USERS GUIDE

SNAP 2.2 Migration Guide

Transitioning from Version 2.1

Wireless Technology to Control and Monitor Anything from Anywhere™

© 2009 Synapse, All Rights Reserved.

All Synapse products are patent pending.

Synapse, the Synapse logo, SNAP, and Portal are all registered trademarks of Synapse
132 Export Circle

Huntsville, Alabama 35806

877-982-7888

Doc# 600023-01A

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 2 of 43

j O [(o Te [¥ Lot { T o AP 7

About This Document (An Important SECtioN t0 r€ad)eeeecuiiiiiiiiiie ettt rre e e aaeee s 7
Other IMmportant DOCUMENTATIONccciiiiieiiiiiee ettt et e e e eree e e et e e e e e bte e e e e abaeeesnbaeeeentaeeennrens 7
SUMMATY Of NEW FEATUIES....cuiiieeiiiiee ettt e e et e e e e tte e e e et e e e e abeeessabteeeesabaeeeesteeeeanseeeeennsees srenas 8
VTR o1 Y o o s 4 T o o Lo o SR 8
More Visibility into the Mesh NETWOIKcoooiiiiiiiiiee et e e e bre e e e ebaeeeenes 8

T oI R CTa- 1o [V = [4V 8
IMIOTE POWEITUL ..ttt ettt ettt et b e bt e b e s b e s beeshe e saeesatesane eesanesanesanesanes 8
YT =Y =T o1 U = TP P PR OPPT PP 8
MOre CoONNECEIVITY OPTIONS .cciiiiiiiiiiiieiiie e e s s s s s s s s s aas 8

2.0 Upgrading to the LateSt VEISIONS.cciiciiiiiiciieeecciiee e ettt ettt e e eetee e e s ette e e s sbteeeesnbaeeeesateeeesstaeeesseeeesansaeeesnns 9
Upgrading to the 1atest POlcocuiiii ittt e e e s aa e e e s ata e e e s sabaeeeennaees 9
UPErading YOUr SNAP NOUESuviiiiiiiieeceiiieeeettie e eettee e eetee e e e stte e e e e tte e e esataeessaataeeesbaeeeesasaeeeenstasessseeeaennsenas 10
Upgrading ZIC2410 SNAP Nodes — Original Methodccoovuiiiiiciii e e 11
3.0 SOME IMPOrtaNt DIffErENCES.....uviiieciiieecceee ettt e e e e et e e et e e e s sata e e e sateeeesssaeesansaeeesssaeeesnsean 16
POrtal NOAE REFIESH ...ttt sttt ettt et e b e saeesane e 16
(WX VY Fo T B L] =Tt o o SRR PSRTN 16
DEMO BUIIAS ..ttt ettt b e st s e s bt e s e aneee s reeennreennreas 16

L B O\ W] o] Yo s s BT T o] o Lo o OSSR 19
SUPPOrted HardWare PlatfOrmSeii ettt e et e e et e e e eata e e e eatreeeesasseeeensaeeesnseeens 19
1\ [0 o Y=Y o g UEPR 19
HOW L0 USE T ettt e e s e s s e e s s e e s s saree e sreeessnrenes 20

L€ 2 [\ [W T g1 o T=T o g TSRS 20
Additional Features of the Platform INClude FIlescc.ooiiiiiiiiiniiiienee e 21
Using Platform Definitions in SNAPPY SCHIPLS......uiiiiiiiie ettt et e e eree e e e ate e e e e e e e e enree e e eaneeas 21

T g o1 (=T g T=T o} €= 4 Lo o 1SS UEPRR 22
SPECITYING The PlatfOrmm.....occ et e e e et e e e e eat e e e e sbteeeesabaseeseateeeesentaeee seaennnes 23

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 3 of 43

Y [0] o 1SRRI 24

Other Uses of the Platform Definitionc.eoieiieiieiieiieereee et e s s 24
6.0 Supported Platform DELAIlSeeiiiiiee e ae e e bte e e e ae e e eareas 25
SYNAPSE RF ENGINe ittt ettt et ataaae seeeeeeeeeeeas 25
Synapse RF ENGINe Pin ASSISNMENTS ..ccoiiiiiiiiiiiiiiiicee s 26
Freescale IMICL321X Chip . coiiiii e ccieee ettt e ettt e e ettt e e e et e e e s ata e e e saataeeeeasbeeeassaeeeanssaeeeansseeeenssseeeannes san 27
YO R A B (O IV -1 o] o112 - T PRIt 28
Panasonic PANAS55 SNAP MOUIEcouiiiiiiieiieieeiece ettt sttt sttt et be e 29
NN ST 1V, FoTe (] LI (@ Y F- T o o 11 V= 30
Panasonic PAN4555 (SNAP ENgINe FOrM FACTOr)cccuiiiiiciie ettt esttee e evee e e ite e e et ee e e evae e e 31
FEWET “WaAKEUP"” PINS .oiiiiiiiiie ettt et e e e e rte e e e e tte e e e eataee e saateeeeeabaeeeeabaeeeesteeeeansaeeeennsaeasan es 31
ANy T AN B O [oY o TU Ll T [T 31
You cannot “cheat” and read/write 8 GPIO with a single poke()ccceeeviiiiiieccie e 31
Two Additional PWM OUEPUL PINS .eeoueeiiiiiieiie ettt et e et e et e e e et e e esnaaeesenataeeesnsseaesnneeenan 31
BEEINTO() DIffEIENCES ..veei et e e e e et e e ettt e e e s aba e e e eabaeeeenstaeesasteees seeesnnsenas 32
oY Yo LV =T g Yol Te UL =T 3 Y SR 32
Pin Configuration of a PAN4555 in SNAP ENgiNe FOrMatccccuiiieiiiieeeciiee ettt 33
PANAS55 GPIO ASSISNMENTS c.ceiiiiieiiieieceeeeee e e e e e e e e e s e e e e e e e e eeaas 34
Panasonic PAN4561 (SNAP ENgINe FOIM FACTOr)ccuiiiiiiie ettt ettt e et e e e a e e 35
Increased NUMDEr Of GPIO PiNS.......oiiiiiieieiie ettt ettt sttt sttt e b e beebe e beesbeenns 35
Platform SPECIfiC SETEINGSoeiiiiiiee et et e e et e e e et te e e e e ba e e e eabee e e ebeeeeeenseeeeennteeeeanes 35
Platform Specific Hardware Configurationcoccuiieiiiiii et et aae e 36
ADC PINS ..ttt e e e e e e s a et e s a et e e e na e srae e e s ar et e e s anrare s 36
LOW POWET SEEEINGS (LNA/PA) . ettt ettt ettt e e et e et e et e e e te e eebeeesabeeeabeeebesensreeenbeeenseeenns 36
Default UART remains UART Lottt ettt ettt e s b e bt e sae e smt e st sat et e et eesbeenbeesbeesbeenas 37
[2C EMUIation vS. HAardWare PiNSueeieeiiiiiiiiieee e e eeeciitiee e e e s sseittteeeeessssanbaaeesesssesnsssnseessssssnnsensessessannssnns 37
Additional PWIM OULPUL PiNSeeiiiiiieii et eecctree e e s ee e e e e e e e et ae e e e e s sesnabraeeeesesennnsnenneeessssnnnsenns 37

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 4 of 43

Fodcia oY (o] D11 £=T =T Lol =TSSP 37

PANASEL GPIO ASSISNMENTS cciiiiiiiiiiiiiiiicici e e e e e e e e s e e e e e s e s e e s eeseeneessenssesssssnnnns 38
Pin Functionality for the PANAS61 MOUIEuviiieiiiie ettt et e s e e e aaeeean 39
Pin Configuration of a PAN4561 in SNAP ENgiNe FOrmMatccccveiiiiiiieeciiieeecieee e 41
California Eastern Labs ZIC24T10.....cccueeiuiiiierierieniteete sttt ettt ettt et sbe e s bt saee st e st e saneebesbeebeeneenneens 42
P A0 2 N KO R (O Y -1 o] o112 V- SO P PP PPPPPPPPPR 42
SeParate ANAlOg INPUL PiNS...cocuiiiiiiiie ettt e et e et e e e s eta e e e seatae e e ebteeessabaeeesansaeeesnnteeassnnes 43
[2C EMUIGTION .ttt et e b e bt e s bt e sb e she e sate s et e sabe s bt e b e e bee e eabee bt enreenreens 43

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 5 of 43

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 6 of 43

1.0 Introduction

About This Document (An Important section to read)

This manual was written to serve as an interim guide to the key differences between SNAP version 2.1 and
SNAP version 2.2. In this document we are focusing mainly on the differences that could become obstacles,
if we don’t warn you about them first.

