
Mac OS X Server
Introduction to Command-Line
Administration
Version 10.6 Snow Leopard

Apple Inc. K

© 2009 Apple Inc. All rights reserved.

Under the copyright laws, this manual may not
be copied, in whole or in part, without the written
consent of Apple.

The Apple logo is a trademark of Apple Inc., registered
in the U.S. and other countries. Use of the “keyboard”
Apple logo (Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

Apple
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
www.apple.com

Apple, the Apple logo, AppleScript, FireWire, Keychain,
Leopard, Mac, Mac OS, Quartz, Safari, Xcode, Xgrid, and
Xserve are trademarks of Apple Inc., registered in the
U.S. and other countries.

Apple Remote Desktop, Finder, and Snow Leopard are
trademarks of Apple Inc.

AIX is a trademark of IBM Corp., registered in the U.S.
and other countries, and is being used under license.

The Bluetooth® word mark and logos are registered
trademarks owned by Bluetooth SIG, Inc. and any use
of such marks by Apple is under license.

This product includes software developed by the
University of California, Berkeley, FreeBSD, Inc.,
The NetBSD Foundation, Inc., and their respective
contributors.

Java™ and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

PowerPC™ and the PowerPC logo™ are trademarks
of International Business Machines Corporation, used
under license therefrom.

UNIX® is a registered trademark of The Open Group.

Other company and product names mentioned herein
are trademarks of their respective companies. Mention
of third-party products is for informational purposes
only and constitutes neither an endorsement nor a
recommendation. Apple assumes no responsibility with
regard to the performance or use of these products.

019-1398/2009-08-01

http://www.apple.com

5 Preface:� About This Guide
5 What’s in This Guide
6 Using Onscreen Help
7 Documentation Map
7 Viewing PDF Guides Onscreen
8 Printing PDF Guides
8 Getting Documentation Updates
9 Getting Additional Information

10 Chapter 1:� Introduction to the Command-Line Environment
11 The Command-Line Environment
11 UNIX
11 The Shell
11 Accessing the Shell
11 Local Access
13 Remote Access
13 Closing the Shell
13 Executing Commands and Running Tools
14 Terminating Commands
15 Specifying Files and Folders
16 Commands Requiring Root or Administrator Privileges
16 Getting Help for Command-Line Tools
16 Using Help Built Into Command-Line Tools
17 Using Man Pages
18 Using Info Pages

19 Chapter 2:� Using the Command-Line Shell Interactively
19 Standard Pipes
20 Redirecting Input and Output
20 Correcting Typing Errors
21 Using Environment Variables
22 Repeating Commands
22 Including Paths Using Drag and Drop

 3

Contents

 4 Contents

23 Chapter 3:� Scripting the Command Line
23 What is a Shell Script?
24 Monitoring and Restarting Critical Services with launchd
25 Scheduling a Shell Script to Run at Specific Times
26 Scheduling tasks with launchd

27 Chapter 4:� Connecting to Remote Computers
27 SSH
27 How SSH Works
28 Generating Key Pairs for Key-Based SSH Connections
30 Updating SSH Key Fingerprints
31 An SSH Man-in-the-Middle Attack
32 Controlling Access to SSH Service
32 Connecting to a Remote Computer Using SSH
33 Apple Remote Desktop
33 X11

34 Chapter 5:� Common Command-Line Tasks
34 Editing Configuration Files
34 Text Editors
36 Saving Text Files for UNIX Execution
36 Editing Property Lists
39 Moving and Copying Files
40 Compressing and Uncompressing File Archives
40 Viewing File Contents
41 Searching for Text in a File
41 Backing Up and Restoring

42 Chapter 6:� Accessing Apple Hardware from the Command Line
42 Restarting a Computer
42 Automatic Restart
43 Changing a Remote Computer’s Startup Disk
43 Shutting Down a Computer
43 Shutting Down While Leaving the Computer On and Powered
44 Manipulating Open Firmware NVRAM Variables
44 Remotely Controlling the Xserve Front Panel

45 Appendix:�  Command-Line Tools Specific to Mac OS X
45 Section 1 Man Pages
50 Section 4 Man Pages
50 Section 5 Man Pages
51 Section 7 Man Pages
51 Section 8 Man Pages

56 Index

 5

This guide provides a starting point for administering
Mac OS X Server using command-line tools.

Introduction to Command-Line Administration supplements the information in the other
advanced administration guides. It provides information useful to building workflows
and remote administration practices beyond the use of Server Admin and Workgroup
Manager. The information in this guide isn’t specific to any particular technology, but
is relevant to many server technologies.

What’s in This Guide
This guide includes the following sections:

Chapter Â 1, “Introduction to the Command-Line Environment,” provides an overview
of the command-line environment in Mac OS X Server—for administrators who
are new to the command line or who are coming from the command line on other
platforms.

Chapter Â 2, “Using the Command-Line Shell Interactively,” explains how shells work
and provides information about the shells in Mac OS X Server.

Chapter Â 3, “Scripting the Command Line,” explains what shell scripts are and why
you would use them in Mac OS X Server.

Chapter Â 4, “Connecting to Remote Computers,” provides information about various
ways to access remote computers.

Chapter Â 5, “Common Command-Line Tasks,” provides examples of frequently used
command-line tasks.

P7-8Chapter Â 6, “Accessing Apple Hardware from the Command Line,” provides
information about accessing hardware-specific Mac attributes from the command line.

Appendix Â , “Command-Line Tools Specific to Mac OS X,” provides a list of the
command-line tools that are unique to Mac OS X and Mac OS X Server.

Note: Because Apple periodically releases new versions and updates to its software,
images shown in this book may be different from what you see on your screen.

Pr
ef

ac
eAbout This Guide

 6 Preface About This Guide

Using Onscreen Help
You can get task instructions onscreen in Help Viewer while you’re managing
Snow Leopard Server. You can view help on a server, or on an administrator computer.
(An administrator computer is a Mac OS X computer with Snow Leopard Server
administrator software installed on it.)

To get the most recent onscreen help for Mac OS X Snow Leopard Server:�
Open Server Admin or Workgroup Manager and then: m

Use the Help menu to search for a task you want to perform. Â

Choose Help > Server Admin Help or Help > Workgroup Manager Help to browse Â
and search the help topics.

The onscreen help contains instructions taken from Advanced Server Administration
and the other administration guides.

To see the most recent server help topics:�
Make sure the server or administrator computer is connected to the Internet while m

you’re getting help.

Help Viewer automatically retrieves and caches the most recent server help topics
from the Internet. When not connected to the Internet, Help Viewer displays cached
help topics.

 Preface About This Guide 7

Documentation Map
Snow Leopard has a suite of guides that cover management of individual services.
Each service may be dependent on other services for maximum utility. The
documentation map below shows some related documentation that you may
need in order to fully configure your desired service to your specifications. You can
get these guides in PDF format from the Mac OS X Server Resources website:

http://www.apple.com/server/macosx/resources/

Server
Administration Guides

Each guide covers
using Server Admin
and command-line
tools to configure

advanced settings for a
particular service.

Introduction to
Command-Line
Administration

Explains how to use
UNIX shell commands to
configure and manage

servers and services.

Information
Technologies

Dictionary
Provides onscreen

definitions of
server terminology.

Viewing PDF Guides Onscreen
While reading the PDF version of a guide onscreen:

Show bookmarks to see the guide’s outline, and click a bookmark to jump to the Â
corresponding section.

Search for a word or phrase to see a list of places where it appears in the document. Â
Click a listed place to see the page where it occurs.

Click a cross-reference to jump to the referenced section. Click a web link to visit the Â
website in your browser.

http://www.apple.com/server/macosx/resources/

 8 Preface About This Guide

Printing PDF Guides
If you want to print a guide, you can take these steps to save paper and ink:

Save ink or toner by not printing the cover page. Â

Save color ink on a color printer by looking in the panes of the Print dialog for Â
an option to print in grays or black and white.

Reduce the bulk of the printed document and save paper by printing more than Â
one page per sheet of paper. In the Print dialog, change Scale to 115% (155%
for Getting Started). Then choose Layout from the untitled pop-up menu. If your
printer supports two-sided (duplex) printing, select one of the Two-Sided options.
Otherwise, choose 2 from the Pages per Sheet pop-up menu, and optionally choose
Single Hairline from the Border menu. (If you’re using Mac OS X v10.4 or earlier,
the Scale setting is in the Page Setup dialog and the Layout settings are in the
Print dialog.)

You may want to enlarge the printed pages even if you don’t print double sided,
because the PDF page size is smaller than standard printer paper. In the Print dialog
or Page Setup dialog, try changing Scale to 115% (155% for Getting Started, which has
CD-size pages).

Getting Documentation Updates
Periodically, Apple posts revised help pages and new editions of guides. Some revised
help pages update the latest editions of the guides.

To view new onscreen help topics for a server application, make sure your server or Â
administrator computer is connected to the Internet and click “Latest help topics”
or “Staying current” in the main help page for the application.

To download the latest guides in PDF format, go to the Mac OS X Server Resources Â
website at:

www.apple.com/server/macosx/resources/

An RSS feed listing the latest updates to Mac OS X Server documentation and Â
onscreen help is available. To view the feed use an RSS reader application, such
as Safari or Mail:

feed://helposx.apple.com/rss/snowleopard/serverdocupdates.xml

http://www.apple.com/server/macosx/resources/
feed://helposx.apple.com/rss/snowleopard/serverdocupdates.xml

 Preface About This Guide 9

Getting Additional Information
For more information, consult these resources:

 Â Read Me documents—get important updates and special information. Look for them
on the server discs.

 Â Mac OS X Server website (www.apple.com/server/macosx/)—enter the gateway to
extensive product and technology information.

 Â Mac OS X Server Support website (www.apple.com/support/macosxserver/)—access
hundreds of articles from Apple’s support organization.

 Â Apple Discussions website (discussions.apple.com/)—share questions, knowledge,
and advice with other administrators.

 Â Apple Mailing Lists website (www.lists.apple.com/)—subscribe to mailing lists so you
can communicate with other administrators using email.

 Â Apple Training and Certification website (www.apple.com/training/)—hone
your server administration skills with instructor-led or self-paced training, and
differentiate yourself with certification.

http://www.apple.com/server/macosx/
http://www.apple.com/support/macosxserver/
http://discussions.apple.com/
http://www.lists.apple.com/
http://www.apple.com/training/

 10

Use this chapter to determine when to use command-line
tools and to understand the fundamentals of how to
use them.

