HVAC.nc -
i=9F:FD:3E:00:00:00:04:00 -o=C:\LonWorks\Import\YourCompany -
b=HVAC

Note that if you use the long form, you must insert a separator character (a space or the equals
sign [=]) between the command switch and the argument. If you use short form, the separator
character is optional.

See the next section, Using Long and Short Command Switch Forms, for more information on
using the short and long forms.

e You must separate the command switches with spaces.

Copy the XIF (.xif extension) generated in step 2 to the root/lonWorks/Import/<YourCompany>
folder on the SmartServer flash disk. Note that you may need to create the <YourCompany>
folder before copying the XIF.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 63

64

Using Long and Short Command Switch Forms

Most command switches come in long and short forms. The long form consists of the verbose, case-
sensitive name of the command, and it must be prefixed with a double dash '- -'. Long command
switches require a separator (a single space or the equals sign [=]) between the command switch and its
respective argument.

The short form consists of a single, case-sensitive, character that identifies the command, and it must
be prefixed with a single forward slash /' or a single dash '-'. Optionally, short command switches may
be separated from their respective arguments with a separator (a single space or the equals sign [=]).

The following table demonstrates the long and short forms of the command switches you will typically
use to create XIFs.

Long Form Short Form

--source <file path> -n <file path>
-—pid=<program I1D> /i=<program ID>
--out=<destination path> /o<destination path>
-—basename=<File || Ffilepath> | /b <file>

Note: If no command switches or arguments follow the command name, the tool responds with usage
hints and a list of available command switches.

Other Command Switches

The following section lists the long and short forms of the other switches accepted by the libilon
command and describes the listed command switches.

Short

Long Form Form Description

--help -? Display usage hint for the command

--Ffile -@ Include a command file

--define -D Define a specified preprocessor
symbol (without value)

--defloc Location of an optional default
command file

-—include -1 Add the specified folder to the
include search path

--mkscript Generate command script in specified
location

--nodefaults Disable processing of default
command files

--silent Suppress banner message display

--verbosecomments -V Generate verbose comments

--verbose -V Run with one of the following
verbosity levels:
O(normal); 1(verbose); 2(trace)

—--warning Display specified message type as a
warning

Creating FPM Device Interface (XIF) Files

S

Creating FPMs

This chapter describes how to use the i.LON SmartServer 2.0 Programming Tool to
create new FPM projects and then write, compile, and debug FPM applications and
FPM drivers.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 65

Creating FPMs Overview

66

You can use the full version of the i.LON SmartServer 2.0 Programming Tool to create FPMs. The
full version of the i. LON SmartServer 2.0 Programming Tool includes all the components needed to
manage an FPM project:

Eclipse Development Kit preconfigured for writing, building, and uploading FPMs.

FPM template files.

FPM library. A tool for creating the C structures of user-defined UNVTs is also included.
C++ compiler.

CYGWIN environment.

Creating an FPM with the full version of the i.LON SmartServer 2.0 Programming Tool, entails
creating a new FPM project or opening an existing project, writing the FPM application or FPM driver
in C or C++, and then compiling the FPM.

You can create a new FPM project from the user-defined functional profile template (UFPT) that you
generated with NodeBuilder Resource Editor and you uploaded to your SmartServer following the
steps described in Chapter 3, Creating FPM Templates. When you create the new FPM project, you
select whether you are creating an FPM application or an FPM driver. An FPM application reads and
writes values to the data points declared in it, executes an algorithm upon data point updates, reads
data point properties, and controls timers and executes code upon their expiration. An FPM driver
provides values for the data points declared in it by reading and writing to the RS-232 and RS-485
ports on the SmartServer. Once the FPM project has been created, you can add any user-defined data
types to your FPM that were not declared in the UFPT.

After you create a new FPM project or import an existing FPM project, you can write the FPM
application or FPM driver in C or C++. Writing the FPM application or FPM driver essentially
requires you to implement four main routines that specify the behavior of your FPM:
Initialize(), Work(), Shutdown(), and OnTimer (). The Initialize() routine is
executed when the FPM is started or enabled; the Work() routine is executed when a data point
declared in the FPM is updated; the Shutdown () routine is executed when the FPM is stopped or
disabled; and the OnTimer (Qroutine is executed when a timer expires.

You can debug your FPMs using a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4)
that you can purchase from Wind River. If you are not using Wind River Workbench to debug your
FPMs, you should follow the FPM coding guidelines described in this chapter so that you can debug
your code more easily. For example, you should frequently insert printf() statements in your code
so that you can view the status of your FPM using the console port of the SmartServer. For more
information on ordering “WindRiver Platform for Industrial Services V3.2 for MIPS32 Processors”,
which includes Wind River Workbench, contact Wind River sales at
www.windriver.com/company/contact/index.html.

Once you finish writing the FPM, you can compile it. If your code has any errors or warnings, they
will be displayed in the Problems view at the bottom of the document window. You can click on the
errors and warnings listed in this view to debug your FPM. You can also check the Console view
(located to the right of the Problems view) to see if there is more detailed information available for a
given compiler error or warning.

Notes: To use the full version of the i. LON SmartServer 2.0 Programming Tool, you must order and
install the i.LON SmartServer 2.0 Programming Tools DVD. To order the i.LON SmartServer 2.0
Programming Tools DVD (Echelon part number 72111-409), contact your Echelon sales
representative. If you have a demo version of the i.LON SmartServer 2.0 Programming Tool, you can
write FPMs, but you cannot compile and upload them.

If you have already created an FPM project and you want to modify your FPM application or FPM
driver, you can import your FPM project into the current workspace following the steps described in
the Importing FPM Projects section in Chapter 2. After you import your FPM project, you can
proceed to the Writing an FPM Application or Writing an FPM Driver section.

Creating Freely Programmable Modules

http://www.windriver.com/company/contact/index.html

Creating New FPM Projects

i.LON SmartServer 2.0 Programming Tools User’'s Guide

You can create a new FPM project using the i.LON SmartServer 2.0 Programming Tool. To create a
new FPM project, you do the following:

1. View the resource files on your SmartServer.

2. Create a new FPM application or FPM driver from the resource file set you added to the
SmartServer flash disk.

3. Declare the data points to which the FPM will read and write.

Viewing the Resource Files on a SmartServer
To view the resource files on a SmartServer, follow these steps:

1. Start the i.LON SmartServer 2.0 Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer 2.0 Programming Tools, and then click i.LON
SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0 Programming Tool opens.

2. Locate the LonMark Resource View at the bottom left-hand corner of the document window. A
SmartServer icon named localhost appears in this view.

€ CIC-+ - Eclipse SDK EEx
File Edt Refactor Mavigate Search Project FPM Run Window Help
EiR @8 0 id G B[E e |
R)+ Projects 52 Mavigator B S =52 =0
-
An outling is not
avallable.
=0
25 & —L §
Server{IP-Address: | ocalhast
B et g [2 Problems 5% . Console Properties Hoa et
0 errors, 0 warnings, 0 infos
Description Resource Path
< >
e

3. Inthe Server/IP-Address box in the LonMark Resource View, enter the hostname or IP address
of your SmartServer and then click the Go button to the right. The hostname or IP address appears
next to the SmartServer icon.

67

68

W

Server/IP-Address: | 10.2.124.82

Creating an FPM
To create an FPM application or an FPM driver, follow these steps:

1. Expand the SmartServer icon, and then expand the LonMark folder. The resource files in the
root/LonWorks/types folder on your SmartServer flash disk are shown.

i) LonMark Resource Yievs I g = 4 7 70

ServerIP-Address: | 10.2,124.82

= & 10.2.124.582

=170 LonMark,
@ frootflorworksbypesistandard. typ
@ froakflarwarkstypesfoserfechelan/bas_contraller byp
froatflorwarkstypesfoser fechelon/dc0131 . tvp
frootflonworkstypesiuserfechelon/dc0519, tvp
frootflorworks bypesiuser fechelon/echelon. byp
froakflanwarks typesioserfechelon/isilan, bvp
froatflorwarkstypesfuser fechelon/mbus_integrator, bvp
frootflonworkstypesiuserfechelon minikit, byp

L R R = R e e

erelelalalole)

froak flon, siuservourcompany)fpm development, byp

2. To create an FPM driver, right-click your company’s FPM resource file set, and then click New
FPM Driver on the shortcut menu. To create an FPM application, skip to step 3.

Creating Freely Programmable Modules

“ LonMark Resource View 273 Eﬁ = %Cb T =0

Server|IP-Address: | 10,2.124.165

= & 10.2.124.165
(=% LonMark

® Jrootflorwwarksbypesibas_controller.byp

ﬁ Trookflorworks fbyvpesfechelon, bvp

® Jrootflarwarks bypes imbus_inkegratar, bvp

ﬁ Jrookflorworks fbyvpes skandard. bvp

{OUIFCOMPAR

2 e e e

=¥ Extract Include

Alternatively, you can click the resource file set and then click the Create FPM icon (&) at the
top of the LonMark Resource View.

3. To create an FPM application, expand your company’s FPM resource file set, expand the
Functional Profile Templates folder, right-click the <company program ID>.UFPT<FPT
Name>, and then click New FPM Application on the shortcut menu.

“ LonMark Resource Yiew 2 =5 :ﬂ',) = =0

Server/IP-Address: | 10.2.174.165

£ & 10.2.124.165

[=17 LanMark
@ Jrootflorwwarks types/bas_controller.byp
@ Jrookflorworksbypesfechelon.typ
@ Jrootflarwwarkstypes/mbus_integrator. bvp
@ Jrookflorworksbypes/standard. byp
@ frootflorwwarks types/yourcompanydevice development.typ
ﬁ Configuration Property Types
= #} Functional Profile Templates
55 #9FFD3E00O0D00400[S]. UFPT1 1
@ #OFFDSEQO00000400[5], UFPTHY &
=55 #9FFD3E0000000400[5]. UFPTinkerit
@ #IFFDSENN00000400[S]. UFPTMath ._ﬁ* Meva FPM Application...
@ #OFFDSEQ000000400[5], UFPTSwitchEncoder
55 #9FFD3E0000000400[5]. UFPT TempSensar
55 #9FFD3E0000000400[5]. UFPT Thermastat
Metwaork Variable Types

5

[l]

_:fb Import all Declarations

P N

=]

Alternatively, you can click the UFPT and then click the Create FPM icon () at the top of the
LonMark Resource View.

4. The CDT Project dialog opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 69

70

£ CDT Project =0T

CDT Project
Create COT project of selecked type

Project name: | SFFDSEQOOO000400[S]. JFPTHY A Conkroller

Use default location

Project bype: Toolchains:

0 FPM Application - SmartServer 2 VEWORKS 6.2
> FPM Application

(‘?j [Mext = H Finish H Cancel]

Optionally, you can specify the project name and the location where the FPM project is to be
stored on your computer.

a.

The default project name is <company program ID>.UFPT<FPT Name>. You can accept the
default name, which is recommended, or you can enter a different project name. If you enter
a different project name, it should adhere to the following naming convention: <company
program ID>. <project>. This is because your company program ID serves as a namespace
that uniquely identifies your FPM and prevents naming collisions with FPMs from different
FPM vendors.

The default location where FPM projects are stored on your computer is
LonWorks\iLON\Development\eclipse\workspace.fpm. You can accept the default location,
or you can specify a different location. When you create a new FPM project, an FPM project
folder with the specified project name is added to this directory. The FPM project folder
contains the source code (.cpp extension), utilities (utils.cpp extension), and header (.h
extension) files for the FPM application.

If you will be deploying this FPM on a SmartServer 2.0, accept the default Project Type, which is
FPM Application — SmartServer 2. If you will be deploying this FPM on a SmartServer 1.0,
click FPM Application.

Optionally, you can click Next to remove some of the build configurations available for your
FPM, or you can click Finish to create your FPM project. If you click Next, the Select
Configurations window opens.

Creating Freely Programmable Modules

& CDT Project

Select Configurations

Select platforms and configurations you wish to deploy on

Project bype: FPM Application - SmartServer 2
Toolchains: WEWIORKS 6.2
Configurations:

¢ Debug

Use "Advanced settings” button to edit project’s properties.

Additional configurations can be added after praject creation,
IJse "Manage configurations" butkons either on toolbar or on property pages,

$HRelease 4.03 celact 4l
¢ Debug 4,03
FHRelease Deselect all

Advanced settings. ..

© (e

] [Cancel

]

8. Clear the check boxes for any of the configuration you do not plan on deploying. For example, if
you are not deploying the FPM on a SmartServer 1.0, you can clear the Release check box. If you
do not plan on debugging your FPM with WindRiver Workbench, you can clear the Debug 4.03

and Debug check boxes. Click Finish.

9. A new FPM project folder with the name specified in step 5 is added to the C/C++ Projects view,
and the source file view opens to the right of the C/C++ Projects view.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

71

72

& C/C++ - UFPTHVACController.cpp - Eclipse SDK E]El

File Edit Refactor Mavigate Search Project FPM Run Window Help

iIMMTEHE E P E S @ -0 G (™ AR RN R CR R | F@ o+ »
@ cfc++ Projects 52 Mavigator £ 7 = 0| Rkl =8
B =2 SFFD3E0000000400[S]. UFPTHY ACContraller #include "./user/yourcompany/fpm development. h™ ~

using namespace _SFFD3IE0000000400_5 ;
/4 <= section dependent includes
using namespace _0000000000000000_0O_;

using namespace Swartierver::FPM LIE VERSICH:
using namespace _SFFD3E0000000400_5 UFPTHVACController APE;

i
% LonMark Resource View B ¥ &7 B S By ¥ =0 /4 =r section datapoint wvariable declarations. DO NOT REMOVE T
ServertP-address: [10 2 124.62 DECLARE | _0000000000000000 0 ::3NVT tewp £, nviTewp, INPUT DP
= . DECLARE{ _0000000000000000_0O SMWVT_temp £, nviSetPoint, INPUT
= &9 10.2.124.82 DECLARE | _0000000000000000 O SMVT_hwac mode, nviHVACHode, IN

=% LonMark
i @ [rootflonworks ftypes/standard.byp
+ e [rootflonworks types user/echelon/bas_contraller.typ
& @ frootflonworks types/userfechelondc0131, typ
i @ [rootflonwarks ftypesfuser/echelonidc0519. typ
+ e [rootflonworks types user/echelon/echelon.typ
@ @ Jrootflonworks types juserfechelonjisilon typ
e
e

DECLARE(_0000000000000000_0
DECLARE{ _0000000000000000_0O
DECLARE(_SFFD3IEQ000000400 5
DECLARE(_SFFD3E0D000000400_5
DECLARE | _0000000000000000_O
DECLARE | _0000000000000000 0
DECLARE(0000000000000000 O :
<

f:5MVT_switch, nvoldirConditioner
SNVT_switch, nvoFurnace OnOff,
MVTTest, nviManNVe, INPUT _DF)
UCPTHysteresis, nciHysteresis,
SCPTmax3endTime, nciHeartheat,
SCPTmaxRovTime, nociCffline, INP
:3CPTminSendTime, nciThrotcle, I

@ [rootflonwarks typesfuser/echelonimbus_integrator. typ
@ Irootflonworks ftypes/userfechelan/minitbyp

@ Jrootflonworks types fuser/yourcompanyfpm development,typ
+ ﬁ Configuration Property Tvpes

= H} Functional Profile Templates

':? #9FFDIE0N0000400[5]. UFPTHYACController
5 #9FFD3EQON0O000400[S] UFPTMath

(5§ #9FFO3E0000000400[5] LIFPTMathadd

':? #9FFDIE0N0000400[5]. UFPTMathSubtract
Eﬁ #9FFD3E0000000400[S]. UFPTSwitchEncader
#-¥% Network Variable Types

[Z Problems 52

0 errors, 0 warnings, 0 infos

Consale | Propertics % =0

Description

=

CIRCo o

i 0 iritable Smart Insert | 291 1

10. In the Data Point Variable Declarations section, located just below the namespace declaration, you

11.

can observe that DECLARE statements have automatically been added to the source file for each
data point defined in the UFPT. The data points automatically declared includes standard and
user-defined types.

Note: If your UFPT includes any user-defined types, your company’s header files are
automatically added to the C:\LonWorks\iLON\Development\include folder located under the
FPM project’s Include folder, and an #include directive for your company’s header file is
automatically inserted in your source file

If you modify the UPFT used by your FPM, you can update the data point declarations as
described in the next section, Declaring Data Points. Otherwise, you can skip to the Writing an
FPM Application or Writing an FPM Driver section depending on the type of FPM you are
creating.

If you are creating an FPM driver, expand your company’s FPM resource file set, and then
manually import the desired network variable declarations into your FPM driver. You can
manually import all the network variable declarations in a UFPT, or can manually import
individual network variable declarations in a UFPT.

e To manually import all the network variable declarations, see Manually Importing All Data
Point Declarations in the next section.

e To manually import individual network variable declarations, see Manually Importing
Individual Data Point Declarations in the next section.

Updating Data Point Declarations

If you add new network variable and configuration property members to the UFPT used by your FPM
or you modify any of the existing members, you can add the new data points or update the existing

data points in the source file (.cpp extension).

To update the data points declarations in your source file, you need to copy your company’s updated
resource file set to the root/LonWorks /types/User/<Your Company> folder on the SmartServer flash

Creating Freely Programmable Modules

disk. See Chapter 3 for more information on generating an updated resource file set and uploading the

updated resource files to the SmartServer.

After you generate and copy your updated resource files set to the SmartServer, you can manually

import one to all of the data point declarations.

Manually Importing All Data Point Declarations

In the source file (.cpp extension) of your FPM, you can add new data points that has been created in
the UFPT, and you can update all the existing data points that have been modified in the UFPT. To do

this, follow these steps:

1.

In the LonMark Resource View, right-click the UFPT from which the FPM project was created,

and then click Import All Declarations on the shortcut menu. Alternatively, you can click the
UFPT and then click the Import Declare() for All Data Points icon (_:ﬂ;,) at the top of the

LonMark Resource View.

& CIC++ - UFPTHVACController.cpp - Eclipse SDK E@E‘

File Edt Refactor Mavigate Search Project FPM Run Window Help
EIR @S-G B0 i® B G- B T | »
E@ c/c++ Projects 52 Mavigator = & ¥ 7 O 4 ureTHvACController.cop 53 =8
=] b‘: 9FFD3EN000000400[S]. UFPTHYACContraller ~ #include "./user/yourcompany/fpm development.h' ~
g Includes using namespace _SFFDIE0Q0O00000400 5 :
(= Release /! <= section dependent includes
UFPTHYACContraller.h using namespace _0000000000000000 O ;
[UFPTHYACContraller_Ltils, cpp
[UFFTHVACCortroller.cop using namespace SmartServer::FPM LIB VERSION:
-bC SFFD3EN00ONN0400[5]. UFFTMath using namespace SFFD3IED000000400 S UFPTHVACController APF;
= SFFD3EN000000400(S]. UFPTMathSubkract v
nSgagae” "0
Server(IP-tddress: [10.2.124.82 // =» geection datapoint varishle declarations. DO NOT REMOVE THIS ¢
DECLARE(_0000000000000000_0_::3NVT_temp_f£, nviTemp, INPUT_DP |
= & 10.2.124.82 b DECLARE(_0D000000000000000_0_::SNVT_temp_f, nviZetPoint, INPUT_DP |
=7 LonMark. DECLARE(_0000000000000000 0_::SNVT_hvac_mode, nviHVACHMode, INPUT]
@ frootflonworksftypes/standard.typ DECLARE (_0000000000000000_0_: :3MVT_switch, nvobirConditioner OnOf:
@ frootflonworks typesfuserjiechelonibas_controller,typ DECLARE (_0000000000000000_0_: :3MVT_switch, nvoFurnace OnOff, QUTPI
@ rootflonworks/typesfusetjechelonidc0131.typ DECLARE (_9FFD3EO000000400_5_::UCPTHysteresis, nciHysteresis, INPU
@ frootflonworksftypesfuser fechelonfdc0S19.typ DECLARE(_0000000000000000 0_::SCPTwaxSendTime, ncociHeartbeat, INPUY
@ frootflonworksftypesfuser fechelonfechelon.typ DECLARE(_0000000000000000_0_: : SCPTwaxRovTime, ncioffline, INPUT_DI
@ frootflonworks types/user fechelonfisilon. byp DECLARE [0000000000000000 0 ::SCPTminSendTime, nciThrottle, INPUT
@ irootflonworks{types/userfechelonimbus _integrator typ - - ‘v
@ irootflonworks{types/userfechelonfminikt.typ 3 >
= rootflonworks(types/user fyourcampany fFpm development. b
fﬁ énr\Fiqurat’inyl"\ppripertiy'wpes panyifp P H [Z Problems 52 . Console Properties % ¥ =0
= Functional Profi ates (1 errars, 0 warnings, 0 infos
= O0[5].LFF & Descrintian
= noiHeartheat - #0000000000000000 ¥, Connection settings...
s neiHyskeresis - > #9FFD3E0000000400
s neiffline - #00000000000000000] 5 e Fpm Applicatian...
s niThrottle - #0000000000000000[C
= nyiH¥ACMode - > #00000000000000C
= nyiManMys -> #9FFD3E0000000400[
= nyiSetPoint -> #0000000000000000[
= nyiTemp -> #0000000000000000[0] SHYT_temp
i bior A A AOAANAAOAARANC
£ < >
e

Note: Verify that you are currently working in the source file (.cpp extension) before importing
the data point declarations (the tab of the current code view is highlighted blue or white depending
on whether it has focus). If you add the data point declarations to a different file, your FPM will
not function and the file in which the data point declarations were imported may also not function.

declaration section just below the namespace declaration.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

Updated DECLARE statements for each data point defined in the UFPT are added to the data point

73

€ CIC++ - UFPTHVACController.cpp - Eclipse SDK [[Ea[Es)

File Edt Refactor Mavigate Search Project FPM Run Window Help
O-He i€ | §
E@ cfc++ Projects 52
=125 SFFDBE00D0000400{5].UFPTHYACContraller
! Includes
(= Release
[R UFPTHYACContraller.h
[UFPTHYACContraller_Ltils, cpp
[UFPTHYACContraller.cpp
=5 SFFD3ED000000400[5] UFPTMath
15 SFFDIEN00D000400(S] UFFTMathSubtract

Navigator

@S-G B0 A B -

AR R R | B cpc+ |

»

=8

-~

I

// =» section datapoint variabhle declarations.

DO NOT REMOVE THIS ¢
:SMNVT_temp f, nviTewp, INFUT DF)

:SNVT_temp f, nviSetPoint, INFUT DP |
:SNVT_hvac_mode, nviHVACHade, INPUT I
f8MVT_switch, nvolirConditioner Onof:
t8NVT_switch, nvoFurnace_onOff, OUTF!
tUNVTTest, nvillanWVe, INPUT _DP |

DECLARE(_0000000000000000 0O_:
DECLARE(_0000000000000000 0O_:
DECLARE{ _0000000000000000_0_:
DECLARE{ _0000000000000000_0_:
~/|| DECLRRE[_0000000000000000_0_:
DECLARE|| _SFFD3E0000000400_5_:

5 + 3 - =
) LonMark Resource View 23 ALENEEGS S| becrare: TOFFD3E0000000400_5_: : UCPTHysteresis, ncilysteresis, INPU
Server/IP-address: | 10.2.124.82 DECLARE { _0000000000000000_0_: : SCPTwaxSendTime, ncileartheat, INPUY
) DECLARE (_0000000000000000_0_: : SCPTwaxRovTime, nciOffline, INPUT DI
= & 1n.z124.62 2 DECLARE [_0000000000000000 O_: : SCPTwinSendTime, nciThrottle, INPUT
B LonMark - - 1
@ frootflenmorksftypesistandard.typ // <= section datapoint varisble declarations. DO NOT REMOVE THIS ¢
@ frootflonworks typesfuser fechelonibas_contraller.typ m
@ frootflonworks types/userfechelonidc0131.typ
@ froatflonworksjtypes/user fechelonjde0519.typ
@ frootflonworksftypesfuser fechelonfechelon.typ i
@ irootflonwcrksitypesjuserfechelonfisilon.typ /¢ ==» the one =nd only instance
@ irootjlonworksitypesjuserfechelonfmbus_ntegrator byp vy v
@ irootflonworks{types/userfechelonfminikt.typ < >
= rootflonworks(types/user fyourcampany fFpm development. b
fﬁ énr\Fiqurat’inyl"\ppripertiy'wpes panyifp P H [Z/ Problems 52 . Console Properties % ¥ =0
=1 Functional Profile Templates O errors, 0 warnings, 0 infos
=5 #9FFD3E0000000400[5].UFPTHYACController Description
== neiHeartbeat -» #0000000000000000(],5CFTm
= nciHysteresis - #9FFDIE0000000400[S].UCPTH
= nciOffling - #000000D000000000[0].SCPTmasxF
= nciThrottle -3 #0000000000000000{0]. 5CPTmin
= nyviHWACMode - #0000000000000000[0]. 50T,
= nyiManhive - #9FFDIEDO00000400[S].UNYT Tex
= nviSetPaint - #0000000000000000[0]. 51T _te
= nyiTemp -> #0000000000000000[0] YT _temp
o i hio i A #ROMRAARANAANNNC
< < >
e Writable Smart Inserk | 356

Manually Importing Individual Data Point Declarations

In the source file (.cpp extension) of your FPM, you can individually add new data points that has been
created in the UFPT, and you can individually update existing data points that have been modified in
the UFPT. To do this, follow these steps:

1. Inthe LonMark Resource View, expand the UFPT from which the FPM project was created to
show all the mandatory and optional data points defined in the UFPT.

':Qéhv:uﬁ

Server/IP-Address:

=

10.2.124.582

@ Jrootflonworks)typesystandard. byp
@ Irootflonwarks)typesfuserfechelonfbas_contraller.typ
Irootflonwarks)typesfuserfechelonfdc0151 .bvp
Jrootflonworks)typesfuserfechelonfdc0S19.typ
Irootflonwarks)typesfuserfechelonfechelan.typ
Jrootflonworksitypesiuser fechelon/isilon.typ
Jrootilonworks)typesiuserfechelonfmbus_integrator.typ
Irootflonwarks)typesfuserfechelonminikit.bvp
Jrootflonworksitypesiuser frourcompany ffpm development. byp
ﬁ Configuration Property Types
=8} Functional Profile Templates
= P 400[5].UFPT] traller

s neiHeartbeat - #0000000000000000[0].5CPTm
nciHysteresis - = #9FFD3IE0000000400[5]. UCPTH
nciQffline - = #0000000000000000[0].3CPTmaxk
nciThrottle - = #0000000000000000[0], 5P Tmin®
nviHYACMode - = #0000000000000000[0]. ST
nviManiye - = #AFFD3IE0000000400[5]. UMY T Te:
nviSetPoint - #0000000000000000[0].5MYT _te
nviTemp - = #0000000000000000{0].5MYT_temp
nvodirConditioner_OnOFF - > #00000000000000(
nvaFurnace_Ondff -» #0000000000000000[0].:

®
@
@
@
@
@
@

e

PEBReBEE

2. Right-click the data point to be declared in the FPM and then click Import Declaration on the
shortcut menu. Alternatively, you can click the data point and then click the Import Declare() for

Selected Data Point icon (_.1;,) at the top of the LonMark Resource View.

Creating Freely Programmable Modules

& C/C++ - UFPTHVACController.cpp - Eclipse SDK
File Edit Refactor Mavigate Search Project FPM Run Window Help

O-HE & RN ANCRAC RN Sl F RAC NN B N LReRCR B | Frcro+ | ?
F@ c/c++ Projects 52 . Mavigator - &¢ 7 7 O [4 *UFPTHYACController.cpp 52 =0
= 5 SFFDAEN000000400(5] UFFTHYACConkroller ~ ~
E Includes H
(= Release // =» section datapoint varisble declarations. DO NOT REMOVE THIS ¢
UFPTHIACContraller.h DECLARE (_0000000000000000_0_::SNVT temp £, nviTemp, INPUT DP)
€] UFPTHWACController_Ltils.cop DECLARE (_0000000000000000_O_: :SHVT temp £, nviSetPoint, IMPUT DP |
€] UFPTHYACController.cpp DECLARE (_0000000000000000_0_: : SHVT hvac mode, nviHVACHode, INPUT I
B (25 9FFD3EO0D0000400(5].UFPTMath DECLARE (_000000D000000000_0_: : SHVT switeh, nvokirConditioner OnOf:
B (25 SFFDAENO00NA0400[S]. UFPTMathSublract ~||| DECLARE({ _0000000000000000_O_::SNVT_switch, nvoFurnace_OnOff, OUTFI
7 ; . 4 & v =y DECLERE[_SFFD3EQ0DD000400_S_::UCPTHysteresis, ncilysterssis, INFU
2) DECLARE { _0000000000000000_0_: : SCPTwaxSendTime, ncileartheat, INPT
Server/IP-address: | 10.2.124.82 DECLARE { _0000000000000000_0_: : SCPTwaxRovTime, nciOffline, INPUT_DI
DECLARE (_0000000000000000_0_: : SCPTminSendTime, nciThrottle, INPUT
B Jrootflonworksjtypesjusarfechelonfbas_controller typ ~ - - 1
B froutfonwerkstypesiuserfechelan/de 0oL p /} <= section datapoint varisble declarations. DO NOT REMOVE THIS :
3 [rootflonwarks typesfuserfechelonfdc0S19.byp w
B Jrootflonwarksftypesuser fechelonfechelon typ
B Irootflenworksitypesjuserfechelonfisilon.typ
B frootflanworks|typesjuserfechelonfmbus_integrator.typ i
B frootflonvuorkstypesiuser jechelonjminkit typ // ==> the one and only instance
B frootflanworks typesiuserfyourcompany [Fom development typ i
L' configuration Property Types static FPM::TStarter<CUFPTHVACController> STARTER(FPM MODULE NANE ¥
= B} Functional Profie Templates < >
= #9FFDIE0000000400(5).UFPTHVACConkraller = e
= noiHeartbeat -> #0000000000000000[0] SCPTmaxSendTime {2 Protlens 2 " Console Properties - g
= nciHysteresis -> #9FFDIEN00000400[S]. UCP THysteresis 0 errors, 0 warnings, 0 infos
= ncioffling - #0000000000000000[0).5CPTmaxRey Time Description
== neiThroktle -> #0000000000000000[0]. 5CPTminSendTims
= nviHYACMode -> #0000000000000000[0]. SKYT_hvac_mads
- 3 =
= nisetPoint - #0000000000000000[0). SKYT_ten L Connection settings...
= nyiTemp -> #0000000000000000{0] SMYT _temp |
= nvoairConditioner_OnOFF -3 #0000000000000001
= nvoFurnace_ONOFF -3 #0000000000000000[0.5
L5 #9FFDIE0000000400[S).UFFTMath
BB wnEEnAEARAARARARATEY | iERT <k A
B Import Declaratio Y

P,

3. An updated DECLARE statement for the selected data point is added to the data point declaration
section just below the namespace declaration.

4. Repeat steps 2—-3 to add or update additional data points in the UFPT.

Using UFPT Local Variables

Creating an FPM application or driver with the New FPM Project wizard in the i.LON SmartServer 2.0
Programming Tool generates a class that inherits from CFPM_App. This class provides the
implementation for an FPM functional block. At runtime, only one instance of this class will be
created for each unique FPM. When you add multiple FPM devices on the SmartServer that use that
same unique FPM, multiple functional block instances of the FPM are created. When a Work()
routine in the FPM is called, the FPM framework provides data point values that are applicable to their
respective functional block instances.

If you want to use additional data point variables that also apply to specific functional block instances,
you can use the DECLARE_FB_ INSTANCE_LOCAL () macro. For example, you can declare a UFPT
local variable that stores how often the Work () routine has been called by specific functional block
instance or you can declare a UFPT local variable that stores the file name of a functional block
Instance.

Consider a scenario in which there is one internal FPM Math device that has two functional block
instances of the Math UFPT (Addl and Add2). The Math FPM application contains three data points
(inl, in2, and outl), and it has one local variable (cal ICount) that is incremented when the
Work() routine is called.

e On the Net/LON/MathFPM/Add1 functional block, inl is set to 20, and then in2 is set to 5.
This results in the Add1 functional block calling the Work () routine twice. The outl data point
is updated to 20 and then to 25, and the cal ICount local variable is updated to 2.

e On the Net/LON/MathFPM/Add?2 functional block, inl is set to 10 (the N2 data point is not
updated). This results in the Add2 functional block calling the Work () routine once. The outl
data point is updated to 10 and the cal ICount local variable is updated to 1.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 75

SYNTAX

DECLARE_FB_INSTANCE_LOCAL(dataType, variableName)
EXAMPLE

// <= section datapoint variable declarations
DECLARE_FB_INSTANCE_LOCAL(int, callCount);

Writing an FPM Application

76

You can write an FPM application using the i. LON SmartServer 2.0 Programming Tool. An FPM
application reads and writes to the data points declared in it, reads data point properties, executes code
upon data point updates, and controls timers and executes code upon their expiration. To create an
FPM application, you specify the logic to be executed on the data points in the following four routines:
Initialize(), Work(), OnTimer(), and Shutdown():

e The Initialize() routine is executed when the FPM application is started or enabled. In the
Initialize() routine, you can set the initial values for data points, and you can start timers
using the Start() method of the CFPM_Timer class or the START_TIMER() macro.

o The Work() routine is executed when one or more data points declared in the FPM application
are updated. In the Work() routine, you write an algorithm that is executed when a specified
data point is updated. In the algorithm, you can read data point properties and write values to the
data points. In addition, you can start and stop timers.

e The OnTimer () routine handles timer expiration events. You can use this routine in conjunction
with the Start() methods or the START_TIMER() macros called in the Initialize()
routine. You can create an algorithm in this routine that read data point properties and writes
values to the data points upon the expiration of a timer. In addition, you can start and stop timers.

e The Shutdown() routine is executed when the FPM application is stopped or disabled as a
result of a reboot. In the Shutdown () routine, you stop timers and perform any required
cleanup.

The i.LON SmartServer 2.0 Programming Tool works with raw data point values. You must
remember to use the appropriate scale factors to convert raw data point values to scaled values. You
can go to types.lonmark.org/index.html to check the scale factors uses for the SCPTs and UCPTs in the
current LONMARK standard resource file.

The Writing the FPM Application Initialize() Routine

The Initialize() routine is executed when the FPM application is started or enabled. You can
use this routine to write initial values to the data points declared in your FPM application. In addition,
you can use this routine to start timers, which you can use in an FPM application to implement tasks
that need to be performed regularly such as checking the status of data points. For more information
on writing values to data points, see the next section, Writing the FPM Application Work() Routine.

The following code demonstrates how to set initial data point values and start timers in the
Initialize() routine:

DECLARE(_0000000000000000_0_: :SNVT_temp_T, nviSetPoint,
INPUT_DP)

CFPM_Timer m_oTimerl; //declared in header file
CFPM_Timer m_oTimer2; //declared in header file
CFPM_Timer m _oTimer3; //declared in header file

void CUFPTHVACController::Initialize()
{

Creating Freely Programmable Modules

http://types.lonmark.org/index.html

//set initial data point values
nviSetPoint = 0;

nviTemp = 0;

nciHystereis = -17.77778;

//start timers

m _oTimerl.Start(FPM_TF_REPEAT, 2000);
m_oTimer2.Start(FPM_TF_ONETIME, 3000);
START_TIMER(m_oTimer3, FPM_TF_REPEAT, 2000, OnMyTimer3);

// to do: create OnMyTimer3()routine to handle m_oTimer3

}

Note: Initialized input data point values are not propagated to output data points when the
Initialize() routine executes. Input data point values are only propagated to output data points
when the Work () routine executes as a result of an input data point value changing.

Declaring and Initializing Timers

To use a timer in your FPM application, you must first declare it as a member of the CFPM_Timer
application class in the header file (.h extension) of your FPM application and then initialize it in the
source file (.cpp extension). To declare and initialize a timer, follow these steps:

1. Open the header file. To do this, either double-click the header file (.h extension) in the C/C++
Projects view or right-click it and then click Open on the shortcut menu. The header file view
opens to the right of the source file view.

2. Scroll to the “Mandatory Application Members” section in the header file, and then declare the
timer using the following syntax:

CFPM_Timer m_oTimerl; //declare a timer
CFPM_Timer m _oTimer2; //declare a timer
CFPM_Timer m_oTimer3; //declare a timer

3. Click the tab for your source file (.cpp extension), scroll to the “Constructor/Deconstructor”
section, and then initialize the timer using the following syntax:

, m_oTimerl(this) //initialize timer
, m_oTimer2(this) //initialize timer
, m_oTimer3(this) //initialize timer

Starting Timers

You can start timers using the standard Start() method of the CFPM_T imer class or the user-
defined START_TIMER() macro. Note that when you start timers, you should set the timer interval
to a minimum of 100ms.

Using the Start() Method

The Start() method of the CFPM_Timer class is the standard approach for starting timers. It
causes the FPM application to call the OnT imer (Qroutine, which handles the timer expiration event.
The Start() method has the following syntax:

void Start(FPM_TimerFlags t eMode, uint_t nTimeoutMillis);

The eMode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi I 1is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 77

78

The following code demonstrates how to create repeating and one-time timers using the Start()
method:

CFPM_Timer m_oTimerl; // declared in header file
CFPM_Timer m_oTimer2; // declared in header file
, m_oTimerl(this) // initialized in source file
, m_oTimer2(this) // initialized in source file

m_oTimerl.Start(FPM_TF_REPEAT, 2000);
m_oTimer2.Start(FPM_TF_ONETIME, 3000);

Using the START_TIMER() Macro

The START_TIMER() macro is an alternative approach to creating and starting timers. It causes the
FPM application to call a user-defined timer handler method, which must be declared in the header file
(.h extension) of your FPM application. Note that you can declare and initialize an unlimited number
of timers and create an unlimited number user-defined timer handler methods for them. The
START_TIMER() method has the following syntax:

START_TIMER(timeVar, mode, timeoutMillis, funcName)
The timeVar parameter specifies the name of the timer to be started.

The mode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi I 1is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

The funcName parameter specifies the name of the user-defined timer handler method hat is
called when this expires.

Timers started with the START_TIMER() macro must be handled in your source file (.cpp extension)
with a user-defined timer handler method that has the following signature:

void <funcName>()

You must declare your user-defined timer handler method in the “Implements the User Functionality”
section of the header file (.h extension) of your FPM application.

The following example demonstrates a START _TIMER () macro that starts a timer that repeats every 3
seconds and is handled by the OnMy T imer3 (Quser-defined timer handler method.

CFPM_Timer m_oTimer3; // declared in header file
, m_oTimer3(this) // initialized in source file

START_TIMER(m_oTimer3, FPM_TF_REPEAT, 3000, OnMyTimer3);

void OnMyTimer3(Q); // declared in header file

See the Programmer’s Reference in Appendix A for more information on starting timers in the
Initialize() routine and using timer handler methods.

Writing the FPM Application Work() Routine

The Work () routine is executed when one or more data points declared in the FPM application are
updated. In the Work() routine, you write one or more IF-THEN(-ELSE) statements that use the
Changed() method to evaluate whether the data points in the FPM application have been updated
and execute an algorithm if they have been updated.

Creating Freely Programmable Modules

In the algorithm, you can directly read and write values to the data points declared in your FPM
application without using any additional methods. In addition, you can read the statuses, names, and
times of last update of the data points using a collection of data point property methods, and you can
start and stop timers. For more information on starting timers, see the previous section, Writing the
FPM Application Initialize() Routine.

The following code demonstrates how you can create a Work((Qroutine in your FPM application. In
this example, the Work (Qroutine first checks whether the data points declared in the FPM application
have been updated. If one of the data points has been updated, the Work (Qroutine gets the statuses
the data points, checks whether the data points are in normal condition, and then reads and writes
values to them if they are in normal condition.

void CUFPTHVACController::Work()
SNVT_switch tempAirConditioner;

if ((Changed(nviSetPoint) || Changed(nviTemp)) &&
(nviHVACMode == hvac_t::HVAC_COOL))
{
nviSetPoint_status =
nviSetPoint.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);
printf ('nviSetPoint_status = %d", nviSetPoint_status);

nviTemp_status =
nviTemp.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);
printf ('nviTemp_status = %d", nviTemp_status);

if (nviSetPoint_status == FPM::Dp::AL_NO _CONDITION) &&
(nviTemp_status == FPM::Dp::AL_NO_CONDITION)
{

it (nviTemp > (nviSetPoint + nciHysteresis))

nvoAirConditioner_OnOff->value 200;
nvoAirConditioner_OnOff->state 1;
PROPAGATE (nvoAirConditioner_OnOff);
printf ("Temp = %f, SetPoint=%f, AC is

ON \n", *nviTemp, *nviSetPoint);

}
}
}
}

Checking for Data Point Value Updates

You can use the Changed () method in the Work () routine to determine whether the value of a data
point has changed. This method takes a data point declared in the FPM application. If the value of the
data point has changed, it returns TRUE; otherwise, it returns FALSE. The following example
demonstrates how you can use the Changed (Qmethod to check whether the values of the data points
in your FPM application have changed.

if (Changed(x) || Changed(y))
{

//execute some algorithm if the values of x or y have changed

}

i.LON SmartServer 2.0 Programming Tools User’'s Guide 79

80

Note: You can modify the behavior of the Changed () method so that it can determine whether any
data point property has changed, including value, status, time of last update, and priority. See the next
section, Checking for Data Point Property Updates, for how to do this.

Checking for Data Point Property Updates

You can call the NotiFfyOnAl lUpdates () method in the constructor of your FPM application so
that the Changed () method checks whether any data point property has been updated, including
value, status, time of last update, and priority (by default, the Changed () method only checks
whether the data point value has changed).

This is ideal if you are using FPMs with external devices that require the same value to be written to a
data point to execute some specific device behavior. In this case, when the same value is written to the
data point (via polling or the same value being explicitly written to the data point), the Changed ()
method returns TRUE because the time of last update property has been updated. Another common
use-case is the checking of devices for alarm conditions.

In the NotifyOnAl lUpdates () method, you pass in a string vector containing the names of the
data points for which the Changed () method is to check for updates to any of their properties. The
following example demonstrates how to use the Noti FyOnAl lUpdates() and the Changed()
methods to check whether the properties of specific data points in your FPM application have changed.

Note: If you do not call the Noti fyOnAl lUpdates () method within the FPM constructor, the
Changed () method only checks whether the data point value has changed.

// FPM constructor
CUFPTHVACController: :CUFPTHVACController()
: CFPM_App(FPM_MODULE_NAME, CFPM_App::eApplication)

vector<string> oDpVarNames;
oDpVarNames.push_back("'nviTemp'™);
oDpVarNames.push_back(*'nvoAC_OnOff'");
NotifyOnAl lUpdates(oDpVarNames) ;

// section datapoint variable declarations
DECLARE(_0000000000000000_0_::SNVT_temp_¥, nviTemp, INPUT_DP)
DECLARE(_0000000000000000 0 ::SNVT_switch, nvoAC_OnOff, INPUT_DP)

// Work() routine
void CUFPTHVACController::Work()

{

FPM: :Dp: :PointStatus nviTemp_status;
nviTemp_status =
nviTemp.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);

// check whether nviTemp status has changed
it (Changed(nviTemp))

if (nviTemp_status == FPM::Dp::AL_HIGH_LMT_ALM_1)
nvoAC_OnOff->value = 200;

NnvoAC_OnOff _OnOff->state = 1;
PROPAGATE(nvoAC_OnOff);

}

Creating Freely Programmable Modules

Reading Data Point Properties

You can read the name, alias name, time of last update, and status of each data point declared in the
FPM application in the Initialize(), Work(), and OnTimer (Qroutines. To read these data
point properties, you use a collection of get property methods belonging to each data point. The
methods that you can call to read the data point properties are as follows:

Data Point
Property Get Property Method
Name const char* GetDpPropertyAsString(FPM: :Dp: :cfgUCPThame)

const char*

Alias name | o popropertyAsString(FPM: :Dp: : cFgUCPTAl iasName)

Time of timespec
Last Update | GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPT lastUpdate)

Status

FPM: :Dp: :PointStatus
GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus)

The following code demonstrates how to read data point properties using these methods:

void CUFPTHVACController::Work(Q)

{

}

const char* nviSetPoint _name;

const char* nviSetPoint_AliasName;
timespec nviSetPoint_ lastUpdateTime;
FPM: :Dp::PointStatus nviTemp_status;

nviSetPoint_name =
nviSetPoint.GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname) ;

nviSetPoint_AliasName =
nviSetPoint.GetDpPropertyAsString(FPM: :Dp: :cfgUCPTAliasName);

nviSetPoint_lastUpdateTime =

nviSetPoint.GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPTlastUpdate);

nviTemp_status =
nviTemp.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);

if (nviTemp_status == FPM::Dp::AL_ALM_CONDITION)

nvoHVACMode = hvac_t::HVAC COOL;
}

Reading Data Point Values

You can directly read the values of the scalar, structured, and enumerated data points declared in your
FPM application in the Work () routine. Upon reading the data points, you can execute code based on
the current values stored in them.

Reading Scalar Data Points

You can directly read the value of a scalar data point declared in your FPM by simply referencing its

name.

void CUFPTHVACController::Work()

if (nviTemp > nviSetPoint + (nciHysteresis*1.8+32))
//execute some code

i.LON SmartServer 2.0 Programming Tools User’'s Guide

81

}
}

Reading Structured Data Points

To read the value of a structured data point, you first need to store the data point field in a temporary
data point variable. Note that you use the —> operator (element selection through pointer) to reference
the fields of a structured data point. The following code demonstrates how to read the fields of a
structured data point:

void CUFPTHVACController: :Work()

{
SNVT_switch tmpSwitch;
tmpSwitch.state = nvoAirConditioner_OnOff->state;
tmpSwitch.value = nvoAirConditioner_OnOff->value;
ifT (tmpSwitch.state == 0)
{
//insert code here
}
it (tmpSwitch.value >= 145)
//insert code here
}
}

Reading Enumerated Data Points

To read the value of an enumerated data point, you need to use the values of the corresponding
enumeration type. The following code demonstrates how to read the following enumeration types:

e An hvac_t enumeration in the standard.h file in the
LonWorks\iLON\Development\include folder

e A pointStatus enumeration in the FPM_variable.h file in the
LonWorks\iLON\Development\eclipse\plugins\com.echelon.eclipse.ilon100.fpm_0.9.0\
compiler\echelon\fpm\include folder.

DECLARE(_0000000000000000_0_::SNVT_temp_¥, nviSetPoint, INPUT_DP)
DECLARE(_0000000000000000_0_: :SNVT_hvac_mode, nviHVACMode, INPUT_DP)

void CUFPTHVACController: :Work()

{
FPM: :Dp::PointStatus nviSetPoint_status = FPM::Dp::AL_NUL;
if (nviHVACmode == hvac_t::HVAC_HEAT) //HVAC_HEAT
t _ _
nviSetPoint_status = (FPM::Dp::PointStatus)
nviSetPoint.GetDpPropertyAsPointStatus
(FPM: :Dp: :dataUCPTstatus);
}
if (nviSetPoint_status == FPM::Dp::AL_NO_CONDITION)
{
//insert code here
}
}

Creating Freely Programmable Modules

Writing Data Point Values

You can write updated values to the scalar and structured data points declared in your FPM application
in the Work () routine. The updated values are then written back to the data points when the FPM
application exits the Work () routine. You can directly write an updated value to a scalar data point
by simply assigning it a value.

nviTemp = 25.28;
nviSetPoint = 22.22;

Writing an updated value to a structured data point requires a few additional steps. You can directly
write values to the fields of a structured data point and then mark the data point as modified, or you
can create temporary data point variables and use them to write values to the fields of your structured
data points. The following sections describe how to write values to a structured data point using each
of these methods.

Directly Writing to a Structured Data Point

To directly write a value to a structured data point, you use the —> operator (element selection through
pointer), and you then mark the data point as modified using the PROPAGATE () macro. The
following code demonstrates how to write to a structured data point using this method:

DECLARE(_0000000000000000_0_::SNVT_switch,
nvoAirConditioner_OnOff, OUTPUT_DP);

void CUFPTHVACController: :Work()

{
// use variable directly and tell the system that this value /

should be written back to the data point

nvoAirConditioner_OnOff->value = 200;
nvoAirConditioner_OnOff->state = 1;
PROPAGATE(nvoAirConditioner_OnOff);

}
Using Temporary Data Point Variables to Write to a Structured Data Point

To use a temporary data point variable to write to a structured data point, you declare a temporary data
point in the Work () routine, store the desired values in the various fields of the temporary data point,
and then assign the declared data point a reference to the temporary data point variable. The following
code demonstrates how to write to a structured data point using this method.

