Android Wear Docs
Release 1.1

Michael Hahn

April 30, 2015

Contents

How Does Android Wear Work? 3
1.1 Set Up the Development Environment ot 3
1.2 Set Up Your Handheld Device i i i et e e e e e e e 3
1.3 SetUp Your Wearable e e e e e e 4
14 NextSIEPS . . o e e e e e e e e 6
What About the Sample Apps? 7
2.1 Open a Sample Projectin Android Studio L 7
2.2 Launch the Sample App or Service i i e e e e e e e 7
2.3 Trythe Watchface Sample e 8
24 TryElizaChat e e e 9
2.5 TryRecipe ASSIStant o i e e e e e e e e e e e e e e 9
2.6 Try Wearable Notifications o o 0 i it e e e e e e e e e 11
Android Wear Suggest 13
3.1 First Android Wear Suggest i e e e e e e e e 14
3.2 Example e e e e e e e 16
Android Wear Demand 17
4.1 First Android Wear Demand L e e e e 17
42 Example e e e e e e e e 20
Wearable Application Launch 21
5.1 Voice Activation o . e e e e e e e e 21
5.2 Menu Activation e e e e e e e e e e e e e e e e e e e 21
5.3 Handheld Activation e e e e e 22
Data Layer Messages 25
6.1 First Wearable Message e 25
6.2 Example e e e e e 30
Data Layer DataMap Objects 31
7.1 First Wearable Data L e e e e e e 32
7.2 Example e e e 35
Wearable GPS 37
8.1 First Wearable GPS L L e 37
8.2 Verify GPS Sensor e e 40
83 Example e e e 40

8.4 Golf Rangefinder Example
9 Contact Us

10 Indices and tables

Android Wear Docs, Release 1.1

By Michael Hahn, May 2015
What is Android Wear?

Android Wear is the Google API for smart watches, Google Glass, and other wearable devices. These wearables work
in conjunction with an Android smartphone to put useful information at your fingertips. There is now a wide selection
of Android watches to choose from, including those that provide GPS and offline music. This means you can now use
the watch for common activities, like exercise or navigation, even when it is not paired with your phone.

Now that Apple has introduced their smart watch, wearables have crossed the tipping point of just being a consumer
plaything to an integral part of work and play. Remember that It was just a few years ago when the smart phone was
introduced, and now it is part of everyday life.

If you are new to Android Wear you first need to learn how to present timely and concise information on the small
screen of a wearable, and then become familiar with the software and tools that make it all possible. This site helps
developers quickly work through the basic concepts and develop their first wearable app. If you are interested in
developing apps for the Apple Watch, see http://www.applewatchdocs.com.

Contents:

Contents 1

http://www.applewatchdocs.com

Android Wear Docs, Release 1.1

2 Contents

CHAPTER 1

How Does Android Wear Work?

By Michael Hahn, December 2014

The easiest way to learn how Android Wear works is to install the Android Wear companion app on your handheld
device, pair with an Android watch or emulator and try out a few examples. This site focuses on wearable app
development, so it starts by explaining how to set up a development environment that you can use to build and run
sample code provided by Android.

1.1 Set Up the Development Environment

To try out Android Wear in a development environment, perform the following tasks:

1. Install Android Studio.

2. Install the Android Wear system image and support packages using the Android SDK Manager.
e Android 5.0 (API 21)
* Android SDK Tools 24 or later
* Android Support Library 21 or later
* Android Support Repository 11 or later
¢ Android Wear ARM EABI v7a System Image 21 or later (for wearable emulator)

1.2 Set Up Your Handheld Device

1. Install the Android Wear companion app on your handheld device.

2. Start the Android Wear companion app.

The first time you launch the app, an onscreen message reminds you that Android Wear is not a notification
listener. Follow the onscreen instructions.

3. Enable USB debugging on your handheld device.

Your handheld device disables USB debugging by default, and the option to enable it can be hidden as
well. For Samsung Galaxy, you must open Options, select About Phone, and then click Build Number
seven times. This adds Developer Options to the Options menu, where you can enable USB debugging.

4. Connect your handheld device to the computer with a USB cable.

http://developer.android.com/sdk/installing/studio.html

Android Wear Docs, Release 1.1

Android Wear
GOOGLEINC. ¢

OPEN

UNINSTALL

android

*kkkk] Jun 25,2014
1,000+ downloads 7.67TMB

Accept any warning or security messages displayed on either the handheld device or computer.
5. Verify that the handheld device successfully connected to the computer using the following command:

adb devices
List of devices attached
alb2c3d5 device

If a device is not displayed or it displays with an error such as unauthorized, you must resolve that problem
before proceeding.

Note: The adb executable is located in the Platform Tools directory of your Android SDK. Add it to your
path if necessary.

1.3 Set Up Your Wearable

You can try the sample apps using either an Android device or emulator. A wearable initially displays the default
watchface, which varies by device. An emulator generally defaults to a digital watch face on a sky background.
Notifications are displayed as they arrive at the bottom of the display. The following example shows that it is early in

the morning and you have not exercised yet.

0 steps

You can swipe vertically to scroll through other notifications, swipe to the right to delete the current
notification, and swipe to the left to view any associated actions. The notifications displayed on the
wearable are the same as those listed in the handheld, in the action bar pull down.

1.3.1 Android Emulator Setup

1. Start the Android AVD Manager.

android avd

4 Chapter 1. How Does Android Wear Work?

Android Wear Docs, Release 1.1

Note: The adb executable is located in the Tools directory of your Android SDK. Add it to your path if

necessary.

2. Click Create to define a new Android Wear emulator.

AVD Name:
Device:
Target:
CPU/ABI:

Keyboard:

Skin:
Front Camera:

Back Camera:

Memeory Options:

Internal Storage:

5D Card:

Emulation Options:

| AndroidWearSquare

Android Wear Square (280 x 280: hdpi)

Android 5.0.1 - API Level 21

Android Wear ARM (armeabi-v7a)
Hardware keyboard present

AndroidWearSquare

Neone

None

RAM: 512 VM Heap: 32

200

O Size:

I File:

| Snapshot | Use Host GPU

MiB

Figure 1.1: Make sure to check the Keyboard option. You might need it later.

3. Click OK to save your changes.

4. Click Start to launch the the emulator.

Initially the emulator screen shows the time and two icons on a cloud background.

A |

Start an Emulator Debug Session

1. Enter the following command in a command window.

adb -d forward tcp:5601 tcp:5601

2. In the Android Wear companion app, choose Pair with emulator.

1.3. Set Up Your Wearable

Android Wear Docs, Release 1.1

When the Android Wear companion app successfully pairs with the emulator, the action bar displays
Emulator Connected.