A command-line interface (CLI) is an alternative to graphical applications for
interacting with and controlling your computer. Mac OS X Server provides graphical
applications—primarily, Server Admin and Workgroup Manager—to address common
administration tasks. There are situations, though, where using a command-line
interface might be appropriate. These situations include:

Configuring advanced options that aren’t supported by the graphical applications. Â

Configuring remotely from a computer that doesn’t have the Server Admin tools Â
installed—for example, a computer with Windows, Linux, or another UNIX-based
operating system.

Performing tasks that are repetitive or that need to be run at predefined times. Â

Editing text files, usually in order to change advanced configuration settings and Â
preferences.

The primary way to access the CLI in Mac OS X is with the Terminal application. Other
ways to access the CLI are discussed in “Accessing the Shell” on page 11, and
in Chapter 4, “Connecting to Remote Computers.”

Each window in Terminal contains an execution context, called a shell, which is
separate from all other execution contexts. The shell is an interactive programming
language interpreter, with a specialized syntax for executing commands and writing
structured programs (shell scripts). Different shells have slightly different capabilities
and programming syntax. Although you can use any shell, the examples in this book
use bash, the startup shell for Mac OS X and the default user shell.

1Introduction to the Command-Line
Environment

 Chapter 1 Introduction to the Command-Line Environment 11

The Command-Line Environment
This section gives some background information about UNIX and shells. Both are
important for understanding the command-line environment in Mac OSX Server.

UNIX
Mac OS X and Mac OS X Server are built on the foundation of the UNIX operating
system. UNIX-based operating systems include BSD, GNU/Linux, AIX, and Solaris.
The shared heritage of these operating systems means that many programs are
compatible across this larger family with minimal changes.

The unique underpinnings of each brand of UNIX are what distinguish them from
each other. To support programs and utilities that work across multiple flavors of UNIX,
there are some standard specifications set by various regulatory bodies. One such
specification is The Open Group’s “Single UNIX Specification.” Mac OS X versions 10.5
and later conform to version 3 of this specification, which implies conformance to the
SUSv3 and POSIX 1003.1 specifications for the C API, shell utilities, and threads. Code
that complies with the UNIX-03 specification works not only on Mac OS X Server, but
on any other compliant system.

For more information about the The Single UNIX Specification, Version 3, see
http://www.unix.org/version3/.

The Shell
In UNIX-based operating systems, the shell is the fundamental user interface. The
shell is an environment that presents a simple textual prompt to the user and accepts
keyboard input from the user.

In Mac OS X, the shell is easily accessed through Terminal, but there are other options
as well. The shell can be invoked interactively, or by a text file with commands to the
shell given in a standard format. There are several shells available in Mac OS X, each
with its own strengths and capabilities. Shells included in Mac OS X include bash, csh,
ksh, sh, tcsh, and zsh.

For information about these shells, see their man pages.

Accessing the Shell
To enter shell commands or run server command-line tools, you need access to the
UNIX shell prompt on the local server or on a remote server.

Local Access
There are multiple ways to access the shell on your local computer. Under
normal circumstances you can use Terminal, but for advanced troubleshooting or
configuration, you may want to use a different way to access the command line.

http://www.unix.org/version3/

Logging In from Terminal
To open Terminal, click the Terminal icon in the dock or double-click the application
icon in the Finder (in /Applications/Utilities/). Each window in Terminal represents
another instance of a shell process.

Terminal presents a prompt when it’s ready to accept a command. The prompt you
see depends on your Terminal and shell preferences, but it often includes the name
of the host you’re logged in to, your current working folder, your user name, and
a prompt symbol.

For example, if you’re using the default bash shell, the prompt appears as:

server1:~ mariah$

This indicates that you’re logged in to a computer named server1 as the user named
mariah, and your current folder is Mariah’s home folder (~).

Logging In from the Console
You can log in to a command-line version of Mac OS X without running the window
manager. This mode is more advanced than single-user mode because the entire
system is running.

To log in without the window manager:�
 1 In the Accounts pane of System Preferences, select Login Options.

 2 Make sure the settings for “Display login window as:” is set to “Name and password.”

 3 Log out any logged in users.

 4 In the login window, type “>console” and press Return. Don’t enter a password.

You’ll be prompted to log in with the user name and password of a user on
the system.

Logging in to the console at this level can help you troubleshoot issues that
are graphics-related or that are triggered by users logging in to the system
through the GUI.

Single-User Mode
To debug a computer problem, you can restart the computer and hold down
Command-S as the computer boots. The computer boots up verbosely from
the command line to a certain point, and won’t continue booting without your
intervention. The window server won’t be running, and many services won’t be started.
Onscreen instructions guide you through mounting and verifying the attached
volumes. This is a useful way to boot if you want to troubleshoot hardware-related
issues or determine what’s happening in software before higher-level processes and
applications are running. At this point, very few processes are running.

 12 Chapter 1 Introduction to the Command-Line Environment

 Chapter 1 Introduction to the Command-Line Environment 13

The following processes and services aren’t running if you boot into single-user mode:

Directory Services Â

Kerberos Â

 Â syslogd

mDNSResponder Â

 Â securityd (and many related security processes)

Spotlight Â

Any other server services (such as Mail Server, Web Server, or Wiki Server) you may Â
have configured

X11
X11 is a window manager traditionally used in UNIX-based operating systems.
Although Mac OS X Server is a UNIX operating system, it doesn’t use X Windows as
its window manager. X11 is available to provide compatibility with other UNIX-based
operating systems. All normal Mac OS X Server tasks are performed with tools that
don’t rely on X11. To connect to the X11 server remotely, see “Configuring and Running
X11 Applications on Mac OS X” on the Apple Developer Connection website.

Serial Console
Xserve hardware includes a 9-pin serial port. To access the Xserve, you can
connect a terminal or use terminal emulation software on a computer connected
by a serial-to-USB cable. No other Apple hardware includes a serial port.

Remote Access
Various ways of accessing the command-line interface on remote computers are using
are discussed in Chapter 4, “Connecting to Remote Computers.”

Closing the Shell
To quit a shell session, enter the command exit. This ensures that any commands the
shell is actively running are closed. If anything’s still in progress, the shell warns you.

Executing Commands and Running Tools
To execute a command in the shell, enter the complete pathname of the tool’s
executable file, followed by arguments, and then press Return.

If a command is located in one of the shell’s known folders, you can omit path
information and enter just the command name.

The list of known folders is stored in the shell’s PATH environment variable and
includes the folders containing most command-line tools.

http://developer.apple.com/opensource/tools/runningX11.html
http://developer.apple.com/opensource/tools/runningX11.html

For example, to run the ls command in the current user’s home folder, you could enter
the following at the command line and press Return:

host:~ mariah$ ls

The shell looks through the list of folders in the PATH variable until it finds a program
named ls; in this case, it finds ls in /bin, and runs /bin/ls.

To run a command in the current user’s home folder, precede it with the folder
specifier. For example, to run MyCommandLineProg, use the following:

host:~ mariah$ ~/MyCommandLineProg

To open an application, use the open command:

open -a MyProg.app

When entering commands, if you get the message command not found, check your
spelling. Here’s an example:

server:/ mariah$ opne -a TextEdit.app

-bash: opne: command not found

If this error recurs, the command you’re trying to run might not be in your default
search path. You can add the path before the command name:

server:/ mariah$ sudo /System/Library/ServerSetup/serversetup
-getHostname

server.example.com

or change your working folder to the folder that contains the tool:

server:/ mariah$ cd /System/Library/ServerSetup

server:/System/Library/ServerSetup mariah$ sudo ./serversetup
-getHostname

server.example.com

or define the path for this session and then run the command:

server:/ mariah$ PATH=“$PATH:/System/Library/ServerSetup”

server:/ mariah$ sudo serversetup -getHostname

server.example.com

Terminating Commands
To terminate the currently running command, press Control-C. This keyboard shortcut
sends an abort signal to the command. In most cases this causes the command to
terminate, although commands can install signal handlers to trap this signal and
respond differently.

 14 Chapter 1 Introduction to the Command-Line Environment

 Chapter 1 Introduction to the Command-Line Environment 15

Specifying Files and Folders
Most commands operate on files and folders, whose locations are identified by paths.
The folder names that make up a path are separated by slashes. For example, the path
to the Terminal application is /Applications/Utilities/Terminal.app.

Standard shortcuts used to represent specific folders are shown in the following
table. They are specified relative to the current folder, and can eliminate the need to
enter full paths.

Shortcut Description

. A single period represents the current folder.
For example, the string “./Test.c” represents the
Test.c file in the current folder.

.. Two periods represent the parent folder of the
current folder. For example, the string “../Test”
represents a sibling folder (named Test) of the
current folder.

~[username] The tilde character represents the home folder
of the logged-in user. For example, to specify the
Documents folder, of the current user, you would
specify ~/Documents. To specify another user’s
Document folder you would use their short name
preceded by the tilde (~) character—for example,
~jsmith/Documents. In Mac OS X, this folder is
in the local /Users folder or on a network server.
For a list of all the short names on your system,
type dscl . -list /Users. Most of these
users aren’t traditional user accounts with home
directories, but you should be able to find the
short name of known users on the computer.

File and folder names can include letters, numbers, a period, or the underscore
character. Avoid most other characters, including space characters. Although some
Mac OS X file systems permit the use of these other characters, including spaces,
you might need to add single or double quotation marks around pathnames that
contain them.

For individual characters, you can also “escape” the character—that is, put a backslash
character immediately before the character in your string. For example, the pathname
My Disk is “My Disk” or My\ Disk.

Commands Requiring Root or Administrator Privileges
Many commands used to manage a server must be executed by an administrator user
or the root user. For example, entering:

server:~ mariah$ shutdown

gives you the following error:

shutdown: NOT super-user

This is because the shutdown command can be run only by the root user or by an
administrative user with special privileges. To run commands in this "super user” mode,
use the sudo command. sudo stands for “super user do.” The following command does
work, (so don’t run it unless you really want to restart your computer):

server:~ mariah$ sudo shutdown

You’ll be prompted for the password of the currently logged in user. Only users that
you have designated as admin users are able to execute commands with sudo. If you’re
logged in as a user who isn’t an admin user, you can change “substitute users” by
typing su adminUsername, where adminUsername is the name of a user in the Admin
group. After you enter that user’s password, a new shell is launched from the existing
shell, as that user. If a command requires it, you can use su to log in as the root user.
Under normal circumstances you don’t need to use the root user account. If you do su
to the root user, be especially careful, as you have sufficient privileges to make changes
that can cause your server to stop working.

