(@A
AVIDwirelesse

AVIDdirector-M2M"

Technical Reference Guide

Table of Contents

AVIDdirector-M2M™ Technical REFEIENCE GUITEccoeii oo 3
1OV VT TP P PPTTPTTTTPPTPTTN 3
[T LU £ TP PPPPPIN 3
[F T Lo = TE I BT T | o DR TRSUPPPPPIN 5
WatchDog Timer TECHNICAl NOTES ...ttt e e e e e e et e e e e e e e e eabba e e aaaaaenes 9
M2M Application Framework SOftWare DESIGNuuuuiiii ittt e e e e eeaab e e aaaeees 12
The ConfIQUIALION FIlES. ... e et e et e e e e e e e e e e e tb b e e e e e e e e eabbaa e eaas 20

Appendix 1 — AVIDdirector Model 100 (see Appendix 9 for Model 200) Pin and I/O Definitions 29
External Connector Pin DEfINITIONS.cuiiiiiiiiiiiiiiii 29
Debug / EXPANSION CONNECLONuieiiiieiitii e e ettt e e et e e ettt e e e et e e eebbb e e e e e e e eetbba s e e aaaeeeenbbnn s aaaaaaaenes 30
[R¥=To [[o M @fo] o =T oi (o] UURR PP PP PP PPPPPPPPPPPP 31

Appendix 2 - AVIDdirector-M2M Digital and Serial I/O SChematiCS..........oooiiiiiiiiii e 32

Appendix 4 — Sample M2Mlet for SIMulation BOArd..............oiiiiiiiiiiii et 36

Appendix 5 - M2MXML TM Version 1.0 SPECIfICAION...........uiii it eaeeeees 43

Appendix 6 — Sample M2MApP.ini Configuration File.............ooo e 43

Appendix 7 — Upgrading the M2M Java FIMMWETEc.uuuuiiiiaii ettt e e e e eetbb e e aaaaeees 46

Appendix 8 — Reprogramming the PSOC FIMMWATIEc.uuuuiiiiaiiieiiiii ettt e e e e eeebba e e e aaaeees 48

Appendix 9 — Model 200 TTL Ports and DB-37 Expansion I/O CONNECLONccoveiiiiiiiiiiiieiieeeceeeiiiee e 50

Appendix 10 — AVIDAIreCtor JUMPET SEEHINGSuuuieeiiieiiiiia ettt e ettt e e e e e e ettt e e e e e e eesbba e aaaaaaeees 54

March 13, 2009 AVIDWireless Confidential Page 2 of 55

AVIDdirector-M2M™ Technical Reference Guide

AVIDdirector-M2M™ Technical Reference Guide

Overview

AVIDdirector-M2M is a dedicated wireless telemetry communication device that is capable of being installed in
an industrial environment, to provide communications with a variety of equipment. AVIDdirector-M2M is
designed to operate over any carrier's network through different replaceable radio cards. AVIDdirector-M2M is a
ruggedized alternative to handheld wireless devices that can easily be broken, lost or stolen. AVIDdirector-M2M
is capable of expanding your telemetry applications by assembling a collection of wireless modems, ruggedized
computers and sensor input / outPut boards. To simplify the M2M communications and collection features,
AVIDdirector-M2M uses M2MXML" to interface directly with backend systems and web portals. Each device is
supplied with our M2M Application Framework software that allows a user to implement a wireless solution
directly with your current machinery or sensors without writing embedded software applications on the device.

Figure 1. AVIDdirector-M2M

Features
The principle features of this device are:

1. Uses the Imsys Technologies2 Cjip Java processor. This processor directly executes Java op-codes as
its native machine instruction set without the need for an interpreter or Java to machine code compiler.
This means the executable program size is very small (Java class files are often only 1-4K in size) and
the performance is equivalent to desktop machines.

2. A Sun certified J2ME CLDC environment with extension for serial and parallel device I/O and control. It
supports the connection framework along with PPP, javax.comm serial APIs, watchdog timers and other
enhancements. Up to 128 different threads may be simultaneously executing.

3. It provides bi-directionally communication over any carrier’'s network using approved and commercially
available modem modules.

! See Appendix 5 and http://www.m2mxml.org for further details and specifications.
% See http://www.imsystech.com for further details on the Cjip and SNAP system

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 3 of 55

http://www.m2mxml.org
http://www.imsystech.com

AVIDdirector-M2M™ Technical Reference Guide

4,

10.

11.
12.

13.

14.

15.

16.

17.

18.
19.

20.
21.
22.

8 MB of Flash memory for program and persistent data storage, and 8 MB of DRAM memory. Of the 8
MB RAM, up to 6 MB is used for the Java heap, though up to 7 MB may be allocated. Java executables
may be any size up to the amount of RAM or Flash installed.

Comes with the M2M Application Framework (M2MApp) preinstalled to implement on-terminal behaviors
as configured by an M2MXML portal. This allows the user to configure each I/O pin and port’s function
and tie it to a device specified by a web portal or other M2MXML server. M2MApp has the concept of an
M2Mlet for the user application and dynamically loadable device 1/O drivers.

Internal debug / console connector. This allows connecting both an Imsys Developer hardware
debugging pod and a serial terminal console port. The debugging pod provides single step execution,
breakpoints (at either the Java statement or op-code level), data inspection and program download.

A “Unix-like” USB console terminal application for development and debugging. This supports most
common Unix and DOS commands along with special command for program loading and transfer.

Four high voltage / current (HVC) digital input / output ports. These are designed to control relays and
other industrial automation control systems. These ports will operate at up to 18 VDC at 250 mA or
provide open collector outputs capable of sinking at least 400 mA. They are over voltage and current
protected. Normal operation is 80-180 mA.

22 TTL level (0 to 5 VDC) digital input / output ports. These are designed to control or interface with
other electronic equipment. They can source 8 mA and sink 25 mA. Configurable as 8 Analog (4 Analog
In/Out and 4 Analog In) all are capable of Digital In/Out.

Analog input capability to measure input voltages levels up to 10 readings per second. Two of the High
Voltage/Current ports can measure input voltages up to 24 VDC with 12-bit accuracy and the TTL1 to
TTL4 ports can measure input voltages up to 5 VDC with up to 14-bit accuracy, and TTL5, TTL6 can be
configured for 12 bit readings. These may be programmed for higher speed and/or more precise
readings if required.

7 RS-232 lines on DB-9 and DB-37, supporting 1 or 2 serial connections

Two of the TTL (1 and 2 See Model 200 TTL Ports and DB-37 Expansion I/O Connector diagram for
complete pin-out descriptions) pins can provide Analog output, driving 25 mA maximum.

The TTL5 and TTL6 lines may be switched to support connection with external I°C devices.

An external RS232 serial I/O port for bi-directional communication with the target equipment, including
hardware flow control on CTS, RTS, DTR and DTE. +5V is available on this connector to directly power
devices such as GPS, RFID, Barcode and Fingerprint readers.

An external TTL level (0 to 5 VDC) serial I/O port for bi-directional communication with target equipment,
including hardware flow control on CTS and RTS. +5V is also supplies on this connector. These lines
(RX2, TX2, CTS2, RTS2) many be directly controlled as four additional general purpose Digital 1/O lines,
or Analog input or output (RX2, TX2).

Supports extended operation on battery power by providing a low power or “sleep” mode where most
terminal functions are powered off, but the low power mode can be terminated at a pre-set time or by
pre-set activity on one of the two digital input ports.

Allows terminal software firmware upgrades by downloading new software over the serial port. A
Windows client can be provided for this task.

Real-time clock and calendar with battery backup.

Packaged in a fully enclosed case 4.5” x 3.5” x 1.5” with standard industrial connectors for external
antenna (SMA), externally provided 12 volt power, and serial/digital/analog 1/O using standard
connectors. The case will provide a mechanism for mounting using either extra mounting flanges or
bolts.

Two status LEDs; one to indicate application behavior and the second for radio communications status.
128 bytes of EEPROM storage for device configuration parameters.

Low noise linear regulators that do not to interfere with distant radio signals and are monitored by a
temperature sensor to prevent overheating.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 4 of 55

AVIDdirector-M2M™ Technical Reference Guide

Hardware Design

The device contains two processors: an Imsys Cjip Java processor and a Cypress Microsystems PSoC (System
On a Chip). The Cjip handles the application and network functions and the PSoC the hardware interfacing.

A block diagram of the system is as shown:

g o
Seriall | g 22 Radio Application System
RS-232 Qo [= Status Status Status
6 Lines e
=5 OO SO
DB-9 [O & ‘ ‘
Serial0 /I - >
USB \|] -
Seriall RS-232 O
(6 Lines)
Serial0 TTL O
{3 Lines) / 1\
N ™ | O2C | InterProcessor
] T2 | O— _fj:,_l_ Communications Imsys
@ Bus Ciip
£ M3 | O+ C—m G1000
O Java Processor
= TTL4 O_ _’I’ Cypress
=] I
= TTL5- H pSOC
E = : CYBC29866 . .
TTL20 | O /0 Processor | Serial0 TTL (3 wire)
|
WS 2t [ot — S JTAG / Debug
g S TTL22 O+ C—o Sensor
I~ w| E
Ly | =
: TTL23 | O —— g
@ 5 EEPROM 2
odx—1| :
1’c | FPcBus E
oK Lo Serial Ports RDO2 ¢
Sround | G | Serial Ports RDO1, 3, 4 i
Vrail/ & 1
Vsupply O Sllfse'::r:;r ~ - - - | Radio Card Connector |- - - _
J1 5V i J | RDOA .]
! Radio 1 : T
y i GPRSICOMA |
nsert Jumper JP1 to suppl
either Vsupply ar +5VDCJ o 3.3V : Bluetooth/802.11 :
to the Bcpansion Connector JP1 ; T i ;
' | g5 € 8[" Radio 2 ' T
, |286 Bluetooth/202.11
Vsupply O \?:It::e 3'3:;,:233#‘ v g . ZigBee/ISI |
7-28VDC Regulator Regulator 2 o . 3
Ground (}—I : § GPS _Oj
LT ! GPS&XPORT '
: Share Serial !
. ™ ' Plort XPORT E
AVIDdirector-M2M '
Model 200 i Universal Radio Board (URB)

Figure 2 AVIDdirector-M2M Architecture

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 5 of 55

AVIDdirector-M2M™ Technical Reference Guide

The Imsys Cjip processor is unique in that it implements the Java instruction set as its native machine code,
avoiding the performance penalty normally associated with Java interpreters and allowing real-time,
deterministic behavior needed by embedded applications. The processor includes IEEE 454 floating-point
acceleration. The Cjip processor offers far more functionality than traditional J2ME based devices by allowing:

a.
b.

Direct execution of Java op-codes without the overhead or performance penalty of an interpreter.

8 MB of RAM for application heap and data storage and 8 MB Flash persistent storage for programs
and data (this could be expanded in a custom design)

Simultaneous execution of multiple applications, each with multiple threads
Support for multiple network connections.

Support for both the J2ME CLDC and a subset of the J2SE APIs. This includes support for javax.comm,
network and direct hardware 1/O.

An internal debug connector to allow setting breakpoints, viewing registers and single stepping through
code execution on the device.

The Cjip is responsible for running the M2Mapplication Framework, communicating over the wireless network,
telemetry data storage and management, system startup, logging and monitoring. From the developer’s
perspective it is the prefect processor for this device.

The Cypress PSoC is designed to handle all hardware interfacing, including digital, analog or serial data. Its
unique architecture includes reconfigurable digital and analog hardware blocks that can be internally connected
to perform functions and logic normally requiring many external hardware devices. For example, it can be
configured to provide DTMF tone dialing, infrared signaling, motor control and magnetic card strip reading. It
provides the ideal I/O processor for an M2M device since it can be adapted to almost any sensor or control
application.

Tech Notes:

The two processor on the main CPU board: the Imsys Java application processor and the Cypress PSoC 1/O
processor. The power (current) needs of the AVIDdirector main CPU board itself are:

Normal mode, executing code, reading from Flash, Green System and Radio LEDs ON around 145ma
(could peak 160ma).

Normal mode, processing: 85ma to 130 ma.

Idling (no active processing): about 65 ma.

Imsys in Sleep mode, all LEDs and RS-232 off: 41ma.

Imsys and PSoC in Sleep mode, all LEDs and RS-232 off: 22ma.

Deep sleep mode. Imsys turned off (3.3V turned off) and PSoC in timed sleep mode (30 second
increments). 5ma.

