
PyTek Documentation
Release 1.1 (v1.1.1.0-x-dev)

Brian Mearns

April 14, 2014

Contents

1 Getting Started 3

2 Documentation Contents: 5
2.1 README . 5
2.2 pytek module . 8
2.3 pytek.util module . 14
2.4 pytek.version module . 21
2.5 LICENSE (GPLv3) . 26

3 Indices and tables 39

4 Version 41

5 Project Resources 43

6 External References 45

Python Module Index 47

i

ii

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

PyTek provides a python API for interacting with Tektronix oscilloscopes over a serial interface. It currently supports
some basic commands for the TDS3k series of DPO’S (Digital Phosphor Oscilloscopes), especially capturing
waveforms and screen shots from the device.

Note: Serial Port not Included
PyTek relies on a thirdparty serial port for communications, specifically one that matches the pyserial API. It is
recommended that you simply use pyserial itself.

Contents 1

https://bitbucket.org/bmearns/pytek/commits/tag/r5-v1.1.1.0
https://www.gnu.org/licenses/gpl.html
http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

2 Contents

CHAPTER 1

Getting Started

To get started, try the README, or for complete documentation, check out the pytek module API documentation page.

3

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

4 Chapter 1. Getting Started

CHAPTER 2

Documentation Contents:

2.1 README

PyTek provides a python API for interacting with Tektronix oscilloscopes over a serial interface. It currently supports
some basic commands for the TDS3000 series of Digital Phosphor Oscilloscopes, especially capturing waveforms and
screen shots from the device.

Note: Serial Port not Included
PyTek relies on a thirdparty serial port for communications, specifically one that matches the pyserial API. It is
recommended that you simply use pyserial itself.

Page Contents

• tl;dr
– What?
– Install?
– Serial?
– Examples?
– Dependencies?
– Extras?
– Docs?

• Misc.
– Contact Information
– Copyright and License

2.1.1 tl;dr

What?

A python package that gives you an API for interacting with supported Tektronix oscilloscopes over a serial interace.

Install?

$ pip install pytek

5

http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Or, from source:

$ python setup.py install

Serial?

We don’t provide a serial port implementation. We suggest, pyserial:

$ pip install pyserial

Examples?

>>> from serial import Serial
>>> from pytek import TDS3k
>>>
>>> port = Serial("COM1", 9600, timeout=1)
>>> tds = TDS3k(port)
>>>
>>>
>>> # Make the scope identify itself.
...
>>> tds.identify()
’TEKTRONIX,TDS 3034,0,CF:91.1CT FV:v2.11 TDS3GM:v1.00 TDS3FFT:v1.00 TDS3TRG:v1.00’
>>>
>>>
>>>
>>> # Capture waveform data
...
>>> waveform = tds.get_waveform(start=100, stop=109)
>>> waveform
<generator object <genexpr> at 0x0238B8A0>
>>
>>> for x,y in waveform:
... print x, y
...
-0.0045 -0.16
-0.004499 -0.04
-0.004498 -0.04
-0.004497 -0.12
-0.004496 -0.12
-0.004495 -0.08
-0.004494 -0.12
-0.004493 -0.16
-0.004492 -0.2
-0.004491 -0.08
>>>
>>> tds.x_units()
’s’
>>> tds.y_units()
’V’
>>>
>>>
>>>
>>> # Grab a screen shot (this will take a few minutes).
...
>>> ofile = open("screenshot.tiff", "wb")

6 Chapter 2. Documentation Contents:

http://pyserial.sourceforge.net/

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

>>> tds.screenshot(ofile, "tiff")
>>>
>>>
>>>
>>>
>>> #Fin.
...
>>> tds.close()
>>>

Dependencies?

You’ll need a serial port interface. See the “Serial?” section, above.

To build the sphinx docs from source (as is), you’ll need the ‘sphinx_rtd_theme‘_:

$ pip install sphinx_rtd_theme

Extras?

PyTek package includes the following extras (optional installs):

serial Adds pyserial package as a requirement, the recommended serial port interface.

docs Adds ‘sphinx_rtd_theme‘_ package as a requirement, needed for building sphinx docs.

Docs?

• Read The Docs (.org)

• Python Hosted (.org)

2.1.2 Misc.

Contact Information

This project is currently hosted on bitbucket, at https://bitbucket.org/bmearns/pytek/. The primary author is Brian
Mearns: you can contact Brian through bitbucket at https://bitbucket.org/bmearns.

Copyright and License

PyTek is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

PyTek is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

A copy of the GNU General Public License is available in the PyTek distribution under the file LICENSE.txt. If you
did not receive a copy of this file, see http://www.gnu.org/licenses/.

2.1. README 7

http://pyserial.sourceforge.net/
http://pytek.readthedocs.org/
http://pythonhosted.org/pytek/
https://bitbucket.org
https://bitbucket.org/bmearns/pytek/
https://bitbucket.org/bmearns
http://www.gnu.org/licenses/

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

2.2 pytek module

This is the top level module of the PyTek package. It provides classes for interfacing with various Tektronix oscillo-
scopes over a serial interface.

Most classes in this module are based on a specific series of devices, based on the serial interface supported by the
devices. There is currently only one class provided, TDS3k which supports the TDS 3000 series of devices.

