
53-1002445-01
January, 2012

®

ServerIron ADX
OpenScript Programmer’s Guide

Supporting Brocade ServerIron ADX version 12.4.00

© 2012 Brocade Communications Systems, Inc. All Rights Reserved.

Brocade, Brocade Assurance, the B-wing symbol, DCX, Fabric OS, MLX, SAN Health, VCS, and VDX are registered trademarks, and
AnyIO, Brocade One, CloudPlex, Effortless Networking, ICX, NET Health, OpenScript, and The Effortless Network are trademarks of
Brocade Communications Systems, Inc., in the United States and/or in other countries. Other brands, products, or service names
mentioned may be trademarks of their respective owners.

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning
any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to
this document at any time, without notice, and assumes no responsibility for its use. This informational document describes
features that may not be currently available. Contact a Brocade sales office for information on feature and product availability.
Export of technical data contained in this document may require an export license from the United States government.

The authors and Brocade Communications Systems, Inc. shall have no liability or responsibility to any person or entity with
respect to any loss, cost, liability, or damages arising from the information contained in this book or the computer programs that
accompany it.

The product described by this document may contain "open source" software covered by the GNU General Public License or other
open source license agreements. To find out which open source software is included in Brocade products, view the licensing
terms applicable to the open source software, and obtain a copy of the programming source code, please visit

http://www.brocade.com/support/oscd.

Brocade Communications Systems, Incorporated

Document History

Corporate and Latin American Headquarters
Brocade Communications Systems, Inc.
130 Holger Way
San Jose, CA 95134
Tel: 1-408-333-8000
Fax: 1-408-333-8101
E-mail: info@brocade.com

Asia-Pacific Headquarters
Brocade Communications Systems China HK, Ltd.
No. 1 Guanghua Road
Chao Yang District
Units 2718 and 2818
Beijing 100020, China
Tel: +8610 6588 8888
Fax: +8610 6588 9999
E-mail: china-info@brocade.com

European Headquarters
Brocade Communications Switzerland Sàrl
Centre Swissair
Tour B - 4ème étage
29, Route de l'Aéroport
Case Postale 105
CH-1215 Genève 15
Switzerland
Tel: +41 22 799 5640
Fax: +41 22 799 5641
E-mail: emea-info@brocade.com

Asia-Pacific Headquarters
Brocade Communications Systems Co., Ltd. (Shenzhen WFOE)
Citic Plaza
No. 233 Tian He Road North
Unit 1308 – 13th Floor
Guangzhou, China
Tel: +8620 3891 2000
Fax: +8620 3891 2111
E-mail: china-info@brocade.com

Title Publication number Summary of changes Date

ServerIron ADX OpenScript Guide 53-1002445-01 New document January, 2012

ServerIron ADX Global Server Load Balancing Guideiii
53-1002445-01

ivServerIron ADX Global Server Load Balancing Guide
53-1002445-01

Contents
About This Document

Supported hardware and software . vii

Document conventions. vii
Text formatting . vii
Notes, cautions, and danger notices . vii

Notice to the reader . viii

Related publications . viii

Getting technical help or reporting errors . ix
Web access . ix
E-mail and telephone access . ix

Chapter 1 Overview of OpenScript

What is OpenScript . 1
Why OpenScript uses Perl . 1
Why OpenScript uses Perl instead of TCL 2

The OpenScript Engine . 3
Capabilities provided by the Brocade OpenScript engine 3
Architecture of the OpenScript engine . 4
Performance estimator . 4

Using Perl on the ServerIron ADX. 4
Perl variables . 4

Chapter 2 OpenScript Fundamentals

Overview . 7

Structure of a ServerIron ADX Perl script. 7

Basic anatomy of a script . 9

Sample scripts. 10
High readability script example. 10
Power-user script example . 10

Chapter 3 Managing Scripts on a ServerIron ADX

Overview .13

Importing and exporting scripts .13
Script name size limit .13
Importing and exporting scripts through TFTP. 14
ServerIron ADX OpenScript Guide v
53-1002445-01

Managing scripts. 14
Deleting a script . 14
Renaming a script . 14
Display script in the script directory .15

Compiling and binding scripts .15
Compiling a script and obtaining output from the performance
estimator . 16
Binding a script to a virtual server port 16
Updating an existing script . 17

Creating and configuring script profiles. 17
Creating a script profile .18
Setting the script memory limit. .18
Setting the script memory high-water mark.18
Setting the script timeout .19
Setting the script data collection limit .19
Setting the script restart limit .19
Enabling script debugging .20
Setting the script print output .20

Displaying script information .20
Displaying Run-time information about one or all scripts20
Displaying scripts profile information . 21

 .22

Chapter 4 Script Example

Overview .23

Use case .23

Script for use case .23

Copying and binding the script. 24

Sample ServerIron ADX configuration for use case. 24
vi ServerIron ADX OpenScript Guide
53-1002445-01

About This Document
Supported hardware and software

Although many different software and hardware configurations are tested and supported by
Brocade Communications Systems, Inc. for 12.4.00 documenting all possible configurations and
scenarios is beyond the scope of this document.

The following hardware platforms are supported by this release of this guide:

• ServerIron ADX 1000

• ServerIron ADX 4000

• ServerIron ADX 10K

Document conventions

This section describes text formatting conventions and important notice formats used in this
document.

Text formatting
The narrative-text formatting conventions that are used are as follows:

For readability, command names in the narrative portions of this guide are presented in bold: for
example, show version.