DECLARE(_0000000000000000_0_: :SNVT_switch,
nvoAirConditioner_OnOff, OUTPUT_DP)

void CUFPTHVACController: :Work()

{
SNVT_switch tmp;

tmp.value = 200;
tmp.state = 1;
nvoAirConditioner_OnOff = tmp;

// change detected and written to data point automatically

}

See the Programmer’s Reference in Appendix A for more information on writing values to structured
data points.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 83

Writing to Enumerated Data Points

To write to an enumerated data point, you need to use the values of the corresponding enumeration
type. The following code demonstrates how to write to an hvac_t enumeration in the standard.h
file in the LonWorks\iLON\Development\include folder:

DECLARE(_0000000000000000_0_::SNVT_hvac_mode, nvoHVACMode, OUTPUT_DP)

void CUFPTHVACController::Work()

{
SNVT_switch ACSwitch;

SNVT_switch FurnaceSwitch;
ACSwitch.state = nviACSwitch->state;
FurnaceSwitch.state = nviFurnaceSwitch->state;

if ((tmpACSwitch.state == 1) &&
(tmpFurnaceSwitch.state == 0))
{

nvoHVACMode = hvac_t::HVAC COOL;
printf ('HVAC MODE = %i \n', *nvoHVACMode);

}
Writing the FPM Application OnTimer() Routine

The OnTimer () routine is executed when a timer started with the Start() method in the
Initialize() routine expires. You can use this routine to read the properties of the data points
declared in the FPM application. This is useful for implementing tasks that need to be performed
regularly such as checking data point status and sending data point updates (heartbeats). For more
information on reading data point properties in an FPM application, see the previous section, Writing
the FPM Application Work() Routine.

Note that if you started more than one timer using the Start() method of the CFPM_Timer class,
you must first identify the timer that expired using the m_oTimer .Expired() method.

The following code demonstrates how to create an OnT imer () routine that handles the expiration of
a single timer started with the Start() method of the CFPM_Timer class.

void CUFPTHVACController::Initialize()
{

}
void CUFPTHVACController::OnTimer()

m_oTimerl.Start(FPM_TF_REPEAT, 2000);

//check for data point alarm conditions
if (nviSetPoint_status == FPM::Dp::AL_ALM_CONDITION)

{
printf ('SetPoint status = %d', nviSetPoint_status);
nviSetPoint = 20.28;

}

if (nviTemp_status == FPM::Dp::AL_ALM _CONDITION)

{
printf ("Temp status = %d", nviTemp_status);
nvoHVACMode = hvac_t::HVAC_COOL;

}

}

Creating Freely Programmable Modules

The following code demonstrates how to create an OnT imer (Qroutine that handles the expiration of
multiple timers started with the Start() method of the CFPM_Timer class. Observe that the
m_oTimer.Expired(Qmethod is called first to determine which of the two timers started in the
Initialize() routine expired.

void CUFPTHVACController::Initialize()

{
m_oTimerl.Start(FPM_TF_REPEAT, 2000);
m_oTimer2.Start(FPM_TF_ONETIME, 3000);
}
void CUFPTHVACController::OnTimer()
{
if (m oTimerl.Expired())
// do some task
}
if (m_oTimer2.Expired())
// do some task
}
}

You must create custom OnMyT imer () routines for each user-defined timer you started with the
START_TIMER()macro inthe Initialize() routine. The following code demonstrates how to
create OnMyT imer (Qroutines that handle the expiration of their respective timers started with the
START_TIMER() macro.

void CUFPTHVACController::Initialize()

{
START_TIMER(m_oTimer3, FPM_TF _REPEAT, 2000, OnMyTimer3);

START_TIMER(m_oTimer4, FPM_TF_REPEAT, 2000, MyTimerHandler4);

}
void CUFPTHVACController::OnMyTimer3()

//do some task to handle expiration of the m oTimer3 timer

}
void CUFPTHVACController::MyTimerHandler4()

//do some task to handle expiration of the m oTimer4 timer

}

See the Programmer’s Reference in Appendix A for more information on starting timers and using
timer handler methods.

Writing the FPM Application Shutdown() Routine

The Shutdown () routine is executed when the FPM application is stopped or disabled. In the
Shutdown () routine, you stop timers and perform any required cleanup. You can stop a timer using
use the Stop()and StopAlITimers(Qmethods of the CFPM_Timer class.

e The StopTimer () method causes the system to stop the referenced timer.
e The StopAlITimers()method causes the system to stop all timers.

The following code demonstrates how you can stop timers in the Shutdown () routine:

i.LON SmartServer 2.0 Programming Tools User’'s Guide 85

void CUFPTHVACController: :Shutdown()

{
m_oTimerl.Stop();

StopAllTimers();
}

See the Programmer’s Reference in Appendix A for more information on stopping timers.

Writing an FPM Driver

86

You can write an FPM driver using the i. LON SmartServer 2.0 Programming Tool. An FPM driver
creates data points on the SmartServer and provides values for them by reading and writing to the RS-
232 and RS-485 ports on the SmartServer. To create an FPM driver, you specify the logic to be
executed on the data points in the following four routines: Initialize(),Work(), Shutdown(),
onTimer():

e The Initialize() routine is executed when the FPM driver is started or enabled. In the
Initialize() routine, you start timers using the Start() method of the CFPM_Timer class
or the START_TIMER() macro, open the RS-232 and RS-485 ports on the SmartServer, and
write to the properties of the data points declared in the FPM driver.

e The Work() routine is executed when one or more data points declared in the FPM driver are
updated. In the Work() routine, you write one or more IF-THEN(-ELSE) statements that
evaluate whether the values of the data points in the FPM have been updated. If the data points
have been updated, you initialize communication between your FPM and the RS-232 or RS-485
serial interface and then write to the interface. You can also read the properties of the data points
declared in the FPM driver in this routine.

e The OnTimer () routine handles timer expiration events. In the OnTimer () routine, you
initialize communication between your FPM and the RS-232 or RS-485 serial interface when a
timer started in the Initial 1ze () routine expires. You can then read and write to the RS-232
or RS-485 interface, write updated values to the data point declared in the FPM driver, and read
the properties of the data points.

e The Shutdown() routine is executed when the FPM driver is stopped or disabled as a result of a
reboot. In the Shutdown() routine, you stop timers, close the RS-232 and RS-485 ports on the
SmartServer, and perform any required cleanup.

Note: The LonWorks\iLON\Development\eclipse\workspace.fpm directory on your computer
includes a sample RS-232 driver that you can view, edit, compile, and deploy on your SmartServer.

Writing the FPM Diriver Initialize() Routine

The Initialize() routine is executed when the FPM driver is started or enabled. You can use this
routine to start timers; open the RS-232 or RS-485 serial interface on the SmartServer; and write to the
properties of the data points declared in the FPM driver.

e You can start timers using the Start(Qmethod of the CFPM_Timer class and the
START_TIMER(Q) macro as described in Writing the FPM Application Initialize() Routine.

® You can open the RS-232 serial interface using the rs232_open() method. You can open the
RS-485 serial interface using the rs485_open() method.

e You can set the default values, persistent flags, poll rates, and unit strings of the data points
declared in the FPM driver using the following collection of data point properties.

//write datapointdefaultvalue in raw hex
Linel.SetDpProperty(FPM: :Dp: :cfgUCPTdefOutput, nvalue);

//setwhether data point is persistent

Creating Freely Programmable Modules

Linel.SetDpProperty(FPM: :Dp: :cfgUCPTpersist, bValue);

//write datapointpoll rate inmilliseconds
Linel_SetDpProperty(FPM: :Dp: :cfgUCPTpol IRate, nValue);

// writedatapointunitstring
Linel. SetDpProperty(FPM: :Dp: :cfgUCPTunit, pszValue);

The following code demonstrates the methods you can create in the Initial ize() routine in an
FPM driver for the RS-232 interface:

CFPM_Timer m_oDisplay InputTimer; //declare timer in header file

DECLARE(_0000000000000000_0_: :SNVT_str_asc, Linel, INPUT_DP)
DECLARE(_0000000000000000_0_: :SNVT_switch, F1_Pressed, OUTPUT_DP)
int RS232_fd = -1;

void CUFPT_Display::Initialize()

{

// start timer

m_oDisplay_InputTimer.Start(FPM_TF_REPEAT, 10000);

// open the RS232 interface

RS232_fd = rs232_open(RS232_DEFAULT_BAUDRATE);

//set Linel DP poll rate

F1 Pressed.SetDpProperty(FPM: :Dp: :cfgUCPTpol IRate, 800);
}

See the Programmer’s Reference in Appendix A for more information on writing the RS-232 and RS-
485 interface methods and writing timer methods.

Writing the FPM Driver Work() Routine

The Work () routine is executed when one or more data points declared in the FPM driver are
updated. In the Work() routine, you write one or more IF-THEN(-ELSE) statements that use the
Changed() method to evaluate whether the data points in the FPM driver have been updated.

If a data point has been updated, you initialize communication between your FPM and the devices
connected to the RS-232 and RS-485 serial interfaces. You can initialize communication with the RS-
232 serial interface using the rs232_ioctl (Qmethod. You can initialize communication with the
RS-485 serial port using the rs485_setparams()and rs485_ioctl (Qmethods.

Once you initialize communication, you can directly write to the RS-232 and RS-485 serial interfaces
without using any additional methods. You can also read data point properties using the methods
described in Writing the FPM Application Work() Routine.

void CUFPT Display::Work(Q)

{
if (Changed (Linel))
{
printf("'update for Linel (%s)\n", Linel->ascii);
//write Line 1 text to RS-232 interface
rs232_write(RS232_fd, (Byte *)Linel->ascii,
strlen((char*)Linel->ascii));
}
}

Writing the FPM Driver OnTimer() Routine

The OnT imer (Qroutine is executed when a timer started with the Start(Q)method in the
Initialize() routine expires. You can use this routine to initialize communication between your

i.LON SmartServer 2.0 Programming Tools User’'s Guide 87

88

FPM and the devices connected to the RS-232 and RS-485 serial interfaces, read data from the RS-
232 or RS-485 interface, write updated values to data points, and read data point properties.

If you started more than one timer using the Start()method of the CFPM_Timer class, you must
first identify the timer that expired using the m_oTimer .Expired() method. In addition, you
must create custom ONMy Timer () routines for each user-defined timers you started with the
START_TIMERQmacro in the Initialize() routine.

You can initialize communication with the RS-232 and RS-485 serial interfaces using the methods
described in the previous section, Writing the FPM Driver Work() Routine. You can write data point
values and read data point properties using the methods described in Writing the FPM Application
Work() Routine. See rs232_read() in Appendix A for more information on using the ReadBytes()
function to read data from the RS-232 interface.

The following code demonstrates how to create an OnT imer (Qroutine for an FPM driver.

//define buffer size in header file
#define MAX_RXBUFLEN 512
Byte rxBuf [MAX_RXBUFLEN];

Goid CRs232Driver::OnTimer()
{
it (n_oDisplay_ InputTimer.Expired())
{
memset(rxBuf, 0, MAX_RXBUFLEN);
int nBytesRead = ReadBytes(RS232_fd, rxBuf, MAX_RX BYTE_SIZE);

//check whether something has been read
if (nBytesRead >= 1)
{
printf (""Read %c from RS232\n'", Linel);

//if something has been read, write it to display device
rs232_write(RS232_fd, (Byte *)rxBuf, nBytesRead);
}
}
}

Writing the FPM Driver Shutdown() Routine

The Shutdown () routine is executed when the FPM driver is stopped or disabled. In the
Shutdown () routine, you close the RS-232 or RS-485 interface, stop timers, and perform any
required cleanup.

To delete a timer, you can use the StopTimer () or StopAlITimers() methods. To close the
RS-232 interface, you use the rs232_close() method. To close the RS-485 interface, you use the
rs485_ close(Q)method.

The following code demonstrates how you can close an RS-232 interface and stop timers in the
Shutdown() routine:

void CUFPT_Display: :Shutdown()

{
m_oDisplay_InputTimer.Stop();

rs232_close(RS232_fd);
}

See the Programmer’s Reference in Appendix A for more information on stopping timers and closing
the RS-232 and RS-485 interfaces.

Creating Freely Programmable Modules

Compiling an FPM

Once you finish writing an FPM, you can compile it with the i. LON SmartServer 2.0 Programming
Tool. If your code has any errors, they will be listed with any warnings in the Problems view at the
bottom of the document window. You can click on the errors and warnings listed in this view to debug
your FPM. Following the coding guidelines described in this section will help you debug your code.

To compile your FPM, click File and then click Save. You will upload this file to the SmartServer as
described in the next chapter, Deploying FPMs on a SmartServer. If the build is not performed, click
Project and then click Build Project. You can then click Project and select Build Automatically so
that your FPM applications are built automatically when you save them.

Note: If a dialog appears prompting you to enter a license, you need to install the full version of the
i.LON SmartServer 2.0 Programming Tools on your computer in order to build your FPM application.
To order the full version of the i.LON SmartServer 2.0 Programming Tools, contact your Echelon sales
representative.

Checking Compile and Warning Errors

If your code has any compile errors or warnings, they will be listed in the Problems view at the bottom
of the document window. You must resolve the errors and re-compile your FPM to create a successful
build and upload it to the SmartServer. You do not need to address the warnings in order to create a
successful build, but you should fix them because they typically indicate future bugs.

=+, - =
3 =

ﬂF‘rn:uhlern-_: » Console | Properties

1 error, 1 warning, 0 infos
Descripkion Resource
= B Errors {1 item)
error: " AL_MO_CONDITION' undeclared (first use this Function) UFPTHYACCal
= f: Warnings (1 item)
£ warning: unused variable ©_0000000000000000_0_; : SMYT_switch tempFurnace’ UFPTHYAZ o
< >

To resolve an error or warning, click the error or warning in the Problems view. The focus should
switch to the line of code generating the error or warning, which is marked with an error or warning
symbol.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 89

ontroller cpp X

if (wiTemp > nwiSetPoint + (heiHysteresis+®1.5+32))

nviTemp status = nvidetPoint.GethpPropertyisPointicatus (FPM: :Dp: idata
printf ("nviTemp status = 3d", nviTemp status):

if (nviTewp status L O CONDITION) //AL NO

printf ("IS TEMP > SETPPOINT + HYST ‘\n\n"):
tcewplirConditioner.value = 200;

tewplirConditioner.state = 1;

wvokirConditioner On0Off = templirConditioner;

PROPAGATE (nwolirConditioner OnOff):

printf ("Temp = %f, SetPoint=%f, Hysteresis = %f, AirConditioner

else if [(nwiTewmp < nwiSetPoint - [(neiHysteresis®1l.8432)
{
printf ("IS TEMP < SETPPOINT - HYST ‘n\n"):

templirConditioner.valus = 0O:
< | >

Once you correct all the compile errors and the warnings, click File and then Save to re-compile your
code.

Tip: You can also check the Console view (located to the right of the Problems view) to see if there is
more detailed information available for a given compiler error.

Using Non-Latin Characters

90

The Eclipse environment uses Cp1252 text encoding by default. If you insert non-Latin characters in
your code, you need to implement additional steps to save your FPM project and to display the
characters.

If you want to save an FPM project that has non-Latin characters, but do not need to view the
characters in the code, you can change the default text encoding for your FPM project to UTF-8. To
do this, follow these steps:

1. Click Window and then click Preferences. The Preferences dialog opens.

Creating Freely Programmable Modules

& Preferences

Workspace

&- Gsneral See 'Startup and Shutdown’ For workspace startup and shutdown preferences.
Appearance
Capahilities
Compare/Patch [Build automatically
Content Types []refresh automatically
Editors Save automatically before buid
Kevs
Perspectives
Search WWorkspace save interval {in minukes): |5

Skartup and Shukdow,
wWeb Browser
Welcome

Workspace

Ak

CiC++ Texk file encoding Mew bext File line delimiter

Help (%) Default {Cp1252) () Default
EZit:"'llUpdatE (rother:) ather:
Plug-in Developrment
ResourceBundle Editar
RunfDebug

Tearm

Open referenced projects when a project is opened
O ahways (O'Mever (3 Prompt

[R = R R e)

[Resture Defaults l [apply]

@ I Ok l [Cancel]

2. Inthe Text File Encoding box, click Other and then select UTF-8 from the bottom of the list.

Tezxk file encoding
() Default (Cp1252)

() Other: W

3. Click OK. You can now save your FPM project.

If you want to save an FPM project that has non-Latin characters and display the characters in your
code, you can change your Windows Regional Settings to the native language of the characters. To do
this, close the i.LON SmartServer 2.0 Programming Tool, open the Control Panel, click Regional and
Language Options, select the desired language in the Standards and Formats box, and then click
OK. When you re-open the i.LON SmartServer 2.0 Programming Tool, you will observe that the
change has been implemented.

Debugging FPMs

The SmartServer uses a VxWorks® real-time operating system to run its embedded applications. If
you need a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4) or access to VxWorks
system calls not encapsulated in the Echelon FPM API, contact Wind River” sales at
www.windriver.com/company/contact/index.html for more information on ordering “WindRiver
Platform for Industrial Services V3.2 for MIPS32 Processors”.

If you plan on debugging your FPMs with Wind River Workbench, you need to backup and then delete
the current iLonSystem image on your SmartServer flash disk, copy the iLonSystemWdb or
iLonSystemWhbdEnd image in the LonWorks/iLON/Development/Debug/ES Debug.<software
version> folder on your computer to your SmartServer flash disk, re-name the iLonSystemWdb or
iLonSystemWbdEnd image on your SmartServer to iLonSystem, reboot the SmartServer, create a

i.LON SmartServer 2.0 Programming Tools User’'s Guide 91

http://www.windriver.com/company/contact/index.html

92

debug configuration of your FPM in the i.LON SmartServer 2.0 Programming Tool and upload it to
your SmartServer, and then connect the Workbench debugger to the iLonSystemWhd or
iLonSystemWbdEnd image on your computer via the target server.

If you are not using Wind River Workbench to debug your FPMs, you can still perform some
debugging by adhering to a number of guidelines. These guidelines include connecting the computer
running the i.LON SmartServer 2.0 Programming Tool to the i.LON console port, bracketing your
code, and liberally inserting printf() statements in your code.

Using Wind River Workbench

Echelon provides iLonSystemWdb and iLonSystemWdbEnd images for Task Mode and System
Mode debugging, respectively.

iLonSystemWadb is a bootable VxWorks system image (kernel) with the WDB debugger network
connection set to WDB_COMM_NETWORK that you can use for Task Mode debugging. Because
the WDB_COMM_NETWORK connection uses the full VxWorks network stack, using the
WDB_COMM_NETWORK connection and Ethernet-connected Task Mode debugging is fast and
reliable—even over the public Internet. Note that you cannot use the WDB_ COMM_ NETWORK for
System Mode debugging. If you need to do System Mode debugging, you must use the
iLonSystemWdbEnd image.

iLonSystemWdbENd is a bootable VxWorks system image (kernel) with the WDB debugger network
connection set to WDB_COMM_END that you can use for Task Mode debugging and for System
Mode debugging of FPM drivers. System Mode debugging is commonly used for debugging the
VxWorks system image, interrupt service routines, and other debugging with interrupts disabled. For
more information on Task Mode and System Mode debugging, see the Wind River Workbench
documentation.

For a WDB connection to work, you must ensure that UDP port 17185 is open in both directions on all
hardware and software firewalls between the debugging host computer and the target SmartServer.
This includes firewalls on your host computer and your corporate network.

If you are debugging your FPMs with Wind River Workbench, you need to perform the following
steps to create a debug configuration of your FPM and connect the i.LON system image to Wind River
Workbench.

1. Backup the current iLonSystem image on the root directory of your SmartServer flash disk. You
can copy the iLonSystem image to the local drive of your computer, a USB drive, a floppy disk,
another removable media, or a shared network drive with read/write permissions. After you
create the backup, delete the iLonSystem image from the SmartServer flash disk.

2. Copy the iLonSystemWdb or iLonSystemWdbEnd image from the
LonWorks/iLON/Development/Debug/ES Debug.<software version> folder on your computer to
the root directory of your SmartServer flash disk.

3. Re-name the iLonSystemWadb or iLonSystemWdbEnd image you copied to the SmartServer
flash disk to iLonSystem.

4. Reboot the SmartServer using the i.LON SmartServer 2.0 Programming Tool, the SmartServer
Web pages, or the SmartServer console application.

e To reboot your SmartServer using the i. LON SmartServer 2.0 Programming Tool, click FPM,
and then click Reboot i.LON SmartServer 2.0 (alternatively, you can click the Echelon logo
in the menu bar [< 1). The Reboot i.LON SmartServer 2.0 dialog opens. Enter the IP
address or hostname of your SmartServer and then click OK.

e To reboot your SmartServer using the SmartServer Web pages, right-click the local
SmartServer, point to Setup, and then click Reboot on the shortcut menu. The Setup —
Reboot dialog opens. Click Reboot to start the reboot.

Creating Freely Programmable Modules

To reboot your SmartServer using the SmartServer console application, enter the reboot
command. For more information on using the SmartServer console application, see the i.LON
SmartServer 2.0 User’s Guide.

Create a debug configuration for your FPM project. You can skip to step 6 if you already have a
debug configuration for your FPM. You have already created a debug configuration if you
imported and upgraded an existing debug configuration of an FPM project to the Debug 4.03
format as described in Upgrading the i.LON SmartServer 2.0 Programming Tool in Chapter 2, or
if you selected the Debug 4.03 or Debug configurations when you created the FPM project as
described in the Creating New FPM Projects section earlier in this chapter.

To check whether there is a debug configuration created for your FPM, and then create a debug
configuration, if necessary, follow these steps:

a.

Right-click the FPM project, point to Build Configurations, and click Manage.

& C/C++ - 9FFD3E0D00000400[5].UFPT11/UFPT11.cpp - Eclipse
File Edit Source Refactor Mavigate Search Run Project FPM Window Help

i~ s g -6-E-@- R I 0-Q S g = I |y Cce+ |
s -
R cfc++ Projects 52 = B || [¢] *UFPTHYACContrallsr. [*UFFT1Lepp 22 1 = B8z outin 32 @ Make | © O
B£l e T 21 4] G o % T
125 SFFD3END00000000[S]. MyDriver Hew » gerver::FPH_LIR_VERIION: = UFPTILA
125 9FFDBEND00N00400[S].UFPT1 1 o It E0000000400_S__UFPTLL LPP: 2 _00o00ooononanoon_o_
[5].UFPTHYACH = SmartServer::v0400

(25 9FFD3EDD00000400[S].UFPTMath | Open in New Window 2 _oFFD3E00D000400_5_|

£ 9FFD3ENDO0000400[S]. UFPTTemp| - - ® 5 STARTER : FPM::TStarter <

(2 SFFD3ENNO0NN0400[S].LFFT Thermi EE varishle declarations. DO © fristartFPH_UFPTI1() : ST,
Index ¥ bt variable declarations. DO © FristopFPH_UFPTIIL) § 5Té
Build Configurations Set ictive [© FrFPMLbYersion) : void
Make Targets) Buld b pre values © CUFPT1L:m_pSingletan : ¢
Build Project

@ CUFPTL1::StartMadulecor
@ CUFPTL1::StopModule(con
@ CUFPTL1:CURPTLA)
@ CUFPTLLi~CUFPTII()

Clean Project

|12 Copy @ CUFPTLL:Initialize!) : void
lv instance © CUFPTLL:Shutdawn() : ve
¥ Delete @ CUFPT11:work) : woid

o CUFPTLi> STARTER(FPH_NODULE_ ® CUFPTLL: OnTimer) s void
“ LonMark Resaurce Yiew 52 Rename...

| o ands (typically not needed)
24| g Import

5 Expatt...
Server{IP-Address: | 102,124,165 i Beper
i Refresh StartFEM UFPT11() {
=] ﬂ frootflonworks types)yd " Refres! | -
8 Configuration Propy C1Ps® Project

%2

<
|~
v

S Functional Profile T pup, ps » lole | E Properties « 77
3§ #9FFD3E0000I Debug £ »
E‘i #SFFD3E0000) Profile s 4 Resource Path Lacat... Type
% ::EEE?EEEEE: @ Transfer to.LON SmartServer. .
T #9rFoaE0000l lup Remawe From i.LON SmartServer. ..
5§ #oFFD3E0OOD] ConvertTo..
L #oFFD3E0000l Team 4
S B e e =l Compars With 4

|~

Restore from Local History...

Properties Alt+Enter

The Manage Configurations dialog opens.

£ 9FFD3IE0000000400[5].UFPTHVACControlle... [X|

Configur ation Description Skatus
Debug configuratio,,, |]
Debug 4.03 Debug configurakia, .,
Release Release configurati, ..
Release 4,03 Release configuraki,., Active

Set Active H Mew. .. H Delete ” Rename...]

[0] 4 H Cancel]

i.LON SmartServer 2.0 Programming Tools User’'s Guide 93

94

This dialog lists the build configurations available for your FPM. If the Debug 4.03
configuration is listed (or Debug if you plan on running your debug configuration on a
SmartServer 1.0), you can skip to step 6; otherwise continue to step d.

Note: If you are debugging an FPM to be run on a SmartServer 1.0, select or enter Debug in
the following steps instead of Debug 4.03.

Click New in the Manage Configurations dialog. The Create New Configurations dialog
opens.

& Create New Configuration f$_<|

Moke: The configuration name will be used as a direckory name in the file syskem, Please
ensure that it is valid Far wour plakForm,

Marne: | |

Description: | |

Copy settings From

(%) Existing configuration | Release b |

() Default configuration
(:) Import From projecks

() Impart: predefined

Zancel

In the Name property, enter Debug 4.03.
Select the Default Configuration option, and then select Debug 4.03.

& Create New Configuration @

Moke: The configuration name will be used as a direckory name in the file syskem, Please ensure
that it is walid Far vour platform,

Tame: | Debug .03 |

Description: | |

Copy settings From
O Existing configuration

@ L= ol o W= eI W b iy <4, 030, Debug configuration For an FPM Application)

O Impart From projects

() Impart: predefined

[Ok] [Cancel

Click OK to return to the Manage Configurations dialog.

Creating Freely Programmable Modules

& 9FFD3E0000000400[5].UFPTHVACControlle... E

Description Stakus

Configur ation

Release 4.03 Release configuraki,.. Ackive
Sek Active] [Mew. ..] [Delete] [Rename...]
[Ok l [Cancel]

h. Click OK to return to the C/C++ Projects view.

Set the Debug 4.03 or Debug configuration as the active configuration so that it is built

automatically when you build your FPM. To do this, right-click the FPM project, point to Build
Configurations, point to Set Active, and then click Debug 4.03 or Debug.

& C/C++ - 9FFD3E0D00000400[5].UFPTHYACController/UFPTHYACController.cpp - Eclipse
File Edit Source Refactor MWavigate Search Run Project FPM window Help

[uFPTHYACCE
[urpTHYVACCE
[B UFPTHYACCE

Open in New Window

DO MOT RE

- S o o 9 = |
iTI-E b 0 F e[@ R-BIB-0-QA-IES g c B[@ oo+ |
: R
) Cic++ Projects 62 = 5 || [€ *UFPTHYACController.cpp 52 = B8 owtin 52 @ Make | B
FIl= Ak e ZZusing namespace _0000000000000000_0_; (28 R e ¥ T
[Mew 4 UFPTHVACContraller h &
) Includes wartServer::FPH_LIE_VERSION; Jyourcompany/dzvice
Go Into | 9FFD3IE0000000400_5_ UFPTHVACController

9FFD3EO000000400¢
0000000000000000{
SmarkServer: w0400
9FFD3E0000000400¢
Teron s Mtavighle s _(

P 00 e o o gE gm

tapoint varisble declarations. o
e [v 1 Release 4.03 (Release configuration for an FPM Application)

i . o lex_0C
Build B = 0ebug .03 {Debug confiquration Far an FPM Application) iatle)
Build Praject 3 Release (Release configuration For an FPM Application) eblec
Clean Projsct p— 4 Db (Dsbug ranfigurstion for an FPM Application) | variat

I [EWiteh, TvoFuULhace
000000400_5_: :UCPTHysteresis, nciHyster

[Copy 000000000_0_: : SCPTmaxSendTime, nciHeart
000000000_0_: :SCPTwaxRevTime, nciOfflir
3 Delete 000000000_0_: :5CPTrindendTime, nciThrot
" apoint wvarisble declarations. DO NOT RE
ove...
Renarme... re needed that accommodate values local
£y Impart... 5 are declared here:
A Export TANCE LOCAL{ int, nInstanceNo]
] - -

% LonMark Resource Vi o Refresh

Close Project. |

=l Console | £ Properties

Server/IP-Address: IE Run As »
Debug As N
5@ hoot profi p r Resource Path e
&4 @i TransFer to iLOM SmartServer...
¢ E i Remove from i.LON SmartServer. ..
0 ComvertTo..
g Team »
=1 Compare With »

<
_ Restars from Local History...

rvitACHade : Yariable
prvodirConditioner_On
nvosirConditioner_onC
prvoFurnace_OnoFf :
nvoFurmace_OnGFF : ¥e
priciHysteresis : Yariabl
ncitlysteresis : Yariable
pnciHeartbeat : Variabh
nciHearkbeat | Wariable
prciOffline ¢ Yariable<_
neiOffline ¢ Wariable<_C

onciThrattle ; Variable< %
< | >

(A XN RN RN NNNN]

£

—=

Type

7.

or Debug folder now appears in the C/C++ Projects View under the Includes folder.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

Build your FPM project, as described in Compiling an FPM earlier in this chapter. A Debug 4.03

95

96

10.

) CfC++ Projects 52 = 0O

-
—.:3.{1’: o

= TEC‘ AFFDSENDO0000400[S]. UIFPTHY ACConktraller
+-hil Includes
S C=bug 4.03
[g] UFPTHYAC Controller _Litils. cpp
lc] UFPTHYAC Controller.cpp
UFPTHYACCantraller.h

+|- [

+

Upload the debug configuration of your FPM to your SmartServer. To do this, expand the Debug
4.03 or Debug folder, right-click the <company program ID>.UFPT<FPM name>.app || .drv file
and then click Transfer to i.LON SmartServer in the shortcut menu. In the Install FPM
Module dialog, enter the IP address or hostname of your SmartServer in the Host box, select the
Reboot check box, click Finish, and then click Yes to confirm the rebooting of your SmartServer.

Deploy the debug configuration of the FPM on your SmartServer as described in Adding FPM
Devices to the SmartServer in Chapter 6.

Connect the Workbench debugger to the iLonSystemWdb or iLonSystemWdbEnd image on
your computer via the target server, following these steps:

a. Verify that the WorkBench registry is running.

b. Right-click anywhere in the Target Manager view, point to New, and then click
Connection... on the shortcut menu.

Creating Freely Programmable Modules

Debug - httpRpmFi

File Edit Refactor Mavigate Search Project

Wil
A |

.Prnject File Mavwi, ..

Name Filter: |

Signature

= @ default (\ocaiﬁ
[e

E m wesim (v

ésvmbol‘.. S@ 2 mEl .EhttDRDmFiIBSYstem.c Eé _iﬁhttp
@ w [[3]" |

File:

5 Connect tgt_172.22,100,220"

Rename
¥ Delete

Show Target Server Log,..

Target Tools

=] Callapse Al
Expand Al
& | Refresh

[Refresh Properties.

= Properties

Analvze Run Target Window Help

r_njliL_npl_l?gvlhttp\Rpm\httpRpm#iléSys
25® /4]

35

36

37 #include "string.h”

38

i

#include "stdic.h’

#include "http/httpl
#include "http/http
"httplhttpl

tatic HTTP_GEN_LIZT|

xtern HTTP_EOOL htt
xtern void httpSetq
®tern HTTP_EOOL hti

xtern char* httpGet]
AR R R TR AR R AT NN
ITTP_GEN_LIST_ID ht
!
unsigned short 5
1
{
return | hrtcpF=d
H

srnTRnEREAERRERTAAN
ITTP_GEN LIST ENTRY |
!

char * szUrl,
char * szFsRoot

I EFFSFLOT Tasks | Problems Properties | q

c. The New Connection dialog opens. In the Connection Type window, select the WindRiver

VxWorks 6.x Target Server Connection and then click Next.

Connection Type

Please select connection type.

“Wind River OCD ICE Connection

“wind River OCD 155 Connection

“Wind River OCD Probe Connection

‘Wind River Wxiworks 6.x Simulakor Connection

<Bark

Cancel

i.LON SmartServer 2.0 Programming Tools User’'s Guide

97

d. Inthe Target Server Options window, enter the IP address or hostname of the SmartServer
on which the FPM to be debugged is installed.

e. Inthe Kernel Image box, click File, click Browse, and then browse to the
LonWorks/iLON/Development/Debug/ES Debug.<software version> folder on your
computer.

% Target Connection

Target Server Options

Review and customize the target server options.,

Mame | tgt_172,22,100,220 | shared: []

Associated karget platform:

Target Server Options ‘.Object Path Mappings‘ I -'i'argat Skaks Refresh Default Breakpoint Options

Backend settings

Backend: iwdhrpc VI Cpu: i(default From target) » |
Target name | IP address: | 172.22.100,220 | | check.. | part: | |
Kernel image

() File path from target {if available)

(%) File: : CriLonworks|iLOM Development)DebugliloM100 4,004 LanSystemidb vi Browse. ..

Bypass checksum comparison

Advanced target server options
Yerbose target server output

Options: | R CifindRiverfiLONws -RW Bt 3 -A ~|

Command Line:

| tgtswr - -R C: fwindRiverfiLOMws -RW -BE 3 -c "Ct\Lonworks)iLONDevelopmentiDebughilOm100
4.004iLonSystemwdb” -bC -4 172,22,100.220

f. Click Finish. The iLonSystem image and the FPM executable module (.app or .drv
extension) appear in the Target Manager view.

11
[#] lonscanner.mad:0xF2c140 - Module name: Irook/modulesflonScanner . mod

[IaHost, mod:0xF26:395 - Module name: froot/modules/itaHosk, mod

1 rni.mod:0xF12578 - Module name: froot/modules frni,mod

[#] sDPulseCounter.mad:0xF33588 - Madule name: frootfmodulesis0PulseCounter ,mod
[saslCramMds, mod:0xF34680 - Module name: froot/modulesSA35L fsasCramdS, mod
[saslLibrary, mod:0xf2ee6s - Module name: froot/modules/sasiLibrary.mod

[sasiLoain.mad:0xF49518 - Module name: J'rc-c-tJ'modulesfSP.lSLJ'sasILc-ain.rnnd

<

11. Add the symbols in your FPM to the target server, following these steps:

a. Inthe Target Manager view, right-click your FPM executable module (.app or .drv
extension), and then click Load/Add Symbols to Debug Server on the shortcut menu.

98 Creating Freely Programmable Modules

: L=f Disconmect 'tgt_172.22.100.2200
| ¥ Connect MemScope
| B Connect ProfileScope

| [Kernel Obijects

| ¥ Unload Module...

B 5 Target Tools L4

1 T £ Mod 13
= G default (o %, Target Mode

B8 to 10 = colapse al
= ;
= % bt _17 Expand &ll

=] SKd
T &
o g & Refresh FS
: =1 Refresh Properties. ..
; # 10100 UFPTMath, app - Mod! .rr or |
eventLog.mod:0xF997d0 - Module name: froat,
EAi| iLonSystem: Oxeffa30 - Symbol file: C:fwindRiv .
| saslLibrary.mod: 0xfbal60 - Module name: fraof| it
%) webServer mad:0xFI9258 - Symbol file: C:fPra mak
m. wxsim0 (Wind River VxWorks 6.2) ;?2
sha
rks-
56,
k-t
-
mak
Idmi
(it}
4| | 2 e

b. The Load/Add Symbols to Debug Server dialog opens. In the Symbol Files and Order
box, click Add and then browse to the debug configuration of your FPM.

ad/Add Symbols to Debug Server

Select the files containing the symbals ta load or add to the debug server For the selected context.

Symbol Load Context
Connection: | tgk_172.22,100,220@ianphan |

Care: | SKoiworks 6.2 |

Container: | #8000010000000000[3], UFPTMath. app |

Mote: For modules, only one symbol file can be activated For loading and previously loaded symbaols are
replaced!

Symbol Files and Order

¥ | File
M CiiLonworksiiLoN Development)eclipseworkspace. FpmiE00001 0000000000[3]. UF. .

Symbol Load Options {#8000010000000000[3], UFPTMath. app, 32 bit)
(%) specify module load offset:

() Specify section start addresses:

Section Mame Section Start Address

Create path mappings for the module based on the selected symbol file

[a4] [Cancel

i.LON SmartServer 2.0 Programming Tools User’'s Guide

100

Click OK. The symbols in your FPM are now loaded in the Target Manager view. Symbol
icons should appear on the icons representing the FPM executable module and the
iLonSystem image.

B of i | CBW X8| &~ 70
kgk_172.22.100.220 (Wind River Vx\Warks 6.2) Fabi
=M SKe (wawarks 6,2)
[+ kernel Tasks

Real Time Processes

5 UFPTMath. ap ol n
il #8000010128000000[4].UFPT alarmbotifier . app: 0x20506bS - Module name: Jrootmodulesf#8000010128000000]
B #8000010128000000[4].UFPTanalogFunctionBlock, app: 0x20502b0 - Module name: froot/modules #50000101 280
| #E000010128000000[4].UFPTcalendar. app: 0x2050018 - Madule name: frook/madules/#800001012800000004].L
E |#BDDDD1Ell28000000[4].UFPTdataLogger.app:DbuaSGD - Module name: frootimodules)#8000010125000000[4].UFP

[#3000010125000000741.UFPTdiaitallnout . ano:0xfba4al - Madule name: fraatimadules/#50000101 25000000741,
| >

<

12. Use WindRiver Work Bench to debug your FPMs, following these steps:

a.

b.

C.

Expand the Kernel Tasks icon.

In the Target Manager view, right-click the FPM task and click Attach to Kernel Task
(Task Mode) on the shortcut menu.

Mew... |

A=F Disconmect 'tgt_172.22.100.220'
#4 Connect MemScope
E‘ Connect Profilescope

¥ pownlaad. .

% Run Kernel Task. ..,
% Debug Kernel Task.

[Kernel Objects

3 Delete Kernel Task

Target Toaols 4
£ artach Hast Shell
4, Target Mode 4

| [=] Collapse Al
] Expand Al

| & | Refresh F5
Fj(ﬁ Yerr | Refresh Properties
-
ﬁ?_{, #5000010123000000[4]. UFPTalarmbotifier:0xg =
; @_{. #8000010128000000[4].UFPTanalogFunctionBh.
@, #AO000101 ZA000000[4]. LIFFT slendar i ha
@y, #EN000101 280000004, LIFPTatal ngger il
A8y, #B000010128000000[4]. UFPT digitalInput:0x81
@y, #B000010128000000[4]. UFPTdigitalOutput: 0w
@, #B000010128000000[4] UFPTnodeObject:0xa1
: ‘3?1, #50000101 28000000[4]. UFPTpulseCaunter :0xt
@’._1, #B000010128000000[4]. UFPTrealTimeClock: 0w
i @__1; #80000101 28000000[4]. UFPTscheduler:0x81ce
H 9;1. #80000101 28000000[4]. UFPTtypeTranslator :0:
@, alarmiotifier::mailClient:Cxs1b8f640 [Pand]
B, basicCM:0%511b1c60 [Pend+T]
8y, builder: 0x80fbSaz0 [Pend]
: Qj, connianager: 0x8124d260 [Pend+T]
3 C"ﬁ; dataserver:0x8124ec30 [Pend]
o A e

s

<

The Debug view opens, and you can now use the Symbol Browser view search for symbols
in your FPM code.

Creating Freely Programmable Modules

g.

00 m &f T W
= % kgt_172.22.100,220 (13} [Attach to Target]
E-\ﬂ SKC: Weorks 6.2 (Task Mode)
f '3.'.] #F000010000000000[3], UIFPTMath @ 0x&23ee5e0 (Running)

If you are using the iLonSystemWdbEnd image and want to switch to System Mode, right-
click the FPM task, point to Target Mode, and click System Mode on the shortcut menu.

= f = = e
miain = ball,out - vasind [Kernel Task]
= SIMNT: eworks 6.4 (Task Mode) gl
= @] tWain : 0x116Fe390 (Stopped |- =0PY Stack CrC
Find... Chrl+F

=" main) - main.c:30

]
g o
g WMain ; Ox116f23%0 — 8,

| ®g Breakpoinks 2 - o e T~ O

In the Symbol Browser view, first verify that the Debug icon (HG__?!) is enabled. In the Name
Filter box, you can search for the symbol for which you want to set a breakpoint.

f.F'rcuject Mavi... | File Mavigabor SESSE e NalRaprrees 4

Mame Filker: | httpRpmFs | D
Signature i

42 httpRpmFs

Once the symbol appears in the Symbol Browser view, double-click it. The source file view
displays the routine to be debugged.

In the source file view, double-click the line number in the routine to set a breakpoint.

Using FPM Development Guidelines

You can perform some debugging of your FPMs by adhering to the following guidelines when
developing your FPM:

e Physically connect the computer running the i.LON SmartServer 2.0 Programming Tool to the
i.LON console port using an RS-232 null modem cable. This enables you to use a Terminal
emulator such as Windows HyperTerminal to view the i.LON console port and debug your FPMs
during runtime. After the FPM is initialized you can use Telnet to view the i.LON console port.

e Back up the FPM project frequently. Always make a back up after you make significant changes
to an FPM application and successfully compile it.

e Bracket comments around those portions of the FPM application that you have written. For
example, you can do the following:

// mycode — begin ----———————— -
outl = inl + iIn2;
// mycode — end —————-——————— -

i.LON SmartServer 2.0 Programming Tools User’'s Guide 101

e Add your user help functions to the UFPT<FPM>_Ultils.cpp file (this file is created when you
create a new FPM project). This further isolates your code for debugging, and it enables you to
port the code over to another FPM project.

e Insert printf()statements in your code frequently. This enables you to do some debugging
with the console port of the i.LON during runtime, as the console port will receive the
printf()statements. The following example demonstrates a printFf()statement that you can
use to debug your code.

printf('[%s %i] value of %s: %d',

__FILE__,

__LINE__,
inl._GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname),
*inl);

Note that console port displays the status of your FPMs during a reboot.

It is especially important to follow these guidelines because the compiler errors you may receive may
only have a generic description that does not indicate which line of code caused the error. In addition,
the errors may not appear on the actual line of code causing the error; instead, an error may appear one
or two lines above the incorrect code.

Using SNMP Support

You can create an FPM that provides SmartSever system information via the Simple Network
Management Protocol (SNMP). To do this, you use the i. LON SmartServer 2.0 Programming Tool
and a VxWorks 6.2 Development Tool that includes the SNMP v1/v2c or v3 agent components (for
example, PID 3.2 including the GNU compiler). The SmartServer does not support eXtensible agent
(AgentX) components.

The following table lists the default SmartServer system information that you can provide over SNMP:

System Description and name of the Smart Server and other information.
Interfaces IP interface information such as speed and address.

IP address table Internal IP address table on the SmartServer.

Route Entries The routing table of the SmartServer.

You can use the VxWorks SNMP API provided by a VxWorks 6.2 Development Tool to change the
management information base (MIB-II) configuration that is complied in the SmartServer’s
i.LonSystem image. You can add or delete MIB-II tree elements, and then map these elements to data
points in an FPM application running on the SmartServer. You can then read and write to these data
points over SNMP. You can also the SNMP trap service to send messages or alarms from an FPM
application running on a SmartServer to an external SNMP trap server.

For more information on SNMP programming, see the Wind River SNMP for VxWorks Programmer’s
Guide 10.0.

The LonWorks\iLON\Development\eclipse\workspace.fpm directory on your computer contains
example SNMP client and server FPMs. You can upload these FPMs to your SmartServer and run
them, or you can edit the project files for each example to see how they are implemented.

Example FPM Applications and Drivers

The LonWorks\iLON\Development\eclipse\workspace.fpm directory on your computer contains
one FPM application example and one FPM driver example, in addition to the example SNMP client
and server FPMs mentioned in the previous section. You can upload these FPMs to your SmartServer
and run them, or you can edit the project files for each example to see how they are implemented. The
FPM examples are listed below:

e Rs232Driver. This FPM driver demonstrates how to read and write data from a RS-232 interface.

102 Creating Freely Programmable Modules

http://pub.windriver.com/pub/com.windriver.ide.doc.wr_snmp/wr_snmp_vxworks_6_programmers_guide_10.0/html/
http://pub.windriver.com/pub/com.windriver.ide.doc.wr_snmp/wr_snmp_vxworks_6_programmers_guide_10.0/html/

e Math. This FPM application adds two SNVT_count input data points when one of the data point
values changes, and it writes the sum in a SNVT_count output data point.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 103

104 Creating Freely Programmable Modules

6

Deploying FPMs on a SmartServer

This chapter describes how to use the i.LON SmartServer 2.0 Programming Tool to
upload FPMs to one or more SmartServers. It explains how to select a network
management service (LNS or Standalone) for running your LONWORKS network. It
describes how to create, commission, and connect, and test FPM devices on the
SmartServer. It describes how to create a custom configuration Web page for FPM
applications. It explains how to update FPM applications. It describes how to deploy
FPMs on multiple SmartServers and it describes how to deploy licensed FPMs.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 105

FP

106

M Deployment Overview

After you write and compile an FPM application or driver, you can deploy it on your SmartServer.
This enables you to apply the algorithms defined in the FPM application or FPM driver to the data
points on the SmartServer. Deploying an FPM application entails uploading the FPM to your
SmartServer, adding a device representing the FPM application on the SmartServer, commissioning
the FPM device if you are going to bind the data points in the FPM application with LonWorks
connections, testing the FPM application, and then connecting the data point in the FPM device with
LONWORKS connections or Web connections. Deploying an FPM driver entails just uploading the
FPM to your SmartServer.

You can upload FPMs to one or more SmartServers that have an FPM programming license installed
on them using the i.LON SmartServer 2.0 Programming Tool. After an FPM application has been
uploaded to a SmartServer, you need to verify that you have selected a network management service
mode (LNS or Standalone) for running your LONWORKS network.

Once you have selected a network management service, you can create an FPM device on the
SmartServer. To do this, you add a new internal device to the LON channel in the SmartServer tree.
If you are integrating your FPM application with another LNS application such as the LonMaker tool,
the internal FPM device must use a static interface. To use a static interface for your FPM, you select
the device interface (XIF) file from the root/lonworks/import/<YourCompany> folder on the
SmartServer flash disk. This is the XIF file that you generated for your FPM with the i.LON
LonWorks Interface Developer tool (see Chapter 4 for more information on creating XIF files for
FPMs).

If you are running your network with the SmartServer operating as a standalone network manager, the
internal device can use a static or dynamic interface. To use a dynamic interface, you select the
SmartServer’s v40 XIF from the root/lonworks/import/Echelon/iLON100 folder, and you then add a
dynamic functional block to the device that uses a UFPT representing your FPM application.

If you are running your LONWORKS network in LNS mode (LNS Auto or LNS Manual) and you plan
on using LONWORKS connections to bind the data points in your FPM application with the data points
on the internal SmartServer device, on another FPM device, or on the external devices connected to the
SmartServer, you must first commission your FPM device. You can commission your FPM device
with the SmartServer or with an LNS application such as the LonMaker tool.

You can test that the FPM application is functioning properly by adding the data points declared in the
FPM device to the View — Data Points Web page. You can then change the values of the input data
points and observe whether the output data points are updated accordingly. Note that if FPM
programming is not licensed on the SmartServer, the SmartServer will not process changes made to the
FPM data points, and the FPM data points will become unavailable in the View — Data Points Web

page.
Once you verify that the FPM application is working, you can connect the data points in your FPM
application with LONWORKS connections or Web connections. You can then use the View — Data

Points Web page, a custom FPM configuration Web page, or an LNS application such as the
LonMaker tool to test that the connections are updating the FPM data points accordingly.

After you have deployed FPM applications on a development SmartServer, you can deploy the FPM
applications you have developed on multiple SmartServers.

Notes:

e The full version of the i.LON SmartServer 2.0 Programming Tools must be installed on your
computer to upload an FPM to a SmartServer. The full version of the i. LON SmartServer 2.0
Programming Tools is included on the i.LON SmartServer 2.0 Programming Tools DVD. To
order the i.LON SmartServer 2.0 Programming Tools DVD (Echelon part number 72111-409),
contact your Echelon sales representative.

Deploying Freely Programmable Modules on a SmartServer

e An FPM programming license must be installed on your SmartServer in order for an FPM to
function on the SmartServer. If FPM Programming is not licensed on a SmartServer, the
SmartServer will not process the tasks defined in the FPM application. You can order a FPM
programming license from the i.LON SmartServer 2.0 Web site at
www.echelon.com/products/cis/activate.

e The device interface (XIF) file that you created for your FPM must be in the
root/lonworks/import/<YourCompany>on the SmartServer flash disk. Otherwise, you will not be
able to create FPM devices on that SmartServer that uses a static interface. In addition, the XIF
file must be in the lonworks/import/<YourCompany> folder on your computer. See Chapter 4,
Creating FPM Device Interface (XIF) Files, for more information on how to create a XIF for your
FPM and copy it from the on your computer to a SmartServer.

Uploading FPM Applications and Drivers

You can upload FPMs to SmartServers that have an FPM programming license installed on them. To
do this, you use the i.LON SmartServer 2.0 Programming Tool or an FTP client such as Internet
Explorer 7 to transfer the FPM executable module (.app or .drv extension) to the
root/modules/User/<YourCompany> folder of each SmartServer on which the FPM is to be used.

Typically, if you are deploying your FPM on a development SmartServer you will use the i.LON
SmartServer 2.0 Programming Tool to transfer the FPM module. If you are deploying your FPM on
multiple SmartServers in the field, you will use an FTP client because you also need to transfer
resource files, device interface (XIF) files (if the FPM uses static functional blocks, and custom FPM
configuration Web pages (if created). For more information on uploading the FPM executable module
and other required files to multiple SmartServers via FTP, see Deploying FPMs on Multiple
SmartServers later in this chapter.

Note: As of release 4.01 of the i.LON SmartServer 2.0 Programming Tool, you do not need to reboot
your SmartServer to initialize an FPM application. Once a new or updated FPM application has been
uploaded to the SmartServer, it is automatically initialized, and it will execute its algorithms upon data
point updates. You must still reboot the SmartServer to initialize an FPM driver.