Note: Serial Port not Included
pytek relies on a thirdparty serial port for communications, specifically one that matches the pyserial API. It is
recommended that you simply use pyserial itself.

class pytek.TDS3k(port)
Bases: pytek.util.Configurable

The TDS3k class provides functions for interacting with the TDS 3000 series of DPO’S from Tektronix. Doc-
umentation on this interface is available from Tektronix at this link.

Instances of this class are instantiated by passing in a serial port object, which supports the pyserial interface.
This is the port that the object will use for interacting with the device. Configuration of this port depends on
your device and your serial port implementation. Typical settings for RS232 are 9600 baud.

Example:

#Import class
from pytek import TDS3k

#Import pyserial
import serial

port = serial.Serial("COM1", 9600, timeout=1)
tds = TDS3k(port)

... do stuff with the tds object.

#Closes the object’s port.
tds.close()

Warning: Serial Port Timeout
It is very important that you specify a timeout on your serial port. The get_response method (used by
things like screenshot and get_curve) continue to read data until a read timesout, so if there is no
timeout, it will never return.

ID_REGEX = <_sre.SRE_Pattern object at 0x1bb0df0>
The regular expression used to match the start of the identify string, for sanity_check.

r’^TEKTRONIX,TDS 3\d{3},’

close()
Closes the object’s port by invoking it’s close method.

The object itself is not affected by this so if you call any methods that try to communicate over the port, it
will be trying to communicate over a closed port.

send_command(command[, arg1[, arg2[, ...]]])
Sends a command and any number of arguments to the device. Does not wait for response.

See also:

8 Chapter 2. Documentation Contents:

http://pyserial.sourceforge.net/
http://www.tek.com/oscilloscope/tds3014b-manual/tds3000-tds3000b-tds3000c-series
http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/pyserial_api.html#serial.Serial.close

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

•send_query - To send a query and get a one-line response.

send_query(query)
Sends a query to the device and reads back one line, returning that line (stripped of trailing whitespace).

A ‘?’ and a linebreak are automatically appended to the end of what you send.

E.g.:

>>> tek.send_query("*IDN")
’TEKTRONIX,TDS 3034,0,CF:91.1CT FV:v2.11 TDS3GM:v1.00 TDS3FFT:v1.00 TDS3TRG:v1.00’
>>>

Warning: This method turns off header echoing from the device. I.e., it sends "HEADER OFF"
before anything else (through the headers_off method). If you’re expecting headers to be on
subsequently, you will need to turn them on with "HEADER ON", or with the headers_on method.

query_quoted_string(query)
Like send_query, but expects a quoted string as a response, and strips the quotes off the response before
returning. Raises a ValueError if the response is not quoted.

get_response()
Simply reads data from the object’s port, one byte at a time until the port timesout on read. Returns the
data as a str.

Waits indefinitely for the first byte.

headers_off()
Sends the "HEADER OFF" command to the device, to disable echoing of headers (command names) in
query responses from the device. Most methods that query the device will cause this to be sent. You can
turn it back on with headers_on, or by sending the "HEADER ON" command.

headers_on()
Sends the "HEADER ON" command to the device. See headers_off for details.

identify()
Convenience function for sending the "*IDN" query, with send_query, and returning the response
from the device. This provides information about the device including model number, options, application
modules, and firmware version.

See also:

•sanity_check uses the response from this method to determine if the connected device appears to
a supported model.

sanity_check()
Does a sanity check on the device to make sure that the way it identifies itself matches the expected
response. Returns True if the sanity check passes, otherwise False.

The device does not actually enforce this test, and will not perform it automatically (i.e., only if you call
this method). This is for your sake so you don’t waste time on a device that isn’t compatible.

See also:

•identify

•force_sanity

force_sanity()
Does the sanity_check on the device, and raises an Exception if the check fails.

2.2. pytek module 9

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

acquire_state([val])
Configures or queries the value of the ACQUIRE:STATE setting on the device. If a value is given, then
the setting is configured to the given value. If the value is None (the default), then the setting is queried
and the value is returned.

For queries, return True or False:

•True if the device replies with any of the following: "1", "ON", "RUN"

•False otherwise.

For configuring, if val evaluates as True, causes "1" to be sent to the device. Any other value for val
causes "0" to be sent.

The ACQUIRE:STATE setting is related to the “RUN / STOP” button on the device, and it basically
configures whether the device is actually acquiring data or not.

acquire_single([val])
Configures or queries the value of the ACQUIRE:STOPAFTER setting on the device. If a value is given,
then the setting is configured to the given value. If the value is None (the default), then the setting is
queried and the value is returned.

For queries, return True or False:

•True if the device replies with any of the following: "SEQ", "SEQUENCE"

•False otherwise.

For configuring, if val evaluates as True, causes "SEQ" to be sent to the device. Any other value for
val causes "RUN" to be sent.

The ACQUIRE:STOPAFTER setting is related to the “single sequence” button on the device. If True,
then when the device is set to acquire (e.g., by passing True to acquire_state), it will only acquire
a single sequence, and then stop automatically. Otherwise, it will continue to acquire until it is stopped.

trigger()
Force the device to trigger, assuming it is in READY state (see trigger_state).