This is the power consumption of just the main CPU board. The radio board, when turned off, adds about 1-3
ma due to leakage current in the power control FETs. When the radios are turned on their power needs are
around (average values):

GPRS (MultiTech MTSMC-G): Idle 15ma, Data active .5W 280ma (average) 2W 420ma (average) TX
1.2A (peak)

EDGE (MultiTech MTSMC-E): Idle 28ma, Data active 1W 280ma (average) 2W 400ma (average), TX
1.5A (peak)

CDMA (MultiTech MTSMC-C): Idle 20ma, Data active 445ma (average) Full power 770 ma

iDEN (Motorola i0270): Idle 20ma, RX Slot 85ma, TX Slot 1.2A GPS 50ma

Iridium (Quake Q9612): Idle/Receive 50ma, TX 400-650ma

WiFi (MultiTech MT800SWM): Idle 80ma, Active 240ma

BlueTooth (MultiTech MTS2BTSMI): Idle 2ma, Active 7ma, Discovery 70ma, Data Transmission
45ma

XPORT: Ethernet 240ma

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 6 of 55

AVIDdirector-M2M™ Technical Reference Guide

GPS: Sony 85ma, US GlobalSat 75ma

We have seen with the GPRS and CDMA radios connected and turned on but without an active data connection
they add an average of 40 to 60 ma to the normal standby current drain of the AVIDdirector (i.e. Idling current is
about 105-125 ma for a GPRS radio with a data connection but no data transfer).

The Cypress CY8C29866 is the top model in the Cypress product line, operating at 24 Mhz. with 32K of Flash
and 2K of RAM. It supports:

§ 16 digital PSoC blocks provide:
0 8-to 32-Bit Timers, Counters, and PWMs
0 CRC and PRS Modules

0o 8 Communications Blocks to provide up to 4 Full-Duplex UARTs. Each block may be either a
serial receiver or transmitter. The 8 blocks are used to provide 4 full duplex serial channels.
These serial channels may be assigned to almost any digital I/O pin as required; for example,
TTL3 and TTL4 may be used for Serial2.

Multiple SPI™ Masters or Slaves

25 mA Sink on all GPIO, Pull up, Pull down, High Z, Strong, or Open Drain Drive Modes on all
GPIO

§ 12 Rail-to-Rail Analog PSoC Blocks Provide:
o Upto 12 analog inputs on GPIO
o Four 40 mA analog outputs on GPIO
o Upto 14-Bit ADCs
0
0

o O

Up to 9-Bit DACs
Programmable Gain Amplifiers
o Programmable Filters and Comparators

Complex peripherals may be constructed in software by combining blocks together. The Cypress Microsystems
web site has designs featuring modems, magnetic strip readers, 1-wire communicators and other complex
mixed mode devices largely implemented in the PSoC’s software. The AVIDdirector-M2M API provides the
ability to download partial Flash updates to the PSoC for implementation of user written peripherals.

The processors communicate over a high-speed 8-bit data bus. The M2M application developer never interfaces
directly with the PSoC processor; all its hardware interfacing is controlled via a Java API on the Cjip processor.
The PSoC is connected to the Cjip’s interrupt system allowing it to notify the Java processor of a particular
hardware event, such as a new data or a change in a reading level. The PSoC can be programmed by either
the Cjip (allowing for firmware updates in the field for added capability) or by the debug header on the board.
This device is designed to support all common interface needs because M2M devices need to operate with a
wide range of interfaces. Specifically:

a. Parallel digital input and output, such as used for relays, switches, sensors, trip points, motors and other
hardware devices

These are used both to turn a device on and off and to sense if the device/sensor is on or off. The
device supports 6 TTL (0-5V) level lines and 4 high voltage/current (HVC) (20 VDC, 200 mA) ports. The
user connects to the device using commonly available Phoenix connectors that plug into the telemetry
device. Phoenix supplies connectors with a variety of contact types, including screw down, wire
displacement, spring latch and crimp connectors. This flexibility will allow the user to choose which
connector best suits their application and to easily reuse the device for other applications.

TTL levels are used in newer devices or interfacing with other electronic circuitry, along with custom
electronic devices. These lines are protected by re-settable fuses to prevent over current and can
withstand a minimum of 2KV static discharge (ESD).

The high current interface section is designed for industrial automation control of relays, motors and
other electromechanical devices. It includes protection against damage due to the higher power levels

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 7 of 55

AVIDdirector-M2M™ Technical Reference Guide

involved and transient voltages from motors or relays. The PSoC processor allows the outputs to be
configured as either active source/active sink, or having the source and sink operate independently.

HVC devices are powered by either the main device supply voltage, (Vsupply — 16 VDC max) or
external voltage (Vrail) of no more than 30 VDC. This determines the maximum voltage, which can be
supplied or controlled (synced). An internal jumper (JP1) is normally installed to supply Vsupply power
to pin 12 of the I/O connector and the HVC devices. Removing it allows a higher voltage to be
connected to pin 12 and supply Vrail to the HVC components.

It is very important that Jumper settings are correct before an external voltage is supplied to
Vrail (Pin 12) Please review Jumper settings in Appendix 10 before proceeding!

b. Analog input to measure voltage levels on a particular line

Where the digital inputs have only two values (on(1) and off(0)) this allows reading the level in 4096
steps (12 bits). On the TTL1 to TTL4 and RX2, TX2, CTS2, RTS2 inputs this allows reading a signal
from O to +5VDC in 1.2mV steps, and on the HVC1, HVC2 inputs, up to 24VDC (assuming Vrail is 30
VDC) in 7.4mV steps.

c. Analog output signals

This is designed to generate a precise voltage on the output, an example being to control a DC motor or
light intensity. These outputs also occur in 62 steps (default setting). The PSoC processor is capable of
driving 40 mA analog output but the protection fuses will limit this to 25 mA. Analog output is available
on the ports TTL1, TTL2, RX2, TX2.

d. Serial communication.

This is needed to communicate to a variety of devices, including other radios, GPS, X-10 automation
units, security systems, industrial PLC control systems and medical devices. Serial communication
commonly uses either RS-232 levels (+/- 3 to 25 VDC) or TTL (0 to +5 VDC). The device has a serial
port dedicated to each interface. The RS-232 interface uses the common DB-9 female connector (as
used on PCs) and the TTL interface uses a RJ-12 connection (commonly available for phone systems).
The RJ-12 connector also has +5VDC and ground on the innermost pins, allowing it to power a small
devices (such as a RS-232 to TTL daughterboard or GPS) and on the DB-9 pin 9 supplies +5VDC at
250 ma to power external devices.

There are two status lights, both containing two color LEDs, capable of displaying one of three colors (e.g. Red,
Green and Orange (Red+Green)). The first light is use to indicate system or application status. It will normally
be a off unless a sensor action or reading is in progress, at which time it will be a Red color for sending out
messages and Green for processing received commands. If an error occurs in the system the LED will flash
Orange to indicate the error condition. During system initialization and boot up the LED will flash Red to indicate
progress. The second light is used to indicate radio status. When the radio is in range, the light will be Green
and flash Red for transmit. If the radio is out of range it can display an alternating Red and Orange color (1
second each), not authorized by the carrier (3 seconds Orange), and if the radio is turned off, the LED display
will be off.

Power Supply Design

The telemetry terminal is designed to operate within a vehicle, device (e.g. vending machine) or from batteries
or an external power supply. It features a fault tolerant voltage regulator design to withstand voltage spikes,
load dumps and other hostile electrical environments. It operates with input power from 8 to 16 volts and will not
be damaged by higher voltages (it may shutdown or blow a fuse above 28 V) or if it is connected in reverse.
System power is provided using a Phoenix connector that latches to the device to ensure a secure lock.

The device uses only linear power supplies for the primary voltage regulation to ensure RF noise is not
generated that would affect the receivers. The board has a large heat sink area to provide thermal conduction of
the regulator’s heat.

Environment Design

The AVIDdirector-M2M'’s allowable operating temperature range is limited by the Wavenet Boomer modem that
has an operating temperature range of —20°C to +60°C (Extended temperature range). The Imsys Cjip, Cypress

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 8 of 55

AVIDdirector-M2M™ Technical Reference Guide

PSoC, RAM, Flash and all other components are available in Industrial temperature (—40°C to +85°C) versions,
which would allow the device to operate at these temperatures with a suitable modem.

The case is constructed from rugged polystyrene plastic. It is not water or dust tight but should not allow
contaminants to enter with normal use.

WatchDog Timer Technical Notes
Release: 1.6.0

A WatchDog timer (WDT) is used to monitor mission critical aspects of a computer system and determine if the
system is not operating correctly and take steps to put the computer back into a correct operating mode. AWDT
is often used in embedded systems to ensure the system continues to operate correctly regardless of any
system fault or if part of the hardware/software has stop working. A WatchDog typically requires the various
pieces it is monitoring to "check-in" or "pet the watch dog" at regular periods and if a program doesn't check in,
the WatchDog will try to restart the program, or restart the computer system so it can start from a known
condition.

The Java processor and Imsys Technologies has an internal WatchDog in the Java execution engine (or JVM)
and if the system stop executing the Java opcodes it will force a hardware reset of the system. This detects
hardware problems or a bug in the JVM, but it doesn't often detect application problems (loops, block threads, or
dead-lock conditions) since the JVM is executing correctly.

In release 1.6.0 of the AVIDdirector Application Framework (M2MApp) a separate Watch Dog thread is added
that monitors the multiple threads in M2MApp. If one of these threads stops responding then it will log the
thread, which has stopped responding and reset the AVIDdirector-M2M. The Watchdog timer is implemented in
the class com.avidwireless.avidirector.WatchDogTimer, which is part of the ADM2MLib.jar file and whose
source is located in AVIDirector-Software/Adlibrary/source/com/avidwireless/avidirector/WatchDogTimer.java. It
provides methods for a thread to register itself to be monitored, un-register itself and "pet" the watch dog (sorry
for the "Pet" references but they are hard to resist when describing a WatchDog). Specifically the common
methods are:

watchDogTimer.registerWwatchDogMonitoredltem(this,” ", 60000); // tell the dog to start watching and
check in every 60 seconds (60000 ms)

watchDogTimer.resetWatchDogTimer(this); /I pet the watch dog
watchDogTimer.removeMonitoredltem(this); /I remove from threads to check
watchDogTimer.startMonitoringltem(this); /I start monitoring again use old period
watchDogTimer.startMonitoringltem(this, 60000); /I start monitoring this again checking
every 60 seconds
watchDogTimer.stopMonitoringltem(this); /I stop checking

Unless a thread registered itself with the WatchDog is not monitored. Along with system threads, user written
Device drivers and M2Mlets can be registered with the WatchDog to be monitored.

The WatchDogTimer is implemented as a separate Java thread that is started with a defined periodic interval for
checking for dead threads. This is normally 60 seconds. The time period for the threads it monitors can be as
long as required, but the WatchDog will check on them every 60 seconds. This period can be made shorter but
then you have the risk of the WatchDog's processing time impacting the overall available processor time.

The WatchDogTimer is enabled by an entry in the M2MApp.ini file called "SYSTEM.WATCHDOG". The default
is "true" to have the WatchDog time run but it can be disabled by setting this entry to "false". When initialized,
the WatchDogTimer class first calls "SNAP.setWatchdogTimeout(period + MARGIN)". This enables the SNAP
JVM to check that the method call "SNAP.feedWatchdog()" is called by the WatchDogTimer at least once each
period time plus the MARGIN time. The MARGIN time is currently set to 30 seconds to prevent false WatchDog

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 9 of 55

AVIDdirector-M2M™ Technical Reference Guide

resets. If the WatchDogTimer thread doesn't call "SNAP.feedWatchdog()" then a hardware reset of the
AVIDirector is performed without a logging notification - this means that the WatchDogTimer cannot run and
the system will spontaneously reboot itself.

The WatchDogTimer maintains a list (Java Hashtable) of threads it is monitoring. Each thread must implement
the Java interface "WatchDogMonitoredClass" to identify that it will implement the WatchDogTimer contract.
Each period the WDT checks for the last time the WatchDogMonitoredClass thread checked in (by calling
"resetWatchDogTimer) to verify that it is greater than the contracted period set by
"registerWatchDogMonitoreditem”. If so, then the thread is deemed to have timed out and the WatchDogTimer
calls the AVIDirectorApp.fatalError method, which writes an entry to the system Log (and turns on writing the
Log to the file system if this is not enabled), writes a special entry to the file "/LastFatalError.log" and performs a
hardware reset by calling "Ish.reboot". AVIDirectorApp.fatalError(int errorCode, String errorMessage) is used in
multiple places whenever an object has detected a fatal error (e.g. a Radio class cannot establish a PPP
connection 5 times in a row) and the Object wants to log a fatal error and reset the system.

A WatchDogMonitoredClass can permanently remove itself from the WDT's list by calling
"watchDogTimer.removeMonitoreditem(WatchDogMonitoredClass this)". It will be no longer checked when it
does this and it must call registerwWatchDogMonitoredltem(WatchDogMonitoredClass this,String name, int
period) to register itself again. This is done if a thread is terminating and if it is run again then a new thread
instance is created. If a thread is running continuously in a loop but will be idle for an extended period of time, it
can temporarily turn off the WatchDog time from monitoring it by calling
"stopMonitoringltem(WatchDogMonitoredClass this)". The WDT will then ignore checking this class after this is
called. The WatchDogMonitoredClass thread needs to call "startMonitoringltem(WatchDogMonitoredClass this)"
to return to being checked by the WDT. There is a version of this call with the time period (in milliseconds) that
can be called if the thread wants to modify the time it is checked.

