
V+ Language User's Guide, v17.x
This is a PDF/print version of the V+ Language User's Guide online documentation. A Table
of Contents is provided so that you can locate the desired topics. Because the V+ Language
User's Guide was designed for online viewing, there may be slight formatting anomalies in
the PDF/print version. Additionally, links to external documents will not work in the PDF
file.

For optimal viewing and navigation, please use the HTML version of this document, which
can be accessed from the Adept Document Library.

NOTE: Please see the V+ Release Notes, which are includedwith your V+ software, for a description of
any recent changes.

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 1

Copyright Notice
The information contained herein is the property of Adept Technology, Inc., and shall not be reproduced in
whole or in part without prior written approval of Adept Technology, Inc. The information herein is subject
to change without notice and should not be construed as a commitment by Adept Technology, Inc. The
documentation is periodically reviewed and revised.

Adept Technology, Inc., assumes no responsibility for any errors or omissions in the documentation.
Critical evaluation of the documentation by the user is welcomed. Your comments assist us in preparation
of future documentation. Please submit your comments to: techpubs@adept.com.

Copyright © 1994 - 2014 by Adept Technology, Inc.

Adept, the Adept logo, the Adept Technology logo, AdeptVision, AIM, Blox, Bloxview, FireBlox, Fireview,
Meta Controls, MetaControls, Metawire, Motivity, Soft Machines, and Visual Machines are registered

trademarks of Adept Technology, Inc.

Brain on Board is a registered trademark of Adept Technology, Inc. in Germany.

Adept ACE, ACE PackXpert, Adept SmartController CX, eV+, and V+
are trademarks of Adept Technology, Inc.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Created in the United States of America

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 3

mailto:techpubs@adept.com

Table Of Contents

V+ Language User's Guide Introduction 11
Introduction to the V+ Language User's Guide 12
Compatibility 12
Manual Overview 12
V+ Release Notes 13
Related Publications 13
Dangers, Warnings, Cautions, and Notes 14
Safety 15
Notations and Conventions 18
Output Control Commands 19
How Can I Get Help? 21

Programming V+ 23
Creating a Program 25
The SEE Editor Environments 27
Other V+ Programming Environments 30
Using the SEE Editor 31
V+ Program Types 33
Format of Programs 35
Executing Programs 37
Program Stacks 39
Flow of Program Execution 41
Subroutines 42
Scheduling of Program Execution Tasks 48
Default Task Configuration 55

The SEE Editor and Debugger 61
Basic SEE Editor Operations 63
Sample Editing Session 81
The Program Debugger 85

Data Types and Operators 97
Introduction 99
String Data Type 100

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 5

Real and Integer Data Types 102
Location Data Types 104
Arrays 105
Variable Classes 107
Operators 111
String Operator 115
Order of Evaluation 116

Program Control 117
Introduction 119
Unconditional Branch Instructions 120
Program Interrupt Instructions 122
Logical (Boolean) Expressions 128
Conditional Branching Instructions 129
Looping Structures 132
Summary of Program Control Keywords 136
Controlling Programs in Multiple CPU Systems 139

Functions 141
Using Functions 143
String-Related Functions 144
Location, Motion, and External Encoder Functions 146
Numeric Value Functions 147
Logical Functions 149
System Control Functions 150

Switches and Parameters 153
Introduction 155
Parameters 156
Switches 159

Motion Control Operations 163
Introduction 165
Location Variables 166
Creating and Altering Location Variables 173
Motion Control Instructions 180

V+Language User's Guide, v17.0

Page 6

Tool Transformations 188
Summary of Motion Keywords 190

Input/Output Operations 199
Terminal I/O 201
Digital I/O 205
Pendant I/O 207
Analog I/O 208
Serial and Disk I/O Basics 210
Disk I/O 214
Advanced Disk Operations 219
Serial Line I/O 223
DDCMP Communication Protocol 227
Kermit Communication Protocol 231
DeviceNet 237
Summary of I/O Operations 239

Graphics Programming 243
Creating Windows 245
Monitoring Events 248
Building a Menu Structure 250
Creating Buttons 253
Creating a Slide Bar 255
Graphics Programming Considerations 257
Communicating With the System Windows 259
Additional Graphics Instructions 261

Programming the MCP 263
Introduction 265
Writing to the Pendant Display 266
Detecting User Input 267
Controlling the Pendant 273
Auto-Starting Programs With the MCP 277
Programming Example: MCP Menu 279

Programming the Adept T1/T2 Pendant 283

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 7

Introduction 285
Writing to the Pendant Display 286
Detecting User Input 287
Controlling the Pendant 295
Auto-Starting Programs With the Pendant 299
Programming Example: Pendant Menu 301

Conveyor Tracking 305
Introduction to Conveyor Tracking 307
Installation 308
Calibration 309
Basic Programming Concepts 310
Conveyor-Tracking Programming 317
Sample Programs 319

Multiprocessor Systems 321
Introduction 323
Requirements for Motion Systems 324
Installing Processor Boards 326
Customizing Processor Workloads 327
Using Multiple V+ Systems 328
Restrictions With Multiprocessor Systems 333

Example V+ Programs 335
Introduction 337
Pick and Place 338
Menu Program 342
Teaching Locations With the MCP 344
Defining a Tool Transformation 346

External Encoder Device 349
Introduction 351
Parameters 352
Device Setup 353
Reading Device Data 354

V+Language User's Guide, v17.0

Page 8

Character Sets 357

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 9

V+ Language User's Guide Introduction
The following topics are described in this chapter:

Introduction to the V+ Language User's Guide 12
Compatibility 12
Manual Overview 12
V+ Release Notes 13
Related Publications 13
Dangers, Warnings, Cautions, and Notes 14
Safety 15
Notations and Conventions 18
Output Control Commands 19
How Can I Get Help? 21

V+ Language User's Guide Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 11

Introduction to the V+ Language User's Guide
V+ is a computer-based control system and programming language designed specifically for
use with Adept Technology industrial robots, vision systems, andmotion-control systems.

As a real-time system, continuous trajectory computation by V+ permits complex motions to
be executed quickly, with efficient use of system memory and reduction in overall system
complexity. The V+ system continuously generates robot-control commands and can
concurrently interact with an operator, permitting on-line program generation and
modification.

V+ provides all the functionality of modern high-level programming languages, including:

l Callable subroutines

l Control structures

l Multitasking environment

l Recursive, reentrant program execution

Compatibility
This manual is for use with V+ v17.0 and earlier. This manual covers the basic V+ system. If
your system is equippedwith optional vision, see the AdeptVision Reference Guide and the
AdeptVision User's Guide, or the AdeptSight User's Guide and the AdeptSight Reference
Guide, for details on your vision system.

Manual Overview
This manual details the concepts and strategies of programming in V+. Material covered
includes:

l Functional overview of V+

l A description of the data types used in V+

l A description of the system parameters and switches

l Basic programming of V+ systems

l Editing and debugging V+ programs

l Communication with peripheral devices

l Communication with the manual control pendant

l Conveyor tracking feature

l Example programs

l Using tool transformations

Introduction to the V+ Language User's Guide

V+Language User's Guide, v17.0

Page 12

l Requirements for the system terminal

l Accessing external encoders

Many V+ keywords are shown in abbreviated form in this user guide. See the V+ Language
Reference Guide for complete details on all V+ keywords.

V+ Release Notes
For information on new features or enhanced keywords listed by V+ software release, select
a link below:

V+ 14.x Release Notes

V+ 15.x Release Notes

V+ 16.x Release Notes

V+ 17.x Release Notes

Related Publications
In addition to this manual, have the following publications handy as you set up and program
your Adept automation system.

Manual Material Covered

V+ Language Reference Guide This manual provides a complete description of
the keywords used in the basic V+ system.

V+ Operating System User's
Guide

This manual provides a description of the V+
operating system. Loading, storing, and
executing programs are covered in this manual.

V+ Operating System Reference
Guide

This manual provides descriptions of the V+
operating system commands (known asmonitor
commands).

Adept ACE User's Guide This manual describes the Adept ACE graphical
user interface, which is used to program your
Adept motion system.

AdeptSight User's Guide This manual describes concepts and strategies
for programming the AdeptSight vision system.

AdeptSight Reference Guide This manual provides descriptions of the
commands available with systems that include

Related Publications

V+ Release Notes

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 13

Manual Material Covered

the optional AdeptSight vision system.

AdeptVision User's Guide This manual describes concepts and strategies
for programming the AdeptVision system.

AdeptVision Reference Guide This manual provides descriptions of the
keywords available with systems that include
the optional AdeptVision system.

Instructions for Adept Utility
Programs

Adept provides a series of programs for
configuring and calibrating various features of
your Adept system. The use of these utility
programs is described in this manual.

Adept SmartController User's
Guide

Adept MV Controller User's Guide

These manuals detail the installation,
configuration, andmaintenance of your Adept
controller. The controller must be set up and
configured before control programs will execute
properly.

Adept SmartMotion Developer's
Guide

Adept SmartMotion Installation
Guide

AdeptMotion VME Developer's
Guide

These manuals describe the installation,
configuration, and tuning of an Adept motion
system.

Adept T1 Pendant User's Guide

Adept T2 Pendant User’s Guide

These manuals describe the basic use of the
T1/T2 manual control pendant.

NOTE: The MCP is described in the Adept
SmartController User's Guide or Adept MV
Controller User's Guide.

Dangers, Warnings, Cautions, and Notes
There are six levels of special alert notation that may be used in this manual. In descending
order of importance, they are:

Dangers, Warnings, Cautions, and Notes

V+Language User's Guide, v17.0

Page 14

DANGER: This indicates an imminently hazardous electrical situation
which, if not avoided, will result in death or serious injury.

DANGER: This indicates an imminently hazardous situation which, if
not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous electrical situation
which, if not avoided, could result in serious injury or major damage to
the equipment.

WARNING: This indicates a potentially hazardous situation which, if
not avoided, could result in serious injury or major damage to the
equipment.

CAUTION: This indicates a situation which, if not avoided, could result
in minor injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a point or procedure, or
gives a tip for easier operation.

Safety
The following sections discuss the safety measures you must take while operating an Adept
robot.

Reading and Training for System Users

Adept robot systems include computer-controlledmechanisms that are capable of moving at
high speeds and exerting considerable force. Like all robot systems and industrial equipment,
they must be treated with respect by the system user.

Safety

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 15

Impacts and Trapping Points

Adept recommends that you read the American National Standard for Industrial Robot
Systems-Safety Requirements, published by the Robotic Industries Association in
conjunction with the American National Standards Institute. The publication, ANSI/RIA
R15.06-1986, contains guidelines for robot system installation, safeguarding, maintenance,
testing, startup, and operator training. The document is available from the American National
Standards Institute, 1430 Broadway, New York, NY 10018.

System Safeguards

Safeguards should be an integral part of robot workcell design, installation, operator training,
and operating procedures. Adept robot systems have various communication features to aid
you in constructing system safeguards. These include remote emergency stop circuitry and
digital input and output lines.

Computer-Controlled Robots

Adept robots are computer controlled, and the program that is running the robot may cause it
to move at times or along paths you may not anticipate. Your system should be equipped
with indicator lights that tell operators when the system is active. The controller interface
panel (CIP) provides these lights. When the White HIGH POWER enable light on the CIP is
illuminated, do not enter the workcell because the robot may move unexpectedly.

Safety

V+Language User's Guide, v17.0

Page 16

High Power Enable Light

Manually Controlled Robots

Adept robots can also be controlledmanually when the white HIGH POWER enable light on
the front of the controller is illuminated. When this light is lit, robot motion can be initiated
from the terminal or the pendant (see Programming the MCP on page 263 or Programming
the Adept T1 Pendant for more information). Before you enter the workspace, turn the
keyswitch to manual mode and take the key with you. This will prevent anyone else from
initiating unexpected robot motions from the terminal keyboard.

Other Computer-Controlled Devices

In addition, these systems can be programmed to control equipment or devices other than
the robot. As with the robot, the program controlling these devices may cause them to
operate at times not anticipated by personnel. Make sure that safeguards are in place to
prevent personnel from entering the workcell.

WARNING: Entering the robot workcell when the white HIGH POWER
enable light is illuminated can result in severe injury.

Adept Technology recommends the use of additional safety features such as light curtains,
safety gates, or safety floor mats to prevent entry to the workcell while HIGH POWER is
enabled. These devices may be connected using the robot's remote emergency stop circuitry
(see the Adept MV Controller User's Guide or Adept SmartController User's Guide).

Safety

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 17

Notations and Conventions
This section describes various notations used throughout this manual and conventions
observed by the V+ system.

Keyboard Keys

The system keyboard is the primary input device for controlling the V+ system. Graphics-
based systems use a PC-style keyboard and high-resolution graphics monitor.

NOTE: The word terminal is used throughout this manual to refer either to a computer
terminal or to the combination of a graphics monitor and a PC-style keyboard.

Input typed at the terminal must generally be terminated by pressing the Enter or Return
key. (These keys are functionally identical and are often abbreviated with the symbol ↵.)

S+F9 means to hold down the Shift key while pressing the F9 key.

Ctrl+Rmeans to hold down the Ctrl key while pressing the R key.

The keys in the row across the top of the keyboard are referred to as function keys. The V+
SEE program editor and the V+ program debugger use some of them for special functions.

NOTE: The Delete and Backspace keys can always be used to erase the last character
typed. The Delete options associated with the F14 key on aWyse terminal are used only
by the SEE editor and the program debugger.

Uppercase and Lowercase Letters

You will notice that a mixture of uppercase (capital) and lowercase letters is used throughout
this manual when V+ operations are presented. V+ keywords are shown in uppercase letters.
Parameters to keywords are shown in lowercase. Many V+ keywords have optional
parameters and/or elements. Required keyword elements and parameters are shown in
boldface type. Optional keyword elements and parameters are shown in normal type. If there
is a comma following an optional parameter, the commamust be retained if the parameter is
omitted, unless nothing follows. For example, the BASE operation (command or instruction)
has the form

BASE dx, dy, dz, rotation

where all of the parameters are optional.

To specify only a 300-millimeter change in the Z direction, the operation can be entered in
any of the followingways:

BASE 0,0,300,0
BASE,,300,
BASE,,300

Notations and Conventions

V+Language User's Guide, v17.0

Page 18

Note that the commas preceding the number 300 must be present to correctly relate the
number with a Z-direction change.

Numeric Arguments

All numbers in this manual are decimal unless otherwise noted. Binary numbers are shown
as ^B, octal numbers as ^, and hexadecimal numbers as ^H.

Several types of numeric arguments can appear in commands and instructions. For each
type of argument, the value can generally be specified by a numeric constant, a variable
name, or a mathematical expression.

There are some restrictions on the numeric values that are accepted by V+. The following
rules determine how a value will be interpreted in the various situations described.

1. Distances are used to define locations to which the robot is to move. The unit of
measure for distances is the millimeter, although units are never explicitly entered for
any value. Values entered for distances can be positive or negative.1

2. Angles in degrees are entered to define andmodify orientations the robot is to
assume at named locations, and to describe angular positions of robot joints. Angle
values can be positive or negative, with their magnitudes limited by 180 degrees or
360 degrees depending on the usage.

3. Joint numbers are integers from one up to the number of joints in the robot,
including the hand if a servo-controlled hand is operational. For Adept SCARA robots,
joint numbering starts with the rotation about the base, referred to as joint 1. For
mechanisms controlled by AdeptMotion, see the device module documentation for
joint numbering.

4. Signal numbers are used to identify digital (on/off) signals. They are always
considered as integer values with magnitudes in the ranges 1 to 8, 33 to 512, 1001
to 1012, 1032 to 1512, 2001 to 2512, or 3001 to 3004. A negative signal number
indicates an off state.

5. Integer arguments can be satisfied with real values (that is, values with integer and
fractional parts). When an integer is required, the value is rounded and the resulting
integer is used.

6. Arguments indicated as being scalar variables can be satisfied with a real value
(that is, one with integer and fractional parts) except where noted. Scalars can range
from -9.22*1018 to 9.22*1018 in value (displayed as -9.22E18 and 9.22E18).2

1See the IPS instruction for a special case of specifying robot speed in inches per second.

2Numbers specifically declared to be double-precision values can range from -1.8*10-307 to
1.8*10-307.

Output Control Commands

Output Control Commands

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 19

The following special commands control output to the system terminal. For all these
commands, which are called control characters, the control (Ctrl) key on the terminal is held
down while a letter key is pressed. The letter key can be typedwith or without the Shift key.
Unlike other V+ commands, control characters do not need to be completed by pressing the
Enter or Return key.

Ctrl+C Aborts some commands (for example, DIRECTORY, LISTP, I/O).

If any input has been entered at the keyboard since the current
commandwas initiated, then the first Ctrl+C cancels that pending input
and the second Ctrl+C aborts the current command.

Ctrl+C cannot be used to abort program execution. Enter the ABORT or
PANIC command at the keyboard to stop the robot program or press one
of the panic buttons to turn off Robot Power.

Ctrl+S Stops output to the monitor or terminal so it can be reviewed. The
operation producing the output is stopped until output is resumed by
Ctrl+Q.

Ctrl+Q Resumes output to the monitor or terminal after it has been stoppedwith
a Ctrl+S.

Ctrl+O Suspends output to the ASCII terminal even though the current
operation continues (that is, the output is lost). This is useful for
disregarding a portion of a lengthy output. Another Ctrl+Owill cause the
output to be displayed again.

NOTE: This output control commandworks only with the ASCII
terminal.

The Ctrl+O condition is canceled automatically when the current
operation completes, or if there is an input request from an executing
program.

Ctrl+W Slows output to the monitor or terminal so it can be readmore easily. A
second Ctrl+W will terminate this mode and restore normal display
speed.

The Ctrl+W condition is canceled automatically when the current
operation completes or if there is an input request from an executing
program.

Ctrl+Z If typed in response to a program prompt, terminates program execution
with the message *Unexpected end of file*. This is sometimes useful for
aborting a program.

Ctrl+U Cancels the current input line. Useful if you notice an error earlier in the
line or you want to ignore the current input line for some other reason.

Output Control Commands

V+Language User's Guide, v17.0

Page 20

How Can I Get Help?
For details on getting assistance with your Adept software or hardware, you can access the following
information sources on the Adept corporate website:

l For Contact information: http://www.adept.com/contact/americas

l For Product Support information: http://www.adept.com/support/service-and-support/main

l For user discussions, support, and programming examples: http://www.adept.com/forum/

l For further information about Adept Technology, Inc.: http://www.adept.com

How Can I Get Help?

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 21

http://www.adept.com/contact/americas
http://www.adept.com/support/service-and-support/main
http://www.adept.com/forum/
http://www.adept.com/

Programming V+
The following topics are described in this chapter:

Creating a Program 25
The SEE Editor Environments 27
Other V+ Programming Environments 30
Using the SEE Editor 31
V+ Program Types 33
Format of Programs 35
Executing Programs 37
Program Stacks 39
Flow of Program Execution 41
Subroutines 42
Scheduling of Program Execution Tasks 48
Default Task Configuration 55

Programming V+

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 23

Programming V+

V+Language User's Guide, v17.0

Page 24

Creating a Program
This section provides a brief overview of creating programs with the SEE editor. For complete
details on the SEE editor and program debugger, see The SEE Editor and Debugger on page
61.

NOTE: See the AdeptWindows User's Guide for instructions on using AdeptWindows PC.

The editor is accessed from the system prompt with the command:

SEE prog_name

If prog_name is already resident in system memory, it is opened for editing. If prog_name is
not currently resident in system memory, the SEE editor opens and the bottom line asks:

"prog_name" doesn't exist. Create it? Y/N.

If you answer Y, the program is created, the SEE editor cursor moves to the top of the editing
window, and you can begin editing the program. If you answer N, you are returned to the
system prompt.

If prog_name is omitted, the last program edited is opened for editing.1

Program and Variable Name Requirements

Program and variable names can have up to 15 characters. Namesmust begin with a letter
and can be followed by any sequence of letters, numbers, periods, and underline characters.
Letters used in program names can be entered in either lowercase or uppercase. V+ always
displays program and variable names in lowercase.

The Editing Window

When the SEE editor is open, it occupies the Monitor window on the monitor. If the Monitor
window is not open, click on the adept logo in the upper left corner of the monitor and select
Monitor from the displayed list.

Once the SEE editor is open, it functions nearly uniformly regardless of the type of Adept
system on which it is used.

For graphics-based systems, see the V+ Operating System User's Guide and see the
AdeptWindows User's Guide for information on using AdeptWindows PC.

Editing Modes

The SEE editor has three editingmodes: command, insert, and replace. The status line
shows the mode the editor is currently in (see The SEE Editor Window on page 28).

The editor begins in commandmode. In commandmode, you do not enter actual program
code but enter the special editor commands listed in Table 3-6, "Cursor Movement in
CommandMode" and Table 3-7, "SEE Editor CommandMode Operations." You enter actual

Creating a Program

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 25

lines of code in insert or replace mode. In insert mode, the characters you type are placed to
the left of the cursor, and existing code is pushed to the right. In replace mode, the
characters you enter replace the character that is under the cursor.

Changing Editing Modes

To enter commandmode press the Edit (F11) key or Esc key.

To enter insert mode:

l Press the Insert key (the key's LEDmust be off)

l Press the 0/Ins key (the Num Lock LEDmust be off)

l Press the i key (the editor must be in Commandmode)

To enter replace mode:

l Press the Replace (F12) key

l Press the r key (the editor must be in Commandmode)

1Unless an executing program has failed to complete normally, in which case the failed
program will be opened.

Creating a Program

V+Language User's Guide, v17.0

Page 26

The SEE Editor Environments
The SEE editor displays on the monitor of older terminal-based systems, or in a "monitor"
window within a PC graphics-based system (such as AdeptWindows). The majority of the
functions are identical, regardless of the environment in which the SEE editor runs. Note
that Adept DeskTop and Adept ACE provide enhanced program editors that include color-
coding, syntax help, and other features that are not available in the SEE editor. For details,
see the Adept DeskTop User's Guide and the Adept ACE User's Guide.

Using Text Editors Other Than the SEE Editor

Programs can be written using any editor that creates a DOS ASCII text file. These programs
can then be stored on a V+ compatible disk (see the FORMAT command in the V+ Language
Reference Guide), LOADed into system memory, and opened by the SEE editor. When the
program is loaded, a syntax check is made. Programs that fail the syntax check will be
marked as nonexecutable. These programs can be opened in the SEE editor and any
nonconforming lines are markedwith a question mark. Once these lines have been
corrected, the program can be executed.

In order for program files created outside of the SEE editor to LOAD correctly, the following
requirements must be met:

l Each program must begin with a .PROGRAM() line.

l Each program must endwith an .END line (this line is automatically added by the SEE
editor but must be explicitly added by other editors).

l Each program line must be terminatedwith a carriage-return/line-feed (ASCII
13/ASCII 10).

l The end of the file (not the end of each program)must be markedwith a Control-Z
character (ASCII 27).

l Lines that contain only a line-feed (ASCII 10) are ignored.

l Although fonts and spacing within files are not significant to the Adept system, in
order to have the text look the same as it would in one of the Adept environments, a
fixed-space font (e.g., Courier) and 8-space tab settings should be used.

The features of the SEE editor window are shown in the figure below.

The SEE Editor Environments

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 27

The SEE Editor Window

The SEE Editor Window

The items in the following numbered list refer to the numbers in The SEE Editor Window.

1. On ASCII terminals, this area shows the row and column of the cursor location.

2. This line displays the program name and the program's parameter list. The program
name cannot be edited, but program parameters can be added between the
parentheses (see Special Editing Situations on page 69 for a description of a special
case where you cannot edit this list).

3. The typing cursor.

l In insert mode, characters entered at the keyboard are entered at the cursor
position. Existing characters to the right of the cursor are pushed right.

l In replace mode, the character under the cursor is replaced.

l In commandmode, Copy, Paste, and similar commands take place at the cursor
location.

The SEE Editor Environments

V+Language User's Guide, v17.0

Page 28

With a graphics-based system, clicking with the pointer device sets the typing
cursor at the pointer location. (The cursor cannot be set lower than the last line
in a program.) Also, the scroll bars on the monitor window can be used to scroll
through the program.

4. Shows the name of the program currently being edited. If the program is open in
read-only mode, /R is appended to the name.1

5. Shows the program step at which the cursor is positioned and the total number of
lines in the program.

6. Shows the current editor mode.

7. Shows the number of lines in the copy (attach) buffer. Whenever a program line is
Cut or Copied, it is placed in the copy buffer. When lines are pasted, they are removed
from the copy buffer and pasted in the reverse order in which they were copied. The
F9 and F10 keys are used for copying and pasting program lines.

8. This is the message line. It displays various messages and prompts.

1Programs are open in read-only mode when /R is appended to the SEE commandwhen the
program is opened or when a currently executing program is open.

The SEE Editor Environments

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 29

Other V+ Programming Environments
In addition to the SEE editor, which was introduced in the previous section, this section
describes other programming environments that can be used to create V+ programs.

AdeptWindows
The SEE editor displays on a "monitor" window within the AdeptWindows PC application
program. For details, see the AdeptWindows User's Guide.

Adept ACE
The Adept ACE Program Editor is an online, interactive editor for V+ andMicroV+ programs.
The Program Editor performs syntax checking and formatting while you are programming. It
also provides debugging functionality. For details on using the Adept ACE interface, see the
Adept ACE User's Guide.

Adept DeskTop
The Adept DeskTop Program Editor is an online, interactive editor for V+ andMicroV+
programs. The Program Editor performs syntax checking and formatting while you are
programming. It also provides debugging functionality. For details on using the Adept
DeskTop interface, see the Adept DeskTop User's Guide.

Text Editor
V+ programs can be written andmodified offline using any text-editing program (e.g.,
Notepad,WordPad, Emacs, UltraEdit) that creates an ASCII text file. However, no syntax
checking is done until the program is loaded into the Adept system.

For more information on creating V+ programs using a text editor, see Creating a Program on
page 25 and The SEE Editor Environments on page 27.

Other V+ Programming Environments

V+Language User's Guide, v17.0

Page 30

Using the SEE Editor
The following sections give a brief overview on using the SEE editor. For more details, see
The SEE Editor and Debugger on page 61.

Entering New Lines of Code

Once you have opened the editor andmoved to insert or replace mode, you can begin
entering lines of code. Each complete line of code needs to be terminatedwith a carriage
return. If a line of code exceeds the monitor line width, the editor wraps the code to the next
line and temporarily overwrites the next line. Do not enter a carriage return until you have
typed the complete line of code.

When you press the return key after completing a line of code, the SEE editor automatically
checks the syntax of the line. Keywords are checked for proper spelling, instructions are
checked for required arguments, parentheses are checked for proper closing, and the line is
checked tomake sure the V+ system is able to execute the line of code. (Remember, this
check is solely for syntax, not for program logic.)

If the program line fails the syntax check, the system places a question mark (?) at the
beginning of the line (and usually displays a message indicating the problem). You do not
have to correct the line immediately, and you can exit the editor with uncorrected program
lines. You will not, however, be able to execute the program.

Exiting the Editor

To complete an editing session and exit the editor, press the Exit (F4) key on a graphics-
based system.

If your program is executable, you are returned to the system prompt without any further
messages.

If any lines of code in the program have failed the syntax check, the status line displays the
message:

Program not executable Press RETURN to continue.

Pressing ↵ returns you to the system prompt.

You may also get the message:

Control structure error at step xx

This indicates that a control structure (described in Program Control on page 117) has not
been properly ended. Pressing ↵returns you to the system prompt, but the program you
have been editing will not be executable.

You cannot exit the editor with lines in the copy buffer. To discard unwanted lines:

Using the SEE Editor

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 31

1. Put the editor in commandmode.

2. Enter the number of lines to discard and press Esc and then k.

Saving a Program

When you exit the SEE editor, changes to the program you were working on are saved only in
system memory. To permanently save a program to disk, use one of the STORE commands
described in the V+ Operating System Reference Guide.

Using the SEE Editor

V+Language User's Guide, v17.0

Page 32

V+ Program Types
There are two types of V+ programs:

l Executable Programs

l Command Programs

Executable programs are described in this section. Command programs are similar to MS-
DOS batch programs or UNIX scripts, and they are described in the V+ Operating System
User's Guide.

Executable Programs

There are two classes of executable programs: robot control programs and general programs.

Robot Control Programs

A robot control program is a V+ program that directly controls a robot or motion device. It
can contain any of the V+ program instructions.

Robot control programs are usually executed by program task #0, but they can be executed
by any of the program tasks available in the V+ system. Task #0 automatically attaches the
robot when program execution begins. If a robot control program is executed by a task other
than #0, however, the program must explicitly attach the robot (program tasks are
described in detail later in this chapter).

For normal execution of a robot control program, the system switch DRY.RUN must be
disabled and the robot must be attached by the robot control program. Then, any robot-
related error will stop execution of the program (unless an error-recovery program has been
established [see REACTE in the V+ Language Reference Guide]).1

Exclusive Control of a Robot

l Whenever a robot is attached by an active task, no other task can attach that robot or
execute instructions that affect it, except for the REACTI and BRAKE instructions. For
details, see Program Interrupt Instructions on page 122.

l When the robot control task stops execution for any reason, the robot is detached
until the task resumes, at which time the task automatically attempts to reattach the
robot. If another task has attached the robot in the meantime, the first task cannot
be resumed.

l Task #0 always attempts to attach robot #1 when program execution begins. No
other tasks can successfully attach any robot unless an explicit ATTACH instruction is
executed.

l Since task #0 attempts to attach robot #1, that task cannot be executed after
another task has attached that robot. If you want another task to control the robot

V+ Program Types

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 33

and you want to execute task #0, you must follow this sequence of events:

l Start task #0.

l Have task #0 DETACH the robot.

l Start the task that will control the robot. (The program executing as task #0
can start up another task.)

l Have that task ATTACH the robot.

For more information on the ATTACH andDETACH instructions, see CreatingWindows
on page 245.

l Note that robots are attached even in DRY.RUN mode. In this case, motion commands
issued by the task are ignored, and no other task can access the robot.

General Programs

A general program is any program that does not control a robot. With a robot system, there
can be one or more programs executing concurrently with the robot control program. For
example, an additional program might monitor and control external processes via the
external digital signal lines and analog signal lines.

General programs can also communicate with the robot control program (and each other)
through global variables and software signals. (General programs can also have a direct effect
on the robot motion with the BRAKE instruction, although that practice is not
recommended.)

With the exception of the BRAKE instruction, a general program cannot execute any
instruction that affects the robot motion. Also, the BASE or TOOL settings cannot be changed
by general programs.

Except for the robot, general-purpose control programs can access all the other features of
the Adept system, including the AdeptVision option (if it is present in the system), the
(internal and external) digital signal lines, the USER serial lines, the system terminal, the disk
drives, and the manual control pendant.

Note that except for the exclusion of certain instructions, general-purpose control programs
are just like robot control programs. Thus, the term program is used in the remainder of this
chapter when the material applies to either type of control program.

1If the system is in DRY.RUN mode while a robot control program is executing, robot motion
instructions are ignored. Also, if the robot is detached from the program, robot-related errors
do not affect program execution.

V+ Program Types

V+Language User's Guide, v17.0

Page 34

Format of Programs
This section presents the format that V+ programsmust follow. The format of the individual
lines is described, followed by the overall organization of programs. This information applies
to all programs regardless of their type or intended use.

Program Lines

Each line or step of a program is interpreted by the V+ system as a program instruction. The
general format of a V+ program step is:

step_number step_label operation ;Comment

Each item is optional and is described in detail below.

Step
Number

Each step within a program is automatically assigned a step number.
Steps are numbered consecutively, and the numbers are automatically
adjusted whenever steps are inserted or deleted. Although you will never
enter step numbers into programs, you will see them displayed by the
V+ system in several situations.

Step Label Because step numbers change as a program evolves, they are not useful
for identifying steps for program-controlled branching. Therefore,
program steps can contain a step label. A step label is a programmer-
specified integer (0 to 65535) that is placed at the start of a program line
to be referenced elsewhere in the program (usedwith GOTO
statements).

Operation The operation portion of each stepmust be a valid V+ language keyword
andmay contain parameters and additional keywords. The V+ Language
Reference Guide gives detailed descriptions of all the keywords
recognized by V+. Other instructions may be recognized if your system
includes optional features such as AdeptVision.

Comment The semicolon character is used to indicate that the remainder of a
program line is comment information to be ignored by V+.

When all the elements of a program step are omitted, a blank line
results. Blank program lines are acceptable in V+ programs. Blank lines
are often useful to space out program steps to make them easier to read.

When only the comment element of a program step is present, the step
is called a comment line. Comments are useful to describe what the
program does and how it interacts with other programs. Use comments
to describe and explain the intent of the sections of the programs. Such
internal documentation will make it easier to modify and debug
programs.

Format of Programs

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 35

The example programs in this manual, and the utility programs provided by Adept with your
system, provide examples of programming format and style. Notice that Adept programs
contain numerous comments and blank lines.

When program lines are entered, extra spaces can be entered between any elements in the
line. The V+ editors add or delete spaces in program lines to make them conform with the
standard spacing. The editors also automatically format the lines to uppercase for all
keywords and lowercase for all user-defined names.

When you complete a program line (by entering a carriage return, moving off a line, or exiting
the editor), the editor checks the syntax of the line. If the line cannot be executed, an error
message is output.

Certain control structure errors are not checked until you exit from the editor (or change to
editing a different program). If an error is detected at that time, an error message is displayed
and the program is marked as not executable. (Error checking stops at that point in the
program. Thus, only one control structure error at a time can be detected.)

Program Organization

The first step of every V+ program must be a .PROGRAM instruction. This instruction names
the program, defines any arguments it receives or returns, and has the format:

.PROGRAM program_name(parameter_list) ;Comment

The program name is required, but the parameter list and comment are optional.

After the .PROGRAM line, there are only two restrictions on the order of other instructions in a
program.

l AUTO, LOCAL, or GLOBAL instructions must precede any executable program
instructions. Only comment lines, blank lines, and other AUTO, LOCAL, or GLOBAL
instructions are permitted between the .PROGRAM step and an AUTO, LOCAL, or
GLOBAL instruction.

l The end of a program is marked by a line beginning with .END. The V+ editors
automatically add (but do not display) this line at the end of a program.1

Program Variables

V+ uses three classes of variables: GLOBAL, LOCAL, and AUTO. These are described in detail
in Variable Classes on page 107.

1The .PROGRAM and .END lines are automatically entered by the Adept-supplied V+ program
editors. If you use another text editor for transfer to a V+ system, you MUST enter these two
lines. In general, any editor that produces unformatted ASCII files can be used for
programming. See the FORMAT command for details on creating floppy disks compatible with
other operating systems.

Format of Programs

V+Language User's Guide, v17.0

Page 36

Executing Programs
When V+ is actively following the instructions in a program, it is said to be executing that
program.

The standard V+ system provides for simultaneous execution of up to seven different
programs-for example, a robot control program and up to six additional programs. The
optional V+ extensions software provides for simultaneous execution of up to 28 programs.
Execution of each program is administered as a separate program task by the system.

The way program execution is started depends upon the program task to be used and the
type of program to be executed. The following sections describe program execution in detail.

Selecting a Program Task

Task # 0 has the highest priority in the (standard) task configuration. Thus, this task is
normally used for the primary application program. For example, with a robot system, task
#0 is normally used to execute the robot control program.

NOTE:As a convenience, when execution of task #0 begins, the task always
automatically selects robot #1 and attaches the robot.

Execution of task #0 is normally started by using the EXECUTE monitor command, or by
starting the program from the manual control pendant.

While task #0 is executing, the V+ monitor does not display its normal dot prompt. An
asterisk (*) prompt is used instead to remind the user that task #0 is executing. The asterisk
prompt does not appear automatically, however. The prompt is displayedwhenever there is
input to the V+ system monitor from the system terminal.

NOTE:Even though the system prompt is not displayedwhile program task #0 is
executing, V+ monitor commands can be entered at any time that a program is not
waiting for input from the terminal.

The ABORTmonitor command or program instruction stops task #0 after the current robot
motion completes. The CYCLE.ENDmonitor command or program instruction can be used to
stop the program at the end of its current execution cycle.

If program execution stops because of an error, a PAUSE instruction, an ABORT command or
instruction, or the monitor commands PROCEED or RETRY can be used to resume execution
(see the V+ Operating System Reference Guide for information on monitor commands).
While execution is stopped, the DOmonitor command can be used to execute a single
program instruction (entered from the keyboard) as though it were the next instruction in
the program that is stopped.

For debugging purposes, the SSTEP or XSTEPmonitor commands can be used to execute a
program one step at a time. Also, the TRACE feature can be used to follow the flow of
program execution. (The program debugger can also be used to execute a program one

Executing Programs

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 37

instruction at a time. For information on the V+ program debugger, see The Program
Debugger on page 85.)

Execution of program tasks other than #0 is generally the same as for task #0. The following
points highlight the differences:

l The task number must be explicitly included in all the monitor commands and program
instructions that affect program execution, including EXECUTE, ABORT, PROCEED,
RETRY, SSTEP, and XSTEP. (However, when the V+ program debugger is being used,
the task being accessed by the debugger becomes the default task for all these
commands.)

l If the program is going to control the robot, it must explicitly ATTACH the robot before
executing any instructions that control the robot.

l If task 0 is not executing concurrently, the V+ monitor prompt continues to be a dot
(.). Also, the prompt is displayed after the task-initiating EXECUTE command is
processed.

NOTE: If you want program execution to be delayed briefly to allow time for the dot
prompt to be output (for example, to prevent it from occurring during output from the
program), have your program execute twoWAIT instructions with no parameter.

l The TRACE feature does not apply to tasks other than #0.

NOTE: To use TRACE with a program that is intended to execute in a task other than #0,
execute the program as task #0. (This consideration does not apply when using the V+
program debugger, which can access any program task.)

See the section Scheduling of Program Execution Tasks on page 48 for details on task
scheduling.

Executing Programs

V+Language User's Guide, v17.0

Page 38

Program Stacks
When subroutine calls are made, V+ uses aV+n internal storage area called a stack to save
information required by the executing program. This information includes:

l The name and step number of the calling program.

l Data necessary to access subroutine arguments.

l The values of any automatic variables specified in the called program.

The V+ system allows you to explicitly allocate storage to the stack for each program task.
Thus, the amount of stack space can be tuned for a particular application to optimize the use
of system memory. Stacks can be made arbitrarily large, limited only by the amount of
memory available on your system.

Stack Requirements

When a V+ program is executed in a given task, each program stack is allocated six kilobytes
of memory. This value can be adjusted, once the desired stack requirements are determined,
by using the STACKmonitor command (for example, in a start-upmonitor command
program). See the V+ Operating System Reference Guide for information on monitor
commands.

One method of determining the stack requirements of a program task is simply to execute its
program. If the program runs out of stack space, it stops with the error message:

Too many subroutine calls

or

Not enough stack space

If this happens, use the STACKmonitor command to increase the stack size and then issue
the RETRYmonitor command to continue program execution. In this case, you do not need
to restart the program from the beginning. (The STATUS commandwill tell you how much
stack space a failed task requested.)

Alternatively, you can start by setting a large stack size before running your program. After
the program has been run, and all the execution paths have been followed, use the STATUS
monitor command to look at the stack statistics for the program task. The stack MAX value
shows how much stack space your program task needs in order to execute. The stack size
can then be set to the maximum shown, with a little extra for safety.

If it is impossible to invoke all the possible execution paths, the theoretical stack limits can be
calculated from the figures provided in the following table. You can calculate the worst-case
stack size by adding up the overhead for all the program calls that can be active at one time.
Divide the total by 1024 to get the size in kilobytes. Use this number in the STACKmonitor
command to set the size.

Program Stacks

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 39

Bytes Required For Notes

20 The actual subroutine call

32 Each subroutine argument (plus
one of the following):

4 Each real subroutine argument
or automatic variable

1

8 Each double-precision real
subroutine argument or
automatic variable

1

48 Each transformation subroutine
argument or automatic variable

1, 2

varies Each precision-point subroutine
argument or automatic variable

1, 2, 3

84 Each belt variable argument or
automatic variable

1, 2

132 Each string variable argument or
automatic variable

1, 2

NOTES:

1. If any subroutine argument or automatic variable is an array, the size
shown must be multiplied by the size of the array. (Remember that array
indexes start at zero.)

2. If a subroutine argument is always called by reference, this value can be
omitted for that argument.

3. Requires four bytes for each joint of the robot (on multiple robot systems,
use the robot with the most joints).

Stack Space Required by a Subroutine

Program Stacks

V+Language User's Guide, v17.0

Page 40

Flow of Program Execution
Program instructions are normally executed sequentially from the beginning of a program to
its end. This sequential flow may be changedwhen a GOTO or IF...GOTO instruction, or a
control structure, is encountered. The CALLinstruction causes another program to be
executed, but it does not change the sequential flow through the calling program because
execution of the calling program resumes where it left off when a RETURN instruction is
executed by the CALLed program.

TheWAIT instruction suspends execution of the current program until a condition is
satisfied. The WAIT.EVENT instruction suspends execution of the current program until a
specified event occurs or until a specified time elapses.

The PAUSE and HALT instructions both terminate execution of the current program. After a
PAUSE, program execution can be resumedwith a PROCEEDmonitor command (see the V+
Operating System Reference Guide for information on monitor commands). Execution
cannot be resumed after a HALT.

The STOP instruction may or may not terminate program execution. If there are more
program execution cycles to perform, the STOP instruction causes themain program to be
restarted at its first step (even if the STOP instruction occurs in a subroutine). If no
execution loops remain, STOP terminates the current program.

For more details on these instructions, see Program Interrupt Instructions on page 122.

RUN/HOLD Button

Execution of program task #0 can also be stoppedwith the RUN/HOLD button on the
manual control pendant (MCP). When a program is executing and the RUN/HOLD button on
the pendant is pressed, program execution is suspended.

If the keyswitch on the CIP or on a remote front panel is set to manual mode, program
execution will resume if the RUN/HOLD button is held down-but execution will stop again
when the button is released. If the keyswitch on the CIP or on a remote front panel is set to
automatic mode, program execution can be resumed by entering a PROCEED or RETRY
monitor command at the system terminal.

With Category 1 or 3 systems, there are additional restrictions when using the pendant. See
the robot instruction handbook for your Category 1 or 3 system for details. Also, see Using
the STEP Button on page 271.

Occasionally, you may want to disable the HOLD button on the pendant. For example, the
REACTE instruction will not react when the HOLD button is pressed unless you disable the
HOLD button. You can disable the HOLD button using the KEYMODE instruction. See the V+
Language Reference Guide for details on the KEYMODE instruction.

Flow of Program Execution

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 41

Subroutines
There are three methods of exchanging information between programs:

l global variables

l soft-signals

l program argument list

When using global variables, simply use the same variable names in the different programs.
Unless used carefully, this method can make program execution unpredictable and hard to
debug. It also makes it difficult to write generalized subroutines because the variable names
in the main program and subroutine must always be the same.

Soft-signals are internal program signals. These are digital software switches whose state can
be read and set by all tasks and programs (including across CPUs in multiple CPU systems).
See "Soft Signals" for details.

Exchanging information through the program argument list gives you better control over
changesmade to variables. It also eliminates the requirement that the variable names in the
calling program be the same as the names in the subroutine. The following sections describe
exchanging data through the program parameter list.

Argument Passing

There are two important considerations when passing an argument list from a calling
program to a subroutine. The first is making sure the calling program passes arguments in
the way the subroutine expects to receive them (mapping). The second is determining how
you want the subroutine to be able to alter the variables (passing by value or reference).

Mapping the Argument List

An argument list is a list of variables or values separated by commas. The argument list
passed to a calling program must match the subroutine's argument list in number of
arguments and data type of each argument (see Undefined Arguments on page 45). The
variable names do not have tomatch.

When a calling program passes an argument list to a subroutine, the subroutine does not look
at the variable names in the list but the position of the arguments in the list. The argument
list in the CALL statement is mapped item for item to the argument list of the subroutine. It is
this mapping feature that allows you to write generalized subroutines that can be called by
any number of different programs, regardless of the actual values or variable names the
calling program uses.

The following figure shows the mapping of an argument list in a CALL statement to the
argument list in a subroutine. The arrows indicate that each item in the list must match in
position and data type but not necessarily in name. (The CALL statement argument list can
include values and expressions as well as variable names.)

Subroutines

V+Language User's Guide, v17.0

Page 42

Argument Mapping

When the main program reaches the CALL instruction shown at the top of the figure, the
subroutine a_routine is called and the argument list is passed as shown.

See the description of the CALL instruction in the V+ Language Reference Guide for
additional details on passing arrays.

Argument Passing by Value or Reference

An important principle to grasp in using subroutine calls is the way that the passed variables
are affected. Variables can be changed by a subroutine, and the changed value can be passed
back to the calling program. If a calling program passes a variable to a subroutine, and the
subroutine can change the variable and pass the changed variable back to the calling
program, the variable is said to be passed by reference. If a calling program passes a variable
to a subroutine but the subroutine cannot pass the variable back in an altered form, the
variable is said to be passed by value.

Variables you want changed by a subroutine should be passed by reference. In the previous
figure, all the variables passed in the CALL statement are being passed by reference.
Changesmade by the subroutine are reflected in the state of the variables in the calling

Subroutines

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 43

program. Any argument that is to be changed by a subroutine and passed back to the calling
routine must be specified as a variable (not an expression or value).

In addition to passing variables whose value you want changed, you will also pass variables
that are required for the subroutine to perform its task but whose value you do not want
changed after the subroutine completes execution. Pass these variables by value. When a
variable is passed by value, a copy of the variable, rather than the actual variable, is passed to
the subroutine. The subroutine can make changes to the variable, but the changes are not
returned to the calling program (the variable in the calling program has the same value it had
when the subroutine was called).

The following figure shows how to pass the different types of variables by value. Real numbers
and integers are surrounded by parentheses, :NULL is appended to location variables, and
+"" is appended to string variables.

In the following figure, real_var_b is still being passed by reference, and any changesmade in
the subroutine will be reflected in the calling program. The subroutine cannot change any of
the other variables: it can make changes only to the copies of those variables that have been
passed to it. (It is considered poor programming practice for a subroutine to change any
arguments except those that are being passed back to the calling routine. If an input
argument must be changed, Adept suggests you make an AUTOmatic copy of the argument
andwork with the copy.)

Subroutines

V+Language User's Guide, v17.0

Page 44

Call by Value

Values, as well as variables, can be passed by a CALL statement. The instruction:

CALL a_routine(loc_1, 17.5, 121, "some string")

is an acceptable call to a_routine.

Undefined Arguments

If the calling program omits an argument, either by leaving a blank in the argument list
(e.g., arg_1, , arg_3) or by omitting arguments at the end of a list (e.g., arg_1, arg_2), the
argument are passed as undefined. The subroutine receiving the argument list can test for
this value using the DEFINED function and take appropriate action.

Program Files

Since linking and compiling are not required by V+,main programs and subroutines always
exist as separate programs. The V+ file structure allows you to keep amain program and all
the subroutines it CALLs or EXECUTEs together in a single file so that when amain program
is loaded, all the subroutines it calls are also loaded. (If a program calls a subroutine that is
not resident in system memory, the error *Undefined program or variable name* will
result.)

See the descriptions of the STORE_ commands and the MODULE command in the V+
Operating System User's Guide for details. For an example of creating a program file, see
"Sample Editing Session" on page 85.

Reentrant Programs

The V+ system allows the same program to be executed concurrently by multiple program
tasks. That is, the program can be reentered while it is already executing.

This allows different tasks that are running concurrently to use the same general-purpose
subroutine.

Tomake a program reentrant, you must observe a few general guidelines when writing the
program:

l Global variables can be read but must not be modified.

l Local variables should not be used.

l Only automatic variables and subroutine arguments can be modified.

In special situations, local variables can be used, and global variables can be modified, but
then the program must explicitly provide program logic to interlock access to these variables.
The TAS real-valued function (defined in Table 6-4, "System Control Functions")may be
helpful in these situations. (See the V+ Language Reference Guide for details.)

Subroutines

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 45

Recursive Programs

Recursive programs are subroutines that call themselves, either directly or indirectly. A direct
call occurs when a program actually calls itself, which is useful for some special programming
situations. Indirect calls are more common. They occur when program A calls program B,
which eventually leads to another call to program A before program B returns. For example,
an output routine may detect an error and call an error-handling routine, which in turn calls
the original output routine to report the error.

If recursive subroutine calls are used, the program must observe the same guidelines as for
reentrant programs (see Reentrant Programs on page 45). In addition, you must guarantee
that the recursive calls do not continue indefinitely. Otherwise, the program task will run out
of stack space.

Asynchronous Processing

A particularly powerful feature of V+ is the ability to respond to an event (such as an external
signal or error condition) when it occurs, without the programmer's having to include
instructions to test repeatedly for the event. If event handling is properly enabled, V+ will
react to an event by invoking a specified program just as if a CALL instruction had been
executed. Such a program is said to be called asynchronously, since its execution is not
synchronized with the normal program flow.

Asynchronous processing is enabled by the REACT, REACTE, and REACTI program
instructions. Each program task can use these instructions to prepare for independent
processing of events. In addition, the optional V+ Extensions software uses the WINDOW
instruction to enable asynchronous processing of window violations when the robot is
tracking a conveyor belt.

Sometimes a reaction must be delayed until a critical program section has completed. Also,
since some events are more important than others, a program should be able to react to
some events but not others. V+ allows the relative importance of a reaction to be specified by
a program priority value from 1 to 127. The higher the program priority setting, the more
important is the reaction.

A reaction subroutine is called only if the main program priority is less than that of the
reaction program priority. If the main program priority is greater than or equal to the reaction
program priority, execution of the reaction subroutine is deferred until the main program
priority drops. Since the main program (for example, the robot control program) normally
runs at program priority zero and the minimum reaction program priority is one, any reaction
can normally interrupt the main program.

The main program priority can be raised or loweredwith the LOCK program instruction, and
its current value can be determinedwith the PRIORITY real-valued function. When the main
program priority is raised to a certain value, all reactions of equal or lower priority are locked
out.