This sends the TRIGGER FORCE command to the device.

trigger_auto([val])
The TRIGGER:A:MODE is related to the “AUTO” and “NORMAL” selections in the Trigger menu. If set
to True, the trigger is in “AUTO (Untriggered roll)” mode, in which the device automatically generates a
trigger if none is detected.

Otherwise, the device is in “NORMAL” mode, in which the device waits for a valid trigger.

val = ‘trigger’

trigger_state()
Returns a string indicating the current trigger state of the device. This queries the TRIGGER:STATE
setting on the device.

The following list gives the possible return values:

•auto - indicates that the oscilloscope is in auto mode and acquires data even in the absence of a trigger
(see trigger_auto).

•armed - indicates that the oscilloscope is acquiring pretrigger information. All triggers are ignored in
this state.

•ready - indicates that all pretrigger information has been acquired and the oscilloscope is waiting for
a trigger.

•save - indicates that acquisition is stopped or that all channels are off.

10 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

•trigger - indicates that the oscilloscope has seen a trigger and is acquiring the posttrigger information.

get_waveform_preamble()
Queries the waveform preamble from the device, which details how a waveform or curve will be transferred
from the device based on the current settings (as with get_curve or get_waveform, though note that
both of those functions alter settings based on provided parameters, before retrieving the data).

Returns a dictionary of preamble values.

Example:

>>> wfm_preamble = tds.get_waveform_preamble()
>>> for k, v in wfm_preamble.iteritems():
... print k, ":", repr(v)
...
byte_order : ’MSB’
binary_format : ’RP’
x_incr : 1e-06
y_scale : 0.08
number_of_points : 10000
y_unit : ’"V"’
encoding : ’BIN’
y_zero : 0.0
point_format : ’Y’
waveform_id : ’"Ch1, DC coupling, 2.0E0 V/div, 1.0E-3 s/div, 10000 points, Sample mode"’
x_units : ’"s"’
y_offset : 128.0
bits_per_sample : 8
bytes_per_sample : 1
pt_offset : 0
xzero : -0.0045
>>>

get_curve(source=’CH1’, double=True, start=1, stop=10000, preamble=False, timing=False)
Queries a curve (waveform) from the device and returns it as a set of data points. Note that the points are
simply unsigned integers over a fixed range (depending on the double parameter), they are not voltage
values or similar. Use get_waveform to get scaled values in the proper units.

Warning: Note that this method will set waveform preamble and data parameters on the device, which
have a persistent effect which could alter the behavior of future commands.

If preamble or timing are True, returns a tuple: (preamble_data, data, timing_data),
where the preamble_data and timing_data are only present if the corresponding flag is set.

If neither preamble nor timing is True, then just returns data as the sole argument (i.e., data, not
(data,)).

In either case, data will be a sequence of data points for the curve. If the double parameter is True
(the default), data points are each double-byte wide, in the range from 0 through 65535 (inclusive). This
gives you maximum resolution on your data, but takes longer to transfer. Also note that the device does not
necessarily have 16 bits of precision in measurement, but data will be left-aligned to the most significant
bits.

If double is False, then the data points are single-byte each, in the range from 0 through 255 (inclusive).

Regardless of double, the minimum value corresponds to one vertical division below the bottom of the
screen, and the maximum value corresponds to one vertical division above the top of the screen.

Parameters

• source (str) – Optional, specify the channel to copy the waveform from. Default is "CH1".

2.2. pytek module 11

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

• double (bool) – Optional, if True (the default), data points are transferred 16-bits per
point, otherwise they are transferred 8-bits per point, which may cut off least significant
bits but will transfer faster.

• start (int) – Optional, the data point to start at. The waveforms contains up to 10,000 data
points, the first point is 1. The default value is 1. If you set this param to None, it has the
same effect as a 1.

• stop (int) – Optional, the data point to stop at. See start for details. The default value
is 10,000 to transfer the entire waveform. If you set this to None, it has the same effect as
10,000.

• preamable (bool) – Controls whether or not the curve’s preamble is included in the return
value. The curve’s preamble is not the same as the waveform preamble that configures the
data. The curve’s preamble is a string that is transmitted prior to the curve’s data points.
I’m honestly not sure what it is, but it contains a number which seems to increase with the
number of data points transferred.

• timing (bool) – Controls whether or not timing information is included in the return value.
Timing gives the number of seconds it took to transfer the data, as a floating point value.

get_waveform(source=’CH1’, double=True, start=1, stop=10000, preamble=False, timing=False)
Similar to get_curve, but uses waveform premable data to properly scale the received data.

If preamble or timing are True, returns a tuple: (preamble_data, data, timing_data),
where the preamble_data and timing_data are only present if the corresponding flag is set.

If neither preamble nor timing is True, then just returns data as the sole argument (i.e., data, not
(data,)).

data is a sequence of two tuples, giving the X and Y value for each point, in order across the X-acis from
left to right. These are properly scaled based on the waveform settings, Giving, for instance, a value in
Volts versus Seconds. Check x_units and y_units to get the actual units.

get_num_points()
Queries the number of points that will be sent in a waveform or curve query, based on the current settings.

This is relevant to functions like get_waveform and get_curve, but note that those functions set
the DATA:START and DATA:STOP configuration options on the device based on provided parameters,
thereby effecting the number of points.

y_units()
Returns a string giving the units of the Y axis based on the current waveform settings.

