

Next Generation Device Detection System

Getting started

DetectRight 2.7

Java Edition

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Contents
Revision History: ... 4

Introduction to DetectRightTM .. 5

Welcome to DetectRight. .. 5

Getting started .. 5

Enterprise and Advanced use cases .. 5

Getting started with DetectRight Java .. 6

DetectRight, Thread-Safety and Initialization ... 7

DetectRight Memory usage .. 7

Updating DetectRight.. 8

DetectRight and Databases ... 9

Downloading a database... 9

Downloading direct ... 9

Express Mode .. 10

Express Mode On .. 10

Express Mode Off .. 10

User Agent Cache .. 11

DetectRight speed, memory and concurrency. .. 12

How does DetectRight perform in an app server environment? ... 12

Doing detections ... 13

Detection with Headers (Full or partial Map of key/value pairs) ... 13

Detection with a User Agent ... 13

Detection with a UAProfile URL .. 14

Detection from a TAC code ... 14

Detection by device name/type .. 14

Detection from a device ID ... 14

Fields in the detection .. 15

Getting a list of fields .. 15

Assorted questions ... 16

Why is DetectRight static? .. 16

Is DetectRight Thread-Safe?.. 16

How fast is DetectRight? ... 16

Can I enter my own data? ... 16

How accurate is the data? .. 16

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Testing DetectRight ... 17

System Status Panel .. 17

Detection Diagnostic Test ... 17

Detecting useragents in bulk .. 17

DetectRight and Catalogue Management .. 18

Understanding DetectRight’s catalogue ... 18

More about Device IDs and descriptors ... 19

Catalogue Management Functions ... 19

getAllDevices – Data dump ... 19

getDeltaDeviceIDs – Get a list of what you haven’t got (yet) ... 20

getDeviceIDMap: Keeping up to date with aliases ... 20

getCatalog: Devices per manufacturer ... 20

DetectRight and Change Management ... 21

A Device ID is almost never lost .. 21

What devices don’t I have yet? ... 21

DetectRight Configuration .. 23

Adaptation vs Exception (see “deviceNotFoundBehavior”) ... 23

Other Cool stuff... 24

Fun with Headers .. 24

Fun with PHP ... 24

Fun with Quantum Data Trees .. 24

Fun with Profiles ... 24

DetectRight Configuration flags .. 25

DetectRight Configuration Flag Reference ... 26

Appendix A – Data fields in the default DetectRight database... 30

Background: How DetectRight deals with data and fields .. 32

Features of a Quantum Data Tree .. 32

Examples ... 32

Why Quantum? ... 33

Hierarchical metadata ... 34

OK, but why does this matter? ... 34

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Revision History:
27/Sep/11 – initial draft

10/Feb/12 – v2, release

8/Mar/12 – minor corrections

13/6/13 – major changes for version 2.6

19/7/13 – minor typos fixed

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Introduction to DetectRightTM

Welcome to DetectRight.
DetectRight is a programming library that allows your program to access a database of tens of

thousands of mobile devices and browsers (desktop and mobile), including Connected Devices (or

“The Internet of Everything”.

DetectRight’s core purpose is to convert a Collection of HTTP Headers (or a user agent, device

description, device ID or UAProfile URL) to a profile of capabilities of a detected device. This profile is

based on your database.

DetectRight improves on the accuracy of other solutions by detecting more signatures, more flexibly.

It also stores data at a low level so that fully bespoke profiles can be generated at detection time.

Getting started
1) Install

2) Initialize library with database filename

3) Do detection

4) Use result

DetectRight doesn’t need any frameworks and takes normal maps/strings/arrays as input, and so

can be used as a component in many different circumstances.

DetectRight uses a compiled SQLite database to get its data, which can optionally (and it is

recommended) be copied to a memory instance when appropriate.

Note: This database is optimized for real-time detection purposes, and does not contain the data

you would need to populate your own database.

Enterprise and Advanced use cases
An Enterprise use case is using DetectRight to maintain device catalogue lists and keep them

synchronised with our data over time. This can also be done by subscribing to our search engine at

www.detectright.com/device-search.html or our bulk data services, which also have access to brand

and firm metadata, and family group membership.

DetectRight has access to various helper Classes which can be used to perform other useful tasks.

http://www.detectright.com/device-search.html

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Getting started with DetectRight Java
DetectRight comes as a JAR file, with a class name of com.detectright.core

- JRE 1.6 compatible

- Thread-safe, with critical data shared across the application

- Uses SQLiteJDBC library to access a single data file

- SQLite file can be loaded into memory to increase speed and provide hot updates

Link your project to detectright.jar, making sure your project can also see the SQLite and Apache

Commons Codec libraries. You can download these JARs in a zip file from

http://www.detectright.com/downloads (“detectright dependencies”).

The import is:

import com.detectright.core.*;

http://www.detectright.com/downloads

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight, Thread-Safety and Initialization

In a web application or running JVM, DetectRight needs initializing at least once. Since this is a

blocking activity, it’s best done by running a DetectRight initialization script in a startup object. This

allows global options to be set in one place and the database to be loaded into memory at that

point.

If you can guarantee DetectRight has already been initialized, then you can skip initialization code on

any threads which subsequently access DetectRight. Each thread should have a

DetectRight.resetThread(); command before any detecting is done. This resets thread-specific data.

DetectRight will also work if the option setting and initialization are done on each thread, though

only the first thread to execute will end up doing anything meaningful. In this scenario other threads

are setting redundant settings and resetting the thread, but not doing any more than that.

A typical initialization command is:

try {

DetectRight.initialize("SQLite///path/to/detectright.data", true);

} catch (ConnectionLostException ce) {

// DetectRight has lost (or never acquired) a database connection.

