SGI[™] 1400 Server Family Maintenance and Upgrades Guide

Document Number 007-3948-001

CONTRIBUTORS

Writing contributions by Mark Schwenden

Illustrated by Cheri Brown

Production by Heather Hermstad and David Clarke

Engineering contributions by Jim Oliver, Courtney Carr, Joan Eslinger, and Chander Kant

St. Peter's Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

© 1999, Silicon Graphics, Inc.— All Rights Reserved

The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE, or NASA FAR Supplements. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351.

Silicon Graphics is a registered trademark and SGI and the Silicon Graphics logo are trademarks of Silicon Graphics, Inc. Pentium is a registered trademark and Xeon is a trademark of the Intel Corporation. All other third party brands and names mentioned in this document are the property of their respective owners.

SGI[™] 1400 Server Family Maintenance and Upgrades Guide Document Number 007-3948-001

Contents

1.

Li	st of Figures vii
Li	st of Tables ix
Ał	oout This Guide xiii
W	orking Inside the System 1
То	ols and Supplies Needed 1
Sa	fety: Before You Remove the Access Cover 1
W	arnings and Cautions 2
Re	moving the System Access Cover 3
Ins	stalling the Access Cover 3
W	orking in the Subchassis and Electronics Bay 5
Ins	stalling PCI Boards 7
Re	moving a PCI option Board 9
Re	moving the Front Panel Board 9
Ins	stalling the Front Panel Board 10
Re	moving the Diskette Drive 11
Ins	stalling the Diskette Drive 12
Pe	ripheral Drives 13
	Drive Cabling Considerations 13
	IDE Requirements 13
	SCSI Requirements 14
	Installing 5.25-inch Peripherals in the Front Bays 14
	Removing a 5.25-inch Peripheral from the Front Bay 18
	Installing or Replacing the SCSI-B Cable 20

	System Fans 22
	Removing the System Fan Assembly 22
	Installing the System Fan Assembly 24
	Removing an Individual System Fan 24
	Installing an Individual System Fan 26
	The Power Share Board 27
	Replacing the Power Share Board (PSB) 27
2.	Upgrading Baseboard Components 33
	Baseboard 33
	Removing the Baseboard 33
	Installing the Baseboard 35
	Memory 36
	Removing the Memory Module 36
	Installing the Memory Module 38
	Removing DIMMs 38
	Installing DIMMs 39
	Processors 40
	Removing a Processor 41
	Installing a Processor 44
	Installing the Processor Tabs 46
	Installing Processor Heatsinks 47
	Voltage Regulator Modules (VRMs) 49
	Removing a VRM 51
	Installing a VRM 52
	Replacing the Backup Battery 53
3.	SGI 1400 Server SCSI Backplane Installation 57
	SCSI Backplane Warnings and Cautions 57
	Safety: Before You Remove the Access Cover 57
	General Procedure to Open the Chassis 57
	Replacing an Existing Backplane 59
	General Procedure to Close the Chassis 63

4. Technical Reference 65

Baseboard Connectors 65

Main Power Connector 68 Auxiliary Power 69

Diskette Drive 70

Front Panel Connector 72

The SMM Connector 74

The IPMB Connector 75

VGA Video Port Connector 76

Keyboard and Mouse 77

Parallel Port 78

Serial Ports A and B 79

Universal Serial Bus 80

Narrow SCSI Connector 81

Wide SCSI Connector 84

Internal IDE Connector 86

The Hard Drive LED Connector 88

ISA Connector Pinouts 89

The PCI Connectors 93

Baseboard Jumpers 99

General Procedure to Change a Jumper Setting 100

CMOS Clear Jumper 101

Password Clear Jumper 101

Recovery Boot Jumper 102

System I/O Addresses 104

Memory Map Address Range 108

Interrupts 109

Video Modes 110

A.	Equipment Log and Configuration Worksheets 117
	Equipment Log 117
	Configuration Worksheets 120
	Current Usage 120
	Calculating Power Usage 120
	Worksheet, Calculating DC Power Usage 121
	Worksheet, Total Combined Power Used by the System 122
	System Setup Utility (SSU) Worksheets 123
	Adding and Removing Boards 123
	ISA Board Definition 124
	Baseboard (SSU, Change Configuration Settings) 125
	Management Subsystem, System Sensor Control Worksheet 129
	BIOS Setup Worksheets 129
B.	Environmental Specifications 137
	Environmental Specifications 137
C.	Chassis Warnings and Safety 139
	Power Warnings 139
	Cautions When Removing the Chassis Covers 139
	Index 143

List of Figures

Figure 1-1	Removing the Access Cover 4
Figure 1-2	Opening the Subchassis and Electronics Bay 6
Figure 1-3	Installing a PCI option Board 8
Figure 1-4	Removing the Front Panel Board 10
Figure 1-5	Removing the Diskette Drive from the Chassis 11
Figure 1-6	IDE Cable Dimensions 13
Figure 1-7	Removing EMI Shields 16
Figure 1-8	Snap-in Plastic Slide Rails 17
Figure 1-9	Removing a Removable Media Device 19
Figure 1-10	SCSI-B Cable Installation 21
Figure 1-11	Removing the Fan Assembly 23
Figure 1-12	Fan Cabling 25
Figure 1-13	Chassis Side View 28
Figure 1-14	Removing the Existing Board and Bracket Assembly 29
Figure 1-15	Removing the Existing Board from its Bracket 30
Figure 1-16	Attaching the New Board to its Bracket 31
Figure 1-17	Installing the New Board and Bracket Assembly 32
Figure 2-1	Removing the Baseboard 35
Figure 2-2	Removing the Memory Module 37
Figure 2-3	Installing a DIMM 40
Figure 2-4	Releasing the Retention Module Bracket 42
Figure 2-5	Removing a Processor 43
Figure 2-6	Installing a Processor 45
Figure 2-7	Installing Tabs on a Processor S.E.C. Cartridge 46
Figure 2-8	Installing a Heatsink on a Processor S.E.C. Cartridge 48
Figure 2-9	Processor and Corresponding VRM Locations 50
Figure 2-10	Installing a VRM 52

Figure 2-11	Replacing the Lithium Battery 54
Figure 3-1	Chassis Side View 58
Figure 3-2	Removing the Backplane from the Chassis 60
Figure 3-3	Aligning and Attaching the Backplane 61
Figure 3-4	Reconnecting Cables to the New Backplane 62
Figure 4-1	Baseboard Layout 66
Figure 4-2	Main Power Connector Pins 68
Figure 4-3	Auxiliary Power Connector 69
Figure 4-4	Diskette Drive Connector 70
Figure 4-5	Front Panel Connector 72
Figure 4-6	Server Management Module (SMM) Connector 74
Figure 4-7	The IPMB Connector 75
Figure 4-8	VGA Video Port Connector 76
Figure 4-9	Keyboard and Mouse Connector 77
Figure 4-10	Parallel Port Connector 78
Figure 4-11	Serial Port A (External) Connector 79
Figure 4-12	USB External Connector 80
Figure 4-13	Narrow SCSI Connector 81
Figure 4-14	Wide SCSI Connector 84
Figure 4-15	Internal IDE Connector 86
Figure 4-16	Hard Drive LED Connector 88
Figure 4-17	Baseboard Jumpers 99

List of Tables

Table 2-1	VRM and Processor Power Sequence 49
Table 2-2	Processor and VRM Population Sequencing 49
Table 4-1	Main Power Connector Pinouts 68
Table 4-2	Auxiliary Power Connector Pinouts 69
Table 4-3	Diskette Drive Connector Pinouts 70
Table 4-4	Front Panel Connector Pinouts 72
Table 4-5	Server Management Module Connector Pinouts 74
Table 4-6	IPMB Connector Pinouts 75
Table 4-7	Video Port Connector Pinouts 76
Table 4-8	Keyboard and Mouse Connector Pinouts 77
Table 4-9	Parallel Port Connector Pinout 78
Table 4-10	Serial Port A (External) Connector Pinout 79
Table 4-11	USB External Connector Pinout 80
Table 4-12	USB Internal Header Pinout 80
Table 4-13	Narrow SCSI Connector Pinouts 81
Table 4-14	Wide SCSI Connector Pinouts 84
Table 4-15	IDE Connector Pinouts 86
Table 4-16	Hard Drive LED Connector Pinouts 88
Table 4-17	ISA Connector Pinouts 89
Table 4-18	PCI Connector Pinouts 93
Table 4-19	Baseboard Jumper Summary 100
Table 4-20	BIOS Recovery Beep Codes 103
Table 4-21	System I/O Addresses 104
Table 4-22	Memory Map Address Range 108
Table 4-23	Interrupt I/O Descriptions 109
Table 4-24	Standard VGA Modes 110
Table 4-25	Extended VGA Modes 111

Table A-1	Equipment Log 117
Table A-2	Power Usage Worksheet 121
Table A-3	Power Usage Worksheet (Total Watts) 122
Table A-4	Add or Remove PCI Boards 123
Table A-5	ISA Board Definition 124
Table A-6	Systems Group 125
Table A-7	Memory Subsystem Group 125
Table A-8	Onboard Disk Controllers 125
Table A-9	Onboard Communications Devices 126
Table A-10	Diskette Drive Subsystems Group 126
Table A-11	IDE Subsystem Group 126
Table A-12	Multiboot Group 127
Table A-13	Keyboard and Mouse Subsystem Group 127
Table A-14	Console Redirection 127
Table A-15	Security Subsystems Worksheet 128
Table A-16	SCSI ROM BIOS Options Group 128
Table A-17	Management Subsystem Group 128
Table A-18	Sensor Control Values 129
Table A-19	Main Menu 129
Table A-20	Primary Master and Slave Submenu 130
Table A-21	Keyboard Features Submenu 130
Table A-22	Advanced Menu 131
Table A-23	PCI Device, Embedded SCSI Submenu 131
Table A-24	PCI Devices Submenu 131
Table A-25	I/O Device Configuration Submenu 132
Table A-26	Advanced Chipset Control Submenu 133
Table A-27	Security Menu 133
Table A-28	Server Menu 134
Table A-29	System Management Submenu 134
Table A-30	Console Redirection Submenu 134
Table A-31	Boot Menu 135

Table A-32	Boot Device Priority Submenu	135
Table A-33	Hard Drive Submenu 135	
Table B-1	Environmental Specifications	137

About This Guide

This guide tells you how to remove and install field replaceable units (FRUs) internal to the server. Only trained or qualified technical personnel should work inside the chassis.

Note: Information on the server's system setup utility (SSU) and replacement of external devices are covered in the *SGI 1400 Server Family User's Guide*.

The following topics are covered in this manual:

- Chapter 1, "Working Inside the System," contains all the power and ESD warnings applicable to working inside the system. The chapter introduces proper access procedure, how to install option boards, and understand internal SCSI and IDE cabling.
- Chapter 2, "Upgrading Baseboard Components," covers removing and installing the baseboard, processors, memory DIMMs, and VRMs.
- Chapter 3, "SGI 1400 Server SCSI Backplane Installation," details the steps for replacing the server system SCSI backplane.
- Chapter 4, "Technical Reference," lists information on connector pinouts and baseboard locations, baseboard jumpers, I/O addresses, memory map addresses, baseboard interrupts, and video modes.
- Appendix A contains a group of equipment logs and worksheets that should be used when maintaining or upgrading the server.
- Appendix B lists the server's basic environmental specifications.
- Appendix C provides additional basic chassis warnings and voltage related cautions.

Chapter 1

Working Inside the System

Tools and Supplies Needed

- Phillips (cross-head) screwdriver (#1 and #2 bit).
- Small flat-bladed screwdriver.
- Jumper removal tool or needle-nosed pliers.
- Antistatic wrist strap and conductive foam pad (recommended).
- Pen or pencil.
- Equipment log: as you integrate new parts into the system, add information about them to your equipment log, see Appendix A. Record the model and serial number of the system, all installed options, and any other pertinent information specific to the system. You will need this information when running the SSU.

Safety: Before You Remove the Access Cover

Before removing the access cover at any time to work inside the system, observe these safety guidelines.

- 1. Turn off all peripheral devices connected to the system.
- 2. Turn off the system by using the push-button on/off power switch on the front of the system.
- 3. Unplug the AC power cords from the system or wall outlet.
- 4. Label and disconnect all peripheral cables and all telecommunication lines connected to I/O connectors or ports on the back of the system.
- 5. Provide some electrostatic discharge (ESD) protection by wearing an antistatic wrist strap attached to chassis ground of the system—any unpainted metal surface—when handling components.

Warnings and Cautions

These warnings and cautions apply whenever you remove the access cover of the system. Only a technically qualified person should integrate and configure the system.

Warning: SYSTEM POWER ON/OFF: The on/off button on the front panel DOES NOT turn off the system AC power. To remove power from system, you must unplug the AC power cords from the wall outlet or the system.

Hazardous voltage, current, and energy levels are present inside the power supply. There are no user-serviceable parts inside it; servicing should be done by technically qualified personnel.

Hazardous electrical conditions may be present on power, telephone, and communication cables. Turn off the system and disconnect the power cords, telecommunications systems, networks, and modems attached to the system before opening it. Otherwise, personal injury or equipment damage can result.

Caution: Electrostatic discharge (ESD) and ESD protection: ESD can damage disk drives, boards, and other parts. We recommend that you do all procedures in this chapter only at an ESD-protected workstation. If one is not available, provide some ESD protection by wearing an antistatic wrist strap attached to chassis ground—any unpainted metal surface—on your system when handling parts.

Always handle boards carefully. They can be extremely sensitive to ESD. Hold boards only by their edges. After removing a board from its protective wrapper or from the system, place it component-side UP on a grounded, static-free surface. If you place the baseboard on a conductive surface, the battery leads may short out. If they do, this will result in a loss of CMOS data and will drain the battery. Use a conductive foam pad if available but NOT the board wrapper. Do not slide board over any surface.

For proper cooling and airflow, always install the chassis access cover before turning on the system. Operating the system without the cover in place can damage system parts.

Removing the System Access Cover

You need to remove the system access cover, and in some cases the front bezel, to reach components inside the system. Facing the front of the system, the access cover is on the right side for pedestal-mounted (tower) servers, and on the top for rack-mounted servers.

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Turn off all peripheral devices connected to the system.
- 3. If you have not already done so, turn off the system by using the power on/off switch on the front panel AND unplug all AC power cords.
- 4. Label and disconnect all peripheral cables attached to the I/O panel on the back of the system.
- 5. Remove and save the three screws from the back of the access cover; you will need them later to reattach the cover.

Note: Be sure the chassis key lock on the front of the system is in the unlocked position. Otherwise, you will be unable to remove the cover. The chassis keys are *not* all the same, you cannot use one key to open multiple units.

- 6. Place the fingertips of your right hand under the built-in handle on the back of the cover. A rounded, rectangular depression in the front middle of the access cover serves as another handle.
- 7. Using an even pull, slide the cover backward, about an inch, until it stops.
- 8. Pull the entire cover outward, straight away from the chassis, to disengage the tabs from the notches in the top and bottom edges of the chassis. Set the cover aside.

Installing the Access Cover

- 1. Before replacing the access cover, check that you have not left loose tools or parts inside the system.
- 2. Check that cables, PCI option boards, and other components are properly installed.
- 3. Position the cover over the chassis so that the rows of tabs align with slots in the chassis. Slide the cover toward the front of the system until the tabs on the cover firmly engage in the chassis.
- 4. Attach the cover to the chassis with the three screws you removed earlier, and tighten them firmly (6.0 inch-pounds).

5. Connect all external cables and the power cords to the system.

Working in the Subchassis and Electronics Bay

The chassis is comprised of three parts:

- the main chassis
- a swing-out subchassis at the front
- a swing-out subchassis, called the electronics bay, at the rear

To access components in some instances, you must swing away and/or completely remove the subchassis and electronics bay.

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Turn off all peripheral devices connected to the system.
- 3. Turn off the system power by using the power on/off switch on the front panel AND unplug all AC power cords.
- 4. Label and disconnect all peripheral cables attached to the I/O panel on the back of the system.
- 5. Remove and save the three screws from the back of the access cover; you will need them later to reattach the cover.
- 6. Remove the access cover.
- 7. Remove the two screws on the top and bottom edges of the chassis (see Figure 1-2). These screws attach the front subchassis and the electronics bay to the main chassis.

