

Total Access 3000 H2TU-C, HDSL2 Transceiver Unit for the Central Office Installation and Maintenance Practice

CONTENTS

1.	General	. 1
2.	Description	. 1
3.	Connections	. 3
4.	Installation	. 4
5.	HDSL2 System Testing	. 6
6.	SCU Control Port Operation-HDSL2	. 7
7.	Provisioning	. 8
8.	HDSL2 Deployment Guidelines	30
9.	Troubleshooting Procedures	31
10.	Maintenance	31
11.	Product Specifications	31
12.	Warranty and Customer Service	31
Ap	pendix A. HDSL2 Loopbacks A	1
Ap	pendix B. Front Panel DSX and MUX Mode Test Access B	-1

TABLES

Table 1.	ADTRAN HDSL2 Unit Compatibility 1
Table 2.	Compliance Codes
Table 3.	Front Panel LEDs
Table 4.	Provisioning Options
Table 5.	Auto In Service Status Indications 15
Table 6.	HDSL2 Loss Values
Table 7.	Troubleshooting Guide
Table 8.	HDSL2 Total Access 3000 H2TU-C Specifications 32
Table A-1.	HDSL2 Loopback Control Codes A-2
Table A-2.	In-Band Addressable Loopback Codes A-3

1. GENERAL

The ADTRAN Total Access[®] 3000 2-Wire HDSL (HDSL2) Transceiver Unit for the Central Office (H2TU-C) (P/N 1181113L2) is used to deploy an HDSL2 T1 circuit using 2-wire metallic facilities. The unit occupies one slot in a Total Access 3000 or Total Access 3010 Shelf. **Figure 1** is an illustration of the ADTRAN Total Access 3000 H2TU-C.

Revision History

This is the initial release of this document. Future revisions to this document will be explained in this subsection.

2. DESCRIPTION

The DSX-1 input signal can be supplied from the network or a Total Access 3000 Multiplexer (DS3, STS-1, or OC-3).

Figure 1. Total Access 3000 H2TU-C

DSX-1 signals are provided to and received from the network, while HDSL2 signals are provided to the local loop. The ADTRAN Total Access 3000 H2TU-C works in conjunction with the ADTRAN H2TU-R to provide a DS1 service up to 12,000 feet on the local loop.

Compatible ADTRAN units for this H2TU-C are shown in **Table 1**.

Table 1.	ADTRAN	HDSL2 Ur	nit Compatibility
----------	--------	----------	-------------------

Part Number	Description
122x024L2	T200 H2TU-R, Local Power
122x026L2	T200 H2TU-R, Span Power

x = any generic number

The H2TU-C can be deployed in circuits consisting of one H2TU-C and one H2TU-R.

Features

The basic features of the HDSL2 Total Access 3000 H2TU-C, (P/N 1181113L2) include the following:

- Auto In Service
- Bit Error Rate Testing (BERT)
- Flash Upgrade
- Troubleshooting Guidance
- TScan

These and other features will be discussed in the practice.

The H2TU-C contains an onboard fuse. If the fuse opens, it supplies a -48 VDC voltage to the fuse alarm bus, and all front panel indicators turn *off*. The fuse is not designed to be replaced in the field.

The H2TU-C uses a DC-to-DC converter to derive its internal logic and span powering voltages from the –48 VDC office supply. Span-powering voltages meet all requirements of Class A2 voltages as specified by Bellcore GR-1089-CORE.

System power and alarm bus connections are made through the backplane of the Total Access shelf. DSX1 and HDSL2 signals are connected through the 64-pin shelf connectors related to each individual slot.

TScan

This unit is equipped to support the **TScan[™]** feature, which provides data retrieval and diagnostic capabilities for remote management of DS1 circuits. **TScan** allows provisioning, performance, and event history information to be retrieved by the test center via the Facility Data Link (FDL). In addition, **TScan** can be used to determine the nature and location of faults on DS1 trouble circuits. **TScan** is accessible only through the remote test center.

NOTE

For implementation of **TScan** please contact your local ADTRAN sales representative.

A patent-pending single-ended diagnostic routine residing on a host server at the central test facility, **TScan** issues commands and retrieves data via FDL from the H2TU-C. **TScan** performs the following functions (see **Figure 2**):

- Detection and location of an open, one or both conductors
- Detection and location of a short between Tip and Ring
- Detection and location of a ground fault from either or both conductors
- Detection of foreign voltage
- H2TU-C Self Diagnostics
- Ability to remotely detect the presence or absence of a ground connection in the remote mount.

TScan allows operators to integrate these capabilities across multiple computing platforms with existing operating systems.

со	Outside Plant Facilities
С	R Open on either conductor
С	X R Open on both conductors
С	R Short between T&R
С	Image: state

Auto In Service

The Total Access 3000 H2TU-C supports the Auto In-Service feature that will automatically change the service state of the line card from Out-of-service Maintenance (OOS-MA) to In-Service and vice versa based on DSL loop synchronization and/or DSX-1/DS1 alarm presence.

This and other features are discussed in more detail in the *SCU Control Port Operation-HDSL2* section.

Bit Error Rate Testing (BERT)

This Total Access HDSL2 unit has the capability to initiate and record BERT via the Craft Access Terminal menus. It features eight timed and user-selectable data patterns as well as the ability to insert errors.

Compliance

Table 2 shows the compliance codes for the TotalAccess 3000 H2TU-C. The Total Access 3000 H2TU-Cis NRTL listed to the applicable UL standards. TheTotal Access 3000 H2TU-C is to be installed in arestricted access location and in a Type "B" or "E"enclosure only.

Table 2. Compliance Codes

Code	Input	Output
Power Code (PC)	F	С
Telecommunication Code (TC)	-	Х
Installation Code (IC)	А	_

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

WARNING

Up to -200 VDC may be present on telecommunications wiring. The DSX-1 interface is intended for connection to intra-building wiring only. Ensure chassis ground is properly connected.

NOTE

This product is intended for installation in **Restricted Access Locations** only.

3. CONNECTIONS

The Total Access 3000 H2TU-C occupies one card slot in a Total Access 3000 Shelf. Power and alarm signals are provided to the card through the backplane of the shelf. DSX1 and HDSL2 loop signals are connected to the backplane on pins or mass termination shelf connectors (amphenol) corresponding to the slot the unit occupies. See **Figure 3** for H2TU-C edge connection wiring.

The Total Access 3000 shelf delivers DSX-1 from the network to the H2TU-C via connectors on the backplane labeled "Pair 7" and "Pair 8". The HDSL2 signal is provided toward the customer via the backplane connector labeled "Pair 2". Pins 1 and 33 of the connectors Pair 7 and Pair 8 are the DSX connections for the H2TU-C in Slot 1. Pins 2 and 34 of these connectors are associated with Slot 2. Pins 3 and 35 are associated with Slot 3, and so forth, up to pins 28 and 60 for Slot 28.

Figure 3. H2TU-C Edge Connector Wiring

Powering Modes

The H2TU-C is capable of span powering the H2TU-R by applying current to the local loop. From 10 to 150 mA of current is coupled onto the HDSL2 span to power the H2TU-R when deployed. (See Figure 4.)

If there is a need to remove an H2TU-C from the Total Access shelf, the H2TU-C should be provisioned for the Out-Of-Service-Maintenance or Out-Of-Service-Unassigned state. This will disable all HDSL2 level alarms from being sent to the shelf. Any HDSL2 alarm that occurred prior to changing the service will be set to Inactive status when the H2TU-C card is removed from the shelf.

Figure 4. H2TU-C Span Powering Diagram

H2TU-C Alarm Outputs

Pin 32 of the H2TU-C edge connector interface provides a fuse alarm signal that connects –48 VDC to this pin in the presence of a blown fuse. This indicates the card has malfunctioned and should be replaced.

4. INSTALLATION

After unpacking the HDSL2 unit, inspect it for damage. If damage has occurred, file a claim with the carrier, then contact ADTRAN Customer Service. Refer to the *Warranty and Customer Service* section for further information. If possible, keep the original shipping container for returning the Total Access 3000 H2TU-C for repair or for verification of shipping damage.

CAUTION

Electronic modules can be damaged by Electro-Static Discharge (ESD). When handling modules, wear an antistatic discharge wrist strap to prevent damage to electronic components. Place modules in antistatic packing material when transporting or storing. When working on modules, always place them on an approved antistatic mat that is electrically grounded.

There are no configuration switches for the Total Access 3000 H2TU-C. Configuration is performed via software discussed in the *SCU Control Port Operation-HDSL2* section of this practice.