} catch (DetectRightException de) {

// If de.x is an object, it contains an encapsulated exception to examine.

// It can also be generated for other fatal or semi-fatal errors

}

This initializes DetectRight with a link to its database. The second argument says “load it into

memory”. If this is false then all threads will use a direct link to the file database on disk. This slows

down performance and reduces concurrency.

DetectRight Memory usage
DetectRight’s memory usage is mostly accounted for by caches, with a core utilization of 20-40Mb

for the detection. Note that the SQLite memory data is not stored in heap, but in the process space

of the SQLite native library.

Memory usage will also vary according to how many fields are in the database.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Updating DetectRight
For real-time intensive web-app use, it’s recommended to load the SQLite database into memory on

initialization (see above).

Assuming DetectRight has already been initialized, you would do this to update it:

1) Download new database (see “Downloading a database”)

2) Replace old file database (the system shouldn’t be locking it)

3) Run this in an unused thread:

DetectRight.resetThread();

 DetectRight.storeDatabaseInMemory("SQLite///path/to/detectright.data");

DetectRight.close(); // close is now an alias for resetThread() again.

This will also do:

DetectRight.initialize("SQLite///path/to/detectright.data");

 DetectRight.storeDatabaseInMemory("SQLite///path/to/detectright.data");

DetectRight.close(); // close is now an alias for resetThread() again.

This loads the database into a new memory instance, and when complete swaps them over, locks
the application briefly, and then resets the global lookup tables (and soft-resets the useragent
cache).

This method is the only way to hot-update DetectRight, since without the memory copy, the
application server will lock the database file. In this scenario, the web server would have to be
stopped while the file was replaced.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight and Databases

Downloading a database
A DetectRight database is a personalised snapshot of data from a much bigger database within

DetectRight itself.

Some snapshots have very few fields (such as the evaluation database, or databases meant purely

for simple analytic detection). Some have many fields. Some have new custom fields.

The database you download is related to your user login at DetectRight.com.

Downloading direct

A new database can be downloaded from:

http://www.detectright.com/download_database.php?druser={username}&drpassword={password}

It can also be downloaded from http://www.detectright.com/cpanel.html when logged in.

If you have a custom database and have enabled data overrides, this download process will
slipstream data overrides to your database so that they appear in your data immediately and do not
have to wait for a weekly update. This will result in a slightly extended download time.

http://www.detectright.com/cpanel.html

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Express Mode
DetectRight has a flag called “Express Mode”.

DetectRight.setExpressMode(boolean status);

 This is set to “true” by default, and affects all threads instantly if changed (unless the thread has

isolated its options: for more on this, see “DetectRight Configuration”)

Express Mode On
 DetectRight does less work normalising the user agent though it still looks for and replaces

language strings

 DetectRight doesn’t process Accept strings for dynamic information unless there’s no user-

agent present

 DetectRight caches a header according to its User-agent and UAProfile URL

 DetectRight doesn’t process the headers for general connection, IP, and other state

information (though you can still do these steps independently)

 DetectRight still looks for Opera Mini and other hidden headers for side-loaded browsers

 Other minor shortcuts

Express Mode Off
 DetectRight cleans a URL of proxies, appendages, IMEI and other nasties

 DetectRight processes accept strings to find extra media support to add to the profile

 DetectRight uses the headers to calculate a UID fingerprint and uses that to cache the profile

Express mode is much faster on average in real traffic because the cache hit/miss ratio is better: the

caching is at device header level rather than customer header level.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

User Agent Cache
The User Agent cache itself is a “ConcurrentRollingCache” object. This is a Map stored in heap which

has a configurable maximum item limit, and a buffer of 10% of that size.

Profiles are stored in this cache. When the cache is full, it starts filling the buffer and looking in both

for reads. When the buffer is full, it switches the buffer to be the main list, and clears the main list.

Unique user agents generally make up 5% - 10% of any given traffic, so the cache size is important.

Check status of cache:

Boolean status = DetectRight.uaCacheStatus();

Enable cache (default):

 DetectRight.enableUACache();

Disable cache:

 DetectRight.disableUACache();

or: DetectRight.setUACacheSize(0);

Reset cache (soft reset: forces the cache to gradually swap over):

DetectRight.resetUACache();

Set cache size:

DetectRight.setUACacheSize(100000);

Set cache size to unlimited (this will grow heap memory):

DetectRight.unlimitedUACacheSize();

Or: DetectRight.setUACacheSize(-1);

Get current cache size:

int cacheSize= DetectRight.getUACacheSize();

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight speed, memory and concurrency.
One of the challenges of optimising DetectRight is in overcoming the drag factor of the SQLite

dependency: there’s a direct link between the average response time at any given second and the

weight on the database engine. It’s on the roadmap to remove this dependency, but for the

moment it’s the only way for DetectRight to get its super-accurate results.

DetectRight uses a shared JDBC link across all threads: which has to be synchronized (one thread at a

time can do SQL queries). This creates a bottleneck.

The way we mitigate this is:

1) Encourage the loading of the database into memory (this avoids extra file access and locking

which would slow an individual query down even more).

2) Use a top-level user-agent cache (this avoids triggering the detection process entirely for 85-

95% of detections) – default is 100,000 detections, and the cache involved is gentle when it

rolls over.

3) Use an SQL query cache in heap – avoid trips to the database for the same query: this

improves concurrency a when the system is under load by avoiding blocking on an SQL

query. We use a 10,000 query cache. There was very little practical benefit to increasing this

to, say, 50,000: it used more memory but had a minimal effect on performance. In fact,

there was a very slight drag because it’s marginally quicker to look up a result in a 10,000

row map than a 50,000 row map.