When a reaction subroutine is called, the main program priority is automatically set to the
reaction program priority, thus preventing any reactions of equal or lower program priority

Subroutines

V+Language User's Guide, v17.0

Page 46

from interrupting it. When a RETURN instruction is executed in the reaction program, the
main program priority is automatically reset to the level it had before the reaction subroutine
was called.

For further information on reactions and program priority, see the following keywords: LOCK,
PRIORITY, REACT, and REACTI in the V+ Language Reference Guide.

Error Trapping

Normally, when an error occurs during execution of a program, the program is terminated
and an error message is displayed on the system terminal. However, if the REACTE
instruction has been used to enable an error-trapping program, the V+ system invokes that
program as a subroutine instead of terminating the program that encountered the error.
(Each program task can have its own error trap enabled.)

Before invoking the error-trapping subroutine, V+ locks out all other reactions by raising the
main program priority to 254 (see Asynchronous Processing on page 46). See the description
of the REACTE instruction in the V+ Language Reference Guide for further information on
error trapping.

Subroutines

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 47

Scheduling of Program Execution Tasks
The V+ system appears to execute all the program tasks at the same time. However, this is
actually achieved by rapidly switching between the tasks many times each second, with each
task receiving a fraction of the total time available. This is referred to as concurrent
execution. The following sections describe how execution time is divided among the different
tasks.

NOTE: The default task configuration will work for most applications: You will not have to
alter task execution priorities. The default configuration is optimized for Adept's AIM
software.

System Timing and Time Slices

The amount of time a particular program task receives is determined by two parameters: its
assignment to the various time slices and its priority within the time slice. A brief description
of the system timingwill help you to understandwhat a time slice is and how one can be
selected.

NOTE: Do not confuse task priority (described here) with program priority (described in
Asynchronous Processing). Task priority governs the processing of the various system
tasks within a time slice. Program priority governs the execution of programs within a
task.

Each system cycle is divided into 16 time slices of one millisecond each. The time slices are
numbered 0 through 15. A single occurrence of all 16 time slices is referred to as a major
cycle. For a robot or motion system, each of these cycles corresponds to one output from the
V+ trajectory generator to the digital servos.

Specifying Tasks, Time Slices, and Priorities

Tasks 0 through 6 (0 through 27 with optional V+ Extensions software) can be used, and
their configuration can be tailored to suit the needs of specific applications.

Each program task configured for use requires dedicated system memory, which is
unavailable to user programs. Therefore, the number of tasks available should be made no
larger than necessary, especially if memory space for user programs is critical.

When application programs are executed, their program tasks are normally assigned default
time slices and priorities according to the current system configuration. These defaults can be
overridden temporarily for any user program task. This is done by specifying the desired time-
slice and priority parameters in the EXECUTE, PRIME, or XSTEP command used to initiate
execution. The temporary values remain in effect until the program task is started again, by a
new EXECUTE, PRIME, or XSTEP command. (See the V+ Language Reference Guide for
details on these instructions.)

Scheduling of Program Execution Tasks

V+Language User's Guide, v17.0

Page 48

Task Scheduling

Tasks are scheduled to run with a specified priority in one or more time slices. Tasks may
have priorities from -1 to 64, and the priorities may be different in each time slice. The
priority meanings are:

-1 Do not run in this slice even if no other task is ready to run.

0 Do not run in this slice unless no other task from this slice is ready to
run.

1 - 64 Run in this slice according to specified priority. Higher priority tasks may
lock out lower ones. Priorities are broken into the following ranges:

1 - 31 Normal user task priorities.

32 - 62 Used by V+ device drivers and system tasks.

63 Used by the trajectory generator. Do not use 63
unless you have very short task execution times. Use
of these priorities may cause jerks in the robot
trajectories.

64 Used by the servo. Do not use 64 unless you have
very short task execution times. Use of these
priorities may cause jerks in the robot trajectories.

Whenever the current task becomes inactive (e.g., due to an I/O operation, a WAIT
instruction, or completion of the task programs), V+ searches for a new task to run. The
search begins with the highest priority task in the current time slice and proceeds through
that slice in order of descending priority. If multiple programs are waiting to run in the task,
they are run according to the relative program priorities. If a runnable task is not found, the
next higher slice is checked. All time slices are checked, wrapping around from slice 15 to
slice 0 until the original slice is reached. If no runnable tasks are encountered, the V+ null
task executes.

Whenever a 1ms interval expires, V+ performs a similar search of the next time slice. If the
next time slice does not contain a runnable task, the currently executing task continues.

If more than one task in the same time slice have the same priority, they become part of a
round-robin scheduling group.Whenever a member of a round-robin group is selected by the
normal slice searching, the group is scanned to find the member of the group that ran most
recently. The member that follows the most recent is run instead of the one that was
originally selected. If a task is in more than one round-robin group in different slices, then all
such tasks in both slices appear to be in one big group. This property can cause a task to be
run in a slice you did not expect. For example:

Scheduling of Program Execution Tasks

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 49

Slice 1: Task A priority 10, Task B priority 10

Slice 5: Task B priority 15, Task C priority 15

All three tasks, A, B, and C, are in the same round-robin group because task B appears in
both. Therefore, task Cmay run in slice 1 at priority 10, or task Amay run in slice 5 at priority
15, depending on which member of the group ran most recently.

The RELEASE program instruction may be used to bypass the normal scheduling process by
explicitly passing control to another task. That task then gets to run in the current time slice
until it is rescheduled by the 1ms clock. A task may also RELEASE to anyone, which means
that a normal scan is made of all other tasks to find one that is ready to run. During this scan,
members of the original task's round-robin group (if any) are ignored. Therefore, RELEASE to
anyone cannot be used to pass control to a different member of the current group.

AWAIT program instruction with no argument suspends a task until the start of the next
major cycle (slice 0). At that time, the task becomes runnable andwill execute if selected by
the normal scheduling process. A WAIT with an expression performs a release to anyone if
the expression is FALSE.

On systems that include the V+ extensions, the V+ task profiler can be used to determine
how the various tasks are interacting. It provides a means of determining how much time is
being used by each task, either on an average basis or as a snapshot of several consecutive
cycles.

Within each time slice, the task with highest priority can be locked out only by a servo
interrupt. Tasks with lower priority can run only if the higher-priority task is inactive or
waiting. A user task waits whenever any of the following occurs:

l The program issues an input or output request that causes a wait.

l The program executes a robot motion instruction while the robot is still moving in
response to a previous motion instruction.

l The program executes aWAIT or WAIT.EVENT program instruction.

If a program is executing continuously without performing any of the above operations, it
locks out any lower-priority tasks in its time slice. Thus, programs that execute in a
continuous loop should generally execute aWAIT (or WAIT.EVENT) instruction occasionally
(for example, once each time through the loop). This should not be done, of course, if timing
considerations for the application preclude such execution delays.

If a program potentially has a lot of critical processing to perform, its task should be in
multiple slices, and the task should have the highest priority in these slices. This will
guarantee the task's getting all the time needed in the multiple slices, plus (if needed)
additional unused time in the major cycle.

The following figure shows the task scheduler algorithm. This flow chart assumes that the
servo task is configured to run every 1ms and no task issues a RELEASE instruction.
(Actually, at the point marked run servos?, any system level interrupts are processed-in

Scheduling of Program Execution Tasks

V+Language User's Guide, v17.0

Page 50

motion systems the servo task is generally the most likely to interrupt and is the most time
consuming system task.)

Scheduling of Program Execution Tasks

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 51

Scheduling of Program Execution Tasks

V+Language User's Guide, v17.0

Page 52

Task Scheduler

Execution Priority Example

The following example shows how the task priority scheme works. The example makes the
following assumptions:

l Task 0 runs in all time slices at priority 20

l Task 1 runs in all time slices at priority 10

l Task 2 runs in all time slices at priority 20

l All system tasks are ignored (systems tasks are described in the next section)

l All system interrupts are ignored

The following figure shows three tasks executing concurrently. Note that since no LOCK or
REACT_ instructions are issued, the program priority remains 0 for the entire segment. (See
"Program Interrupt Instructions" for descriptions of the REACT routines, the LOCK
instruction, and another program execution example.)

The illustration shows the timelines of executing programs. A solid line indicates a program is
running; a dotted line indicates a program is waiting. The Y axis shows the program priority.
The X axis is divided into 1-millisecond time slices.

The sequence of events for Priority Example 1 is:
(the line numbers are referenced in the following figure)

1. prog_a issues aWAIT.EVENT. This suspends prog_a and passes execution to the next
highest task which is task 2 running prog_c.

2. prog_c runs until it issues a RELEASE instruction. Since the RELEASE has no
arguments, execution is passed to the next highest task with a program to run. Since
task 0 is waiting on a SET.EVENT, the next task is task 1.

3. Task 2 issues a SET.EVENT to task 0 and runs until the end of a time slice at which
time task 0 runs. Tasks 0 and 2 have the same priority so they swap execution. (If
two tasks with equal priority are ready to run, the least recently run task runs.)

4. prog_a waits for a disk I/O operation to complete. The next highest priority task is 2
which runs until the I/O operation completes and task 0 becomes the least recently
run task.

5. prog_a completes, passing control to task 2.

6. prog_c completes, passing control to task 1.

Notice that unless both task 0 and task 2 are waiting or do not have a program to run, or
task 0 or task 2 RELEASEs to task 1, task 1 is effectively blocked from execution.

Scheduling of Program Execution Tasks

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 53

Priority Example 1

Scheduling of Program Execution Tasks

V+Language User's Guide, v17.0

Page 54

Default Task Configuration

CAUTION: Operation of the V+ system can be adversely affected by
incorrect settings of task priorities. Change the default configuration
only if you have a good understanding of V+ task scheduling. For
details, see Scheduling of Program Execution Tasks on page 48.

System Task Configuration

The Adept V+ system has a number of internal tasks that compete with application (user)
program tasks for time within each time slice:

l On motion systems, the V+ trajectory generator runs (as the highest priority task) in
slice # 0 and continues through asmany time slices as necessary to compute the
next motion device set point.

l On motion systems, the CPU running servo code runs the servo task (at interrupt
level) every 1 or 2 milliseconds.1

l The V+ system tasks run according to the priorities shown in the table System Task
Priorities.

Description of System Tasks

The system tasks and their functions are shown in the following table.

Task Function

Trajectory Generator Compute the series of set points that make up a
robot motion

Terminal/Graphics Refresh the terminal or graphics monitor display

Monitor Service user requests entered at the monitor
window (monitor commands and responses to
system prompts)

DDCMP Handle implementation of DDCMP protocols for
serial lines configured as DDCMP lines

Kermit Handle implementation of Kermit protocols for
serial lines configured as Kermit lines

Pendant Handle manual control pendant I/O

Description of System Tasks

Default Task Configuration

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 55

Task Function

Disk Driver Handle requests for I/O to the hard and floppy
disk drives and the Compact Flash

Serial I/O Service serial I/O ports

Pipes Driver Allow a V+ task to service I/O requests like a
standard I/O driver

NFS Driver Allow access of remote files on network file
servers using the Network File Services protocol

TCP Driver Handle the TCP network communications
protocol on Ethernet

Vision Communications Communicate between V+ and vision software

Vision Analysis Evaluate vision commands

Vision Analysis #2 Vision tool analysis

Servo Communications Communicate with the servo interrupt routines
or the motion-control hardware

Cat 3 Timer Handle timing and sequencing when robot
power is enabled in systems with the Cat 3
option enabled

Syste-
m
Task

Time Slice

0 1 2 3 4 5 6 7 8 9 1-
0

1-
1

1-
2

1-
3

1-
4

1-
5

Traject-
ory
Genera-
tor

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

6-
3

Termin-
al/
Graphi-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-
8

System Task Priorities

Default Task Configuration

V+Language User's Guide, v17.0

Page 56

Syste-
m
Task

Time Slice

0 1 2 3 4 5 6 7 8 9 1-
0

1-
1

1-
2

1-
3

1-
4

1-
5

cs

Monito-
r

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-
6

DDCMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-
2

Kermit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-
2

Penda-
nt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-
0

0

Disk
Driver

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-
9

4-
8

Serial
I/O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-
4

4-
4

Pipes
Driver

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-
3

0

NFS
Driver

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-
0

4-
0

TCP
Driver

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-
8

5-
4

Vision
Comm

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

1-
4

0 0 0

Vision
Analysi-
s

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

1-
2

0 0 0

Vision
Analysi-
s #2

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

1-
3

0 0 0

Default Task Configuration

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 57

Syste-
m
Task

Time Slice

0 1 2 3 4 5 6 7 8 9 1-
0

1-
1

1-
2

1-
3

1-
4

1-
5

Servo
Comm

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-
1

0

Cat 3
Timer

0 4-
5

0 4-
5

0 4-
5

0 4-
5

0 4-
5

0 4-
5

0 4-
5

0 0

User Task Configuration

The remaining time is allocated to the user tasks using the controller configuration utility. For
details, see the description of CONFIG_C in the Instructions for Adept Utility Programs.

For each time slice, you specify which tasks may run in the slice andwhat priority each task
has in that slice. The default priority configuration is shown in the following table.

Us-
er
Ta-
sk

Slice

0 1 2 3 4 5 6 7 8 9 1-
0

1-
1

1-
2

1-
3

1-
4

1-
5

0 2-
0

2-
0

2-
0

2-
0

2-
0

2-
0

2-
0

2-
0

2-
0

1-
0

1-
0

1-
0

1-
0

0 0 0

1 1-
9

1-
9

2-
1

2-
1

1-
9

1-
9

2-
1

2-
1

1-
9

9 1-
1

1-
1

9 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 2-
0

0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1-
5

0 0

4 1-
5

1-
5

1-
5

1-
5

1-
5

1-
5

1-
5

1-
5

1-
5

5 5 5 5 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-
0

0

Default Task Priorities

Default Task Configuration

V+Language User's Guide, v17.0

Page 58

Us-
er
Ta-
sk

Slice

0 1 2 3 4 5 6 7 8 9 1-
0

1-
1

1-
2

1-
3

1-
4

1-
5

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-
5

0

7 -
27

0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

1The frequency at which the servo tasks interrupts the major cycle is set with the controller
configuration utility, CONFIG_C.

Default Task Configuration

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 59

The SEE Editor and Debugger
The following topics are described in this chapter:

Basic SEE Editor Operations 63
Sample Editing Session 81
The Program Debugger 85

The SEE Editor and Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 61

The SEE Editor and Debugger

V+Language User's Guide, v17.0

Page 62

Basic SEE Editor Operations
The SEE editor was introduced in the previous chapter. It is described in more detail in this
chapter.

The following notation is used in the tables in this section:

l The control key is indicated by Ctrl+, the alternate key is indicated by Alt+, and the
Shift key is indicated by S+.When using the shift, alternate, and control keys, they
should be pressed at the same time as the following key.

NOTE: For ASCII terminal and AdeptWindows based systems, use the shift key to
get the secondary function of the cursors and keypad keys. Use the control key
instead of the shift in VGB-based systems.

l <n> indicates a number is to be entered as a command prefix (without the angle
brackets). For example, enter 10L tomove the cursor to line 10.

l <char> indicates a character is to be entered (without the angle brackets). For
example, enter Sa to skip to the next a on the line.

l Keys used only with graphics-based systems are markedwith an {A}.

Cursor Movement

The following tables list the keys used for moving around the editor in all modes. The cursor
keys can be either the cursor movement keys above the trackball or the keys on the numeric
keypadwhen Num lock is not engaged.

Cursor
Key

Without Ctrl
Key

With Ctrl
Key

Up Arrow Up 1 line Up 1/4
page

Down
Arrow

Down 1 line Down 1/4
page

Right
Arrow

Right 1
character

Right 1
item

Left
Arrow

Left 1
character

Left 1 item

Cursor Movement Keys with a VGB
Keyboard

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 63

Cursor
Key

Without Ctrl
Key

With Ctrl
Key

Home Top of program

Page Up Up 1 screen

Page
Down

Down 1 screen

End End of program

Cursor
Key

Without
Ctrl Key With Ctrl Key

Up Arrow Up 1 line Up 1/4 page

Down
Arrow

Down 1
line

Down 1/4 page

Right
Arrow

Right 1
character

Right 1 item

Left
Arrow

Left 1
character

Left 1 item

Home Top of
program

Page Up Up 1
screen

Page
Down

Down 1
screen

End End of
program

Cursor Movement Keys with an
AdeptWindows Keyboard

The scroll bars will also move through a SEE editor program. (The bottom scroll bar has an
effect only if the editor window has been sized down.) Clicking on the up/down arrowsmoves
the program up or down a few lines. Clicking the left/right arrowsmoves the program left or

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 64

right. Clicking in a scroll bar displays the corresponding section of the program (e.g., clicking
in the middle of the scroll bar displays the middle section of the program). Dragging a scroll
handle moves the program up or down, or left or right.

Key Function Without Shift
Key

Up Arrow Up 1 line

Down
Arrow

Down 1 line

Right
Arrow

Right 1 character

Left
Arrow

Left 1 character

Line Feed Up 1 screen

Home Down 1 screen

Start
(PF1)

Go to start of line

<-- (PF2) Move left 1 item

--> (PF3) Move right 1 item

End
(PF4)

Go to end of line

Top
(F15)

Go to top of program

Bottom
(F16)

Go to end of program

Cursor Movement Keys with an ASCII
Terminal

Deleting, Copying, and Moving Lines

Copy (F9) Copy the current line into the editor's copy buffer (known as the
attach buffer).

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 65

Paste (F10) Paste the most recently copied line above the current line. You
cannot exit SEE with lines in the attach buffer. (Ctrl+K will remove
lines from the copy buffer without pasting them into a program.)
Lines cannot be pasted in read-only mode.

Paste All
(S+F10)

Paste the entire copy buffer above the current line.

Cut (S+F9) Cut the current line and place it in the copy buffer.

Ctrl+Delete Delete the current program line and do not place it in the copy buffer.
(Press Undo (F6) immediately after deleting to restore the line(s) just
deleted.)

Text Searching and Replacing

The SEE editor can search for specific text strings or change a specified string to another
string. The following keys perform string searches and replacements.

To search for a text string:

1. Press the Find (F7) key (or press F in commandmode).

2. Enter a search string and press ↵.

3. The text is searched for from the cursor location to the bottom of the program (but not
from the top of the program to the cursor location).

4. To repeat the search, press the Repeat (↵) key (or ' in commandmode).

To find and replace a line of text:

1. Press the Change (S+F7) key (or press C in commandmode).

2. Enter a search string and press ↵.

3. Enter the replace string and press ↵.

4. The text is searched for from the cursor location to the bottom of the program. Only
one search and replace operation will take place at a time. Global searches and replaces
are not performed.

5. To repeat the change, press the Repeat (↵) key (or ' in commandmode).

6. To cancel the change, press the Undo (F6) key (before closing the line).

Normally, text searches are not case-sensitive. The EXACT editor command toggles the
case sensitivity of the search operation (see SEE Editor Extended Commands on page
77).

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 66

NOTE:Press the space bar to abort a search. The latest search and replacement strings
are retained between edit sessions.

Switching Programs in the Editor

The following function keys switch from editing one program to editing another program.
(The internal program list mentioned below is described in the next section.)

Key(s) Action

New (F2) The editor prompts for the name of the new
program to edit. The new program is accessed in
read-write mode unless /R is specified after the
program name or the program is currently
executing. The home pointer for the internal
program list is set to the old program.

Go To (F3) If the cursor is on a line containing a CALL
instruction, the program referenced by the CALL
is opened in the SEE editor. If the program is
present on the internal program list, the
previous access mode is used. If the program is
not on the program list, the editor remains in its
current access mode.

Retrieve (S+F3) This command causes the editor to cycle
through the internal program list, bringing the
next program in the list into the editor. The
access mode for the new program is the same as
the previous time the program was edited.

Prog_Up {S} Ctrl+Home {A}
(Home key on numeric keypad)

Changes to editing a program contained on the
task execution stack being accessed by the
editor. When the new program is opened, its
name is added to the internal program list
maintained by the editor.If the execution stack
is being accessed for the first time during the
edit session, the editor accesses the stack for
the task that most recently stopped executing
(if the program debugger is not in use), or the
stack for the task being debugged. The last
program on the execution stack is opened for
editing.If the execution stack has already been

The SEE Editor Function Key Description

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 67

Key(s) Action

accessed, the program opened is the one that
called the previous program accessed from the
stack.

Prog_Down {S} Ctrl+End {A} Changes to editing a program contained on the
task execution stack being accessed by the
editor. When the new program is opened, its
name is added to the internal program list
maintained by the editor.If the execution stack
is being accessed for the first time during the
edit session, this command acts exactly like
Prog_Up {S} or S+Home {A} (see above).If
the execution stack has already been accessed,
the program opened is the one that was called
by the previous program accessed from the
stack.

The Internal Program List

To simplify moving from one program to another during an editing session, the SEE editor
maintains an internal list of programs. The program list contains the following information
(for up to 20 programs):

l Program name

l Editor access mode last used

l Number of the step last accessed

l Memorized cursor position (see the M command)

The program list is accessedwith the SEE monitor command and program instruction and
with editor commands described in this chapter.1

The editor maintains two pointers into the program list:

1. The top pointer always refers to the program currently displayed in the edit window.

2. The home pointer refers to the program that was editedmost recently.

The following rules govern the program list and its pointers.

l When a SEE monitor command is entered, one of the following occurs:

l If a program name is specified, the new program name is added at the top of the
program list.

l If no program name is specified and no program task has stopped executing

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 68

since the last edit session, the program list is not changed and the program at
the top of the list (the last program edited) is opened.

l If no program name is specified and a program task has stopped executing
since the last edit session, that program is added to the top of the program list
and is displayed for editing.

l When a SEE program instruction is executed, a temporary program list is created for
that editing session. The list initially includes only the current program name. The list
is deleted at the end of the editing session.

l Whenever a program not already on the list is edited during an editing session (for
example, pressing the New (F2) or Go To (F3) key), the new name is added at the top
of the program list and the home pointer is moved to the entry for the previous
program edited.

l Retrieve (S+F3) rotates the program list so the top entry moves to the bottom, and
all the other entries move up one position. The top program is then displayed for
editing, and the home pointer is positioned at the first entry below the top of the list.

l The H command advances the home pointer down the list and displays the name of
the program at the new position.

l The Alt+H command switches to editing the program marked by the home pointer.
That program is then moved to the top of the list, and the home pointer is moved to
the entry for the previous program edited.

If the home pointer has not been explicitly moved, Alt+H opens the previously edited
program.

Special Editing Situations

l You cannot modify the .PROGRAM argument list or an AUTO instruction while the
program is present on a task execution stack. (A program is on the execution stack if
it has been executed in that task since the last KILL or ZERO instruction.) The error
message *Invalid when program on stack* is displayed. To edit the line, exit the
editor and remove the program from (all) the execution stack(s) in which it appears.
(See the STATUSmonitor command in the V+ Operating System Reference Guide for
information about how to examine the execution stacks. See the KILL monitor
command in the V+ Operating System Reference Guide for information about how to
clear a stack.)

l If you enter a line of code that is longer than 80 characters, the portion of the line
longer than 80 characters is not displayed until you move the cursor along the line (or
make a change to the line). Then the editor temporarily wraps the line and
overwrites the next line on the screen. The temporarily overwritten line is redisplayed
as soon as you move off the line that is wrapping on top of it.

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 69

NOTE: You may occasionally encounter lines that are too long for SEE to process. (Such
lines can be created with an editor on another computer, or they may result from a line
becoming further indented because of new surrounding control structures.)

Any attempt to move the cursor to such a line will result in the message *Line too long*,
and the cursor will automatically move to the next line. (The { command [and others] can
be used tomove the cursor above a long line.)

The best way to use the SEE editor to change such a line is to:

1. Move the cursor to the end of the line just above the long line.

2. Use Insert mode to insert two or more program lines that will have the same effect
as the long line, plus a blank line.

3. With the cursor at the blank line, issue one command to delete the blank line and
the long line (for example, S+Delete in Command mode).

l Whenever the cursor is moved off a program line (andwhen certain commands are
invoked), the editor closes the current line. As part of that process, the line (and those
following it) are displayed in standard V+ format (for example, abbreviation expansion,
letter case, spacing, and line indents). When a long line is closed, the end of the line is
erased from the screen and the next line is automatically redrawn. Undo (F6) will not
undo changes to a closed line.

Until a line is closed, its effect on the indenting of subsequent lines is not considered.
Thus, for example, Redraw (S+F6) ignores an unclosed line when redrawing the
display.

l In some cases, closing a line will cause its length to be increased because of
abbreviation expansion and line indents. If the expanded line is longer that the
maximum line length allowed, an error message is displayed and you cannot move off
of the long line. You must then shorten the line, break it into two or more pieces, or
press Undo (F6) to restore the previous version of the line.

l Syntax is also checkedwhen a line is closing. If an error is detected, the editor
normally marks the line as a bad line by placing a ? in column 1. Programs containing
bad lines cannot be executed. Thus, you must eliminate all the bad lines in a program
before you can execute it. (You can use the editor's string search feature to search
through a program for question marks indicating bad lines.)

NOTE:The editor provides a command (AUTO.BAD, see SEE Editor Extended Commands
for more information) that can be used to tell the editor you want to be forced to correct
bad lines as soon as they are detected.

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 70

The SEE Editor in Command Mode

In addition to the key lists in the preceding tables, the key strokes listed in the following table
moves the cursor when the editor is in commandmode.

Key Action

B Bump
window
down a
few lines

Esc B Ctrl+B Go to
bottom of
program

T Bump
window
up a few
lines

Esc T Ctrl+T Go to top
of
program

[Up a line

] Down a
line

Alt+[(graphics-based
system){

Up a few
lines

Alt+] (graphics-based
system) }

Down a
few lines

(Up to top
of window

) Down to
bottom of
window

Cursor Movement in Command Mode

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 71

Key Action

<n>L Move to
line <n>

Space Right one
character

Esc Space Tab Right to
next item

Back Space Left one
character

Esc Back Space Esc Tab Left to
previous
item

Return Go to
start of
next line

Esc Return Close line
and go to
column 1

, (comma) Go to
beginning
of line

. (period) Go to end
of line

<n>J Jump to
column
<n>

S<char> Skip to
character
<char>

; Skip to
semicolon

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 72

The following table lists the actions that keystrokes perform when the editor is in Command
mode. The characters in the column labeled Char. Codes are defined as follows:

M The command changes edit mode from Commandmode to either Insert
mode or Replace mode as indicated in the table.

(M) The command changes the mode as indicated only until the next
character is typed, and then the editor returns to Commandmode.

R The command can be executedwhen the program is being viewed in
read-onlymode.

Keystroke
(s) Function Char.

Codes

Editing a Line of Text

D Delete a
character

I Start
character
Insert mode

M

Esc I Break line and
enter Insert
mode

M

R Start
character
Replace mode

M

Esc Return to
Command
mode

W Delete up to
the next item

EscW Delete item
and start
Insert mode

M

SEE Editor Command Mode Operations

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 73

Keystroke
(s) Function Char.

Codes

K<char> Delete (kill) up
to character
<char>

/ Replace a
single
character

(M)

\ Insert a single
character

(M)

Ctrl+L Convert to
lowercase to
end of line

Ctrl+U Convert to
uppercase to
end of line

Esc Ctrl+B Convert tabs
to blanks
(spaces)

Esc Ctrl+T Convert
spaces to tabs

Deleting/Copying/Moving Lines

Esc D
Ctrl+D

Delete a line

-Esc D -
Ctrl+D

Undelete last
line deleted

A Copy line to
attach buffer

R

-A Copy line from
attach buffer

Esc A Move line to

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 74

Keystroke
(s) Function Char.

Codes

Ctrl+A attach buffer

-Esc A -
Ctrl+A

Move line from
attach buffer

E Dump attach
buffer to
program

Esc K
Ctrl+K

Delete (kill)
line in attach
buffer

R

Text Searching and Replacement

F Find a string in
the program

R

C Substitute a
string in the
program

' Repeat last
Find or
Change

R

0' Display string
being
searched for

R

Program Operations

N Change to
editing new
program

R

H Rotate home
list and show
top name

R

Esc H Change to top R

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 75

Keystroke
(s) Function Char.

Codes

program on
home list

Ctrl+R Change to
editing
program
CALLed on the
current line

R

Esc Ctrl+R Change to
next program
on home list

R

Esc S Change to
previous
program on
stack

R

-Esc S Change to
next program
on stack

R

Miscellaneous Operations

Esc Ctrl+C Cancel
changes to
current line

R

Esc E Exit the editor
(or the
debugger)

R

Ctrl+E Exit the editor
(or the
debugger)

R

G Repeat the
last S, K,
Ctrl+L, or
Ctrl+U
command

R

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 76

Keystroke
(s) Function Char.

Codes

(whichever
was last)

M Memorize
current line
and column

R

-M Return to
memorized
position

R

V Refresh the
full display

R

X Initiate
extended
command
(see below)

R

XDEBUG Change to
debugger
monitor mode

R

Command Mode Copy Buffer

In commandmode, a special 25-line copy buffer is maintained. This buffer is completely
separate from the copy buffer described in Deleting, Copying, andMoving Lines on page 65,
andworks only when the editor is in commandmode. S+Delete {A} removes lines from the
program and places them in the special buffer. Preceding S+Delete {A} by aminus sign (-)
copies the line most recently deleted (and removes it from the buffer). S+Delete {A} can be
prefacedwith a minus sign and a number to undelete a number of lines.

These keystrokes work as described only in Commandmode. The copy buffer is discarded
when you exit the SEE editor (but is maintained as you edit different programs without
leaving the editor).

SEE Editor Extended Commands

Editor extended commands are used for infrequent operations that do not warrant allocation
to a dedicated keyboard key. The extended commands are invokedwith the X command (in
Commandmode), which prompts for the name of the actual command to be performed.

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 77

The command name can be abbreviated to the shortest length that uniquely identifies the
command. After the command name (or abbreviation) is entered, press ↵ to indicate the end
of the name.

As indicated below, some commands display a message on the editor command line. Some of
the commands prompt for additional input.

All of the following commands can be usedwhen viewing a program in read-only mode. Most
of the commands close the current line.

AUTO.BAD Toggles between the methods the editor uses to respond to invalid lines
detected while editing.

In the first mode, such lines are flagged as bad lines with a question
mark in column one. Editing of the program can continue normally, but
the program is not executable until all the bad lines are either
corrected, deleted, or made into comment lines.

In the secondmode, invalid lines must be corrected, deleted, or
commented out before the line can be closed.

DEBUG Switches from normal program editing to use of the program debugger
in its monitor mode. (The debugger is described in The Program
Debugger on page 85.)

DSIZE Sets the size of the debugwindow used by the program debugger
(described in The Debugger Display on page 88).

EXACT Toggles the case-sensitivity of text searches.

In the first mode, case is ignoredwhen making text searches. In the
secondmode, text searches must match upper- and lowercase letters
exactly for a search to be successful

READONLY Changes the access mode for the current program to read-only mode.
(May be abbreviated RO.)

READWRITE Changes the access mode for the current program to read-write mode.
(May be abbreviated RW)

SEE Switches from debug editor mode to normal (full-screen) program
editing. (Also see the Edit [F7] key.)

TSIZE In response to this command, you are shown the current size of the
display, and asked how many lines high you want the display to be. You
must specify at least seven lines. (Press ↵to retain the current setting.)

See DSIZE above for an explanation of how the TSIZE setting affects
the size of the edit and debugwindows displayed by the program
debugger.

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 78

WHERE Displays the current cursor column number. (The current cursor line
number is always displayed on the information line at the bottom of the
edit window.)

NOTE: The settings controlled by the extended commands are all retained between
editing sessions initiated with the SEE monitor command.

When the SEE program instruction is used to initiate program editing, all the settings
controlled by the extended commands are set to the initial settings described below.
Settings changed during the edit session are not retained after the editor is exited.

Edit Macros

Edit macros allow you to perform the same sequence of editor commands or enter the same
sequence of text characters several times during an editing session.

Two edit macros can be defined at the same time. Either macro can be invoked from any
point in the definition of the other macro, except that such linking is not permitted to be
recursive. (That is, a macro cannot call itself, and a calledmacro cannot call the other
macro.)

The following table shows the keys used to define and apply the macros. All these commands
can be usedwhen viewing a program in read-only mode but cannot perform any actions
disallowed in read-only mode.

Press the space bar to abort an executingmacro.

Key(s) Action

Esc U Define the U macro. The prompt Macro (Ctrl+Z ends): is displayed
on the editor command line. Press the keys you wish to have
recorded in exactly the sequence they are to be processed to
perform the desired operations. When you have finished entering
the macro definition, enter Ctrl+Z.

NOTE:It may be easier to manually perform the sequence to be recorded, writing
down the keys as you press them. Then you can read from your notes as you
define the equivalent macro.

U Process the U macro.

0U Display the current definition of the U macro.

Function Keys Associated With Macros

Basic SEE Editor Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 79

Key(s) Action

Esc Y Define the Ymacro.

Y Process the Ymacro.

0Y Display the current definition of the Ymacro.

NOTE:Macro definitions are retained between editor sessions initiated with the SEE
monitor command (but not between sessions initiated with the SEE program instruction).

1The program list is cleared when the ZEROmonitor command is processed.

Basic SEE Editor Operations

V+Language User's Guide, v17.0

Page 80

Sample Editing Session
The following steps will create a sample V+ program and subroutine, give an example of
parameter passing, and create a disk file of the sample programs. for a correct programming
flow chart, see the figure Programming Flow Chart on page 83.

1. With the controller running, make sure there are no other programs in memory by
entering the command:1

ZERO

2. The system asks for verification that you want to delete all programs from memory.
This deletes the programs and data from system memory but does not delete the disk
files.

3. Enter the command:

SEE sample

4. The system advises you that this program does not exist and asks if you want to
create it. Respond Y ↵.

5. The SEE editor window should now be displayed. Enter insert mode by pressing the
Insert key (Edit [F11] on aWyse terminal).

6. Enter the following lines exactly as shown:

AUTO $ans
TYPE "Welcome."
CALL get_response($ans)
TYPE $ans, " is now at the keyboard."

7. Create the subroutine get_response:2

a. Move the cursor to the CALL line and press the Goto (F3) key.

b. The message line indicates that get_response does not exist and asks if you
want to create it. Respond Y ↵.

8. A new program is opened in the SEE editor window. Enter the parameter for this
subroutine by using the cursor keys to place the typing cursor between the
parentheses on the program line and type $text_param.

9. Move the cursor off the program line and enter the lines:

PROMPT "May I have your name please? ", $ans
RETURN

10. Review your programs. The Retrieve (Shift+F3) key toggles through all the programs
you have edited in the current session.

11. When you are satisfied your programs are correct, exit the SEE editor by pressing the
Exit (F4) key.

12. You are now at the system prompt. Test your program by entering the command:

Sample Editing Session

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 81

EXECUTE/c sample

13. The program greets you, asks for your name, and prints the response on the screen. A
message is then displayed indicating that the program is completed.

14. If all works correctly, create a program library using the MODULE command.

MODULE sampfile = sample, get_response

15. Save your programs to a disk file by entering the commands:

STOREM sampfile.v2 = sample

A program library (module) file is created (using the default path specification) that
contains the two programs, sample and get_response.

16. To verify that the programs were stored successfully, enter the commands:

ZERO
LOAD sampfile.v2
EXECUTE/C sample

The program executes as before. See the V+ Operating System User's Guide for details
on the default path and options to the STORE commands.

When you are creating andmodifying programs, keep in mind:

l If you load a file containing programs with the same names as programs resident in
memory, the resident programs will NOT be replaced. You must delete (from memory)
a program before you can load a program with the same name.

l You cannot overwrite existing disk files. A file must be deleted from disk (with the
FDELETE instruction) before a file of the same name can be written to the same sub-
directory. If you are making changes to existing files, we recommend the following
procedure:
1. Rename the existing file for backup:

FRENAME filename.bak = filename.v2

2. Store the modified files:

STOREM filename.v2

3. When you are satisfied with the modified files, delete the backup:

FDELETE filename.bak

l If you have programs from multiple disk files resident in memory, the module
commands will help keep the various files straight. See the descriptions of MODULE,
STOREM, MIDRECTORY, LOAD, MDIR and DELETEM in the V+ Language Reference
Guide.

Sample Editing Session

V+Language User's Guide, v17.0

Page 82

Programming Flow Chart

1Memory does not have to be cleared. However, it will make this example simpler.

Sample Editing Session

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 83

2There is no difference between a subroutine and a program.

Sample Editing Session

V+Language User's Guide, v17.0

Page 84

The Program Debugger
V+ systems include a program debugger for interactively executing andmodifying
application programs.With the debugger, a program can be executed one step at a time (or
in larger, user-controlled segments) while the program instructions and the program output
are simultaneously displayed in two separate sections of the monitor window.

NOTE:The program debugger cannot access protected programs.

The debugger has an editor mode that allows editing of programs during the debugging
session. Changesmade to the program can be executed immediately to verify their
correctness.

While the program is executing, the values of program variables can easily be displayed or
changed.

The following sections describe the use of the program debugger in detail.

l Entering and Exiting the Debugger

l The DebugMonitor command

l Using the Debug Key or the DEBUG Extended Command

l The Debugger Display

l Debugger Operation Modes

l Debugging Programs

l Positioning the Typing Cursor

l Debugger Key Commands

l DebugMonitor-Mode Keyboard Commands

l Using a Pointing Device With the Debugger

l Control of Program Execution

l Single-Step Execution

l PAUSE Instructions

l Program Breakpoints

l Program Watchpoints

Entering and Exiting the Debugger

The program debugger can be invoked in two ways:

The Program Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 85

l From the command line with the DEBUGmonitor command (see the V+ Operating
System Reference Guide for information on monitor commands).

l From the SEE editor with the Debug (S+F11) key or the DEBUG extended command.
(The function keys and the SEE editor extended commands are described in The SEE
Editor in CommandMode.)

NOTE:The program debugger cannot be invoked from the SEE editor when the editor has
been initiated with the SEE program instruction.

When a debugging session is initiated, two aspects of the debugging session need to be
established: the program task that is accessed for program execution and the program that is
displayed in the debugger edit window. The methods for providing this information depend on
how you invoke the program debugger, as described below.

Exiting the Debugger

Press Exit (F4) to exit the program debugger and return to the V+ system prompt. This
command is accepted in either debugmode.

In addition, in debug editor mode (in Commandmode) you can use Alt+E to exit to the V+
system prompt (or Esc and E if your keyboard does not have an Alt key).

The DEBUG Monitor Command

The DEBUGmonitor command allows you to invoke the debugger from the system prompt.

Syntax

DEBUG t prog, step

Parameter Descriptions

t Initiates debugging in task number t. If the task number is not specified,
the task number is determined as follows:

If any execution task has terminated execution since the start of the last
debugging session, that task is assumed.

If no task has terminated since the previous debugging session, the
previous task is accessed again.

If neither of the above situations apply, the main control task (number 0)
is accessed.

(Commands affecting other tasks can still be entered, but their task
number must be specified explicitly.)

prog The named program is displayed in the debugger edit window in read-only

The Program Debugger

V+Language User's Guide, v17.0

Page 86

editor access mode.

If the name is omitted, the program primed for the task or the last
program executed by the task is selected.

An error results if the named program does not exist, and the DEBUG
request is aborted.

When the specified program is opened for (read-only) editing, its name is
added at the top of the SEE editor internal program list.

step An optional parameter that allows you to open a program at the step
number specified.

DEBUGwithout any parameters is useful when:

1. You want to resume the latest debugging session.

In this case, the edit window and the execution pointer (see Example Program
Debugger Display) are restored as they were when the previous debugging
session was ended. That is, debugging can continue as though it had not been
interrupted.

2. A program has terminated execution with an error, and you want to use the debugger
to investigate the cause.

In this case, the program that failed is displayed in the edit window, with the
execution pointer positioned at the step after the failed step.

Using the Debug Key or the DEBUG Extended Command
While editing a program with the SEE editor, change to the program debugger by pressing
the Debug (S+F11) key or by entering the DEBUG extended command.When the debugger
is invoked from the SEE editor, you are askedwhich execution task you want to use. Then
the debugger display replaces the normal SEE editor display, with the same program visible
in the edit window and the specified task selected.

While using the program debugger you may decide you want to change the default task
number. You can use the following steps to make that change:

1. If you are in debugmonitor mode, press Edit (F11) to select debug editor mode. (The
debugmodes are described later in this chapter.)

2. Enter the SEE editor DEBUG extended command.

3. In response to the prompt, enter the desired new task number.

The Program Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 87

The Debugger Display
Once the program debugger has been invoked, the display looks similar to that shown in the
following figure.

NOTE:The sample shown below represents the display that appears on graphics-based
monitor.

Example Program Debugger Display

(The following numbers refer to the previous figure.)

1 The execution pointer-indicates the next step in the program that
is executed.

2 The editor information line, This line provides the same
information as that provided during a normal editing session (see
Figure 2-1 on page 36). Notice that while the debugger is in
monitor mode, the program is in read-only mode. The debug
window occupies the screen below this line.

The Program Debugger

V+Language User's Guide, v17.0

Page 88

3 The typing cursor. In monitor mode, the cursor appears in the
debugwindow, and debug andmonitor commands can be
entered. Responses to program prompts appear here. Commands
appear below the debug information line.

4 Shows which task the debug session is running in.

5 Shows the debugmode. In monitor mode, debug and other
monitor commands can be entered, and the program can be
executed. In editor mode, the typing cursor appears in the editor
window, and the program can be edited.

6 Displays entered commands and the results of various debug
operations. The > character serves as a prompt for user input
when you are entering commands to the debugger. After
processing a command, the debugger displays OK on the
command line after the command. That acknowledges
completion of the command, regardless of whether or not the
commandwas successful. For example, the command line shown
in Example Program Debugger Display indicates that the
debugger has just processed the command XSTEP place.

NOTE:Under some circumstances the display in the edit window can be overwritten by
program or system output. Press Redraw (S+F6) to restore the entire debugger screen.

Since the edit window can be moved to anywhere in the current program (or even to
another program), this pointer may not be visible in the edit window. The edit window will
move to the section of program containing this pointer whenever program execution
stops for any reason.

Debugger Operation Modes

The program debugger has twomodes of operation:

l Monitor mode

In this mode the program in the edit window is accessed in read-only mode, and all
keystrokes are interpreted as system monitor commands. System and program
output is displayed in the debugwindow.

While in monitor mode, the program displayed in the edit window is accessed in read-
only mode. As described in a later section, most of the keyboard function keys perform
the same functions as with the SEE editor.

This is the initial mode when the debugger is invoked. See the section DebugMonitor-
Mode Keyboard Commands for a description of how monitor mode is used.

The Program Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 89

l Editor mode

As its name indicates, this mode enables full editing access to the program in the editor
window. All the features of the SEE editor can be used in this mode.

NOTE:Programs that have been loaded from disk files with the read-only attribute
cannot be accessed in editor read-write mode.

Use the Edit (F11)and Debug (S+F11) keys (or Ctrl+E) to change modes.

Debugging Programs
The basic strategy for debugging a program is:

1. Invoke the program debugger with the DEBUGmonitor command, the DEBUG editor
extended command, or the Debug (S+F12) key.

2. Initiate execution of the program (usually with the PRIME or XSTEPmonitor
commands). (This step can be performed before or after the debugger is initiated.)

3. Step through the program (executing individual steps, sections of the program, or
complete subroutines) to trace the flow of program execution. (A later section of this
chapter describes control of program execution while debugging.)

4. Use the Display (F5)and Teach (S+F5) keys to display and redefine the values of
variables.

5. Use edit mode to perform any desired editing operations on the program.

6. Repeat steps 2 through 5 as required.

7. Exit from the debugger.

The following sections describe the debugger commands and other features of the V+ system
that aid program debugging.

When using the debugger, keep in mind:

l Some system monitor commands are not accepted in debugmonitor mode. (For
example, the COMMANDS command is not accepted.)

l In some situations the terminal cursor is in the edit window when you want it to be in
the debugwindow. In debugmonitor mode, the Redraw (S+F6) or Undo (F6) keys
forces the cursor to the bottom line of the debugwindow.

l Output to the screen from the program is generally directed to the debugwindow.
However, if the output includes control strings to position the cursor (for example,
clear the screen), the program output may appear in the edit window. The Redraw
(S+F6) key restores the normal debugger display (except in the situation described by
the next item).

l When the program displays a prompt for input in the debugwindow and executes a

The Program Debugger

V+Language User's Guide, v17.0

Page 90

PROMPT instruction, everything you type before pressing ↵is received by the program.
Thus, you cannot issue any debugger commands at such times.

Positioning the Typing Cursor

The typing cursor is positioned in the debugwindow when:

l The program debugger is initiated.

l Task execution is initiated or terminated (in the latter case, the edit window will be
moved as required to include the execution pointer).

l The Redraw (S+F6) or Undo (F6) key is pressed in debugmonitor mode.

l The debugger is switched from editor mode tomonitor mode.

The typing cursor is positioned in the edit window when:

l Any function key operation-other than Redraw (S+F6) or Undo (F6)-is performed
during debugmonitor mode. (Note that this includes all the keys normally used to
move the cursor in the edit window, such as the arrow keys.)

l The debugger is switched from monitor mode to edit mode.

l With graphics-based systems, the typing cursor is positioned in the edit window if you
click the pointer device anywhere in that window.

Debugger Key Commands

Cursor Movement in CommandMode and SEE Editor CommandMode Operations list all the
keys interpreted as commands by the V+ SEE editor. Except for the differences described
below, all the keys listed in those tables have exactly the same effect with the debugger (in
either of its modes) as they do when usedwith the SEE editor (detailed earlier in this
chapter).

NOTE:While using the debugger, the following keys are particularly useful for moving to
different programs on the execution stack for the task being debugged: Prog Up and Prog
Down {S}, and Ctrl+Home and Ctrl+End {A}.

The following function keys are interpreted differently by the program debugger and the SEE
editor.

Edit (F11) When the debugger is in monitor mode, this key causes editor mode to
be selected. This key has its normal editor function (selection of editor
Commandmode) when in editor mode.

Undo(F6) When the debugger is in monitor mode, this key simply moves the typing
cursor to the bottom of the debugwindow.

Teach Initiates changing the value of the variable at the cursor position.

The Program Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 91

(S+F5)

NOTE:This command cannot be usedwhile the editor is in read-write access mode. You
can use the READONLY or RO extended command to select read-only mode (see SEE
Editor Extended Commands for details).

As with Display (F5), the typing cursor is used to point to the variable of interest. Pressing
Teach (S+F5) causes the current value of the variable to be displayed in the debugwindow
and a prompt for a new value to be assigned to the variable.

For real-valued variables, the new value can be input as a constant, a variable name, or an
expression.

For location variables, the new value can be input as a location function (for example, HERE
or TRANS) or a variable name. Also, a compound transformation can be specified when
accessing a transformation variable.

For string variables, the new value can be input as a string constant, variable name, or
expression.

Debug Monitor-Mode Keyboard Commands

The V+ program debugger allows you to interactively execute and edit the program being
debugged. The commands described in the table Debugger Commands can be used to control
execution of the program you are debugging (see Control of Program Execution for more
information).

The terms defined in the following table are used in the table Debugger Commands when
showing equivalent monitor commands:

Term
Used Definition

current_
program

Refers to the program displayed in the edit window.

current_
step

Refers to the program step at which the movable cursor is positioned.
(Note that even when the terminal cursor is visible in the debugwindow
or on the command line, the position of the movable cursor is still
retained by the debugger.)

debug_
task

Refers to the task number shown on the information line of the debug
window.

Definition of Terms

The Program Debugger

V+Language User's Guide, v17.0

Page 92

NOTE: All the commands described below (except Ctrl+E) require debugmonitor mode
for their use.

Be careful not to enter Ctrl+O or Ctrl+S while using the debugger. These control
characters disable output to the terminal until a second Ctrl+O or a Ctrl+Q is input.

Key(s) Action

Ctrl+B Set a breakpoint at the step indicated by the typing cursor (also see
Ctrl+N below). (The use of breakpoints is described in Program
Breakpoints.)

This command is equivalent to the following system monitor command:

BPT @current_program current_step

Ctrl+E Alternate between debugmodes. This command is equivalent to the
Edit (F12) and Debug (S+F12) function keys, depending on the current
debugger mode. (Use Ctrl+E with terminals that do not have the
equivalent function keys. Use Esc and then E to exit from the editor to
the V+ system prompt.)

Ctrl+G Perform an XSTEP command for the instruction step indicated by the
typing cursor.

This command is equivalent to the following system monitor command:

XSTEP debug_task,,current_step

Ctrl+N Cancel the breakpoint at the step indicated by the typing cursor (see
Ctrl+B above).

This command is equivalent to the following system monitor command:

BPT @current_program - current_step

Ctrl+P PROCEED execution of the current task from the current position of the
execution pointer.

This command is equivalent to the following system monitor command:

PROCEED debug_task

Debugger Commands

The Program Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 93

Key(s) Action

Ctrl+X Perform an XSTEP command for the current task from the current
position of the execution pointer.

This command is equivalent to the following system monitor command:

XSTEP debug_task

Ctrl+Z Perform an SSTEP command for the current task from the current
position of the execution pointer.

This command is equivalent to the following system monitor command:

SSTEP debug_task

Using a Pointing Device With the Debugger

On graphics-based systems, double-clicking on a variable or expression displays the value of
the variable or expression. (If program execution has not progressed to the point where a
variable has been assigned a value, double clicking on the variable may return an undefined
value message.)

Control of Program Execution

While debugging programs, you will want to pause execution at various points to examine the
status of the system (e.g., to display the values of program variables).

The following paragraphs describe how to control execution of the program being debugged.

NOTE: Except for the special debugger commandsmentioned below, all the following
techniques can be used even when the program debugger is not in use.

Single-Step Execution

The debugger Ctrl+X command provides a convenient means for having program execution
stop after each instruction is processed. Each time Ctrl+X is entered, a V+ XSTEP command is
processed for the program being debugged.

The debugger Ctrl+Z command is provided to allow you to step across subroutine calls. Each
time Ctrl+Z is entered, an SSTEP command is processed for the program being debugged.
Thus, when the execution pointer is positioned at a CALL or CALLS instruction, typing Ctrl+Z
will cause the entire subroutine to be executed, and execution pauses at the step following
the subroutine call. (Ctrl+Z behaves exactly as Ctrl+X does when the current instruction is
not a subroutine call.)