For more information about the sudo and su commands, see their man pages.

Getting Help for Command-Line Tools
Command-line tools provide multiple mechanism for getting help while using them.
This section describes three ways that you can get help from the command-line.

Using Help Built Into Command-Line Tools
Most command-line tools include a parameter to invoke onscreen help directly.
Command-line tools do not always follow the same conventions so if one parameter
doesn’t work try another.

To access command help:�
Enter the command followed by the -help,-h,--help, or help parameter:

$ hdiutil help

$ dig -h

$ diff --help

 16 Chapter 1 Introduction to the Command-Line Environment

 Chapter 1 Introduction to the Command-Line Environment 17

To view a list of options and parameters you can use with the command:�
Enter the command without options or parameters:

$ sudo serveradmin

Some commands don’t have onscreen help.

Using Man Pages
Most command-line documentation comes in man pages. Man pages provide
reference information for shell commands, tools, and high-level concepts.

To access a man page entry:

$ man command

Replace command with the name of the command you want to find information about.
The man page contains detailed information about the command, its options and
parameters, and proper use.

For help using the man command itself, enter:

$ man man

You can press the Space bar to go to the next page, the B key to go back a page, or the
Return key to scroll forward one line at a time. Press the Q key to exit the man page.

You can search within the contents of a man page by pressing the / key followed by
the word you’re looking for. If multiple instances are found, the P and N keys let you
access the previous and next instances of the term.

If you don’t know the name of the particular man page, you can search the topics by
entering:

$ man -k topic

Replace topic with a word that would be contained in the description of the man
page you might be looking for. For example:

$ man -k "directory service"

Returns references to the dscacheutil, dscl, and whois man pages. You can
also find links to related man pages at the bottom of a given man page in the “SEE
ALSO” section.

If you have the Xcode tools installed, you can view man pages from within Xcode by
selecting “Open man page…” from the Help menu. There are also several third-party
graphical Mac OS X applications available for viewing man pages. You can find one by
choosing Mac OS X Software from the Apple menu and then searching for “man page.”

Not all commands and tools have man pages. Some tools use info pages instead,
and some have no documentation at all. For more information about info pages, see
“Using Info Pages” on page 18.

You can also access command information using the help command, and sometimes
information is displayed if you enter the command without options or parameters.

Using Info Pages
Some commands use info pages to display their documentation. Primarily these are
software packages that come from the GNU project. info is a tool for reading Texinfo
files from the command line. To use an info page, enter the info command followed
by the name of the tool:

server:/ mariah$ info emacs

You can navigate to nodes with the cursor and then press Return to go to them,
or type menu followed by the node name. The following commands provide basic
navigation between info nodes:

Key Command Results

n Navigates to the next page

p Returns to the previous page

u Navigates up one level of nodes

l Returns to the last node visited

q Quits the info program

 18 Chapter 1 Introduction to the Command-Line Environment

 19

Use this chapter to learn about using the command-line by
typing in commands.

You can use the command-line environment in Mac OS X and Mac OS X Server
interactively by typing a command and waiting for a result, or you can use the shell
to compose scripts that run without direct interaction. This chapter discusses using
the command-line environment interactively.

For more information about using a particular shell interactively, see the man page for
that shell.

Standard Pipes
Many commands can receive text input from the user and print text to the console.
They do so using standard pipes, which are automatically created by the shell and
passed to the command.

Standard pipes include:

 Â stdin—The standard input pipe is where command input enters a command.
By default, the user enters input from the command-line interface. You can redirect
the output from files or other commands to stdin.

 Â stdout—The standard output pipe is where command output is sent. By default,
command output is sent to the command line. You can redirect the output from the
command line to other commands and tools.

 Â stderr—The standard error pipe is where error messages are sent. By default, errors
are displayed on the command line along with standard output.

2Using the Command-Line Shell
Interactively

Redirecting Input and Output
From the command line, you can redirect input and output from a command to a file,
or to another command.

Redirect output from the command if you want to capture the results of running the
command and store it in a file for later use. Similarly, redirect input from a file to the
command if you want to provide the command with preset input data, instead of
needing to enter that data.

Use the following characters to redirect input and output:

Redirect Description

> Use a right angle bracket to redirect command
output to a file.

< Use a left angle bracket to use the contents of
a file as input to the command.

>> Use two right angle brackets to append output
from a command to a file.

In addition to using file redirection, you can also redirect the output of one command
to the input of another using the vertical bar character, or pipe. You can combine
commands in this manner to implement more sophisticated versions of the same
commands.

For example, the command man bash | grep commands passes the formatted
contents of the bash man page to the grep tool, which searches those contents for
lines containing the word “commands.” The result is a list of lines with the specified
text, instead of the entire man page.

For more information about redirection, see the bash man page.

Correcting Typing Errors
You can use the Left and Right Arrow keys to correct typing errors before you press
Return to execute a command.

To correct a typing error:�
 1 Press the Left or Right Arrow key to skip backward or forward over parts of the

command you don’t want to change.

 2 Press Delete to remove characters.

 3 Type regular characters to insert them.

 4 Press Return to execute the command.

To ignore what you entered and start again, press Control-U.

 20 Chapter 2 Using the Command-Line Shell Interactively

 Chapter 2 Using the Command-Line Shell Interactively 21

Using Environment Variables
The shell uses environment variables to store information, such as the name of the
current user, the name of the host computer, and the default paths to any commands.
Environment variables are inherited by all commands executed in the shell’s context,
and some commands depend on environment variables.

You can create environment variables and use them to control the behavior of
a command without modifying the command itself. For example, you can use an
environment variable to have a command print debug information to the console.

To set the value of an environment variable, use the appropriate shell command to
associate a variable name with a value. For example, to set the variable PATH to the
value /bin:/sbin:/user/bin:/user/sbin:/system/Library/, you would enter the
following command in a Terminal window:

$ PATH=/bin:/sbin:/user/bin:/user/sbin:/system/Library/ export PATH

This modifies the environment variable PATH with the value assigned.

To view all environment variables, enter:

$ env

When you launch an application from a shell, the application inherits much of the
shell’s environment, including exported environment variables. This form of inheritance
can be a useful way to configure the application dynamically. For example, your
application can check for the presence (or value) of an environment variable and
change its behavior accordingly.

Different shells support different semantics for exporting environment variables.
For information, see the man page for your preferred shell.

Although child processes of a shell inherit the environment of that shell, shells are
separate execution contexts that don’t share environment information with each other.
Variables you set in one Terminal window aren’t set in other Terminal windows.

After you close a Terminal window, variables you set in that window are gone. If you
want the value of a variable to persist across sessions and in all Terminal windows, you
must set it in a shell startup script. For information about modifying your bash shell
startup script (~bashrc) to keep variables and other settings across multiple sessions,
see the “Invocation” section of the bash man page.

Another way to set environment variables in Mac OS X is with a property list file in
your home folder. When you log in, the computer looks for a ~/.MacOSX/environment.
plist file. If the file is present, the computer registers the environment variables in the
property list file.

Repeating Commands
To repeat a command, press the Up Arrow key until you see the command, then make
any modifications and press Return.

Including Paths Using Drag and Drop
To include a fully qualified filename or folder path in a command, you can drag the file
or folder from a Finder window to the Terminal window.

 22 Chapter 2 Using the Command-Line Shell Interactively

 23

Instead of entering commands and waiting for their
responses, you can compose scripts that are run without
direct interaction.

This chapter discusses some basics of shell scripting on Mac OS X, including
automation and scheduling, as well as a brief overview of what a shell script is.
It does not provide information on writing shell scripts in general.

For information about how to write shell scripts, see the Shell Scripting Primer on
the Apple Developer Connection website.

What is a Shell Script?
A shell script is a text file that contains one or more UNIX commands. You run a shell
script to perform commands you might otherwise run interactively at the command line.

Shell scripts are useful because you can combine many common tasks into one script,
saving you time and possible errors when running similar tasks over and over. They
can also be easily automated using tools such as launchd or Apple Remote Desktop.

A shell script begins with a character combination that identifies it as a shell script, the
characters ‘#’ and ‘!’ (together called a “shebang”) followed by a reference to the specific
shell that the script should be run with. For example, here’s the first line of a shell script
that would be run with sh:

#!/bin/sh

You should document your shell scripts with comments. To make a comment, start
the line with the number sign (#). Every line of a comment needs to begin with the
number sign:

#This program returns the

#contents of my Home folder

You can put blank lines in a shell script to help visually distinguish different sections
of the script.

3Scripting the Command Line

You need to use the chmod tool to indicate to the operating system that the text file
is executable (that is, its contents can be run as a program). To make a shell script
executable:

chmod 755 YourScriptName.sh

After making the shell script executable, you can run it by entering its pathname.
For example:

~/Documents/Dev/YourScriptName.sh

or

cd ~/Documents/Dev/

./YourScriptName.sh

For more information about using chmod, see its man page. For more information
about running your shell scripts, see “Executing Commands and Running Tools”
on page 13.

Monitoring and Restarting Critical Services with launchd
Mac OS X includes a system for monitoring and running critical service, which you
may want to use to run various shell scripts. This system is uses a daemon named
launchd. During system startup, launchd is the first process the kernel runs to set
up the computer. In Mac OS X Server, your daemon should be started by launchd.
Other mechanisms for starting daemons and services are subject to removal at
Apple’s discretion.

You can get an idea of the various processes run by launchd by looking at the
following configuration files:

Folder Usage

/System/Library/LaunchDaemons/ Apple-supplied system daemons

/System/Library/LaunchAgents/ Apple-supplied agents that apply to all users on
a per-user basis

/Library/LaunchDaemons/ Third-party system daemons

/Library/LaunchAgents/ Third-party agents that apply to all users on
a per-user basis

~/Library/LaunchAgents/ Third-party agents that apply to the logged-in
user only

You do not interact with launchd directly—instead you use launchctl to load or
unload launchd daemons and agents.

 24 Chapter 3 Scripting the Command Line

 Chapter 3 Scripting the Command Line 25

Note: In earlier versions of Mac OS X and Mac OS X Server, system administrators used
the watchdog daemon to monitor critical services or modified the rc scripts. These are
no longer supported and should be replaced with calls using launchd.

In earlier versions of Mac OS X and Mac OS X Server, system administrators used the
watchdog daemon to monitor critical services or modified the rc scripts. These are no
longer supported and should be replaced with calls using launchd.

For more information about launchd, see the launchd and launchctl man pages. Also
see Technical Note TN2083: Daemons and Agents on the Apple Developer Connection.