Emulator
Connected

Watch faces

On the emulator, the cloud icon disappears, and notifications are displayed as they are received.

1.3.2 Wearable Device Setup

1. Pair a wearable device with your handheld using the Android Wear companion app.

When you first pear with your wearable, the Android Wear companion app provides a short tutorial that intro-
duces the Wearable UI and basic functionality. From the main UI where you can then change the watchface,
enable voice actions, and browse suggested apps.

2. Enable bluetooth debugging on the wearable.

Your wearable device disables USB debugging by default, and the option to enable it can be hidden as well. You
must open Settings, select About, and then click Build Number seven times. The Settings menu then includes
Developer options, where you can enable debugging over bluetooth.

Start a Device Debug Session

1. On the handheld, open the Android Wear companion app.
2. Tap the Settings icon. The Settings dialog is displayed.
3. Enable Debugging over Bluetooth. The following is displayed initially:

Host: disconnected
Target: connected

4. Enter the following command on your computer.

adb forward tcp:4444 localabstract:/adb-hub
adb connect localhost:4444

5. The companion app changes to the following:

Host: connected
Target: connected

1.4 Next Steps

You are now up and running with Android Wear, and ready to move on to your first wearable app. Initially, you write
an app that can display notifications and receive user inputs from a wearable device, but runs code on the handheld
device only. Later you can develop more powerful software that runs Android code on the wearable device as well.

6 Chapter 1. How Does Android Wear Work?

CHAPTER 2

What About the Sample Apps?

By Michael Hahn, December 2014

Google provides a variety of sample applications for wearables that demonstrate the basic capabilities of Android
Wear. All are Android Studio projects that you can download, compile, and run on a wearable. This section provides
an introduction to the following examples.

* Watchface
* ElizaChat
* RecipeAssistant

¢ Notifications

2.1 Open a Sample Project in Android Studio

1. If you have not already done so, Ser Up the Development Environment.

Start Android Studio. The Welcome screen is displayed.

Select Import an Android code sample from the Quick Start panel. The Browse Samples page is displayed.
Select the desired sample from the list of samples.

Click Next. The Sample Setup page is displayed.

Accept the defaults and click Finish.

Verify that the project opens without errors. Sometimes you need to install or update sdk packages.

® N oA »d

Start the Android Wear companion app on your Android handheld, if necessary.

2.2 Launch the Sample App or Service

2.2.1 Handheld Code

1. Select Application in the toolbar.
2. Select Run. If the sample has a default Activity, it is started.

3. If the sample does not have a default activity, the Run/Debug Configuration dialog is displayed. Select Do Not
Launch Activity, then click OK.

Android Wear Docs, Release 1.1

4. When prompted to choose a device, select your handheld device and click OK.

5. Wait for the Application to fully compile and start.

2.2.2 Wearable Code

If the sample has Wearable code perform these steps.
1. Select Wearable in the toolbar.
2. Select Run. If the wearable has a default Activity, it is started.

3. If the Wearable does not have a default activity, the Run/Debug Configuration dialog is displayed. Select Do
Not Launch Activity, then click OK.

4. When prompted to choose a device, select your wearable device and click OK.

2.3 Try the Watchface Sample

This sample installs six watch face samples. These include a variety of analog and digital time displays, including
full-screen displays of the current time and split-screen displays of time and timely information. These samples are a
starting point for developers interested in creating innovative new watch faces.

The watch face sample consists of services only; it is not an application that you can launch from an icon. On the
handheld, you view the sample watch faces in the opening page of the Android Wear companion app.

Sample Sample Sample Card
Analog Calendar Bounds

Sample Sample
Digital Sweep Sample Tilt

On the wearable, you view the sample watch faces in Settings, under the Change Watch Face. In the small screen, you
must scroll through them one at at time.

Sample Digital

o

On both the handheld and wearable, watch faces display a gear icon if they have customizable settings. In the Android
Wear companion app, selecting the sample digital watch face displays the following choices:

On the wearable, you can only choose a background color when you select the icon:

8 Chapter 2. What About the Sample Apps?

Android Wear Docs, Release 1.1

L] WatchFace

Digital watch face configuration
(com.example.android.wearable.watchface.DigitalW
latchFaceService)

Background Black 4

Hours White 4
Minutes White 4
[Seconds Gray 4

. Black
Q Blue

2.4 Try Eliza Chat

The Eliza Chat sample app shows how you might implement a Personal Digital Assistant on a wearable device. Eliza
is the assistant in this example. Eliza posts responses on the wearable emulator and you enter questions by tapping a
reply icon. Normally you would provide voice inputs, but that is not implemented in this sample. For now, you simply
type what you have to say.

When you first launch the app, Eliza asks how she can help you.

To reply, swipe the screen to the left, select the reply icon, and then type your demand in the Reply form. Before the
Eliza app accepts your demand, you choose from two options, Edit or Save. This sequence demonstrates a typical Ul
pattern, which consists of a notification, a reply, and a fixed choice.

Eliza then responds to your question and you can continue with the dialog. The entire session is recorded on the
handheld device. The following screen shows the transcript for several exchanges with Eliza.

2.5 Try Recipe Assistant

The Recipe Assistant app is an example of a fully-functional Android application that extends it capabilities to a
wearable device. On the handheld device, you can scroll through the full recipe and steps. On the wearable device you
view the recipe steps one at a time on separate pages.

The app starts on the mobile device with three recipes from which to choose. Select the first one and you get the
guacamole recipe.

Click Start in the upper right corner, and the recipe is displayed on the wearable emulator.

2.4. Try Eliza Chat 9

Android Wear Docs, Release 1.1

Super simple gua...
recipe - -.-'-.II for ;'u ny

SUEET ST LA L

© ElizaChat

HEY THERE, HOW CAN | HELP YOU?
Need a sample

WHAT DOES THAT SUGGEST TO YOU?
Nothing

HOW DO YOU DO ... PLEASE STATE YOUR
PROBLEM.

START

Q" Recipe Assistant

Super simple
guacamole

Step 1of 5

Step 2 of 5

Mash with a tork unti

10

Chapter 2.

What About the Sample Apps?

Android Wear Docs, Release 1.1

Swipe left to move through the steps. For each step you can tap to view more and swipe up or down to move through
the content.

2.6 Try Wearable Notifications

The Wearable Notifications sample app provides a simple way to try out different combinations of wearable UI notifi-
cations and patterns. The onscreen choices closely match the capabilities of the WearableNotifications class,
so this is a good opportunity to learn about available displays. Later we will experiment with the underlying code.