Basic features are covered in detail within the 2.1 version of the “SNAP Reference Manual”. The full
details related to the new features outlined in this document will be covered in the upcoming 2.2 version of
the “SNAP Reference Manual” and the new “SNAP Users Guide”.

Other Important Documentation
In addition to this document, you will want to refer to the “SNAP 2.2 Release Notes” and the “Portal 2.2
Release Notes”.

You should also refer to the existing (2.1) versions of the “SNAP Reference Manual”, the “EK2500 User
Guide”, and the “EK2100 User Guide”. Even though these documents have not yet been brought up to
date for SNAP 2.2, most of the information in them still applies. Where there are big differences, they are
covered in this interim document.

All of these documents (as well as new ones going forward) can be downloaded for free from our online
support forum at http://forums.synapse-wireless.com.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 7 of 43

Summary of New Features
The “SNAP 2.2 Release Notes” and “Portal 2.2 Release Notes” go into more detail, but here is a high level
view of what has changed since version 2.1.

Multi-platform Support

Additions to Portal, the SNAP sub-system, and the SNAPpy scripting language have been made in order to
support chips and modules other than those related to the Synapse RF Engine. The details are discussed in a
separate section, but the following platforms have been added to the SNAP portfolio:

e The ZIC2410 module or chip from CEL
e The PAN4555 module from Panasonic
e The PAN4561 module from Panasonic
e The MC1321x chip from Freescale

More Visibility into the Mesh Network

Although SNAP Mesh Routing is automatic, and takes place “behind-the-scenes” with no user intervention,
it is useful to provide more information and more control on “how Mesh routing is working”. Version 2.2
takes several steps forward in this direction such as Traceroute and Topology capture (.dot file creation).

Finer Granularity
More timer hooks have been added as well as a finer granularity in the duration of sleep() and pulsePin()
functionality.

More Powerful
There were also some changes made to make SNAPpy scripts more capable. These include:

e Tuples

e Dynamic Strings

e New built-in callout()

e Limited internal radio access
e Low Voltage Detect

More Secure
SNAP nodes have been made more secure through the addition of a ‘Lockdown’ mode.

More Connectivity Options
Version 2.2 allows you to connect to even more types of external devices through built-in support for:

e RS-485 support
e LCD support
e Higher radio data rates

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 8 of 43

2.0 Upgrading to the Latest Versions

The upgrade process from any 2.x version to version 2.2 is the same as previous versions. You will need to
have downloaded the latest Portal (Version 2.2.x) from the Synapse Wireless website. Please see the
sections below for notes on upgrading the various software pieces to version 2.2.

Upgrading to the latest Portal
If you are familiar with upgrading from previous versions of Portal you may want to skip this section as the
process is unchanged.

After you have downloaded the setup file from the Synapse Wireless website, double-click to start the
installation. If you had any previous version of Portal installed it will first prompt you to uninstall.

Synapse Portal 2.2.21 Setup il

TT Synapse Porkal is already installed,
L

Click " Ok ko remave the previous version ar ~Cancel” ko cancel this upgrade,
Cancel |

After the previous Portal version has been in uninstalled the normal setup process should begin. Follow the

setup wizard instructions to complete the installation:

& Synapse Portal 2.2.21 Setup - 0] x|

Welcome to the Synapse Portal
2.2.21 Setup Wizard

This wizard will guide yvou through the inskallation of Synapse
Portal 2.2.21,

It is recommended that vou close all other applications
before starting Setup, This will make it possible to update
relevant swstem files withaut having ko rebaoak wour
computer,

Click. Mext to conkinue,

Zancel |

For further information about the Portal setup wizard, see the EK2100 or EK2500 Users Guide.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 9 of 43

Upgrading your SNAP Nodes

If you are familiar with upgrading from previous versions of SNAP you may want to skip this section as the
process has not changed. Starting with Portal version 2.2.22 it is now possible to upgrade ZIC2410 based
nodes. If you need to erase the SNAPpy script or default the NV parameters on a ZIC2410 node, please see
the section entitled “Upgrading ZIC2410 SNAP Nodes”.

Included with the installation of Portal are the necessary Synapse Firmware Image (.SFl) files to upgrade
your SNAP nodes. Upgrades use UART1 of the SNAP nodes. This means a connection to the second serial
port (usually RS-232) of the device being upgraded is required. Note that the SNAPstick carrier does not
support re-programming. You must move the node to some other board (like an SN171 Proto Board) in
order to upgrade that node’s firmware.

First make sure you have an RS232 connection to the node you are upgrading. From Portal’s Options menu,
select Firmware Upgrade... The following dialog box will be displayed:

SNAP Mode Flash Upgrader ;Iglil
Park: I j ":.-;"7

Fitrnwate Irnmage: Oper. ..

Progress:

Please select a firmware image

pgrade Close |

Portal will scan your COM ports, and should find the first Synapse device connected to a serial port. If that
is not the node you want to upgrade, you can hit the “Z re-scan button to automatically search for the next
serial port with a responding node on it. If Portal does not automatically find your SNAP node, you can
manually select the correct COM port. If you have more than one node connected via RS-232 ports, you
may also manually select the correct one instead of repeatedly pressing the button.

Next, select the Firmware Image to be used for the upgrade. With the multiple platform support added in
version 2.2, there are several more .SFl files included. Be sure to select the correct file for your platform:

Platform Filename

Freescale MC1321x
Panasonic PAN4555 MC1321x_*.sfi
Panasonic PAN4561

Synapse RF Engine *SnapV* .sfi

CEL ZIC2410 ZIC2410_*.HO* (early releases)

ZI1C2410_* sfi (later releases)

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 10 of 43

After choosing the correct firmware image to load, press the Upgrade button to begin. Follow the
instructions given in the dialog, which may have you restart (power-cycle or reset) your device to complete

the process.

Please restart wour device ko skark the upgrade.
Press the reset button or power off and back on.

The serial part must be connecked ba UARTL
af the targek RF Engine.

New firmware will be sent to the SNAP node over the serial connection. After the upgrade has been
completed you will need to reload any SNAPpy script that was previously on the node. All NV parameters
are preserved during the upgrade process.

Upgrading ZIC2410 SNAP Nodes — Original Method

The original process for ZIC2410 SNAP Nodes uses a different firmware upgrader than for other SNAP
nodes. If your version of Portal only includes ZIC2410*.HO* files, use the following instructions. If your
version of Portal includes ZIC2410*.sfi files, you can use the normal procedure described above.

Using the device programmer, load the banked HEX files into the ZIC2410. Note that “Bank On” is selected,
and we don’t need any “Hardware Information”.

Connect to UART 1 (this is the USB port on the EVB3 board from CEL) and select the corresponding serial
“COM” port for download. Reset the module in ‘ISP” mode to enter the bootloader, as usual.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 11 of 43

(fll Device-Programmer - CEL Inc. |Z||E|rg|
File(Fy Wiewiy) Setup(3) HelpiH)

» DirectDownload v | |ZIC2410FGTZ/ZIC241 00N = || +] ?

(m]m]

| J | J |C:\.SynapselSnappy'ttrunk\Target‘.Coreﬁ WTIC24 Dbin'Snap.
Bank 0 Mame : SnapZic2410 HOO
Last modified time S 130142009 15:44:11
Bank 1 Mame : Snapic2410HO
Last modified time S 130142009 15:44:11
Bank 3 Mame

Last modified time

Start Time D150 52009 15:44:24:046 Finigh Time © 130152009 154432078
[@ RoM Opeion [@] Seet Mok Cortigraion Ty
i
{+
i
r {s
~
Califunﬁa Eastern Laboratories
~
1| >
[2003/01413 15:44: 32] isp command(0=04] : waddr 023000, wsize 02100, csum 0200 ~
[2003/01./13 15:44: 32] [success] External Senal ROM Program B
[2009/01,/13 15:44:32)

After successful programming, remember to set the ‘ISP/NORMAL’ switch back to ‘NORMAL’ mode, and
reboot.

Now that the programming has been completed it is necessary to reprogram the MAC address of the node
using Portal.