Notes, cautions, and danger notices
The following notices and statements are used in this manual. They are listed below in order of
increasing severity of potential hazards.

bold text Identifies command names

Identifies the names of user-manipulated GUI elements

Identifies keywords

Identifies text to enter at the GUI or CLI

italic text Provides emphasis

Identifies variables

Identifies document titles

code text Identifies CLI output
ServerIron ADX OpenScript Guide vii
53-1002445-01

NOTE
A note provides a tip, guidance or advice, emphasizes important information, or provides a reference
to related information.

CAUTION

A Caution statement alerts you to situations that can be potentially hazardous to you or cause
damage to hardware, firmware, software, or data.

DANGER

A Danger statement indicates conditions or situations that can be potentially lethal or extremely
hazardous to you. Safety labels are also attached directly to products to warn of these conditions
or situations.

Notice to the reader

This document may contain references to the trademarks of the following corporations. These
trademarks are the properties of their respective companies and corporations.

These references are made for informational purposes only.

Related publications

The following Brocade documents supplement the information in this guide:

• Release Notes for ServerIron ADX 12.4.00 release

• ServerIron ADX Administration Guide

• ServerIron ADX Advanced Server Load Balancing Guide

• ServerIron ADX Firewall Load Balancing Guide

• ServerIron ADX Global Server Load Balancing Guide

• ServerIron ADX Graphical User Interface

• ServerIron ADX Hardware Installation Guide

• ServerIron ADX Security Guide

• ServerIron ADX Server Load Balancing Guide

• ServerIron ADX Switch and Router Guide

• ServerIron ADX XML API Programmers Guide

Corporation Referenced Trademarks and Products

Microsoft Corporation Windows NT, Windows 2000

The Open Group Linux
viii ServerIron ADX OpenScript Guide
53-1002445-01

• ServerIron ADX NAT64 Configuration Guide

• ServerIron ADX OpenScript API Guide

• IronWare MIB Reference

Getting technical help or reporting errors

Brocade is committed to ensuring that your investment in our products remains cost-effective. If
you need assistance, or find errors in the manuals, contact Brocade using one of the following
options:

Web access
The Knowledge Portal (KP) contains the latest version of this guide and other user guides for the
product. You can also report errors on the KP.

Log in to my.Brocade.com, click the Product Documentation tab, then click on the link to the
Knowledge Portal (KP). Then click on Cases > Create a New Ticket to report an error. Make sure you
specify the document title in the ticket description.

E-mail and telephone access
Go to http://www.brocade.com/services-support/index.page for the latest e-mail and telephone
contact information.
ServerIron ADX OpenScript Guide ix
53-1002445-01

x ServerIron ADX OpenScript Guide
53-1002445-01

ServerIron ADX OpenScript Guide
53-1002445-01
Chapter
1
Overview of OpenScript
The Application Delivery environment requires more than simple CLI commands for managing
Application traffic. Often, an operator wants to make packet forwarding decisions based on
real-time events such as layer-3, layer-4, layer-7 data or server metrics such as current server load
statistics. These situations require a more dynamically programmable environment than
traditionally offered through built-in CLI commands.

In essence, the operators prefer programming the Application Forwarding Behavior rather than
statically provisioning it. The flexibility of programming the data-plane at layer-7 is invaluable in
dynamic data center environments as new applications come online.

The CLI-based interface of ServerIron ADX currently consists of a list of policy, rule, and
configuration commands that can be used to configure the application delivery switch for such
tasks as real server configuration, load-balancing metrics, as well as for traffic redirection and
transformation operations.

What is OpenScript
Brocade OpenScript provides data plane scripting functionality to manipulate traffic in
real-time.The Brocade OpenScript engine provides a programming framework and protocol level
APIs that allow you to create Perl scripts to customize the traffic handling capabilities of a
ServerIron ADX. With this capability, you do not have to depend on Brocade to add needed
functionality to suit the needs of your network.

OpenScript is available beginning with ServerIron ADX version 12.4.00. No separate license is
required and version 12.4.00 is available to all customers with an active service contract.

Why OpenScript uses Perl
Perl was chosen for OpenScript for the following primary reasons:

• Performance

• Extensibility

• Ubiquity

Performance

Because of the need to compile and interpret the program, scripting is an inherently slow process
in regards to performance. Consequently, scripting is often implemented as a multipass process.
This is preferable to the large overhead associated with the single pass execution model used with
command-based languages such as TCL that parse and execute each program statement on the
fly. In a multipass Scripting Engine such as Perl, the initial phase involves scanning and parsing the
input script to generate an intermediate byte code representation. The final run phase executes the
generated byte code by invoking underlying machine operations associated with each node in the
parsed byte code tree.
1

Overview of OpenScript1
Extensibility

Perl was selected for the OpenScript platform because it is open and modular which allows new
functionality to be added easily. In addition to the support provided by Brocade, CPAN
(Comprehensive Perl Archive Network), is one of the largest repositories of free code in the world. If
you need a particular type of functionality, chances are there are several options on the CPAN, and
there are no fees or ongoing costs for using it. While it's possible to download one or more CPAN
Perl modules and install them via a user script on a version updates, the users must do so entirely
at their own risk. We recommend using Perl Extensions that either come pre-loaded with the
ServerIron ADX or approved by Brocade.

Ubiquity

Perl is one of the most heavily used scripting languages for a multitude of applications from text
processing to Apache web server traffic processing. It is easy to use, efficient and complete.
ServerIron ADX-specific functionality such as server load balancing and content transformation
within Perl are exposed to the user via custom extensions that are familiar and easy to use. The
extension interface for ServerIron ADX Perl modules has been designed to mirror the functionality
available on CPAN. The difference is that ServerIron ADX Perl Extensions are optimized for most
common use cases and hide the backend complexity from the script writer. Perl also has an
extensive user and developer community to publish and share scripts covering popular deployment
scenarios.