Scheduling a Shell Script to Run at Specific Times
To schedule a shell script to run at predefined times, use either launchd or the cron
tool. cron is a daemon that executes scheduled commands defined in crontab files.

Using cron to schedule a task
The cron tool searches the /var/cron/tabs/ folder for crontab files named after
accounts in /etc/passwd, and loads the files into memory. The cron tool also searches
for crontab files in the /etc/crontab/ folder, which are in a different format. cron then
cycles every minute, examining stored crontab files and checking each command to
see if it should be run in the current minute.

When commands execute, output is mailed to the owner of the crontab file or to the
user named in the optional MAILTO environment variable in the crontab file.

If you modify a crontab file, you must restart cron.

You use crontab to install, deinstall, or list the tables used to drive the cron daemon.
Users can have their own crontab file.

To configure your crontab file, use the crontab -e command. This displays an empty
crontab file.

Here’s an example of a configured crontab file:

SHELL=/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin

HOME=/var/log

#min hour mday month wday command

30 18 * * 1-5 diskutil repairPermissions /Volumes/MacHD

50 23 * * 0 diskutil repairVolume /Volumes/MacHD

http://developer.apple.com/technotes/tn2005/tn2083.html

The first crontab entry repairs disk permissions for the MacHD volume at 18:30 every
day, Monday through Friday:

30 18 * * 1-5 diskutil repairPermissions /Volumes/MacHD

The second crontab entry schedules a repair volume operation to run at 23:50 every
Sunday:

50 23 * * 0 diskutil repairVolume /Volumes/MacHD

Scheduling tasks with launchd
 You can use launchd instead of cron to schedule tasks. With launchd, if a task is
skipped because the computer is shut off or asleep, the task is added to the queue
when the computer comes back online. To use launchd to schedule timer-based jobs,
use the StartCalendarInterval or StartInterval key.

For more information about launchd, see the launchd man page.

 26 Chapter 3 Scripting the Command Line

 27

Learn about using the command-line on computers
remotely.

If you need to run command-line tools on remote computers, there are tools to help
you. This chapter discusses some of the most commonly used tools and provides
some tips for getting started. It also describes three methods for connecting to the
command-line environment of a remote computer:

SSH Â

Apple Remote Desktop Â

X11 Â

SSH
SSH (Secure Shell) lets you send secure, encrypted commands to a computer
remotely, as if you were sitting at the computer. You use the ssh tool in Terminal to
open a command-line connection to a remote computer, and while the connection
is open, you enter commands to be performed on the remote computer.

You can also use any other application that supports SSH to connect to a computer
running Mac OS X or Mac OS X Server.

How SSH Works
SSH works by setting up encrypted tunnels using public and private keys. Here’s
a description of an SSH session:

The local and remote computers exchange public keys. Â

If the local computer has never encountered a given public key, SSH and your web
browser prompt you to accept the unknown key.

The two computers use the public keys to negotiate a session key used to encrypt Â
subsequent session data.

4Connecting to Remote Computers

The remote computer attempts to authenticate the local computer using RSA or Â
DSA certificates. If this isn’t possible, the local computer is prompted for a local
username and password.

After successful authentication, the session begins. A remote shell, a secure file Â
transfer, a remote command, or other action can take place through the encrypted
tunnel.

The following are SSH tools:

 Â sshd—A daemon that acts as a server to all other commands

 Â ssh—The primary user tool, which includes a remote shell, remote command, and
port-forwarding sessions

 Â scp—Secure copy, a tool for automated file transfers

 Â sftp—Secure FTP, a replacement for FTP

Generating Key Pairs for Key-Based SSH Connections
By default, SSH supports the use of password, key, and Kerberos authentication.
The standard method of SSH authentication is to supply a user name and password
as login credentials. Identity key-based authentication lets you log in to the server
without supplying a password.

Key-based authentication is more secure than password authentication, because it
requires that you have the private key file and know the password that lets you access
that key file. A key must be generated for each user account that needs to use ssh.

How SSH key-based authentication works:�
 1 A private and a public key are generated, each associated with a user name to

establish that user’s authenticity.

 2 When you attempt to log in as that user, the user name is sent to the remote
computer.

 3 The remote computer looks in the user’s .ssh/ folder for the user’s public key.

This folder is created when using SSH the first time.

 4 A challenge is sent to the user based on his or her public key.

 5 The user verifies his or her identity by using the private portion of the key pair to
decode the challenge.

 6 After the key is decoded, the user is logged in without a password.

This is especially useful when automating remote scripts.

Note: If the server uses FileVault to encrypt the home folder of the user you want to
use SSH to connect as, you must be logged in on the server to use SSH. Alternatively,
you can store the keys for the user in a location that isn’t protected by FileVault, but
this isn’t secure.

 28 Chapter 4 Connecting to Remote Computers

 Chapter 4 Connecting to Remote Computers 29

To generate the identity key pair:�
 1 Enter the following command on the local computer:

$ ssh-keygen -t dsa

 2 When prompted, enter a filename in the user’s home folder to save the keys in; then
enter a password and password verification. For no password, don’t enter anything
when prompted. Just press Return.

For example:

Generating public/private dsa key pair.

Enter file in which to save the key (/Users/mariah/.ssh/id_dsa): frog

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in frog.

Your public key has been saved in frog.pub.

The key fingerprint is:

4a:5c:6e:9f:3e:35:8b:e5:c9:5a:ac:00:e6:b8:d7:96 mariahjohnson1@mac.com

This creates two files. Your identification or private key is saved in one file (frog in our
example) and your public key is saved in the other (frog.pub in our example).

The key fingerprint, which is derived cryptographically from the public key value,
also appears. This secures the public key, making it computationally infeasible for
duplication.

 3 Copy the resulting public file, which contains the local computer’s public key, to the
.ssh/authorized_keys file in the user’s home folder on the remote computer (~/.ssh/
authorized_keys).

The next time you log in to the remote computer from the local computer, you won’t
need to enter a password.

If you need to establish two-way communication between servers, repeat this process
on the second computer.

This process must be repeated for each user who needs to be able to open a key-
based SSH session. This includes the root user, whose home folder on Mac OS X Server
is at /var/root/.

Note: If you’re using an Open Directory user account and have logged in using the
account, you don’t need to supply a password for SSH login. On computers with
Mac OS X Server, SSH uses Kerberos for single sign-on authentication with any user
account that has an Open Directory password. (Kerberos must be running on the
Open Directory server.) For more information, see Open Directory Administration.

A Key-Based SSH Scripting Example
A cluster of servers is an ideal environment for using key-based SSH. The following Perl
script is a trivial scripting example, and it shouldn’t be implemented. It demonstrates
connecting over an SSH tunnel to each server defined in the variable serverList,
running softwareupdate, installing available updates, and restarting each server if
necessary. The script assumes that key-based SSH has been properly set up for the root
user on all servers to be updated.

#!/usr/bin/perl

\@ is the escape sequence for the “@” symbol.

my @serverList = ('root\@exampleserver1.example.com',

'root\@exampleserver2.example.com');

foreach $server (@serverList) {

open SBUFF, “ssh $server -x -o batchmode=yes ‘softwareupdate -i -a’ |”;

while(<SBUFF>) {

my $flag = 0;

chop($_);

#check for restart text in $_

my $match = “Please restart immediately”;

$count = @{[$_ =~ /$match/g]};

if($count > 0) {

$flag = 1;

}

}

close SBUFF;

if($flag == 1) {

\Qssh $server -x -o batchmode=yes shutdown -r now\Q

}

}

Updating SSH Key Fingerprints
The first time you connect to a remote computer using SSH, the local computer
prompts for permission to add the remote computer’s fingerprint (or encrypted public
key) to a list of known remote computers. You might see a message like this:

The authenticity of host “server1.example.com” can't be established.

RSA key fingerprint is a8:0d:27:63:74:f1:ad:bd:6a:e4:0d:a3:47:a8:f7.

Are you sure you want to continue connecting (yes/no)?

The first time you connect, you have no way of knowing whether this is the correct
host key. Most people respond “yes.” The host key is then inserted into the ~/.ssh/
known_hosts file so it can be verified in later sessions.

 30 Chapter 4 Connecting to Remote Computers

 Chapter 4 Connecting to Remote Computers 31

Be sure this is the correct key before accepting it. If possible, provide users with the
encryption key through FTP, mail, or a download from the web, so they can be sure of
the identity of the server.

If you later see a warning message about a man-in-the-middle attack (see below) when
you try to connect, it might be because the key on the remote computer no longer
matches the key stored on the local computer. This can happen if you:

Change your SSH configuration on the local or remote computer Â

Perform a clean installation of the server software on the computer you’re Â
attempting to log in to using SSH

Start up from a Mac OS X Server disc on the computer you’re attempting to log in to Â
using SSH

Attempt to use SSH to access a computer that has the same IP address as a computer Â
that you used SSH with on another network

To connect again, delete the entries corresponding to the remote computer (which are
stored by name and IP address) in the file ~/.ssh/known_hosts.

An SSH Man-in-the-Middle Attack
Sometimes an attacker can access your network and compromise routing information,
so that packets intended for a remote computer are routed to the attacker, who then
impersonates the remote computer to the local computer and the local computer to
the remote computer.

Here’s a typical scenario: A user connects to the remote computer using SSH. By
using spoofing techniques, the attacker poses as the remote computer and receives
information from the local computer. The attacker then relays the information to
the remote computer, receives a response, and then relays the remote computer’s
response to the local computer.

Throughout the process, the attacker is privy to all information that goes back and
forth, and can modify it.

If you see the following message when connecting to the remote computer using SSH,
it may indicate a man-in-the-middle attack.

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@

Protect against this type of attack by verifying that the host key sent back is the
correct host key for the computer you’re trying to reach. Be watchful for the warning
message, and alert your users to its meaning.

Important: Removing a host key from the known_hosts file bypasses a security
mechanism that would help you avoid imposters and man-in-the-middle attacks.
Before you delete a host key from the known_hosts file, be sure you understand why
the key on the remote computer has changed.

Controlling Access to SSH Service
You can use Server Admin to control which users can open a command-line
connection using the ssh tool in Terminal. Users with administrator privileges can
always open a connection using SSH.

For information about controlling access to the SSH service, see Open Directory
Administration.

Connecting to a Remote Computer Using SSH
Use the ssh tool to create a secure shell connection to a remote computer.

To access a remote computer using ssh:�
 1 Open Terminal.