How does DetectRight perform in an app server environment?
Our tests were done on a standard VM on the Cloud provider GoGrid which was running Windows

Server 2008R2, and Tomcat 7.

We created a load tester which re-processed traffic logs and threw them in a controlled multi-

threaded way at the Tomcat installation, while monitoring with YourKit (http://www.yourkit.com –

recommended!).

The load was generated with a maximum of 50 threads generating requests with an random interval

of between 10 and 20ms. On the server this was experienced as a load of between 60 and 239

accesses per second.

Our tests showed that with the default configuration above, DetectRight was using up to 150Mb

consistently, and that this remained stable over time. Desktop-centric datasets generated less load

and memory than mobile-centric ones.

The average CPU load for this load was < 5%. As a baseline, the average CPU for a JSP script which

merely copied the request headers into a map and then outputted “OK” was 3%.

The average servlet response time was < 1ms (the average was too small for YourKit to measure and

tended to zero over time).

This response time was not impacted by using “storeDatabaseInMemory” to update the database in-

situ.

http://www.yourkit.com/

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Doing detections

DetectRight offers a number of functions to get profile data, which is always returned as a

Map<String,Object> (internally it’s a LinkedHashMap).

Detection with Headers (Full or partial Map of key/value pairs)

If you’re using JSP, then you have to copy the request headers to an appropriate map before passing

that map off to DetectRight.

<%@ import="com.detectright.core.*, java.util.*" %>

<%

 Enumeration enames;

 Map<String,Object> lhm = new LinkedHashMap();

 enames = request.getHeaderNames();

 while (enames.hasMoreElements()) {

 String name = (String) enames.nextElement();

 String value = request.getHeader(name);

 lhm.put(name, value);

 }

Map<String,Object> result = DetectRight.getProfileFromHeaders(lhm);

This is the most thorough way to detect, because DetectRight can use other headers such as the

Accept headers or language preferences to do other work, and can even find a unique user ID if

there’s one lurking (assuming Express Mode is off).

This function uses adaptive detection, in that component version changes such as browser and OS

can change the capabilities (not just the metadata such as “browser version”).

Detection with a User Agent

String useragent = "Nokia3510i/1.0";

Map<String,Object> result = DetectRight.getProfileFromUA(useragent);

Although not as thorough as getProfileFromHeaders, this still detects adaptively: for instance, if the

browser in the user agent is different to the one shipped with the device, the profile will swap out

the old browser with the new one. Other component changes such as OS may also be detected.

Note that the header detection is capable of looking in the headers to find “hidden” user agents, but

this ability is lost if you’re feeding DetectRight only a user agent.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Detection with a UAProfile URL
This is a simple lookup between the URL and the model number it’s mapped to in the DetectRight

system. The profile acquired will be the “base” profile of the device: i.e. “factory spec”.

String uap = "http://nds1.nds.nokia.com/uaprof/N6303iclassicr100.xml";

Map<String,Object> result = DetectRight.getProfileFromUAProfile(uap);

Detection from a TAC code
TAC stands for “Type Allocation Code”, and is the first few digits of the IMEI number of a device. It’s

the nearest thing the industry has to a unique ID for a model, as it’s given to the device as it passes

through approval bodies such as the FCC. One “model” may have many TACs. DetectRight contains

many TACs, though the list is not exhaustive, and is not currently maintained, much as we’d like it to

be.

Map<String,Object> result = DetectRight.getProfileFromTAC("01010101");

Detection by device name/type
DetectRight can also retrieve a device from a manufacturer/model lookup: which produces a basic

“factory” profile.

Map<String,Object> result = DetectRight.getProfileFromDevice("Device", "Nokia", "3510i");

DetectRight uses a concept of “Entity type”. DetectRight’s data is not limited to mobile devices: it

can handle any kind of object. If no entity type is passed, DetectRight checks a subset of entity types

which are “things” (such as Tablets) as opposed to components (such as Browsers).

For instance, the data shipped with DetectRight contains data for Browser, JVM, OS, Developer

Platform, Tablet, Device (the default entity type for mobile devices), PDAs, and others. This entity

type is key to making identity fields such as “is_mobile_device” and “is_tablet” work, because

they’re keyed to Entity type in the database. That means that they are always populated, and follow

any changes to the entity type.

Detection from a device ID
The combination of entity type, manufacturer and model can be calculated into a 32 character MD5

checksum called a “Device ID”. The algorithm to do this is kept in the EntityCore.makeHash method.

This example:
String entityhash = EntityCore.makeHash("Device","Nokia","3510i");

Map<String,Object> result = DetectRight.getProfileFromDeviceID(entityhash);

Is functionally identical to this:

Map<String,Object> result = DetectRight.getProfileFromDevice("Device", "Nokia", "3510i");

DetectRight has a large list of aliases in its database through which it does these lookups.

http://nds1.nds.nokia.com/uaprof/N6303iclassicr100.xml
http://nds1.nds.nokia.com/uaprof/N6303iclassicr100.xml

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Fields in the detection
This will depend upon the database you’ve downloaded.

The default database comes with a very small selection of data points, but this can be greatly

expanded by upgrading your account.

A simple list of the fields in your database can be acquired like this:

List<String> fieldNames = DetectRight.getCapabilities();

And for more detail:

Map<String,SchemaPropertyCore> fields = DetectRight.getAllFieldNames();

Key = lower case field names.

Value = associated SchemaPropertyCore objects

The SchemaPropertyCore class is the main object for storing the details behind each field in the

database.