To upload an FPM application or driver to a SmartServer with the i. LON SmartServer 2.0
Programming Tool, follow these steps:

1. Create a User/<YourCompany> folder under the root/modules folder on the SmartServer flash disk
if one does not already exist. This is where the executable module generated by the i.LON
SmartServer 2.0 Programming Tool should be stored.

2. Start the i.LON SmartServer 2.0 Programming Tool if it is not already running. To do this, click
Start, point to Programs, point to Echelon i.LON SmartServer 2.0 Programming Tools, and
then click i.LON SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0
Programming Tool opens.

3. Inthe C/C++ Projects view, expand the Release folder, right-click the <company program
ID>.UFPT<FPM name>.app || .drv file and then click Transfer to i.LON SmartServer in the
shortcut menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 107

http://www.echelon.com/products/cis/activate

& c/C++ - UFPTHVACCof ller.cpp - Eclipse SDK
File Edit Refactor Mavigate Search Project FPM Run Window Help

i = R - A AR CRSEE -S> RAD N BTl LERCRe 25| B e+ | ?

Mavigator & = &f T T O € urPTHYACController.cpp 52 =0

5 1 SFFDAE000O000400[5] UFPTHVAC ontroler P I S
glnc\udes | 3
= (= Release * Copyright (c) 2006,2007 Echelon Corporation. All rights reserved —

[ctde.c *

* This file is Example Software as defined in the Zoftware

ctdt.a - [mipshe] b lgreement that governs its use.
[&h UFPTHVACContraller_Ukls .o - [mipshe]
[[5ip UFPTHYACContraller .o - [mipshe] Open AKES MO REFRESENTATICN, WARRANTY, OR CONDITICN OF
2 UPPTHYVACCantraller d Open With * | EXPRESS, IMPLIED, STATUTORY, OR OTHERVWISE OR IN
UFPTHYACController dUFPTHYACContraller. oo e e id Configuration , [MICATICN WITH YOU, INCLUDING, BUT NOT LIMITED TO,
|=| UFPTHYACConkroller_Utils.d ED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
UFPTHYACConkroller_Utils dUFPTHYACConty =) Copy FITHMESS FOR ANV PARTICULAR PURPOSE,
[ctdt.detdt.o) Paste GEMENT, AND THEIR EQUIVALENTS.
| & maksfils ; _—
< oo R R R AR AR AR A
LonMark Resaurce Yiew 5 Rename ACController. bt
LN P dependent includes
Server/IP-address: 244 Expart... er/yourcompany/ fpm deve lopment . h"
e SFFD3E0OOCOOOO0400 5 ;
@ rootflonworksitypesjuserfechelonidedly & Refresh devendent includes 4
@ jrootlonworksitypesjuseriechelonide0S o pockmark... >
@ froctilonwarksitypes/userjechelonischel e e %~ -0
@ froctjlonwarksjtypes/userjechelonyisilon UL E ...
@ froatjlonnorks{types/userjechelonfmbus i3 Remave from |.LOM SmartServer. . d
@ froctflonnarksitypesiuserfecheloniminid g as »
=@ froctflonworksitypesuserfyourcompany kg as v
2 Configuration Property Types
=3 Functional Profile Templates
-5 #9FFDAEN000000400[S].UFFTH
5§ #9FFD3E000N000400[S].UFPTH Team '
S #oFFDAEOO0ODDOACO[S] UFFTY COTPAre With '
5§ #OFFD3E0000000400[S]UFPTE PEplace With 4
55 #9FFD3E0000000400[S]UFPTY propertiss
= B >
on® JSFFDIEN000000400[5] UFPTHYACCantroller/Release/# OFFDIENOO0000400[S] UFPTHVACCantroller, spp

4. The Install FPM Module dialog opens with the Deployment Settings window.

X]

& Install FPM Module [#9FFD3E0000000400[5].UFPTHVACControlle

Deployment Settings

Specify remote site server address, logon information, destination folder.

FTP settings:

Hest: |bo.2.124.82 | Ftp Port:
User: | ilon |
Password: | cese |
Destination Dir: | fmodulesfuserfyourcomparry |

IF wou can connect ko the i LOM SmartServer but vou have difficulties
to setup a file transfer, vou should enable passive mode,

Passive Mode: []

Reboot: O wieh Part:

Create default Configuration web-page:
fwebjconfig)Fby9FFDEEQOO0000400[5]. UFPTHYAC Conktroller, htm

Default web-page: []

) Mext =] I Finish] [Cancel

108 Deploying Freely Programmable Modules on a SmartServer

5. Enter the following properties:

FTP Settings

Host

FTP Port

User

Password

Destination
Directory

Passive Mode

Reboot

Web Port

Default Web Page

Enter the IP address or hostname of the SmartServer to which the FPM is
to be uploaded. The default is the IP address or hostname entered in the
LonMark Resource View.

Enter the port the SmartServer uses for FTP communication. The default
FTP port is 21.

Enter the user name to log in to the SmartServer. The default user name is
ilon.

Enter the password to log in to the SmartServer. The default password is
ilon.

Enter the location on the SmartServer flash disk where the FPM
application is to be stored. By default, the FPM application is stored in
the root/modules folder on the SmartServer flash disk. You should create
a User/<YourCompany> directory under the root/modules folder to store
your FPMs.

Select this check box only if an FTP connection cannot be made. This
enables your computer to initiate the connection with the SmartServer
FTP server. The FTP server will listen and wait for the connection, rather
than initiate it, upon receipt of a transfer command. This option is useful
if your computer is behind a firewall that blocks the connection initiated
by the FTP server (the firewall may see the connection request as an
attack) while in active mode. This check box is cleared by default.

Select this check box to reboot the SmartServer after the FPM has been
uploaded to it. This check box is cleared by default.

If you are deploying an FPM driver, you must reboot your SmartServer to
initialize it.

If you are deploying an FPM application, you do not need to reboot your
SmartServer to initialize your FPM application. Once a new or updated

FPM has been uploaded to the SmartServer, it is automatically initialized,
and it will execute its algorithms upon data point updates.

The port your SmartServer uses to serve HTTP requests (SOAP and
WebDAYV). The default value is 80, but you may change it to any valid
port number. Contact your IS department to ensure your firewall is
configured to allow access to the server on this port.

Creates a default configuration Web page for your FPM application in the
root/web/config/FB folder on the SmartServer flash disk. You can then
use the i.LON Vision 2.0 software to customize this FPM configuration
Web page by adding i.LON Vision 2.0 objects to it.

Once you publish the FPM configuration Web page, you can click the
General button above the navigation pane on the left side of the
SmartServer Web interface, click the functional block representing your
FPM application, and use the configuration Web page to read and write
values to the data points in your FPM application.

See Creating FPM Configuration Web Pages in this chapter for more
information.

6. Click Next to open the Summary window, or click Finish to begin uploading your FPM to your
SmartServer and skip to step 7.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 109

110

10.

€ Install FPM Module [#9FFD3E0000000400[5].UFPTHVACController.app | [X]

Summary

The Following activities will be executed,

- transfer file '#9FFD3E0000000400[5], UFPTHYAC Controller, app' o iLon SmartServer @ '10.2. 124,82
target directory: 'fmodulesfuservourcompany’

- any existing file with name '#9FFD3E0000000400[5], UFPTHYAC Controller, app’ will be deleted

- create default Configuration web-page.

location: fweb/config/Fb/9FFD3EQOOO000400[S].UFPTHYAC Controller, hitm

- reload module "SFFD3EOOD0000400[S]. UFPTHYAC Controller'

[Finish H Cancel]

This window lists the tasks to be performed, which consists of uploading the FPM to the
root/modules directory on the SmartServer flash disk, deleting any existing module with the same
name of the FPM being uploaded, rebooting the SmartServer if you selected the Reboot check
box in the Deployment Settings window in step 4, and optionally creating a default configuration
Web page if you selected the Default Web Page check box. Click Finish.

If you selected the Reboot check box in the Deployment Settings window in step 4, the Reboot
iLON SmartServer 2.0 dialog opens and prompts you to confirm that the SmartServer selected in
the Deployment Settings window in step 4 is to be rebooted.

& Reboot iLON SmartServer @ 10.2.124.111

& Dovyou really wank ko rebook iLOMN SmarkServer on 10,2, 1241117
_ﬁ
Yes l [Mo
Click Yes.

The FPM executable module (.app or .drv extension) is uploaded to your SmartServer. You can
use the console port to verify that the FPM is being uploaded to your SmartServer. If you are
updating an existing FPM application on your SmartServer, the current module is stopped and
unloaded, and the updated module is then loaded and initialized.

If FPM Programming is not licensed on your SmartServer, the following urgent messages will
appear when the SmartServer attempts to load and start the FPM executable module:

Deploying Freely Programmable Modules on a SmartServer

[STARTING] "#3000010000000000[31 . UFPTHYACController™

«Urgent= FPM license key is invalid: file EchelonlFPMLic.xml

=Urgent= FPM feature is not properly licensed: file EchelonlFPMLic.xml
Era‘;(l)r?dwhile starting FPM UFPTHVYACController: Can't create FPM-task.
=Urgent= [FP1<?7-B1E35>Fatal error occured while initializing!

=Urgent= [FP1<?7-01E39>FPM-'#H8000010000000000[3]1.UFPTHVYACController’ :Can’t crea
te FPM-task. |

To order an FPM programming license for your SmartServer, go to the i. LON SmartServer 2.0
Web site at www.echelon.com/products/cis/activate.

Deploying FPM Applications

If you are deploying an FPM application, your FPM application is initialized once it has been uploaded
to the SmartServer. You can skip the rest of this section and follow the subsequent sections in this
chapter to create, commission, connect, and test your FPM application on the SmartServer and create a
custom configuration Web page for your FPM application.

Deploying FPM Drivers

After you upload your FPM driver to the SmartServer and reboot the SmartServer, you can open the
SmartServer Web interface and observe that a channel representing your FPM driver has been added to
the network tree of the target SmartServer. You can expand the FPM driver channel, expand the FPM
driver device (representing the nonnative device connected to the SmartServer’s RS-232 or RS-485
interface), and then expand the virtual functional block to show the data points in your FPM driver.

Navigate

& General O Driver
=l gfs LAN
= &= SmartServer
T Remote Access
Bl Net
¥ VirtCh
FH== LON
[== L ON IP
B #5r Rs232Driverch
B &f Rs232DriverDey
= {_b Rs232DriverFb
inl

5'|:1
!

3

=
C
=1

tr

L5]

You can now monitor and control the FPM driver data points using the SmartServer’s built-in
applications and your custom Web pages, and you can connect them to LONWORKS data points using
Web connections and Type Translators. In either case, the SmartServer’s internal data server sends
and receives data point updates to and from the nonnative device via the FPM driver.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 111

http://www.echelon.com/products/cis/activate

ll UFPTalarmGenerator
| UFPTalarmNotifier
UFPTtypeTranslator
UFPTanalogFB

.
g .
> 3
5]
= k3
i) =
g3
i s
o o
[w
=) -}

Internal SmartServer Data Point Server

Data Point Abstraction Layer >
FPM Driver

Device
Data

o

Nonnative Devices
SmartServer (connected to SmartServer via
RS-232 or RS-485 interface)

Selecting a Network Management Service

Before you create your FPM devices on the SmartServer, you need to verify that you have selected a
network management service mode (LNS or Standalone) for running your LONWORKS network.

In LNS mode (LNS Auto or LNS Manual), the SmartServer transmits network messages to
devices through an LNS server, and the SmartServer and the devices connected to it communicate
in a peer-to-peer manner. You must use LNS mode if you plan on using LONWORKS connections
to bind the data points in your FPM application to other data points. You cannot use LNS mode if

your FPM uses a dynamic interface.

In Standalone mode, the SmartServer is the network manager. It directly transmits all network
messages to the devices connected to it, and the network functions as a master-slave system,
where the SmartServer is the master to the slave devices. You can use standalone mode to operate
a small, single-channel network that does not require LNS services, LONWORKS connections, or
connections to other network management tools. Networks running in standalone mode are
limited to a maximum of 200 devices (for FT-10 networks, you need to attach a physical layer
repeater to the network to exceed the 64-device limit posed by the physical channel). FPM
devices can use static or dynamic interfaces when the network is running in Standalone mode.

Using LNS Network Management Services

To configure the SmartServer to use LNS network management services for managing a LONWORKS
network, follow these steps:

1.

112

Commission the SmartServer with the LonMaker tool, LNS tree, or another LNS application. For
more information on installing the SmartServer, see Chapter 12 of the i.LON SmartServer 2.0

User’s Guide.

Deploying Freely Programmable Modules on a SmartServer

2. Install the Echelon Enterprise Services 2.0 (EES 2.0) and LNS Server Service Pack 5 on an LNS
Server (running LNS Turbo Server [version 3.2] or newer) from the i.LON SmartServer 2.0 DVD
or the i.LON SmartServer 2.0 Programming Tools DVD. See Chapter 1 of the Echelon
Enterprise Services 2.0 User’s Guide for how to perform these installations.

3. Add an LNS Server to the LAN and then synchronize the network attached to your SmartServer to
an LNS network database. See Using the LNS Proxy Web Service in Chapter 3 of the Echelon
Enterprise Services 2.0 User’s Guide for how to do this.

Using Standalone Network Management

To manage a LONWORKS network using the SmartServer as a standalone network manager, follow
these steps.

1. Click the Driver button located directly above the navigation pane.

2. Click the network icon in the SmartServer tree. The Setup - LON Network Driver Web page
opens.

3. Inthe Network Management Service property, select Standalone.

Setup - LON Network Driver

Navigate
¢ E‘TW @ Name: Net Handle: 0
C General © Driver 3 =
Elg?g LAN = Description:
= & SmartServer 8 =

T Remote Access
Net

& my_mailserver.my domain.com

Lon Network Property Value

fcon fiCanNs [v]
Hidden O

Network Management
Service

LNS Server |

@ standalene (O LNS Auto (O LNS Manual | | Delete Items Hidden in LenMaker

LNS Network |

Use LNS Network |
Interface

Network Management Mode (£} OnNet O OffNet

Domain Lenqgth (bytes) 6 m

4. Click Submit. A dialog appears informing you that the SmartServer is being switched to
standalone mode. It takes approximately 1 minute to switch. When the SmartServer has finished
switching to standalone mode, the dialog closes and you can begin using your SmartServer.

=1 =]
5—& Switching to Standalone

L~

The i.LON SmartServer is now being switched to
standalone mode. This can take several minutes, please
be patient.

A

See Chapter 5 of the i.LON SmartServer 2.0 User’s Guide for how to switch the SmartServer from
Standalone to LNS mode and synchronize the network attached to the SmartServer to an LNS network
database.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 113

If you are using the SmartServer in Standalone mode and your internal FPM devices are using the v40
XIF (your FPM devices have dynamic functional blocks), you should not switch to LNS mode and
select an existing LNS network database to be synchronized with your SmartServer. Dynamic
functional blocks are not supported in LNS; therefore, the synchronization process may corrupt your
LNS network database.

Adding FPM Devices to the SmartServer

114

You can add devices representing your FPM applications to the SmartServer. To do this, you add a
new internal device to a LONWORKS channel in the SmartServer tree that uses a static or dynamic
interface. If you are integrating your FPM application with another LNS application such as the
LonMaker tool, the internal FPM device must use a static interface. If you are running your network
with the SmartServer operating as a standalone network manager, the internal device can use a static or
dynamic interface.

Note: You cannot use the LNS tree to add an internal FPM device.

Using a Static Device Interface

If you are integrating your FPM application with another LNS application such as the LonMaker tool,
the internal FPM device must use a static interface. To use a static interface for your FPM, you select
a device interface (XIF) file from the root/lonworks/import/<YourCompany> folder on the
SmartServer flash disk. This is the XIF file that you generated for your FPM with the i. LON
LonWorks Interface Developer tool (see Chapter 4 for more information on creating XIF files for
FPMs).

To add an FPM device that uses a static interface to a SmartServer, follow these steps:

1. Ifyou are integrating your FPM with an LNS application such as the LonMaker tool, verify that
you have completed the following steps:

a. Installed EES 2.0 and LNS Server Service Pack 5 on the i. LON SmartServer 2.0 DVD or the
i.LON SmartServer 2.0 Programming Tools DVD.

b. Added an LNS Server to the LAN.

c. Configured the SmartServer to use LNS network management services (LNS Auto or LNS
Manual) and synchronized the SmartServer to an LNS network database.

See Using LNS Network Management Services earlier in this chapter for how to do complete these
steps.

2. Expand the network icon in the SmartServer tree, right-click a LONWORKS channel, and then
select Add Device on the shortcut menu.

Deploying Freely Programmable Modules on a SmartServer

Select Channels

& General O Driver
Hgls LAN
=l & SmartServer
“i' Remote Access
= (@) HVAC Network
2% VirtCh
F = Channel 1
= (2 iLON Ap Properties

MNode

Digitz pelete
= (&) Digits

& (3 Digitz Rename
= (4] Digit:

Add Device
Real

@ LNS Net Add Router (e (Inte
2 my mailserver.my domain.com
& SmartServer
H (& 10.2.124.77

3. The Create Device dialog opens.

T

EE f Add Device

iy

Property Value

Name Net/LON/|
File Name

Location () External) Internal

@ LonMark (XIF)
Template

Select

[oK][Cancel]

4. In the Name property, enter a meaningful name for the device.

5. In the Location property, select Internal.

6. Expand the LonMark (XIF) folder, expand the root/lonworks/import/<YourCompany> folder,
and then select the XIF created for your FPM application.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 115

116

Sem

E f Add Device

Property WValue

Name Net/Lon/|HVAC FPM Device
File Name /froot/lonWorks/Import/YourCompany/HVAC.xif

Location O external & Internal

= @ LonMark (XIF)
[froot/lonWorks/Import/Echelon/iLON 100/
=} ! frootflonWorks/Import/YourCompany/
Select DigitalEncoder
g HVAC
[# math
Template

[OK][Cancel]

F |

Click OK. An internal device representing your FPM application is added to the bottom of the
LON channel tree.

Click Submit. You must wait approximately 15 seconds for the SmartServer to instantiate the
XIF file used for the internal device. Once the XIF has been instantiated, you can expand the
FPM device and its functional block to show the data points in the FPM application.

Note: The FPM device will be highlighted orange in the SmartServer tree, indicating that it not
commissioned. If you are running your LONWORKS network in LNS mode (LNS Auto or LNS
Manual) and you plan on using LONWORKS connections to bind the data points in your FPM
application, you must first commission your FPM device. See Commissioning FPM Devices later
in this chapter for more information on how to do this. You do not need to commission the FPM
device in order for it to run its application.

Select Networks

® General O Driver
= gls LAN
&2 SmartServer
T Remote Access
=« HVAC Metwork
= ¥ VirtCh
=& Channel 1
ILON App (Internal)
LNS Metwork Interface (11
El &/ HVAC FPM Device (Intern
= (] HVAC Function[0]
MviHVACMode 1
: nviSetPoint 1
= nviTemp 1
I® nvoAC oOnoff 1
I® nvoFurnace OnoOff
) nciHeartbeat 1
= ncioffline 1

= nciThrottle 1

Deploying Freely Programmable Modules on a SmartServer

Using a Dynamic Device Interface

If you are running your network with the SmartServer operating as a standalone network manager, the
internal device can use a static or dynamic interface. To use a dynamic interface, you select the
SmartServer’s v40 XIF from the root/lonworks/import/Echelon/iLON100 folder, and you then add a
dynamic functional block to the device that uses a UFPT representing your FPM application.

To add an FPM device that uses a dynamic interface to a SmartServer, follow these steps:

1. Add anew internal device to a LONWORKS channel following steps 2—5 in the previous section,
Using a Static Device Interface.

2. Expand the LonMark (XIF) folder, expand the root/lonworks/import/Echelon/iLON100 folder,
and then select the appropriate v40 XIF for your SmartServer (the ILON_FTT_V40 XIF if you
have the FTT model of the SmartServer; the ILON_PLC_V40 XIF if you have the PL model).

Hren,

% { Add Device

Property WValue
MName NEULQN,J|HVAC FPM

File Name /root/lonWorks/Import/Echelon/iLON100/ILON100_FTT_W40.XIF

Location) External (&) Internal

= @ LonMark (XIF) #
= froot/lonWorks/Import/Echelon/iLON 11
ILON100_FTT_W12
Select ILON100_FTT_V40
B ILON100_PLC_W12
[1Lon1o0_PLC_vap =

[0K][Cancel]

Al
3. Click OK. A new device with the name you specified is added to the tree under the LON channel.

4. Click Submit. You must wait approximately 15 seconds for the SmartServer to instantiate the
v40 XIF file used for the internal device before you can add an FPM functional block to the device
as described in the following steps.

5. Verify that your company’s updated resource file set, which should include the UFPTs on which
your FPMs are based, is installed in the root/lonworks/types folder on the SmartServer flash disk.
If your updated resource file set is not on a SmartServer, you will not be able to create FPM
functional blocks on that SmartServer. See Chapter 3, Creating FPM Templates, for more
information on how to generate your company’s resource file set and copy it to a SmartServer.

6. Right-click the internal FPM device you created, and then select Add Functional Block on the
shortcut menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 117

118

Select Devices

® General O Driver
Sl gfs LAN
I & SmartServer
‘T Remote Access
SEES
Bl =< LON
i iLON App (Internal)
@ RNI (Internal)
&/ HVAC FPM (Internal)
F 4 LtaNI (Internal) Properties
¥ ¥ VirtCh
¥ & my mailserver.my domain! Delete

Rename
Save as Template

Change Channel p
Add Functional Block

Manage p

The Add Functional Block dialog opens.

(7
Add Functional Block
1
Property Value
Name MNet/LOMN/HWVAC FPM;’"
Type VirtualFunctionBlock:
@ static
Select @ Dynamic
OK Cancel
[I) J

In the Name property, enter a name for the functional block that summarizes the functionality of
the FPM.

In the Select property, expand the Dynamic folder, expand the folder in the
root/lonworks/types/user directory containing your company’s resource file set, expand your
company’s resource file set to show the available UFPTs, and then select the UFPT representing
the FPM application (<company program ID>.UFPT<FPM Name>).

Deploying Freely Programmable Modules on a SmartServer

Add Functional Block

Property Value

Name Net/LON/HVAC Fem/HVAC Function|

Type #9FFD3E0000000400[5].UFPTHVAC Controller
@ static
= @ Dynamic

= frootflonworks/types/userfyourcompany/
=] B fom development
% #9FFD3E00D0000400[5.UFPTHVAC Controller
Select #9FFD3E0000000400[5].UFPTMath
@ #OFFD3EQ000000400[5].UFPTMathAdd
@ #9FFD3EO00D0000400[5].UFPTMathSubtract
@ #OFFD3EQQD0000400[5].UFPTSwitchEncoder
froot/lonworks/types/

froot/lonworks/typesfuserfechelon/

[oK][Cancel]

10. Click OK.

11. Click Submit. A functional block representing the FPM application and all of the data points
declared in the FPM application are added to the tree under the internal device.

Navigate

® General O Driver
H gls LAN
B & SmartServer
" Remote Access
B Net
== LON
i iLON App (Internal)
@ RNI (Internal)
= &/ HVAC FPM (Internal)
Node Object
% VirtFb
= [J HVAC Function
nviSetPoint
nviTemp
b nvoStatus
b nvochiller onoff
[® nvoHeater OnOff
2| nviEnable
M| nviHysteresis

Note: The FPM device will be highlighted orange in the SmartServer tree, indicating that it not
commissioned; however, you do not need to commission the FPM device in order for it to run its

application.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

119

Commissioning FPM Devices

If you are running your LONWORKS network in LNS mode (LNS Auto or LNS Manual) and you plan
on using LONWORKS connections to bind the data points in your FPM application with the data points
on the internal SmartServer device, on another FPM device, or on the external devices connected to the
SmartServer, you must first commission your FPM device. You can commission your FPM device
using the SmartServer tree or LNS tree in the SmartServer Web interface, or using an LNS application
such as the LonMaker tool.

Once your FPM device is commissioned in the LonMaker tool, you cannot use the SmartServer to
change the Commission Status or Application Status of the device. You can only use the LonMaker
tool to decommission and re-commission the device, and to set the device application online or offline.

Commissioning FPM Devices with the SmartServer

To commission your FPM device with the SmartServer tree or LNS tree in the SmartServer Web
interface, follow these steps:

1. Click Driver above the navigation pane in the left side of the SmartServer Web interface.

2. Expand the LNS Server (if in the LNS tree), network, and channel containing the FPM device to
be commissioned, and then click the FPM device. The Setup — LON Device Driver Web page
opens.

3. Select the Smart Network Management check box in the Smart Network Management column
header.

Setup - LON Device Driver

Select LON Devices oay, .
o ® nne, Name: HVAC Network/Channel 1/HVAC FPM Device Handle: 16
General Driver
F ~
ngE‘N w Description:
&9 SmartServer
T Remote Access
Bl () HVAC Network
& Virtch Lon Device Property Value
E1=< Channel 1
iLON App (Internal) Icon ‘App E]
LNS Network Interface (It Hidd 0O
I en,
= &/ HVAC FPM Device (Intern
B[] HYAC Function[0] [¥[Smart
QviHVACMode 1 Network Progress Identification Property Vvalue
:anethnt 1 s
| nvitemp 1 Neuron 1D |
I;WOH Requested Program ID [57d320000000400
nvoFurnace On
‘ nciHeartbeat 1 Maximum Number of Dynamic Functional Blocks 0
1 %1 Maximum MNumber of Dynamic Data Points 1]

4. Click Submit. The FPM device is commissioned and its corresponding icon in the SmartServer
tree should be clear.

Commissioning FPM Devices with the LonMaker Tool
To commission your FPM device with the LonMaker tool, follow these steps:

1. Inthe LonMaker tool, right-click the FPM device, point to Commissioning, and then click
Commission in the shortcut menu.

Deploying Freely Programmable Modules on a SmartServer

Browse. .,

Commis

Configure,
Delete

Go ko Functional Block. ..

Decommissian...
Load. ..

Propagate CP Values ko Device, .,

Replace...
Resync CPs...

Manage. ..
Maovve Device 4
=il [3

LON Plug |ns_

Properties...
ILON App " Copy
3 Duplicate
HVAC FPM Davica ILSH M

2. Follow the instructions in the Commission Device Wizard and then click Finish. See the
LonMaker User’s Guide for more information on using this wizard.

3. When the LonMaker tool is done commissioning the FPM device, the FPM device shape will be
solid green (online) or crosshatched green (soft offline), indicating that the FPM device has been
commissioned. In addition, the FPM device should be clear in the SmartServer tree.

Recommissioning FPM Devices

If you decommission the FPM device, you can re-commission it with the LonMaker tool and the
SmartServer Web interface following these steps:

1. In the LonMaker tool, right-click the FPM device, point to Commissioning, and then click

Commission in the shortcut menu.

2. Follow the instructions in the Commission Device Wizard and then click Finish.

3. When the service pin dialog opens, right-click the FPM device in the SmartServer tree in the
navigation pane on the left side of the SmartServer Web interface, point to Manage, and the click
Send Service Pin Message on the shortcut menu.

1.LON SmartServer
Setup - LON Devic

Select LON Devices ‘

O General & Driver

Eg?g LAN Properties
E1 & SmartServer
T Remote Access Pz
El-%: EPM Test 2x Rename

=5 LON
RNI (Internal}
2 HVAC FPM (Internal)
B3 router (Internal)
</ HVAC Device 8 (Inten
B2 iLON App (Internal)

=/ HVAC FPM Device (In

Save as Template

Change Channel §
Add Functional Block

Manage b

Send Service Pin Message
3

Replace
Commission
Decommission
Set Online

Set Offline

Fetch Program ID
Download Image
Activate Template
Download CP-File

HELP

roweren b = ECHELON'

LOG OFF

ition

(Domain.Subnet.Node)

l== (Domain.Subnet.Node)

|s00s00000000

37.1.16

HEX

.0.0

r of Simultaneous Transactions 0

Query Status
Clear Status
Wink

of Transactions

us

Reset

¥ VirtCh

=]

Bl 10.2.124.77

[A U]

<

& my mailserver.mvy domain.com
O
O

v

¥ 4

AppICaraT Imad

Done Template
Configuration Property

Reset

0 Milliseconds
Uncommissioned

0

Application Stopped (Offline) E]

|frc|UUIUHWUrksflmpurb'YuurCUmpannyVAC

J

[Add File Remove File]

File Downloal

4. The LonMaker tool recommissions the FPM Device. When the LonMaker tool is done, the FPM
device shape will be solid green (online) or crosshatched green (soft offline), indicating that the
FPM device has been commissioned

i.LON SmartServer 2.0 Programming Tools User’'s Guide

121

Testing FPM Applications

After you add an FPM application on the SmartServer, you can test it using the View — Data Points
Web page. To do this, you open the View — Data Points Web page, add the input and output data
points in the FPM device that you can use to observe the FPM application processing data point
updates, update one or more of the input data points, and observe that the output data points are
updated accordingly.

To test an FPM on your SmartServer, follow these steps:

1.
2.
3.

Click View and then click Data Points. The View — Data Points Web page opens.
Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

Under the FPM functional block, click the input data points that affect the values stored in the
output data points in the same FPM functional block and then add the output data points. The data
points appear in the View — Data Points Web page.

View - Data Points
w
Select Data Point Show Graph
@ General O Driver
Hals LAN -~ Name Format Value Unit Priority Status
£ &9 SmartServer Net/LON/HVAC FPM/HVAC oo degrees
T Remote Access J Function/nviTemp LA UL 0.00 E] E] < i LIS
L P Net/LON/HVAC FPM/HVAC degrees
E:8: Net 1 Function/nviSetPoint SNVT_temp_p 0.00 E] E] C 255 NUL
E =< LON Net/LON/HVAC FPM/HVAC ’7 degrees
E] iLON App {Internal d Function/nviHysteresis SUVAESTUT 0.00 E] E] C) LIS
@ RNI (Internal 3 ""‘“P"""",“CI ler{:m{:ﬁ SNVT_switch ~ |OFF E] Q --- 255 NUL

= & HVAC FPM (Internal) =

(£] Node Object

virth

B - HVAC Function
: nviSetPoint

nviTemp

b nvoStatus
b nvoChiller_OnOff
[nvoHeater_onoff
| nviEnable
i nviHysteresis

Enter values for the input data points that will cause the FPM application to update the value
stored in the output data point.

View - Data Points

Show Graph
Name Format Value Unit Priority Status
0 Net/LON/HVAC FPM/HVAC Function/nviTemp SNVT_temp_p 78 E] E] dcegrees 255 ONLINE
1 Net/LON/HVAC FPM/HVAC Function/nviSetPoint SNVT_temp_p 725 E] E] dceg"ee“" 255 ONLINE
2 | Net/LON/HVAC FPM/HVAC Function/nviHysteresis SNVT_temp_p 4.5 E] E] dcegrees 255 ONLINE
3 | Einction/nvoChiller OnOf SNVT_switch v | |ON E] 255 ONLINE

Observe that output data points are updated accordingly based on the algorithm you wrote in the
FPM application. In this example, the nvoChiller OnOff output data point (SNVT_switch) turns
on when the nviTemp input data point is greater than the sum of the nviSetPoint and the
nviHysteresis input data points (all SNVT_temp_p types).

Connecting FPM Data Points

After you verify that your FPM is functioning properly, you can use LONWORKS or Web connections
to connect the data points declared in your FPM to the data points on the internal SmartServer device,
the data points in another FPM application, and the data points of the external devices connected to the
SmartServer.

122

Deploying Freely Programmable Modules on a SmartServer

The major difference between LONWORKS connections and Web connections is that LONWORKS
connections propagate data point updates over a LONWORKS channel via the LonTalk Protocol or the
LonTalk protocol tunneled through an IP-852 channel. Web connections propagate data point updates
via SOAP/HTTP over a TCP/IP network. Web connections provide an alternative solution to
LONWORKS connections over an [P-852 channel for connecting devices over multiple networks;
however, Web connections are much slower (40 data point updates per second) than LONWORKS IP-
852 connections (1,000 updates per second).

To integrate your FPM applications with external devices stored in an LNS network database, you can
you can use LONWORKS connections, which you can create with the LNS tree or an LNS application
such as the LonMaker tool. Alternatively, you can copy the data points from the LNS tree to the
SmartServer tree via the LNS Proxy Web service and then create Web connections between the data
points from the SmartServer tree.

Creating LONWORKS Connections

You can connect the data points in your FPM application using LONWORKS connections. You can
create LONWORKS connections using the LNS tree in the SmartServer Web interface (via the LNS
Proxy Web service) or using an LNS application such as the LonMaker tool. You can create two types
of LONWORKS connections:

e Output data points on the SmartServer or external devices (the source data points) to the input data
points declared in the FPM application (the target data points).

e Output data points declared in the FPM application (the source data points) to the input data points
on the SmartServer, input data points in another FPM application, or the input data points on
external devices connected to the SmartServer (the target data points).

Note: If you are using the SmartServer in Standalone mode or your FPM devices are using the v40
XIF, you cannot create LONWORKS connections with the LonMaker tool. In this case, you can create
Web connections from the SmartServer tree to connect the data points in your FPM applications. See
the next section, Creating Web Connections, for how to do this.

Connecting FPM Data Points with the LNS Tree

You can create LONWORKS connections with the data points declared in your FPM application from
the LNS tree. To do this, follow these steps:

1. Verify that you have completed the following steps:

a. Installed EES 2.0 and LNS Server Service Pack 5 on the i. LON SmartServer 2.0 DVD or the
i.LON SmartServer 2.0 Programming Tools DVD.

b. Added an LNS Server to the LAN.

c. Configured the SmartServer to use LNS network management services (LNS Auto or LNS
Manual) and synchronized the SmartServer to an LNS network database.

See Using LNS Network Management Services earlier in this chapter for how to do complete these
steps.

2. Verify that you have commissioned the FPM device using the SmartServer or an LNS application
such as the LonMaker tool. See Commissioning FPM Devices earlier in this chapter for how to do
this.

3. From the LNS tree in the left frame of the SmartServer Web interface, expand the LNS Server,
LNS network database, channel, device, and functional block containing the hub (source) network
variable.

4. Right-click a hub (source) network variable and then click Add Binding in the shortcut menu.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 123

Select Data Points

® General O Driver

= gy LAN ~
= &) SmartServer
T Remote Access
(48 HVAC Network Properties

2 my mailserver.mv _domain.c

=& 10.2.124.50 B
= () HVAC Network Delete
= =< LON
Q AL Rename
Bl &f HVAC FPM Device | copy External NV

nviACSwitch_1 | Add Binding
: nviFurnacesw_]
I nvoHVACMode '«
(] HVAC Function[0]
= b VirtFb

5. The Configure — WebBinder Web page opens and the hostname of the LNS Server and the LNS
network database in which the hub network variable is stored appear under the WebBinder
Destinations icon in the application frame to the right.

Show Value

Configure - Web Binder
I
Select Source Data Point Select Target Data Points
@ General O Driver = k& Web-Binder Destinations
Hgfe LAN ~ | B]10.2.124.50
= & SmartServer (@) HVAC Network

T Remote Access
() HVAC Network
2 mv_mailserver.my domain.com
=l (S 10.2.124.50
Bl (@) HVAC Netwaork
E=< LON
& A1
= &f HVAC FPM Device
nviACSwitch_1
: nviFurnaceSw_1
= nvoHVACMode_ 1

(] HVAC Function[0]
® 4 VirtFb

6. From the Webbinder Destinations tree on the right frame, expand the LNS network database,
expand the network, channel, device and functional block containing the desired target network
variables to be connected, and then click one or more compatible target network variables.

124 Deploying Freely Programmable Modules on a SmartServer

Configure - Web Binder
Select Source Data Point Select Taraet Data Points
@& General O Driver = & web-Binder Destinations
o
H gfs LAN ~ | B@]10.2.124.50
=l & SmartServer =) HVAC Network
T Remote Access E=< LON
(49 HVAC Network o Al-1 _
Zomy mailserver.mvy domain.com = =f HVAC FPM Device
= (& 10.2.124.50 (] Digital Encoder(o]
=l (@ HYAC Netwark =[] HVAC Function[0
B = LON nciHeartbeat_1
o Al- 1 nciHysteresis_1
= of HVAC FPM Device = ncioffline_1
=] D Digital Encoder[0] ﬂ nciThrottle_1
nVIACSwitch_1 = nviHVACMode_1
nviFurnaceSw_1 = nv!SetPomt_l
= | nvoHVACMode_1 = nviTemp_1
= HVAC Network/LON/H' [nvoAC_onoff_1
[HVAC Function[0] 3 [nvoFumace_onofi_

7. References to the target LONWORKS network variables (ﬂ) are added underneath the hub
network variables in the LNS tree in the left frame. Updates to the selected hub network variable
will be propagated to the target network variables listed underneath the hub.

Repeat this step to connect the selected hub network variable to any other desired compatible
target hub network variables.

e If the target network variable is not compatible with the hub network variable a warning
message appears. You can delete the connection by right-clicking the reference to the target
network variable on the LNS tree in the left frame and clicking Delete on the shortcut menu.
See Chapter 5 of the i.LON SmartServer 2.0 User’s Guide for more information on how to do
this.

e You can also check whether a LONWORKS CONNECTION is valid by right-clicking the
reference to the target network variable on the LNS tree in the left frame and clicking
Validate on the shortcut menu. The WebBinder Validation Results dialog opens and
displays the results. See Chapter 5 of the i.LON SmartServer 2.0 User’s Guide for more
information on how to do this.

8. Click Submit. When an event-driven update defined in the device application occurs, the hub
network variable sends an updated value to the selected target network variables.

9. Optionally, you can change the messaging service used for the connection (Acknowledged,
Repeating, or Unacknowledged). To do this, click Driver, and then select one or more of the
target network variables under the hub network variable in the LNS tree.

Note that all LonWorks connections created in the LNS tree use Subnet/Node ID addressing.
This means that a message packet travels from the sending device to the destination device using
the 2-byte logical address of the destination device in the network.

The default messaging service for LonWorks connections created in the LNS tree is
Acknowledged LonBinding.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 125

Setup - Web Binder

Select Binding Targets

e

OGeneral @ priver ‘0-1 Name: HVAC Network/LON/HVAC FPM Device/HVAC Function[0]/nviHVACMode_1

I gf LAN ~
=& SmartServer
T Remote Access
[(48 HVAC Network
® 2 my mailserver.my domain.com

E‘ée 10.2.124.50 Binding Property Value
=l {4 HYAC Networl Service Type Acknowlegded LonBinding E]
EI=< LON .
& A1 Priarity 255 (0..255)
El &f HVAC FPM Device Propagate

50 Diai
: nviACSwitch 1
nviFurnaceSw 1
= [nvoHVACMode 1
= HVAC Network/LON/-
i (] HVAC Function[0] v

See Chapter 5 of the i.LON SmartServer 2.0 User’s Guide for more information on selecting a
messaging service.

10. You can add the hub and target network variables to the View — Data Points Web page and test
that the LonWorks connections are updating the target network variables accordingly. To test your
LONWORKS connections in the LNS tree, follow these steps:

Click View and then click Data Points. The View — Data Points Web page opens.
b. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

c. Inthe LNS tree, click the output data points on the SmartServer, an FPM, or on an external
device that are bound to input data points in the FPM application. Observe that the input data
points in the FPM application have the same values as the output data points to which they are

connected.
' P
View - Data Points
y
Show Graph
L |
First Log Entry: 2008-02-01 15:22:20 Entire Range Last Log Entry: 2008-02-01 15:23:01
Name P Format Value Unit Priority Status
Address
HVAC Network/LON/HVAC FPM HVAC
0 Device/Digital Encoder 10.2.124.50 SNVT_hvac_mode HVAC_COOLB E] mode 255 ONLINE
[0]/nwvoHVACMode_1 names
HVAC Network/LON/HVAC FPM HVAC
1 Device/HVAC Function 10.2.124.50 SNVT_hvac_mode HVAC_COOLE] E] mode 255 CONLINE
[0)/nviHVACMode_1 names

d. Click the output data points in the FPM application that are bound to the data points on the
SmartServer, another FPM, or an external device. Observe that the input data points on the
SmartServer or external device have the same values as the output data points in the FPM
application to which they are connected.

. .
View - Data Points
4
Show Graph
[
First Log Entry: 2008-02-01 15:25:33 Entire Range Last Log Entry: 2008-02-01 15:26:2(
Name g Format value Unit Priority Status|
Address
HVAC Network/LON/HVAC FPM Device/HVAC B E]
O Function[0]/nvoAC_OnOff_1 10.2.124.50 | SNVT_switch v 000 255 ONLING
HVAC Metwork/LON/iILON App/AC - E] E]
2 State/nviClaValue_1 10.2.124.50 | SNVT_switch M 0.00 255 OMLINg

126 Deploying Freely Programmable Modules on a SmartServer

http://10.2.124.111/user/echelon/ViewDataPoints_Help.htm

Note: For more information on creating LONWORKS connections with the LNS tree, including
how to validate and delete them, see Chapter 5 of the i.LON SmartServer 2.0 User’s Guide.

Connecting FPM Data Points with the LonMaker Tool

You can use the LonMaker tool to create LONWORKS connections with the data points declared in your
FPM application. To do this, follow these steps:

1. Verify that you have completed the following steps:

a. Installed Echelon Enterprise Services and LNS Server/Turbo Edition SP4 (required if you
installed Echelon Enterprise Services SR2) on the i. LON SmartServer 2.0 DVD or the i. LON
SmartServer 2.0 Programming Tools DVD.

b. Added an LNS Server to the LAN.

c. Configured the SmartServer to use LNS network management services (LNS Auto or LNS
Manual) and synchronized the SmartServer to an LNS network database.

See Using LNS Network Management Services earlier in this chapter for how to do complete these
steps.

2. Verify that you have commissioned the FPM device using the SmartServer or an LNS application
such as the LonMaker tool. See Commissioning FPM Devices earlier in this chapter for how to do
this.

3. Connect the data points in your FPM application using either the Connector shape in the
LonMaker Basic Shapes stencil, the Connector tool on the Visio Standard toolbar, or the
Network Variable Connection dialog box. See the LonMaker User’s Guide for more
information on creating LONWORKS connections with these methods.

4. Monitor the LONWORKS connections to observe that the data points in the FPM application and
the data points on the devices to which the FPM data points are bound are being updated

accordingly.
Out{100.0 1] % et h
VAC_COOL.
Hwas avica. Digital Encoder{l]
Sutef0.0 0f

2 ST

LON App

OUt[0-D 0 In:[0.0 D] ehivas2 P
evice.HVAC Function[0]

LON App.Fumace State

—
Ao
HUAL Funcsionfll] ruiSesPoint_1
A
HVAC Function[D] meiTemg:_1
LON
aaaaaa |
A1 ‘ ILON App | i ‘ ‘ i ‘
LMS Metwark |] il

HVAC FPM Davica ILON NI

Creating Web Connections

You can connect the data points in your FPM application using Web connections. You can use Web
connections if you want to use polled updates to process data point values, or you can use them if you
are running the network with the SmartServer operating in Standalone mode (LONWORKS connections
are not supported in this mode). Typically, you will create two types of Web connections:

e Output data points on the SmartServer or external devices (the source data points) to the input data
points declared in the FPM application (the target data points).

e OQOutput data points declared in the FPM application (the source data points) to the input data points
on the SmartServer, input data points in another FPM application, or the input data points on
external devices connected to the SmartServer (the target data points).

i.LON SmartServer 2.0 Programming Tools User’'s Guide 127

128

To create Web connections with the data points declared in your FPM application, follow these steps:

1.

If you want to use Web connection to bind the data points in your FPM application to data points
on SmartServers other than your local SmartServer, you can add one or more remote SmartServers
to the LAN. To add a remote SmartServer to the LAN, follow these steps:

a.

d.

Right-click the LAN icon, point to Add Host, and then click i.LON SmartServer 2.0 on the
shortcut menu.

Navigate

& General O Driver

S gk LAN
E & | Add Host P | &b Server (Email, Time, IP-852 Config)

& Remote Acte|
" Net ==/ 1.LON SmartServer

2 my_mailserver. @ Ins

The Setup — Remote i.LON SmartServer 2.0 Web page opens, and a SmartServer icon is
added to the tree view below the LAN icon.

Setup - Remote i.LON SmartServer

IP or Hostname
¢ |0000

Host Property Value

SOAP Path |N‘u’SDUiLON1UU.WSDL
HTTP Port (Web Server / SOAR) lr

Retry Time {defaults to 120 s) Ir Seconds
SOAP User Name * |

SOAP Password *

Format values in WebBinder

SOAP messages using Data Point Format v

[* For i.LON SmartServer Destinstion Servers, SOAP Authentication Parameters may be configured in the webparams.dat file

Configure the SOAP/HTTP properties of the SmartServer. See Chapter 3 of the i.LON
SmartServer 2.0 User’s Guide for more information on configuring these properties.

Click Submit.

If you want to use Web connections to bind the data points in your FPM application to the data
points of external devices stored in an LNS network database, you can copy the data points on the
external devices from the LNS tree to the SmartServer tree via the LNS Proxy Web service. To do
this, follow these steps:

a.

Follow the steps in Selecting LNS Network Management Services to install the Echelon i. LON
SmartServer 2.0 Enterprise Services, add an LNS Server to the LAN, and configure the
SmartServer to use LNS network management services (LNS Auto or LNS Manual).

In the LNS tree, expand the LNS network database, channel, device, and functional block
containing the network variable or configuration property to be added to the SmartServer tree,
right-click the network variable or configuration property, and then select Copy External NV
on the shortcut menu. To copy multiple network variables or configuration properties, click
one, and then either hold down CTRL and click all others to be copied or hold down SHIFT
and select another to select the entire range.

Deploying Freely Programmable Modules on a SmartServer

Nawvigate

® General O Dwivar
s EE LAN Properties
= & smartServer
T Remote Access
() HVAC Network | Delete
E my_mailserver.my
= & 10.2.124.50
= (@) HVAC Network | Copy External NV
=7 5‘151_1 Add Binding
=] D Al-1 Show Value

= Analo

= nciADCConfigure

| nciADCFilter

= nciDeviceOffset

= ncil ocation

ﬂl nciMaxSendTime 3

Duplicate

Fename

c. Inthe tree of the target SmartServer, right-click the any object in the network branch and click
Paste External... on the shortcut menu.

Mavigate

® General O Driver
= ghs LAN »~
=l &2 SmartServer
T Remote Access
(v HVAC Network
2 my mailserver.n Properties
= (& 10.2.124.50
El @) HVAC Networ Paste external ...
ol == :J;?D_N Rename
Hoaf Al-1
=] A1 Add Channel »
I Analog
= ncADCConfigure
) nciADCFilter
= nciDeviceOffset
= ncil ocation
= nciMaxSendTime I

d. The data points and their parent channel, device, and functional block are added to the
network tree of the target SmartServer.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 129

Select Channels

&) General O Driver
H gl LAN
= & SmartServer
" Remote Access
=l () HVAC Metwork
= ¥ VirtCh
== LOMN

£ iLON App (Internal)
=/ HVAC FPM Device

Fl & Al-1
=] a-1
P Analog
F 2 my mailserver.my domain.com

= (& 10.2.124.50
= (%) HVAC Network
= =€ LON
Haf Al-1

e. Click Submit.

3. From the local SmartServer tree on the left frame, right-click a source data point and then click
Add Binding in the shortcut menu. The source data point will typically be an output data point on
the internal SmartServer device, an output data point on an external device connected to the
SmartServer, or an FPM output data point. Updates to the source data point in a Web connection
are propagated to one or more target data points.

Select Source Data Point

& General O Driver
H gfs LAN ~
= & SmartServer

" Remote Access
El (& HVAC Network
=== LON Duplicate
i iLON App (Internal)

HVAC FPM (Internal) | Delete

RNI (Internali

RNI (Internal Rename
@ Ltaldv (Internal)
= B A1 Add Binding
= (] Analog Input[0]

Analog_Temperat Show Value
Analog Inputf1
£ #| Digital Encoder[0

t #| Digital Encoder[1
1| Analog Fn Blocklo
® FJ| Analog Fn Blockl1
1| Analog Fn Block[2
® 1| Analog Fn Blockl3 hd

4. The Configure — Web Binder Web page opens and the hostnames of the local SmartServer and
any remote SmartServers added to the LAN, which are collectively referred to as Webbinder
Destinations, appear in the application frame to the right. If a Webbinder Destination cannot be
reached, a single child node called “Target” appears with the IP address of the SmartServer below
the Webbinder Destinations icon.

Properties

130 Deploying Freely Programmable Modules on a SmartServer

Configure - Web Binder

Select Source Data Point

@ General O Driver
H als LAN
=l & SmartServer
T Remote Access
[l (@) HVAC Network
==< LON
i iLON App (Internal)
HVAC FPM (Internal)
RNI (Internal)
4 Ltaldv (Internal)
5] =N S
= (] Analog Input[0]

Analog_Temperatur:
Analog Input[1

£+| Digital Encoder[0
{}| Digital Encoder1
= F¥ Analog Fn Block[o

Select Target Data Points

=)& web-Binder Destinations
-'érl SmartServer

From the Webbinder Destinations tree on the right frame, expand the SmartServer Webbinder

destination icon containing the target data points to be connected, expand the network, channel,
device, and functional block containing the desired target data point, and then click one or more

compatible target data points.