The Total Access 3000 H2TU-C plugs directly into the Total Access 3000 shelf. No installation wiring is required.

Powering Options

The H2TU-C is default enabled for span powering mode. The H2TU-C will power the H2TU-R, but it can be set to disable span power when the H2TU-R is being locally powered.

CAUTION

Disabling the span power removes all voltage from the HDSL2 loop. This will result in an absence of sealing current which could have an adverse effect on circuit continuity over an extended period of time.

This product provides span powering voltage (negative only with respect to ground, -190 VDC nominal, GFI protection < 5 mA) and meets all requirements of Bellcore GR-1089-CORE (Class A2) and ANSI T1.418-2002. This product is NRTL listed to the applicable UL standards.

Instructions for Installing the Module

To install the Total Access 3000 H2TU-C, perform the following steps:

- 1. If present, remove the Access Module Blank from the appropriate access module slot of the Total Access chassis.
- 2. Pull the ejector latch, located on the lower lefthand side of the Total Access 3000 H2TU-C front panel, from its closed position.
- 3. Hold the unit by the front panel while supporting the bottom edge of the module with the ejector latch opened to engage the chassis edge.
- 4. Align the unit edges to fit in the lower and upper guide grooves for the access module slot.

- 5. Slide the unit into the access module slot. Simultaneous thumb pressure at the top and at the bottom of the unit will ensure that the module is firmly positioned against the backplane of the chassis.
- 6. Secure the Total Access 3000 H2TU-C in place by pushing in on the ejector latch.

When the unit first powers up it runs the a series of selftests. Once the power up self-test is complete, the status LEDs will reflect the true state of the hardware.

Front Panel LEDs

The Total Access 3000 H2TU-C Access Module provides front panel LEDs to display status information. **Table 3** lists the front panel LEDs and their indications.

Front Panel	Label	Status	Description
<u>Аргал</u> <u>нутис</u> 118111312	DSL	Green Red	DSL sync, no errors currently detected, and signal margin ≥2 dB No DSL sync, errors being detected, or signal quality < 2 dB
) dsa) dsa) alum) Esa(/ SFerma	DSX/DS1	Green Red	DSX-1 signal is present and synchronized and no errors are being detected No DSX-1 signal, or signal is present with errors
C TECT (MAN) C RES/AM C BRC C LBR TSCAN	ALM	Off Red Yellow	No alarm condition detected Loss of DSX-1 signal to the unit Loss of DS1 signal to the remote
	ESF/SF	Off Yellow Green	Unit is provisioned for DS1 unframed operation Unit is provisioned for DS1 ESF framing mode Unit is provisioned for DS1 SF framing mode
	B8ZS/ AMI	Yellow Green	Unit is provisioned for B8ZS line code Unit is provisioned for AMI line code
	LBK	Off Yellow	Unit is not in loopback Unit loopback is active toward network or customer

Table 3. Front Panel LEDs

5. HDSL2 SYSTEM TESTING

The ADTRAN HDSL2 system provides the ability to monitor the status and performance of the DSX1 signals, DS1 signals, and HDSL2 loop signals. Detailed performance monitoring is provided by the Total Access SCU via a front panel-mounted RS-232 Control Port. These features are valuable in troubleshooting and isolating any system level problems that may occur at installation or during operation of the HDSL2 system. The following subsections describe additional testing features.

H2TU-C Bantam Jacks

The front panel of the H2TU-C includes both monitoring and metallic splitting bantam jacks. In general, the monitoring jacks provide a non-intrusive tap onto a signal line that permits the connection of test equipment to monitor the characteristics of that signal. For example, the DSX-1 monitor jack can be used to connect to a bit error rate tester to monitor for synchronization, test patterns, etc. The metallic splitting jacks provide an intrusive signal interrupting access to the line. It is very important to know the direction of the access provided by a metallic splitting jack.

Figure 5 illustrates the complete bantam jack arrangement and details for specific jacks.

Figure 5. H2TU-C Bantam Jack Arrangement

H2TU-C Loopbacks

The H2TU-C responds to three different loopback activation processes. First, loopbacks may be activated using the craft interface of the Total Access 3000 SCU. The Loopback Options screen which provides for the H2TU-C and H2TU-R loopbacks is described in the *SCU Control Port Operation-HDSL2* section of this practice.

Second, the H2TU-C responds to the industry standard for HDSL loopbacks. A detailed description of these loopback sequences is given in Appendix A.

This unit contains smartloop technology. That is, the unit will initiate the proper loopback regardless of how the loopback control sequence is sent (framed or unframed).

The loopback condition imposed in each case is a logic level loopback at the point within the H2TU-C where the DSX1 signal passes into the HDSL2 modulators. **Figure 6** depicts all of the loopback locations possible with ADTRAN HDSL2 equipment.

Figure 6. HDSL2 Loopbacks

In addition to network side loopbacks, the H2TU-C provides customer side loopbacks initiated by using either the terminal control port or in-band loop codes. (See Appendix A.) In this mode, an AIS signal is transmitted to the network.

6. SCU CONTROL PORT OPERATION-HDSL2

The Total Access 3000 provides a front panel-mounted DB-9 connector that supplies an RS-232 interface for connection to a controlling terminal. The pinout of the DB-9 is illustrated in **Figure 7**.

Figure 7. RS-232 (DB-9) Pin Assignments

The terminal interface operates at a data rate of 9.6 kbps. The asynchronous data format is fixed at 8 data bits, no parity, and 1 stop bit. The line wrap feature of emulation programs should be disabled.

The H2TU-C supports two types of terminal emulation modes.

The Manual Update Mode is a dumb terminal mode, where the user can use print screen and log files commands easily. This mode also includes a "3 SPACES TO UPDATE" message on the top of the terminal screen. (Press the space bar three times to update the screen.)

The Real Time Update Mode is a VT100 terminal mode and is the default update mode. This mode enables all screen highlighting and cursor placement. Print screen and log file commands are not available in this mode.

NOTE

If you are using a personal computer (PC) with terminal emulation capability, be sure to disable any power saving programs. Otherwise, communication between the PC and the HDSL2 unit may be disrupted, resulting in misplaced characters or screen time outs.

7. PROVISIONING

Through management access via the Total Access 3000 System Controller Unit (SCU), as detailed in the *SCU Control Port Operation-HDSL2* section, the provisioning settings can be viewed and manipulated. **Table 4** lists the available provisioning options and thefactory default settings.

Provisioning Option	Option Settings	Default Settings
1. DSX-1 Line Build Out	0-133 ft. 133-266 ft. 266-399 ft. 399-533 ft. 533-655 ft.	0 to 133 ft.
2. DSX-1/DS1 Line Code	B8ZS, AMI	B8ZS
3. DSX-1/DS1 Framing	SF, ESF, Unframed, Auto	ESF
4. Force Frame Conversion	Disabled, Enabled	Disabled
5. Smartjack Loopback	Disabled, Enabled	Enabled
6. Loopback Time Out	None, 120 Min	120 Minutes
7. Latching Loopback Mode	T1 (Disabled), FT1 (Enabled)	T1 (Disabled)
8. DS1 Tx Level	0 dB, -7.5 dB, -15 dB	0 dB
9. Span Power	Enabled, Disabled	Enabled
10. Customer Loss Indicator	AIS, Loopback, AIS/CI	AIS/CI
11. Performance Reporting Messages	None, SPRM, NPRM, AUTO (both)	AUTO
12. Loop Attenuation Alarm Threshold	0 (Disabled), 1-99 dB	30 dB
13. SNR Margin Alarm Threshold	0 (Disabled), 1-15 dB	04 dB
14. Remote Provisioning	Disabled, Enabled	Enabled
15. Service State ¹	In Service, Out of Service- Unassigned, Out of Service- Maintenance	Out of Service-Maintenance
16. Network Source	DSX, MUX A, MUX B, Auto MUX	DSX
17. External Alarms	Enabled, Disabled	Disabled
18. Auto In Service	Disabled, Enabled	Enabled
19. Auto IS Startup Period	1 hour, 4 hours, 8 hours, 24 hours	4 hours
20. Auto IS Off Period	1 hour, 4 hours, 8 hours, 24 hours	8 hours

Table 4. Provisioning Options

¹The Service State defaults to Out of Service-Maintenance. This setting allows active connections to the DSX or MUX interface; however, no alarms will be generated. The In Service setting allows full functioning connections to DSX or MUX interfaces. Out of Service-Unassigned allows the loops to train up but will not connect to the DSX or MUX interface.