Not included in this field list are some bonus metadata fields returned with every profile. These are

diagnostic or information fields such as “components” which contains the list of components

detected, or “internalid” (database ID of detected device, if any) and are inserted at the final stage

of processing.

Getting a list of fields
Another way of getting a list of fields but in Map form is this:

Map<String,Object> map = DetectRight.getAllFieldNames();

It returns a map keyed by (lower case) field name, with each one having a further map lifted from

the “schema_properties” table in the SQLite database.

“display_name” is the field which is displayed in the output if DetectRight.strictExportNames is set to

true, and preserves the capitalisation.

“output_map” is the path to a node in our QuantumDataTree which retrieves the actual data, and

“validation_type” either runs the value through one of the built-in validators, or through a content

validator which runs off the schema_property_values_table, whose job is to clean, validate and

generate extra data.

For more information about the SchemaPropertyCore object, see the Javadoc at

http://www.detectright.com/javadoc/SchemaPropertyCore.html

file:///C:/web/detectright/public_html/domains/bemoko/javadoc/com/detectright/core/DetectRight.html%23getAllFieldNames()

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Assorted questions

Why is DetectRight static?
DetectRight was created for static invocation to avoid having to pass DetectRight instances around

the program into virtually every method: since DetectRight is an API more than an object.

DetectRight has three types of preferences (there is a tablet later on in the document):

1) Thread-only (related directly to the detection or state of the thread)

2) Thread/Application (global variables which might need to be overridden on an individual

thread).

3) Application (global variables holding critical application information).

Is DetectRight Thread-Safe?
Yes. There are certain functions in the program that are synchronized: mostly to ensure initialization

doesn’t happen too many times. The SQL query command in DetectRight’s database engine is

synchronized, which means that loading the database into memory and caching the occasional

object is mandatory for speed.

How fast is DetectRight?
DetectRight is pretty fast, especially going from user-agent cache.

The biggest impact on speed comes from where the database is (memory, local, network drive). If

the SQLite file is being accessed directly across a network, you can expect terrible performance, and

local drive is better, but loading into memory is always the best option.

The actual speed also varies according to the size of the database you’re feeding it. Part of

DetectRight’s custom database service is allowing a company to have a cut-down schema (to

increase speed or decrease memory usage), or even a schema with items from other device

repositories (for instance, mixing WURFL and DeviceAtlas style fields in the same schema). This

allows the database to be exactly suited to the use case.

However, DetectRight is simply not as fast as WURFL or DeviceAtlas overall, because it is doing a lot

more work. DetectRight uses lots of cache strategies to improve performance in real traffic, and can

handle a large amount of traffic, but it does not compromise on accuracy.

Can I enter my own data?
Customers with the premium data upgrade or an Enterprise licence can, through a web interface

control panel. This allows a client to attach alternative values to devices that are guaranteed to

appear in the profile whenever a user agent is detected.

How accurate is the data?
It’s best effort. Although we cannot guarantee the accuracy of the data, the processes it’s gone

through means that it’s more accurate than anything else (probably).

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Testing DetectRight

System Status Panel
There are numerous functions built into DetectRight that are immediately usable for testing it. For

instance, the “DetectRight.status()” method returns an List of diagnostic information.

System.out.println(Functions.implode("\n",DetectRight.status()));

Detection Diagnostic Test
Also, there’s a detection function built in which will test a useragent, and generate a rich diagnostic
of the entire detection and how it was managed. This is useful diagnostic information to send back
to us if there’s a detection you’re particularly worried about.

List<String> lst = DetectRight.testDR("Alcatel-ELLE-N3/1.0 Profile/MIDP-2.0

Configuration/CLDC-1.1 ObigoInternetBrowser/Q03C");

Detecting user agents in bulk
To save you writing the code, DetectRight can also take in a list of useragents or 32-character device

IDs and output a detection with all of the fields in the database, along with some diagnostic

information.

 DetectRight.testFile("c:\\data\\test\\ua.txt", "c:\\ data\\output.txt", "UA");

You can also pass a Scanner object as input, and a Writer object as output, just in case you need to

pipe your detections somewhere esoteric. The output that comes out is a tab delimited text file,

with field headers. The process will also generate additional diagnostics including a mean detection

time to System.out.

Note that processing a unique list of user-agents will result in performance timings that are not

representative of performance in real-traffic. If you would like a free sample of “real” traffic to run

against a test, please enquire. Also, note that the average timings will depend on the size of the user

agent cache, and the mobile/non-mobile makeup of the traffic.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight and Catalogue Management
DetectRight has some API functions enabled for the Enterprise version which allow synchronization

with an external database, and extraction of data.

Important: extraction of the data directly from the SQLite file is not permitted by the standard

DetectRight Data and Web Services Licence governing the device database download.

Understanding DetectRight’s catalogue
Figure 1 shows an example of the Samsung GT-P1000: the original Galaxy Tab 7.0, and how it’s

represented in DetectRight.

What it shows is that there are multiple possible names for a device, and DetectRight tries to store

as many of them as possible. One of those names is the “official” name (official to DetectRight, that

is). All of the possible names resolve to the “official” name, which is what appears in the

manufacturer and model fields in a detection.

Figure 1 - the many faces of the GT-P1000

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

More about Device IDs and descriptors
Each of the names for a device in DetectRight generates a Device ID.

In DetectRight, Device IDs do not refer to useragents like in WURFL. A device ID is directly calculated

from an actual device name: a combination of an Entity type, a Category (which would be the

manufacturer for devices), and a Description (the model name, usually).

DetectRight calls these names “Descriptors”. They’re colon-separated strings of the following

format.