The target data point will typically be an input data point declared in the FPM application (if the
source data point is an output data point on the internal SmartServer device or an output data point
on an external device), or it will be an input data point on the internal SmartServer device or an

external device connected to the SmartServer (if the source data point is an FPM output data

point).

Configure - Web Binder

Select Source Data Point

@ General O Driver
S gfs LAN
B & SmartServer
T Remote Access
El (& HVAC Network
E5< LON
i iLON App (Internal)
= & HVAC FPM (Internal)
HVAC Function[0]
HVAC Function[1
(] switch Encoderl0
(] switch Encoderf1
= {§ VirtFb
@ RNI (Internal)
@ LtaLdv (Internal)
Sl = JN S
= [Analog Inputf0]
= b Analog_Temperature
| smartServer:HVA(
(] Analog Input(1]

hd

Select Target Data Points

= k& web-Binder Destinations
E|-a'| SmartServer
=l (@ HYAC Network
B = LON
E] ILON App (Internal)
=l & HVAC FPM (Internal)
= (] HYAC Function[0]
: nviHVACMode_1
nviSetPoint_1
‘ nviTemp_1
b nvoac_onoff_1
h nvoFurnace_0OnOff_1
ﬂ nciHeartbeat_1
ﬂ ncioffline_1
ﬂ nciThrottle_1
ﬂ nciHysteresis_1
(] HvAC Function[1]
(] switch Encoder[0
(] switch Encoderf1

4} VirtFb
o

i.LON SmartServer 2.0 Programming Tools User’'s Guide

131

6. Click Submit. References to the target data points are added underneath the source data point in
the local tree on the left frame.

7. Test that your Web connections are updating the FPM data points accordingly following these
steps:

a. Click View and then click Data Points. The View — Data Points Web page opens.
b. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

c. In the tree, click the data points under the FPM functional block that are members of a Web
connection. Click the data points on the SmartServer that are bound to the FPM data points in
the Web connections.

d. In the following example, observe that the 'voHVACMode_1 output data point on the
HVAC device (#2) has the same value as the nviHVACMode_1 input data point on a
different functional block on the HVAC device (#3); the Analog_Temperature data point on
the external Analog Input device (#4) has the same value as the nviTemp_1 input data point
on the HVAC FPM device (#5); and the nvoAC_OnOff_1 output data point in the HVAC
FPM (#8) has the same value as the nviClaValuel data point on the SmartServer (#9). These
data points are bound with Web connections, which keep these data points synchronized.

View - Data Points

Show Graph
|
|
First Log Entry: 2008-02-03 16:51:16 Entire Range Last Log Entry: 2008-02-03 16:53:50
MName Format Value Unit Priority Status
HWVAC Network/LON/iLON App/Digital Input E]
] 1/mviclsvaluerb, 1 SNVT_switch.state » 1 [3 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder B E]
[0)/miACSwitch_1 SNVT_switch.state + 1 state code 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder E] HVAC mode
e L B SNVT_hvac_mode HvAC CoOL[v] [L] Hurc 255 ONLINE
HVAC Network/LON/HVAC FPM/HVAC Function E] HWVAC mode
[0]/nviHVACHads_ 1 SNVT_hvac_mede HVAC_CoOL E] names 255 ONLINE
HVAC Network/LON/AI-1/Analog Input " E]
[0]/Analog. Temperature SNVT_temp_f#US 78 [3 F 255 ONLINE
HVAC Network/LON/HVAC FPM/HVAC Function gy yemn feus 73 E] E] oF 255 ONLINE
[0]/nwiTemp_1
HVAC Network/LON/HVAC FPM/HVAC Function . E] o
& | [Dl/nvisetPont 1 SNVT_temp_f2US 72,5 E] F 255 CNLINE
HVAC Network/LON/HVAC FPM/HVAC Function] E]
7 [0]/neiHysteresis. 1 UCPTHysteresis 4.5 E] °F 255 ONLINE
HVAC Network/LON/HVAC FPM/HVAC Function B E]
- [0]/mvoAC. OROFF_1 SNVT_switch ~ ON 255 ONLINE
HWVAC Network/LON/iLON App/Digital Cutput E]
9 viclavalue 1 SNVT_switch w ON E] 255 ONLINE

e. Enter different values for the input data points in the Web connections and observe that the
FPM application processes the updated values received by its input data point and writes a
value to the output point, The Web connection propagates the updated value in the FPM
output data point to the input point to which it is connected, which may be on the
SmartServer, on another FPM, or on an external device.

In this example, the value in the Analog_Temperature data point on the external Analog
Input device (#4) has dropped to 65°F. The Web connection propagates this value to the
nviTemp_1 input data point on the HVAC FPM device to which it is connected (#5). The
decreased temperature is calculated by the FPM application, which results in its
nvoAC_OnOff_1 data point (#8) being changed to OFF. The Web connection then
propagates the updated OFF value in the nvoOAC_OnOff_1 data point to the nviClaValuel
data point on the SmartServer (#9).

132 Deploying Freely Programmable Modules on a SmartServer

. . B
View - Data Points
M
Show Graph
L |
First Log Entry: 2008-02-03 16:51:16 Last Log Entry: 2008-02-03 16:54:42
Mame Format Value Unit Priority Status
HVAC Network/LON/iILON App/Digital Input - E] E]
Y i/nviClsvalusFb 1 SNVT_switch.state v 1 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder - E]
- [0)/mviACSwitch_1 SMVT_switch.state v [1 B state code 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder B HVAC mode
[l (S o ar o SNVT_hvac_mode HVAC COOL[v] [] HVAC 255 ONLINE
HVAC Network/LON/HVAC FPM/HVAC Function E] HVAC mode
3 [0]/nviHVACHode. 1 SNWT_hvac_mode HWVAC_COOL B names 255 ONLINE
HWVAC Network/LON/AI-1/Analog Input B a
4 [0)/Analog Temperaturs SNVT_temp_f2US 413 Q F 255 ONLINE
5 HVAC Network/LON/HVAC FPM/HVAC Function SNVT_temp_f£US ,755 E] B oF 255 ONLINE
[0]/nviTemp_1
HVAC Network/LON/HVAC FPM/HVAC Function B o
[0)/mviSetPaint_1 SNVT_temp_f2US 72.5 Q F 255 ONLINE
7 HVAC Network/LON/HVAC FPM/HVAC Function) cory crerecis 45 B E] oF 255 ONLINE
[0]/nciHysteresis_1
HWVAC Network/LON/HVAC FPM/HVAC Function E]
[0)/nvoAC. OnOF 1 SNVT_switch v |oFF] 255 ONLINE
HVAC Network/LON/ILON App/Digital Cutput - B E]
2 1/nviClavalue_1 SNVT_switch b/ |OFF 235 ONLINE

Note: For more information on using Web connections, including how to validate, delete, and add
attachments to them, see Chapter 4 of the i.LON SmartServer 2.0 User’s Guide.

Creating Custom FPM Configuration Web Pages

You can create configuration Web pages for your FPM applications using i.LON Vision 2.0. To do
this, you add i.LON Vision 2.0 read/write and application objects to the default custom Web page that
was created for your FPM when you uploaded it to the SmartServer flash disk. The default custom
Web page for your FPM is located in the root/web/config/FB folder on the SmartServer flash disk.

Once you publish the FPM configuration Web page, you can click the General button above the
navigation pane on the left side of the SmartServer Web interface, click the functional block
representing your FPM application, and use the configuration Web page to read and write values to the
data points in your FPM application. In addition, all instances of the same functional block in a static
device interface and any new FPM devices you create will automatically have this custom FPM
configuration page built for them.

To create a custom FPM configuration Web page follow these steps:

1. Verify that a default configuration Web page has been created for your FPM application. To do
this, use an FTP client to browse to the root/web/config/Fb/folder on the SmartServer flash disk
and confirm that an .htm file with the program ID and name of your FPM application is in the
folder.

B[l=]

X
4:

File Edit Yiew Favorites Tools Help

eBack @ d lﬁ /_J Search /7 Folders v

address (& Fop 10,2, 124,82 webjconfig/Fhy 4 Ga
Mame Size | Type Modified

File: Falder 2/4{2008 11:52 &M
Other Places [Chimages File Folder 2{4/2008 2:01 PM
@ config ICinls File Folder 2{4/2008 11:51 AM
T o Dacmente £ | 9FFD3E0000000400[5] UFPTHYACContraller.htm 4.02KB HTML Document 2/4{2008 3:44 P
= M £ | 9FFDIE0000000400{5] UFPTMath. htm 691 bytes HTML Dacument 2/4{2008 11:15 AM
8 My Network Places £ | 9FFD3EN000000400[5]. UFPTSwitchEncader . htm 978 bytes HTML Document 2/4/2008 11:52 &M

Details

i.LON SmartServer 2.0 Programming Tools User’'s Guide 133

134

If an .htm file for your FPM application is not in the folder, use the i.LON Development tool to
create the default FPM configuration Web page following these steps:

a. Inthe C/C++ Projects view, expand the Release folder, right-click the <company program
ID>.UFPT<FPM name>.app file and then click Transfer to i.LON SmartServer in the
shortcut menu.

b. In the Deployment Settings window of the Install FPM Module dialog, select the Default
Web Page check box.

c. Click Finish. The FPM executable module is reloaded on your SmartServer and the custom
FPM configuration Web page for the FPM application is created.

Install the i.LON Vision 2.0 software from the i. LON SmartServer 2.0 DVD or the i. LON
SmartServer 2.0 Programming Tools DVD, and then create a Website connection between i.LON
Vision 2.0 and your SmartServer. For more information on how to do this, see the i.LON Vision
2.0 User’s Guide.

Click Choose on the Editor toolbar ((chesse |). The Select File dialog opens.

Browse the root/web/config/Fb directory on the SmartServer flash disk, select the .htm file for
your FPM configuration Web page, and then click OK.

i.LOM Vision - Select File

] =

= & 10.2.124.165
= | config
= 2 Fb
EH = ris
~ 9FFD3E00D0000400[5], UFPTHYACConkroller . Hitm
|7 images
I nls
|) scripts
=) styles
| user
| |7 WwshL
@ index. Kt
& index. html

#

[+ [+

®

H =

|

[QK l [Refresh] [Cancel l [Help]

Click Edit on the Editor toolbar (| EETt) or click the Layout tab.

Observe the layer containing the “DEFAULT _TEXT” string. This is an NLS Text object that
was automatically added to your Web page when it was created.

Deploying Freely Programmable Modules on a SmartServer

“_ i.LON Vision EEX

T Fle Edt View Insert Format Table Help

€. 500 99 QX
i @‘ N 71‘ M= http:ff10.2, 124,165/ config/Fb/9FFD3E0000000400%5B85%50, UFPTHYACController, htm ™| _!{
i Back " Reload Stop Hare: E — Choose Mew Publish Discard

2 % 0

M- A|B 7 U|«

¥ Browse | # Layout

i
fil
[y
{110}
1]
i

[
DEFAULT TEXT
‘D

Oy

o)

The NLS Text object is used to translate custom SmartServer Web pages into multiple languages.
The NLS Text object provides a single user-defined key that you can associate with multiple text
strings in different languages. These text strings are saved in .properties files corresponding to
the custom Web page and their respective languages (e.g., page.properties, page de.properties,
page_es.properties, and so on).

The .properties files are stored in the nls folder in the same directory as your custom FPM
configuration Web page. An nls folder containing a default .properties file was automatically
added to the web/config/fb directory on your SmartServer when your custom FPM configuration
Web page was created. You can edit the .properties file and create more for other languages
using either the demo or full version of the i.LON SmartServer 2.0 Programming Tool. See
Creating Localized FPM Configuration Web Pages in Chapter 8 for more information on using
the i.LON SmartServer 2.0 Programming Tool to translate the NLS Text objects in your custom
FPM configuration Web pages.

You can edit or delete the provided “DEFAULT TEXT” NLS Text object, and you can add
additional NLS Text objects to your custom FPM configuration Web page. See the i.LON Vision
2.0 User’s Guide for more information on the NLS Text object.

7. Click Insert and then select an i.LON Vision 2.0 read/write or application object to be added to
your custom FPM configuration Web page.

Note: You cannot add Image Swapper or Check Box objects to your custom FPM configuration
Web page.

8. The respective dialog for the selected i.LON Vision 2.0 object opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 135

i.LON Vision - Object

Laver
Left: width: 200 | Topr [20 | Height: Zindex: [1 |
Drata Poink
Marne: | | (&) Real () Alias () Prog
Format: | |
Feedback.
Marme: | | (%) Real () Alias () Prog
Farmat: | | Seleck
Setkings
] read only
Max Age: | | Minirnurm: |D |
Precision: | | Maximurm: |IDD
Wirite Priority: | |
[shows unit
Presentation
|5Horizonta|5lider v| 1 nrr e)
TOO R
[oK] [Refresh l [Zancel l [Help]

9. Specify the data point to be monitored and controlled by the i.LON Vision 2.0 object. You can
either click Prog Name and manually enter the name of the data point, or you can click Select and
use the Data Points dialog to select the data point following these steps:

a.

136

In the Data Points dialog, click Prog Name. This enables all instances of your FPM
application to write to their respective data points. You must select this option or your FPM
configuration Web page will not function properly for other instances of the FPM.

Expand the network, channel, device, and then the functional block of the data point to be
monitored, and then click the desired data point. If the data point has a structured type, you
can expand the data point and select a field within the structure.

Click OK to return to the object dialog. The Name property is updated with the
programmatic name of the data point. The Format property is updated to show the format
description of the selected data point. The format description consists of the data point’s
program ID; SNVT, SCPT, UNVT, UCPT, or built-in data type; and format (e.g., SI metric or
US customary).

Deploying Freely Programmable Modules on a SmartServer

i.LON Vision - Object

SVG Object

Format: | #0000000000000000[0] SKYT _temp_f |

Feedback.

Laver

Lef: |20 | width: [200 | Top: [20 | Height (300 | Zindee |1 |
[rata Point

Marne: |nviTem|:| | () Real () Alias (3) Prog

Marme: | | (%) Real () Alias () Prog

Format: |

| Seleck

Setkings
] read only

Max Age: Minirnurm:]
| | |

Precision: | | Maximurm: |IDD

Wirite Priority: | |
[shows unit

Presentation

. Thermameter

)

[[w]'s] [Refresh l [Cancel l [Help]

10. Configure the other object properties in the dialog following the i.LON Vision 2.0 User’s Guide,

and then click OK.

11. Repeat steps 7-10 to add other i.LON Vision 2.0 objects to your custom FPM configuration Web

page.

12. Optionally, you change the title of your FPM configuration Web page. The default page title is

NLS_TEXT. To change the page title, follow these steps:

a. Click Format and then click Page Title Properties. The Page Properties dialog opens.

i.LON V¥ision - Page Properties [Z|

Page Title: | |

Pall Interval | |

(0] 4 l [Cancel] [Help]

8. In the Page Title box, enter a descriptive page title and then click OK.

Tip: You can translate the page title into a number different languages using the i. LON

SmartServer 2.0 Programming Tool. See Creating Localized FPM Configuration Web Pages

in Chapter 8 for more information on how to do this.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

137

13. Click Publish on the Editor toolbar (| p;%h), click File and then click Publish, or click the Browse
tab to publish your custom Web page to save the current draft of your custom FPM configuration

Web page.

15. View your custom FPM configuration Web page from the SmartServer Web interface. To do this,
click the General button above the navigation pane on the left side of the SmartServer Web
interface, and then click the functional block representing your FPM application.

HVAC FPM Configuration Web Page: HVAC Function
ETLIE [vac_cooL [7) Data Point Name = Net LON/HVAC FPM Device/ HVAC Function[0]/mviHIVACMode
@ General O Driver Value = HVAC_COOLHVAC mode names
H gk LAN Status = AL_NO_CONDITION
5 & SmartServer Priority = 255
& T Remote A - - -
i ShELeACEEE 78 o7 Data Point Name = NetLON/HVAC FPM Device HVAC Function[0]/mviTemp_1
"Se< LoN Value = 78°F
B ILON App (Internal) Status = AL_NO_CONDITION
= &/ HVAC FPM Device (Int Priority = 255
1 (] HYAC Function[0] it Name — Net LON/HV., : :
HVAC Function 1]:!ata Pomt Name = Net'LON/HVAC FPM Device HVAC Function[0]/nviSetPoint_1
Switch Encoder(01 O 1B 20 30 48 50 80 70 80 80 108 Valie =72.53512°F
(0 5witch Encoder(1] W | Status = AL NO_CONDITION
B) VirtFb Priority = 235
@ Ltaldv (Internal)
@ RNI (Internal)
8% virtCh
Z my_mailserver.my demain.ce s _ ppp— . - . .
oM E] Data Pomt Name = Net LON/HVAC FPM Device HVAC Function[0]nvoAC_OnOff 1
Value = 100.0 1aull
Status = AL NO_CONDITION

Note: If the FPM configuration Web page in the SmartServer Web interface does not display the
draft you published with Contribute, you need to clear your browser’s cache. To do this, follow
these steps (for Internet Explorer 7):

a. On the Internet Explorer Tools menu, click Internet Options. The Internet Options dialog
opens to the General tab.

a. Under Browsing History, click Delete to open the Delete Browsing History dialog.

9. Inthe Temporary Internet Files section, click the Delete Files button. Click Yes to confirm the
deletion of the files. All the files that are currently stored in your cache are deleted.

10. Click Close, and then click OK to exit.
11. Press F5 or click the refresh button on the Internet Explorer toolbar to refresh the screen

16. You can now use your custom FPM configuration Web page to read and write values to the data
points in your FPM application.

Updating FPMs

The following section describes how to update your FPMs. The steps you perform depend on which
component of your FPM you want to update: data point declarations (resource files), the FPM
application (the source file), or the device interface.

Updating Data Point Declarations

You can add new network variable and configuration property members to the UFPT used by your
FPM, or update existing members and then add or update the data points in the source file (.cpp
extension).

To update the data point declarations in your source file, follow these steps:

1. Use the NodeBuilder Resource Editor to generate an updated resource file set for your company.
See Chapter 3 for more information on generating an updated resource file set.

138 Deploying Freely Programmable Modules on a SmartServer

2.

Upload your company’s updated resource file set to the root/LonWorks /types/User/<Your
Company> folder on the SmartServer flash disk.

Use the i.LON SmartServer 2.0 Programming Tool to manually import the new or updated data
point declarations. In the LonMark Resource View, right-click the UFPT from which the FPM
project was created, and then click Import All Declarations on the shortcut menu. Alternatively,
you can click the UFPT and then click the Import Declare All Data Points icon (k) at the top of
the LonMark Resource View.

Continue to the next section, Updating FPM Applications and Drivers. Note that if you are
updating an FPM application that uses a static interface, you must also update the device interface
(XIF) file, as described in Updating Device Interfaces.

Updating FPM Applications and Drivers

You can use the i.LON SmartServer 2.0 Programming Tool to modify the source file (.cpp extension)
of your FPM application or driver. After you have finished modifying the code, you can upload the
updated FPM to your SmartServer with the i. LON SmartServer 2.0 Programming Tool. To do this,
follow these steps:

1.

In the C/C++ Projects view of the i.LON SmartServer 2.0 Programming Tool, expand the
Release folder, right-click the <company program ID>.UFPT<FPM name>.app || .drv file and
then click Transfer to i.LON SmartServer in the shortcut menu.

The Install FPM Module dialog opens with the Deployment Settings window.

Optionally, you can modify the properties in the window as described in Uploading FPM
Applications and Drivers earlier in this chapter.

Click Finish to upload your updated FPM to your SmartServer.

If you are deploying an updated FPM application, the current FPM executable module (.app
extension) is stopped and unloaded, and the updated module is then loaded and initialized.

If you are deploying an updated FPM driver, reboot the SmartServer to initialize the updated
module.

Updating Device Interfaces

You can update the static device interface (XIF) file used by a FPM application, and you can change
the device interface used by an FPM device from a dynamic interface to a static interface and vice
versa.

To update the device interface and activate it in on the SmartServer, follow these steps:

1.

Create a new model file or update an existing model file, use i.LON LonWorks Interface
Developer tool to convert the model file to a new XIF file, and then upload the new XIF file to the
root/lonWorks/Import/<YourCompany> folder on the SmartServer flash disk. See Chapter 4 for
more information on these steps.

Verify that you have selected a network management service mode as described in Selecting a
Network Management Service earlier in this chapter.

Click Driver.
Select one or more devices from the tree to be upgraded.
e To select one device, click that device. The Setup - LON Device Driver Web page opens.

e To select multiple devices and perform a batch upgrade, click one device and then either hold
down CTRL and click all other devices to be upgraded or hold down SHIFT and select
another device to upgrade the entire range of devices. The Setup - LON Device Driver Web
page opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 139

140

5.

[__Submit Setup - LON Device Driver

o Lon Device Properly Value
@ 1 iLON App (Internal) 1ean [Aer B
= By Router Onternall . -
® @ BN (Internal] 1eee
o HVAC FPM (Internal) [smart
& () Noge Qbisct e Progress Identification Property Value
= & VurtFh HManagement

=] HVAC Funchion Neuren 10
T eme O Program 1D [9000010128610428

puiHYACMode Masimum Number of Dynaméc Functional Blocks 500
m nvotirConditionsr Maximum Number of Cyramic Ciata Paints 3000
I ovoFurnace_Onol Maamuem Number of Dynamas Catd Poin
= poHysteresis Gengraphizal Pasition [

= noTheottle Primary Addrass (Domain.Subnet Node) 0.0

-0 [P .
® 8 my mailsanermy domain.cam Secandary Address (Domain. Subnet.Hode) 8.0

Maxmum Number of Semulanecus Transachions 0

poiHeartbeat
: e Location 15 000000000000 WX

Select LUN Devices .
. — -, Mama: Neb/LONMHVAC FPM Handle: -
OrGeneral @ Driver
Description:

Maximal Lifetime of Transactions 0 Milliseconds
() Commssian Status |Uncormmissioned
(] application Status :Nlmu Hiachisd
=] agplication Imsae [B
5 | Sane Template [iraattanWarksAmpod/EchelaniL OHI00ILONI00_FTT_V30 U

Select the XIF file to be activated, following these steps:

In the Template property, click the button to the right.
The Choose File dialog opens.

Choose File

Property WValue
File Name

[Template

Select
@ LonMark (XIF)

[Cancel]

r |

Expand either the LonMark (XIF) folder, expand the subfolders containing the XIF file to be

loaded onto the SmartServer, and then click the XIF file.

Deploying Freely Programmable Modules on a SmartServer

d.

c.

Choose File

Property Value
File Name /root/lonWorks/Import/YourCompany/HVAC_Solution.xif

Template
= @ LonMark (XIF)

froot/lonWorks/Import/Echelon/iLON100/
Jfroot/lonWorks/Import/Echelon/LonPoint/Version2/
Jroot/lonWorks/Import/Echelon/LonPoint/Version3/
Jfroot/lonWaorks/Import/Echelon/FPM/

= froot/lonWorks/Import/YourCompany/

Select & hvac

'@ SwitchEncoder

‘& SwitchEncoder_rev?
& SwitchEncoder_revl
& SwitchEncoder[1]
/& HVACControl

& math_revi

& HVAC_Solution

[OK][Cancel]

Click OK to return to the Setup - LON Device Driver Web page.
Click Submit.

Right-click one of the selected devices in the SmartServer tree, point to Manage, and then click
Activate Template in the shortcut menu. Alternatively, you can clear and then select the Smart
Network Management check box to the left of the Template property in the Setup -LON Device

Driver Web page and then click Submit.

Q
.LON SmartServer vowee o = ECHELON
Send Service Pin Message
SETUP Replace cS HELP LOG OFF
Commission
Setup - LON Dev
Decommission
set Onine
- Set Offline
Select LON Devices [e——
. Fetch P jin}
O General & Driver Properties Erenltr e 0
Download Image HEX
Delete
Activate Template
Rename
Download CP-File
Save as Template
Query Status
== LON Change Channel § s
i iLon App (Internal) Clear Status
B3 Router (Internal Add Functional Block | wink ioned B
= @ RNI (Internal) Reset
B o7 HVAC FPM (Internal Manage b == hed (]
(] Node Object
{J VirtFb i ‘ [
E| - HVAC Function ‘ImDUIDnkasJ’\mpnrb’YuurCnmpanylHVACisnlutmn,xlf B
nuTemp ([addrle][Removerie J[=~ J[-
nviSetPoint Property
| nviHVACMode # File Download
| nvoairconditione
b nunFirnare one™

7. You must wait approximately 15 seconds for the SmartServer to instantiate the updated XIF file.
Once the XIF has been instantiated, you can expand the FPM device to see the functional blocks

and data points in the updated XIF.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 141

Select LON Devices

O General & Driver
E glz LAN
EﬁJSﬂla.IISEﬂEI
l ' Remote Access
=i Net
lles,;mrtt:h
E== LON
i iLON App (Internal)
@ RNI (Internal)
=l &/ HVAC FPM (Internal)
(] HVAC Function[0]
=[] HVAC Function[1]
=[] switch Encoder[0]
: nviACSwitch 1
nviFurnaceSw 1
[nvoHVACMode 1
] switch Encoderf1
{§ VirtFb
H 2 my mailserver.my domain.com

8. If you switched a static device interface to a dynamic interface, add a functional block
representing your FPM application as described in the Using a Dynamic Device Interface section
earlier in this chapter

Deploying FPMs on Multiple SmartServers

142

After you have deployed FPMs on a development SmartServer, you can deploy the FPM applications
and drivers you have developed on multiple SmartServers. To do this, each SmartServer on which an
FPM application or driver is to be deployed, must have an FPM programming license from Echelon.
You can then copy the files required to run the FPM applications and drivers to the SmartServer flash
disk, reboot the SmartServer (FPM drivers only), and then create, commission, and connect the FPM
devices on the SmartServers.

To deploy FPM applications on multiple SmartServers, you do the following:
1. Verify that an FPM programming license from Echelon is installed on each SmartServer.

2. Verify that you have the correct user name and password to access your SmartServer via FTP and
that FTP access is enabled on your SmartServer. To do this, follow these steps:

a. Right-click the local SmartServer icon, point to Setup, and then click Security on the
shortcut menu. Alternatively, you can click Setup and then click Security. The Setup —
Security Web page opens.

b. Inthe General property, verify that the FTP/Telnet User Name and FTP/Telnet Password
properties are correct.

c. In the Service property, verify that the Enable FTP check box is selected.

3. Inthe browser of an FTP client such as Microsoft Internet Explorer 7, enter the FTP URL of your
SmartServer (ftp://192.168.1.222, for example).

4. Enter the FTP/Telnet user name and password for accessing your SmartServer via FTP.
5. Copy the following files to the listed folder on the SmartServer flash disk:

e Copy your company’s resource file set for the FPM ((ENU, fint, .fpt, .Is, and .typ files) to the
root/lonworks/types/user/<YourCompany> folder.

Deploying Freely Programmable Modules on a SmartServer

e Ifyou are deploying an FPM application that uses static functional blocks, copy the device
interface (XIF) file (.xif extension) to the root/lonworks/import/<YourCompany> folder.

e Copy the FPM executable modules (.app or .drv extension) to the
root/modules/user/<YourCompany> folder.

e If you created a custom FPM configuration Web page for your FPM applications, copy your
custom Web pages to the root/web/config/Fb folder.

6. If you are deploying an FPM driver, reboot the SmartServers.

7. Create, commission, and connect the FPM devices on the SmartServers as described in this
chapter.

Deploying Licensed FPM Applications

You can deploy Echelon first-party FPM applications and third-party FPM applications on your
SmartServer. To do this, your SmartServer must not only have an FPM programming license from
Echelon, but it must also have a separate FPM application license from Echelon or the third-party FPM
vendor for the FPM application being deployed on your SmartServer.

To deploy an Echelon first-party FPM application or a third-party FPM application on your
SmartServer, you do the following:

1. Verify that the license for the Echelon first-party FPM or third-party FPM to be deployed is
installed on the SmartServer. Echelon or the third-party FPM vendor should provide you with
instructions on how to install their FPM application licenses on your SmartServer.

2. Verify that you have the correct user name and password to access your SmartServer via FTP and
that FTP access is enabled on your SmartServer. To do this, follow these steps:

a. Right-click the local SmartServer icon, point to Setup, and then click Security on the
shortcut menu. Alternatively, you can click Setup and then click Security. The Setup —
Security Web page opens.

b. Inthe General property, verify that the FTP/Telnet User Name and FTP/Telnet Password
properties are correct.

c. Inthe Service property, verify that the Enable FTP check box is selected.

3. Inthe browser of an FTP client such as Microsoft Internet Explorer 7, enter the FTP URL of your
SmartServer (ftp://192.168.1.222, for example).

4. Enter the FTP/Telnet user name and password for accessing your SmartServer via FTP.
5. Copy the following files to the listed folder on the SmartServer flash disk:

e Copy the resource file set (ENU, fmt, .fpt, .Is, and .typ files) provided by Echelon or the
third-party FPM vendor to the root/lonworks/types/<YourCompany> folder.

e Ifyou are deploying an FPM application that has a static interface, copy the device interface
(XIF) file (.xif extension) provided by Echelon or the third-party FPM vendor to the
root/lonworks/import/<YourCompany> folder.

e Copy the FPM executable module (.app extension) provided by Echelon or the third-party
FPM vendor to the root/modules/User/<YourCompany> folder.

e Ifa custom FPM configuration Web page was created for the FPM, copy the .htm files
provided by Echelon or the third-party FPM vendor to the root/web/config/Fb folder.

6. If you are deploying an FPM driver, reboot the SmartServer.

7. Create, commission, test, and connect the FPM on your SmartServer as described in this chapter.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 143

144 Deploying Freely Programmable Modules on a SmartServer

7

Creating FPM Application Licenses

This chapter describes how to create licenses for your FPMs so that customers can
order and implement your FPMs on their SmartServers. It describes how to build an
FPM licensing tool. It explains how to enable a license validation feature in your
FPM application. It describes how to create FPM licenses. It lists the files you need
to provide to customers who order your licensed FPM applications.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 145

Licensing Overview

You can create FPM application licenses and let customers order and implement your FPMs on their
SmartServers. To create an FPM application license and make your FPM application available for
order, you do the following:

Create an FPM licensing tool.

Enable license validation in your FPM application.

Build the release version of your licensed FPM application.

Create FPM application licenses.

Supply your customers the FPM licenses, FPM applications, your FPM library, and your resource
files.

A e e

Creating an FPM Licensing Tool

The i.LON SmartServer 2.0 Programming Tools includes an i.LON License Generator program that
you can use to construct your own FPM licensing tool. The i.LON License Generator is located in the
LonWorks\iLON\Development\Licensing\iILONLicenseGen folder, and it includes the following three
components:

e The main executable (iLONLicenseGen.exe) that provides a user interface for entering the values
used to generate an FPM license.

e A sample license generator configuration file (an XML file named
iLONL.icenseGenValuesSample.xml) that demonstrates the structure of the i.LON License
Generator user interface and provides sample pre-defined values.

e A sample security DLL file (LicenseSecurityHMACMDS5.dIl) that takes the values entered in the
i.LON License Generator user interface and creates an FPM license.

To construct your FPM licensing tool, you create a license values file that defines the default values for
the user interface of the i.LON License Generator, and you create a security DLL file named
LicenseSecurity.dll that takes the values entered in the i.LON License Generator user interface and
creates an FPM license. If you do not have the resources to build the security DLL file, you can re-
name the sample DLL file to LicenseSecurity.dll. This file provides a standard HMAC-MDS5 digest
security algorithm.

Once you create the license manager file (ILONLicenseGenValues.xml) and the security DLL file
(LicenseSecurity.dll), and you have built a release version of your licensed FPM application, you can
open the i.LON License Generator and begin using it to create FPM licenses.

Creating a License Generator Configuration File

The i.LON License Generator requires an XML configuration file named
iLONL.icenseGenValues.xml that defines the default values for the properties in the user interface. A
sample configuration file named “iLONLicenseGenValuesSample.xml” is provided in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. The sample file displays the XML
structure of that the i.LON License Generator requires. In addition, the sample configuration file
provides an example of the default values that you can define for your FPMs.

You can create your own default values using the sample configuration file as a guide, or you can copy
and rename the sample file to iLONLicenseGenValues.xml and modify the values to fit your
company and your FPMs.

The configuration file includes a <PredefinedFeatures> element in which you define a <Company>
element. Within the <Company> element, you define (1) your company’s properties such as name,
and LonMark ID, and (2) one or more features, the properties for each feature such as name, algorithm,
and secret key, and the pre-defined values for the properties. The following table lists the company
and feature properties you define within the <PredefinedFeatures> element. An example that

146 Creating FPM Application Licenses

demonstrates the structure of the <PredefinedFeatures> element and the properties you can define in it

is provided after the table.

Property

Description

Company

CompanyName

Specify the name of your company.

ShortCompanyName

Specify the name of your company or an abbreviated name. Legal
characters are those that would be legal for file names on the
SmartServer. You should only use letters, numbers or the underscore
character. Do not include spaces in this name.

The ShortCompanyName will appear at the beginning of the name of
your FPM license file.

LonMarkID

Specify your company’s LONMARK manufacturer identifier (MID).

The LonMarkID will appear after the ShortCompanyName in the
name of your FPM license file. If you do not have a LONMARK ID,
you can use an arbitrary number.

This field prevents license naming collisions from occurring because
of a common company name. It is useful for scenarios in which a
large company has multiple divisions that each have their own
LONMARK ID.

Company/Feature

FeatureName

Specify a descriptive name that uniquely identifies the FPM. For
example, you can specify “FPM Math Functions” or “FPM HVAC
Controller” for the math and HVAC examples used in this guide.
The specified value will be listed in the Feature Name field of the
FPM application license.

The first feature you specify in the configuration file and the
specified default values of its associated properties will appear in the
i.LON License Generator by default.

The values that appear in the i.LON License Generator are based on
the selected FeatureName.

ShortFeatureName

Specify a condensed or abbreviated name for your FPM. The same
constraints and recommendations about legal characters from the
ShortCompanyName also apply to this field.

For example, you can specify “Math” or “HVAC” for the math and
HVAC examples used in this guide.

The ShortFeatureName will appear after the LonMarkID in the name
of your FPM license file.

AlgorithmIndex

Specify an index corresponding to an algorithm index in your license
security source file. This index determines which security algorithm
in the security DLL file is run. You will probably only have one
algorithm, in which case an index of 0 or 1 would be appropriate.

The specified AlgorithmIndex will appear in the Secure Algorithm
Index field of the i.LON License Generator when its associated
feature is selected in the Feature Name field.

The sample security DLL file uses an algorithm that has an index of
0. If you plan on using the sample security DLL file, you must
specify 0 in the AlgorithmIndex property or else the i.LON License
Generator will not be able to generate an FPM license. See Building
the Security DLL File for more information on using algorithm

i.LON SmartServer 2.0 Programming Tools User’'s Guide

147

indexes.

LicenseType

Specify the type of license to be issued. The default LicenseType is
“Unlimited”. You may create your own license type designations.
For example, you could specify a “Demo” license if you plan on
modifying your FPM application so that the license provided to a
customer expires after a specified trial period such as 30 days.

LockType

Specify the type of lock used to uniquely identify a customer’s
SmartServer. You can specify one of the following four lock types:

e MACID. The unique 12-digit hexadecimal Ethernet MAC
address assigned to each SmartServer. Using the MACID
ensures that the FPM license you are issuing is associated with a
specific SmartServer. This is the recommended lock type.

e LUID. Any one of the sixteen unique 12-digit hexadecimal
Neuron IDs assigned to each SmartServer. Using the LUID
ensures that the FPM license you are issuing is associated with a
specific SmartServer. You can use this lock type instead of the
MACID.

e User. Some user-defined identifier.

e None. No lock type is used.

Options

Optionally, you can enter any text in this property. For example, you
could specify the length of a trial period of an FPM, such as “D- 30”
for 30 days.

SecretKey

Specify a unique hexadecimal string that functions as the secret key
for the feature. The secret key is used by the security DLL file in
calculating the unique license key for the FPM license. You may
specify a different secret key for each feature. The length of the
secret key must be appropriate for the security algorithm used.

<PredefinedFeatures>

<Company>

<CompanyName>0ur Corporation</CompanyName>
<ShortCompanyName>0ur Company</ShortCompanyName>
<LonMarkld>0</LonMarkld>

<Feature>

<FeatureName>FPM HVAC Controller</FeatureName>
<ShortFeatureName>HVAC</ShortFeatureName>
<Algorithmlndex>0</Algorithmlndex>
<LicenseType>Unlimited</LicenseType>
<LockType>MACID</LockType>
<SecretKey>5BD6217EA180AA116A51AAD1DOAGDD1E</SecretKey>

</Feature>
<Feature>

<FeatureName>FPM Math Function</FeatureName>
<ShortFeatureName>Math</ShortFeatureName>
<Algorithmlndex>0</Algorithmlndex>
<LicenseType>Unlimited</LicenseType>
<LockType>MACID</LockType>
<SecretKey>22222222222222222222222222222222</SecretKey>

</Feature>

</Company>

</PredefinedFeatures>

148

Creating FPM Application Licenses

Creating a Security DLL File

The i.LON License Generator requires a security DLL file named LicenseSecurity.dll that implements
a specific security algorithm. The security algorithm enables you to publish unique digital signatures
for your FPM licenses. You can build your own LicenseSecurity.dll file, or you can use the sample
security DLL file provided by Echelon. The following sections describe how to build the security
DLL file and how to use the provided sample security DLL file.

Building the Security DLL File

To build your own security DLL file, you can use the sample license security file provided with the
i.LON SmartServer 2.0 Programming Tools (demo or full version). This C++ source file,
LicenseSecuritySample.cpp, is located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. It documents the proper interface
to be used to create the security DLL file.

In this sample, the GeneratelL icenseKey () routine is called when the Create License button in
the i.LON License Generator is clicked. This routine does the following:

1. Receives the following seven parameters: algorithmlndex, pText, textlLen,
pSecretKey, keyLen, ppLicenseKey, and pLicenseKeylen.

o algorithmlndex is the value from the Algorithm Index field of the i.LON License
Generator.

e ptext is a pointer to a character array in which the text entered in the Issuing Company
Name, Feature Name, License Type, Lock Type, and Lock ID fields of the i. LON License
Generator is stored.

e textlen is an integer that stores the length of the text referenced by ptext.

e SecretKey is a pointer to a byte array in which the binary value of the text entered in the
Secret Key field of the i.LON License Generator is stored.

e keylen is an integer that stores the length of the byte array referenced by SecretKey.

e ppLicenseKey is a pointer to a pointer to byte array where the returned license key will be
stored.

e pLicenseKeylen is a pointer to an integer that will store the length of the returned license
key.

2. Checks the algorithm index passed in from the i.LON License Generator. The algorithm index
determines which security algorithm is run. You can have multiple algorithm indexes to handle
different features or situations. This sample includes one security algorithm that is run when the
algorithm index is 0.

3. Executes the specified security algorithm. This algorithm must use the pText, textLen,
pSecretKey, and keyLen parameters and generate the license key.

Note: C source files for open source implementations of the MD5 and HMAC-MDS digest
algorithms are included in the LonWorks\iLON\Development\Licensing folder. You can use
these source files to implement your security algorithm for the security DLL and the FPM. You
can use other available security algorithms such as SHA-1, SHA-256, or DES in your security
DLL and FPM.

Echelon makes no recommendation about the suitability of any of these algorithms. The
algorithms are provided for demonstration purposes only.

If you use the provided source files, you may include them in your security DLL source file using
the #include statement, or you may compile them separately. In either case, you should define

i.LON SmartServer 2.0 Programming Tools User’'s Guide 149

the C macro DONT _TRANSLATE NAMES before each of these files. The names of the routines
to be used all begin with “LICMGR _”

If you use the supplied implementation of the HMAC-MD5 digest algorithm, you can optionally
turn it into a non-standard algorithm by adjusting the pre-defined HMAC__IPAD_XOR_VALUE and
HMAC_OPAD_XOR_VALUE values. If you want to modify the pad XOR values, you must define
them as one-byte hex values. Creating a non-standard algorithm may be useful if you want to
further protect your FPM application in the event the secret key defined for your FPM is
compromised. However, this theoretically may reduce the strength of the digest.

Echelon makes no recommendation regarding the use of this feature.

4. Returns the license key to the i.LON License Generator, which converts the license key to ASCII
text and then generates the . XML file to be supplied to your customers. You must set the
expression *ppLicenseKey to point to the memory area containing the binary license key (the
“digest”) generated by your security algorithm, and you must set the expression
*pLicenseKeyLen to the byte length of the binary license key.

Using the Sample Security DLL File

If you do not have the resources to build the security DLL file, you can use the sample pre-built
security DLL file provided with the i.LON SmartServer 2.0 Programming Tools (demo or full
version). This executable file, LicenseSecurityHMACMDOS.dII, is located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder.

To use this file, you just rename it to “LicenseSecurity.dll”. This file implements a standard HMAC-
MDS5 digest algorithm from “open source” code. The source code for this sample DLL is in the file
LicenseSecurityHMACMDOS.cpp, located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. Note that this sample security
algorithm is not guaranteed to be suitable for any particular scenario.

The user is solely responsible for selecting a security algorithm in the security DLL file and in
the FPM application. Echelon makes no recommendations regarding the suitability of any
security algorithm.

Enabling License Validation in an FPM Application

You need to modify your FPM application so that it can check whether a customer’s SmartServer has a
valid license for running your FPM. This entails writing a separate license validation routine in the
source file of your FPM (.cpp extension). Your license validation routine must perform two major
tasks: (1) verify that the Lock ID (MACID, LUID, or other user-defined lock type) specified in the
FPM license file matches the one on the customer’s SmartServer, and (2) verify that the license key in
the FPM license file is valid. The FPM license is the .xml file you created with the i. LON License
Generator as described in Creating FPM Licenses in this chapter. This file must be installed in (or
under) the root/config/license folder on the SmartServer flash disk.

To verify the lock ID, your license validation routine must call the built-in license manager on the
SmartServer and provide it the license ID (Company Name and Feature Name) specified in the FPM
license file, and the file path of the FPM license relative to the root/config/license folder on the
SmartServer flash disk. The license manager will then check that the Lock ID in the FPM license
matches the one on the SmartServer (this is referred to as the Node Lock Check). The license manager
then returns the result of the Node Lock Check and the data in the FPM license file to your license
validation routine. The license data is returned as a structure that contains the license type, lock type,
lock ID, options, license key, and the length of the license key.

150 Creating FPM Application Licenses

FPM
(.cpp file)
License

Validation
Routine()

iLONSystem

N License
1 Manager

Node Lock
Check

FPM License

A 4

(.xml file)

Result of Node
Lock Check
and License

Data

To verify that the license key in the FPM license file is valid, your license validation routine needs to
first check the results of the Node Lock Check. If the SmartServer passed the Node Lock Check, your
license validation routine should then check the FPM license data; otherwise, it should log a license

error. To check the FPM license data, your license validation routine must call the same security

algorithm you used to create the FPM license, and it must provide the security algorithm (1) the license
data returned by the license manager and (2) the secret key assigned to the FPM in the license

configuration file (iILONLicenseGenValues.xml). The security algorithm then calculates a license

key. The license validation routine should then compare the license key stored in the FPM license file
to the one just calculated. If their sizes and values match, the license validation routine should accept
the FPM license; otherwise, it should log a license error.

FPM
(.cpp file)
License

Validation
Routine()

Log a License
Error

Key Check

License Keys

Log a License

Match?

Error

Accept FPM
License

Overall, to enable license validation in your FPM application, you perform the following steps:

1. Insert #include directives for the required file LicenseMgr.h and optionally the security
algorithm files LicMgrMd5.c and LicMgrHMacMd5.c. In addition, you must redefine the name
translations the macros defined at the beginning of the LicMgrMd5.c and LicMgrHmacMd5.c

files.

2. Declare data variables for the FPM license status and for the secret key assigned to the FPM.

3. Create a license validation routine.

4. Write the license validation algorithm to do the following:

a. Define local variables for the data to be passed to and returned by the license manager and by
the security algorithm, declare that the FPM is not licensed, and declare a license structure for
the license data to be passed to and returned by the license manager.

b. Call the method in the i.LON License Manager that performs a Node Lock Check and returns
the node lock status and license data.

c. Check the results of the Node Lock Check. If the SmartServer passes the check, call a

security algorithm that calculates the license key based on the license data. Compare the

license key stored in the license file to license key returned by the security algorithm. Based
on the results of the license key evaluation, validate the FPM license, or log a license error.

5. Implement some mechanism in your FPM application that results in the license validation routine
being called. You are solely responsible for implementing this mechanism.

6. Compile your licensed FPM application.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

151

152

Tips for Securing your Licensing Scheme:

You can implement a number of security measures in your licensing scheme to help protect your FPM
application from unauthorized use or piracy. The examples provided in this section demonstrate some
of these measures, which are designed to force anyone attempting to break the licensing scheme to
disassemble your object code and reverse-engineer the algorithms. To test the strength of your
licensing scheme, you should attempt to break it once you have completed it. This will help you
identify any weaknesses in your licensing scheme.

Note that there are instances in the examples where a number of techniques can be used in
implementing a security measure, but no specific recommendation is made as to which technique is the
best. This is because it is not clear which technique provides the best security. Furthermore, if every
customer follows the same technique, the overall security of the FPM applications being manufactured
is weakened.

Once you enable license validation in your FPM application and build your FPM, it is recommended
that you remove the internal-only symbols from your FPM application. This obscures the location of
the routines and data in your FPM application. The examples in this section assume that you will do
this; therefore, the provided security functions and data are declared as “static”. Note that if you intend
to remove the internal-only symbols, some of the techniques described in this section are optional (e.g.,
translating names via macros); however, it is recommended that you still implement them. This is
because the techniques provide a level of security in the event the removal of the internal-only symbols
is not performed. For instructions on how to remove the internal-only symbols from your FPM
application, see Building the Release Version of a Licensed FPM Application later in this chapter.

Note that no software protection scheme is completely secure. Individuals with the resources to break
your licensing scheme may be able to eventually do so.

Step 1: Inserting Include Directives and Macro Definitions

The first step in enabling license validation in your FPM application is to insert #include directives
for the files that contain the methods to be called by your FPM application. The only file that you
must include is LicenseMgr.h. Optionally, you will need to include LicMgrMd5.c if you are using
the supplied MDS3 security algorithm in your FPM license validation routine, and both LicMgrMd5.c
and LicMgrHMacMd5.c (in that order) if you are using the supplied HMAC-MD3 security algorithm.

Note that if you include the LicMgrMd5.c and LicMgrHMacMd5.c files, you must provide new
definitions for the name translation macros defined at the beginning of those files. These macros begin
with “LICMGR _” and by default are defined as “CHANGE_ME!” (an intentionally illegal value).

You can redefine the macros directly in the files, or simply copy the #deFfine statement for each one
and put the new definitions in the source file (.cpp extension) or header file (.h extension) of your
FPM application. The new definitions must be inserted before the included source files.

The LicMgrMdb>.c file contains six macros for which you need to supply definitions, and the
LicMgrHMacMd5.c file contains one macro. These macros redefine the names of the actual security
algorithm routines to obscure them from malicious attempts to bypass your licensing. To maximize
the protection provided by this mechanism, the name definitions should look related to your FPM
application, but they should obscure their actual functions.

It is also recommended that you obscure your own symbol names. All the symbols in the provided
examples that use all upper-case are intended to be defined as macros, with the true name being
intentionally misleading.

To insert the #include directives in your FPM application, do the following.

1. Start the i.LON SmartServer 2.0 Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer 2.0 Programming Tools, and then click i.LON
SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0 Programming Tool opens.

2. Inthe C/C++ Projects view, expand the FPM project folder if the header file (.h extension) for
your FPM application is hidden.

Creating FPM Application Licenses

3. Click the header file. The header file view opens to the right of the C/C++ Projects view.
4. Insert the following include directives in the “includes go here.” section of the header file.

// Required include statement. Finds FPM license and performs
// node lock check.
#include "LicenseMgr._h"

// Define name translations for macros in MD5 digest if not
// already defined in file.

#define LICMGR_MD5Init <name>

#define LICMGR_MD5Update <name>

#define LICMGR_MD5Final <name>

#define LICMGR_MD5Transform <name>

#define LICMGR_MD5Encode <name>

#define LICMGR_MD5Decode <name>

// Optional include statement(but required if using MD5 or
// HMAC-MD5). Uses MD5 digest to generate a license key.
#include "LicMgrMd5.c"

// define name translation for macro in HMAC-MD5 digest if not
// defined in file.
#define LICMGR_hmac_md5 <name>

// Optional include statement(required if using HMAC-MD5).
// Uses HMAC-MD5 digest to generate a license key
#include "LicMgrHmacMd5.c"

@ UFPTHWAC Cantraller.cpp *FPTHYACCantraller. b ¥ = 08
fe—————————————— ~
f4 includes go here.
fe——————————————

#include <string:>

#include "3tandard MVT.h"
#include "FPM Varisble.h"
#include "FPM Starter.h”

|#incluﬂe "LicenseMgr.h"

define LICHGR NDoInit systietx_a
define LICHGR MDSUpdate systGetx b
define LICHGR MD5Final systGetx o
define LICHGR MDSTransform systGetx d
define LICHGR MDSEncode systGetx e
define LICHGR MDSDecode systGetx £
include "LicMogrMdS.c™

#iderine LICHGR hwmac mds systeetx o
Hinclude "LicHgrHmwmscMdS.c™

Step 2: Declaring Data Variables

After you insert the include directives, you need to declare data variables in the routine that are used to
store the results of the Node Lock Check and the secret key assigned to the FPM. To declare the data
variables, follow these steps:

1. Under the FPM project folder in the C/C++ Projects view, click the source file (.cpp extension)
for your FPM application. The source file view opens to the right of the C/C++ Projects view.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 153

2. Insert code similar to the following somewhere after the FPM constructor:

// Tlag defining whether FPM license has been validated
static int FPM_IS LICENSED; // initialized at run-time

// flag indicating whether FPM license has been checked
static bool FPM_CHECKED = FALSE;

// secret key for MD5/HMAC-MD5 algorithms

static unsigned char FPM_KEY_PART_1[MD5 DIGEST_LEN] =
{0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,
Ox<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>};

Tip: You could alternatively split the secret key into several pieces and put them back together in your
validation algorithm. You could also put the key definition (or some of its pieces) inside your validation
routine as a local variable. If a status variable is only accessed in a single routine but it needs to retain its
value outside the routine, it may be placed inside the routine as a static local variable.

