
ABB Motion control products 1

www.abb.com/motion

Seamless high speed serial communication

between HMI and motion products

IntroductionIntroductionIntroductionIntroduction

The CP600 range of intelligent HMI panels is able to

communicate with other peripherals (e.g. AC500 PLCs, ABB motion products) via a selection of communication protocols. This

application note details how these HMIs can interface with ABB motion products via Modbus RTU. For general guidance on the use

of Panel Builder 600 please refer to ABB manual 2CDC159007M0201.

To configure a CP600 HMI to communicate with an ABB motion control product via Modbus RTU requires Panel Builder 600

version 1.80.00.34 (or later). Please contact your local Sales office if you need to update your existing version of this software.

Integrated Modbus RTU support is available on the following ABB motion control products:

NextMove ES / ESB-2

NextMove e100

MicroFlex e100

MotiFlex e100

MicroFlex e150

Refer to application note AN00198 for further details on the operation of Modbus RTU on these products.

Modbus RTU uses a serial-based physical medium (either RS232, 2 wire RS485 or 4 wire RS422 depending on product).

Refer also to application note AN00199 for details on connecting CP600 HMIs to ABB motion control products via Modbus TCP.

Motion Control Products

Application note

Connecting CP600 to motion products via Modbus RTU

AN00200-003

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 2

www.abb.com/motion

Motion Product ConfigurationMotion Product ConfigurationMotion Product ConfigurationMotion Product Configuration

Integrated Modbus RTU operation is included with the following firmware versions:

e100 products - firmware version 5633 (or later)

e150 products - firmware version 5707 (or later)

NextMove ES / ESB2 - firmware version 5424 or later (compiler Target Format 13) or firmware version 5454 or later (compiler

Target Format 14)

NextMove ES/ESBNextMove ES/ESBNextMove ES/ESBNextMove ES/ESB----2 and e100 Product Configuration2 and e100 Product Configuration2 and e100 Product Configuration2 and e100 Product Configuration

As Modbus RTU is a serial-based protocol it is vital to ensure the motion product’s serial node address is set using either

BUSNODE(_busSERIAL1) in a Mint program or via the “Connectivity” screen within Mint Workbench, Address 0 should be avoided

as this is reserved for broadcast functions.

It is also necessary to set the required baud rate either using SERIALBAUD(_TERM1) in a Mint program or via the “Connectivity”

screen within Mint Workbench, The motion products do not support operation of Modbus RTU at 9600 baud and there are limited

selections of baud rate for the CP600 HMIs. Therefore the selection of baud rate is restricted to one of the following:

19200

38400

57600

All Modbus parameters are configured via the MODBUSPARAMETER Mint keyword.

Before enabling Modbus operation it is necessary to set the correct byte and word order to suit the connected Modbus client

(master), in this case the CP600 HMI, and to configure how Modbus registers in the received data packets are mapped to internal

data areas in the Mint controller (see also application note AN00198).

As ABB PLC products use big endian byte order and big endian word order the Mint program needs to ensure the relevant Modbus

parameters are set accordingly (via the MODBUSPARAMETER keyword, typically as part of the Mint startup module) to ensure

connectivity between the CP600 HMI and any other networked ABB Modbus RTU devices (e.g. an AC500 PLC):

Example Mint code – Mint Modbus RTU slave connected to CP600 using Comms array

BUSNODE (_busSERIAL1) = 3 ‘Mint controller is node 3

SERIALBAUD (_TERM1) = 57600 ‘Using 57600 baud

MODBUSPARAMETER (_busSERIAL1, _mpBYTE_ORDER) = 0 ‘Use big endian byte order

MODBUSPARAMETER (_busSERIAL1, _mpWORD_ORDER) = 0 ‘Use big endian word order

MODBUSPARAMETER (_busSERIAL1, _mpREGISTER_MAPPING) = _rmCOMMS_ARRAY

MODBUSPARAMETER (_busSERIAL1, _mpENABLE) = 1

NextMove ES / ESB-2 only supports mapping of the Comms array to Modbus registers. When using e100 products, as an

alternative to the Comms array, it is also possible to map Net Data locations to Modbus registers by setting the

_mpREGISTER_MAPPING parameter to _rmNET_DATA.

Most new applications using e100 products are likely to utilise NetData as there are 1000 of these (as opposed to 99 Comms

locations) and 32 NetData events (as opposed to only 10 Comms events).

Applications using NextMove ES / ESB-2 are restricted to 5 Comms events (1 to 5). The operation of Mint events is detailed later in

this document.