The Program Debugger

V+Language User's Guide, v17.0

Page 94

NOTE: You cannot single-step into a subroutine that was loaded from a protected disk
file. Thus, you must use Ctrl+Z to step across any CALL of such a routine.

NOTE: The execution pointer (->) is not displayedwhile the system is executing an
instruction. Do not type a Ctrl+X or Ctrl+Z until the execution pointer reappears.

PAUSE Instructions

Debug editor mode can be used to insert PAUSE instructions in the program at strategic
points. Execution pauses when those points are reached. After the pause has occurred, and
you are ready to have execution resume, you can use the PROCEED command.

The debugger Ctrl+P command provides a convenient means of issuing a PROCEED
command for the program being debugged.

The disadvantage of using PAUSE instructions, however, is that they must be explicitly
edited into the program and removedwhen debugging is completed. The following section
describes a more convenient way to achieve the same effect as is achievedwhen a PAUSE
instruction is used..

Program Breakpoints

The V+ BPT command can be used to attach a breakpoint to an instruction. The BPT allows
either or both of the following responses to occur when the breakpoint is encountered during
execution:

l Execution stops at the flagged instruction (before it is executed).

l Values are displayed on the system terminal, showing the current status of user-
specified expressions.

To set breakpoints at various points in the program, enter the appropriate BPT commands on
the debugger command line to place the breakpoints and to specify expressions to be
evaluated when the breakpoints are encountered.

If you do not need to have an expression evaluated at a breakpoint, you can use the
debugger Ctrl+B command to set a pausing breakpoint-that is, one that will cause execution
to stop. To use the Ctrl+B command you must position the typing cursor in the edit window
so it is on the instruction of interest. Once the cursor is positioned, you can type Ctrl+B to
have a breakpoint placed at that instruction.

NOTE:You can use Go To (F3) (and other editor commands) to change the program in
the edit window. Thus, you can move to any program you want before typing Ctrl+B to
set a breakpoint. (You do not have to explicitly switch to having the edit window show the
program currently stopped. The debugger will automatically display the appropriate
program the next time execution stops for any reason.)

The Program Debugger

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 95

When program execution stops at a breakpoint, you can use the debugger Ctrl+N command
to cancel the breakpoint at the instruction, or you can leave the breakpoint set. In either
case, you can type Ctrl+P when you are ready to have program execution resume.

NOTE: A BPT commandwith no parameters clears the breakpoints in all the programs in
the system memory (except those programs that are executing). Entering a BPT
commandwith no parameters in debugmonitor mode clears breakpoints in the current
program.

Program Watchpoints

The V+ WATCH command attaches a watchpoint to a variable or user-specified expression.
When a watchpoint has been set, the specified variable or expression is examined before each
program instruction is executed by the task associated with the watchpoint. The value
determined is comparedwith the value recordedwhen the watchpoint was originally defined.
If the value has changed, the task is stopped and the old and new values are displayed.

NOTE: Processing watchpoints consumes a lot of execution time and can significantly
slow down program execution. Be sure to cancel all the watchpoints for an execution task
when you are finished using the task for debugging.

There is no shorthand debugger command for setting watchpoints, but WATCH commands
can be entered on the debugger command line.

The Program Debugger

V+Language User's Guide, v17.0

Page 96

Data Types and Operators
The following topics are described in this chapter:

Introduction 99
String Data Type 100
Real and Integer Data Types 102
Location Data Types 104
Arrays 105
Variable Classes 107
Operators 111
String Operator 115
Order of Evaluation 116

Data Types andOperators

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 97

Data Types andOperators

V+Language User's Guide, v17.0

Page 98

Introduction
This chapter describes the data typesV+ used by V+.

Dynamic Data Typing and Allocation

V+ does not require you to declare variables or their data types. The first use of a variable
determines its data type and allocates spaV+ce for that variable. You can create variables
and assign them a type as needed. The program instruction:

real_var = 13.65

creates the variable real_var as a real variable and assigns it the value 13.65 (if the real_var
had already been created, the instruction will merely change its value).

Numeric, string, and transformation arrays up to three dimensions can be declared
dynamically.

Variable Name Requirements

The requirements for a valid variable name are:

1. Keywords reserved by Adept cannot be used. The V+ Language Reference Guide lists
the basic keywords reserved by Adept. If you have AdeptVision, The AdeptVision
Reference Guide lists the additional reservedwords used by the vision system.

2. The first character of a variable namemust be a letter.

3. Allowable characters after the first character are letters, numbers, periods, and the
underline character.

4. Only the first 15 characters in a variable name are significant.

The following are all valid variable names:

x
count
dist.to.part.33
ref_frame

The following names are invalid for the reasons indicated:

3x (first character not a letter)
one&two (& is an invalid name character)
pi (reserved word)
this_is_a_long_name (too many characters)

All but the last of these invalid names are rejected by V+ with an error message. The extra-
long name is truncated (without warning) to:

this_is_a_long_.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 99

String Data Type
Variable names are precededwith a dollar ($) sign to indicate that they contain string data.1
The program instruction:

$string_name = "Adept V+"

allocates the string variable string_name (if it had not previously been allocated) and assigns
it the value Adept V+. Numbers can be used as strings with a program instruction such as:

$numeric_string = "13.5"

where numeric _string is assigned the value 13.5. The program instruction:

$numeric_string = 13.5

results in an error since you are attempting to assign a real value to a string variable.

The following restrictions apply to string constants (e.g., "a string"):

l ASCII values 32 (space) to 126 (7e) are acceptable

l ASCII 34 (") cannot be used in a string

Strings can contain from 0 to 128 characters. String variables can contain values from 0 to
255. For the interpretation of the full character set, see the section Character Sets on page
357.

The following are all valid names for string variables:

$x $process $prototype.names $part_1

The following names are invalid for strings for the reasons indicated:

$3x (first character not a letter)
$one-two (- is an invalid name character)
factor ($ prefix missing)
$this_is_a_long_name (too many characters)

All but the last of these invalid names are rejected by V+ with an error message. The extra
long name is truncated (without warning) to $this_is_a_long_.

ASCII Values

An ASCII value is the numeric representation of a single ASCII character. (For a complete list
of the ASCII character set, see the section Character Sets on page 357.) An ASCII value is
specified by prefixing a character with an apostrophe ('). Any ASCII character from the space
character (decimal value 32) to the tilde character (7e, decimal value 126) can be used as an
ASCII constant. Thus, the following are valid ASCII constants:

'A '1 'v '%

String Data Type

V+Language User's Guide, v17.0

Page 100

Note that the ASCII value '1 (decimal value 49) is not the same as the integer value 1
(decimal value 1.0). Also, it is not the same as the string value "1".

Functions That Operate on String Data

For a summary of V+ functions that operate on string data, see the section String-Related
Functions on page 144.

1The dollar sign is not considered in the character count of the variable name.

String Data Type

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 101

Real and Integer Data Types
Numbers that have a whole number and a fractional part (or mantissa and exponent if the
value is expressed in scientific notation) belong to the data type real. Numeric values having
only a whole number belong to the data type integer. In general, V+ does not require you to
differentiate between these two data types. If an integer is required and you supply a real, V+
promotes the real to an integer by rounding (not truncation). Where real values are required,
V+ considers an integer a special case of a real that does not have a fractional part. The
default real type is a signed, 32-bit IEEE single-precision number. Real values can also be
stored as 64-bit IEEE double-precision numbers if they are specifically typed using the
DOUBLE keyword (for details, see Variable Classes on page 107).

The range of integer values is:

-16,777,216 to 16,777,215

Single-precision real values have 24 bits of precision, and have the approximate range:

-1E+38 to 1E+38

Double-precision real values have 52 bits of precision, and have the approximate range:

-1E+307 to 1E+307

Numeric Representation

Numeric values can be represented in the standard decimal notation or in scientific notation,
as described in the previous section.

Numeric values can also be represented in octal, binary, and hexadecimal form. The following
table shows the required form for each integer representation.

Prefi-
x Example Representatio-

n

none -193 decimal

^B ^B1001 binary
(maximum of 8
bits)

^ ^346 octal

^H ^H23FF hexadecimal

^D ^D2000000-
0

double-precision

Integer Value Representation

Real and Integer Data Types

V+Language User's Guide, v17.0

Page 102

Numeric Expressions

In almost all situations where a numeric value of a variable can be used, a numeric
expression can also be used. The following examples all result in x having the same value.

x = 3
x = 6/2
x = SQRT(9)
x = SQR(2) - 1
x = 9 MOD 6

Logical Expressions

V+ does not have a specific logical (Boolean) data type. Any numeric value, variable, or
expression can be used as a logical data type. V+ considers 0 to be false and any other value
to be true.

Logical Constants

There are four logical constants, TRUE andON that will resolve to -1, and FALSE andOFF
that will resolve to 0. These constants can be used anywhere that a Boolean expression is
expected.

A logical value, variable, or expression can be used anywhere that a decision is required. In
this example, an input signal is tested. If the signal is on (high) the variable dio.sample is
given the value true, and the IF clause executes. Otherwise, the ELSE clause executes:

dio.sample = SIG(1001)
IF dio.sample THEN

; Steps to take when signal is on (high)
ELSE

; Steps to take when signal is off (low)
END

Since a logical expression can be used in place of a logical variable, the first two lines of this
example could be combined to

IF SIG(1001) THEN

Functions That Operate on Numeric Data

For a summary of V+ functions that operate on numeric data, see the section Numeric Value
Functions on page 147.

Real and Integer Data Types

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 103

Location Data Types
This section gives a brief explanation of location data. Motion Control Operations on page 163
covers locations and their use in detail.

Transformations

A data type particular to V+ is the transformation data type. This data type is a collection of
several values that uniquely identify a location in Cartesian space.

The creation andmodification of location variables are discussed in Motion Control Operations
on page 163.

Precision Points

Precision points are a second data type particular to V+. A precision point is a collection of
joint angles and translational values that uniquely identify the position and orientation of a
robot. The difference between transformation variables and precision-point variables will
becomemore apparent when robot motion instructions are discussed in Motion Control
Operations on page 163.

Location Data Types

V+Language User's Guide, v17.0

Page 104

Arrays
V+ supports arrays of up to three dimensions. Any V+ data type can be stored in an array.
Like simple variables, array allocation (and typing) is dynamic. Unless they are declared to be
AUTOmatic, array sizes do not have to be declared.

For example:

array.one[2] = 36

allocates space for a one-dimensional array named array.one and places the value 36 in
element two of the array. (The numbers inside the brackets ([]) are referred to as indices.
An array index can also be a variable or an expression.)

$array.two[4,5] = "row 4, col 5"

allocates space for a two-dimensional array named array.two and places row 4, col 5 in row
four, column five of the array.

array.three[2,2,4] = 10.5

allocates space for a three-dimensional array named array.three and places the value 10.5 in
row two, column two, range four.

If any of the above instructions were executed and the array had already been declared, the
instruction wouldmerely place the value in the appropriate location. If a data type different
from the one the array was originally created with is specified, an error will result.

Arrays are allocated in blocks of 16. Thus, the instruction:

any_array[2] = 50

results in allocation of array elements 0 - 15. The instructions:

any_array[2] = 50
any_array[20] = 75

results in the allocation of array elements 0 - 31.

Array allocation is most efficient when the highest range index exceeds the highest column
index, and the highest column index exceeds the highest row index. (Row is the first
element, column is the second element, and range is the third element.)

Global Array Access Restriction

V+ has a feature where global and LOCAL arrays are automatically extended as they are
used. For efficiency, there is no interlocking of the array extension process between multiple
tasks. A crash to DDT can occur if one task is extending or deleting an array while another is
trying to access it. The AIM software application has built-in protection to prevent this
problem and the resulting crash. However, custom V+ programsmust be coded to avoid this
problem using one of the followingmethods:

Arrays

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 105

Method 1

If there is a known reasonable upper-bound on the array dimensions, define (by assigning an
arbitrary value to it) the highest element of the array. For multi-dimensional arrays, assign
the highest element of each possible sub-array. This assignment prevents the arrays from
extending.

Method 2

Use the TAS function to interlock access to the array. In this case, access to the array is
handled exclusively from one or two subroutines that include the TAS to control access to the
array. For details, see the TAS program instruction in the V+ Language Reference Guide.

Arrays

V+Language User's Guide, v17.0

Page 106

Variable Classes
In addition to having a data type, variables belong to one of three classes, GLOBAL, LOCAL,
or AUTOMATIC. These classes determine how a variable can be altered by different calling
instances of a program.

Global Variables

This is the default class. Unless a variable has been specifically declared to be LOCAL or AUTO,
a newly created variable is considered global. Once a global variable has been initialized, it is
available to any executing program1 until the variable is deleted or all programs that
reference it are removed from system memory (with a DELETE or ZERO instruction). Global
variables can be explicitly declared with the GLOBAL program instruction.

GLOBAL DOUBLE dbl_real_var

Global variables are very powerful and should be used carefully and consciously. If you
cannot think of a good reason tomake a variable global, good programming practice dictates
that you declare it to be LOCAL or AUTO.

Local Variables

Local variables are created by a program instruction similar to:

LOCAL the_local_var

where the variable the_local_var is created as a local variable. Local variables can be changed
only by the program in which they are declared.

An important difference between local variables in V+ and local variables in most other high-
level languages is that V+ local variables are local to all copies (calling instances) of a
program, not just a particular calling instance of that program. This distinction is critical if
you write recursive programs. In recursive programs you will generally want to use the next
variable class, AUTO.

Automatic Variables

Automatic variables are created by a program instruction similar to:

AUTO the_auto_var

where the_auto_var is created as an automatic variable. Automatic variables can be
changed only by a particular calling instance of a program.

AUTO statements cannot be added or deleted when the program is on the stack. See "Special
Editing Situations."

AUTO DOUBLE dbl_auto_var

Variable Classes

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 107

Automatic variables are more like the local variables of other high-level languages. If you are
writing programs using a recursive algorithm, you will most likely want to use variables in the
automatic class.

Scope of Variables

The scope of a variable refers to the range of programs that can see that variable. The
following figureshows the scope of the different variable classes. A variable can be altered by
the program(s) indicated in the shaded area of the box it is in plus any programs that are in
smaller boxes. When a program declares an AUTO or LOCAL variable, any GLOBAL variables of
the same name created in other programs are not accessible.

Variable Scoping

Variable Scope Example shows an example of using the various variable classes. Notice that:

l prog_1 declares a to be GLOBAL. Thus, it is available to all programs not having an
AUTO or LOCAL a.

l prog_2 creates an undeclared variable b. By default, b is GLOBAL and available to other

Variable Classes

V+Language User's Guide, v17.0

Page 108

programs not having a LOCAL or AUTO b.

l prog_3 declares an AUTO a and cannot use GLOBAL a. After prog_3 completes, the
value of AUTO a is deleted.

l prog_4 declares a LOCAL a and, therefore, cannot use GLOBAL a. Unlike the AUTO a in
prog_3, however, the value of LOCAL a is stored and is available for any future CALLs
to prog_4.

Variable Scope Example

Variable Classes

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 109

Variable Initialization

Before a variable can be used it must be initialized. String and numeric variables can be
initialized by placing them on the left side of an assignment statement. The statements:

var_one = 36
$var_two = "two"

initializes the variables var_one and $var_two.

var_one = var_two

initializes var_one if var_two has already been initialized. Otherwise, an undefined value
error is returned. A variable can never be initialized on the right side of an assignment
statement (var_two could never be initialized by the above statement).

The statement:

var_one = var_one + 10

is valid only if var_one has been initialized in a previous statement.

Strings, numeric variables, and location variables can be initialized by being loaded from a disk
file.

Strings and numeric variables can be initialized with the PROMPT instruction.

Transformations and precision points can be initialized with the SET or HERE program
instructions. They can also be initialized with the HERE and POINTmonitor commands or with
the TEACHmonitor command and the manual control pendant. See the V+ Operating
System Reference Guide for information on monitor commands.

1Unless the program has declared a LOCAL or AUTO variable with the same name.

Variable Classes

V+Language User's Guide, v17.0

Page 110

Operators
The following sections discuss the valid operators.

Assignment Operator

The equal sign (=) is used to assign a value to a numeric or string variable. The variable being
assigned a value must appear by itself on the left side of the equal sign. The right side of the
equal sign can contain any variable or value of the same data type as the left side, or any
expression that resolves to the same data type as the left side. Any variables used on the
right side of an assignment operator must have been previously initialized.

Location variables require the use of the SET instruction for a valid assignment statement.
The instruction:

loc_var1 = loc_var2

is unacceptable for location and precision-point variables.

Mathematical Operators

V+ uses the standardmathematical operators shown in the following table.

Symbol Function

+ addition

- subtraction or unary minus

* multiplication

/ division

MOD modular (remainder) division

Mathematical Operators

Relational Operators
Relational operators are used in expressions that yield a Boolean value. The resolution of an
expression containing a relational operator is always -1 (true) or 0 (false) and tells you if the
specific relation stated in the expression is true or false. The most common use of relational
expressions is with the control structures.

V+ uses the standard relational operators shown in the following table.

Operators

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 111

Symbol Function

== equal to

< less than

> greater than

<= or =< less than or equal to

>= or => greater than or equal to

<> not equal to

Relational Operators

If x has a value of 6 and y has a value of 10, the following Boolean expressions resolve to -1
(true):

x < y
y >= x
y <> x

and these expressions resolve to 0 (false):

x > y
x <> 6
x == y

Note the difference between the assignment operator = and the relational operator ==:

z = x == y

In this example, z is assigned a value of 0 since the Boolean expression x == y is false and
would therefore resolve to 0. A relational operator never changes the value of the variables
on either side of the relational operator.

Logical Operators

Logical operators affect the resolution of a Boolean variable or expression, and combine
several Boolean expressions so they resolve to a single Boolean value.

V+ uses the standard logical operators shown in the following table.

Symbol Effect

NOT Complement the expression

Logical Operators

Operators

V+Language User's Guide, v17.0

Page 112

or value;makes a true
expression or value false and
vice versa.

AND Both expressions must be
true before the entire
expression is true.

OR Either expression must be
true before the entire
expression is true.

XOR One expression must be true
and one must be false before
the entire expression is true.

If x = 6 and y = 10, the following expressions resolves to -1 (true):

NOT(x == 7)
(x > 2) AND (y =< 10)

And these expressions resolves to 0 (false):

NOT(x == 6)
(x < 2) OR (y > 10)

Bitwise Logical Operators

Bitwise logical operators operate on pairs of integers. The corresponding bits of each integer
are compared and the result is stored in the same bit position in a third binary number.The
following table lists the V+ bitwise logical operators.

Operator Effect

BAND Each bit is compared using and logic. If both bits are 1, then the
corresponding bit is set to 1. Otherwise, the bit is set to 0.

BOR Each bit is compared using or logic. If either bit is 1, then the
corresponding bit is set to 1. If both bits are 0, the corresponding bit is
set to 0.

BXOR Each bit is compared using exclusive or logic. If both bits are 1 or both
bits are 0, the corresponding bit is set to 0. When one bit is 1 and the
other is 0, the corresponding bit is set to 1.

Bitwise Logical Operators

Operators

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 113

COM This operator works on only one number. Each bit is complemented: 1s
become 0s and 0s become 1s.

Examples:

x = ^B1001001 BAND ^B1110011

results in x having a value of ^B1000001.

x = COM ^B100001

results in x having a value of ^B11110.

Operators

V+Language User's Guide, v17.0

Page 114

String Operator
Strings can be concatenated (joined) using the plus sign. For example:

$name = "Adept "
$incorp = ", Inc."
$coname = $name + "Technology" + $incorp

results in the variable $coname having the value "Adept Technology, Inc".

String Operator

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 115

Order of Evaluation
Expressions containingmore than one operator are not evaluated in a simple left to right
manner. The following table lists the order in which operators are evaluated. Within an
expression, functions are evaluated first, with expressions within the function evaluated
according to the table.

The order of evaluation can be changed using parentheses. Operators within each pair of
parentheses, starting with the most deeply nested pair, are completely evaluated according
to the rules in the following table before any operators outside the parentheses are
evaluated.

Operators on the same level in the table are evaluated strictly left to right.

Operator

NOT, COM

- (Unary minus)

*, /, MOD, AND, BAND

+, -, OR, BOR, XOR, BXOR

==, <=, >=, <, >, <>

Order of Operator Evaluation

Order of Evaluation

V+Language User's Guide, v17.0

Page 116

Program Control
The following topics are described in this chapter:

Introduction 119
Unconditional Branch Instructions 120
Program Interrupt Instructions 122
Logical (Boolean) Expressions 128
Conditional Branching Instructions 129
Looping Structures 132
Summary of Program Control Keywords 136
Controlling Programs in Multiple CPU Systems 139

Program Control

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 117

Program Control

V+Language User's Guide, v17.0

Page 118

Introduction
This chapter introduces the structures available in V+ to control program execution. These
structures include the looping and branching instructions common tomost high-level
languages as well as some instructions specific to V+.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 119

Unconditional Branch Instructions
There are three unconditional branching instructions in V+:

l GOTO

l CALL

l CALLS

GOTO

The GOTO instruction causes program execution to branch immediately to a program label
instruction somewhere else in the program. The syntax for GOTO is:

GOTO label

label is an integer entered at the beginning of a line of program code. label is
not the same as the program step numbers: Step numbers are assigned
by the system; labels are entered by the programmer as the opening to a
line of code. In the next code example, the numbers in the first column
are program step numbers (these numbers are not displayed in the SEE
editor). The numbers in the second column are program labels.

61 .
62 GOTO 100
63 .
64 .
65 100 TYPE "The instruction GOTO 100 got me he re."
66 .

A GOTO instruction can branch to a label before or after the GOTO instruction.

GOTO instructions can make program logic difficult to follow and debug, especially in a long,
complicated program with many subroutine calls. Use GOTO instructions with care. A
common use of GOTO is as an exit routine or exit on error instruction.

CALL

The CALL and CALLS instructions are used in V+ to implement subroutine calls. The CALL
instruction causes program execution to be suspended and execution of a new program to
begin. When the new program has completed execution, execution of the original program
resumes at the instruction after the CALL instruction. The details of subroutine creation,
execution, and parameter passing are covered in Subroutines on page 42. The simplified
syntax for a CALL instruction is:

CALL program(arg_list)

program is the name of the program to be called. The program namemust be
specified exactly, and the program being CALLedmust be resident in
system memory.

Unconditional Branch Instructions

V+Language User's Guide, v17.0

Page 120

arg_list is the list of arguments being passed to the subroutine. These arguments
can be passed either by value or by reference andmust agree with the
arguments expected by the program being called. Subroutines and
argument lists are described in "Subroutines."

The code:

48 .
49 CALL check_data(locx, locy, length)
50 .

suspends execution of the calling program, passes the arguments locx, locy, and length to
program check_data, executes check_data, and (after check_data has completed execution)
resumes execution of the calling program at step 50.

CALLS

The CALLS instruction is identical to the CALL instruction except for the specification of
program. For a CALLS instruction, program is a string value, variable, or expression. This
allows you to call different subroutines under different conditions using the same line of
code. (These different subroutines must have the same arg_list.)

The code:

47 .
48 $program_name = $program_list[program_select]
49 CALLS $program_name(length, width)
50 .

suspends execution of the calling program, passes the parameters length andwidth to the
program specified by array index program_select from the array $program_list, executes the
specified program, and resume execution of the calling program at step 50.

Unconditional Branch Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 121

Program Interrupt Instructions
V+ provides several ways of suspending or terminating program execution. A program can be
put on hold until a specific condition becomes TRUE using the WAIT instruction. A program
can be put on hold for a specified time period or until an event is generated in another task by
the WAIT.EVENT instruction. A program can be interrupted based on a state transition of a
digital input signal with the REACT and REACTI instructions. Program errors can be
intercepted and handled with a REACTE instruction. Program execution can be terminated
with the HALT, STOP, and PAUSE commands. These instructions interrupt the program in
which they are contained. Any programs running as other tasks are not affected. Robot
motion can be controlled with the BRAKE, BREAK, and DELAY instructions. (The ABORT and
PROCEEDmonitor commands can also be used to suspend and proceed programs, see the V+
Operating System Reference Guide for details.)

WAIT

WAIT suspends program execution until a condition (or conditions) becomes true.

WAIT SIG(1032, -1028)

delays execution until digital input signal 1032 is on and 1028 is off.

WAIT TIMER(1) > 10

suspends execution until timer 1 returns a value greater than 10.

WAIT.EVENT

The instruction:

WAIT.EVENT , 3.7

suspends execution for 3.7 seconds. This wait is more efficient than waiting for a timer (as in
the previous example) because the task does not have to loop continually to check the timer
value.

The instruction:

WAIT.EVENT

suspends execution until another task issues a SET.EVENT instruction to the waiting task. If
the SET.EVENT does not occur, the task waits indefinitely. For more details on SET.EVENT,
see the V+ Language Reference Guide.

REACT and REACTI

When a REACT or REACTI instruction is encountered, the program begins monitoring a digital
input signal specified in the REACT instruction. This signal is monitored in the background
with program execution continuing normally until the specified signal transitions. When (and

Program Interrupt Instructions

V+Language User's Guide, v17.0

Page 122

if) a transition is detected, the program suspends execution at the currently executing step.
REACT and REACTI suspend execution of the current program and call a specified subroutine.
Additionally, REACTI issues a BRAKE instruction to immediately stop the current robot
motion.

Both instructions specify a subroutine to be run when the digital transition is detected. After
the specified subroutine has completed, program execution resumes at the step executing
when the digital transition was detected.

Digital signals 1001 - 1012 and 2001 - 2008 can be used for REACT instructions.

The signal monitoring initiated by REACT/REACTI is in effect until another REACT/REACTI or
IGNORE instruction is encountered. If the specified signal transition is not detected before an
IGNORE or second REACT/REACTI instruction is encountered, the REACT/REACTI instruction
has no effect on program execution.

The syntax for a REACT or REACTI instruction is:

REACT signal_number, program, priority

signal_
number

digital input signal in the range 1001 to 1012 or 2001 to 2008.

program the subroutine (and its argument list) that is to be executedwhen a
react is initiated.

priority number from 1 to 127 that indicates the relative importance of the
reaction.

The following code implements a REACT routine:

35 ; Look for a change in signal 1001 from "on" to "off".
36 ; Call subroutine "alarm if a change is detected.
37 ; Set priority of "alarm" to 10 (default would be 1).
38 ; The main program has default priority of 0.
39
40 REACT -1001, alarm, 10
41
42 ; REACT will be in effect for the following code
43
44 MOVE a
45 MOVE b
46 LOCK 20 ;Defer any REACTions to "alarm"
47 MOVE c
48 MOVE d
49 LOCK 0 ;Allow REACTions
50 MOVE e
51
52 ; Disable monitoring of signal 1001
53
54 IGNORE -1001
55 .

Program Interrupt Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 123

If signal 1001 transitions during execution of step 43, step 43 completes, the subroutine
alarm is called, and execution resumes at step 44.

If signal 1001 transitions during execution of step 47, steps 47, 48, and 49 completes (since
the program had been given a higher priority than REACT), the subroutine alarm is called,
and execution resumes at step 50.1

REACTE

REACTE enables a reaction program that is run whenever a system error that causes
program execution to terminate is encountered. This includes all robot errors, hardware
errors, andmost system errors (it does NOT include I/O errors).

Unlike REACT and REACTI, REACTE cannot be deferred based on priority considerations. The
instruction:

REACTE trouble

enables monitoring of system errors and execute the program trouble whenever a system
error is generated.

HALT, STOP, and PAUSE

When a HALT instruction is encountered, program execution is terminated, and any open
serial or disk units are DETACHED and FCLOSEd. PROCEED or RETRYwill not resume
execution.

When a STOP instruction is encountered, execution of the current program cycle is
terminated and the next execution cycle resumes at the first step of the program. If the STOP
instruction is encountered on the last execution cycle, program execution is terminated, and
any open serial or disk units are DETACHED and FCLOSEd. PROCEED or RETRYwill not
resume execution. (See EXECUTE for details on execution cycles.)When a PAUSE instruction
is encountered, execution is suspended. After a PAUSE, the system prompt appears and
Monitor Commands can be executed. This allows you to verify the values of program variables
and set system parameters. This is useful during program debugging. The monitor command
PROCEED resumes execution of a program interruptedwith the PAUSE command.

BRAKE, BREAK, and DELAY

BRAKE aborts the current robot motion. This instruction can be issued from any task.
Program execution is not suspended and the program (executing as task 0) continues to
execute at the next instruction. BREAK suspends program execution (defeats forward
processing) until the current robot motion is completed. This instruction can be executed only
from a robot control program and is usedwhen completion of the current robot motion must
occur before execution of the next instruction. A DELAY instruction specifies the minimum
delay between robot motions (not program instructions).

Program Interrupt Instructions

V+Language User's Guide, v17.0

Page 124

Additional Program Interrupt Instructions

You can specify a parameter in the instruction line for the I/O instructions ATTACH, READ,
GETC, andWRITE that causes the program to suspend until the I/O request has been
successfully completed.

Third-party boards may also generate system level interrupts. For details, see the
descriptions of INT.EVENT, CLEAR.EVENT andWAIT.EVENT in Summary of Program Control
Keywords on page 136.

Program Interrupt Example

The following figure shows how the task and program priority scheme works. It also shows
how the asynchronous and program interrupt instructions work within the priority scheme.
The example makes the following assumptions:

l Task 1 runs in all time slices at priority 30

l Task 2 runs in all time slices at priority 20

l All system tasks are ignored

l All system interrupts are ignored

The illustration shows the time lines of executing programs. A solid line indicates a program
is running, and a dotted line indicates a program is waiting. The Y axis shows the program
priority. The X axis is divided into 16-millisecondmajor cycles. The example shows two tasks
executing concurrently with REACT routines enabled for each task. Note how the LOCK
instructions and triggering of the REACT routines change the program priority.

The sequence of events for the example is:

1. Task 1 is running program prog_a at program priority 0. A reaction program based on
signal 1003 is enabled at priority 5.

2. Signal 1003 is asserted externally. The signal transition is not detected until the next
major cycle.

3. The signal 1003 transition is detected. The task 1 reaction program begins execution,
interrupting prog_a.

4. The task 1 reaction program reenables itself and completes by issuing a RETURN
instruction. prog_a resumes execution in task 1.

5. Task 1 prog_a issues a CLEAR.EVENT instruction followed by aWAIT.EVENT
instruction to wait for its event flag to be set. Task 1 is suspended, and task 2 resumes
execution of prog_b. Task 2 has a reaction program based on signal 1010 enabled at
priority 5.

6. Task 2 prog_b issues a LOCK 10 instruction to raise its program priority to level 10.

7. Signal 1010 is asserted externally. The signal transition is not detected until the next

Program Interrupt Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 125

major cycle.

8. The signal 1010 transition is detected, and the task 2 reaction is triggered. However,
since the reaction is at level 5 and the current program priority is 10, the reaction
execution is deferred.

9. Task 2 prog_b issues a LOCK 0 instruction to lower its program priority to level 0. Since
a level 5 reaction program is pending, it begins execution immediately and sets the
program priority to 5.

10. Signal 1003 is asserted externally. The signal transition is not detected until the next
major cycle.

11. The signal 1003 transition is detected which triggers the task 1 reaction routine and
also sets the task 1 event flag. Since task 1 has a higher priority (30) than task 2 (20),
task 1 begins executing its reaction routine and task 2 is suspended.

12. The task 1 reaction routine completes by issuing a RETURN instruction. Control
returns to prog_a in task 1.

13. Task 1 prog_a issues a CLEAR.EVENT instruction followed by aWAIT.EVENT
instruction to wait for its event flag to be set. Task 1 is suspended and task 2 resumes
execution of its reaction routine.
The task 2 reaction routine completes by issuing a RETURN instruction. Control
returns to prog_b in task 2.

14. Task 2 prog_b issues a SET.EVENT 1 instruction, setting the event flag for task 1. Task
2 now issues a RELEASE program instruction to yield control of the CPU.

15. Since the task 1 event flag is now set, and its priority is higher than task 2, task 1
resumes execution, and task 2 is suspended.

Program Interrupt Instructions

V+Language User's Guide, v17.0

Page 126

Priority Example 2

1The LOCK instruction can be used to control execution of a program after a REACT or
REACTI subroutine has completed.

Program Interrupt Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 127

Logical (Boolean) Expressions
The next two sections discuss program control structures whose execution depends on an
expression or variable that takes on a Boolean value (a variable that is either true or false, or
an expression that resolves to true or false). An expression can take into account any number
of variables or digital input signals as long as the final resolution of the expression is a Boolean
value. In V+, any number (real or integer) can satisfy this requirement. Zero is considered
false; any nonzero number is considered true. There are four system constants, TRUE andON
that resolve to -1, and FALSE andOFF, that resolve to 0.

Examples of valid Boolean expressions:

y > 32
NOT(y > 32)
x == 56
x AND y
(x AND y) OR (var1 < var2)
-1

For details on V+ relational operators, see Relational Operators on page 111.

Logical (Boolean) Expressions

V+Language User's Guide, v17.0

Page 128

Conditional Branching Instructions
Conditional branching instructions allow you to execute blocks of code based on the current
values of program variables or expressions. V+ has three conditional branch instructions:

l IF...GOTO

l IF...THEN...ELSE

l CASE value OF

IF...GOTO

IF...GOTO behaves similarly to GOTO, but a condition can be attached to the branch. If the
instruction:

IF logical_expression GOTO 100

is encountered, the branch to label 100 occurs only if logical_expression has a value of true.

IF...THEN...ELSE

The basic conditional instruction is the IF...THEN...ELSE clause. This instruction has two
forms:

IF expression THEN
code block (executed when expression is true)

END

IF expression THEN
code block (executed when expression is true)

ELSE
code block (executed when expression is false)

END

expressionis any well-formed Boolean expression (described above).

In the following example, if program execution reaches step 59 and num_parts is greater
than 75, step 60 is executed. Otherwise, execution resumes at step 62.

56 .
57 ;CALL "check_num" if "num_parts" is greater than 75
58
59 IF num_parts > 75 THEN
60 CALL check_num(num_parts)
61 END
62 .

In the following example, if program execution reaches step 37 with input signal 1033 on
and need_part true, the program executes steps 38 to 40 and resumes at step 44.
Otherwise, it executes step 42 and resumes at step 44.

Conditional Branching Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 129

32 .
33 ; If I/O signal 1033 is on and Boolean "need_part" is
34 ; true, then pick up the part
35 ; else alert the operator.
36
37 IF SIG(1033) AND need_part THEN
38 MOVE loc1
39 CLOSEI
40 DEPART 50
41 ELSE
42 TYPE "Part not picked up."
43 END
44 .

CASE value OF

The IF...THEN...ELSE structure allows a program to take one of two different actions. The
CASE structure will allow a program to take one of many different actions based on the value
of a variable. The variable usedmust be a real or an integer. The form of the CASE structure
is:

CASE target OF
VALUE list_of_values:

code block (executed when target is in list_of_values)
VALUE list_of_values:

code block (executed when target is in list_of_values)
...

ANY
code block (executed when target not in any list_of_values)

END

real value to match.

list_of_valueslist (separated by commas) of real values. If one of the values in the list
equals target, the code following that value statement is executed.

Example
5 ; Create a menu structure using a CASE statement
66
67 50 TYPE "1. Execute the program."
68 TYPE "2. Execute the programmer."
69 TYPE "3. Execute the computer."
70 PROMPT "Enter menu selection.", select
71
72 CASE select OF
73 VALUE 1:
74 CALL exec_program()
75 VALUE 2:
76 CALL exec_programmer()
77 VALUE 3:
78 CALL exec_computer()
79 ANY

Conditional Branching Instructions

V+Language User's Guide, v17.0

Page 130

80 PROMPT "Entry must be from 1 to 3", select
81 GOTO 50
82 END
83 .

If the above code is rewritten without an ANY statement, and a value other than 1, 2, or 3 is
entered, the program continues to execute at step 83 without executing any program.

Conditional Branching Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 131

Looping Structures
In many cases, you will want the program to execute a block of code more than once. V+ has
three looping structures that allow you to execute blocks of code a variable number of times.
The three instructions are:

l FOR

l DO...UNTIL

l WHILE...DO

FOR

A FOR instruction creates an execution loop that will execute a given block of code a specified
number of times. The basic form of a FOR loop is:

FOR index = start_val TO end_val STEP incr
.
code block
.

END

index is a real variable that keeps track of the number of times the FOR loop has
been executed. This variable is available for use within the loop.

start_val is a real expression for the starting value of the index.

end_val is a real expression for the ending value of the index. Execution of the
loop terminates when index reaches this value.

incr is a real expression indicating the amount index is to be incremented
after each execution of the loop. The default value is 1.

Examples
88 .
89 ; Output even elements of array "$names" (up to index 32)
90
91 FOR i = 2 TO 32 STEP 2
92 TYPE $names[i]
93 END
94 .

.
102 .
103 ; Output the values of the 2 dimensional array "values" in
104 ; column and row form (10 rows by 10 columns)
105 .
106 FOR i = 1 TO 10
107 FOR j = 1 to 10
108 TYPE values[i,j], /S
109 END

Looping Structures

V+Language User's Guide, v17.0

Page 132

110 TYPE " ", /C1
111 END
112 .

A FOR loop can be made to count backward by entering a negative value for the step
increment.
13 .
14 ; Count backward from 10 to 1
15
16 FOR i = 10 TO 1 STEP -1
17 TYPE i
18 END
19 .

Changing the value of index inside a FOR loopwill cause the loop to behave improperly. To
avoid problems with the index, make the index variable an auto variable and do not change
the index from inside the FOR loop. Changes to the starting and ending variables do not
affect the FOR loop once it is executing.

DO...UNTIL

DO...UNTIL is a looping structure that executes a given block of code an indeterminate
number of times. Termination of the loop occurs when the Boolean expression or variable
that controls the loop becomes true. The Boolean is tested after each execution of the code
block-if the expression evaluates to true, the loop is not executed again. Since the
expression is not evaluated until after the code block has been executed, the code block will
always execute at least once. The form for this looping structure is:

DO
.
code block
.

UNTIL expression

expressionis any well-formed Boolean expression. This expressionmust eventually
evaluate to true, or the loop executes indefinitely.

20 .
21 ; Output the numbers 1 to 100 to the screen
22
23 x = 1
24 DO
25 TYPE x
26 x = x + 1
27 UNTIL x > 100
28 .

Step 26 ensures that x will reach a high enough value so that the expression x > 100
becomes true.

43 .
44 ; Echo up to 15 characters to the screen. Stop when 15
45 ; characters or the character "#" have been entered.

Looping Structures

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 133

46
47 x = 1
48 DO
49 PROMPT "Enter a character: ", $ans
50 TYPE $ans
51 x = x + 1
52 UNTIL (x > 15) OR ($ans == "#")
53 .

In this code, either x reaching 15 or # being entered at the PROMPT instruction terminates
the loop. As long as the operator enters enough characters, the loop terminates.

WHILE...DO

WHILE...DO is a looping structure similar to DO...UNTIL except the Boolean expression is
evaluated at the beginning of the loop instead of at the end. This means that if the condition
indicated by the expression is true when the WHILE...DO instruction is encountered, the code
within the loopwill be executed.

WHILE...DO loops are susceptible to infinite looping just as DO...UNTIL loops are. The
expression controlling the loopmust eventually evaluate to true for the loop to terminate.
The form of the WHILE...DO looping structure is:

WHILE expression DO
code block

END

expressionis any well-formed Boolean expression as described at the beginning of this
section.

The following code shows aWHILE...DO loop being used to validate input. Since the Boolean
expression is tested before the loop is executed, the code within the loopwill be executed only
when the operator inputs an unacceptable value at step 23.

20 .
21 ; Loop until operator inputs value in the range 32-64
22
23 PROMPT "Enter a number in the range 32 to 64.", ans
24 WHILE (ans < 32) OR (ans > 64) DO
25 PROMPT "Number must be in the range 32-64.", ans
26 END
27 .

In the above code, an operator could enter a nonnumeric value, in which case the program
execution would stop. A more robust strategy would be to use a string variable in the PROMPT
instruction and then use the $DECODE and VAL functions to evaluate the input.

In the following code, if digital signal 1033 is on when step 69 is reached, the loop does not
execute, and the program continues at step 73. If digital signal 1033 is off, the loop executes
continually until the signal comes on.

65 .
66 ; Create a busy loop waiting for signal

Looping Structures

V+Language User's Guide, v17.0

Page 134

67 ; 1033 to turn "on"
68 WHILE NOT SIG(1033) DO
69
70 ;Wait for signal
71
72 END
73 .

Looping Structures

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 135

Summary of Program Control Keywords
The following table summarizes the program control instructions. See the V+ Language
Reference Guide for details on these commands.

Keyword Type Function

ABORT Program
Instruction

Terminate execution of a control program.

CALL Program
Instruction

Suspend execution of the current program and
continue execution with a new program (that is, a
subroutine).

CALLS Program
Instruction

Suspend execution of the current program and
continue execution with a new program (that is, a
subroutine) specified with a string value.

CASE Program
Instruction

Initiate processing of a CASE structure by defining
the value of interest.

CLEAR.EVENT Program
Instruction

Clear an event associated with the specified task.

CYCLE.END Program
Instruction

Terminate the specified control program the next
time it executes a STOP program instruction (or its
equivalent). Suspend processing of an application
program or command program until a program
completes execution.

DO Program
Instruction

Introduce a DO program structure.

EXECUTE Program
Instruction

Begin execution of a control program.

EXIT Program
Instruction

Exit a FOR, DO, or WHILE control structure.

FOR Program
Instruction

Execute a group of program instructions a certain
number of times.

GET.EVENT Real-
Valued

Return events that are set for the specified task.

Program Control Operations

Summary of Program Control Keywords

V+Language User's Guide, v17.0

Page 136

Keyword Type Function

Function

GOTO Program
Instruction

Perform an unconditional branch to the program step
identified by the given label.

HALT Program
Instruction

Stop program execution and do not allow the
program to be resumed.

IF...GOTO Program
Instruction

Branch to the specified label if the value of a logical
expression is TRUE (nonzero).

IF...THEN Program
Instruction

Conditionally execute a group of instructions (or one
of two groups) depending on the result of a logical
expression.

INT.EVENT Program
Instruction

Send a SET.EVENT instruction to the current task if
an interrupt occurs on a specified VME bus vector.

LOCK Program
Instruction

Set the program reaction lock-out priority to the
value given.

MCS Program
Instruction

Invoke amonitor command from a control program.

NEXT Program
Instruction

Break a FOR, DO, or WHILE structure and start the
next iteration of the control structure.

PAUSE Program
Instruction

Stop program execution but allow the program to be
resumed.

PRIORITY Real-
Valued
Function

Return the current reaction lock-out priority for the
program.

REACT
REACTI

Program
Instruction

Initiate continuousmonitoring of a specified digital
signal and automatically trigger a subroutine call if
the signal transitions properly.

REACTE Program
Instruction

Initiate the monitoring of errors that occur during
execution of the current program task.

RELEASE Program Allow the next available program task to run.

Summary of Program Control Keywords

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 137

Keyword Type Function

Instruction

RETURN Program
Instruction

Terminate execution of the current subroutine and
resume execution of the last-suspended program at
the step following the CALL or CALLS instruction that
caused the subroutine to be invoked.

RETURNE Program
Instruction

Terminate execution of an error reaction subroutine
and resume execution of the last-suspended
program at the step following the instruction that
caused the subroutine to be invoked.

RUNSIG Program
Instruction

Turn on (or off) the specified digital signal as long as
execution of the invoking program task continues.

SET.EVENT Program
Instruction

Set an event associated with the specified task.

STOP Program
Instruction

Terminate execution of the current program cycle.

WAIT Program
Instruction

Put the program into a wait loop until the condition is
TRUE.

WAIT.EVENT Program
Instruction

Suspend program execution until a specified event
has occurred, or until a specified amount of time has
elapsed.

WHILE Program
Instruction

Initiate processing of a WHILE structure if the
condition is TRUE or skipping of the WHILE structure
if the condition is initially FALSE.

Summary of Program Control Keywords

V+Language User's Guide, v17.0

Page 138

Controlling Programs in Multiple CPU Systems
V+ systems equippedwith multiple CPUs and optional V+ Extensions can run multiple copies
of V+. Keep the following considerations in mindwhen runningmultiple V+ systems:

l A graphics-based system is required.

l The second, third, etc., V+ copies are displayed in separate windows on the monitor.
These windows are labeledMonitor_2, Monitor_3, etc. The system switch MONITORS
must be enabled before these windows can be displayed. The CPU number is
determined by the board address switch (see the Adept MV Controller User's Guide).

l ALL V+ copies share the same digital input, output, and soft signals. Global variables
are not shared.

l The IOGET_ and IOPUT_ instructions can be used to share data between V+ copies
via an 8 KB reserved section of sharedmemory on each board. Acceptable address
values are 0 to hexadecimal value 1FFF (decimal value 0 to 8191). This memory area
is used only for communication between V+ application programs and is not used for
any other purpose. (It is not possible to access the rest of the processor memory
map.)

l The IOTAS() function can be used to interlock access to user data structures.

l The addresses are based on single-byte (8-bit) values. For example, if you write a 32-
bit value to an address, it occupies four address spaces (the address that you specify
and the next three addresses).

l If you read a value from a location using a format different from the format that was
used to write to that location, you get an invalid value, but you will not get an error
message. (For example, if you write using IOPUTF and read using IOPUTL, your data is
invalid.)

NOTE: V+ does not enforce any memory protection schemes for use of the
application shared-memory area. It is the user's responsibility to keep track
of memory usage. If you are using application or utility programs written by
someone else, you should read the documentation providedwith that
software to ensure that it does not conflict with your usage of the shared
area.

l In general, robot control and system configuration changesmust be performed from
CPU #1. CPUs other than #1 always start up with the stand-alone control module. No
belts or kinematic modules are loaded.

l Each multiple CPU can execute its own autostart routine. CPU #1 loads the normal
AUTO file and execute the program auto, CPU #2 loads the file AUTO02.V2 and
execute the program auto02.

Controlling Programs in Multiple CPU Systems

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 139

Functions
The following topics are described in this chapter:

Using Functions 143
String-Related Functions 144
Location, Motion, and External Encoder Functions 146
Numeric Value Functions 147
Logical Functions 149
System Control Functions 150

Functions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 141

Functions

V+Language User's Guide, v17.0

Page 142

Using Functions
V+ provides you with a wide variety of predefined functions for performing string,
mathematical, and general system parameter manipulation. In most cases, you must
provide the data that is input to a function. The function then returns a value based on a
specific operation on that data. Functions can be used anywhere a value or expression would
be used.

Variable Assignment Using Functions

The instruction:

$curr_time = $TIME()

puts the current system time into the variable $curr_time. This is an example of a function
that does not require any input data. The instruction:

var_root = SQRT(x)

puts the square root of the value x into var_root. X is not changed by the function.

Functions Used in Expressions

A function can be usedwherever an expression can be used (as long as the data type
returned by the function is the correct type). The instruction:

IF LEN($some_string) > 12 THEN

results in the Boolean expression being true if the string $some_string has more than 12
characters. The instruction:

array_var = some_array[VAL($x)]

results in array_var having the same value as the array cell $x. (VAL converts a string to a
real.)

Functions as Arguments to a Function

In most cases, the values passed to a function are not changed. This not only protects the
variables you use as arguments to a function, but also allows you to use a function as an
argument to a function (so long as the data type returned is the type expected by the
function). The following example results in i having the absolute value of x. (i = D(-22) = 2).

i = SQRT(SQR(x))

Using Functions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 143

String-Related Functions
The value returned from a string function may be another string or a numeric value.

Keyword Function

ASC Return a single character value from within a string.

$CHR Return a one-character string having a given value.

DBLB Return the value of eight bytes of a string interpreted as an IEEE
double-precision floating-point number.

$DBLB Return an 8-byte string containing the binary representation of a real
value in double-precision IEEE floating-point format.

$DECODE Extract part of a string as delimited by given break characters.

$ENCODE Return a string created from output specifications. The string
produced is similar to the output of a TYPE instruction.

FLTB Return the value of four bytes of a string interpreted as an IEEE
single-precision floating-point number.

$FLTB Return a 4-byte string containing the binary representation of a real
value in single-precision IEEE floating-point format.

$INTB Return a 2-byte string containing the binary representation of a 16-
bit integer.

LEN Return the number of characters in the given string.

LNGB Return the value of four bytes of a string interpreted as a signed 32-
bit binary integer.

$LNGB Return a 4-byte string containing the binary representation of a 32-
bit integer.

$MID Return a substring of the specified string.

PACK Replace a substring within an array of (128-character) string
variables or within a (non-array) string variable.

String-Related Functions

String-Related Functions

V+Language User's Guide, v17.0

Page 144

Keyword Function

POS Return the starting character position of a substring in a string.

$TRANSB Return a 48-byte string containing the binary representation of a
transformation value.

$TRUNCATE Return all characters in the input string until an ASCII NUL (or the
end of the string) is encountered.

$UNPACK Return a substring from an array of 128-character string variables.

VAL Return the real value represented by the characters in the input
string.

Examples of String Functions

The instruction:

TYPE $ERROR(-504)

outputs the text *Unexpected end of file* to the screen.

The instructions:

$message = "The length of this line is: "
TYPE $ENCODE($message, /I0, LEN($message)+14), "
characters."

output the message:

The length of this line is: 42 characters.

String-Related Functions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 145

Location, Motion, and External Encoder Functions
V+ provides numerous functions for manipulating and converting location variables. See
Motion Control Operations for details on motion processing and a table that includes all
location-related functions. For details on the external encoders, see Reading Device Data on
page 354.

Examples of Location Functions

The instruction:

rotation = RZ(HERE)

places the value of the current rotation about the Z axis in the variable rotation.

The instruction:

dist = DISTANCE(HERE, DEST)

places the distance between the motion device's current location and its destination (the
value of the next motion instruction) in the variable dist.

The instructions:

IF INRANGE(loc_1) == 0 THEN
IF SPEED(2) > 50 THEN

SPEED 50
END
MOVE(loc_1)

END

ensures that loc_1 is reachable andmoves the motion device to that location at a program
speed not exceeding 50.