 2 Log in to the remote computer by entering:

$ ssh -l username server

Replace username with the name of an administrator user on the remote computer.
Replace server with the name or IP address of the remote computer. For example:

$ ssh -l mariah 10.0.1.2

If this is the first time you’re connecting to the remote computer, you’re prompted to
continue connecting after the remote computer’s RSA fingerprint appears.

Enter yes.

 3 When prompted, enter the user’s password for the remote computer.

The command prompt changes to show that you’re connected to the remote
computer. In the previous example, the prompt might look like this:

10.0.1.2:~ mariah$

 4 To send a command to the remote computer, enter the command.

 5 To close the remote connection, enter logout.

You can authenticate and send a command using a single line, by appending the
command to the basic ssh tool. For example, to delete a file you could enter:

$ ssh -l mariah server1.example.com rm /Users/mariah/Documents/report

or

$ ssh -l mariah@server1.example.com “rm /Users/mariah/Documents/report”

You’re prompted for the user’s password.

 32 Chapter 4 Connecting to Remote Computers

 Chapter 4 Connecting to Remote Computers 33

Apple Remote Desktop
Apple Remote Desktop is a software package that’s available separately from
Mac OS X Server. Apple Remote Desktop provides a command for sending a shell
script or command to client computers, which lets you easily distribute and automate
shell scripts. For more information, see the “UNIX Shell Commands” section of the
Apple Remote Desktop Administrator Guide.

X11
X11 is the traditional windowing system of UNIX systems. If you’re working in
an environment where you need to support X11-based applications, you can use
them with Mac OS X Server, but you first need to install the X11 package. The
X11 server and an application to access X windows from the Finder are available
as an optional installation in the Optional Installs folder of your installation disc
(X11 is in the Applications package). Once the package is installed, you can access
an X-based terminal by launching the X11 application in /Applications/Utilities/.

The X11 implementation in Mac OS X Server is based on the X.org foundation release,
and is X11R7 compatible.

X11 uses a different security model than the default model in Mac OS X Server.
For more information, see the X11 Preferences Security pane and this article on the
Apple Developer Connection website:

“Configuring and Running X11 Applications on Mac OS X”

http://X.org
http://developer.apple.com/opensource/tools/runningx11.html

 34

This chapter discusses some of the most frequently used
command-line task.

If you’re new to the command-line environment, it helps to understand some
common scenarios in which people frequently use the shell. This section explores
some of those areas and provides some guidance on getting started using the
shell in these situations.

Editing Configuration Files
A common use of the command line is to manually edit configuration files to enable
functionality that isn’t exposed in Server Admin or Workgroup Manager. In server
documentation, for example, you may be instructed to modify Property Lists (plists)
or other regular text files to incorporate additional functionality or enforce enhanced
security settings. If you’re unfamiliar with using the command line to edit text files,
there are a few things to understand:

How to choose an appropriate text editor Â

How to edit property list (plist) files Â

How to save text files so they can be used by the UNIX subsystem of Mac OS X Â

These topics are discussed below.

Text Editors
To edit a plain text file, use a text editor. Text editors are among the oldest programs
available on any operating system, and come in a wide variety—from completely
automatic text editors, where you essentially write a recipe for what actions should be
taken on text and then let the computer do the work, to much more interactive text
editors that can edit (and save) text in a wide variety of formats.

5Common Command-Line Tasks

 Chapter 5 Common Command-Line Tasks 35

For general-purpose work, it’s easiest to deal with one of the text editors included
with Mac OS X. If you want to use a graphical text editor, use TextEdit (in /Applications/);
otherwise, use one of the many command-line editors provided. The three most
full-featured command-line text editors included with Mac OS X are:

nano Nano is a simple command-line based editor. It’s a replacement for the
Pico editor, so instructions for using the Pico editor can be used with nano. If you
invoke the pico editor, you actually run nano. Nano is a good introduction to using
a command-line based editor as it includes easy-to-follow on-screen help.

vim Vim is a vi-compatible text editor. It has many powerful enhancements for
moving around, searching, and editing documents. Basic editing is simple to learn and
there is much additional functionality to explore. Most functionality is accessed by
typing combinations of keystrokes that trigger certain behavior. Vim, or the editor it’s
modeled after, vi, is found in most UNIX-based operating systems. If you’ll be doing
lots of editing from the command line, it’s a good editor to learn to use, but if you only
use a command-line based editor occasionally, you can get by without learning it.

Emacs Like vim, Emacs is an extremely full-featured editor found on most UNIX-
based systems. In addition to its editing power, Emacs is extremely customizable, with
additional functionality available in modules that let the Emacs interface do much
more than just text editing. It’s relatively easy to do basic editing with, and has an
incredible depth of functionality for the dedicated user to explore. Like vim, Emacs
uses keystroke combinations to access its many different functional behaviors. These
require memorization to be most useful, so Emacs is most useful for people who use
the command line very often.

If you’re new to using the command line and don’t anticipate using it much for editing,
nano is probably your best choice. If you expect to spend a lot of time using the
command-line environment, it’s probably worth learning either vim or Emacs. They
have very different design philosophies, so spend some time with each of them to
determine which works best for you. For more information about using nano, vim, or
Emacs, see their man pages.

You invoke a command-line editor by typing the name of the editor, followed by a
space and then the name of the file you want to open. If you want to create a new file,
type a name for the file. Designate where the file is located, as described in “Specifying
Files and Folders” on page 15. Here’s an example of using nano to open a new file
named “myFile.conf” in your Documents folder:

$ nano ~/Documents/myFile.conf

Saving Text Files for UNIX Execution
When you edit text files for execution by UNIX utilities, you need to save the files
properly so that they can be used (or executed) by their calling program. It’s especially
important to use plain text and ensure that the privileges are correct.

Using plain text
Many graphical text editors, including TextEdit, save text files in a more complex
format than most UNIX programs expect. If you’re using TextEdit to edit text-based
configuration files, save them as Plain Text, not the default Rich Text Format. To change
the default format of text documents in TextEdit you have two options:

To save all documents as plain text, select “Plain text” under Format in the New m

Document pane of TextEdit preferences.

To change the format of an individual document, choose “Make Plain Text” from the m

Format menu.

Although Rich Text Format may appear to be simple text in an editor, it’s actually a full
specification that describes formatting, colors, fonts, and other information that isn’t
contained in the plain text files that most UNIX programs expect. To see what’s actually
contained in a Rich Text Format document, save one in TextEdit, and then open the
same file in a command-line text editor.

Editing Property Lists
Many preference and configuration files in Mac OS X use property lists (plists) to
specify the attributes, or properties, of an application or process. An example is the
Finder’s preferences plist in the Library/Preferences/ folder of a user’s home folder. The
file is named com.apple.Finder.plist. The default naming convention for a plist includes
the distributor’s reverse DNS name prepended to the application or process name,
followed by a“.plist” extension.

Property lists are binary files that you can edit using the following tools:

Property List Editor is a graphical application that’s a part of the Xcode developer Â
tools. You can get the Xcode tools from developer.apple.com. Property List Editor is
most useful if you already understand property lists and their conventions.

 Â PlistBuddyPlistBuddy is a command-line tool for directly reading and modifying
values inside a property list without the need to convert the property list to an
intermediary format.

 Â defaults is a command-line tool that you can use to edit property lists.

The defaults command is a powerful tool, with functionality beyond simple editing
of property lists. When you know the specific key and value in a property list that
you need to change, it’s very efficient.

 36 Chapter 5 Common Command-Line Tasks

http://developer.apple.com

 Chapter 5 Common Command-Line Tasks 37

 Â plutil is a command-line tool that you can use to change a property list into
a format you can edit with a text editor, and then change back to its binary format.

Using PlistBuddy to edit property lists
The PlistBuddy command is designed to easily read and modify values in a property
list. If you know the values to set or read, you can quickly make changes with
PlistBuddy. PlistBuddy works on specific property list files.

This example shows how to use the PlistBuddy command interactively to change the
orientation of the Dock for a local user:

 1 Determine the names of the appropriate property list, key, and values. In this case,
the name for the Dock’s property list is com.apple.Dock.plist. If you were editing
the Dock property list for the user alecjones, the path would be:

/Users/alecjones/Library/Preferences/com.apple.Dock.plist

 2 Enter in the following command to enter the PlistBuddy interactive mode:

PlistBuddy /Users/alecjones/Library/Preferences/com.apple.Dock.plist

If the path to PlistBuddy isn’t in your default paths, you need to add it or explicitly
call it as follows:

/usr/libexec/PlistBuddy ~/Library/Preferences/com.apple.Dock.plist

See “Executing Commands and Running Tools” on page 13.

If the file you’re trying to edit doesn’t exist, PlistBuddy creates the file in the
designated location.

 3 In interactive mode, you can choose from many commands. To set or change the
orientation of the Dock to the left side of the screen, enter:

Set :orientation left

 4 Save and exit:

Save

Exit

PlistBuddy can also be run non-interactively. To make the same change without
invoking interactive mode:

/usr/libexec/PlistBuddy -c "Set :orientation left" ~/Library/Preferences/

com.apple.Dock.plist

Both examples above assume the orientation key already exists. This isn’t necessarily
true for a new user in Mac OS X version 10.6. Don’t assume that a value exists. First,
confirm it with the Print command. Otherwise, you need to use the Add command,
which also requires designating a type.

There are many other options for PlistBuddy that are invoked in a similar manner.
For information about PlistBuddy, see its man page.

Using the defaults command to edit property lists
The defaults tools works directly with the Mac OS X preferences subsystem and is
used by many applications in Mac OS X to manage preferences and other settings.
It can be built into shell scripts and allows you to access preferences in the multiple
domains that exist on a given computer.

 1 Determine the names of the appropriate property list, key, and values. For example,
the name for the Dock’s property list is com.apple.Dock.plist. (When invoking the
defaults command, omit the .plist extension.)

 2 Using the values you have determined or been given, enter their values following the
defaults command:

defaults write com.apple.dock orientation left

 3 In most cases, you need to restart the application or process. A simple way to do this is
to use Activity Monitor to select the appropriate process, and then click Quit Process.
For this example, you would choose the process named Dock.

For information about defaults, see its man page.

Using plutil and a text editor to edit property lists
In Mac OS X v10.6, plist files are stored in a binary format. If you want to edit them with
a text editor, you must first convert them to plain text. To convert a plist file to plain
text, use the plutil command:

plutil -convert xml1 com.apple.dock.plist

This results in an XML text file that you can edit. When you’re done, convert the file
back to binary format:

plutil -convert binary1 com.apple.dock.plist

Before making any changes to plist files using plutil, make a backup copy of the files.
Do this in the Finder, or use the cp command:

cp com.apple.finder.plist com.apple.dock.plist.bak

For information about Property Lists, see the plist man page. For the basics of using
command-line tools, see Chapter 1, “Introduction to the Command-Line Environment.”