Entity type:Category:Description:Subclass:Major Revision:Minor Revision:Connection:Build

e.g. Device:Nokia:3510i:AT&T:1.0:1.01:3G:AGH/F2

The Device ID is worked out by this code:

 String descriptor = new String(entitytype + "/" + category + "/" + description);

String deviceID = Functions.md5(descriptor.toLowerCase());

Or, to save you doing it:

 String deviceID = EntityCore.makeHash(entitytype,category,description);

A “thing” in DetectRight has many possible names, and thus Device IDs.

At DetectRight HQ, we choose one of these to be the primary device ID (which tends to be chosen

for consistency with a manufacturer’s model naming strategy: for instance, Alcatel OT- is changed to

Alcatel One Touch, and Samsung models all have their prefix of GT-, SGH-, SPH-, SCH-, SHW- or YP-

(with occasional exceptions).

Catalogue Management Functions

getAllDevices – Data dump
Invoked without arguments, this returns everything in the “entity” table in the database in a Map or

Maps, keyed by DeviceID. This is a large, time consuming process and should not be done

repeatedly. Despite the name, this dump is not limited to Mobile Devices, but Tablets, Browsers, and

anything else in the database.

Map<String,Object> devices = DetectRight.getAllDevices();

If you pass a List<String> of Device IDs, it will confine its results to those. This facility is used in

conjunction with the DetectRight.getDeltaDeviceIDs method (whose job is to extract from the

databases devices you don’t have yet). An null will result in everything being returned (and is

equivalent to calling it without arguments), an empty list will return in an empty result set.

 List<String> deviceIDsIHave = new ArrayList<String>();

 // next command will return an empty map if the list remains empty

Map<String,Object> devices = DetectRight.getAllDevices(deviceIDsIHave);

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

getDeltaDeviceIDs – Get a list of what you haven’t got (yet)
This method was put in to help synchronize DetectRight with existing catalogues that might be

shadowing DetectRight’s catalogue. If you feed in a list of device IDs you have, you get back a list of

the ones you don’t have.

At least, you get back a list of the primary/official IDs you don’t have.

List<String> oldDevices = new ArrayList<String>(); // this should actually contain device IDs

you have in your own catalogue.

List<String> exceptions = new ArrayList<String>(); // we’re passing an empty

Map<String,String> remaps = new HashMap<String,String>(); // another empty list.

List<String> newDeviceIDs = DetectRight.getDeltaDeviceIDs(oldDevices,exceptions, remaps);

After this call, newDeviceIDs will contain a list of device IDs that aren’t covered by your incoming list.

This can be passed to getAllDevices.

In addition to this, the Exceptions list will return a list of device IDs which no longer exist. This means

they’ve been determined by us to be invalid and have been removed from the working set.

The map “remaps” contains a list of your old device IDs, and what they map to in the new database.

This covers the situation where devices have been merged or separated, or where a previous

primary name has become an alias.

We’re sorry we can’t make the process less messy: but then, the whole process itself is messy

(making sense of it is probably the major part of our workflow).

getDeviceIDMap: Keeping up to date with aliases
If you’ve got a device ID and you want to get the whole picture on what it is now:

String oldDeviceID = "ae52025f532aa8b993e5ba66189e9014";

List<String> aliases = new ArrayList<String>();

String currentID = DetectRight.getDeviceIDMap(oldDeviceID, aliases);

After this, currentID will contain the current primary Device ID of the Samsung GT-P1000, and

aliases will contain the list of alternate/secondary device IDs.

getCatalog: Devices per manufacturer

Map<String,String> nokiaDevices = DetectRight.getCatalog("Nokia");

Key = device ID

Value = model name of device

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight and Change Management
The “hash” field of the main entity table is the Device ID representing the primary name.

The entity_alias table contains all of the other possible IDs, and these refer back to the same “thing”

(Device/Tablet/Browser/whatever).

Unfortunately, reality is complicated. If a device enters the database with one name (for instance, a

codename, an FCC designation, or a marketing name), it might end up later with a different cleaner

one as the primary name, or it might have to be merged with another device. This would mean that

your database had a different device list from update to update.

A Device ID is almost never lost
DetectRight is built so that once a device ID (device name) has been generated, it is never lost,

except when it has been determined that it was rubbish in the first place. When a device is renamed

or merged, the old Device ID is recorded (in the table entity_alias) as a pointer.

DetectRight will always return a valid result (for instance, from getProfileFromDeviceID for a device

ID that you might have got from a previous database. However, it might now be attached to

something more specific, or another device (but ONLY if that match is better than the previous one:

you will NEVER get a situation where a device ID is attached to an inappropriate device).

Since the Device ID is a function of the actual name, the idea is that data only gets more accurate.

I’d note that devices at DetectRight HQ go through a number of statuses at HQ before hitting the live

data, so as to try and minimise the number of changes once a device goes “live”.

What devices don’t I have yet?
The question “what’s in the new update that I don’t have yet?” is non-trivial, and requires comparing

the Device IDs you have with both the primary list and the aliases/secondary IDs.

Here’s the code which would give you a list of devices that you didn’t pass in:

List<String> deviceIDsIHave = new ArrayList<String>();

List<String> newDevices = DetectRight.getDeltaDeviceIDs(deviceIDsIHave);

 // next command will return everything.

Map<String,Object> devices = DetectRight.getAllDevices(newDevices);

For keeping up to date, it’s handy to know when things have changed their primary Device ID in

DetectRight, so you can follow the changes.