Location, Motion, and External Encoder Functions

V+Language User's Guide, v17.0

Page 146

Numeric Value Functions
The functions listed in the following table provide trigonometric, statistical, and data type
conversion operations. For additional details on arithmetic processing, see Data Types and
Operators on page 97.

Keyword Function

ABS Return absolute value.

ATAN2 Return the size of the angle (in degrees) that has its trigonometric
tangent equal to value_1/value_2.

BCD Convert a real value to Binary Coded Decimal (BCD) format.

COS Return the trigonometric cosine of a given angle.

CUBRT Returns the cube root of a parameter.

DCB Convert BCD digits into an equivalent integer value.

FRACT Return the fractional part of the argument.

INT Return the integer part of the value.

MAX Return the maximum value contained in the list of values.

MIN Return the minimum value contained in the list of values.

OUTSIDE Test a value to see if it is outside a specified range.

PI Return the value of the mathematical constant pi (3.141593).

RANDOM Return a pseudorandom number.

SIGN Return the value 1 with the sign of the value parameter.

SIN Return the trigonometric sine of a given angle.

SQR Return the square of the parameter.

SQRT Return the square root of the parameter.

Numeric Value Functions

Numeric Value Functions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 147

Examples of Arithmetic Functions

The instructions:

$a = "16"
x = SQRT(VAL($a))

results in x having a value of 4.

The instruction:

x = INT(RANDOM*10)

creates a pseudorandom number between 0 and 10.

Numeric Value Functions

V+Language User's Guide, v17.0

Page 148

Logical Functions
The following table lists the functions that return Boolean values. These functions require no
arguments and essentially operate as system constants.

Keyword Function

FALSE Return the value used by V+
to represent a logical false
result.

OFF Return the value used by V+
to represent a logical false
result.

ON Return the value used by V+
to represent a logical true
result.

TRUE Return the value used by V+
to represent a logical true
result.

Logical Functions

Logical Functions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 149

System Control Functions
The functions listed in the following table return information about the system and system
parameters.

Keyword Function

CAS This function compares a real variable to a test value, and
conditionally sets a new value as one indivisible operation.

DEFINED Determine whether a variable has been defined.

ERROR Return the error number of a recent error that caused program
execution to stop or caused a REACTE reaction.

$ERROR Return the error message associated with the given error code.

FREE Return the amount of unused free memory storage space.

GET.EVENT Return events that are set for the specified task.

ID Return values that identify the configuration of the current system.

$ID Return the system creation date and edit/revision information.

INTB Return the value of two bytes of a string interpreted as a signed 16-
bit binary integer.

LAST Return the highest index used for an array (dimension).

PARAMETER Return the current setting of the named system parameter.

PRIORITY Return the current reaction lock-out priority for the program.

SELECT Return the unit number that is currently selected by the current task
for the device named.

STATUS Return status information for an application program.

SWITCH Return an indication of the setting of a system switch.

TAS Return the current value of a real-valued variable and assign it a new
value. The two actions are done indivisibly so no other program task

System Control Functions

System Control Functions

V+Language User's Guide, v17.0

Page 150

Keyword Function

can modify the variable at the same time.

TASK Return information about a program execution task.

TIME Return an integer value representing either the date or the time
specified in the given string parameter.

$TIME Return a string value containing either the current system date and
time or the specified date and time.

TIMER Return the current time value of the specified system timer.

TPS Return the number of ticks of the system clock that occur per second
(Ticks Per Second).

Example of System Control Functions

The instruction:

IF (TIMER(2) > 100) AND (DEFINED(loc_1)) THEN
MOVE loc_1

END

executes the MOVE instruction only if timer (2) had a value greater than 100 and the
variable loc_1 had been defined.

System Control Functions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 151

Switches and Parameters
The following topics are described in this chapter:

Introduction 155
Parameters 156
Switches 159

Switches and Parameters

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 153

Switches and Parameters

V+Language User's Guide, v17.0

Page 154

Introduction
System parameters determine certain operating characteristics of the V+ system. These
parameters have numeric values that can be changed from the command line or from within
a program to suit particular system configurations and needs. The various parameters are
described in this chapter alongwith the operations for displaying and changing their values.

System switches are similar to system parameters in that they control the operating
behavior of the V+ system. Switches differ from parameters, however, in that they do not
have numeric values. Switches can be set to either enabled or disabled, which can be
thought of as on and off, respectively.

All the basic system switches are described in this chapter. The monitor commands and
program instructions that can be used to display and change their settings are also
presented.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 155

Parameters
See the V+ Language Reference Guide for more detailed descriptions of the keywords
discussed here.

Whenever a system parameter name is used, it can be abbreviated to the minimum length
required to identify the parameter. For example, the HAND.TIME parameter can be
abbreviated to H, since no other parameter name begins with H.

Viewing Parameters

To see the state of a single parameter, use the PARAMETERmonitor command:

PARAMETER parameter_name

If parameter_name is omitted, the value of all parameters is displayed.

To retrieve the value of a parameter from within a program, use the PARAMETER function.
The instruction:

TYPE "HAND.TIME parameter =", PARAMETER(HAND.TIME)

will display the current setting of the hand-delay parameter in the monitor window.

The PARAMETER function can be used in any expression to include the value of a parameter.
For example, the following program statement increases the delay for hand actuation:

PARAMETER HAND.TIME = PARAMETER(HAND.TIME) + 0.15

Note that the left-hand occurrence of PARAMETER is the instruction name and the right-hand
occurrence is the function name.

Setting Parameters

To set a parameter from the command line, use the PARAMETERmonitor command. The
command:

PARAMETER HAND.TIME = 0.5

sets the hand operation delay time to 0.5 seconds.

To set a parameter in a program, use the PARAMETER program instruction. The instruction:

PARAMETER NOT.CALIBRATED = 1

asserts the not calibrated state for robot 1.

Some parameters are organized as arrays andmust be accessed by specifying an array index.

Parameters

V+Language User's Guide, v17.0

Page 156

Summary of Basic System Parameters

System parameters are set to defaults when the V+ system is initialized. The default values
are indicated with each parameter description below. The settings of the parameter values
are not affected by the ZERO command.

If your robot system includes optional enhancements (such as vision), you will have other
system parameters available. Consult the documentation for the options for details. The
basic system parameters are shown in the following table.

Parameter Use De-
fault Min Max

BELT.MODE Controls the operation of the
conveyor tracking feature of the V+
system.

0 0 14

HAND.TIME Determines the duration of the
motion delay that occurs during
processing of OPENI, CLOSEI, and
RELAXI instructions. The value for
this parameter is interpreted as the
number of seconds to delay. Due to
the way in which V+ generates its
time delays, the HAND.TIME
parameter is internally rounded to
the nearest multiple of 0.016
seconds.

0.05 0 1E18

KERMIT.RETRY Sets the number of times Kermit will
attempt to transfer a data packet
before quitting with an error.

15 1 1000

KERMIT.TIMEOUT Time, in seconds, that Kermit will
wait before retrying the transfer of a
data packet.

8 1 95

NOT.CALIBRATED Represents the calibration status of
the robot(s) controlled by the V+
system.

7 0 7

SCREEN.TIMEOUT Controls automatic blanking of the
graphics monitor on graphics-based
systems.

0 0 16383

Basic System Parameters

Parameters

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 157

Parameter Use De-
fault Min Max

TERMINAL This parameter determines how the
V+ will interact with an ASCII
system terminal. The acceptable
values are 0 through 4, and they
have the interpretations shown in
the following table.

41 0 4

NOTES:

1The default value for TERMINAL is changedwith the utility CONFIG_C.V2 on the
Adept Utility Disk. See the Instructions for Adept Utility Programs.

Param-
eter
Value

Termi-
nal
Type

Treatm-
ent of
DEL &
BS

Curso-
r-up
Comm-
and

0 TTY \<ech-
o>\

None

1 CRT Erase <VT>

2 CRT Erase <SUB>

3 CRT Erase <FF>

4 CRT Erase <ESC>-
M

Graphics-Based System Terminal
Settings

Parameters

V+Language User's Guide, v17.0

Page 158

Switches
System switches govern various features of the V+ system. The switches are described
below. See the V+ Language Reference Guide and the V+ Operating System Reference
Guide for more detailed descriptions of the keywords discussed here.

As with system parameters, the names of system switches can be abbreviated to the
minimum length required to identify the switch.

Viewing Switch Settings

The SWITCHmonitor command displays the setting of one or more system switches:

SWITCH switch_name, ..., switch_name

If no switches are specified, the settings of all switches are displayed.

Within programs, the SWITCH real-valued function returns the status of a switch. The
instruction:

SWITCH(switch_name)

returns TRUE (-1.0) if the switch is enabled, FALSE (0.0) if the switch is disabled.

Some switches are organized as arrays andmay be accessed by specifying the array index.

Setting Switches

The ENABLE and DISABLE monitor commands/program instructions control the setting of
system switches. The instruction:

ENABLE BELT

enables the BELT switch. The instruction:

DISABLE BELT, CP

disables the CP and BELT switches. Multiple switches can be specified for either instruction.

Switches can also be set with the SWITCH program instruction. Its syntax is:

SWITCH switch_name = value

This instruction differs from the ENABLE and DISABLE instructions in that the SWITCH
instruction enables or disables a switch depending on the value on the right-hand side of the
equal sign. This allows you to set switches based on a variable or expression. The switch is
enabled if the value is TRUE (nonzero) and disabled if the value is FALSE (zero). The
instruction:

SWITCH CP = SIG(1001)

enables the continuous path (CP) switch if input signal 1001 is on.

Switches

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 159

Summary of Basic System Switches

The default switch settings at system power-up are given in the following table. (The switch
settings are not affected by the ZERO command.)

Optional enhancements to your V+ system may include additional system switches. If so,
they are described in the documentation for the options.

Switch Use

AUTO.POWER.OFF When this switch is enabled V+ will treat software errors as
hard errors and disable HIGH POWER. Normally these errors
stop the robot and signal the V+ program, but DONOT cause
HIGH POWER to be turned off.

The soft errors are:
(-624) *force protect limit exceeded
(-1003) *Time-out nulling errors* Mtr
(-1006) *Soft envelope error* Mtr

BELT Used to turn on the conveyor tracking features of V+ (if the
option is installed).This switch must be enabled before any of
the special conveyor tracking instructions can be executed.
When BELT is disabled, the conveyor tracking software has a
minimal impact on the overall performance of the system.

Default is disabled.

CP Enable/disable continuous-path motion processing (see
"Continuous-Path Trajectories"). Default is enabled.

DECEL.100 When DECEL.100 is enabled for a robot, the maximum
deceleration percentage defined by SPEC is ignored and a
maximum deceleration of 100% is used instead. This
maximum deceleration value is used to limit the value specified
by the ACCEL program instruction. For backwards compatibility,
by default, DECEL.100 is disabled for all robots.

DRY.RUN Enable/disable sending of motion commands to the robot.
Enable this switch to test programs for proper logical flow and
correct external communication without having to worry about
the robot running into something. (Also see the TRACE switch,
which is useful during program checkout.) The manual control
pendant can still be used tomove the robot when DRY.RUN is
enabled.

Basic System Switches

Switches

V+Language User's Guide, v17.0

Page 160

Switch Use

Default is disabled.

FORCE Controls whether the (optional) stop-on-force feature of the V+
system is active. Default is disabled.

INTERACTIVE Suppresses display of various messages on the system
terminal. In particular, when the INTERACTIVE switch is
disabled, V+ does not ask for confirmation before performing
certain operations and does not output the text of error
messages. This switch is usually disabled when the system is
being controlled by a supervisory computer to relieve the
computer from having to process the text of messages.Default
is enabled.

MCP.MESSAGES Controls how system error messages are handled when the
controller keyswitch is not in the MANUAL mode position.
Default is disabled.

MCS.MESSAGES Controls whether monitor commands executedwith the MCS
instruction will have their output displayed on the terminal.
Default is disabled.

MESSAGES Controls whether output from TYPE instructions will be
displayed on the terminal. Default is enabled.

MONITORS This switch is usedwith systems configured for multiple V+
system processors (requires the optional V+ Extensions
software) and Enable or disable selecting of multiple monitor
windows.

POWER Tracks the status of Robot Power. This switch is automatically
enabled whenever Robot Power is turned on. This switch can be
used to turn Robot Power on or off-enabling the switch turns on
Robot Power and disabling the switch turns off Robot Power.
Default is disabled.

ROBOT This is an array of switches that control whether or not the
system should access robots normally controlled by the
system.Default is disabled.

SUPERVISOR Not used in normal operation.

Switches

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 161

Switch Use

SET.SPEED Enable/disable the ability to set the monitor speed from the
manual control pendant. Default is enabled.

TRACE Enable/disable a special mode of program execution in which
each program step is displayed on the system terminal before it
is executed. This is useful during program development for
checking the logical flow of execution (also see the DRY.RUN
switch). Default is disabled.

UPPER Determines whether comparisons of string values will consider
lowercase letters the same as uppercase letters. When this
switch is enabled, all lowercase letters are considered as though
they are uppercase. Default is enabled.

Switches

V+Language User's Guide, v17.0

Page 162

Motion Control Operations
The following topics are described in this chapter:

Introduction 165
Location Variables 166
Creating and Altering Location Variables 173
Motion Control Instructions 180
Tool Transformations 188
Summary of Motion Keywords 190

Motion Control Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 163

Motion Control Operations

V+Language User's Guide, v17.0

Page 164

Introduction
A primary focus of the V+ language is to drive motion devices. This chapter discusses the
language elements that generate controller output to move amotion device from one
location to another. Before we introduce the V+ motion instructions, we should examine the
V+ location variables and see how they relate to the space in which the motion device
operates.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 165

Location Variables
Locations can be specified in two ways in V+: transformations and precision points.

A transformation is a set of six components that uniquely identifies a location in Cartesian
space and the orientation of the motion device end-of-arm tooling at that location. A
transformation can also represent the location of an arbitrary local reference frame.

A precision point includes an element for each joint in the motion device. Rotational joint
values are measured in degrees; translational joint values are measured in millimeters.
These values are absolute with respect to the motion device's home sensors and cannot be
made relative to other locations or coordinate frames.

Coordinate Systems

The following figure shows the world coordinate system for an Adept SCARA robot and an
Adept Cartesian robot. Ultimately, all transformations are based on a world coordinate
system. The V+ language contains several instructions for creating local reference frames,
building relative transformations, and changing the origin of the base (world) coordinate
frame. Therefore, an individual transformation may be relative to another transformation, a
local reference frame, or an altered base reference frame.

Different robots andmotion devices designates different locations as the origin of the world
coordinate system. See the user's guide for Adept robots or the device module
documentation for AdeptMotion VME systems to determine the origin and orientation of the
world coordinate frame.

Location Variables

V+Language User's Guide, v17.0

Page 166

Adept Robot Cartesian Space

Transformations

The first three components of a transformation variable are the values for the points on the
X, Y, and Z axes. In an Adept SCARA robot, the origin of this Cartesian space is the base of
the robot. The Z axis points straight up through the middle of the robot column. The X axis
points straight out, and the Y axis runs left to right as you face the robot. The first robot in
the figure Adept Robot Cartesian Space shows the orientation of the Cartesian space for an
Adept SCARA robot. The location of the world coordinate system for other robots andmotion
devices depends on the kinematic model of the motion device. For example, the second robot
in the figure Adept Robot Cartesian Space shows the world coordinate frame for a robot built
on the Cartesian coordinate model. See the kinematic device module documents for your
particular motion device.

When a transformation is defined, a local reference frame is created at the X, Y, Z location
with all three local frame axes parallel to the world coordinate frame. The figure XYZ
Elements of a Transformation shows the first part of a transformation. This transformation
has the value X = 30, Y = 100, Z = 125, yaw = 0, pitch = 0, and roll = 0.

Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 167

XYZ Elements of a Transformation

The second three components of a transformation variable specify the orientation of the end-
of-arm tooling. These three components are yaw, pitch, and roll. These elements are figured
as ZYZ' Euler values. The following figures demonstrate how these values are interpreted.

Yaw

Yaw is a rotation about the local reference frame Z axis. This rotation is not about the primary
reference frame Z axis, but is centered at the origin of the local frame of reference. The figure
Yaw shows the yaw axis with a rotation of 30 degrees. Note that it is parallel to the primary
reference frame Z axis but may be centered at any point in that space. In this example, the
yaw value is 30 degrees, resulting in a transformation with the value (X = 30, Y = 100, Z =
125, yaw = 30, pitch = 0, and roll = 0).

Location Variables

V+Language User's Guide, v17.0

Page 168

When you are using a robot, the local frame of reference defined by the XYZ components is
located at the end of the robot tool flange. (This local reference frame is referred to as the
tool coordinate system.) In the figure Yaw, the large Cartesian space represents a world
coordinate system. The small Cartesian space represents a local tool coordinate system
(which is centered at the motion device tooling flange).

Yaw

Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 169

Pitch

Pitch is defined as a rotation about the local reference frame Y axis, after yaw has been
applied. The figure Pitch shows the local reference frame with a yaw of 30 degrees and a pitch
of 40 degrees.

For example, deflection of a wrist joint is reflected in the pitch component. The movement of
a fifth axis on a SCARA robot is reflected in the pitch component. In this example, the motion
device end-of-arm tooling has a pitch of 40 degrees, resulting in a transformation with the
value (X = 30, Y = 100, Z = 125, yaw = 30, pitch = 40, and roll = 0). This location can be
reached only by amechanism with a fifth axis. Pitch is represented as ±180°, not as 360° of
rotation. Thus, a positive rotation of 190° is shown as -170 degrees.

Location Variables

V+Language User's Guide, v17.0

Page 170

Pitch

Roll

Roll is defined as a rotation about the Z axis of the local reference frame after yaw and pitch
have been applied. The figure Roll shows a local reference frame in the primary robot
Cartesian space and the direction roll would take within that space. In this example the
transformation has a value of X = 30, Y = 100, Z = 125, yaw = 30, pitch = 40, and roll = 20.
This location can be reached only by amechanism with fifth and sixth axes.

Roll

Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 171

Special Situations

When the Z axes of the local and primary reference frames are parallel, roll and yaw produce
the samemotion in the same plane, although the twomotions may be in different directions.
This is always the case with a four-axis SCARA robot. The system automatically reflects
rotation of the quill in the roll component of a transformation variable, and the yaw
component is forced to 0 degrees. In a SCARA robot equippedwith a fifth axis, rotation of the
quill is reflected in the yaw component andmotion of a rotating end-effector (sixth axis) is
reflected in the roll component.

Notice in the figure XYZ Elements of a Transformation that the local reference frame points
straight up. This corresponds to a situation where the end of arm tooling points straight back
along the third axis. In a mechanism not equippedwith a 360 degree wrist, this is an
impossible position. For a four-axis SCARA, this component must point straight down (pitch =
180 degrees). For a mechanism with a fifth axis, this component must be within the range of
motion of the fifth axis.

NOTE:When thinking about a transformation, remember that the rules of ZYZ' Euler
angles require that the orientation components be applied in order after the local
reference frame has been defined. After calculating the Cartesian components and placing
a local reference frame with x, y, and z axes parallel to the primary reference frame X, Y,
and Z axes, the orientation components are applied in a strict order—yaw is applied first,
then pitch, and, finally, roll.

Location Variables

V+Language User's Guide, v17.0

Page 172

Creating and Altering Location Variables

Creating Location Variables

The most straightforwardmethod of creating a location variable is to place the robot or
motion device at a location and enter the monitor command:

HERE loc_name

Transformations vs. Precision Points

A location can be specified using either the six components described in the previous section,
or by specifying the state the robot joints would be in when a location is reached. The former
method results in a transformation variable. Transformations are the most flexible and
efficient location variables.

Precision points record the joint values of each joint in the motion device. Precision points
may be more accurate, and they are the only way of extracting joint information that will
allow you tomove an individual joint. Precision points are identified by a leading pound sign
(#). The command:

HERE #pick

will create the precision point #pick equal to the current robot joint values.

Modifying Location Variables

The individual components of an existing transformation or precision point can be edited with
the POINTmonitor command:

POINT loc_name

displays the transformation components of loc_name and allows you to edit them. If loc_
name is not defined, a null transformation is displayed for editing.

A location variable can be duplicated using the POINTmonitor command or SET program
instruction. The monitor command:

POINT loc_name = loc_value

and the program instruction:

SET loc_name = loc_value

both result in the variable loc_name being given the value of loc_value. The POINTmonitor
command also allows you to edit loc_name after it has been assigned the value of loc_value.

The following functions return transformation values:

TRANS Create a location by specifying individual components of a transformation. A value
can be specified for each component.

Creating and Altering Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 173

SHIFT Alter the Cartesian components of an existing transformation.

The POINT and SET operations can be used in conjunction with the transformation functions
SHIFT and TRANS to create location variables based on specific modifications of existing
variables.

SET loc_name = SHIFT(loc_value BY 5, 5, 5)

will create the location variable loc_name. The location of loc_name are shifted 5 mm in the
positive X, Y, and Z directions from loc_value.

Relative Transformations

Relative transformations allow you tomake one location relative to another and to build local
reference frames to which that transformations can be relative. For example, you may be
building an assembly whose location in the workcell changes periodically. If all the locations
on the assembly are taught relative to the world coordinate frame, each time the assembly is
located differently in the workcell, all the locations must be retaught. If, however, you create
a frame based on identifiable features of the assembly, you will have to reteach only the
points that define the frame.

Examples of Modifying Location Variables

The figure Relative Transformation shows how relative transformations work. The magnitude
and direction elements (x, y, z), but not the orientation elements (y, p, r), of an Adept
transformation can be represented as a 3-D vector, as shown by the dashed lines and arrows
in the figure Relative Transformation. The following code generates the locations shown in
that figure.

; Define a simple transformation
SET loc_a = TRANS(300,50,350,0,180,0)

; Move to the location
MOVE loc_a
BREAK

; Move to a location offset -50mm in X, 20mm in Y,
; and 30mm in Z relative to "loc_a"

MOVE loc_a:TRANS(-50, 20, 30)
BREAK

; Define "loc_b" to be the current location relative
; to "loc_a"

HERE loc_a:loc_b ;loc_b = -50, 20, 30, 0, 0, 0
BREAK

; Define "loc_c" as the vector sum of "loc_a" and "loc_b"
SET loc_c = loc_a:loc_b ;loc_c = 350, 70, 320, 0, 180, 0

Once this code has run, loc_b exists as a transformation that is completely independent of
loc_a. The following instruction moves the robot another -50 mm in the x, 20 mm in the y,
and 30 mm in the z direction (relative to loc_c):

MOVE loc_c:loc_b

Creating and Altering Location Variables

V+Language User's Guide, v17.0

Page 174

Multiple relative transformations can be chained together. If we define loc_d to have the
value 0, 50, 0, 0, 0, 0:

SET loc_d = TRANS(0,50)

and then issue the followingMOVE instruction:

MOVE loc_a:loc_b:loc_d

the robot moves to a position x = -50 mm, y =70 mm, and z = 30 mm relative to loc_a.

In the figure Relative Transformation, the transformation loc_b defines the transformation
needed to get from the local reference frame defined by loc_a to the local reference frame
defined by loc_c.

The transformation needed to go in the opposite direction (from loc_c to loc_a) can be
calculated by:

INVERSE(loc_b)

Thus, the instruction:

MOVE loc_c:INVERSE(loc_b)

effectively moves the robot back to loc_a.

Creating and Altering Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 175

Relative Transformation

This figure shows the first three locations from the previous code examples.

Defining a Reference Frame

In the example shown in the figure Relative Locations, a pallet is brought into the workcell on
a conveyor. The program that follows teaches three locations that define the pallet reference
frame (pallet.frame) and then removes the parts from the pallet. The program that follows

Creating and Altering Location Variables

V+Language User's Guide, v17.0

Page 176

runs regardless of where the pallet is placed in the workcell as long as it is within the robot's
working envelope.

Relative Locations

; Get the locations to define the pallet

DETACH () ;Release robot for use by the MCP
PROMPT "Place robot at pallet origin. ", $ans
HERE loc.origin ;Record the frame origin

PROMPT "Place robot at point on the pallet x-axis. ", $ans
HERE loc.x.axis ;Record point on x-axis

PROMPT "Place robot at point in positive y direction. ", $ans
HERE loc.pos.y ;Record positive y direction

ATTACH () ;Reattach the robot

Creating and Altering Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 177

; Create the local reference frame "pallet.frame"

SET pallet.frame = FRAME(loc.origin, loc.x.axis,loc.pos.y, loc.origin)

cell.space = 50 ;Spacing of cells on pallet

; Remove the palletized items

FOR i = 0 TO 3
FOR J = 0 TO 2

APPRO pallet.frame:TRANS(i*cell.space, j*cell.space), 25
MOVE pallet.frame:TRANS(i*cell.space, j*cell.space)
BREAK ;Settle robot
CLOSEI ;Grab the part
DEPART 25 ;MOVE to the drop off location

END
END

In the above example, the code that teaches the pallet framemust run only when the pallet
location changes.

If you are building an assembly that does not have regularly spaced locations like the above
example, the following code teaches individual locations relative to the frame:

; Get the locations to define the pallet frame

DETACH () ;Release robot for use by the MCP
PROMPT "Place robot at assembly origin. ", $ans
HERE loc.origin ;Record the frame origin

PROMPT "Place robot at point on the assm. x-axis. ", $ans
HERE loc.x.axis ;Record point on x-axis

PROMPT "Place robot at point in positive y direction. ", $ans
HERE loc.pos.y ;Record positive y direction

; Create the local reference frame "assm.frame"

SET assm.frame = FRAME(loc.origin, loc.x.axis, loc.pos.y, loc.origin)

; Teach the locations on the assembly

PROMPT "Place the robot in the first location. ", $ans
HERE assm.frame:loc.1 ;Record the first location

PROMPT "Place the robot in the second location. ", $ans
HERE assm.frame:loc.2 ;Record the second location

; etc.

; Move to the locations on the assembly

ATTACH () ;Reattach the robot

Creating and Altering Location Variables

V+Language User's Guide, v17.0

Page 178

APPRO assm.frame:loc.1, 25
MOVE assm.frame:loc.1
;Activate gripper
DEPART 25

APPRO assm.frame:loc.1, 25
MOVE assm.frame:loc.2
;Activate gripper
DEPART 25

; etc.

In the above example, the framemust be taught each time the assembly moves-the
locations on the assembly must be taught only once.

The instruction HERE assm.frame:loc.1 tells the system to record the location loc.1 relative
to assm.frame rather than relative to the world coordinate frame. If a subassembly is being
built relative to loc.1, the instruction:

HERE assm.frame:loc.1:sub.loc.1

creates a compound transformation where sub.loc.1 is relative to the transformation
assm.frame:loc.1.

Miscellaneous Location Operations

The instruction:

DECOMPOSE array_name[] = #loc_name

places the joint values of #loc_name in the array array_name. DECOMPOSE works with
transformations and precision points.

The command:

WHERE

displays the current robot location.

The BASE operation can be used to realign the world reference frame relative to the robot.

Creating and Altering Location Variables

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 179

Motion Control Instructions
V+ processes robot motion instructions differently from the way you might expect. With V+,
a motion instruction such as MOVE part is interpreted tomean start moving the robot to
location 'part'. As soon as the robot starts moving to the specified destination, the V+
program continues without waiting for the robot motion to complete. The instruction
sequence:

MOVE part.1
SIGNAL 1
MOVE part.2
SIGNAL 2

causes external output signal #1 to be turned on immediately after the robot begins moving
to part.1, rather than waiting for it to arrive at the location. When the secondMOVE
instruction is encountered, V+ waits until the motion to part.1 is completed. External output
signal #2 is turned on just after the motion to part.2 begins. This is known as forward
processing. See Breaking Continuous-Path Operation for details on how to defeat forward
processing.

This parallel operation of program execution and robot motion makes possible the procedural
motions described later in this chapter.

Basic Motion Operations

Joint-Interpolated Motion vs. Straight-Line Motion

The path amotion device takes when moving from one location to another can be either a
joint-interpolatedmotion or a straight-line motion. Joint-interpolatedmotions move each
joint at a constant velocity (except during the acceleration/deceleration phases-see Robot
Speed). Typically, the robot tool tipmoves in a series of arcs that represents the least
processing-intensive path the trajectory generator can formulate. Straight-line motions
ensure that the robot tool tip traces a straight line, useful for cutting a straight line or laying a
bead of sealant. The instruction:

MOVE pick

causes the robot to move to the location pick using joint-interpolatedmotion. The
instruction:

MOVES pick

causes the robot to move the pick using a straight-line motion.

Safe Approaches and Departures

In many cases you will want to approach a location from a distance offset along the tool Z axis
or depart from a location along the tool Z axis before moving to the next location. For
example, if you were inserting components into a crowded circuit board, you would want the

Motion Control Instructions

V+Language User's Guide, v17.0

Page 180

robot arm to approach a location from directly above the board so nearby parts are not
disturbed. Assuming you were using a four-axis Adept robot, the instructions:

APPRO place, 50
MOVE place
DEPART 50

causes joint-interpolatedmotion to a point 50 mm above place, movement down to place,
andmovement straight up to 50 mm above place.

If the instructions APPROS, DEPARTS, andMOVES had been used, the motions would have
been straight line instead of joint interpolated.

NOTE:Approaches and departs are based on the tool coordinate system, not the world
coordinate system. Thus, if the location specifies a pitch of 135 degrees, the robot will
approach at a 45 degree angle relative to the world coordinate system. For a description
of the tool coordinate system, see Yaw on page 168.

Moving an Individual Joint

You can move an individual joint of a robot using the instruction DRIVE. The instructions:

DRIVE 2,50.0, 100
DRIVE 3,25, 100

moves joint 2 through 50 degrees of motion and then move joint 3 a distance of 25 mm at
SPEED 100%.

End-Effector Operation Instructions

The instructions described in this section depend on the use of two digital signals. They are
used to open, close, or relax a gripper. The utility program SPEC specifies which signals
control the end effector. See the Instructions for Adept Utility Programs.

The instruction OPEN opens the gripper during the ensuingmotion instruction. The
instruction OPENI opens the gripper before any additional motion instructions are executed.
CLOSE and CLOSEI are the complementary instructions.

When an OPEN(I) or CLOSE(I) instruction is issued, one solenoid is activated and the other is
released. To completely relax both solenoids, use the instruction RELAX or RELAXI.

Use the system parameter HAND.TIME to set the duration of the motion delay that occurs
during an OPENI, CLOSEI, or RELAXI instruction.

Use the function HAND to return the current state of the gripper.

Continuous-Path Trajectories

When a single motion instruction is processed, such as the instruction:

Motion Control Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 181

MOVE pick

the robot begins moving toward the location by accelerating smoothly to the commanded
speed. Sometime later, when the robot is close to the destination location pick, the robot
decelerates smoothly to a stop at location pick. This motion is referred to as a single motion
segment, since it is produced by a single motion instruction.

When a sequence of motion instructions is executed, such as:

MOVE loc.1
MOVE loc.2

the robot begins moving toward loc.1 by accelerating smoothly to the commanded speed1
just as before. However, the robot does not decelerate to a stop when it gets close to loc.1.
Instead, it smoothly changes its direction and begins moving toward loc.2. Finally, when the
robot is close to loc.2, it decelerates smoothly to a stop at loc.2. This motion consists of two
motion segments since it is generated by twomotion instructions.

Making smooth transitions between motion segments without stopping the robot motion is
called continuous-path operation. That is the normal method V+ uses to perform robot
motions. If desired, continuous-path operation can be disabled with the CP switch. When the
CP switch is disabled, the robot decelerates and stops at the end of each motion segment
before beginning tomove to the next location.

NOTE: Disabling continuous-path operation does not affect forward processing (the
parallel operation of robot motion and program execution).

Continuous-path transitions can occur between any combination of straight-line and joint-
interpolatedmotions. For example, a continuousmotion could consist of a straight-line
motion (for example, DEPARTS) followed by a joint-interpolatedmotion (for example, APPRO)
and a final straight-line motion (for example, MOVES). Any number of motion segments can
be combined this way.

Breaking Continuous-Path Operation

Certain V+ program instructions cause program execution to be suspended until the current
robot motion reaches its destination location and comes to a stop. This is called breaking
continuous path. Such instructions are useful when the robot must be stoppedwhile some
operation is performed (for example, closing the hand). Consider the instruction sequence:

MOVE loc.1
BREAK
SIGNAL 1

The MOVE instruction starts the robot moving to loc.1. Program execution then continues
and the BREAK instruction is processed. BREAK causes the V+ program to wait until the
motion to loc.1 completes. The external signal is not turned on until the robot stops. (Recall
that without the BREAK instruction the signal would be turned on immediately after the
motion to loc.1 starts.)

Motion Control Instructions

V+Language User's Guide, v17.0

Page 182

The following instructions always cause V+ to suspend program execution until the robot
stops (see the V+ Language Reference Guide for detailed information on these instructions):

BASE BREAK CLOSEI CPOFF DETACH (0)

HALT OPENI PAUSE RELAXI TOOL

Also, the robot decelerates to a stop when the BRAKE (not to be confusedwith BREAK)
instruction is executed (by any program task), andwhen the reaction associated with a
REACTI instruction is triggered. These events could happen at any point within a motion
segment. (Note that these events can be initiated from a different program task.)

The robot also decelerates and comes to a stop if no new motion instruction is encountered
before the current motion completes. This situation can occur for a variety of reasons:

l AWAIT or WAIT.EVENT instruction is executed and the wait condition is not satisfied
before the robot motion completes.

l A PROMPT instruction is executed and no response is entered before the robot motion
completes.

l The V+ program instructions between motion instructions take longer to execute
than the robot takes to perform its motion.

Procedural Motion

The ability to move in straight lines and joint-interpolated arcs is built into the basic
operation of V+. The robot tool can also move along a path that is prerecorded, or described
by amathematical formula. Such motions are performed by programming the robot
trajectory as the robot is moving. Such a program is said to perform a procedural motion.

A procedural motion is a program loop that computes many short motions and issues the
appropriate motion requests. The parallel execution of robot motions and non-motion
instructions allows each successive motion to be definedwithout stopping the robot. The
continuous-path feature of V+ automatically smoothes the transitions between the
computedmotion segments.

Procedural Motion Examples

Two simple examples of procedural motions are described below. In the first example, the
robot tool is moved along a trajectory described by locations stored in the array path. (The
LAST function is used to determine the size of the array.)

SPEED 0.75 IPS ALWAYS
FOR index = 0 TO LAST(path[])

MOVES path[index]
END

Motion Control Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 183

The robot tool moves at the constant speed of 0.75 inch per second through each location
defined in the array path[]. (One way to create the path array is to use the V+ TEACH
command tomove the robot along the desired path and to press repeatedly the RECORD
button on the manual control pendant.)

In the next example, the robot tool is to be moved along a circular arc. However, the path is
not prerecorded-it is describedmathematically, based on the radius and center of the arc to
be followed.

The program segment below assumes that a real variable radius has already been assigned
the radius of the desired arc, and x.center and y.center have been assigned the respective
coordinates of the center of curvature. The variables start and last are assumed to have been
defined to describe the portion of the circle to be traced. Finally, the variable angle.step is
assumed to have been defined to specify the (angular) increment to be traversed in each
incremental motion. (Because the DURATION instruction is used, the program moves the
robot tool angle.step degrees around the arc every 0.5 second.)

When this program segment is executed, the X and Y coordinates of points on the arc are
repeatedly computed. They are then used to create a transformation that defines the
destination for the next robot motion segment.

DURATION 0.5 ALWAYS
FOR angle = start TO last STEP angle.step

x = radius*COS(angle)+x.center
y = radius*SIN(angle)+y.center
MOVE TRANS(x, y, 0, 0, 180, 0)

END

Timing Considerations

Because of the computation time required by V+ to perform the transitions between motion
segments, there is a limit on how closely spaced commanded locations can be.When
locations are too close together, there is not enough time for V+ to compute and perform the
transition from onemotion to the next, and there will be a break in the continuous-path
motion. This means that the robot stops momentarily at intermediate locations.

The minimum spacing that can be used between locations before this effect occurs is
determined by the time required to complete the motion from one location to the next.
Straight-line motions can be used if the motion segments take more than about 32
milliseconds each. Joint-interpolatedmotions can be usedwith motion segments as short as
about 16 milliseconds each.

NOTE:The standard trajectory generation frequency is 62.5 Hz. With an optional software
license, trajectory frequencies of 125 Hz, 250 Hz, and 500 Hz are possible.

The minimum motion times for joint and straight-line motions must be greater than or
equal to the configured trajectory cycle time. As a convenience, if they are set to be less

Motion Control Instructions

V+Language User's Guide, v17.0

Page 184

than the configured trajectory cycle time (for example 0), the trajectory cycle time is
used as the minimum motion time.

Robot Speed

A robot move has three phases: an acceleration phase where the robot accelerates to the
maximum speed specified for the move, a velocity phase where the robot moves at a rate
not exceeding the specifiedmaximum speed, and a deceleration phase where the robot
decelerates to a stop (or transitions to the next motion).

Robot speed can mean two things: how fast the robot moves between the acceleration and
deceleration phases of a motion (referred to in this manual as robot speed), or how fast the
robot gets from one place to another (referred to in this manual as robot performance).

The robot speed between the acceleration and deceleration phases is specified as either a
percentage of normal speed or an absolute rate of travel of the robot tool tip. Speed set as a
percentage of normal speed is the default. The speed of a robot move based on normal speed
is determined by the following factors:

l The program speed (set with the SPEED program instruction). This speed is set to 100
when program execution begins.

l The monitor speed (set with the SPEEDmonitor command or a SPEED program
instruction that specifies MONITOR). This speed is normally set to 50 at system
startup (start-up SPEED can be set with the CONFIG_C utility). (The effects of the two
SPEED operations are slightly different. See the SPEED program instruction for
further details.)

Robot speed is the product of these two speeds. With monitor speed and program
speed set to 100, the robot moves at its normal speed.With monitor speed set to 50
and program speed set to 50, the robot moves at 25% of its normal speed.

Tomove the robot tool tip at an absolute rate of speed, a speed rate in inches per second or
millimeters per second is specified in the SPEED program instruction. The instruction:

SPEED 25 MMPS ALWAYS

specifies an absolute tool tip speed of 25 millimeters per second for all robot motions until the
next SPEED instruction. In order for the tool tip to actually move at the specified speed:

l The monitor speedmust be 100.

l The locations must be far enough apart so that the robot can accelerate to the desired
speed and decelerate to a stop at the end of the motion.

Robot performance is a function of the SPEED settings and the following factors:

l The robot acceleration profile and ACCEL settings. The default acceleration profile is
based on a normal maximum rate of acceleration and deceleration. The ACCEL

Motion Control Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 185

command can scale down these maximum rates so that the robot acceleration and/or
deceleration takes more time.

You can also define optional acceleration profiles that alter the maximum rate of
change for acceleration and deceleration (using the SPEC utility)

l The location tolerance settings (COARSE/FINE, NULL/NONULL) for the move. The
more accurately a robot must get to the actual location, the more time the move will
take. (For AdeptMotion VME devices, the meaning of COARSE/FINE is set with the
SPEC utility.)

l Any DURATION setting. DURATION forces a robot move to take aminimum time to
complete regardless of the SPEED settings.

l The maximum allowable velocity. For Adept robots, maximum velocity is factory set.
For AdeptMotion VME devices, this is set with the SPEC utility.

l The inertial loading of the robot and the tuning of the robot.

l Straight-line vs. joint-interpolatedmotions-for complex geometries, straight-line and
joint-interpolated paths produce different dynamic responses and, therefore, different
motion times.

Robot performance for a given application can be greatly enhanced or severely degraded by
these settings. For example:

l A heavily loaded robot may actually show better performance with slower SPEED and
ACCEL settings, which lessens overshoot at the end of a move and allows the robot to
settle more quickly.

l Applications such as picking up bags of product with a vacuum gripper do not require
high accuracy and can generally run faster with a COARSE tolerance.

Motion Modifiers

The following instructions modify the characteristics of individual motions. These instructions
are summarized in Motion Control Operations.

NOTE:The instructions listed below with an asterisk (*) can take ALWAYS as an
argument.

l ABOVE/BELOW
l ACCEL
l BREAK
l COARSE/FINE*
l CPON/CPOFF
l DURATION*
l FLIP/NOFLIP
l LEFTY/RIGHTY
l NOOVERLAP/OVERLAP*
l NULL/NONULL*BRAKE

Motion Control Instructions

V+Language User's Guide, v17.0

Page 186

l SINGLE/MULTIPLE*
l SPEED*

Customizing the Calibration Routine

The following information is required only if you need to customize the calibration sequence.
Most AdeptMotion users do not need to do this.

When a CALIBRATE command or instruction is processed, the V+ system loads the file CAL_
UTIL.V2 (see the dictionary page for the CALIBRATE command for details) and executes a
program contained in that file. The main calibration program then examines the SPEC data
for the robot to determine the name of the disk file that contains the specific calibration
program for the current robot, and the name of that program.

The standard routine used for AdeptMotion devices is stored on the system disk in
\CALIB\STANDARD.CAL (and the routine is named .standard.cal). That file is protected and
thus cannot be viewed. However, a read-only copy of the file is provided, in
\CALIB\STANDARD.V2, as a basis for developing a custom calibration routine that can then
be substituted for the standard file. (The name of the robot-specific calibration file and
program can be changed using the SPEC utility program.)

1See the SPEEDmonitor command and SPEED program instructions.

Motion Control Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 187

Tool Transformations
A tool transformation is a special transformation that is used to account for robot grippers (or
parts held in grippers) that are offset from the center of the robot tool flange. If a location is
taught using a part secured by an offset gripper, the actual location recorded is not the part
location, but the center of the tool flange to which the offset gripper is attached, as shown in
the following figure. If the same location is taught with a tool transformation in place, the
location recorded is the center of the gripper, not the center of the tool flange. This allows you
to change grippers and still have the robot reach the correct location. The following figure
shows the location of the robot when a location is taught and the actual location that is
recordedwhen no tool transformation is in effect. If the proper tool transformation is in effect
when the location is taught, the location recordedwill be the part location and not the center
of the tool flange.

Recording Locations

Tool transformations are most important when:

l Grippers are changed frequently

l The robot is vision guided

l Robot locations are loaded directly from CAD data

Tool Transformations

V+Language User's Guide, v17.0

Page 188

Defining a Tool Transformation

If the dimensions of a robot tool are known, the POINT command can be used to define a tool
transformation to describe the tool. The null tool has its center at the surface of the tool
mounting flange and its coordinate axes parallel to that of the last joint of the robot. The null
tool transformation is equal to [0,0,0,0,0,0].

For example, if your tool has fingers that extend 50 mm below the tool flange and 100 mm
in the tool x direction, and you want to change the tool setting to compensate for the offset,
enter the following lines at the system prompt (bold characters indicate those actually
entered):

.POINT hand.tool ↵ (create a new transformation)
X Y Z y p r

0.00 0.00 0.00 0.000 0.000 0.000

Change? ,100,-50↵ (alter it by the grip offset)
0.00 100.00 -50.00 0.000 0.000 0.000

Change? ↵
.TOOL hand.tool↵
.LISTL hand.tool↵

X.jt1 y/jt2 z/jt3 y/jt4 p/jt5 r/jt6
0.00 100.00 -50.00 0.000 0.000 0.000

The following image shows the TOOL that would result from the above operation.

Tool Transformation

Tool Transformations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 189

Summary of Motion Keywords
The following table summarizes the keywords associated with motion in V+. For complete
details on any keyword, click on the keyword name in the table, or refer to the keyword
documentation available in the V+ Language Reference Guide.

Keyword Type Function

ABOVE PI Request a change in the robot configuration during
the next motion so that the elbow is above the line
from the shoulder to the wrist.

ACCEL PI Set acceleration and deceleration for robot motions.

ACCEL RF Return the current robot acceleration or
deceleration setting.

ALIGN PI Align the robot tool Z axis with the nearest world
axis.

ALTER PI Specify the magnitude of the real-time path
modification that is to be applied to the robot path
during the next trajectory computation.

ALTOFF PI Terminate real-time path-modification mode (alter
mode).

ALTON PI Enable real-time path-modification mode (alter
mode), and specify the way in which ALTER
coordinate information will be interpreted.

AMOVE PI Position an extra robot axis during the next joint-
interpolated or straight-line motion.

APPRO PI Start joint-interpolated robot motion toward a
location defined relative to specified location.

APPROS PI Start straight-line robot motion toward a location
defined relative to specified location.

BASE PI Translate and rotate the world reference frame
relative to the robot.

Motion Control Operations

Summary of Motion Keywords

V+Language User's Guide, v17.0

Page 190

Keyword Type Function

BASE TF Return the transformation value that represents
the translation and rotation set by the last BASE
command or instruction.

BELOW PI Request a change in the robot configuration during
the next motion so that the elbow is below the line
from the shoulder to the wrist.

BRAKE PI Abort the current robot motion.

BREAK PI Suspend program execution until the current
motion completes.

CALIBRATE PI Initialize the robot positioning system.

CLOSE PI Close the robot gripper immediately.

CLOSEI PI Close the robot gripper.

COARSE PI Enable a low-precision feature of the robot
hardware servo (see FINE).

CONFIG RF Return a value that provides information about the
robot's geometric configuration, or the status of the
motion servo-control features.

CP S Control the continuous-path feature.

CPOFF PI Instruct the V+ system to stop the robot at the
completion of the next motion instruction (for all
subsequent motion instructions) and null position
errors.

CPON PI Instruct the V+ system to execute the next motion
instruction (or all subsequent motion instructions)
as part of a continuous path.

DECOMPOSE PI Extract the (real) values of individual components of
a location value.

DELAY PI Cause robot motion to stop for the specified period
of time.

Summary of Motion Keywords

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 191

Keyword Type Function

DEPART PI Start a joint-interpolated robot motion away from
the current location.

DEPARTS PI Start a straight-line robot motion away from the
current location.

DEST TF Return a transformation value representing the
planned destination location for the current robot
motion.

DISTANCE RF Determine the distance between the points defined
by two location values.

DRIVE PI Move an individual joint of the robot.

DRY.RUN S Control whether or not V+ communicates with the
robot.

DURATION PI Set the minimum execution time for subsequent
robot motions.

DURATION RF Return the current setting of one of the motion
DURATION specifications.

DX RF Return the X displacement component of a given
transformation value.

DY RF Return the Y displacement component of a given
transformation value.

DZ RF Return the Z displacement component of a given
transformation value.

FINE PI Enable a high-precision feature of the robot
hardware servo (see COARSE).

FLIP PI Request a change in the robot configuration during
the next motion so that the pitch angle of the robot
wrist has a negative value (see NOFLIP).

FORCE S Control whether or not the (optional) stop-on-force
feature of the V+ system is active.

Summary of Motion Keywords

V+Language User's Guide, v17.0

Page 192

Keyword Type Function

FRAME TF Return a transformation value defined by four
positions.

HAND RF Return the current hand opening.

HAND.TIME P Establish the duration of the motion delay that
occurs during OPENI, CLOSEI, and RELAXI
instructions.

HERE PI Set the value of a transformation or precision-point
variable equal to the current robot location.

HERE TF Return a transformation value that represents the
current location of the robot tool point.

HOUR.METER RF Return the current value of the robot hour meter.

IDENTICAL RF Determine if two location values are exactly the
same.

INRANGE RF Return a value that indicates if a location can be
reached by the robot, and if not, why not.

INVERSE TF Return the transformation value that is the
mathematical inverse of the given transformation
value.

IPS CF Specify the units for a SPEED instruction as inches
per second.

LATCH TF Return a transformation value representing the
location of the robot at the occurrence of the last
external trigger.

LATCHED RF Return the status of the external trigger and of the
information it causes to be latched.

LEFTY PI Request a change in the robot configuration during
the next motion so that the first two links of a
SCARA robot resemble a human's left arm (see
RIGHTY).

Summary of Motion Keywords

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 193

Keyword Type Function

MMPS CF Specify the units for a SPEED instruction as
millimeters per second.

MOVE PI Initiate a joint-interpolated robot motion to the
position and orientation described by the given
location.

MOVES PI Initiate a straight-line robot motion to the position
and orientation described by the given location.

MOVEF PI Initiate a three-segment pick-and-place joint-
interpolated robot motion to the specified
destination, moving the robot at the fastest
allowable speed.

MOVESF PI Initiate a three-segment pick-and-place straight-
line robot motion to the specified destination,
moving the robot at the fastest allowable speed.

MOVET PI Initiate a joint-interpolated robot motion to the
position and orientation described by the given
location and simultaneously operate the hand.

MOVEST PI Initiate a straight-line robot motion to the position
and orientation described by the given location and
simultaneously operate the hand.

MULTIPLE PI Allow full rotations of the robot wrist joints (see
SINGLE).

NOFLIP PI Request a change in the robot configuration during
the next motion so that the pitch angle of the robot
wrist has a positive value (see FLIP).

NONULL PI Instruct the V+ system not to wait for position
errors to be nulled at the end of continuous-path
motions (see NULL).

NOOVERLAP PI Disable the NOOVERLAP limit-error checking (see
OVERLAP.)

NORMAL TF Correct a transformation for any mathematical

Summary of Motion Keywords

V+Language User's Guide, v17.0

Page 194

Keyword Type Function

round-off errors.

NOT.CALIBRATED P Indicate (or assert) the calibration status of the
robots connected to the system.

NULL TF Return a null transformation value-one with all zero
components.

NULL PI Enable nulling of joint position errors.

OPEN PI Open the robot gripper.

OPENI PI Open the robot gripper immediately.

OVERLAP PI Generate a program error if a subsequent motion is
planned that causes a selectedmulti-turn axis to
move more than ±180 degrees to avoid a limit stop
(see NOOVERLAP).

PAYLOAD PI Set an indication of the current robot payload.

#PDEST PF Return a precision-point value representing the
planned destination location for the current robot
motion.

#PHERE PF Return a precision-point value representing the
current location of the currently selected robot.

#PLATCH PF Return a precision-point value representing the
location of the robot at the occurrence of the last
external trigger.

POWER S Control or monitor the status of Robot Power.

#PPOINT PF Return a precision-point value composed from the
given components.

REACTI PI Initiate continuousmonitoring of a specified digital
signal. Automatically stop the current robot motion
if the signal properly transitions and optionally
trigger a subroutine call.

Summary of Motion Keywords

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 195

Keyword Type Function

READY PI Move the robot to the READY location above the
workspace, which forces the robot into a standard
configuration.