In M2MApp the items that are monitored are:

1. AVIDirectorApp - This is the main application thread for M2MApp. It handles the startup, normal operation
and shutdown of the system. When AVIDirectorApp starts one of the first things it does is to create the
WatchDogTimer instance with an internal polling time of 120 seconds. During the initial loading of classes, due
to the time to read from the serial Flash memory chip and uncompress the Jar files, extra time is allowed for the
WatchDog timer. Once the AVIDirectorApp has completed initializing all the I0Devices, Communicators and
Radios, it sets the WatchDogTimer to a 60 second polling time.

In AVIDirectorApp it performs a single continues loop consisting of:

a. Check for messages to send to the M2MXML Portal. If a messages exists it will use the Communicator
to send the messages. It adds the message to the Communicator's outbound queue and waits for an
acknowledgement from the M2MXML portal. If a message is sent out then the TXMessage timer is reset.

b. Check for incoming messages from the M2MXML portal. If it is waiting for an acknowledgement to a
send message that is check and if present, the sent message is marked as being sent correctly and the
next messages will be sent the next time the loop reaches (a). If it is not an acknowledgement but an
error message (e.g. the device is not registered with the M2MXML portal, this is logged and the message
is discarded. Otherwise the packet is parsed to see if it contains a valid M2MXML message, and if so, it is
then parsed and passed to the appropriate I0ODevice or M2Mlet. If a message is received, valid or not, the
RXMessage timer is reset.

c. Check if the available memory is low and perform a garbage collection.

If more than time specified by the M2MApp.ini M2MXML.MAX_NOCOMM_TIME parameter goes past with out a
TX or RX message, then a fatal error is reported. This time is longest you will expect your application to be
without communication to the M2MXML platform.

If the AVIDirectorApp doesn't check in with the WatchDogTimer every 60 seconds then the WDT will flag this
set.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 10 of 55

AVIDdirector-M2M™ Technical Reference Guide

2. Communicator. A Communicator is instantiated for each Radio class in the system. It performs the
interface between the M2MXML packets the calling the appropriate method for the radio to send and receive
messages. When a message is sent, the Communicator ensures the Radio has sent the message correctly or
tracks retry attempts by the Radio. Each Communicator has a queue of 25 outgoing and incoming messages. If
this queue becomes full then either the AVIDirectorApp isn't handling the messages correctly or the Radio
cannot send out the messages and a fatal Error condition is raised. This thread is monitored every 120 seconds
to allow for a long retry time for a Radio. If the Radio doesn't respond, or is hung, or the serial communication
dies, then the Communicator thread won't update the WDT and will trigger a fault condition.

3. Radio. Within the Radio, there may be threads that need to be monitored. Not all Radios require this. For
example, in the AT_Radio_Modem class, the super class for all PPP type radios (GPRS, CDMA, iDEN, XPORT
Ethernet), when the PPP link thread is alive it is monitored. When the PPP thread dies at the end of
communication, then the thread is no longer monitored and removed the list of monitored threads. Each Radio
class also monitors its own state and will raise a Fatal Error when it cannot continue correctly. For example, if
the AT_Radio_Modem class cannot establish a PPP link 5 times in a row, or the modem doesn't respond to
commands, then it wants the device to be reset.

4. I0ODevice. This handles all the internal I/O Devices on AVIDirector-M2M (TTL, HVC lines) and additional
I/0 devices (RFID, GPS, etc.). Each I/O device is supposed to perform its operation in a minimal amount of
time, or it needs to start a thread to handle longer operations. The I/O Device drive will start to be monitored
when it starts an 1/0O operation and stop monitoring when the 1/O operation is complete. These operations should
take less than a second, but a 60 second window is currently set to allow for longer 1/O operations such as
reading an RFID tag or acquiring a GPS lock.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 11 of 55

AVIDdirector-M2M™ Technical Reference Guide

M2M Application Framework Software Design

AVIDdirector-M2M comes complete with AVIDWireless’ M2M Application Framework (M2MApp) to facilitate
rapid development and deployment of M2M and Telemetry applications. It provides far more power than the
J2ME Midlet environment since it provides most of the communication, device and system management
functions that a developer would normally have to write and test. When we use the term framework, we refer to
an object-oriented framework defined Ralph Johnson and Brian Foote® as: "A set of classes that embodies an
abstract design for solutions to a family of related problems". M2MApp will allow developers to generate
applications enabling higher productivity and shorter development time. The framework deals with the network
infrastructure that handles the communication between M2M device and M2MXML server, management of
sensors and 1/0O devices on the AVIDdirector-M2M and provides an applications interface for fast and easy
development.

The overall view of how the AVIDdirector-M2M, M2MXML and the M2MXML portal fit together is:

|p:" =8

AVIDirector-M2M

=tal

@,

M2MXML B
Server & M2MXML F_ i,
Web Portal

Devices to Control and
Sensors to Monitor

AVIDdirector-M2M device performs the actual control and monitoring of remote devices and sensors. They can
be programmed to do this either by:

§ M2MXML. M2MXML provides a robust, extensible language to specify both direct remote control of the
M2M devices and also on-board intelligent behavior. This allows a M2MXML Server to automatically
configure AVIDdirector-M2M devices to the particular device or situation and perform complex tasks
without writing a custom application on the device. The M2MXML Server can be written in any language
(.NET, Java, PHP) since the sole specification and interface between the AVIDdirector-M2M device and
the Server is the M2MXML specification“.

§ Writing a custom M2Mlet. M2Mlets are small applications that handle the direct control and monitoring
of devices and performing operations either too complex for M2MXML or on-device behaviors which are

% See http://st-www.cs.uiuc.edu/users/johnson/frameworks.html for links to other frameworks

* See Appendix 5 and http://www.m2mxml.org for further details and specifications.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 12 of 55

http://st-www.cs.uiuc.edu/users/johnson/frameworks.html
http://www.m2mxml.org

AVIDdirector-M2M™ Technical Reference Guide

currently not implemented via the existing M2MApp. A developer needs to program in Java and will
need a basic understanding of the M2MApp APIs in order to write an M2Mlet.

M2MApp is the main program running on the device. It controls the execution of the I0Devices, the
communication devices (Radios), any user written application (M2Mlet), parsing and generation of M2MXML
messages to and from the M2MXML server / portal. This is an extensible framework that can be easily adapted
to each customer’s unigue device and control application without having to make changes to the framework’s
infrastructure. Since M2MApp handles all the communications, input and output control, message passing and
error control, users can develop M2Mapplications in a fraction of the time it would take them if they had to
design and implement the protocols, communications mechanisms, M2MXML parsing and device drivers.
M2MApp is written in Java and uses the Java concepts of dynamical class loading, inheritance, interfaces and
method overriding to implement its functionality.

The M2MApp is designed as follows:

ey
IDDenice

Coaranand@Pnoces s

E

_____ - - = = ormEmunicaion ADH M

User Applicatian I (S'F'RF:'H'EE'JET]
|

pr—

BRI21E_Seral
LCD

MNP arser

Crdipud

TiITIEE!!'I:

[-Sel.'tnnflgurallm]

Key concepts and features of the M2M Application Framework are:

M2Mlet

If a custom user application is required, the developer writes a “M2Mlet”, similar to a Midlet in J2ME
or an Appletin J2SE. An M2Mlet has start() and stop() methods that must be implemented in the
user application. If the program requires background processing it must start a Thread to perform
the processing until the stop() method is called. M2Mapp loads the user written M2Mlet specified in
the M2MApp.ini5 configuration file.

® See Appendix 6 “Sample M2MApp.ini Configuration File”

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 13 of 55

AVIDdirector-M2M™ Technical Reference Guide

Radio

The user M2Mlet inherits from the abstract class com.avidwireless.AVIDdirector.M2Mlet and
implements the start (AVIDdirectorMain adApp) and stop(). All M2MXML messages not addressed to a
particular transducer are directed towards the M2Mlet and methods corresponding to each
M2MXML message are called depending on the M2MXML message received. The user M2Mlet can
override each of these methods if they wish to. The methods are:

8 processControlCommand(ControlCommand message). The default action is to return a
Response.UNRECOGNIZED_COMMAND_RESULT_CODE message to the portal.

8 processConfigurationQuery(ConfigurationQuery message). This will return the value of any property
in the configuration file M2MApp.ini. For example, a query of “AVIDDIRECTOR.MODEL" will
return which AVIDdirector-M2M model this is (the normal response is “M2M”). There are special
predefined Queries that may be inquired that are not M2MApp.ini values. These are:

§ STATUS. This returns the software version, how long the M2MApp has been running, the
SNAP and PSoC version, radio type and last log message.

8 processSet Configuration(SetConfiguration nessage). If not overridden this will set the

specified property in the M2MApp.ini file and also invoke the method
processSet Configurationltem (String propertyNane, String ol dval ue, String

newval ue, String seqNun). The user M2Mlet will typically implement the
pr ocessSet Conf i gurati onl t em method to respond to specific property settings and update
any operation because of the property changes.

8 processFil eUpdat e(Fi | eUpdat e nessage). The default action is to return a
Response. UNRECOGNI ZED COMMVAND_RESULT_CODE message to the portal.

8 processPPPConfi g(PPPConfig nmessage). The default action is to return a
Response. UNRECOGNI ZED COMMVAND_RESULT_CODE message to the portal.

8 processReboot Command(Reboot Command nessage). This will send out the acknowledgement
and shutdown the M2MApp and reboot the processor once the confirmation message has been
sent to the portal.

8 processResponse(Response nessage). The default action is to return a
Response. UNRECOGNI ZED COMMVAND_RESULT_CODE message to the portal.

8 processTi neSync(Ti mneSync message). This updates the devices'’s real-time clock to the time
specified in the message.

Each message returns a String which is a M2MXML message to send back to the portal, which are
typically Command Response messages. If the M2Mlet needs to send a message separately to the
portal it can call app. sendMessageToPor t al (Stri ng) to send the M2MXML message to the portal
by placing the message in the outgoing message queue.

M2MApp manages the radio’s and the M2MXML packets sent and received over each radio. It
allows multiple radios to be dynamically loaded via the M2MApp. i ni file and switching between
which radio will be used for communications based on parameters such as least cost routing, signal
strength and geographical location.

Each radio class implements the ADRadio class that provides a standard interface to allow
M2MApp to control and work with each radio. This allows easy development of customer and
network specific radio devices. A “Radio” may be any device that M2MApp uses to communicate
with the M2MXML port, so an Ethernet port may also be a Radio. The

com avi dwi rel ess. radi 0. ADRadi o class specifies methods for:

§ start(AVIDdi rector Mai n mai nApp). Called with the Radio class is loaded, it initializes
powers up the Radio, resets it, initializes the Radio communications channel, establishes
contact with the network and any other items to make the radio ready to communicate.

§ stop(). Called when the system is shutting down, it disconnects the radio from the
communications channel and powers down the radio.

8 resetRadio(). Resets the radio hardware.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 14 of 55

AVIDdirector-M2M™ Technical Reference Guide

§

recei veDat aString(). This will return a String from the Radio, which is normally a M2MXML
string.

recei veDat aString(int timeout). Like receiveDataString() except it will return a null if it
times out without receiving a M2MXML string from the radio.

recei veDat aByt eArray(byte[] buffer, int offset, int Iength). Allows receiving
binary data from the radio.

recei veDat aByt eArray(byte[] buffer, int offset, int length, int timeout).
Receives binary data from the radio but will return no characters if it times out before data is
received.

sendDataString (String dataStr). Sends the specified string, which is normally a
M2MXML packat, to the Radio.

sendDat aByt eArray (byte[] buffer). Sends the binary array to the radio.

i sl nNet wor kCont act (). Returns true if the radio is in network contact, false if it is out of
network contact.

get Radi oNet wor kAddr ess() . Returns the radio’s current network address as a String. This
may be the MAN number, IP address or other network specific address.

There are other methods a Radio class must implement to be supported by M2MApp.

IODevices

The com avi dwi rel ess. AVI Ddi rect or. i odevi ce. | ODevi ce class provides the framework for all
I/0 devices. It defines methods to start and stop each device and handle transducer specific
messages addressed to the IODevice. Each IODevice has several important attributes:

§

DeviceName. This is a standard name for the device. If there are multiple devices of the same
type (e.g. RFID Readers) each has the same DeviceName.

KeyName. IODevice’s are uniquely specified by their KeyName. In the M2MApp.ini file each
IODevice class (except the standard M2M_1ODevices) are specified by a property
“keyname.CLASSNAME” with the fully qualified Java classname for the device specified for the
class. Each IODevice must have a unique KeyName, e.g. multiple devices of the same type will
have unique KeyNames. This allows the configuration properties to be separately specified for
each device, and the KeyName is the default M2MXML address for the device.