Caution: You must disconnect all cabling to the electronics bay before rotating or removing the bay. Failure to do so can result in serious damage to system components. The location of the main connectors in the electronics bay is also shown in Figure 1-2.

- 8. Rotate the front subchassis left, away from the main chassis, until it stops.
- 9. Disconnect and label all cabling to the electronics bay.

- 10. Using the vertical edge of the electronics bay as a handle, rotate the bay right, away from the main chassis, until it stops.
- 11. If necessary, completely remove the subchassis and electronics bay: this requires rotating the bays outward until the two pins that function as hinges for the bays slide out of their slots. Set the bays aside.

Installing PCI Boards

The information in this section covers installation of optional PCI boards.

Caution: Do not overload baseboard: Do not overload the baseboard by installing optional PCI boards that draw excessive current. Contact your sales or service representative if you are uncertain that a board is approved for installation in the server. PCI boards can be extremely sensitive to ESD and always require careful handling. After removing the board from its protective wrapper or from the baseboard, place it component-side up on a grounded, static-free surface or conductive foam pad—if available. Do not slide the board over any surface.

Use the following steps to properly install a PCI option board:

- 1. Remove access cover.
- 2. Remove the PCI option board from its protective wrapper. Be careful not to touch the components or gold edge connectors. Place board component-side up on an antistatic surface.
- 3. Record the serial number of the PCI option board in your equipment log.
- 4. Set jumpers or switches according to the manufacturer's instructions.
- 5. Remove and save the screw that attaches the existing board or expansion slot cover to the chassis.
- 6. Remove and save the expansion slot cover.
- 7. Hold the PCI option board by its top edge or upper corners. Firmly press it into an expansion slot on the baseboard. The tapered foot of the board retaining bracket must fit into the mating slot in the expansion slot frame. See Figure 1-3 for an example.
 - Install an ISA board component-side UP.
 - Install a PCI board component-side DOWN.
- 8. Use the screw removed earlier to fasten the new board retaining bracket to the chassis. Tighten the screw firmly (6.0 inch-pounds). Attach cables if necessary.
- 9. Reinstall the access cover using the original screws.

Figure 1-3Installing a PCI option Board

Components shown in Figure 1-3 are:

- 1. PCI or ISA slot
- 2. Six PCI slots (top to bottom in figure = PCI B4, B3, B2, B1, A3, and A2)
- 3. PCI slot A1 (Use *five inch-length* (12.7 cm) board only)

Removing a PCI option Board

Note: Slot covers must be installed on all vacant expansion slots. This maintains the electromagnetic emissions characteristics of the system and ensures proper cooling of system components.

- 1. Read and observe the safety and ESD precautions listed at the beginning of this chapter.
- 2. Disconnect any cables attached to the board you are removing.
- 3. Remove and save the screw that attaches the existing board retaining bracket to the chassis.
- 4. Holding the board by its top edge or upper corners, carefully pull it out. Do not scrape the board against other components.
- 5. Store board in an antistatic protective wrapper.
- 6. If you are not reinstalling a board in the same slot, install a slot cover over the vacant slot. The tapered foot of the cover must fit into the mating slot in the expansion slot frame.
- 7. Use the screw removed earlier to fasten the new board to the chassis. Tighten the screw firmly (6.0 inch-pounds).
- 8. Running the SSU is optional after you remove a PCI or ISA board.

Removing the Front Panel Board

The front panel board contains the system controls and indicators. It is mounted on a snap-on standoff and a threaded standoff inside the chassis.

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Remove the access cover.
- 3. Disconnect the fan cables and remove the fan housing assembly, see Figure 1-4.
- 4. Disconnect the 3.5-inch diskette drive cables. Remove the diskette drive carrier from the chassis. Save the screw to use later.
- 5. On the front panel board, remove and save the screw from the threaded standoff to use later.

- 6. Grasp the front panel board. Carefully pull it toward the back of the system until it pops off the snap-on standoff.
- 7. Disconnect the front panel board signal cable from the front panel board.
- 8. Remove the front panel board from the system. Place it on an antistatic foam pad or a grounded work surface.

Figure 1-4 Removing the Front Panel Board

Installing the Front Panel Board

- 1. Reconnect the front panel board signal cable to the front panel board.
- 2. Position the front panel board over the snap-on standoff and the threaded standoff inside the chassis.
- 3. Carefully press the board onto the snap-on standoff until it snaps in place.
- 4. Reinstall and firmly tighten (6.0 inch-pounds) the screw that secures the board to the chassis.
- 5. Reinstall the 3.5-inch diskette drive carrier. Connect the drive cables.
- 6. Reinstall the access cover using the original screws.

Removing the Diskette Drive

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Remove the access cover.
- 3. Disconnect the power and signal cables from the diskette drive. The connectors are keyed for ease in reconnecting them to the drive, see Figure 1-5.
- 4. Remove and save the screw that secures the diskette drive carrier to the 5.25-inch drive bay.
- 5. Slide the carrier toward the back of the chassis to disengage the tabs from the slots in the bottom of the 5.25-inch drive bay.
- 6. Remove the carrier and drive assembly from the chassis, and place it component-side up on an antistatic surface.
- 7. Remove the drive from the carrier by sliding the drive forward, toward (and out of) the front of the carrier. Set the carrier aside.
- 8. Place the drive in an antistatic protective wrapper if you are not reinstalling the same drive.
- 9. Reinstall the access cover using the original screws.

Figure 1-5Removing the Diskette Drive from the Chassis

Components shown in Figure 1-5 are:

- 1. Power cable
- 2. Signal cable
- 3. Securing screw

Installing the Diskette Drive

- 1. Remove the new 3.5-inch diskette drive from its protective wrapper, and place it component-side up on an antistatic surface. Record the drive model and serial numbers in your equipment log.
- 2. Set any jumpers or switches according to the drive manufacturer's instructions.
- 3. Place the drive carrier on the component-side of the drive.
- 4. Attach the carrier to the drive by sliding the drive toward the closed/back end of the carrier. The drive is fully seated when it rests against the square brackets that form the back of the carrier.
- 5. Position the carrier so that the two protruding notches fit into the corresponding slits in the frame. Slide the assembly toward the front of the system to engage the notches. Make sure the front of the drive fits correctly in the front opening of the system. When properly positioned, the carrier notches extend slightly into the interior of the 5.25-inch drive bays and the threaded hole in the carrier aligns with the threaded hole in the frame.
- 6. Secure the assembly to the 5.25-inch bay with the screw you removed earlier; tighten the screw firmly (6.0 inch-pounds).
- 7. Connect the signal and power cables to the drive. The red stripe on the signal cable must face toward the center of the drive.
- 8. Reinstall the access cover using the original screws.
- 9. Run the SSU to specify that the diskette drive is installed in the system.

Peripheral Drives

The following sections provide information on internally mounted drives and cables.

Drive Cabling Considerations

This section summarizes device cabling requirements and constraints. The number of devices you can install internally depends on:

- The number supported by the bus
- The number of physical drive bays available
- The height of drives in the internal bays (1-inch or 1.6-inch high)
- The combination of SCSI and IDE devices

IDE Requirements

An 18-inch (45.7 cm) long IDE cable that supports two drives is standard in the system. If you install an IDE drive, we recommend placing it in the lowest 5.25-inch drive bay to make cabling easier.

For proper IDE operation, note the cable length specified in Figure 1-6. If no drives are present on an IDE channel, the cable must be removed. If only one drive is installed, it must be connected at the end of the cable.

Note: If you plan to disable the IDE controller to reuse the interrupt for that controller, you must physically unplug the IDE cable from the board connector if a cable is present. Simply disabling the drive by configuring the SSU option does not make the interrupt available.

SCSI Requirements

One narrow and two wide SCSI cables are standard in the system.

All SCSI devices must be unterminated except the peripheral at the end of the SCSI cable. Hard drives usually provide an active termination, while CD-ROM drives do not. Because we recommend putting hard drives only in the internal bays, this means that you should route the SCSI cable so that the last device on the cable is a hard drive in the internal bay.

Installing 5.25-inch Peripherals in the Front Bays

Three 5.25-inch half-height bays provide space for tape backup, CD-ROM, or other removable media drives. Note that system EMI integrity and cooling are both protected by having drives installed in the bays or filler panels and EMI shields covering the bays. When you install a drive, save the panel and shield to reinstall in case you should later remove the drive and not reinstall one in the same bay.

To maintain compliance with electromagnetic compatibility (EMC) regulations, the 5.25-inch bays *must* be configured with either:

- An EMC-compliant 5.25-inch peripheral device, OR
- A metal cover plate

Caution: The internal SCSI interface in this system supports only single-ended SCSI devices on the narrow SCSI channel. Connecting differential SCSI drive types to this interface can result in electrical damage to the baseboard and peripherals.

We recommend that you do NOT install any hard disk drives in the 5.25-inch bays. The drives cannot be properly cooled in these locations.

It is important that your cabling and connections meet the SCSI bus specification. Otherwise, the bus could be unreliable and data corruption could occur or devices might not work at all. The SCSI bus needs to be terminated at the end of the cable; this is usually provided by the last SCSI device on the cable.

Use the following steps when installing a 5.25-inch peripheral:

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Open the front bezel by rotating its right side out and to the left.

Caution: To avoid damage to a 5.25-inch peripheral device, ensure the EMI gasketing provided in the lower bay does not bridge or short any open circuits of the exposed peripheral device. If the 5.25-inch device has open circuits, install it in one of the two upper bays.

- 3. Put a finger in the hole and pull the EMI metal shield out to disengage it from the chassis, see Figure 1-7. Save the shield.
- 4. Remove the drive from its protective wrapper, and place it on an antistatic surface.
- 5. Record the drive model and serial numbers in your equipment log.
- 6. Set any jumpers or switches on the drive according to the drive manufacturer's instructions.
- 7. Using two screws of the appropriate size and length (not supplied), attach each plastic slide rail with its metal grounding plate to the drive, see Figure 1-8.

Figure 1-7Removing EMI Shields

Figure 1-8Snap-in Plastic Slide Rails

The components shown in Figure 1-8 are:

- 1. Tape drive or other removable media device
- 2. Tab on slide rail
- 3. Screws (quantity 4)
- 4. Slide rails (quantity 2)

Complete the installation of the new 5.25-inch drive using the following steps:

- 1. Position the drive so the plastic slide rails engage in the bay guide rails. Push the drive into the bay until the slide rails lock in place.
- 2. Connect a power cable to the drive. The connectors are keyed and can be inserted in only one way.

- 3. Connect a signal cable to the drive. The connectors are keyed and can be inserted in only one way.
 - **SCSI drive:** Attach connectors on the cable to the SCSI device or devices you are installing.
 - **IDE drive:** The baseboard has one IDE connector. It can support an IDE signal cable up to 22 inches long. See "Drive Cabling Considerations" on page 13 for the cable dimensions.
- 4. Close the front bezel.

Removing a 5.25-inch Peripheral from the Front Bay

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Open the front bezel by rotating its right side out and to the left.
- 3. Disconnect the power and signal cables from the drive.
- 4. The drive has two protruding plastic, snap-in rails attached. Squeeze the rail tabs toward each other as you carefully slide the drive forward out of the bay, and place it on an antistatic surface.
- 5. Remove and save the four screws and two slide rails.
- 6. If you leave the bay empty, install a stainless steel EMI shield on the bay for proper cooling and airflow.
- 7. If you do not replace the device with another SCSI device, and it was installed at the end of the SCSI signal cable, modify the cable and termination arrangement so that a proper termination exists at the end of the cable (it can be a termination device only, not necessarily a SCSI peripheral).
- 8. Close the front bezel.

Figure 1-9 Removing a Removable Media Device

Components shown in Figure 1-9 are:

- 1. Removable media device
- 2. Drive rail
- 3. Rail tab
- 4. Power cable
- 5. Typical SCSI signal cable

Installing or Replacing the SCSI-B Cable

The cable for channel B has two labels. The channel B cable connects from the SCSI-B connector on the baseboard to one of the external ports at the back of the server. If you are uncertain which connector on the baseboard is SCSI B, see Figure 4-1 in Chapter 4, "Technical Reference."

Before you install or replace the SCSI-B cable, read and heed all the safety warnings at the beginning of this chapter. After you shutdown the system, unplug all AC power cords from the system power supplies or the wall outlets. You may also need to disconnect all peripheral cables and telecommunication lines connected to I/O connectors or ports on the back of the system (especially in rackmount units). Use the following steps to install or replace the cable:

- 1. Remove the system access cover and carefully take out the rear foam cover.
- 2. If desired, you can remove the front foam cover and unscrew and swing out the front subchassis.
- 3. Remove the memory module.
- 4. Remove any existing SCSI-B cable if it is defective or damaged.
- 5. Attach the new or replacement SCSI-B cable to the SCSI-B connector on the baseboard. Leave the cable unconnected at the other end.
- 6. Reinstall the memory module.
- 7. Remove one of the two knock-out covers, or remove the existing external SCSI-B connection if installed. See Figure 1-10 at the back of the system. If the server is upright in pedestal mode, the two covers are at the bottom left, to the left of the I/O panel.
 - Place the tip of a flat-blade screwdriver, or the end of another suitable tool, in the slot in the center of the knock-out cover.
 - Rotate, twist, etc., the screwdriver until you free the cover by breaking the small metal tab that holds the cover to the chassis. Be sure to remove covers that fall into the chassis.
- 8. Attach the cable connector to one of the ports at the back of the system as indicated in Figure 1-10; note where the cable exits the foam and in the expanded detail, where the cable attaches to one of the ports.
- 9. Use two screws (included) to secure the connector.

- 10. Reinstall the back foam cover. As you do, position the SCSI cable so that it routes to the electronics bay through the cutout in the back foam cover. The dotted arrow in Figure 1-10 shows where the cable must go.
- 11. Position the cable along the recess in the back foam cover.
- 12. Reinstall the access cover using the original screws.
- 13. Connect all AC power and peripheral device cables to the back of the system.

Figure 1-10 SCSI-B Cable Installation

The components shown in Figure 1-10 are:

- 1. SCSI-B connector on the baseboard
- 2. Rear foam cover
- 3. Foam tab
- 4. SCSI-B cable (fit along recess in foam cover)
- 5. External SCSI-B connection
- 6. SCSI knockout cover

System Fans

The SGI 1400 server contains eight removable chassis fans that cool the boards and removable media drives. These chassis fans connect to the front panel board and are enclosed in a removable foam assembly. The three integrated power supply fan(s) provide more cooling and airflow.

Removing the System Fan Assembly

Use the following steps and Figure 1-11 to remove the system fan assembly:

- 1. Observe the safety and ESD precautions at the beginning this chapter.
- 2. Remove the access cover.
- 3. Remove the foam cover from the front subchassis by pulling it straight out.
- 4. For better access to the individual fan cables on the front panel board, carefully rotate the right edge of the foam fan assembly outward into the opening where the foam cover was.
- 5. Label and disconnect the individual fan cables from the front panel board.
- 6. Remove the fan assembly from the chassis.

Figure 1-11 Removing the Fan Assembly

Installing the System Fan Assembly

- 1. Observe the safety and ESD precautions at the beginning this chapter.
- 2. Position the fan assembly inside the chassis so that the individual fan cables can easily reach their connectors on the front panel board.
- 3. Reconnect the individual fan cables, being careful to match each cable with its correct connector on the front panel board.
- 4. Position the fan assembly as it was inside the chassis prior to removal, so that it rests firmly against the diskette drive at the top and the 5.25-inch bays at the middle and bottom.
- 5. Reinstall the foam cover. It is molded to match the position of the fans and fits in only one way.
- 6. Reinstall the access cover using the original screws.

Removing an Individual System Fan

Note: Correct airflow direction: The side of each fan is embossed with directional arrows indicating airflow direction. Always note the direction of the arrows on a fan before removing it. You will need this information later when you install a different fan.

- 1. Observe the safety and ESD precautions at the beginning this chapter.
- 2. Remove the access cover.
- 3. Remove the foam cover from the front subchassis by pulling it straight out. Be careful not to break the foam.
- 4. For better access to the individual fan cables on the front panel board, carefully rotate the right edge of the foam fan assembly outward into the opening where the foam cover was.
- 5. Label and disconnect the desired fan cable from the front panel board. Be sure to note the position of the cable where it is held in place in the foam fan assembly.
- 6. Remove the fan cable from the foam assembly, being careful not to break the foam.
- 7. Remove the fan from the foam assembly. All systems fans sit differently in the assembly, but in general, each fan can slide in and out of the foam in only one way.