Why OpenScript uses Perl instead of TCL
Besides Perl, TCL is another scripting platform that is popular in the Industry and applicable for
ServerIron ADX. TCL is a well established scripting platform that finds popular use in the embedded
device environment. Factors favoring TCL are familiarity, stability and extensibility. It offers a C API
to extend scripting functionality via native C code.

The primary concern with embedding TCL is performance. Like the UNIX shell, TCL is a purely
interpretive language. This means that TCL is interpreted each step along the way. Although TCL is
run with a small and efficient interpreter, Perl which is first compiled and then run via an
intermediate byte code representation is inherently faster at execution.

Table 1 describes the advantages and disadvantages to using Perl and TCL.

TABLE 1 comparison between Perl and TCL

Perl Tcl

Advantages Rich language features.
Rich libraries (CPAN)
Fast performance with the compile and
run module

Popular with Server Load Balancing vendors.

Disadvantages Bulkier with a larger dependency
baggage.

Performance lags because Tcl is a pure
interpretive language.
2 ServerIron ADX OpenScript Guide
53-1002445-01

The OpenScript Engine 1
The OpenScript Engine
The OpenScript engine provides the ability for direct interaction with traffic passing through a
ServerIron ADX. User-provided, custom logic written in the Perl programming language can use
ServerIron ADX monitoring capabilities to observe network traffic between clients and servers and
then react to traffic patterns by altering the traffic flows. Figure 1 illustrates the flow of traffic
through an OpenScript engine residing on a ServerIron ADX. As traffic moves between clients and
servers, the OpenScript engine can respond to changing traffic patterns and shape traffic flows as
required.

FIGURE 1 The OpenScript Engine

As shown in Figure 1, the OpenScript engine can host user-provided custom Perl scripts that use
protocol events APIs and Data inspection APIs to determine traffic conditions and then call data
manipulation APIs to change traffic flows.

Capabilities provided by the Brocade OpenScript engine
Using the capabilities of the Brocade OpenScript engine, you can enhance the operation of the
ServerIron ADX to provide the following:

• Future-proof your infrastructure by transforming ServerIron ADX functionality without changing
hardware or software.

• Facilitate rapid delivery of new services to end users

• Fix broken applications

• Monitor traffic with custom statistics and send it to data collectors

• Deliver legacy applications that are not supported on the ServerIron ADX natively

• Temporarily mitigate security attacks through rapid script development

Clients

Brocade ADX Servers and
Applications

Brocade OpenScript Engine

Load Balancing

Security

Protocol
Events API

Data
Inspection API

Data
Manipulation API

Optimization

Server Offload
Monitoring &

Reporting

User-provided Custom Scripts

p

ServerIron ADX OpenScript Guide 3
53-1002445-01

Using Perl on the ServerIron ADX1
Architecture of the OpenScript engine
Because script parsing is highly CPU-intensive it is performed entirely on the management
processor (MP) of the ServerIron ADX. If the compilation succeeds on the MP, the script is
downloaded to the application processor (BP) for installation. The BP prepares the script by
generating machine byte code and binds it by inlining it in the packet processing path for the virtual
server and service. This process is displayed in Figure 2.

FIGURE 2 OpenScript compilation and installation process

Performance estimator
The scripting engine provides the capability to predict the performance impact of a given script
within a 25% margin of error. The estimate is provided as a measure of CPS and TPS percent
degradation from the published performance baseline.

Using Perl on the ServerIron ADX
The Perl implementation on ServerIron ADX is based on Perl Version 5.12. It preserves the core
syntax and semantics of the core language as specified at the perldoc site:
http://perldoc.perl.org/5.12.4/perlsyn.html.

Perl variables
Perl variable scoping on ServerIron ADX

• Any lexical variable declared as “my” within a script is re-initialized on every run. Variable
scoping is limited to the script it resides in. This means that variables are not visible to
other scripts.

• A state lexical variable behaves like a C language static, with persistent value across
reruns. It is never re-initialized like “my”.

USB

OpenScript Engine

IPC

Compile

Script

Machine
Bytecode

Data Traffic

Control Plane Data Plane

G
U
I

CLI

X
M
L

Preprocess &
Compile
4 ServerIron ADX OpenScript Guide
53-1002445-01

Using Perl on the ServerIron ADX 1
TABLE 2 Perl lexical variable scoping on a ServerIron ADXs

Lexical Type/object Scope Re-initialized
per run

Exported
to MP

Use Data Type
Allowed

Limit

my script Yes No Script local/auto Perl all Script

state script No No Script static Perl all Script

Conn hash connection No Yes Correlate client &
server flows

Perl all Script
ServerIron ADX OpenScript Guide 5
53-1002445-01

Using Perl on the ServerIron ADX1
6 ServerIron ADX OpenScript Guide
53-1002445-01

ServerIron ADX OpenScript Guide
53-1002445-01
Chapter
2
OpenScript Fundamentals
Overview
This following sections of this chapter describe the process of creating a simple script using the
Perl-based, OpenScript environment.

Structure of a ServerIron ADX Perl script
The structure of a Perl script written for OpenScript differs slightly from the standard free-flowing
script program usually associated with Perl. In a regular perl script, methods (subs) can be freely
defined and invoked from the main body of the script. To provide for optimal packet processing,
scripts written for the OpenScript environment build their behavior around the scripting engine with
application and protocol event handlers. These handlers are a published list of events that a user
script can catch by enclosing their event handling code in a Perl function or sub named after the
event. Figure 3 provides a list of application and protocol events provided for OpenScript. For a
complete list of events, see the Brocade OpenScript API Reference Guide.