We will continue to use UART1 for the initial configuration with Portal. After the device is reset, start
Synapse Portal software and your new SNAP device will be discovered on the COM port assigned to UART1.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 12 of 43

Iyl Synapse Portal-6: default.swn I o] |
File WView Options Metwork Help

i (1= bk |

a
anm

| tods Views | W vode mfo_ x| |
BEE B | B e | ||Acti\re Hodes 'l S Ly Ld
Mode | Metwork Address | Device Image | Link Qualit | Device Type |
,gPortal 00.00.08 alphaPortal. py Portal
Firmware Yersion: |:
Platform:
MNetwork Address:
MAC Address:
Device Image:
Image CRC:
Image Size:

Connect to Port

Pty |COME =

Progress: Found SNAP Bridge Device on Port COME

cos |

I TG et rrormaton collected

Info
’;n wour Portal scripk, use
remntelinde. setColumoiname,_valish

| EventLog |

Time Event Device Type Yalue o
2009-09-14 11:21:29 COML0: Read error
2009-09-14 11:21;30 COM12: Read error
2009-09-14 11:21:44 USBO: Found
2009-09-14 11:21:46 COML: Read error
2009-09-14 11:21:48 COMB: Found
2009-09-14 11:22:21 USED: Found
2009-09-14 11:22:23 COML: Read errar
2009-09-14 11:22:24 COME: Found
=
|Ready | A, synapse-wireless, com |RPC5 in Queue: 0 |Disconnected 4

After connecting, the first thing you need to do is set a unique MAC address for the device. In production,
this is typically done by an automated test fixture, after the MAC address bar-code is scanned. Until it is
set, the default MAC is 00:1C:2C:00:00:00:00:FF. This must be changed for proper network operation!

For temporary engineering evaluation purposes, assign MAC addresses as follows:

“Nx00\x1C\x2C\x00\x00\xCE\x00\x01"’

Increment the last hex-byte for each successive device, up to 255 (\xFF). Note that the string above is

shown in the format required by Portal’s ‘saveNvParam()’ Builtin function. This is the function we'll use to
program the MAC address, as shown below:

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 13 0of 43

Node Info 3¢

=

=P PE

::I ﬂ{ &.Jl

Nide

=10))

Firmware ¥ersion: 2.2, 14

Platform:

Network Address: 00.00.0F

MAC Address: 00: 120 00:00:00:00: 0F
Device Image:
Image CRLC:
Image Size:
License: Permanent
Channel: 11
Network ID: Ox1C2C

—Path

saveNvParam (..)

id Iz—
9B} [{x 00} CE00Ye01 |
Mo path infor ITI

Cancel |

—Info

In wour Porkal script, use
remotefode. setCalurmniname, value)
to display information here

izcwritelbytesStr, retries, ignoreFirstack)
imagefarnel)

initart{uartMum, baudrate)
inikh'

int{obi)

lcdPlot{args)

lenisequence)

loadhvParamiid}

localaddr)

mcaskRpoidstroups, tl, remoteFnobd, args)
measkSerial{dstGroups, b
monitorPindpin, istonitored)
ord{str)

peekladdr)

peekR adioladdr)

pokefaddr, byteval)
pokeRadioladdr, byteialue)
pulsePinipin, msywidth, isPositive)
randonmi)

readadcichannel)

readPinpin)

reboobi)

resethmi)

tpc(dstAddr, remoteFnobi, args)
tpcSourcedddr)

raiisEnabled)

savehlvParamiid, obfl |

scanEnergyi)

setChannelichannel) LI

Click on saveNvParam() in the Node Info panel’s Builtln function tree (you may have to scroll down to find
it —they’re alphabetized.)

Fill-in the MAC NV parameter:

id =2

o

obj =“mac address “ < Note: must be in quotes

saveMyParam (...}
id |2

OB [1001xCEl <0001

> |

x|

Cancel |

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 14 of 43

Next, reboot the device to put the new MAC into effect. You can do this either with a physical HW reset, or

click the reboot button in Portal.

DS 4L

B XD

Finally, refresh Portal’s view of the Network by selecting the “New Configuration” menu item as shown

below. Portal will ping the network and find your SNAP devices at their currently assigned MAC addresses.

[yl Synapse Portal-6: default.swn
File ‘iew Options | Nebwark Help

AR =R A

Mode Views »

Broadcast PING
Find Modes, ..
Generate Topalogy .DOT File

E== 0k
Mode
EF‘Drtal

Mew Configuration

Cpen Configuration, ..
Save Configuration &s. ..

| Link Quality | Device Type |

t,s Mode

CE.00.01

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

5%

Portal

Page 15 of 43

3.0 Some Important Differences

As with all new and great things there are some important differences to point out as you use version 2.2

Portal Node Refresh

In Portal we have added the option to disable automatic refresh of the node’s information. In version 2.1
when a node was discovered for the first time or when a node became reachable on the network we would
automatically refresh his information. In 2.2 in the Preferences it is now possible to turn this feature off.
When this feature is disabled it prevents Portal from sending unsolicited RPC calls to nodes it discovers.
This feature has been very useful for people who have large SNAP network and want to decrease
management traffic.

Certain node activities will also be disabled if you choose to disable retrieving the node’s information. For
instance, if we do not know the node’s firmware version then we do not know if it supports trace route
requests. Until we know this piece of information that option in the toolbar of the Node Info panel will be
disabled.

Ll

-l

i o B X P

The most notable instance of where you might see this is when uploading to a node. If we have not
received the node’s version and platform then the upload option will be disabled. The easiest way to

retrieve this information from a node is to choose ‘= Refresh from the Node Info toolbar.

Low Voltage Detection

SNAP nodes now have the ability to detect a low voltage condition. When this condition is detected then
writing to flash is disabled to prevent corruption. It is important to note that script uploading writes to
flash which means a script upload may be prevented due to a low voltage condition. When this occurs you
will see the following dialog:

SNAPpy Upload x|

@ An error occurred while writing the SMAPpy image, operating voltage too low

Demo Builds

If you purchase a demonstration kit or individual nodes from Synapse Wireless or one of its distributors,
you have a license for SNAP to run on those purchased products. Customers who are looking to build their
own products with radios provided by vendors that run SNAP may be provided with a demo build. These
builds are limited in the number of reboots that may be performed before their functionality is reduced.
The license status of each node is displayed when clicking on the node in the Node Info panel:

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 16 of 43

Mode Info 3¢

AT LLEE i BT XD
4.:::\ Firmware Yersion: 2,2,14 with AES-125 | =
@ Platform: PAM4555 [+ BuilkIn

E Network Address: FF.F4.41
MALC Address: 00:1C:2C:01:00:FF:Fd:41
Device Image:
Image CRLC:

Image Size:

@: Temporary 21 Reboots Left

Channel: 11
Network ID: Ol C2iC
—Path

Mo path information collected

~Info
In your Portal scripk, use
remokeMode . setColumniname, value)
ko display information bere

Once the reboot limit has been reached the SNAPpy script will be disabled and uploading to the node is not
allowed. When this condition occurs the Node Info panel will indicate the new license status:

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 17 of 43

Mode Info

VA S AL o B XD

N 3de2

Firmware Yersion: 2.2, 14 with AE5-128 | =]

Platform: PARN4555 BuilkIn
MNetwork Address: FF.F4.41

MALC Address: 001 2C:01:00:FFiF4:41

Device Image:

=10))

Image CRC:

Image Size:

License: Expired
Channel: 11
Metwork ID: D 1C2C
—Path

Mo path information collecked

—Info
In wour Portal script, use
remaoteiode, sekColumniname, valug)
ko display information here

To obtain a permanent license for your SNAP node please contact your sales representative.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 18 of 43

4.0 Multi-platform Support

To support SNAP on a wide variety of hardware configurations, we’ve added two new concepts to SNAPpy.

The first new concept is a change in the internal numbering scheme used by the “digital I0” SNAPpy built-

ins. These include functions like readPin(), writePin(), etc.

The second is the introduction of a ‘platform’ parameter that allows for the proper mapping of the digital
|0 within SNAPpy scripts.

Supported Hardware Platforms
The following is a list of supported platforms as of the SNAP 2.2 release.

Hardware Platform (and associated RawI/0
import)
Synapse RFEngine* RFEngine (RFEngine.py) 0-18
PAN 4555 Module User Defined Option 0-18
PAN4555 SNAP-Engine* PAN4555_SE (PAN4555_SE.py) 0-18
PAN 4561 Module User Defined Option 0-32
PAN4561 SNAP-Engine* PAN4561_SE (PAN4561_SE.py) 0-32
MC1321x Chip User Defined Option 0-32
Z1C2410 Module User Defined Option 0-23
Z1C2410 Chip User Defined Option 0-23

* Synapse “SNAP Engine” carrier pin-out

The Synapse RF Engine® is a popular wireless device with a particular footprint (pin out) and form factor.
(Refer to the SNAP Hardware Reference Manual for more details).