 38 Chapter 5 Common Command-Line Tasks

 Chapter 5 Common Command-Line Tasks 39

Moving and Copying Files
You can move and copy files locally or remotely using the mv, cp, and scp commands.

Moving a file or folder locally
To move files or folders from one location to another on the same computer, use the
mv command. The mv command moves the file or folder from its old location and puts
it in the new location.

For example, to move a file from your Downloads folder to a Work folder in your
Documents folder:

mv ~/Downloads/MyFile.txt ~/Documents/Work/MyFile.txt

You can also change the name of the file as it’s moved:

mv ~/Downloads/MyFile.txt ~/Documents/Work/NewFileName.txt

For more information about the mv command, see its man page.

Copying a file or folder locally
To make a copy of a file, use the cp command.

For example, to copy a folder named “Expenses” in your Documents folder to another
volume named “Data”:

cp ~/Documents/Expenses /Volumes/Data/Expenses

You can also change the name of the folder as it’s being moved:

cp ~/Documents/Expenses /Volumes/Data/Current_Expenses

For more information about the cp command, see its man page.

Copying a file or folder remotely
To copy a file or folder to or from a remote computer, use the scp command. scp
uses the same underlying protocols as ssh. For more information about SSH, see
“Controlling Access to SSH Service” on page 22.

For example, to copy a compressed file from your home folder to the ladmin user’s
home folder on a remote server:

scp -E ~/ImportantPapers.tgz ladmin@remoteserver.com:/Users/ladmin/
Desktop/ImportantPapers.tgz

You’re prompted for the ladmin user’s password.

The ‘-E’ flag preserves extended attributes, resource forks, and ACL information.

For more information about the scp command, see its man page.

Compressing and Uncompressing File Archives
Mac OS X and Mac OS X Server use the GNU tar utility to compress and uncompress
files and folders. When sending folders and multiple files between computers, it's
helpful to compress them into a single archive. This saves space, allows you to transfer
just one item instead of many, and makes it easier to resume in case the task is
suspended for some reason.

The tar utility has many options, but for a basic compression of a folder named
“LotsOfFiles,” you could simply enter:

tar -czf LotsOfFiles.tgz LotsOfFiles

If it’s a large folder, you may want to monitor the process by adding the ‘v’ flag:

tar -czvf LotsOfFiles.tgz LotsOfFiles

To open an archive, use the ‘x’ flag. The ‘v’ flag is useful to watch what’s going on:

tar -xzvf LotsOfFiles.tgz

The ‘z’ flag indicates that the archive is being compressed, as well as being combined
into one file. Usually you’ll use this option, but you aren’t required to. The traditional
file extension for a compressed archive is .tgz, although you might also see files
ending in .tar.gz. If the archive isn’t compressed, it usually just ends in .tar.

Files created with tar can be opened in the Finder by double-clicking them. Also, if
you use the File > Compress menu command in the Finder to compress a folder or file,
the tar file can be opened using tar from the command line.

For more information about the tar command, see its man page.

Viewing File Contents
If you want to look at the contents of a text-based configuration file, you can use cat
or less. Generally, you’ll use less because it has more options (like searching).

To use less, type the command name followed by the name of the file you want to
view. The first page of text fills the window. To view the next page, press the Space bar.

less also lets you search in a file. Type ‘/’ followed by the phrase you’re searching for. If
the phrase has spaces in it, precede each space with ‘\’:

/I\ read\ the\ other\ day

The following table lists some other useful keys for navigating the output from less.

 40 Chapter 5 Common Command-Line Tasks

 Chapter 5 Common Command-Line Tasks 41

Key Command Action

J or Down Arrow Scroll down a line

K or Up Arrow Scroll up a line

N Find the next occurrence of a search term

P Find the previous occurrence of a search term

Q Quit less

For more information about the less command, see its man page.

Searching for Text in a File
To locate a string within a file, use the grep tool. The grep tool searches the named
input files for lines containing a match to the given pattern. By default, grep prints the
matching lines.

To search for a unique string in a file:

$ grep search_string filename

Replace search_string with the the string to search for, and replace filename with the
name of the file whose contents you want to search.

Backing Up and Restoring
Time Machine is extremely useful for user backups, but server administrators might
have different backup requirements. Mac OS X Server provides several command-line
tools for backing up and restoring data:

 Â rsync—Use this command to keep a backup copy of your data in sync with the
original. rsync copies only the files that have changed.

 Â ditto—Use this command to perform full backups.

 Â asr—Use this command to back up and restore an entire volume.

For more information about these commands, see their man pages.

Note: You can use these commands with the launchctl command to automate
data backup.

 42

Learn how to access hardware-level controls like restarting,
shutting down, powering up, and selecting boot options
from the command line.

This chapter introduces commands for shutting down or restarting a local or remote
computer. Computers need to be shut down or restarted, whether locally or remotely,
when installing tools or making computer repairs.

Restarting a Computer
To restart a computer at a specific time, use the reboot or shutdown -r command.
For more information, see their man pages.

To restart the local computer:�
$ shutdown -r now

To restart a remote computer immediately:�
$ ssh -l root computer shutdown -r now

To restart a remote computer at a specific time:�
$ ssh -l root computer shutdown -r hhmm

Parameter Description

computer The IP address or DNS name of the computer

hhmm The hour and minute when the computer restarts

Automatic Restart
You can also use the systemsetup tool to set the computer to start up after a power
failure or system freeze, by specifying a number of seconds:

systemsetup -setwaitforstartupafterpowerfailure seconds

6Accessing Apple Hardware from
the Command Line

 Chapter 6 Accessing Apple Hardware from the Command Line 43

Parameter Description

seconds The number of seconds before the computer
starts after a power failure. This value must be
a multiple of 30.

Changing a Remote Computer’s Startup Disk
You can change a remote computer’s startup disk using SSH.

To determine available startup volumes:�
Log in to the remote computer using SSH, and enter:

systemsetup -liststartupdisks

To change the startup disk:�
Log in to the remote computer using SSH, and enter:

CodeLinesystemsetup -setstartupdisks /Volumes/SnowLeopardServerHD/System/
Library/CoreServices

For information about using SSH to log in to a remote computer, see “SSH” on page 27.

Shutting Down a Computer
To shut down a computer at a specific time, use the shutdown tool. For more
information, see the shutdown man page.

To shut down a remote computer immediately:�
$ ssh -l root computer shutdown -h now

To shut down the local computer in 30 minutes:�
$ shutdown -h +30

Parameter Description

computer The IP address or DNS name of the computer

Shutting Down While Leaving the Computer On and Powered
To support UPS restart after power failure, the shutdown tool provides the -u option.
This option halts system shutdown before the shutdown tool instructs the power
manager to turn off the power supply.

The -u option keeps the system halted and waits for 5 minutes before removing
power so an external UPS can forcibly remove power.

Using the -u option simulates a dirty shutdown, which allows a later automatic
power-on. The operating system uses the -u option with supported UPS devices in
emergency shutdowns.

Manipulating Open Firmware NVRAM Variables
To manipulate Open Firmware NVRAM variables, use the nvram tool. If you change
a value with nvram, the value is saved only if the computer cleanly restarts or
shuts down.

To view NVRAM variables:�
$ nvram -p

For more information, see the nvram man page.

Remotely Controlling the Xserve Front Panel
You can use the ipmitool command to remotely control the front panel of an Xserve.

To display the list of supported virtual front panel commands:�
$ ipmitool chassis bootdev

bootdev <device> [clear-cmos=yes|no]

none : Do not change boot device order

pxe : Force PXE boot (LOM: Force boot NetBoot server)

disk : Force boot from default Hard-drive

safe : Force boot from default Hard-drive, request Safe Mode (LOM: Not
used)

diag : Force boot from Diagnostic Partition (LOM: Force boot diagnostic
mode from NetBoot server)

cdrom : Force boot from CD/DVD

bios : Force boot into BIOS Setup (LOM: Not used)

Lights-out Management additional options

nvram : Force reset of NVRAM

tdm : Force boot into Target Disk Mode

other : Skip current startup disk selection, and boot from other

Mac OS X Server v10.6 supports the following commands: none, pxe, disk, diag, cdrom,
nvram, tdm, and other.

For example, enter the following command and then restart the Xserve system to start
the system in Target Disk Mode:

$ ipmitool chassis bootdev tdm

After the system starts, the ipmitool command reverts to the default setting (none).
Restarting the Xserve system without running the ipmitool command doesn’t change
the boot device order.

For more information about ipmitool, see its man page.

 44 Chapter 6 Accessing Apple Hardware from the Command Line

 45

The following command line tools are unique to Mac OS X or substantially different
from implementations on other UNIX platforms. See their man pages for more details.

An online version of the man pages in Mac OS X and Mac OS X server is available at:

http://developer.apple.com/documentation/Darwin/Reference/ManPages/

Section 1 Man Pages
Man pages in section 1 refer to general command-line tools and utilities.