TABLE 3 Application and Protocol Events in ADX scripts

Application/
Protocol

Event Description Attached Script Method Use

HTTP On request header parsing
completion

HTTP_REQUEST Perform request header
inspection and insertion/deletion

Request payload data
available. Called when entire
payload available.
Only triggered by collect() API.

HTTP_REQUEST_DATA Inspect and modify HTTP request
payload data.

On response header parsing
completion

HTTP_RESPONSE Perform response header
inspection and insertion/deletion.

Response payload data
available. Called when entire
response payload is available.
Only triggered by collect() API.

HTTP_RESPONSE_DATA Inspect and modify HTTP response
payload.

TCP On new client SYN request. TCP_CLIENT_SYN Authentication, connection
rate-limiting based on IP.

On successful TCP client
connection establishment.

TCP_CLIENT_ESTABLISHED Pre TCP data transfer processing
context.

On client initiating a TCP
CLOSE.

TCP_CLIENT_CLOSE Update counters/state.

On receiving a TCP client
RESET

TCP_CLIENT_RESET Update counters/state.
7

Structure of a ServerIron ADX Perl script2
On TCP client layer 7
application payload data
being available.
Only triggered by collect() API

TCP_CLIENT_DATA Inspect and transform client side
TCP application data.

On server initiating a TCP
CLOSE.

TCP_SERVER_CLOSE Update counters/state.

On receiving TCP RESET from
server.

TCP_SERVER_RESET Handle server connection resets.

On successful connection
establishment with server

TCP_SERVER_ESTABLISHED Packet processing context before
sending client data to server.

On TCP server layer 7
application payload data
being available.
Only triggered by collect() API.

TCP_SERVER_DATA Inspect and transform server side
TCP application data.

UDP On UDP client layer 7
application payload data
being available.

UDP_CLIENT_DATA Inspect and transform UDP client
side application data.

On UDP server layer 7
application payload data
being available.

UDP_SERVER_DATA Inspect and transform UDP server
side application data.

SLB On server selection failure. SERVER_SELECTION_FAILURE Customize action for recovery.

TABLE 3 Application and Protocol Events in ADX scripts

Application/
Protocol

Event Description Attached Script Method Use
8 ServerIron ADX OpenScript Guide
53-1002445-01

Basic anatomy of a script 2
Basic anatomy of a script
The basic example script (abc.pl) is designed to exercise access control based on a client’s IP
address and a running count of the total number of connections per virtual server port. As
displayed, it consists of the following elements:

• Declaration Block – Declares the packages being used by the script.

• Initialization block – Only evaluated once before the first run of the script

• User-defined method 1 – Method 1 is designed to handle a new TCP client connection request.
It is invoked on every TCP SYN received on the vport bind point.

• User-defined method 2– Method 2 is designed to run on receiving a TCP CLOSE request from a
client.

Access control based on client IP address
and a running count of total number of
connections per vip:vport.
use OS_TCP;
use OS_IP;
use feature 'State';

Declaration
Block

Initialization
Block

BEGIN {
 # total_conns must persist across runs
 state $total_conns;
 # We want a /24 match. Could be an array too
 $bad_ip = "171.68.2.";
}

User-defined
Method 1

sub TCP_CLIENT_SYN {
Look for blacklisted subnet in src ip
if (OS_IP::src =~ m/$bad_ip/)
 OS_TCP::reset;
else
 $total_conns++;
}

User-defined
Method 2

sub TCP_CLIENT_CLOSE {
If we let it in, no need to check really
if (OS_IP::src !~ m/$bad_ip/)
 $total_conns--;
}

Script: “abc.pl”
ServerIron ADX OpenScript Guide 9
53-1002445-01

Sample scripts2
Sample scripts
The following examples provide two different approaches to creating a script for the same purpose.
The first example provides a heavily commented example for high readability and the second is a
“power-user” version of the script. It is much more compact with less extensive notation. Both
scripts provide for load-balancing using a URL match in an HTTP GET request.

High readability script example
The following example provides a version of the script that demonstrates high-readability.

Power-user script example
The following example is the “power-user” version of the script. It is much more compact with less
extensive notation.

Example 2:

Elegant load balancer with good readability
Performs server selection based on URI in HTTP
Request Header

Tell the script about extensions used in this program
use OS_HTTP_Request;
use OS_SLB;

Define an event handler to be called when an HTTP
request is received
sub HTTP_REQUEST
{
 #Get an HTTP request object to manage
 # request headers or content.
 $request = OS_HTTP_REQUEST::get;

 # Pattern we want to match…..
 $url_pattern = "index.html";
 # …. with pattern data in packet
 $url_in_request = $request->url;

 # Perform a Regular Expression Search.
 if ($url_in_request =~ m/$uri_pattern/) {
 # Forward to a real server identified by name
 OS_SLB::forward("RS1");
 } else {
 # Forward to a real-server group identified by numeric ID
 OS_SLB::forward(2);
 }
}

10 ServerIron ADX OpenScript Guide
53-1002445-01

Sample scripts 2
Power User version
Performs server selection based on URI in
HTTP Request Header

use OS_HTTP_Request;
use OS_SLB;

sub HTTP_REQUEST
{
 # local variable with default server group-id
 $server = 2;
 $request = OS_HTTP_REQUEST::get;
 if ($request->url =~ m/"index.html"/)
 $server = "RS1";

 # $server can hold integer or string values.
 # Xtension backend does translation.
 OS_SLB::forward($server);
}

ServerIron ADX OpenScript Guide 11
53-1002445-01

Sample scripts2
12 ServerIron ADX OpenScript Guide
53-1002445-01

ServerIron ADX OpenScript Guide
53-1002445-01
Chapter
3
Managing Scripts on a ServerIron ADX
Overview
A script can be written with any text editor or using the ServerIron ADX GUI. The ServerIron ADX
GUI.process is described in the ServerIron ADX GUI Configuration Guide.