. Wearable Notifications

PROPERTIES

Preset Basic example
Priority ~ Default priority

Actions No actions

v Include large icon

Local only

v Include content intent

The Ul is basically a smorgasbord of wearable notification possibilities. The best way to use this app is simply to
try out all the choices. You can select a basic notification type (preset), set its priority, and attach action icons. You
can also include a background image that provides context for the text notification. The Android Wear app is another
way to view different notification examples. The examples in the app are based on use cases, like traffic, weather, and
sports, rather than underlying API options like Big Screen and Big Text.

2.6. Try Wearable Notifications 11

Android Wear Docs, Release 1.1

12 Chapter 2. What About the Sample Apps?

CHAPTER 3

Android Wear Suggest

By Michael Hahn, January 2015

The Suggest context stream is one of the core functions for Android Wear. It consists of a sequence of notifications
about timely information, such as incoming messages or upcoming appointments. It can also display useful informa-
tion about a task at hand, such as preparing a recipe or communicating with a digital assistant.

« 5554:FirstWearable

4:00

You have achieved half
of your steps goal.

This section explains how to display your own custom notifications on a wearable device. The easiest way is to
create a normal Notification, initialize it with your custom message, and send it using the NotificationManager. These
notifications are displayed on both the handheld device and wearable emulator with a similar level of detail.

« 5554:AndroidWearSquare - X

Basic example text

Normal text notifications are only the beginning however. Android 4.1 introduced three additional styles: Big Picture,
Big Text, and Inbox. The big picture example demonstrates one way to add a contextual image to the notification.

13

Android Wear Docs, Release 1.1

6 new emails
Michael Hahn: emulator
Michael Hahn: Wear app

Android Wear adds even more styles that improve the user experience on the small screen of a wearable device. These
styles make it possible to group or add pages to notifications. The email example shows how messages are grouped to
reduce the number of notification delivered to a wearable.

You do not have to rely any of these stock UI styles. You can create your own full-screen layout that best suits your
custom wearable application. Just keep it simple and be consistent in presentation and usage with other wearable
displays. For example, do not try to replicate the grid layout of the handheld device - the wearable is just too small for
this approach. Users just glance at their watch, speak simple commands, or tap and swipe the screen.

3.1 First Android Wear Suggest

This section explains how to create your first Android Wear notification and add it to the Suggest context stream on an
Android wearable, or emulator. The new project wizard in Android Studio creates a project with two main activities,
one for the handheld device and another for the wearable. To create your first suggest notification, add code in the
handheld activity only, located in the “mobile” branch of the project hierarchy. The preinstalled software on a wearable
device or emulator handles the task of receiving and displaying notifications from the handheld.

3.1.1 Create a Project
This section explains how to create a new project using Android Studio Version 1. If you have an earlier version,
update it before starting this procedure.
1. Launch Android Studio.
. Select Start a New Android Studio Project in the Welcome screen.
. In the new project dialog, enter your Application Name, Domain, and a project directory. Click Next.

2
3
4. In the form factors dialog, select Phone and Tablet and Wear. Keep the default SDKSs, and then click Next.
5. In the mobile activity dialog, select Blank Activity. Click Next.

6

. In the mobile option dialog enter an Activity Name for the handheld. Accept the defaults or the other fields and
click Next. The name for an activity that generates a wearable “suggestion” might be SuggestActivity.

=

In the wear activity dialog, select Blank Wear Activity. Then click Next.

8. In the wear options dialog enter an Activity Name for the wearable. Accept the defaults for the other fields and
click Finish. You can use the same name for the wearable activity that you used for the handheld activity.

14 Chapter 3. Android Wear Suggest

Android Wear Docs, Release 1.1

3.1.2 Modify the Handheld Activity

1. Import the the packages that support wearable features into the handheld Activity. As a minimum you need the
following notification packages:

import android.support.v4.app.NotificationManagerCompat;
import android.support.v4.app.NotificationCompat;

import android.support.v4.app.RemotelInput;

import android.app.Notification;

2. Add Android Wearable features to a Wearable extender object, for example ShowBackgroundOnly, to the on-
Create method.

NotificationCompat.WearableExtender wearableExtender =
new NotificationCompat.WearableExtender ()
.setHintShowBackgroundOnly (true) ;

3. Create a normal Android notification using the NotificationCompat.Builder and set desired properties, including
those defined in the WearableExtender.

Notification notification =
new NotificationCompat.Builder (this)

.setSmallIcon (R.drawable.ic_launcher)
.setContentTitle ("Hello Android Wear")
.setContentText ("First Wearable notification.")
.extend (wearableExtender)

.build();

3. Optionally, apply a release 4.1 style to the normal notification, such as the one used in the Big Picture example
(NotificationCompat.BigPictureStyle).

4. Get an instance of the Notification Manager service.

NotificationManagerCompat notificationManager =
NotificationManagerCompat.from(this);

5. Dispatch the notification.

int notificationId = 1;
notificationManager.notify (notificationId, notification);

w 5554:AndroidWearSquare

417

First Wearable
notification.

The result of this example is a notification with a title and body. If necessary, scroll through other notifications to view
this one.

3.1. First Android Wear Suggest 15

Android Wear Docs, Release 1.1

3.2 Example

The full Android Studio project for this example is posted at https://github.com/LarkspurCA/WearableSuggest.

16 Chapter 3. Android Wear Suggest

https://github.com/LarkspurCA/WearableSuggest

CHAPTER 4

Android Wear Demand

By Michael Hahn, January 2015

The Demand context is one of the core functions for Android Wear. A demand is displayed as a large icon, typically
when you swipe a displayed suggestion (notification). You tap on an icon to perform the desired demand.

“

Reply

When new email arrives for example, you swipe to the left to scroll through the demand icons, such as open, reply,
and archive. You can create custom icons for your app as well. This section explains how to code your own wearable
demand that handles a voice reply.

4.1 First Android Wear Demand

If you have not already done so, Create a Project. The new project wizard in Android Studio creates a project with
two main activities, one for the handheld device and another for the wearable. To create your first demand, add code
in the handheld activity only, located in the “mobile” branch of the project hierarchy. The software preinstalled on a
wearable device or emulator handles the task of displaying notifications and handling demands on the wearable side.

4.1.1 Add Build Dependencies

Add build dependencies for the wearable support package to the build.gradle (Module:mobile) file in Gradle Scripts
folder, if necessary.

dependencies {
compile fileTree(dir: ’libs’, include: [’'=x.jar’])
wearApp project (’ :wear’)
compile ’'com.android.support:appcompat-v7:21.+’
compile ’com.google.android.gms:play-services:6.5.+’

17

Android Wear Docs, Release 1.1

4.1.2 Modify the Handheld Activity

Your handheld activity initiates the process by creating a notification that includes an action (demand). When a user
views the notification and invokes the demand, the wearable broadcasts the demand to the handheld for processing.
You build the notification with a hierarchy of objects, intent -> pending intent -> notification action -> wearable
extender, and finally the notification itself.