RELAX PI Limp the pneumatic hand.

RELAXI PI Limp the pneumatic hand immediately.

RIGHTY PI Request a change in the robot configuration during
the next motion so that the first two links of the
robot resemble a human's right arm (see LEFTY).

ROBOT S Enable or disable one robot or all robots.

RX TF Return a transformation describing a rotation about
the x axis.

RY TF Return a transformation describing a rotation about
the y axis.

RZ TF Return a transformation describing a rotation about
the z axis.

SCALE TF Return a transformation value equal to the
transformation parameter with the position scaled
by the scale factor.

SCALE.ACCEL S Enable or disable the scaling of acceleration and
deceleration as a function of program speed.

SCALE.ACCEL.ROT S Specify whether or not the SCALE.ACCEL switch
takes into account the Cartesian rotational speed
during straight-line motions.

SELECT PI Select the unit of the named device for access by
the current task.

SELECT RF Return the number of the currently selected unit of
the named device type.

SET PI Set the value of the location variable on the left
equal to the location value on the right of the equal

Summary of Motion Keywords

V+Language User's Guide, v17.0

Page 196

Keyword Type Function

sign.

SET.SPEED S Control whether or not the monitor speed can be
changed from the manual control pendant. The
monitor speed cannot be changedwhen the switch
is disabled.

SHIFT TF Return a transformation value resulting from
shifting the position of the transformation
parameter by the given shift amounts.

SINGLE PI Limit rotations of the robot wrist joint to the range -
180 degrees to +180 degrees (see MULTIPLE).

SOLVE.ANGLES PI Compute the robot joint positions (for the current
robot) that are equivalent to a specified
transformation.

SOLVE.FLAGS RF Return bit flags representing the robot configuration
specified by an array of joint positions.

SOLVE.TRANS PI Compute the transformation equivalent to a given
set of joint positions for the current robot.

SPEED PI Set the nominal speed for subsequent robot
motions.

SPEED RF Return one of the system motion speed factors.

STATE RF Return a value that provides information about the
robot system state.

TOOL PI Set the internal transformation used to represent
the location and orientation of the tool tip relative to
the tool mounting flange of the robot.

TOOL TF Return the value of the transformation specified in
the last TOOL command or instruction.

TRANS TF Return a transformation value computed from the
given X, Y, Z position displacements and y, p, r
orientation rotations.

Summary of Motion Keywords

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 197

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, CF: Conversion Factor

Summary of Motion Keywords

V+Language User's Guide, v17.0

Page 198

Input/Output Operations
The following topics are described in this chapter:

Terminal I/O 201
Digital I/O 205
Pendant I/O 207
Analog I/O 208
Serial and Disk I/O Basics 210
Disk I/O 214
Advanced Disk Operations 219
Serial Line I/O 223
DDCMP Communication Protocol 227
Kermit Communication Protocol 231
DeviceNet 237
Summary of I/O Operations 239

Input/Output Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 199

Input/Output Operations

V+Language User's Guide, v17.0

Page 200

Terminal I/O
The program instruction used to output text to the monitor screen is TYPE. The program
line:

TYPE "This is a terminal output instruction."

outputs the text between the quotation marks to the current cursor location. If a variable x
has a value of 27, the instruction:

TYPE "The value of x is ", x, "."

outputs

The value of x is 27.

to the monitor.

The TYPE instruction has qualifiers for entering blank spaces andmoving the cursor. The
instruction:

TYPE /C34, /U17, "This is the screen center."

enters 34 carriage returns (clear the screen), move up 17 lines from the bottom of the
screen, and output the text message. Additional qualifiers are available to format the output
of variables and control terminal behavior.

The program instruction used to retrieve data input from the keyboard is PROMPT. The
program line:

PROMPT "Enter a value for x: ", x

halts program execution andwait for the operator to enter a value from the keyboard (in this
case a real or integer value). If a value of the proper data type is entered, the value is
assigned to the named variable (if the variable does not exist, it is created and assigned the
value entered) and program execution proceeds. If an improper data type is entered, the
system generates an error message and halts execution. String data is expected if a string
variable ($x, for example) is specified.

All terminal input should be verified for proper data type. The following code segment
ensures that a positive integer is input. (Using the VAL() function also guarantees that
inadvertently entered nonnumeric characters do not cause a system error.)

DO
PROMPT "Enter a value greater than 0: ", $x
x = VAL($x)

UNTIL x > 0

Terminal I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 201

Terminal Types

In order for V+ to echo input characters properly and to generate certain displays on
character-based terminals, the type of terminal being usedmust be specified to the system.
The default terminal type (which is recorded on the V+ system disk) is assumed each time
the V+ system is booted from disk.1 After the system is booted, the TERMINAL system
parameter can be set to specify a different terminal type.

Input Processing

Terminal input is buffered by the system but is not echoed until it is actually read by the V+
monitor or by a program. Amaximum of 80 characters can be received before V+ begins to
reject input. When input is being rejected, V+ beeps the terminal for each character rejected.

On input, V+ may intercept special characters Ctrl+O, Ctrl+Q, and Ctrl+S, and use them to
control terminal output.2 They cannot be input even by the GETC function. Their functions
are shown in the following table.

Char. Decimal Function

Ctrl+O 15 Suppress or stop suppressing output

Ctrl+Q 17 Resume output suspended by Ctrl+S

Ctrl+S 19 Immediately suspend terminal output

Special Character Codes

When Ctrl+O is used to suppress output, all output instructions behave normally, except that
no output is sent to the terminal. Output suppression is canceled by typing a second Ctrl+O,
by V+ writing a system error message, or by a terminal read request.

Other special characters are recognized by the terminal input handler when processing a
PROMPT or READ instruction, or when reading amonitor command. However, these
characters can be read by the GETC function, in which case their normal action is suppressed.

Char. Decimal Name Action

Ctrl+C 03 Abort the current monitor
command

Ctrl+H 08 Backspace Delete the previous input
character

Special Character Codes Read by GETC

Terminal I/O

V+Language User's Guide, v17.0

Page 202

Char. Decimal Name Action

Ctrl+I 09 Tab Move to the next tab stop

Ctrl+M 13 Return Complete this input line

Ctrl+R 18 Retype the current input
line

Ctrl+U 21 Delete the entire current
line

Ctrl+W 23 Start/stop slow output
mode

Ctrl+Z 26 Complete this input with
an end of file error

DEL 1207 Delete Delete the previous input
character

During a PROMPT or READ instruction, all control characters are ignored except those listed
above. Tab characters are automatically converted to the appropriate number of space
characters when they are received. (Tab stops are assumed to be set every eight spaces [at
columns 9, 17, 25,...] and cannot be changed.)

Unlike PROMPT, both READ andGETC require that the terminal be ATTACHed.

Normally, READ andGETC echo input characters as they are processed. An optional mode
argument for each of these operations allows echo to be suppressed.

Output Processing

Output to the system terminal can be performed using PROMPT, TYPE, or WRITE
instructions. All eight-bit, binary, byte data is output to the terminal without any
modification.

TYPE andWRITE automatically append a Return character (13 decimal) and Line Feed
character (10 decimal) to each data record, unless the /S format control is specified. PROMPT
does not append any characters.

Unlike all the other I/O devices, the terminal does not have to be attached prior to output
requests. If a different task is attached to the terminal, however, any output requests are
queued until the other task detaches. V+ system error messages are always displayed
immediately, regardless of the status of terminal attachment.

Terminal I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 203

1The default terminal type and communication characteristics of the serial line are set with
the configuration program in the file CONFIG_C.V2 on the Adept Utility Disk.

2Terminal behavior is configurable using the /FLUSH and /FLOW arguments to the FSET
instruction. See the V+ Language Reference Guide.

Terminal I/O

V+Language User's Guide, v17.0

Page 204

Digital I/O
Adept controllers can communicate in a digital fashion with external devices using the Digital
I/O capability. Digital input reads the status of a signal controlled by user-installed
equipment. A typical digital input operation is to wait for a microswitch on a workcell
conveyor to close, indicating that an assembly is in the proper place. The WAIT instruction
and SIG function are used to halt program execution until a digital input channel signal
achieves a specified state. The program line:

WAIT SIG(1001)

halts program execution until a switching device attached to digital input channel 1001 is
closed. If signal 1002 is a sensor indicating a part feeder is empty, the code:

IF SIG(1002) THEN
CALL service.feeder()

END

checks the sensor state and calls a routine to service the feeder if the sensor is on.

The SIGNAL instruction is used for digital output. In the above example, the conveyor belt
may need to be stopped after digital input signal 1001 signals that a part is in place. The
instruction:

SIGNAL(-33)

turns off digital output signal 33, causing the conveyor belt connected to signal 33 to stop.
When processing on the part is finished and the part needs to be moved out of the work area,
the instruction:

SIGNAL(33)

turns the conveyor belt back on. The digital I/O channels must be installed before they can
be accessed by the SIG function or SIGNAL instruction. The SIG.INS function returns an
indication of whether a given signal number is available. The code line:

IF SIG.INS(33) THEN

can be used to ensure that a digital signal is available before you attempt to access it. The
monitor command IO displays the status of all digital I/O channels. For details on installing
digital I/O hardware, see the Adept SmartController User's Guide or the Adept MV Controller
User's Guide .

Digital output channels are numbered from 1 to 512. Input channels are in the range 1001
to 1512. Multiple signals can be turned ON or OFF with a single instruction.

SIGNAL(33),(-34),(35)
or

SIGNAL(-33),(34),(-35)

Digital I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 205

High-Speed Interrupts

Normally, the digital I/O system is checked once every V+ major cycle (every 16 ms). In
some cases, the delay or uncertainty resultingmay be unacceptable. Digital signals 1001 -
1004 can be configured as high-speed interrupts. When a signal configured as a high-speed
interrupt transitions, its state is read at system interrupt level, resulting in a maximum delay
of 1 ms. The controller configuration utility CONFIG_C is used to configure high-speed
interrupts. See the INT.EVENT instruction in the V+ Language Reference Guide for more
information.

Soft Signals

Soft signals are used primarily as global flags. The soft signals are in the range 2001 - 2512
and can be usedwith SIG and SIGNAL. A typical use of soft signals is for intertask
communication. See "REACT and REACTI" and the REACT_ instructions in the V+ Language
Reference Guide.

Soft signals may be used to communicate between different V+ systems running on multiple
system processors.1

Digital I/O and Third Party Boards

When V+ starts, default blocks of system memory are assigned to the digital I/O system. V+
expects to find the digital I/O image at these locations. If you are using a third party digital I/O
board, you must remap these memory locations to correspond to the actual memory location
of the digital I/O image on your board. See the description of DEF.DIO in the V+ Language
Reference Guide for details.

Digital I/O and DeviceNet

When V+ starts, default blocks of system memory are assigned to the DeviceNet system. V+
expects to find the DeviceNet image at these locations. For additional information, see
DeviceNet on page 237.

1If your system is equippedwith multiple system processors and the optional V+ Extensions
software, you can run different copies of V+ on each processor. Use the CONFIG_C utility to
set upmultiple V+ systems.

Digital I/O

V+Language User's Guide, v17.0

Page 206

Pendant I/O
Most of the standard V+ I/O operations can be used to read data from the manual control
pendant keypad and to write data to the pendant display. For information on accessing the
manual control pendant, see Programming the MCP on page 263 or Programming the Adept
T1/T2 Pendant on page 283.

Pendant I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 207

Analog I/O
Up to eight analog I/Omodules for a total of 32 output and 256 input channels1 can be
installed in an Adept MV controller. The following figure shows the I/O channel numbers for
each installedmodule. Analog I/Omodules can be configured for different input/output
ranges. The actual input and output voltages are determined by setting on the AIOmodule.
Regardless of the input/output range selected, the AIO.IN function returns a value in the -1.0
to 1.0 range and the AIO.OUT instruction expects a value in the range -1.0 to 1.0.
Additionally, modules can be configured for differential input (which reduces the maximum
number of input channels to 128). Contact Adept Applications for details on installing and
configuring analog I/O boards2. See How Can I Get Help? on page 21 for contact information.

The instruction:

analog.value = AIO.IN(1004)

reads the current state of analog input channel 4.

The instruction:

AIO.OUT 2 = 0.9

writes the value 0.9 to analog output channel 2.

The instruction:

IF AIO.INS (4) THEN
AIO.OUT 4 = 0.56

END

writes to output channel 4 only if output channel 4 is installed.

Analog I/O Board Channels

Analog I/O

V+Language User's Guide, v17.0

Page 208

1Analog I/O boards can be configured for differential input rather than single-ended input.
Differential input reduces the number of channels on a single board from 32 to 16.

2The analog I/O board used by the Adept MV controller is supplied by Xycom, Inc. The model
number is XVME-540. The phone number for Xycom is (800) 289-9266.

Analog I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 209

Serial and Disk I/O Basics
The following sections describe the basic procedures that are common to both serial and disk
I/O operations. Disk I/O on page 214 covers disk I/O in detail. Serial Line I/O on page 223
covers serial I/O in detail.

Logical Units

All V+ serial and disk I/O operations reference an integer value called a Logical Unit Number
or LUN. The LUN provides a shorthandmethod of identifying which device or file is being
referenced by an I/O operation. See the ATTACH command in the V+ Language Reference
Guide for the default device LUN numbers.

Disk devices are different from all the other devices in that they allow files to be opened. Each
program task can have one file open on each disk LUN. That is, each program task can have
multiple files open simultaneously (on the same or different disk units).

NOTE: Nomore than 60 disk files can be open by the entire system at any time. That
includes files opened by programs and by the system monitor (for example, for the FCOPY
command). The error *Device not ready* results if an attempt is made to open a 61st file.

For details on accessing the graphics window LUNs, see Graphics Programming on page 243.

Error Status

Unlike most other V+ instructions, I/O operations are expected to fail under certain
circumstances. For example, when reading a file, an error status is returned to the program
to indicate when the end of the file is reached. The program is expected to handle this error
and continue execution. Similarly, a serial line may return an indication of a parity error,
which should cause the program to retry a data transmission sequence.

For these reasons, V+ I/O instructions normally do not stop program execution when an
error occurs. Instead, the success or failure of the operation is saved internally for access by
the IOSTAT real-valued function. For example, a reference to IOSTAT(5) returns a value
indicating the status of the last I/O operation performed on LUN 5. The values returned by
IOSTAT fall into one of following three categories:

Value Explanation

1 The I/O operation completed successfully.

0 The I/O operation has not yet completed. This value appears only if a
pre-read or no-wait I/O is being performed.

<0 The I/O operation completed with an error. The error code indicates
what type of error occurred.

IOSTAT Return Values

Serial and Disk I/O Basics

V+Language User's Guide, v17.0

Page 210

The error message associated with a negative value from IOSTAT can be found in the V+
Language Reference Guide. The $ERROR string function can be used in a program (or with
the LISTSmonitor command) to generate the text associated with most I/O errors.

It is good practice to use IOSTAT to check each I/O operation performed, even if you think it
cannot fail (hardware problems can cause unexpected errors).

NOTE:It is not necessary to use IOSTAT after use of a GETC function, since errors are
returned directly by the GETC function.

Attaching/Detaching Logical Units

In general, an I/O device must be attached using the ATTACH instruction before it can be
accessed by a program. Once a specific device (such as the manual control pendant) is
attached by one program task, it cannot be used by another program task. Most I/O requests
fail if the device associated with the referenced LUN is not attached.

Each program task has its own sets of disk and graphics logical units. Thus, more than one
program task can attach the same logical unit number in those groups at the same time
without interference.

A physical device type can be specified when the logical unit is attached. If a device type is
specified, it supersedes the default, but only for the logical unit attached. The specified device
type remains selected until the logical unit is detached.

An attach request can optionally specify immediate mode. Normally, an attach request is
queued, and the calling program is suspended if another control program task is attached to
the device. When the device is detached, the next attachment in the queue will be
processed. In immediate mode, the ATTACH instruction completes immediately-with an
error if the requested device is already attached by another control program task.

With V+ systems, attach requests can also specify no-wait mode. This mode allows an attach
request to be queuedwithout forcing the program to wait for it to complete. The IOSTAT
function must then be used to determine when the attach has completed.

If a task is already attached to a logical unit, it will get an error immediately if it attempts to
attach again without detaching, regardless of the type of wait mode specified.

When a program is finishedwith a device, it detaches the device with the DETACH program
instruction. This allows other programs to process any pending I/O operations.

When a control program completes execution normally, all I/O devices attached by it are
automatically detached. If a program stops abnormally, however, most device attachments
are preserved. If the control program task is resumed and attempts to reattach these logical
units, it may fail because of the attachments still in effect. The KILL monitor command
forces a program to detach all the devices it has attached.

If attached by a program, the terminal andmanual control pendant are detachedwhenever
the program halts or pauses for any reason, including error conditions and single-stepmode.

Serial and Disk I/O Basics

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 211

If the program is resumed, the terminal and the manual control pendant are automatically
reattached if they were attached before the termination.

NOTE: It is possible that another program task could have attached the terminal or
manual control pendant. That would result in an error message when the stopped task is
restarted.

Reading

The READ instruction processes input from all devices. The basic READ instruction issues a
request to the device attached on the indicated LUN andwaits until a complete data record is
received before program execution continues. (The length of the last record read can be
obtainedwith the IOSTAT function with its second argument set to 2.)

The GETC real-valued function returns the next data byte from an I/O device without waiting
for a complete data record. It is commonly used to read data from the serial lines or the
system terminal. It also can be used to read disk files in a byte-by-byte manner.

Special mode bits to allow reading with no echo are supported for terminal read operations.
Terminal input also can be performed using the PROMPT instruction.

The GETEVENT instruction can be used to read input from the system terminal. This may be
useful in writing programs that operate on both graphics and nongraphics-based systems.

To read data from a disk device, a file must be open on the corresponding logical unit. The
FOPEN_ instructions open disk files.

Writing

TheWRITE instruction processes output to serial and disk devices and to the terminal. The
basic WRITE instruction issues a request to the device attached on the indicated LUN, and
waits until the complete data record is output before program execution continues.

WRITE instructions accept format control specifiers that determine how output data is
formatted, andwhether or not an end of recordmark should be written at the end of the
record.

Terminal output also can be performed using the PROMPT or TYPE instructions.

A file must be open using the FOPENW or FOPENA instructions before data can be written to a
disk device. FOPENW opens a new file. FOPENA opens an existing file and appends data to
that file.

Input Wait Modes

Normally, V+ waits until the data from an input instruction is available before continuing with
program execution. However, the READ instruction and GETC function accept an optional
argument that specifies no-wait mode. In no-wait mode, these instructions return
immediately with the error status -526 (No data received) if there is no data available. A

Serial and Disk I/O Basics

V+Language User's Guide, v17.0

Page 212

program can loop and use these operations repeatedly until a successful read is completed or
until some other error is received.

The disk devices do not recognize no-wait mode on input and treat such requests as normal
input-with-wait requests.

Output Wait Modes

Normally, V+ waits for each I/O operation to be completed before continuing to the next
program instruction. For example, the instruction:

TYPE /X50

causes V+ to wait for the entire record of 50 spaces to be transmitted (about 50 milliseconds
with the terminal set to 9600 baud) before continuing to the next program instruction.

Similarly, WRITE instructions to serial lines or disk files will wait for any required physical
output to complete before continuing.

This waiting is not performed if the /N (no wait) format control is specified in an output
instruction. Instead, V+ immediately executes the next instruction. The IOSTAT function
checks whether or not the output has completed. It returns a value of zero if the previous
I/O is not complete.

If a second output instruction for a particular LUN is encountered before the first no-wait
operation has completed, the second instruction automatically waits until the first is done.
This schememeans the no-wait output is effectively double-buffered. If an error occurs in
the first operation, the second operation is canceled, and the IOSTAT value is correct for the
first operation.

With V+, the IOSTAT function can be usedwith a second argument of 3 to explicitly check for
the completion of a no-wait write.

Serial and Disk I/O Basics

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 213

Disk I/O
The following sections discuss disk I/O.

Attaching Disk Devices

A disk LUN refers to a local disk device, such as a 3-1/2 inch diskette drive, the hard disk on a
SIO based system, or the Compact Flash in an AWC (AdeptWindows Controller) system. Also,
a remote disk may be accessed via the Kermit protocol or a network.

The type of device to be accessed is determined by the DEFAULT command or the ATTACH
instruction. If the default device type set by the DEFAULT command is not appropriate at a
particular time, the ATTACH instruction can be used to override the default. The syntax of the
ATTACH instruction is:

ATTACH (lun, mode) $device

See the documentation for the ATTACH program instruction for the mode options and
possible device names. The instruction:

ATTACH (dlun, 4) "DISK"

attaches to an available disk logical unit and returns the number of the logical unit in the
variable dlun, which can then be used in other disk I/O instructions.

If the device name is omitted from the instruction, the default device for the specified LUN is
used. Adept recommends that you always specify a device name with the ATTACH
instruction. (The device SYSTEM refers to the device specified with the DEFAULTmonitor
command.)

Once the attachment is made, the device cannot be changed until the logical unit is
detached. However, any of the units available on the device can be specified when opening a
file. For example, the V+ DISK units are A, C and D. After attaching a DISK device LUN, a
program can open and close files on either of these disk units before detaching the LUN.

Disk I/O and the Network File System (NFS)

In addition to local disk devices, an Adept system equippedwith the optional Ethernet
hardware and the TCP/IP and NFS licenses can mount remote disk drives. Once mounted,
these access remote disk drives can be accessed in the same fashion as local disks.

The following sections describe accessing a disk drive regardless of whether it is a local drive or
a remotely-accessed drive. See the AdeptNet User's Guide for details on creating an NFS
mount.

Disk Directories

The FOPEN_ instructions, which open disk files for reading andwriting, use directory paths in
the same fashion as the monitor commands LOAD, STORE, etc. Files on a disk are grouped in

Disk I/O

V+Language User's Guide, v17.0

Page 214

directories. If a disk is thought of as a file cabinet, then a directory can be thought of as a
drawer in that cabinet. Directories allow files (the file folders in our file cabinet analogy) that
have some relationship to each other to be grouped together and separated from other files.
See the chapter Using Files in the V+ Operating System User's Guide for more details on the
directory structure.

Disk File Operations

All I/O requests to a disk device are made to a file on that device. A disk file is a logical
collection of data records1 on a disk. Each disk file has a name, and all the names on a disk
are stored in a directory on the disk. The FDIRECTORYmonitor command displays the names
of the files on a disk.

A disk file can be accessed either sequentially, where data records are accessed from the
beginning of the file to its end, or randomly, where data records are accessed in any order.
Sequential access is simplest and is assumed in this section. Random access is described later
in this chapter.

Opening a Disk File

Before a disk file can be opened, the disk the file is on must be ATTACHed.

The FOPEN_ instructions open disk files (and file directories). These instructions associate a
LUN with a disk file. Once a file is open, the READ, GETC, andWRITE instructions access the
file. These instructions use the assigned LUN to access the file so that multiple files may be
open on the same disk and the I/O operations for the different disk files will not affect each
other.2

The simplified syntax for FOPEN_ is:

FOPEN_ (lun)file_spec

where:

lun logical unit number used in the ATTACH instruction

file_spec file specification in the form, unit:path\filename.ext

unit is an optional disk unit name. The standard local disk
units are A, C, and D. If no unit is specified, the colon
also must be omitted. Then the default unit (as
determined by the DEFAULT command) is assumed.

path\ is an optional directory path string. The directory path
is defined by one or more directory names, each
followed by a \ character. The actual directory path is
determined by combining any specified path with the
path set by the DEFAULT command. If path is

Disk I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 215

precededwith a \, the path is absolute. Otherwise, the
path is relative and is added to the current DEFAULT
path specification. (If unit is specified and is different
from the default unit, the path is always absolute.)

filename is a name with 1 to 8 characters, which is used as the
name of the file on the disk.

ext is the filename extension-a string with 0 to 3
characters, which is used to identify the file type.

The four open commands are:

1. Open for read only (FOPENR). If the disk file does not exist, an error is returned. No
write operations are allowed, so data in the file cannot be modified.

2. Open for write (FOPENW). If the disk file already exists, an error is returned.
Otherwise, a new file is created. Both read andwrite operations are allowed.

3. Open for append (FOPENA). If the disk file does not exist, a new file is created.
Otherwise, an existing file is opened. No error is returned in either case. A sequential
write or a random write with a zero record number appends data to the end of the file.

4. Open for directory read (FOPEND). The last directory in the specified directory path is
opened. Only read operations are allowed. Each record read returns an ASCII string
containing directory information. Directories should be opened using variable-length
sequential-access mode.

While a file is open for write or append access, another control program task cannot access
that file. However, multiple control program tasks can access a file simultaneously in read-
only mode.

Writing to a Disk

The instruction:

WRITE (dlun) $in.string

writes the string stored in $in.string to the disk file open on dlun. The instruction:

error = IOSTAT(dlun)

returns any errors generated during the write operation.

Reading From a Disk

The instruction:

READ (dlun) $in.string

Disk I/O

V+Language User's Guide, v17.0

Page 216

reads (from the open file on dlun) up to the first CR/LF (or end of file if it is encountered) and
store the result in $in.string. When the end of file is reached, V+ error number -504
Unexpected end of file is generated. The IOSTAT() function must be used to recognize this
error and halt reading of the file:

DO
READ (dlun) $in.string
TYPE $in.string

UNTIL IOSTAT(dlun) == -504

The GETC function reads the file byte by byte if you want to examine individual bytes from
the file (or if the file is not delimited by CR/LFs).

Detaching

When a disk logical unit is detached, any disk file that was open on that unit is automatically
closed. However, error conditions detected by the close operation may not be reported.
Therefore, it is good practice to use the FCLOSE instruction to close files and to check the
error status afterwards. FCLOSE ensures that all buffered data for the file is written to the
disk, and updates the disk directory to reflect any changesmade to the file. The DETACH
instruction frees up the logical unit. The following instructions close a file and detach a disk
LUN:

FCLOSE (dlun)
IF IOSTAT(dlun) THEN

TYPE $ERROR(IOSTAT(dlun))
END

DETACH (dlun)

When a program completes normally, any open disk files are automatically closed. If a
program stops abnormally and execution does not proceed, the KILL monitor command
closes any files left open by the program.

CAUTION: While a file is open on a floppy disk, do not replace the
floppy disk with another disk: Data may be lost and the new disk
may be corrupted.

Disk I/O Example

The following example creates a disk file, writes to the file, closes the file, reopens the file,
and reads back its contents.

AUTO dlun, i
AUTO $file.name
$file.name = "data.tst"

; Attach to a disk logical unit
ATTACH (dlun, 4) "DISK"

Disk I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 217

IF IOSTAT(dlun) < 0 GOTO 100

; Open a new file and check status
FOPENW (dlun) $file.name
IF IOSTAT(dlun) < 0 GOTO 100

; Write the text
FOR i = 1 TO 10

WRITE (dlun) "Line "+$ENCODE(i)
IF IOSTAT(dlun) < 0 GOTO 100

END

; Close the file
FCLOSE (dlun)
IF IOSTAT(dlun) < 0 GOTO 100

; Reopen the file and read its contents
FOPENR (dlun) $file.name
IF IOSTAT(dlun) < 0 GOTO 100
READ (dlun) $txt
WHILE IOSTAT(dlun) > 0 DO

TYPE $txt
READ (dlun) $txt

END ;End of file or error
IF (IOSTAT(dlun) < 0) AND (IOSTAT(dlun) <> -504) THEN

100 TYPE $ERROR(IOSTAT(dlun)) ;Report any errors
END
FCLOSE (dlun) ;Close the file
IF IOSTAT(dlun) < 0 THEN

TYPE $ERROR(IOSTAT(dlun))
END
DETACH (dlun) ;Detach the LUN

1A variable-length record is a text string terminated by a CR/LF (ASCII 13/ASCII 10).

2When accessing files on a remote system (for example, when using Kermit), the unit can be
any name string, and the file name and extension can be any arbitrary string of characters.

Disk I/O

V+Language User's Guide, v17.0

Page 218

Advanced Disk Operations
This section introduces additional parameters to the FOPEN and FOPENR program
instructions. For details, see the FOPEN and FOPENR documentation in the V+ Language
Reference Guide for details.

Variable-Length Records

The default disk file access mode is variable-length recordmode. In this mode, records can
have any length (up to a maximum of 512 bytes) and can cross the boundaries of 512-byte
sectors. The end of a record is indicated by a Line-Feed character (ASCII 10). Also, the end of
the file is indicated by the presence of a Ctrl+Z character (26 decimal) in the file. Variable-
length records should not contain any internal Line-Feed or Ctrl+Z characters as data. This
format is used for loading and storing V+ programs, and is compatible with the IBM PC
standard ASCII file format.

Variable-length recordmode is selected by setting the record length parameter in the
FOPEN_ instruction to zero, or by omitting the parameter completely. In this mode,WRITE
instructions automatically append Return (ASCII 13) and Line-Feed characters to the output
data-which makes it a complete record. If the /S format control is specified in an output
specification, no Return/Line-Feed is appended. Then any subsequent WRITE will have its
data concatenated to the current data as part of the same record. If the /Cn format control is
specified, n Return/Line-Feeds are written, creatingmultiple records with a single WRITE.

When a variable-length record is read using a READ instruction, the Return/Line-Feed
sequence at the end is removed before returning the data to the V+ program. If the GETC
function is used to read from a disk file, all characters are returned as they appear in the file-
including Return, Line-Feed, and Ctrl+Z characters.

Fixed-Length Records

In fixed-length recordmode, all records in the disk file have the same specific length. Then
there are no special characters embedded in the file to indicate where records begin or end.
Records are contiguous andmay freely cross the boundaries of 512-byte sectors.

Fixed-length recordmode is selected by setting the record length parameter in the FOPEN_
instruction to the size of the record, in bytes. WRITE instructions then pad data records with
zero bytes or truncate records as necessary to make the record length the size specified. No
other data bytes are appended, and the /S format control has no effect.

In fixed-length mode, READ instructions always return records of the specified length. If the
length of the file is such that it cannot be divided into an even number of records, a READ of
the last record will be paddedwith zero bytes to make it the correct length.

Sequential-Access Files

Normally, the records within a disk file are accessed in order from the beginning to the end
without skipping any records. Such files are called sequential files. Sequential-access files

Advanced Disk Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 219

may contain either variable-length or fixed-length records.

Random-Access Files

In some applications, disk files need to be read or written in a nonsequential or random order.
V+ supports random access only for files with fixed-length records. Records are numbered
starting with 1. The position of the first byte in a random-access record can be computed by:

byte_position = 1 + (record_number -1) * record_length

Random access is selected by setting the random-access bit in the mode parameter of the
FOPEN_ instruction. A nonzero record length must also be specified.

A specific record is accessed by specifying the record number in a READ or WRITE instruction.
If the record number is omitted, or is zero, the record following the one last accessed is used.
(See the FOPEN documentation.)

Buffering and I/O Overlapping

All physical disk I/O occurs as 512-byte sector reads andwrites. Records are unpacked from
the sector buffer on input, and additional sectors are read as needed to complete a record. To
speed up read operations, V+ automatically issues a read request for the next sector while it
is processing the current sector. This request is called a preread. Preread is selected by default
for both sequential-access and random-access modes. It can be disabled by setting a bit in the
mode parameter of the FOPEN_ instruction. If prereads are enabled, opening a file for read
access immediately issues a read for the first sector in the file.

Preread operations may actually degrade system performance if records are accessed in truly
random order, since sectors would be read that would never be used. In this case, prereads
should be disabled and the FSEEK instruction should be used to initiate a preread of the next
record to be used.

The function IOSTAT(lun, 1) returns the completion status for a pending preread or FSEEK
operation.

On output, records are packed into sector buffers andwritten after the buffers are filled. If no-
wait mode is selected for a write operation by using the /N format control, the WRITE
instruction does not wait for a sector to be written before allowing program execution to
continue.

In random-access mode, a sector buffer is not normally written to disk until a record not
contained in that buffer is accessed. The FEMPTY instruction empties the current sector
buffer by immediately writing it to the disk.

A file may be opened in nonbufferedmode, which ismuch slower than normal bufferedmode,
but it guarantees that information that is written will not be lost due to a system crash or
power failure. This mode was intended primarily for use with log files that are left opened over
an extended period of time and intermittently updated. For these types of files, the additional
(significant) overhead of this mode is not as important as the benefit.

Advanced Disk Operations

V+Language User's Guide, v17.0

Page 220

When a file is being created, information about the file size is not stored in the disk directory
until the file is closed. Closing a file also forces any partial sector buffers to be written to the
disk. Note that aborting a program does not force files associated with it to be closed. The files
are not closed (and the directory is not updated) until a KILL command is executed or until
the aborted program is executed again.

Disk Commands

There are several disk-orientedmonitor commands that do not have a corresponding
program instruction. The FCMND instruction must be used to perform the following actions
from within a program:

l Rename a file

l Format a disk

l Create a subdirectory

l Delete a subdirectory

The MCS instruction can be used to issue an FCOPY command from within a program.

FCMND is similar to other disk I/O instructions in that a logical unit must be attached and the
success or failure of the command is returned via the IOSTAT real-valued function. For
details, see the documentation for the FCMND program instruction.

The FCMND instruction is described in detail in the V+ Language Reference Guide. See the
Adept MV Controller User's Guide

Accessing the Disk Directories

The V+ directory structure is identical to that used by the IBM PC DOS operating system
(version 2.0 and later). For each file, the directory structure contains the file name,
attributes, creation time and date, and file size. Directory entries may be read after
successfully executing an FOPEND instruction.

Each directory record returned by a READ instruction contains an ASCII string with the
information shown in the following table.

Byte Size Description

1-8 8 ASCII file name, paddedwith blanks on
right

9 1 ASCII period character (46 decimal)

10-12 3 ASCII file extension, paddedwith blanks
on right

Disk Directory Format

Advanced Disk Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 221

Byte Size Description

13-20 8 ASCII file size, in sectors, right justified

21 1 ASCII space character (32 decimal)

22-28 7 Attribute codes, paddedwith blanks on
right

29-37 9 File revision date in the format dd-mm-
yy

38 1 ASCII space character (32 decimal)

39-46 8 File revision time in the format
hh:mm:ss

The following characters are possible in the file attribute code field of directory entries:

Character Meaning

D Entry is a subdirectory

L Entry is the volume label (not supported by V+)

P File is protected and cannot be read or modified

R File is read-only and cannot be modified

S File is a system file

File Attribute Codes

The attribute field is blank if no special attributes are indicated.

The file revision date and time fields are blank if the system date and time had not been set
when the file was created or last modified. (The system date and time are set with the TIME
monitor command or program instruction.)

AdeptNET

AdeptNET provides the ability to perform TCP/IP communications with other equipment,
perform NFSmounts on remote disks, and perform FTP transfers of files between local and
remote disks. See the AdeptNet User's Guide for details.

Advanced Disk Operations

V+Language User's Guide, v17.0

Page 222

Serial Line I/O
The V+ controller has several serial lines that are available for general use. This section
describes how these lines are used for simple serial communications. To use a serial line for a
special protocol such as DDCMP and Kermit (described later in this chapter), the line must be
configured using the Adept controller configuration utility program.1

I/O Configuration

In addition to selecting the protocol to be used, the Adept controller configuration program
allows the baud rate and byte format for each serial line to be defined. Once the serial line
configuration is defined on the V+ system boot disk, the serial lines are set up automatically
when the V+ system is loaded and initialized. After the system is running, the FSET program
instruction can be used to reconfigure the serial lines. The following byte formats are
available:

l Byte data length of 7 or 8 bits, not including parity

l One or two stop bits

l Parity disabled or enabled

l Odd or even parity (adds 1 bit to byte length)

The following baud rates are available:

110, 300, 600, 1200, 2400, 4800, 7200, 9600, 19200, 38400

In addition, V+ provides automatic buffering with optional flow control for each serial line.
The I/O configuration program can be used to enable output flow control with which V+
recognizes Ctrl+S (19 decimal) and Ctrl+Q (17 decimal) and uses them to suspend and
resume, respectively, serial line output. The configuration program can also enable input
flow control, with which V+ generates Ctrl+S and Ctrl+Q to suspend and resume,
respectively, input from an external source. With Ctrl+S and Ctrl+Q flow control disabled, all
input and output is totally transparent, and all 8-bit data bytes can be sent and received.

Serial lines may also be configured to use hardware modem control lines for flow control.
(The RTS/CTS lines must be installed in the modem cable-standardmodem cables often
leave these lines out.) For pin assignments, see the documentation on serial I/O connectors
in the Adept SmartController User's Guide or Adept MV Controller User's Guide.

Attaching/Detaching Serial I/O Lines

Serial lines must be attached before any I/O operations can take place. Note that only one
control program task can be attached to a single serial line at any one time. All other
attachment requests will queue or fail, depending on the setting of the mode parameter in
the ATTACH program instructions.

Attaching or detaching a serial line automatically stops any output in progress and clears all
input buffers. Serial lines are not automatically detached from a program unless it completes

Serial Line I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 223

with success, so it is possible to single-step through a program or proceed from a PAUSE
instruction without loss of data.

Input Processing

Input data is received by V+ according to the byte format specified by the I/O configuration
program. The size of the buffer can be set with the CONFIG_C utility program. Data errors
such as parity or framing errors are also buffered and are returned in the proper order.

The possible data errors from the serial input lines are:

-522 *Data error on device*

A data byte was receivedwith incorrect parity, or the byte generated a
framing error.

-524 *Communications overrun*

Data bytes were received after the input buffer was full, or faster than V+
could process them.

-526 *No data received*

If data is expected, continue polling the serial line.

-504 *Unexpected end of file*

A BREAK was received from the remote device.

Serial line input data is normally read using the GETC function, since it allows the most
flexible response to communications errors. The READ instruction also can be used provided
that input data is terminated by a Line-Feed character (10 decimal).

V+ does not support input echoing or input line editing for the serial lines.

Output Processing

All serial line output is performed using the WRITE instruction. All binary data (including NULL
characters) is output without conversion. If the serial line is configured to support parity, a
parity bit is automatically appended to each data byte.

By default, the WRITE instruction appends a Return character (13 decimal) and a Line-Feed
character (10 decimal) to each data record unless the /S format control is specified in the
instruction parameter list.

If output flow control is enabled and output has been suspended by a Ctrl+S character from
the remote device, a WRITE request may wait indefinitely before completing.

Serial Line I/O

V+Language User's Guide, v17.0

Page 224

Serial I/O Examples

The first example attaches to a serial line and performs simple WRITEs and READs on the
line:

.PROGRAM serial.io()
; ABSTRACT: Example program to write and read lines of
; text to and from serial port 1 on the SIO module.

AUTO slun ;Logical unit to communicate to serial port
AUTO $text

; Attach to a logical unit(open communications path
; to serial port)

ATTACH (slun, 4) "SERIAL:1"
IF IOSTAT(slun) < 0 GOTO 100

; Write text out to the serial port

WRITE (slun) "Hello there! "
IF IOSTAT(slun) < 0 GOTO 100

; Read a line of text from the serial port. The incoming
; line of text must be terminated by a carriage return and
; line feed. The READ instruction will wait until a line of
; text is received.

READ (slun) $text
IF IOSTAT(slun) < 0 GOTO 100

; Display any errors

100 IF (IOSTAT(slun) < 0) THEN
TYPE IOSTAT(slun), " ", $ERROR(IOSTAT(slun))

END

DETACH (slun) ;Detach from logical unit
.END

The next example reads data from a serial line using the GETC function with no-wait mode.
Records that are received are displayed on the terminal. In this program, data records on the
serial line are assumed to be terminated by an ETX character, which is not displayed. An
empty record terminates the program.

.PROGRAM display()
; ABSTRACT: Monitor a serial line and read data when
; available

AUTO $buffer, c, done, etx, ienod, line
etx = 3 ;ASCII code for ETX character
ienod = -526 ;Error code for no data
ATTACH (line, 4) "SERIAL:1"
IF IOSTAT(line) < 0 GOTO 90 ;Check for errors

Serial Line I/O

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 225

$buffer = "" ;Initialize buffer to empty
done = FALSE ;Assert not done
DO

CLEAR.EVENT
c = GETC(line,1) ;Read byte from the ser. line
WHILE c == ienod DO ;While there is no data...

WAIT.EVENT 1 ;Wait for an event
CLEAR.EVENT
c = GETC(line,1) ;Read byte from the ser. line

END
IF c < 0 GOTO 90 ;Check for errors
IF c == etx THEN ;If ETX seen...

TYPE $buffer, /N ;Type buffer
done = (LEN($buffer) == 0) ;Done if buffer length is 0
$buffer = "" ;Set buffer to empty

ELSE
$buffer = $buffer+$CHR(c) ;Append next byte

;to buffer

END
UNTIL done ;Loop until empty buffer seen

GOTO 100 ;Exit
90 TYPE "SERIAL LINE I/O ERROR: ", $ERROR(IOSTAT(line))

PAUSE
100 DETACH (line)

RETURN
.END

1The controller configuration utility is available in the file CONFIG_C.V2.

Serial Line I/O

V+Language User's Guide, v17.0

Page 226

DDCMP Communication Protocol
DDCMP is a rigorous protocol that automatically handles the detection of errors and the
retransmission of messages when an error occurs. (The name stands for Digital Data
Communications Message Protocol.) Originally, this protocol was used in Digital Equipment
Corporation's computer network DECnet.

The Adept implementation of DDCMP does not support maintenance messages or multidrop
lines. In all other respects it is a full implementation of the protocol.

This section is not intended to be a thorough description of DDCMP. For additional details on
protocol operation and implementation, refer to DDCMP documentation which is available on
the Internet.1

General Operation

All messages transmitted by DDCMP are embedded in a packet that includes sequence
information and check codes. Upon receipt, a message packet is checked to verify that it is
received in sequence andwithout transmission errors.

To initiate communications, a system sends special start-upmessages until the proper
acknowledgment is received from the remote system. This handshaking guarantees that
both sides are active and ready to exchange data packets. If a start request is received after
the protocol is active, it means that a system has stopped and restarted its end of the
protocol, and an error is signaled to the local system.

Once the protocol is active, each transmittedmessage is acknowledged by the remote
system, indicating that it was received correctly or requesting retransmission. If a message
is not acknowledged after a certain time, the remote system is signaled and a retry sequence
is initiated. If a message is not sent correctly after a number of retries, DDCMP stops the
protocol and signals an error to the local system.

The following table shows the standard DDCMP NAK reason codes generated by the Adept
implementation of DDCMP.

Code Description

1 Check code error in data
header or control message

2 Check code error in data field

3 REP response with NUM in
REP <> R

8 Buffer temporarily
unavailable for incoming data

Standard DDCMP NAK Reason Codes

DDCMP Communication Protocol

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 227

Code Description

9 Bytes lost due to receiver
overrun

16 Message too long for buffer

17 Header format error (but
check code was okay)

Controller Configuration for DDCMP

DDCMPmakes use of one or more of the general-purpose controller serial lines. To be used for
DDCMP, a serial line must be configured using the Adept CONFIG_C utility program available
in the file CONFIG_C.V2 (for details, see the CONFIG_C documentation in the Instructions for
Adept Utility Programs guide).

DDCMP is available only on global serial ports (i.e., the serial ports on the SIOmodule, and
ports RS-232-1 and RS-232-2 on the Adept SmartController CX product).

Attaching/Detaching DDCMP Devices

An ATTACH request initiates the DDCMP protocol for the specified logical unit. The attach will
not complete until the remote system also starts up the protocol and acknowledges the local
request. There is no time-out limit for start up, so the attach request can wait indefinitely. For
applications that service multiple lines, no-wait ATTACHmode can be used, and the logical
unit for each line can be polled with the IOSTAT function to detect when the remote system
has started.

A DETACH request stops the protocol, flushes any pending input data, and deactivates the
line. Any data received on the line is ignored.

Input Processing

When the protocol is active, received DDCMP data messages are stored in internal data
buffers and acknowledged immediately. The maximum input message length is 512 bytes.
The total number of data buffers (shared by all the DDCMP serial lines) is initially 10. The
Adept controller configuration program (CONFIG_C) can be used to change the number of
buffers allocated for use by DDCMP.

Once all the DDCMP buffers are full, additional data messages are rejected with negative
acknowledge (NAK) reason #8 (Buffer temporarily unavailable). It is the user's responsibility
to limit the input data flow using a higher-level protocol on the remote system.

Input data is accessed via the V+ READ instruction. Each READ instruction returns the
contents of the next data buffer. If no received data is available, the readwill not complete
until a data message is received. No-wait READmode can be used for reading; the serial line

DDCMP Communication Protocol

V+Language User's Guide, v17.0

Page 228

can be polled using the function IOSTAT(lun, 1) to detect when the read is completed. Keep
in mind that the DDCMP acknowledge was sent when the data was originally received and
buffered, not when the READ instruction is executed.

Output Processing

Output on a DDCMP line is performed using the V+ WRITE instruction. Each WRITE
instruction sends a single data message with a maximum length of 512 bytes. The write
request does not complete until the remote system acknowledges successful receipt of the
message. Retransmission because of errors is handled automatically without any action
required by the V+ program.

If the no-wait format control (/N) is specified in the format list for the WRITE instruction, V+
processing continues without waiting for the write to complete. Like other output requests, a
secondwrite issued before the first has completed will force the V+ program to wait for the
first write to complete. The IOSTAT(lun,3) function can be used to determine whether or not
a no-wait write has completed.

Protocol Parameters

Certain parameters can be set to control the operation of DDCMP. These parameters are set
with the V+ FCMND instruction. The following parameters can be set:

1. Time before message confirmation or retransmission is attempted. An acknowledge
request must have been received before this period of time, or a time-out occurs. The
default value is 3 seconds. It can be set to any value from 1 to 255 seconds.

2. Number of successive time-outs before an unrecoverable error is signaled, halting the
protocol and aborting I/O requests. The default value is 8. It can be set to any value
from 1 to 255.

3. Number of successive negative acknowledge (NAK) packets that can be received
before an unrecoverable error is signaled, halting the protocol and aborting I/O
requests. The default value is 8. It can be set to any value from 1 to 255.

The FCMND instruction to set the parameters is as follows (see the VFCMND documentation
for more information on this instruction):

FCMND(lun, 501)$CHR(time.out)+$CHR(time.retry)+
$CHR(nak.retry)

where

lun is the logical unit number for the serial line

time.out is the time-out interval, in seconds

time.retry is the successive time-out maximum

nak.retry is the successive NAKmaximum

DDCMP Communication Protocol

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 229

For example, the instruction

FCMND (lun, 501) $CHR(2)+$CHR(20)+$CHR(8)

specifies a time-out interval of 2 seconds, with a maximum of 20 time-outs and 8 NAK
retries.

1The original publication on DECnet is entitledDECnet Digital Network Architecture, Digital
Data Communications Message Protocol (DDCMP) Specification, Version 4.0, March 1, 1978.
Digital Equipment Corporation order number AA-D599A-TC. Information on DECnet is
available at the following URL: http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_
doc/decnet.pdf.

DDCMP Communication Protocol

V+Language User's Guide, v17.0

Page 230

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/decnet.pdf
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/decnet.pdf

Kermit Communication Protocol
The Kermit protocol is an error-correcting protocol for transferring sequential files between
computers over asynchronous serial communication lines. This protocol is available as an
option to the Adept V+ system.

Kermit is nonproprietary andwas originally developed at Columbia University. Computer
users may copy Kermit implementations from one another, or they may obtain copies from
Columbia University for a nominal charge.1

The following information is not intended to be a thorough description of Kermit and its use.
You should refer to the Kermit User Guide and the Reference Kermit Protocol Manual (both
available from Columbia University) for more details on implementation and operation of the
Kermit protocol.

The Adept implementation of Kermit can communicate only with a server (see the Kermit
User Guide for a definition of terms). The followingmaterial describes use of Kermit from the
V+ system. In addition to this information, you will need to know how to perform steps on
your computer to initiate the Kermit protocol and access disk files.

When the V+ implementation of the Kermit protocol is enabled, it makes use of one of the
general-purpose USER serial lines on the Adept system controller. For a serial line to be used
with Kermit, the line must have been configured using the Adept controller configuration
program.2

Starting a Kermit Session

This section will lead you through the steps involvedwith initiating a Kermit file transfer
session using Kermit with the V+ system. The term remote system is used in this discussion
to refer to the computer system that is to be accessedwith Kermit.

NOTE: The following information should be considered an example. The specific details
may not be correct for the computer system you are accessing with Kermit.

The first step is to start up a Kermit server on the remote system. One way to do this is to go
into pass-through mode on the V+ system by typing the monitor command:

PASSTHRU KERMIT

The system terminal is now connected directly to the serial line to the remote system:
Anything you type at the system terminal (except Ctrl+C and Ctrl+P) is sent directly to the
remote system.

If you cannot get any response from the remote system at this point, there is probably a
problem with the serial line connection. A common problem is a mismatch of baud rates or
other communication characteristics, or a bad serial line connection. Previous experience is
helpful in solving such problems.

Kermit Communication Protocol

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 231

Once you are able to communicate with the remote system, you may have to log onto the
remote system. After you have reached the point of being able to enter commands to the
system, the Kermit program may be started simply by typing:

KERMIT

or a similar command appropriate to the operating system of the remote computer.

The Kermit program starts up in its commandmode, with a prompt such as:

C-Kermit>

You may then enter commands directly to the Kermit program. For example, you may want
to enter commands to initialize various parameters in preparation for communication with
the V+ Kermit. For instance, you may type:

SET FILE TYPE TEXT

to initialize the remote file type to ASCII. (The actual syntax needed for these commands will
depend on the remote system. Refer to that system's user guide. Most Kermit programs are
equippedwith help facilities that can be invoked by typing HELP or a question mark [?].)

After successfully initializing the desired parameters, the Kermit server can be started by
typing:

SERVER

The remote server starts up and typed a short message about basic server usage. This
message may not be applicable to use of Kermit communications with the V+ system.
Whenever the instructions for handling and terminating the server differ from those in this
manual, the instructions in this manual should be followed.

At this point, you should escape back to the (local) V+ system by typing a Ctrl+C to terminate
the PASSTHRU command.