The screens illustrated in **Figure 8** through Figure 42 are for an HDSL2 circuit deployed with the ADTRAN HDSL2 technology. The circuit includes an H2TU-C and H2TU-R. Other configurations are possible (for example, an HDSL2 repeater from another vendor's equipment), and their displays will vary slightly from those shown in this section. Accessing the HDSL2 circuit information via the Total Access 3000 SCU control port requires the user to logon by entering a password. See **Figure 8**. The default password is "PASSWORD." The 1181018L1 SCU also requires a username.

After successful logon, the Total Access System screen (**Figure 9**) will appear. Select Access Modules (option 4) from this menu.

TID:	Total Access System	10/28/03 08:59 Unit Number: 1
	Total Access System	
	Account Name :	
	'?' - System Help Screen	

Figure 8. Logon Screen

Shelf: 1 Unacknowledged Alarms: None	Total Access System	10/28/03 08:59
	<pre>Total Access 1. System Controller 2. Common A - [] 3. Common B - [] 4. Access Modules 5. System Alarms 6. Network Management 7. Logoff</pre>	
,	Selection: ?' - System Help Screen	

Figure 9. Total Access Screen

The Access Module Menus screen (Figure 10) will display the access modules occupying the Total Access 3000 shelf. Select the corresponding channel slot number for the desired H2TU-C. To the right of each access module listed, the current alarm state is indicated.

First displayed is the ADTRAN HDSL2 Main Menu, from which the various OAM&P (Operation, Administrative, Maintenance, and Provisioning) screens may be accessed (**Figure 11**). To display a particular screen from the menu, press the number key associated with the screen title and then press the ENTER key

Shelf: 1 Total Access System 10/28/03 08:59 Unacknowledged Alarms: None Access Module Menus 1 - H2TU-C L2... [None] 15 - [None] 16 - [None] 2 - [None] 3 - [None] 17 - [None] 18 - [None] 4 - [None] 19 - [None] 5 - [None] 6 - [None] 20 - [None] 7 - [None] 21 - [None] 22 - [None] 8 - [None] 9 - [None] 23 - [None] 10 - [None] 24 - [None] 25 - [None] 11 - [None] 26 - [None] 12 - [None] 27 - [None] 13 - [None] 14 - [None] 28 - [None] Enter Channel Slot Number :

Figure 10. Access Module Menus Screen

```
Shelf: 1 Slot: 15
                                                                     10/28/03 08:59
                               Total Access System
Unacknowledged Alarms: CRITICAL MAJOR
                                                    INFO
                     Circuit ID:
                               HDSL2 Main Menu
                              1. HDSL2 Unit Information

    Provisioning
    Status

                              4. Loopbacks and Test
                              5. Performance Monitoring
                              6. Scratch Pad, Ckt ID
                              7. Alarm History
                              8. Event History
                              9. System Status/PM Report
                             10. Clear PM and Alarm Histories

    Troubleshooting
    Flash Upgrade

                              Selection:
```

Figure 11. HDSL2 Main Menu Screen

The Unit Information Screen (**Figure 12**) provides detailed product information on each component in the HDSL2 circuit. ADTRAN Technical Support contact numbers are also available from the Unit Information Screen.

Shelf: 1 Slot: 15 Total Access System 10/28/03 08:59 Unacknowledged Alarms: CRITICAL MAJOR INFO Circuit ID: ADTRAN 901 Explorer Boulevard Huntsville, Alabama 35806-2807 ------ For Information or Technical Support -------Support Hours (Normal 7am - 7pm CST, Emergency 7 days x 24 hours) Phone: 800.726.8663 / 888.873.HDSL Fax: 256.963.6217 Internet: www.adtran.com _____ ADTN H2TU-C ADTN H2TU-R P/N: 1181113L2 P/N: 1223026L2 s/N: 123456789 s/N: 123456789 CLEI: T1L7HGLAAA CLEI: T1L7MERAAA Manf: 10/01/2003 Manf: 10/01/2003 Ver: 21 1 A01 Ver: 16 2 A01

Figure 12. ADTRAN Information Screen

The Provisioning Screen (Figure 13) displays current provisioning settings for the HDSL2 circuit. Options that can be changed from this screen are labeled with a number (for example, "1" for DSX-1 Line Build Out). To change a particular option setting, select the appropriate number and a new menu will appear with a list of the available settings.

Note that there is more than one screen for the Provisioning Menu. Press the N (and ENTER) to move forward

to the next screen. **Figure 14** shows the remainder of the Provisioning Menu. To return to the previous screen, press P. To return to the Main Menu, press <ESCAPE>. To re-deploy this unit, pressing "D" will restore the factory default settings as shown in Table 4.

The options shown in Table 4 are available with the 1223026L2 H2TU-R. Some settings may differ when using different H2TU-As.

Shelf: 1 Slot: 14 Unacknowledged Alarms: Circu	Total Access System	INF	10/28/03 08:59 O
	Provisioning		
1.	DSX-1 Line Buildout	=	0-133 Feet
2.	DSX-1/DS1 Line Code	=	B8ZS
3.	DSX-1/DS1 Framing	=	ESF
4.	Forced Frame Conversion	=	Disabled
5.	Smartjack Loopback	=	Enabled
6.	Loopback Timeout	=	120 Min
7.	Latching Loopback Mode	=	T1 (Disabled)
8.	DS1 TX Level	=	0 dB
9.	Span Power	=	Enabled
10.	Customer Loss Indicator	=	AIS / CI
11.	PRM Setting	=	AUTO
12.	Loop Atten Alarm Thres	=	30dB
13.	SNR Margin Alarm Thres	=	04dB
14.	Remote Provisioning	=	Enabled
15.	Service State	=	OOS Maintenance
16.	Network Source	=	DSX
Ν.	Next Page		
	Selection:		

Figure 13. Provisioning Screen, Page 1

Shelf: 1 Slot: 14 Unacknowledged Alarms: Circu	Total Access System MAJOR it ID:HntsvlALMn0103	INFO	10/28/03 08:59
	Provisioning		
17. 18. 19. 20. D. P.	External Alarms Auto In Service Auto IS Startup Period Auto IS Off Period Restore Factory Default Previous Page	<pre>= Disabled = Enabled = 4 hours = 8 hours .s</pre>	
	Selection:		

Figure 14. Provisioning Screen, Page 2

The Span Status Screen (Figure 15) provides quick access to status information for each HDSL2 receiver in the circuit.

The Status Screen Legend (Figure 16) provides a description of the messages that are used on the Status screens.

Figure 15. Span Status Screen

Figure 16. Status Screen Legend

The Detailed Status selection from the Span Status Screen menu (Figure 17) displays the T1 and HDSL2 status for each receiver point.

Shelf: 1 Slot: 1 Unacknowledged Alarm:	Total . s: None CIRCUIT ID: Detailed H	Access System DSL2 and T1 Status	10/28/03 08:59
	HDSL2 H2TU	RECEIVER DATA -C H2TU-R	
MARGIN (CUR)	MIN/MAX): 12/00	/13 07/00/09	
ATTEN	(CUR/MAX): 27/2	7 27/28	
	ES 15MIN: 001	254	
2	SES 15MIN: 000	000	
τ	JAS 15MIN: 026	000	
	T1 RECE	IVER DATA	
	DSX-1	DS1	
FRAMING:	ESF	ESF	
LINE CODE:	B8ZS	B8ZS	
ES-P/ES-L:	000/000	247/255	1. Zero Registers
SES-P/SES-L:	000/000	247/256	2. Restart Min/Max
UAS-P/UAS-L:	000/000	176/159	
ALARMS:	NONE	NONE	Selection:

Figure 17. Detailed Status Screen

The Auto In Service Status Screen (Figure 18) provides the status of the Auto In Service feature. Options for this feature are as follows:

The T1 alarm indications will display if the External Alarms option is enabled on the Provisioning Screen (Figure 13).

This screen also indicates the startup or exit period remaining as either 1, 4, 8, or 24 hours. This is the time during which the unit monitors both loop synchronization (Loop Sync) and T1 alarms (if enabled) and will only go into (or out of) service if the circuit remains synchronized and without T1 alarms during the entire measured period. These times are also set from the Provisioning Screen.

A link is provided (option 1) to view the Alarm History Screen. This screen is also available by selecting option 7 on the Main Menu.

System responses displayed in the status fields on this screen are shown in **Table 5** below.