1. Create an Intent that defines the action that the handheld device should take in response to a wearable demand.
The Intent has the following parameters:
> The context of the activity, service, or broadcast receiver on the handheld that handles wearable demands.
> The name of the class on the handheld that receives wearable demands.
> A constant that specifies a demand action.
> An extra with details about the requested action.

The following example shows how to create an intent for a reply demand. The DemandIntentReceiver is defined
later in Create a Demand Receiver.

public static final String ACTION_DEMAND = "com.androidweardocs.ACTION_DEMAND";
public static final String EXTRA_MESSAGE = "com.androidweardocs.EXTRA_MESSAGE";
public static final String EXTRA_VOICE_REPLY = "com.androidweardocs.EXTRA_VOICE_REPLY";

Intent demandIntent = new Intent (this, DemandIntentReceiver.class)
.putExtra (EXTRA_MESSAGE, “Reply selected.")
.setAction (ACTION_DEMAND) ;

2. Create a PendingIntent to include in the notification.

A PendingIntent wraps the intent to grant the privileges it needs for to execute in your application. It
contains the context of the activity, service, or broadcast receiver that will receive the demand, and the
Intent object itself. This example creates a Pendinglntent using the context of a broadcast receiver. Use
getActivity instead of getBroadcast if your activity receives demands.

PendingIntent demandPendingIntent =
PendingIntent.getBroadcast (this, 0, demandIntent, O0);

3. Create a Remotelnput object to hold a voice reply from the wearable device. A voice request or response is a
common action for a wearable device because of the small size of the UL

String replyLabel = getResources () .getString(R.string.app_name);
RemoteInput remoteInput = new Remotelnput.Builder (EXTRA_VOICE_REPLY)
.setLabel (replyLabel)
Lbuild();

4. Create a wearable action.

The following example creates an wearable action that uses a standard reply icon and label, adds the
pending intent, and the Remotelnput object for voice.

NotificationCompat.Action replyAction =
new NotificationCompat.Action.Builder (R.drawable.ic_reply_icon,
getString(R.string.reply_ label), demandPendingIntent)
.addRemoteInput (remoteInput)
.build();

5. Create a WearableExtender for the a notification and add the wearable action.

18 Chapter 4. Android Wear Demand

Android Wear Docs, Release 1.1

NotificationCompat.WearableExtender wearableExtender =
new NotificationCompat.WearableExtender ()
.addAction (replyAction) ;

6. Create a notification and extended it with the wearable extender just created. The following example creates a
notification that includes a reply action (demand).

Notification notification =
new NotificationCompat.Builder (this)
.setContentTitle ("Hello Wearable!")
.setContentText ("First Wearable demand.")
.setSmallIcon (R.drawable.ic_launcher)
.extend (wearableExtender)
Jbuild();

7. Get an instance of the Notification Manager service.

NotificationManagerCompat notificationManager =
NotificationManagerCompat.from(this);

8. Dispatch the extended notification.

int notificationId, notification;
notificationManager.notify (notificationId, notification);

4.1.3 Create a Demand Receiver

When a user makes a demand, the wearable broadcasts an intent that contains the details. The handheld receives the
broadcast and takes an appropriate action. The following example defines a BroadcastReceiver for a voice demand
that simply logs the results.

public class DemandIntentReceiver extends BroadcastReceiver(

@Override
public void onReceive (Context context, Intent intent) {

if (intent.getAction () .equals (Handheld.ACTION_DEMAND)) {String message =
intent.getStringExtra (Handheld.EXTRA_MESSAGE) ;
Log.v ("MyTag", "Extra message from intent = " + message);
Bundle remoteInput = Remotelnput.getResultsFromIntent (intent);
CharSequence reply = remotelInput.getCharSequence (Handheld.EXTRA_VOICE_REPLY) ;
Log.v ("MyTag", "User reply from wearable: " + reply);

}

You also need to modify the manifest file to accept the broadcast. Add a receiver section within the application section.

<receiver android:name=".DemandIntentReceiver" android:exported="false">
<intent-filter>
<action android:name="com.androidweardocs.first_wearable.ACTION_DEMAND"/>
</intent-filter>
</receiver>

The sample code first displays the notification text, which is simply a title and body. Swiping to the left displays the
reply icon with the reply label.

4.1. First Android Wear Demand 19

Android Wear Docs, Release 1.1

lello Wearable!
First wearahle
demand.

Selecting the reply icon displays the voice prompt, and then the confirmation after you speak (or type on the emulator).

Demand

e Speak now hello wearahle

The example DemandIntentReceiver receives the broadcasted intent and extracts the voice input. Log messages show
the value of the extra text within the intent and the voice string from the remote input.

MyTag: Extra message from intent = Reply icon selected.
MyTag: User reply from wearable: hello handheld

4.2 Example

The full Android Studio project for demands is posted at https://github.com/LarkspurCA/WearableDemand.

20 Chapter 4. Android Wear Demand

https://github.com/LarkspurCA/WearableDemand

CHAPTER 5

Wearable Application Launch

By Michael Hahn, April 2015

Android wearable devices have an Android operating system, so you can develop applications for wearables much as
you do for handheld devices. Simple handheld apps can potentially run in a standalone mode on the wearable, without
being paired with a handheld. More commonly however, wearable apps work in conjunction with a handheld for voice
recognition, Internet access, and other services.

Android Studio creates a very simple “Hello World” wearable app when you use the new project wizard. If you select
Wearable as an option, the wizard creates both a handheld and a wearable app. Typically you install and launch this
app using Android SDK tools.

5.1 Voice Activation

An easy way to launch a wearable app is with a voice command. Either say “OK Google” or touch the screen. At
the “Speak Now” prompt tell Google to start your app, for example “start first wearable”. The wearable then confirms
your voice command and launches the the app.

& C

Hello Square World!

5.2 Menu Activation

To manually launch the app, touch the watch face and scroll to the last action, which is “Start...”. Then select your app
from the list of installed apps, in this case First_Wearable.

So far, not a single line of new code was necessary; the Android Studio new project wizard created it all. The upcoming
sections show how to add more interesting content and actions.

21

Android Wear Docs, Release 1.1

©

|au First_Wearahle

v

5.3 Handheld Activation

A great way to start your wearable app is from a notification on the wearable. This is useful when you already have a
handheld app and want to extend features to a wearable. The handheld app starts the launch process by sending a data
object to the wearable that contains the information the wearable needs to post a notification locally. Users swipe this
notification and tap the Open icon to launch the wearable portion of your app. They return to the notification stream
when the wearable app closes.