M2MXML_Address. Each I0Device may specify a M2MXML device different from the
KeyName. For example, when using the Simulator board TTL1 is addressed as TTL1.AIN to
distinguish this as an analog input transducer.

com.avidwireless.avidirector.iodevice.lODevice is the parent class for all I/O devices. The
configuration parameters it supports are implemented by each child IODevice if it makes sense for
the 10 device. If the IODevice is a serial device it will use the serial port parameters. Each
configuration parameter is appended to the device name in the M2MApp.ini/M2MApp.ini.default
files. So GPS.CLASSNAME has a device name and M2MXML address of "GPS".

IODevice

.CLASSNAME Specifies the Java class used to implement this device. The internal
M2M IODevices do not need this.

.LOAD For 10 Devices loaded via CLASSNAME, this needs to be set true to
load the I0Device. In M2MApp.ini this defaults to False for most 10
Devices. If not true for M2MIODEVICE then none of the internal
M2M IODevices (TTLn) will be loaded.

.ENABLE True to enable the 10 device, false to disable it operating. Mainly

used by the internal M2MIODevices

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 15 of 55

AVIDdirector-M2M™ Technical Reference Guide

.NUM_AVG_READINGS Number of reading to average over to get a reading

.M2MXML_ADDRESS The M2MXML address for this device. Defaults to the device name
(the prefix name before the .CLASSNAME.) This can be a comma
separated list of different M2MXML address this will respond to. The
first name is used when we send a percept reading.

.REPORT_AT Absolute time(s) as a set of comma delimited strings in the form of
"hhmmss" that we will report the readings. This calls the
getSensorReading method for the 10 Device (not used for M2M 10
Devices. Use ABSOLUTE_REPORT_TIME and
PERIODIC_REPORT_TIME

.POLLTIME Base time in milliseconds this device is polled at for readings.

.RDD_PWR_ON Turns power on to the Radio board. Needed for the GPS or other 10
Devices on the Radio board.

.SERIAL_PORT Name of the serial port to use. seriall, serial2, serial3. serialO can be
used if the serial server is disabled

.SERIAL_PORT_BAUD_RATE Baud rate for the serial port
.SERIAL_PORT_TIMEOUT Timeout parameter for serial communications

.MAPSERIALPORT Mapping of the physical serial port to one of the 16 hardware serial
connections.

In addition to the standard built-in input devices (which are supported by the M2M_IODevice class)
additional I0Devices classes are available for the following sensors and devices:

§

GPS_NMEA_ Receiver. The

com avi dwi rel ess. AVl Ddi r ect or . i odevi ce. GPS_NMEA_Recei ver class implements a GPS
receiver supporting the GLL, GGA, RMC and VTG NEMA formats. Parameters that may be set
via either the M2MApp.ini file or over the air using M2MXML Set Confi gur ati on portal
commands are:

§ KeyName.SERIAL_PORT = seriall

§ KeyName.SERIAL_PORT_BAUD_RATE = 4800
§ KeyName.SERIAL_PORT_TIMEOUT = seriall

§ KeyName.ENABLE = true

On the GPS device we have these configuration parameters above the ones from the parent
IODevice:

.CONTINUOUS truelfalse. If set true then this will continuously read the GPS data

looking for variations or changes. If false we will only read the GPS on
either the POLLTIME or FASTPOLLTIME. Default false

.SEND_TO_PORTAL truelfalse. Defaults to true to send the data to the portal

.REQUIRED Required NMEA strings to get a valid reading. Defaults to "GPGGA,

GPVTG" which will give is position, altitude, speed and direction

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 16 of 55

AVIDdirector-M2M™ Technical Reference Guide

.MATCH_TIMESTAMPS true|false. Defaults to false but if set true then the all NMEA sentences
must have the same time stamp or we won't send their data to the
portal. This ensures accurate GPS data for position, altitude, speed
and direction.

.UPDATE_RTC_TIME truelfalse. Defaults to true to update the AVIDdirector RTC with the
GPS timestamp.

.UPDATE_RTC_TIME_INTERVAL How often to ensure the AVIDdirector RTC is updated?
Defaults to once a day.

.MAX_ALLOW_GPS_RTC_DIFFERENCE Maximum time between the RTC and GPS time
before we reboot the system when updating the RTC. Defaults to 30
minutes. If the time correction is greater than this then we could lose
readings or not respond correctly.

.ENHANCED_GPS truelfalse. If set true the M2MXML includes altitude, speed and direction.
Defaults to false

.SPEED_UNITS Can be MPH for miles per hour, KPH for Kilometers per hour. If blank
defaults to Knots

.TRIGGER_FASTPOLL_SPEED If the speed is above this value we report readings at the
FASTPOLLTIME rate. If slows below this rate then the standard
POLLING rate.

.TRIGGER_FASTPOLL_METERS If the distance moved between GPS readings is more than
this distance in meters, we move to the FASTPOLLTIME rate. If below
then drops to standard polling rate.

.FASTPOLLTIME Time in milliseconds to report when we have exceeded the
TRIGGER_FASTPOLL_SPEED or TRIGGER_FASTPOLL_METERS

§ Sirit_ OEM400_RFIDReader. (Also - Sirit_ OEM200_RFIDReader) Class
com avi dwi rel ess. AVI Ddi r ect or. i odevi ce. Si rit _OEMA00_RFI DReader implements the
Sirit (see http://www.sirit.com) OEM-400 RFID reader for HF (13.5 Mhz) RFID tags and
com avi dwi rel ess. AVI Ddi r ect or. i odevi ce. Si rit _OEMA00_RFI DReader implements the
OEM-200 UHF reader. This allows reading the Tag ID and Data blocks, either as a String or
byte array, and writing the Data blocks as a String or byte array. Parameters that may be set via
either the M2MApp.ini file or over the air using M2MXML Set Conf i gur at i on portal commands
are:

§ KeyName.SERIAL_PORT = seriall

§ KeyName.SERIAL_PORT_BAUD_RATE = 4800

§ KeyName.SERIAL_PORT_TIMEOUT = seriall

8§ KeyName.TAGTYPE =1SO (HF) or 0,1 or 2 (UHF)
§ KeyName READ_REPEAT =4

§ KeyName.ENABLE = true

§ BPI216_SerialLCD. This class is for the Scott Edwards (see http://www.seetron.com) BPI-216
Serial LCD Module. The BPI-216 is a 2-line by 16-character LCD with a serial interface for easy
use. This allows sending messages to the display to show progress or to ask the operator to
perform settings of a device. The BPI -216 has a switch selectable baud rate that must be set to
9600 baud for communication with this class. This is implemented using the
com avi dwi rel ess. AVl Ddi r ect or . i odevi ce. BPI 216_Ser i al LCD class. Parameters that may

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 17 of 55

http://www.sirit.com
http://www.seetron.com

AVIDdirector-M2M™ Technical Reference Guide

be set via either the M2MApp.ini file or over the air using M2MXML Set Conf i gur at i on portal
commands are:

§ KeyName.SERIAL_PORT = serial2

TempTrack. This device has two Analog to Digital converter inputs that are accessed by
sending an ASCII ‘G’ character to the serial port and it returns a two character strings with the
values from 0.0 to 999.9 This is best used as a sample of a user written 10Driver class. This
implements the Parameters that may be set via either the M2MApp.ini file or over the air using
M2MXML Set Conf i gur at i on portal commands are:

§ KeyName.SERIAL_PORT = seriall
8 KeyName.SERIAL_PORT_BAUD_RATE = 9800
§ KeyName.SERIAL_PORT_TIMEOUT = seriall

User written I/O device driver classes subclass IODevices and must implement

start (AVI Ddi rect or Mai n adApp) and any of the IODevice methods the device needs to
implement or override. All M2MXML messages addressed to this particular transducer are directed
towards the instance of I0Device with the KeyName or M2MXMLAddress corresponding to the
M2MXML address. I0Device has a default method implementation for each M2MXML message
appropriate for transducers/sensors. The method corresponding to each M2MXML message is
called depending on the M2MXML message received. The user IODevice class can override each
of these methods if they wish to. The methods are:

§

M2M_10Device

pr ocessCont r ol Command(Cont r ol Command nessage). The default action is to return a
Response. UNRECOGNI ZED COMMAND_RESULT_CODE message to the portal. Any digital
transducers should implement this method.

pr ocessPer cept Request (Per cept Request nessage). The default action is to return a
Response. UNRECOGNI ZED COMMAND_RESULT_CODE message to the portal. Almost every
IODevice will implement this method to return the current sensor reading to the M2MXML portal
on demand.

If the sensor or transducer takes a significant amount of time to perform a reading (more than
200 ms) then it is recommended that the sensor call st ar t Per cept Request Thr ead

(Per cept Request per cept Request) to start a background thread to perform this
PerceptRequest. This requires the IODevice to implement

pr ocessPer cept Request Thr ead(Per cept Request nessage) method that will perform the
actual reading.

processConfi gurati onQuery(ConfigurationQuery nessage). This will return the value of
any property in the configuration file M2MApp.ini for this transducer. For example, a query of
“SIRIT_OEM200_RFID_READER.TAGTYPE" will return which RFID tag type (ISO, Tag-IT,
Epic class 0, 1 or 2) this sensor is set to receive. By default, IODevice’s implementation will
prefix the property name with the keyname and return that value (if set) or

Response. BAD ARGUEMENT _RESULT_CODE if this is not set. Most IODevice implementation do
not need to implement this method.

processSet Confi guration(Set Configuration message). If not overridden this will prefix
the property with the I0Device’s keyname, set the specified property in the M2MApp.ini file and
invoke the method pr ocessSet Configurationltem (String propertyNanme, String

ol dval ue, String newval ue, String segNunj). The user IODevice will typically implement
the pr ocessSet Conf i gur at i onl t emmethod to respond to specific property settings and
update any operation because of the property changes.

The standard AVIDdirector-M2M devices are implemented by the
com avi dwi rel ess. AVl Ddi r ect or . i odevi ce. MM | ODevi ces class. This handles all the portal
messages to the devices, configuration settings and implements the on-device behaviors.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 18 of 55

AVIDdirector-M2M™ Technical Reference Guide

Through M2MXML the user can program on device behavior such as trigger limits, sensor dead-
zones, polling modes, scheduled execution, and I/O control. This means that for many M2M
applications no embedded device programming is required and all device behavior and operation
can be specified by M2MXML commands sent over-the-air (OTA) to the device.

M2M_IODevice implements a nominal 200ms polling of the input devices and each AVIDdirector-
M2M device can be added to the polling loop by setting the POLLING attribute in the M2MApp.ini
configuration file or by a SetConfiguration command to the M2M_IlODevice with the property
POLLING set to true. When polling, each device is set to input mode and any transitions are sent
as PerceptReadings to the M2MXML portal.

For the internal M2MIO Devices (the 22 TTL devices) these parameters can be used for each of the
TTLn ports:

IOTYPE=type, where type is AIN, DIN, AOUT or DOUT

.POLLING=true

.READING_PROCESSOR_CLASSNAME=classname of IODeviceReadingProcessor instance to
use. An I0DeviceReadingProcessor has methods called for initialize, startReading,
processControlCommand, processDigitalPerceptRequest, processAnalogPerceptRequest,

processSetDigitalOutput, processSetAnalogOutput and endReading

.ABSOLUTE_REPORT_TIME=nnn Set an absolute GMT time to report the current reading value.
Time is in GMT seconds for each day.

.PERIODIC_REPORT_TIME=nnn Set an periodic time to report the current reading value. Time is
in milliseconds

.REPORT_MINIMUM_INTERVAL_TIME=nnn Set period of time, in milliseconds, to wait before we
report a change in a value

.DIGITAL_TRIGGER_HIGH=true|false Report if the input goes from a low to a high. For digital
inputs.

.DIGITAL_TRIGGER_LOW-=truel|false Report if the input goes from a high to a low . For digital
inputs.

.INVERT=true|false If set true this will invert the reported value. For digital inputs.

.PULLUP_INPUT=true|false Set the port to have an active pull-up using the PSoC. For digital
inputs.

.PULLDOWN_INPUT=true|false Set the port to have an active pull down using the PSoC. For digital
inputs.

.PULSEHIGH_TIME=nnn Set the time to pulse the output high. Time in milliseconds. For digital
outputs.

.PULSELOW_TIME=nnn Set the time to pulse the output low. Time in milliseconds. For digital
outputs.

.ANALOG_OFFSET=dd.dd Sets offset applied to the analog input or output. For Analog I/O.

.ANALOG_FACTOR=dd.dd Sets factor (multiplier) applied to the analog input or output. For Analog
I/O.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 19 of 55

AVIDdirector-M2M™ Technical Reference Guide

.ANALOG_ABSOLUTE_HIGH=dd.dd Sets absolute high value for the analog input to report a
reading to the portal. For Analog In.

.ANALOG_ABSOLUTE_LOW=dd.dd Sets absolute low value for the analog input to report a
reading to the portal. For Analog In.

.ANALOG_DEADBAND_HIGH=dd.dd Sets delta high value for the analog input to report a reading
to the portal. For Analog In.