We refer to devices that conform to this form factor (or at least the
footprint) and are running SNAP as SNAP Engines. Currently you can get
SNAP Engines from Synapse (RFE, RFET) and Panasonic (PAN4555 and
PAN4561). Although SNAP runs on ZIC2410 chips and modules, there
currently is no ZIC2410-based SNAP Engine.

Image: SNAP Engine Form Factor

IO Numbering
If you are working with SNAP chips or SNAP modules directly, you are working at the level of Raw 10 (“I0”
for short).

This 10 numbering scheme follows the internal peripheral model for the chip. For example, if a chip
internally has three 8-bit |0 ports labeled “A”, “B”, and “C”, then it has 24 total 10 pins (“10s”), numbered
from 0-23. Port “A” contains 10 0-7 (0 is LSBit, 7 is MSBit), port “B” contains |0 8-15, and port “C” contains
10 16-23.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 19 of 43

How to Use It
As of version 2.2, |0 numbering is the “native” numbering scheme for SNAPpy. Built-in functions like
setPinDir(), readPin(), writePin(), pulsePin(), etc. all accept raw 10 numbers.

To use |10 numbering, you don’t have to do anything special. Assuming an LED is hooked up to your first
usable 10 pin, you could use something like pulsePin(0, 500, True) to blink that LED.

However, we strongly recommend against using such “magic numbers” throughout your scripts. Instead
define constants with meaningful names, such as:

LED_PIN = 0
You can then script actions like pulsePin(LED_PIN, 500, True)

You can find more details about the 10 available on a particular SNAP Platform by looking in Section 6 of
this document.

GPIO Numbering

This is the second numbering scheme you might find yourself working with. You will notice this is what we
use in the majority of the example scripts included with Portal.

The footprint of all SNAP Engines defines 19 pin positions as General Purpose 10 (GPIO) pins. Numbered
from GPIO 0 to GPIO 18, these represent a somewhat abstract concept — they exist only in the context of
the SNAP Engine headers.

Synapse offers several “demo/prototyping” boards that accept SNAP Engines:

e SN163 Bridge Demonstration Board

e SN111 End Device Demonstration Board
e SN171 Proto Board

e SN132 SNAPstick

e SN170 Relay Board

In addition, several OEMs have put sockets onto their own boards to directly accept Synapse RF Engines (or
other pin compatible SNAP Engines).

When writing scripts to run on these boards, it is helpful to think in terms of GPIO numbering.

Prior to SNAP version 2.2, “GPIO numbering” was also the “native internal numbering”. In other words, in
SNAP 2.0/2.1, saying readPin(0) was the same thing as saying readPin(GPIO_0).

As of version 2.2, to use GPIO numbering in your scripts simply include the corresponding “platform include
file”. For example, if you are writing a script to run on a Synapse SN171 Proto Board, equipped with a
PAN4555 SNAP Engine, put the following line near the top of your script:

from synapse.PAN4555 SE import *

This will correctly define named constants GPIO_0 through GPIO_18 so that you can script actions like:

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 20 of 43

pulsePin(GP10_1, 500, True)

Even then, we strongly recommend that you define meaningful constants instead, doing something like:

LED_PIN = GPI10_1
<more script goes here>
pulsePin(LED_PIN, 500, True)

NOTE - the Synapse RF Engine is a special case, since it is only available as an “RF Engine”. Because of this,
it’s mapping of 10 numbers to GPIO numbers is “1-to-1”. In other words, GPIO_0=0, GPIO_1=1, etc. To
state it another way, nothing has changed in the RFE IO numbering.

We still recommend you not hard-code magic constants, and we have also provided an RFEngine.py
“platform include file” as a convenience.

Additional Features of the Platform Include Files
In addition to defining constants GPIO_0 through GPIO_18, files like PAN4555 SE.py also provides two
“lookup tables” (tuples).

GPIO_TO_IO_LIST can be used to convert from (you guessed it) GPIO numbers to |0 numbers. For example,
GPIO_TO_IO_LIST[O] gives you the IO pin number corresponding to GPIO_0.

I0O_TO_GPIO_LIST can be used to perform the opposite conversion.

Just like PAN4555_SE.py covers the PAN4555 based “engine”, there are files for the original RFE
(RFEngine.py), and the PAN4561 (PAN4561_SE.py).

You can expect this set of files to grow over time, as SNAP is ported to more and more platforms.

Using Platform Definitions in SNAPpy Scripts

The information in the beginning of this section explains a way to make a script that runs, for example, on a
PAN4555 based “engine”, or a script that runs on a PAN4561, or a script that runs on a ZIC2410. But what if
you want to write a single script that can work on all three?

An approach that would work (but has serious shortcomings) would be to do something like:

NOTE! — This is NOT how you really do it, I am trying to make a point!
Uncomment one of the following lines before uploading

this script into each type of SNAP Node

PLATFORM = ““RFEngine”

#PLATFORM = “PAN4555_ SE”
#PLATFORM = “PAN4561_ SE”
#PLATFORM = ““something else”
<more script goes here>
if PLATFORM == “RFEngine”:
<code specific to RFE goes here>
elif PLATFORM == ““PAN4555 SE:
<code specific to PAN4555 SNAP Engine goes here>
(and so on)

The disadvantage to such an approach is that you have to manually edit the script, save the changes, and
upload it to each different type of SNAP node in the network. Let’s look a better approach...
SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 21 of 43

Implementation
The hypothetical example given above differs only slightly from how the system really works in version 2.2.

from synapse.snapsys import * #<- this gives the "platform” definition

if platform == "RFEngine":

<code specific to RFE goes here>
elif platform == "PAN4555 SE":

<code specific to PAN4555 SNAP Engine goes here>
(and so on)

By importing “snapsys” (by adding “from synapse.snapsys import *” to your SNAPpy script), you
automatically gain a variable named “platform” that is already filled in with the type of the SNAP node. The
platform is retrieved from the node by Portal along with the other information specific to that device (MAC
address, Device Image, Firmware Revision, etc.) during the node refresh process. Refer to the earlier
section entitled “Portal Node Refresh” for more information.

This approach has two advantages:

1) You do not have to manually edit the script (and save it) before uploading it into each different type
of SNAP Node. Portal will automatically build the script for the appropriate platform before
uploading it.

2) The generated byte-code (an operation performed by Portal) for all possible hardware platforms is
not included in every generated SNAPpy image. Instead, each image includes only the code needed
by that platform. This reduces the size of the image, allowing you write larger SNAPpy scripts with
greater capabilities.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 22 of 43

Specifying the Platform

The other piece of the puzzle is a new NV Parameter that was just added for version 2.2. NV Parameter #41
is the (user settable) Platform ID for the node. This platform setting is how Portal can select which files are
to be conditionally imported.

Note: The NV Parameter representing the platform is simply a string that can be set to any unique value.
The means you can define your own platform name to identify your own unique hardware.

You can see this new setting in the Configuration Parameters dialog box.

NodeB - Configuration Parameters [‘5_<|

Metwork | Device | Multi-cast | UART | Mesh | Security
MAC Address |

Dewice Mame | Modes

Dewvice Type | Bridge

Feature Bits |

Defaulk UART | o

|

|

|

|

|
@| PAN45E1 >

|

Radio Trim |

o] Cancel Refresh [|Rebook After Apply
T —

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 23 of 43

You can also see this new setting in the Node Info pane.

VT LG BT XD

Node8

Firmware ¥ersion: 2.2.14 | =

@ < Platform: PaN4551 + - BiltIn

E Metwork Address: BE.16.02 +-evalBase
MAL Address: 00; 1C:2C:00:00:B6: 16:02 =hMcastCounter
Device Image: McashCaunter buttonEvent{pinkum, isSet) <-- GPIN
Image CRC: 0%697D changeledPatterni)
Image Size: 2677 bvtes (17%) Mj
. incrementCount()
License: Permanent renoFtBUEt OnC oUnk)
Channel: 7 setButtonCounk{newiZount)
Network ID: O=FADE skartupEwenti) <-- Startup

When 2.2 Portal compiles a SNAPpy script (before uploading it), it uses the value of parameter #41 read
from the actual node to determine what to set the “platform” variable to.