Often times you want to launch the wearable app with extra data that tells it what feature to open or what data to
display. For example, a general handheld golf app might open the wearable for a specific golf course. This section
includes details about adding such data to the launch process. Without this, the wearable app simply launches in its
default mode.

5.3.1 Prerequisite

This procedure relies on communication through the data layer. Communication through the data layer requires setup
of Google Play Services for wearables in both the handheld and wearable devices (see Data Layer DataMap Objects).

5.3.2 Post a Notification

1. First create a DataMap object that includes the title and body for the notification. Optionally, include any extra
data that you want to pass to your wearable app when it starts. Then send this DataMap object to the wearable
data layer, along with a path constant that identifies the purpose of the data. The SendToDatalLayerThread class
in this example is defined in Data Layer DataMap Objects.

String WEARABLE_START_PATH = "/wearable_start";

// Create a DataMap

DataMap notifyWearable = new DataMap () ;
notifyWearable.putString("title", "Notification Title");
notifyWearable.putString ("body", "Start now?");

// Optional extra data to use when starting wearable
notifyWearable.putString ("extra", "extra data")

// Send to data layer

new SendToDatalayerThread (WEARABLE_START_PATH, notifyWearable) .start();

2. In the wearable, receive the DataMap in a WearableListenerService class. The following excerpt shows a sample
override for the onDataChanged method of the service.

@Override
public void onDataChanged (DataEventBuffer dataEvents) {
DataMap dataMap;

22 Chapter 5. Wearable Application Launch

Android Wear Docs, Release 1.1

for (DataEvent event : dataEvents) {
// Check the event type
if (event.getType () == DataEvent.TYPE_CHANGED) {

// Check the data path

if (path.equals (WEARABLE_START_PATH)) {
// Create a local notification
dataMap = DataMapItem.fromDataltem(event.getDataltem()) .getDataMap/();
sendLocalNotification (dataMap) ;

3. In the wearable, implement the procedure that constructs and posts a demand (notification) that can launch your
app. Optionally, the Pending Intent in this notification can include extra data for the wearable app.

private void sendLocalNotification (DataMap dataMap) {
int notificationId = 001;

// Create a pending intent that starts this wearable app
Intent startIntent = new Intent (this, HoleActivity.class) .setAction (Intent.ACTION_MAIN) ;
// Add extra data for app startup or initialization, if available
startIntent.putExtra ("extra", dataMap.getString("extra"));
PendingIntent startPendingIntent =
PendingIntent.getActivity (this, 0, startIntent, PendingIntent.FLAG_CANCEL_CURRENT) ;

Notification notify = new NotificationCompat.Builder (this)
.setContentTitle (dataMap.getString("title"))
.setContentText (dataMap.getString ("body"))

.setSmalllIcon (R.drawable.ic_launcher)
.setAutoCancel (true)
.setContentIntent (startPendingIntent)
.build();

NotificationManagerCompat notificationManager = NotificationManagerCompat.from(this);
notificationManager.notify (notificationId, notify);

The wearable notification stack now includes a notification inviting the user to launch your wearable app. A swipe to
the left displays the launcher icon, which the user clicks to launch the app.

4. In the wearable app, receive and process any extra information. Normally, you implement this within the
onCreate override of your app.

// Check for extra data in the intent
// If present, extract and use

Bundle extras = getIntent () .getExtras/();
if (extras != null) {

// Get the extra data
String extraData = extras.getString("extra");

// Act on the extra data

5.3. Handheld Activation 23

Android Wear Docs, Release 1.1

Notification Title
Start now?

24 Chapter 5. Wearable Application Launch

CHAPTER 6

Data Layer Messages

By Michael Hahn, January 2015

An application that runs on a wearable device usually utilizes some of the capabilities of a paired handheld device.
This means you need two separate Android apps, one that runs on the wearable and another that runs on the handheld.
These two apps communicate with one another over the bluetooth link that connects the two devices.

Google Play services Version 5 and later include a Wearable Message API that provides access to the data layer of a
data communications link between the two devices. Messages or data move down the protocol stack on the sending
side, across the bluetooth link, then up the stack on the receive side. The following diagram shows how a simple
message flows through the wearable communications link.

/ Handheld \ ﬂearable \
Message B

getData
MessageEvent
.onMessageReceived
Wearable.MessageApi
WearableListenerService
sendMessage
Data Layer Data Layer
\ Bluetooth 4 ’/
—— —

In this example, a handheld sends a message to a wearable using the sendMessage method of the Wear-
able.MessageApi. On the receiving side, a WearableListenerService monitors the data layer and invokes the on-
MessageReceived callback when a message arrives. The listener service then performs some application-specific task
based on the received message. The WearableListenerService is not the only way to receive data, but it is easy to
implement because Android Wear manages its life-cycle.

6.1 First Wearable Message

If you have not already done so, Create a Project. The new project wizard in Android Studio creates a project with two
main activities, one for the handheld device and another for the wearable. These two activities use the same package

25

Android Wear Docs, Release 1.1

name, which is essential for the wearable data layer to work.

Data layer messages can originate from either a handheld or wearable. For bidirectional messaging both the handheld
and wearable should implement a message sender and listener.

6.1.1 Implement a Message Sender

This section describes how to send messages to the data layer. The example code shown sends messages from the
handheld to the data layer.

Add Build Dependencies

Add the following build dependencies to the build.gradle file (Module:mobile) in the Gradle Scripts folder, if necessary.

dependencies {
compile fileTree(dir: ’1libs’, include: [’*.jar’])
compile ’com.android.support:appcompat-v7:21.0.+"
compile ’com.google.android.gms:play-services:6.5.+’

Add Metadata for Google Play Services

Add Google Play services metadata statement to the manifest of the sending device:

<application>

<meta-data android:name="com.google.android.gms.version"
android:value="(@integer/google_play_services_version" />
</application>

Create the Message Sender

To send a message , update the code in the main Activity of the sending device. For the handheld, modify the code in
the mobile branch of the Android Studio project.

1. Build a Google Play Services client for the Wearable API.

public class MessageActivity extends Activity implements
GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener {

GoogleApiClient googleClient;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity_handheld) ;

// Build a new GoogleApiClient for the Wearable APT
googleClient = new GoogleApiClient.Builder (this)
.addApi (Wearable.APT)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
Jbuild() ;

26 Chapter 6. Data Layer Messages

Android Wear Docs, Release 1.1

// Data layer and lifecycle implementation (Step 2)

2. Add callback methods for the data layer and lifecycle events. For simplicity, send a message in the onConnected
callback method.