Once a script has been written, it must be uploaded to a ServerIron ADX to be compiled and bound
to a port. In addition, several operations can be performed on the script and a profile can be
defined that sets the environmental variables under which the script will run. This chapter
describes each of these operations.

• “Importing and exporting scripts” – This section describes the processes for importing a script
onto a ServerIron ADX or exporting a script from a ServerIron ADX using TFTP.

• “Managing scripts” This section describes how to delete or rename a script that you have
imported onto a ServerIron ADX. It also describes the process of displaying the contents of a
script that resides on a ServerIron ADX.

• “Compiling and binding scripts” – Once a script has been imported to a ServerIron ADX, it must
be compiled and bound to a virtual server port. This section describes how to perform these
actions as well as how to obtain a performance estimate of a script and update the contents of
an existing script.

• “Creating and configuring script profiles” – A series of default values for environmental
variables are used in compilation of a script on a ServerIron ADX. If these values are
acceptable for your use, you do not need to create and define a script profile. This section
describes the default values and how to create and define a script profile that alters these
values for your application.

• “Displaying script information” – Several show commands are provided to display information
about scripts residing on a ServerIron ADX.

Importing and exporting scripts
For a script to be run on a ServerIron ADX, it must be uploaded to the following file location:

usb0\sys\dpscript

A script can be uploaded using any of the following methods.

• through the ServerIron ADX GUI. This process is described in the ServerIron ADX GUI
Configuration Guide.

• Using TFTP as shown in “Importing and exporting scripts through TFTP”

Script name size limit
A script has a name and extension. The size of the name can't exceed 8 characters. the size of the
extension can't exceed 3 characters.
13

Managing scripts3
Importing and exporting scripts through TFTP
You can use the copy tftp command to upload a script to a ServerIron ADX from a TFTP server as
shown.

ServerIronADX# copy tftp usb0 1.1.1.1 sample.pl sys\dpscript\sample.pl

Syntax: copy tftp usb0 <IP_address> <script_filename_on_tftp-server> sys\dpscript\
<filename_on_usb0>

The <IP_address> variable is the address of the TFTP server where the script resides.

The <script_filename_on_tftp-server> variable is the filename of the script file.

The <filename_on_usb0> variable is the script name to be created on the ServerIron ADX.

Scripts can also be exported from a ServerIron ADX to a TFTP server using the copy usb0 tftp
command as shown in the following.

ServerIronADX# copy usb0 tftp 1.1.1.1 sys\dpscript\sample.pl sample.pl

Syntax: copy usb0 tftp <IP_address> sys\dpscript\<filename_on_usb0>
<script_filename_on_tftp-server>

The <IP_address> variable is the address of the TFTP server that you want to copy the script to.

The <filename_on_usb0> variable is the script name on the ServerIron ADX that you want to copy
to the TFTP server.

The <script_filename_on_tftp-server> variable is the script name to be created on the TFTP server.

Managing scripts
In addition, the you can manage scripts on the ServerIron ADX as described in the following.

• “Deleting a script”

• “Renaming a script”

• “Display script in the script directory”

Deleting a script
You can use the delete command to delete a script from a ServerIron ADX as shown.

ServerIronADX# delete usb0\sys\dpscript\sample.pl

Syntax: delete usb0\sys\dpscript\ <script-name>

The <script_name> variable is the name of the script file that you want to delete.

NOTE
You cannot delete a script if it is bound to a VIP.

Renaming a script
You can use the rename command to rename a script on a ServerIron ADX as shown.

ServerIronADX# rename usb0\sys\dpscript\sample.pl usb0\sys\dpscript\sample1.pl
14 ServerIron ADX OpenScript Guide
53-1002445-01

Compiling and binding scripts 3
Syntax: rename usb0\sys\dpscript\ <initial-script-name> usb0\sys\dpscript\ <new-script-name>

The <initial-script-name> variable is the name of the script file that you want to rename.

The <new-script-name> variable is the new name that you want to create for the script file.

NOTE
A script that is currently bound to a VIP port cannot be renamed.

Display script in the script directory
You can use the dir command to display all of the scripts in the script directory as shown.

ServerIronADX# dir usb0\sys\dpscript
Name Size Type Date
. 0 [Di] 10/06/2011 01:30:02
.. 0 [Di] 10/06/2011 01:30:02
READ_IP.PL 2113 [A] 10/29/2011 01:22:02
HTTP_1.PL 4412 [A] 10/29/2011 01:32:00
 Size : 4102352896 bytes
Bytes Used : 249810944 bytes
Bytes Free : 3852541952 bytes
ServerIronADX

Syntax: dir usb0\sys\dpscript

Compiling and binding scripts
Once a script has been copied to ServerIron ADX you must compile it before it can be run. After the
script is compiled, it is ready to run on the ServerIron ADX but it must be bound to a VIP that you it
to operate on. Unless a script is explicitly bound to a VIP it will not effect traffic on the ServerIron
ADX.

This script compile can be done by itself, within the bind operation, or within the process of
updating an existing script. The following is the recommended sequence for binding and
maintaining a script:

1. “Compiling a script and obtaining output from the performance estimator” – We recommend
that you compile a new script using the script compile command before binding it to a virtual
server port. This allows you to make sure that the script compiles successfully and gives you an
estimate of script performance using the Performance Estimator. Once the script is performing
up to your expectation, you can run bind it to the virtual server port.