Note: The two installed fans nearest the 5.25-inch drive bays (fans 6 and 7) are separated by a square piece of foam (the piece with a crescent-shaped hole) that extends perpendicularly from the front of the fans (it is the rectangle between the round faces of fans 6 and 7). You must remove this piece to access the two fans it separates (pull it straight out).

Figure 1-12 Fan Cabling

Installing an Individual System Fan

Note: A general rule about correct airflow direction: The removable fan pulls air from in front of the chassis so that it flows across the boards and out the back. Thus, the fan must be oriented for the correct airflow direction. In general, the fan's label is on the side from which air EXITS the fan. You can confirm correct orientation by checking the embossed arrows on the side of the fan:

- The \Rightarrow Arrow points horizontally toward the back of the chassis
- The **1** Arrow points vertically up

Always note the direction of the arrows on the existing fan before you remove it. Replace a failed fan with the same type as the one removed, with a tachometer signal, or an approved fan. For a list of approved fans, contact your customer service representative.

- 1. See "Removing an Individual System Fan" on page 24, as necessary.
- 2. Observe the safety and ESD precautions at the beginning this chapter.
- 3. Slide the fan into its correct receptacle in the foam fan assembly.
- 4. Attach the cable to the foam at the correct places (when REPLACING a bad fan, you should have recorded where each cable attaches to the foam).
- 5. Position the fan assembly inside the chassis so that the individual fan cables can easily reach their connectors on the front panel board.
- 6. Attach the cable to the front panel at the correct connector (when REPLACING a bad fan, you should have recorded where each cable connects to the front panel).
- 7. Position the fan assembly as it was inside the chassis prior to removal, so that it rests firmly against the diskette drive at the top and the 5.25-inch bays at the middle and bottom.
- 8. Reinstall the foam cover. It is molded to match the position of the fans and fits in only one way.
- 9. Reinstall the access cover using the original screws.

The Power Share Board

The server comes with three power supplies already installed for highest power availability. If one supply fails, the system can operate using two until a replacement is installed. Your SGI 1400 system has a power share board (PSB). The PSB supports one to three supplies.

You can replace an existing power share board by purchasing a kit through your SGI 1400 customer sales or service representative. The following sections describe how to replace a PSB.

Replacing the Power Share Board (PSB)

- 1. Observe the safety and ESD precautions at the beginning this chapter.
- 2. Label and disconnect all peripheral cables and all telecommunication lines connected to I/O connectors or ports on the back of the system, and unplug all AC power cords from the system and wall outlet.
- 3. Remove all the power supplies, see the *SGI 1400 Server Family User's Guide* if necessary.
- 4. Remove the access cover.
- 5. Open the front subchassis.
- 6. Remove the memory module.
- 7. Label and disconnect all cables to the baseboard.
- 8. Remove the electronics bay.
- 9. Disconnect the cables from the existing power share board (PSB). The board is behind the electronics bay, see Figure 1-13.
- 10. Remove and save the two screws (see Figure 1-14) that attach the bracket to the chassis.
- 11. To remove the board, lift the BRACKET END first; when you have freed the bracket from the tabs on the chassis, lift out the entire board.
- 12. Remove the screws that attach the bracket to the board, see Figure 1-15. Set the board aside on an antistatic surface or conductive foam pad.
- 13. Attach the bracket to the new PSB using the correct number of screws.

Figure 1-13 Chassis Side View

The components shown in Figure 1-13 are:

- 1. Front swing-out subchassis
- 2. Diskette drive
- 3. Main chassis
- 4. PSB
- 5. Power supplies

- 6. Baseboard (processor board)
- 7. Lift-out electronics bay
- 8. 5.25-inch device bay
- 9. SCSI hard drive bay
- 10. Foam fan housing
- 11. Front foam cover
- 12. Rear foam cover

Figure 1-14 Removing the Existing Board and Bracket Assembly

The components shown in Figure 1-14 are:

- 1. Screws that attach the bracket to the chassis
- 2. Existing PSB
- 3. Bracket

Figure 1-15 Removing the Existing Board from its Bracket

The components shown in Figure 1-15 are:

- 1. Screws that attach the existing board to the bracket
- 2. Existing PSB
- 3. Bracket

To correctly position the new board inside the chassis:

- 1. Insert the NON-BRACKET END, then push the other end down so that the two slots in the bracket slide over the corresponding tabs on the chassis wall. Figure 1-16 shows an example.
- 2. Use the two screws you removed earlier to attach the bracket to the chassis.

Figure 1-16 Attaching the New Board to its Bracket

The components shown in Figure 1-16 are:

- 1. Screws that attach the new board to the bracket
- 2. New PSB
- 3. Bracket

To reinstall the board and bracket assembly in the chassis:

- 1. Connect the cables to the new PSB.
- 2. Reattach the electronics bay.
- 3. Connect the new PSB cables to the baseboard.
- 4. Reconnect the memory module.
- 5. Reinstall the front and rear foam covers.
- 6. Reinstall the access cover using the original screws.
- 7. Reinstall the power supplies.
- 8. Connect all AC power and peripheral device cables to the rear of the system.
- 9. Run the FRUSDR load utility to properly configure the upgraded system.

Figure 1-17 Installing the New Board and Bracket Assembly

Components shown in Figure 1-17 are:

- 1. Two screws that attach the bracket to the chassis
- 2. Two slots in the bracket that fit over two tabs on the chassis wall
- 3. Two tabs on the chassis wall that force correct alignment of the board and bracket assembly

Upgrading Baseboard Components

Use the information in this chapter to upgrade or replace components on the system baseboard (processor board). For information on tools needed, see Chapter 1. For a list of safety related information see "Safety: Before You Remove the Access Cover" on page 1.

For a complete list of warnings and cautions regarding internal power, ESD, and proper system cooling, be sure to read "Warnings and Cautions" in Chapter 1.

Caution: Installing or removing jumpers: A jumper is a small, plastic-encased conductor that slips over two jumper pins. Newer jumpers have a small tab on top that you can grip with your fingertips or with a pair of fine, needle-nosed pliers. If your jumpers do not have such a tab, take care when using needle-nosed pliers to remove or install a jumper; grip the narrow sides of the jumper with the pliers, never the wide sides. Gripping the wide sides can damage the contacts inside the jumper, causing intermittent problems with the function controlled by that jumper. Take care to gently grip, but not squeeze, with the pliers or other tool you use to remove a jumper; you might bend or break the stake pins on the board.

Baseboard

Use the information in the following sections to remove or install the baseboard.

Removing the Baseboard

Caution: The baseboard can be extremely sensitive to ESD and always requires careful handling. After removing it from the system, place it component-side UP on a nonconductive, static-free surface to prevent shorting out the battery leads. If you place the board on a conductive surface, the battery leads may short out. This will result in a loss of CMOS data and will drain the battery. Do not slide the baseboard over any surface.

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Remove the access cover.
- 3. Remove the front and rear foam covers.
- 4. Label and disconnect all internal cables connected to add-in boards.
- 5. Remove all add-in boards.
- 6. Label and disconnect all internal cables connected to the baseboard.

Note: The baseboard is attached to the electronics bay. In general, the best method for removing the baseboard is to remove the electronics bay first, particularly in servers mounted in a pedestal (tower) orientation, though this is not a requirement.

- 1. Open the front subchassis and, if necessary, remove the electronics bay.
- 2. Remove the processors and processor retention module.
- 3. Remove and save the two screws that secure the baseboard to the chassis.
- 4. Slide the baseboard toward the front of the server until the board's I/O connectors clear the rear of the chassis.
- 5. See Figure 2-1 for an example of removing the baseboard.
 - The edge of the baseboard at the TOP of the figure (NEAREST and parallel to the ISA slot) fits into a groove along the edge of the chassis.
 - The edge at the BOTTOM of the figure (OPPOSITE and parallel to the ISA slot) is free.
- 6. Place your fingers under the edge of the baseboard OPPOSITE the ISA slot (the edge at the bottom). Lift the edge a few inches.
- 7. Slide the baseboard out, toward the edge you just lifted. This will free the opposite edge (nearest the ISA slot) from the groove that secures it to the chassis.
- 8. Remove the baseboard and place it component-side up on a nonconductive, static-free surface or in an antistatic bag.
- 9. Remove and save the EMI gasket that covers the I/O connectors on the board.

Figure 2-1 Removing the Baseboard

Installing the Baseboard

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Place the EMI gasket over the I/O connectors on the baseboard.
- 3. Position the board over the two snap-in standoffs and threaded standoffs inside the chassis; slide it carefully toward the rear of the system until the I/O connectors protrude through the back panel.
- 4. Press the board onto the snap-in standoffs, then insert one screw through one of the mounting holes of the board and into a threaded standoff. Do not tighten the screw until the next step.

- 5. Insert the remaining screws through the mounting holes and into the threaded standoffs. Make sure the board is properly seated, then tighten all the screws firmly (6.0 inch-pounds).
- 6. Connect all internal cables to the baseboard.
- 7. Reinstall the add-in boards as applicable.
- 8. Connect all internal cables to add-in boards.
- 9. Reinstall the electronics bay if you removed it and close the front subchassis.
- 10. Reinstall the front and rear foam covers.
- 11. Reinstall the access cover using the original screws.
- 12. Connect all peripheral device cables to the I/O panel on the rear of the system.
- 13. Run the SSU to configure the system.

Memory

Use the following sections to remove or install the memory module or DIMMs.

Removing the Memory Module

Note: Make sure you run the SSU to configure ECC memory. Failure to do so might degrade the performance of the server.

See the *SGI 1400 Server Family User's Guide* if you need more information on memory size and requirements. Use the following steps to remove a memory module:

- 1. Read and observe all safety and ESD precautions listed at the beginning of Chapter 1.
- 2. Remove the access cover.
- 3. Remove the rear foam cover over the electronics bay. It might be easier to do this if you also remove the front foam cover over the front subchassis, see Figure 2-2.

- 4. Remove the memory module from the baseboard:
 - Pull the module toward you slightly to disengage it from the baseboard connector.
 - Slide the module straight away from the baseboard until it clears the guide rails.
 - Place the module component-side up on a nonconductive, static-free surface.

Figure 2-2Removing the Memory Module

Installing the Memory Module

Use the following steps to install or replace a memory module:

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Holding the memory module by its edges, align the module so its edge engages in the guide rail at the back of the electronics bay.

Note: The memory module is held in place by the 242-pin connector on the baseboard, the guide rail at the back of the electronics bay, and a plastic guide at the front of the electronics bay. You *must* support the module until it is fully seated in the connector.

3. Push the memory module toward the baseboard until it fully engages its connector.

Removing DIMMs

Caution: Use extreme care when removing a DIMM. Too much pressure can damage the socket slot. Apply only enough pressure on the plastic ejector levers to release the DIMM.

- 1. Observe the safety and ESD precautions at the beginning of this chapter.
- 2. Remove the memory module and place it component-side up on a nonconductive, static-free surface (see "Removing the Memory Module" on page 36 if you have not yet done this).
- 3. Gently push the plastic ejector levers out and down to eject a DIMM from its socket.
- 4. Hold the DIMM only by its edges, being careful not to touch its components or gold edge connectors. Carefully lift it away from the socket and store it in an antistatic package.
- 5. Repeat to remove other DIMMs as necessary.
 - If you are REPLACING DIMMs, proceed to "Installing DIMMs" on page 39.
 - If you are simply REMOVING DIMMs, continue the procedure with the following steps.
- 6. Reinstall the memory module.
- 7. Reinstall the foam cover(s).
- 8. Connect all external cables and power cords to the system.
- 9. Reinstall the access cover using the original screws.

- 10. Turn on the monitor and then the system.
- 11. Run the SSU/BIOS Setup to configure the system and to properly set up advanced memory attributes as required.

Installing DIMMs

DIMMs are keyed and can be inserted in only one way.

Caution: Use extreme care when installing a DIMM. Applying too much pressure can damage the socket. Mixing dissimilar metals might cause memory failures later, resulting in data corruption. Install DIMMs with gold-plated edge connectors only in gold-plated sockets.

Note: DIMM slots on the memory module must be installed only in certain configurations. See the *SGI 1400 Server Family User's Guide* if you are uncertain of the configuration requirements. Use the following steps to install new DIMMs:

- 1. Holding the DIMM only by its edges, remove it from its antistatic package.
- 2. Orient the DIMM so that the two notches in the bottom edge of the DIMM align with the keyed socket on the memory module.
- 3. Insert the bottom edge of the DIMM into the socket, then press down firmly on the DIMM until it seats correctly.
- 4. Gently push the plastic ejector levers on the socket ends to the upright position.
- 5. Repeat the steps to install each DIMM.
- 6. Reinstall the memory module.
- 7. Reinstall the foam cover(s).
- 8. Reinstall the access cover using the original screws.
- 9. Connect all external cables and the power cords to the system.

- 10. Turn on the monitor and then the system.
- 11. Run the SSU to configure the system and to properly attribute ECC memory.

Figure 2-3 Installing a DIMM

Processors

Use the information in the following sections to remove or install a processor in the server system.

Caution: Processor must be appropriate: You might damage the system if you install a processor that is inappropriate for your system. Make sure your system can handle a newer, faster processor (thermal and power considerations). For exact information about processor interchangeability, contact your customer service representative.

Reduce the risk of electrostatic discharge (ESD) damage to the processor by doing the following:

- Touch the metal chassis before touching the processor or baseboard.
- Keep part of your body in contact with the metal chassis to dissipate the static charge while handling the processor.
- Avoid moving around unnecessarily.

Removing a Processor

- 1. Observe the safety and ESD precautions at the beginning of Chapter 1 and the additional cautions given here.
- 2. Remove the access cover and the rear foam cover over the electronics bay.
- 3. As you work, place processors on a grounded, static-free surface or conductive foam pad.
- 4. With your right thumb on the face of the retention module bracket, wrap your right index finger around the tab protruding from the right edge of the bracket. See Figure 2-4 for an example.
- 5. Use your index finger to slightly pull the tab outward and to the left. You should not try to pull the entire bracket; rather, the back of the tab has a latch that releases when the TAB is pulled slightly.
- 6. When you have released the right edge of the bracket, rotate it 90° to the left until it is perpendicular to the front of the retention module. The left edge of the bracket has an open hinge that can release from the module when you rotate the bracket to the left.
- 7. Disengage the open hinge by moving (not rotating) the entire bracket to the right. Remove the bracket and set it aside.
- 8. Pull the two tabs attached to the S.E.C. cartridge (see Figure 2-5) straight away from the baseboard. As you do, the cartridge disengages from its connector on the baseboard.
- 9. Slide the S.E.C. cartridge straight away from the baseboard, out of the retention module. Put it on a piece of conductive foam and store it in an antistatic package.

Figure 2-4Releasing the Retention Module Bracket

Components shown in Figure 2-4 are:

- 1. Retention module bracket
- 2. Bracket tab
- 3. Latch

Figure 2-5 Removing a Processor

Components shown in Figure 2-5 are:

- 1. An S.E.C. cartridge
- 2. Retention module guide rails
- 3. Tabs on the S.E.C. cartridge
- 4. Processor heat sink

Installing a Processor

Use Figure 2-6 and the following steps when installing a new or additional processor.

Note: If your system has less than four processors and you are adding one, then you must remove the termination board in the empty Slot 2 connector. The procedure for removing a termination board is the same as for removing a processor.

If you plan to reduce the number of processors in your system, then you must replace a processor with a termination board. The procedure for installing a termination board is the same for installing a processor.

- 1. Read and observe all the safety and ESD precautions at the beginning of Chapter 1.
- 2. Remove the new processor from its antistatic package and place it on a grounded, static-free surface or conductive foam pad.
- 3. Orient the S.E.C. cartridge so that the heat sink faces away from the center of the baseboard.

If you are installing a termination board, orient it so that the side with the white bar-code label faces away from the center of the baseboard.

- 4. With the tabs at the top of the S.E.C. cartridge completely open (pulled outward, away from the center of the cartridge), slide the cartridge into the guide rails of the retention module. When done properly, the triangular ends of the tabs (with two round pegs on each) fit into the entrance to the guide rails.
- 5. When the cartridge meets resistance, push the two tabs toward each other until the processor is fully seated.
- 6. Reattach the retention module bracket:
 - With the bracket in an open position (perpendicular to the front of the retention module), slide the open hinge at the left of the bracket into its receptacle at the left of the retention module.
 - Rotate the bracket to the right until it reaches the retention module. With your right thumb on the face of the bracket and your right index finger around the tab at the right of the bracket, slightly pull the tab outward and to the left to open the latch at the back of the tab.
 - As you open the latch on the back of the tab, slide the right edge of the bracket onto the retention module and release the tab. If done correctly, the bracket will be securely latched.