Example

One example of this new capability in action is the NewPinWakeupTest.py script (look in your
snappylmages subdirectory), and the other SNAPpy scripts it imports (look in the synapse subdirectory
under the snappylmages directory).

Other Uses of the Platform Definition

You could alternatively use the Platform feature to customize SNAPpy images for different variations of
your own hardware, or different vendor evaluation boards.

NOTE! You do not have to use the GPIO mapping described in this section. If you are only developing on a
single type of hardware, you can simply write your script with the specifics of that hardware. However,
these concepts outline how you can write scripts that might /later be adapted to run on different
combinations of hardware.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 24 of 43

6.0 Supported Platform Details

In the remainder of this document, we present some of the low-level hardware details of each platform
(physical environment) you might be writing SNAPpy scripts for.

Synapse RF Engine
The original SNAP platform...

Currently only available in the SNAP Engine form factor, the RF Engine® supports 19 GPIO pins (GPIO_0 to
GPIO_18), each with different special abilities.

Any of the 19 GPIO can be a digital input, or digital output.
Six of the 19 GPIO support a hardware “wakeup” capability, see GPIO 1, 2, 5, 6, 9 and 10
Eight of the 19 GPIO can be used as analog inputs, see GPIO 11-18 (but notice the order)

Four pins support UART 0, see GPIO 3-6. If you do not need RTS/CTS signals, then GPIO 5 and 6 are available
for other usage.

Four pins support UART 1, see GPIO 7-10. If you do not need RTS/CTS signals, then GPIO 9 and 10 are
available for other usage.

Three pins can optionally be used for CBUS, see GPIO 12-14. You will also need one “CBUS Chip Select” pin
per external CBUS device. Any available GPIO pin can be used for this purpose.

Three pins can optionally be used for SPI, see GPIO 12-14. You will also need one “SPI Chip Select” pin per
external SPI device. Any available GPIO pin can be used for this purpose.

Two pins can optionally be used for 12C, see GPIO 17 and 18.
One pin can optionally be used as a Pulse Width Modulation (PWM) output, see GPIO 0.
The seven-segment LED displays on the SN163 and SN111 demo boards connect to GPIO 13 and 14.

On the next page the reference chart from the SNAP Reference Manual is repeated for your convenience.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 25 of 43

Synapse RF Engine Pin Assignments

Pin No. Name Description
1 GND Power Supply
2 GPIO0_TPM1CH2 GPI/O, or Timerl Channel 2 (ex. PWM out)
3 GPIO1_KBIO GPI/0O, Keyboard Interrupt
4 GPI102_KBI1 GP1/0, Keyboard Interrupt
5 GPIO3_RX_UARTO GPI/O, or UARTO Data In
6 GPIO4_TX_UARTO GPI/O, or UARTO Data Out
7 GPIO5_KBI4_CTSO GPI/0, Keyboard Interrupt, or UARTO CTS output
8 GPIO6_KBI5_RTSO GPI/0O, Keyboard Interrupt, or UARTO RTS input
9 GPIO7_RX_UART1 GPI1/0, or UART1 Data In
10 GPIO8_TX_UART1 GPI/O, or UART1 Data Out
11 GPIO9_KBI6_CTS1 GPI/0, Keyboard Interrupt, or UART1 CTS output
12 GPIO10_KBI7_RTS1 GPI/O, Keyboard Interrupt, or UART1 RTS input
13 GPIO11_AD7 GPI1/0, Analog In
14 GPIO12_AD6 GPI/0O, Analog In, CBUS CDATA, or SPI MOSI
15 GPIO13_AD5 GPI/0, Analog In, CBUS CLK, or SPI CLK
16 GPl014_AD4 GPI/O, or Analog In, CBUS RDATA, or SPI MISO
17 GPIO15_AD3 GPI/0, or Analog In
18 GP1016_AD2 GPI1/0, or Analog In
19 GPI017_AD1 GPI/O, Analog In, or 12C SDA
20 GP1018_ADO GPI/0, Analog In, or 12C SCL
21 vcc Power Supply
22 PTGO/BKDG Background Debug Communications
23 RESET* Module Reset, Active Low
24 GND Power Supply

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

Page 26 of 43

Freescale MC1321x Chip

This section applies to you if you are running SNAP on a “raw” MC1321x chip.

If you are running SNAP on a Panasonic PAN4555 or PAN4561 module which is based on the MC1321x,
please refer instead to one of the following sections.

The MC1321x port of SNAP implements 33 “IO” pins (refer to section 4 of this document if you do not
understand the difference between an “10” and a “GPI0Q".)

The mapping is as follows:
PTAO — PTA7 are mapped to |0 0 — 7. These pins also support “wakeup” capability.
PTBO — PTB7 are mapped to |10 8 — 15. These pins can also be used as analog inputs.

PTCO — PTC7 are mapped to 10 16-23. PTCO/10 16 can be used as the UART 1 TX. PTC1/I0 17 can be used as
the UART 1 RX. PTC4 is used as the PA_EN (Power Amplifier Enable) signal when enabled by the
corresponding Feature Bit (look at the NV Configuration Parameters).

PTD2 is mapped to 10 24. This pin can also be used for full PWM.

PTD4 — PTD7 are mapped to 10 25 — 28. These 4 pins can do PWM too, but can only vary the duty cycle -
the pulse frequency rate is fixed to 1 millisecond, because the underlying hardware timer is providing the
“1 millisecond time base” to the rest of the SNAP firmware.

PTEO — PTE1 are mapped to 10 29 — 30. PTEQ/1029 can also be used as the UART 0 TX. PTE1/10 30 can be
used as the UART 0 RX.

PTG1 - PTG2 are mapped to 10 31 —32.

The “missing” pins PTDO, PTD1, PTD3, and PTE2 — PTE7 are used inside the MC1321x chip to interface to the
built-in radio. Since they could never be used for external hardware, we did not give them “IO” numbers.

Some other hardware mappings:

PTA4/10 4 can be the CTS output for UART 0.

PTA5/10 5 can be the RTS input for UART 0.

PTA6/10 6 can be the CTS output for UART 1.

PTA7/10 7 can be the RTS input for UART 1.

The emulated 12C signals are on pins PTBO/IO 8 (SCK) and PTB1/10 9 (SDA).

The emulated SPI signals are on pins PTG2/10 32 (SCLK), PTG1/10 31(MOSI), and PTD6/10 27 (MISO).

The following page contains a cross-reference table for convenience.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 27 of 43

MC1321x IO Mapping

Processor Port Pin SNAPpy IO Processor Port Pin | SNAPpy IO

PTAO/KBDO 0 PTC1/RxD2 17
PTA1/KBD1 1 PTC2 18
PTA2/KBD2 2 PTC3 19
PTA3/KBD3 3 PTC4 20
PTA4/KBD4 4 PTCS 21
PTA5/KBD5 5 PTC6 22
PTA6/KBD6 6 PTC7 23
PTA7/KBD7 7 PTD2/TPM1CH2 24
PTBO/ADO 8 PTD4/TPM2CH1 25
PTB1/AD1 9 PTD5/TPM2CH2 26
PTB2/AD2 10 PTD6/TPM2CH3 27
PTB3/AD3 11 PTD7/TPM2CH4 28
PTB4/AD4 12 PTEQ/TxD1 29
PTB5/AD5 13 PTE1/RxD1 30
PTB6/AD6 14 PTG1/XTAL 31
PTB7/AD7 15 PTG2/EXTAL 32
PTCO/TxD2 16

NOTE —in the above table we are using the chip manufacturer’s naming scheme. Because of this, the first
UART is designated with a “1” and the second UART is designated with a “2”. Within SNAPpy, we refer to
these as UARTs 0 and 1.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 28 of 43

Panasonic PAN4555 SNAP Module
Because it is based on the Freescale MC1321x chip, the PAN4555 wireless module can also run SNAP.

NOTE - If you are using a SNAP Engine based on the PAN4555 module, skip ahead to the next section.

This section is for users putting the PAN4555 module directly down on their board. Because the hardware is
not in the SNAP Engine form factor, there is no such concept as GPIO. You should write your script using
plain “I0” numbering (Refer to section 4 if you don’t know what this means).