2. “Binding a script to a virtual server port” – The script binding operation compiles the script
unconditionally and then enables it for packet processing on a specified server port or service.
If compilation errors occur, they are printed to the console or syslog and the bind operation is
aborted.

3. “Updating an existing script”– Once a script has been running, you can make changes to it and
replace it all instances of it in a running configuration. This process compiles the script
unconditionally and if the compile is successful, unbinds the old version from previously bound
virtual server ports and then binds the new script to the same ports.
ServerIron ADX OpenScript Guide 15
53-1002445-01

Compiling and binding scripts3
Compiling a script and obtaining output from the performance
estimator
You can compile a script as a single independent operation through the script compile command.
Running this command insures that the compile will be successful and displays the results of the
performance estimator.The following example compiles the “slb.pl” script and runs the
performance estimator on it.

ServerIronADX(config)# script compile slb.pl
Performance for this script:

- Approximately <123> connections/second at 10% CPU utilization
- Approximately <1234> connections/second at 50% CPU utilization
- Approximately <12345> connections/second at 100% CPU utilization

NOTE
Script compile can only be performed in general config mode.

Syntax: script compile <script-name>

The <script_name> variable is the name of the script that you want to compile.

This compile operation performs language checks on the supplied script. If errors are encountered,
they are displayed on the console. A successful compile operation qualifies a script as ready-to-run
and it can the be bound to a virtual server port.

Performance estimator

As you can see in the example of the script compile slb.pl command above, a script performance
estimate is provided for running the script on a ServerIron ADX. This is done to provide guidance
concerning operation of the script, This performance estimate is provided in
connections-per-second. It is printed out as part of the output of the script compile command for
three CPU usage scenarios: 10%, 50% and 100% CPU utilization,

NOTE
The result is estimated given a simple traffic pattern, the real number may vary from this estimate.

Binding a script to a virtual server port
The script binding operation compiles the script unconditionally and then enables it for packet
processing on a specified server port or service.

The update is performed as shown.

ServerIronADX(config)# server virtual-name-or-ip vs1 100.1.5.101
ServerIronADX(config-vs-vs1)# port http script sample.pl script-profile sp1

Syntax: [no] port <port-num-or-service> script <script-name> [script profile <script-profile-name>
]

The <port-num-or-service> variable species the virtual server port or service that you want to bind
the script to.

The <script_name> variable is the name of the script that you compile and bind.
16 ServerIron ADX OpenScript Guide
53-1002445-01

Creating and configuring script profiles 3
The script profile parameter directs the ServerIron ADX to apply the previously configured script
profile specified by the <script-profile-name> variable to the script being bound. If you do not
specify a script profile the default script profile values will be used. See “Creating and configuring
script profiles” on page 17.

Updating an existing script
You can update all running instances of a script with the contents a newly updated script of the
same name. The script update command allows you to refresh all instances of a script bound to
active servers, after the script has been edited. Running this command compiles the script,
unbinds the current instance and then binds the new version of the script. If the compile fails, the
update is not completed.

The update is performed as shown.

ServerIronADX(config)# script update sample.pl

Syntax: script update <script-name>

The <script_name> variable is the name of the script that you want to update all running instances
of.

Creating and configuring script profiles
A script profile sets the environmental variables for any script it is applied to. These variables
involve use of memory by the script and behavior during script operation. This is an optional
configuration, Where a script profile is not configured, the default values will take effect.

The environmental variables that can be set with a script profile and their default values are
described in the following:

• script memory limit: System memory is dynamically allocated from a ServerIron ADX for use by
a script. Because the system memory used by a script is shared with all other services
provided by the ServerIron ADX, excessive memory use by a script can impede system
operation. You can set a limit on the amount of system memory used by a script. Setting a limit
causes operation of a script to be halted if the limit set is exceeded. The default value is 1M
bytes (1,048,576 bytes).

• script memory high watermark: You can configure the ServerIron ADX to generate a syslog
message if the memory usage of a script exceeds a percentage that you configure. This serves
to inform you that a script is near the “script memory limit” before the script is halted. The
default value is 90%

• script timeout: Because scripts written for OpenScript are designed to be event-driven, they
make repeat runs until an event or threshold that is being monitored for occurs and a action is
implemented. If the first run through of a scrip takes too much time, it is an indication that the
script is not running properly. The script timeout sets a watchdog time in milliseconds that will
halt the script if is exceeded during the first run. The default value is 200 (milliseconds).

• script data collection limit: A script can be written for OpenScript that accumulates data for
specified events. This data is stored in system memory that is shared with all other services
provided by the ServerIron ADX. Because this memory is shared with all other services
provided by the ServerIron ADX, excessive memory used in a data collection script can impede
operation. If this limit is reached the script is restarted and memory used for data connection
is cleared. The default value is 100000 (100 Kbytes).
ServerIron ADX OpenScript Guide 17
53-1002445-01

Creating and configuring script profiles3
• script restart limit: If a script is having problems during operation or it exceeds limitations set in
the profile (either default or configured) it will restart. This option can be configured to limit the
number of times that the script will be restarted. Once this limit is reached, the script will be
halted and not restarted. After exceeding this limit, the script can only be restarted by either
unbinding and rebinding the script or by restarting the ServerIron ADX. By default there is no
limit to the number of script restarts.

• script debugging: With the option turned on, the script will print debugging information to the
console. Debugging information can only be printed to the console. It is turned off by default.

• script print output: By default the print function in a script is directed to print to the console
This option allows you to direct the script to print to either the console, the syslog or to disable
the script from printing.