This version of the getDeltaDeviceIDs function allows you to map catalogue changes:

 List<String> exceptions = new ArrayList<String>();

 Map<String,String> remaps = new HashMap<String,String>();

After this next command, exceptions will contain device IDs that no longer exist (this should always

be empty!), and remaps will contain a list of device IDs passed in that are now mapped to something

else.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

List<String> newDevices = DetectRight.getDeltaDeviceIDs(deviceIDsIHave, exceptions,

remaps);

Map<String,Object> newDeviceData = DetectRight.getAllDevices(newDevices);

You now have a Map of new device data, and a list of the IDs in your original list which have been

remapped.

This combined information can be passed to one of your internal processes to make appropriate

changes to your own device database.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight Configuration
DetectRight has many configuration options which are explained in the table.

Adaptation vs Exception (see “deviceNotFoundBehavior”)

What does DetectRight do when the detection doesn’t connect with a main database record?

An example of where is meaningful is for a desktop browser detection. In this case, although

DetectRight can identify the browser and version (and construct a profile with appropriate values),

there is no underlying identifiable device.

Equally, a detection from a new HTC android phone might generate a profile based on the version of

Android, and even work out the model’s name (for instance, “Android SuperDuper”, but that might

not correspond to a device shipped with the database.

In both of these detection cases, if the detection doesn’t not correspond to a “nominative entity”

(i.e. something which gives the detection its name: like “a Nokia 3510i” or “A Samsung GT-P1000

tablet”), then an exception will be generated if deviceNotFoundBehavior has been switched to

“Exception”. In the case of an adaptation, the system will provide a profile based on what it’s found

and return that. This is the default.

Summary:

Adaptive results (no exceptions): default, turned on by:

DetectRight.adaptiveProfileOnDeviceNotFound();

Exceptions:

DetectRight.generateExceptionOnDeviceNotFound();

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Other Cool stuff

Fun with Headers
There’s a lot going on in DetectRight, and the HTTPHeadersCore object includes a lot of convenience

functions for working with headers: for instance, getting a profile from an accept string, cleaning

URLs, removing language strings, generating UIDs (user IDs), etc.

Fun with PHP
There’s a partial PHP compatibility library (“Functions”) built into DetectRight which recreates some

useful PHP functions in Java and C#. It also supports serialization and deserialization with limitations.

Serialization doesn’t support objects (though deserialize does), mostly due to the faff surrounding

null bytes. While it tries its best to support references and reference counting, the whole process is

so poorly documented in PHP that we work around it by not using PHP structures with recursive

references.

Fun (?) with Quantum Data Trees
Quantum Data Trees are an object built into DetectRight that allows nested trees to be created for

arbitrary data at varying degrees of confidence (and also allows quantitative data points to do so),

and then be queried back across the tree structure. It’s pretty powerful for representing all sorts of

data.

Fun with Profiles
Detectright has an object called “DRProfile”, which is still in beta. It essentially encapsulates a

detection, turning the detection process of DetectRight.getProfileByXXX into one which treats as

detection as an object: this allows cool stuff such as being able to insert overrides into an detection,

get the confidence level/importance of any given data point, check for various component types,

and much more. Plus it’s handy having a detection encapsulated as an object rather than a map,

since the metadata is much better structured. We will be making more use of this ourselves later,

but for speed reasons, not as a main use case.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

DetectRight Configuration flags
DetectRight configurations can affect different levels of DR behaviour. The normal behaviour is for

all threads to inherit the global properties. In this configuration, “options” is set to “Global”, and is a

thread-level variable.

To make your thread use its own option set, do:

DetectRight.useThreadBasedOptions(true);

Any settings set after this command (assuming the selected option can be used as a Thread option)

will affect only the running thread.

Certain options are set at application start-up and will have no effect if changed later (such as the

connected database). This is because they are read during initialization, and this only happens once.

If a property is requested, the following logic is used:

1) Is this thread using thread-specific configuration?
if (DetectRight.usingThreadBasedOptions()) {}

2) Have we set a valid value for this property for this thread? (if yes – return property)

3) Do we have a global value for this property (if yes – return property)

4) If no, return hardcoded default.

DetectRight Configuration Flag Reference
Property Name Description Related Functions Visibility Default Valid Values
options Dictates whether the thread

looks for thread-specific
settings where appropriate.

void useThreadBasedOptions(boolean status)

Boolean usingThreadBasedOptions()
Thread false true

false

expressMode Dictates whether DetectRight
takes shortcuts in detection

void setExpressMode(boolean status)

Boolean getExpressMode()
Thread
Global

true true
false

enableUserAgentEntityType Determines what appears in
fields relating to
manufacturer and model in
the event of a “failed”
detection.
If true, manufacturer is set to
“UserAgent” and the model is
set to the same as the user
agent passed in.
If false, manufacturer is set to
“Generic”, and the model
reflects the type of device
(e.g. “Desktop”).

void setEnableUserAgentEntityType(boolean status)

Boolean getEnableUserAgentEntityType()
Thread
Global

false true
false

readersAsTablets If something is an e-Reader,
does DetectRight report it as
a tablet?

void setReadersAsTablets(boolean status)

Boolean getReadersAsTablets()
Thread
Global

false true
false

throwOutGenericDevices If manufacturer equals
“Generic”, do we throw a
DeviceNotFound Exception?

void setThrowOutGenericDevices(boolean status)

Boolean getThrowOutGenericDevices()
Thread
Global

false true
false

DIAG Diagnostic mode flag. If true,
DetectRight generates
diagnostic timestamped data
into a map of checkpoints,
and outputs voluminous

void setDiag(boolean status)

Boolean getDiag()

Thread false true
false

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

diagnostic information to
Stdout. For debugging only.