.ANALOG_DEADBAND_LOW=dd.dd Sets delta low value for the analog input to report a reading to
the portal

.AUX_DEVICE=TTLn digital device to turn on or off or set value before and/or after the reading has
taken place.

.AUX_DEVICE_START_VALUE=n Value to set the device to before the reading begins

.AUX_DEVICE_DELAYTIME=nnn Time to delay after setting the Aux device to the
startDeviceValue before reading

.AUX_DEVICE_END_VALUE=n Value to set the device to after the reading is complete

In addition for the M2MIODEVICE which is the overall class for all the internal M2M IODevices,
these parameters can be used:

.LOADALL By default, only TTLn devices that are specified in the M2MApp.ini file are
loaded (TTL1 to TTL6). You cannot send commands or percept requests to

TTL devices unless they are loaded. Setting LOADALL to true will load all the
TTL1 to TTL22 devices.

.USE_TTL2023 If set true then TTL20 to TTL23 are available for control. This is set false if
these are used for a serial port. The M2MApp.ini.default sets this true.

.USE_EXT14 If set true then EXT1 to EXT4 (lines on the Radio board) can be used for M2M
IODevices. This is typically set false since these lines are used for Radio2

The Configuration files

Under the root directory for your device will notice various system configuration files, these files are used to
configure your AVIDdirector handle various parameters set on AVIDdirector.

The M2MApp.ini.default file is the main configuration file. It contains all standard AVIDdirector options.
Developers should not modify this file but should instead utilize the other file to override parameters set in the
M2MApp.ini.default file. For example the M2MApp.ini file is used to set parameters and override values set in
the M2MApp.ini.default file. Below you will see examples of each of the configuration files and examples of how
to use these files to handle your application.

When you start developing your own m2mapp, there is the -c filename option to specify the configuration file to
use (defaults to M2Mapp.ini, that uses M2Mapp.ini.default), and m2mapp - C config=nnnn allows manual

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 20 of 55

AVIDdirector-M2M™ Technical Reference Guide

override of a config file entry. There can be multiple -C config=nnn -C config2=mmm -C config3=xxx entered on
the same line.

M2MApp.ini.default

Config File: M2MApp.ini Updated: 10/22/2008 9:59: 12PM

M2MApp M2MApp Ver: 2. 0. O(Bui | d: 2008102101) [57. 10. 19. 7. 10. 50. 15. 39. 12]
#

Master M2MApp.ini file. This contains all |ODEvices, Radios and standard MM et s.
Most of them have the .LQOAD=false to prevent them fromloading. The MeMApp.ini file
#

Specify the device type, 100 (Rev A or B) or 200 (Rev Q)

AVI DI RECTOR. MODEL=200

#

#H#### System Settings #####

#

SYSTEM APP_NAVE=MRMApp

SYSTEM DEBUG=0

SYSTEM LOGG NG=0

SYSTEM OPTI ONS=0

AVIDdirector Uni que nunber (if not set uses device's serial # or phone#)
SYSTEM DEVI CE_UUI D=

Maxi numtinme without conmunications with the portal before we auto-reboot - 1 day
SYSTEM MAX_NOCOWM TI ME=86400000

Level bel ow which we do a GC

SYSTEM GC_WATERVARK = 100000

SYSTEM GC_RUN_| NTERVAL=60

Watchdog tiner reset

SYSTEM WATCHDOG=t r ue

#

#H#### MBMXML Set ti ngs #####

Version of MMXML. Use 1.1, 1.0 or Beta

M2MXML. VERSI ON=1. 1

M2MXM. Server Settings

M2MXML. SERVER | P_ADDRESS=avi ddashboar d. com

M2MXM.. SERVER_PORT=8088

M2MXML. SERVER _HTTP_SEND PAGE=/ AVI Ddi r ect or / Host ?nsg=

M2MXML. SERVER HTTP_POLL_PAGE=/ AVI Ddi r ect or / Host ?uui d=

M2MXML.. SERVER POLL_TI ME=180000

UDP Port received the Messages or Shoul der taps fromthe server
M2MXM.. SERVER _UDP_PORT=4321

#

#i###H# MRMLET APPLI CATI ON CLASSES #####

#

Junpstart Deno Board M2M._et

DEMO_MPMLET. CLASSNAME=com avi dwi r el ess. avi di rect or. Deno_MM et
DEMO_MPMLET. LOAD=f al se

DEMD_M2MLET. DEMO_ENABLED=t r ue

Update specifies when to send data automatically to the Server
DEMD_MRMLET. DEMO_UPDATE | NTERVAL=60000

#

Modbus Reader application class to | oad

MODBUS_MPML_ET. CLASSNAVE=Mbdbus_M2M et

MODBUS_MPMLET. LOAD=f al se

How often we will be reporting in 5 mnutes

MODBUS_M2MLET. UPDATE_| NTERVAL=120000

Serial Port Settings

MODBUS_MPMLET. SERI AL_PORT=seri al 1

MODBUS. SERI AL_PORT_BAUDRATE=9600

MODBUS. SERI AL_PORT_DATABI TS=8

MODBUS. SERI AL_PORT_PARI TY=None

MODBUS. MODBUS_ASCl | =f al se

MODBUS. MCDBUS _RETRY_COUNT=2

MODBUS. MCDBUS _POLL_DELAY=1

MODBUS devi ce address

MODBUS_MPMLET. MODBUS_DEVI CE=1

Starting address for floating analog 32 bit registers we are reading

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 21 of 55

AVIDdirector-M2M™ Technical Reference Guide

MODBUS_MPMLET. MODBUS_START _ADDRESS=800101

Names of the Floating values we are reading

MODBUS_M2MLET. MODBUS_NAMES=MOD1. Al 1, MOD1. Al 2

MODBUS_M2MLET. MODBUS_FLOATI NG=t r ue

Starting address for digital discrete registers we are reading
MODBUS_M2MLET. MODBUS_START ADDRESS1=100001

Names of the Digital values we are reading

MODBUS_M2MLET. MODBUS_NAMES1=MOD1. DI 48, MOD1. DI 87

Starting address for floating analog 32 bit registers we are reading
MODBUS_M2MLET. MODBUS_START_ADDRESS2=800001

Names of the Short val ues we are readi ng

MODBUS_M2MLET. MODBUS _NAMES2=MOD1. AC25, MOD1. ACG1

#

M2M_ | ODEVI CES (On board Devi ces)

Possi bl e arguments for the TTL devices are

TTLn. MMXML_ADDRESS=TTLn. subdevi ce

TTLn. | OTYPE=type, where type is AIN, DIN, AQUT or DQUT

TTLn. POLLI NG=t r ue

TTLn. READI NG_PROCESSOR_CLASSNAME=c| assnane of | ODevi ceReadi ngProcessor instance

TTLn. NUM_AVG_READI NGS=n Nunber of readings to be used for getting an average reading
TTLn. ABSCLUTE_REPORT_TI ME=nnn Set an absolute GMI tine to report the current reading
value. Time is in GVl seconds for each day.

TTLn. PERI ODI C_REPORT_TI ME=nnn Set an periodic tine to report the current reading val ue.
Time is in mlliseconds

TTLn. REPORT_M NI MUM_| NTERVAL_TI ME=nnn Set period of tine, in nmlliseconds, to wait before
we report a change in a value

TTLn. DI G TAL_TRI GGER HI GH=true|fal se Report if the input goes froma lowto a high
TTLn. DI G TAL_TRI GGER LOMtrue| fal se Report if the input goes froma high to a |l ow
TTLn. I NVERT=true|false If set true this will invert the reported val ue

TTLn. PULLUP_I NPUT=true| fal se Set the port to have an active pullup using the PSoC
TTLn. PULLDOAN_| NPUT=true|fal se Set the port to have an active pulldown using the PSoC
TTLn. DURATI ON=nnn Set the time interval to set the output. Tine in mlliseconds

TTLn. PULSEH GH_TI ME=nnn Set the time to pulse the output high. Time in mlliseconds.
TTLn. PULSELOW TI ME=nnn Set the tine to pulse the output low. Time in mlliseconds.
TTLn. ANALOG OFFSET=dd. dd Sets offset applied to the anal og i nput or output.

TTLn. ANALOG FACTOR=dd. dd Sets factor (nultiplier) applied to the anal og i nput or output
TTLn. ANALOG _ABSOLUTE_HI GH=dd. dd Sets absol ute high value for the analog input to report a
reading to the portal.

TTLn. ANALOG ABSOLUTE_LOMdd. dd Sets absolute | ow value for the anal og input to report a
reading to the portal

TTLn. ANALOG DEADBAND HI GH=dd. dd Sets delta high value for the analog input to report a
reading to the portal

TTLn. ANALOG DEADBAND LOMdd. dd Sets delta | ow value for the analog input to report a
reading to the portal

#

M2M On devi ce address which match the Junpstart board

TTL1. MMXM__ADDRESS=TTL1. AI N

TTL1. 1 OTYPE=AI N

TTL1. ANALOG DEADBAND HI GH=60. 0

TTL1. ANALOG DEADBAND LOA:60

TTL2. | OTYPE=AQUT

TTL3. | OTYPE=DOUT

TTLA4. | OTYPE=DOUT

TTL5. MMXM__ADDRESS=TTLS5. DI N

TTL5. 1 OTYPE=DI N

TTL6. MMXM__ADDRESS=TTL6. DI N

TTL6. | OTYPE=DI N

#

M2M_| O Devi ce common settings

M2M ODEVI CE. POLLTI ME=20000

Enable the Serial2 (TTL20-23) and Ext1-4 lines (RadioB) for direct control

M2M CODEVI CE. USE_TTL2023=tr ue

Load the M2M_ | CDEVI CES or Load ALL the M2M_| ODEVI CES (ones not listed here)

M2M CDEVI CE. LOAD=t r ue

HHFHFHFHHFHFHR

HHHFHFHFHHFHFHHR

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 22 of 55

AVIDdirector-M2M™ Technical Reference Guide

M2M CDEVI CE. LOADALL=f al se

#

#H####H | ODEVI CES ####H#

#

NMEA GPS Receiver to | oad

GPS. CLASSNAME=com avi dwi rel ess. avi di rect or. i odevi ce. GPS_NMEA Recei ver
GPS. LOAD=f al se

GPS. SERI AL_PORT=seri al 1

GPS. VAPSERI ALPORT=GPS

GPS. RDD_PVWR_ON=t rue

GPS. SERI AL_PORT_BAUD RATE=4800

GPS. SERI AL_PORT_TI MEQUT=5000

GPS. SONY=f al se

GPS. USGLCBALSAT=t r ue

GPS. ENHANCED _GPS=t r ue

GPS. SPEED_UNI TS=MPH

Send GPS readi ngs once every 8 hours unless we are noving

GPS. POLLTI ME=28800000

GPS. CONTI NUOUS=f al se

GPS. GPS_I NI T_STRI NG=$PSRF103, 00, 00, 10, 01~$PSRF103, 04, 00, 10, 01~$PSRF103, 05, 00, 10, 01
GPS. GPS_START READI NG=$PFST, START, 0

@GPS. FASTPOLL_TIME=nnn Time in mlliseconds to report when FASTPOLL criteria met
@PS. TRI GGER_FASTPOLL_SPEED=nm Speed in MPH (or KPH) that trigger the FASTPOLL update rate
GPS. TRI GGER_FASTPOLL_METERS=mmm Di st ance in neters noved that triggers a FASTPO.LL update
Rat e

GPS. FASTPOLL_TI ME=60000

GPS. TRI GGER_FASTPOLL_SPEED=10

GPS. TRI GGER_FASTPOLL_METERS=1000

GPS. REQUI RED=GPRMC, GPGGA

#

BPI1216 Serial LCD to |oad

LCD. CLASSNAME=com avi dwi rel ess. avi di rect or. i odevi ce. BPl 216_Seri al LCD
LCD. LOAD=f al se

LCD. ADDRESS=LCD

LCD. SERI AL_PCORT=seri al 1

#

SIRT UHF INFINITY 210/ OEM200 RFI D Reader cl ass

SI R T_CEMR0O0_READER. CLASSNAME=com avi dwi rel ess. avi di rector. i odevi ce. SIRI T_CEM200_READER_RFI
DReader

SI R T_CEM200_READER LOAD=f al se

SI R T_CEM2OO_READER MRMXM._ADDRESS=RFI DReader

SI R T_CEM2OO_READER SER AL_PORT=seri al 1

SI R T_CEM200_READER TAGTYPE=0

SI R T_CEM200_READER READ REPEAT=1

SI R T_CEM20O_READER POLLTI ME=200

SI R T_CEM200_READER ENABLE=t r ue

#

SIRIT CEM 400 HF RFI D Reader

SI R T_CEMA00_READER. CLASSNAME=com avi dwi rel ess. avi di rector. i odevi ce. Sirit_CEMAOO_RFI DReader
SI R T_CEMA00_READER LOAD=f al se

SI R T_CEMA00_READER M2MXM._ ADDRESS=RFI DHFReader

SI R T_CEMA00_READER SER AL_PORT=seri al 2

SI R T_CEMA00_READER MAPSERI ALPCRT=Radi oB

SI R T_CEM400_READER RDD PWR ON=t r ue

SI R T_CEMA00_READER. TAGTYPE=I SO

SI R T_CEMA00_READER. POLLTI ME=200

SI R T_CEMA00_READER. ENABLE=t r ue

#

AVI DSnar t Sensor s

SMARTSEN. CLASSNAME=com avi dwi r el ess. avi di rector.i odevi ce. Smart Sensors
SMARTSEN. LOAD=f al se

SMARTSEN. CONTI NUOUS=TRUE

SMARTSEN. SEND_ALL_READI NGS=TRUE

SMARTSEN. DI SPLAY_ALL_READI NGS=TRUE

SMARTSEN. SERI AL_PORT=seri al 2

SMARTSEN. MAPSERI ALPORT=Radi 0B

SMARTSEN. RDD_PWR_ONEt r ue

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 23 of 55

AVIDdirector-M2M™ Technical Reference Guide

SMARTSEN. SERI AL_PORT_BAUD_RATE=19200

SMARTSEN. SERI AL_PORT_TI MEQUT=10000

Indi vidual AVIDSmart Sensors are identified with a nane and the _SNUMtrailer specifying
t he address.