NOTE:A Ctrl+Cmay be typed at any time while in PASSTHRU mode to escape back to the
local system. This implies that you will not be able to send a Ctrl+C to the remote system.
If the remote system uses Ctrl+C for special purposes (for example, the DEC VAX/VMS
system uses it to interrupt operations), you will have to use some other means to achieve
those special purposes.

Most Kermit servers cannot be aborted or terminated, except by a special communication
packet. In order to terminate the remote server when communicating with a V+ system, you
must go into PASSTHRU mode as described earlier. Then, when a Ctrl+P is typed, a special
packet of information is sent to the remote server that causes it to terminate. After this is
achieved, the remote Kermit program returns to commandmode and displays its command
prompt. You may then exit Kermit and log off the remote system.

Kermit Communication Protocol

V+Language User's Guide, v17.0

Page 232

File Access Using Kermit

After the remote Kermit server has been initiated, you are ready to use the Kermit line for
file access. In general, to access a file via Kermit with the V+ system, all you have to do is
specify the KERMIT> physical device in a normal V+ file-access command or instruction. For
example, the command:

LOAD K>file_spec

loads (from the remote system) the programs or data contained in the specified file. The file
specification may be a simple file name, or it may contain device and directory information.
The actual interpretation of the file specification depends on the remote Kermit server as well
as on the type of remote system being used.

You may also use the V+ DEFAULT command to define the default disk device to be the
Kermit line. For example, you can enter:

DEFAULT = K>directory/

In this command, K> tells the V+ system it should access the Kermit device (when the local
disk device is not explicitly specified), and directory represents directory information to be
used as the default in subsequent file specifications.

After the above DEFAULT command is entered, the command:

LOAD file_name

loads a program or data file from the Kermit line.

It is also possible for a V+ program to READ andWRITE to remote sequential files over the
Kermit line. To do that, the program has to perform the following steps:

1. ATTACH a disk logical unit, specifying the physical device KERMIT (explicitly or via the
current default).

NOTE: Only one logical unit in the entire V+ system can be attached to the
KERMIT physical device at any one time. An attempt to perform a second
attachment will result in the error *Device not ready*.

2. FOPEN_ the desired file on that logical unit (if the file is open in fixed-length-record
mode as long as the length is less than about 90).

3. READ or WRITE variable-length records using that logical unit.

The following V+ commands and instructions can be used to access files with Kermit:

FCOPY FOPEND STORE STORES

FDELETE FOPENR STOREL VLOAD

FLIST FOPENW STOREP VSTORE

Kermit Communication Protocol

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 233

FDIRECTORY LOAD STORER

VLOAD and VSTORE can be usedwith Kermit only in binary mode.

The specific commands for the remote system will depend on the system you are using.

Binary Files

Disk files created by the V+ system are called ASCII files because the files contain only ASCII
characters. V+ application programs (and other computers) can create non-ASCII disk files,
which contain information that is not interpreted as ASCII characters. Such files are often
called binary files.

When Kermit is transferring normal text (ASCII) files, the file contents are not adversely
affected if the eighth bit of a byte is corrupted. For example, the serial line hardware would
affect the eighth bit if parity checking is enabled, since that bit is used for the parity
information.

However, when binary files need to be transferred, the eighth bit of each byte must be
preserved. Thus, the serial line parity must be set to no parity (that is, the serial ports on both
the V+ system and the remote system must be set). Also, the Kermit file modemust be set
to binary.

The parity mode for the V+ serial ports is set with the Adept controller configuration program
(CONFIG_C). You may be able to set the modes on the remote system by performing the
following steps:

1. Go into PASSTHRU mode at the V+ system terminal.

2. Enter a command to the remote system to exit the Kermit program (it may first be
necessary to terminate the server by typing Ctrl+P).

3. Enter a command to the remote system to set the terminal mode to no parity.

4. Enter a command to the remote system to restart the Kermit program.

5. Enter a command to the remote Kermit to set its file mode to binary. For example:

SET FILE TYPE BINARY

6. Enter a command to Kermit to start the remote server.

7. Type Ctrl+C to escape back to the (local) V+ system.

When a binary file is accessed over the Kermit line, the file specified to V+ must have a /B
qualifier. For example, the following command copies the file REMOTE.DAT from the Kermit
line to the local disk drive A:

FCOPY A:local.dat = K>remote.dat/B

NOTE: If the default setting for the remote system's serial line is other than no parity,
and there is no way you can change that setting, it will not be possible to successfully

Kermit Communication Protocol

V+Language User's Guide, v17.0

Page 234

transfer binary files using Kermit. An ASCII file may be accessed as a binary file, but not
vice versa. A file that is transferred back and forth over the Kermit line must be
transferred in the same file mode each time. For example, if a file is copied in binary mode
from the remote system to the V+ system, then it must be copied back to the remote
system in binary mode in order to preserve the file contents.

Kermit Line Errors

The error *Nonexistent file* is common when using Kermit. This error couldmean any of
several things in addition to the inability to find the desired file on the remote system (the
command FDIR K> will verify the contents of a remote directory). The transactions over the
Kermit line are generally considered to be file transfers. When the V+ system tries to start a
file operation, the local Kermit driver generally tries to open a file on the remote server. If
this operation fails, V+ returns the error *Nonexistent file*. Among the things that could
possibly cause this error are:mismatched line settings (like baud rate and parity),
unexpected server state (the server didn't terminate the previous transaction as expected),
the server was not started correctly, or the file may really not exist.

NOTE:When an error occurs that is associated with the use of Kermit, it sometimes helps
to perform the following steps to make sure the remote server is in a known state: (1)
enter PASSTHRU mode, (2) stop the remote server by typing Ctrl+P several times, and
(3) restart the remote server. If a Kermit file access is aborted by the user (for example,
Ctrl+C is typed to abort a V+ monitor command), it may take five seconds for the abort
request to be processed.

System Parameters for Kermit

Two V+ system parameters are provided for setting communication parameters for the
Kermit protocol.

The parameter KERMIT.TIMEOUT sets the amount of time that the remote server is to wait
for a response from the V+ system before the remote server declares a time-out error and
retransmits its previous message. This parameter should be set to a high value (less than or
equal to 95 seconds) when V+ READ or WRITE instructions performed on the Kermit line are
far apart, that is, when there are long pauses between disk requests. (This can occur, for
example, when the V+ program is being executed in single-stepmode with the program
debugger.)

The parameter KERMIT.RETRY is the number of errors and retransmissions that are allowed
by the local V+ Kermit. When this number of errors is exceeded, the error *Toomany
network errors* will occur. When this parameter is set to a large value (less than or equal to
1000), the equivalent parameter for the remote server must be set to the same value.
Otherwise, the settings will not be effective.

1Kermit documentation and software are available from:
Kermit Distribution

Kermit Communication Protocol

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 235

Columbia University Center for Computing Activities
612 West 115th Street
New York, NY 10025 (USA)
Web site: http://www.columbia.edu/kermit/

2Only one line can be configured at any one time for use with Kermit. The controller
configuration program is in the file CONFIG_C.V2.

Kermit Communication Protocol

V+Language User's Guide, v17.0

Page 236

http://www.columbia.edu/kermit/

DeviceNet
Adept supports DeviceNet and DeviceNet protocols on both the Adept SmartController and
Adept MV controller platforms. For more information on the Adept DeviceNet environment,
hardware and software configuration and V+ programming for DeviceNet components,
select a topic from the table below.

To... Refer to...

Learn about the Adept
DeviceNet Environment

SmartController's User's Guide

Adept MV Controller User's Guide

Configure DeviceNet hardware SmartController's User's Guide

Adept MV Controller User's Guide

Configure DeviceNet software Configuring the Adept Controller as a DeviceNet
Slave

Change DeviceNet Configuration

Managing DeviceNet
components from the V+
operating system and program
environment

DEVICENET Used for reading DeviceNet
status.

DN.RESTART Restarts DeviceNet
communication if the
CanBus goes offline.

DN.THROTTLE On SmartController
systems, allows you to
specify the number of nodes
to be polled by the DeviceNet
drivers to increase CPU
availability.

ATTACH Makes a device available for
use by an application
program.

FCMND Generates a device-specific
command to the
input/output device specified
by the logical unit. The
FCMND documentation
provides the DeviceNet
command codes and the
format of DeviceNet status
information that is available

DeviceNet

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 237

To... Refer to...

to programs.

DeviceNet

V+Language User's Guide, v17.0

Page 238

Summary of I/O Operations
The following table summarizes the V+ I/O instructions:

Keyword Type Function

AIO.IN RF Read a channel from one of the analog IO boards.

AIO.INS RF Test whether an analog input or output channel is
installed.

AIO.OUT PI Write to a channel on one of the analog IO boards.

ATTACH PI Make a device available for use by the application
program.

BITS PI Set or clear a group of digital signals based on a value.

BITS RF Readmultiple digital signals and return the value
corresponding to the binary bit pattern present on
the signals.

$DEFAULT SF Return a string containing the current system default
device, unit, and directory path for disk file access.

DEF.DIO PI Assign third-party digital I/O boards to standard V+
signal numbers, for use by standard V+ instructions,
functions, andmonitor commands.This instruction
requires the Third-Party Board Support license.

DETACH PI Release a specified device from the control of the
application program.

DEVICE PI Send a command or data to an external device and,
optionally, return data back to the program. (The
actual operation performed depends on the device
referenced.)

DEVICE RF Return a real value from a specified device. The value
may be data or status information, depending upon
the device and the parameters.

DEVICES PI Send commands or data to an external device and
optionally return data. The actual operation

System Input/Output Operations

Summary of I/O Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 239

Keyword Type Function

performed depends on the device referenced.

FCLOSE PI Close the disk file, graphics window, or graphics icon
currently open on the specified logical unit.

FCMND PI Generate a device-specific command to the
input/output device specified by the logical unit.

FEMPTY PI Empty any internal buffers in use for a disk file or a
graphics window by writing the buffers to the file or
window if necessary.

FOPENR PI Open a disk file for read-only.

FOPENW PI Open a disk file for read-write.

FOPENA PI Open a disk file for read-write-append.

FOPEND PI Open a disk directory for read.

FSEEK PI Position a file open for random access and initiate a
read operation on the specified record.

GETC RF Return the next character (byte) from a device or
input record on the specified logical unit.

IOGET_ RF Return a value from a device on the VME bus.

$IOGETS SF Return a string value from a device on the VME bus.

IOPUT_ PI Write a value to a device on the VME bus.

IOSTAT RF Return status information for the last input/output
operation for a device associated with a logical unit.

IOTAS RF Control access to shared devices on the VME bus.

KERMIT.RETRY P Establish the maximum number of times the (local)
Kermit driver should retry an operation before
reporting an error.

Summary of I/O Operations

V+Language User's Guide, v17.0

Page 240

Keyword Type Function

KERMIT.TIMEOUT P Establish the delay parameter that the V+ driver for
the Kermit protocol will send to the remote server.

KEYMODE PI Set the behavior of a group of keys on the manual
control pendant.

PENDANT RF Return input from the manual control pendant.

PROMPT PI Display a string on the system terminal andwait for
operator input.

READ PI Read a record from an open file or from an attached
device that is not file oriented.

RESET PI Turn off all the external output signals.

SETDEVICE PI Initialize a device or set device parameters. (The
actual operation performed depends on the device
referenced.)

SIG RF Return the logical AND of the states of the indicated
digital signals.

SIG.INS RF Return an indication of whether or not a digital I/O
signal is configured for use by the system, or whether
or not a software signal is available in the system.

SIGNAL PI Turn on or off external digital output signals or
internal software signals.

TYPE PI Display the information described by the output
specifications on the system terminal. A blank line is
output if no argument is provided.

WRITE PI Write a record to an open file or to an attached device
that is not file oriented.

PI: Program Instruction, RF: Real-Valued Function, P: Parameter, SF: String
Function

Summary of I/O Operations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 241

Graphics Programming
The following topics are described in this chapter:

Creating Windows 245
Monitoring Events 248
Building a Menu Structure 250
Creating Buttons 253
Creating a Slide Bar 255
Graphics Programming Considerations 257
Communicating With the System Windows 259
Additional Graphics Instructions 261

Graphics Programming

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 243

Graphics Programming

V+Language User's Guide, v17.0

Page 244

Creating Windows
V+ communicates to windows through logical units, with logical unit numbers (LUNs) 20 to
23 reserved for window use. (Each task has access to its own set of four LUNs.) The basic
strategy for using a window (or any of the graphics instructions) is:

1. ATTACH to a logical unit

2. FOPEN a window on the logical unit

3. Perform the window's tasks (or graphics operations)

4. FCLOSE the window

5. FDELETE the window

6. DETACH from the logical unit

ATTACH Instruction

The ATTACH instruction sets up a communications path so a window can be written to and
read from. The syntax for the ATTACH instruction is:

ATTACH (glun, 4) "GRAPHICS"

glun variable that receives the number of the attached graphics logical unit.
(All menus and graphics commands that take place within a window will
also use glun.)

FOPEN Instruction

FOPEN creates a new window or reselects an existing window for input and output. When a
window is created, its name is placed in the list of available windows displayedwhen the
adept logo is clicked on. The simplified syntax for FOPEN is:

FOPEN (glun) "window_name /MAXSIZE width height"

glun The logical unit already ATTACHed to.

window_
name

The title that appears at the top of the window. Also used to close and
select the window.

width/height Specify the largest size the window can be opened to.

This instruction will give you a window with all the default attributes. See the description of
FOPEN and FSET in the V+ Language Reference Guide for details on how to control the
attributes of a window e6 for example, background color, size, and scrolling.

CreatingWindows

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 245

FCLOSE Instruction

FCLOSE closes a window to input and output (but does not erase it or remove it from
memory). The syntax for FCLOSE is:

FCLOSE (glun)

glun The logical unit number specified in the FOPEN instruction that opened
the window.

FDELETE Instruction

FDELETE removes a closed, attachedwindow from the screen and from graphics memory.
The syntax for FDELETE is

FDELETE (glun) "window_name"

glun The same values as specified in the FOPEN instruction that created the
window.

DETACH Instruction

DETACH frees up a LUN for use by a subsequent ATTACH instruction. The syntax for DETACH
is:

DETACH (glun)

glun The LUN specified in a previous ATTACH instruction.

Custom Window Example

This section of code will create and delete a window:

AUTO glun ; Graphics window LUN

ATTACH (glun, 4) "GRAPHICS" ; Attach to a window LUN

; Open the window "Test" with a maximum size of
; 400 x 300 pixels

FOPEN(glun) "Test","/MAXSIZE 400 300"

; Your code for processing within the window
; goes here; e.g:

GTYPE (glun) 10, 10, "Hello!"

; When the window is no longer needed, close and delete the
; window and detach from the logical unit

FCLOSE (glun)

CreatingWindows

V+Language User's Guide, v17.0

Page 246

FDELETE (glun) "Test"
DETACH (glun)

CreatingWindows

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 247

Monitoring Events
The key to pointing-device-driven programming is an event loop. In an event loop, you wait
for an event (from the keyboard or pointer device) andwhen the correct event occurs in the
proper place, your program initiates some appropriate action. V+ can monitor many different
events including button up, button down, double click, open window, andmenu select. The
example code in the following sections will use event 2, button up, and event 14, menu
select. For details on the different events that can be monitored, see the documentation for
the GETEVENT program instruction in the V+ Language Reference Guide.

The basic strategy for an event loop is:

1. Wait for an event to occur.

2. When an event is detected:

a. If it is the desired event, go to step 3

b. Otherwise, return to step 1.

3. Check the data from the event array (not necessary for event 14, menu select):

a. If it is appropriate, go to step 4.

b. Otherwise, return to step 1.

4. Initiate appropriate action.

5. Return to step 1.

GETEVENT Instruction

The instruction that initiates monitoring of pointer device and keyboard events is GETEVENT.
Its simplified syntax is:

GETEVENT (lun) event[]

lun Logical unit number of the window to be monitored.

event[] Array into which the results of the detected event are stored. The
value stored in event[0] indicates which event was detected.

If event[0] is 2, a button-up event was detected, in which case:

event[1] indicates the number of the button pressed. (For two-button
devices, 2 = left button, 4 = right button. For three-button
devices, 1 = left button, 2 = middle button, 4 = right button.)

event[2] is the X value of the pointer location of the click.

event[3] is the Y value of the pointer location of the click.

Monitoring Events

V+Language User's Guide, v17.0

Page 248

If event[0] is 14, a click on amenu bar selection was detected, in which case:

If event[1] is 0, a click has been made to the top-level menu bar. In this case,
an FSET instruction must be executed to display the pull-down
options under the menu bar selection and event[2] is the number
(from left to right) of the menu bar option selected.

If event[1] is 1, then a selection from a pull-down menu has been made and
event[2] is the number of the pull-down option selected.

You cannot use the GETEVENT instruction to specify which events to monitor. It monitors all
the events that are enabled for the window. For details on using the /EVENT argument for
enabling and disabling the monitoring of various events, see the documentation for the
FOPEN and FSET program instructions in the V+ Language Reference Guide.

FSET Instruction

FSET is used to alter the characteristics of a window openedwith an FOPEN instruction, and
to display pull-down menus. We are going to describe only the use of FSET to create the top-
level menu bar, create the pull-down menu selections below the top-level menu, and initiate
monitoring of events. The instruction for displaying a top-level menu is:

FSET (glun) " /MENU 'item1' 'item2' ... 'item10' "

glun is the logical unit of the window the menu is displayed in.

item1-item10 are the menu titles for a top-level bar menu. The items appear
from left to right.

The instruction to display a pull-down menu (called when event[0] = 14 and event[1] = 0)
is:

FSET (glun) "/PULLDOWN", top_level#," 'item1' ... ' itemn '"

top_level# is the number of the top-level selection the pull-down menu is to appear
under.

item1-
itemn

are the menu items in the pull-down menu. The items appear from top
to bottom.

The relationship between these two uses of FSET will become clear when we actually build a
menu structure.

The basic FSET instruction for monitoringmenu andmouse events is:

FSET (glun) "/EVENT BUTTON MENU"

Monitoring Events

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 249

Building a Menu Structure
The strategy for implementing amenu is:

1. Declare the top-level bar menu.

2. Start a loopmonitoring event 14 (menu selection).

3. When event 14 is detected, check to see if the mouse event was on the top-level bar
menu or on a pull-down option.

4. If the event was a top-level menu selection, then display the proper pull-down options.

5. If the event was a pull-down selection, use nested CASE structures to take appropriate
action based on the selections made to the top-level menu and its corresponding pull-
down menu.

Menu Example

This code segment will implement a menu structure for a window open on glun:

; Set the top-level menu bar and enable monitoring of events
FSET (glun) "/menu 'Menu 1' 'Menu 2' 'Menu 3'"
FSET (glun) "/event button menu"

; Define the strings for the pull-down menus
$menu[1] = "'Item 1-1' 'Item 1-2'"
$menu[2] = "'Item 2-1' 'Item 2-2' 'Item 2-3'"
$menu[3] = "'Quit'"

; Set variable for event to be monitored
wn.e.menu = 14

; Start the processing loop
quit = FALSE
DO

GETEVENT (glun) event[]
IF event[0] == wn.e.menu THEN

;The menu event (14) has two components; a button-down component
; corresponding to a click on a menu bar selection, and a
; button-up component corresponding to the pull-down selection
; made when the button is released.
; After the first component (pointer down on the menu bar),
; event[1] will be 0 and event[2] will have the number of the
; menu bar selection.

; Check to see if event[1] is 0, indicating a top-level menu select
IF event[1] == 0 THEN

; Use the value in event[2] to select a pull-down menu
FSET (glun) "/pulldown", event[2], $menu[event[2]]

; Else, execute the appropriate code for each menu selection
ELSE

; If event[1] is not 0, then the button has been released on a
; pull-down selection and:

Building a Menu Structure

V+Language User's Guide, v17.0

Page 250

; event[1] will have the value of the top-level selection (menu)
; event[2] will have the value of the pull-down selection (item)

menu = event[1]
item = event[2]

; The outer CASE structure checks the top-level menu selection
; The inner CASE structure checks the item selected from the pull-down

CASE menu OF
VALUE 1: ;Menu 1

CASE item OF
VALUE 1:

;code for Item 1-1
VALUE 2:

;code for Item 1-2
END

VALUE 2: ;Menu 2
CASE item OF

VALUE 1:
;code for Item 2-1

VALUE 2:
;code for Item 2-2

VALUE 3:
;code for Item 2-3

END
VALUE 3: ;Menu 3

CASE item OF
VALUE 1:

quit = TRUE ;time to quit
END

END ; case menu of
END ; if event[1]

END ; if event[0]
UNTIL quit

.END

Implementing the above code and then clicking on Menu 2 would result in the window
shown in the following figure.

Building a Menu Structure

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 251

Sample Menu

Defining Keyboard Shortcuts

If you are using AdeptWindows, you can create keyboard shortcuts on menu and pull-down
items by placing an ampersand (&) before the desired letter. For example:

FSET(lun) "/menu '&File' '&Edit'"

In this example, the letters F and E are used as shortcuts when pressedwith the ALT key.
Thus, pressing ALT+F displays the File menu and ALT+E displays the Edit menu. The letters F
and E are underlined on the menu or pull-down item to indicate the keyboard shortcut.

Building a Menu Structure

V+Language User's Guide, v17.0

Page 252

Creating Buttons
Creating a button in a window is a simple matter of placing a graphic representing your
button on the screen, and then looking to see if a mouse event occurred within the confines
of that graphic.

GPANEL Instruction

The GPANEL instruction is useful for creating standard button graphics. The syntax for
GPANEL is:

GPANEL (glun, mode) x, y, dx, dy

glun The logical unit of the window the button is in.

mode is replacedwith:

0 indicating a raised, ungrooved panel

2 indicating a sunken, ungrooved panel

4 indicating a raised, grooved panel

6 indicating a sunken, grooved panel

(Adding 1 to any of the mode values fills the panel with foreground
color.)

x y Coordinates of the upper left corner of the button.

dx dy Width and height of the button.

Button Example

This code segment places a button on the screen and then monitor a button-up event at
that button (the logical unit the button is accessingmust be ATTACHed and FOPENed):

; Initialize monitoring of button events for a button
FSET (glun) "/event button"

; Draw a 45x45 pixel panel at window coordinates 100,100
GPANEL (glun, 0) 100, 100, 45, 45

; Put a label in the button
GTYPE (glun) 102, 122, "Label"

; Declare a variable for pointer event 2 (button up)
btn.up = 2

; Set a variable that will stop the monitoring of button
; events

hit = FALSE
; Start a loop waiting for a button-up event

DO
GETEVENT (glun) event[]

Creating Buttons

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 253

; The status of a button event will be stored in event[0].; Look to see if
that event was a button-up event.

IF event[0] == btn.up THEN
; Check if the button-up event was within the button area
; The x location is in event[1], the y location in event[2]

hit = (event[2] > 99) AND (event[2] < 146)
hit = hit AND (event[3] > 99) AND (event[3] < 146)

END
UNTIL hit

; The code for reacting to a button press is placed here.

This code will work for a single button but will become very unwieldy if several buttons are
used. In the case of several buttons, you should place the button locations in arrays (or a
two-dimensional array) and then pass these locations to a subroutine that checks whether
the mouse event was within the array parameters passed to it.

Creating Buttons

V+Language User's Guide, v17.0

Page 254

Creating a Slide Bar
V+ allows you to create a V+feature similar to the window scroll bars called slide bars. The
syntax for a slide bar is:

GSLIDE (glun, mode) slide_id = x, y, len, max_pos, arrow.inc, handle

glun The logical unit of the window the slide bar is created in.

mode is replacedwith:

0 indicating a horizontal slide bar is to be created or updated.
1 indicating a slide bar is to be deleted.
2 indicating a vertical slide bar is to be created or updated.

slide_id A number that identifies the slide bar. This number is returned to the
event queue so you can distinguish which slide wasmoved.

x y The coordinates of the top left corner of the slide bar.

len The width or height of the bar.

max_pos Specifies the maximum value the slide bar returns.

arrow_inc Specifies the increment the slide bar registers when the arrows are
clicked. (The slide bar is created with a scroll handle and scroll arrows.)

handle Specifies position the scroll handle is in when the slide bar is created.

GSLIDE Example

Wewill be interested in two events when monitoring a slide bar, event 8 (slide bar pointer
move) and event 9 (slide bar button up). Additional event monitoringmust be enabled with
the FSET instruction. Object must be specified to monitor slide bars andmove_b2 must be
specified to monitor the dragging of the middle button.

The values returned in the GETEVENT array will be:

l event[0] the pointer device event code

l event[1] the ID of the slide bar (as specified by slide_id)

l event[2] the slide bar value

l event[3] the maximum slide bar value

The following code will display andmonitor a slide bar:

; The slide bar will be in the window open on glun

; The slide bar will use events 8 and 9. A double-click event ; will halt
; monitoring of the slide bar

Creating a Slide Bar

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 255

btn.smov = 8
btn.sup = 9
btn.dclk = 3

; Slide bar position and start-up values

x = 20
y = 60
length = 200
max.pos = 100
arrow_inc = 10
handle_pos = 50

; Enable monitoring of slide bars and pointer drags

FSET (glun) "/event object move_b2"

; Display the slide bar

GSLIDE (glun, 0) 1 = x, y, length, max_pos, arrow_inc, handle_pos
; Begin monitoring events and take action when the slide bar ; is moved.
Monitor
; events until a double click is detected, then delete the
; slide bar

DO
GETEVENT (glun) event[]
IF (event[0] == btn.smov) OR (event[0] == btn.sup THEN
; Your code to monitor the slide bar value (event[2]) goes
; here

END
UNTIL event[0] == btn.dclk

; Delete the slide bar

GSLIDE (glun, 1) 1

Creating a Slide Bar

V+Language User's Guide, v17.0

Page 256

Graphics Programming Considerations
Buttons andmenus can be monitored in the same window. However, the code will get
complicated, and you might consider using different windows when the button andmenu
structure becomes complex.

Only one pull-down menu can be active at any time.

Design your windows with the followingmechanical and aesthetic considerations:

l Keep your windows as simple and uncluttered as possible. Use color carefully and
purposefully.

l If you are usingmultiple windows, use similar graphic elements so the screen
elements become familiar and intuitive.

l Let the operator know what is going on. Never leave the operator in the dark as to the
status of a button push or menu selection.

l Whenever possible, have your windowsmimic the real work world of the operator.

In the interest of clarity, the examples in this chapter have not been generalized. When you
actually program an application, use generalized subroutine calls for commonly used code, or
your code will quickly become unmanageable.

Using IOSTAT()

The example code in this chapter leaves out critical error detection and recovery procedures.
Effective application code requires these procedures. The IOSTAT function should be used to
build error-handling routines for use with every ATTACH, FOPEN, FCLOSE, and FSET
instruction. The syntax for using IOSTAT to check the status of I/O requests is:

IOSTAT(lun)

lun The LUN specified in the previous I/O request.

The IOSTAT function returns the following values:

1 if the last operation was successful

0 if the last operation is not yet complete

< 0 if the last operation failed, a negative number corresponding to a standard
Adept error code will be returned.

The following code checks for I/O errors:

; Issue I/O instruction (ATTACH, FOPEN, etc.)
IF IOSTAT(lun) < 0 THEN

;your code to handle the error
END

; The ERROR function can be used to return the text

Graphics Programming Considerations

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 257

; of an error number. The code line is:
TYPE $ERROR(IOSTAT(lun))

Managing Windows

Windows can be:

l Hidden (but not deleted)

A hidden window is removed from the screen but not from graphics memory, and it
can be retrieved at any time:

FSET(glun) "/NODISPLAY" ;Hide a window
FSET(glun) "/DISPLAY" ;Redisplay a window

l Sent behind the parent's window stack:

FSET(glun) "/STACK -1"

l Brought to the front of the window stack:

FSET(glun) "STACK 1"

If you will not be reading events from a window, open it in write-only mode to save memory
and processing time.

Only the task that opened a window in read/write mode can read from it (monitor events).

Multiple tasks can write to an open window. A second task can write to an already open
window by executing its own ATTACHandOPEN for the window. The logical units' numbers
need not match, but the window namemust be the same. If a task has the window Test
open, other tasks can write to the window by:

ATTACH(lun_1, 4) "GRAPHICS"
FOPEN(lun_1) "Test /MAXSIZE 200 200 /WRITEONLY"

Graphics Programming Considerations

V+Language User's Guide, v17.0

Page 258

Communicating With the System Windows
The Adept system has three operating system level windows: the main window, the monitor
window, and the vision window (on systems with the AdeptVision option).

The Main Window

You can place menu options on the top-level menu bar by opening the window \Screen_1.
For example:

ATTACH (glun, 2) "GRAPHICS"
FOPEN(glun)"\Screen_1"
FSET (glun)"/event menu"
FSET (glun)"/menu 'item1' 'item2' 'item3'"

opens the main window and place three items on the top-level menu bar. Pull-downs and
event monitoring can proceed as described earlier. The instruction:

FSET (glun) "/menu "

deletes the menu items.

The Monitor Window

The monitor window can be opened in write-only mode to change the characteristics of the
monitor window. For example, the following instruction opens the monitor window, disables
scrolling, and disallowsmoving of the window:

FOPEN (glun) "Monitor /WRITEONLY /SPECIAL NOPOSITION NOSIZE"

To prevent a user from accessing the monitor window, use the instruction:

FOPEN (glun) "Monitor /WRITEONLY /NOSELECTABLE"

To allow access:

FSET (glun) "/SELECTABLE"

The Vision Window

For systems equippedwith the Adept Vision option, text or graphics can be output to the
vision window, and events can be monitored in the vision window. To communicate with the
vision window, you open it just as you would any other window. For the window name you
must use Vision. For example:

FOPEN (glun) "Vision"

Remember, graphics output to the vision window is displayed only when a graphics display
mode or overlay is selected. When you are finished communicating with the vision window,
close and detach from it just as you would any other window. This will free up the logical unit,

CommunicatingWith the System Windows

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 259

but will not delete the vision window. You can close and detach from the vision window, but
you cannot delete it.

To preserve the vision system pull-down menus, open the window in write-only mode:

FOPEN (glun) "Vision /WRITEONLY"

The following example opens the vision window, writes to the vision window, and detaches
the vision window:

.PROGRAM label.blob()

; ABSTRACT: This program demonstrates how to attach to the
; vision window and how to use the millimeter scaling mode of
; the GTRANS instruction to label a "blob" in the vision
; window.
;

AUTO vlun
cam = 1
; Attach the vision window and get a logical unit number
ATTACH (vlun, 4) "GRAPHICS"
IF IOSTAT(vlun) < 0 GOTO 100
FOPEN (vlun) "Vision" ;Open the vision window
IF IOSTAT(vlun) < 0 GOTO 100
; Select display mode and graphics mode
VDISPLAY (cam) 1, 1 ;Display grayscale frame and graphics
; Take a picture and locate an object
VPICTURE (cam) ;Take a processed picture
VLOCATE (cam, 2) "?" ;Attempt to locate an object
IF VFEATURE(1) THEN ;If an object was found...

GCOLOR (vlun) 1 ;Select the color black
GTRANS (vlun, 2) ;Select millimeter scaling
GTYPE (vlun) DX(vis.loc), DY(vis.loc), "Blob", 3

ELSE ;Else if object was NOT found...
GCOLOR (vlun) 3 ;Select the color red
GTRANS (vlun, 0) ;Select pixel scaling
GTYPE (vlun) 100, 100, "No object found!", 3

END
; Detach (frees up the communications path)
DETACH (vlun)

100 IF (IOSTAT(vlun) < 0) THEN ; Check for errors
TYPE $ERROR(IOSTAT(vlun))

END

.END

CommunicatingWith the System Windows

V+Language User's Guide, v17.0

Page 260

Additional Graphics Instructions
The following table lists the graphics instructions available in the V+ programming language.
For complete details on any instruction, click on the command name in the table, or refer to
the keyword documentation available in the V+ Language Reference Guide.

Command Action

GARC Draw an arc or circle in a graphics window.

GCHAIN Draw a chain of points.

GCLEAR Clear an entire window to the background color.

GCLIP Constrain the area of a window within which graphics are displayed.

GCOLOR Set the foreground and background colors for subsequent graphics
instructions.

GCOPY Copy one area of a graphics window to another area in the window.

GFLOOD Flood an area with foreground color.

GICON Allows you to display icons on the screen. You can access the
predefined Adept icons or use your own icons created with the Icon
Editor (see the Instructions for Adept Utility Programs).

GLINE Draw a line.

GLINES Draw multiple lines.

GLOGICAL Set the drawingmode for the next graphics instruction. (Useful for
erasing existing graphics and simulating the dragging of a graphic
across the screen.)

GPOINT Draw a single point.

GRECTANGLE Draw a rectangle.

GSCAN Draw a series of horizontal lines.

GSLIDE Create a slide bar.

List of Graphics Instructions

Additional Graphics Instructions

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 261

Command Action

GTEXTURE Develop a texture for subsequent graphics. Set subsequent
graphics to transparent or opaque.

GTRANS Define a transformation to apply to all subsequent G instructions.

GTYPE Display a text string.

Additional Graphics Instructions

V+Language User's Guide, v17.0

Page 262

Programming the MCP
The following topics are described in this chapter:

Introduction 265
Writing to the Pendant Display 266
Detecting User Input 267
Controlling the Pendant 273
Auto-Starting Programs With the MCP 277
Programming Example: MCP Menu 279

Programming the MCP

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 263

Programming the MCP

V+Language User's Guide, v17.0

Page 264

Introduction
This chapter provides an overview of strategies for programming the manual control pendant
(MCP). For information on programming the Adept T1/T2 pendant, see Programming the
Adept T1/T2 Pendant on page 283.

ATTACHing and DETACHing the Pendant

Before an application program can communicate with the MCP, the MCPmust first be
ATTACHed using the ATTACH instruction. The logical unit number for the MCP is 1. The
following instruction readies the MCP for communication:

mcp_lun = 1
ATTACH (mcp_lun)

When the MCP is ATTACHed, the USER LED on the MCP is lit.

As with all other devices that are ATTACHed by a program, the MCP should be DETACHed
when the program is finishedwith the MCP. The following instruction frees up the MCP:

DETACH (mcp_lun)

When the MCP has been ATTACHed by an application program, the user can interact with the
pendant without selectingmanual mode.

As with all I/O devices, the IOSTAT function should be used to check for errors after each I/O
operation.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 265

Writing to the Pendant Display

The Pendant Display

The MCP display is a 2-line, 80-character LCD display. You can use the WRITE instruction to
write data to the display.

Using WRITE With the Pendant

The following instructions displays a welcomemessage on the two lines of the pendant
display:

AUTO mcp_lun ;Pendant LUN
AUTO $intro

$intro = "Welcome to the MCP"
mcp_lun = 1

; Attach the MCP, check for errors and output message

ATTACH (mcp_lun)
IF IOSTAT(mcp_lun) < 1 GOTO 100

WRITE (mcp_lun) $intro
WRITE (mcp_lun) "Instructions to follow...", /S

100 IF IOSTAT(mcp_lun) < 1 THEN ;Report errors
TYPE IOSTAT(mcp_lun), " ", $ERROR(IOSTAT(MCP_LUN))

END

DETACH(mcp_lun)

Notice that the secondWRITE instruction uses the /S qualifier. This qualifier suppresses the
carriage return-line feed (<CR-LF>) that is normally sent by the WRITE instruction. If this
qualifier was not specified, the first line displayedwould have been scrolled off the top. The
section Controlling the Pendant on page 273 discusses the pendant control codes. These
codes control the cursor position, the lights on the MCP, and the interpretation of MCP button
presses. These codes are sent to the pendant using the WRITE instruction. The /S qualifier
must be sent with these instructions to avoid overwriting the pendant display.

Writing to the Pendant Display

V+Language User's Guide, v17.0

Page 266

Detecting User Input
Input from the pendant can be received in two ways:

l A series of button presses from the data entry buttons can be read. The READ
instruction is used for this type of input.

l A single button press from any of the buttons can be detected. These single button
presses can be monitored in three different modes:

l The buttons can be monitored like keys on a normal keyboard.

l The buttons can be monitored in toggle mode (on or off). The state of the
button is changed each time the button is pressed.

l The keys can be monitored in level mode. The state of the button is considered
"on" only when the button is held down.

The PENDANT() function is used to detect button presses in these modes. The KEYMODE
instruction is used to set the button behavior.

Using READ With the Pendant

The READ instruction accepts input from the pendant Data Entry Buttons (1, 2, 3, 4, 5, 6, 7,
8, 9, 0, ., +, -). A READ instruction expects a <CR-LF> to indicate the end of data entry. On
the MCP, this sequence is sent by the REC/DONE button (similar to the Enter or Return key
on a normal keyboard). The DEL button behaves like the Backspace key on a normal
keyboard. All other pendant buttons are ignored by the READ instruction. Note that the
predefined function buttons are active andmay be usedwhile an attached program is
waiting for input.

The instruction line:

READ(1) $response

pauses the program andwait for input from the pendant. The user must signal the end of
input by pressing the REC/DONE button. The input is stored in the string variable $response.
The input can be stored as a real variable, but the + and - buttons must not be used for
input.

Detecting Pendant Button Presses

Individual MCP button presses are detected with the PENDANT() function. This function
returns the number of the first acceptable button press. See the following figure for the
numbers of the buttons on the MCP. The interpretation of a button press is determined by
the KEYMODE instruction. See the V+ Language Reference Guide for complete details. The
basic use of these two operations is described below.

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 267

Detecting User Input

V+Language User's Guide, v17.0

Page 268

MCP Button Map

Keyboard Mode

The default mode is keyboard. If a PENDANT() instruction requests keyboard input, the
button number of the first keyboard-type button pressed is returned. The following code
detects the first soft button pressed:

; Set the soft keys to keyboard mode
KEYMODE 1,5 = 0

; Wait for a button press from buttons 1 - 5
DO

button = PENDANT(0)
UNTIL button < 6

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 269

The arguments to the KEYMODE instruction indicate that pendant buttons 1 through 5 are to
be configured in keyboardmode. The 0 argument to the PENDANT() function indicates that
the button number of the first keyboard button pressed is to be returned.

Toggle Mode

To detect the state of a button in toggle mode, the PENDANT() function must specify the
button to be monitored.

When a button is configured as a toggle button, its state is maintained as on (-1) or off (0).
The state is toggled each time the button is pressed. If an LED is associated with the button,
it is also toggled. The following code sets the REC/DONE button to toggle mode andwaits until
REC/DONE is pressed:

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Wait until the REC/DONE button is pressed
DO

WAIT
UNTIL PENDANT(8)

The arguments to KEYMODE indicate that MCP button number 8 (the REC/DONE button) is
configured as a toggle button. The argument to PENDANT() indicates that the state of MCP
button 8 is to be read.

Level Mode

To detect the state of a button in level mode, the PENDANT() function must specify the
button to be monitored.

When a button has been configured as a level button, the state of the button is on as long as
the button is pressed. When the button is not pressed, its state is off. The following code uses
the buttons labeled 2, 4, 6, and 8 (button numbers 45, 47, 49, and 57-don't confuse the
button labels with the numbers returned by the PENDANT function) to move the cursor
around the terminal display. The buttons are configured as level buttons so the cursor moves
as long as a button is depressed.

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Set the data entry buttons labeled "2" - "8" to level
KEYMODE 45, 51 = 2
DO

IF PENDANT(49) THEN
TYPE /X1, /S ;Cursor right

END
IF PENDANT(47) THEN

TYPE $CHR(8) ;Cursor left (backspace)
END
IF PENDANT(51) THEN

TYPE /U1, /S ;Cursor up
END

Detecting User Input

V+Language User's Guide, v17.0

Page 270

IF PENDANT(45) THEN
TYPE $CHR(12) ;Cursor down (line feed)

END
UNTIL PENDANT(8)

Monitoring the MCP Speed Bar

The speed bar on the MCP returns a value from -128 to 127 depending on where it is being
pressed. An argument of -2 to the PENDANT() function returns the value of the speed bar.
The following code displays the state of the speed bar.

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Display speed bar value until the REC/DONE is pressed
DO

WRITE(1) PENDANT(-2)
UNTIL PENDANT(8)

The Slow button is intended to alter the value returned by the speed bar. The following code
compresses the range of values returned by 50% whenever the Slow button is on.

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Do until the REC/DONE button is pressed
DO

IF PENDANT(36) THEN
TYPE PENDANT(-2) * 0.5

ELSE
TYPE PENDANT(-2)

END
UNTIL PENDANT(8)

Using the STEP Button

When manual mode is selected, V+ programs cannot initiate motions unless you press the
STEP button and speed bar on the MCP. To continue the motion once it has started, you can
release the STEP button but must continue to press the speed bar. Failure to operate the
STEP button and the speed bar properly results in the following error message (with error
code -620):

Speed pot or STEP not pressed

Once amotion has started in this mode, releasing the speed bar also terminates any belt
tracking or motion defined by an ALTER program instruction.

Motions started in this mode have their maximum speeds limited to those defined for
manual control mode.

As an additional safeguard, when high power is enabled andmanual mode is selected, the
MCP is set to OFF mode, not COMP or MANUAL mode.

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 271

Reading the State of the MCP

It is good programming practice to check the state of the MCP before ATTACHing to it. The
instruction:

cur.state = PENDANT(-3)

returns a value to be interpreted as follows:

1. Indicates that one of the predefined function buttons has been pressed.

2. Indicates that the MCP is in backgroundmode (not ATTACHed to an application
program).

3. Indicates that an error is being displayed.

4. Indicates that the MCP is in USERmode (ATTACHed to an application program).

See the section Programming Example: MCP Menu on page 279 for a program example that
checks the MCP state.

Detecting User Input

V+Language User's Guide, v17.0

Page 272

Controlling the Pendant
The MCP responds to a number of control codes that affect the LCD panel (whether or not
the buttons are repeat buttons) and the LEDs associated with the pendant buttons. The
control codes are listed in the table Pendant Control Codes. The control codes are sent as
ASCII values using the WRITE instruction. The normal way to send control codes is to use
the $CHR() function to convert a control code to its ASCII value.

Control Codes for the LCD Panel

To clear the display and position the cursor in the middle of the top line, issue the instruction:

WRITE(mcp_lun) $CHR(12), $CHR(18), $CHR(20), /S

$CHR(12) clears the pendant and places the cursor at position 1 (see the figure Pendant LCD
Display). $CHR(18) indicates that the next value received should be interpreted as a cursor
location. $CHR(20) indicates the cursor should be placed at position 20. /S must be
appended to the WRITE instruction or a <CR-LF> will be sent. Notice that using control code
18 allows you to position the cursor without disturbing existing text.

The following code will place the text EXIT in the middle of the bottom line and set the text
blinking.

WRITE(mcp_lun) $CHR(18), $CHR(58), "EXIT", /S
WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(22), $CHR(4), /S

$CHR(22) tells the pendant to start a series of blinking positions starting at the current
cursor location and extending for the number of positions specified by the next control code
($CHR(4)). This code will cause any text in positions 58 - 61 to blink until an instruction is
sent to cancel the blinking. The following code line disables the blink positions:

WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(23), $CHR(4), /S

$CHR(23) tells the pendant to cancel a series of blinking positions starting at the current
cursor location and extending for the number of positions specified by the next control code
($CHR(4)).

Text can be made to blink as it is written to the display, regardless of the position the text is
in. The following code writes the text EXIT to the middle of the bottom line, starts the E
blinking, and then beeps the MCP:

WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(2), "E", /S
WRITE(mcp_lun) $CHR(3), "XIT", /S
WRITE(mcp_lun) $CHR(7), /S

$CHR(2) starts blink mode. Any characters sent to the MCP display will blink. Blink mode is
canceled by $CHR(3). $CHR(3) cancels blink mode for subsequent characters; it does not

Controlling the Pendant

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 273

cancel blinking of previously entered characters. It also does not cancel blinking of character
positions set by control code 22. $CHR(7) causes the pendant to beep.

Pendant LCD Display

The Pendant LEDs

The LEDs on the soft buttons, the F buttons, and the REC/DONE button can be lit (either
continuously or intermittently). The following code places the text CLEAR and EXIT over the
first two soft buttons, lights the LED over the first soft button, and blinks the light over the
second soft button:

WRITE(mcp_lun) $CHR(18), $CHR(41), "CLEAR", /S
WRITE(mcp_lun) $CHR(9), "EXIT", /S
WRITE(mcp_lun) $CHR(31), $CHR(5), /S
WRITE(mcp_lun) $CHR(30), $CHR(4), /S

$CHR(9) tabs the cursor to the next soft button position. $CHR(31) lights an LED. $CHR(30)
starts an LED blinking. The button LED to be lit is specified in the ensuing control code. In the
above example, button 5's LED is turned on and button 4's LED is set blinking. The soft
buttons, F buttons, and REC/DONE button are the only buttons that have programmable
LEDs.

Making Pendant Buttons Non-repeat Buttons

Pendant buttons that are configured as keyboard buttons are normally repeat buttons:
Button presses are recorded as long as the button is held down. The repeat function can be
disabled, requiring users to press the button once for each button press they want recorded.
The following instruction disables the repeat option for the period (.) button:

WRITE(mcp_lun) $CHR(25), $CHR(55), /S

The repeat option is enabled with the instruction:

WRITE(mcp_lun) $CHR(24), $CHR(55), /S

Controlling the Pendant

V+Language User's Guide, v17.0

Page 274

The following table lists all the control codes usedwith the pendant.

Single Byte Control Codes

Code Function

1 (Not Used)

2 Enable blink mode for subsequent characters

3 Disable blink mode for subsequent characters (characters will still blink
if they appear in a blinking position set by code 22)

4 Display cursor (make the cursor visible)

5 Hide cursor (make the cursor invisible)

6 (Not Used)

7 Beep

8 Backspace (ignored if cursor is in character position 1)

9 Tab to next soft button

10 Line feed (move down in same position, scroll if on line 2)

11 Vertical tab (move up in same position, do not scroll)

12 Home cursor and clear screen (cancels any blinking positions, but does
not affect blink mode set by code 2)

13 Carriage return (move to column 1 of current line)

14 Home cursor (move to character position 1)

15 Clear from cursor position to end of line

Pendant Control Codes

Controlling the Pendant

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 275

Double Byte Control Codes

Code Function Second Code

16 (Not Used)

17 (Not Used)

18 Position cursor Cursor position (1-80)

19 (Not Used)

20 (Not Used)

21 (Not Used)

22 Enable blinking positions starting at current
cursor location

Number of blinking
positions (1-80)

23 Disable blinking positions starting at current
cursor location

Number of blinking
positions (1-80)

24 Enable repeat mode for button Button number

25 Disable repeat mode for button Button number

26 (Not Used)

27 (Not Used)

28 Turn off pendant button LED Light number *

29 (Not used)

30 Start pendant button LED blinking Light number *

31 Turn on pendant button LED Light number *

*For soft buttons, F buttons, and REC/DONE button only.

Controlling the Pendant

V+Language User's Guide, v17.0

Page 276

Auto-Starting Programs With the MCP
The CMD predefined function button provides three options for loading and auto-starting a
program from the pendant. These three options are AUTO START, CMD1, and CMD2. The
program file requirements for all three options are the same:

1. The file being loadedmust be on the default disk. The default disk is specified with the
DEFAULT DISK command. The utility CONFIG_C can be used to specify a default disk
at startup.1 See the Instructions for Adept Utility Programs for details on running this
utility.

2. The file namemust correspond to the MCP selection. If CMD1 is pressed, the disk file
must be named CMD1.V2. If AUTO START is pressed, the user will be asked to input
one or two digits. These digits will be used to complete the file name AUTO xx.V2. A
corresponding file namemust exist on the default drive.

3. A command program with the same name as the file name (minus the extension)
must be one of the programs in the file. If AUTO22.V2 is loaded, the program
"auto22" will be invoked as though with a COMMANDSmonitor command. See the
V+ Operating System Reference Guide for details on command programs.

WAIT.START

Starting a robot program while the operator is in the workcell can be extremely dangerous.
Therefore, Adept has installed the following safety procedure to prevent program startup
while an operator is in the workcell.

Before a program auto-started from the MCP will begin execution, the operator must:

1. leave the workcell

2. put the controller in automatic mode

3. press the Start soft key on the MCP

TheWAIT.START instruction implements this safety feature. This instruction is automatically
included in any programs started with the AUTO START, CMD, CMD1, CMD2, and CALIBRATE
buttons on the MCP. You should include this safety feature in any pendant routines you write
that initiate monitor command programs that include robot motions.

The commandWAIT.START in a monitor command program pauses execution of a monitor
command program until the automatic mode is selected and the START soft key on the MCP
is pressed. See the V+ Language Reference Guide for other uses of WAIT.START.

WARNING: For this safety feature to be effective, the optional front
panel must be installed outside the workcell.

Auto-Starting ProgramsWith the MCP

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 277

1The default disk is not the same as the boot drive. The boot drive is set in hardware and is
used during the boot procedure to specify the drive that contains the operating system. Once
the system is loaded, the default disk is the drive and path specification for loading and storing
files.

Auto-Starting ProgramsWith the MCP

V+Language User's Guide, v17.0

Page 278

Programming Example: MCP Menu
The following code implements a menu structure on the MCP. (For a program example that
illustrates using the MCP to teach robot locations, see Teaching Locations With the MCP on
page 344.)

.PROGRAM mcp.main()

; ABSTRACT: This program creates and monitors a menu structure on the
MCP.