‘ﬂ *UFPTHYAC Controller.cpp X IE LFPTHYAC Controller.h — O

0
MsSNo—_-—— —
f4 CUFPTHVACController [CONITRUCTOR / DE3TEUCTOR]

Jf —————————————
-,.","declare atatic wvariables for FPM License Validation
static int FPM T3 LICENSED:

static bool FPM CHECKED = FAL3E:

S Secret key for FPM HVACController = 16 hex bytes

/Y BEDGE217EAISOAA]l1GAS1AADIDSARDDIE

f¢ key is split into two arrays of § hex hytes

/f key partz are re-ordered

z=tatic unsigned char FPH_KEY_PILRT_I[HDS_DIGEST_LEN,#‘Q] S
{0X6A,0x51,0xAL, OxD1,0xD9, OxAE, 0xDD, 0x1E} ;

static unsigned char FPM KEY PART O[MDS DIGEST LEN/2] =
{0x5E,0xD6,0x21,0=x7E, Oxb]l, O0x50,0xA4, 0511} ; 3
< >

Step 3: Creating the License Validation Routine

After you declare the static variables, you need to create a license validation routine. You first need to
add your routine in the header file (.h extension) of your application. You can then place your license
validation routine anywhere in your FPM application after the static variables you declared in step 2.

To create your license validation routine, you do the following:
1. Click the tab for the header file view.

2. Locate the Implements the user functional ity section in the header file, and then
insert the following code under the public: declarations.

void <FPM license validation routine name>();

154 Creating FPM Application Licenses

4] UFPTHYACController.cpp

Jf e
Iy Implements the user functionality

Jf e ———————
public:

44 License Validation
void FPM CHECE(];

/4 Initialization and Cleanup
void Initialize():
void Shutdown():

/4 User implemented methods
void Work():

void OnTimer () ;

Sfwoid OnMyTimer ()

Tips:

® You should obscure the name of the license validation routine (and other symbols shown in
all capitals) to help secure your FPM application. To do this, define a macro with the same
name as the symbol and then specify a name translation for it. For example, the following

macro could be defined for the license validation routine created in step 2.

#define FPM_CHECK anotherFPMfunction

* You can alternatively create your license validation routine as a static file-scope routine. This
enables the symbol name to be removed from the final object code module. Symbols for C++
class methods are always defined as global—even if they are a private class method—so that
they cannot be as easily removed from the object code module. However, if you have a lot of
class methods, using an intentionally misnamed method placed among the other methods may

be sufficient.

Click the tab for the source file view. Insert the following code before or after the

Initialize() routine:

void CUFPT<FPM Name>::<FPM license validation routine name>()

{
}

B *UFPTHYACContraller.cpp X [R] *UFPTHYACCantraller.h =08

e
/¢ FPM License Validation Routine|)

void CUFPTHVACController::FFPM CHECE()
{
i
e
Sf CUFPTHVACController::Initislize()

/¢ hdd anything that is necessary in order to get the module p
I

/¢ Thi= routine i=s called once, while starting up the module
rvoid CUFPTHVACController::Initiali=ze()

i

hTimerl = CreateTimer (FPM_TF_ONETIME, 10000); // calls th
/¢ hTimerz = CREATE_TIMER(FFM_TF_REFPEAT, 3000, CUFPTHVACCont

/¢ ewamples for setting up default/user-defined timer callback

i.LON SmartServer 2.0 Programming Tools User’'s Guide

155

156

Step 4: Writing the License Validation Algorithm

You need to write a license validation algorithm that (1) verifies that the Lock ID (MACID, LUID, or
other user-defined lock type) specified in the FPM license matches the one on the customer’s
SmartServer, and (2) verifies that the license key in the FPM license file is valid.

To do this, your license validation algorithm must call the method in the i.LON License Manager that
finds and parses an FPM license and performs a Node Lock Check. Your license validation algorithm
then must evaluate whether the SmartServer passed the Node Lock Check. If the SmartServer passed
the Node Lock Check, your method needs to calculate a license key and check whether the license key
stored in the FPM license file matches the calculated license key. Your method must calculate a
license key by calling the exact same security algorithm used in the License Generator security DLL
and providing it the license data returned by the i.LON License Manager and the secret key defined for
your FPM. The secret key for your FPM is stored in the variables that you declared in step 2.

You probably will only want to run the full license validation process once, so before proceeding you
should check a flag (e.g., FPM_CHECKED), and you should set the flag somewhere in your license
validation algorithm to indicate that the license has been checked.

Your license validation algorithm must declare local variables for the data to be passed to and returned
by the license manager and by the security algorithm. Your license validation algorithm must specify
the CompanyName and FeatureName properties defined in your FPM license file, and it must specify
the file path of your FPM license file.

Verifying the Lock ID

To write your license validation algorithm so that it verifies the Lock ID of a SmartServer, you do the
following:

1. Check to see if you have already run the license check. For example:

if (1FPM_CHECKED)
{

2. Set a flag to indicate that your license validation algorithm has been called. This code does not
need to be at the beginning. For example:

FPM_CHECKED = TRUE;

3. Declare the local variables for the data to be passed to and returned by the license manager and by
the security algorithm. For example:

//data passed to and returned by license manager
LicMgrTaskCallBlock taskCallBlock;
LicMgrLicenseld licenseld;

LicMgrLicenseData *pLic;

//data passed to and returned by security algorithm
unsigned char secretKey[MD5 DIGEST_ LEN];
unsigned char digest[MD5 DIGEST_LEN];

4. Enable the License Manager on the SmartServer to check for a valid FPM license. To do this, you
store the CompanyName and FeatureName properties defined in your FPM license file in the
CompanyName and FeatureName fields of the LicMgrLicenseld object. For example:

licenseld.szCompanyName
licenseld.szFeatureName

"Your Company Name'';
"Your Feature Name';

Using the HVAC Controller FPM for example, the Company Name property would be “Our
Corporation”, and the Feature Name would be “FPM HVAC Controller”. See Creating a License

Creating FPM Application Licenses

Generator Configuration File for more information on the CompanyName and FeatureName
properties.

5. Declare a License Manager control structure, then set the license file path and the license ID
fields. The file path field corresponds to the path of the FPM license file relative to the
root/config/license folder on the SmartServer flash disk, and the name of the FPM license file.
The default file name of an FPM license is <ShortCompanyName><LonMarklD>
<ShortFeatureName>.xml. For example:

//declare license manager control structure
memset(&taskCallBlock, 0, sizeof(taskCallBlock));

//specify the license file path and license ID
taskCal IBlock.pFilePath = "YourFilePath.xml";
taskCallBlock.pLicenseld = &licenseld;

Using the FPM license file of the HVAC Controller, for example, the file path property would be
“OurCompanyOHVAC.xml”. If you chose to place your licenses in a subfolder of the
/root/config/license folder, the path name must contain that subfolder name, too (but not
/root/config/license). For example, “OurCompanyFolder/OurFileName.xml”. See Creating a
License Generator Configuration File for more information on the Short CompanyName,
LonMark ID, and ShortFeatureName properties.

6. Call the method in the i.LON license manger that finds the license and performs a node lock
check. For example:

LICMGR_TaskCall_FindLicense(&taskCallBlock);

The following code demonstrates the lock ID of a SmartServer being checked by the license validation
algorithm:

// FPM License Validation Routine()

void CUFPTHVACController: :FPM_CHECK()

{
// Set FPM_CHECKED flag to TRUE so method is called once
FPM_CHECKED = TRUE;

// declare local variables to be passed to and returned
// by License Manager and Security Algorithm

LicMgrTaskCallBlock taskCallBlock;
LicMgrLicenseld licenseld;
LicMgrLicenseData *pLic;

unsigned char secretKey[MD5 DIGEST_LEN];
unsigned char digest[MD5 DIGEST_LEN];

// Check for a valid license.
licenseld.szCompanyName = "Echelon Corporation';
licenseld.szFeatureName = "FPM HVAC Controller™;

// Use dedicated license file
memset(&taskCallBlock, 0, sizeof(taskCallBlock));
taskCalIBlock.pFilePath = "EchelonlHVAC.xml";
taskCalIBlock.pLicenseld = &licenseld;

// Macro for indirect task call.
LICMGR_TaskCall_FindLicense(&taskCallBlock);

i.LON SmartServer 2.0 Programming Tools User’'s Guide 157

Verifying the License Key

To write your license validation algorithm so that it verifies the license key in the FPM application
license file, you do the following:

1. Check the results of the Node Lock Check. For example:

if (taskCallBlock.sts == LicMgrStsOK)
{

//store the license data
pLic = taskCallBlock.pLicense;

2. If the SmartServer passes the check, get the secret key defined for your FPM in a block of
memory. If you split it into pieces, you must assemble them here. For example:

memcpy(secretKey, FPM_KEY_PART_0, sizeof(FPM_KEY_PART_0));
memcpy(&secretKey[sizeof(FPM_KEY_PART _0)], FPM_KEY PART 1,
sizeof(FPM_KEY_PART_1));

In this example the secret key is the 16-byte hexadecimal string appropriate for the HMAC-MD5
algorithm that you defined in step 2. See Creating a License Generator Configuration File for
more information on the SecretKey property.

3. Call your security algorithm to calculate a license key. This must be the same security algorithm
used in the License Generator DLL. The security algorithm returns a license key (digest) that is
calculated from the license manager control structure data returned by the license manager, the
length of the license manager control structure data, the secret key defined for your FPM, and the
length of the secret key. For example:

LICMGR_hmac_md5((unsigned char*)pLic->szHashText,
strlen(pLic->szHashText), secretKey, 16, digest);

4. Compare the length and content of the license key stored in the license file to that of the license
key returned by the security algorithm. For example:

iT ((pLic->licenseKeyLen == MD5_DIGEST_LEN) &&
(memcmp(pLic->licenseKey, digest, MD5 DIGEST_LEN) == 0)){

5. Optionally, you can evaluate any other data in the license manager control structure data besides
the licenseKey and licenseKeyLen fields. The license manager control structure contains all the
data included in the license file, split into the following fields:

o szHashText. A pointer to the text over which the security algorithm runs. It combines a
number of other fields.

o szLicenseType. A pointer to the text for the lock type (e.g., “MACID”).
e lockType. Anenum value indicating the lock type.
e szLockld. A pointer to the text of the lock ID.

e lockld. A pointer to the converted binary bytes of the lock ID if the lock type is “MACID” or
“LUID”. If the lock type is not “MACID” or “LUID” or if this field is not used, this field is
NULL.

e szOptions. A pointer to the text of the options field, if any.

e licenseKey. A pointer to the binary bytes of the license key. Used in step 4.
e licenseKeyLen. he length in bytes of the licenseKey field. Used in step 4.

o szFullLicenseText. A pointer to the complete XML text of the license.

e szUserLicenseText. A pointer to the beginning of the (optional) user section of the XML
license text.

158 Creating FPM Application Licenses

Note: Pointers to strings will not be NULL if they are not used, instead some may point to empty
strings.

6. Based on the results of the license key evaluation, validate the FPM license, or log a license error.
You can use a value other than 1 and later check for that specific value instead of using a boolean
zero/non-zero check. For example:

FPM_IS_LICENSED = SOME_MAGIC_NUMBER;

}
else
taskCalIBlock.pGeneric =
(void*)"FPM HVAC license key is invalid\n”;
LICMGR_TaskCall_LoglLicenseError(&taskCallBlock);
}

7. IFf the SmartServer did not pass the Node Lock Check, log a
license error. For example:

}else

{

taskCalIBlock.pGeneric =
(void*)"FPM HVAC license invalid or not
found\n";
LICMGR_TaskCall_LoglLicenseError(&taskCallBlock);

}

8. Free any license data stored in memory. For example:

LICMGR_TaskCall_FreelLicenseData(&taskCallBlock);
}

The following code demonstrates the license key of an FPM application license file being checked by
the license validation algorithm:

//Check 1T 1.LON passed Node Lock Check
if (taskCallBlock.sts == LicMgrStsOK)
{
//store the license data
pLic = taskCallBlock.pLicense;

// Copy the key in parts

memcpy(secretKey, FPM_KEY_PART 0, sizeof(FPM_KEY_PART _0));

memcpy (&secretKey[sizeof(FPM_KEY_ PART 0)], FPM_KEY_PART 1,
sizeof(FPM_KEY_PART_1));

//call security algorithm
LICMGR_hmac_md5((unsigned char*)pLic->szHashText,
strlen(pLic->szHashText),
secretKey, 16, digest);

//compare license keys
if ((pLic->licenseKeyLen == MD5 DIGEST LEN) &&
(memcmp(pLic->licenseKey, digest, MD5 DIGEST_LEN) == 0))

FPM_1S_LICENSED = SOME_NON_ZERO_ VALUE;
printf(""***FPM license validated***\n'");

}

else

{

i.LON SmartServer 2.0 Programming Tools User’'s Guide 159

char msg[100];

sprintf(msg, "FPM license key is invalid: file
\"%s\'""\n"", taskCallBlock.pFilePath);

taskCallBlock.pGeneric = (void*)msg;

LICMGR_TaskCall_LogLicenseError(&taskCallBlock);

}

}else

{
char msg[100];
sprintf(msg, "FPM license not found: file \"%s\'"\n",
taskCalIBlock.pFilePath);
taskCallBlock.pGeneric = (void*)msg;
LICMGR_TaskCall_LogLicenseError(&taskCallBlock);

// free the license data, if any
LICMGR_TaskCal l_FreeLicenseData(&taskCallBlock);
b

Step 5: Implementing the License Validation Call Mechanism

After you have written your license validation algorithm, you need to implement some mechanism in
your FPM application that results in the license validation routine being called. This can be done in a
variety of ways using the pre-defined code and routines in your FPM application; however, you are
solely responsible for designing and implementing this mechanism.

Step 6: Compiling the Licensed FPM Application

Once you have created the license validation call mechanism, you can compile your licensed FPM
application. To compile your FPM, click File and then click Save. If your code has any errors, they
will be listed with any warnings in the Problems view at the bottom of the document window. You
can click on the errors and warnings listed in this view to debug your FPM. If the build is not
performed, click Project and then click Build Project. You can then click Project and select Build
Automatically so that your FPM applications are built automatically when you save them.

Building the Release Version of a Licensed FPM Application

After you enable license validation in your FPM application and compile it, you can build the release
version of your FPM application that you will make available to customers. Building the release
version entails removing the internal-only symbols from your FPM executable module (.app
extension). Stripping the internal-only symbols greatly enhances the security of your licensing
scheme, as it obscures the location of the routines and data in your code.

To remove the internal-only symbols from your FPM executable module, follow these steps:

1. Open a Command Prompt window.

2. At the command prompt, change the directory to the path of your FPM executable module.
For example, you type the following (without the break):

cd C:\LonWorks\iLON\Development\eclipse\workspace.fpm\
9000010000000000[3] -UFPTHVACController/Release

3. Use the set path command to set the path to the directory containing the GNU strip utility
(strip.exe). This utility is located in the
C:\LonWorks\ILON\Development\eclipse\plugins\com.echelon
.eclipse.ilon100.fpm_0.9.0\compiler\3.3.2-vxworks-6.2\x86-win32\i586-wrs-vxworks\bin
directory.

For example, you type the following (without the breaks):

160 Creating FPM Application Licenses

set path=%path%;C:\LonWorks\iLON\Development\eclipse\plugins\
com.echelon.eclipse.ilonl00.fpm_0.9.0\compiler\3.3.2-vxworks-
6.2\x86-win32\1586-wrs-vxworks\bin

Use the GNU strip command to remove the internal-only symbols from your FPM executable
module. To do this, type the following command:

strip --strip-unneeded —target=el32-big modulename

where modu lename is the name of your FPM executable module in the following format:
<company program ID>UFPT<FPT Name>.app.

For example, you type the following (without the break):

strip --strip-unneeded --target=elf32-big
#9000010000000000[3] -UFPTHVACController _app

Optionally, you can use the GNU nm command verify that the internal-only symbols have been
removed from your FPM executable module. To do this, type the following command:

nm ——numer ic-sort modulename > someFi leName. txt

For example, you type the following (without the break):

nm --numeric-sort #9000010000000000[3].UFPTHVACController.app >
noSymbols.txt

Use a text editor to open the file you created in step 5. You should observe that there are no
internal-only symbols in the file. Internal-only symbols are denoted by a lower-case single letter
in the second field (e.g., “t”, or “d”).

Creating FPM Application Licenses

Once you create a license manger file (iLONLicenseGenValues.xml) and a security DLL File
(LicenseSecurity.dll), and place these files in the same folder as the License Generator executable
(iLONLicenseGen.exe), you can open the i.LON License Generator and begin using it to create FPM
application licenses.

When you open the i.LON License Generator, you will observe that the first pre-defined feature
specified in the configuration file and its associated default values appear in the dialog. You can select
other pre-defined features from the Feature Name list and their specified default values will appear in
the dialog.

To create FPM licenses using the i.LON License Generator, follow these steps:

1.

Open the i.LON License Generator. To do this, click Start, point to Programs, point to Echelon
i.LON SmartServer 2.0 Programming Tools, and then select the License Generator folder.
The LonWorks\iLON\Development\Licensing\iLONLicenseGen folder opens. Double-click the
iLONL.icenseGen.exe file. The i.LON License Generator opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 161

162

@ i.LON License Generator

|zzuing Company Mame:

Our Corporation w

Feature Mame:

FFt HYALC Contraller v

Licenze Type:

Unilirnited w
Lock Type: Lock 1D:
MACID v
Optiong:

~
Secret Keyw:
BBDEZ17EA180441 16451440 1DEAEDDIE ~

Secure Algarithm |ndesx:

0

Custarner Information:

By default, the first pre-defined feature specified in the license configuration file
(iLONLicenseGenValues.xml) and its associated default values appear in the dialog.

In the Feature Name property, select the FPM to be licensed from the list of the FPMs defined in
the <PredefinedFeatures/Company/Feature/FeatureName> tags in the license configuration file.
The specified default values of the properties associated with the selected FPM appear in the
dialog.

In the License Type property, select the type of FPM license being issued. Typically, you will
select Unlimited, but you can select Demo if you defined such property in the license
configuration file and you plan on modifying your FPM application so that the license provided to
a customer expires after a specified trial period such as 30 days.

In the Lock Type property, select the type of unique SmartServer identifier you requested from
the customer. You should request the MACID (Ethernet MAC Address), but you can request the
LUID (Neuron ID) or some other user-defined SmartServer identifier if you defined such property
in the license configuration file.

The MACID and LUID are accessible from the SmartServer Web pages. You can help customers
locate these identifiers using the SmartServer Web pages by providing the following instructions:

e To locate the MACID (Ethernet MAC Address) from the SmartServer Web pages, right-click
the local SmartServer, point to Setup, and then click System Info (alternatively, you can click
Setup and then click System Info). The Setup — System Info Web page opens. The
Ethernet MAC Address is the first property listed under the Ethernet header.

Creating FPM Application Licenses

e To locate the LUID (Neuron ID) from the SmartServer Web pages, click Driver at the top of
the tree in the sidebar (left) frame, expand the Net network, expand the LON channel, and
then click any internal SmartServer device, which have “(Internal)” appended to their names.
The Setup — LON Device Driver Web page opens. The Neuron ID is the first property
listed under the Identification Property header.

6. 1Inthe Lock ID property, enter the unique SmartServer identifier provided by your customer
(MACID, LUID, or other user-defined identifier). If you are entering a MAC ID or LUID, you
can enter the 12-digit hexadecimal number as a single string, or you can separate the hex digit
pairs with dashes, spaces, colons, semi-colons, periods. For example, you can enter a MACID as
00D071020A18, 00-D0-71-02-0A-18, or as 00 DO 71 02 0A 18. If you enter an incorrect Lock
ID, a warning informing you that the Lock ID you entered is invalid will appear when you attempt
to create a license.

7. Accept the default Secret Key defined for the FPM in your license configuration file. You will
need to specify the secret key defined for your FPM in the license validation routine that you will
need to add to your FPM application. It is therefore recommended that you do not change the
default secret key to ensure that you specify the correct secret key in the license validation routine.

8. In the Secure Algorithm property, specify an index that corresponds to a security algorithm that
is defined in the security DLL file. The sample security DLL file uses an algorithm that has an index
of 0. If you plan on using the sample security DLL file, you must specify O in this property or else the
i.LON License Generator will not be able to generate an FPM license. See Building the Security DLL
File for more information on using algorithm indexes.

9. Inthe Customer Information: box, enter any pertinent customer data that you want recorded in your
FPM application license log file such as the company name, company representative, address, phone
number, and email address. Your FPM application license log file is updated each time you generate an
FPM application license.

10. Click Create License. A dialog opens in which you save the FPM license to an XML file. The default
file name of the FPM license is <ShortCompanyName><LonMarklD><ShortFeatureName>.xml.

Savein: | [iLOMLicenselGen e I S

iLONLicenseGenValues.me

File: marne: E chelon HYAC. <l
Save az type: | XML Files [7xmil) v

11. Specify the folder on your computer where customer FPM application licenses are to be saved and
then click Save. By default, the FPM license is saved to the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. Once you save the FPM
application license, your FPM application license log file is updated.

12. Optionally, you can view your updated FPM application license log file. To do this, browse to the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder and then open the
iLONL.icenses.log file with a text editor.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 163

636 36 36363636 36 36363 36 36 363 336 3363 36 I3 363363 3633 I NI NN N

*# License created on: Wednesday. September 05, 2007 13:34:42
Created by: Our Corporation

LonMark ID: 0O

Cusztomner Information:

LI

YTour Company

John Doe

123 ABC. St

San Jose. CA 95126

* License:
<tEml version="1.0" encoding="utf{-8"7:
¢LicenssManager»
{VersionHajor>l< - VerzionMajor:
VerzsionHinor:0<-VYersionMinor:
{License:
{CompanyHame:>0ur Corporationd - CompanyHame:
¢FeatureNamn=e:FFM HYAC Controller<-FeatureNamns:
¢Licen=eType:Inlinited< LicenseType:
<LockType >HACID: LockTvyvpe:»
¢LockId:004071020418+<-LockId:
<Options:<-Option=:
¢Licen=ekey:>8DFB1477E44DF955226715411D4ERE24 < < Licen=ekey »
{sLicenze:
¢~ Licenszedanager >

The FPM application license log file lists the following information:

The date on which the FPM application license was created.

Your company’s name and LonMark ID

The customer information you entered in step 9.

The FPM license data, which consists of your company’s name, the name of the FPM
licensed, the license type, lock type, lock ID, any options specified, and the license key
generated for the FPM application by the security DLL file.

Supplying FPMs to Customers

After you built a release version of your FPM application and have created FPM application licenses
for your FPMs, you can supply your FPM applications to customers. When customers order an FPM
application from your company, you need to provide the following files for them:

164

Your company’s FPM resource file set in which you created the user-defined functional profile
template (UFPT) used by your FPM application. Your company’s FPM resource file set should be
stored in the LonWorks\Types\User\<Y ourCompany> folder on your computer, and it consists of
.ENU, fmt, .fpt, .Is, and .typ files. These are the files you generated with when you created the
UFPT for your FPM with the NodeBuilder Resource Editor.

See Chapter 3, Creating FPM Templates, for more information on creating FPM templates and
generating your company’s FPM resource file set.

The device interface (XIF) file (.xif extension) that you created for your FPM application. Your
XIF should be stored in the destination folder that you specified when you generated the XIF with
the i.LON SmartServer 2.0 LonWorks Interface Developer Tool.

See Chapter 4, Creating FPM Device Interface (XIF) Files, for more information on creating
model files and converting them to the XIFs with the i.LON SmartServer 2.0 LonWorks Interface
Developer Tool.

The FPM executable module (with license validation enabled). This is the .app file that is created
and updated when you compile your FPM application with the i.LON SmartServer 2.0
Programming Tool. By default, your FPM application is stored in the

Creating FPM Application Licenses

LonWorks\iLON\Development\eclipse\workspace.fpm\<company program ID>.UFPT<FPT
Name>\Release folder on your computer, and it is named <company program ID>.UFPT<FPT
Name>.app.

See Chapter 5, Creating FPMs, for more information on creating and compiling the FPM
application. See Enabling License Validation in an FPM Application in this chapter for more
information on protecting your FPM applications.

The FPM application license. This is the .xml file you created with the i.LON License Generator
that is used to protect your FPMs. By default, your FPM licenses are stored in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder on your computer.

See the Creating FPM Application Licenses section in this chapter for more information on
creating this file.

In addition to supplying the required files to your customers, you should also provide instructions that
explain how to install your FPMs on their SmartServers. The following is a set of sample instructions
that you can use or modify:

1.

Verify that an FPM programming license is installed on your SmartServer. If FPM programming
is not licensed on your SmartServer, you can order a FPM programming license from the i. LON
SmartServer 2.0 Web site at www.echelon.com/products/cis/activate.

Use FTP to access the root/lonworks/types folder on the flash disk of your SmartServer. Copy the
supplied resource file set to the root/lonworks/types folder.

Use FTP to access the root/lonworks/import folder on the flash disk of your SmartServer. Copy
the supplied device interface (XIF) file (.xif extension) to the root/lonworks/import folder.

Use FTP to access the root/config/license folder on the flash disk of your SmartServer. Copy the
supplied FPM application license (.xml file) to the root/config/license folder (or a subfolder, if
required by the license validation routine).

Use FTP to access the root/modules folder on the flash disk of your SmartServer. Copy the
supplied FPM executable module (.app file) to the root/modules folder.

Deploy, test, and connect the FPM application following the instructions in Chapter 6, Deploying
FPMs on a SmartServer.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 165

http://www.echelon.com/products/cis/activate

166 Creating FPM Application Licenses

38

Localizing the SmartServer Web
Interface

This chapter describes how to translate custom SmartServer Web pages and the entire
SmartServer Web interface to a different language.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 167

Language Localization Overview

You can localize the language of the SmartServer Web interface using the i.LON SmartServer 2.0
Programming Tool. The SmartServer includes English, German, and French languages, but you can
work with the SmartServer in any one-byte or two-byte character language by translating the
.properties files on the SmartServer.

You can perform language localization using either the demo version of the i. LON SmartServer 2.0
Programming Tools included on the i.LON SmartServer 2.0 DVD or using the full version on the
i.LON SmartServer 2.0 Programming Tools included on the i.LON SmartServer 2.0 Programming
Tools DVD.

To localize the language of the SmartServer Web interface, you create a language localization project
in the i.LON SmartServer 2.0 Programming Tool. You can then create localized custom SmartServer
Web pages, or you can localize the entire SmartServer Web interface.

Creating localized custom SmartServer Web pages entails doing the following:

1. Translating the COMMON.properties file on the SmartServer flash disk with the i. LON
SmartServer 2.0 Programming Tool.

2. Translating the .properties file of any embedded application that you plan on using in your custom
SmartServer Web page. For example, if you wanted to create a custom Web page that contains an
Event Scheduler, you would translate the 8000010128000000[4].UFPTscheduler.properties file
with the i.LON SmartServer 2.0 Programming Tool.

3. Creating a new custom SmartServer Web page using i.LON Vision 2.0, adding application objects
to the Web page, selecting the localized language as the default, and then publishing the custom
SmartServer Web page.

Localizing the language of the SmartServer Web interface entails doing the following:

1. Translating one-by-one all of the .properties file in the root/web/nls/echelon folder on the
SmartServer flash disk with the i.LON SmartServer 2.0 Programming Tool.

2. Creating a new language folder in the working copy of the SmartServer embedded image on your
computer.

3. Editing the index.htm file with a text editor so that you can select your language from your i. LON
SmartServer 2.0’s home page.

4. Translating and updating the language settings of the Welcome.htm, Menu.htm, Sidebar.htm
files with i.LON Vision 2.0, or with a text editor.

The following sections describe how to create a language localization project, how to create localized
custom SmartServer Web pages, and how to translate the SmartServer Web interface.

Creating a Language Localization Project

168

You can create a new language localization project using either the demo or full version of the i.LON
SmartServer 2.0 Programming Tool. To do this, follow these steps:

1. Verify that the SmartServer embedded image is installed in the
LonWorks\iLon100\images\iLon100 4.0<x> directory on your computer. The embedded image is
installed in this directory when you install the i. LON SmartServer 2.0 software from the i. LON
SmartServer 2.0 DVD. For more information on installing the i. LON SmartServer 2.0 software,
see the i.LON SmartServer 2.0 User’s Guide.

2. Create a working copy of the SmartServer embedded image on your computer. To do this, follow
these steps:

a. Copy the iLon100 4.0<x> folder in the LonWorks\iLon100\images directory on your
computer.

Localizing the SmartServer Web Interface

& C:\l onWorks\ilLon100\images

¢ File Edit Miew

Favorites

Tools Help

eEack @ \‘-) l.ﬁ pSearch [E“ Folders v

i address |E:| CiiLonWorksiLon100images

File and Folder Tasks

mf} Rename this folder

@ Mo this folder

() Copy this folder

e Publish this falder ko the
Wb

4 Share this Folder
@ E-mail this Folder's files
¥ Delete this Folder

Other Places

I3 iLonioo

My Docurnents

g My Computer

ﬁd Iy Metwork Places

Details

Mame =~ Size | Type
() BoatRaM 4,00 File: Falder
Open
Explore
Search. .

Sharing and Security. ..
& Snaglt »
o WinZip >
Scan For Viruses. .
Send To 3

Cut

Paste

Create Shorkout
Delete
Renarme

Propetties

Date Modified £ Cwner
Bf25/2007 4:03 FM Administrataors
88/Z007 10:53 AM Administrators

b. Paste the folder in the same directory.

¢. Rename the folder to something meaningful such as “i.LON 100 4.0<x> <Language>".

i File Edit View

& C:\LonWorks\iLon100Vimages |._HE||£|
Favorites Tools Help -#
e Back - -\) @ p Search It_i‘ Folders v
: Address ‘E] CriLonworksiiLon100%imanes v| & o
Mame = Type Date Modified
File and Folder Tasks [C3)BoatROM 4,02 File Folder 7/14/2005 12:24 PM
iLon100 4,02 File Fold /142005 12:24 PM
Ej Make a new Folder EJ:I on !e oter 14
File Folder §/4/2005 5:09 PM

@ Fublish this Folder to the
Wb

ked Share this folder

Other Places

iLon100

[E] My Docurnents

a My Compuktet

H Iy Metwark Places

Details

3. Start the i.LON SmartServer 2.0 Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer 2.0 Programming Tools, and then click i.LON
SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0 Programming Tool opens.

4. Click File and then click Import. The Import dialog opens in the Select window.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

169

170

Select

Create new projects from an archive file or directary.

Select an import source;

=)

Y

[=}-[= General
[archive File
99, Breakpoints
ﬁ Existing Projects into Waorkspace
[:L File System
EL Preferences
= CfC++
= s
(== Plug-in Development
(= Team

(2) < Back Finish

@

Cancel

Expand the General folder, click Existing Projects into Workspace, and then click Next. The

Import Projects window opens.

Import Projects

Select a directory bo search for existing Eclipse projects.

@

(%) select rook directory: | |

|[Browse. ..]

() select archive File: | |

Projects:

Browse, .

|:|Copy projects into warkspace

@ Next > Firish

Select Al
Deselect Al

Cancel

Click Browse. The Browse to Folder dialog opens.

Localizing the SmartServer Web Interface

Browse For Folder,

Select root directory of the projects to import

I3 iLon
=) iLonloo
[driversupport
=) images =
[C3) EookROM 4,02
[iLon10o 4.02
=&Y onioo 4,0
|5 alarmLog

[

[£

Faolder: | iLon100 4.02 Spanish |

[Makﬁ Mew Folder] [Ok H Cancel]

Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language> folder and then click OK.

A new project called NLS appears in the Projects: box. This means that your language
localization project has been created within the current workspace.

Import Projects —
Select a directory to search For existing Eclipse projects. @

-

() Select rook directory: | CriLonworkstiLonl00iimagesiLon100 4,02 Sp: [Brawse... l

() Select archive fils: | | Browse...

Projects:

MLS Select Al
Deselect Al

|:| Copy projects into workspace

@ Mexk = [Finish H Cancel]

Click Finish. An NLS project appears in the C/C++ Projects view.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

171

¥y C/C++ Projects X Mavigator = =

9. Expand the NLS folder. All the English, German, and French .properties files for the
SmartServer embedded applications, system setup Web pages, and headers and properties appear
under the NLS folder.

Ml C/C++ Projects X Mavigatar -0

[=) 1=F MLS -
@ F000010123000000[4], UFPT alarmGener akor, propertiss
@ F000010125000000[4], UFPT alarmGenerator_de.properties
@ A000010128000000[«]. UFPT alarmGener akor_Fr. properties
@ 2000010128000000[4]. UFPT alarmkatifier properties
@ 2000010128000000[4]. UFPT alarmkatifier_de. properties
@ 2000010122000000[4]. UFPT alarmMatifier_fr.properties
@ 2000010128000000[4]. UFPTanalogFunctionBlock, properties
@ F000010125000000[4]. UFPT analogFunctionBlock_de.proper
@ F000010125000000[4]. UFPT analogFunctionBlack_fr.propert
@ a000010128000000[«]. UFPTdatalogoer . properties
@ A000010128000000[4]. UFPTdatalogger _de. properties
@ 2000010128000000[4]. UFPTdatalogger_fr. properties
@ 2000010128000000[4], UFPTdigitallnput. properties
@ 200001012800000004]. UFPTdigitallnput_de.properties
@ 3000010125000000[4]. UFPTdigitallnput_Fr. properties
@ F000010123000000[4], UFPTdigitaloutput, properties
@ A000010123000000[«]. UFPTdigitaloutput_de. properties
@ a000010128000000[4]. UFPTdigikalOukput_Fr.properties
@ 2000010128000000[4]. UFPTpulseCounter. properties
@ 2000010128000000[4]. UFPTpulseCounter_de.properties s

4 ¥

Note: A language localization project is stored in its own set of resource files; therefore the installation of
an updated version of the SmartServer embedded image will not conflict with these resource files. After
you install an updated SmartServer embedded image on your computer, you just need to copy it to the
working copy of the embedded image you created in step 1. The i.LON SmartServer 2.0 Programming
Tool will resolve any differences in your language localization project.

Creating Localized Custom SmartServer Web Pages

You can localize the language for the new individual custom Web pages you are planning to build. To
do this, you do the following:

1. Translate the COMMON.properties file in the root/web/nls/echelon folder on the SmartServer
flash disk with the i.LON SmartServer 2.0 Programming Tool.

2. Translate the .properties file of any embedded application that you plan on using on in your
custom SmartServer Web page. For example, if you wanted to create a custom Web page that
contains the Scheduler object, you would translate the

172 Localizing the SmartServer Web Interface

8000010128000000[4].UFPTscheduler.properties files in the root/web/nls/echelon/ folder with
the i.LON SmartServer 2.0 Programming Tool.

3. Create a custom SmartServer Web page using i.LON Vision 2.0.

Translating Common Properties

You can translate the COMMON.properties file in the root/web/nls/echelon/ folder on the

SmartServer flash disk with the i. LON SmartServer 2.0 Programming Tool. To translate this file, you
do the following:

1. In the C/C++ Projects view of the i.LON SmartServer 2.0 Programming Tool, click the

COMMON.properties file under the NLS project.

<

Mavigator — q>¢' = =0

= 1= NLS ~

@ 20000101 28000000[4], UFPT alarmGenerator, properties
@ 20000101 23000000[4]. UFPTalarmGensrator_de. properties
@ 0000101 23000000[4], UFPT alarmiatifier, propetties

@ 80000101 28000000[4], UFPT alarmtokifier_de.properties
@ 20000101 28000000[4], UFPTanalogFunctionBlock. properties
@ 80000101 23000000[4], UFPTanalogFunctionBlack_de.properti
@ 0000101 23000000[4], UFPTdatalogger properties

@ 30000101 28000000[4], UFPTdatalogger_de.properties
@ 20000101 28000000[4] UFPTdigitallnput. properties

@ 20000101 23000000[4], UFPTdigitallnput_de. properties
@ 20000101 25000000[4], UFPTdigitalOutput. properties

@ 20000101 28000000[4], UFPTdigitalOutput_de, properties
@ 20000101 23000000[4]. UFPTpulseCounter . properties

@ 20000101 23000000[4], UFPTpulseCounter _de. properties
@ 20000101 28000000[4] UFPTrealTimeClock, properties

@ 20000101 28000000[4], UFPTrealTimeClock_de. properties
@ 20000101 23000000[4]. UFPTscheduler. properties

@ 0000101 23000000[4], UFPTscheduler _de.properties

@ 80000101 28000000[4], UFPTtypeTranslator . properties
@ 20000101 23000000[4] UFPTtypeTranslator_de.properties
@ CM_CFg.properties

@ CM_CFa_de.properties

IE i[n]

@ COMMON_de.properties

@ Dp_Data.properties

@ Dp_Data_de.properties

@ Item_CFg.properties

@ Item_CFg_de.properties

@ LM _CradQueryStatusPopup, propetties

@ LOM_CmdQueryStatusPopup_de.properties

@ LM _ReceiveServicePinPopup. properties

@ LOM_ReceiveServicePinPopup_de. properties

@ LonCarmmandQueus, properties
| T V- U .

2. The Properties Editor view opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

173

174

M.properties[...].properties X

Editor for ResourceBundle: COMMON, properties] ...], properties,

Default

a8

ABE_APRIL A
ABE_AUGL
ABE_DAY
ABE_DECEI

ABE_FEEBRL

AEB_HOLR Getinan

ABE_JANL,
ABE_IULY
AEE_JUNE
AEBE_KE
ABE_MARC

ABE_MAY French

ABE_MIN
.\?BB_MSEC 2

2 i) 5

+ 333335335333 3%%5%%

[Properties | [F| Default| [P] German | [F] French | [E] Mew..,

The left frame in the view lists all the common properties in the SmartServer Web interface. The
right frame includes boxes that display the English (Default), German, and French translations
of a selected property. The bottom includes tabs that you can click to view and edit a list of all the
properties within a .properties file for a specific language.

Click the New tab at the bottom of the Editor view. The New Properties File: dialog opens.

...].properties X

= B8

Editor for ResourceBundle: COMMON, properties] ...], properties,

New properties file:

Choose or bype a Locale

Lang. Counkry Wariant

[[# Properties | [F| Default| [P] German | [F] French | [E] Mew..,

In the Choose or Type Locale box, select the language and desired version (if different regional
varieties are available for the language) to which your custom SmartServer Web page is to be

translated.

Localizing the SmartServer Web Interface

M.properties...] properties X =0
Editor for ResourceBundle: COMMON, properties] ...], properties,

New properties file:

Choose or bype a Locale

Spanish

Spanish (Argentina)
Spanish {Bolivia)
Spanish (Chile) =
Spanish {Colombia) b

Create

[[# Properties | [F| Default| [P] German | [F] French | [E] Mew..,

The Lang. and Country properties are filled in. Optionally, you can enter a Variant to further

categorize the selected language. This is useful if you want to create different translations of the
same language with the same regional version.

s[...].properties X =0
Editor For ResourceBundle :COMMOM, properties[...] properties,

New properties file:

Choose or bype a Locals

Spanish

Lang. Counkry Wariant

[Properties | [P| Default | [F] German | [F] French Mew. ..

7. Click Create.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 175

&cic

File Edit Refactor MNavigate Search Project FPM Run MWindow Help
| (wil g PR @ 0 &P B LR |6 et |
@CJC-H— Projects &% Mavigakor = 0|7 erties[...]. s X =0l » &0
= =><> = | [Editor For ResourceBundle: COMMOM_es. properties]. .1 properties,
[P| 5000010128000000[4].UFPTalsrmhiatifier properties ~ D Default 2
[P 5000010128000000[4].UFFT alarmhlotifier_de.properties
[F| 8000010128000000[4].UFPT slarmMatifier_fr.properties of, ABE_APRIL A~
[F] 2000010128000000[4].UFPTanalogFunctionBiack. properties of, ABE_ALGL
[Fl 8000010128000000[4].UFPT analogFunctionBlock_de.proper «f, ABB_DAY
[B| 2000010128000000[4].UFPTanalogFunctionBlack_fr.propert «f, ABE_DECEI German
[F| 8000010128000000[4].LIFPTdatal ogger . properties o, ABB_FEERL
[Pl 8000010128000000[4].UFPTdatalogger _de.properties of, ABE_HOUR
[F] #000010128000000[4].UFPTdatalogger_fr.properties of, ABE_JANLL
[Fl 8000010128000000[4].UFPTdigitalinput properties of, ABB_JLY
[B| 2000010128000000[4].UFPTdigkalinput_de. properties «f, ABE_JLINE Spanish
[B| 8000010123000000[4].LFPTdigitalinput_fr. properties o, ABB_KE pans
[Fl s000010128000000[4].UFPTdigitaloutput properties of, ABE_MARC
[F] 2000010128000000[4].UFPTdigtaloutput_de. properties of, ABE_MAY
[Fl 8000010128000000[4].UFPTdigitaloutput_fr.properties «f, ABB_MIN
[F] 2000010128000000[4].UFPTpUlseCounter praperties o, ABB_MSEC
[F| 8000010128000000[4].UFFTpulseCounter_de. properties P french
@ §000010125000000[4]. UFPTpulseCaunter_Ffr properties
[P 5000010128000000[4].UFFTrealTimeClock properties a
@ 8000010128000000[4].UFPTrealTimeClack_de properties
[B] 2000010128000000[4].UFPTrealTimeClock_fr.properties o Properties | [F) Dsfaul | [F] German | 7] Spansh | (7] French | [F] New...
[F| 5000010128000000[4].UFFTscheduler properties [Problems % Console Froperties %Y =0
[B| 5000010128000000[4].UFPTscheduler_de.praperties 1 errors, 0 warnings, 0 Infos
[P 5000010128000000[4].UFFTscheduler_fr properties e
@ 8000010128000000[4],UFPTtypeTranslator . properties
@ 8000010128000000[4].UFPTEypeTranslator_de.properties
[F| 5000010128000000[4].UFFTtypeTranslstor_fr.properties
[B| cm_cfg.properties
[Bl cM_cFg_de.properties
@ CM_CFg_fr.properties
@ COMMOM, properties v
qr >
% LonMark Resourcs Yiew 52 ~ B« >
PoEd

++ - COMMON_es. properties[...]. properties - Eclipse SDK

A new COMMONK<_language[_REGION] [_variant]>.properties file is added to the C/C++
Projects view and this file appears in the Editor view. In addition, a box marked with the
language you selected is added to the bottom of the right frame of the Editor view. Note that all
the properties listed in the left frame are marked with warning symbols, indicating that the
property has not yet been translated. Once you enter a translation for a property, the warning
symbol is removed.

Translate each property listed in the left frame. You can do the translation from the Properties

tab (

recommended) or from your language’s tab.

To translate the properties from the Properties tab, click each property listed in the left frame
and enter a translation in your language box in the right-pane one-by-one. This is the slower
approach as you must enter text for properties that do not have translations for the Default
(English) language (for example, the abbreviations for units of time and the abbreviations for
some months), and you are repeatedly clicking in between typing.

Localizing the SmartServer Web Interface

Editor for ResourceBundle: COMMON_es properties[, ..]. properties,

D Default O+ >
e, ABE_APRIL A fpr
o, ABE_AUGU
o%f BBE_DAY
ot
s ABE_DECEI German O# ¥
ﬂ"i AEE_FEERL -
oy ABE_HOUR Apr
d‘i ABE_JAMNL,
o ABB_IULY
% ABE_JUNE
. . #
ABE_KE Spanish ¥ k4
o, ABE_MARC Abril
o, BEE_MAY
of ABE_MIN
d‘i AEE_MSEC
s wee e 20 || French C# >
4 | ? =
— — Lt
ABE_AFRIL add
[Properties | [F| Default| [P German | [F] Spanish | [F) French | [E] Mew..,

| >

W

You can comment out the text in a translation by selecting the checkbox ([_]#) in the upper
right-side of the language box. You can switch to your language’s property tab by clicking

the arrow (%) on the upper right-hand corner of your language box.

e To translate the properties from your language’s tab, first copy the Default (English)
translation and paste it into your language’s tab. You can begin translating the properties
listed in your language’s tab.

Editor For ResourceBundle: COMMORN_es . properties[. ..]. properties.

LEB_APRIL = Abril
LBEE_AUGUST = Agosto
LEB_DAY = d
LEB_DECEMBER = Diciembre
LEB_FEBRUARY = Febrero
LEB_HOUR = h
LEE_JANUARY = Enero
LEB_JULY = Julio

ABE JUME = Junio

< |
[Properties | [P] Defaulk | [P] German | [F] Spanish | [F| French @ Mew. ..,

k4

#Generated by ResourceBundle Editor [http:f’.f’eclipse—rbe.sc\uw_\

£

Tip: Save your language localization project frequently to safeguard your data from a power
outage or other failure. To save your language localization project, click File and then click Save.

10. When you finished translating all the properties in the COMMON.properties file, save your

language localization project.

11. Copy the localized copy of the COMMON.properties file to the SmartServer. To do this, follow

these steps:

i.LON SmartServer 2.0 Programming Tools User’'s Guide

a. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\nls\echelon
directory or on your computer (or other location where your working copy of the NLS files is
stored).

b. Use FTP to access the root/web/user/echelon/folder on the flash disk of your SmartServer.

c. Copy the COMMON<_language[REGION] [_variant]>.properties file in the

LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\nls\echelon folder on your
computer to the root/web/nls/echelon/ folder on the SmartServer flash disk.

Translating Embedded Application Properties

You can implement SmartServer embedded applications (Event Scheduler, Data Logger, Alarm
Notifier, and so on) in your custom SmartServer Web pages and have the properties in the applications
appear in a localized language. To do this, you translate the .properties file of any embedded
application that you plan on using in your custom SmartServer Web page.

For example, if you wanted to create a custom Web page that contains an Event Scheduler in a
localized language, you would translate the 8000010128000000[4].UFPTscheduler.properties file.

To translate this file, you would essentially follow the steps outlined in the previous section,
Translating the COMMON.properties File, except that in step 1, you click the
8000010128000000[4].UFPTscheduler.properties file under NLS project in the C/C++ Projects
view.

& C/C++ - B0D0O10128000000[4].UFPTscheduler_es. properties|...]. properties - Eclipse SDK
File Edit Refactor Mavigate Search Project FPM Run ‘Window Help

<

r P ad- MECREER <R F Rl N I B | B oo+

Rl Cjc++ Projects 5 Navigator =l I0[4].LIFPTsch X roperties X =8z~ &4
= <)<:a = | [Editor For ResourceBundle: 80000101 2800000041, UFPTscheduler_es.properties[. ..].propertiss,
5 S s ~ [:] Default ~
[B| 8000010128000000[4].UFPTalarmGeneratar properties
[F| 8000010128000000[4].LIFPTalarmGenerator_de properties o, ABB_FRID ~
[F| 8000010128000000[4].UFPTalarmGener ator_fr.properties off, ABE_MONL
[F] 2000010128000000[4].UFPTalarmiMatifier properties of, ABE_SATLI
[P| 8000010128000000[4],UFFTalarmatifier_de. praperties , ABB_SLND e
[B| 2000010128000000[4].UFPTalarmMatifier_fr.properties «f, ABE_THUR
[Fl 8000010128000000[4]. LIFPTanalngFunctionBlock. properties o, ABB_TUESL
[Pl 8000010128000000[4].UFPT analagFunctionBlock_de.praper of, ABE_MW/EDN
[F] #000010128000000[4].UFPTanalogFunctionBlack_fr.propert of, ABE_W/EEK
[Pl 8000010128000000[4].UFPTdatalogaer propertiss off, ADD_DELE spanish
[B| 2000010128000000[4].UFPTdatalogger_de.properties «f, ADD_EVEN (=t
[F| 8000010128000000[4].UFPTdatalogger_fr.properties o, ADD_EXC
[Fl s000010126000000[4].UFPTdigitalnput. properties off, ADV_WART
[B] 2000010128000000[4].UFPTdigtallnput_de. properties oty CONFIRM_
[Fl 8000010128000000[4].UFPTdigitalnput_fr.propertiss o, CONFIRM_
[F| 2000010128000000[4].UFPTdigitaloutput. properties P French
[F| 8000010128000000[4].LFPTdigitaloutput_de. properties
[B| 5000010128000000[4]. UFPTdigitsloutput_fr.praperties 2
[P 5000010128000000(4].UFFTpulseCounter.properties [y Propertios | [) Defoul | [B] German]| [B] Spanish | [B] French| [} Now...
@ 8000010128000000[4],UFPTpulseCounter_de.properties

@ 8000010128000000[4].UFPTpulseCounter_fr.properties
@ 8000010128000000[4],UFPTrealTimeClock, properties
[F| s000010128000000[4].UFPTrealTimeClock_de properties

{2/ Problems 2
0 errors, 0 warnings, 0infos
Descripkion

Console Properties :=:=> - =5

[B| 8000010123000000[4].LIFPTrealTimeClock_fr. properties

@ 8000010128000000[4]. UFPTscheduler . properties

@ 8000010128000000[4].UFPTscheduler_de.properties

(P| 8000010126000000[4].UFPTscheduler_es.properties

I 5000010123000000[4].UFPTscheduler_fr properties

[B| 8000010128000000[4].LIFPTtypeTranslator . properties

@ G000010128000000(4].UFPTtypeTranslator_de.properties o,
»

=0

% LonMark Resource Yiew 3 <

D ome

Tip: Alternatively, you can create a new localized .properties file for an embedded application from a
copy of an existing English, German, or French version. To do this, you do the following,

1. Copy and paste the existing English, German, or French version of the .properties file of the

embedded application in the C/C++ Projects view. The Name Conflict dialog opens.