Paraneters for the device nanes are .SEND, .MN, .MAX, .THRESHOLD, .THRESHOLD2, .DELTA,
.DELTA2, .FACTOR, .FACTOR2, .OFFSET, .COFFSET2, .| CDEVI CE_READI NG PROCESSOR CLASS.

Next is an exanple for a magnetic sensor 'DOOR at E9DEOAOO

SMARTSEN. DOOR_SNUMEE9DEOAQQ

DOCR. SEND=TRUE

HoHHHHHH

STATUS Cl ass to provide Device Status

STATUS. CLASSNAME=com avi dwi r el ess. avi di rector. i odevi ce. St at us

STATUS. LQAD=t r ue

STATUS. MESSAGE_AT_STARTUP=yes

#

SHOULDERTAP d ass to handl e Shoul der Tap requests

SHOULDERTAP. CLASSNAME=com avi dwi r el ess. avi di rect or. i odevi ce. Shoul der Tap
SHOULDERTAP. LOAD=f al se

#

#

#it#pHH##E RAD OS #H####HH#HH

#

To |l oad a Radi o, change the nnnn.LQAD=false to true to load the Radi o cl ass
#

Mul ti Tech GPRS Radio

MTI_GPRS. CLASSNAME=com avi dwi r el ess. radi 0. GPRSMul t i TechWavecom

MTI_GPRS. LOAD=f al se

RS. SERI AL_PCRT=seri al 3

RS. SERI AL_PORT_BAUDRATE=57600

RS. SERI AL_PCRT_TI MEQUT=3000

RS. CONNECTI ON TYPE=TCPI P

RS. KEEP_CONNECTI ON_UP=f al se

__GPRS. PPP_DNS_PRI MARY=205. 166. 226. 38

RS Speci fic information

MTI_GPRS. CARRI ER=Cr ossbri dge

MI_GPRS. GPRS_APN=

MT_GPRS. SMsC=

MI_GPRS. PPP_USERNAME=

MI_GPRS. PPP_PASSWORD=

MI_GPRS. PPP_AUTHENTI CATI ON=PAP

MT_GPRS. PPP_HANGTI ME=10000

MMXML Portal Information

MTI_GPRS. SERVER | P_ADDRESS=avi ddashboar d. com

MT_GPRS. SERVER _PORT=8088

MTI_GPRS. SERVER _HTTP_M2MXM._SEND PAGE=/ AVI Ddi r ect or / Host ?nsg=
MTI_GPRS. SERVER HTTP_M2MXM._POLL_PAGE=/ AVI Ddi r ect or / Host ?uui d=
MI_GPRS. SER\/ER I\/EI\/D(M_ POLL_ _Tl ME=600000

28999

gs

RS. MAX QJEUE S| ZE=100
RS. MAX_FATAL_ERRORS=10
__GPRS. RESTCORE _ NETV\O?K DNS=t r ue
GPRS TEST NEFWJQK CONNECTI VI TY=0
Information for Dynam c DNS | ookup
_GPRS DYNDNS_AUTCOUPDATE=N
__GPRS. DYNDNS_HOSTNAME=denol. avi dnm2m com
_GPRS. DYNDNS_USERNAVE=
_GPRS. DYNDNS_PASSWORD=
GPRS. DYNDNS_DNS_TYPE=cust om

&P
~GPRS. MAX_RETRY_COUNT=3
GP
&P

S555535

Mul ti Tech CDVA Radio

__ CDVA. CLASSNAMVE=com avi dwi r el ess. radi o. COMAMuI t i TechWavecom
MTI_CDVA. LOAD=f al se

MT_CDVA. MODEM MODEL=CDMVA

S**55555%

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 24 of 55

AVIDdirector-M2M™ Technical Reference Guide

MI_CDVA. SERI AL_PORT=seri al 3

MI_CDVA. SERI AL_PORT_BAUDRATE=57600

MI_CDVA. SERI AL_PORT_TI MEQUT=3000

MT_CDVA. CONNECTI ON_TYPE=TCPI P

MT_CDVA. KEEP_CONNECTI ON_UP=f al se

#MT_CDMA. PPP_DNS_PRI MARY=205. 166. 226. 38

CDMVA Specific Information

MI_CDVA. CARRI ER=

MT_CDVA. PPP_USERNAME=

MT_CDVA. PPP_PASSWORD=

MTI_CDIVA. PPP_AUTHENTI CATI ON=PAP

MT_CDVA. PPP_HANGTI ME=10000

M2MXML Portal Information

MTI_CDWVA. SERVER | P_ADDRESS=avi ddashboar d. com
MI_CDVA. SERVER_PORT=8088

MTI_CDVA. SERVER _HTTP_M2MXM._SEND PAGE=/ AVI Ddi r ect or / Host ?nsg=
MTI_CDVA. SERVER HTTP_MPMXM._POLL_PAGE=/ AVI Ddi r ect or / Host ?uui d=
MI_CDVA. SERVER_M2MXML_POLL_TI ME=600000

MI_CDVA. SERVER MRMXML_UDP_PORT=4321
MT_CDVA. MAX_RETRY_COUNT=3

MT_CDVA. MAX_QUEUE_SI ZE=100

MT_CDVA. MAX_FATAL_ERRORS=10

MT_CDVA. RESTORE_NETWORK_DNS=t r ue

MT_CDVA. TEST_NETWORK_CONNECTI VI TY=0

Information for Dynam ¢ DNS | ookup
MTI_CDIVA. DYNDNS_AUTCUPDATE=N

MTI_CDVA. DYNDNS_HCSTNAME=denol. avi dn2m com
MT_CDVA. DYNDNS_USERNANVE=

MT_CDVA. DYNDNS_PASSWORD=

MI_CDIVA. DYNDNS_DNS_TYPE=cust om

#

Mtorola | ®70 Radio

| O270. CLASSNAVE=com avi dwi rel ess.radi 0.1 Q70
1 O270. LOAD=f al se

| O270. MODEM_MODEL=CDNVA

1 O270. SERI AL_PORT=seri al 3

| O270. SERI AL_PORT_BAUDRATE=57600

| 0270. SERI AL_PORT_TI MEQUT=3000

| O270. PPP_USERNAME=

| O270. PPP_PASSWORD=

| O270. PPP_AUTHENTI CATI ON=PAP

| O270. PPP_HANGTI ME=10000

| O270. CONNECTI ON_TYPE=TCPI P

| 0270. KEEP_CONNECTI ON_UP=f al se

#1 Q270. PPP_DNS_PRI MARY=205. 166. 226. 38

| 0270. MAX_RETRY_COUNT=3

| 0270. MAX_QUEUE_SI ZE=100

| 0270. MAX_FATAL_ERRORS=10

M2MXML Portal Information

1 O270. SERVER | P_ADDRESS=avi ddashboar d. com

| O270. SERVER_PORT=8088

1 O270. SERVER_HTTP_M2MXM._SEND_PAGE=/ AVI Ddi r ect or/ Host ?nsg=
1 O270. SERVER_HTTP_M2MXM__PCOLL_PAGE=/ AVI Ddi r ect or/ Host ?uui d=
| 0270. SERVER_M2MXML_POLL_TI ME=600000

UDP Port received the Shoul der taps fromthe server
1 0270. SERVER_ M2MXML_UDP_PORT=4321

| 0270. RESTORE_NETWORK_DNS=t r ue

| O270. TEST_NETWORK_CONNECTI VI TY=0

Information for Dynam ¢ DNS | ookup

| O270. DYNDNS_AUTCOUPDATE=N

1 O270. DYNDNS_HOSTNAME=denol. avi dm2m com

| O270. DYNDNS_USERNANMVE=

| O270. DYNDNS_PASSWORD=

| O270. DYNDNS_DNS_TYPE=cust om

#

Booner 3 Mbbitex Radio

BOOVER3. CLASSNAVE=com avi dwi r el ess. r adi o. Booner 3

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved

Page 25 of 55

AVIDdirector-M2M™ Technical Reference Guide

BOOVER3. LOAD=f al se

BOOVER3. SERI AL_PORT=seri al 3

BOOVER3. SERI AL_PORT_BAUDRATE=9600

Maximumtine to send a nmessage

BOOVER3. MAX_RETRY_COUNT=3

BOOVER3. MAX_QUEUE_SI ZE=100

BOOVER3. MAX_FATAL_ERRORS=10

Mobi tex Specific network information
BOOVER3. MOBI TEX_GATEWAY_ADDRESS=103087
BOOVER3. MOBI TEX_GATEWAY_HPI D=137

BOOVER3. ENCRYPT_MPAK = fal se

#

Lantroni x XPORT PPP Et hernet adapter

XPORT. CLASSNAME=com avi dwi rel ess. radi 0. XPort
XPORT. LOAD=f al se

XPORT. SERI AL_PCRT=seri al 3

XPORT. MAPSERI ALPCORT=XPCORT

XPORT. RDD_PWR_ON=t rue

XPCORT. SERI AL_PCORT_BAUDRATE=57600

XPORT. SERI AL_PCRT_TI MEQUT=3000

XPCORT. PPP_HANGTI ME=10000

XPCORT. CONNECTI ON_TYPE=TCPI P

XPORT. PPP_DNS_PRI MARY=205. 166. 226. 38

XPORT. MAX_RETRY_COUNT=3

XPORT. MAX_QUEUE_SI ZE=100

XPORT. MAX_FATAL_ERRORS=10

M2MXML Portal Information

XPORT. SERVER | P_ADDRESS=avi ddashboar d. com
XPCORT. SERVER PCRT=8088

XPORT. SERVER_HTTP_M2MXM._SEND PAGE=/ AVI Ddi r ect or / Host ?nsg=
XPORT. SERVER_HTTP_M2MXM._PQLL_PAGE=/ AVI Ddi r ect or/ Host ?uui d=
XPORT. SERVER_MRMXML_POLL_TI ME=60000

UDP Port received the Shouldertaps fromthe server
XPORT. SERVER_MRMXML_UDP_PORT=4321

XPORT. RESTORE_NETWORK_DNS=t r ue

XPORT. TEST_NETWORK_CCONNECTI VI TY=0

Information for Dynam ¢ DNS | ookup

XPCORT. DYNDNS_AUTCQUPDATE=N

XPORT. DYNDNS_HOSTNAME=denn1. avi dn2m com
XPCORT. DYNDNS_USERNAME=

XPCORT. DYNDNS_PASSWORD=

XPCORT. DYNDNS_DNS_TYPE=cust om

#

Lantroni x WPORT PPP Et hernet adapter

W PORT. CLASSNAME=com avi dwi r el ess. radi 0. XPor t
W PORT. LOAD=f al se

W PORT. SERI AL_PORT=seri al 3

W PORT. MAPSERI ALPORT=RADI OB

W PORT. RDD_PWR_ON=t r ue

W PORT. SERI AL_PORT_BAUDRATE=57600

W PORT. SERI AL_PORT_TI MEQUT=3000

W PORT. PPP_HANGTI ME=10000

W PORT. CONNECTI ON_TYPE=TCPI P

W PORT. PPP_DNS_PRI MARY=205. 166. 226. 38

W PORT. MAX_RETRY_COUNT=3

W PORT. MAX_QUEUE_SI ZE=100

W PORT. MAX_FATAL_ERRORS=10

M2MXML Portal Information

W PORT. SERVER | P_ADDRESS=avi ddashboard. com
W PORT. SERVER_PORT=8088

W PORT. SERVER_HTTP_M2MXM._SEND PAGE=/ AVI Ddi r ect or / Host ?nsg=
W PORT. SERVER_HTTP_M2MXM._PCOLL_PAGE=/ AVI Ddi r ect or / Host ?uui d=
W PORT. SERVER_M2MXM__POLL_TI ME=60000