// Connect to the data layer when the Activity starts
@Override
protected void onStart () {

super.onStart () ;

googleClient.connect () ;

// Send a message when the data layer connection is successful.

@Override
public void onConnected (Bundle connectionHint) {
String message = "Hello wearable\n Via the data layer";

//Requires a new thread to avoid blocking the UI
new SendToDatalLayerThread ("/message_path", message) .start ();

}

// Disconnect from the data layer when the Activity stops

@Override
protected void onStop () {
if (null != googleClient && googleClient.isConnected()) {

googleClient.disconnect ();

}
super.onStop () ;

// Placeholders for required connection callbacks
@Override
public void onConnectionSuspended (int cause) { }

@Override
public void onConnectionFailed (ConnectionResult connectionResult) { }

3. Define a class that extends the Thread class and implements a method that sends your message to all nodes
currently connected to the data layer. This task can block the main UI thread, so it must run in a new thread.

class SendToDatalayerThread extends Thread {
String path;
String message;

// Constructor to send a message to the data layer
SendToDatalayerThread (String p, String msg) {

path = p;

message = msg;

public void run() {
NodeApi.GetConnectedNodesResult nodes = Wearable.NodeApi.getConnectedNodes (googleClient) .awa
for (Node node : nodes.getNodes()) {

SendMessageResult result = Wearable.MessageApi.sendMessage (googleClient, node.getId(), pat
if (result.getStatus () .isSuccess()) {
Log.v ("myTag", "Message: {" + message + "} sent to: " + node.getDisplayName());

6.1. First Wearable Message 27

Android Wear Docs, Release 1.1

else {
// Log an error
Log.v("myTag", "ERROR: failed to send Message");

6.1.2 Implement a Message Listener

You can monitor the data layer for new messages using either a listener service or listener activity. This section
explains how to implement a listener service for messages. For the wearable, modify the code in the wear branch of
the Android Studio project.

Add Build Dependencies

Add wearable SDK dependencies to the build.gradle file (Module:wear) in the Gradle Scripts folder, as necessary.

dependencies {
compile fileTree(dir: ’'1libs’, include: [’=x.jar’])
compile ’com.google.android.support:wearable:1.1.+’
compile ’'com.google.android.gms:play-services-wearable:6.5.+’

Add Listener Service to Manifest

Enable the data layer listener in the manifest file.

<uses—feature android:name="android.hardware.type.watch" />
<application

<service android:name=".ListenerService">
<intent-filter>
<action android:name="com.google.android.gms.wearable.BIND_LISTENER" />
</intent-filter>
</service>
</application>

Create a Listener Service Class

Create a listener in the wear application that extends the WearableListenerService. This example logs any received
message to the debug output.

public class ListenerService extends WearablelistenerService {

@Override
public void onMessageReceived (MessageEvent messageEvent) {

if (messageEvent.getPath () .equals ("/message_path")) {
final String message = new String(messageEvent.getDatal());
Log.v ("myTag", "Message path received on watch is: " + messageEvent.getPath());
Log.v ("myTag", "Message received on watch is: " + message);

28 Chapter 6. Data Layer Messages

Android Wear Docs, Release 1.1

}
else {
super.onMessageReceived (messageEvent) ;

6.1.3 Display Received Messages

The wearable listener service cannot directly update the wearable Ul because it runs on a different thread. The
following example shows how to forward received messages to the main Activity using the LocalBroadcastManager.

1. In the ListenerService class, broadcast the received data layer messages locally.

@Override
public void onMessageReceived (MessageEvent messageEvent) {

if (messageEvent.getPath () .equals ("/message_path")) {
final String message = new String(messageEvent.getDatal());

// Broadcast message to wearable activity for display
Intent messageIntent = new Intent();
messagelntent.setAction (Intent .ACTION_SEND) ;
messagelntent.putExtra ("message", message);
LocalBroadcastManager.getInstance (this) .sendBroadcast (messagelntent) ;
}
else {
super.onMessageReceived (messageEvent) ;

2. In the wearable Activity, register to receive broadcasts from the ListenerService.

@Override
protected void onCreate (Bundle savedInstanceState) {
// Basic UI code, generated by New Project wizard.

-

// Register the local broadcast receiver, defined in step 3.
IntentFilter messageFilter = new IntentFilter (Intent.ACTION_SEND) ;

MessageReceiver messageReceiver = new MessageReceiver () ;
LocalBroadcastManager.getInstance (this) .registerReceiver (messageReceiver, messageFilter) ;

3. In the wearable Activity, define a nested class that extends BroadcastReceiver, implements the onReceive
method, and extracts the message. This example receives and displays the message the wearable UL

public class MessageReceiver extends BroadcastReceiver {

@Override
public void onReceive (Context context, Intent intent) {
String message = intent.getStringExtra ("message");

// Display message in UI
mTextView.setText (message) ;

Keep in mind that this example is not a full implementation. You must unregister your application from the local
broadcast manager when the application stops. Otherwise you can duplicate the registration of the same application,

6.1. First Wearable Message 29

Android Wear Docs, Release 1.1

which results in duplicate local broadcasts.

6.1.4 Try the First Data Layer App

Make sure the handheld and wearable are successfully paired. If not, see Set Up the Development Environment.

Start the “wear” app in Android Studio. It displays the default Hello message generated by the Android Studio new
project wizard:

Hello Square World!

Then launch the handheld app. The wearable display changes to the message sent from the handheld device through
the wearable data layer.

Hello wearable
Via the data layer

6.2 Example

The full Android Studio project for data layer messages is posted at
https://github.com/LarkspurCA/WearableMessage.git.

30 Chapter 6. Data Layer Messages

https://github.com/LarkspurCA/WearableMessage.git

CHAPTER 7

Data Layer DataMap Objects

By Michael Hahn, January 2015

The wearable data layer can sync either messages or data. A message contains a single text string, but data is typically
wrapped in a DataMap object. A DataMap is similar to a Bundle in that it contains a collection of one or more of data
types, stored as key/value pairs. Android uses a Bundle to encapsulate data exchanged between activities. Similarly,
wearable apps can use a DataMap to encapsulate the data exchanged over the wearable data layer.

Google Play services Version 5 includes a Wearable Data API that provides access to the data layer of a data com-
munications link between the two devices. App data moves down the protocol stack on the sending side, across the
bluetooth link, then up the stack on the receiving side. The following diagram shows how a handheld sends a data to
a wearable using a DataMap and the Wearable.DataApi.

e N N

Data DataMap
.getDataMap
PutDataMapRequest
DataMapltem
.getDataMap
DataMapltem.fromDataltem
DataMap Dataltem
asPutDataRequest .getDataltem
PutDataRequest DataEventBuffer
Wearable.DataApi .onDataChanged
WearableListenerService
putDataltem
Data Layer Data Layer
\ Bluetooth A 4 > /
."/ \\-.