Example:

>>> tds.y_units()
’V’
>>>

x_units()
Returns a string giving the units of the X axis based on the current waveform settings. Possible values
include ’s’ for seconds and ’Hz’ for Hertz.

Example:

>>> tds.x_units()
’s’
>>>

screenshot(ofile=None, fmt=’RLE’, inksaver=True, landscape=False)
Grabs a hardcopy/screenshot from the device.

12 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

If ofile is None (the default), simply returns the data as a string. Otherwise, it writes the data to the
given output stream.

Parameters

• fmt (str) – Optional, specify the format for the image. Valid values will vary by device,
but will be a subset of those listed below. The default is “RLE” which gives a Windows
Bitmap file.

• inksaver (bool) – Optional, if True (the default), puts the device into hardcopy-inksaver
mode, in which the background of the graticular is white, instead of black. If False, sets
the device to not be in inksaver mode.

• landscape (bool) – Optional, if False (the default), the image will be in portrait mode,
which is probably what you want. If True, it will be in landscape mode, which generally
means the image will be rotated 90 degrees.

Possible supported formats:

The following is a list of the formats that may be supported, but individual devices will only support a
subset of these. To see if your device supports a format, use check_img_format.

•TDS3PRT - For the TDS3000B series only, sets format for the TDS3PRT plug-in thermal printer.

•BMP - Grayscale bitmap. This is uncompressed, and very large and slow to transfer.

•BMPColor - Colored bitmap. Uncompressed, very large and slow to transfer.

•DESKJET - For the TDS3000B and TDS3000C series only, formatted for HP monochrome inkjet
printers.

•DESKJETC - For the TDS3000B and TDS3000C series only, formatted for HP color inkjet printers.

•EPSColor - Colored Encapsulated PostScript.

•EPSMono - Monochrome Encapsulated PostScript.

•EPSON - For the TDS3000B and TDS3000C series only, supports Epson 9-pin and 24-pin dot matrix
printers.

•INTERLEAF - Interleaf image object format.

•LASERJET - For the TDS3000B and TDS3000C series only, supports HP monochrome laser print-
ers.

•PCX - PC Paintbrush monochrome image format.

•PCXcolor - PC Paintbrush color image format.

•RLE - Colored Windows bitmap (uses run length encoding for smaller file and faster transfer).

•THINKJET - For the TDS3000B and TDS3000C series only, supports HP monochrome inkjet print-
ers.

•TIFF - Tag Image File Format.

•DPU3445 - Seiko DPU-3445 thermal printer format.

•BJC80 - For the TDS3000B and TDS3000C series only, supports Canon BJC-50 and BJC-80 color
printers.

•PNG - Portable Network Graphics.

Note: The fatest transfer seems to be RLE, with TIFF close behind (transfer times are less than one
minute at 9600 baud). BMP and BMPColor take a very long time (more than five minutes at 9600 baud).

2.2. pytek module 13

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

check_img_format(fmt)
Tests if a hardcopy image format is supported by the device. This simply sets the HARDCOPY:FORMAT
configuration value to the given format, and checks to see if it comes back as the same format.

Return True if the format is supported, False otherwise.

Resets the HARDCOPY:FORMAT back to where it was before returning.

See also:

screenshot

k = ‘trig’

seq = [’trigger’, ‘trig’]

pytek.TDS3xxx
alias of TDS3k

2.3 pytek.util module

class pytek.util.Configurator(name, get=None, set=None, doc=None)
Bases: object

The Configurator class creates helper objects that can be used to easily add methods to a class to configure
and query a particular setting on the device.

The easiest way to understand it is by example. First, a stripped down usage example:

class MyDevice(object):

__metaclass__ = Configurator.ConfigurableMeta

@Configurator.config("FOO:BAR")
def foobar(self, val):

return val.lower()

@foobar.setter
def foobar(self, val):

return val.upper()

@Configurator.config
def frobbed(self, val):

return (val == "ON")

@frobbed.setter
def frobbed(self, val):

return "ON" if val else "OFF"

And now, a more thorough example, expanded from this:

class MyDevice(object):

#Make sure it uses the ConfigurableMeta class as its metaclass,
so Configurator objects in the class definition get replaced with
appropriate methods.
__metaclass__ = Configurator.ConfigurableMeta

#Just some ordinary instance attributes, which we will be the target of

14 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

our setting configuring and querying.
__foobar = "TAZ"
__frobbed = "OFF"

#This is where the class actually implements sending command and queries.
The Configurator objects will call these methods.

def send_command(self, name, arg):
print "~~~> %s %s" % (name, arg)
if name == "FOO:BAR":

if not isinstance(arg, str):
raise TypeError()

if arg != arg.upper():
raise ValueError()

self.__foobar = arg

elif name == "FROBBED":
if arg not in ("ON", "OFF"):

raise ValueError()
self.__frobbed = arg

else:
raise KeyError()

def send_query(self, name):
print "???? %s" % name
if name == "FOO:BAR":

val = self.__foobar
elif name == "FROBBED":

val = self.__frobbed
else:

raise KeyError()
print " <<<< %s" % val
return val

#Now, define Configurators for each of our configurable settings.