Creating a script profile
The script profile must be named before you can define the script parameters and the name can
then be used to re-enter the profile configuration to change the settings for an existing profile You
can create a script profile or enter the configuration mode for an existing script profile as shown.

ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)#

Syntax: [no] script profile <profile-name>

The <profile-name> variable is the name of the profile that you want to create or update.

Using the no parameter before the command deletes the named profile.

NOTE
When an script profile is changed, the updated profile parameters are automatically applied to the
virtual ports that it is bound to.

Setting the script memory limit
This parameter sets the memory limit for any script that is bound to it. When the memory limit is
decreased, the user is prompted to confirm the reduction. The script memory limit is set as shown.

ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)# memory-limit 200000
Are you sure you want to decrease the memory limit from 1048576 to 200000? (yes or
no): yes

Syntax: [no] memory-limit <size>

The <size> variable is new limit that you want to set. The default value is 1M bytes (1,048,576
bytes). While you can set this variable to any value that fits within the size of the system memory, all
memory limits set for scripts are subject to their impact on system performance

Using the no parameter before the command returns the memory limit to the default value.

Setting the script memory high-water mark
This parameter sets the script memory high-water mark percentage. When the memory high-water
mark percentage is reached, a syslog message is generated and the script resets the new
connections. The script memory high-water mark percentage is set as shown.
18 ServerIron ADX OpenScript Guide
53-1002445-01

Creating and configuring script profiles 3
ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)# memory-high-watermark 80
Are you sure you want to dercres the memory limit from 1048576 to 200000? (yes or
no): yes

Syntax: [no] memory-high-watermark <percentage>

The <percentage> variable is the new high-water mark percentage that you want to set. The default
value is 90 (%).

Using the no parameter before the command returns the memory high-water mark to the default
value.

Setting the script timeout
Use this command to set the time in milliseconds that you want to allow a script for its first run
before restarting it. The following example sets the watchdog time to 1000 milliseconds for the
“sp1” script.

ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)# timeout-ms 1000

Syntax: [no] timeout-ms <milliseconds>

The <milliseconds> variable is new watchdog time that you want to set in milliseconds. The default
value is 200 (milliseconds). Values can be set from 50 to 1000.

Using the no parameter before the command returns the watchdog time to the default value.

Setting the script data collection limit
This parameter sets the data collection limit for the script in bytes. The script data collection limit is
set as shown.

ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)# data-collection-limit 50000

Syntax: [no] data-collection-limit <limit-size>

The <limit-size> variable is the new limit for data collection that you want to set in bytes. The
default value is 100000 (100 Kbytes). While you can set this variable to any value that fits within
the size of the system memory, all memory limits set for scripts are subject to their impact on
system performance.

Using the no parameter before the command returns the data collection limit to the default value.

Setting the script restart limit
This parameter sets the maximum number of times that the script will restart after running into
problems. Once the restart limit is reached, a syslog message is generated and the script is placed
into a “suspended” state. Once in the “suspended” state the script can only be run if it is unbinded
and rebinded or if the ServerIron ADX is restarted.

The script restart limit is set as shown.

ServerIronADX(config)# script-profile sp1
ServerIron ADX OpenScript Guide 19
53-1002445-01

Displaying script information3
ServerIronADX(config-script-profile-sp1)# restart-limit 10

Syntax: [no] restart-limit <limit-number>

The <limit-number> variable is the maximum number of times that the script will restart after
running into problems. By default a script will restart every time it is halted. This value can be set to
any integer.

Using the no parameter before the command returns the restart limit to the default value.

Enabling script debugging
This parameter enables script debugging. With this option enabled, debug information is printed at
the console. Script debugging is enabled as shown.

ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)# debug

Syntax: [no] debug

If you have enabled scripting, you can use the no parameter to disable script debugging.

Setting the script print output
This parameter directs output from a print command within a script to either the console, syslog or
disables it. The script can be set to print to the syslog as shown.

ServerIronADX(config)# script-profile sp1
ServerIronADX(config-script-profile-sp1)# print-output syslog

Syntax: [no] print-output { console | syslog | none }

The console parameter sets the script to print its output to the console.This is the default state.

The syslog parameter sets the script to print its output to the syslog.

The none parameter disables the script from printing.

Using the no parameter before the command returns the script print output to the default value

Displaying script information
The following sections describe the OpenScript information that can be displayed on a ServerIron
ADX.

Displaying Run-time information about one or all scripts
Run-time information about a script can be displayed as shown in the following:
20 ServerIron ADX OpenScript Guide
53-1002445-01

Displaying script information 3
Syntax: show script <script-name> [detail <virtual-server-name> <port>]

The <script-name> variable allows you to specify a particular script to display information for. If a
script is not specified, a list of the scripts stored on the ServerIron ADX will be displayed.

The program parameter displays the contents of the specified script

The detail parameter displays additional statistics described in Table 4. You can customize the
statistics displayed by specifying a virtual server <virtual-server-name> and <port>. If not specified
<virtual-server-name> and <port> are not specified, statistics are displayed for all ports.

Displaying scripts profile information
You can display the current settings for a script profile as shown in the following:

TABLE 4 Runtime script statistics

This field... Displays...

Virtual Server The virtual server name.

Service Port The service port

Script State The state of the script: Active, Suspended or UpdatePending

Last Updated The date and time that the script was last updated.

Script Restart

Total Connections

Concurrent Connections

Error Counters

Hits Per Event

HTTP Request event

ServerIronADX# show script myscript.pl detail vip1 http
Script myscript.pl
===
Virtual Server: vip1
Service-Port: http
Script State: ACTIVE
Last Updated:
Script Restart: 0

Total Connections: 61
Concurrent Connections: 0

Error Counters:

Hits Per Event:
 HTTP Request event: 9585575
ServerIronADX#
ServerIron ADX OpenScript Guide 21
53-1002445-01

3

Syntax: show script-profile <script-profile-name>

The <script-profile-name> variable specifies the script profile you want to display the current
settings for.