;
; INPUT PARAMS: None
;
; OUTPUT PARAMS: None
;
; GLOBAL VARS: mcp MCP logical unit
;mcp.clr.scr_pendant control code, clear display & home cursor
;mcp.cur.pos_pendant control code, set cursor position
;mcp.off.led_pendant control code, turn off an LED
;mcp.blink.char_pendant control code, start blink position
;mcp.noblink.char_pendant control code, disable blink position
;mcp.beep_pendant control code, beep the pendant
;mcp.tab_pendant control code, tab to next soft button
;mcp.on.led_pendant control code, turn on an LED

AUTO button ;Number of the soft button pressed
AUTO quit ;Boolean indicating menu structure should be

exited

mcp = 1
quit = FALSE
mcp.clr.scr = 12
mcp.cur.pos = 18
mcp.off.led = 28
mcp.blink.char = 2
mcp.noblink.cha = 3
mcp.beep = 7
mcp.tab = 9
mcp.on.led = 31

; Check to see if the MCP is free

IF PENDANT(-3) <> 2 THEN
GOTO 100

END

; Attach to the MCP

ATTACH (mcp)

; Verify ATTACH was successful

IF IOSTAT(mcp) <> 1 THEN

Programming Example: MCP Menu

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 279

GOTO 100
END

DO ;Main processing loop

; Display the top-level menu

CALL mcp.disp.main()

; Get the operator selection (must be between 1 and 5)

DO
button = PENDANT(0)

UNTIL (button < 6)

; Turn on the LED of the selected button

WRITE (mcp) $CHR(mcp.on.led), $CHR(button), /S

; Respond to the menu item selected

CASE button OF
VALUE 1: ;Verify program exit

CALL mcp.main.quit(quit)

VALUE 2:
CALL mcp.option.2()

VALUE 3:
CALL mcp.option.3()

VALUE 4:
CALL mcp.option.4()

VALUE 5:
CALL mcp.option.5()

END ;CASE button of

; Turn off LED

WRITE (mcp) $CHR(mcp.off.led), $CHR(button), /S

UNTIL quit

; Detach from the MCP

DETACH (mcp)

100 IF NOT quit THEN ;Exit on MCP busy
TYPE /C34, /U17, "The MCP is busy or not connected."
TYPE "Press the REC/DONE button to clear.", /C5

END

Programming Example: MCP Menu

V+Language User's Guide, v17.0

Page 280

.END

.PROGRAM mcp.disp.main()

;ABSTRACT: This program is called to display a main menu above the five
;soft keys on the MCP. The program assumes the MCP has been attached.
;
; INPUT PARAMS: None
;
; OUTPUT PARAMS: None
;
; GLOBAL VARS: mcpMCP logical unit
;mcp.clr.scrn_pendant control code, clear display & home cursor
;mcp.cur.pos_pendant control code, set cursor position
;mcp.beep_pendant control code, beep the pendant
;mcp.tab_pendant control code, tab to next soft button

; Clear the display and write the top line

WRITE (mcp) $CHR(mcp.clr.scr), $CHR(mcp.cur.pos), $CHR(16), "MAIN
MENU", /S

; Write the menu options

WRITE (mcp) $CHR(mcp.cur.pos), $CHR(41), /S
WRITE (mcp) "Option5", $CHR(mcp.tab), "Option4", $CHR(mcp.tab), /S
WRITE (mcp) "Option3", $CHR(mcp.tab), "Option2", $CHR(mcp.tab), "

QUIT", /S

; Beep the MCP

WRITE (mcp) $CHR(mcp.beep), /S

.END

.PROGRAM mcp.main.quit(quit)

; ABSTRACT: This program responds to a "Quit" selection from the MCP
; main menu. It verifies the selection and passes the result.
;
; INPUT PARAMS: None
;
; OUTPUT PARAM: quit Boolean indicating whether a "quit"
; has been verified
;
; GLOBAL VARS: mcp MCP logical unit
;mcp.clr.scr_pendant control code, clear display & home cursor
;mcp.off.led_pendant control code, turn off an LED
;mcp.blink.char_pendant control code, start blink position
;mcp.noblink.char_pendant control code, disable blink position
;mcp.tab - pendant control code, tab to next soft button

Programming Example: MCP Menu

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 281

;
;

quit = FALSE ;assume quit will not be verified

; Display submenu and start the "NO" option blinking

WRITE (mcp) $CHR(mcp.clr.scr), "Quit. Are you sure?"
WRITE (mcp) $CHR(mcp.tab), $CHR(mcp.tab), $CHR(mcp.tab), " YES", /S
WRITE (mcp) $CHR(mcp.tab), $CHR(mcp.blink.char), " NO", $CHR

(mcp.noblink.cha), /S
button = PENDANT(0)

; Set quit to true if verified, else turn off the "NO" soft button LED

IF button == 2 THEN
quit = TRUE

ELSE
WRITE (mcp) $CHR(mcp.off.led), $CHR(1), /S

END

.END

Programming Example: MCP Menu

V+Language User's Guide, v17.0

Page 282

Programming the Adept T1/T2 Pendant
The following topics are described in this chapter:

Introduction 285
Writing to the Pendant Display 286
Detecting User Input 287
Controlling the Pendant 295
Auto-Starting Programs With the Pendant 299
Programming Example: Pendant Menu 301

Programming the Adept T1/T2 Pendant

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 283

Programming the Adept T1/T2 Pendant

V+Language User's Guide, v17.0

Page 284

Introduction
This section provides an overview of how to program the Adept T1/T2 pendant. You can refer
to the Adept T1 Pendant User’s Guide or Adept T2 Pendant User’s Guide for information on
installing and operating the pendant. For information on programming the MCP, see
Programming the MCP on page 263.

Legacy Issues with the MCP and T1/T2 Pendant

The previous generation of the pendant was called the MCP (manual control pendant). The
code examples shown throughout this section contain references to MCP. The programming
methods and keywords are essentially the same for the MCP and the T1/T2 pendant.

For indicating that a button is active, the T1/T2 pendant uses a different screen technology
than the LEDs on the MCP. In the Adept T1 Pendant User’s Guide or Adept T2 Pendant User’s
Guide, the term "indicator bar" is used to describe this function. For this programming
section, the term LED is used tomaintain backwards compatibility with existing code, and
LED and "indicator bar" mean the same thing.

ATTACHing and DETACHing the Pendant

Before an application program can communicate with the pendant, the pendant must first
be ATTACHed using the ATTACH instruction. The logical unit number for the pendant is 1.
The following instruction readies the pendant for communication:

mcp_lun = 1
ATTACH (mcp_lun)

When the pendant is ATTACHed, the USER indicator in the upper left corner of the pendant
touch screen is lit. As with all other devices that are ATTACHed by a program, the pendant
should be DETACHedwhen the program is finishedwith the pendant. The following
instruction frees up the pendant:

DETACH (mcp_lun)

When the pendant has been ATTACHed by an application program, the user can interact with
the pendant without selectingmanual mode.

As with all I/O devices, the IOSTAT function should be used to check for errors after each I/O
operation.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 285

Writing to the Pendant Display

Pendant Display

The pendant display window is a 2-line, 80-character display. You can use the WRITE
instruction to write data to the display.

Using WRITE with the Pendant

The following instructions display a welcomemessage on the two lines of the pendant display:

AUTO mcp_lun ;Pendant LUN
AUTO $intro

$intro = "Welcome to the MCP"
mcp_lun = 1

; Attach the MCP, check for errors and output message

ATTACH (mcp_lun)
IF IOSTAT(mcp_lun) < 0 GOTO 100

; Write to the MCP display.

WRITE (mcp_lun) $intro
IF IOSTAT(mcp_lun) < 0 GOTO 100
WRITE (mcp_lun) "Instructions to follow...", /S

; Report any error.

100 IF IOSTAT(mcp_lun) < 0 THEN
TYPE IOSTAT(mcp_lun), " ", $ERROR(IOSTAT(MCP_LUN))

END

DETACH(mcp_lun)

Notice that the secondWRITE instruction uses the /S qualifier. This qualifier suppresses the
carriage return-line feed () that is normally sent by the WRITE instruction. If this qualifier was
not specified, the first line displayedwould have been scrolled off the top. Refer to the section
Controlling the Pendant on page 295 for a discussion on the pendant control codes. These
codes control the cursor position, the lights on the pendant, and the interpretation of
pendant button presses. These codes are sent to the pendant using the WRITE instruction.
The /S qualifier generally must be usedwith WRITE instructions to avoid overwriting the
pendant display.

Writing to the Pendant Display

V+Language User's Guide, v17.0

Page 286

Detecting User Input
Input from the pendant can be received in two ways:

l A series of button presses from the data-entry buttons can be read. The READ
instruction is used to receive this type of input.

l A single-button press from any of the buttons can be detected. These single-button
presses can be monitored in three different modes:

l The buttons can be monitored like keys on a normal keyboard.

l The buttons can be monitored in toggle mode (on or off). The state of
the button is changed each time the button is pressed.

l The keys can be monitored in level mode. The state of the button is
considered "on" only when the button is held down.

The PENDANT() function is used to detect button presses in these modes. The KEYMODE
instruction is used to set the button behavior.

Using READ With the Pendant

The READ instruction accepts input from the pendant data-entry Buttons (1, 2, 3, 4, 5, 6, 7,
8, 9, 0, ., +, -). A READ instruction expects a <CR-LF> to indicate the end of data entry. On
the pendant, this sequence is sent by the REC/DONE button (similar to the Enter or Return
key on a normal keyboard). The DEL button behaves like the Backspace key on a normal
keyboard. All other pendant buttons are ignored by the READ instruction. Note that the
predefined function buttons are active andmay be usedwhile an attached program is
waiting for input. See the Adept T1 Pendant User’s Guide or Adept T2 Pendant User’s Guide
for more information on the predefined buttons.

The instruction line:
READ (1) $response

causes the program to wait for input from the pendant. The user must signal the end of the
input by pressing the REC/DONE button. The input is stored in the string variable
$response.

The input can be stored in a real variable, but then the + and - buttons must be used in the
input only to identify the sign of the variable (for example, -12.34 or +12.34). If a real
variable is specified in the READ instruction, and the + or - characters are used in a different
way, such as 11+1 or ++97, the READ instruction will issue an error. For example, entering
11+1 will result in the following error message:

Unexpected text at end of line

and++97 will cause this error message:

Invalid number format

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 287

Detecting Pendant Button Presses

Individual pendant button presses are detected with the PENDANT() real-valued function.
(The figure T1/T2 Pendant Button Map provides a reference for the numbers of the buttons
on the T1/T2 pendant.) This function returns the number of the first acceptable button press.
The interpretation of a button press is determined by previous execution of the KEYMODE
instruction. See the V+ Language Reference Guide for complete details. The basic use of
these two operations is described below.

Detecting User Input

V+Language User's Guide, v17.0

Page 288

T1/T2 Pendant Button Map

Keyboard Mode

The default mode is Keyboard. If a PENDANT() function requests any keyboard input, the
button number of the first Keyboardmode button pressed is returned. The following code
detects the first soft button pressed:

; Set the soft keys to keyboard mode
KEYMODE 1,5 = 0

; Wait for a button press from buttons 1 - 5
DO

button = PENDANT(0)
UNTIL button < 6

The arguments to the KEYMODE instruction indicate that pendant buttons 1 through 5 are
to be configured in Keyboardmode. The 0 argument to the PENDANT() function indicates
that the button number of the first keyboard button pressed is to be returned.

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 289

Toggle Mode

To detect the state of a button in Toggle mode, the PENDANT() function must specify the
button to be monitored.

When a button is configured as a toggle button, its state is maintained as on (-1) or off (0).
The state is toggled each time the button is pressed. If an indicator bar (LED) is associated
with the button, it is also toggled. The following code sets the REC/DONE button to Toggle
mode andwaits until REC/DONE is pressed:

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Wait until the REC/DONE button is pressed
WHILE NOT PENDANT(8) DO

RELEASE -1
END

To detect the state of a button in Level mode, the PENDANT() function must specify the
button to be monitored.

When a button has been configured as a level button, the state of the button is on as long as
the button is pressed. When the button is not pressed, its state is off. The following code uses
the buttons labeled 2, 4, 6, and 8 (button numbers 45, 47, 49, and 51 - don't confuse the
button labels with the numbers returned by the PENDANT function) to move the cursor
around the terminal display. The buttons are configured as level buttons so the cursor moves
as long as a button is depressed.

; Set the REC/DONE button to toggle mode
KEYMODE 8 = 1

; Set the data-entry buttons labeled "2" - "8" to level mode
KEYMODE 45, 51 = 2

; Respond to the data-entry buttons
DO

IF PENDANT(49) THEN
TYPE /X1, /S ;Cursor right

END
IF PENDANT(47) THEN

TYPE $CHR(8) ;Cursor left (backspace)
END
IF PENDANT(51) THEN

TYPE /U1, /S ;Cursor up
END
IF PENDANT(45) THEN

TYPE $CHR(12) ;Cursor down (line feed)
END

UNTIL PENDANT(8)

Level Mode

To detect the state of a button in Level mode, the PENDANT() function must specify the
button to be monitored.

Detecting User Input

V+Language User's Guide, v17.0

Page 290

When a button has been configured as a level button, the state of the button is on as long as
the button is pressed. When the button is not pressed, its state is off. The following code uses
the buttons labeled 2, 4, 6, and 8 (button numbers 45, 47, 49, and 51 - don't confuse the
button labels with the numbers returned by the PENDANT function) to move the cursor
around the terminal display. The buttons are configured as level buttons so the cursor moves
as long as a button is depressed.

; Set the REC/DONE button to toggle mode
KEYMODE 8 = 1

; Set the data-entry buttons labeled "2" - "8" to level mode
KEYMODE 45, 51 = 2

; Respond to the data-entry buttons
DO

IF PENDANT(49) THEN
TYPE /X1, /S ;Cursor right

END
IF PENDANT(47) THEN

TYPE $CHR(8) ;Cursor left (backspace)
END
IF PENDANT(51) THEN

TYPE /U1, /S ;Cursor up
END
IF PENDANT(45) THEN

TYPE $CHR(12) ;Cursor down (line feed)
END

UNTIL PENDANT(8)

Notes on Button Behaviors

Some buttons on the pendant have particular behaviors, depending on the situation. Here
are the different behaviors for those buttons:

l The MODE button may appear as a MAN button (22) or as a COMP/PWR button press
(23). When using the MODE button to switch from the FREE mode to the COMP
mode, the MODE button will appear as if a COMP/PWR button has been pressed.

l The Joint “+” and “-“ buttons will first issue a Joint selection button press (29-34),
but once the selection has been successful andwhile the button is still held down, the
button will issue only a speed signal. Each following press of the same joint “+” or “-“
buttons will also issue only a speed signal, respectively positive or negative, for as long
as the button is held down. If the first Joint selection is unsuccessful, each press of the
same button will retry the same Joint selection (29-34).

In different modes, the YES/+ and NO/- buttons will issue the speed signal in combination of
their own button presses (53-54) (see Monitoring the Pendant Speed Signal).

Monitoring the Pendant Speed Signal

The speed that is sent from the pendant has a value from -128 to 127 depending on the
position of the speed slider. An argument of -2 to the PENDANT() function returns the value

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 291

determined by the position of the speed slider. Note that the speed indicator to the right of
the speed bar indicates a value between 1 and 100. The speed indicator expresses a
percentage of the maximum value. The direction (negative or positive) is specified by the
button pressed. For example, pressing the Joint-1 “+” button will send a positive value from 1
to 127, and the Joint-1 “-“ button will send a negative value from –128 to –1. The value
returned by the function will be 0 if nomovement is requested from the pendant. The
following code shows the speed on the pendant display when pressing the YES/+ or NO/-
buttons.

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Display speed value until the REC/DONE button is pressed
DO

WRITE (1) PENDANT(-2)
WAIT

UNTIL PENDANT(8)

The SLOW button alters the value returned by the speed slider. The speed indicator on the
right is adjusted when the SLOW button is on, the range is changed to 1 to 25, instead of 1 to
100. The following code compresses the range of values returned down to 25% whenever
the SLOW button is on, displaying on the PCmonitor the commanded speed that the robot
will receive.

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Do until the REC/DONE button is pressed
DO

IF PENDANT(36) THEN
TYPE PENDANT(-2)*0.25

ELSE
TYPE PENDANT(-2)

END
WAIT.EVENT , 1 ;Delay 1 second

UNTIL PENDANT(8)

Many controls on the pendant may send the speed signal, depending on the situation. The
Joint buttons on the right of the pendant send the speed signal when they are used to jog the
robot, when the pendant is in one of the following pendant control modes:WORLD, TOOL, or
JOINT.

Some V+ applications, like AIM or any user’s program,may require reading the speed signal.
In this particular case, when the pendant is in OFF or COMPmode, the YES/+ and NO/-
buttons will send their own button code, alongwith the speed signal defined by the speed
slider. Additionally, when the T1 button is on, the YES/+ and NO/- buttons also send the
speed signal, but do not send their own button code. The following table summarizes the
behavior of the YES/+ and NO/- buttons.

Yes/+ and No/- Buttons

Detecting User Input

V+Language User's Guide, v17.0

Page 292

Mode Special
Condition

Send
Button
Code

Send
Speed
Signal

Manual T1/T2 On no yes

Manual T1/T2 Off yes no

COMP - yes yes

OFF - yes yes

Finally, for backward compatibility with the MCP4, pressing the STEP button and the Speed
Bar simultaneously will also send the speed signal. This is useful when the Front Panel key
switch is in "Manual" position (described in the next section).

Using the STEP Button

When the Auto/Manual key switch is set to Manual, V+ programs cannot initiate motions
unless High Power is enabled, the pendant is set to COMPmode, and you press the STEP
button and the Speed Bar on the pendant. To continue amotion consisting of multiple MOVE
instructions once it has started, you must continue to press the STEP button and the Speed
Bar. Motions started in this mode have their maximum speeds limited to those defined for
Manual control mode.

If a program attempts to initiate a motion when the STEP button and Speed Bar are not
pressed, the following error message is displayed on the pendant and on the system Monitor:

Speed pot or STEP not pressed

Once amotion has started in this mode, releasing the Speed Bar immediately terminates the
motion as well as any belt tracking or motion defined by an ALTER program instruction. The
error message shown above is displayed on the pendant and on the system Monitor.

If a motion is in process, and you release the STEP button while still pressing the Speed Bar,
the robot will finish the current MOVE instruction and stop. After that, the error message
shown above is displayed on the pendant and on the system Monitor.

As an additional safeguard, when High Power is enabled and the keyswitch is set to Manual,
the pendant is initially set to Off mode, not COMPmode or Pendant Control mode.

Note for V+ programmers: application programs designed tomove the robot in Manual mode
should read the status of the STEP button and the Speed Bar before starting the move. The
program should prompt the user as required.

Detecting User Input

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 293

MCP.NO.POT System Switch

The V+ system switch MCP.NO.POT is included in V+ 16.2 and later revisions. When this
switch is enabled, the functionality is changed from that description above. The differences
are that the error message mentioned in the previous section is not displayed, and the Speed
Bar does not need to be pressed.

Refer to the V+ Language Reference Guide for the complete details on this switch.

Reading the State of the Pendant

It is good programming practice to check the state of the pendant before ATTACHing to it. The
instruction:

cur.state = PENDANT(-3)

returns a value to be interpreted as follows:

1. Indicates that one of the predefined function buttons has been pressed.

2. Indicates that the pendant is in the Background state (not ATTACHed to an application
program).

3. Indicates that an error is being displayed.

4. Indicates that the pendant is in the USER state (ATTACHed to an application program).

See the section Programming Example: Pendant Menu on page 301 for a program example
that checks the pendant state.

Detecting User Input

V+Language User's Guide, v17.0

Page 294

Controlling the Pendant
The pendant responds to a number of control codes that affect the pendant display window,
whether or not the buttons are repeat buttons, and the LEDs associated with the pendant
buttons. (Repeat-button presses are recorded as long as the button is held down.)

The control codes are listed in the table Pendant Control Codes. The control codes are sent as
ASCII values using the WRITE instruction. The normal way to send control codes is to use
the $CHR() function to convert a control code to its ASCII value.

Control Codes for Pendant Display Window

To clear the display and position the cursor in the middle of the top line, issue the instruction:

WRITE (mcp_lun) $CHR(12), $CHR(18), $CHR(20), /S

$CHR(12) clears the pendant and places the cursor at position 1 (see the figure Pendant
Display Window). $CHR(18) indicates that the next value received should be interpreted as a
cursor location. $CHR(20) indicates the cursor should be placed at position 20. If “/S” is not
appended to the WRITE instruction, a <CR-LF> will be sent. Notice that using control code
18 allows you to position the cursor without disturbing existing text.

The following code will place the text EXIT in the middle of the bottom line and set the text to
blinking.

WRITE(mcp_lun) $CHR(18), $CHR(58), "EXIT", /S
WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(22), $CHR(4), /S

$CHR(22) tells the pendant to start a series of blinking positions starting at the current
cursor location and extending for the number of positions specified by the next control code
($CHR(4)). This code will cause any text in positions 58 - 61 to blink until an instruction is
sent to cancel the blinking. The following code line disables the blink positions:

WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(23), $CHR(4), /S

$CHR(23) tells the pendant to cancel a series of blinking positions starting at the current
cursor location and extending for the number of positions specified by the next control code
($CHR(4)).

Text can be made to blink as it is written to the display, regardless of the position the text is
in. The following code writes the text “EXIT” to the middle of the bottom line, starts the “E”
blinking, and then beeps the pendant:

WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(2), "E", /S
WRITE(mcp_lun) $CHR(3), "XIT", /S
WRITE(mcp_lun) $CHR(7), /S

Controlling the Pendant

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 295

Pendant Display Window

NOTE: Avoid “flooding” the Pendant Display Window with text or codes by using the
WRITE instruction repeatedly. If multiple characters or codes must be sent, use the
WAIT.EVENT instruction between the WRITE instructions to avoid the overflow.
Remember that this display is used for sendingmessages, which the user must have time
to read.

Pendant LEDs (Indicator Bars)

The LEDs on the Soft buttons and the F1, F2, and Dev/F3 buttons can be lit (either
continuously or intermittently). The following code places the text “CLEAR” and “EXIT” over
the two left-hand Soft buttons (buttons #4 and#5), lights the LED for the first Soft button,
and blinks the light for the second Soft button:

WRITE(mcp_lun) $CHR(18), $CHR(41), "CLEAR", /S
WRITE(mcp_lun) $CHR(9), "EXIT", /S
WRITE(mcp_lun) $CHR(31), $CHR(5), /S
WRITE(mcp_lun) $CHR(30), $CHR(4), /S

$CHR(9) tabs the cursor to the next Soft button position. $CHR(31) lights an LED. $CHR(30)
starts an LED blinking. The button LED to be lit is specified in the next control byte. In the
above example, the LED for button 5 is turned on and the LED for button 4 is set blinking.
The Soft buttons and the F1, F2, and Dev/F3 buttons are the only buttons that have
programmable LEDs.

Making Pendant Buttons Non-Repeat Buttons

Pendant buttons that are configured as keyboard buttons are normally repeat buttons. That
is, button presses are recorded as long as the button is held down. The repeat function can be
disabled, requiring users to press the button once for each button press they want recorded.
The following instruction disables the repeat option for the period (.) button:

WRITE(mcp_lun) $CHR(25), $CHR(55), /S

The repeat option for that button is enabled with the instruction:

WRITE(mcp_lun) $CHR(24), $CHR(55), /S

The Pendant Control Codes table below lists all the control codes usedwith the pendant.

Controlling the Pendant

V+Language User's Guide, v17.0

Page 296

Single Byte Control Codes

Code Function

1 (Not Used)

2 Enable blink mode for subsequent characters

3 Disable blink mode for subsequent characters (characters will still blink
if they appear in a blinking position set by code 22)

4 Display cursor (make the cursor visible)

5 Hide cursor (make the cursor invisible)

6 (Not Used)

7 Beep

8 Backspace (ignored if cursor is in character position 1)

9 Tab to next soft button

10 Line feed (move down in same position, scroll if on line 2)

11 Vertical tab (move up in same position, do not scroll)

12 Home cursor and clear screen (cancels any blinking positions, but does
not affect blink mode set by code 2)

13 Carriage return (move to column 1 of current line)

14 Home cursor (move to character position 1)

15 Clear from cursor position to end of line

Pendant Control Codes

Double Byte Control Codes

Code Function Second Code

16 (Not Used)

Controlling the Pendant

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 297

Double Byte Control Codes

Code Function Second Code

17 (Not Used)

18 Position cursor Cursor position (1-80)

19 (Not Used)

20 (Not Used)

21 (Not Used)

22 Enable blinking positions starting at current
cursor location

Number of blinking
positions (1-80)

23 Disable blinking positions starting at current
cursor location

Number of blinking
positions (1-80)

24 Enable repeat mode for button Button number

25 Disable repeat mode for button Button number

26 (Not Used)

27 (Not Used)

28 Turn off pendant button LED Light number *

29 (Not used)

30 Start pendant button LED blinking Light number *

31 Turn on pendant button LED Light number *

*For soft buttons, F buttons, and REC/DONE button only.

Controlling the Pendant

V+Language User's Guide, v17.0

Page 298

Auto-Starting Programs With the Pendant
The CMD predefined function button provides three options for loading and auto-starting a
program from the pendant. These three options are AUTO START, CMD1, and CMD2. The
program file requirements for all three options are the same:

1. The file being loadedmust be on the default disk. The default disk is specified with the
DEFAULT DISK command. The utility CONFIG_C can be used to specify a default disk
at startup.1 See the Instructions for Adept Utility Programs for details on running this
utility.

2. The file namemust correspond to the MCP selection. If CMD1 is pressed, the disk file
must be named CMD1.V2. If AUTO START is pressed, the user will be asked to input
one or two digits. These digits will be used to complete the file name AUTO xx.V2. A
corresponding file namemust exist on the default drive.

3. A command program with the same name as the file name (minus the extension)
must be one of the programs in the file. If AUTO22.V2 is loaded, the program
"auto22" will be invoked as though with a COMMANDSmonitor command. See the
V+ Operating System Reference Guide for details on command programs.

WAIT.START

Starting a robot program while the operator is in the workcell can be extremely dangerous.
Therefore, Adept has installed the following safety procedure to prevent program startup
while an operator is in the workcell.

Before a program auto-started from the pendant will begin execution, the operator must:

1. leave the workcell

2. put the controller in automatic mode

3. press the Start soft key on the pendant

The WAIT.START instruction implements this safety feature. This instruction is automatically
included in any programs started with the AUTO START, CMD1, CMD2, and CALIBRATE
buttons on the pendant. You should include this safety feature in any pendant routines you
write that initiate monitor command programs that include robot motions.

The commandWAIT.START in a monitor command program pauses execution of a monitor
command program until the automatic mode is selected and the START soft key on the MCP
is pressed. See the V+ Language Reference Guide for other uses of WAIT.START.

WARNING: For this safety feature to be effective, the optional front
panel must be installed outside the workcell.

Auto-Starting ProgramsWith the Pendant

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 299

1The default disk is not the same as the boot drive. The boot drive is set in hardware and is
used during the boot procedure to specify the drive that contains the operating system. Once
the system is loaded, the default disk is the drive and path specification for loading and storing
files.

Auto-Starting ProgramsWith the Pendant

V+Language User's Guide, v17.0

Page 300

Programming Example: Pendant Menu
The following code implements a menu structure on the Adept T1/T2 pendant. (For a
program example that illustrates using the MCP to teach robot locations, see Teaching
Locations With the MCP on page 344.)

.PROGRAM mcp.main()

; ABSTRACT: This program creates and monitors a menu structure on the
MCP.

;
; INPUT PARAMS: None
;
; OUTPUT PARAMS: None
;
; GLOBAL VARS: mcp MCP logical unit
;mcp.clr.scr_pendant control code, clear display & home cursor
;mcp.cur.pos_pendant control code, set cursor position
;mcp.off.led_pendant control code, turn off an LED
;mcp.blink.char_pendant control code, start blink position
;mcp.noblink.char_pendant control code, disable blink position
;mcp.beep_pendant control code, beep the pendant
;mcp.tab_pendant control code, tab to next soft button
;mcp.on.led_pendant control code, turn on an LED

AUTO button ;Number of the soft button pressed
AUTO quit ;Boolean indicating menu structure should be

exited

mcp = 1
quit = FALSE
mcp.clr.scr = 12
mcp.cur.pos = 18
mcp.off.led = 28
mcp.blink.char = 2
mcp.noblink.cha = 3
mcp.beep = 7
mcp.tab = 9
mcp.on.led = 31

; Check to see if the MCP is free

IF PENDANT(-3) <> 2 THEN
GOTO 100

END

; Attach to the MCP

ATTACH (mcp)

; Verify ATTACH was successful

IF IOSTAT(mcp) <> 1 THEN

Programming Example: Pendant Menu

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 301

GOTO 100
END

DO ;Main processing loop

; Display the top-level menu

CALL mcp.disp.main()

; Get the operator selection (must be between 1 and 5)

DO
button = PENDANT(0)

UNTIL (button < 6)

; Turn on the LED of the selected button

WRITE (mcp) $CHR(mcp.on.led), $CHR(button), /S

; Respond to the menu item selected

CASE button OF
VALUE 1: ;Verify program exit

CALL mcp.main.quit(quit)

VALUE 2:
CALL mcp.option.2()

VALUE 3:
CALL mcp.option.3()

VALUE 4:
CALL mcp.option.4()

VALUE 5:
CALL mcp.option.5()

END ;CASE button of

; Turn off LED

WRITE (mcp) $CHR(mcp.off.led), $CHR(button), /S

UNTIL quit

; Detach from the MCP

DETACH (mcp)

100 IF NOT quit THEN ;Exit on MCP busy
TYPE /C34, /U17, "The MCP is busy or not connected."
TYPE "Press the REC/DONE button to clear.", /C5

END

Programming Example: Pendant Menu

V+Language User's Guide, v17.0

Page 302

.END

.PROGRAM mcp.disp.main()

;ABSTRACT: This program is called to display a main menu above the five
;soft keys on the MCP. The program assumes the MCP has been attached.
;
; INPUT PARAMS: None
;
; OUTPUT PARAMS: None
;
; GLOBAL VARS: mcpMCP logical unit
;mcp.clr.scrn_pendant control code, clear display & home cursor
;mcp.cur.pos_pendant control code, set cursor position
;mcp.beep_pendant control code, beep the pendant
;mcp.tab_pendant control code, tab to next soft button

; Clear the display and write the top line

WRITE (mcp) $CHR(mcp.clr.scr), $CHR(mcp.cur.pos), $CHR(16), "MAIN
MENU", /S

; Write the menu options

WRITE (mcp) $CHR(mcp.cur.pos), $CHR(41), /S
WRITE (mcp) "Option5", $CHR(mcp.tab), "Option4", $CHR(mcp.tab), /S
WRITE (mcp) "Option3", $CHR(mcp.tab), "Option2", $CHR(mcp.tab), "

QUIT", /S

; Beep the MCP

WRITE (mcp) $CHR(mcp.beep), /S

.END

.PROGRAM mcp.main.quit(quit)

; ABSTRACT: This program responds to a "Quit" selection from the MCP
; main menu. It verifies the selection and passes the result.
;
; INPUT PARAMS: None
;
; OUTPUT PARAM: quit Boolean indicating whether a "quit"
; has been verified
;
; GLOBAL VARS: mcp MCP logical unit
;mcp.clr.scr_pendant control code, clear display & home cursor
;mcp.off.led_pendant control code, turn off an LED
;mcp.blink.char_pendant control code, start blink position
;mcp.noblink.char_pendant control code, disable blink position
;mcp.tab - pendant control code, tab to next soft button

Programming Example: Pendant Menu

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 303

;
;

quit = FALSE ;assume quit will not be verified

; Display submenu and start the "NO" option blinking

WRITE (mcp) $CHR(mcp.clr.scr), "Quit. Are you sure?"
WRITE (mcp) $CHR(mcp.tab), $CHR(mcp.tab), $CHR(mcp.tab), " YES", /S
WRITE (mcp) $CHR(mcp.tab), $CHR(mcp.blink.char), " NO", $CHR

(mcp.noblink.cha), /S
button = PENDANT(0)

; Set quit to true if verified, else turn off the "NO" soft button LED

IF button == 2 THEN
quit = TRUE

ELSE
WRITE (mcp) $CHR(mcp.off.led), $CHR(1), /S

END

.END

Programming Example: Pendant Menu

V+Language User's Guide, v17.0

Page 304

Conveyor Tracking
This chapter describes the Adept Conveyor Tracking (moving-line) feature.

The Adept ACE software provides a graphical interface for programming your Adept motion
(and vision) system. Further, the ACE Process Manager, which is includedwith the Adept
ACE software, allows you to build conveyor-tracking applications through a point-and-click
interface. Therefore, Adept strongly recommends that you use the Adept ACE software for
this functionality. For more details, see the chapter Process Control in the Adept ACE User's
Guide. Optionally, you can use V+ tomanually program a conveyor-tracking application, as
described in this chapter.

The following sections contain installation and application instructions for using the
conveyor-tracking feature in V+. Before using this chapter, you should be familiar with V+
and the basic operation of the robot.

Introduction to Conveyor Tracking 307
Installation 308
Calibration 309
Basic Programming Concepts 310
Conveyor-Tracking Programming 317
Sample Programs 319

Conveyor Tracking

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 305

Conveyor Tracking

V+Language User's Guide, v17.0

Page 306

Introduction to Conveyor Tracking
This chapter describes the Adept Conveyor Tracking (moving-line) feature. The moving-line
feature allows the programs to specify locations that are automatically modified to
compensate for the instantaneous position of a conveyor belt. Motion locations that are
defined relative to a belt can be taught and played back while the belt is stationary or moving
at arbitrarily varying speeds. Conveyor tracking is available only for systems that have the
optional V+ Extensions software.

For V+ to determine the instantaneous position and speed of a belt, the belt must be
equippedwith a device to measure its position and speed. As part of the moving-line
hardware option, Adept provides an interface for coordinating two separate conveyor belts.
Robot motions and locations can be specified relative to either belt.

There are no restrictions concerning the placement or orientation of a conveyor belt relative
to the robot. In fact, belts that move uphill or downhill (or at an angle to the reference frame
of the robot) can be treated as easily as those that move parallel to an axis of the robot
reference frame. The only restriction regarding a belt is that its motion must follow a
straight-line path in the region where the robot is to work.

The following sections contain installation and application instructions for using the moving-
line feature. Before using this chapter, you should be familiar with V+ and the basic
operation of the robot.

Introduction to Conveyor Tracking

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 307

Installation
To set up a conveyor belt for use with a robot controlled by the V+ system:

1. Install all the hardware components and securely fasten them in place. The conveyor
frame and robot base must be mounted rigidly so that nomotion can occur between
them.

2. Install the encoder on the conveyor.

3. Since any jitter of the encoder will be reflected as jitter in motions of the robot while
tracking the belt, make sure the mechanical connection between the belt and the
encoder operates smoothly. In particular, eliminate any backlash in gear-driven
systems.

4. Wire the encoder to the robot controller. (See the Adept MV Controller User's Guide for
location of the encoder ports.)

5. Start up the robot system controller in the normal manner.

6. Calibrate the location of the conveyor belt relative to the robot by executing the Belt
Calibration Program. That program is provided in the file BELT_CAL.V2, which is
supplied with your robot system.1

When these steps have been completed, the system is ready for use. However, each time the
system is restarted, the belt calibration data must be reloaded (from the disk file created in
the above steps). The next section describes loading belt calibration.

1See the Instructions for Adept Utility Programs for details.

Installation

V+Language User's Guide, v17.0

Page 308

Calibration
The position and orientation of the conveyor belt must be precisely known in order for the
robot to track motion of the belt. Use the Belt Calibration group in the Adept ACE Process
Manager to calibrate the location of the conveyor belt relative to the robot. For details, see
the section Belt Calibrations in the Adept ACE User's Guide. Optionally, use the file BELT_
CAL.V2 on the Adept Utility Disk contains a program to calibrate the relationship between
the belt and the robot. The program saves the calibration data in a disk file for later use by
application programs.

The DEFBELT andWINDOW program instructions must be executed before the associated
belt is referenced in a V+ program. For details, see Belt Variable Definitions on page 317.We
suggest you include these instructions in an initialization section of your application
program. Although these instructions need be executed only once, no harm is done if they
are executed subsequently.

The file LOADBELT.V2 on the Adept Utility Disk contains a V+ subroutine that will load the
belt calibration data from a disk file and execute the DEFBELT andWINDOW instructions.
(See the next section.)

While the robot is moving relative to a belt (includingmotions to and from the belt), all
motions must be of the straight-line type. Thus APPROS, DEPARTS, MOVES, andMOVEST
can be used, but APPRO, DEPART, DRIVE, MOVE, andMOVET cannot. Motion relative to a belt
is terminatedwhen the robot moves to a location that is not defined relative to the belt
variable or when a belt-window violation occurs.

Calibration

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 309

Basic Programming Concepts
This section describes the basic concepts of the conveyor-tracking feature. First, the data
used to describe the relationship of the conveyor belt to the robot is presented. Then a
description is given of how belt-relative motion instructions are specified. Finally, a description
is presented of how belt-relative locations are taught.

The V+ operations associated with belt tracking are disabled when the BELT system switch is
disabled. Thus, application programs that use those operations must be sure the BELT switch
is enabled.

Belt Variables

The primary mechanism for specifyingmotions relative to a belt is a V+ data type called a belt
variable. By defining a belt variable, the program specifies the relationship between a specific
belt encoder and the location and speed of a reference frame that maintains a fixed position
and orientation relative to the belt. Alternatively, a belt variable can be thought of as a
transformation (with a time-varying component) that defines the location of a reference
frame fixed to a moving conveyor. As a convenience, more than one belt variable can be
associated with the same physical belt and belt encoder. In this way, several work stations
can be easily referenced on the same belt.

Like other variable names in V+, the names of belt variables are assigned by the
programmer. Each namemust start with a letter and can contain only letters, numbers,
periods, and underline characters. (Letters used in variable names can be entered in either
lowercase or uppercase. V+ always displays variable names in lowercase.)

To differentiate belt variables from other data types, the name of a belt variable must be
preceded by a percent sign (%). As with all other V+ data types, arrays of belt variables are
permitted. Hence the following are all valid belt-variable names:

%pallet.on.belt %base.plate %belt[1]

The DEFBELT instruction must be used to define belt variables (see Conveyor-Tracking
Programming on page 317). Thus, the following are not valid operations:

SET %new_belt = %old_belt or HERE %belt[1]

Compared to other V+ data types, the belt variable is rather complex in that it contains
several different types of information. Briefly, a belt variable contains the following
information:

1. The nominal transformation for the belt. This defines the position and direction of
travel of the belt and its approximate center.

2. The number of the encoder used for reading the instantaneous location of the belt
(from 1 to 6).

3. The belt encoder scaling factor, which is used for converting encoder counts to

Basic Programming Concepts

V+Language User's Guide, v17.0

Page 310

millimeters of belt travel.

4. An encoder offset, which is used to adjust the origin of the belt frame of reference.

5. Window parameters, which define the working range of the robot along the belt.

These components of belt variables are described in detail in the following sections.

Unlike other V+ data types, belt variables cannot be stored in a disk file for later loading.
However, the location and real-valued data used to define a belt variable can be stored and
loaded in the normal ways. After the data is loaded from disk, DEFBELT andWINDOW
instructions must be executed to define the belt variable. For details, see Belt Variable
Definitions on page 317. (The file LOADBELT.V2 on the Adept Utility Disk contains a
subroutine that will read belt data from a disk file and execute the appropriate DEFBELT and
WINDOW instructions.)

Nominal Belt Transformation

The position, orientation, and direction of motion of a belt are defined by a transformation
called the nominal belt transformation. This transformation defines a reference frame
alignedwith the belt as follows: its X-Y plane coincides with the plane of the belt, its X axis is
parallel to the direction of belt motion, and its origin is located at a point (fixed in space)
chosen by the user.

Since the direction of the X axis of the nominal belt transformation is taken to be the
direction alongwhich the belt moves, this component of the transformation must be
determinedwith great care. Furthermore, while the point defined by this transformation
(the origin of the frame) can be selected arbitrarily, it normally should be approximately at
the middle of the robot's working range on the belt. This transformation is usually defined
using the FRAME location-valued function with recorded robot locations on the belt. (The
easiest way to define the nominal belt transformation is with the conveyor belt calibration
program provided by Adept.)

The instantaneous location described by the belt variable will almost always be different from
that specified by the nominal transformation. However, since the belt is constrained tomove
in a straight line in the working area, the instantaneous orientation of a belt variable is
constant and equal to that defined by the nominal belt transformation.

To determine the instantaneous location defined by a belt variable, the V+ system performs
a computation that is equivalent to multiplying a unit vector in the X direction of the nominal
transformation by a distance (which is a function of the belt encoder reading) and adding the
result to the position vector of the nominal belt transformation. Symbolically, this can be
represented as

instantaneous_XYZ =
nominal_XYZ + (belt_distance * X_direction_of_nominal_transform)

where

belt_distance =
(encoder_count - encoder_offset) * encoder_scaling_factor

Basic Programming Concepts

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 311

The encoder variables contained in this final equation are described in later sections.

The Belt Encoder

Six belt encoders are supported by the conveyor tracking feature.

Each belt encoder generates pulses that indicate both the distance that the belt has moved
and the direction of travel. The pulses are counted by the belt interface, and the count is
stored as a signed 24-bit number. Therefore, the value of an encoder counter can range from
223 -1 (8,388,607) to -2 23 (-8,388,608). For example, if a single count of the encoder
corresponds to 0.02 millimeters (0.00008 inch) of belt motion, then the full range of the
counter would represent motion of the belt from approximately -167 meters (-550 feet) to
+167 meters (+550 feet).

After a counter reaches its maximum positive or negative value, its value will roll over to the
maximum negative or positive value, respectively. This means that if the encoder value is
increasing and a rollover occurs, the sequence of encoder counter values will be ... ;
8,388,606; 8,388,607; -8,388,608; -8,388,607; ... As long as the distance between the
workspace of the robot and the nominal transformation of the belt is within the distance that
can be represented by the maximum encoder value, V+ application programs normally do not
have to take into account the fact that the counter will periodically roll over. The belt_
distance equation described above is based upon a relative encoder value:

encoder_count - encoder_offset

and V+ automatically adjusts this calculation for any belt rollover that may occur.

Care must be exercised, however, if an application processes encoder values in any way. For
example, a program may save encoder values associated with individual parts on the
conveyor, and then later use the values to determine which parts should be processed by the
robot. In such situations the application program may need to consider the possibility of
rollover of the encoder value.

NOTE:While the encoder counter value is stored as a 24-bit number, the rate of change of
the belt encoder (the speed of the belt) is maintained only as a 16-bit number. The belt
speed is used internally by V+ to predict future positions on the belt. Therefore, the rate of
change of the belt encoder should not exceed 32,768 counts per 16 milliseconds. The
Adept application program for belt calibration includes a test for this condition and prints a
warning if this restriction will be violated. This requirement will be a limitation only for very
high-speed conveyors with very high-resolution encoders.

The Encoder Scaling Factor

For any given conveyor/encoder installation, the encoder scaling factor is a constant number
that represents the amount the encoder counter changes during a change in belt position.
The units of the scaling factor are millimeters/count.

Basic Programming Concepts

V+Language User's Guide, v17.0

Page 312

This factor can be determined either directly from the details of the mechanical coupling of
the encoder to the belt or experimentally by reading the encoder as the belt is moved. The
Adept belt calibration program supports either method of determining the encoder scaling
factor.

If the encoder counter decreases as the belt moves in its normal direction of travel, the
scaling factor will have a negative value.

The Encoder Offset

The last encoder value needed for proper operation of the conveyor-tracking system is the
belt encoder offset. The belt encoder offset is used by V+ to establish the instantaneous
location of the belt reference frame relative to its nominal location.

In particular, if the belt offset is set equal to the current belt encoder reading, the
instantaneous belt transformation will be equal to the nominal transformation. The belt
encoder offset can be used, in effect, to zero the encoder reading, or to set it to a particular
value whenever necessary. Unlike the encoder scaling factor, which is constant for any given
conveyor/encoder setup, the value of the belt encoder offset is variable andwill usually be
changed often.

Normally, the instantaneous location of the reference frame will be established using
external input from a sensory device such as a photocell or the AdeptVision system. For
example, the VFEATURE function provided by AdeptVision returns as one of its computed
values the belt encoder offset that must be set in order to grasp an object identified by the
vision system. The DEVICE real-valued function also returns latched or unlatched encoder
values for use with SETBELT.

The encoder offset is set with the SETBELT program instruction, described in Belt Variable
Definitions on page 317.

The Belt Window

The belt window controls the region of the belt in which the robot is to work. The figure
Conveyor Terms illustrates the terms used here. A window is a segment of the belt bounded
by two planes that are perpendicular to the direction of travel of the belt. When defining the
window, ensure that the robot can reach all conveyor locations within the belt window. This
is especially important for revolute (i.e., non-Cartesian) robots.

NOTE: The window has limits only in the direction along the belt.

Within V+, a belt window is defined by two transformations with aWINDOW program
instruction. The window boundaries are computed by V+ as planes that are perpendicular to
the direction of travel of the belt and that pass through the positions defined by the
transformations.

If the robot attempts to move to a belt-relative location that has not yet come within the
window (is upstream of the window), the robot can be instructed either to pause until it can
accomplish the motion or immediately generate a program error. If a destination moves out

Basic Programming Concepts

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 313

of the window (is downstream of the window), it is flagged as an error condition and the
application program can specify what action is to be taken. (See the description of the
BELT.MODE system parameter in V+ Language Reference Guide.)

If the normal error testing options are selected, whenever the V+ system is planning a robot
motion to a belt-relative location and the destination is outside the belt window but
upstream, the system automatically delays motion planning until the destination is within
the window. However, if an application program attempts to perform amotion to a belt-
relative destination that is out of the window at planning time (or is predicted to be out by the
time the destination would be reached) and this destination is downstream, a window-
violation condition exists. Also, if during the execution of a belt-relative motion or while the
robot is tracking the belt, the destination moves outside the belt window for any reason, a
window violation occurs. Depending upon the details of the application program, the program
either prints an error message and halts execution or branches to a specified subroutine
when a window violation occurs.

In order to provide flexibility with regard to the operation of the window-testingmechanism,
several modifications to the normal algorithms can be selected by modifying the value of the
BELT.MODE system parameter.

To assist in teaching the belt window, the Adept conveyor belt calibration program contains
routines that lead the operator through definition of the required bounding transformations.

Conveyor Terms

Belt-Relative Motion Instructions

To define a robot motion relative to a conveyor belt, or to define a relative transformation
with respect to the instantaneous location of a moving frame of reference, a belt variable can
be used in place of a regular transformation in a compound transformation. For example, the
instruction

MOVES %belt:loc_1

Basic Programming Concepts

V+Language User's Guide, v17.0

Page 314

directs the robot to perform a straight-line motion to location loc_1, which is specified
relative to the location defined by the belt variable %belt. If a belt variable is specified, it
must be the first (that is, leftmost) element in a compound transformation. Only one belt
variable can appear in any compound transformation.

Motions relative to a belt can be only of the straight-line type. Attempting a joint-
interpolatedmotion relative to a belt causes an error and halts execution of the application
program. Except for these restrictions, motion statements that are defined relative to a belt
are treated just like any other motion statement. In particular, continuous-path motions
relative to belts are permitted.

Once the robot has been moved to a destination that is defined relative to a belt, the robot
tool will continue to track the belt until it is directed to a location that is not relative to the
belt. For example, the following series of instructions wouldmove the tool to a location
relative to a belt, open the hand, track the belt for two seconds, close the hand, and finally
move off the belt to a fixed location.

MOVES %belt[1]:location3
OPENI
DELAY 2.00
CLOSEI
MOVES fixed.location

If this example did not have the secondMOVES statement, the robot would continue to track
the belt until a belt window violation occurred.

As with motions defined relative to a belt, motions that move the tool off a belt (that is, to a
fixed location)must be of the straight-line type.

Motion Termination

When moving the robot relative to a belt, special attention must be paid to the conditions
used to determine when amotion is completed. At the conclusion of a continuous-path
motion V+ normally waits until all the joints of the manipulator have achieved their final
destinations to within a tight error tolerance before proceeding to the next instruction. In
the case of motions relative to a belt, the destination is constantly changing and, depending
upon the magnitude and variability of the belt speed, the robot may not always be able to
achieve final positions with the default error tolerance.

Therefore, if a motion does not successfully complete (that is, it is aborted due to a Time-out
nulling error), or if it takes an excessive amount of time to complete, the error tolerance for
the motion should be increased by preceding the motion instruction with a COARSE
instruction. In extreme situations it may even be necessary to entirely disable checking of
the final error tolerance. This can be done by specifying NONULL before the start of the
motion.

Basic Programming Concepts

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 315

Defining Belt-Relative Locations

In order to define locations relative to a belt, belt-relative compound transformations can be
used as parameters to all the standard V+ teaching aids. For example, all the following
commands define a location loc_1 relative to the current belt location:1

HERE %belt:loc_1
POINT %belt:loc_1
TEACH %belt:loc_1

In each of these cases, the instantaneous location corresponding to%belt would be
determined (based upon the reading of the belt encoder associated with %belt); loc_1 would
be set equal to the difference between the current tool location and the instantaneous
location defined by%belt.

While a belt variable can be used as the first (leftmost) element of a compound
transformation to define a transformation value, a belt variable cannot appear by itself. For
example, LISTL will not display a belt variable directly. To view the value of a belt variable,
enter the command:

LISTL %belt_variable:NULL

1Before defining a location relative to a belt, you must make sure the belt encoder offset is set
properly. That usually involves issuing amonitor command in the form:

DO SETBELT %belt = BELT(%belt)

Basic Programming Concepts

V+Language User's Guide, v17.0

Page 316

Conveyor-Tracking Programming
This section describes how to access the conveyor-tracking capabilities within V+. A
functional overview is presented that summarizes the extensions to V+ for Conveyor
Tracking. All the V+ conveyor-tracking keywords are described in detail in the V+ Language
Reference Guide.

The conveyor-tracking extensions to V+ include:

l Instructions and functions (there are nomonitor commands)

l System switch

l System parameters

Instructions and Functions

This section summarizes the V+ instructions and functions dedicated to conveyor-tracking
processing. The belt-related functions return real values.

Belt Variable Definitions

The following keywords are used to define the parameters of belt variables. Some
parameters are typically set once, based upon information derived from the belt calibration
procedure. Other parameters are changed dynamically as the application program is
executing.

DEFBELT Program instruction that creates a belt variable and defines its static
characteristics: nominal transformation, encoder number, and encoder
scaling factor.

SETBELT Program instruction to set the encoder offset of a belt variable. This
defines the instantaneous belt location relative to that of the nominal
belt transformation.

WINDOW Program instruction for establishing the belt window boundaries and
specifying a window-violation error subroutine.

Encoder Position and Velocity Information

The following function is used to read information concerning the encoder associated with a
belt variable.

BELT Real-valued function that returns the instantaneous encoder counter
value or the rate of change of the encoder counter value.