Shelf: 1 Slot: 15 Total Access System 10/28/03 08:59 Unacknowledged Alarms: CRITICAL MAJOR INFO Circuit ID: Auto In Service Status Screen Current Auto In Service State = Out-of-Service Maintenance Auto In Service Status= Currently in Startup PeriodAuto In Service Criteria= DSL Loop Sync (T1 alarms ignored) NOTE: The external alarms provisioning option determines whether T1 alarms are an auto in service criterion. Enabling external alarms sets T1 alarms as a criterion. Status Criteria _____ ____ DSL Loop Sync LOS ---Startup Period Timer---4 hrs 0 mins _____ 1. View Alarm History Selection:

Figure 18. Auto In Service Screen

Status Field Name	System Indications
Current Auto In Service State (Line 1)	In-Service Out of Service-Maintenance
Auto In Service Status (line 2)	Currently in startup period Currently in exiting period OK, Startup Period COMPLETED OK, Startup INCOMPLETE (forced in-service)
Auto In Service Criteria (line 3)	DSL Loop Sync (T1 alarms ignored) DSL Loop Sync and absence of T1 alarms
Criteria (current status)	DSL Loop Sync = OK or LOS (LOS shown in Figure 18) T1 Alarm Status = Alarm or OK

The Loopback and Test screen (Figure 19) provides the user with the ability to evoke or terminate all available HDSL2 loopbacks. Each HDSL2 circuit component can be looped toward the network or customer from this screen. Unit self tests can also be initiated from this screen. A Loop Down ALL Units command is available in lieu of the Self-Test option when any loopback is active. Option 7 from this screen accesses the BERT Test Functions capability of the Total Access 3000 H2TU-C.

Figure 19. Loopback and Test Commands Screen

The BERT Test screen (Figure 20) is accessed by selecting the associated number on the Loopback and Test menu. A five-selection menu is at the bottom of the screen. Press the "1" key to start (or restart) a test, and "2" to manually stop the test.

NOTE

The BERT only runs unframed patterns. When the BERT is running, option 5 changes to "Inject Bit Errors".

Selecting number "3" from the BERT menu will allow the user to select the appropriate data test pattern for the desired results. **Figure 21** shows this screen with the menu of test patterns.

Shelf:1Slot:18Total Access SystemUnacknowledged Alarms:MAJORINFO 10/28/03 08:59 Circuit ID: BERT Test Screen Test Results _____ Test Direction: Customer Unframed Pattern Generation: OFF QRSS Pattern Pattern: Line Coding: Line Coding:QROD FlatBit Crors:0000000Bit Error Rate:0.0E-08Pattern Sync:N/APattern Sync Losses:000Test Length (HH:MM:SS):02:00:00 Time Elapsed (HH:MM:SS): 00:55:12 _____ 1. (Re)start Pattern 2. Stop Test Select Data Pattern
 Enter Test Timeout
 Toggle Test Direction Selection:

Figure 20. BERT Test Screen

Shelf: 1 Slot: 18 Unacknowledged Alarms: Circuit	Total Access System MAJOR INFO ID: CUSTOMER Pattern Screen	10/28/03 08:59
	Current Pattern = QRSS Pattern	
	 63 Pattern 511 Pattern 2047 Pattern REV. 2047 Pattern 2^15 Pattern 2^20 Pattern 2^20 Pattern QRSS Pattern 2^23 Pattern 	
Se	election:	

Figure 21. Select Data Pattern

Selecting number "4" from the BERT menu will display the first of the BERT Test Functions, the Time-out Screen (Figure 22). The time out can run for a specific duration by entering the hours and/or minutes, or can run indefinitely by entering 00:00, per the note on the screen. With no test running, selection "5" from the BERT menu will allow the tester to toggle the test signal

in the opposite direction (from customer to network and vice versa).

When "1" is pressed to start the test, option "5" changes to "Inject Bit Errors" as in Figure 23. This allows the tester to generate errors from this test origination point to validate the test results.

Shelf: 1 Slot: 18 Unacknowledged Alarms: Circu	Total Access System MAJOR uit ID: CUSTOMER Timeout Scre	n INFO en	10/28/03 08:59
	Test Timeout(Hr:Min) =	02:00	
	1. Change Timeout	02:00 02:00	
	*NOTE: When timeout is test will run i	set to 00:00, th ndefinitely.	ıe
	Selection:		

Figure 22. BERT Test Functions Selection 4, Enter Test Time Out

Shelf: 1 Slot: 14 Total Access S Unacknowledged Alarms: Circuit ID: BERT Test Sc	ystem 10/28/03 08:59 INFO
Test Resul	ts
Test Direction: Unframed Pattern Generation Pattern: Line Coding: Bit Errors: Bit Error Rate: Pattern Sync: Pattern Sync Losses: Test Length (HH:MM:SS): Time Elapsed (HH:MM:SS):	Customer n: ON 2^23 Pattern B8ZS 0000000 0.0E-05 ACQUIRED 000 02:00:00 00:02:32
1. Number of E 2. Inject Bit 1 3. (Re)start	rrors to Inject = 001 (Maximum=255) Error
Selection:	

Figure 23. BERT Inject Errors Screen

The Performance Monitoring screens (Figure 24 and Figure 25) allow the user to select and display the historical HDSL2 and T1 performance data in several different registers. At each 15-minute interval, the performance information is transferred to the 15-minute performance data register.

This unit stores performance data in 15-minute increments for the last 24-hour period. At each 60-minute interval, the performance information is transferred to the 60-minute performance data register.

At each 24-hour interval, the performance data is transferred into the 24-hour performance data registers. This unit stores up to 31 days of 24-hour interval data.

Shelf: Unacknow	5 Slot: 22 ledged Alarms:	Tota MA	al Acce AJOR	ess Sys	stem IN	1FO		10/28/03 08:59
	Menu	, 1D: 15	Minute	e H2TU-	-C DSX-	-1 Perfo	ormance	Data
1.	Definitions		ES-L	SES-L	UAS-L	PDVS-L	B8ZS-L	CV-L
2.	Reset Data		128	129	129	000	000	00000
З.	15 Min Data	07:15	900	900	900	000	000	00000
4.	60 Min Data	07:00	900	900	900	000	000	00000
5.	24 Hr Data	06:45	900	900	900	000	000	00000
6.	Line Data	06:30	900	900	900	000	000	00000
7.	Path Data	06:15	900	900	900	000	000	00000
8.	H2TU-C DSX-1	06:00	900	900	900	000	000	00000
9.	H2TU-C LOOP	05:45	900	900	900	000	000	00000
10.	H2TU-R LOOP	05:30	900	900	900	000	000	00000
11.	H2TU-R DS1	05:15	900	900	900	000	000	00000
		05:00	900	900	900	000	000	00000
		04:45	900	900	900	000	000	00000
		04:30	900	900	900	000	000	00000
в.	Backward	-	8> (2				₹ >
			1	<-9-			10>	
		<	<	1			1	<-11
		Selec	tion:					

Figure 24. 15-Minute Performance Data Screen

Shelf: Unacknow	5 Slot: 22 ledged Alarms:	Т	otal A MAJOR	ccess	System	INFO		10/2	28/03 08:59
	Circ	uit ID	:						
	Menu		60 Mi	nute H	2TU-C I	DSX-1	Performa	ance Dat	ta
1.	Definitions			ES-L	SES-L	UAS-L	PDVS-L	B8ZS-L	CV-L
2.	Reset Data			0002	0002	0002	0000	0000	00000
з.	15 Min Data	08/12	07:00						
4.	60 Min Data	08/12	06:00						
5.	24 Hr Data	08/12	05:00						
6.	Line Data	08/12	04:00						
7.	Path Data	08/12	03:00						
8.	H2TU-C DSX-1	08/12	02:00						
9.	H2TU-C LOOP	08/12	01:00						
10.	H2TU-R LOOP	08/12	00:00						
11.	H2TU-R DS1	08/11	23:00						
		08/11	22:00						
		08/11	21:00						
		08/11	20:00						
			8>	C				R	>
				<	-9		102	>	
			<					<-	-11
		Se	lectio	n:					