It is important to note that not all of the MC1321x pins are brought out on the PAN4555 module. The table
on the following page summarizes the correspondence between SNAPpy 10, module pin, and the
underlying processor pin.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 29 of 43

PAN4555 Module IO Mapping

PAN4555 Module Pin PAN4555 Module Pin SNAPpy 10 Number
Number Name
1,9,17,25,31 GND N/A
2 PTBO 8
3 PTB1 9
4 PTB2 10
5 PTB7 15
6 VREF N/A
7 PTA7 7
8 PTAS 5
10 PTA6 6
11 PTGO/BKGD N/A
12 PTG1 31
13 PTG2 32
14 CLKO N/A
15 PTCO 16
16 PTC1 17
18 PTC5 21
19 PTC3 19
20 PTC2 18
21 PTEO 29
22 PTE1 30
23 VDDA N/A
24,26 vee N/A
27 RESET N/A
28 PTD6 27
29 PTD4 25
30 PTD2 24
32 EXTANT N/A
SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 30 of 43

Panasonic PAN4555 (SNAP Engine Form Factor)

In addition to the existing line of Synapse RF Engines, SNAP 2.2 is also available as a SNAP Engine based on
Panasonic’s PAN4555 module. Like the RF Engines, this PAN4555 board has 24 pins, and supports 19 GPIO.
These two types of modules are largely interchangeable. However, there are a few functional differences to
be aware of:

Fewer “Wakeup” Pins

On a Synapse RF Engine, GPIO pins GP10O1, GPIO2, and GPIO5 can be used to wake the module from “sleep
mode”. On a Panasonic PAN4555 Wireless Module, GPIO pins 1, 2, and 5 cannot wake the processor. Note
that GPIO pins 1, 2, and 5 can be used as inputs, and they can be monitored. Only the “wakeup”
functionality is missing.

GPIO pins 6, 9, and 10 can be used to wake from sleep mode on both Synapse RFEs and PAN4555 wireless
modules.

Fewer ADC Input Pins

On a Synapse RF Engine, GPIO pins GPIO11 through GPIO18 can all be used as Analog to Digital Converter
(ADC) inputs. On the PAN4555 Wireless Module, only GPIO 11, 16, 17, and 18 support ADC. This means only
ADC channels 0, 1, 2, and 7 provide live readings.

You cannot “cheat” and read/write 8 GPIO with a single poke()

On a Synapse RF Engine, GPIO pins GPI011 through 18 are all mapped to the same 1/0 register on the
microcontroller. This means these pins can be used to easily implement an 8-bit wide data bus (see for
example script “lcd8bit.py”). On the Panasonic PAN4555, the 4 missing ADC pins (mentioned above) affect
this “data bus” as well. You can still write to the 8-bit wide data register, but only 4 of the pins controlled by
that register are actually brought out to the real world.

Two Additional PWM Output Pins
On a Synapse RF Engine, only GPIO 0 can perform Pulse Width Modulation (PWM). On the PAN4555
Wireless Module, GPIO pins 14 and 15 can also do limited PWM.

The PWM limitation on these two pins (GPIO 14 and 15) has to do with the frequency of the pulse that can
be modulated. On these two pins, the pulses always occur every 1 millisecond. SNAPpy scripts can affect
the width of the pulses, but not the rate at which they occur.

Refer to example script PAN4555 ledCycling.py for one example of using these additional PWM pins.

If you need a pulse rate different than 1 per millisecond (for example, you are doing servo motor control),
you will have to use GPIO 0.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 31 0f 43

getinfo() Differences
On a getInfo(0) call, the parameter value of 0 requests a “vendor code”.

On a Synapse RFE, getInfo(0) returns 0 (meaning “Synapse”).
On a PAN4555, getinfo(0) returns 2 (meaning “Freescale”).

On a getinfo(3) call, the parameter value of 3 requests a “platform code”. The PAN4555 returns a value of
5, indicating MC1321x (the chipset the PAN4555 is based on).

SNAPpy scripts can use the getinfo() function to adapt themselves to the board they find themselves
running on. See also section 5 of this document, where an alternate method is explained.

For Advanced Users Only
Here are the exact pin changes from a Synapse RFE to a Panasonic PAN4555 when using the SNAPpy GPIO
import scheme.

SNAPpy Processor pin used on Processor pin used on
GPIO RFE PAN4555
1 Port A Bit 0 Port CBit 3
2 Port ABit1 Port C Bit 2
5 Port A Bit 4 Port C Bit 5
12 Port BBit6 Port G Bit 1
13 Port B Bit 5 Port G Bit 2
14 Port B Bit 4 Port D Bit 6
15 Port B Bit 3 Port D Bit 4

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 32 of 43

Pin Configuration of a PAN4555 in SNAP Engine Format
Pins that differ from Synapse RF Engines are highlighted in bold.

Pin No. Name Description
1 GND Power Supply
2 GPIO0O_TPM1CH2 GPI/O or Timerl Channel 2 (ex. PWM out)
3 GPIO1 GPI/O
4 GP102 GPI/O
5 GPIO3_RX_UARTO GPI/O or UARTO Data In
6 GPIO4_TX_UARTO GPI/O or UARTO Data Out
7 GPIO5_CTSO GPI/O or UARTO CTS output
8 GPIO6_KBI5_RTSO GPI/0, Keyboard Interrupt, or UARTO RTS input
9 GPIO7_RX_UART1 GPI/O or UART1 Data In
10 GPIO8_TX_UART1 GPI/O or UART1 Data Out
11 GPIO9_KBI6_CTS1 GPI/0O, Keyboard Interrupt, or UART1 CTS output
12 GPIO10_KBI7_RTS1 GPI/0O, Keyboard Interrupt, or UART1 RTS input
13 GPIO11_AD7 GPI/O or Analog In
14 GP1012 GPI/0O, CBUS CDATA, or SPI MOSI
15 GPIO13 GPI/0, CBUS CLK, or SPI CLK
GPI/0O, CBUS RDATA, SPI MISO
16 GPI014_TPM2CH3 or Timer2 Channel 3 (ex. limited PWM out)
17 GPIO15_TPM2CH1 GPI/0, or Timer2 Channel 1 (ex. limited PWM out)
18 GPIO16_AD2 GPI/O or Analog In
19 GPIO17_AD1 GPI1/0, Analog In, or 12C SDA
20 GPIO18_ADO GPI/0, Analog In, or 12C SCL
21 VCC Power Supply
22 PTGO/BKDG Background Debug Communications
23 RESET* Module Reset, Active Low
24 GND Power Supply

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

Page 33 0of 43

PAN4555 GPIO Assignments
(GPIO assignments defined in PAN4555_SE.py)

SNAPpy Processor PAN4555 SNAPpy

GPIO Port Module 10 Num
Pin
GPIO_O PTD2/TPM1CH2 30 24
GPIO_1 PTC3/SCL 19 19
GPIO_2 PTC2/SDA 20 18
GPIO_3 PTE1/RxD1 22 30
GPIO_4 PTEO/TxD1 21 29
GPIO_5 PTCS5 18 21
GPIO_6 PTA5/KBD5 8 5
GPIO_7 PTC1/RxD2 16 17
GPIO_8 PTCO/TxD2 15 16
GPIO_9 PTA6/KBD6 10 6
GPIO_10 PTA7/KBD7 7 7
GPIO_11 PTB7/AD7 5 15
GPIO_12 PTG1/XTAL 12 31
GPIO_13 PTG2/EXTAL 13 32
GPIO_14 PTD6/TPM2CH3 28 27
GPIO_15 PTD4/TPM2CH1 29 25
GPIO_16 PTB2/AD2 4 10
GPIO_17 PTB1/AD1 3 9
GPIO_18 PTBO/ADO 2 8

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 34 of 43

Panasonic PAN4561 (SNAP Engine Form Factor)

The PAN4561 utilizes the same core processor as the original RFE and PAN4555 (the Freescale HCS08). In
fact, the PAN4561 utilizes the same MC13213 integrated IC (HCSO08 plus radio front end) as the PAN4555.

As such, the PAN4561 will use a firmware version designed for all modules based on the Freescale MC1321x
series of chipsets. This same firmware will run on the PAN4555, PAN4561, etc.

The version of SNAP software developed for the PAN4561 follows the same GPIO structure of the PAN4555
for the first 18 GPIO pins.

However, there are a few functional details to be aware of:

Increased Number of GPIO Pins
The PAN4561 has a total of 33 available GPIO pins. These include:

e 8 Analog-to-Digital (ADC) pins

e 2 UARTs

e 8 Keyboard Interrupt pins (KBI)

e 4 Pulse-Width Modulated (PWM) output pins

Platform Specific Settings
SNAPpy NV-Param #41 is used to store the platform name. For this module the name is ‘PAN4561’. This
value can be modified by the user. However, this has the potential to affect SNAPpy script functionality. The

platform name will normally be set during the initial programming of the module at the factory.