#First, for the FOO:BAR setting, which will be accessed through a
function called ‘foobar‘.

@Configurator.config("FOO:BAR")
def foobar(self, val):

#Translate a value returned by ‘send_query‘ into a value to return
to the calling code.
return val.lower()

@foobar.setter
def foobar(self, val):

#Translate a value provided by the calling code into a value that
will be passed to ‘send_command‘.
return val.upper()

#Now, the FROBBED setting. We can use implicit named in the decorator
for this one.

2.3. pytek.util module 15

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

@Configurator.config
def frobbed(self, val):

’’’
+++
Querying returns True for "ON", and False for "OFF".
’’’
if val == "ON":

return True
if val == "OFF":

return False
raise ValueError(val)

@frobbed.setter
def frobbed(self, val):

’’’
+++
Valid values for configuring are True and False, or synonomously
"ON" and "OFF".
’’’
if val is True or val == "ON":

return "ON"
elif val is False or val == "OFF":

return "OFF"
raise ValueError()

With the above code, you could then do the following:

>>> dev = MyDevice()
>>> dev.foobar()
???? FOO:BAR

<<<< TAZ
’taz’
>>>
>>> dev.foobar(’razzle-dazzle’)
~~~> FOO:BAR RAZZLE-DAZZLE
>>>
>>> dev.foobar()
???? FOO:BAR

<<<< RAZZLE-DAZZLE
’razzle-dazzle’
>>>
>>>
>>> dev.frobbed()
???? FROBBED

<<<< OFF
False
>>> dev.frobbed(True)
~~~> FROBBED ON
>>> dev.frobbed()
???? FROBBED

<<<< ON
True
>>>
>>> dev.frobbed(False)
~~~> FROBBED OFF
>>> dev.frobbed()
???? FROBBED

<<<< OFF

16 Chapter 2. Documentation Contents:



PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

False
>>>
>>> dev.frobbed("ON")
~~~> FROBBED ON
>>> dev.frobbed()
???? FROBBED

<<<< ON
True
>>>
>>> dev.frobbed("???")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "src\pytek\util.py", line 125, in config

return self(device, val)
File "src\pytek\util.py", line 116, in __call__

self.configure(device, self.name, self.set(device, val))
File "temp.py", line 94, in frobbed

raise ValueError()
ValueError
>>>
>>>
>>> help(dev.foobar)
Help on method foobar in module pytek.util:

foobar(device, val=None) method of temp.MyDevice instance
Configures or queries the value of the ‘‘FOO:BAR‘‘ setting on the device.
If a value is given, then the setting is configured to the given value.
If the value is ‘None‘ (the default), then the setting is queried and the value
is returned.

>>>
>>> help(dev.frobbed)
Help on method frobbed in module pytek.util:

frobbed(device, val=None) method of temp.MyDevice instance
Configures or queries the value of the ‘‘FROBBED‘‘ setting on the device.
If a value is given, then the setting is configured to the given value.
If the value is ‘None‘ (the default), then the setting is queried and the value
is returned.

Querying returns True for "ON", and False for "OFF".

Valid values for configuring are True and False, or synonomously
"ON" and "OFF".

>>>
>>>

Parameters

• name – Specifies the name of the setting accessed by this object. Should be either a
callable object with a __name__ attribute, or a string. Strings will be used directly,
callables will be filtered through func_to_name.

• get (callable) – Optional: if given, passed to getter.

• set (callable) – Optional: if given, passed to setter.

2.3. pytek.util module 17

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

• doc (callable) – Optional: if given, used as the value of the doc attribute.

DEFAULT_DOCTSTR = ‘\nConfigures or queries the value of the ‘‘%(NAME)s‘‘ setting on the device.\nIf a value is given, then the setting is configured to the given value.\nIf the value is ‘None‘ (the default), then the setting is queried and the value\nis returned.\n’
A string used for default value of the doc attribute.

classmethod configure(device, name, val)
The final method in this object used to configure the setting, given the raw value to be sent to the device.
This is called by the __call__ method when appropriate.

This delegates to the send_command method of the given device.

Parameters

• device – The object on which the send_command will be invoked.

• name (str) – The name of the setting, usually the value of the name attribute. This is the
first arguments passed to send_command.

• val (str) – The raw value to configure the setting to. This is the second argument passed to
send_command.

classmethod query(device, name)
The final method in this object used to query the setting, returning the raw value from the device. This is
called by the __call__ method when appropriate.

This delegates to the send_query method of the given device.

Parameters

• device – The object on which the send_query will be invoked.

• name (str) – The name of the setting, usually the value of the name attribute. This is the
only arguments passed to send_query.

create_method(name)
Creates a method with the given name which can be installed in a class to delegate to this object’s
__call__ method. Sets the name of the method to name, and sets the docstr (__doc__) to the value
of this object’s doc attribute.

This is used by ConfigurableMeta to replace Configurator instances in the classes dictionary with
functions.

update_doc(func)
If the given function has a docstrig (__doc__), then this object’s doc attribute is updated with it. Other-
wise, it does nothing.

If func‘s docstr begins with ’+++’ alone on a line (any amount of leading and trailing whitespace), then
the remainder of the docstring is appended to the existing docstring, instead of replacing it.

classmethod func_to_name(func)
Derives a setting name from a function. The implementation here just uses the __name__ attribute of the
given func, and then uses str.upper() to make it all upper case.