Figure 25. 60-Minute Performance Data Screen

Abbreviations used in the Performance Data screens are defined in the Data Definitions screens (Figure 26 and Figure 27).

```
Shelf: 1 Slot: 1
                                   Total Access System
                                                                               10/28/03 08:59
Unacknowledged Alarms: None
                         CIRCUIT ID:
                               Performance Data Definitions
H2TU-C, H2TU-R, and H2R LOOP Related: HDSL2 Framing

    SES-L
    Severely Errored Seconds
    CRC>=1 or LOSW>=1

    UAS-L
    Unavailable Seconds
    N10 crtit

  ES-L
DS1 and DSX-1 Line Related: Superframe and Extended Superframe
ES-L Errored Seconds (BPV+EXZ)>=1 or LOS>= 1
 ES-LErrored Seconds(BPV+EXZ)>=1 or LOS>= 1SES-LSeverely Errored Seconds(BPV+EXZ)>=1544 or LOS>=1UAS-LUnavailable Seconds>10 cont. SES-Ls
  PDVS-L Pulse Density Violation Secs (BPV+EXZ) count
  B8ZS-L B8ZS Seconds
  CV-L Code Violation Count
NOTE: Reverse video indicates invalid data due to a terminal restart (or power
      cycle), a data register reset, or a system date or time change.
    N. Next
    P. Previous
                                   Selection:
```

Figure 26. Performance Data Definitions, Loop

```
Shelf: 1 Slot: 1
                          Total Access System
                                                           10/28/03 08:59
Unacknowledged Alarms: None
                  CIRCUIT ID:
                       Performance Data Definitions
DS1 and DSX-1 Path Related:
                                 Superframe Extended Superframe
 ES-P Errored Seconds
                                    FE>=1 or
                                                      CRC>=1 or
              SEF>=1 or AIS>=1 SEF>=1 or AIS>=1
       Severely Errored Seconds FE>=8 or CRC>=320 or
SEF>=1 or AIS>=1 SEF>=1 or AIS>=1
 SES-P
 UAS-P Unavailable Seconds
                               >10 cont. SES-Ps >10 cont. SES-Ps
 CV-P
       Code Violation Count
                                    FE count
                                                       CRC error count
NOTE: Under a UAS-L or UAS-P condition, all other data counts are inhibited.
     Under a SES-L or SES-P condition, the respective CV-L or CV-P count is
     inhibited.
   P. Previous Selection:
```

Figure 27. Performance Data Definitions, Path

On The Scratch Pad and Circuit ID Screen (Figure 28), the circuit ID can be any alphanumeric string up to 25 characters in length. The Scratch Pad is available for circuit-specific notes and can hold 50 alphanumeric characters in any combination.

The Alarm History screens are divided into three separate screens: T1 Alarm History (Figure 29), Facility

Alarm History (Figure 30), and HDSL2 Span History (Figure 31).

T1 Alarm History screen (Figure 29) displays:

- DSX-1/DS1 Red Alarm
- DSX-1/DS1 Yellow Alarm
- DSX-1/DS1 Blue Alarm

Shelf: 5 Slot: 22 Total Access System 10/28/03 08:59 Unacknowledged Alarms: MAJOR INFO Circuit ID: Current Scratch Pad: New Scratch Pad = New Circuit ID = Press TAE to skip to next entry field. Press ESC to Exit.

Figure 28. Scratch Pad and Circuit ID Screen

Shelf: 5 Unacknowl	Slot: 22 edged Alarms:	To ircuit ID:	tal Access MAJOR	System INF	0	10/28/03	3 08:59
	e	T	1 Alarm His	storv			
LOCATION	ALARM	FIRST		LAST		CURRENT	COUNT
H2TU-C (DSX-1)	RED(LOS/LOF) YELLOW(RAI) BLUE(AIS)	08/09/02	15:56:20	08/09/02	15:56:20	Alarm OK OK	001 000 000
H2TU-R (DS1)	RED(LOS/LOF) YELLOW(RAI) BLUE(AIS)	08/09/02	15:54:27	08/09/02	15:54:27	Alarm OK OK	001 000 000
1. T1 Al	arm 2.	HDSL2 Span Sel	3. Faci ection:	lity Alarm.	C. Clear	T1 Alarm	

Figure 29. T1 Alarm History Screen

Facility Alarm History screen (Figure 30) displays:

- DC Open
- Over-current (short)
- Ground fault
- Power cycle

HDSL2 Span History screen (Figure 31) displays:

- Loss of Sync for each HDSL2 receiver
- Margin Threshold Alarm for each HDSL2 receiver
- Attenuation Threshold Alarm for each HDSL2 receiver

Shelf: 1 Slot: 15 Unacknowledged Alarms: C	Total Access CRITICAL MAJOR Circuit ID:	System INFO	10/28/03 08:59
	Facility Ala	rm History	
LOCATION ALARM	FIRST	LAST	CURRENT COUNT
FACILITY DC OPEN FACILITY SHORT FACILITY GROUND FAULT	01/01/00 00:00:03	01/01/00 00:00:03	Alarm 001 OK 000 OK 000
H2TU-C POWER CYCLE	01/01/00 00:00:02	01/01/00 00:00:02	ок 001
1. T1 Alarm 2.	HDSL2 Span 3. Fac: Selection:	ility Alarm C. Clear	Facility Alarm

Figure 30. HDSL2 Facility Alarm History Screen

Shelf: 5 Unacknowle	Slot: 22 dged Alarms: (Tota : MA Circuit ID:	l Access System JOR	INFO	10/28/03	08:59
LOCATION	ALARM	FIRST	LAST		CURRENT	COUNT
SPAN 1	LOOP HLOS				OK	000
H2TU-C H2TU-R	MRGN MRGN				OK OK	000 000
H2TU-C H2TU-R	ATTN ATTN				OK OK	000
1. T1 Ala	rm 2.	HDSL2 Span Selec	3. Facility A tion:	larm C. Clear	HDSL2 Span	

Figure 31. HDSL2 Span History Screen

The Event History screen (**Figure 32**) provides a log history of HDSL2 circuit events. The following is a list of possible events:

- Circuit ID Change
- DS1 Transmit Level Option Change
- DSX/DS1 Alarm Type Active/Inactive
- DSX-1 Line Build Out Option Change
- Element Network/Customer Loop up/Loop down
- Event Log Reset
- External Alarm Blocking Change
- Framing Option Change

- H2TU-C/H2TU-R Powered Up
- HDSL/T1 PM Registers Reset
- Line Code Option Change
- Loopback Time Out Option Change
- Network Source Setting Change
- NIU Loopback Option Change
- Option were Auto Provisioning from SCU
- Service State Setting Change
- Span Power Option Change
- Time/Date Changed From/To
- Loop Segment XX In/out of Sync

 Shelf: 1 Slot: 1
 Total Access System
 10/28/03 08:59

 Unacknowledged Alarms: None CIRCUIT ID:
 Date
 Time
 Source

 Num
 Description of Event
 Date
 Time
 Source

 1.
 H2TU-C Powered Up
 09/23/03 15:34:00
 H2TU-C

 2.
 Service State Setting Change
 09/23/03 15:34:03
 H2TU-C

 3.
 H2TU-C Network Loop Up Request
 09/24/03 08:53:11
 H2TU-C

 4.
 H2TU-C Customer Loop Up Request
 09/24/03 08:53:21
 H2TU-C

 5.
 H2TU-C Customer Loop Up Request
 09/24/03 08:53:32
 H2TU-C

 6.
 H2TU-C Customer Loop Down Request
 09/24/03 08:53:41
 H2TU-C

 7.
 Customer BERT Turned ON
 09/24/03 08:55:22
 H2TU-C

 8.
 Customer BERT Turned OFF
 09/24/03 08:55:22
 H2TU-C

 9.
 Page Number: 1/ 1
 Number of Events: 8
 Image: 1/1
 H2TU-C

 9.
 Page Number: 1/1
 Number of Events: 8
 Image: 1/1
 Image: 1/1

 9.
 Page Number: 1/1
 Number of Events: 8
 Image: 1/1
 Image: 1/1

 9.
 Page Number: 1/1
 H2TU-C
 Image: 1/

Figure 32. Event History Screen

The System PM/Screen Report option from the Main Menu (Figure 33) offers these four types of reports on performance monitoring:

- 1. Full System/History Report
- 2. Current Status Report
- 3. System Configuration Report
- 4. Alarm/Event History

Selecting a report type will display all the reports for that category on the screen at once, which is more efficient than stepping through menus individually to view each report.

The Clear PM and Alarm Histories option (Figure 34) initializes data from performance monitoring and alarm histories. Selecting this option from the Main Menu displays the prompt, "This will clear the history data for all elements in the circuit. Are you sure (Y/N)?"