- 7. Reinstall the foam cover.
- 8. Reinstall the access cover using the original screws.

Figure 2-6Installing a Processor

Figure 2-6 shows the following components:

- 1. S.E.C cartridge
- 2. Retention module guide rails
- 3. Tabs on the S.E.C. cartridge
- 4. Processor heat sink (must face away from center of baseboard)

Installing the Processor Tabs

Depending on your configuration, the tabs for the processor's S.E.C. cartridge might not be attached to the cartridge. In this case, you must attach two tabs to each S.E.C. cartridge as directed in the following steps:

- 1. Orient the tab as shown in Figure 2-7.
- 2. Two small round pegs at the center of the tab correspond with two round holes at each corner of the S.E.C. cartridge, see Figure 2-7. Spread the tab open slightly to get the pegs into the holes, being careful not to use too much force and break the tab.

If done properly, the tab will rotate freely with its axis near the center of the tab, at the base of the triangular section.

3. Repeat to install the second tab to the S.E.C. cartridge.

Installing Processor Heatsinks

Depending on your configuration, the heatsink for each processor's S.E.C. cartridge might not be attached to the cartridge. In this case, you must attach one heatsink to each S.E.C. cartridge. Use Figure 2-8 and the following steps:

- 1. Remove the heatsink from its protective cover.
- 2. Pull the tab on the bottom of the heatsink to remove the plastic film and expose the square of adhesive thermal grease that will help attach the heatsink to the S.E.C. cartridge. This square is offset, so that more of it is on one side of the center screw hole than on the other side. This offset side (see Figure 2-8) *must* point toward the connector end of the S.E.C. cartridge.
- 3. Orient the heatsink on the silver metal side of the processor so that:
 - The side with more of the grease square points toward the S.E.C. cartridge connector
 - The side with less of the grease square points toward the processor tabs
 - All five screw holes align correctly with the holes in the S.E.C. cartridge
- 4. Because of the adhesive grease on the heatsink, be careful to orient the heatsink properly before placing it against the S.E.C. cartridge.
- 5. Attach the heatsink to the S.E.C. cartridge with five $6-32 \times 1/4$ screws, and tighten to 8-10 inch-pounds.

Figure 2-8 Installing a Heatsink on a Processor S.E.C. Cartridge

The locations shown in Figure 2-8 are:

- 1. Processor S.E.C. Cartridge
- 2. Processor Connector
- 3. The heatsink edge that goes TOWARD the connector on the S.E.C. cartridge (the grease square is off-centered toward this edge)
- 4. Screw hole (five total attach the heatsink to a cartridge)
- 5. Example screw
- 6. Grease square (adhesive film must be removed before mounting)
- 7. Center screw hole: note that the grease square is off-centered from this screw hole toward the edge (as indicated in callout 3)

Voltage Regulator Modules (VRMs)

Up to six voltage regulator modules provide power for processors. Every processor requires 1.5 VRMs, so with four processors, you must use six VRMs. Table 2-1 shows this relationship.

You must use a specific number and connector population sequence of VRMs for each combination of processors and termination boards. Table 2-2 lists the required number and location of VRMs for each potential processor. Figure 2-9 shows this information graphically.

VRM #	VRM provides power for	Description
1	Processor #1	Processor core power only
2	Processor #1 and #2	L2 cache power only
3	Processor #2	Processor core power only
4	Processor #3	Processor core power only
5	Processor #3 and #4	L2 cache power only
6	Processor #4	Processor core power only

Table 2-1VRM and Processor Power Sequence

 Table 2-2
 Processor and VRM Population Sequencing

If you have a processor in connector #	You must have a VRM in connector #
1	1 and 2
1 and 2	1, 2, and 3
1, 2, and 3	1, 2, 3, 4 and 5
1, 2, 3, and 4	1, 2, 3, 4, 5, and 6

Components listed in Figure 2-9 are:

- 1. Processor connector #4
- 2. Processor connector #3
- 3. Processor connector #2
- 4. Processor connector #1
- 5. VRM connector #6 (used for processor #4)
- 6. VRM connector #5 (used for processors #3 and #4)
- 7. VRM connector #4 (used for processor #3)
- 8. VRM connector #3 (used for processor #2)

- 9. VRM connector #2 (used for processors #2 and #1)
- 10. VRM connector #1 (used for processor #1)

Removing a VRM

Use the following information and steps when removing a VRM.

Caution: VRM must be appropriate: You might damage the system if you install a VRM that is inappropriate for your system. For exact information about VRM and processor interchangeability, contact your customer service representative.

Note: Reduce the risk of electrostatic discharge (ESD) damage to the VRM by doing the following:

- Touch the metal chassis before touching the VRM or baseboard.
- Keep part of your body in contact with the metal chassis to dissipate the static charge while handling the VRM.
- Avoid moving around unnecessarily.
- 1. Read and observe the safety and ESD precautions at the beginning of Chapter 1 and the additional cautions given here.
- 2. Remove the access cover and the rear foam cover over the electronics bay.
- 3. As you work, place VRMs on a grounded, static-free surface or conductive foam pad.
- 4. Using a small flat-bladed screwdriver, push the plastic ejector levers on each end of the connector away from the VRM to eject it out of the connector.
- 5. Place the VRM on a nonconductive, static-free surface, or store it in an antistatic protective wrapper.

Installing a VRM

Use Figure 2-10 and the following steps to install a VRM on the system baseboard:

- 1. Read and observe the ESD and other warnings listed in the previous section "Removing a VRM" on page 51.
- 2. Remove the VRM from its protective package.
- 3. Carefully insert the VRM in the connector on the baseboard. See Figure 2-10 for an example.

Note: Make sure you do not bend the connector pins.

- 4. Push down firmly on both ends of the VRM until the ejector levers of the connector snap into place, locking the VRM in the connector.
- 5. Reinstall the rear foam cover over the electronics bay.
- 6. Reinstall the access cover using the original screws.

Figure 2-10 Installing a VRM

The components shown in Figure 2-10 are:

- 1. VRM connector on baseboard
- 2. VRM
- 3. Ejector lever

Replacing the Backup Battery

The lithium battery on the baseboard (Figure 2-11) powers the real-time clock (RTC) for three to four years in the absence of power. When the battery weakens, it loses voltage and the system settings stored in CMOS RAM in the RTC (e.g., the date and time) may be wrong. Contact your customer service representative or dealer for a list of approved devices.

Warning: If the system has been running, any installed processor and heat sink on the processor board(s) will be hot. To avoid the possibility of a burn, be careful when removing or installing baseboard components that are located near processors.

The following warning and translations of the warning are required by specific certifying agencies to be printed immediately adjacent to the procedure for removing the RTC.

Warning: There is a danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.

 Figure 2-11
 Replacing the Lithium Battery

- 1. Observe all the safety and ESD precautions at the beginning of Chapter 1 as well as the warnings given at the beginning of this section.
- 2. Remove the access cover.
- 3. Insert the tip of a small flat-bladed screwdriver or equivalent under the plastic tab on the snap-on plastic retainer.
- 4. Gently push down on the screwdriver to lift the battery.
- 5. Remove the battery from its socket.

- 6. Dispose of the battery according to local ordinance.
- 7. Remove the new lithium battery from its package and, being careful to observe the correct polarity, insert it in the battery socket.
- 8. Reinstall the plastic retainer on the lithium battery socket.
- 9. Reinstall the access cover using the original screws.
- 10. Run the SSU to restore the configuration settings to the RTC.

Chapter 3

SGI 1400 Server SCSI Backplane Installation

SCSI Backplane Warnings and Cautions

The warnings and cautions listed a the beginning of Chapter 1 apply whenever you remove the access cover of the system. Only a technically qualified person should perform the upgrade installation described in the following sections. Also see Chapter 1 for a list of tools to use.

Safety: Before You Remove the Access Cover

Before removing the access cover at any time to work inside the system, observe these safety guidelines.

- 1. Turn off all peripheral devices connected to the system.
- 2. Turn off the system by using the push-button on/off power switch on the front of the system.
- 3. Unplug all AC power cords from the system or wall outlet.
- 4. Label and disconnect all peripheral cables and all telecommunication lines connected to I/O connectors or ports on the back of the system.
- 5. Provide some ESD protection by wearing an antistatic wrist strap attached to chassis ground of the system—any unpainted metal surface—when handling components.

General Procedure to Open the Chassis

- 1. Label and disconnect all peripheral cables and all telecommunication lines connected to I/O connectors or ports on the back of the system. Unplug all AC power cords from the system and wall outlet.
- 2. Remove the access cover, see Figure 3-1.

- 3. Remove the front foam/fan assembly and rear foam cover.
- 4. Open the front subchassis.
- 5. Proceed to the next section to replace the SCSI backplane.

Figure 3-1Chassis Side View
Components listed in Figure 3-1 are:

- 1. Front swing-out subchassis
- 2. Diskette drive
- 3. Main chassis
- 4. Power share board
- 5. Power supplies
- 6. Baseboard
- 7. Lift-out electronics bay
- 8. 5.25-inch device bay
- 9. SCSI hard drive bay: backplane mounts to rear of bay
- 10. Foam cover
- 11. Foam fan housing
- 12. Foam fan housing cover

Replacing an Existing Backplane

1. Remove the existing SCSI hard drive(s) from the hot-docking bay.

Note: If the backplane has optional RAID support you must label and return all drives to their original locations.

- 2. Undo the three screws that hold the chassis access cover in place and remove it.
- 3. Label and disconnect all cables attached to the existing backplane.
- 4. Remove and save the three screws that attach the upper edge of the backplane to the chassis.
- 5. Slide the backplane out from the three clips that attach its lower end to the chassis.
- 6. Remove the backplane and set it aside on an antistatic surface or conductive foam pad.
- 7. Attach the new backplane to the chassis by first sliding the lower end into the three clips, then using the three screws you removed earlier to attach the upper end.
- 8. Reconnect cables (removed in step 3) to the new backplane.

- 9. Replace all screws and covers.
- 10. Plug all drives back into the bay before powering the system on.

Figure 3-2 Removing the Backplane from the Chassis

Components shown in Figure 3-2 are:

- 1. Attachment screw locations
- 2. Backplane mounting notches

Figure 3-3Aligning and Attaching the Backplane

Components shown in Figure 3-3 are:

- 1. Backplane mounting notches
- 2. Backplane SCSI connector
- 3. Attachment screw locations

Figure 3-4Reconnecting Cables to the New Backplane

Locations shown in Figure 3-4 are:

- 1. Front panel cable
- 2. Peripheral power cable
- 3. SCSI Cable

General Procedure to Close the Chassis

Follow these steps after you have finished the procedure described in the previous sections.

- 1. Close the front subchassis.
- 2. Reinstall the front and rear foam covers.
- 3. Reinstall the access cover using the original screws.
- 4. Reinstall the existing and/or new power supplies.
- 5. Reconnect all AC power and peripheral device cables to the rear of the system and to wall outlets.
- 6. Run the FRUSDR load utility to properly configure the system after adding new components. See Chapter 3 of the *SGI 1400 Server Family User's Guide*.

Technical Reference

This section includes:

- Connectors' pinouts and baseboard locations
- Information on baseboard jumpers
- System I/O Addresses
- System memory map addresses
- Baseboard interrupts
- Video modes

Baseboard Connectors

Figure 4-1 shows connector locations on the baseboard. This section provides pin information about the connectors.

Figure 4-1 Baseboard Layout

The baseboard (processor board) components are:

- 1. Wide SCSI B connector (J9J1)
- 2. System jumpers (J6J1)
- 3. Hard drive input LED connector (J6J3)
- 4. System speaker connector (J6J2)
- 5. Lithium battery (B4H1)
- 6. Wake on LAN technology connector (J4H1)
- 7. ISA slot (J1J1)

- 8. PCI slots B4 (closest to ISA), B3, B2, B1, A3, and A2 (farthest from ISA)
- 9. Memory module connector (J3G1)
- 10. ICMB connector (J1E1)
- 11. PCI slot A1 (J2D1)
- 12. Video and parallel port connectors (J1C1)
- 13. Serial port connector (J1B2)
- 14. Keyboard and mouse connectors (J1B1)
- 15. USB external connector (J1A1)
- 16. VRM connector for processor 4 (J4E1)
- 17. VRM connector for processors 4 and 3 (J4C2)
- 18. VRM connector for processor 3 (J4C1)
- 19. VRM connector for processor 2 (J4B1)
- 20. VRM connector for processors 2 and 1 (J4A2)
- 21. VRM connector for processor 1 (J4A1)
- 22. Processor 1 Slot 2 connector (J9A1)
- 23. Main power connector, primary (J9B1)
- 24. Processor 2 Slot 2 connector (J9B2)
- 25. Processor 3 Slot 2 connector (J9D1)
- 26. Main power connector, secondary (J9D2)
- 27. Front panel connector (J8E1)
- 28. Processor 4 Slot 2 connector (J9E1)
- 29. IDE connector (J9E2)
- 30. Diskette drive connector (J9E3)
- 31. Auxiliary power connector (J9E4)
- 32. USB internal header (JC9F14)
- 33. SMBus connector (J9F2)
- 34. F16 expansion connector (J7G1)

- 35. ITP connector (J6G1)
- 36. Narrow SCSI connector (J9H1)
- 37. External IPMB connector (J7H1)
- 38. SMM connector (J8H1)
- 39. Wide SCSI A connector (J9H2)

Main Power Connector

Figure 4-2 shows the pins on the main power connector. Table 4-1 lists the pin signal and color.

1	0000000000	10
11		20

Figure 4-2Main Power Connector Pins

Table 4-1	Main Power Connector Pinouts

Pin	Signal	Wire Color	
1	+3.3 VDC	Orange	
2	+3.3 VDC	Orange	
3	+3.3 VDC	Orange	
4	СОМ	Black	
5	СОМ	Black	
6	СОМ	Black	
7	СОМ	Black	
8	+12 VDC	Yellow	
9	+12 VDC	Yellow	
10	+12 VDC	Yellow	
11	+3.3 VDC	Orange	
12	+3.3 VDC	Orange	

Table 4-1 (continued)		Main Power Connector Pinouts	
Pin	Signal	Wire Color	
13	+3.3 VDC	Orange	
14	COM	Black	
15	COM	Black	
16	COM	Black	
17	+5V Standby	Purple	
18	+5 VDC	Red	
19	+5 VDC	Red	
20	+5 VDC	Red	

Auxiliary Power

Figure 4-3 shows the auxiliary power connector. Table 4-2 lists the pin number and signal for each pin.

13		1
14		2

Figure 4-3 Auxiliary Power Connector

Pin	Signal
1	RTN_RS
2	5V_RS
3	3.3V_RS
4	FAN_SPEED
5	I2CSCL
6	I2CSDA
7	GND

Table 4-2 (continued)		Auxiliary Power Connector Pinouts
Pin	Signal	
8	SYS_PGOO	D
9	PS_ON	
10	GND	
11	-12VCC	
12	Key	
13	12V_RS	
14	GND	

Diskette Drive

Figure 4-4 shows the diskette drive connector. Table 4-3 lists the diskette drive connector pinouts.

33	1
34	2

Figure 4-4 Disket	te Drive Connector
-------------------	--------------------

 Table 4-3
 Diskette Drive Connector Pinouts

Pin	Signal
1	GND
2	FD_DENSEL
3	GND
4	N/C
5	Key
6	FD_DRATE0
7	GND
8	FD_INDEX_L

Table 4-3 (continued)		Diskette Dri
Pin	Signal	
9	GND	
10	FD_MTR0_I	-
11	GND	
12	FD_DR1_L	
13	GND	
14	FD_DR0_L	
15	GND	
16	FD_MTR1_I	-
17	FD_MSEN1	
18	FD_DIR_L	
19	GND	
20	FD_STEP_L	
21	GND	
22	FD_WDATA	_L
23	GND	
24	FD_WGATE	L_L
25	GND	
26	FD_TRK0_L	
27	FD_MSEN0	
28	FD_WPROT	'_L
29	GND	
30	FD_RDATA	_L
31	GND	
32	FD_HDSEL	L

continued)	Diskette Drive Connector Pinouts

Table 4-	3 (continued)	Diskette	Drive Connector Pinouts
Pin	Signal		-
33	GND		
34	FD_DSKCH	HG_L	

Front Panel Connector

A 30-pin connector attaches to the chassis front panel containing reset, NMI, sleep, and power control switches, LED indicators, and IPMB connection. Figure 4-5 shows the front panel connector. Table 4-4 lists the front panel connector pins and signals.