178 Localizing the SmartServer Web Interface

12.

Enter a new name For 'S000010123000000[4].UFPTscheduler . properties'

| Copy of B00001012300000004]. UFPTscheduler propettizs |

0] 4 H Cancel]

Re-name the copy by deleting the “Copy of” pre-fix and inserting the “<_language[_REGION]
[_variant]>” suffix between the name of the embedded application and the .properties extension.

For example, you can create a Spanish version of the Event Scheduler by copying and pasting the
8000010128000000[4].UFPTscheduler.properties file and re-naming it
8000010128000000[4].UFPTscheduler_es.properties.

& Mame Conflict

Enter a new name for 'S000010123000000[4].UFPTscheduler, properties'

| 5000010128000000[4].UFPTscheduler_es. properties |

(8]4

J

Click OK. The new localized version of the .properties file appears in the C/C++ Projects view.

Cancel]

Double-click the new localized version of the .properties file to begin translating its properties in
the Editor view.

Copy the localized copy of the embedded application’s .properties file to the SmartServer. To do
this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\nls\echelon
directory or on your computer (or other location where your working copy of the NLS files is
stored).

b. Use FTP to access the root/web/user/echelon/ folder on the flash disk of your SmartServer.

Copy the <application><_language[REGION] [_variant]>.properties file in the
LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\nls\echelon folder on your
computer to the root/web/nls/echelon/ folder on the SmartServer flash disk.

Creating a Localized Custom SmartServer Web Page

You can create new custom SmartServer Web pages using i.LON Vision 2.0 and have the Web pages
appear in a localized language. To create localized custom SmartServer Web pages, you must translate
the COMMON.properties file and the .properties file of the application objects to be used in your
custom SmartServer Web pages as described in the previous sections. In addition, i. LON Vision 2.0
must be installed on your computer. For more information on installing i. LON Vision 2.0, see the
i.LON Vision 2.0 User’s Guide.

To create a localized custom SmartServer Web page, you do the following:

1.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

Start i.LON Vision 2.0. To do this, click Start, point to Programs, point to Echelon i.LON
Vision 2.0 SmartServer 2.0, and then click i.LON Vision 2.0 SmartServer 2.0. i.LON Vision

2.0 opens.

179

5.

180

Connect i.LON Vision 2.0 to your SmartServer. To do this, click Manage Connections in the
Sites pane on the left side, or click File and then click Site Manager. The Site Manager dialog
opens. Click New Site, the Edit Site dialog opens. Enter your SmartServer’s information, and
then click OK twice. A link with the IP address of your SmartServer is added to the Sites pane.

Create a new custom SmartServer Web page. To do this, click the New button on the Editor
A . . .
toolbar (), or click File and then click New Page. The Select Folder dialog opens.

Expand the SmartServer icon, expand and click the user folder (you must create the new folder in
the root/web/user directory on the SmartServer flash disk), and then click the New Folder icon to
create the directory for your custom SmartServer 2.0 Web page.

i.LON Vision - Select Folder

El & 10.2.124.165
*# |} images

=1 rnils

| scripts

| styles

B ®

c3]

[+

| [wsbL

l

’ Ok] [Refresh] ’ Cancel] ’ Help]

The New Folder dialog opens. Enter the name for the folder where all the custom SmartServer
2.0 Web pages for a given Web design will be stored. Click OK.

i.LON Vision - New Folder

0 Folder Name

| Cust0m|

[Ok] l Cancel]

Click the custom SmartServer 2.0 Web page folder you created in step 5, and then click OK.

In your new custom SmartServer Web page, click Insert, and then select one of the following
objects that represent the application objects you can add to your custom SmartServer Web page:
Data Point View, Data Logger View, Scheduler, or Alarm Notifier. This example uses a
Scheduler object.

Localizing the SmartServer Web Interface

. i.LON Vision

File Edit View BOEZIS Format Table Help

HTML Elements »
H % v - | Z hupiifin.z,124.185/user]myFpmcustom

@ 9

i Back Fopward | Show value...

M B AL Text Field. ..

Al Gl Text Area..

7% Browse | Zlayol comboBox...
Image Swapper.,..
Radio Buttans...

a

fil
a
Wl
1]
i

Select Box...
Check Box..,
v Object...
Link. .

Data Paint View. ..
Data Log Yiew...

Alarm Motifier. ..
LS Text..,
Custom JavaScript...

Mavigation...
Page Title. ..
Message Box...
Menu Button...

Choose New

X

Publish Discard

8. The iLON Vision -Object — <Application> dialog opens.

9. Configure the application object to fit the functionality provided by your custom SmartServer Web
page. In the Default Language box, select your localized language, and then click OK.

i.LON Vision - Object

Layer

Scheduler

Left: Wfidth: Top: Height: Z-Index;:

Instance
|myNetwurHChannel 1/iLCM SmartServer- 1fScheduler[0] vl
Presentation
Type: () Week (3 Year
Usage: () View () Config
‘fear Start: | » |
Week Start: | w |
[] show week Mumber
Max number of columns: | |
Max nurmber of rows: | |
Defaulk Language: English L
Endglish
Dedtsch]
Franais Refresh] [Cancel l ’ Help]

10. Edit and link your custom SmartServer Web page as described in the i.LON Vision 2.0 User’s

Guide.

11. Click Publish on the Editor toolbar (|pusish |), click the Browse tab, or click File and then click

Publish. The Publish As dialog opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

181

12. In the File Name property, enter the name of the .htm file (one word with no spaces), and then

click OK.

1.LON Vision - Publish As

10.2.124.165

| JuserimeFprCuston) | Choose

File Mame: | myLocalized'WebPage |

[]

l [Cancel] ’

Folder:

[ox Help |

Creating Localized FPM Configuration Web Pages

You can localize the language for custom FPM configuration Web pages. To do this, follow these
steps:

182

1.
2.

Copy the root/web/config/Fb/NLS folder on the SmartServer flash disk to your computer.

Start the i.LON SmartServer 2.0 Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer 2.0 Programming Tools, and then click i.LON
SmartServer 2.0 Programming Tools. The i.LON SmartServer 2.0 Programming Tool opens.

Click File and then click Import. The Import dialog opens in the Select window.

Select

Creake new projects from an archive file or directory.

Select an import source:

=

== General
@ archive File
QQ‘ Breakpoints
ﬁ} Existing Prajects inka Waorkspace
[:L File System
=L Preferences
= CfC++
(= cvs
(= Plug-in Development
(= Team

®

Cancel

Expand the General folder, click Existing Projects into Workspace, and then click Next. The

Import Projects window opens.

Localizing the SmartServer Web Interface

Import Projects —
Select a directory bo search for existing Eclipse projects. @
-

(%) select rook directory: | | | [Browse...]

() select archive File: | |

Projects:

Select Al
Deselect Al

|:|Copy projects into warkspace

®

5. Click Browse. The Browse to Folder dialog opens.

6. Browse to the web/config/Fb/NLS folder you copied to your computer and then click OK. A new
project called web-config-Fb (custom NLS) appears in the Projects: box. This means that your
language localization project has been created within the current workspace.

& Import D_<|

Import Projects —
Select a directory bo search for existing Eclipse projects. @
<

(%) Select rook direckory: | C:\Documents and SettingstjduvallDeskkophnl: | [Browse. ..]

() Select archive file: | |

Projects:

web-config-Fb {custam MLS) Select all
Deselect Al

DCopy projects into warkspace

':':’:' I Finish l [Cancel

i.LON SmartServer 2.0 Programming Tools User’'s Guide 183

7. Click Finish. A web-config-Fb (custom NLS) project appears in the C/C++ Projects view.

¥ C/C++ Projects X Mavigator -0

LT IE‘ cé‘:j

=

== iweb-config-Fb {custom MNLS) |

8. Expand the web-config-Fb (custom NLS) folder. The English .properties files for the FPM
configuration Web pages appear under the NLS folder.

Mavigatar = 8

¥l C/C++ Projects X

= =% web-config-Fb {custom MLS) |
@ AFFL3E0OO0000400[5], UFPTHY ACController properties
[P| SFFOE000O000400[S].UFPTMath. properties
@ AFFDEEN0O0000400[5]. UFPTSwitchEncader , properties

9. Create a new .properties file for the FPM configuration Web page as described in Translating
Common Properties earlier in this chapter.

10. Translate any NLS Text objects you added to your FPM configuration Web page and translate the
page title property (NLS_TITLE). This property provides the page title for your localized FPM
configuration Web page. Do not modify the text that is enclosed in braces. For example, the
following page title “{name=HVAC Web Page}: Configure”, could be translated to “{name=
HVAC Web Page}: Configurar” in Spanish. For more information on NLS Text objects and how
to change the page title for custom FPM Configuration Web pages, see Creating Custom FPM
Configuration Web Pages.

M *9FFDIE0000N00400[S]. UFFTHYACController_es. properties]...].properties X
Editor For ResourceBundle: SFFD3EOD00000400[5]. UFPTHYAC Cantroller _es, properties[...].properties,
D Default O+ Ed
o DEFALLT_TE {name= HvAC Web Page}: Configure
o MLS_TITLE
Spanish [+ >
{name= HvAC Web Page}: Configurar
< | @
MLS_TITLE Add
[Properties | [P] Default | [F] Spanish @ T

184 Localizing the SmartServer Web Interface

Localizing the Language of the SmartServer Web Interface

Localizing the language of the SmartServer Web interface entails doing the following:

1. Translating one-by-one all of the .properties file in the web/nls/echelon folder on the SmartServer
flash disk with the i.LON SmartServer 2.0 Programming Tool.

2. Creating a new web/user/echelon/<language[REGION] [_variant]> folder from a copy of the
existing web/user/echelon/de (German) folder or the web/user/echelon/fr (French) folder in the
working copy of the SmartServer embedded image on your computer.

3. Editing the index.htm file in the web folder with a text editor so that you can select your language
from your i.LON SmartServer 2.0’s home page.

4. Translating the Welcome.htm file in the web/user/echelon/<language[REGION] [_variant]>
folder with 1.LON Vision 2.0, or with a text editor.

5. Translating and updating the language settings of the Menu.htm file in the
web/user/echelon/<language[REGION] [_variant]> folder with i.LON Vision 2.0, or with a text
editor.

6. Updating language settings of the Sidebar.htm files in the
web/user/echelon/<language[REGION] [_variant]> folder with i.LON Vision 2.0, or with a text
editor.

7. Viewing the results of your language localization project with the SmartServer Web interface.

Translating Property Files

You can translate the .properties file on the SmartServer with the i.LON SmartServer 2.0
Programming Tool. To do this, you one-by-one create localized copies of the .properties files listed
in the C/C++ Projects view and translate all the properties listed in the files.

The SmartServer contains a total of 24 .properties files in the web/user/echelon folder, consisting of
10 files for the embedded applications and 14 for the system setup pages and general properties. Each
.properties file contains anywhere from 5 to 412 properties. There is a total of approximately 1,450
properties. You can use these figures in estimating the man hours required to complete a language
localization project for the SmartServer.

If you want to translate the SmartServer Help.htm files in the web/user/echelon folder, you should
first evaluate whether you have the resources requires for this task. Translating the Help.htm files
requires an extensive effort (much greater than that required for the translation of the .properties
files). Furthermore, the translation of the Help.htm files is not supported—you cannot use the i. LON
SmartServer 2.0 Programming Tool to perform the translations. Instead, you need to use a text editor
such as Notepad, WordPad, or TextPad if you want to translate the SmartServer Help.htm files.

When you have finished translating all the localized copies of the .properties file, save the language
localization project, and then copy all the .properties files to the SmartServer following step 11 in
Translating Common Properties in this chapter.

Tip: In addition to saving your language localization project frequently, you should regularly make
backups of the web/nls folder in the working copy of the SmartServer embedded image on your
computer. It is recommended that you make a backup each time you finish translating a file.

Creating New Language Folders

You can create a new web/user/echelon/<language[REGION] [_variant]> folder in the working copy
of the SmartServer embedded image on your computer. You need to do this in order to create
localized versions of the Welcome.htm, Menu.htm, and Sidebar.htm files. You will translate the
text of the Welcome Web page in the Welcome.htm file and the menus and menu items in the
Menu.htm file. In addition, you will change the language settings to your localized language in the
Menu.htm and Sidebar.htm files.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 185

To create a new web/user/echelon/<language[REGION] [_variant]> folder, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\echelon folder
on your computer (or other location where your working copy of the SmartServer embedded
image is stored).

2. Create a new folder named <language[REGION] [_variant]>. For example, if you are creating a
Korean translation, create a new folder named “ko”. If you are creating a Spanish translation,

186

create a new folder named “es”.

& C:\lonWorks\iLon100\images\iLon100 4.02 Spanish\webluserlechelon

EBEX

© File Edt View Fawvorites Tools Help ,'
e Back ~ () 11; 7) Search {7 Felders -
i Address ‘D Z:\LonWorksiLon100himagesiiLon1 00 4,02 Spanishiwebluseriechelon V| Go
Size Type [Dabe Modified sl
File and Folder Tasks File Folder 5/4/2008 5:03 PM
J Make a new folder File Folder &I5{2006 12113 PM
X . File Folder 8/4/2008 5:09 P L
=] Bl File Folder 8/5/2008 12:13 PM
Q Share this Folder QSDDDDU]1ZSDDDDDD[4]‘UFPT... 1KE HTML Dacument 7I10f2008 7:51 PM
@SUUUUIUIZSUUUUUU[‘O]‘UFPT. o0 1KE HTML Document 7/10/2008 7:51 PM
(€ 5000010128000000(4], UFFT. .. 1KE HTML Document 7110/2008 7:54 PM
Other Places {E5000010125000000[4] UFFT. ., 31KE HTML Document 711042006 7:52 PM
@BDDDEHDlZBDDDDDD[‘l]‘UFPT... 1KE HTML Dacument 7/10/2008 7:55 PM
[user € 5000010126000000(4], UFFT. .. 1 KB HTML Documnent 7110/2008 7:55 PM
ﬂ Iy Documents @80000lUlZSUDDUUU[‘I]UFPT... 1KE HTML Document 7/10/2008 7:51 PM
d My Computer @SDDDDU]1ZSDDDDDD[4]‘UFPT... 1KE HTML Dacument 7I10f2008 7:59 PM
.-ﬂ Ty e s @SUUUUIUIZSUUUUUU[‘O]‘UFPT. o0 B69KE HTML Docurment 7/10/2008 7:51 PM
eSUUDDlUlZSUDDUUU[‘I]UFPT... 1KE HTML Document 7110/2008 7:54 PM
QSDDDDU]1ZSDDDDDD[4]‘UFPT... 1KE HTML Dacument 7I10f2008 7:54 PM
Details @80000IUIZSUUUUUU[‘O]‘UFPT. o0 1KE HTML Document 71102008 7:56 PM
€ 5000010128000000(4), UFFT. .. 1KE HTML Document 7110/2008 7:51 PM
QSDDDDlDlZSDDDDDD[‘I]‘UFPT. o0 1KE HTML Dacument 7I10f2008 7:51 PM
@SUUUUIUIZSUUUUUU[‘I]‘UFPT... 1KE HTML Document 7/10f2008 7:53 PM
(€ 5000010128000000(4], UFFT. .. 1KE HTML Document 7110/2008 7:55 PM
@8000010128000000[4]‘UFPT. o 29KE HTML Document 7110/2008 7:54 PM
@BDDDD[DlZBDDDDDD[‘I]‘UFPT... 1KE HTML Dacument 7/10f2008 7:54 PM
(€ 5000010128000000(4], UFFTC. .. 1KE HTML Document 7110/2008 7:54 PM
@8000010128000000[4]‘UFPTC. " 1KE HTML Document 7110/2008 7:54 PM
@BDDDEHDlZBDDDDDD[‘l]‘UFPTE. 00 18KE HTML Document 71102008 7:53 PM
€ 5000010126000000(4], UFFT. .. 1 KB HTML Documnent 7110/2008 7:52 PM
= 50000101 25000000[4] UFPT. .. 1 KB HTML Ducuﬁnt 7/10/2006 7:52 PM v

3. Copy the index.htm, Menu.htm, Sidebar.htm, Welcome.htm files to the new
<language[REGION] [_variant]> folder.
4. Copy the <language[_REGION] [_variant]> folder to the SmartServer. To do this, follow these

steps:
a. Use FTP to access the root/web/user/echelon folder on the SmartServer flash disk.

b. Copy the <language[_REGION] [_variant]> folder on your computer to the
root/web/user/echelon folder on the SmartServer flash disk.

Editing the index.htm File to Enable a New Language on the SmartServer

You can edit the index.htm file in the web folder with a text editor so that you can select your
language from your i. LON SmartServer 2.0’s home page. After you enable your localized language in
the index.htm file, you can copy the file to the SmartServer. To do this, follow these steps:

1.

Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web folder on your
computer (or other location where the index.htm file in your working copy of the SmartServer
embedded image is stored).

Open the index.htm file with a text editor such as Notepad, WordPad, or TextPad.

Locate the “<option>" elements on lines 157—-159. Insert an <option> element for your localized
language. For example, if you are creating a Spanish translation, insert the following text:

<option value="es/"> Espafiol</option>

Localizing the SmartServer Web Interface

index.htm * X
<body » —
¢div id="pagebody": A
<div id="pageheader":
¢gpan id="productlogo”:<a href="http - wwy. echelon com ilon”:{img src="inages-i
<div id="servicebar":
¢table border="0" cellspacing="0" cellpadding="0"3»
<try
<td width=20: < td>
tdeConfiguration fann :
<option value="":English<-option:
<option walue="-de" :Dent=ch¢ options
<option value="-fr":Francais< option:>
<option value="r==z" >m</option>
v v e ——
ctd width=20» <~ td:
<td width=64 id="login" onclick="navService():":Login<- td>
<Aty
<~table:>
<odive
<div id="pageContent":
¢table width="720" border="0" align="center" cellpadding="3":
<try
¢tdr<ing sro="images.-1lon dropshadow. jpg" alt="" width="350" height="2
<tds
<ul id="product_points":
<li:Programmable. run custom C &anp: C++ applications and driwve
<li:Direct LHS® interface to wview and use the IHS database<s1i
<lir5Standalone mode can manage up to 200 PL danp: 64 FT dewvice:
<1lirHetwork management us=ing the SmartServer Web pages<-1i:
<li:More intuitive user interface<sli:
<lirCreate trend graphs using the configuration Web pages or 1.
<lirLlocalize configuration pages to any language<-1i:
<1i-64HB of Flash and RAM<-1i:
<suls
<stds
<otr e
LS >

Save the index.htm file.

Copy the index.htm file to the SmartServer. To do this, follow these steps:

a.

Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web folder on your
computer (or other location where the index.htm file in your working copy of the
SmartServer embedded image is stored).

Use FTP to access the root/web folder on the SmartServer flash disk.

Copy the index.htm file on your computer to the root/web folder on the SmartServer flash
disk.

Translating the Welcome.htm File

You can translate the Welcome.htm file in the web/user/echelon/<language[REGION] [_variant]>
folder in your working copy of the SmartServer embedded image. You can do the translation with
i.LON Vision 2.0, or you can do it with a text editor.

Translating the Welcome.htm File with i.LON Vision 2.0
You can translate the Welcome.htm file using i.LON Vision 2.0. To do this, follow these steps:

1.

Copy your web\user\echelon\<language[REGION] [_variant]> folder on your computer to the
SmartServer. To do this, follow these steps:

a.

Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\echelon
folder on your computer (or other location where your working copy of the SmartServer
embedded image is stored).

Use FTP to access the root/web/user/echelon folder on the SmartServer flash disk.

Copy the <language[_REGION] [_variant]> folder on your computer to the
root/web/user/echelon folder on the SmartServer flash disk.

Start i.LON Vision 2.0. To do this, click Start, point to Programs, point to Echelon i.LON
Vision 2.0 SmartServer 2.0, and then click i.LON Vision 2.0 SmartServer 2.0. i.LON Vision

2.0 opens.

Connect i.LON Vision 2.0 to your SmartServer. To do this, click Manage Connections in the
Sites pane on the left side, or click File and then click Site Manager. The Site Manager dialog

i.LON SmartServer 2.0 Programming Tools User’'s Guide

187

188

opens. Click New Site, the Edit Site dialog opens. Enter your SmartServer’s information, and
then click OK twice. A link with the IP address of your SmartServer is added to the Sites pane.

Click the Choose button) on the Editor toolbar to open the Select File dialog opens. Select

the web/user/echelon/<language[_REGION] [_variant]>/Welcome.htm Web page, and then click
OK.

i.LON Vision - Select File

ish]]

Bl & 10.2.124.165 ~
|1 config
| |7 images
=3 nls
|} scripts
= styles
73 user
) Architecture
) Custam
=) dema
=) echelan
B D de
B CDes
'_fé Copyright.htm
& index.bkm
'_ré indes. bkl
& Menu.htm
'_fé Sidebar.htm
& welcome him
B = »

[l

’ Ok J [Refresh] ’ Cancel] ’ Help]

]

= welcore .

HEHE H

The English version of the Welcome.htm Web page opens.

. i.LON Vision

T Fle Edt View Incert mat Table Help

€ GO @Y g A
o A . il http:ff10.2.124.165/user/echelanfesi\Welcome. htm v‘ = Fad F N
Back Forwar Reload Stop Home Choose Mew Edit iscard
:i,-' PRI G A VR B aml En g

¥AX Browse ‘ # Layout

Welcome.

Thiz web site provides access to a LONWORES networle. Ttis hosted by an i LOIT
SmartServer.

For mote information on the 1 O family of products, including software updates,
please wisit hitpuifwwrw.echelon comiilon

. Gl .
Click Edit on the Editor toolbar () or click the Layout tab. Translate the text on the Web page
from English to your localized language.

Translate the Page title following these steps:
a. Click Format and then click Page Title Properties. The Page Properties dialog opens.

Localizing the SmartServer Web Interface

i.LON V¥ision - Page Properties

3

i.LON SmartServer 2.0 Programming Tools User’'s Guide

Page Title: | i,LOM SmartServer - Bienvenidd|
Poll Interwval; | |
(04 l [Cancel] [Help]

a. Inthe Page Title box, enter a descriptive page title.

b. Click OK.

8. Click Publish. The Welcome.htm Web page appears in your localized language.

File Edit Wiew

i Back Reload Stop
e-lf & ¥

A ,5.‘&; B 7 iy
% Browse ‘ # Layout

Help

@ -

Hame

[
|

= hrtp:ff10.2.124,165{user/echelonies/Welcome, htm

Bienvenido!

Este sitio web proporciona acceso auna red LonWorks. Es
organizada por un i.LON SmartServer.

Para obtener mas informacion sobre el i.LON familia de
productos, incluyendo actualizaciones de software, por
faver visite http://www.echelen.comlilon

Translating the Welcome.htm File with a Text Editor

You can translate the Welcome.htm file using a text editor such as Notepad, WordPad, or TextPad.
To do this, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\echelon folder
on your computer (or other location where the Welcome.htm file in your working copy of the
SmartServer embedded image is stored).

2. Open the Welcome.htm file with your text editor.

3. Translate the highlighted lines of code.

189

190

Welcome.htm *

]
)L "

<I1DOCTYPE html PUBLIC "---W3C-~DTD HTHL 4.01 Transitional~ ~EN"»

<html>
<head s
weta hbttoosmuds=content_ton=t montent="fext bl sharest-ptf 2"
L <titleyi TON SmartServer — Bienvenidod/titles
<link hret=".. - rstyles echelon -Global. css” type=s text-css rel= stylesheest”>
<zcript types'textsjavascript' sros="sscriptssechelonsEchelonlnit . j=":<sscripty
<s=tyles
1——
.welcone { color: #113a68; font-size: 24px: font—family: "Trebuchet MS". Verdana. Arisl. sans-serif: font-sty
</styler
< head>

¢body bgcolor="#ffffff" leftmargin="0" topmargin="0">
<table width="100%" border="0" cellspacing="0" cellpadding="0" height="100%"3
<kry

<td colspan="2" walign="top" width="100%">

<table width="10 border="0" cellspacing="0" cellpadding="0" height="100%">
<tr height="501">
<td colspan="2" height="G501":
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr valign="top" height="15":

<td walign="top"r< td>
<tdr<stde:
<Aty
<tr walign="top" height="500">
td woligo="paddler widbh="ol=
<p clas=s="Higle=t »¢{span class="welcone"> Bienvenido!<- /span><-/p>
<p clas=="BigTe=t"> Ezte =itio webh proporciona acceso a una red LonlWorks. Es
<p Dl§§s="E1gTE§t”> Fara obtﬁgﬁr nkis 1nfarﬂ29133n sobre 21 1 LON familia de

Ta
<td walign="top" width="50%" height="500" background=" . - . inages<building gif'>¥

IE: >

e Line 8 corresponds to the “i.LON SmartServer 2.0 — Welcome™ title at the top of the
SmartServer Welcome Web page.

1.LON SmartServer sowereo sy = ECHELON'

SETUP VIEW SETTINGS HELP LOG OFF
i.LON SmartServer - Bienvenido

e Lines 32-34 correspond to the “i.LON SmartServer 2.0 — Welcome” text at the bottom of the
SmartServer Welcome Web page.

Bienvenido!

Este sitio web proporciona acceso a
una red LonWorks. Es organizada
por un i.LON SmartServer.

Para obtener mas informacién sobre
el i.LON familia de proeductos,
incluyendo actualizaciones de
software, por favor visite
http:/fwww.echelon.com/ilon

Save the Welcome.htm file.
Copy the Welcome.htm file to the SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\Echelon
folder on your computer (or other location where the Welcome.htm file in your working copy
of the SmartServer embedded image is stored).

b. Use FTP to access the root/web/user/echelon/<language[_REGION] [_variant]> folder on the
SmartServer flash disk.

c. Copy the Welcome.htm file to the root/web/user/echelon/<language[_REGION] [_variant]>
folder on the SmartServer flash disk.

Localizing the SmartServer Web Interface

Translating the Menu.htm File

You can translate the Welcome.htm and Menu.htm files in the
web/user/echelon/<language[_REGION] [_variant]> folder in your working copy of the SmartServer
embedded image. You can do the translation with i.LON Vision 2.0, or you can do it with a text
editor.

Translating the Menu.htm File with i.LON Vision 2.0
You can translate the Menu.htm file using i.LON Vision 2.0. To do this, follow these steps:

1. Verify that you copied your web\user\echelon\<language[REGION] [_variant]> folder to your
SmartServer following the steps described in Translating the Welcome.htm File with i.LON Vision
2.0.

2. Start i.LON Vision 2.0. To do this, click Start, point to Programs, point to Echelon i.LON
Vision 2.0 SmartServer 2.0, and then click i.LON Vision 2.0 SmartServer 2.0. i.LON Vision
2.0 opens.

3. Connect i.LON Vision 2.0 to your SmartServer. To do this, click Manage Connections in the
Sites pane on the left side, or click File and then click Site Manager. The Site Manager dialog
opens. Click New Site, the Edit Site dialog opens. Enter your SmartServer’s information, and
then click OK twice. A link with the IP address of your SmartServer is added to the Sites pane.

4. Click the Choose button) on the Editor toolbar to open the Select File dialog opens. Select

the web/user/echelon/<language[_REGION] [_variant]>/Menu.htm Web page, and then click
OK.

i.LON Vision - Select File

1} =

|2 & 10.2.124.165
[*# | config
|} images
®E = nls
|7 scripts
[# | styles
B 3 user
) Architecture
[Custom
=) dema
= [echelon
B D de
B Des
'_é Copyright.htm
& index.bkm
@ indes:. bkl
& Menu.htm
’_é Sidebar. bt
& welcome him
= 3 fr |

e

l

’ Ok] [Refresh] ’ Cancel] ’ Help]

5. The English version of the Menu.htm Web page opens.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 191

“+_ i.LON Vision DE}@
G Fle Edt View Ineer - Help

¢ 5300

i Back Farwat Reload Stop Home:

M-e |2 AR UG

_ © & £ X
v |' httpiff10.2,124,165/user/echelonfesiMeny htm V‘ — Lol | ae
Choose MNew Edit iscard

=
A Browse | # Layout.
SETUP VYIEW SETTINGS HELP LOG OFF
Menu

6. Click Edit on the Editor toolbar () or click the Layout tab.

. i.LON Vision

T Fle Edt View Insert Format Table Help

EEX
v % ¥ = [!ﬁ @ @ '|: httpiff10.2,124,165/user/echelonfesiMeny htm v‘ & Qj @ x

i Back Faorward Reload Stop Home:
im s & A|B T U
¥ Browse | # Layout ‘

?.LON' SmartServer |

Choose Mew Publish Discard

-
o
fil

a
il
[l
I

k]

‘roweren by = ECHELON |

SETUD VIEW SETTINGS HELP LDG OFF

Nelcome to ed

7. Double-click the Menu bar and the top of the Web page, or right-click the Menu bar and click
Object Properties on the shortcut menu. The Navigation Edit dialog opens.

192 Localizing the SmartServer Web Interface

i.LON Vision - Object

Laver

() Tree

Defaulk Language: |:| Addressing:

(%) Menu

Orientation: (*) Horizontal () Vertical

Presentation

Left: | 182 width: | 708 | Top: |71 | Height: Z-Index:

1255 Class: | MainMenu MainMenuR.ook

Entries

= o[root]
&} sETUP
&} vIEW
&F sETTINGS

¥ HELP

¥ LoG OFF

)

)

[[al'd] l Refresh] l Cancel] l Help

8. Expand SETUP to display its submenu items.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

193

194

9.

10.
11.

12.

i.LON Vision - Object

Laver

Left: | 182 width: | 708 | Top: |71
() Tree

Defaulk Language: |:| Addressing:
(%) Menu

Orientation: (*) Horizontal () Vertical

Presentation

| Height: Z-Index:

1255 Class: | MainMenu MainMenuR.ook

Entries

=] 0 [root] ~

Edit

Cr
? Service
@ Timne

@ Security

@ Systerm Info =,
@ LOM Command Queus
@ Power Ling Repeating Analysis b

< | b3
[[al'd] l Refresh] l Cancel] l Help]

Click Edit. The Navigation Subtree dialog opens.

i.LON Vision - Object

Mavigation Subtree

Presentation
Tcan: | | | Choose
Label: | SETUP |

235 Class; | Mainfeny MainMenusub Menul

[(0] 4] [Cancel] [Help

In the Label box, translate SETUP to your localized language and then click OK.

One-by-one, click the items listed under SETUP, click Edit, enter the translation in the Label box

of the Navigation Link dialog, and then click OK.

Repeat steps 9-12 to translate the remaining subtree and link menus items.

Localizing the SmartServer Web Interface

OK.

i.LON ¥ision - Object

Layer

Left: | 182 width: 708 | Top: |71 | Height: Z-Index:
() Tree

Default Language: I:l Addressing:
(¥ Menu

Orientation: (%) Horizontal () Wertical

Presentation

1255 Class: | MainMenu MainMenuRook |

Entries

= % CONFIGURACION
g Tce P
@ Servicio
@ Tiempo
@ Sequridad
9
@ Informacion de Sistema
@ ‘erificar

?

|£

)

I a4 l [Refresh] [Zancel] [Help]

follow these steps:

a. Double-click the Submit button, or right-click the Submit button and click Object

Properties on the shortcut menu. The Menu Button dialog opens

14. Change the language of the Submit and Back buttons to your localized language. To do this,

13. When you have finished translating the menus and menu items to your localized language, click

b. Select your localized language from the Default Language box and then click OK. This sets

your localized language as the default for the Submit button.

i.LON SmartServer 2.0 Programming Tools User’'s Guide

195

i.LON ¥ision - Object

Menu Button

D Layer
Left: | | ‘Width: | | Top: | | Height: | | Z-Index: l:l
Presentation

Type: (#) Submit () Back

Defaul: Language:

[)

I QK l [Refresh] [Cancel l [Help]

c. Repeat steps a-b to change the language of the Back button to your localized language.
15. Click Publish. The Menu.htm Web page appears in your localized language.

- i.LON Vision

G Fle Edb View Insert Formst Teble Help

Eé%' - Eﬁ 0 @ - [Z bt & & £ K
i 3 pef10.2, 124,165 user/echelonjes/Menu. htm v ‘] &

i Back F ard Relosd Stop Harne Choose Mew Edit scar
=5-| P SR A A VR Be e mn E o a

A Browse!| # Layout

I.LON SmartServer sowesensy = ECHELON
CONFIGURACION VER AJUSTES AYUDA SESION
Menu

Translating the Menu.htm File with a Text Editor

You can translate the Menu.htm file using a text editor such as Notepad, WordPad, or TextPad. This
entails translating the menu and menu items and updating the language settings in the file. Updating
the language settings enables the SmartServer to display the “submit” and “back” buttons in the menu
frame in your localized language.

To translate the Menu.htm file, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\echelon folder
on your computer (or other location where the Menu.htm file in your working copy of the
SmartServer embedded image is stored).

2. Open the Menu.htm file with your text editor.
3. Translate the highlighted lines of code.

196 Localizing the SmartServer Web Interface

<div id="menulayer" style="left: 182px top: 7lp=:width: 708px height: 25p=.z—index: 192. position: absolute: aove
<div elon_type="nenu" elon_orientation="horizontal' slon_svent="static" elon_target="sppFramse" elon_class="H
«diw elon_arg_type="array" elon_arg_name="entry_arr">

i

slop srg tvpe='cbisct”

elon_arg_nam
elon_arg_namnm
elon_arg_nam
elon_arg_typs="srrav"

4444

E]

elon_arg_typs="cbject"
<div elon_arg_type="obj

<a elon_arg_tag elon_arg_name="url" href="-ussr-echelon/CH_Localllonlp Cig. htmn" target="sppFrams":<{- a>

iws
v elon_arg_type="cbjsct"
<div elon_arg_type="obj

shift_v" elon_arg_va 4" > divy

ONFTGORACTON > < div>
inMenu MainMenuSub Menul®><- divs

elon_arg_nams="entrv_srr':

elon_lsbel="TCE -~ IP"»
ect" elon_arg_name="vars obj" elon_cm_type="localllonIp" elon_cm_index="0":>< /div>

elon_lsbel="Servicic" elon_modal="falss">
ect" elon_arg_name="vars obj" elon_cm_type="localllonService" elon_cm_index="0">< diwv>
<a elon_arg_tag elon_arg_name="url" href="- user- echelon-CH_LocalllonService_Cfg. htn" targest
<sdiwy
<div elon_arg_typs="cbject" elon_label="Tienpo" slon_modal="fslss">
<a elon_arg_tag elon_arg_name="url" href="-user-echelon-SetupTime htn" target="sppFrams" <.
<sdiwy
<div elon_arg_type="object" elon_label="Seguridad" elon_modal="fals="»
<a elon_arg_tag elon_arg_name="url" href="- user- echelon-SetupSecurity.htm" target="sppFrans|
<sdiwy
<div elon_sarg_typs="cbject" elon_line="trus">r<{ diw>
<div elon_arg_type="object" elon_label="Informacidn de Sistema elon_modal="false"»
<a elon_arg_tag slon_arg_name="url" href="- usesr- echelon Systemlnfo.htn" target="appFrans"»<
<sdiwy
<div elon_arg_type="cbject" elon_label="Verificar" elon_modal="falss"»
<a elon_arg_tag elon_arg_name="url" href="-ussr-echelon/SetupVerify htm" target="appFrans">
<sdiwy
<div elon_arg_type="object” elon_line="true">< diw>
<div elon_arg_typs="cbiject" elon_label="LON Hando Cola" elon_modal="fal=es"»
<a elon_arg_tag elon_arg_name="url"' href="ruser-echelon/LonComnandueue htn" target="appFra
<sdiwy
<div elon_arg_type="object" elon_label="Linea Eléctrica de RFepetir =l Andlisis" elon_modal="fal
<a elon_arg_tag elon_arg_name="url" href="-user-echelonsPowerlineRepeatinginalvsis. htn" tar
2ol

<
s b

div:

<diw

elon_arg_type="object” elon_label="VERE" elon_class="Hainklenu Mainklenuzub Menul™ elon_shitft_w=
<div elon_arg_type="array"' elon_arg_name="entry_arr':
«div elon_arg_type="object" elon_label="Resunen de Alarma":
<a elon_arg_tag elon_arg_name="url" href="8000010128000000[4] UFPTalarnlotifier Sumnary |
<rdivy
<div elon_arg_type="object" elon_label="Historia de Alarma">
<a elon_arg_tag elon_arg_name="url' href="g000010128000000[4] .UFFTalarnlotifier History |
<sdiwy
<div elon_arg_type="object" elon_line="true":{ diw>
<div elon_arg_type="object" elon_label="Datos del REegistro">
<a elon_arg_tag elon_arg _name="url' href="8000010128000000[4].UFFTdatalogger_View htm"
<sdiwy
<div elon_arg_type="object" elon_line="true":{ diw>
<div elon_arg_type="object" elon_label="Puntos de Datos"»
<a elon_arg_tag elon_arg_name="url' href="ViewDataPoints htmn" target="appFrans":<~<a>

<diws]
a1
ot
¢div elon_arg_type="object" elon_no_scrolling="truse" elon_label="AJUSTES" elon_shift_y="4">
<a elon_arg_tag elon_arg_name="url" href="globalssttings htn" target="popup":><~a>
¢sdivy
«div elon_arg_type="object" elon_label="AYUD&" >

<a elon_arg_tag elon_arg_name="url" href="javascript:EchelonTop. Echelon Echelon.getlInstancei) . =

crdiwy
¢div elon_arg_type="object" elon_label="SESIOH":
<a elon_arg_tag elon_arg_name="url" href="_ /shared<Logout htm" target="popup’r<- a>
¢sdivy
¢sdivey
codivy

¢div id="ilon2"
Lines 32—44 in thi

CONFIGURACION

stvle="visibilitv: visible: displav. block: position: absolute: z-index: 190: too: Zlox: left: §

s example correspond to the “Setup” menu and its menu items.

TCP /1P
Servicio
Tiempo

Seguridad

Verificar

LON Mando Cola

Sistema de Informacion

Linea Eléctrica de Repetir el Analisis

Lines 62-82 in thi

VER

s example correspond to the “View” menu and its menu items.

Resumen de Alarma

Historia de Alar

Datos del Reqgistro

Puntos de Dato

ma

=1

i.LON SmartServer 2.0 Programming Tools User’'s Guide 197

e Lines 85-93 in this example correspond to the “Settings”, “Help”, and “Log Off” menus.
Note that the translation of the SmartServer online help files is not supported.

AJUSTES AYUDA SESION

4. Change the language for the Submit and Back buttons to “elon_lang_<language[REGION]
[_variant]>” (lines 121 and 127 in the following example).

Menu.htm *

- X
<div elon_arg_type="objsct” elon_label="SESION": —
<a elon_arg_tag elon_arg_name="url" href=". rshared-Logout htn" target="popup"'> s
<sdiwv:
<sdive
<sdivy
codivey
¢div id="1ilon?" style="visibility: wisible: display: block: position: absolute: z-index: 190 top: 21px: left: &
<img sro="sinages 1iL0H_snart=zerver gif" alt="" border="0":
<sdive
¢div id="elonFower" style="visibility: wisible; display: block: position: absolute; z—index: 190; top: 36p=; lef
<img sro="sinages-ph_echelon gif" alt="" align="niddle":
codivey

¢div id="titlebar" style="po=zition: absolute; z-index: 190, top: 106p=; left: 18Zpx; width: 711lp=; height: 25px"
<div elon_type="titlebar" elon_version number="4 0"><- diwv:s
crdive

¢div id="progress" style="position: absolute: z—index: 190 top: 131px: left: 182px=: width: 71lp=:">
¢img sroc="sinsges/elonGradient gif " elon_type="progressindicator’ elon_version_numbsr="4 0° alt="" height="5
<sdive

¢div id="messagebar" style="left: 182px: top: 155p=; width: 71lpx=; height: 23p=; position: absolute; ">
<div elon_type="nessagebar" elon_version_number="4. 0" slon_lang="{slon_language}" ¢ div:
</divs

¢div id="buttonlayer" style="left: Opx;top: 103p=,width: 182p= height. 77px ;z-index: 190;po=zition: sbsolute;":
<table id="buttonTable" border="0" cellspacing="1" cellpadding="0" height="100%">
<tr height="35":
<td class="Enpty" width="13":><- td:»
td Jd="=bo b] 1 =" Dol o loign=" SoR PSR T = b T e L
<button class="ControlButton" elon_type="submitbutton' elon_lang="{elon_language=e=}" elon_versdy
T
LTy
<tr height="35"»
<td class="Enpty" width="13":><- td:»
fd id="backel]t Class="Heckoropnd” align="cepbert width="140"
<button class="ControlButton" elon lang="{elon_language=e=}" elon type="backbutton":>< button> | |
s
LTy
< tabler
<sdive
</body > v

LS >
5. Save the Menu.htm file.

6. Copy the Menu.htm file to the SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\Echelon
folder on your computer (or other location where the Menu.htm file in your working copy of
the SmartServer embedded image is stored).

b. Use FTP to access the root/web/user/echelon/<language[_REGION] [_variant]> folder on the
SmartServer flash disk.

c. Copy the Menu.htm file to the root/web/user/echelon/<language[REGION] [_variant]>
folder on the SmartServer flash disk.

Translating the Sidebar.htm File

You can update the language settings of the Sidebar.htm files in the
web/user/echelon/<language[REGION] [_variant]> folder within your working copy of the
SmartServer embedded image with i.LON Vision 2.0, or with a text editor. This enables the
SmartServer to display the objects in the sidebar frame of the SmartServer Web interface in your
localized language. The objects in the sidebar frame consist of the General and Driver mode buttons,
the message box, and the objects in the navigation pane.

Translating the Sidebar.htm File with i.LON Vision 2.0
You can update the language settings for the Sidebar.htm file using i.LON Vision 2.0.

1. Verify that you copied your web\user\echelon\<language[REGION] [_variant]> folder to your
SmartServer following the steps described in Translating the Welcome.htm File with i.LON Vision
2.0.

198 Localizing the SmartServer Web Interface

2. Connect i.LON Vision 2.0 to your SmartServer. To do this, click Manage Connections in the
Sites pane on the left side, or click File and then click Site Manager. The Site Manager dialog
opens. Click New Site, the Edit Site dialog opens. Enter your SmartServer’s information, and
then click OK twice. A link with the IP address of your SmartServer is added to the Sites pane.

3. Click the Choose button) on the Editor toolbar to open the Select File dialog opens. Select

the web/user/echelon/<language[_REGION] [_variant]>/Sidebar.htm Web page, and then click
OK.

i.LON Vision - Select File

i]
=l &9 102,124,165 ~
| config
=7 images
=1 nils
| scripts
|0 styles
= 2 user
|1 Architecture
& 7 Custom
[dema
= |7 echelon
E Cde
B Des
_@ Copyright.hkm
@ Frameset.htm
'_ré indes.htm
& index.hkml
'_ré Menu, bk
Sidebar.htm

BEEHE

®

'{é Welcome htm

|

[l

[[0]'4] [Refresh] [Cancel] [Help]

4. The English version of the Sidebar.htm Web page opens.
**_ i.LON Vision E]E]@

Choose Mew Edit

G Fle Edb View Inselt P Help

€. GO Qe @9 K
i - - '|'http:ﬁlﬂ‘z124.lE\EfusErIE(hE\unjasiS\dahar‘htm v‘ o Z A
i Back Fofward Reload Stop Harne iccard

ol e e et e A R
A Browse ‘ 7 Layout

Navigate

® General O Driver
Elgk LAN
= & SmartServer
T Remote Access
uﬂ) myMetwork
BE 102124123

5. Click Edit on the Editor toolbar () or click the Layout tab. An auto tree navigation icon
appears on the Web page.

. 1.LON Vision

% Fle Edb View Insert Format Table Help

£ o S
& - - &ﬁ) @ @ * | & http:j}10.2,124.165/userfechelonfesSidebar him v| & jz @ x
i Back “oward Reload Stop Home Choose Mew Publish Discard
‘W, ¢ A BT U & (w|% %

g Browse | 7 Layout ‘

|

: “? [auto tree]

i.LON SmartServer 2.0 Programming Tools User’'s Guide 199

8.

Double-click the Menu bar and the top of the Web page, or right-click the Menu bar and click
Object Properties on the shortcut menu. The Navigation Edit dialog opens.

Select your localized language from the Default Language box and then click OK. This sets your

localized language as the default for the Sidebar.htm file.

i.LON Vision - Object

[Layer
Lefk: I:I width: | | Top: | | Height: I:I Z-Index: I:I
() Tree
Auto Tree
Defaulk Language: | English w | Addressing: (%) Name () alias
English
O Menu Deutsch
Crrienkation: Frani;ais

Presentation

1255 Class: |

Entries

0 [root]

[)

[[al'd] l Refresh] l Cancel] l Help]

Click Publish. The Sidebar.htm Web page appears in your localized language.

. LLON Vision

Flle Edit Wiew Inser Tzhle Help

% W E &ﬁ 0 @ '|: httpff10.2.124.165/user/echelonjesiSidebar htm v‘ & Qj% ﬁ

Back Forward Relosd Stop Harne Choose New‘ Edit
- i 7
iM-s | &8 5 Lo

XA Browse | 2 Layout

Navigate

® General © Caontrolador
Bk LAN
= & SmartServer
T Remote Access
uﬂ) myMetwork
B 10.2.174153

P,

Translating the Sidebar.htm File with a Text Editor

You can update the language settings for the Sidebar.htm file using a text editor such as Notepad,
WordPad, or TextPad. To do this, follow these steps:

200

Localizing the SmartServer Web Interface

1. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\Echelon folder
on your computer (or other location where the Sidebar.htm file in your working copy of the
SmartServer embedded image is stored).

2. Open the Sidebar.htm file with your text editor.

3. Change the one “clon_lang de” setting to “elon lang <language[REGION] [_variant]>” (line 12
in the following example).

Sidebar.htm 2
<IDOCTYPE HTML PUBLIC "—/-W3C-~DTD HTHL 4.01 Transitional~~EN"» =

<html>
<head>
<meta http-squiv="Content-Type" content="tezt- htnl charset=utf-8">
<titleySidebar<stitles
{zcript type="text-javascript’ src="-scriptz<echelon-Echelonlnit.js">< script>
<link href="rstyles-echelon-Global.css" type="text-css" rel="styleshest">
< head>

Lo

<div =lon_type="navires" slon_wersion_number="4.0" elon _lang="{=lon_langusge===1}" slon_auto_tree="trus" elcm_system_d
T == i —

4. Save the Sidebar.htm file.
5. Copy the Sidebar.htm file to the SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.0<x> <Language>\web\user\Echelon
folder on your computer (or other location where the Sidebar.htm file in your working copy
of the SmartServer embedded image is stored).

b. Use FTP to access the root/web/user/echelon/<language[REGION] [_variant]> folder on the
SmartServer flash disk.

c. Copy the Sidebar.htm file to the root/web/user/echelon/<language[_REGION] [_variant]>
folder on the SmartServer flash disk.

Viewing the Localized SmartServer Web Interface

After you have copied the index.htm file and the <language[REGION] [_variant]> folder to the
SmartServer, you can view your localized version of the SmartServer Web interface. To do this
follow, these steps:

1. Open your i.LON SmartServer 2.0’s home page. If the i.LON SmartServer 2.0 Web pages are
already open, close your browser.

2. Inthe Configuration & Service box near the top of the home page, select your localized
language.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 201

1.LON SmartServer = ECHELON

« Programmable, run custom C & C++ applications and drivers

+ Direct LNS® interface to view and use the LNS database

+ Standalone mode can manage up to 200 PL & 64 FT devices without
an LNS database

+ Metwork management using the SmartServer Web pages

« IPvG Support

+ Improved security (HTTPS)

+ Cross-Browser Support

+ Create trend graphs using the configuration Web pages or i.LON
Vision

» Localize configuration pages to any language

* B4MB of Flash and RAM

Demonstrations i.LON Vision 2.0 Features Resources

+ Demonstrations * Integrated Design + iLON SmartSen ommunit

+ ATU Page » Quick Access to all Network and + iLON Smart &i.LON 100

* iPhone Demo System Values Developer and Integrator Center
= Mo cost solution + i.LON SmarntServer eTraining

3. Click Login. The localized i.LON SmartServer 2.0 - Welcome Web page opens.

I.LON SmartServer sowsssos = ECHELON
CONFIGURACION VER AJUSTES AYUDA SESION
i.LON SmartServer - Bienvenido
Navigate A
® General O Controlador
gz LAN
= & SmartServer
T Remote Access
® @ myNetwork %%
& 10.2.124.123
Bienvenido!
Este sitio web proporciona acceso a una
red LonWorks. Es organizada por un
i.LON SmartServer.
Para obtener mas informacién sobre el
i.LON familia de productos, incluyendo
actualizaciones de software, por favor
wririba httnslhinine anhalan aneflan ™
@ 2009 Echelon Corporation i.LON SmartServer Embeddad Software Version 4.03.112

4. The menus, the objects in the sidebar frame (left frame), and text in the i.LON SmartServer 2.0 -
Welcome Web page (application frame to the right) should appear in your localized language.