This is used in __init__ if the name is a callable object.

classmethod boolean(arg, **kwargs)
A function decorator utility used to create a Configurator object which handles boolean settings. This
ends up delegating to set_boolean to actually set up the get and set filters based on responses from
the decorated function. All keyword arguments passed to this function are forwarded to set_boolean.

Similar to config, you can invoke this with implicit arguments or explicit arguments

18 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

For implicit arguments, you use this method as a function decorator directly, and the name to use is
derived from the decorated function with func_to_name. In this mode, you can’t specify any additional
arguments to pass to set_boolean.

For explicit arguments, you invoke this method directly, and it returns a function decorator. This allows
you to pass in a string as the first argument to specify the name to use, as well as additional keyword
arguments to be forwarded on to set_boolean.

classmethod config(arg)
A function decorator utility used to create a Configurator object and a function decorator to configure
its getter.

There are two way to invoke this, using implicit naming or explicit naming.

For implicit naming*, simply pass a function in directly, or use this function directly as a decorator. For
instance:

@Configurator.config
def foobar(self, val):

return val

The above code will create a new instance of cls (i.e., a Configurator object), and will pass the given func-
tion foobar in as the name parameter to the constructor. This in turn will use func_to_name to derive
a value for the instance’s name attribute from the function, by default (i.e., in the base Configurator
class), this is just the name of the function in all uppercase.

The function will also be passed to the instance’s getter method so that the foobar function becomes
the instance’s get filter.

This method will then return the Configurator object itself, not the wrapped function.

The alternative is explicit naming, in which this function is not used as a function wrapper, but invoked
to return a function wrapper. This gives you some added flexibility such as explitictly giving the name to
use for the Configurator object. Otherwise, the behavior is essentially the same.

For instance:

@Configurator.config(’BAZ:RUFFLE’)
def foobar(self, val):

return val

In this case, even though the wrapped function has the same name, "foobar", the created Configurator
object will have a name of "BAZ:RUFFLE". Other than that, the effects are the same.

In either case, when code like this appears in a class definition, it means that class will have an attribute
named foobar whose value is a Configurator object. If this class is using the ConfigurableMeta
metaclass, then this attribute will be replaced by a proper method generated by the Configurator’s
create_method method.

Also note that when the wrapped function is passed to the Configurator’s getter method, this method
will also pass it to update_doc, so if the wrapped function has a docstring, the Configurator object’s
doc attribute will be set accordingly. When the ConfigurableMeta gets a hold of it, the corresponding
method it adds to the class will receive this docstr from the Configurator object.

Note that for the remainder of the class definition, you can use the generated Configurator object. For
instance, you can follow up either of the above examples with the following:

@foobar.setter
def foobar(self, val):

if val is False:
return "OFF"

return "ON"

2.3. pytek.util module 19

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Since at this point the foobar symbol is actually a Configurator object, you can use its other decorators
such as setter and getter.

setter(func)
A function wrapper which sets this object’s set attribute to the given function and passes the function to
update_doc, then returns self.

The given function should take two arguments and return a string. The first argument will be the device on
which the send_command method is invoked, the second argument will be the client supplied value they
want to configure the setting to. The function should return a corresponding string which will actually be
sent to the device.

getter(func)
Like setter, but sets the object’s get attribute, used for querying the setting from the device.

This is a function wrapper which sets this object’s get attribute to the given function and passes the
function to update_doc, then returns self.

The given function should take two arguments and return a string. The first argument will be the device
on which the send_query method is invoked, the second argument will be the value returned from the
device by send_query. The function should return a corresponding value which will be returned to the
user to reflect the string returned by the device.

set_boolean(func, strict=False, default=False, nocase=False)
Configures the objects set and get filters based on a boolean setting.

A boolean setting means the setting has a set of possible values that are partitioned into two subsets: true
values and false values. On the python side, any value in these subsets corresponds to a value of True or
False, respectively.

This method sets up the object to filter values accordingly, so that querying the setting always returns
True or False, and configuring the setting can be done with True or False.

To do so, you have to pass in a function which can be evaluated immediately to get the set of true values
and the set of false values. The function should take a single boolean argument, if the argument value is
True, return the set of true values, otherwise, return the set of false values. The method will then create
appropriate set and get filters based on these values and the other parameters passed into this function (see
below).

The sets of true values and false values returned by func must be sequences. The first value in each
sequence will be used as the canonical value, meaning the ones that will actually be passed to the device
for the corresponding value. All other values in the sets will be acceptable responses from the device for
queries, and will result in the corresponding boolean value being returned to the caller.

See also:

boolean

Parameters

• func (callable) – This function will be called twice, immediately. Once with a value of
True, which should return a sequence of true values; and once with a value of False,
which should return a sequence of false values.

• strict (bool) – Optional, default is False. If True, then the generated set and get
filters will be strict about values. The set filter will only accept boolean values, and will
raise a TypeError otherwise. The get filter will only accept values from the true- and
false- value sets, and will raise a ValueError if the device returns anything else.