29 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			
Figure 4-5	Front Panel Connector		
Table 4-4	Front Panel Connector Pinouts		
Pin	Signal		
1	SPEAKER_OUT		
2	GND		
3	CHASSIS_INTRUSI ON		
4	FP_HD_ACT_L		
5	+5V		
6	SLEEP_CNTRL_l		
7	FAN_FAILED_L		
8	POWER_LED_L		
9	POWER_FAULT_L		
10	GND		
11	I2C_SDA		

Table 4-	4 (continued)	Front Panel C
Pin	Signal	
12	NMI_FP_L	
13	I2C_SCL	
14	RST_FP_L	
15	+5V standby	
16	PWR_CNTRI	L_FP_L
17	FP_ISOL	
18	GND	
19	FAN_TACH(0)
20	FAN_TACH(1)
21	FAN_TACH(2)
22	FAN_TACH(3)
23	FAN_TACH(4)
24	FAN_TACH(5)
25	FAN_TACH(6)
26	FAN_TACH(7)
27	CLUSTER_L	ED
28	reserved	
29	reserved	
30	reserved	

The SMM Connector

Figure 4-6 shows the server management module (SMM) connector. Table 4-5 lists the SMM connector pinouts.

2	26
	 ~~

Figure 4-6Server Management Module (SMM) Connector

Table 4-5	Server Management Module Connector Pinouts
-----------	--

Pin	Signal	Description
1	CPU_SMI_L	System Management Interrupt
2	LOCAL_I2C_SCL	IPMB clock line
3	GND	Ground
4	Reserved	N/A
5	PWR_CNTRL_SFC_L	Host power supply on/off control
6	LOCAL_I2C_SDA	IPMB serial data line
7	5VSTNDBY	+5V standby indication (power OK)
8	KEYLOCK_SFC_L	Keyboard lock signal
9	CPU_NMI	Nonmaskable interrupt indication
10	VCC3	3.3V power supply status input
11	RST_SFC_L	Baseboard reset signal from Server Monitor Module
12	GND	Ground
13	GND	Ground
14	Reserved	N/A
15	SECURE_MODE_BMC	Secure mode indication
16	GND	Ground
17	SFC_CHASSIS_INSTRUSION_L	Chassis intrusion indication

Pin	Signal	Description	
18	Reserved	N/A	
19	Reserved	N/A	
20	GND	Ground	
21	Reserved	N/A	
22	Reserved	N/A	
23	Reserved	Not used	
24	Reserved	N/A	
25	Key pin (N/C)	Connector key	
26	Reserved	N/A	

Table 4-5 (continued) Server Management Module Connector Pinouts

The IPMB Connector

Figure 4-7 shows the IPMB connector. Table 4-6 lists the IPMB pins and signals.

3		1
Ű	\bigcirc	2

Figure 4-7The IPMB ConnectorTable 4-6IPMB Connector PinoutsPinSignal1LOCAL_I2C_SCL2GND

3 LOCAL_I2C_SDA

VGA Video Port Connector

Figure 4-8 shows the system's VGA connector. Table 4-7 lists the pinouts for the VGA connector.

Figure 4-8 VGA Video Port Connector

Table 4-7Video Port Connector Pinouts

Signal
Red
Green
Blue
N/C
GND
NC
DDCDAT
HSYNC
VSYNC
DDCCLK

Keyboard and Mouse

Figure 4-9 shows the keyboard and mouse connector. Table 4-8 lists the connector pinouts for the keyboard and mouse connectors.

Figure 4-9 Keyboard and Mouse Connector

The PS/2-compatible connectors share a common housing, but they are functionally equivalent.

	5	
Pin	Keyboard signal	Mouse signal
1	KEYDAT	MSEDAT
2	NC	NC
3	GND	GND
4	FUSED_VCC (+5 V)	FUSED_VCC (+5 V)
5	KEYCLK	MSECLK
6	NC	NC

Table 4-8Keyboard and Mouse Connector Pinouts

Parallel Port

Table 4-9

Figure 4-10 shows the parallel port connection. Table 4-9 describes the parallel port connector pin signals.

Figure 4-10Parallel Port Connector

Pin	Signal
1	STROBE_L
2	Data bit 0
3	Data bit 1
4	Data bit 2
5	Data bit 3
6	Data bit 4
7	Data bit 5
8	Data bit 6
9	Data bit 7
10	ACK_L
11	Busy
12	PE
13	SLCT
14	AUFDXT_L
15	ERROR_L

9 Parallel Port Connector Pinout

Table 4-9 (continued)		Parallel Port Connector Pinout
Pin	Signal	
16	INIT_L	
17	SLCTIN_L	
18–25	GND	

Serial Ports A and B

Figure 4-11 shows the external serial port connector. Table 4-10 lists the serial port connector pin signals and functional descriptions.

Figure 4-11 Serial Port A (External) Connector

Table 4-10 Serial Port A (External) Connector Pinout

Pin	Signal	Description
1	DCD	Data carrier detected
2	RXD	Receive data
3	TXD	Transmit data
4	DTR	Data terminal ready
5	GND	Ground
6	DSR	Data set ready
7	RTS	Request to send
8	CTS	Clear to send
9	RIA	Ring indication active

Universal Serial Bus

The server provides a single, external Universal Serial Bus (USB) connector at the back panel (see Figure 4-12) and an internal header to be used with device bay expansion. Table 4-11 lists the pinouts for the external USB connector. Table 4-12 lists the pinouts for the internal USB header.

Figure 4-12 USB External Connector

 Table 4-11
 USB External Connector Pinout

Pin	Signal	Notes
1	VCC	Cable power
2	Data -	Data (differential pair negative)
3	Data +	Data (differential pair positive)
4	GND	Cable ground

 Table 4-12
 USB Internal Header Pinout

Pin	Signal	Notes
1		N/C
2	Data -	Data (differential pair negative)
3	Data +	Data (differential pair positive)
4	GND	Cable ground

Narrow SCSI Connector

Figure 4-13 shows the server's narrow SCSI connector. Table 4-13 lists the narrow SCSI connection pinouts.

25	1
50	26

Figure 4-13 Narrow SCSI Connector

Pin	Signal
1	GND
2	SCD0_L
3	GND
4	SCD1_L
5	GND
6	SCD2_L
7	GND
8	SCD3_L
9	GND
10	SCD4_L
11	GND
12	SCD5_L
13	GND
14	SCD6_L
15	GND

Table 4-13	Narrow SCSI C	Connector Pinouts

Table 4-13 (continued)		Narrow	SCSI Co
Pin	Signal		
16	SCD7_L		
17	GND		
18	SCDP_L		
19	GND		
20	GND		
21	GND		
22	GND		
23	RESERVED		
24	RESERVED		
25	NC		
26	TERMPWR		
27	RESERVED		
28	RESERVED		
29	GND		
30	GND		
31	GND		
32	SATN_L		
33	GND		
34	GND		
35	GND		
36	SBSY_L		
37	GND		
38	SACK_L		
39	GND		

Narrow	SCSI	Connector	Pinouts

			com
Pin	Signal		
40	SRESET_L		
41	GND		
42	SMSG_L		
43	GND		
44	SSEL_L		
45	GND		
46	SCD_L		
47	GND		
48	SREQ_L		
49	GND		
50	SIO_L		

Table 4-13 (continued) Narrow SCSI Connector Pinouts

Wide SCSI Connector

Figure 4-14 shows the wide SCSI connector. Table 4-14 lists the wide SCSI pinouts and signal descriptions.

34	1
68	35
Figure 4-14	Wide SCSI Connector
Table 4-14	Wide SCSI Connector Pinouts
Pin	Signal
1-16	GND
17	TERMPWR
18	TERMPWR
19	Reserved
20-34	GND
35	DB12_L
36	DB13_L
37	DB14_L
38	DB15_L
39	DBP1_L
40	DB0_L
41	DB1_L
42	DB2_L
43	DB3_L
44	DB4_L
45	DB5_L

Table 4-14 (continued)		Wide SCSI
Pin	Signal	
46	DB6_L	
47	DB7_L	
48	DBP _L	
49-50	GND	
51	TERMPWR	
52	TERMPWR	
53	Reserved	
54	GND	
55	ATN_L	
56	GND	
57	BSY_L	
58	ACK_L	
59	RST_L	
60	MSG_L	
61	SEL_L	
62	C/D_L	
63	REQ_L	
64	I/O_L	
65	DB8_L	
66	DB9_L	
67	DB10_L	
68	DB11_L	

continued)	Wide SCSI Connector Pinouts

Internal IDE Connector

Figure 4-15 shows the server's internal IDE connector. Table 4-15 lists the connectors and signals for the internal IDE connector. If no IDE drives are present, no IDE cable should be connected. If only one IDE drive is installed, it must be connected at the end of the cable.

39 000000 40 000000	1 2
Figure 4-15	Internal IDE Connector
Table 4-15	IDE Connector Pinouts
Pin	Signal
1	RESET_L
2	GND
3	DD7
4	DD8
5	DD6
6	DD9
7	DD5
8	DD10
9	DD4
10	DD11
11	DD3
12	DD12
13	DD2
14	DD13
15	DD1
16	DD14

	15 (continued)	IDE Connecto
Pin	Signal	
17	DD0	
18	DD15	
19	GND	
20	Keyed	
21	IDEDRQ	
22	GND	
23	DIOW_L	
24	GND	
25	DIOR_L	
26	GND	
27	IORDY	
28	CSEL (1 KΩ]	p∕d)
29	IDEDAK_L	
30	GND	
31	IDEIRQ	
32	Reserved (N.	/C)
33	IDESA1	
34	PDIAG_L (tie GND)	ed to
35	IDESA0	
36	IDESA2	
37	IDECS1_L	
38	IDECS3_L	

Table 4-15 (continued) IDE Connector Pinouts

Table 4-15 (continued)		IDE Connector Pinouts
Pin	Signal	
39	IDEHDACT	_L
40	GND	

The Hard Drive LED Connector

Figure 4-16 shows the hard drive LED connector. Table 4-16 lists the pins and signals for the hard drive LED connector.

1 000 4	
Figure 4-16	Hard Drive LED Connector
Table 4-16	Hard Drive LED Connector Pinouts
Pin	Signal
1	N/C
2	HD_LED_HDR_L
3	HD_LED_HDR_L
4	N/C

ISA Connector Pinouts

Table 4-17 lists the ISA connector pinouts and signal names.

Pin	Signal
A1	IOCHK_L
A2	SD7
A3	SD6
A4	SD5
A5	SD4
A6	SD3
A7	SD2
A8	SD1
A9	SD0
A10	IOCHRDY
A11	AEN
A12	SA19
A13	SA18
A14	SA17
A15	SA16
A16	SA15
A17	SA14
A18	SA13
A19	SA12
A20	SA11
A21	SA10

Table 4-17ISA Connector Pinouts

Table 4-	17 (continued)	ISA Connect
Pin	Signal	
A22	SA9	
A23	SA8	
A24	SA7	
A25	SA6	
A26	SA5	
A27	SA4	
A28	SA3	
A29	SA2	
A30	SA1	
A31	SA0	
B1	GND	
B2	RESET	
B3	+5V	
B4	IRQ9	
B5	-5V	
B6	DRQ2	
B7	-12V	
B8	SRDY_L	
B9	+12V	
B10	GND	
B11	SMEMW_L	
B12	SMEMR_L	
B13	IOW_L	
B14	IOR_L	

 Table 4-17 (continued)
 ISA Connector Pinouts

Table 4-17	(continued)	ISA Connec
Pin	Signal	
B15	DACK3_L	
B16	DRQ3	
B17	DACK1_L	
B18	DRQ1	
B19	REFRESH_L	
B20	BCLK	
B21	IRQ7	
B22	IRQ6	
B23	IRQ5	
B24	IRQ4	
B25	IRQ3	
B26	DACK2_L	
B27	TC	
B28	BALE	
B29	+5V	
B30	OSC	
B31	GND	
Connector key		
C1	SBHE_L	
C2	LA23	
C3	LA22	
C4	LA21	
C5	LA20	

Table 4-17 (continued) ISA Connector Pinouts

Table 4-17 (continued)	ISA Connector
Pin	Signal	
C6	LA19	
C7	LA18	
C8	LA17	
C9	MEMR_L	
C10	MEMW_L	
C11	SD8	
C12	SD9	
C13	SD10	
C14	SD11	
C15	SD12	
C16	SD13	
C17	SD14	
C18	SD15	
Connector key		
D1	MEMCS16_L	
D2	IOCS16_L	
D3	IRQ10	
D4	IRQ11	
D5	IRQ12	
D6	IRQ15	
D7	IRQ14	
D8	DACK0_L	
D9	DRQ0	

-1 Pinouts

Table 4-1	r (continued)	ISA Connector Plnc
Pin	Signal	
D10	DACK5_L	
D11	DRQ5	
D12	DACK6_L	
D13	DRQ6	
D14	DACK7_L	
D15	DRQ7	
D16	+5V	
D17	MASTER16_I	_
D18	GND	

Table 4-17 (continued) ISA Connector Pinouts

The PCI Connectors

Table 4-18 provides the PCI connector pinouts and lists the signal value.

Note: The baseboard does not provide a PCI 3.3 V power connector. Only the 5 V PCI signaling environment is supported, and no power is available at the 3.3 V signal pins in expansion slots.

 Table 4-18
 PCI Connector Pinouts

Pin	Signal	
A1	TRST_L	
A2	+12 V	
A3	TMS	
A4	TDI	
A5	+5 V	
A6	INTA_L	
A7	INTC_L	

Table 4-18 (continued)		PCI Connecte
Pin	Signal	
A8	+5 V	
A9	Reserved	
A10	+5 V	
A11	Reserved	
A12	GND	
A13	GND	
A14	Reserved	
A15	RST_L	
A16	+5 V	
A17	GNT_L	
A18	GND	
A19	Reserved	
A20	AD30	
A21	+3.3 V *	
A22	AD28	
A23	AD26	
A24	GND	
A25	AD24	
A26	IDSEL	
A27	+3.3 V *	
A28	AD22	
A29	AD20	
A30	GND	
A31	AD18	
-		

PCLC ctor Pinouts
Table 4-18 (continued)		PCI Conn
Pin	Signal	
A32	AD16	
A33	+3.3 V *	
A34	FRAME_L	
A35	GND	
A36	TRDY_L	
A37	GND	
A38	STOP_L	
A39	+3.3 V *	
A40	SDONE	
A41	SBO_L	
A42	GND	
A43	PAR	
A44	AD15	
A45	+3.3 V *	
A46	AD13	
A47	AD11	
A48	GND	
A49	AD9	
A50	KEY	
A51	KEY	
A52	C/BE0_L	
A53	+3.3 V *	
A54	AD6	
A55	AD4	

-18 (continued)	PCI Connector Pinouts

Table 4-18 (continued)		PCI Connect
Pin	Signal	
A56	GND	
A57	AD2	
A58	AD0	
A59	+5 V	
A60	REQ64_L	
A61	+5 V	
A62	+5 V	
B1	-12 V	
B2	ТСК	
B3	GND	
B4	TD0 (NC)	
B5	+5 V	
B6	+5 V	
B7	INTB_L	
B8	INTD_L	
B9	PRSNT1_L	
B10	Reserved	
B11	PRSNT2_L	
B12	GND	
B13	GND	
B14	Reserved	
B15	GND	
B16	PCICLK	
B17	GND	

PCI Connector Pinouts

Table 4-18 (continued)PCI Co		PCI Conne
Pin	Signal	
B18	REQ_L	
B19	+5 V	
B20	AD31	
B21	AD29	
B22	GND	
B23	AD27	
B24	AD25	
B25	+3.3 V *	
B26	C/BE3_L	
B27	AD23	
B28	GND	
B29	AD21	
B30	AD19	
B31	+3.3 V *	
B32	AD17	
B33	C/BE2_L	
B34	GND	
B35	IRDY_L	
B36	+3.3 V *	
B37	DEVSEL_L	
B38	GND	
B39	LOCK_L	
B40	PERR_L	
B41	+3.3 V *	