5. Click the menus to view the translated menu items. Expand the tree in the sidebar frame and click
the objects in the tree to see their translated Configuration and Driver property Web pages. Click
on various embedded applications in General mode to view their translated versions.

Tip: If objects do not appear in their localized language, you may need to delete the temporary internet
files from your computer.

202 Localizing the SmartServer Web Interface

Appendix A

FPM Programmer’s Reference

This appendix details the files, routines and methods you will use to create and program
your FPMs.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 203

Overview

This chapter provides details you will need when programming your module. It includes the following

sections:

o Template Files. This section describes the template files you will use to create your module.

e Routines. This section describes the four main routines you will need to implement within your
custom module: Initialize(), Work(), OnTimer(), and Shutdown().

e Methods. This section describes the data point, timer, RS-232 interface, RS-485 interface, and file
access methods you can call from the four main routines.

Template Files

When you create an FPM, the following template files are generated for your module.

e .cpp file. This C++ source file contains the Initialize(), Work(), OnTimer(), and
Shutdown () routines that specify the behavior of your FPM.

e .hfile. This C header template file contains all the routine and method definitions for your FPMs.

e Utils.cpp file. This C++ source file contains all the helper routines called by the
Initialize(),Work(), OnTimer(), and Shutdown() routines.

Routines

The behavior of an FPM is defined by the Initialize(), Work(), OnTimer(), and
Shutdown)routines that are called from the .cpp file. The following table displays when these
routines are executed and the type of functions performed in each of these routines for an FPM
application and an FPM driver.

Routine

When Routine
is Executed

Functions to be Performed in FPM

FPM Application

FPM Driver

Initialize()

FPM is started

1. Set initial data point

1.

Open RS-232 or RS-485

or enabled values. interface.
2. Start timers. 2. Start timers.
3. Write data point
properties.
Work() Data point value |1. Execute an algorithm. 1. Initialize RS-232 or RS-
changes 2. Start and stop timers. 485 interface.
3. Read data point 2. Writ.e to the RS-232 or RS-
properties. 485 interface.
onTimer(Q) Timer expires |1. Perform routine tasks 1. Initialize RS-232 or RS-
such as reading data 485 interface.
point status. 2. Read and write to RS-232
2. Read other data point or RS-485 interface.
properties. 3. Write values to data points.
3. Start and stop timers.
Shutdown() FPM is stopped |1. Stop timers. 1. Stop timers.
or disabled 2. Close RS-232 or RS-485

connection.

204

Appendix A - Programmer’s Reference

Initialize()

The Initialize() routine in the .cpp file is called when your FPM application or driver starts or is
enabled. For an FPM application, you can use the Initial ize() routine to write initial data point
values, and start timers. For an FPM driver, you can use the Initial ize() routine to open RS-232
or RS-485 connections, start timers, and write data point properties.

e You can start timers using the Start(Q)method of the CFPM_Timer class or the user-defined
START_TIMER() macro. The Start()method calls back the OnTimer () routine, which
handles timers expiration events. The START _TIMER() macro calls back a custom timer

handler that you must create. See Timer Methods for more information about using the
Start(Qmethod and the START_TIMER() macro.

e You can open the RS-232 and RS-485 interfaces on the SmartServer using the rs232_open()
and rs485_open() methods. For more information on these methods, see RS-232 Interface
Methods and RS-485 Interface Methods later in this chapter.

FPM Application Example

The following example demonstrates code you could use in the Initial ize(Qroutine of an FPM
Application. In this example, an initial value is written to a data point and two timers are started.

DECLARE(_0000000000000000_0_: :SNVT_temp_f, nviSetPoint,
INPUT_DP)

CFPM_Timer m_oTimerl; //declared in header file
CFPM_Timer m _oTimer2; //declared in header file

void CUFPT_FPM_Application::Initialize()

{
nviSetPoint = 20.28;
m_oTimerl_Start(FPM_TF_REPEAT, 2000);
m _oTimer2.Start(FPM_TF_ONETIME, 0);

}

FPM Driver Example

The following example demonstrates code you could use in the Initial ize(Qroutine of an FPM
Driver. In this example, the FPM connects to an RS-232 interface and then starts one timer.

int _rs232_fd = -1;

CFPM_Timer m_oTimer3; //declared in header file

void CUFPT_FPM Driver::Initialize(Q)
_rs232_fd = rs232_open(9600);

m _oTimer3.Start(FPM_TF_REPEAT, 1200);
}

Work()

The Work () routine in the .cpp file is called when the value of a data point declared in an FPM
application or driver changes. The Work() routine establishes functionality between the data points
defined in the FPM to the data points on the SmartServer. When configuring the Work () routine, you
determine which data point was updated using the Changed () method. See Methods for more
information on using this method.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 205

For an FPM application, you can also use the Work() routine to start and stop timers, and you can use
it to read data point properties.

For an FPM driver, if a data point value has changed and you want to write data to the RS-232
interface as a result, you must first initialize communication between your FPM and the devices
connected to the RS-232 and RS-485 interfaces. You can initialize communication with the interfaces
using the rs232_ioctl () and rs485_ioctl () methods.

FPM Application Example

The following example demonstrates code you could use in the Work(Qroutine of an FPM
application. In this example, the Changed() method evaluates whether the values of two data points
has changed and performs some algorithm if at least one of the values has changed.

SNVT_count inl;
SNVT_count in2;

void CUFPT_FPM_Application: :Work() {

it (Changed(inl) || Changed(in2))

// perform some algorithm when value of inl or in2 changes

}
FPM Driver Example

The following example demonstrates code you could use in the Work(Qroutine of an FPM driver. In
this example, the Changed () method evaluates whether the value of a data point has changed and
initializes and writes to the RS-232 interface if it has.

SNVT_str_asc Linel;

void CUFPT_FPM Driver: :Work()

{
iT (Changed(Linel))
{
//1Initialize RS-232 interface
int nBytesToRead;
rs232_ioctl(RS232_fd, FIONREAD, (int) &nBytesToRead);
// Write to RS-232 interface
rs232_write(RS232_fd,
(Byte *)Linel->ascili,
strlen((char*)Linel->ascii));
}
}
OnTimer()

The OnTimer () routine (or your custom timer handler) in the .cpp file handles timer expiration
events. You use this routine in conjunction with the Start()methods and the START_TIMER(Q)
macros called in the Initialize() routine. When configuring the OnT imer () routine, you can
determine which timer expired using the m_oTimer .Expired() method. See Timer Methods for
more information on using these timer methods.

206 Appendix A - Programmer’s Reference

For an FPM application, you can also use the OnTimer () routine to start and stop timers, and you
can use it to read and write to data point properties. For an FPM driver, you can use the OnTimer()
routine to read and write to the RS-232 and RS-485 interfaces.

FPM Application

The following code demonstrates code you could use in the OnTimer () routine in an FPM
application. In this example, the m_oTimer .Expired(Qmethod valuates which of two timers has
expired and performs some tasks upon their expiration. If m_oTimerl expires, the OnTimer ()
routine checks whether the status of a data point is AL_ALM_CONDITION. If m_oTimer2 expires,
the OnTimer () routine re-starts the timer.

CFPM_Timer m_oTimerl; //declared in header file
CFPM_Timer m_oTimer2; //declared in header file

m_oTimerl.Start(FPM_TF_REPEAT, 2000);
m _oTimer2.Start(FPM_TF_ONETIME, 0);

void CUFPT_FPM_Application::OnTimer()

{
if (n_oTimerl.Expired())
{
//check status of a data point
nviTemp_status =
nviTemp.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);
if (nviTemp_status == AL_ALM _CONDITION)
//perform algorithm if nviTemp status is AL_ALM _CONDITION
}
}
if (n_oTimer2.Expired())
{
//restart a timer
m_oTimer2_Start(FPM_TF_ONETIME, 1000);
}
}
FPM Driver

The following example demonstrates code you could use in the OnTimer (Qroutine of an FPM driver.
In this example, a custom timer handler method evaluates whether a timer started with the

START TIMER method has expired. If the timer has expired, the custom timer handler method read
and writes to the RS-232 interface.

CFPM_Timer m _oTimer3; //declared in header file
START_TIMER(m_oTimer3, FPM_TF _REPEAT, 10000, RS 232 Timer);

void CUFPT_FPM Driver::RS 232 Timer()
if (rs232_read(RS232_fd, Linel, 1) == 1)

rs232_write(RS232_fd, (Byte *)"F1", strien("F1"™));

i.LON SmartServer 2.0 Programming Tools User’'s Guide 207

Shutdown()

The Shutdown () routine in the .cpp file is called when your FPM stops or is disabled. You can use
the Shutdown () routine to stop timers and close RS-232 and RS-485 connections in an FPM driver.
In addition, you can use Shutdown() routine to free previously allocated memory and perform any

required cleanup before shutting down the FPM.

e You can stop a timer using use the Stop()and StopAl ITimers()methods of the
CFPM_Timer class.

* You can end communication between your FPM and the devices connected to the RS-232 and RS-
485 serial ports on the SmartServer using the rs232_close() and rs485_close()
methods. For more information on these methods, see RS-232 Interface Methods and RS-485
Interface Methods later in this appendix.

FPM Application Example

The following example demonstrates code you could use in the Shutdown()routine of an FPM
Application. In this example, a timer is stopped.

void CUFPT_FPM_Application: :Shutdown()
{

m _oTimerl.Stop;

}
FPM Driver Example

The following example demonstrates code you could use in the Shutdown ()routine of an FPM
driver. In this example, the FPM closes the connection to an RS-232 interface and then stops all
running timers.

void CUFPT_FPM Driver: :Shutdown()

rs232_close(_rs232_Td);
StopAllTimers();

}

Methods

This section describes the methods provided by Echelon that you can use when writing the
Initialize(), Work(), OnTimer(), and Shutdown() routines in your FPM. These methods
include data point methods, timer methods, RS-232 methods, and RS-485 methods.

Variable Types

208

The variable types that you can use when calling the Initialize(), Work(), OnTimer(), and
Shutdown () routines in your FPM are listed in the following table. These variable types are defined
in the types_base.h file in the LonWorks\iLON\Development\compiler\echelon\fpm\include-4.03
and LonWorks\iLON\Development\compiler\echelon\fpm\include folders on your computer.

Variable Type Size
Byte (equivalent to unsigned char) | 8 Bits
unsigned char 8 Bits
char 8 Bits
unsigned short 16 Bits
short 16 Bits

Appendix A - Programmer’s Reference

Variable Type Size
unsigned long 32 Bits
long 32 Bits
unsigned int 32 Bits
int 32 Bits
float 32 Bits
double 64 Bits

Internal FPM Data Point Methods

For the data points declared in an FPM application or FPM driver, you can use the

Changed(Qmethod to determine if a data point value has been changed, and you can use the
NotifyOnAl lUpdates() method to modify the Changed() method so that it checks whether

any data point property has been updated, including value, status, time of last update, and priority.

You can use the PROPAGATE () macro to write values to a structured data point.

For data points declared in an FPM application, you can use the ResetPriority(Qmethod to set
and reset the priority used by the module to write values to a data point.

You can use these internal data point methods in the Work () and OnTimer (Qroutines of an FPM

application or driver.

Internal Data Point FPM Scope
Method Initialize() Work() OonTimer() Shutdown

FPM Application FPM Application

Changed() - FPM Driver FPM Driver -

NotifyOnAllUpdates()* — — — —
FPM Application FPM Application

Propagate() ~ | FPM Driver FPM Driver -

ResetPriority() - FPM Application FPM Application -

*Declared in constructor of FPM Application or FPM Driver

Changed()

You can use the Changed () method in the Work() and OnT imer (Qroutines of an FPM
application or driver to determine whether the value of a data point has changed.

SYNTAX

bool Changed(const CVariable& rVar)

The rVar parameter specifies a data point declared in the FPM. If the value of the specified data
point has changed, this method returns a true value; otherwise, it returns a false value.

EXAMPLE

The following example demonstrates how you can use the Changed () method to check whether

the values of the data points in your FPM have changed.

void CUFPT_FPM_Application::Work()

it (Changed(x) || Changed(y))
{

//insert code here

}

i.LON SmartServer 2.0 Programming Tools User’'s Guide

209

210

{

Note: You can use the Noti fyOnAl lUpdates() method modify so that the
Changed () method checks whether any data point property has changed, including value, status,
time of last update, and priority. See NotifyOnAllUpdates() for more iinformation.

NotifyOnAllUpdates()

You can call the Noti fyOnAl lUpdates() method in the constructor of your FPM so that the
Changed() method checks whether any data point property has changed, including value, status,
time of last update, and priority. Note that if you do not call this method within the FPM constructor,
the Changed () method only checks whether the data point value has changed.

SYNTAX
void NotifyOnAllUpdates(const vector<string> &rDpVarNames);
The rDpVarNames parameter specifies a string vector contain the names of data points declared

in the FPM for which the Changed () method is to check for updates to any of their properties
(value, status, time of last update, and priority).

EXAMPLE

The following example demonstrates how to use the Noti fyOnAl lUpdates() and the
Changed () methods to check whether the properties of specific data points in your FPM
application have been updated.

// FPM constructor

vector<string> oDpVarNames;
oDpVarNames.push_back(*'x™);
oDpVarNames.push_back(*'y'™);
NotifyOnAl lUpdates(oDpVarNames) ;

void CUFPT_FPM_Application: :Work()
if (Changed(x) || Changed(y))
{

//insert code here

}
{

Propagate()

You can use the PROPAGATE () macro in the Work() and OnTimer (Qroutines of an FPM
application or driver in conjunction with the —> operator (element selection through pointer) to update
the value of a structured data point.

SYNTAX

void PROPAGATE(varName)

The varName parameter specifies a data point declared in the FPM to be updated.
EXAMPLE

The following example demonstrates how to write to structured data points using the
-> operator and the PROPAGATE () method.

nvoSwitch->value = 200;
nvoSwitch->state = 1;
PROPAGATE(nvoSwitch);

Appendix A - Programmer’s Reference

Note: You can also use temporary data point variables to write values to the fields within a
structured data point. To do this, you declare a temporary data point, store the desired values in
the various fields of the temporary data point, and then assign the declared data point a reference
to the temporary data point variable. The following code demonstrates how to write to a
structured data point using temporary data point variables

SNVT_switch tmp_switch; //create temporary DP variable

tmp_switch.value 200; // set DP value in temp DP variable

tmp_switch._state 1; // set DP state in temp DP variable

nvoSwitch = tmp_switch; // assign declared DP to temp DP,
// which triggers a data point write

Write()

You can perform a Write () method in an FPM application to explicitly write values to the data
points declared in an FPM. Typically, you do not need to use this method because updated values are
automatically propagated to the SmartServer’s internal data server after the Work() and OnTimer ()
routines are done. However, you can use this method to send multiple data point updates within a
single routine.

SYNTAX

STATUS Write(CVariable& rVar);

The rVar parameter specifies a data point declared in the FPM.

The STATUS value returned by this method can either be ERROR or OK.
EXAMPLE

The following example demonstrates a Wr i te (Qmethod that changes the value of a data point
declared in an FPM application.

DECLARE(_0000000000000000 0 ::SNVT_temp_f, nviSetPoint,
INPUT_DP)

nviSetPoint = 25.83:

STATUS st = Write(nviSetPoint);

if (st==ERROR) //if dp write failed
{

}

Notes: Using this Wr ite(Qmethod in an FPM application may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use this method sparingly.

printf("'DP write failed);

ResetPriority()

You can use the ResetPriority()method in the Work() and OnTimer (Qroutines of an FPM
application to enable lower priority applications to write values to a data point declared in the module.

SYNTAX

STATUS ResetPriority(cvVariable& rVvar,
unsigned short nPrioAuthority);

The rVar parameter specifies the name of a data point declared in the FPM application.

The nPrioAuthor ity parameter specifies the priority to be used to reset the priority assigned
to the data point. The priority is a value between 0-255 (highest priority) and 255 (lowest
priority) that determines whether an application can write values to a data point.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 211

If the priority specified in the NPrioAuthor ity parameter is equal to or higher than the
priority currently assigned to the data point, this method returns a STATUS value of OK and the
priority used by the FPM application to write to the data point is reset to 255. All applications in
which the data point is registered are notified that they can write values to the data point, and the
application with highest priority is able to write values to the data point.

To include multiple instances of an FPM in the calculation of the data point priority, you must use
the SetDpProperty(UCPTpriority)method to set the cf|gUCPTpriority property of the
data point accordingly.

If the priority level specified is lower than the priority currently assigned to the data point, this
method returns a STATUS value of ERROR.

EXAMPLE

The following example demonstrates a ResetPriority()method that attempts to reset the
priority of a data point declared in an FPM application using a priority of 200.

STATUS st = ResetPriority (nviSetPoint, 200);

if (st==ERROR) //if current DP priority >200
{

}

printf("'DP Reset Priority too Low™);

FPM Application Data Point Property Methods

For the data points declared in an FPM application, you can use specific data point property methods in
the Work(Qand OnTimer (Qroutines get their names, times of last update, and statuses, and to get
and set their priorities. The following table displays the valid scope of the data point property
methods in an FPM application.

Property Name FPM Application Scope
Initialize() | Work() OnTimer() | Shutdown()
FPM::Dp::cfgUCPTname — Read Read —
FPM::Dp::cfgUCPTAliasName — Read/Write | Read/Write —
FPM::Dp::dataUCPTlastUpdate — Read Read —
FPM::Dp::dataUCPTstatus — Read Read —
FPM::Dp::dataUCPTpriority — Read/Write | Read/Write —
Notes:

* You can also use these data point property methods to get the properties of the external data points
on the SmartServer. External data points include those data points on the internal SmartServer
device [i.LON App (Internal)] and the data points of the external devices connected to the
SmartServer.

e Using the data point property methods extensively may significantly impact the performance of
the SmartServer; therefore, it is recommended that you use these methods sparingly.

GetDpPropertyAsString(UCPTname)

You can use the GetDpPropertyAsString(name) method in the Work()and
OnTimer Qroutines of an FPM application to read the name of the data point.

SYNTAX
const char* GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname)

212 Appendix A - Programmer’s Reference

This method returns the UCPTname configuration property of the data point in the following
format: <network>/<channel>/<device>/<functional block>/<data point>. The UCPTname
configuration property is an array unsigned ASCII characters.

EXAMPLE
const char* nviSetPoint_name;

nviSetPoint_name =
nviSetPoint.GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname);

printf ('nviSetPoint name = "%s® \n'", nviSetPoint_name);

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsString(UCPTAliasName)

You can use the GetDpPropertyAsString(UCPTAl iasName) method in the Work()and
OnTimer Qroutines of an FPM application to read the alias name of the data point. This is
useful for getting the alias names of the external data points on the SmartServer.

SYNTAX
const char* GetDpPropertyAsString(FPM: :Dp: :AliasName)

This method returns the UCPTAliasName configuration property of the data point. This
configuration property is defined in the Alias Name property in the data point’s Configuration —
Data Point Web page on the SmartServer.

The alias name was the naming convention used for data points in the e3 release of the i.LON
software. The data points in the tree were organized by their alias names, which correspond to the
locations of the data points.

e The data points on the i.LON App (Internal) device under the LON channel have default alias
names that begin with the "NVL" prefix.

e The virtual data points on the i.LON System (Internal) device under the VirtCh channel have
default alias names that begin with the "iLON System" prefix. In the €3 release of the i. LON
software, these data points were referred to as "NVVs".

e The data points of the external devices connected to the SmartServer do not have default alias
names, and this property is initially disabled for these data points. In the e3 release of the
i.LON software, these data points were referred to as "NVEs".

EXAMPLE

FpmlteminfoColl_t::iterator itEnd = oRTCiLon.end();
for(FpmlteminfoColl_t::iterator it = ORTCiLon.begin();
it '= itEnd; ++it)

CFpmltemInfo &v = (*it);
printF("'UCPTaliasName: %s,
GetDpPropertyAsString(Dp: :cfgUCPTal iasName));
}

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsTimeSpec(UCPTlastUpdate)

You can use the GetDpPropertyAsTimeSpec(UCPTlastUpdate) method in the
Work()and OnTimer (Qroutines of an FPM application to read the time at which the data point
was last updated.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 213

214

SYNTAX
const timespec GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPTlastupdate)

This method returns the UCPTlastupdate configuration property of the data point in the
following format: YYYY-MM-DDTHH:MM:SSZ. The UCPTlastupdate configuration property
is a timestamp in UTC (Coordinated Universal Time) indicating the last time the data point
configuration was updated.

EXAMPLE
timespec nviSetPoint_ lastUpdateTime;

nviSetPoint_lastUpdateTime =
nviSetPoint.GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPTlastUpdate);

printf ("'SetPoint last update = %d\n",
nviSetPoint_lastUpdateTime);

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsPointStatus(UCPTstatus)

You can use the GetDpPropertyAsPointStatus(UCPTstatus) method in the
Work()and OnTimer (Qroutines of an FPM application to read the current status of a data point.

SYNTAX

FPM: :Dp: :PointStatus
GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus)

This method returns the UCPTstatus configuration property of the data point. The UCPTstatus
configuration property is an enumeration defined by enum PointStatus in the
FPM_Variable.h file. It indicates the current status of the data point. This property is updated in
real time by the SmartServer’s internal data server. The enumerated values of this property are as
follows:

AL_INVALID =1
AL_NO_CONDITION =0
AL_ALM_CONDITION =1
AL_TOT_SVC_ALM_1 =2
AL_TOT_SVC_ALM_2 =3
AL_TOT_SVC_ALM_3 = 4
AL_LOW_LMT CLR_1 =5
AL_LOW_LMT_CLR_2 =6
AL_HIGH_LMT CLR_ =7
AL_HIGH_LMT_CLR 2 =8
AL_LOW_LMT_ALM_1 =9
AL_LOW_LMT_ALM_2 =10
AL_HIGH_LMT_ALM_1 =11
AL_HIGH_LMT_ALM_2 =12
AL_FIR_ALM =13
AL_FIR_PRE_ALM =14
AL_FIR_TRBL =15
AL_FIR_SUPV =16
AL_FIR_TEST_ALM =17
AL_FIR_TEST_PRE_ALM =18
AL_FIR_ENVCOMP_MAX =19

Appendix A - Programmer’s Reference

AL_FIR_MONITOR_COND =20
AL_FIR_MAINT ALERT =21
AL_FATAL_ERROR =30
AL_ERROR =31
AL_WARNING =32
AL_HEADER =243
AL_FOOTER =244
AL_DEBUG =245
AL_INFO =246
AL_SYSTEM_INFO =250
AL_VALUE_INVALID =251
AL_CONSTANT =252
AL_OFFLINE =253
AL_UNKNOWN =254
AL_NUL =255

EXAMPLE

FPM: :Dp::PointStatus nviSetPoint_status;

nviSetPoint_status =
nviSetPoint.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);

printf ('nviSetPoint status = %d \n \n'", nviSetPoint_status);

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsint(UCPTpriority)

You can use the GetDpPropertyAsInt(UCPTpriority) method in the Work()and
OnTimer Qroutines of an FPM application to read the current priority of a data point.

Note: The use of the GetDpPropertyAsInt(UCPTpriority) method is not recommended.
SYNTAX
int GetDpPropertyAsInt(FPM: :Dp::dataUCPTpriority)

The FPM: :Dp: : dataUCPTlastupdate parameter specifies the UCPTpriority configuration
property of the data point. The UCPTpriority configuration property is a short that indicates the
current priority level assigned to the data point, where 0 is the highest priority, and 255 is the
lowest.

EXAMPLE
int nviSetPoint priority;

nviSetPoint_priority =
nviSetPoint.GetDpPropertyAsInt(FPM: :Dp: :dataUCPTpriority);

printf ('nviSetPoint priority = %d \n'", nviSetPoint priority);

SetDpProperty (UCPTAliasName)

You can use the SetDpProperty (UCPTAIl iasName) method in the Work()and
OnTimer Qroutines of an FPM application to write an alias name to a data point. This method
updates the UCPTAliasName configuration property of the data point.

SYNTAX

i.LON SmartServer 2.0 Programming Tools User’'s Guide 215

void SetDpProperty(FPM: :Dp: :dataUCPTAliasName, const char* const
pszValue)

The pszValue parameter specifies an alias name to be assigned the data point. The alias name
can be any string that describes the data point.

EXAMPLE
nviSetPoint.SetDpProperty(FPM: :Dp: :dataUCPTAliasName, “FPM DP
Setpoint™);

SetDpProperty (UCPTpriority)

You can use the SetDpProperty (UCPTpriority) method in the Work()and
OnTimer (Qroutines of an FPM application to write a priority to a data point. This method
updates the UCPTpriority configuration property of the data point, which indicates the current
priority level assigned to the data point, where 0 is the highest priority, and 255 is the lowest.

Note: The use of the SetDpProperty(FPM: :Dp: :dataUCPTpriority)method is not
recommended.

SYNTAX

void SetDpProperty(FPM: :Dp::dataUCPTpriority, int nvValue)

The nValue parameter specifies the priority to be assigned the data point.

EXAMPLE
nviSetPoint.SetDpPropertyAsInt(FPM: :Dp: :dataUCPTpriority, 200);

FPM Driver Data Point Property Methods

216

For the data points declared in an FPM driver, you can use specific property methods in the
Initialize(routine to set their default values, persistent flags, poll rates, and unit strings. The
following table displays the valid scope of the data point property methods in an FPM driver.

FPM Driver Scope

Property Name

Initialize() Work() OnTimer() | Shutdown
FPM::Dp::cfgUCPTdefOutput Write — — —
FPM::Dp::cfgUCPTpersist Write — — —
FPM::Dp::cfgUCPTpollRate Write — — —
FPM::Dp::cfgUCPTunit Write — — —

Note: Using the data point property methods extensively may significantly impact the performance of
the SmartServer; therefore, it is recommended that you use these methods sparingly.

SetDpProperty(defOutput)

You can use the SetDpProperty(defOutput) method in the Initial ize(Qroutine of an
FPM driver to write the default value of a data point. This is the value that the data point should
use when it is not receiving updates, or when it is reset or overridden.

SYNTAX
void SetDpProperty(FPM: :Dp::cfgUCPTdefOutput, int nValue)

The nValue parameter specifies the default value to be assigned the data point.

Appendix A - Programmer’s Reference

EXAMPLE
F1.SetDpProperty(FPM: :Dp: :cfgUCPTdefOutput, 100);

SetDpProperty(persist)

You can use the SetDpProperty(persist) method in the Initial ize(Qroutine of an
FPM driver to set whether a data point is persistent (a constant).

SYNTAX
void SetDpProperty(FPM::Dp: :cfgUCPTpersist, bool bValue)

The bValue parameter specifies whether the data point is persistent. Specify true to make the
data point a constant. Specify False to enable the value of the data point to be updated.

EXAMPLE
F1_SetDpProperty(FPM: :Dp: :cfgUCPTdefOutput, true);

SetDpProperty(pollRate)

You can use the SetDpProperty(pol IRate)method in the Initial ize(Qroutine of an
FPM driver to set how often the data point is polled.

SYNTAX

void SetDpProperty(FPM::Dp::cfgUCPTpersist, int nValue)

The nValue parameter specifies the frequency in which a data point is polled (in milliseconds).
EXAMPLE

Linel.SetDpProperty(FPM: :Dp: :cfgUCPTpol IRate, 900);

SetDpProperty(unit)

You can use the SetDpProperty(unit)method in the Initial ize(Qroutine of an FPM
driver to specify the unit string used by the data point.

SYNTAX

void SetDpProperty(FPM: :Dp::cfgUCPTunit, const char* const pszValue)
The char parameter specifies the unit string to be used by the data point.

EXAMPLE

F1.SetDpProperty(FPM: :Dp: :cfgUCPTunit, “state”);

UFPT Local Variables

You can use the DECLARE_FB_INSTANCE_LOCAL () macro to use additional data point variables
that apply to specific functional block instances. For example, you can declare a UFPT local variable
that stores how often the Work () routine has been called by specific functional block instance or you
can declare a UFPT local variable that stores the file name of a functional block instance.

SYNTAX

DECLARE_FB_INSTANCE_LOCAL(dataType, variableName)
EXAMPLE

// <= section datapoint variable declarations
DECLARE_FB_INSTANCE_LOCAL(int, callCount);

i.LON SmartServer 2.0 Programming Tools User’'s Guide 217

External SmartServer Data Point Methods

218

In an FPM application, you can use the LISt () method with a specific xSelect syntax to obtain a list
of external data points on the SmartServer. External data points include those data points on the
internal SmartServer device [i.LON App (Internal)] and the data points of the external devices
connected to the SmartServer.

After a data point ID is obtained with the List() method, you can use the Read() and Write()
methods in an FPM application to evaluate and update the data point. In addition, you can use the
get() methods described in the FPM Application Data Point Property Methods section in this
appendix to read the properties of the external data points on the SmartServer.

Notes: Using the List(), Read(), and Write(Q)methods in an FPM application may significantly
impact the performance of the SmartServer; therefore, it is recommended that you use these methods
sparingly.

List()
SYNTAX

STATUS List(const string& rsXSelect, FPM::FpmltemColl_ t&
rListUniquelndexes);

In the string parameter, you specify an xSelect statement to be used to filter the external data
points on the SmartServer by name. The format used for a data point name is as follows:
<network>/<channel>/<device>/<functional block>/<data point>. This means that, for example,
you can obtain all the data points of the Digital Output 1 functional block on the SmartServer. To
do this, you would specify an xSelect statement that acquires all unique data points with names
starting with “Net/LON/i.LON App/Digital Input 1”.

In the rListUnique Indexes parameter, you specify the collection of structures that contain
item IDs that are to be used in the Read routine.

The STATUS value returned by this method can either be ERROR or OK
EXAMPLE

The following example demonstrates a L i St()method that obtains the data points in the digital
output functional block of a lamp that is connected to the SmartServer.

FpmlteminfoColl_t items;

if ((List('//1tem[starts-with(
UCPTname,\”Net/LON/Lamp/Digital Output/\”)]", items)) == 0OK)

{
}

After the list of the data points in the digital output functional block is acquired, the properties of
the listed data points can be obtained using the get() data point property methods. The
following example demonstrates how to get the properties of the data points returned by the
List()method.

FpmlteminfoColl_t::iterator itEnd = items.end();
for(FpmlteminfoColl_t::iterator it = items.begin();
it !'= itEnd; ++it)

//insert code here

CFpmltemInfo &v = (*it);
printf("'UCPTname: %s :: UCPTaliasName: %s :: UCPTindex: [%d]
:: ItemCfgDepth: %d \n",

Appendix A - Programmer’s Reference

Vv.GetDpPropertyAsString(Dp: :cfgUCPTname),

v.GetDpPropertyAsString(Dp: :cfgUCPTal iasName),

Vv.GetUCPTindex(),

v.GetDpPropertyAsltemCfgDepth(Dp: :cfgltemDepth));
}

Notes:

¢ You can also define an xSelect statement that queries data point properties instead of actual data
points. For example, you could define an xSelect statement that queries the AliasName
configuration property of a data point.

char szXSelect[128] =
//1tem[@xsi :type=\"Device_CTg\'""J[UCPTal iasName=\""xxo\'"]"";

e If you define a more general xSelect statement that could return a set of mixed network objects
(e.g., devices, functional blocks, and data points), you need to evaluate the cfgltemDepth
property of the objects being returned. This property can have one of the following types:

ItemCfgDepth_Network // item is a network
ItemCFfgDepth_Channel // item is a channel
I'temCfgDepth_Device // item is a device

ItemCfgDepth_Fb // item is a functional block
ItemCfgDepth_Dp // item is a data point
ItemCfgDepth_Cp // item is a configuration property

ItemCFfgDepth_UNKNOWN // item has an unknown object type

® You can use the GetUCPTindex()in the List()method to obtain the network variable index
of the data point within its device.

Read()

You can perform a Read() method in an FPM application to read the values of the data points
returned by the List() method.

SYNTAX

STATUS Read(const CFpmltemInfo& rMeta,
Byte* const pbyVvalue,
unsigned int nSize,
bool bReadProperties = false,
int nMaxAgeMillis = -1);

In the CFpmltemInfo parameter, you must specify an object obtained by the List() method.
The object’s cFgl temDepth property must be of type 1'temCFgDepth_Fb or
ItemCFgDepth_Dp; otherwise, this method returns an ERROR in the STATUS value.

The pbyValue parameter specifies the variable used to store the value returned by the method.
If a container is provided (pbyValue != NULL), this method returns the following properties
of the data points in addition to their values (if bReadProperties is set to true):

FPM::Dp::cfgUCPTname
FPM::Dp::dataUCPTlastUpdate
FPM::Dp::dataUCPTstatus
FPM::Dp::dataUCPTpriority

The nSize parameter specifies the size of the data point returned by the method.

The nMaxAgeMi I 1 is parameter specifies how the source of the data point value and how often
the FPM application polls the data point. This parameter accepts the following values:

i.LON SmartServer 2.0 Programming Tools User’'s Guide 219

e -1. The data point value is read from the SmartServer’s internal data server. The poll rate
used by the FPM application is set to the poll rate configured for that data point in its Setup -
LON Data Point Driver Web page. This is the default.

e 0. The data point value is read directly from the data point. Note that because the data point
value is being read synchronously, the FPM application may not able to perform any other
processing until it receives the data point value.

e >1. The value you specify is compared to the amount of time that the data point value has
been cached in the SmartServer’s internal data server.

0 IfnMaxAgeMillis is less than the period of time the data point value has been cached,
the internal data server polls the data point and returns the updated value to the FPM
application.

o IfnMaxAgeMi I lis is greater than the period of time the data point value has been
cached, the internal data server returns the cached value to the FPM application.

The STATUS value returned by this method can either be ERROR or OK

If you want to read only the values of the data points returned by the L ist () method, you can use a
Read () method that does not take the bReadProperties parameter. In this case, the Read()
method has the following signature:

STATUS Read(const CFpmltemlnfo& rMeta,
Byte* const pbyVvalue,
unsigned int nSize,
int nMaxAgeMillis = -1);

EXAMPLE

The following example demonstrates a Read () method that evaluates the value of a data point
returned by a List() method.

FpmlteminfoColl_t items;
SNVT_time_stamp time;

if(List('//1tem[@xsi:type=\"Dp_CFg\'"][contains(UCPTname,
\"'nvoRtTime Date\')]", items)) == OK
{

printFC"\nitems.size(Q=%d", items.size());
iT(1Read(items[0], (Byte*)&time, sizeoF(SNVT_time_stamp)))

printf(C"\nnvoRtTimeDate: %d-%d-%d %d:%d:%d', time.year,
time.month, time.day, time._hour, time.minute,
time.second);
} else printf("'\nRead failed™);

}else printf(C"\nList failed™);
Write()

You can perform a Wr i te () method in an FPM application to write values to the data points returned
by the List() method.

SYNTAX
STATUS Write(const FPM::Fpmltem& rFpmltem, Byte* pbyValue);

In the rFpmItem parameter, you must specify an object obtained by the List() method. The
object’s cfgltemDepth property must be of type 1temCFgDepth_Fb or
I'temCTFgDepth_Dp; otherwise, this method returns an ERROR in the STATUS value.

220 Appendix A - Programmer’s Reference

The pbyValue parameter specifies the value to be written to the data point.
The STATUS value returned by this method can either be ERROR or OK.
EXAMPLE

The following example demonstrates a Wr 1 te () method that changes the value of a data point
returned by a List() method.

FPM: :FpmltemColl_t items;
SNVT_time_stamp time;

Write(items[0], (Byte*)&time);

Timer Methods

You can use timers to perform tasks that must be performed periodically, such as reading data from the
RS-232 or RS-485 interfaces or performing data point updates. A separate CFPM_Timer application
class handles the starting, stopping, and querying of timers.

To use a timer in your FPM, you must first declare it as a member of the CFPM_T imer application
class in the “Mandatory Application Members” section in the .h file using the following syntax:

CFPM_Timer m_oTimerl; //declare a timer

You then need to initialize the timer in the “Constructor/Deconstructor” section of the .cpp file using
the following syntax:

, m_oTimerl(this) //initialize timer
Start()

You can use the Start(Qmethod of the CFPM_T imer class to start a timer. The Start()method
causes the system to call back the OnT imer (Qroutine, which handles the timer event. The
Start(Qmethod is the standard approach for starting timers. You can use this method in the
Initialize(), Work(), and OnTimer (Qroutines of an FPM application, and you can use it in
the Initialize(routine of an FPM driver.

SYNTAX
void Start(FPM_TimerFlags_t eMode, uint_t nTimeoutMillis);

The eMode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi Bl is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

EXAMPLE

The following example demonstrates a Start()method that starts a timer and repeats it every 2
seconds.

CFPM_Timer m_oTimerl; // declared in header file
, m_oTimerl(this) // initialized in source file

m_oTimerl.Start(FPM_TF_REPEAT, 2000);
START_TIMER()

You can use the START_TIMER() macro as an alternative approach for starting timers. It causes the
system to call back a user-defined timer handler method. You can use the START_TIMER()macro

i.LON SmartServer 2.0 Programming Tools User’'s Guide 221

222

inthe Initialize(), Work(), and OnTimer (Qroutines of an FPM application, and you can use
it in the Initial ize(Qroutine of an FPM driver.

SYNTAX
START_TIMER(timeVar, mode, timeoutMillis, funcName)
The timeVar parameter specifies the name of the timer to be started.

The mode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi 1 is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

The FfuncName parameter specifies the name of the user-defined timer handler method that is
called when this expires.

TIMER HANDLER SYNTAX

Timers started with the START _TIMER() macro must be handled with a user-defined timer
handler method that has the following signature:

void <funcName>()

You must declare your user-defined timer handler method in the “Implements the user
functionality” section of the .h file.

EXAMPLE

The following example demonstrates a START_TIMER () macro that starts a timer that repeats
every 3 seconds and is handled by the OnMyT imer3()user-defined timer handler method.

CFPM_Timer m_oTimer3; // declared in header file
, m_oTimer3(this) // initialized in source file

START_TIMER(m_oTimer3, FPM_TF_REPEAT, 3000, OnMyTimer3);

void OnMyTimer3(Q); // declared in header file
Expired()

You can use the Expired() method of the CFPM_Timer class to check whether a timer has
expired. You can use this method in the Work(Qand OnTimer (Qroutines of an FPM application.
If this method returns true, you can handle the timer accordingly. For example, you can re-start an
expired one-time timer using the Start() method.

SYNTAX
bool Expired()

If the timer has expired, the method returns TRUE. If the timer has not yet expired or if the timer
has been stopped, the method returns FALSE.

EXAMPLE

The following example demonstrates an Exp i red () method in an OnTimer () routine that
checks whether a one-time timer has expired and re-starts it if it has expired.

CFPM_Timer m_oTimer2; //declared in header file

void CUFPT_FPM_Application::Initialize()
{

Appendix A - Programmer’s Reference

m _oTimer2.Start(FPM_TF_ONETIME, 0);

}
void CUFPT_FPM_Application::OnTimer()
{
if (m oTimer2_Expired())
{
m_oTimer2.Start(FPM_TF_ONETIME, 2000);
}
}
Stop ()

You can use the Stop()method of the CFPM_Timer class to stop a timer that is running. You can
use this method in the Work (), OnTimer (), Shutdown() routines of an FPM application, and
you can use it in the Shutdown(Qroutine of an FPM driver.

SYNTAX
bool Stop()

If the timer has expired, the method returns TRUE. If the timer has not yet expired or if the timer
has been stopped, the method returns FALSE.

EXAMPLE

The following example demonstrates how you can use the Stop()method to stop a timer that is
running.

m_oTimerl.Stop();
StopAllTimers()

You can use the StopAl ITimers()method of the CFPM_Timer class to stop all currently active
timers. You can use this method in the Work(), OnTimer (), Shutdown() routines of an FPM
application, and you can use it in the ShutdownQroutine of an FPM driver.

SYNTAX
bool StopAllTimers()

If any timer has expired, the method returns TRUE. If no timer has expired or has been stopped,
the method returns FALSE.

EXAMPLE
The following example demonstrates a SEOpAI I Timers()method that stops all existing timers.
StopAllTimers();

IsSRunning()

You can use the IsRunning(Qmethod to check whether a timer is running or has been stopped.
This method may be useful during runtime.

SYNTAX
bool IsRunning(Q)

If the referenced timer is running, the method returns TRUE. If the timer has expired or has been
stopped, the method returns FALSE.

EXAMPLE

The following example demonstrates an 1SRunning()method that checks whether a timer is
running and executes some code if it is.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 223

if (m_oTimerl.IsRunning(Q))
{

//execute code

}

GetMode()

You can use the GetMode () method to check the type of the referenced timer (repeating or one-time)
when it is running. This method may be useful during runtime.

SYNTAX
FPM_TimerFlags_t GetMode()

This method returns the type of timer (repeating or one-time) if the referenced timer is running. If
the referenced timer has been stopped, this method returns UNKNOWN.

EXAMPLE

The following example demonstrates a GetMode () method that checks the type of a timer that is
running.

FPM_TimerFlags_t timerMode;
timerMode = m _oTimerl. GetMode();

GetTimeoutMillis()

You can use the GetTimeoutMi Il is(Qmethod to check the timeout interval of the referenced
timer when it is running. This method may be useful during runtime.

SYNTAX
uint_t GetTimeoutMillis()

This method returns the timeout interval (in milliseconds) of the referenced timer if it is running.
If the referenced timer has been stopped, this method returns ‘~0’.

EXAMPLE

The following example demonstrates a GetT imeoutMi I I is()method that checks the timeout
interval of a timer that is running.

int timerlinterval;

timerinterval = m_oTimerl.GetTimeoutMillis();

Reboot Method

224

You can use the FnRebootSmartServer () method to reboot your SmartServer.

SYNTAX

STATUS fnRebootSmartServer (int a_nBootFlag);
This method takes an integer that must be set to 0x00.

EXAMPLE

The following example demonstrates how to use the FnRebootSmartServer () method to
reboot your SmartServer.

#ifdeFf _ cplusplus

Appendix A - Programmer’s Reference

extern "C" STATUS fnRebootSmartServer (int a_nBootFlag);

#endif
Goid CUFPTmath: :Work()
{
printf(C"\nCUFPTmath: :Work(): '");
iT (Changed(inl1) |] Changed(in2))
{
out3 = inl + in2;
printfF('out3 = %d = %d + %d', *out3, *inl, *in2);
}
it (Changed(str))
{
printf('str = %s™, (char*) str->ascii);
// REBOOT here
if(100 < *out3)
{
fnRebootSmartServer (0x00);
}
}

RS-232 Interface Methods

You can use RS-232 interface methods to connect an FPM driver to the devices attached to the RS-232
serial port on the SmartServer, initialize the RS-232 connection, read and write values to the data
points on the devices, and close the RS-232 connection . For more information on connecting a device
to the RS-232 serial port, see the i.LON SmartServer 2.0 Hardware Guide.

Note: The RS-232 interface transmit and receive buffers are both 512 bytes.

rs232_open()

You can use the rs232_open(Qmethod in the Initial 1ze() routine to open the RS-232 interface
on the SmartServer.

SYNTAX
int rs232_open(unsigned int BaudRate);

The BaudRate parameter specifies the baud rate at which RS-232 interface communicates with
the serial port. The SmartServer’s RS-232 interface does not support handshakes; therefore, you
should select a baud rate that is less than or equal to 19,200. See the documentation for your RS-
232 interface for more information on baud rates supported for your device. When setting the baud
rate, you should consider the number of bytes the interface sends over the network per second, and
the calculations performed between poll cycles.

The method returns the file handle (a value greater than or equal to 0) on success, and it returns a
negative value on failure. A failure could occur if another FPM is using the interface, or if the
interface is not properly connected to the RS-232 port.

Verify that the file handle is specified in a global variable so that you can reference it from the
Work() and Shutdown() routines.

EXAMPLE

The following example demonstrates a rs232_open () method that opens an RS-232 connection
with a baud rate of 9600.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 225

226

int fd = rs232_open(9600);

rs232_ioctl()

You can use the rs232_ioctl () method in the Initial ize() routine to initialize and send
commands to the RS-232 interface. You should call this method immediately after opening the RS-
232 interface with the rs232_open() method. Note that you can send commands to the RS-232
interface using other I/O control methods besides the rs232_i1octl () method.

SYNTAX

int rs232_ioctl(int fd,

int cmd, int data);

The Fd parameter specifies the file handle that was returned when the RS-232 interface was
opened with the rs232_open() method.

The cmd parameter specifies the command to be sent to the RS-232 interface. The data
parameter specifies the corresponding value to be used with the cmd parameter. The values for
the cmd and data parameters are defined in the FPMLibrary.h file in the
iLON/Development/eclipse/plugins/com.echelon.eclipse.ilon100.fpm_0.9.0/compiler/echelon/fpm
/include folder in your LONWORKS directory. The values you can specify for the cmd and data

parameters include the following:
cmd parameter

10CTL_BAUDRATE

10CTL_RCVBUFSZ
10CTL_SI0_HW_OPTS_GET

10CTL_SI10_HW_OPTS_SET

data parameter

Specifies the baud rate at which the RS-232 interface will
communicate with the serial port.

Specifies the receive buffer size.

Gets the current configuration of the hardware options used by
the RS-232 interface.

Before using this function, you must call the following
function to avoid overriding the existing configuration
parameters:

int options = rs232_ioctl(fd,
I0CTL_SIO_HW_OPTS_GET, 0);

To set the character size, use the following function:

rs232_ioctl(fd, I0CTL_SIO HW OPTS_ SET,
((options & ~CSIZE) | CS6));

To set odd parity, use the following function:

rs232_ioctl(fd, 10CTL_SI0_HW_OPTS_SET,
(options | PARENB | PARODD));

Specify the hardware options for the RS-232 interface.

If the RS-232 interface supports hardware handshakes, enter
the following:

((options & ~CSIZE) | CS8] HUPCL | CREAD)

If the RS-232 interface does not support hardware handshakes,
enter the following:

((options & ~CSIZE) | CS8] HUPCL | CREAD |
CLOCAL)

See the FPML.ibrary.h file for more information on the values
you can pass in as the data parameter when the cmd

Appendix A - Programmer’s Reference

parameter is set to 10CTL_S10_HW_OPTS_SET.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-232 port.

EXAMPLE

The following example demonstrates a rs232_1octl (Qmethod that returns the current
configuration used by the RS-232 interface.

int options = rs232_ioctl(fd, 10CTL_SI0_HW OPTS GET, 0);
rs232_read()

You can use the rs232_read() method in the OnT imer () routine to read data from the RS-232
interface.

Note: Use the ReadBytes() function shown below to read data from the RS-232 interface. Do not
use the rs232_read() function directly to read data from the RS-232 receive buffer because it will
cause your FPM Driver to remain in an infinite loop until receive (Rx) data is received from the RS-
232 interface.

SYNTAX
int rs232_read(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-232 interface was opened with
the rs232_open() method.

The buf parameter specifies a pointer to the memory area to where the data read from the RS-232
interface is to be stored. The memory area must have enough space to store the data or else the
SmartServer may fail as a result of a call to this method.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the number of bytes read upon success, and it returns -1 upon failure. A
failure could occur if another FPM is using the interface, or if the interface is not properly
connected to the RS-232 port.

EXAMPLE
rs232_read(fd, someBuffer, 1);

Note: If there is no data to be read from the RS-232 interface, the call to the rs232_read()

method will block and wait until new data arrives on the interface. To avoid blocking, you must
call both the select() and ioctl(fd, FIONREAD, ...) methods before calling the
rs232_read() method in order to set a timeout and therefore avoid blocking.

The following code demonstrates how to do this. The ReadBytes()and
BytesReadyForRead() methods in this example are based on the ones included in the sample
RS-232 driver (Rs232Driver.cpp) provided in the
LonWorks\iLON\Development\eclipse\workspace.fpm folder:

//define buffer size in header file
#define MAX_RXBUFLEN 512
Byte rxBuf [MAX_RXBUFLEN];
Qoid CRs232Driver::0OnTimer()
{
if (n_oDisplay InputTimer.Expired())

memset(rxBuf, 0, MAX_RXBUFLEN);

i.LON SmartServer 2.0 Programming Tools User’'s Guide 227

int nBytesRead = ReadBytes(RS232 fd, rxBuf, MAX RX BYTE SIZE);

//check whether something has been read
if (nBytesRead >= 1)
{

printf (“"Read %c from RS232\n", Linel);
//i1T something has been read, write it to display device
rs232_write(RS232_fd, (Byte *)rxBuf, nBytesRead);
}
}
}

int CRs232Driver: :ReadBytes(HANDLE handle, Byte* buffer,
int bytesToRead) const

{
fd_set readFds;
FD_ZERO(&readFds);
FD_SET(handle, &readFds);
Timeval readTimeout;
readTimeout.tv_sec = 0;
readTimeout.tv_usec = 0; //return immediately if no data is
//available
int nResult = select(handle+l, &readFds, NULL, NULL,
&readTimeout);
if('nResult |] nResult == ERROR)
return nResult;
if(1BytesReadyForRead(handle))
return ERROR;
return rs232_read(handle, buffer, bytesToRead);
}
int CRs232Driver: :BytesReadyForRead(HANDLE handle)const
{
int bytesAvailable;
ioctl(handle, FIONREAD, (int) &bytesAvailable);
return bytesAvailable;
}

rs232_write()

You can use the rs232_wr 1te(Qmethod in the OnTimer Qroutine to write data to the RS-232
interface.