If the value of the parameter is False, the generated functions are not as strict, and
will not raise exceptions for unrecognized values (the way it handles unrecognized values

20 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

depends on the value of the default parameter). For the non-strict set filter, values are
simply evaluated as bools to choose which value to send.

• default (bool) – Optional, default value is False. This is only used if strict is False,
in which case it determines the default value when an unrecognized value is encountered.

• nocase (bool) – Optional, default value is False. If True, then values are considered
case-insensitive.

class ConfigurableMeta
Bases: type

This is a meta class that can be added to classes to more easily support the use of Configurator objects
as pseudo-methods.

The meta class extends the __new__ function to find all instances of Configurator in the class’s
dictionary, and replace it with a method created by the Configurator’s create_method method.

See the example code in the documentation for Configurator for an example.

x.__init__(...) initializes x; see help(type(x)) for signature

class pytek.util.Configurable
Bases: object

Just a simple base classes that uses ConfigurableMeta as the metaclass.

x.__init__(...) initializes x; see help(type(x)) for signature

2.4 pytek.version module

The version module provides version numbering for the entire PyTek package.

Page Contents

• Versioning
– Version Number

* Major Version
* Minor Version
* Patch Version
* Semantic Version
* Compatibility Summary
* Version Tag
* Development code
* Specifying a version number
* Interface Version

– Release Number
• Module Contents

2.4.1 Versioning

The PyTek packages uses a five part version number, plus an incremental release number. Either the version number
or the release number can be used to identify a released version of the code.

2.4. pytek.version module 21

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Version Number

The version number is a four part dotted number, with an optional tag on the end. Formally, a version number looks
like:

version number ::= <Major>.<minor>[.<patch>[.<semantic>]][-[x-]<tag>]

With each new released version of the code, exactly one of the four numbers will increase, and any numbers to its right
will reset to 0.

The easiest way to understand version numbers is from the perspective of someone who has written client code: i.e.,
code that makes use of a particular version of the PyTek library. From this perspective, the version number indicates
whether or not your client code can be expected to work with different versions of PyTek.

Major Version

The <Major> component is the major version number, and it describes backward compatibility. Going to a newer
version of PyTek, your code should continue to work as long as the major version doesn’t change.

The major version is changed only when something is removed from the PyTek public interface. For instance, if a
function is no longer supported, the major version number would have to increase, because client code which relied
on that function would no longer work.

The major version number can be accessed through the MAJOR member of this module.

Minor Version

The <minor> component is the minor version number, and it describes forward compatibility: Going to an older
version of PyTek, your code will continue to work as long as the minor version doesn’t change. (As before, your code
will also work for newer versions of PyTek, as long as the major version number hasn’t changed).

The minor version number is changed only when something is added to the PyTek public interface, for instance a
new function is added. Such a change maintains backward compatibility (as described above), but loses forward
compatibility, because any client code written again this new version may not work with an older version.

The minor version number can be accessed through the MINOR member of this module.

Patch Version

The <patch> component is the patch number, and it describes changes that do not affect compatibility, either
forwards or backwards. Your client code will continue to work with an older or newer version of PyTek as long as the
major and minor version numbers are the same, regardless of the patch number.

Patch changes are code changes that do not effect the interface, for instance bug-fixes or performance enhancements.
(although some bugs effect the interface and may therefore cause a higher version number to change).

The patch number can be accessed through the PATCH member of this module.

Semantic Version

The <semantic> component is the semantic version number, and it describes changes that do not affect how
the code runs at all. Ths generally means that documentation or other auxilliary files included in the package have
changed.

The semantic version number can be accessed through the SEMANTIC member of this module.

22 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Compatibility Summary

The following table summarizes compatibility for a hypothetical client application built against released PyTek version
M.n.p.s:

Component Compatibile (all) Incompatible (any)
Major M != M
minor >= n < n
patch any
semantic any

Version Tag

The <tag> component is the version tag, which is used only for non-released code. The tag has one of the following
forms:

version tag ::= << empty >>
dev[-<rev>]
blood-<branch>[-<rev>]

The first form is an empty tag, and is reserved for released (tagged) code only.

The second form, "dev", is for non-released code in the trunk. This is the main line of development. Dev code may
not be completely functional, and may even break the existing interface.

The third form, "blood-...", if for non-released code on a branch. The <branch> component of this form
should be the name of the branch. This is considered bleeding-edge code and may be highly unstable.

The optional <rev> component on both the second and third forms can be used to specify a specific revision for
comitted development code. This must be an globally unambiguous identifier for the revision, for instance the change
set id.

Development code

A non-empty version tag indicates a development version of the code. In this case, the four version numbers remain
unchanged until the code is released (in which case it is no longer development code, and the tag is changed to empty).

In other words, anytime you see a non-empty version tag, the version numbers shown refer to version from which
the development code is derived. This is done because it is not generally known until release what the next released
version number will be, since it is not known what types of changes will be included in it.

Specifying a version number

When specifying a version number, the major and minor version numbers should always be included. Additionally, all
non-zero version numbers should be included, and any version number to the left of a non-zero version number should
be included.

The tag should always be included in the version number, with the indicated hyphen separating the semantic version
number and the tag. The only exception is for released code, in which case the tag is empty and should be omitted,
along with the joining hyphen.

The optional "x-" shown preceding the tag in the version number is for compatibility with setup-tools so that versions
compare correctly.