Table 4-18 (continued) PCI Connector Pinouts

Pin Signal B42 SERR_L B43 +3.3 V * B44 C/BE1_L B45 AD14 B46 GND B47 AD12 B48 AD10 B49 GND B50 KEY B51 KEY B52 AD8 B53 AD7 B54 +3.3 V * B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V B62 +5 V	Table 4-18 (continued)		PCI Connect
B43 +3.3 V* B44 C/BE1_L B45 AD14 B46 GND B47 AD12 B48 AD10 B49 GND B50 KEY B51 KEY B52 AD8 B53 AD7 B54 +3.3 V* B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	Pin	Signal	
B44 C/BE1_L B45 AD14 B46 GND B47 AD12 B48 AD10 B49 GND B49 GND B50 KEY B51 KEY B52 AD8 B53 AD7 B54 +3.3 V* B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B42	SERR_L	
B45 AD14 B46 GND B47 AD12 B48 AD10 B49 GND B49 GND B50 KEY B51 KEY B52 AD8 B53 AD7 B54 +3.3 V* B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B43	+3.3 V *	
B46 GND B47 AD12 B48 AD10 B49 GND B50 GND B51 KEY B52 AD8 B53 AD7 B54 AD5 B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B44	C/BE1_L	
B47AD12B48AD10B49GNDB50KEYB51KEYB52AD8B53AD7B54+3.3 V*B55AD5B56AD3B57GNDB58AD1B59+5 VB60ACK64_LB61+5 V	B45	AD14	
B48AD10B49GNDB50KEYB51KEYB51AD8B53AD7B54+3.3 V*B55AD5B56AD3B57GNDB58AD1B59+5 VB60ACK64_LB61+5 V	B46	GND	
B49 GND B50 KEY B51 KEY B52 AD8 B53 AD7 B54 +3.3 V* B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B47	AD12	
B50 KEY B51 KEY B52 AD8 B53 AD7 B54 +3.3 V* B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B48	AD10	
B51 KEY B52 AD8 B53 AD7 B54 +3.3 V* B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B49	GND	
B52AD8B53AD7B54+3.3 V*B55AD5B56AD3B57GNDB58AD1B59+5 VB60ACK64_LB61+5 V	B50	KEY	
B53AD7B54+3.3 V*B55AD5B56AD3B57GNDB58AD1B59+5 VB60ACK64_LB61+5 V	B51	KEY	
B54+3.3 V*B55AD5B56AD3B57GNDB58AD1B59+5 VB60ACK64_LB61+5 V	B52	AD8	
B55 AD5 B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B53	AD7	
B56 AD3 B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B54	+3.3 V *	
B57 GND B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B55	AD5	
B58 AD1 B59 +5 V B60 ACK64_L B61 +5 V	B56	AD3	
B59 +5 V B60 ACK64_L B61 +5 V	B57	GND	
B60 ACK64_L B61 +5 V	B58	AD1	
B61 +5 V	B59	+5 V	
	B60	ACK64_L	
B62 +5 V	B61	+5 V	
	B62	+5 V	

 Table 4-18 (continued)
 PCI Connector Pinouts

Baseboard Jumpers

One 11-pin single inline header provides three 3-pin jumper blocks that control various configuration options. Figure 4-17 shows the location. Items shown in **bold** in Table 4-19 show default placement for each configurable option.

Figure 4-17 Baseboard Jumpers

Function	Pins (default in bold)	What it does at system reset
CMOS clear	1-2, BMC Control	Preserves the contents of NVRAM.
	2-3, Force Erase	Replaces the contents of NVRAM with the manufacturing default settings.
Password clear	5-6, Protect	Maintains the current system password.
	6-7, Erase	Clears the password.
Recovery Boot	9-10, Normal	System attempts to boot using the BIOS stored in flash memory.
	10-11, Recovery	BIOS attempts a recovery boot, loading BIOS code from a diskette into the flash device. This is typically used when the BIOS code has been corrupted.

Table 4-19Baseboard Jumper Summary

General Procedure to Change a Jumper Setting

The short general procedure for changing a configuration setting is the same for most of the jumper functions, and is described in the following steps.

- 1. Read and observe the safety and ESD precautions at the beginning of Chapter 1.
- 2. Turn off all connected peripherals, turn off system power, and disconnect all AC power cords.
- 3. Remove the access cover. You do not need to remove the baseboard from the chassis, and you probably do not need to remove any add-in boards.
- 4. Locate the configuration jumpers at the edge of the baseboard toward the front of the system, near the narrow SCSI connector.
- 5. Move jumper to pins specified for the desired setting.
- 6. Reinstall the access cover using the original screws, connect the power cords, and turn on the system for the change to take effect.
- 7. You may need to repeat these steps to move the jumper back to its original setting, depending on the jumper function.

CMOS Clear Jumper

The jumper at pins 1, 2, and 3 controls whether settings stored in CMOS nonvolatile memory (NVRAM) are retained during a system reset.

Procedure to restore the system's CMOS and RTC to default values:

- 1. See "General Procedure to Change a Jumper Setting" on page 100.
- 2. Move the CMOS jumper from pins 1 and 2 to pins 2 and 3 (the Clear CMOS memory position).
- 3. Reinstall the access cover for your safety (using the original screws), and connect the power cords to the system.
- 4. Turn the system on. Wait for POST to complete and for the messages "NVRAM cleared by jumper" and "Press F2 to enter Setup" to appear. This automatically reprograms CMOS and RTC to their default settings, except for the password.
- 5. Enter Setup and make any changes necessary (for example, changing the boot device). Press F10 to save the new Setup configuration and exit Setup.
- 6. Turn off the system, and disconnect all AC power cords from the system.
- 7. Again remove the access cover.
- 8. Move the jumper from pins 2 and 3 back to pins 1 and 2 (the Protect CMOS memory position).
- 9. Reinstall the access cover using the original screws, and connect the power cords to the system.
- 10. Run BIOS Setup or the SSU to verify the correct settings. See Chapter 3 in the *SGI 1400 Server Family User's Guide*.

Password Clear Jumper

The jumper at pins 5, 6, and 7 controls whether a stored password is retained or cleared during a system reset.

Procedure to clear the current password and then enter a new one:

- 1. See "General Procedure to Change a Jumper Setting" on page 100.
- 2. Move the Password jumper from pins 5 and 6 to pins 6 and 7.

- 3. Reinstall the access cover for your safety (using the original screws), and connect the power cords to the system.
- 4. Turn the system on, and wait for POST to complete. This automatically clears the password.
- 5. Turn off the system, and disconnect all AC power cords.
- 6. Again remove the access cover.
- 7. Move the jumper from pins 6 and 7 back to pins 5 and 6.
- 8. Reinstall the access cover using the original screws, and connect the power cords to the system.
- 9. Run the SSU to specify a new password. See Chapter 3 in the *SGI 1400 Server Family User's Guide.*

Recovery Boot Jumper

The jumper at pins 9, 10, and 11 controls whether the system attempts to boot using the BIOS programmed in flash memory.

The following steps disable recovery booting:

- 1. See "General Procedure to Change a Jumper Setting" on page 100.
- 2. Move the recovery boot jumper from pins 9 and 10 to pins 10 and 11.
- 3. Reinstall the access cover for your safety (using the original screws), then connect the power cords to the system.
- 4. Turn the system on, and insert the Flash Memory Update Utility diskette in drive A. After the system boots, the speaker emits a single beep and the recovery process starts. This takes about three minutes. When the recovery process completes, the speaker emits two beeps.

While in the recovery mode, there is no screen display on the monitor. The keyboard is disabled as the system automatically recovers the BIOS. The beep codes listed in Table 4-20 describe the recovery status.

Beep Code	Message
2	Successful completion, no errors.
4	The system could not boot from the diskette. The diskette may not be bootable.
Continuous series of low beeps	The wrong BIOS recovery files are being used and/or the flash memory jumper is in the wrong position.

Table 4-20BIOS Recovery Beep Codes

- 1. Turn the system off, disconnect all AC power cords from the system, and remove the access cover.
- 2. Move the jumper from pins 10 and 11 back to pins 9 and 10 to enable the normal boot mode.
- 3. Replace the access cover, remove the diskette from drive A, and connect the power cords to the system.
- 4. After running the special recovery mode, run the SSU to specify a new password. See Chapter 3 in the *SGI 1400 Server Family User's Guide*.

System I/O Addresses

Table 4-21 shows the location in I/O space of all directly I/O-accessible registers.

Table 4-21	System I/O Addresses		
Address(es)	Resource	Device	Notes
0000h - 000Fh	DMA Controller 1	PIIX4E	
0010h - 001Fh	DMA Controller 1	PIIX4E	Aliased from 0000h - 000Fh
0020h - 0021h	Interrupt Controller 1	PIIX4E	
0022h - 0023h			
0024h - 0025h	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
0026h - 0027h			
0028h - 0029h	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
002Ah - 002Bh			
002Ch - 002Dh	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
002Eh - 002Fh	Super I/O Index and Data Ports		
0030h - 0031h	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
0032h - 0033h			
0034h - 0035h	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
0036h - 0037h			
0038h - 0039h	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
003Ah - 003Bh			
003Ch - 003Dh	Interrupt Controller 1	PIIX4E	Aliased from 0020h - 0021h
003Eh - 003Fh			
0040h - 0043h	Programmable Timers	PIIX4E	
0044h - 004Fh			
0050h - 0053h	Programmable Timers	PIIX4E	Aliased from 0040h - 0043h

 Table 4-21
 System I/O Addresses

Address(es)	Resource	Device	Notes
0054h - 005Fh			
0060h, 0064h	Keyboard Controller		Keyboard chip select from 87307
0061h	NMI Status & Control Register	PIIX4E	
0063h	NMI Status & Control Register	PIIX4E	Aliased
0065h	NMI Status & Control Register	PIIX4E	Aliased
0067h	NMI Status & Control Register	PIIX4E	Aliased
0070h	NMI Mask (bit 7) & RTC Address (bits 6::0)	PIIX4E	
0072h	NMI Mask (bit 7) & RTC Address (bits 6::0)	PIIX4E	Aliased from 0070h
0074h	NMI Mask (bit 7) & RTC Address (bits 6::0)	PIIX4E	Aliased from 0070h
0076h	NMI Mask (bit 7) & RTC Address (bits 6::0)	PIIX4E	Aliased from 0070h
0071h	RTC Data	PIIX4E	
0073h	RTC Data	PIIX4E	Aliased from 0071h
0075h	RTC Data	PIIX4E	Aliased from 0071h
0077h	RTC Data	PIIX4E	Aliased from 0071h
0080h - 008Fh	DMA Low Page Register	PIIX4E	
0090h - 0091h	DMA Low Page Register (aliased)	PIIX4E	
0092h	System Control Port A (PC-AT control Port) (this port not aliased in DMA range)	PIIX4E	

Table 4-21 (continued)	System I/O Addresses

Address(es)	Resource	Device	Notes
0093h - 009Fh	DMA Low Page Register (aliased)	PIIX4E	
0094h	Video Display Controller		
00A0h - 00A1h	Interrupt Controller 2	PIIX4E	
00A4h - 00A15	Interrupt Controller 2 (aliased)	PIIX4E	
00A8h - 00A19	Interrupt Controller 2 (aliased)	PIIX4E	
00Ach - 00Adh	Interrupt Controller 2 (aliased)	PIIX4E	
00B0h - 00B1h	Interrupt Controller 2 (aliased)	PIIX4E	
00B2h	Advanced Power Management Control	PIIX4E	
00B3h	Advanced Power Management Status	PIIX4E	
00B4h - 00B5h	Interrupt Controller 2 (aliased)	PIIX4E	
00B8h - 00B9h	Interrupt Controller 2 (aliased)	PIIX4E	
00BCh - 00BDh	Interrupt Controller 2 (aliased)	PIIX4E	
00C0h - 00DFh	DMA Controller 2	PIIX4E	
00F0h	Clear NPX error		Resets IRQ13
00F8h - 00FFh	x87 Numeric Coprocessor		
0102h	Video Display Controller		
0170h - 0177h	Secondary Fixed Disk Controller (IDE)	PIIX4E	Not used

 Table 4-21 (continued)
 System I/O Addresses

Address(es)	Resource	Device	Notes
01F0h - 01F7h	Primary Fixed Disk Controller (IDE)	PIIX4E	
0200h - 0207h	Game I/O Port		Not used
0220h - 022Fh	Serial Port A		
0238h - 023Fh	Serial Port B		
0278h - 027Fh	Parallel Port 3		
02E8h - 02Efh	Serial Port B		
02F8h - 02FFh	Serial Port B		
0338h - 033Fh	Serial Port B		
0370h - 0375h	Secondary Diskette		
0376h	Secondary IDE		
0377h	Secondary IDE/Diskette		
0378h - 037Fh	Parallel Port 2		
03B4h - 03Bah	Monochrome Display Port		
03BCh - 03BFh	Parallel Port 1 (Primary)		
03C0h - 03CFh	Video Display Controller		
03D4h - 03DAh	Color Graphics Controller		
03E8h - 03EFh	Serial Port A		
03F0h - 03F5h	Diskette Controller		
03F6h - 03F7h	Primary IDE - Sec. Diskette		
03F8h - 03FFh	Serial Port A (Primary)		
0400h - 043Fh	DMA Controller 1, Extended Mode Registers	PIIX4E	
04D0h - 04D1h	Interrupt Controllers 1 and 2 Control Register		

 Table 4-21 (continued)
 System I/O Addresses

Address(es)	Resource	Device	Notes
0678h - 067Ah	Parallel Port (ECP)		
0778h - 077Ah	Parallel Port (ECP)		
07BCh - 07BEh	Parallel Port (ECP)		
0CA0 - CA3h	BMC Registers		
0CF8h	PCI CONFIG_ADDRESS Register		Located in 450NX
)CF9h	NBX Turbo and Reset control	PIIX4E	
CFCh	PCI CONFIG_DATA Register		Located in 450NX
6E8h	Video Display Controller		

Table 4-21 (continued) System I/O Addresses

Memory Map Address Range

Table 4-22 lists the memory map address ranges and the functions they support.

 Table 4-22
 Memory Map Address Range

Amount	Function
640 KB	DOS region, base system memory
128 KB	Video or SMM memory
128 KB	Add-in board BIOS and buffer area
128 KB	System BIOS
2 MB	Extended system BIOS
64 MB	PCI memory space
	640 KB 128 KB 128 KB 128 KB 2 MB

Interrupts

Table 4-23 recommends the logical interrupt mapping of interrupt sources; it reflects a typical configuration, but these interrupts can be changed by the user. Use the information to determine how to program each interrupt. The actual interrupt map is defined using configuration registers in the PIIX4E and the I/O controller. I/O Redirection Registers in the I/O APIC are provided for each interrupt signal; the signals define hardware interrupt signal characteristics for APIC messages sent to local APIC(s).

Note: To disable either IDE controller and reuse the interrupt: if you plan to disable either IDE controller to reuse the interrupt for that controller, you must physically unplug the IDE cable from the board connector (IDE0) if a cable is present. Simply disabling the drive by configuring the SSU option does not make the interrupt available.

Interrupt	I/O APIC level	Description
INTR	INT0	Processor interrupt
NMI	N/A	NMI from PIC to processor
IRQ1	INT1	Keyboard interrupt
Cascade	INT2	Interrupt signal from second 8259 in PIIX4E
IRQ3	INT3	Serial port A or B interrupt from SIO device (user can configure)
IRQ4	INT4	Serial port A or B interrupt from SIO device (user can configure)
IRQ5	INT5	Parallel port II
IRQ6	INT6	Diskette port
IRQ7	INT7	Parallel port
IRQ8_L	INT8	RTC interrupt
IRQ9	INT9	Signal control interrupt (SCI) used by ACPI-compliant OS
IRQ10	INT10	
IRQ11	INT11	

 Table 4-23
 Interrupt I/O Descriptions

Table 4-23 (co	ntinued) Interru	errupt I/O Descriptions		
Interrupt	I/O APIC level	Description		
IRQ12	INT12	Mouse interrupt		
	INT13			
IRQ14	INT14	Compatibility IDE interrupt from primary channel IDE devices 0 and 1		
IRQ15	INT15			
SMI_L		System management interrupt—general purpose indicator sourced by the PIIX4E and BMC through the PID to the processors		

23 ((continued	Interrupt I/O Descriptions
------	------------	----------------------------

Video Modes

The CL-GD5480 integrated video controller provides all standard IBM VGA modes. With 2 MB of SGRAM standard, the system supports special Cirrus Logic extended modes. Table 4-24 and Table 4-25 list the standard and extended modes that this implementation supports, including the number of colors and palette size (e.g., 16 colors out of 256 K colors), resolution, pixel frequency, and scan frequencies.