UDP Port received the Shoul der taps fromthe server
W PORT. SERVER_ M2MXM__UDP_PORT=4321

W PORT. RESTORE._ NETWORK_DNS=t r ue

W PORT. TEST_NETWORK_CONNECTI VI TY=0

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved

Page 26 of 55

AVIDdirector-M2M™ Technical Reference Guide

Information for Dynam ¢ DNS | ookup

W PORT. DYNDNS_AUTOUPDATE=N

W PORT. DYNDNS_HOSTNAME=denol. avi dm2m com

W PORT. DYNDNS_USERNAME=

W PORT. DYNDNS_PASSWORD=

W PORT. DYNDNS_DNS_TYPE=cust om

#

Local Ethernet adapter

ETHERNET. CLASSNAME=com avi dwi r el ess. r adi o. Et her net
ETHERNET. LOAD=f al se

ETHERNET. MAX_RETRY_COUNT=3

ETHERNET. MAX_QUEUE_SI ZE=100

ETHERNET. MAX_FATAL_ERRCRS=10

M2MXML Portal Information

ETHERNET. SERVER | P_ADDRESS=avi ddashboar d. com
ETHERNET. SERVER_PORT=8088

ETHERNET. SERVER_HTTP_MRMXM._SEND PAGE=/ AVI Ddi r ect or / Host ?msg=
ETHERNET. SERVER_HTTP_MRMXM._POLL_PAGE=/ AVI Ddi r ect or / Host ?uui d=
ETHERNET. SERVER_MRMXM._POLL_TI ME=60000

UDP Port received the Shoul der taps fromthe server
ETHERNET. SERVER_MRMXM._UDP_PCRT=4321

ETHERNET. RESTORE_NETWORK_DNS=t r ue

ETHERNET. TEST_NETWORK_CONNECTI VI TY=0

Information for Dynam ¢ DNS | ookup

ETHERNET. DYNDNS_AUTOUPDATE=N

ETHERNET. DYNDNS_HOSTNAME=denpl. avi dn2m com
ETHERNET. DYNDNS_USERNAME=

ETHERNET. DYNDNS_PASSWORD=

ETHERNET. DYNDNS_DNS_TYPE=cust om

#

ATMODEM PPP Et hernet adapt er

ATMODEM CLASSNAME=com avi dwi r el ess. r adi o. ATMbdem
ATMODEM LOAD=f al se

ATMODEM SERI AL_PORT=seri al 3

ATMODEM MAPSERI ALPORT=RS232

ATMODEM SERI AL_PORT_BAUDRATE=19200

ATMODEM SERI AL_PCORT_TI MEQUT=3000

ATMODEM PPP_DI ALNUMBER=2142420020

ATMODEM PPP_DI ALTI ME=60000

ATMODEM PPP_CONNECTTI ME=30000

ATMODEM PPP_USERNAME=

ATMODEM PPP_PASSWORD=

ATMODEM PPP_AUTHENTI CATI ON=PAP

ATMODEM PPP_HANGTI ME=30000

ATMODEM DNS_TI MEQUT=15000

ATMODEM SOCKET_TI MEOUT=30000

ATMODEM CONNECTI ON_TYPE=TCPI P

ATMODEM PPP_DNS_PRI MARY=205. 166. 226. 38

ATMODEM MAX_RETRY_COUNT=3

ATMODEM MAX_QUEUE_SI ZE=100

ATMODEM MAX_FATAL_ERRORS=10

M2MXML Portal Information

ATMODEM SERVER | P_ADDRESS=avi ddashboar d. com
ATMODEM SERVER _PORT=8088

ATMODEM SERVER _HTTP_M2MXM._SEND PAGE=/ AVI Ddi r ect or / Host ?msg=
ATMODEM SERVER HTTP_M2MXM._POLL_PAGE=/ AVI Ddi r ect or / Host ?uui d=
ATMODEM SERVER_M2MXML_POLL_TI ME=60000

UDP Port received the Shoul der taps fromthe server
ATMODEM SERVER M2MXML_UDP_PORT=4321

ATMODEM RESTORE_NETWORK_DNS=t r ue

ATMODEM TEST_NETWORK_CONNECTI VI TY=0

Information for Dynam ¢ DNS | ookup

ATMODEM DYNDNS_AUTOUPDATE=N

ATMODEM DYNDNS_HOSTNAME=denol. avi dm2m com

ATMODEM DYNDNS_USERNAME=

ATMODEM DYNDNS_PASSWORD=

ATMODEM DYNDNS_DNS_TYPE=cust om

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved

Page 27 of 55

AVIDdirector-M2M™ Technical Reference Guide

M2Mapp.ini

This file is used to over-ride the parameters set in the M2Mapp.ini.default

Config File: M2MApp.ini Updated: 10/22/2008 9:59: 12PM
MEMApp M2MApp Ver: 2. 0. O(Bui | d: 2008102101) [57. 10. 19. 7. 10. 50. 15. 39. 12]
#

User specific loading of files

SYSTEM DEVI CE_UUI D=

SYSTEM DEBUG=1 3- Use this to set a different debug | evel
DEMD_M2MLET. LOAD=t r ue

M2M CDEVI CE. LOADALL=t r ue

M2M ODEVI CE. POLLTI ME=20000

#

GPS. LOAD=f al se 3- You would set this = true to turn on GPS
GPS. POLLTI ME=28800000

GPS. FASTPOLL_TI ME=60000

GPS. TRI GGER_FASTPOLL_SPEED=10

GPS. TRI GGER_FASTPOLL_METERS=1000

#

SMARTSEN. LOAD=f al se 3- You would set this = true if you want to connect to
AVI DSmar t Sensor s

#

MI_GPRS. LOAD=t r ue

MTI_GPRS. CARRI ER=Cr ossbri dge 3- Specifies Crossbridge as our wireless carrier

MI_GPRS. SERVER_ M2MXML_UDP_PORT=4321

ish.ini

This file is used to set user environment parameters such as Class Paths and Alias

Set the Java classpath of the jar files to | oad

/root/app.jar is an exanple of placing user specific jar files in the Casspath

1t is recoomended to add jar files to the CLASSPATH and NOT in the command line with the
-classpath option

setenv CLASSPATH $CLASSPATH: /r oot/ app.j ar

set any user aliases here

alias nyapp java -w com user. myapp

startup.ini

This is where you would put user application specific processes etc that need to happen at startup time. This is
the first file that is executed on startup. In the example below you could start up the XPORT Ethernet session at
start up by un-commenting the pppclient line.

When you start the m2mapp, there is the -c filename option to specify the configuration file to use (defaults to
M2Mapp.ini, that uses M2Mapp.ini.default), and m2mapp - C config=nnnn allows manual override of a config file
entry. There can be multiple -C config=nnn -C config2=mmm -C config3=xxx entered on the same line.

User applications started here

#echo "Starting XPORT Et hernet™

#pppclient -s seriall -mxport -t -f -0 -I

echo "Starting AVIDi rector- MM Application Framework (M2MApp) in the background.”

n2mapp -c¢ M2MApp. i ni

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 28 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 1 — AVIDdirector Model 100 (see Appendix 9 for Model
200) Pin and I/O Definitions

External Connector Pin Definitions

AVIDdirector-M2M model 100 board has a Phoenix 5.08mm model1757349 for the 12 position GPIO and 1757242
for the 2 position power connector.

Pin SensorLogic V Range Features PSoC Port (Pin)
Address
Digital/Analog Connector
1 TTL1 5V TTL Dig I/O; Analog In/Out P0.2 (77)
2 TTL2 5V TTL Dig I/O; Analog In/Out P0.3 (99)
3 TTL3 5V TTL Dig I/O; Analog In P0.0 (74)
4 TTLA4 5V TTL Dig I/O; Analog In P0.1 (3)
5 TTL5 5V TTL Dig I/O; Analog In (12 bit) P2.0 (68)
6 TTL6 5V TTL Dig I/O; Analog In (12 bit) P2.1(7)
7 Ground
8 HVC1 0 to Vsup or Vrail High Volt & Cur; Dig I/O; Analog In/ 4 |P2.2 (69)
9 HVC2 0 to Vsup or Vrail High Volt & Cur; Dig I/O; Analog In / 4 |P2.3 (6)
10 HVC3 0 to Vsup or Vrail High Volt & Cur; Dig I/O P4.0 (63)
11 HVC4 0 to Vsup or Vrail High Volt & Cur; Dig I/O P4.1 (11)
J1 in sets Vsup OUT to either 5 or 12
12 Vrail IN or Vsup OUT VDC
Serial Connectors
Serial0 TTL (3-wire) Console port on debug header P1.2(45); P1.3(29)
Seriall RS-232 (6-wire) DB-9 connector. P6.0-P6.7 (86-93)
RJ-12 connector; TX; RX are Dig I/O; |P0.4(79); P0.5(97);
Serial2 TTL (4-wire) Analog In/Out; RTS; CTS are Dig /0O |P0.6(81); P0.7(95)
Radio port P6.0-P5.7 (20-23;
52-55); P4.6(67);
Serial3 TTL (6-wire) P4.7(8)
Power Connector
1 8to 16 VDC Automotive grade input
2 Gnd

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 29 of 55

AVIDdirector-M2M™ Technical Reference Guide

Debug / Expansion Connector

This is a 24-position 2mm header (Samtec TMM-112-01-L-D-SM-P or Sullins 122MAMS),

L 00

Pin V Range Features PSoC Port
1 3.3V Imsys JTAG
2 3.3V Imsys JTAG
3 3.3V Imsys JTAG
4 3.3V Imsys JTAG
5 3.3V Imsys JTAG
6 Ground
7 Ground
8 3.3V Imsys JTAG
9 + 3.3V
10 + 3.3V
11 5V TTL Serial0 RXD P1.3
12 5V TTL Serial0 TXD P1.2
13 5V TTL Serial0 DTR (Reset) To uP Supervisor
14 + 5.0V
15 5V TTL Extl P4.2
16 5V TTL Ext2 P4.3
17 5V TTL Ext3 P4.3
18 5V TTL Ext4 P3.7
19 5V TTL | I°C Interrupt signal
20 5V TTL | I°C SLC clock signal P1.7
21 5V TTL | I°C SDA data signal P15
22 5V TTL PSoC Prog SClk P1.1
23 5V TTL PSoC Prog SData P1.0
24 5V TTL PSoC Prog XRES XRES
+3.3Y +5%
A A
MRG0T RE3 122 MRS T_ITAR
MSDIN AL 3 & R4 MSOOUT
§ MCKDUT PPNL:L c 5 AR
47 7 g e
? 19
Rx0 11 12 THA
OTRG 13 14
% EXT_1 15 16 i
EXT_3 17 18 ExT_&
T INT 19 a0 [AC_S5CL
[20_SDA M 2 PGM_SCLK
PGM_SOT A 23 24 PGM_XRES
PRRNLIZMANS
~
DGND

Figure 4. Debug / Expansion Connector

February 5, 2009

©AVIDwireless 2004-2009 All Rights Reserved

Page 30 of 55

AVIDdirector-M2M™ Technical Reference Guide

Radio Connector
This is a 24-position 2mm socket, Samtec part number SMM-112-02-S-D-P.