Conveyor-Tracking Programming

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 317

Window Testing

The following function allows an application program to incorporate its own specialized
working-region strategy, independent of the strategy provided as an integral part of the V+
conveyor tracking system.

WINDOW Real-valued function that indicates where a belt-relative location is
(or will be at some future time) relative to a belt window.

Status Information

The following function indicates the current operating status of the conveyor-tracking
software.

BSTATUS Real-valued function that returns bit flags indicating the status of the
conveyor-tracking software.

System Switch

The switch BELT enables/disables the operation of the conveyor-tracking software. (See the
description of ENABLE, DISABLE, and SWITCH for details on setting and displaying the value
of BELT.)

BELT This switch must be enabled before any conveyor tracking processing
begins.

System Parameters

The following parameter selects alternative modes of operation of the belt window testing
routines. See the description of PARAMETER for details on setting and displaying the
parameter values.

BELT.MODE Bit flags for selecting special belt window testingmodes of operation.

Conveyor-Tracking Programming

V+Language User's Guide, v17.0

Page 318

Sample Programs
The following program is an example of a robot task working from amoving conveyor belt.
The task consists of the following steps:

1. Wait for a signal that a part is present.

2. Pick up the part.

3. Place the part at a new location on the belt.

4. Return to a rest location to wait for the next part.

CAUTION: These programs are meant only to illustrate programming
techniques useful in typical applications. Moving-line programs are
hardware dependent because of the belt parameters, so care must be
exercised if you attempt to use these programs.

; *** PROGRAM TO RELOCATE PART ON CONVEYOR ***
; Set up belt parameters

ENABLE BELT
PARAMETER BELT.MODE = 0
belt.scale = 0.03067 ;Encoder scale factor

; Define belt twice, for two stations

DEFBELT %b1 = belt, 1, 32, belt.scale
WINDOW %b1 = window.1, window.2, window.error
DEFBELT %b2 = belt, 2, 32, belt.scale
WINDOW %b2 = window.1, window.2, window.error

WHILE TRUE DO ;Loop indefinitely
WAIT part.ready ;Wait for signal that part present
bx = BELT(%b1) ;Read present belt position
SETBELT %b1 = bx ;Set encoder offset for pick-up...
SETBELT %b2 = bx ;... and drop-off stations
APPROS %b1:p1, 50 ;Move to the part and pick it up
MOVES %b1:p1
CLOSEI
DEPARTS 50
APPROS %b2:p2, 50 ;Carry part to drop-off location
MOVES %b2:p2
OPENI
DEPARTS 50
MOVES wait.location ;Return to rest location

END ;Wait for the next part
; *** End of program ***

Sample Programs

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 319

TheWINDOW instruction in the above program indicates that whenever a window violation
occurs, a subroutine namedwindow.error is to be executed. The following is an example of
what such a routine might contain.

; *** WINDOW VIOLATION ROUTINE ***
TYPE /B, /C1, "** WINDOW ERROR OCCURRED **", /C1

; Find out which end of window was violated

IF DISTANCE(HERE,window.1) < DISTANCE(HERE,window.2) THEN

; Error occurred at window.2

TYPE "Part moved downstream out of reach"

;...(Respond to downstream window error) .

ELSE ; Error occurred at window.1
TYPE "Part moved upstream out of reach"

;...(Respond to upstream window error) .
END

MOVES wait.location ;Move robot to rest location

; Use digital output signals to sound alarm and stop belt

SIGNAL alarm, stop.belt
HALT ;Halt program execution

Sample Programs

V+Language User's Guide, v17.0

Page 320

Multiprocessor Systems
The following topics are described in this chapter:

Introduction 323
Requirements for Motion Systems 324
Installing Processor Boards 326
Customizing Processor Workloads 327
Using Multiple V+ Systems 328
Restrictions With Multiprocessor Systems 333

Multiprocessor Systems

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 321

Multiprocessor Systems

V+Language User's Guide, v17.0

Page 322

Introduction
In most cases, your controller has already been preconfigured at the factory with sufficient
processors for your application. Occasionally, however, your applications may be more
demanding and needmultiple processors and possibly multiple.

You can have an auxiliary processor board installed in an Adept MV controller. To correctly
use multiple (auxiliary) processors with your system, you need to consider the following:

l Processor andmemory requirements

l Installation of the processor boards

l Assignment of the processor workloads

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 323

Requirements for Motion Systems
This section details the motion boards setupwhen more than one motion board is present in
the system.

Allocating Servos with an MI-3 or MI-6 Board

When associating servo processes with a motion interface board, all channels of a motion
interface boardmust be serviced by the same processor. In addition, when amotion interface
board is assigned to a processor board, it allocates all of the available servo processes per
board even if less than the maximum number of axes are being serviced.

For example, if you are controlling a four-axis robot with two MI-3 boards, you must assign all
three channels of the first MI-3 board to a single processor as a group. Likewise, you must
assign all three channels of the secondMI-6 to a single processor (although it need not be the
same processor as the first three axes). If you assign the two MI-6s to the same processor,
six servo processes on that board are occupied even though only four channels are being
used. In this situation, the processor computational load corresponds to that for fouraxes, but
no additional MI-6s can be controlled by this processor.

Allocating Servos with a EJI Board

When associating servo processes with an EJI (Enhanced Joint Interface) board, all channels
of the EJI must be serviced by the same processor board. In addition, when an EJI is assigned
to a processor board, it allocates eight of the available servo processes per board even if less
than eight axes are being serviced.

For example, if you are controlling a four-axis robot with two EJI boards, you must assign all
eight channels of the first EJI board to a single processor as a group. Likewise, you must
assign all eight channels of the second EJI to a single processor (although it need not be the
same processor as the first 8 axes). If you assign the two EJIs to the same processor, 16
servo processes on that board are occupied even though only four channels are being used.
In this situation, the processor computational load corresponds to that for four axes.

Conveyor Belt Encoders

With a V+ Extensions License, you can install a maximum of one encoder device module. The
Encoder Device module supports up to six encoders (the default is two). Thus, you can
interface a maximum of six conveyor belt encoders to a controller. Each belt encoder requires
one servo channel although it adds a negligible amount of computational load. These
encoders are physically connected through an EJI, MI-6, MI-3.

Force Sensors

The AdeptForce VME option allows up to three force sensors per controller. Each sensor
requires one Force Interface Board (VFI). You can assign one or two VFIs to each processor
board. Each of these force sensors requires one element of the servo axis allocation.

Requirements for Motion Systems

V+Language User's Guide, v17.0

Page 324

The force sensor loads the processor computationally only when a force-sensing operation is
taking place, and the load is somewhat less than a single serviced axis.

Requirements for Motion Systems

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 325

Installing Processor Boards
This section provides an overview of installing auxiliary processor boards, including:

l Board locations

l Slot ordering

l Board addressing

l System controller functions

Processor Board Locations

In each controller, the first slot available for processor boards must be occupied by an AWC
processor. This processor must be addressed as board 1 and it must have the system
controller functions enabled. This processor is considered the system processor.

Slot Ordering of Processor Boards In general, you should configure the fastest processor with
the greatest amount of memory as processor #1.

Processor Board Addressing

The system processor must reside in slot 1 and be addressed as board 1. The auxiliary
processor must be addressed as processor 2. It does not matter which slot an auxiliary
processor is in. For details on setting the board address see the Adept MV Controller User's
Guide.

Installing Processor Boards

V+Language User's Guide, v17.0

Page 326

Customizing Processor Workloads
Generally, the default assignment of processor workloads is sufficient for most applications.
However, if the default assignments do not suit your application, you can customize them.

You can assign the following system tasks to the auxiliary processor:

l Vision processing

You can assign each vision system in the controller to a specific processor.

l Servo processing

You can assign the servo task for each VMI board to a specific processor.

l A copy of the V+ command processor

Each processor can run an individual copy of the V+ command processor. See UsingMultiple
V+ Systems on page 328 for more details on multiple copies of V+.

Assigning Workloads With CONFIG_C

The assignment of workloads to the different processors is automatic in most cases.
However, you may examine or override the defaults using the CONFIG_C configuration
utility. The default configuration implements the following processor workload
configurations:

l If only one processor is installed, all tasks run on that processor.

l If a second processor is present, the vision task and servo tasks for the first two
motion boards are automatically assigned to it.

l If the V+ Extensions license is installed, a copy of the V+ command processor is also
available on each installed processor. In most cases, the copy of V+ on the auxiliary
processor will be idle. That is, it will not be executing any user tasks. When idle, V+
uses less than one percent of the processor time.

Customizing Processor Workloads

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 327

Using Multiple V+ Systems
For applications demanding extremely intensive V+ processing, it is possible to run a copy of
V+ on every processor. This section details the requirements and considerations needed to
run multiple V+ systems.

Requirements for Running Multiple V+ Systems

You must have the following items before you can use multiple processors to run multiple V+
systems.

l V+ Extensions license

l CONFIG_C utility program

l One processor for every V+ system that you intend to run

l A graphics-based system

If you are using additional processors for vision or servo processing only, you do not need a
V+ Extensions license. Contact your local Adept sales office for more information on this
license.

Using V+ Commands With Multiple V+ Systems

If more than one processor is running a copy of V+ and the MONITORS system switch is
enabled, multiple monitor windows can be displayed. The first monitor window is the normal
monitor window for the system processor (labeledMonitor). The monitor windows for the
other V+ system is labeledMonitor_2. The processor can run its own independent V+
system, and can perform all of the V+ functions with the exceptions described in Restrictions
With Multiprocessor Systems on page 333.

Autostart

When the autostart program is usedwith processor 1, it functions in the samemanner that it
does on a single V+ system and performs the following commands:

LOAD/Q auto
COMM auto

When autostart is usedwith V+ processor 2, the program performs the following commands:

LOAD/Q auto02
COMM auto02

where n is V+ system number 2.

You do not have to enable the MONITORS system switch unless you want access to the V+
command line when using autostart to execute programs on system 2.

UsingMultiple V+ Systems

V+Language User's Guide, v17.0

Page 328

The autostart function is enabled for all processors using CONFIG_C utility "Controller
NVRAM" menu selection. See the Instructions for Adept Utility Programs for more details.

Accessing the Command Prompt

If you are not using autostart, you must enable the MONITORS system switch and use the
Adept pull-down menu to select the Monitor window for the system you want to command.
You can then enter V+ commands (such as LOAD and EXECUTE) at the V+ command
prompt (.). See the V+ Language Reference Guide for a description of the MONITORS system
switch.

Each time the controller is turned on, the default is that the auxiliary monitor window
(Monitor_2) is hidden and disabled. To enable it, type the command ENABLE MONITORS.

Intersystem Communications

V+ application programs running on the same processor communicate in the normal way,
using global V+ variables. V+ can execute up to seven tasks simultaneously on each
processor, or up to 28 tasks if the V+ Extensions software license is installed.

When multiple V+ systems are running, each operates on its own processor and functions
independently. Programs and global variables for one V+ system are not accessible to the
other V+ systems.

Application programs running on different V+ systems can communicate through an 8 KB
reserved section of sharedmemory on each board. This memory area is used only for
communication between V+ application programs. It is not used for any other purpose.

You can access this memory through the following:

l the six IOPUT_ instructions

l IOPUTB

l IOPUTD

l IOPUTF

l IOPUTL

l IOPUTS

l IOPUTW

l the five IOGET_ real-valued functions

l IOGETB

l IOGETD

l IOGETF

UsingMultiple V+ Systems

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 329

l IOGETL

l IOGETW

l the string function $IOGETS

Each of the above keywords has a type parameter. Type 0 (zero), the default, is used to
access memory on other Adept V+ processors. See the V+ Language Reference Guide for
more details.

You can use the real-valued function IOTAS to interlock access to this memory.

Shared Data

The IOGET_, $IOGETS, and IOPUT_ keywords allow the following to be written and read:

l Single bytes

l 16-bit words

l 32-bit long-words

l 32-bit single-precision floating-point values

l 64-bit double-precision floating-point values

l Strings up to 128 bytes

An address parameter indicates the position within the application shared area that is to be
written to or from. Acceptable address values are 0 to hexadecimal 1FFF (decimal 8191).

Any Adept system processor can access the sharedmemory areas of all the Adept system
processors (including its own area). The IOGET_, $IOGETS, IOPUT_ and IOTAS keywords
have an optional parameter to specify the processor number. The default value for the
processor parameter is zero, which is the local processor (that is, the processor on which the
instruction is executing). A nonzero value for the processor parameter causes that processor
to be accessed. (Note that a processor can access itself as either processor 0 or by its real
processor number.)

For example, the instruction:

IOPUTS ^HFF, 0, 2 = "Hello"

will write five ASCII bytes to the sharedmemory area on processor 2 at the address ^HFF.

Adept MV controllers support four processors, numbered 1 through 4. The processor number
is established by the board-address switches on the processor module. The V+ monitor
window indicates the number of the processor with which it is associated: The monitor
window for processor 1 is simply entitled Monitor; the window for processor 2 is entitled
Monitor_2.

UsingMultiple V+ Systems

V+Language User's Guide, v17.0

Page 330

CAUTION: V+ does not enforce any memory-protection schemes for
use of the application sharedmemory area. It is your responsibility to
keep track of memory usage. If you are using application or utility
programs (for example, Adept AIM VisionWare or AIM MotionWare) you
should read the documentation providedwith that software to be sure
that there is no conflict with your usage of the shared area. AIM users
should note that Adept plans to assign application sharedmemory
starting from the top (address hexadecimal 1FFF) andworking down.
Therefore, you should start at the bottom (address 0) andwork up.

If you read a value from a location that has not been previously written to, you get an invalid
value: You do not get an error message. The system provides a value based upon the default
memory contents and the manner in which the memory is being read. (Every byte of the
application shared area is initialized to zero when V+ is initialized.)

The memory addresses are based on single-byte (8-bit) memory locations. For example, if
you write a 32-bit (4-byte) value to an address, the value occupies four address spaces (the
address that you specify and the next three addresses).

If you read a value from a location using a format different from the format that was used to
write to that location, you also get an invalid value: You do not get an error message. The
system will provide a value based upon the default memory contents. (For example, if you
write using IOPUTF and read using IOPUTL, the value read is invalid.)

IOTAS and Data Integrity

Some IOPUT_ and IOGET_ operations involve multiple hardware read or write cycles. For
example, all 64-bit operations will involve at least two 32-bit data transfers (three transfers if
the operation crosses more than one 32-bit boundary). If a 16-bit or 32-bit operation crosses
a 32-bit boundary, it involves two transfers.

You can interlock operations that must cross a 32-bit boundary using the IOTAS() function.
The syntax and an example are given in the V+ Language Reference Guide.

The IOTAS function performs a hardware-level, read-modify-write (RMW) cycle on the
VMEbus tomake a Test And Set operation indivisible in a multiprocessing environment. If
multiple processors all access the same byte by using IOTAS, the byte can serve as an
interlock between the processors.

WARNING: Depending on the application, there is a possibility that a
V+ program running on one processor may update a shared-memory
area while a program on another processor is reading it. In this case,
data that is read across a 32-bit boundary may be invalid. If the data is
being used for safety-critical operations, including robot motions, be
sure to use the IOTAS function to prevent such conflicts.

UsingMultiple V+ Systems

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 331

Efficiency Considerations

You can put your shared data on any processor. However, it is most efficient to put the data
on the processor that will use it most often, or that is performing the most time-critical
operations. (It takes slightly longer to access data on another processor than to access data
on the local processor.) If you wish, you can put some of your data on one processor and
other data on a different processor. You must be careful to keep track of which data items are
stored in which location.

32-bit and 64-bit operations operate slightly faster if the address is an exact multiple of four.
16-bit operations operate slightly faster if the address is an exact multiple of two.

Digital I/O

The digital I/O image- including input (1001-1512), output (1-512), and soft signals (2000-
2512 and 3001-3004)-is managed by processor 1. These signals are shared by all processors.
You can use the soft signals to pass control information between processors.

UsingMultiple V+ Systems

V+Language User's Guide, v17.0

Page 332

Restrictions With Multiprocessor Systems
You can set up certain tasks to operate on any processor board, including servo tasks, vision
tasks, and in some cases, V+ user tasks. However, there are several V+ operations that can
be performed only from Processor 1:

l Robot control

l System configuration changes

l Certain commands/instructions

l ENABLE/DISABLE of POWER

l ENABLE/DISABLE of ROBOT

l INSTALL

l High-level motion control tasks

l trajectory generation

l kinematic solution program execution

l V+ motion instructions such as MOVE instructions

l V+ force instructions such as FORCE.READ instructions

l DeviceNet

Processors other than processor 1 always start up with the stand-alone control module, with
no belts or kinematic modules loaded. If attempted on another processor, the V+ operations
listed above returns the error:

-666 *Must use Monitor #1*

with the exception of a V+ force instruction, which returns the following error:

-666 *Device Hardware not Present*

High-Level Motion Control Tasks

Asmore axes are added to the system, the high-level motion control computational load on
processor 1 increases, even if the servo processing is allocated to other processors.

For any given application, the processing power required to execute the high-level motion
control is a function of which kinematic modules are used. It must be evaluated on a case-
by-case basis.

Peripheral Drivers

There is an impact on processor 1 whenever an auxiliary processor accesses one of these
devices. However, communications between a processor board and its local serial lines,
digital I/O, and analog I/O operate on the processor on which the V+ instruction is executed.

Restrictions With Multiprocessor Systems

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 333

Example V+ Programs
The following topics are described in this chapter:

Introduction 337
Pick and Place 338
Menu Program 342
Teaching Locations With the MCP 344
Defining a Tool Transformation 346

Example V+ Programs

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 335

Example V+ Programs

V+Language User's Guide, v17.0

Page 336

Introduction
This chapter contains a sampling of V+ programs. The first program is presented twice: once
in its entirety exactly as it is displayed by V+ and a second time with a line-by-line
explanation.

The program keywords are detailed in the V+ Language Reference Guide.

NOTE:The programs in this manual are not necessarily complete. In most cases further
refinements could be added to improve the programs. For example, the programs could
be mademore tolerant of unusual events such as error conditions.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 337

Pick and Place
This program demonstrates a simple pick-and-place application. The robot picks up parts at
one location and places them at another.

Features Introduced

l Program initialization

l Variable assignment

l System parameter modification

l FOR loop

l Motion instructions

l Hand control

l Terminal output

Program Listing
.PROGRAM move.parts()

; ABSTRACT: Pick up parts at location pick and put them down at place

parts = 100 ;Number of parts to be processed

height1 = 25.4 ;Approach/depart height at "pick"

height2 = 50.8 ;Approach/depart height at "place"

PARAMETER HAND.TIME = 0.16 ;Set up for slow hand

OPEN ;Make sure the hand is open
RIGHTY ;Make sure configuration is correct
MOVE start ;Move to safe starting location

FOR i = 1 TO parts ;Process the parts

APPRO pick, height1 ;Go toward the pick-up
MOVES pick ;Move to the part
CLOSEI ;Close the hand
DEPARTS height1 ;Back away

APPRO place, height2 ;Go toward the put-down
MOVES place ;Move to the destination
OPENI ;Release the part
DEPARTS height2 ;Back away

END ;Loop for next part

TYPE "All done. ", /I0, parts, " parts processed"

Pick and Place

V+Language User's Guide, v17.0

Page 338

RETURN
;End of the program

.END

Detailed Description

This program has five sections: formal introduction, initialization of variables, initialization of
the robot location, performance of the desiredmotion sequence, and notice to the operator
of completion of the task. Each of these sections is described in detail below.

The first line of every program must have the form of the line below. It is a good practice to
follow that line with a brief description of the purpose of the program. If there are any special
requirements for use of the program, they should be included as well.

.PROGRAM move.parts()

This line identifies the program to the V+ system. In this case we see that the name of the
program is move.parts.

; ABSTRACT: Pick up parts at location "pick" and put them down at
"place"

This is a very brief description of the operation performed by the program. (Most programs
requires a more extensive summary.)

Use variables to represent constants for two reasons: Using a variable name throughout a
program makes the program easier to understand, and only one program line must be
modified if the value of the constant is changed.

parts = 100

Tell the program how many parts to process during a production run. In this case, 100 parts
are processed.

height1 = 25.4

Height1 controls the height of the robot path when approaching and departing from the
location where the parts are to be picked up. Here it is set to 25.4 millimeters (that is, 1
inch).

height2 = 50.8

Similar to height1, height2 sets the height of the robot path when approaching and
departing from the put-down location. It is set to 50.8 millimeters (2 inches).

PARAMETER HAND.TIME 0.16

Set the system parameter HAND.TIME so that sufficient time is allowed to actuate the robot
hand.

This setting causes OPENI and CLOSEI instructions to delay program execution for 160
milliseconds while the hand is actuated.

Pick and Place

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 339

Initially, you should also make sure that the robot has the desired hand opening, is at a safe
starting location, and that SCARA robots have the desired configuration.

RIGHTY

Make sure the robot has a right-handed configuration (with the elbow of the robot to the right
side of the workspace). This is important if there are obstructions in the workspace that must
be avoided.

This instruction causes the robot to assume the requested configuration during its next
motion.

OPEN

Make sure the hand is initially open. This instruction is executed during the next robot
motion, rather than immediately as is done by the OPENI instruction.

MOVE start

Move to a safe starting location. Because of the preceding two instructions, the robot
assumes a right-handed configuration with the hand open.

The location startmust be defined before the program is executed. That can be done, for
example, with the HERE command. The location must be chosen such that the robot can
move from it to the pick-up location for the parts without hitting anything.

After initialization, the following program section performs the application tasks.

FOR i = 1 TO parts

Start a program loop. The following instructions (down to the END) will be executed parts
times. After the last time the loop is executed, program execution continues with the TYPE
instruction following the END below.

APPRO pick, height1

Move the robot to a location that is height1millimeters above the location pick.

The APPROS instruction is not used here because its straight-line motion would be slower
than the motion commanded by APPRO.

MOVES pick

Move the robot to the pick-up location pick, which must have been defined previously.

The straight-line motion commanded by MOVES assures that the hand does not hit the part
during the motion. A MOVE instruction could be used here if there is sufficient clearance
between the hand and the part to allow for a nonstraight-line path.

CLOSEI

Close the hand. To assure that the part is grasped before the robot moves away, the I form of
the CLOSE instruction is used-program execution will be suspendedwhile the hand is closing.

Pick and Place

V+Language User's Guide, v17.0

Page 340

DEPARTS height1

Now that the robot is grasping the part, we can back away from the part holder. This
instruction moves the hand back height1millimeters, following a straight-line path tomake
sure the part does not hit its holder.

APPRO place, height2
MOVES place
OPENI
DEPARTS height2

Similar to the above motion sequence, these instructions cause the part to be moved to the
put-down location and released.

END

This marks the end of the FOR loop.When this instruction is executed, control is transferred
back to the FOR instruction for the next cycle through the loop (unless the loop count
specified by parts is exceeded).

The final section of the program simply displays a message on the system terminal and
terminates execution.

TYPE "All done. ", /I0, parts, " pieces processed."

The above instruction outputs the message:

All done. 100 pieces processed.

(The /I0 format specification in the instruction causes the value of parts to be output as an
integer value without a decimal point.)

RETURN

Although not absolutely necessary for proper execution of the program, it is good
programming practice to include a RETURN (or STOP) instruction at the end of every
program.

.END

This line is automatically included by the V+ editor to mark the program's end.

Pick and Place

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 341

Menu Program
This program displays a menu of operations from which an operator can choose.

Features Introduced

l Subroutines

l Local variables

l Terminal interaction with operator

l String variables

l WHILE and CASE structures

Program Listing
.PROGRAM sub.menu()

; ABSTRACT: This program provides the operator with a menu of
; operation selections on the system terminal. After accepting
; input from the keyboard, the program executes the desired
; operation. In this case, the menu items include execution of
; the pick and place program, teaching locations for the pick
; and place program, and returning to a main menu.
;
; SIDE EFFECTS: The pick and place program may be executed, and
; locations may be defined.

AUTO choice, quit, $answer

quit = FALSE

DO

TYPE /C2, "PICK AND PLACE OPERATIONAL MENU"
TYPE /C1, " 1 => Initiate pick and place"
TYPE /C1, " 2 => Teach locations"
TYPE /C1, " 3 => Return to previous menu", /C1

PROMPT "Enter selection and press RETURN: ", $answer

choice = VAL($answer) ;Convert string to number

CASE choice OF ;Process menu request...
VALUE 1: ;...selection 1

TYPE /C2, "Initiating Operation..."
CALL move.parts()

VALUE 2: ;...selection 2
CALL teach()

VALUE 3: ;...selection 3
quit = TRUE

ANY ;...any other selection

Menu Program

V+Language User's Guide, v17.0

Page 342

TYPE /B, /C1, "** Invalid input **"
END ;End of CASE structure
UNTIL quit ;End of DO structure

.END

Menu Program

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 343

Teaching Locations With the MCP

NOTE: This procedure does not apply to the Adept T20 pendant.

This program demonstrates how an operator can teach locations with the manual control
pendant, thus allowing the controller to operate without a system terminal. The two-line
liquid crystal display (LCD) of the pendant is used to prompt the operator for the locations to
be taught. The operator can then manually position the robot at a desired location and press a
key on the pendant. The program automatically records the location for later use (in this
case, for the pick-and-place program).

Features Introduced

l Subroutine parameters

l Attachments and detachments

l Manual control pendant interaction

l WAIT instruction

l Location definition within a program

Program Listing
.PROGRAM teach(pick, place, start)

; ABSTRACT: This program is used for teaching the locations
; "pick", "place", and "start" for the "move.parts" program.
;
; INPUT PARAM: None
;
; OUTPUT PARAM: pick, place, and start
;
; SIDE EFFECTS: Robot is detached while this routine is active

AUTO $clear.display

$clear.display = $CHR(12)+$CHR(7)

ATTACH (1) ;Connect to the
pendant

DETACH (0) ;Release control of
the robot

; Output prompt to the display on the manual control pendant

WRITE (1) $clear.display, "Move robot to 'START' & press RECORD"
WRITE (1) /X17, "RECORD", $CHR(5), /S
WRITE (1) $CHR(30), $CHR(3), /S ;Blink LED on control

pendant

Teaching Locations With the MCP

V+Language User's Guide, v17.0

Page 344

WAIT PENDANT(3) ;Wait for key to be
pressed

HERE start ;Record the location
"start"

WAIT NOT PENDANT(3)
; Prompt for second location

WRITE (1) $clear.display, "Move robot to 'PICK' & press RECORD"
WRITE (1) /X17, "RECORD", $CHR(5), /S

WAIT PENDANT(3) ;Wait for key to be
pressed

HERE pick ;Record the location
"pick"

WAIT NOT PENDANT(3)

; Prompt for third location

WRITE (1) $clear.display, "Move robot to 'PLACE' & press RECORD"
WRITE (1) /X17, "RECORD", $CHR(5), /S

WAIT PENDANT(3) ;Wait for key to be
pressed

HERE place ;Record the location
"place"

WAIT NOT PENDANT(3)

ATTACH (0) ;Reconnect to the
robot

DETACH (1) ;Release the pendant

RETURN ;Return to calling
program
.END

Teaching Locations With the MCP

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 345

Defining a Tool Transformation
The following program establishes a reference point from which tool transformations can be
taught.

.PROGRAM def.tool()

; ABSTRACT: Invoke a new tool transformation based on a predefined reference
; location and, optionally, teach the reference location.

AUTO $answer

TYPE /C1, "PROGRAM TO DEFINE TOOL TRANSFORMATION", /C1

ATTACH (1) ;Attach the pendant

PROMPT "Revising a previously defined tool (Y/N)? ", $answer

IF $answer <> "Y" THEN
TYPE /C1, "Move the tool tip to the selected reference ", /S
TYPE "location.", /C1, "Set 'ref.tool' equal to the ", /S
TYPE "transformation for this location.", /C2, "Press ", /S
TYPE "the REC/DONE button on the manual control pendant when ", /S
TYPE "ready to proceed. ", /S

DETACH (0) ;Release the robot to the user

WAIT PENDANT(8) ;Wait for user to press REC/DONE
button

ATTACH (0) ;Regain control of the robot
;(automatically wait for COMP mode)

TOOL ref.tool
HERE ref.loc ;Record the reference location
TYPE

END

TYPE /C1, "Install the new tool. Move its tip to the ", /S
TYPE "reference location.", /C2, "Press the REC/DONE button ", /S
TYPE "on the manual control pendant when ready to proceed. ", /S

DETACH (0) ;Release the robot to the user
WAIT PENDANT(8) ;Wait for user to press REC/DONE

button
ATTACH (0) ;Regain control of the robot

; Compute the new tool transformation, 'new.tool'

TOOL ref.tool
SET new.tool = ref.tool:INVERSE(HERE):ref.loc
TOOL new.tool ;Apply the new tool

transformation

Defining a Tool Transformation

V+Language User's Guide, v17.0

Page 346

TYPE /C2, "All done. The tool transformation has been set ", /S
TYPE "equal to 'new.tool' .", /C1

DETACH (1) ;Detach the pendant
RETURN ;Return to calling program (or

STOP)

.END

Because of computational errors introducedwhen compound transformations are used, the
accuracy of the program presented above can be improved by using a simple tool with no
oblique rotations as the reference tool. In fact, you can get the most accurate results if you
can use the mounting flange of the robot without a tool as the initial pointer. In this case,
the reference tool is the default null tool. The program above can be simplified by deleting the
references to ref.tool in lines 17, 28, 45, and 46.

The first time the program is executed, respond to the prompt with N. The reference tool is
defined.

After the program executes once, the tool transformation can be updated by executing the
program again. This time, respond to the prompt with Y. The program directs you to position
the new tool at the same reference location as before. As long as the values of ref.tool and
ref.loc have not been altered, a new tool transformation is automatically computed and
asserted. This is a convenient method for occasionally altering the tool transformation to
account for tool wear.

Defining a Tool Transformation

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 347

External Encoder Device
The following topics are described in this chapter:

Introduction 351
Parameters 352
Device Setup 353
Reading Device Data 354

External Encoder Device

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 349

External Encoder Device

V+Language User's Guide, v17.0

Page 350

Introduction
The external-encoder inputs on the system controller are normally used for conveyor belt
tracking with a robot. However, these inputs can also be used for other sensing applications.
In such applications, the DEVICE real-valued function and SETDEVICE program instruction
allow the external encoders to be accessed in a more flexible manner than the belt-oriented
instructions and functions.

This appendix describes the use of the DEVICE real-valued function and the
SETDEVICEprogram instruction to access the external encoder device.

In general, SETDEVICE allows a scale factor, offset, and limits to be specified for a specified
external encoder unit. The DEVICE real-valued function returns error status, position, or
velocity information for the specified encoder.

Accessing the external encoders via DEVICE and SETDEVICE is independent of any belt-
tracking commands or instructions. Setting belt parameters with SETBELT and setting
encoder parameters with SETDEVICE have no effect on each other. The only exceptions are
the SETDEVICE initialize command and reset command, which reset all errors for the
specified external encoder, including any belt-related errors.

NOTE: See the V+ Language Reference Guide. for complete information on the DEVICE
real-valued function and the SETDEVICE program instruction.

Introduction

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 351

Parameters
The external encoder device type is 0. This means that the type parameter in all DEVICE or
SETDEVICE instructions that reference the external encoders must have a value of zero.

The standard Adept controller allows two external encoder units. These units are numbered
0 and 1. All DEVICE functions and SETDEVICE instructions that reference the external
encoders must specify one of these unit numbers for the unit parameter.

Parameters

V+Language User's Guide, v17.0

Page 352

Device Setup
The SETDEVICE program instruction allows the external encoders to be initialized and
various parameters to be set up. The action taken by the SETDEVICE instruction depends
upon the value of the command parameter.

The syntax of the SETDEVICE instruction is

SETDEVICE (0, unit, error, command) p1, p2

The following table describes the valid commands.

Command Description

0 Initialize Device
This command sets all scale factors, offsets, and limits to their default
values, as follows: offset = 0; scale factor = 1; no limit checking. This
command also resets any errors for the specified device.This
command should be issued before any other commands for a
particular unit and before using the DEVICE real-valued function for
the unit.

1 Reset Device
This command clears any errors associated with this encoder unit. It
does not affect the scale factor, offset, or limits.

8 Set Scale Factor
This command sets the position and velocity scale factor for this
encoder unit to the value of parameter p1. The units are millimeters
per encoder count. The scale factor must be set before setting the
offset or limits. If the scale factor is changed, the offset and limit
values will need to be updated.

9 Set Position Offset
This command sets the position offset for this encoder unit to the
value of parameter p1. The units are millimeters. The scale factor
must be set before setting the offset.

10 Set Position Limits
This command sets the position limits for the encoder unit to the
values of optional parameters p1 and p2, which are the lower and
upper limits, respectively. If a parameter is omitted, no checking is
performed for that limit. The units are millimeters. The scale factor
must be set before setting the limits.

Command Parameter Values

Device Setup

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 353

Reading Device Data
The DEVICE real-valued function returns information about the encoder error status,
position, and velocity. The scale factor, offset, and limits defined by the SETDEVICE
instruction affect the velocity and position values returned.

The syntax for this function is

DEVICE(0, unit, error, select)

The value returned depends upon the value of the select parameter, as described in the
following table.

select Description

0 Read Hardware Status

The error status of the encoder unit is returned as a 24-bit value. The
valid error bits for this device are listed below. The corresponding error
listed is the one V+ would report if the error occurred while tracking a
belt encoder.

Bit # Bit Mask Corresponding Error Message and Code
19 ^H040000 *Lost encoder sync* (-1012)
20 ^H080000 *Encoder quadrature error* (-1013)
21 ^H100000 *No zero index* (-1011)

Only bit #20, for encoder quadrature error, is detected by the error
parameter of the DEVICE function to generate an error.

1 Read Position

The current position of the encoder (in millimeters) is returned, subject
to the scale factor, offset, and limits defined by the SETDEVICE
instruction. The value returned is computed by:

position = scale*(encoder-offset)
position = MAX(position, lower_limit)
position = MIN(position, upper_limit)

2 Read Velocity

The current value of the encoder velocity (in millimeters per second) is
returned, subject to the scale factor defined by the SETDEVICE
instruction. The value returned is computed by:

velocity = scale*encoder_velocity

Select Parameter Values

Reading Device Data

V+Language User's Guide, v17.0

Page 354

select Description

3 Read Predicted Position

The predicted position of the encoder (in millimeters) is returned. The
position is predicted 32 milliseconds in the future, based upon the
current position and velocity. The value is scaled the same as the
current position described above.

4 Read Latched Position

The position or the encoder (in millimeters) when the last external
trigger occurred is returned. The LATCHED real-valued function may be
used to determinedwhen an external trigger has occurred and a valid
position has been recorded.

Reading Device Data

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 355

Character Sets
The tables ASCII Control Values and Adept Character Set list the standard Adept character
set. Values 0 to 127 (decimal) are the standard ASCII character set. Characters 1 to 31 are
the common set of special and line-drawing characters. Characters 0 and 127 to 141 are
Adept additions to the standard sets. Characters 32 to 255 (excluding 127 through 141) are
the ISO standard 8859-1 character set. Characters 145 to 159 are overstrike characters
(see the OVERSTRIKE attribute to the /TERMINAL argument for the FSET instruction in the
V+ Language Reference Guide). Values 1 to 31 are also given special meaning in the
extended Adept character set when they are output to a graphics window with the GTYPE
instruction.

NOTE:The full character set is defined for font #1 only. Fonts #2 (medium font), #3
(large font), and#4 (small font) have defined characters for ASCII values 0 and 32 - 127.
Fonts #5 and#6 have standard English characters for ASCII values 0 and 32 - 135 while
ASCII 136 - 235 are Katakana and Hiragana characters. Font #5 is standard size and font
#6 contains large characters. The last column in Adept Character Set shows the
Katakana and Hiragana characters. The Katakana characters are at ASCII 161 - 223. The
Hiragana characters are at ASCII 136 - 159 and 224 - 255.

The character sets listed in ASCII Control Values and Adept Character The sets are for use
with graphics-based systems only and do not apply to AdeptWindows PC.

Characters with values 0 to 31 and 127 (decimal) have the control meanings listed in the
following table when output to a serial line, an ASCII terminal, or the monitor window (with
TYPE, PROMPT, or WRITE instructions). In files exported to other text editors or transmitted
across serial lines, characters 0 to 31 are generally interpreted as having the specified control
meaning. The symbols shown for characters 0 to 31 and 127 in the table Adept Character
Set can be displayed only with the GTYPE instruction.

Characters in the extended Adept character set can be output using the $CHR function. For
example:

TYPE $CHR(229)

outputs the character å to the monitor window. The instruction:

GTYPE (glun) 50, 50, $CHR(229)

outputs the same character to the window open on logical unit glun.

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 357

Charac-
ter

Deci-
mal
Value

He-
x.
Val-
ue

Meaning of
Control
Character

NUL 000 00 Null

SOH 001 01 Start of
heading

STX 002 02 Start of text

ETX 003 03 End of text

EOT 004 04 End of
transmission

ENQ 005 05 Enquiry

ACK 006 06 Acknowledg-
ment

BEL 007 07 Bell

BS 008 08 Backspace

HT 009 09 Horizontal
tab

LF 010 0A Line feed

VT 011 0B Vertical tab

FF 012 0C Form feed

CR 013 0D Carriage
return

SO 014 0E Shift out

SI 015 0F Shift in

ASCII Control Values

Character Sets

V+Language User's Guide, v17.0

Page 358

Charac-
ter

Deci-
mal
Value

He-
x.
Val-
ue

Meaning of
Control
Character

DLE 016 10 Data link
escape

DC1 017 11 Direct control
1

DC2 018 12 Direct control
2

DC3 019 13 Direct control
3

DC4 020 14 Direct control
4

NAK 021 15 Negative
acknowledge

SYN 022 16 Synchronous
idle

ETB 023 17 End of
transmission
block

CAN 024 18 Cancel

EM 025 19 End of
medium

SUB 026 1A Substitute

ESC 027 1B Escape

FS 028 1C File separator

GS 029 1D Group
separator

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 359

Charac-
ter

Deci-
mal
Value

He-
x.
Val-
ue

Meaning of
Control
Character

RS 030 1E Record
separator

US 031 1F Unit
separator

DEL 127 7F Delete

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

000 00 cell
outline

001 01 diamond u not
defined

002 02 checkerbo-
ard

not
defined

003 03 HT
(Horizont-
al Tab)

H
T not

defined

004 04 FF (Form
Feed)

F
F not

defined

005 05 CR
(Carriage
Return)

C
R not

defined

006 06 LF (Line
Feed)

L
F not

defined

Adept Character Set

Character Sets

V+Language User's Guide, v17.0

Page 360

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

007 07 degree
symbol

o not
defined

008 08 plus/minu-
s

± not
defined

009 09 NL (New
line)

N
L not

defined

010 0A VT
(Vertical
Tab)

V
T not

defined

011 0B lower
right
corner

not
defined

012 0C upper
right
corner

not
defined

013 0D upper left
corner

not
defined

014 0E lower left
corner

not
defined

015 0F intersecti-
on

not
defined

016 10 scan line
3

- not
defined

017 11 scan line
6

- not
defined

018 12 scan line
9

- not
defined

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 361

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

019 13 scan line
12

- not
defined

020 14 scan line
15

- not
defined

021 15 left T-bar not
defined

022 16 right T-
bar

not
defined

023 17 bottom T-
bar

not
defined

024 18 top T-bar not
defined

025 19 vertical
bar

| not
defined

026 1A less than
or equal
to

≤ not
defined

027 1B greater
than or
equal to

≥ not
defined

028 1C pi
(lowercas-
e)

π not
defined

029 1D not equal
to

≠ not
defined

030 1E sterling £ not
defined

Character Sets

V+Language User's Guide, v17.0

Page 362

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

031 1F centered
dot

· not
defined

032 20 space not
defined

033 21 exclamati-
on

! !

034 22 double
quote

" "

035 23 pound # #

036 24 dollar sign $ $

037 25 percent % %

038 26 ampersan-
d

& &

039 27 single
quote

' '

040 28 open
paren

((

041 29 close
paren

))

042 2A asterisk * *

043 2B plus + +

044 2C comma , ,

045 2D hyphen - -

046 2E period . .

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 363

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

047 2F slash / /

048 30 zero 0 0

049 31 one 1 1

050 32 two 2 2

051 33 three 3 3

052 34 four 4 4

053 35 five 5 5

054 36 six 6 6

055 37 seven 7 7

056 38 eight 8 8

057 39 nine 9 9

058 3A colon : :

059 3B semicolon ; ;

060 3C less than < <

061 3D equal to = =

062 3E greater
than

> >

063 3F question ? ?

064 40 at @ @

065 41 A A A

Character Sets

V+Language User's Guide, v17.0

Page 364

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

066 42 B B B

067 43 C C C

068 44 D D D

069 45 E E E

070 46 F F F

071 47 G G G

072 48 H H H

073 49 I I I

074 4A J J J

075 4B K K K

076 4C L L L

077 4D M M M

078 4E N N N

079 4F O O O

080 50 P P P

081 51 Q Q Q

082 52 R R R

083 53 S S S

084 54 T T T

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 365

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

085 55 U U U

086 56 V V V

087 57 W W W

088 58 X X X

089 59 Y Y Y

090 5A Z Z Z

091 5B left
bracket

[[

092 5C back slash \ \

093 5D right
bracket

]]

094 5E circumflex
(caret)

^ ^

095 5F underscor-
e

_ _

096 60 grave
accent

097 61 a a a

098 62 b b b

099 63 c c c

100 64 d d d

101 65 e e e

Character Sets

V+Language User's Guide, v17.0

Page 366

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

102 66 f f f

103 67 g g g

104 68 h h h

105 69 i i i

106 6A j j j

107 6B k k k

108 6C l l l

109 6D m m m

110 6E n n n

111 6F o o o

112 70 p p p

113 71 q q q

114 72 r r r

115 73 s s s

116 74 t t t

117 75 u v u

118 76 v v v

119 77 w w w

120 78 x x x

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 367

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

121 79 y y y

122 7A z z z

123 7B right
brace

} {

124 7C bar | |

125 7D left brace } }

126 7E tilde ~ ~

127 7F solid

128 80 copyright © ©

129 81 registered
trademar-
k

® ®

130 82 trademar-
k

TM TM

131 83 bullet ·

132 84 superscrip-
t +

+

133 85 double
quote
(modified)

"

134 86 checkmar-
k

135 87 right-
pointing

Character Sets

V+Language User's Guide, v17.0

Page 368

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

triangle

136 88 approxim-
ately
equal
symbol

≈ ≈

137 89 OE
ligature

a

138 8A oe
ligature

i

139 8B beta ß u

140 8C Sigma Σ e

141 8D Omega Ω o

142 8E blank ya

143 8F blank yu

144 90 dotless i ı yo

145 91 grave
accent

Dbl
next
conson-
ant

146 92 acute
accent

-

147 93 circumflex A

148 94 tilde I

149 95 macron ¯ U

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 369

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

150 96 breve ˘ E

151 97 dot accent ˙ O

152 98 dieresis ¨ KA

153 99 blank KI

154 9A ring ˚ KU

155 9B cedilla ¸ KE

156 9C blank KO

157 9D hungaru-
mlaut

˝ SA

158 9E ogonek ˛ SHI

159 9F caron ˇ SU

160 A0 blank Yen
symbol

161 A1 inverted
exclamati-
on point

¡ Closed
circle

162 A2 cent ¢ Start
quote

163 A3 sterling £ End
quote

164 A4 currency ¤ Comma

165 A5 yen ¥ End
sentenc-

Character Sets

V+Language User's Guide, v17.0

Page 370

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

e

166 A6 broken
bar

¦ o

167 A7 section § a

168 A8 dieresis ¨ i

169 A9 copyright © u

170 AA feminine
ordinal

ª e

171 AB left
guillemot

« o

172 AC logical not ¬ ¬ya

173 AD en dash - yu

174 AE registered ® yo

175 AF macron ¯ Dbl
next
conson-
ant

176 B0 degree ° -

177 B1 plus/minu-
s

± A

178 B2 superscrip-
t 2

² I

179 B3 superscrip-
t 3

³ U

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 371

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

180 B4 acute
accent

´ E

181 B5 mu µ O

182 B6 paragraph ¶ KA

183 B7 centered
dot

· KI

184 B8 cedilla ¸ KU

185 B9 ¹ 1 KE

186 BA masculine
ordinal

º KO

187 BB right
guillemot

» SA

188 BC 1/4 ¼ SHI

189 BD 1/2 ½ SU

190 BE 3/4 ¾ SE

191 BF inverted
question
mark

¿ SO

192 C0 A grave À TA

193 C1 A acute Á CHI

194 C2 A
circumflex

Â TSU

195 C3 A tilde Ã TE

Character Sets

V+Language User's Guide, v17.0

Page 372

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

196 C4 A dieresis Ä TO

197 C5 A ring Å NA

198 C6 AE
ligature

Æ NI

199 C7 C cedilla Ç NU

200 C8 E grave È NE

201 C9 E acute É NO

202 CA E
circumflex

Ê HA

203 CB E dieresis Ë HI

204 CC I grave Ì FU

205 CD I acute Í HE

206 CE I
circumflex

Î HO

207 CF I dieresis Ï MA

208 D0 Eth Ð MI

209 D1 N tilde Ñ MU

210 D2 O grave Ò ME

211 D3 O acute Ó MO

212 D4 O
circumflex

Ô YA

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 373

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

213 D5 O tilde Õ YU

214 D6 O dieresis Ö YO

215 D7 multiply × RA

216 D8 O slash Ø RI

217 D9 U grave Ù RU

218 DA U acute Ú RE

219 DB U
circumflex

Û RO

220 DC U dieresis Ü WA

221 DD Y acute Ý N

222 DE Thorn Þ Voiced
conson-
ant

223 DF German
double s

ß Voiced
conson-
ant-P

224 E0 a grave à SE

225 E1 a acute á SO

226 E2 a
circumflex

â TA

227 E3 a tilde ã CHI

228 E4 a dieresis ä TSU

Character Sets

V+Language User's Guide, v17.0

Page 374

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

229 E5 a ring å TE

230 E6 ae
ligature

æ TO

231 E7 c cedilla ç NA

232 E8 e grave è NI

233 E9 e acute é NU

234 EA e
circumflex

ê NE

235 EB e dieresis ë NO

236 EC i grave ì HA

237 ED i acute í HI

238 EE i
circumflex

î FU

239 EF i dieresis ï HE

240 F0 eth ð HO

241 F1 n tilde ñ MA

242 F2 o grave ò MI

243 F3 o acute ó MU

244 F4 o
circumflex

ô ME

245 F5 o tilde õ MO

Character Sets

(Undefined variable: Primary.Product_Name_V)Language User's Guide, version
17.x

Page 375

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

246 F6 o dieresis ö YA

247 F7 divide ÷ YU

248 F8 o slash ø YO

249 F9 u grave ù RA

250 FA u acute ú RI

251 FB u
circumflex

û RU

252 FC u dieresis ü RE

253 FD y acute ý RO

254 FE thorn þ WA

255 FF y dieresis ÿ N

Character Sets

V+Language User's Guide, v17.0

Page 376

	V+ Language User's Guide Introduction
	Introduction to the V+ Language User's Guide
	Compatibility
	Manual Overview
	V+ Release Notes
	Related Publications
	Dangers, Warnings, Cautions, and Notes
	Safety
	Notations and Conventions
	Output Control Commands
	How Can I Get Help?

	Programming V+
	Creating a Program
	The SEE Editor Environments
	Other V+ Programming Environments
	Using the SEE Editor
	V+ Program Types
	Format of Programs
	Executing Programs
	Program Stacks
	Flow of Program Execution
	Subroutines
	Scheduling of Program Execution Tasks
	Default Task Configuration

	The SEE Editor and Debugger
	Basic SEE Editor Operations
	Sample Editing Session
	The Program Debugger

	Data Types and Operators
	Introduction
	String Data Type
	Real and Integer Data Types
	Location Data Types
	Arrays
	Variable Classes
	Operators
	String Operator
	Order of Evaluation

	Program Control
	Introduction
	Unconditional Branch Instructions
	Program Interrupt Instructions
	Logical (Boolean) Expressions
	Conditional Branching Instructions
	Looping Structures
	Summary of Program Control Keywords
	Controlling Programs in Multiple CPU Systems

	Functions
	Using Functions
	String-Related Functions
	Location, Motion, and External Encoder Functions
	Numeric Value Functions
	Logical Functions
	System Control Functions

	Switches and Parameters
	Introduction
	Parameters
	Switches

	Motion Control Operations
	Introduction
	Location Variables
	Creating and Altering Location Variables
	Motion Control Instructions
	Tool Transformations
	Summary of Motion Keywords

	Input/Output Operations
	Terminal I/O
	Digital I/O
	Pendant I/O
	Analog I/O
	Serial and Disk I/O Basics
	Disk I/O
	Advanced Disk Operations
	Serial Line I/O
	DDCMP Communication Protocol
	Kermit Communication Protocol
	DeviceNet
	Summary of I/O Operations

	Graphics Programming
	Creating Windows
	Monitoring Events
	Building a Menu Structure
	Creating Buttons
	Creating a Slide Bar
	Graphics Programming Considerations
	Communicating With the System Windows
	Additional Graphics Instructions

	Programming the MCP
	Introduction
	Writing to the Pendant Display
	Detecting User Input
	Controlling the Pendant
	Auto-Starting Programs With the MCP
	Programming Example: MCP Menu

	Programming the Adept T1/T2 Pendant
	Introduction
	Writing to the Pendant Display
	Detecting User Input
	Controlling the Pendant
	Auto-Starting Programs With the Pendant
	Programming Example: Pendant Menu

	Conveyor Tracking
	Introduction to Conveyor Tracking
	Installation
	Calibration
	Basic Programming Concepts
	Conveyor-Tracking Programming
	Sample Programs

	Multiprocessor Systems
	Introduction
	Requirements for Motion Systems
	Installing Processor Boards
	Customizing Processor Workloads
	Using Multiple V+ Systems
	Restrictions With Multiprocessor Systems

	Example V+ Programs
	Introduction
	Pick and Place
	Menu Program
	Teaching Locations With the MCP
	Defining a Tool Transformation

	External Encoder Device
	Introduction
	Parameters
	Device Setup
	Reading Device Data

	Character Sets