4. 5. 6. 7. 8. 9. 10. 11. 12.	Loopbacks and Test Performance Monitoring Scratch Pad, Ckt ID Alarm History Event History System Status/PM Report Clear PM and Alarm Histories Troubleshooting Flash Upgrade
Sele	ection:
Enable data logging now.	ne to cancel.
 Full System/History Report Current Status Report System Configuration Report Alarm/Event History 	t

Shelf: 1 Slot: 14 To Unacknowledged Alarms: I Circuit ID:	tal Access System 10/28/03 MAJOR INFO	08:59	
HD	SL2 Main Menu		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	HDSL2 Unit Information Provisioning Status Loopbacks and Test Performance Monitoring Scratch Pad, Ckt ID Alarm History Event History System Status/PM Report Clear PM and Alarm Histories Troubleshooting Flash Upgrade		
This will clear the history data for all elements in the circuit. Are you sure (Y/N) ?			
Selection: 10			

Figure 34. Clear PM and Alarm Histories Screen

The Troubleshooting screen (**Figure 35**) compiles information received from all facilities and equipment in the circuit and presents them in both Real-Time and 7-Day historical format. The Troubleshooting Guidance screen (Figure 36) option (accessed from the Troubleshooting screen) analyzes this information and makes repair recommendations.

Shelf: 1 Slot: 14 Total Access S Unacknowledged Alarms: Circuit ID: Troublesh	System 10/28/03 08:59 INFO
For HELP based on detected problems, select list below. If further assistance is needed,	Troubleshooting Guidance from the contact ADTRAN Tech Support.
Hours: Normal 7am - 7pm CST Emergency 7 days x 24 hours	 Troubleshooting Guidance General Information
Phone: 800.726.8663 / 888.873.HDSL Fax: 256.963.6217	

Figure 35. Troubleshooting Screen

Shelf: 1 Slot: 14 Unacknowledged Alarms:	Total Access System INFO Facility DC Open	10/28/03 08:59
- A DC Open condition is oft loops. The condition should	en caused by a lack of current be resolved when an H2TUR (or	t flow on the DSL H4R) is installed.
- If open is not due to abse H4R) housing. If still open, Looking toward the CO, you s R/R1 at any point. Also, if on both pairs in both direct	ence of equipment, verify wirin troubleshoot facility wiring should see approximately 190 vo HDSL2 equipment is connected y cions. If not an open circuit s	ng in the H2TUR (or for an open circuit. olts across T/T1 and you should see a short still exists.
- If wiring and shelf OK, co achieved. If not, replace th problem.	onnect H2TUR at the frame and w ne H2TUC and H2TUR one at a tir	verify DSL sync can be ne to identify the

Figure 36. Troubleshooting Guidance Screen

The General Information screen (Figure 37) shows the Loop Deployment Guidelines for this type of circuit. Should trouble occur on the circuit, many test details are available here.

Ability to download new firmware for the unit is available via the Total Access H2TU-C Flash Image screen (Figure 38). This feature allows the download and installation of a firmware upgrade. Any existing provisioning setting will be retained, while new provisioning items will assume the factory default settings. Prior to installing, the H2TU-C will confirm that the firmware is correct. When initiated, setup instructions will be displayed on the craft access terminal.

Shelf: 1 Slot: 14 Total Access System 10/28/03 08:59 Unacknowledged Alarms: INFO Circuit ID: HDSL2 Loop Guidelines for optimum operation _____ Non-loaded cable pair Single bridge tap < 2Kft Total bridge taps < 2.5Kft Bridge tap within 1000ft of transceiver may affect performance. Impulse noise < 50dBrnF (F filter)</pre> Wideband noise < 31dBrnF (f filter) Power influence <= 80 dBrnC Longitudinal Balance >= 60dB (If using Wideband test at 196 Khz >= 40dB) Foreign DC Voltage (t-r,t-g,r-g) < 3VDC</pre> Loop Resistance <= 775 ohms Margin >= 6 dB Attenuation <= 28 dB Selection:

Figure 37. General Information Screen

Shelf: 1 Slot: 14 Unacknowledged Alarms: Circu	Total Access System INFO it ID:HntsvlALMn0103	10/28/03 08:59
	SW Ver Checksum H2TU-C Flash Image: A01 DD85	
	Software Update	
	 Download H2TU-C via Y-Modem Download H2TU-C via TFTP Boot Block Status and Overwrite 	Password
	Selection:	

Figure 38. Total Access 3000 H2TU-C Flash Image Screen

The Y-Modem Flash Upgrade screen (Figure 39) allows the user to initiate a Y-Modem file transfer from the computer connected to the SCU craft access port to the H2TU-C. This file is transferred to the SCU and downloaded to the H2TU-C at the SCU craft port baud rate; therefore, a higher-speed connection to the SCU is recommended (typically 115200 baud) to reduce file download times. At 115200 baud, a typical flash download to the H2TU-C will take less than 3 minutes. The file downloaded to the H2TU-C via the SCU should be of the ".bin" file type only and will be provided for feature enhancements/additions and bug fixes. **Figure 40** illustrates a Flash upgrade session in progress.

Shelf: 1 Slot: 14 Total Access System 10/28/03 08:59 Unacknowledged Alarms: INFO Circuit ID:HntsvlALMn0103 Download H2TU-C via Y-Modem This utility programs the H2TUC. The VT100 terminal emulation program used must support Y-Modem file transfers and have access to the software binary file (*.bin). 1. Start Transfer 2. Abort Selection:

Figure 39. Flash Upgrade, Y-Modem Utility

Shelf: 1 Slot: 14 10/28/03 08:59 Total Access System Unacknowledged Alarms: MAJOR INFO Circuit ID: ... Requesting SCU maintenance channel for Flash Upgrade process Setup Instructions: [Note: Your terminal program may differ slightly] 1. Select "Send File" from Transfer options. 2. Set "Transfer Protocol" to the following: Xmodem(CRC) or Ymodem 3. Select appropriate binary file (*.BIN) to upload. 4. Upload File. [Note: The screen will start displaying C's - this is normal.] =CCCC

Figure 40. Flash Upgrade, Y-Modem in Progress

The TFTP Flash screen (Figure 41) is utilized to perform a TFTP file transfer from a remotely located computer/server to the H2TU-C. During TFTP transfers, the SCU continues to act as an intermediary to receive the file data from the remote computer and then send it to the H2TU-C unit. Before initiating a TFTP transfer from the menu screen, the user should first enter the TFTP remote filename that is listed on H2TU-C TFTP menu (option 1). The IP address of the remotely located computer must also be set from the network management menu on the SCU (note: this is an SCU menu option and not an H2TU-C menu option). In addition, the Ethernet interface of the SCU must also be provisioned properly for TFTP transfers. The Ethernet interface settings allow the SCU to communicate properly over the Ethernet network in which it is installed. Without setting these items up properly,

neither telnet sessions nor remote TFTP file transfers will be available to the user.

The user should refer to the appropriate SCU Installation and Maintenance Practice for details on Ethernet settings.

Once the H2TU-C and SCU have been provisioned properly for the TFTP file transfer, select option 2 from the H2TU-C TFTP file transfer menu screen to initiate the TFTP file transfer from the remotely located computer to the H2TU-C. TFTP file transfers are typically faster than Y-Modem transfers. Once the SCU receives the file from the remote computer, the file is sent from the SCU to the H2TU-C to be downloaded (typically less than 2 minutes).

TFTP transfers can also be initiated remotely using SNMP - totally eliminating the need to physically be at the Total Access 3000 shelf to update the H2TU-C.

Shelf: 1 Slot: 14 Total Access System 10/28/03 08:59 Unacknowledged Alarms: INFO Circuit ID:HntsvlALMn0103 Download H2TUC via TFTP This utility programs the H2TUC. You must set the SCU to the IP address of the TFTP server that has the firmware binary file (*.bin). 1. Remote Filename = 118111312_a01.bin 2. Start Transfer 3. Abort Selection:

Figure 41. Flash Upgrade, TFTP Utility

The Boot Block Status and Overwrite Password screen (**Figure 42**) is typically not used. This screen provides a method by which the bootcode can be updated on the H2TU-C. The bootcode is seldom changed with new download code. The bootcode is the small piece of code that allows firmware upgrades on the H2TU-C unit. If it

becomes corrupted, the H2TU-C will require factory service to restore it to a functional state. However, in the rare case to provide some new bootcode feature, this screen may be required to allow the bootcode to be overwritten by the newly downloaded firmware.