startTime For diagnostics. The base time
from thread initialization to
fill in diagnostic checkpoints.

void setStartTime(double start)

double getStartTime()
Thread Set when

DetectRight
is initialized

prevTime The timestamp of the
previous checkpoint.

void setPrevTime(double prevTime)

double getPrevTime()
Thread Set

automatically
at each
checkpoint

maxCheckpointLevel Different checkpoint
statements in DetectRight’s
code have different levels.
This sets the maximum that
will be displayed, allowing
some granularity in the
output.

void setMaxCheckpointLevel(int level) Thread 999 Any valid
integer

redetect Setting this to true will defeat
all cache reads in the thread

void setRedetect(boolean status)

Boolean getRedetect()
Thread false true

false
overrideHighlight When detecting, if this is true,

a single character prefix will
be added onto the value
string to designate whether
it’s a user-specified override,
and how it relates to the
previous value.

void setOverrideHighlight(boolean status)

Boolean getOverrideHighlight()
Thread false true

false

flush If set to true, all caches
encountered in the system
are reset. It is not
recommended to do this.

static void setFlush(Boolean status)

static Boolean getFlush()
Thread false true

false

userAgentsAsBrowsers If set to true, promotes the
detected browser to fill
manufacturer and model
fields.

static void setUserAgentsAsBrowsers(Boolean status)

static Boolean getUserAgentsAsBrowsers()
Thread
Global

false true
false

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

deviceNotFoundBehavior If set to “adaptation”,
DetectRight returns an
adapted profile even if the
root device detected isn’t in
the database. If set to
“exception”, DetectRight will
generate a “DeviceNotFound”
exception if the detected
device doesn’t exist in its
tables.

static String deviceNotFoundBehavior()

static void generateExceptionOnDeviceNotFound()

static void adaptiveProfileOnDeviceNotFound()

Thread
Global

Adaptation Adaptation
Exception

accessLevel Internal integer to specify the
access level of the logged on
user. 8 or above specifies
superuser. Not useful in
normal DR operation.

static void setAccessLevel(int level)

static int getAccessLevel()
Global
Thread

1 Any positive
integer.
Increasing
numbers
indicates
increasing
access level.

data_owner Used to store and
differentiate different levels
of data ownership of entities,
profiles and overrides. Should
not be used or needed.

static void setDataOwner(String dataOwner)

static String getDataOwner()

Global
Thread

System Arbitrary
string

strictExportNames For mixed-case fieldnames
(such as “displayWidth”),
setting this to true preserves
the original case of the field.
Setting to false makes it
lower-case.

static void setStrictExportNames(Boolean status)

static Boolean getStrictExportNames()
Global
Thread

true true
false

forcePortraitTablets Tablets in DetectRight are
stored in our main database
with landscape resolutions,
though usable screensize is
usually portrait. Setting this

static void setForcePortraitTablets(Boolean status)

static Boolean getForcePortraitTablets()
Global
Thread

true true
false

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

to true forces all tablet
dimensions (including usable
screensizes) into portrait.

flat Internal flag to check the
database for “flat trees”. This
is a way of storing data in
DetectRight tree structures
that’s more “pre-canned”
than the usual tree structure.
This should generally be set
to true and left there.

static void setFlat(Boolean status)

static Boolean getFlat()
Global
Thread

true true
false

LOG Internal flag to specify
whether DetectRight should
be logging or not.

static void setLog(Boolean status)

static Boolean getLog()
Thread false true

false

LOG_METHOD Enum to determine where log
output should be sent.

static void setLogMethod(LOG_METHOD lm)

static LOG_METHOD getLogMethod()
Thread ECHO LOG

ECHO
BUFFER

logQueries Determines whether SQL run
should be written to the
checkpoint collection. Will
have no effect if DIAG is off.

static void setLogQueries(Boolean status)

static Boolean getLogQueries()
Thread false true

false

username What username this is
running as. Unused.

static void setUserName(String username)

static String getUserName()
Thread Anonymous Any string

Appendix A – Data fields in the default DetectRight database

brand_name Manufacturer, or (is there isn’t one identifiable)

other data depending on configuration flags

device_dp Developer Platform of the device (e.g. Android,
Series 40, Windows Mobile), expressed as
manufacturer/description

device_dp_version Version of developer platform

device_os OS installed (note that for Windows Mobile
devices, this is Windows CE). Other values
include “iphone OS”, “BlackBerryOS” and
“Android”.

device_os_version Version of OS

device_type The type of device: for instance, “Device”
(mobile phone), “PDA”, “PMP”, ”Tablet”, ”STB”,
”Games Console”, ”Handheld Console”

diagonal Diagonal screen size in inches

is_tablet Is this an Internet Tablet? Note that DetectRight
has a cut-off of a 6.5” diagonal screen size for
the tablet classification: below this, something is
a “PMP” (Personal Media Player) if it can’t hold a
SIM, and “Device” if it can.

is_wireless_device Can this detection be classified as being from a
“wireless” device?

mobile_browser Detected browser (manufacturer and name of
browser: note that with Openwave this is
“Openwave Openwave”, which is technically
correct!).

mobile_browser_version Version of detected browser.

model_name Name of model, if known. If no model name is
detected, contents will depend on the value of
the configuration flags
“enableUserAgentEntityType” and
“browsersAsDevices” (see DetectRight
configuration flag reference)

resolution_width Physical main screen width in pixels

resolution_height Physical main screen height in pixels

components Comma separated list of components that made
up this detection, expressed in DetectRight
descriptor format (e.g.
“Chipset:Qualcomm:MSM6200”). Browser, OS
and DP version are acquired from this list.

altids 32 character checksums of alt_descriptors

devicedescriptor DetectRight descriptor for this device based on
internal device type, manufacturer and model
(e.g. Device:Nokia:3510i). May also contain
version information.

alt_descriptors DetectRight descriptors for the various aliases
for the device DetectRight contains.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

deviceid 32 character checksum based on device
descriptor.

internalid The database ID of the detection: if this is zero
(for instance, in a desktop detection), then
DetectRight has produced a custom profile based
on the browser, OS, etc.