See the intro(1) man page for more information about this section.

afconvert(1) Audio file converter

afinfo(1) Audio file information

afplay(1) Audio file player

afscexpand(1) Decompress files compressed with HFS+ compression

amlint(1) Check Automator actions for problems

applesingle(1) Encode and decode files

ar(1) Create and maintain library archives

arch(1) Print architecture type or run selected architecture of a universal
binary

authopen(1) Open file with authorization

automator(1) Runs Automator workflow

auval(1) AudioUnit validation

auvaltool(1) AudioUnit validation

binhex(1) Encode and decode files

BuildStrings(1) Generate header (.h) or resource (.r) file from text files

compileHelp(1) Command-line utility to merge contextual help rtf snippets into
one resource

A
pp

en
di

x

Command-Line Tools Specific to 
Mac OS X

http://developer.apple.com/documentation/Darwin/Reference/ManPages/

 46 Appendix Command-Line Tools Specific to Mac OS X

configureLocalKDC(1) Generate a LocalKDC

CPlusTestRig(1) Runs CPlusTest unit test bundles

CpMac(1) Copy files preserving metadata and forks

createhomedir(1) Create and populate home directories on the local computer

defaults(1) Access the Mac OS X user defaults system

desdp(1) Scripting definition generator

ditto(1) Copy directory hierarchies, create and extract archives

dns-sd(1) Multicast DNS (mDNS) & DNS Service Discovery (DNS-SD) Test Tool

drutil(1) Interact with CD/DVD burners

dscacheutil(1) Gather information, statistics and initiate queries to the Directory
Service cache

dsimport(1) Tool for importing records into an Open Directory source

dsmemberutil(1) Various operations for the membership APIs, including state
dump, check memberships, UUIDs, etc

dsymutil(1) Manipulate archived DWARF debug symbol files

dwarfdump(1) Dump DWARF debug information

dyldinfo(1) Displays information used by dyld in an executable

emacs-undumped(1) Basic emacs with no ELisp libraries loaded

FixupResourceForks(1) Join AppleDouble files into two-fork HFS resource files

fs_usage(1) Report system calls and page faults related to filesystem activity
in real-time

fwkdp(1) FireWire KDP Tool

fwkpfv(1) FireWire kprintf viewer

gatherheaderdoc(1) Header documentation processor

genstrings(1) Generate string table from source code

GetFileInfo(1) Get attributes of files and directories

hdiutil(1) Manipulate disk images (attach, verify, burn, etc)

hdxml2manxml(1) HeaderDoc XML to MPGL translator

headerdoc(1) Header documentation processor

headerdoc2html(1) Header documentation processor

hiutil(1) Utility for creating and examining Help Viewer indices

hwprefs(1) Inspect and control low-level system and processor parameters

 Appendix Command-Line Tools Specific to Mac OS X 47

javaconfig(1) Get Java configuration information

javatool(1) Tool used in building older Java software projects

languagesetup(1) Set the primary language

latency(1) Monitors scheduling and interrupt latency

launchctl(1) Interfaces with launchd

ld(1) Linker

locale(1) Display locale settings

localedef(1) Define locale environment

lookupd(1) Gather information, statistics and initiate queries to the Directory
Service cache

mDNS(1) Multicast DNS (mDNS) & DNS Service Discovery (DNS-SD) Test Tool

macbinary(1) Encode and decode files

mdcheckschema(1) Simple mdimporter schema validation tool

mdfind(1) Finds files matching a given query

mdimport(1) Import file hierarchies into the metadata datastore

mdls(1) Lists the metadata attributes for the specified file

mdutil(1) Manage the metadata stores used by Spotlight

mediastreamsegmenter(1) Create segments from MPEG-2 Transport streams for HTTP Live
Streaming

memberd(1) Various operations for the membership APIs, including state
dump, check memberships, UUIDs, etc.

MergePef(1) Merge multiple PEF containers into one file

migrateLocalKDC(1) Migrates a LocalKDC

mnthome(1) Mount an AFP (AppleShare) home directory with the correct
privileges

mpgl(1) MPGL to mdoc (man page) translator

MvMac(1) Move files while preserving metadata and forks

netstat(1) Show network status

notificationconf(1)

notifyutil(1) Notification command line utility

ocspd(1) OCSP and CRL Daemon

open(1) Open files and directories

 48 Appendix Command-Line Tools Specific to Mac OS X

opendiff(1) Use FileMerge to graphically compare or merge file or directories

osacompile(1) Compile AppleScripts and other OSA language scripts

osadecompile(1) Display compiled AppleScripts or other OSA language scripts

osalang(1) Information about installed OSA languages

osascript(1) Execute AppleScripts and other OSA language scripts

packagemaker(1) Installation-package creation tool

passwd(1) Modify a user’s password

pl(1) ASCII property list utility Extract translatable strings from source

plutil(1) Property list utility

pmset(1) Manipulate power management settings

podcast(1) Podcast Producer command line tool

PPCExplain(1) Verbose description of PowerPC mnemonics

projectInfo(1) Identify build tool for software development project

pubsub(1) Utility for managing RSS/Atom subscriptions via the PubSub
framework

qlmanage(1) Quick Look Server debug and management tool

rebase(1) Changes base address of dylibs and bundles

reggie_se(1) Read and modify hardware registers

ResMerger(1) Merges resource forks or files into one resource file

RezWack(1) Combines resource and data forks of a file into a flattened file

RunTargetUnitTests(1) Run unit tests for the current target

RunUnitTests(1) Run unit tests for the current target

sandbox-exec(1) Execute within a sandbox

sandbox-simplify(1) Simplify a sandbox profile created by a trace directive

sar(1) System activity reporter

sc_usage(1) Show system call usage statistics

sdef(1) Scripting definition extractor

sdp(1) Scripting definition (sdef) processor

security(1) Command line interface to keychains and Security framework

 Appendix Command-Line Tools Specific to Mac OS X 49

securityd(1) Security context daemon for Authorization and cryptographic
operations

SetFile(1) Set attributes of files and directories

sips(1) Scriptable image processing system

SplitForks(1) Divide a two-fork HFS file into AppleDouble format resource and
data files

stackshot(1) Capture user and kernel space stack traces, using a kernel stack
trace facility

sw_vers(1) Print Mac OS X operating system version information

symstacks.rb(1) Capture user and kernel space stack traces, using a kernel stack
trace facility

syslog(1) Apple System Log utility

tconf(1) TargetConfig command line tool

textutil(1) Text utility

tiff2icns(1) Converts TIFF to icns format

tiffutil(1) Manipulates tiff files

UnRezWack(1) Split a RezWack file into separate data and resource files

unwinddump(1) Displays compact unwind information in an executable

update_dyld_shared_
cache(1)

Updates dyld’s shared cache

uuidgen(1) Generates new UUID strings

vm_stat(1) Show Mach virtual memory statistics

wai(1) Wait for process termination

xcodebuild(1) Build Xcode projects

xcodeindex(1) Indexes Xcode projects

xgrid(1) Submit and monitor xgrid jobs

xm(1) Script to get information about the installed version of GNOME-
XML

yacc(1) Parser generator

 50 Appendix Command-Line Tools Specific to Mac OS X

Section 4 Man Pages
Man pages in section 4 refer to descriptions of special files and devices.

dummynet(4) Traffic shaper, bandwidth manager and delay emulator

ipfirewall(4) IP packet filter and traffic accounting

random(4) Better random number generator; routines for changing
generators

urandom(4) Better random number generator; routines for changing
generators

Section 5 Man Pages
Man pages in section 5 give information about file formats and conventions.

See the intro(5) man page for more information about this section.

asl.conf(5) Configuration file for syslogd(8) and aslmanager(8)

auto_master(5) Automounter master map

autofs.conf(5) automount(8) and automountd(8) configuration file

bom(5) Bill of materials

bootparams(5) Boot parameter database

bootptab(5) Internet Bootstrap Protocol server database

compat(5) Manipulate compatibility settings

fstab(5) Static information about the filesystems

group(5) Format of the group permissions file

launchd.conf(5) launchd(8) configuration file

launchd.plist(5) System wide and per-user daemon/agent configuration files

manpages(5) An introduction to manual pages

plist(5) System wide and per-user daemon/agent configuration files
property list format

ranlib(5) Archive (library) table-of-contents format

resolver(5) Resolver configuration file format

sdef(5) Scripting definition file

stab(5) Symbol table types

types(5) Mime type description file for cups system data types

 Appendix Command-Line Tools Specific to Mac OS X 51

Section 7 Man Pages
Man pages in section 7 are miscellaneous pages that don’t belong in any other
section.

See the intro(7) man page for more information about this section.

sandbox(7) Overview of the sandbox facility

Section 8 Man Pages
Man pages in section 8 document commands that system administrators would
invoke as well as daemons.

See the intro(8) man page for more information about this section.

agvtool(8) Apple-generic versioning tool for Xcode projects

aosnotifyd(8) Apple Online Services notification daemon

appleprofilepolicyd(8) AppleProfileFamily access control daemon

aslmanager(8) Configuration file for syslogd(8) and aslmanager(8) Apple System
Log data store file manager

asr(8) Apple Software Restore; copy volumes (e.g. from disk images)

atrun(8) Run jobs queued for later execution

autodiskmount(8) Disk support tool

autofsd(8) Daemon to update autofs mounts on network changes

automount(8) automount(8) and automountd(8) configuration file mount autofs
on the appropriate mount points

automountd(8) automount(8) and automountd(8) configuration file automatic
mount / unmount daemon for autofs

bless(8) Set volume boot-ability and startup disk options

blued(8) The Mac OS X bluetooth daemon

bootpd(8) DHCP/BOOTP/NetBoot server

c(8) Standard C language compiler standard C language compiler

chkpasswd(8) Verifies user password against various systems

configd(8) System Configuration Daemon

 52 Appendix Command-Line Tools Specific to Mac OS X

coreaudiod(8) Core Audio daemon

dirhelper(8) Helper for special directory creation

diskarbitrationd(8) Disk arbitration daemon

diskmanagementd(8) DiskManagement.framework server

disktool(8) Disk support tool

diskutil(8) Modify, verify and repair local disks

distnoted(8) Distributed notification server

dnsextd(8) BIND Extension Daemon

dsconfigad(8) Retrieves/changes configuration for Directory Services Active
Directory Plugin

dserr(8) Prints a description for an error code

dumpemacs(8) Utility to dump pre-loaded emacs with compiled ELisp auto-loads

dynamic_pager(8) External storage manager for dynamic pager

fibreconfig(8) Tool for configuring settings for Fibre Channel controllers and
targets

firmwaresyncd(8) Synchronize files used by the system firmware

fsck_hfs(8) HFS file system consistency check

hdik(8) Lightweight in-kernel disk image mounting tool

hfs.util(8) HFS/HFS+ file system utility

hostinfo(8) Host information

ifcstart(8) Rebuilds international data caches

installer(8) System software and package installer tool

InternetSharing(8) Simple NAT/router configuration daemon

ioalloccount(8) Summarize IOKit memory usage

ioclasscount(8) Displays the instance counts of OSObject-based C++ classes in the
kernel

ioreg(8) Show I/O Kit registry

ioupsd(8) Daemon to track UPS state

ipconfig(8) View and control IP configuration state

ipfw(8) IP firewall and traffic shaper control program

kadmin_util(8) Kerberos -- Open Directory Single Sign On

 Appendix Command-Line Tools Specific to Mac OS X 53

kdcsetup(8) Kerberos -- Open Directory Single Sign On

kerberosautoconfig(8) Kerberos -- Open Directory Single Sign On

kext_logging(8) Verbose/logging flags for kernel extensions (kexts) in the kernel
and command-line utilities

kextcache(8) Create kext cache files

kextd(8) Kernel extension server

kextfind(8) Find kernel extensions (kexts) based on a variety of criteria and
print information