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 3

www.abb.com/motion

 e150 Product Configuratione150 Product Configuratione150 Product Configuratione150 Product Configuration

All Modbus parameters are configured via the ‘Configuration’ menu within Workbench once online to the product (and the resulting

settings are stored on the product as part of its Mint Device Configuration (MDC) file).

Before enabling Modbus operation it is necessary to set the correct byte and word order to suit the connected Modbus client

(master), in this case the CP600 HMI.

As ABB PLC products use big endian byte order and big endian word order the ‘Configure Communication Interfaces’ page of the

Configuration wizard provides settings (as shown above) to allow the e150 product to operate this way.

e150 products inherently map Modbus registers onto Net Data (so there is no requirement to use the MODBUSPARAMETER

keyword to initialise this mapping). It is not possible to target the e150’s Comms array via Modbus.

To enable Modbus on e150 select the ‘Serial’ section of the ‘Configure Communication Interfaces’ dialog and select Modbus RTU

as the protocol…

The other settings on this dialog should be made to suit the connection to the HMI (this is detailed later when discussing the

protocol setup in the HMI project).

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 4

www.abb.com/motion

Register MappingsRegister MappingsRegister MappingsRegister Mappings

All CP600 Modbus functions target a common data area in the Mint controller (as set by the Mint keyword ModbusParameter

(_mpREGISTER_MAPPING) if using a motion product other than e150 or fixed as Net data when using an e150 product). These

data areas have a fixed mapping with respect to the Modbus registers used by the HMI as shown by the table below (equivalent

AC500 addresses are also shown for reference):

Server Modbus

register

AC500 address Mint Comms array

(Comms=Real, Commsinteger = DWord)

Mint Netdata array

(Netfloat = Real, Netinteger = DWord)

0 %MW0.0
%MD0.0

Invalid
Invalid

Element 0 MSW
Element 0

1 %MW0.1 Invalid Element 0 LSW

2 %MW0.2
%MD0.1

Element 1 MSW
Element 1

Element 1 MSW
Element 1

3 %MW0.3 Element 1 LSW Element 1 LSW

4 %MW0.4
%MD0.2

Element 2 MSW
Element 2

Element 2 MSW
Element 2

5 %MW0.5 Element 2 LSW Element 2 LSW

… --- --- --- --- --- ---

198 %MW0.198
%MD0.99

Element 99 MSW
Element 99

Element 99 MSW
Element 99

199 %MW0.199 Element 99 LSW Element 99 LSW

200 %MW0.200
%MD0.100

Invalid
Invalid

Element 100 MSW
Element 100

201 %MW0.201 Invalid Element 100 LSW

202 %MW0.202
%MD0.101

Invalid
Invalid

Element 101 MSW
Element 101

203 %MW0.203 Invalid Element 101 LSW

… --- --- --- --- --- ---

1996 %MW0.1996
%MD0.998

Invalid
Invalid

Element 998 MSW
Element 998

1997 %MW0.1997 Invalid Element 998 LSW

1998 %MW0.1998
%MD0.999

Invalid
Invalid

Element 999 MSW
Element 999

1999 %MW0.1999 Invalid Element 999 LSW

LSW – Least Significant Word : MSW – Most Significant Word

HMI Protocol ConfigurationHMI Protocol ConfigurationHMI Protocol ConfigurationHMI Protocol Configuration

Having started Panel Builder 600 and launched a new project you will be presented with a blank screen representing the first page

of your HMI application. At the left of the screen is the “ProjectView” which shows a tree structure of the available functions within

the HMI project.

Expand the “Config” folder if necessary and then double-click the “Protocols” icon…

Now click on the “+” button to add a protocol to the HMI project…

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 5

www.abb.com/motion

A dropdown control appears under the PLC heading, click on this to display the list of available protocols…

We need to select the ABB Modbus RTU protocol. This is a client (master) protocol that allows the CP600 HMI to communicate

with both ABB PLCs and motion control products. The ABB versions of Modbus protocols differ from the generic Modbus

protocols available in two ways:

1. The ABB Modbus protocols use big endian word order for data encoded into the Modbus data packets

2. The ABB Modbus protocols allow PLC specific addresses to be utilised in preference to generic Modbus registers

Note that there are no ABB specific versions of the Modbus Server protocols (so the CP600 HMI would usually be used as a master

device when connecting to ABB products).