Shelf: 1 Slot: 14 Unacknowledged Alarms: Circuit	Total Access MAJOR ID:HntsvlALMn(System	INFO	10/28/03 08:59
Boot Block Overwrite Pa	ssword		Boot Block	k Tvpe
Current Password:			NOT LOCKAR	BLE
The current pressured is	NOT correct			
To change the password,	begin typing	now or	press ESC to	exit this screen.
WARNING: Overwriting t the boot block is the s firmware upgrades, over incomplete code will re factory service to rest	he boot code : mall piece of writing the bo nder this line ore the lineca	involves code re pot code ecard us ard to a	s some risk! esponsible for e with incorre seless and wi an operational	Since r allowing ect or ll require l state.
	Selection:			

Figure 42. Flash Upgrade, Boot Block, Password

8. HDSL2 DEPLOYMENT GUIDELINES

The ADTRAN HDSL2 system is designed to provide DS1 based services over loops designed to comply with carrier service area (CSA) guidelines. CSA deployment guidelines are given below:

- 1. All loops are nonloaded only.
- 2. For loops with 26-AWG cable, the maximum loop length including bridged tap lengths is 9 kft.
- 3. For loops with 24-AWG cable, the maximum loop length including bridged tap lengths is 12 kft.
- 4. Any single bridged tap is limited to 2 kft.
- 5. Total bridged tap length is limited to 2.5 kft.
- 6. The total length of multigauge cable containing 26-AWG cable must not exceed the following:
- 12 {(3*L₂₆₎ / (9- L_{BTAP})} (in kft)
- L₂₆ = Total length of 26-AWG cable excluding bridged taps (in kft)
- L_{BTAP} = Total length of all bridged taps (in kft)

These deployment criteria are summarized in the chart shown in **Figure 43**.

Figure 43. HDSL2 Deployment Guidelines

Loop loss per kft for other wire is summarized in **Table 6**.

Table 6. HDSL2 Loss Values

Cable Gauge	Cable Type	Tempera 68°	iture (°F) 90°	120°
26	PIC	3.902	4.051	4.253
26	Pulp	4.030	4.179	4.381
24	PIC	2.863	2.957	3.083
24	Pulp	3.159	3.257	3.391
22	PIC	2.198	2.255	2.333
22	Pulp	2.483	2.545	2.629
19	PIC	1.551	1.587	1.634
19	Pulp	1.817	1.856	1.909

NOTE

These approximations are to be used as guidelines only and may vary slightly on different loops. Adhering to the guidelines should produce performance in excess of 10⁻⁷ BER.

9. TROUBLESHOOTING PROCEDURES

Table 7 is a troubleshooting guide for the Total AccessH2TU-C.

Table 7. Troubleshooting Guide

Condition	Solution
All front panel indicators are <i>off</i> .	1.Verify that –48 VDC power is properly connected to the shelf.
	2.Insert the H2TU-C into an operational slot and check the PWR LED indicators.
	3.If Step 1 passes, but Step 2 fails, replace the H2TU-C.

10. MAINTENANCE

The ADTRAN Total Access H2TU-C requires no routine maintenance. In case of equipment malfunction, use the front panel bantam jack connectors to help locate the source of the problem.

ADTRAN does not recommend that repairs be performed in the field. Repair services may be obtained by returning the defective unit to ADTRAN. Refer to *Warranty and Customer Service* section of this Practice.

11. PRODUCT SPECIFICATIONS

Product specifications are detailed in Table 8.

12. WARRANTY AND CUSTOMER SERVICE

ADTRAN will replace or repair this product within the warranty period if it does not meet its published specifications or fails while in service. Warranty information can be found at www.adtran.com/warranty.

USA and Canadian customers can also receive a copy of the warranty via ADTRAN's toll free faxback server, 877-457-5007.

Carrier Networks Warranty - Document 414. Enterprise Networks Warranty - Document 901.

Contact Customer and Product Service (CAPS) prior to returning equipment to ADTRAN.

For service, CAPS requests, or further information, contact one of the following numbers:

ADTRAN Sales

Pricing and Availability (800) 827-0807

ADTRAN Technical Support

Pre-sales Applications/Post-sales Technical Assistance (800) 726-8663

Standard hours: Monday-Friday, 7 a.m.-7 p.m. CST Emergency hours: 7 days/week, 24 hours/day

ADTRAN Repair/CAPS

Return for repair/upgrade (256) 963-8722

Repair and Return Address

ADTRAN, Inc. CAPS 901 Explorer Boulevard Huntsville, Alabama 35806-2807

Specification	Description			
Loop Interface				
Modulation Type Mode	16 TC PAM Full Duplex, partially overlapped echo canceling			
Number of Pairs	21 1 552 Minut			
Line Kate Baud Rate	1.552 Mips 517 333 k baud			
Loop Loss	Refer to the HDSL2 Deployment Guidelines section for			
	additional measurements.			
Bridged Taps	Single Taps < 2000 ft., Total Taps < 2500 ft.			
Performance	Compliant with T1.418-2002 (HDSL Standard, issue 2)			
H2TU-C Transmit Power (Data) Level	16.6 ±0.5 dBm (0 to 450 kHz)			
H2TU-C Transmit Power (Activation) Level	16.3 ±0.5 dBm (0 to 350 kHz)			
Input Impedance	135 ohms			
Maximum Loop Resistance	900 ohms			
Return Loss	12 dB (50 kHz to 200 kHz)			
Netwo	rk Interface			
DS1 Transmit Level	0 dB (default), $-7.5 dB$, $-15 dB$			
DSX-1 Line Buildout	0-133 ft. ABAM (default)			
	133-266 ft. ABAM			
	200-399 П. АВАМ 200-522 Ф. АВАМ			
	533-655 ft ABAM			
DSX-1 Line Code	B87S (default) AMI			
	Douer			
Tested with the ADTPA	N H2TLL C (D/N 1223026L2)			
Liested with the ADTRAN H210-C (P/N 1225026L2)				
H2TU P Power Dissingtion	-48 VDC (200 IIIA WIII H2TU-K			
Snan Power	-190 VDC (from H2TU-C) Class A2 Compliant GFL Current Limited			
Spail I Ower	at <5 mA. Loop Current Limited at between 150 to 160 mA			
Fusing	1.00 A (not field-replaceable)			
	Clock			
Clock Sources	DSX-1 Derived (with HDSL2 frame bit stuffing) MUX fed			
Internal Clock Accuracy	±25 ppm (Exceeds Stratum 4), meets T1.101 Timing Requirements			
	Tests			
Diagnostics	Self-Test, Local Loopback (H2TU-C), Remote Loopback (H2TU-R)			
Physical				
Total Access 3000 H2TU-C, Shelf-Mounted				
Dimensions	6 in. High, x 0.7 in. Wide, x 10 in. Deep			
Weight	< 1 lb.			
Environment				
Operating Temperature (Standard)	-40° C to $+$ 70°C			
Storage Temperature	-40° C to + 85°C			
Compliance				
UL 60950; GR-1089-CORE; GR-63-CORE; ANSI T1.418-2002, Issue 2; ANSI T1.102 (DS1 Interface)				
Part	Number			
Total Access 3000 H2TU-C	1181113L2			

Table 8. HDSL2 Total Access 3000 H2TU-C Specifications

Appendix A HDSL2 Loopbacks

HDSL2 MAINTENANCE MODES

This appendix describes operation of the HDSL2 system with regard to detection of inband and ESF facility data link loopback codes.

Upon deactivation of a loopback, the HDSL2 system will synchronize automatically.

Loopback Process Description

In general, the loopback process for the HDSL2 system elements is modeled on the corresponding DS1 system process. Specifically, the H2TU-C loopback is similar to an Intelligent Office Repeater loopback, and the H2TU-R loopbacks are similar to an in-line T1 Repeater loopback.

Inband control code sequences are transmitted over the DS1 link by either the *unframed* or *overwrite* method. The HDSL2 elements respond to either method.

The unframed method produces periodic control sequences, and the normal DS1 framing bit is omitted.

The overwrite method produces periodic control sequences. However, once per frame, the framing bit overwrites one of the bits in the control sequence.

The unit can detect the loopback activation or deactivation code sequence *only* if an error rate of $1E^{-03}$ or better is present.

DDS Latching Loopback Operation

If the unit is optioned for FT1 mode, then DDS Latching Loopback operation is supported as described in Bellcore TA-TSY-000077, Issue 3, Section 5.1.3. The H2TU-C in the HDSL2 circuit is treated as an Identical Tandem Dataport, and the H2TU-R is treated as a Different Tandem Dataport. The H2TU-R will establish a network loopback upon detection of standard DDS NI-NEI/RPTR loopback sequence.