SYNTAX
int rs232 write(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-232 interface was opened with
the rs232_open() method.

228 Appendix A - Programmer’s Reference

The buf parameter specifies a pointer to the memory area containing the data to be written to the
RS-232 interface.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the number of bytes read upon success, and it returns -1 upon failure. A
failure could occur if another FPM is using the interface, or if the interface is not properly
connected to the RS-232 port.

EXAMPLE

The following example demonstrates a rs232_wr i te () method that writes to the RS-232
interface.

rs232_write(RS232_fd, someBuffer, strlen(someBuffer));

rs232_close()

You can use the rs232_close()method in the Shutdown) routine to close the RS-232
interface.

SYNTAX
int rs232_close(int fd);

The Fd parameter is the file handle returned when the RS-232 interface was opened with the
rs232_open() method.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-232 port.

EXAMPLE

The following example demonstrates a rs232_close(Qmethod that ends an RS-232
connection.

rs232_close(fd);

RS-485 Interface Methods

You can use RS-485 interface methods to connect an FPM driver to the devices attached to the RS-485
serial port on the SmartServer, initialize the RS-485 connection, read and write values to the data
points on the devices, and close the RS-485 connection. For more information on connecting a device
to the RS-485 serial port, see the i.LON SmartServer 2.0 Hardware Guide.

rs485_open()

You can use the rs485_open()method in the Initial 1ze() routine to open the RS-485 interface.
SYNTAX
int rs485 open(int BaudRate);

The BaudRate parameter specifies the baud rate at which RS-485 interface communicates with
the serial port. See the documentation for your RS-485 interface for more information on baud
rates supported for your device. The SmartServer hardware supports connections to any baud rate
up to 115,200 with a definable buffer size. The default value is 1,024 bytes. When setting the
baud rate, you should consider the number of bytes the interface sends over the network per
second, the calculations performed between poll cycles, and whether a hardware handshake
between the interface and the hardware device is required.

The method returns the file handle (a value greater than or equal to 0) on success, and it returns a
negative value on failure. A failure could occur if another FPM is using the interface, or if the
interface is not properly connected to the RS-485 port.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 229

230

Verify that the file handle is specified in a global variable so that you can reference it from the
Work() and Shutdown () routines.

EXAMPLE

The following example demonstrates a rs485_open () method that opens an RS-485 connection
with a baud rate of 9600.

int fd = rs485_ open(9600);

rs485_setparams()

You can use the rs485_setparams() method in the Initial 1ze() routine to set the operating
parameters of the RS-485 interface. You should call this method to initialize the RS-485 interface
immediately after opening it with the rs485_open() method.

SYNTAX

int rs485_ setparams(int fd, unsigned int BaudRate, EDatalength
DataLength, EParity Parity, EStopBits StopBits);

The fd parameter is the file handle returned when the RS-485 interface was opened with the
rs485_open() method.

The BaudRate parameter specifies the baud rate at which RS-485 interface communicates with
the serial port.

The Datalength parameter specifies the data bit size to be used for messages sent by the RS-
485 interface. You can specify a bit size of 5, 6, 7, or 8 bits.

The Par ity parameter specifies the parity bit to be used for messages sent by the RS-485
interface. A parity bit is an extra bit used to check for errors in groups of data bits transferred
between devices. You can specify a parity bit that is odd or even.

The StopBits parameter specifies the number of stop bits to be used for messages sent by the
RS-485 interface.

For more information on these options, see the FPMLibrary.h file in the
iLON/Development/eclipse/plugins/com.echelon.eclipse.ilon100.fpm_0.9.0/compiler/echelon/fpm
/include folder in your LONWORKS directory

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

EXAMPLE
The following example demonstrates a rs485_setparams () method:
rs485_ setparams(fd, 9600, eDL8Bit, ePNone, eSBl);

rs485_ioctl()

You can use the rs485_ioctl () method in the Initial ize() routine to send commands to the
RS-485 interface.

SYNTAX
int rs485_ioctl(int fd, int cmd, int data);

The Fd parameter specifies the file handle that was returned when the RS-485 interface was
opened with the rs485_open() method.

The cmd parameter specifies the command to be sent to the RS-485 interface. The data
parameter specifies the corresponding value to be used with the cmd parameter. The values for
the cmd and data parameters are defined in the FPMLibrary.h file in the

Appendix A - Programmer’s Reference

iLON/Development/eclipse/plugins/com.echelon.eclipse.ilon100.fpm_0.9.0/compiler/echelon/fpm
/include folder in your LONWORKS directory. The values you can specify for the cmd and data
parameters are as follows:

cmd parameter data parameter

I10CTL_BAUDRATE Specify the baud rate at which the RS-485 interface will
communicate with the serial port on the i.LON.

10CTL_RCVBUFSIZE Specify the receive buffer size. For more information, see the
rs485 _setbuffersize() section.

10CTL_RCVTIMEOUT Specify the timeout period (in seconds) after which the RS-485
interface stops trying to receive failed messages from the
network.

I0CTL_SNDTIMEOUT Specify the timeout period (in seconds) after which the RS-485
interface stops trying to send a failed messages over the
network.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485 _ioctl (Qmethod that sets the buffer size to be
used for the RS-485 connection to 256 bytes.

rs485_10CTL(fd, 10CTL_RCVTIMEOUT, 256);
rs485_setbuffersize()

You can use the rs485_setbuffersize()method in the Initial ize() routine to modify the
receive buffer size.

SYNTAX

int rs485 setbuffersize(int fd, unsigned iInt size);

The Fd parameter specifies the file handle returned when the RS-485 interface was opened with
the rs485_open() method.

The size parameter specifies the new size of the receive buffer to be set. The initial size of the
receive buffer is set to 1024.

EXAMPLE
The following example demonstrates the rs485_setbuffersize(Qmethod.
rs485_ setbhuffersize(fd, 2048);

rs485 read()

You can use the rs485_ read() method in the OnTimer () routine to read data from the RS-485
interface.

SYNTAX
int rs485 read(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-485 interface was opened with
the rs485_open() method.

The buf parameter specifies a pointer to the memory area to where the data read from the RS-485
interface is to be stored. The memory area must have enough space to store the data or else the
SmartServer may fail as a result of a call to this method.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 231

232

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the number of bytes read upon success, and it returns -1 upon failure. A
failure could occur if another FPM is using the interface, or if the interface is not properly
connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485_read () method that reads data from the RS-485
interface.

rs485_read(fd, someBuffer, 1);

rs485 write()

You can use the rs485_wr ite()method in the OnT imer (Qroutine to write data to the RS-485
interface.

SYNTAX
int rs485 write(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-485 interface was opened with
the rs485_open() method.

The buf parameter specifies a pointer to the memory area containing the data to be written to the
RS-485 interface.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the number of bytes read upon success, and it returns -1 upon failure. A
failure could occur if another FPM is using the interface, or if the interface is not properly
connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485_ wr ite(Qmethod that writes to the RS-485
interface.

rs485 write(fd, someBuffer, strlen(someBuffer));

rs485 close()

You can use the rs485_close()method in the Shutdown () routine to close the RS-485
interface.

SYNTAX
int rs485 close(int fd);

The Fd parameter is the file handle returned when the RS-485 interface was opened with the
rs485_open() method.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485_close () method that ends an RS-485
connection.

rs485 close(fd);

Appendix A - Programmer’s Reference

File Access Methods

You can read and write to data files on the SmartServer using the following ANSI ‘C’ file methods:
fopen(), fread(), fwrite(), fseek()and, fclose().

fopen()

You can use the Fopen()method to open a file and assign it a stream that can be identified by other

methods.

SYNTAX
FILE fopen (const char * filename, const char * mode);

The i lename parameter specifies the name of the file to be opened. This parameter must
follow the file name specifications of the Eclipse SDK environment, and it may include a file path.

The mode parameter specifies the file access mode, which determines the operations that can be
performed on the file stream returned by this method. The file stream can either be a text or a
binary file. The mode can be one of the following values:

r

w

r+

w+

at

rb
wb

ab

r+b

w+b

at+b

Opens an existing text file for reading.

Creates an empty text file for writing. If a file with the same name already exists, its
content is erased and the specified file is treated as a new empty file.

Appends data to the end of an existing text file. If the specified file does not exist, a new
file is created.

Opens an existing text file for both reading and writing.

Creates an empty text file for both reading and writing. If a file with the same name
already exists, its content is erased and the specified file is treated as a new empty file.

Opens an existing text file for reading and appending data. All writing operations are
performed at the end of the file, protecting the previous content to be overwritten.

You can reposition the internal pointer to anywhere in the file for reading using the
Fseek () method, but writing operations will move it back to the end of file.

If the specified file does not exist, a new file is created.
Opens an existing binary file for reading.

Creates an empty binary file for writing. If a file with the same name already exists, its
content is erased and the specified file is treated as a new empty file.

Appends data to the end of an existing binary file. If the specified file does not exist, a
new file is created.

Opens a existing binary file for both reading and writing.

Creates an empty binary file for both reading and writing. If a file with the same name
already exists, its content is erased and the specified file is treated as a new empty file.

Opens an existing binary file for reading and appending data. All writing operations are
performed at the end of the file, protecting the previous content to be overwritten.

You can reposition the internal pointer to anywhere in the file for reading using the
Tseek(Q)method, but writing operations will move it back to the end of file.

If the specified file does not exist, a new file is created.

If the file has been opened successfully, this method returns a pointer to a FILE object that is used
to identify the stream in all further operations. Otherwise, a null pointer is returned.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 233

234

EXAMPLE

The following example demonstrates an Fopen()method that creates a new text file for writing
and assigns it to a file stream.

FILE * pFile;
pFile = fopen ("myfile.txt","w");

fread()

You can use the Fread (Qmethod to read a block of data from a file stream. This method reads an
array of elements from the file stream and stores the data in a block of memory on the SmartServer.

Note: The SmartServer does not have memory protection. As a result, an FPM can write to any
memory area on the SmartServer, which could cause the SmartServer to fail or corrupt the data of
another embedded applications on the SmartServer. Therefore, you should use the greatest possible
care when implementing your freely programmable modules.

SYNTAX

size_t fread (void * ptr, size_t size, size_t count, FILE *
stream);

The ptr parameter specifies the block of memory to be used to store the data read from the file
stream with a minimum size of (Size*count) bytes.

The size parameter specifies the size (in bytes) of each element to be read.

The count parameter specifies the number of elements to be read, each one with a size of size
bytes.

The stream parameter specifies a pointer to a FILE object that specifies an input stream.

This method returns a Size_t object, which is an integral data type that specifies the total
number of elements successfully read. If this number differs from count, either an error occurred
or the internal End-of-File internal indicator was reached.

EXAMPLE
The following example demonstrates an fread () method.

FILE *pFile;

int iTemp;

long FilePtr = 0; // starting index of file
char buf[200] ; // input buffer

char len = 200;

char Filename[] = "/web/user/mUartTxFile.txt";

iT((pFile = fopen(Filename,'r'")) == NULL)
{

printfF("'Can”"t open i.LON Ffile = %s \n'", Filename);

}
else
{
iTemp = fseek(pFile, FilePtr, SEEK SET);
if(iTemp)
{
printf(""'FSEEK failed\n™);
}
else
{

iTemp = fread(buf, 1, len ,pFile);

Appendix A - Programmer’s Reference

http://www.cplusplus.com/size_t

fclose(pFile);

}
fseek()

You can use the Fseek(Q)method to set the position indicator associated with the a file stream to a
new position.

SYNTAX
int fseek (FILE * stream, long int offset, intorigin);

The stream parameter specifies a pointer to a FILE object that identifies the stream.
The offset parameter specifies the number of bytes to be offset from origin.

The or igin parameter specifies the position from where offset is to be added. You can specify
the origin using one of the following three constants:

SEEK_SET Beginning of the file
SEEK_CUR Current position of the file pointer
SEEK_END End of the file

If this position indicator has been moved successfully, this method returns a zero value.
Otherwise, it returns a non-zero value.

EXAMPLE

The following example demonstrates an Fseek () method that moves the position indicator two
bytes from the beginning of an existing file.

FILE * pFile;
fseek (pFile, 2, SEEK_SET);

fwrite()

You can use the fwrite()method to write an array of elements from a block of memory on the
SmartServer to the current position in a file stream.

SYNTAX

size_t fwrite (constvoid * ptr, size_tsize, size_tcount, FILE*
stream);

The ptr parameter specifies the array of elements to be written to the file stream.
The size parameter specifies the size (in bytes) of each element to be written.

The count parameter specifies the number of elements to be written, each one with a size of size
bytes.

The stream parameter specifies a pointer to a FILE object that specifies an output stream.

This method returns a Size_t object, which is an integral data type that specifies the total
number of elements successfully written. If this number differs from count, an error has occurred.

EXAMPLE

The following example demonstrates an Fwr i te()method that writes some data to an existing
text file.

FILE *pFile;

char Filename[] = "/web/user/mUartTxFile.txt";

char buf[] = “Test String”; // output buffer
long len = 11;

i.LON SmartServer 2.0 Programming Tools User’'s Guide 235

http://www.cplusplus.com/size_t

iT((pFile = fopen(Filename,"a)) == NULL)

printf(“Can"t open or create i.LON 100 file = %s \n",
Filename);

}

else

fwrite(buf,1l,len,pFile);
fclose(pFile);
printfF("'Wrote %d bytes to file = %s \n", len, Filename);

}
fclose()

You can use the Fclose () method to close a file.
SYNTAX
int fclose (FILE * stream);

The stream parameter specifies a pointer to a FILE object that specifies the file stream to be
closed.

If the file has been closed successfully, this method returns a zero value. Otherwise, it returns
EOF (End-of-File).

EXAMPLE
The following example demonstrates an Fclose () method that closes a file stream.

FILE * pFile;
fclose (pFile)

236 Appendix A - Programmer’s Reference

Appendix B

FPM Development and Deployment
CheckKklist

This checklist outlines the steps required to develop and deploy your FPMs on the
SmartServer.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 237

1.

Create User-Defined Functional Profile Template
(UFPT)

NodeBuilder Resource Editor

Create a new FPM resource file set for company.

Request temporary manufacturer ID from
LonMark www.lonmark.org/mid if you do
not have one or, if your company has many
FPM developers.

Must create scope 5 resource file set if
integrating FPM application with an LNS
Application such as the LonMaker tool.

Create a new functional profile template or create
one that inherits from an existing Standard
Functional Profile Template (SFPT).

Add NVs and CPs to the UFPT which your FPM will
read and write.

Generate company’s FPM resource file set

Upload company’s updated FPM resource file set to
root/lonWorks/types/User/<YourCompany> folder
on SmartServer flash disk.

2.

Create Device Interface (XIF) File

Text Editor (e.g. Notepad)
LonWorks Interface Developer

Use text editor such as Notepad to create a model file
(.nc extension).

Use i.LON SmartServer 2.0 LonWorks Interface
Developer tool convert model file to device interface
(XIF) file.

O

Upload XIF file to root/lonWorks/Import/
<YourCompany> folder on SmartServer flash disk.

3.

Write FPM Application or Driver

i.LON SmartServer 2.0 Programming
Tool

Create new FPM project from the UFPT.

Write and build FPM application or driver.

Must have full version of i. LON
SmartServer 2.0 Programming Tools to
build FPM.

The data points declared in the FPM must
be in the UFPT.

4,

Deploy FPM Application or Driver on Development
SmartServer

i.LON SmartServer 2.0 Programming
Tool

i.LON SmartServer 2.0

LonMaker Tool

i.LON Vision 2.0

238

Appendix B — FPM Development and Deployment Checklist

http://www.lonmark.org/mid

Use i.LON SmartServer 2.0 Programming Tool to
upload FPM executable module (.app or .drv
extension) to root/modules/user/<YourCompany>
folder on SmartServer flash disk.

Must have FPM license on SmartServer to
upload FPMs.

Select Default Web Page check box in
Deployment Settings window of Install
FPM Module dialog to create custom
FPM configuration Web page for FPM
applications.

If you are deploying an FPM driver, reboot the
SmartServer.

Use SmartServer to verify that a network
management service has been selected (LNS or
Standalone).

If using LNS mode (LNS Auto or LNS
Manual), FPM devices must have static
interfaces.

Must use an LNS mode in order to bind
data points in your FPM application to
other data points with LONWORKS
connections.

Must use Standalone mode if FPM devices
use dynamic interfaces.

Use SmartServer to add new internal FPM device on
LONWORKS channel.

If FPM device has static interface, select
XIF file from root/lonWorks/Import/
<YourCompany> folder.

If FPM device has dynamic interface,
select v40 XIF file from
root/lonworks/import/Echelon/iLON100
folder.

If FPM device has dynamic interface, add functional
block to device based on UFPT used by FPM.

If binding FPM data points with LONWORKS
connections, commission FPM device using
SmartServer or LonMaker tool

Can commission device from SmartServer
tree or LNS tree in SmartServer Web
interface.

Once FPM device is commissioned in the
LonMaker tool, cannot use the
SmartServer to decommission the device
or set the device application offline.

Can only use the LonMaker tool to
decommission and re-commission the
device and set the device application
online or offline.

Test FPM application with View — Data Points Web
page in SmartServer Web interface.

Connect FPM data points with LONWORKS
connections or Web connections.

Can create LonWorks connections with
LNS tree in SmartServer Web interface or
the LonMaker tool.

Can create Web connections with
SmartServer tree in SmartServer Web
interface

i.LON SmartServer 2.0 Programming Tools User’'s Guide

239

240

Use Adobe Contribute CS3 with i.LON Vision 2.0
toolkit to create custom FPM configuration Web
Pages.

To view custom FPM configuration Web
page, click General above navigation pane
on left side of the SmartServer Web
interface and then click a functional block
under FPM device.

5. Deploy FPM Applications or Drivers on Multiple

S

martServers in Field

FTP Client such as Internet Explorer 7

Use FTP client to copy the following files to the
folder listed in the colunmn to the right on each
SmartServer:

Each SmartServer must have FPM license
installed on it.

g | FPM License (if not pre-installed on SmartServer). root/config/license

g | Resource files (ENU, fmt, .fpt, .Is, and .typ files). root/lonworks/types/user/<YourCompany>

g | Device interface (XIF) files (.xif extension)*. root/lonworks/import/<YourCompany>
*If the FPM application uses static functional blocks.

g | FPM executable modules (.app or .drv extension). root/modules/user/<YourCompany>

g | Custom FPM configuration Web pages (.htm root/web/config/Fb

extension)* for FPM application.

*If created.

Appendix B — FPM Development and Deployment Checklist

Appendix C

FPM FAQ

This FAQ answers common question related to FPMs.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 241

SmartServer FPM FAQs

242

1.

What are Freely Programmable Modules (FPMs)?

FPMs are custom C/C++ applications or drivers (RS-232 or RS-485) that allow you to customize
the SmartServer’s embedded software. You can use FPMs to perform tasks not provided by the
SmartServer’s built-in applications. FPMs can have both network variables (NVs) and
Configuration Properties (CPs).

e An FPM Application reads and writes values to the data points declared in it. An FPM
application executes code upon data point updates, reads data point properties, and controls
timers and executes code upon their expiration. For example, you can create an FPM
application that takes two input N'Vs, adds their values when either one changes, and then
writes the value to an output NV (inl + in2 = out).

e An FPM Driver provides values for the data points declared in it by reading and writing to
the RS-232 and RS-485 ports on the SmartServer. FPM drivers let you create gateways for
non-native devices.

What do | need to create FPMs?

You need to purchase the i.LON SmartServer 2.0 Programming Tools DVD (Echelon Model
72111-409). The i.LON SmartServer 2.0 Programming Tools includes a pre-configured Eclipse
Development Kit that you can use to write, build, and upload FPMs to your SmartServer.

Only FPM developers need this tool. That is, you don’t need this tool to use an FPM developed
by someone else.

How do | deploy FPMs on my SmartServer?
¢ Your SmartServer must have the following files to deploy an FPM application or driver:

0 FPM Programming Activation Key. Each SmartServer needs its own unique license
file, so don’t copy this file to all SmartServers. If your SmartServer does not have a
Programming Activation Key, you can order one (Echelon Model 72161) at
www.echelon.com/ilon/activate

0 Optional: FPM Application License. An optional license created by the FPM
developer.
<i.LON root directory>/config/license

0 User-defined resource file set (*.ENU, *.fmt, *.fpt, *.Is, and *.typ files), which
defines the functional profile template used by your FPM application or driver (that
is, the FPM NVs and CPs).
<i.LON root directory>/lonworks/types/user/<YourCompany>

0 FPM executable module (.app or *.drv extension).
<i.LON root directory>/modules/user/<YourCompany>

0 Optional: FPM web pages (*.htm)
<i.LON root directory>/web/config/Fb

= Optional: NLS local language files (e.g., German) for the FPM web page.
<i.LON root directory>/web/config/Fb/nls

0 Optional: External device interface (XIF) file is required if you are deploying an
FPM application that has a static interface (uses static functional blocks)
<i.LON root directory>/lonworks/import/<YourCompany>

Appendix D — i.LON SmartServer Software License Agreement

http://www.echelon.com/ilon/activate

e For FPM Applications.

0 Add an internal device using the above XIF (Static FBs) or the SmartServer’s v40
XIF (Dynamic FBs).

0 You may need to commission the internal device in order to use certain features
(e.g., when using LONWORKS connections with Static FBs)

e For FPM Drivers.
0 Nothing, once uploaded to the SmartServer you are done.

4. Do I need to re-compile my FPM code when I install a SmartServer Service Pack or
Upgrade?

For most SmartServer service packs (SP) and upgrades (U), you do not have to re-compile your
FPMs.

The exceptions may be that you may want to use a new feature associated with the new service
pack/upgrade or there is a change to the SmartServer embedded firmware that affects FPMs. After
each service pack or upgrade, check the FPM ReadMe to see if your FPM code needs to be
compiled or rebuilt.

Additionally, the SmartServer will report a console port error during the boot process if the FPM
build version doesn’t match the SmartServer version. The FPM build version is the SmartServer
version used when compiling the FPM. For example, if you compiled the FPM with SmartServer
version 4.03, then the FPM build version is 4.03. During a reboot (or if you are using the i. LON
SmartServer 2.0 Programming Tool to download an FPM to the SmartServer), the SmartServer
will check the FPM build version to see if it is supported with the current SmartServer version. If
there is a problem, the SmartServer will then print an error message to the SmartServer console
port.

5. What are internal devices?

An internal (virtual) device is an emulation of a device that resides on the SmartServer. An
internal device encapsulates one or more functional blocks, which are instances of the FPM
applications you have created with the i.LON SmartServer 2.0 Programming Tools. You can
create up to 10 internal devices on the SmartServer that can be used for FPM applications.

For Static Functional Blocks (FBs), you must create a XIF file for the internal device with the
LonWorks Interface Developer Tool LIBILON. The LIBILON tool limits the XIF Address Table
entries to 15. See instruction later in this FAQ on how to increase this value.

6. Can an internal FPM device have multiple applications (or FBs)?

Yes, a single internal device can have multiple FBs based on multiple FPMs.
For example, if you create three FPMs with each FPM using 2 input NVs and one output NV:

FPM 1 - Adder: inl + in2 = out,
FPM 2 - Subtract: inl —in2 = out,
FPM 3 - Multiplier: inl * in2 = out

You can then add an internal device to the SmartServer (see internal device #1 in the figure below)
in which there are 3 FBs based on an Adder FPM, 2 FBs based on a Subtraction FPM and 3 FBs
based on a Multiplier FPM. You can add additional internal devices with a different number and
types of FBs (see internal device #2).

i.LON SmartServer 2.0 Programming Tools User’'s Guide 243

244

FB1 Internal Internal FE&
Dewce Device
#2
FB 2 FBd FE B

E]
))

FB &

FPM - Adder

FPM - Subtract FPM - Multiplier
+ = *
in1 + in2 = out in1 *in2 = out

If you use Static FBs for the figure above then you would have to create two XIF files because the
number of FBs is not the same for both devices. If you were using multiple identical internal devices
then you only need to create one XIF file.

What is the relationship between FPM applications and the functional blocks (FBs) in an
internal device?

The relationship is similar to the built-in SmartServer applications and the functional. The
SmartServer’s built-in applications (also called modules) perform a specific task such as alarm
notification, scheduling, or data logging. A functional block is an instance of a specific application.
For example, to use the SmartServer’s Alarm Notifier application, you first need to add an Alarm
Notifier functional block to the SmartServer’s i.LON App device.

Your FPM application performs a specific task, and to instantiate an FPM application, a functional
block representing an instance of the FPM application must be added to the internal FPM device.

e If the internal device uses static FBs then you specify the XIF file to be used by the internal FPM
device when you add the device. All the functional blocks (FPM application instances) and data
points specified by the XIF file will automatically appear under the internal FPM device in the
navigation tree on the left side of the SmartServer Web interface

e If the internal device has dynamic FBs then you manually add functional blocks to the internal
FPM device for the FPM applications to be instantiated.

Does an internal device need to use FPM static or dynamic Functional Blocks?

The type of FB that you need to use depends on how you are going to use the FB and the type of
connection (LonWorks connections vs. Web connections) use for the FB NVs/CPs.

For static FBs you need to use an XIF file when creating and internal device. Static FB can be used
with LonWorks connections or web bindings and need to be added to the LON channel.

For dynamic FBs, you manually add the FB to an internal device. Dynamic FB can only be used with
web bindings and should be added to the SmartServer virtual channel.

For Standalone mode you can use either static or dynamic FBs and the internal device can be added to
either the SmartServer virtual channel or LON channel.

For LonMaker (or other LNS Application), the location or type of FB depends on your application. To
use LonWorks binding with LonMaker or an LNS Application then you will need to use static FBs. If
you are only using web bindings then it may make more sense to use dynamic FBs.

Appendix D — i.LON SmartServer Software License Agreement

10.

11.

12.

13.

For Static FBs, you need to create a model file (*.nc extension) in which you declare all the data points
in the UFPT used by the FPM, and a functional block that implements an instance of the UFPT. You
then need to use the i.LON SmartServer 2.0 LonWorks Interface Developer tool to convert the model
file to a XIF file. When you create the internal device on the SmartServer, all the functional blocks
and data points specified by the XIF file will automatically appear under the internal FPM device in
the navigation pane on the left side of the SmartServer Web interface.

One advantage of using static FBs is that once you create the XIF file, it is easy to add new internal
FPM devices with the same feature set. A disadvantage of using static FBs is that they consume
resources on the SmartServer even if a FB or NV/CP is not being used.

If you are running your network with the SmartServer operating as a standalone network manager, the
internal device can use static or dynamic FBs. If the internal FPM device uses dynamic FBs then you
need to create an internal device that uses the SmartServer internal v40 XIF file. You then add
functional blocks to the internal FPM device for the FPM applications you want to instantiate.

One advantage of using dynamic FBs is that you only use SmartServer resources for those functional
blocks that you add. A disadvantage of using dynamic FBs is that when you want to add another
internal device with the same feature set, you must manually add all the FBs again.

Do | need to commission an internal FPM device?

You do if you plan on using LONWORKS connections to bind the data points in your FPM application
to data points on the SmartServer or to data points on external devices. You do not need to
commission an internal FPM device if you plan on connecting FPM data points with Web connections
(Web bindings).

Note that LonWorks connections are only supported in LNS Auto or LNS Manual mode. If you are
operating the SmartServer in Standalone mode, you can only use Web connections to bind your FPM
data points.

How do I create unique names for my FPMs to avoid collisions with other FPM manufacturers?
Each FPM must be identified by a unique namespace that consists of a Program ID and a Functional
Profile Template name (e.g., “SFFFFF46140A1E03[5].UFPTMath”). That is, no two FPMs on the

same SmartServer can have the same namespace. Using your company’s program ID in the
namespace prevents potential naming conflicts.

You can use Scope 3, 5 or 6. Scope 5 is recommended. If you don’t have a Manufacturer ID then go
to the LonMark website www.lonmark.org/mid and get a temporary Manufacturer ID.

Can | create network variables (NVs) for my FPMs?

Yes. You can create both input and output NVs for your FPM. You need to define your NVs in a

resource file set using the NodeBuilder Resource File Editor. The NVs are automatically declared in
your FPM code when you create a new FPM project based on a UFPT in your resource file set.

Can | use configuration properties (CPs) for my FPMs?
Yes, you can create CPs that are implemented as NVs. You need to define your CPs in a resource file
set using the NodeBuilder Resource File Editor. The CPs are automatically declared as CP NVs in

your FPM code when you create a new FPM project. If you plan on using static FBs for your internal
FPM devices, you also need to define the CPs as CP NVs in the model file.

CPs that are implemented in configuration files are not supported.

What is the NodeBuilder Resource File Editor and why do | need it?

The NodeBuilder Resource Editor is used to develop a user-defined functional profile template

i.LON SmartServer 2.0 Programming Tools User’'s Guide 245

http://www.lonmark.org/mid

14.

15.

16.

17.

18.

19.

246

(UFPT), which defines the NVs and CPs to which your FPM will read and write. The NodeBuilder
Resource Editor is available on the i.LON SmartServer 2.0 Programming Tools DVD. The UFPT
serves as the FBs specification for your FPM.

What is a resource file set?

These files define the external FBs of your FPM module. This includes the NVs and CPs to which
your FPM will read and write. The resource files set needs to be defined before you can start coding
your FPM. If the UFPT to be used by your FPM inherits from a standard functional profile template
(SFPT) then you don’t need to do anything. In many cases your FPM will have a custom look and will
require you to generate a new resource file set using the NodeBuilder Resource Editor.

A resource file set is company specific. If you don’t already have a LonMark company ID, you can
apply for one at www.lonmark.org/mid.

After you create a resource file set, you need to FTP it to your SmartServer and then reboot the
SmartServer. Your new resource file set is located under the lonWorks\types\user\<manufacturer
name> folder on your computer. Copy the resource file set (the *.enu, *.fimt, *.fpt, *.is, and *.typ files)
to the root/lonWorks/types/user/<manufacturer name> folder on the SmartServer flash disk. After
you copy your resource file set to the SmartServer, reboot the SmartServer so that the SmartServer can
use the new/modified files.

What is a Functional Profile Template (FPT)?

A functional profile template contains definitions of all the NVs and CPs that your FPM supports.
Your FPM must have a UFPT (user-defined FPT) that is defined in a Resource File Set. The UFPT is
created using the NodeBuilder Resource Editor.

Can | create an FPM based on a Standard Functional Profile Template (SFPT)?

No. You can create a User Functional Profile Template (UFPT) that inherits from an existing SFPT or
you can create a new UFPT from scratch.

What is a Model File?

A model file is used to create an XIF file for internal devices that use Static FBs. This is not needed
for Dynamic FBs. A XIF can only be made up of FPMs from the same manufacturer.

A model file uses the Neuron C programming language to describe the functional blocks, network
variables, and configuration properties in an FPM application. You do not need to be proficient in
Neuron C to create a model file for an FPM because the model file does not include executable code.

What is the i.LON SmartServer 2.0 LonWorks Interface Developer Tool LIBILON.EXE (Static
FBs only)?

The i.LON SmartServer 2.0 LonWorks Interface Developer Tool is a command line interface that
converts a model file (*.nc extension) to a static device interface (XIF) file. If you are integrating your
FPM application with the LonMaker tool, LNS tree, or another LNS application, your internal FPM
device must have a static interface.

This tool limits the XIF to 15 entries in the SmartServer internal device Address Table. This means
that an internal device based on this XIF file can have LonWorks Connection to only 15 different
devices. Once you create the XIF file you can modify the file to support more than 15 address Table
entries using the instructions below.

How can I change the XIF file to support more than 15 Address Table entries per Internal
Device (Static FBs only)?

You can modify the XIF file with a text editor like Notepad or WordPad (use text only). You can
modify both the address table entries and alias table entries.

Appendix D — i.LON SmartServer Software License Agreement

http://www.lonmark.org/mid

20.

21.

22.

23.

24,

File: fpmMathAdder.xif generated by LonTalk Interface Developer Revision 3.00.35, XIF Version
4.401

Copyright (c) Echelon Corporation 2002-2008
All Rights Reserved. Run on Tue Apr 29 16:48:44 2008

8F:FF:FF:00:00:00:00:02
21502004422440000501610241164200131930000024096000002100
12851280000 15580 10 10000000

1711444152000

781250000016400000

90024000040400585121415

e Number of address table entries:
34 entry on line 6 of the XIF file; change 15 to 4096 in the example above.

e Number of alias table entries:
19 entry on line 6 of the XIF file; change 0 to 1024 in the example above.

Can | use FPMs to modify the SmartServer’s built-in applications (e.g., Alarm Generator,
Scheduler)?

No, you can’t modify the SmartServer’s built-in functions, but you can access the Built-in
applications’ data points.

Can the FPM module directly access data points of SmartServer built-in Applications (e.g.,
Alarm Notifier)?

Yes, you can use the List(), Read(), and Write() methods to access N'Vs that are external to your FPM.
However, these methods significantly impact the performance of the Smart Server. It is recommended
that you access the data points on the SmartServer by connecting them to data points in an FPM
application with LONWORKS and Web connections.

Note: If the SmartServer is operating in LNS Auto or LNS Manual mode, you can use LONWORKS
and Web connections. If the SmartServer is operating in Standalone mode, you can only use Web
connections.

Can the FPMs call or access other SmartServer applications such as an Alarm Generator?
No, an FPM can not call any of the SmartServer’s built-in applications. To access the data points in

the SmartServer’s built-in applications, you can use the FPM List(), Read(), Write() methods;
LonWorks connections; and Web connections.

Can an FPM dynamically create data points in an LNS network database?

No. Only the data points that you declare in the UFPT used by your FPM are added to the LN'S
network database.

Can | use Changeable Types for my FPM NVs?

i.LON SmartServer 2.0 Programming Tools User’'s Guide 247

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

248

No. You can only use one NV type (SNVT or UNVT) for each FPM NV which you specify within the
resource file set.

Can | add Dynamic NVs to my FPM FB?

No. Dynamic NVs are not supported (only NVs that are declared at compile time are supported).

Can | access the Configuration Properties of other devices?

Only CPs that are defined as CP NVs.

Does an FPM have access to the SmartServer TCP/IP protocol stack (Sockets)?

No, this feature is not supported. FPMs can not directly make an outbound SOAP call. Nor can the
FPM be referenced directly by inbound SOAP call.

Can | read and write files on the SmartServer?

Yes. You use C/C++ file methods to access files on the SmartServer. Additionally, you can use a
SOAP application or FTP on a PC to download/upload files from the SmartServer.

Can I protect my FPM applications from piracy?

Yes. You can add code to your FPM application that checks whether a SmartServer has a FPM
Application license (that you create) in order to run your FPM. The i.LON SmartServer 2.0
Programming Tools includes an i.LON License Generator program that you can use to create licenses

for your FPM applications that must be on a SmartServer to run your FPM application. See Chapter 7
for more information on creating FPM application licenses.

Can developers create timed demo License (for example, 30 days)?

There is no direct support for this feature, but you could code your FPM to support it.

Is there a debugger for the FPM Development kit?

Echelon does not provide a debugger; however, you can use printf() statement to print out debugging
information to the SmartServer console port. FPMs are based on a VxWorks operating system;
therefore, you can purchase a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4).
Contact Wind River” sales at www.windriver.com/company/contact/index.html for more information
on ordering “WindRiver Platform for Industrial Services V3.2 for MIPS32 Processors”.

Can | run my FPM application on the i.LON 100 hardware (€3 or prior version)?

No. FPMs are only supported on the SmartServer hardware.

How many FPM application modules can | load to a SmartServer at a time?

There is no defined limit. However, there is a practical limitation due to the memory size (64MB
flash) which is used for all SmartServer applications and data points.

How many FBs can | use for a given FPM application?

There is no limit. You can add as many FPM FBs to a single internal device as you want and you can

add up to 10 internal devices to a SmartServer. However, there is a practical limitation due to the
memory size (64MB flash) which is used for all SmartServer applications and data points.

How many data points (NVs or CPs) can | create for one FPM application module?

There is no limit for the FPM module.

Echelon recommends that you add no more than 1,000 data points to the SmartServer. This includes

Appendix D — i.LON SmartServer Software License Agreement

http://www.windriver.com/company/contact/index.html

36.

37.

38.

39.

40.

41.

data points on external devices, dynamic network variables added to the SmartServer’s internal
automated systems device [“i.LON App (Internal)” by default], and data points in FPM applications
and drivers.

You can add more than 1,000 data points, but you should periodically open the Setup - System Info
Web page to verify that SmartServer has enough resources (Spare Flash Blocks, Free Disk Space,
RAM, and CPU Utilization) to support the additional data points.

The amount of resources consumed by the SmartServer depends on the types and number of
applications running on the SmartServer (a Data Logger can consume a lot of resources). Note that the
static data points in the SmartServer’s built-in applications/ functional blocks do not count against the
1,000-data point limit

Can I access NV elements in a structured NV from FPM application module? (e.g., “value”
element in SNVT_switch type NV)?

Yes, structured NVs type fields or elements can be accessed directly or through temporary data point
variables. See Chapter 5 for more information on reading and writing to structured data points.

Does the FPM have access to the source address of an input NV or can it determine how many
LONWORKS or Web connections are connected to an input NV?

No.

How fast can the FPM Timer run?

We recommend no faster than 100 ms.

Does the FPM provide support for LonTalk Explicit Messages?

No.

Does the FPM have access to data point status information (for example, if the data point is
online)?

Yes, the FPM has read access to data point name, alias name, status, write priority, and last update.
See Chapter 5 for more information on reading these data point properties.

Can I determine which FB instance the FPM is currently running?

The best way to get the information is to look at the name property of one of the NVs that your are
using. Since the NVs and CPs are local to a FB instance, you can deternime the instance index number
from the name property.

The first step is to pick one of your NVs or CPs that you are using. Next get the full path name for the
NV/CP. From the return data strip out the FB index number.

In the example below, NV nviTemp is used to determine the FB index. FB index is then saved in a
local variable. This local variable is local to the FB instance. That is, no other instance of the FB can
access this variable. In this case local variable iFbNumber is used. Note local variables are declared
using a UFPT local variable.

// => section datapoint variable declarations. DO NOT REMOVE THIS SECTION'S CCOMMENT!

DECLARE(_0000000000000000_0_::SNVT_temp_p, nviTemp, INPUT_DP)

// <= section datapoint variable declarations. DO NOT REMOVE THIS SECTION'S COMMENT!

// My Code - Begin ------------mmmmmm oo
DECLARE_FB_INSTANCE_LOCAL (int, iFbNumber) ; // LocalVariable
// My Ends - Begin ----------—-—-—————————————(——————
//determine the FB index in the initialization routine

i.LON SmartServer 2.0 Programming Tools User’'s Guide 249

void CUFPTfpmTempController::Initialize()]
{1
// Determine FB index by looking at one of the NVs name, [index]
char * nv_name =
(char *)nviTemp.GetDpPropertyAsString (FPM: :Dp: :cfgUCPTname) ;
// get NV name

// Get FB index number from name
char * tmp_name;
tmp_name = strtok(nv_name,"[");
tmp_name = strtok (NULL,"]1");
iFbNumber = strtol (tmp_name, NULL,10); // convert String to int

printf ("UFPTfpmTempController[%i]::Initialize() \n", *iFbNumber) ;
//enter comment in work routine to indicate when nviTemp is changed

void CUFPTfpmTempController: :work()
{
if (Changed (nviTemp))
{
printf ("UFPTfpmTempController[%$i]: :Work () - nviTemp =
*1FbNumber, *nviTemp) ;

}

42. What is the difference between Local and Global FPM variables?
Local variables are defined and used differently then global variables.
e FPM local variables are local to a FB instance.
0 NVs and CPs are always local variables.
0 A local integer variable named iFbNumber would be defined as:
DECLARE_FB INSTANCE LOCAL(int, iFbNumber); // local variable
Each FB instance will have its own iFbNumber that only it can read or write.
e FPM global variables are accessible by all FB instances.
0 All FB instances for a FPM can read and write to this variable.

0 FPM global variables are defined as normal C/CC+ variables and are used by all FB
instances of the FPM. A global integer variable named iCount would be defined as:

int iCount; // global variable

e You should use local variables whenever the data is FB instance related (e.g., FB instance index
number, state information, timer information).

e Always design your FPM assuming that it will be used with multiple FBs.

e If you see erratic behavior from a FB, this may mean that you are using a global variable when
you should be using a local variable.

e See the Echelon Knowledge Base web site for examples.

43. Can a FPM driver have NVs and CPs?

250 Appendix D — i.LON SmartServer Software License Agreement

Yes. This how you pass data from the FPM driver to the FPM applications.
44. Can a FPM application access the default UART Drivers?

No, you will need to write your own driver.

45, Can you use logic in a FPM driver?

You can, but we don’t recommend it. You should use the FPM driver to send and receive data to the
UART and do all of your processing in a FPM application.

i.LON SmartServer 2.0 Programming Tools User’'s Guide 251

S ECHELON

www.echelon.com

	Table of Contents
	Preface
	Welcome
	Purpose
	Audience
	Models
	i.LON SmartServer 2.0 Programming Tools Versions
	i.LON SmartServer 2.0 Programming Tools Applications
	Hardware Requirements
	SmartServer Requirements
	Creating FPM Application Licenses
	i.LON SmartServer 2.0 Documentation
	Related Reading
	Content
	For More Information and Technical Support

	1 Introduction
	Overview of Freely Programmable Modules
	FPM Types
	Creating and Deploying FPMs
	Using Eclipse Environment Commands
	Debugging FPMs
	Creating FPM Application Licenses

	Quick-Start FPM Exercise
	Step 1: Creating and Copying the FPM Template
	Step 2: Creating and Copying the Device Interface (XIF) File
	Step 3: Creating the FPM Project
	Step 4: Writing the FPM Application
	Step 5: Deploying the FPM Application on a SmartServer
	Uploading the FPM Application
	Creating an Internal FPM device

	Step 6: Testing the FPM Application
	Step 7: Connecting the FPM Data Points

	2 Installing i.LON SmartServer 2.0 Programming Tools
	Installation and Upgrading Overview
	Installing i.LON SmartServer 2.0 Programming Tools
	Upgrading the i.LON SmartServer 2.0 Programming Tool
	Importing FPM Projects
	Converting FPM Projects to the Release 4.03 Configuration

	Uninstalling i.LON SmartServer 2.0 Programming Tools

	3 Creating FPM Templates
	Creating FPM Templates Overview
	Creating User-Defined Functional Profile Templates
	Adding Network Variable and Configuration Property Types
	Generating and Copying the Updated FPM Resource File Set

	4 Creating FPM Device Interface (XIF) Files
	Creating FPM Device Interface (XIF) Files Overview
	Creating a Model File
	Declaring Network Variables
	Declaring Configuration Properties
	Declaring Functional Blocks
	Using Include Directives
	Example Model Files
	Single Functional Block
	Multiple Functional Blocks with the Same UFPT
	Multiple Functional Blocks with Unique UFPTs
	Multiple Functional Blocks with Multiple UFPTs
	Multiple Functional Blocks with Multiple UFPTs and Same Data Point Names

	Saving your Model File

	Generating a Device Interface (XIF) File
	Using Long and Short Command Switch Forms
	Other Command Switches

	5 Creating FPMs
	Creating FPMs Overview
	Creating New FPM Projects
	Viewing the Resource Files on a SmartServer
	Creating an FPM
	Updating Data Point Declarations
	Manually Importing All Data Point Declarations
	Manually Importing Individual Data Point Declarations

	Using UFPT Local Variables
	Writing an FPM Application
	The Writing the FPM Application Initialize() Routine
	Declaring and Initializing Timers
	Starting Timers

	Writing the FPM Application Work() Routine
	Checking for Data Point Value Updates
	Checking for Data Point Property Updates
	Reading Data Point Properties
	Reading Data Point Values
	Writing Data Point Values

	Writing the FPM Application OnTimer() Routine
	Writing the FPM Application Shutdown() Routine

	Writing an FPM Driver
	Writing the FPM Driver Initialize() Routine
	Writing the FPM Driver Work() Routine
	Writing the FPM Driver OnTimer() Routine
	Writing the FPM Driver Shutdown() Routine

	Compiling an FPM
	Checking Compile and Warning Errors
	Using Non-Latin Characters

	Debugging FPMs
	Using Wind River Workbench
	Using FPM Development Guidelines

	Using SNMP Support
	Example FPM Applications and Drivers

	6 Deploying FPMs on a SmartServer
	FPM Deployment Overview
	Uploading FPM Applications and Drivers
	Deploying FPM Applications
	Deploying FPM Drivers

	Selecting a Network Management Service
	Using LNS Network Management Services
	Using Standalone Network Management

	Adding FPM Devices to the SmartServer
	Using a Static Device Interface
	Using a Dynamic Device Interface

	Commissioning FPM Devices
	Commissioning FPM Devices with the SmartServer
	Commissioning FPM Devices with the LonMaker Tool
	Recommissioning FPM Devices

	Testing FPM Applications
	Connecting FPM Data Points
	Creating LonWorks Connections
	Connecting FPM Data Points with the LNS Tree
	Connecting FPM Data Points with the LonMaker Tool

	Creating Web Connections

	Creating Custom FPM Configuration Web Pages
	Updating FPMs
	Updating Data Point Declarations
	Updating FPM Applications and Drivers
	Updating Device Interfaces

	Deploying FPMs on Multiple SmartServers
	Deploying Licensed FPM Applications

	7 Creating FPM Application Licenses
	Licensing Overview
	Creating an FPM Licensing Tool
	Creating a License Generator Configuration File
	Creating a Security DLL File
	Building the Security DLL File
	Using the Sample Security DLL File

	Enabling License Validation in an FPM Application
	Step 1: Inserting Include Directives and Macro Definitions
	Step 2: Declaring Data Variables
	Step 3: Creating the License Validation Routine
	Step 4: Writing the License Validation Algorithm
	Verifying the Lock ID
	Verifying the License Key

	Step 5: Implementing the License Validation Call Mechanism
	Step 6: Compiling the Licensed FPM Application

	Building the Release Version of a Licensed FPM Application
	Creating FPM Application Licenses
	Supplying FPMs to Customers

	8 Localizing the SmartServer Web Interface
	Language Localization Overview
	Creating a Language Localization Project
	Creating Localized Custom SmartServer Web Pages
	Translating Common Properties
	Translating Embedded Application Properties
	Creating a Localized Custom SmartServer Web Page

	Creating Localized FPM Configuration Web Pages
	Localizing the Language of the SmartServer Web Interface
	Translating Property Files
	Creating New Language Folders
	Editing the index.htm File to Enable a New Language on the SmartServer
	Translating the Welcome.htm File
	Translating the Welcome.htm File with i.LON Vision 2.0
	Translating the Welcome.htm File with a Text Editor

	Translating the Menu.htm File
	Translating the Menu.htm File with i.LON Vision 2.0
	Translating the Menu.htm File with a Text Editor

	Translating the Sidebar.htm File
	Translating the Sidebar.htm File with i.LON Vision 2.0
	Translating the Sidebar.htm File with a Text Editor

	Viewing the Localized SmartServer Web Interface

	Appendix A FPM Programmer’s Reference
	Overview
	Template Files
	Routines
	Initialize()
	FPM Application Example
	FPM Driver Example

	Work()
	FPM Application Example
	FPM Driver Example

	OnTimer()
	FPM Application
	FPM Driver

	Shutdown()
	FPM Application Example
	FPM Driver Example

	Methods
	Variable Types
	Internal FPM Data Point Methods
	Changed()
	NotifyOnAllUpdates()
	Propagate()
	Write()
	ResetPriority()

	FPM Application Data Point Property Methods
	GetDpPropertyAsString(UCPTname)
	GetDpPropertyAsString(UCPTAliasName)
	GetDpPropertyAsTimeSpec(UCPTlastUpdate)
	GetDpPropertyAsPointStatus(UCPTstatus)
	GetDpPropertyAsInt(UCPTpriority)
	SetDpProperty (UCPTAliasName)
	SetDpProperty (UCPTpriority)

	FPM Driver Data Point Property Methods
	SetDpProperty(defOutput)
	SetDpProperty(persist)
	SetDpProperty(pollRate)
	SetDpProperty(unit)

	UFPT Local Variables
	External SmartServer Data Point Methods
	List()
	Read()
	Write()

	Timer Methods
	Start()
	START_TIMER()
	Expired()
	Stop ()
	StopAllTimers()
	IsRunning()
	GetMode()
	GetTimeoutMillis()

	Reboot Method
	RS-232 Interface Methods
	rs232_open()
	rs232_ioctl()
	rs232_read()
	rs232_write()
	rs232_close()

	RS-485 Interface Methods
	rs485_open()
	rs485_setparams()
	rs485_ioctl()
	rs485_setbuffersize()
	rs485_read()
	rs485_write()
	rs485_close()

	File Access Methods
	fopen()
	fread()
	fseek()
	fwrite()
	fclose()

	Appendix B FPM Development and Deployment Checklist
	Appendix C FPM FAQ