Having selected ABB Modbus RTU the software will now ask us to configure the connected devices…

If the HMI is connected to a single Modbus RTU slave device (e.g. e100 controller or AC500 PLC) there is no need to select the

‘PLC Network’ check box. If there are multiple slave devices connected to the HMI then it is essential this box is selected (for the

purposes of this application note we will select this option).

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 6

www.abb.com/motion

The dialog changes slightly and now includes an additional area showing the slave devices that have been added to the Modbus

RTU network.

Click on the ‘Add’ button…the software now asks the user to enter details about the connected slave device….

Our ABB Motion Product (e100 controller) we’re using for this example has a serial node address of 1 (where this was set either by

BUSNODE(_busSERIAL1) or via Mint Workbench) so we’ve entered this as the Node ID.

The Timeout (in ms) is how long the HMI will wait for a reply from the connected slave(s) before deciding a particular communication

transaction has failed. Typically the responses should occur within 10ms so the default timeout of 1 second (1000ms) is adequate.

The delay setting determines how long the HMI waits before processing further Modbus transactions. If this is set to 0 the HMI will

read/write data as quickly as possible (e.g. after reading data from the slave it will read again with no delay). In practise there’s no

point updating the HMI this quickly (and the more frequently we communicate with the controller the greater the loading on the

connected slave processors) so a setting of 200 to 400ms is more typical.

Num of repeats sets how many times the HMI attempts a particular Modbus transaction before deciding a communication error has

occurred. The default value of 2 is adequate for all applications.

Finally we need to select a PLC model. When using Modbus RTU we are able to select from NextMove ES/ESB-2, e100 motion

product or e150 motion product. For this example we’ll select an e100 motion product.

The software returns to the previous screen and now shows our configured node in the list of slave controllers. To add another

slave device repeat the above process. To modify any settings, highlight the slave controller and click on the “Modify” button.

Once all the required slave devices have been added click on the “Comm…” button. We can now setup the properties of the HMI’s

serial port to suit the connected slave devices…

For HMIs with a single 9 way d-type connector select “Com1” as the required port. If the HMI has more than one serial port set

‘Port’ to match whichever port is physically wired.

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 7

www.abb.com/motion

Baudrate should be set to match the connected slave device(s) – e.g. to match SERIALBAUD(_TERM1) of the connected motion

product (remember that 9600 is not supported by ABB motion products).

For connection to an ABB motion products, Parity should usually be set to “None”, Data Bits should usually be set to “8”, and Stop

bits should usually be set to “1” (only MicroFlex e150 allows configuration of these settings – the default settings are None/8/1 to

match the other motion products).

The Mode setting depends on the connected slave device. The table below shows the possible connection options:

Connection

Type

NextMove

e100

NextMove ES/ESB-

2

MicroFlex e100 MotiFlex e100 MicroFlex

e150

AC500 AC500 Eco

RS232 Yes Yes (by variant) No No No Yes No

2 wire

RS485
No No Yes Yes

Yes
Yes Yes

4 wire

RS422
Yes Yes (by variant) No No

Yes
No No

Click on “OK” to accept the communication parameters and then “OK” again to confirm the list of connected slaves. Configuration

of the protocol is now complete.

Creating TagsCreating TagsCreating TagsCreating Tags

Having configured the Modbus RTU protocol we can now start to create Tags to use throughout the HMI project. ABB motion

products do not support Tag Export functions (unlike the PLC products) so Tags must be entered manually.

Double-click the “Tags” icon in the ProjectView window…

The Tag list screen now appears in the right hand pane. A filter at the top of this screen allows the user to select whether they wish

to view Tags associated with a specific protocol or all Tags in the project (for example, if the HMI is being used as a Gateway

between Modbus RTU and Modbus TCP there will be two protocols in use and there will be Tags associated with each of these

protocols).

Click on the “+” button to create a new Tag…

If we selected “PLC Network” earlier when configuring our protocol the software will ask us to select which of the connected

controllers the Tag relates to (in this example we only have a single controller)…

Now select the “Field” tab….

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 8

www.abb.com/motion

The field tab lets us program which memory location in the motion controller the Tag relates to. The available ‘Memory Type’

selections are specific to the PLC model selected as shown by the table below:

PLC Type Comms Array Net Data

NextMove ES/ESB-2 Yes No

E100 motion product Yes Yes

E150 motion product No Yes

You should ensure that all tags used in the HMI project are setup to use a single Memory Type (i.e. do not attempt to mix memory

types in the same project).

There is a third Memory type available (NO_IP)….this is not currently used.