The above rules will unambiguously describe any released version of the package.

2.4. pytek.version module 23

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Interface Version

Because any change to the public interface requires a change to either the major or minor version numbers, the interface
can be specified by a shortened two part version:

interface version ::= <Major>.<minor>

Note that this only applies for released versions: development versions may modify the public interface prior to
changing the version numbers.

Release Number

The release number is a simple integer which increments by one for every public release of the code. It does not
convey any information about compatibility with other versions, but it does provide a simple alternative to identifying
released versions.

The release number should be written with a leading "r" or "rel". For instance, the first release was "r1".

For release code, the release number may be used in place of the tag in the version number. This is optional because
the version number and the release number are synonymous. However, including them both in the version string is a
useful way to provide both pieces of information.

This alternative form of the version number is:

alt. version number ::= <Major>.<minor>[.<patch>[.<semantic>]]-r<release>

2.4.2 Module Contents

pytek.version.RELEASE = 5
The current Release Number.

pytek.version.MAJOR = 1
The current major version number.

pytek.version.MINOR = 1
The current minor version number.

pytek.version.PATCH = 1
The current patch version number.

pytek.version.SEMANTIC = 0
The current semantic version number.

pytek.version.TAG = ‘dev’
The current Version Tag.

Tag options are None, "dev", and "blood-"

•None means this is a released/tagged version.

•"dev" means this is a development version from the trunk/mainline.

•"blood-" means it’s on a branch. After the dash, fill in the name of the branch.

Dev and blood versions are still numbered for the previous version, because we may not know what the next
version will be until we’re finished.

24 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

pytek.version.COPYRIGHT = 2014
The copyright year for the PyTek code.

pytek.version.YEAR = 2014
The year in which the code was released.

See also:

•MONTH

•DAY

•datestr

pytek.version.MONTH = 4
The month in which the code was released. This is 1 indexed, in [1, 12].

See also:

•YEAR

•DAY

•datestr

•MONTH_NAMES

pytek.version.DAY = 13
The day of the month on which the code was released.

See also:

•YEAR

•MONTH

•datestr

pytek.version.MONTH_NAMES = [’Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, ‘Dec’]
A sequence giving the names of months, for use by datestr. Standard values are three-letter English-language
abbreviations for the months of the Gregorian calendar.

pytek.version.setuptools_string()
Returns the version string used by setuptools. This takes one of two forms:

setuptools_string ::= <Major>.<minor>.<patch>.<semantic>-x-<tag>
<Major>.<minor>.<patch>.<semantic>-r<release>

The first form is used for development code (i.e., when TAG is not None), and the second it used for released
code.

This is similar to string, except for the additional x- for development versions, which is used to ensure
that setuptools sorts versions correctly. (specifically, so that released versions are earler than development
versions which are derived from them).

pytek.version.tag_name()
Returns the tag name for the most recent release.

pytek.version.short_string()
Returns a string describing the Interface Version (i.e., <Major>.<minor>).

2.4. pytek.version module 25

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

pytek.version.string()
Like setuptools_string, except leaves out the x- for development versions.

pytek.version.datestr()
Returns a simple string giving the date of release. Format of this string is unspecified, it intended to be human
readable, not machine parsed. For machine processing, use the individual variables, as listed below.

See also:

•YEAR

•MONTH

•DAY

•MONTH_NAMES

2.5 LICENSE (GPLv3)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

26 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

2.5. LICENSE (GPLv3) 27

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of

28 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified

2.5. LICENSE (GPLv3) 29

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord

30 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates

2.5. LICENSE (GPLv3) 31

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further

32 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

2.5. LICENSE (GPLv3) 33

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner

34 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

2.5. LICENSE (GPLv3) 35

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

36 Chapter 2. Documentation Contents:

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

2.5. LICENSE (GPLv3) 37

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

38 Chapter 2. Documentation Contents:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

39

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

40 Chapter 3. Indices and tables

CHAPTER 4

Version

This documentation is for PyTek 1.1 (v1.1.1.0-x-dev).

41

https://bitbucket.org/bmearns/pytek/commits/tag/r5-v1.1.1.0

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

42 Chapter 4. Version

CHAPTER 5

Project Resources

• PyTek project homepage (bitbucket)

• PyTek on pypi

• Online documentation:

– Read The Docs (.org)

– Python Hosted (.org)

43

https://bitbucket.org/bmearns/pytek
https://pypi.python.org/pypi/pytek
http://pytek.readthedocs.org/
http://pythonhosted.org/pytek/

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

44 Chapter 5. Project Resources

CHAPTER 6

External References

• TDS3000, TDS3000B & TDS3000C Series Programmer Manual (Tektronix.com)

45

http://www.tek.com/oscilloscope/tds3014b-manual/tds3000-tds3000b-tds3000c-series

PyTek Documentation, Release 1.1 (v1.1.1.0-x-dev)

46 Chapter 6. External References

Python Module Index

p
pytek, 8
pytek.util, 14
pytek.version, 21

47

	Getting Started
	Documentation Contents:
	README
	pytek module
	pytek.util module
	pytek.version module
	LICENSE (GPLv3)

	Indices and tables
	Version
	Project Resources
	External References
	Python Module Index