Loopback Control Codes

A summary of control sequences is given in **Table A-1** and **Table A-2**.

NOTE

In all control code sequences presented, the inband codes are shown left-most bit transmitted first, and the ESF data link codes with right-most bit transmitted first.

Туре	Source ¹	Code ^{2,3}	Name
Abbreviated	(N) (N) (C) (C)	3in7 (1110000) 4in7 (1111000) 6in7 (1111110) 5in7 (111110)	Loopback data from network toward network in the HTU-R. Loopback data from network toward network in the HTU-C. Loopback data from customer toward customer in HTU-C. Loopback data from customer toward customer in HTU-R.
Wescom	(N) (C) (N) (C) (C) (C) (N) (N/C) (N/C)	FF1E (1111 1111 0001 1110) 3F1E (0011 1111 0001 1110) FF02 (1111 1111 0000 0010) 3F02 (0011 1111 0000 0010) FF48 (1111 1111 0100 1000) FF48 (1111 1111 0100 1000) 1 in 3 (100) FF24 (1111 1111 0010 0100)	Loopback data from network toward network at HTU-C. Loopback data from customer toward customer at HTU-C. Loopback data from network toward network at HTU-R. Loopback data from customer toward customer at HTU-R. Loopback data from customer toward customer at HTU-R.(FDL) Loopback data from network toward network at HTU-R. (FDL) Loopback data from network toward network at HTU-R. (FDL) Loopdown everything. Loopdown everything. (ESF-DL)

Table A-1. HDSL2 Loopback Control Codes

1. The Source column indicates which side of the interface the control codes are sent from. For example, an (N) indicates a network sourced code while a (C) indicates a customer sourced code.

2. All codes are in-band unless labeled FDL.

3. All codes listed above must be sent for a minimum of 5 seconds to be detected and acted upon.

Function	Code (Hex / Binary)	Response
ARM (in-band) - also known as 2-in-5 pattern	11000 (binary)	The H2TU-R will loop back toward the network. No AIS or errors will be sent as a result of this loopback. The H2TU-C will arm.
Disarm (in-band) - also known as 3-in-5 pattern	11100 (binary)	The H2TU-C is removed from the armed state. If any of the units are in loopback when the 11100 pattern is received, they will loop down. The LBK LEDs will turn <i>off</i> on all units.
H2TU-C Loop Up	D3D3 or 1101 0011 1101 0011	If armed, the H2TU-C will loop back, 2 seconds of AIS (all ones) will be transmitted, the looped data will be sent for 5 seconds, and then a burst of 231 logic (bit) errors will be injected. The burst of 231 logic errors will continue every 20 seconds as long as the D3D3 pattern is detected. When the pattern is removed, the unit will remain in loopback. If the pattern is reinstated, the injection of 231 logic errors will resume every 20 seconds.
Loop Down w/o Disarm	9393 or 1001 0011 1001 0011	When sent from the network, all units currently in loopback will loop down. Armed units will not disarm.
Loopback Query	D5D5 or 1101 0101 1101 0101)	If the units are armed, and the H2TU-C or H2TU-R are in network loopback, logic errors will be injected toward the network to indicate a loopback is present toward the network. The number of errors injected is determined by the unit that is in loopback. As long as the pattern continues to be sent, errors are injected again every 20 seconds:
		H2TU-C 231 errors H2TU-R 20 errors
Loopback Time Out Override	D5D6 or 1101 0101 1101 0110	If the units are armed or a unit is currently in loopback when this pattern is sent from the network, the loopback time out will be disabled. As long as the units remain armed, the time out will remain disabled. When the units are disarmed, the loopback time out will revert to the previous loopback time out setting.
		If any element is in network loopback a bit error confirmation will be sent.
		H2TU-C 231 bps H2TU-R 20 bps
Span Power Disable	6767 or 0110 0111 0110 0111	If the units are armed and 6767 is sent from the network, the H2TU-C will disable span power. If the pattern is sent from the network, the span power will be disabled as long as 6767 pattern is detected. Once the pattern is no longer received, the H2TU-C will reactivate span power. All units will then retrain and return to the disarmed and unlooped state.
H2TU-R Loopback	C742 1100 0111 0100 0010	FDL, ESF only. When set from the network, an H2TU-R network loopback is activated, and a 20-bit error confirmation is sent. When set from the customer, an H2TU-R customer loopback is activated with a 20-bit error confirmation.

Note: All codes listed above must be sent for a minimum of 5 seconds to be detected and acted upon

This page is intentionally blank.

Appendix B Front Panel DSX and MUX Mode Test Access

GENERAL

Figure B-1 through Figure B-3 are DSX-1 fed modes of operation, and Figure B-4 through Figure B-7 are MUX fed modes of operation. From the Provisioning screen (Figure 13), select "8" to choose the Network Source as MUX fed or DSX fed. When performing intrusive MUX mode testing, the equipment jack on the front panel can be configured to access the signal going to the Network or the Customer. Select "6" from the Test screen (Figure 17) to configure the equipment jack for Network or Customer. Every time the HTUC is power-cycled, it will default to the Customer direction.

DSX MODE TEST ACCESS

DSX MON, TX to Customer

The RX of the BERT receives data from the **TX MON** jack (**Figure B-1**). This data has a monitor jack impedance of 432 ohms and comes from the Backplane Network T1 DSX (the data that would go toward the customer). The **BERT TX** is not used. **This test is non-intrusive**.

NOTE

The H2TU-C must be provisioned for the Out of Service–Maintenance Service State when intrusive bantam jack testing is being performed.

Figure B-1. DSX MON, TX to Customer

DSX MON, RX from Customer

The RX of the BERT receives data from the **RX MON** jack (**Figure B-2**). This data has a monitor jack impedance of 432 ohms and comes from the Customer originated data. The **BERT TX** is not used. **This test is non-intrusive**.

DSX EQ, TX to Customer, RX from Customer

The TX of the BERT goes to the **TX EQ** jack, and the RX of the BERT goes to the **RX EQ** jack

(Figure B-3). The TX EQ data from the BERT is sent to the Customer. The RX EQ data to the BERT is data from the Customer. The MON jack TX and RX are 432 ohm replicas of the EQ TX and RX direct connections. This test is intrusive, as it connects the EQ jacks directly to and from the Customer data.

MUX MODE TEST ACCESS

MUX MON, TX to Customer

The RX of the BERT receives data from the **TX MON EQ** jack (Figure B-4). This data is a copy of the data that the H2TU-C will transmit to the Customer. The TX of the BERT is not used. **This test is non-intrusive.**

Figure B-4. MUX MON, TX to Customer

MUX MON, RX from Customer

The RX of the BERT receives data from the **RX MON** jack (**Figure B-5**). This data is 432 ohm copy of the data that the H2TU-C will receive from the Customer and route to the Total Access Shelf's MUX (Network). The TX of the BERT is not used. **This test is non-intrusive**.

Figure B-5. MUX MON, RX from Customer

MUX EQ, TX to Network, RX from the Network

The TX of the BERT is connected to the **EQ TX** jack, and the RX of the BERT is connected to the **RX EQ** jack (**Figure B-6**). The TX of the BERT is then substituted for the data that the H2TU-C sends to the Total Access Shelf's MUX (Network). The RX of the BERT receives data directly from the MUX (Network). The **MON TX** and **RX** jacks are 432 ohm impedance copies of the **EQ** jack **TX** and **RX**. **This test is intrusive**.

NOTE

Via the Test screen, ensure that the equipment jack is in "To Network" mode. In "To Network" mode, AIS (unframed all 1's) is sent in the Customer direction.

Figure B-6. MUX EQ, TX to Network, RX from Network

MUX EQ, TX to Customer, RX from Customer

The TX of the BERT is connected to the **EQ TX** jack, and the RX of the BERT is connected to the **RX EQ** jack (**Figure B-7**). The TX of the BERT is then substituted for the data that the H2TU-C sends to the Customer. The RX of the BERT receives data directly from the Customer. The **MON TX** and **RX** jacks are 432 ohm impedance copies of the **EQ** jack **TX** and **RX**. **This test is intrusive**.

NOTE

Via the Test screen, ensure that the equipment jack is in "To Customer" mode. In "To Customer" mode, AIS (unframed all 1's) is sent in the Network direction.

Figure B-7. MUX EQ, TX to Customer, RX from Customer