SNAPpy NV-Param #63 stores the trim value for the radio transceiver’s crystal oscillator (not to be confused
with the separate trim value related to the HCSO8 MCU). If this value is not set, then the radio will be
configured to use the default value- typically Ox7E (see MC1321x reference manual for details). The trim

value will be set during the initial programming of the module at the factory.

SNAP feature bits are used to control a number of things, including module specific settings. For the

PAN4561 mounted onto a SNAPpy Engine carrier, a feature bit has be used to specify that a power amplifier
exists and that this PA will be disabled before the module enters into a sleep state (and re-enabled upon
waking). The 6" bit (0x20) of Non-Volatile Parameter (NV-Param) #11 is used to store this particular setting.
The appropriate feature bits will be set during initial programming at the factory. This setting has no effect
unless the module is mounted on a SNAP Engine carrier board or Pin 52 and 45 are tied together (See
following section for details).

None of these values will be reset when executing the ‘Factory Default NV Params’ menu option within the
Portal software.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 35 of 43

Platform Specific Hardware Configuration
Low-Noise Amplifier High-Gain Mode (HGM) => Radio Transceiver GPIO- 3:

The LNA located on the PAN4561 module supports a high-gain mode. This can be enabled or disabled by
using GPIO-3 of the MC1321x’s radio transceiver.

HGM State GPIO-3
Enabled High
Disabled Low

This GPIO pin can be read and/or controlled by using SNAP’s radioPeek() and radioPoke() built-in functions.
This pin is driven high during the startup process when SNAP Feature Bit 5 (0x20) is set.

Refer to the reference manual for the MC1321x and PAN4561 for details regarding memory locations and
pin behavior.

Power Amplifier Enable/Disable (PA EN)

The Power Amplifier located on the PAN 4561 module can be enabled or disabled by manipulating external
pin 52. Setting this pin high will enable the Power Amplifier.

PA State Pin 52
Enabled High
Disabled Low

NOTE: When the PAN4561 is mounted onto a SNAP Engine carrier board, pin 52 and pin 45 (SNAPpy Raw 10
20/ PTC4) are connected together. This allows the PA to be enabled/disabled by manipulating SNAPpy 10
20 (PTC4). This pin is driven high during the startup process when SNAP Feature Bit 5 (0x20) is set.

ADC Pins
8 ADC (Analog-to-Digital) pins are available for use on the PAN 4561. This is like the Synapse line of RF
Engines, but dislike the PAN4555 that only brings out 4 ADC pins.

Low Power Settings (LNA/PA)

The PAN4561 module includes a Low-Noise Amplifier (for Rx) and Power Amplifier (for Tx). This power
amplifier needs to be placed in a disabled mode in order for the entire module to reach low power
operation. The SNAP core will disable the PA during the sleep process and will re-enable once the system
has emerged from sleep. The user does not need to take any action.

The LNA is set to a high-gain mode and the PA is enabled by default during startup when feature bit 0x20 is
set and module pin 45 is tied to pin 52.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 36 of 43

Default UART remains UART1
The default UART is still designated as UART1. This is consistent with SNAP ports to other devices.

I2C Emulation vs. Hardware pins

The hardware 12C pins designated as SCL and SDA are assigned to GPIO pins 1 and 2 respectfully. However,
hardware 12C is not currently enabled within the SNAP core. Instead, the pins associated with SNAPs 12C
software emulation (GPIO 17 and 18) remain unchanged from the Synapse RFE and PAN4555.

Additional PWM Output Pins
PWM on GPIO 0, 14, 15, 31, and 32

On a Synapse RF Engine, only GPIO 0 can perform Pulse Width Modulation (PWM). On the PAN4555
Wireless Module, GPIO pins 14 and 15 can also do limited PWM. On the PAN4561 GPIO pins 31 and 32 can
also do limited PWM.

The PWM limitation on these four pins (GPIO 14, 15, 31, 32) has to do with the frequency of the pulse that
can be modulated. On these pins, the pulses occur every 1 millisecond. SNAPpy scripts can affect the width
of the pulses, but not the rate at which they occur. If you need a pulse rate different than 1 per millisecond
(for example, you are doing servo motor control), you will have to use GPIO 0.

Refer to example script PAN4561 ledCycling.py for one example of using some of these additional PWM
pins.

getinfo() Differences
A call to the SNAP function getInfo() with a parameter value of 0 will request a “vendor code”.

On a Synapse RFE, getInfo(0) returns 0 (meaning “Synapse”).
On a PAN4561, getinfo(0) returns 2 (meaning “Freescale”).

On a getinfo(3) call, the parameter value of 3 requests a “platform code”. The PAN4561 returns a value of
5, indicating MC1321x (the chipset the PAN4561 is based on).

SNAPpy scripts can use the getinfo() function to adapt themselves to the board they find themselves
running on. See also section 5 of this document, where an alternate method is explained.

Please refer to the PAN 4561 Product Specification from Panasonic and the MC1321x Reference Manual
from Freescale for more information regarding pin and module functionality.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 37 of 43

PAN4561 GPIO Assignments

(GPIO assignments defined in PAN4561_SE.py)

Bold indicates the pins that are the same on the PAN 4555 and 4561

SNAPpy
GPIO

GPIO_0
GPIO_1
GPIO_2
GPIO_3
GPIO_4
GPIO_5
GPIO_6
GPIO_7
GPIO_8
GPIO_9
GPIO_10
GPIO_11
GPIO_12
GPIO_13
GPIO_14
GPIO_15
GPIO_16
GPIO_17
GPIO_18
GPIO_19
GPIO_20
GPIO_21
GPIO_22
GPIO_23
GPIO_24
GPIO_25
GPIO_26
GPIO_27
GPIO_28
GPIO_29
GPIO_30
GPIO_31
GPIO_32

Processor
Port

PTD2/TPM1CH2
PTC3/SCL
PTC2/SDA
PTE1/RxD1
PTEO/TxD1
PTC5
PTA5/KBD5
PTC1/RxD2
PTCO/TxD2
PTA6/KBD6
PTA7/KBD7
PTB7/AD7
PTG1/XTAL
PTG2/EXTAL
PTD6/TPM2CH3
PTD4/TPM2CH1
PTB2/AD2
PTB1/AD1
PTBO/ADO
PTAO/KBDO
PTA1/KBD1
PTA2/KBD2
PTA3/KBD3
PTA4/KBD4
PTB3/AD3
PTB4/AD4
PTB5/AD5
PTB6/AD6

PTC4

PTC6

PTC7
PTD5/TPM2CH2
PTD7/TPM2CH4

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

PAN4561 SNAPpy

Pin
6
11
10
47
46
a4
36
9
8
35
34
19
25
26
a4
2
14
13
12
41
40
39
38
37
15
16
17
18
45
43
42
3
5

10 Num
24
19
18
30
29
21
5
17
16
6
7
15
31
32

Page 38 of 43

Pin Functionality for the PAN4561 Module

Processor PAN4561 SNAPpy | SNAPpy

Port Pin 10 Num GPIO
PTA0/KBDO 41 0 GPIO_19
PTA1/KBD1 40 1 GPI0_20
PTA2/KBD2 39 2 GPIO_21
PTA3/KBD3 38 3 GPIO_22
PTA4/KBD4 37 4 GPI0O_23
PTA5/KBD5 36 5 GPIO_6
PTA6/KBD6 35 6 GPIO_9
PTA7/KBD7 34 7 GPIO_10
PTB0/ADO 12 8 GPIO_18
PTB1/AD1 13 9 GPIO_17
PTB2/AD2 14 10 GPIO_16
PTB3/AD3 15 11 GPIO_24
PTB4/AD4 16 12 GPIO_25
PTB5/AD5 17 13 GPIO_26
PTB6/AD6 18 14 GPIO_27
PTB7/AD7 19 15 GPIO_11
PTCO/TxD2 8 16 GPIO_8
PTC1/RxD2 9 17 GPIO_7
PTC2/SDA 10 18 GPIO_2
PTC3/SCL 11 19 GPIO_1
PTC4 45 20 GPIO_28
PTC5 44 21 GPIO_5
PTC6 43 22 GPIO_29
PTC7 42 23 GPI0_30
PTD2/TPM1CH2 6 24 GPIO_0
PTD4/TPM2CH1 2 25 GPIO_15
PTD5/TPM2CH2 3 26 GPIO_31
PTD6/TPM2CH3 4 27 GPIO_14
PTD7/TPM2CH4 5 28 GPI0_32
PTE0/TxD1 46 29 GPIO_4
PTE1/RxD1 47 30 GPIO_3
PTG1/XTAL 25 31 GPIO_12
PTG2/EXTAL 26 32 GPIO_13