On the handheld side, you start with a PutDataMapRequest. This is a helper class that simplifies the process of
creating the DataMap, Dataltem, and PutDataRequest objects that are needed for sending data. On the receiving
side a WearableListener Service receives changed data and returns a buffer of DataEvents. You get a Dataltem from

31

Android Wear Docs, Release 1.1

the buffer, convert it to a DataMapltem, convert that to a DataMap object, and then get the original handheld data.
A WearableListenerService is not the only way to receive data, but it is easy to implement because Android Wear
manages its life-cycle.

7.1 First Wearable Data

If you have not already done so, Create a Project. The new project wizard in Android Studio beta creates a project
with two main activities, one for the handheld device and another for the wearable. These two activities use the same
package name, which is essential for the wearable data layer to work.

Data layer transfers can originate from either a handheld or wearable. For bidirectional data both the handheld and
wearable should implement the code in this section.

7.1.1 Add Metadata for Google Play Services

Add Google Play services metadata statement to the manifest of the sending device:

<application>

<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
</application>

7.1.2 Add a Data Sender

To send a data object , update the code in the main Activity of the sending device.
1. Build a Google Play Services client that includes the Wearable API.

public class Handheld extends Activity implements
GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener {

GoogleApiClient googleClient;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity_handheld) ;

// Build a new GoogleApiClient

googleClient = new GoogleApiClient.Builder (this)
.addApi (Wearable.APT)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
Jouild() ;

// Data layer and lifecycle implementation (Step 2)
}

2. Add callback methods for the data layer and lifecycle events. For simplicity, send a data object in the onCon-
nected callback method. In this example the path of the data object is “wearable_data” and the data is a DataMap

32 Chapter 7. Data Layer DataMap Objects

Android Wear Docs, Release 1.1

object that contains a golf course hole number and the distances to the front, middle, and back pin locations.

The receiving side can use the path to identify the origin of the data.

// Connect to the data layer when the Activity starts
@Override
protected void onStart () {
super.onStart () ;
googleClient.connect () ;

// Send a data object when the data layer connection is successful.

@Override
public void onConnected (Bundle connectionHint) {

String WEARABLE_DATA_PATH = "/wearable_data";
// Create a DataMap object and send it to the data layer

DataMap dataMap = new DataMap () ;
dataMap.putLong ("time", new Date () .getTime());

dataMap.putString ("hole", "1");
dataMap.putString ("front", "250");
dataMap.putString ("middle", "260");
dataMap.putString ("back", "270");

//Requires a new thread to avoid blocking the UI
new SendToDatalayerThread (WEARABLE_DATA_PATH, dataMap) .start ();

// Disconnect from the data layer when the Activity stops

@Override
protected void onStop () {
if (null != googleClient && googleClient.isConnected()) {

googleClient.disconnect ();

}
super.onStop () ;

// Placeholders for required connection callbacks
@Override
public void onConnectionSuspended (int cause) { }

@Override
public void onConnectionFailed (ConnectionResult connectionResult)

{

}

3. Define a class that extends the Thread class and implements a method that sends your data object to all nodes
currently connected to the data layer. This task can block the main UI thread, so it must run in a new thread.

This can be an inner class.

class SendToDatalayerThread extends Thread {
String path;
DataMap dataMap;

// Constructor for sending data objects to the data layer
SendToDatalayerThread (String p, DataMap data) {

path = p;

dataMap = data;

public void run() {

7.1. First Wearable Data

33

Android Wear Docs, Release 1.1

NodeApi.GetConnectedNodesResult nodes = Wearable.NodeApi.getConnectedNodes (googleClient) .awa
for (Node node : nodes.getNodes()) {

// Construct a DataRequest and send over the data layer

PutDataMapRequest putDMR = PutDataMapRequest.create (path);
putDMR.getDataMap () .putAll (dataMap) ;

PutDataRequest request = putDMR.asPutDataRequest ();

DataApi.DataltemResult result = Wearable.DataApi.putDataltem(googleClient, request) .await ()

if (result.getStatus () .isSuccess()) {
Log.v ("myTag", "DataMap: " + dataMap + " sent to: " + node.getDisplayName ());
} else {

// Log an error
Log.v("myTag", "ERROR: failed to send DataMap");

7.1.3 Add a Data Receiver

You can monitor the data layer for new data objects using either a listener service or listener activity. This section
explains how to implement a listener service for data objects.

1. Enable the listener service in the manifest file for the wear application.

<uses-feature android:name="android.hardware.type.watch" />
<application

<service android:name=".ListenerService">
<intent-filter>
<action android:name="com.google.android.gms.wearable.BIND_LISTENER" />
</intent-filter>
</service>
</application>

2. Create a listener in the wear application that extends the WearableListenerService and implements onDat-
aChanged. This example filters incoming data events for those of TYPE_CHANGED, checks for a data path of
“/wearable_data”, then logs the data item to the debug output.

public class ListenerService extends WearablelistenerService {
private static final String WEARABLE_DATA_PATH = "/wearable_data";

@Override
public void onDataChanged (DataEventBuffer dataEvents) {

DataMap dataMap;
for (DataEvent event : dataEvents) {

// Check the data type
if (event.getType () == DataEvent.TYPE_CHANGED) {
// Check the data path
String path = event.getDataltem() .getUri().getPath();
if (path.equals (WEARABLE_DATA_PATH)) {}
dataMap = DataMapItem.fromDataltem (event.getDataltem()) .getDataMap () ;
Log.v ("myTag", "DataMap received on watch: " + dataMap);

34 Chapter 7. Data Layer DataMap Objects

Android Wear Docs, Release 1.1

7.1.4 Using Received Data

In this example, a background service receives the data. If you need this data in the UI or elsewhere, you can broadcast
the results locally, as described in Display Received Messages. Just add a Bundle (DataMap.toBundle) as the intent
extra, instead of a simple message string.

7.2 Example

The full Android Studio project for data layer DataMap objects is posted at
https://github.com/LarkspurCA/WearableDataMap.git.

7.2. Example 35

https://github.com/LarkspurCA/WearableDataMap.git

Android Wear Docs, Release 1.1

36 Chapter 7. Data Layer DataMap Objects

CHAPTER 8

Wearable GPS

By Michael Hahn, March 2015

Wearables are great when you are on the go, especially when you are out for a run or looking for destination. It would
be great to just glance at your watch for your current location, rather than pulling out your handheld. Now that some
wearables have a built-in GPS sensor, you can continue to use location-based apps even when the wearable is not
paired with a handheld.