It’s possible for DetectRight to detect a
manufacturer and model from the useragent but
have no record of it in the shipped database. In
that case, a value of zero in this field tells you
that DetectRight is using defaults to populate the
fields.

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

Background: How DetectRight deals with data and fields
In most databases, the set of data which is acquired for the database is in the same format and

covering the same information as the output. This makes sense: why capture data you haven’t got a

space for?

And yet, there is so much possible information about devices that it’s often the case that you need

to populate a new field quickly. So it makes sense to acquire information from multiple sources, and

store it until it’s needed later.

Most device databases also like to think that whatever data they don’t contain is unimportant or

irrelevant. However, if you look at the schemas of BrowserCaps, UAProfile, WURFL, DeviceAtlas,

W3C Basic, and DetectRight’s own schema, you can see just how little overlap there actually is:

especially at the edges. Even when two data points cover similar ground, they might be expressed

differently: for instance, UAProfile signals MP3 support by putting “audio/mp3” in the ccppaccept

field, yet DeviceAtlas has an “mp3” boolean field, and DetectRight has a “hasmp3” field. If you have

a piece of information such as “the maximum permitted bitrate of an MP3 on this device” (a

perfectly useful piece of information), the existing containers for data simply don’t have a space for

that, and would express it differently if they had.

The situation is even messier in the world of human readable specification data such as that released

by manufacturers: lists of stuff which to be fully exploited need to be translated into machine-

readable data points.

DetectRight developed QuantumDataTrees (and their companion, QuantumDataCollections) to be

able to store any information about anything, anywhere, and to be able to reconcile conflicting

items of information numerically.

Features of a Quantum Data Tree

1) Uses a path/node and data point syntax structure that allows any data to be represented,

and allows hierarchies of properties

2) Reconciles different on/off information or conflicting numeric data points based on a

combination of “status” (1/0), “importance” (an integer), and “direct hit” (whether a piece

of data is implied or asserted).

3) Rich querying allows searching across the tree at different levels with wildcards to find

instances of objects, and to return lists, scalars or Booleans.

4) Can contain metadata and objects at each node addressable by querying

5) Multi-branch trees can be combined seamlessly: meaning that you can overlay the

properties for a browser onto the properties for a device and watch the tree make sense of

the resulting profile.

6) Tree can be serialized to a path list array for storage

Examples
A piece of data in a Quantum data Tree is represented by a path and a payload.

For instance, if we want to express MP3 support, we can write this:

Media//Player//File Format:Audio:MP3//status=1

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

But what if we wanted to say whether a device supported ID3 v2? We would write:

Media//Player//File Format:Audio:MP3//Audio:Metadata:ID3::2.0//status=1

This is one item of information: but represented like this, we can see that we have a lot of implied

data:

 hasaudio = true

 hasmedia = true

 hasplayer = true

 hasmp3 = true

 hasaudiometadata = true

 hasid3 = true

 hasid3v2 = true

If we want to put a non-tree related piece of data into the tree:

 Display//dimension=size{value:128x96;units:pixels;importance:50}

Defines a screensize for the display. But what about the secondary display?

Display//1//dimension=size{value:128x96;units:pixels}

What about the camera?

Media//Recorder//Camera//dimension=size{value:128x96;units:pixels;importance:50}

Media//Recorder//Camera//dimension=size{value:3x2;units:inches;importance:50}

This also implies that the device actually has a camera, so any query asking that would be triggered

to true by the presence of this data point.

Why Quantum?
It’s not just a buzzword. A Quantum Data Tree stores a collection of possible states against each

node, and a collection of possible values against each data point in a Quantum Data Collection.

These states are then superimposed on each other at query time and collapsed down to a single

observable value: so the tree only collapses its probability wave when it’s observed.

This allows us to collect data freely from different heterogeneous sources and have it reconciled in

real-time. It also means that data which is implied by, or dependent on another data source lower in

the tree will always be present: this removes a lot of the potential problems in a workflow that could

lead to this:

Getting started with DetectRight Java

©2013 DetectRight Limited
http://www.detectright.com/downloads.html

 Has audio=0

 Has mp3 = 1

This might be perfectly possible in other schemas where the manual workflow demanded that both

fields be maintained independently.

Hierarchical metadata
Each node has a separate metadata Map: this can be configured so new data is only added to the

child node if it’s not present in its parents: allowing the kind of data cascade seen in a WURFL tree:

and indeed, a Quantum Data Tree is capable of containing a WURFL tree purely by virtue of its

parent/child relationships and its metadata.

OK, but why does this matter?
Because with appropriate mapping, it allows us to harmonise all device data, everywhere, by making

sure it all says the same thing, in the same way. This allows us to then export to any schema from

the tree and have it consistently delivered (courtesy of various validators in and out to handle

formatting issues). This means that the same master tree can deliver data for WURFL data points,

W3C data points, UAProfile data points, and also take data entry in any or all of these formats from

any source.

Decoupling the data from the schema, and the data engine from the detection engine ensures that

you can improve your detection and data without moving to another set of data. Just because a

particular set of data points is useful doesn’t mean that the detection engine or API based on that is

best-of-breed.