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 39 of 43

Another view of the same data (PAN4561)

PAN4561 Processor

Pin Port
2 PTD4/TPM2CH1
3 PTD5/TPM2CH?2
4 PTD6/TPM2CH3
5 PTD7/TPM2CH4
6 PTD2/TPM1CH?2
8 PTCO/TxD2
9 PTC1/RxD2
10 PTC2/SDA
11 PTC3/SCL
12 PTBO/ADO
13 PTB1/AD1
14 PTB2/AD2
15 PTB3/AD3
16 PTB4/AD4
17 PTB5/AD5
18 PTB6/AD6
19 PTB7/AD7
25 PTG1/XTAL
26 PTG2/EXTAL
34 PTA7/KBD7
35 PTA6/KBD6
36 PTA5/KBD5
37 PTA4/KBD4
38 PTA3/KBD3
39 PTA2/KBD2
40 PTA1/KBD1
41 PTAO/KBDO
42 PTC7
43 PTC6
44 PTC5
45 PTC4
46 PTEO/TxD1
47 PTE1/RxD1

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

SNAPpy SNAPpy

10 Num
25

26
27
28
24
16
17
18
19
8
9
10
11
12
13
14
15
31
32

7
6
5
4
3
2

1
0
23
22
21
20
29
30

GPIO
GPIO_15

GPIO_31
GPIO_14
GPI10_32
GPIO_0
GPIO_8
GPIO_7
GPIO_2
GPIO_1
GPIO_18
GPIO_17
GPIO_16
GPI0_24
GPIO_25
GPIO_26
GP10_27
GPIO_11
GPIO_12
GPIO_13
GPIO_10
GPIO_9
GPIO_6
GPIO_23
GPI10_22
GPIO_21
GPIO_20
GPIO_19
GPIO_30
GPIO_29
GPIO_5
GPIO_28
GPIO_4
GPIO_3

Page 40 of 43

Pin Configuration of a PAN4561 in SNAP Engine Format
Pins that differ from Synapse RF Engines are highlighted in bold.

Pin No. Name Description
1 GND Power Supply
2 GPIO0O_TPM1CH2 GPI/O or Timerl Channel 2 (ex. PWM out)
3 GPIO1 GPI/O
4 GP102 GPI/O
5 GPIO3_RX_UARTO GPI/O or UARTO Data In
6 GPIO4_TX_UARTO GPI/O or UARTO Data Out
7 GPIO5_CTSO GPI/O or UARTO CTS output
8 GPIO6_KBI5_RTSO GPI/0, Keyboard Interrupt, or UARTO RTS input
9 GPIO7_RX_UART1 GPI/O or UART1 Data In
10 GPIO8_TX_UART1 GPI/O or UART1 Data Out
11 GPIO9_KBI6_CTS1 GPI/0O, Keyboard Interrupt, or UART1 CTS output
12 GPIO10_KBI7_RTS1 GPI/0O, Keyboard Interrupt, or UART1 RTS input
13 GPIO11_AD7 GPI/O or Analog In
14 GP1012 GPI/0O, CBUS CDATA, or SPI MOSI
15 GPIO13 GPI/0, CBUS CLK, or SPI CLK
GPI/0O, CBUS RDATA, SPI MISO
16 GPI014_TPM2CH3 or Timer2 Channel 3 (ex. limited PWM out)
17 GPIO15_TPM2CH1 GP1/0 or Timer2 Channel 1 (ex. limited PWM out)
18 GPIO16_AD2 GPI/O or Analog In
19 GPIO17_AD1 GPI1/0, Analog In, or 12C SDA
20 GPIO18_ADO GPI/0, Analog In, or 12C SCL
21 VCC Power Supply
22 PTGO/BKDG Background Debug Communications
23 RESET* Module Reset, Active Low
24 GND Power Supply

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

Page 41 of 43

California Eastern Labs ZIC2410
Currently there is no ZIC-based SNAP Engine. You will only find SNAP running on CEL chips (2IC2410) and
modules (ZICM2410P0). Because of this, you will only be using “IO” numbering in your SNAPpy scripts.

The following table summarizes the |0 mapping on the ZIC2410 chip.

Z1C2410 10 Mapping

Processor Port Pin | SNAPpy Processor Port Pin | SNAPpy Processor Port Pin SNAPpy
(PO) 10 (P1) 10 (P3) [o]
P0.0 0 P1.0/RXD1 8 P3.0/RXDO 16
PO.1 1 P1.1/TXD1 9 P3.1/TXDO 17
P0.2 2 P1.2 10 P3.2/INTO 18
P0.3 3 P1.3 11 P3.3/INT1 19
P0.4 4 P1.4 12 P3.4/RTS0/ SPIDI 20
P0.5 5 P1.5 13 P3.5/CTS0/ SPIDO 21
P0.6 6 P1.6 14 P3.6/RTS1/ 22
PWM2/SPICLK
P0.7 7 P1.7 15 P3.7/CTS1/ PWMS3 23

The same 10 numbering scheme applies to the ZICM2410P0 module, but be aware that not all of the chip’s
pins are brought out of the module. Specifically, P1.2 (10 10) and P1.5 (10 13) are not brought out, and so
cannot be used in your module scripts (you can use these pins if you are running SNAP on the bare ZIC2410

chip).

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A

Page 42 of 43

Separate Analog Input Pins

Unlike many of the SNAP platforms, the analog input pins on the ZIC2410 do not overlap any of the digital
10 or other peripherals. You still use the readAdc(channel) SNAPpy built-in to access the four ACHx channels
on the ZIC2410, but there are no corresponding GPIO or 10 numbers.

I2C Emulation
The ZIC2410 has no 12C hardware, but SNAP emulates 12C (I12C master only) in software, using the following
two pins:

I12C SDA is emulated using P1.3 / SNAPpy 10 11
I12C CLK is emulated using P1.4 / SNAPpy 10 12

Please refer to the CEL ZIC2410 and ZICM2410 data sheets for more information on the pinouts and
capabilities of these parts.

SNAP 2.2 Migration Guide-v1.0 Document Number 600023-01A Page 43 of 43

	1.0 Introduction
	About This Document (An Important section to read)
	Other Important Documentation
	Summary of New Features
	Multi-platform Support
	More Visibility into the Mesh Network
	Finer Granularity
	More Powerful
	More Secure
	More Connectivity Options

	2.0 Upgrading to the Latest Versions
	Upgrading to the latest Portal
	Upgrading your SNAP Nodes
	Upgrading ZIC2410 SNAP Nodes – Original Method

	3.0 Some Important Differences
	Portal Node Refresh
	Low Voltage Detection
	Demo Builds

	4.0 Multi-platform Support
	Supported Hardware Platforms
	IO Numbering
	How to Use It

	GPIO Numbering
	Additional Features of the Platform Include Files

	Using Platform Definitions in SNAPpy Scripts
	Implementation
	Specifying the Platform
	Example
	Other Uses of the Platform Definition
	Synapse RF Engine
	Synapse RF Engine Pin Assignments

	Freescale MC1321x Chip
	MC1321x IO Mapping

	Panasonic PAN4555 SNAP Module
	PAN4555 Module IO Mapping

	Panasonic PAN4555 (SNAP Engine Form Factor)
	Fewer “Wakeup” Pins
	Fewer ADC Input Pins
	You cannot “cheat” and read/write 8 GPIO with a single poke()
	Two Additional PWM Output Pins
	getInfo() Differences
	For Advanced Users Only
	Pin Configuration of a PAN4555 in SNAP Engine Format
	PAN4555 GPIO Assignments

	Panasonic PAN4561 (SNAP Engine Form Factor)
	Increased Number of GPIO Pins
	Platform Specific Settings
	Platform Specific Hardware Configuration
	ADC Pins
	Low Power Settings (LNA/PA)
	Default UART remains UART1
	I2C Emulation vs. Hardware pins
	Additional PWM Output Pins
	getInfo() Differences
	 PAN4561 GPIO Assignments
	Pin Functionality for the PAN4561 Module
	Pin Configuration of a PAN4561 in SNAP Engine Format

	California Eastern Labs ZIC2410
	ZIC2410 IO Mapping
	Separate Analog Input Pins
	I2C Emulation