The other entries on this dialog are as follows:

Offset- - this relates to the index into the Comms Array or Net Data area - e.g. 3 to access Comms(3)

Subindex – this entry varies depending on the data type. For Boolean (bit) level data the subindex can be 0 to 31 (corresponding to

the 32 bits in a commsinteger or netinteger location). For Byte level data the subindex can be 0 to 3 (where 0 is the least significant

byte). For Word level data the subindex can be 0 or 1 (where 0 is the least significant word).

Data type – select from Boolean, Byte (signed 8 bit integer), Short (signed 16 bit integer), Int (signed 32 bit integer), unsignedByte,

unsignedShort, unsignedInt, Float (32 bit IEEE) or String

Arraysize – only used if String data type selected. Specifies the number of characters/bytes to be used by the string. A

commsinteger/netinteger location can store up to 4 characters so if an array size of more than 4 is specified then subsequent data

locations are used to store the additional characters - e.g. If a tag was configured to use Comms Array Offset 1 as a String and

“ABCDEF” was to be stored this would result in 0x41424344 (“ABCD”) being stored in Commsinteger(1) and 0x45460000 (“EF”)

being stored in Commsinteger(2).

Conversion – this entry allows the user to add a translation to (e.g. word swap) the data

Index – this setting is not used.

So as an example, if we needed a Tag to use in conjunction with a lamp in the HMI project (i.e. a Boolean/bit value) and we wanted

this to relate to Bit 19 of NetData 2 in our ABB e100 motion product (e.g. NextMove e100) we would setup our Tag as shown

below:

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 9

www.abb.com/motion

If we now click OK the software allows us to enter a name for our newly created Tag…

We can now click on the “+” button again to continue to add Tags to the project.

UsingUsingUsingUsing Modbus Data in Mint Programs on ABB Motion ProductsModbus Data in Mint Programs on ABB Motion ProductsModbus Data in Mint Programs on ABB Motion ProductsModbus Data in Mint Programs on ABB Motion Products

The table below shows how various data types are likely to be used by a Mint program:

Data Type Comms Array NetData Array

Boolean CommsInteger NetInteger

Byte (signed or unsigned) CommsInteger NetInteger

Short (signed or unsigned) CommsInteger NetInteger

Int (signed or unsigned) CommsInteger NetInteger

String CommsInteger NetInteger

Float Comms NetFloat

The simplest way to access data with widths less than 32 bits (i.e. bits, bytes and words) in a Mint program is via the Mint BITFIELD

keyword (only supported by firmware using compiler Target Format 14 or greater – i.e. NextMove ES / ESB-2 running 5454 or later

or e100/e150 products).

If we use our previous example where we configured an HMI tag related to Bit 19 of NetData location 2, our Mint program could

contain the following code to read this bit from the HMI…

Bitfield BitData

DoubleWord As 0 to 31

 Bit0 As 0

 Bit1 As 1

 Bit2 As 2

 Bit3 As 3

 Etc…

 Bit19 As 19

 Bit20 As 20

 Etc…

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 10

www.abb.com/motion

End Bitfield

Dim HMIBitData As BitData

HMIBitData.DoubleWord = NETINTEGER(2) ‘Read all 32 bits into a bitfield variable

OUTX(0) = HMIBitData.Bit19 ‘Set output 0 according to the value written by the HMI

…and we could then use the following code to write to this bit…

HMIBitData.Bit19 = INSTATEX(1) ‘set bit 19 to reflect the state of input 1 on the controller

NETINTEGER(2) = HMIBitData.DoubleWord

Similar BitField types could be used to encode Byte and Word level data…

BitField ByteData

 DoubleWord As 0 to 31

 Byte0 As 0 to 7

 Byte1 As 8 to 15

 Byte2 As 16 to 23

 Byte3 As 24 to 31

End BitField

BitField WordData

 DoubleWord As 0 to 31

 Word0 As 0 to 15

 Word1 As 16 to 31

End BitField

For controllers not supporting the BITFIELD keyword (e.g. NextMove ES / ESB-2 running firmware version 5424) data less than 32

bits wide must be extracted using the logical OR, AND, NOT functions for example.

Examples:

Dim nNetData2Bit19 As Integer

nNetData2Bit19 = ((NETINTEGER(2) & 0x00080000) > 0)

Dim nNetData2Word1 As Integer

nNetData2Word1 = SHIFT((NETINTEGER(2) & 0xFFFF0000), 16)

Accessing 32 bit data (int or Float) is much simpler, the Mint program just needs to utilise COMMS, COMMSINTEGER, NETFLOAT

or NETINTEGER according to the setting of Modbus parameter _mpREGISTER_MAPPING and the programmed HMI data type.