Table 4-24	Standard VGA Modes
------------	--------------------

Mode(s) in Hex	Bits per pixel	Colors (no per palette size)	Resolution	Pixel Freq. (MHz)	Horizontal Freq. (kHz)	Vertical Freq. (Hz)
0, 1	4	16/256K	360 X 400	14	31.5	70
2, 3	4	16/256K	720 X 400	28	31.5	70
4, 5	4	4/256K	320 X 200	12.5	31.5	70
6	4	2/256K	640 X 200	25	31.5	70
7	4	Mono	720 X 400	28	31.5	70
D	4	16/256K	320 X 200	12.5	31.5	70
E	4	16/256K	640 X 200	25	31.5	70
F	4	Mono	640 X 350	25	31.5	70

Mode(s) in Hex	Bits per pixel	Colors (no per palette size)	Resolution	Pixel Freq. (MHz)	Horizontal Freq. (kHz)	Vertical Freq. (Hz)
10	4	16/256K	640 X 350	25	31.5	70
11	4	2/256K	640 X 480	25	31.5	60
12	4	16/256K	640 X 480	25	31.5	60
12+	4	16/256K	640 X 480	31.5	37.5	75
13	8	256/256K	320 X 200	12.5	31.5	70

Table 4-24 (continued)	Standard VGA Modes
------------------------	--------------------

Table 4-25Extended VGA Modes

Mode(s) in Hex	Bits per pixel	Colors	Resolution	Pixel Freq. (MHz)	Horiz. Freq. (KHz)	Vert. Freq. (Hz)	Memory
58, 6A	8	16/256K	800 X 600	36	35.2	56	1MB
58, 6A	8	16/256K	800 X 600	40	37.8	60	1MB
58, 6A	8	16/256K	800 X 600	50	48.1	72	1MB
58, 6A	8	16/256K	800 X 600	49.5	46.9	75	1MB
5C	8	256/256K	800 X 600	36	35.2	56	1MB
5C	8	256/256K	800 X 600	40	37.9	60	1MB
5C	8	256/256K	800 X 600	50	48.1	72	1MB
5C	8	256/256K	800 X 600	49.5	46.9	75	1MB
5C	8	256/256K	800 X 600	56.25	53.7	85	1MB
5C	8	256/256K	800 X 600	68.2	63.6	100	1MB
5D	8	16/256K (interlaced)	1024 X 768	44.9	35.5	43	1MB
5D	8	16/256K	1024 X 768	65	48.3	60	1MB
5D	8	16/256K	1024 X 768	75	56	70	1MB

Mode(s) in Hex	Bits per pixel	Colors	Resolution	Pixel Freq. (MHz)	Horiz. Freq. (KHz)	Vert. Freq. (Hz)	Memory
5D	8	16/256K	1024 X 768	78.7	60	75	1MB
5E	8	256/256K	640 X 400	25	31.5	70	1MB
5F	8	256/256K	640 X 480	25	31.5	60	1MB
5F	8	256/256K	640 X 480	31.5	37.9	72	1MB
5F	8	256/256K	640 X 480	31.5	37.5	75	1MB
5F	8	256/256K	640 X 480	36	43.3	85	1MB
5F	8	256/256K	640 X 480	43.2	50.9	100	1MB
60	8	256/256K (interlaced)	1024 X 768	44.9	35.5	43	1MB
60	8	256/256K	1024 X 768	65	48.3	60	1MB
60	8	256/256K	1024 X 768	75	56	70	1MB
60	8	256/256K	1024 X 768	78.7	60	75	1MB
60	8	256/256K	1024 X 768	94.5	68.3	85	1MB
60	8	256/256K	1024 X 768	113.3	81.4	100	1MB
64	16	64K	640 X 480	25	31.5	60	1MB
64	16	64K	640 X 480	31.5	37.9	72	1MB
64	16	64K	640 X 480	31.5	37.5	75	1MB
64	16	64K	640 X 480	36	43.3	85	1MB
64	16	64K	640 X 480	43.2	50.9	100	1MB
65	16	64K	800 X 600	36	35.2	56	1MB
65	16	64K	800 X 600	40	37.8	60	1MB
65	16	64K	800 X 600	50	48.1	72	1MB
65	16	64K	800 X 600	49.5	46.9	75	1MB
65	16	64K	800 X 600	56.25	53.7	85	1MB

ended VGA Modes
(

Mode(s) in Hex	Bits per pixel	Colors	Resolution	Pixel Freq. (MHz)	Horiz. Freq. (KHz)	Vert. Freq. (Hz)	Memory
65	16	64K	800 X 600	68.2	63.6	100	1MB
66	16	32K	640 X 480	25	31.5	60	1MB
66	16	32K	640 X 480	31.5	37.9	72	1MB
66	16	32K	640 X 480	31.5	37.5	75	1MB
66	16	32K	640 X 480	36	43.3	85	1MB
66	16	32K	640 X 480	43.2	50.9	100	1MB
67	16	32K	800 X 600	36	35.2	56	1MB
67	16	32K	800 X 600	40	37.8	60	1MB
67	16	32K	800 X 600	50	48.1	72	1MB
67	16	32K	800 X 600	49.5	46.9	75	1MB
67	16	32K	800 X 600	56.25	53.7	85	1MB
67	16	32K	800 X 600	68.2	63.6	100	1MB
68	16	32K (interlaced)	1024 X 768	44.9	35.5	43	2MB
68	16	32K	1024 X 768	65	48.3	60	2MB
68	16	32K	1024 X 768	75	56	70	2MB
68	16	32K	1024 X 768	78.7	60	75	2MB
68	16	32K	1024 X 768	94.5	68.3	85	2MB
68	16	32K	1024 X 768	113.3	81.4	100	2MB
6C	8	16/256K (interlaced)	1280 X 1024	75	48	43	1MB
6D	8	256/256K (interlaced)	1280 X 1024	75	48	43	2MB
6D	8	256/256K	1280 X 1024	108	65	60	2MB
6D	8	256/256K	1280 X 1024	135	80	75	2MB

Table 4-25 (continued)Exte	nded VGA Modes
----------------------------	----------------

Tab	le 4-2	5 (cor	ntinued)
-----	--------	--------	---------	---

Extended VGA Modes

Mode(s) in Hex	Bits per pixel	Colors	Resolution	Pixel Freq. (MHz)	Horiz. Freq. (KHz)	Vert. Freq. (Hz)	Memory
6D	8	256/256K	1280 X 1024	157.5	91	85	2MB
6E	16	32K	1152 X 864	94.5	63.9	70	2MB
6E	16	32K	1152 X 864	108	67.5	75	2MB
6E	16	32K	1152 X 864	121.5	76.7	85	2MB
6E	16	32K	1152 X 864	143.5	91.5	100	2MB
71	24	16M	640 X 480	25	31.5	60	1MB
71	24	16M	640 X 480	31.5	37.9	72	1MB
71	24	16M	640 X 480	31.5	37.5	75	1MB
71	24	16M	640 X 480	36	43.3	85	1MB
71	24	16M	640 X 480	43.2	50.9	100	1MB
74	16	64K (interlaced)	1024 X 768	44.9	35.5	43	2MB
74	16	64K	1024 X 768	65	48.3	60	2MB
74	16	64K	1024 X 768	75	56	70	2MB
74	16	64K	1024 X 768	78.7	60	75	2MB
74	16	64K	1024 X 768	94.5	68.3	85	2MB
74	16	64K	1024 X 768	113.3	81.4	100	2MB
78	16	32K	800 X 600	36	35.2	56	1MB
78	24	16M	800 X 600	40	37.8	60	2MB
78	24	16M	800 X 600	50	48.1	72	2MB
78	24	16M	800 X 600	49.5	46.9	75	2MB
78	24	16M	800 X 600	56.25	53.7	85	2MB
78	24	16M	800 X 600	68.2	63.6	100	2MB

Mode(s) in Hex	Bits per pixel	Colors	Resolution	Pixel Freq. (MHz)	Horiz. Freq. (KHz)	Vert. Freq. (Hz)	Memory
7B	8	256/256K (interlaced)	1600 X 1200	135	62.5	48	2MB
7B	8	256/256K	1600 X 1200	162	75	60	2MB
7C	8	256/256K	1152 X 864	94.5	63.9	70	1MB
7C	8	256/256K	1152 X 864	108	67.5	75	1MB
7C	8	256/256K	1152 X 864	121.5	76.7	85	1MB
7C	8	256/256K	1152 X 864	143.5	91.5	100	1MB
7D	16	64K	1152 X 864	94.5	63.9	70	2MB
7D	16	64K	1152 X 864	108	67.5	75	2MB
7D	16	64K	1152 X 864	121.5	76.7	85	2MB
7D	16	64K	1152 X 864	143.5	91.5	100	2MB

Table 4-25 (continued)	Extended VGA Modes
------------------------	--------------------

Appendix A

Equipment Log and Configuration Worksheets

Equipment Log

Use the blank equipment log provided here (Table A-1) to record information about your system. You will need some of this information when you run the SSU.

	Table A-1	Equipment Log		
ltem	Manufacturer Name and Model Number		Serial Number	Date Installed
System				
Baseboard				
Processor speed and cache				
Video display				
Keyboard				
Mouse				
Diskette drive A				
Diskette drive B				
Tape drive				
CD-ROM drive				

	Table A-1 (continued)	Equipment Log		
ltem	Manufacturer Name a	nd Model Number	Serial Number	Date Installed
Hard disk drive 1				
Hard disk drive 2				
Hard disk drive 3				
Hard disk drive 4				
Hard disk drive 5				
SCSI host adapter board 1				

	Table A-1 (continued) Equ	upment Log		
ltem	Manufacturer Name and Mo	del Number	Serial Number	Date Installed

Configuration Worksheets

The rest of this chapter consists of worksheets to record the settings you make when configuring the system using the SSU, BIOS Setup, and the Symbios SCSI Utility. If default values ever need to be restored to CMOS (e.g., after a CMOS-clear), you must reconfigure the system. Referring to the filled-in worksheets could make your task easier.

Circle or write in your selections or the values that are displayed onscreen.

Current Usage

As all SGI 1400 servers come equipped with three power supplies standard, power usage is not generally a critical consideration. The system administrator or service person may wish to calculate system power usage for other reasons.

As an overall current usage limitation on the power supply, do not exceed a combined power output of 195 watts for the +5 and +3.3 volt outputs.

Calculating Power Usage

The total combined wattage for the system configuration **must be less than 400 watts**. Use the two worksheets in this section to calculate the total used by your system. For current and voltage requirements of add-in boards and peripherals, see your vendor documents.

Worksheet, Calculating DC Power Usage

- 1. List the current for each board and device in the appropriate voltage level column of Table A-2.
- 2. Add the currents in each column. Then go to the next worksheet.

Device, by Current (maximum) at voltage level:	+3.3 V	+5 V	–5 V	+12 V	–12 V
Boards, processors, and memory (get totals from your board manual)					
SCSI backplane					
Front panel board					
3.5-inch diskette drive		0.3 A			
CD-ROM drive		0.4 A		1.0 A	
Second 5.25-inch device					
1st hot-swap hard drive					
2nd hot-swap hard drive					
3rd hot-swap hard drive					
4th hot-swap hard drive					
5th hot-swap hard drive					
Cooling fan 1, 120 mm				0.6 A	
Cooling fan 2, 120 mm				0.6 A	
Cooling fan 3, 120 mm				0.6 A	
Total Current					

Worksheet, Total Combined Power Used by the System

- 1. From the previous worksheet, enter the total current for each column.
- 2. Multiply the voltage by the total current to get the total wattage for each voltage level as indicated in Table A-3.
- 3. Add the total wattage for each voltage level to arrive at a total combined power usage on the power supply.

Voltage level and total current (V X A = W)	Total Watts for each voltage level
(+3.3 V) X (A)	W
(+5 V) X (A)	W
(-5 V) X (A)	W
(+12 V) X (A)	W
(-12 V) X (A)	W
Total Combined Wattage	W

 Table A-3
 Power Usage Worksheet (Total Watts)

System Setup Utility (SSU) Worksheets

This section provides worksheets for tracking changes made using the SSU.

Adding and Removing Boards

Table A-4 provides PCI board information.

Table A-4 Ade	l or Remove	PCI Boards
---------------	-------------	------------

Baseboard	
PCI Host Bridge Device	Bus 0 Dev 0
PCI SCSI Device	Bus 0 Dev B
PCI Ethernet Device	Bus 0 Dev 10
PCI VGA Device	Bus 0 Dev 12
PCI Multifunction Device	Bus 0 Dev 14

ISA Board Definition

If you have an ISA board with no.CFG file, you can define the board by using the SSU. It is necessary to define an ISA board only when you want to prevent other boards in the system from using the same IRQ levels, DMA channels, I/O Port addresses, or Memory addresses that your ISA board uses. Table A-5 provides some ISA board definitions.

(ISA) Board Name	
Manufacturer	
Board Type	Video Board Memory Board Multifunction Board Keyboard Mass Storage Device Numeric Coprocessor Network Board Operating System Communications Board CPU Board Parallel Port Joystick Board Pointing Device Other
Board Slot	16 Bit / 8 Bit / 8 or 16 Bit
DMA	Channel: Size: Byte / Word Timing: Default / Type A / Type B
IRQ	Level: Trigger: Edge / Level
Ports ISA Port Definition	Start: End: Size: Byte / Word
Memory ISA Memory Definition	Size: KB Address: h RAM / ROM Don't Cache / Cache Use: System / Expanded / Virtual / Other Width: Byte / Word Decode: 24 Bit / 20 Bit

Table A-5ISA Board Definition

Baseboard (SSU, Change Configuration Settings)

Table A-6	Systems Group		
System Ident	ification and Version Information	วท	
SSU Configu	ration File Version		
MP Spec. Ver	rsion	1.1 / 1.4	
Processor Sp	eed Setting		

Table A-7	Memory Subsystem Group
-----------	------------------------

Onboard Disk Controllers	
Onboard Communication Devices	Enable / Disable

Table A-8Onboard Disk Controllers

Onboard Diskette Controller	Enable / Disable
Primary Onboard IDE Controller	Enable / Disable
Secondary Onboard IDE Controller	Enable / Disable

Table A-9	Onboard Communications Devices	
Serial Port 1 Configuration		
Serial Port 2 Configuration		
Serial Port 2 Mode		
Parallel Port Configuration		
Parallel Port Mode		

Table A-10 Diskette Drive Subsystems Group

Diskette drive A Options

Diskette drive B Options

Table A-11 IDE Subsystem Group

IDE Configuration Primary Master	(drive name) None / User / Auto / CD
IDE Drive Options	2 Sector/Block / 4 Sector/Block 8 Sector/Block / 16 Sector/Block /
Primary Master	Disable
Transfer Mode Primary Master	PIO 1 / PIO 2 / PIO 3 / PIO 4
IDE Configuration	(drive name)
Primary Slave	None / User / Auto / CD
IDE Drive Options	2 Sector/Block / 4 Sector/Block / 8 Sector/Block / 16 Sector/Block /
Primary Slave	Disable
Translation Mode	Standard CHS
Primary Slave	Logical Block Addressing
Transfer Mode Primary Slave	PIO 1 / PIO 2 / PIO 3 / PIO 4

Table A-12Multibo	ot Group	
Boot Device Priority	Diskette Drive Removable Devices Hard Drive ATAPI CD-ROM Drive Diagnostic Boot	

Table A-13	Keyboard and Mouse Subsystem Group
------------	------------------------------------

Typematic Delay	250 ms delay / 500 ms delay 750 ms delay / 1000 ms delay
Typematic Speed	30 CPS / (other)
Mouse Control option	Mouse Enabled / Disabled

 Table A-14
 Console Redirection

COM Port for Redirection	Port 3F8/IRQ4 / Port 2F8/IRQ3 Port 3E8h/IRQ 3 / Disable
Serial Port baud rate	9600 / 19.2k / 38.4k / 115.2k
Hardware Flow Control	None / CTS/RTS / CTS/RTS + CD / Xoff/Xon
Terminal Type	PC - ANSI / VT 100