TABLE 5 Runtime script statistics

This field... Displays...

Memory limit The memory limit configured for the script.

Memory high water mark The memory high water mark configured for the script as a
percentage.

Time out The time out value configured for the script in milliseconds.

Data collection limit The data collection limit configured for the script in bytes.

Restart Limit The restart limit configured for the script.

Debug The status of the debug flag configured for the script. Can be off
or on.

Print Output The print output setting configured for the script: can be
console, syslog or none.

ServerIronADX# show script profile sp1
Script profile sp1
==

Memory limit: 2000000
Memory high water mark: 80%
Time out: 1000ms
Data collection limit: 50000
Restart Limit: None
Debug: off
Print Output: syslog
22 ServerIron ADX OpenScript Guide
53-1002445-01

ServerIron ADX OpenScript Guide
53-1002445-01
Chapter
4
Script Example
Overview
The following sections of this chapter describe the entire process of writing a script, copying it to
the ServerIron ADX and binding it to a virtual server port

Use case
This script is created in this example is designed to perform the following action on any SSL or HTTP
traffic:

• It there is no X-Forwarded-For header, an X-forwarded-For header is added with the client
source IP address: e.g. 4.4.4.4

• If a X-Forwarded-For header exists, the source IP address 4.4.4.4 is appended. For example,
existing X-forwarded-For address: 1.1.1.1, 2.2.2.2, 3.3.3.3 + appended source address:
4.4.4.4, results in new source address: 1.1.1.1, 2.2.2.2, 3.3.3.3, 4.4.4.4.

Script for use case
The following script implements the example described in “Use case”.

Example 1:

use OS_HTTP_REQUEST;
use OS_IP;
use OS_SLB;

BEGIN {
$group1 = 10;

}
sub HTTP_REQUEST{

$x_forward = OS_HTTP_REQUEST::header("X-Forwarded-For");
$src_addr = OS_IP::src;

if(defined $x_forward){
$x_forward = $x_forward.", ".$src_addr;
OS_HTTP_REQUEST::header("X-Forwarded-For", $x_forward);

}else{
OS_HTTP_REQUEST::push_header("X-Forwarded-For", $src_addr);

}
OS_SLB::forward($group1);

}

23

Copying and binding the script4
Copying and binding the script
The following command copies the script from a TFTP server to the to the ServerIron ADX.

ServerIronADX# copy tftp usb0 1.1.1.1 addip.pl sys\dapscript\addip.pl

The script is bound to the “vs1” virtual server as shown.

ServerIronADX(config)# server virtual vs1
ServerIronADX(config-vs-vs1)# port http script addip.pl

Sample ServerIron ADX configuration for use case.
The following is an example of a ServerIron ADX configuration which includes the required bind
commands for the “addip.pl” script.

Example 1:

ServerIronADX# configure terminal
ServerIronADX(config)# server real rs1 100.1.5.113
ServerIronADX(config-rs-rs1)# port http
ServerIronADX(config-rs-rs1)# port http url HEAD/
ServerIronADX(config-rs-rs1)# port http group-id 10 10
ServerIronADX(config-rs-rs1)# exit
ServerIronADX(config)#
ServerIronADX(config)# server real rs2 100.1.5.114
ServerIronADX(config-rs-rs2)# port http
ServerIronADX(config-rs-rs2)# port http url “HEAD/”
ServerIronADX(config-rs-rs2)# port http group-id 10 10
ServerIronADX(config)# server virtual vs1 100.1.5.101
ServerIronADX(config-vs-vs1)# port http
ServerIronADX(config-vs-vs1)# port http script addip.pl
ServerIronADX(config-vs-vs1)# bind http rs1 http rs2 http
24 ServerIron ADX OpenScript Guide
53-1002445-01

	Title Page
	Contents
	About This Document
	Supported hardware and software
	Document conventions
	Text formatting
	Notes, cautions, and danger notices

	Notice to the reader
	Related publications
	Getting technical help or reporting errors
	Web access
	E-mail and telephone access

	Overview of OpenScript
	What is OpenScript
	Why OpenScript uses Perl
	Why OpenScript uses Perl instead of TCL
	The OpenScript Engine
	Capabilities provided by the Brocade OpenScript engine
	Architecture of the OpenScript engine
	Performance estimator

	Using Perl on the ServerIron ADX
	Perl variables

	OpenScript Fundamentals
	Overview
	Structure of a ServerIron ADX Perl script
	Basic anatomy of a script
	Sample scripts
	High readability script example
	Power-user script example

	Managing Scripts on a ServerIron ADX
	Overview
	Importing and exporting scripts
	Script name size limit
	Importing and exporting scripts through TFTP

	Managing scripts
	Deleting a script
	Renaming a script
	Display script in the script directory

	Compiling and binding scripts
	Compiling a script and obtaining output from the performance estimator
	Binding a script to a virtual server port
	Updating an existing script

	Creating and configuring script profiles
	Creating a script profile
	Setting the script memory limit
	Setting the script memory high-water mark
	Setting the script timeout
	Setting the script data collection limit
	Setting the script restart limit
	Enabling script debugging
	Setting the script print output

	Displaying script information
	Displaying Run-time information about one or all scripts
	Displaying scripts profile information

	Script Example
	Overview
	Use case
	Script for use case
	Copying and binding the script
	Sample ServerIron ADX configuration for use case.