kextlibs(8) Find OSBundleLibraries needed by a kext

kextload(8) Load kernel extensions (kexts) into the kernel

kextstat(8) Display status of loaded kernel extensions (kexts)

kextunload(8) Terminate driver I/O Kit driver instances and unload kernel
extensions (kexts)

kextutil(8) Load, diagnose problems with, and generate symbols for kernel
extensions (kexts)

krbservicesetup(8) Kerberos -- Open Directory Single Sign On

kuncd(8) The Kernel User Notification Center daemon

launchd(8) System wide and per-user daemon/agent manager

launchproxy(8) Inetd job emulation helper

locate.bigram(8) Sorted list compressor

locate.code(8) Sorted list compressor

lsbom(8) List contents of a bom file

mDNSResponder(8) Multicast and Unicast DNS daemon

mDNSResponderHelper(8) MDNS privilege separation helper

mkbom(8) Create a bill-of-materials file

mkextunpack(8) Extract or list the contents of a multikext (mkext) archive

mount_afp(8) Mount an afp (AppleShare) filesystem

mount_cddafs(8) Mount an Audio CD

mount_ftp(8) Mount a FTP filesystem

mount_hfs(8) Mount an HFS/HFS+ file system

mount_ntfs(8) Mount an NTFS file system

mount_url(8) Mount a remote file system given a URL

 54 Appendix Command-Line Tools Specific to Mac OS X

mount_webdav(8) Mount a WebDAV filesystem

msdos.util(8) DOS/Windows (FAT) file system utility

natd(8) Network Address Translation daemon

nbdst(8) NetBoot deferred shadow tool

networksetup(8) Configuration tool for network settings in System Preferences

newfs_hfs(8) Construct a new HFS Plus file system

newfs_hfs(8) Construct a new HFS Plus file system

notifyd(8) Notification server

ntfs.util(8) NTFS file system utility

ntpd-wrapper(8) Wrapper for ntpdate/ntpd called by launchd

path_helper(8) Helper for constructing PATH environment variable

pboard(8) Pasteboard server

pbs(8) General helper tool

pcastagentd(8) Captures video, screen, and audio content for Podcast Producer

pictd(8) General helper tool

PlistBuddy(8) Read and write values to plists

pmap_dump(8) Print a list of all registered RPC programs

pmap_set(8) Set the list of registered RPC programs

pwpolicy(8) Gets and sets password policies

rc(8) Command script for boot

sa1(8) Generate a system activity daily data file

sa2(8) Generate a system activity daily data file

sadc(8) System activity data collector

sandboxd(8) Sandbox daemon

scselect(8) Select system configuration location

scsid(8) SCSI subsystem daemon

scutil(8) Manage system configuration parameters

security_
authtrampoline(8)

 Appendix Command-Line Tools Specific to Mac OS X 55

service(8) Deprecated

service_helper(8) Helper program for enabling and disabling services

setregion(8) Set the disc region code for a DVD drive

softwareupdate(8) Software Update checks for new and updated versions of your
software

spindump(8) Report generation for unresponsive applications helper process
for spindump(8)

spindump_
symbolicator(8)

Helper process for spindump(8)

sso_util(8) Tool for setting up, interrogating and removing Kerberos
configurations within the Apple Single Sign On environment

StartupItemContext(8) Execute a program in StartupItem context

syslogd(8) Configuration file for syslogd(8) and aslmanager(8) syslogd(8)
configuration file Apple System Log server

system_profiler(8) Reports system hardware and software configuration

systemsetup(8) Configuration tool for certain machine settings in System
Preferences

SystemStarter(8) Deprecated

taskgated(8) Task_for_pid access control daemon

tokenadmin(8) Command-line interface to smartcards and other token-based
keychains

ufs.util(8) UFS file system utility

upsshutdown(8) UPS emergency low power shutdown script

UserEventAgent(8) High-level system event handler

vpnd(8) Mac OS X VPN service daemon

vsdbutil(8) Manipulates the volume status DB

warmd(8) Pre-heating daemon

warmd_agent(8) Pre-heating agent

xgridctl(8) Xgrid Daemon Control Interface

A
access

administrator 16
shell 11, 12, 13
SSH service 32
user 32

accounts, authentication 29
administrator, permissions 16
Apple Remote Desktop (ARD) 33
asr tool 41
authentication

Kerberos 28
SSH 28, 30
user 30

B
backups 41
boot process. See startup

C
cat tool 40
command-line tools

backups 41
compressing files 40
configuration file editing 34, 35, 36
copying files 39
executing 10, 13, 15, 16, 19, 20, 21, 25, 26
expanding files 40
hardware control 42, 43, 44
introduction 10
list of 45
moving files 39
overview 5
property list editing 36, 37, 38
redirecting input and output 20
repeating 22
restoring data 41
searching for text 41
sending to remote computers 27
terminating 14
viewing 17
viewing file contents 40
See also shell

computers. See local computers, remote computers
configuration files 34, 35, 36
Console 12
cp tool 39
critical services, monitoring 24
cron tool 25
crontab file 25

D
defaults tool 36
disks, startup 43
ditto tool 41
documentation 7, 8, 17

E
Emacs text editor 35
encryption 27, 30, 31
environment variables 21
error messages 19

F
file systems, backing up 41
files

command-line tools 39, 40, 41
configuration 34, 35, 36
dragging and dropping 22
known_hosts file 31, 32
specifying 15

FileVault 28
fingerprint, RSA 30
folders

dragging and dropping 22
specifying 15

G
grep tool 41

H
help, using 6

I
info pages 18

 Index

 56

In
de

x

 Index 57

info tool 18
input/output commands 19, 20
ipmitool tool 44

K
Kerberos 28
key-based authentication 28, 30
known_hosts file 31, 32

L
launchctl tool 24, 41
launchd daemon 24, 26
launchd vs. watchdog tools 25
less tool 40
local computer

file management 39
restarting 42

login
Open Directory 29
SSH 28, 30

M
Mac OS X Server, launchd vs. watchdog tools 25
man pages 17, 45
man tool 17
man-in-the-middle attacks 31
mv tool 39

N
nano text editor 35
nvram tool 44

O
Open Directory login 29
Open Firmware interface 44
output, redirecting 20

P
passwords 28, 29
permissions 16
pipes, standard 19
plain text file format 36
PlistBuddy tool 36, 37
plutil tool 36, 38
private key 27, 28, 30
privileges, administrator 16
Property List Editor 36
property list (plist) files 36, 37, 38
public key cryptography 27, 28, 30

R
reboot tool 42
redirecting input and output 20
remote computers

connecting to 27, 32, 44

file management 39
restarting 42
sending commands to 27
shell access 13
startup disk changes 43

repeating commands 22
restart, controlling 24, 42
Rich Text Format (RTF) 36
root permissions 16
RSA key fingerprint 30
rsync tool 41

S
scp tool 28, 39
searching text strings 41
Secure Shell. See SSH
security

passwords 28, 29
permissions 16
SSH 27, 28, 30, 31, 32
See also access, authentication

serial console 13
sftp tool 28
shell

accessing 11, 12, 13
interactive 19
See also command-line tools

shell scripts 23, 24, 25, 26
shutdown tool 42, 43
shutdown, controlling 43
single-user mode 12
Snow Leopard. See Mac OS X Server
ssh tool 27, 32
SSH

access control 32
connecting to remote computer 32
introduction 27
key-based authentication 28, 30
man-in-the-middle attack 31
startup disk changes 43
workings of 27

sshd daemon 28
ssh-keygen tool 29
standard pipes 19
startup disk settings 43
stderr pipe 19
stdin pipe 19
stdout pipe 19
sudo tool 16
systemsetup tool 42

T
tar tool 40
Terminal 10, 11, 12
text editors 35, 36
typing errors, correcting 20

 58 Index

U
uninterruptible power supply. See UPS
UNIX 11, 36
UPS (uninterruptible power supply) 43
users

access control 32
authentication 30
single-user mode 12

V
vim text editor 35
volumes, backing up 41

W
watchdog daemon 25

X
X11 window manager 13, 33
Xserve 44

	Introduction to Command Line Administration
	Contents
	Preface:�  About This Guide
	What’s in This Guide
	Using Onscreen Help
	Documentation Map
	Viewing PDF Guides Onscreen
	Printing PDF Guides
	Getting Documentation Updates
	Getting Additional Information

	Chapter 1:  Introduction to the Command-Line Environment
	The Command-Line Environment
	UNIX
	The Shell

	Accessing the Shell
	Local Access
	Remote Access

	Closing the Shell
	Executing Commands and Running Tools
	Terminating Commands
	Specifying Files and Folders
	Commands Requiring Root or Administrator Privileges
	Getting Help for Command-Line Tools
	Using Help Built Into Command-Line Tools
	Using Man Pages
	Using Info Pages

	Chapter 2:  Using the Command-Line Shell Interactively
	Standard Pipes
	Redirecting Input and Output
	Correcting Typing Errors
	Using Environment Variables
	Repeating Commands
	Including Paths Using Drag and Drop

	Chapter 3:  Scripting the Command Line
	What is a Shell Script?
	Monitoring and Restarting Critical Services with launchd
	Scheduling a Shell Script to Run at Specific Times
	Scheduling tasks with launchd

	Chapter 4:  Connecting to Remote Computers
	SSH
	How SSH Works
	Generating Key Pairs for Key-Based SSH Connections
	Updating SSH Key Fingerprints
	An SSH Man-in-the-Middle Attack
	Controlling Access to SSH Service
	Connecting to a Remote Computer Using SSH

	Apple Remote Desktop
	X11

	Chapter 5:  Common Command-Line Tasks
	Editing Configuration Files
	Text Editors
	Saving Text Files for UNIX Execution

	Editing Property Lists
	Moving and Copying Files
	Compressing and Uncompressing File Archives
	Viewing File Contents
	Searching for Text in a File
	Backing Up and Restoring

	Chapter 6:  Accessing Apple Hardware from the Command Line
	Restarting a Computer
	Automatic Restart

	Changing a Remote Computer’s Startup Disk
	Shutting Down a Computer
	Shutting Down While Leaving the Computer On and Powered

	Manipulating Open Firmware NVRAM Variables
	Remotely Controlling the Xserve Front Panel

	Appendix:�  Command-Line Tools Specific to Mac OS X
	Section 1 Man Pages
	Section 4 Man Pages
	Section 5 Man Pages
	Section 7 Man Pages
	Section 8 Man Pages

	Index