For string data either COMMSINTEGER or NETINTEGER data should be used. Strings are made up of character data where each

character is an eight bit (byte) value. Therefore each COMMSINTEGER or NETINTEGER location is capable of storing 4 characters.

If the HMI Tag has been programmed to store more than 4 characters then successive locations are utilised as required.

Example:

A label on our HMI screen needs to display text up to 10 characters in length. The screenshot below shows how a Tag could be

programmed to allow this (using COMMSINTEGER(1) or NETINTEGER(1) depending on the register mapping setup by the Mint

program)…

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 11

www.abb.com/motion

The ‘ArraySize’ field in the dialog determines the number of characters the string Tag can store. In this case 10 characters means

the HMI will access COMMSINTEGER(1), COMMSINTEGER(2) and the top 16 bits of COMMSINTEGER(3).

The table below illustrates some example strings (use of COMMSINTEGER has been assumed for this example):

CommsInteger (1) CommsInteger (2) CommsInteger (3) HMI String Display

0x41424344 (hex) 0 0 “ABCD”

0x41424344 (hex) 0x45460000 (hex) 0 “ABCDEF”

0x41424344 (hex) 0x45464748 (hex) 0 “ABCDEFGH”

0x41424344 (hex) 0x45464748 (hex) 0x494A0000 (hex) “ABCDEFGHIJ”

0x41424344 (hex) 0x45464748 (hex) 0x494A7691 (hex) “ABCDEFGHIJ”

0 0x45464748 (hex) 0x494A0000 (hex) “”

0x41424344 (hex) 0 0x494A0000 (hex) “ABCD”

0x41420044 (hex) 0x45464748 (hex) 0x494A0000 (hex) “AB”

You can see from the above table that the bottom 16 bits of CommsInteger(3) are not used. Also, as soon as a NULL (ASCII value

0) is encountered in the data the string is terminated, regardless of the contents of the remainder of the CommsInteger locations.

Mint EventsMint EventsMint EventsMint Events

It is possible to associate Mint events / interrupts with Comms or NetData locations.

NextMove ES/ESB-2 only support the Comms array and will generate Mint Comms Events (1 to 5) whenever the HMI (or other

Modbus client) writes to one of the first five Comms locations. When using ES / ESB-2 the data does not have to change, whenever

a Comms location is written to the event is raised.

If using e100 products it is possible to utilise Comms events and / or Netdata events. Comms events (1 to 10) and NetData events

(0 to 31) are raised whenever the data in the associated location is changed. Writing the same value to one of these locations will

not raise an event in Mint.

If using e150 products it is only possible to utilise Netdata events. NetData events (0 to 31) are raised whenever the data in the

associated location is changed. Writing the same value to one of these locations will not raise an event in Mint.

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 12

www.abb.com/motion

Physical ConnectionPhysical ConnectionPhysical ConnectionPhysical Connection

The table below shows the physical connection possibilities for Mint products supporting integrated Modbus protocols. AC500 and

CP600 products are included for reference.

Connection Type NextMove e100 NextMove

ES/ESB-2

MicroFlex e100 MotiFlex e100 AC500 AC500 Eco CP600

RS232 Yes Yes (by variant) No No Yes No Yes

2 wire RS485 No No Yes Yes Yes Yes Yes

4 wire RS422 Yes Yes (by variant) No No No No Yes

Ethernet Yes No Yes Yes Yes Yes (by variant) Yes

When using Modbus RTU consideration must be given to the above table if there are multiple slave devices. For example, if the

system comprises a CP600 HMI as the Modbus master and a NextMove ESB-2 and AC500 Eco PLC as slave devices then it is not

possible to connect all of these together on the same serial network as they share no common connection types. A system like this

would require the HMI to operate using two protocols (e.g. Modbus TCP to the Eco PLC using the Ethernet PLC variant and

Modbus RTU to the NextMove ESB-2 using either RS232 or RS422).