Table A-15	Security Subsystems Worksheet
	beeulity bubbybeenib wornbriete

Administrative Password	Disable / Enable
User Password	Disable / Enable
Secure Mode Hot-Key	None / Ctrl-Alt-{ }
Lockout Timer	Disable / { } minutes
Secure Boot Mode	Disable / Enable
Video Blanking	Disable / Enable
Diskette Writes	Disable / Enable
Reset/Power Switch Locking	Disable / Enable

 Table A-16
 SCSI ROM BIOS Options Group

ard SCSI ROM BIOS scan Enable / Disa

 Table A-17
 Management Subsystem Group

System Sensor Control	Write your selections on a separate page.
SMM Enable	Enable / Disable
Event Logging	Enable / Disable
PCI System Error Detection	Enable / Disable

Management Subsystem, System Sensor Control Worksheet

For each sensor control, the display includes the choices shown below, with blanks for entering values. Write in both the sensor control and the values you select. This group of tabular worksheets provides space for a number of sensor controls; if you need more space, copy these pages to extend your worksheet.

ltem:		
Disable / Enable		
Upper Fatal:		
Upper Warning:		
Lower Warning:		
Lower Fatal:		

Table A-18 Sensor Control Values

BIOS Setup Worksheets

Table A-19 Main Main Main Main Main Main Main Main	enu	
System Date		
System Time		
Legacy Diskette A	Disabled	
	360 KB	
	720 KB	
	1.44 MB	
	2.88 MB	
Legacy Diskette B	Disabled	
	360 KB	
	720 KB	
	1.44 MB	
	2.88 MB	

Table A-19 (continued)	Main Menu
Hard Disk Pre-delay	Disabled / 3 / 6 / 9 / 12 / 15 / 21 / 30
Language	English Spanish Italian French German

Table A-20 Primary Master and Slave Submenu	
Туре	Auto / None / CD-ROM / IDE Removable ATAPI Removable / User
Cylinders	
Heads	
Sectors	
Maximum Capacity	
Multi-Sector Transfe	r Disabled / 2 / 4 / 8 / 16
LBA Mode Control	Disabled / Enabled
32 Bit I/O	Disabled / Enabled
Transfer Mode	Standard / Fast PIO 1 / Fast PIO 2 / Fast PIO 3 Fast PIO 4
Ultra DMA	Disabled / Enabled

Table A-21 Keyboard Features Submenu

Num Lock	Auto / On / Off
Key Click	Disabled / Enabled
Keyboard auto-repeat rate	30 / 26.7 / 21.8 / 18.5 / 13.3 / 10 / 6 / 2
Keyboard auto-repeat delay	0.25/0.5/0.75/1
Table A-22Advanced Menu

Plug and Play OS	Yes / No
Reset Configuration Data	Yes / No
Use Multiprocessor Specification	1.1 / 1.4
Large Disk Access Mode	LBA / CHS
Pause Before Boot	Enabled / Disabled

 Table A-23
 PCI Device, Embedded SCSI Submenu

Option ROM Scan	Disabled / Enabled
Enable Master	Disabled / Enabled
Latency Timer	Default / <time></time>

 Table A-24
 PCI Devices Submenu

Option ROM Scan	Disabled / Enabled
Enable Master	Enabled / Disabled
Latency Timer	Default / <time></time>

	-
Serial Port A	Disabled / Enabled / Auto / OS Controlled
Base I/O Address	3F8h / 2F8h / 3E8h / 2E8h
Interrupt	4 / 3
Serial Port B	Disabled / Enabled / Auto / OS Controlled
Mode	Normal / IrDA/ ASK-IR
Base I/O Address	3F8h / 2F8h / 3E8h / 2E8h
Interrupt	4 / 3
Parallel Port	Disabled / Enabled / Auto / OS Controlled
Mode	Output only / Bidirectional / EPP / ECP
Base I/O Address	378 / 278
Interrupt	5 / 7
DMA channel	1 / 3
Floppy disk controller	Disabled / Enabled
Base I/O Address	Primary / Secondary
PS/2 Mouse	Disabled / Enabled

 Table A-25
 I/O Device Configuration Submenu

Address Bit Permuting	Disabled / Auto
Base RAM Step	1 MB / 1 KB / Every location
Extended RAM Step	1 MB / 1 KB / Every location
L2 Cache	Enabled / Disabled
ISA Expansion Aliasing	Enabled / Disabled
Memory Scrubbing	Enabled / Disabled
Restreaming Buffer	Enabled / Disabled

 Table A-26
 Advanced Chipset Control Submenu

 Table A-27
 Security Menu

Administrator Password is	Clear / Set
User Password is	Clear / Set
Password on Boot	Disabled / Enabled
Fixed Disk Boot Sector	Normal / Write Protect
System Backup Reminder	Disabled / Daily / Weekly / Monthly
Virus Check Reminder	Disabled / Daily / Weekly / Monthly
Secure Mode Timer	Disabled / <time></time>
Secure Mode Hot Key	<key stroke=""></key>
Secure Mode Boot	Disabled / Enabled
Video Blanking	Disabled / Enabled
Floppy Write Protect	Disabled / Enabled

Table A-28	Server Menu	

|--|

Table A-29 System Management Submenu

Server Management Mode	Disabled / Enabled
System Event Logging	Disabled / Enabled
Clear Event Log	Disabled / Enabled
Assert NMI on AERR	Disabled / Enabled
Assert NMI on BERR Interrupt Routing	Disabled / Enabled
Assert NMI on PERR Interrupt Routing	Disabled / Enabled
Assert NMI on SERR Interrupt Routing	Disabled / Enabled
Enabled Host Bus Error	Disabled / Enabled

 Table A-30
 Console Redirection Submenu

COM Port Address	Disabled / 3F8 / 2F8 / 3E8
IRQ#	None / 3 / 4
Baud Rate	9600 / 19.2k / 38.4k / 115.2k
Flow Control	None / CTS/RTS / XON/XOFF / CTS/RTS + CD

Table A-31Boot MenuFloppy CheckDisabled / EnabledMulti-boot SupportDisabled / EnabledMaximum No. of I2O Drives1 / 4Message Timeout Multiplier1 / 2 / 8 / 10 / 50 / 100 / 1000

 Table A-32
 Boot Device Priority Submenu

Boot Priority 1	Diskette Drive / <other></other>
Boot Priority 2	Removable Devices / <other></other>
Boot Priority 3	Hard Drive / <other></other>
Boot Priority 4	I2O Block Storage Device / <other></other>
Boot Priority 5	ATAPI CD-ROM Drive / <other></other>
Boot Priority 6	Any SCSI CD-ROM Drive / <other></other>

Table A-33Hard Drive Submenu

Drive 1

Other Bootable Cards

Additional Entries

Environmental Specifications

Environmental Specifications

Table B-1 Environmental Specifications	
Temperature	
Nonoperating Operating	-40 °C to 70 °C (-55 °F to 150 °F) 10 °C to 35 °C (41 °F to 95 °F); derated 0.5 °C for every 1000 ft (305 m) Altitude to 10,000 ft max; maximum rate of change = 10 °C per hour
Humidity	
Nonoperating Operating wet	95% relative humidity (noncondensing) at 30 °C (86 °F) bulb Not to exceed 33 °C (91.4 °F) (with diskette drive or hard disk drive)
Shock	
Operating Packaged	2.0 g, 11 msec, 1/2 sine Operational after 30-inch (76.2 cm) free fall (cosmetic damage might occur)
Acoustic noise	< 55 dBA with three power supplies at 28 $^\circ C$ +/- 2 $^\circ C$
Electrostatic discharge (ESD)	Tested to 20 kilovolts (kV) per Intel environmental test specifications; no component damage
AC Input Powe	r
100-120 V~ 200-240 V~	100-120 V~, 7.6 A, 50/60 Hz 200-240 V~, 3.8 A, 50/60 Hz

Table B-1 lists the server's environmental specifications.

Appendix C

Chassis Warnings and Safety

The following sections contain general chassis and power related safety warnings.

Power Warnings

The power supply in this product contains no user-serviceable parts. There may be more than one supply in this product. Servicing is done only by qualified personnel.

Do not attempt to modify or use the supplied AC power cord if it is not the exact type required. A product with more than one power supply will have a separate AC power cord for each supply.

The DC push-button on/off switch on the system does not turn off system AC power. To remove AC power from the system, you must unplug each AC power cord from the wall outlet or power supply.

Cautions When Removing the Chassis Covers

Whenever you remove the chassis covers to access the inside of the system, follow these steps:

- 1. Turn off all peripheral devices connected to the system.
- 2. Turn off the system by using the push-button on/off power switch on the system.
- 3. Unplug all AC power cords from the system or from wall outlets.
- 4. Label and disconnect all cables connected to I/O connectors or ports on the back of the system.

- 5. Provide some electrostatic discharge (ESD) protection by wearing an antistatic wrist strap attached to chassis ground of the system—any unpainted metal surface—when handling components.
- 6. Do not operate the system with the chassis covers removed.

After you have completed the six safety steps above, you can remove the system covers. To do this:

- 1. Unlock and remove the padlock from the back of the system if a padlock has been installed.
- 2. Remove and save all screws from the covers.
- 3. Remove the covers.

Caution: A microprocessor or heat sink may be hot if the system has been running. Also, there may be sharp pins and edges on some board and chassis parts. Contact should be made with care. Consider wearing protective gloves.

For proper cooling and airflow, always reinstall the chassis covers before turning on the system. Operating the system without the covers in place can damage system parts. To install the covers:

- 1. Check first to make sure you have not left loose tools or parts inside the system.
- 2. Check that cables, add-in boards, and other components are properly installed.
- 3. Attach the covers to the chassis with the screws removed earlier, and tighten them firmly.
- 4. Insert and lock the padlock to the system to prevent unauthorized access inside the system.
- 5. Connect all external cables and the AC power cord(s) to the system.

Warning: There is a danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions. The system is designed to operate in a typical lab, server room, or office environment. Choose a site that is:

- Clean and free of airborne particles (other than normal room dust).
- Well ventilated and away from sources of heat including direct sunlight.
- Away from sources of vibration or physical shock.
- Isolated from strong electromagnetic fields produced by electrical devices.
- In regions that are susceptible to electrical storms, we recommend you plug your system into a surge suppressor and disconnect telecommunication lines to your modem during an electrical storm.
- Provided with a properly grounded wall outlet.
- Provided with sufficient space to access the power supply cords, because they serve as the product's main power disconnect.

Index

Α

access cover installing, 3 removing, 3 add-in board expansion slot cover, 7, 9 removing, 9 running SSU after installing or removing ISA board, 9 sensitive to ESD, 2 address I/O, 104

В

baseboard CMOS settings, jumper, 101 configuration jumpers, 100 configuring jumpers, 99 diskette drive connector, 70 front panel connector, 72 installing, 35 ISA connector, 89 parallel port, 78 password jumper, 101 PCI connectors, 93 recovery boot settings, jumper, 102 removing, 33 serial ports, 79 Server Management Module connector, 74 battery disposing of safely, 53 installing, 55 removing, 53 bus termination requirements, SCSI devices, 15

С

cables routing for removable media bays, 18 Caution avoid damaging jumpers when changing, 33 avoid touching processor pins, 41 avoid touching VRM pins, 51 DIMMs, use extreme care when installing, 39 DIMM types, matching, 39 do not use hard drives in external bays, 14 ESD protection, 2, 33 installing chassis covers for cooling and airflow, 2 selecting correct processor, 40 selecting correct VRM, 51 using only single-ended SCSI, 14 **CD-ROM** slide rails for drive, 17 chassis accessing subchassis, 5 removing electronics bay, 5 CMOS retaining settings, 101 configuring, 99, 100, 101

connector auxiliary power signals, 69 diskette drive. 70 front. 72 IDE, 18 IPMB, 75 ISA. 89 locations, 65 parallel, 78 PCI. 93 **SCSI.** 84 serial. 79 Server. 74 cooling do not use hard drives in external bays, 14 filler panels, removable media bays, 14 installing all covers for correct airflow, 2 installing fan for correct airflow, 26 installing metal EMI shield, 18 recording airflow direction when removing a fan, 24 replacing fan with correct model, 26 cover installing access cover, 3 removing access cover, 3

D

DIMM (memory) installing, 39 removing, 38 diskette drive connector on baseboard, 70 installing drive in bay, 12 removing bracket from drive, 11 removing drive from bay, 11 routing drive cable, 12 drive terminating SCSI devices, 14

Ε

ECC memory, run SSU to configure, 36 electromagnetic interference, 15 electronics bay removing, 5 electrostatic discharge, 2 EMI gasket for I/O connectors, 34, 35 grounding clip, removable media, 15 limit use of 5.25-inch hard drives, 14 metal shield, removing/installing, 15, 18 metal shield over removable media bay, 14 environmental specifications, 137 equipment log, 117 ESD. 137 add-in boards, 2,7 baseboard sensitive to, 33 do not touch processor pins, 41 do not touch VRM pins, 51 grounding clip, removable media drives, 15 limit use of 5.25-inch hard drives, 14 expansion slot installing cover if removing board, 9 removing and saving cover, 7

F

fan installing an individual system fan, 26 installing fan assembly, 24 removing an individual system fan, 24 removing fan assembly, 22 removing foam covers to access, 23 replacing with correct model, 26 filler panel save panels, 14 foam covers, removing, 23 front panel connectors on baseboard, 72 front panel control board installing board, 10 location of board in chassis, 9 removing board, 9

G

gasket, EMI protection at I/O connectors, 34, 35 grounding clip, removable media drives, 15

Н

heatsinks installing on S.E.C. cartridge, 47

I

IDE cable, must disconnect to reuse interrupt, 13 cable considerations. 13 connectors on baseboard. 18 indicators removing front panel control board, 9 installing termination board, 44 interrupt mapping, 109 must disconnect IDE cable to reuse interrupt, 13 I/Oaddress, 104 ISA connectors on baseboard, 89 installing add-in board, 7 removing add-in board, 9 run SSU after installing or removing add-in board, 9

J

jumpers CMOS clear, 100 do not damage when changing, 33 location on baseboard, 99 password, 100 recovery boot, 100

L

lithium backup battery disposing of safely, 53 installing, 55 removing, 53

М

main, 68 memory installing DIMM, 39 installing memory module, 38 removing DIMM, 38 removing memory module, 36 run SSU to configure ECC memory, 36 memory module installing, 38 removing, 36

Ρ

password retaining at system reset, 101 PCI connectors on baseboard, 93 installing add-in board, 7 interrupt mapping, 109 removing add-in board, 9 SSU optional after installing or removing board, 9 PCI add-in board installing, 7 power cords disconnect all before opening system, 2 power on/off switch does not turn off AC power, 1, 2 power supply AC input, 137 auxiliary connector signals, 69 calculating power usage, 120 current usage, 120 hazardous conditions. 2 main connector pins, 68 processor installing, 44 installing heatsinks, 47 installing tabs, 46 removing, 41 selecting the correct processor, 40 use grounded, static-free surface, 41

R

real-time clock running SSU to configure settings, 55 recovery boot jumper, retaining settings, 102 removable media bays grounding clip, 15 installing drive, 14 installing drive slide rails, 15 installing metal EMI shield over empty bay, 15, 18 limiting use of hard drives, 14 removing drive, 18 routing cables, 18 removing foam covers, 23 removing termination board, 44 RTC, 55

S

safety guidelines, 1 SCSI bus termination requirements, 14, 15 cable type, 14 single-ended only, 14 wide input connector, 84 S.E.C cartridge installing heatsinks, 47 installing tabs, 46 serial port connectors on baseboard, 79 Server Management Module (SMM), connector, 74 service no user-serviceable parts, power supply, 2 Setup worksheet, system management submenu, 134 subchassis removing, 5 switches power on/off, 1, 2system, 9, 129

Т

tabs installing on S.E.C. cartridge, 46 termination board removing or installing, 44 tools and equipment, 1

۷

VRM selecting the correct VRM, 51 use grounded, static-free surface, 51 VRMs installing, 52 removing, 51

W

Warning components might be hot, 53 disconnect power cords, cables, 2 dispose of lithium battery safely, 53 no user-serviceable parts, power supply, 2 power on/off switch, 1, 2 worksheet management subsystem, SSU, 129 system management submenu, Setup, 134 system sensor control, SSU, 129