You implement location services in a wearable using the Google Play Fused Location Provider, just as you would
in a handheld. The Android operating system takes care of choosing the GPS sensor (wearable or handheld) and
implements any necessary communications between devices. The handheld GPS is preferred when both devices have
a GPS sensor, and the switchover between sensors is automatic when pairing status changes.

You can create your first location-aware wearable app without writing a single line of handheld code. You don’t even
need to implement a handheld Activity. The section shows how.

8.1 First Wearable GPS

If you have not already done so, Create a Project. The new project wizard in Android Studio beta creates a project
with two main activities, one for the handheld device and another for the wearable. These two activities use the same
package name, which is essential for the wearable GPS to work.

8.1.1 Add Permissions and Metadata for Google Play Services

Modify the wearable manifest file to permit location service access and define Google Play Services metadata. This
example gives access permission for course location only.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application>

<meta-data android:name="com.google.android.gms.version" android:value="@integer/google_play_
</application>

Add Build Dependencies

Add the following build dependencies to the wearable build.gradle file (Module:wear) in the Gradle Scripts folder, if
necessary.

37

Android Wear Docs, Release 1.1

dependencies {
compile ’com.google.android.support:wearable:1.1.0’
compile ’com.google.android.gms:play-services-wearable:6.5.+'
compile ’'com.google.android.gms:play-services-location:6.5.+’

8.1.2 Add a Location Listener

1. Build a Google Play Services client that includes the LocationServices API.

public class WearableActivity extends Activity implements
GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener
LocationListener {

GoogleApiClient googleClient;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity_ handheld) ;

// Build a new GoogleApiClient

googleClient = new GoogleApiClient.Builder (this)
.addApi (LocationServices.API)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
Jbuild();

// Location listener implementation (Step 2)

2. Register a location listener for the Fused Location API.

// Connect to Google Play Services when the Activity starts
@Override
protected void onStart () {
super.onStart () ;
googleClient.connect () ;

// Register as a listener when connected
@Override
public void onConnected (Bundle connectionHint) {

// Create the LocationRequest object

LocationRequest locationRequest = LocationRequest.create();

// Use high accuracy
locationRequest.setPriority (LocationRequest .PRIORITY HIGH_ACCURACY) ;
// Set the update interval to 2 seconds

locationRequest.setInterval (TimeUnit.SECONDS.toMillis (2));

// Set the fastest update interval to 2 seconds
locationRequest.setFastestInterval (TimeUnit.SECONDS.toMillis (2));

// Set the minimum displacement
locationRequest.setSmallestDisplacement (2);

38

Chapter 8. Wearable GPS

Android Wear Docs, Release 1.1

/ Ta— 7 o o R 2 TA~Aat T AAr 1T NS A
// Register listener using the LocationRequest object

LocationServices.FusedLocationApi.requestLocationUpdates (googleClient, locationRequest,

// Disconnect from Google Play Services when the Activity stops
@Override
protected void onStop ()

if (mGoogleApiClient.isConnected()) {
LocationServices.FusedLocationApi.removelLocationUpdates (mGoogleApiClient, this);

googleClient.disconnect () ;
}
super.onStop () ;

// Placeholders for required connection callbacks
@Override
public void onConnectionSuspended (int cause) { }

@Override
public void onConnectionFailed (ConnectionResult connectionResult) { }

3. Implement the LocationListener callback for location updates.

@Override
public void onLocationChanged (Location location) {

// Display the latitude and longitude in the UI
mTextView.setText ("Latitude: " + String.valueOf (location.getLatitude()) +
"\nLongitude: " + String.valueOf (location.getLongitude()));

This example displays the current latitude and longitude in the wearable UL The location is from the handheld GPS.

Latitude: 37.9313904
Longitude: -122.5382805

When the wearable is not paired with the handheld, for example when you leave the wearable behind to exercise, the
GPS automatically switches to the onboard GPS.

This screen capture is from the Sony SmartWatch 3. The number of digits displayed is greater now, providing a visual
clue that the wearable GPS is active. When you return and re-pair with the handheld, the GPS automatically switches
back to the handheld and the display returns to its original format.

8.1. First Wearable GPS 39

this)

Android Wear Docs, Release 1.1

Latitude: 37.93145586875711
Longitude: -122.53828910963347

8.2 Verify GPS Sensor

This simple example works for all wearables, with or without a GPS sensor. Those without GPS must pair with a
handheld to get location updates. A more complete implementation verifies the presence of a GPS sensor and pairing
status before using location services, and warns users or reduces functionality when necessary. You can verify the
presence of a GPS sensor as follows:

getPackageManager () .hasSystemFeature (PackageManager .FEATURE_LOCATION_GPS

8.3 Example

The working example for this section is at https://github.com/LarkspurCA/Wearable GPS.

8.4 Golf Rangefinder Example

Golf is an activity where you often want to know the distance to the next hole so you can choose the perfect club for
the shot. There are plenty of rangefinders on the market today, but few are as small and convenient as a smart watch.
The golf rangefinder example (Clipon Caddie) is a sample application that utilizes the GPS concepts in this section
to perform a useful task for golfers, to determine the current location and display the number of yards to the current
hole. The full source code code is available at https://github.com/GolfMarin/CliponCaddie and the installable app is
at http://cliponcaddie.com.

40 Chapter 8. Wearable GPS

https://github.com/LarkspurCA/WearableGPS
https://github.com/GolfMarin/CliponCaddie
http://cliponcaddie.com

CHAPTER 9

Contact Us

Android Wear Docs
415 924-7733
mike @androidweardocs.com

@DroidWearDocs

41

mailto:mike@androidweardocs.com

Android Wear Docs, Release 1.1

42 Chapter 9. Contact Us

cHAPTER 10

Indices and tables

* genindex

e search

43

	How Does Android Wear Work?
	Set Up the Development Environment
	Set Up Your Handheld Device
	Set Up Your Wearable
	Next Steps

	What About the Sample Apps?
	Open a Sample Project in Android Studio
	Launch the Sample App or Service
	Try the Watchface Sample
	Try Eliza Chat
	Try Recipe Assistant
	Try Wearable Notifications

	Android Wear Suggest
	First Android Wear Suggest
	Example

	Android Wear Demand
	First Android Wear Demand
	Example

	Wearable Application Launch
	Voice Activation
	Menu Activation
	Handheld Activation

	Data Layer Messages
	First Wearable Message
	Example

	Data Layer DataMap Objects
	First Wearable Data
	Example

	Wearable GPS
	First Wearable GPS
	Verify GPS Sensor
	Example
	Golf Rangefinder Example

	Contact Us
	Indices and tables