The following tables show the pinouts of the various products for each connection type:

Connection

Type

NextMove e100 /

ES / ESB -2

MicroFlex e150 MicroFlex e100 /

MotiFlex e100

AC500 AC500 Eco CP600

RS232

1 : Shield

Not Available Not Available

1 : Shield

Not Available

1 : GND

2 : RXD 2 : TXD 2 : Not Used

3 : TXD 3 : Not Used 3 : TXD

4 : Not Used 4 : RTS 4 : RXD

5 : GND 5 : GND 5 : Not Used

6 : Not Used 6 : +5v (see note 2) 6 : +5v (see note 3)

7 : RTS 7 : RXD 7 : CTS

8 : CTS 8 : Not Used 8 : RTS

9 : DGND 9 : CTS 9 : Not Used

RS422

1 : Not Used 1 : TXA/+

Not Available Not Available Not Available

1 : GND

2 : RXB/- (see note 4) 2 : TXB/- 2 : Not Used

3 : TXB/- 3 : GND 3 : TX-

4 : Not Used
4 : 7v out (see

note 1)
4 : RX- (see note 4)

5 : GND
5 : RXA/+ (see

note 4)
5 : Not Used

6 : Not Used
6 : RXB/- (see

note 4)
6 : +5v

7 : TXA/+ 7 : RX+ (see note 4)

8 : RXA/+ (see note

4)

8 : TX+

9 : Not Used 9 : Not Used

RS485 Not Available

1 : A+ (see note

5)
1 : A+ (see note 5) 1 : Shield 1 : Shield 1 : GND

2 : B- (see note

5)
2 : B- (see note 5) 2 : Not Used 2 : Not Used 2 : Not Used

3 : GND 3 : GND 3 : + (see note 5) 3 : + (see note 5) 3 : - (see notes 5,6)

4 : 7v out (see

note 1)

4 : 7v out (see note

1)
4 : Not Used 4 : Not Used 4 : - (see notes 5,6)

5 : not used 5: Not Used 5 : GND 5 : GND 5 : Not Used

6 : not used 6 : Not Used 6 : +5v (see note 2) 6 : +5v (see note 2) 6 : +5v

 7 :Not Used 7 :Not Used 7 : + (see notes 5,6)

 8 : - (see note 5) 8 : - (see note 5) 8 : + (see notes 5,6)

 9 : Not Used 9 : Not Used 9 : Not Used

Application note Connecting CP600 to motion products via Modbus RTU AN00200-003

ABB Motion control products 13

www.abb.com/motion

Notes:

1. The 7v output on MicroFlex / MotiFlex e100 and e150 products should not be connected. Ensure pin 4 at the e100 RJ12

connector is isolated from any external connection

2. Do not connect 5v output on PLCs to any external connection

3. Do not connect 5v output on CP600 to any external connection

4. When using RS422 ensure a 120 ohm terminating resistor is fitted across RX+ and RX- at each end of the serial network

(this may be via a terminator switch if one is provided on the product)

5. When using RS485 ensure a 120 ohm terminating resistor is fitted across + and – at each end of the serial network (this

may be via a terminator switch if one is provided on the product)

6. To use the CP600 HMI in 2 wire RS485 mode you must link the two – pins (3 and 4) together and the two + pins (7 and 8)

together

Example connections:

CP600 to NextMove e100/ESB-2 via RS232

 1 5

 3 2

 4 3

 7 7

 8 8

CP600 to NextMove e100/ES/ESB-2 via RS422

 1 5

 8 8

 3 2

 7 7

 4 3

CP600 to MicroFlex e100 / MotiFlex e100 / MicroFlex e150 via RS485

 1 3

 7 1

 8

 3 2

 4

CP600 to MicroFlex e150 via RS422

 1 3

 8 4

 3 5

 7 1

 4 2

ContactContactContactContact usususus

For more information please contact your

local ABB representative or one of the following:

www.abb.com/motionwww.abb.com/motionwww.abb.com/motionwww.abb.com/motion

www.abb.com/driveswww.abb.com/driveswww.abb.com/driveswww.abb.com/drives

www.abb.com/drivespartnerswww.abb.com/drivespartnerswww.abb.com/drivespartnerswww.abb.com/drivespartners

www.abb.com/PLCwww.abb.com/PLCwww.abb.com/PLCwww.abb.com/PLC

© Copyright 2012 ABB. All rights reserved.

Specifications subject to change without notice.

CP600
NextMove

CP600 NextMove

CP600 e100/e150 drive (Dip switch 2

ON to connect 120R resistor

when using e150)

120R120R120R120R

120R120R120R120R

120R120R120R120R

120R120R120R120R

CP600
e150 (Dip switch 1 ON

to connect 120R

resistor)

120R120R120R120R

120R120R120R120R