Pin

© o0 ~NO O~ WDNBE

NNNNRPRRRRRRERERRRR
WNPFPOOWWOWNOOUDMWNLERO

24

Function

+5VDC Power (2.5 Amp max)

+5VDC Power (2.5 Amp max)

Radio power on signal (1=on)

+5VDC Power (2.5 Amp max)

/Radio reset (O=reset). Momentary
/Ring Indicator (0=ring) —

/Radiol serial CTS

I°C SLC clock signal

/Radiol serial RTS

I°C SDA data signal

/Radiol serial DTR

I1’C Interrupt signal (O=device interrupt)
Radiol serial RX. Data to

EXT_1. May be used for Radio2 RX
/Radiol serial DCD

EXT_2. May be used for Radio2 TX
Radiol serial TX

EXT_3. May be used for Radio2 RTS
Radiol Message Waiting (1=message)
EXT_4. May be used for Radio2 CTS
Radiol Transmit signal (1=transmitting)
Ground

Ground

Ground

In/Out

ouT

ouT

ouT

- IN

- IN

— May be used for other functions specific to individual radios
IN / OUT refers to FROM the Radio. E.g. Pin 13 RX is a signal from the Radio to
AVIDdirector-M2M CPU; Pin 17 TX is a signal from the CPU board to the Radio

By

R
1 — s
G0 Fen 3
ROJ_-CREZE- 5 a PLC_F
FOO_CTS i] o %L
GOT R © m 0 T h A
RO 1 =T
B R - F¥T 1
FNRN] E & EXT_2
KU1 £ 1¢ H Ev 1
ROJ_F~_ W 1L 1. 20 L] _&
R0 o1 27
5 =h
P'REYLSSMEMT
-~
daNu

Figure 4. Radio Connector

PSoC Port

CjipPortD 5

Cjip Port D 4

R 5.7
P 5.3
P17
P 5.2
P15
P54
P 1.6
P 5.0
P 4.2
P 5.6
P 4.3
P5.1
P 4.4
P 4.6
P 3.7
P 4.7

February 5, 2009

©AVIDwireless 2004-2009 All Rights Reserved

Page 31 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 2 - AVIDdirector-M2M Digital and Serial /O Schematics

=
E

V+ABL

Ll
=
E
o

] HYC L
1| HYE &

J.,_T"" 1] GO
e
2

(VI
FRANNG

q

r_,%NI.
sHrTies

[
T

Y-rAll
Cid
TR0
015
E HIT
a1
(gt Bl

¥
i 2
e : 3
- B3 - ol
S =L E of B & = pE
— = L=
=% F &5
L =
0
et i . :
de in L -
iitr :W r I-f = EE PR
=}
T == - v = T8
paat
EF]ED % _
T
mm;, EE EE E
'Fu"\.- 2 % r{m§—| nar Ly B =
m
B sk 72
=] - S = B
e -+ B2l g el “E__
e S5 cx Sn 2
B
& 'g "
s o= Bos Bos En = <
5 e & EE .::-;‘ o =§5§§s§§s!55
|—\=' + Ae— K 2
™ e a
=4 ﬁ § gl— ‘EE a
—[_ v"a DE).V-E %E %" E
o o o o &) 2y
_;%.. g = g 2 =z X
" g J U (gs -
== I3 w T
L = i
sl -\ Eg
= =3
..‘I.. . -
u‘u‘u—b‘—
n B
- S
LY = i - -
8 o M g9 9 ¢
2091 :

L

>

P
L
e

Figure 5. Digital I/O Interface Circuitry

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 32 of 55

AVIDdirector-M2M™ Technical Reference Guide

EA S
LG o _ .
Vel e d:,w%_ Lall
oMaa
T UTHSTOR 0N T L Jn
= fi £
= _E._uu\v_ ol
[]
w oo S
g [v T S p—
5 =
E - Mot aﬁ. . ,
” ITHSTHRIBRTH [L e —
5] T ETEd [-1 BH
ATHSTHI0EETH Ed 9 _m !
7 [LEE) 1 <
cegd HIZ =0 P
JI133u007 90y
oNB0 OW9a
21 alo] W W
__“,,W. ey | Eol
Ho PUDE 8- 9 T AMENZERNU
E =h 4 (3]
th
ISTATEATHIE Le I
I S 4Ty " nyy H 7]
—_— _.m. a B30
TTNSTAIRATH TS 8 |_||_|A +] 4037404
Toad LAAES
anta wz| ™ QO AN
IMETMOEATHIE €] B +1] gzZLaH
axen Ognd LALLT
uuﬁw_mhmmn FE7-1501 Fr ENTH LMy
5 3 Erer i A L 4Lnod
i — 5| M ELroY
mrmllea < | N ZLnad
-T&D = ThIH 1L
n..“w; Y3 UTMSTAA0ATHIA CEC TRl 7
il ey L EeE] £l ENID
TS aT] £4noa ZNID
THSTACIHTH TR Ter] ¢ Lendo TN
oTgd LALET En
IHETAEATH IR
argd LR
IMEDAMEATH IR
Ly Lt

Page 33 of 55

Figure 6. Serial I/O Interface Circuitry

©AVIDwireless 2004-2009 All Rights Reserved

February 5, 2009

AVIDdirector-M2M™ Technical Reference Guide

Serial Port Pin Assignments:

Serial 1 — RS-232 DB-9 Connector

Pin I/O Function
1 IN DCD-Data Carrier Detect
2 IN RX-Received Data
3 OUT | TX-Transmitted Data
4 OUT | DTR-Data Terminal Ready
5 Ground
6 IN DSR-Data Set Ready
7 OUT [RTS-Return to Send
8 IN CTS-Clear to Send
9 +5V at 250 ma

Serial 2 — TTL Serial on RJ-12 Connector

Pin I/O Function
1 IN CTS-Clear to Send
2 IN RX-Received Data
3 +5V at 250 ma
4 Ground
5 OUT | TX-Transmitted Data
6 OUT [RTS-Return to Send

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved

Page 34 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 3 - AVIDdirector-M2M PSoC Pin Assignments

mn
;ig ;? A1z ANA_/PT ?';* Eti -
L6 P13 ANAL/PO-1 77 TTL1 H:
170_S04 og) M-+ ANADPDZ o] TTLZ
<) P15 ANA_ID/PO_3
LT 57 b g ANA_TO/PO_s [22 a2
120 _STL 2l AMA_O/PA_S [0 T2
ANA_T/PO_G Sé 152 J
ANA_L/PO_T TE3 £
¢ Eg‘ggzﬁ g; P1_0/XoutsSOs P20 E'E Et:
> = PL1/KIn/SCLE P21 = =) >_§
pa_2 g
¢ PSOCXRES 82 nia P13 | b VLD 5
16 PZ4 ?g TR ALR
— EMP Fa_5 07 — l
P2_6 TFOLET i 9
pa_7 % == . ™ ll}.iluF
HWCI1L b Sh TH1
Pa_T Pa_0
§—< HVC2L i 1 19 ATET }% oonD
HWC3IL 3B Pg_7 P12 57 OTAT
= ATy] 753 PL3 e —
P_L PA_4
v -
= Po_b PI_t
HUCLH 93 o ny 7 1€ EXT_4,
C}—Em'ﬂ mig) 83 oo o pr_p [63 HWL3 N
D & L il HVC &
e P71 P4_1 o
= ke, BT_1
o e Pa-2 EAT_2 2
Dy 39 Pa-3 1 BT 3 2
ToIEL e Pa-t 7 STSLEDZ G 0
————— P75 P&_5 D
L. LR 37 P75 PL_k b7 ROO_MSGEWTGE
DB 36| oo o pr_7 |8 RDO_XMIT >—§
37 97 ROO_F=
A gz| o0L P EE] ROO-T d
| j - —
& /o0 o E A
15 mum P53 2 ROD_TTS >_§
3 gz P5_4 B% ROO_DTR
&5 or t 2L STSLEDZ-R
- L,
o Gia ps_p (13 AIID
an0s Po_T [=
— CECEMAs
0GM0

Figure 7. Cypress Microsystems CY8C29866 PSoC Pin Assignments

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 35 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 4 — Sample M2Mlet for Simulation Board

This is the Demo M2Mlet that is used with the AVIDdirector-M2M Simulation board. The Simulation board has the
following port assignments:

Pin M2MXML Function
Address

TTL1.AIN Potentiometer provides 0 to +5V reading (0 to 4095)

TTL2.AOUT | Light bulb glows in proportion to value of O to 63

TTL4.DOUT | Red LED 1=Turn LED on

1
2
3 | TTL3.DOUT | Green LED 1=Turn LED on
4
5

TTL5.DIN Push Button 1=Push button is pressed

6 | TTL6.DIN Toggle switch, 1=towards connector, O=rear of board.

The M2Mlet performs these functions:

Initializes the TTL1 to TTL6 ports to their specific function.

TTL1 (the potentiometer) is set to the value must change by +/-30 units before a new reading is set to the
M2MXML portal, and a reading is sent no more than once every 10 seconds

Changing the potentiometer will be converted to a level to send to the light bulb, which is a driven by a
transistor. Potentiometer readings from 0 to 4095 are converted to Analog output values of 0 to 63

TTL3 and TTL4 LEDs correspond to the TTL5 and TTL6 switches.

TTL5 switch is set to only send a reading to the portal when pressed. Releasing the button does not send a
reading

TTL6 toggle switch will send a reading whenever it is switched.

The M2MApp.ini configuration property “MPM_ET. DEMO_ENABLED’ is used to enable or disable the M2Mlet. If
the property is set to false or no, then the M2Mlet is not initialized during st art () . If this is set, such as by
using the SetConfiguration command, then the M2Mlet is initialized and started running. The method

pr ocessSet Conf i gur at i onl t emhandles dynamically enabling or disabling the M2Mlet. Setting

M2M_ET. DEMO _ENABLED to false allows disabling the demonstration M2Mlet without requiring the user to
connect to the debug / console port and manually editing the M2MApp.ini file.

package com avi dwi rel ess. AVI Ddi r ect or;

/'l get
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
/1 the
i mport
i mport
i mport
i mport

the AVI Ddirector specific classes

com avi dwi r el ess. AVI Ddi r ect or . AVI Ddi r ect or App;

com avi dwi r el ess. AVI Ddi r ect or. MM et ;

com avi dwi r el ess. AVI Ddi rect or. MM | G

com avi dwi r el ess. AVI Ddi r ect or. i odevi ce. *;

com avi dwi rel ess. AVIDdi rector. ||| egal Har dwar eAddr essExcept i on;
com avi dwi rel ess. AVI Ddi rect or. | nval i dHar dwar eCper at i onExcept i on;
com avi dwi rel ess. AVI Ddi rect or. Avi dUt il ;

com avi dwi rel ess. AVI Ddi rect or . Logger ;

MM XML conmand types

com sensorl ogi c. nressages. MMXM__Messages;

com sensorl ogi c. nessages. Tel enet r yMessage;

com sensor| ogi c. messages. Per cept Request ;

com sensor| ogi c. messages. Response;

/!l standard Java cl asses

i mport
i mport
i mport
i mport
i mport
i mport

j avax. comm Seri al Port;

j avax. comm ConmPort | dentifier;

j avax. comm NoSuchPort Except i on;

j avax. comm Port | nUseExcepti on;

j avax. comm Unsuppor t edConmOper at i onExcepti on;
java.io. Qut put Stream

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 36 of 55

AVIDdirector-M2M™ Technical Reference Guide

import java.io.lnputStream
i mport java.io.l CException;
import java.util.Hashtable;
import java.util.Enumeration;

*

/
Deno_M2M et </ b>

<p>

Thi s handl es the on device hardware | O for the AVI Ddirector- MM devi ce
using the sinulation board.

<p>

This is for device initiated or nonitored hardware. You have to create a
class that inplements MM et nethods. The configuration file

contains classes that are | oaded when the device starts polls the device
per the polling interval. Each class will report to the MM XM port al
the results of howit is setup.

<hr >

Devel oped by AVIDWrel ess, division of VoiceDataWare Inc. and SensorlLogic Inc.

Cont ai ns PROPRI ETARY/ CONFI DENTI AL i nfornation. Use is subject to |license terns.

Copyright 2004, Al Rights Reserved

<p>

@ut hor AVIDWrel ess
@ersion $Revision: 12 $ $JustDate: 2/21/05 $

@ince Apr 19, 2004

E I I S T I I N B R R I I I T I

~

public class Deno_MM et extends M2M et inpl ements Runnabl e {
/* Qur source safe revision nunbers */
final static String REVISION = "$Revision: 12 $"; /1 for tracking revisions
/*
* $NoKeywords: $ */

| | ###########E STATI C DATA AND CONSTANTS #########HEH I

/** Configuration file value to enable or disable the denp node */
final static String CONFI G_FI LE_DEMO_MODE =
CONFI G_FI LE_ MMMLET_PREFI X+". DEMD_ENABLED' ;

| | ######HRHRE | NSTANCE DATA ######## TR

/** Array of our M2M sensors we are using to poll */
M2M_ | ODevi ce[] Sensors;

/** The out put devices */
M2M | ODevi ce | anp, greenLed, redLed;

/** Set true if this is enabled */
vol atil e bool ean denoMeni et Enabl ed;

/** Set true of the old deno board */
private bool ean ol dDenoBoar d;

/** Variables to manage a background thread to performthe readings */
private Thread t hread;
private volatile boolean threadRunning;

| | #######RHRRE CONSTRUCTORS ####### 7T

/**

* MM ets require a null constructor
*/

public Deno_MeM et () {

/1 null constructor

}
| | #i#####R#R#R#R#E | NSTANCE VMETHODS — ##########HHHH R

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 37 of 55

http://www.avidwireless.com>http://www.avidwireless.com

AVIDdirector-M2M™ Technical Reference Guide

/**

* Starts the MMet for the Sinmulator board. This creates any initial devices and

* sets
*

themto defined states.

* @aram adApp I nistance of the AVI DdirectorMin application

*/

public final boolean start (AVIDdirectorMin adApp){

final

String NAME = "Deno_M2M et . start";

started = fal se;
this.app = adApp;

try {

/1

bool ean find out if we are in debug node

bool ean debugWbde = Logger.i sDebug();

/1

test if this is enabled or not, and if disable don't bother initializing

String confi gDenoM2n et Enabl ed = app. get Confi gurati onlten(CONFI G_FI LE_DEMO _MODE) ;

i f

(confi gDenmoMem et Enabled !'= null) {
denoMeni et Enabl ed = Avi dW il . par seBool ean(confi gDenmoM2ni et Enabl ed) ;

} else {

—_ ~

/1 if no entry then assume it is enabl ed
denoMeni et Enabl ed = true;

i f enabled then continue the starting

(denoM2ni et Enabl ed) {

/** Popul ate our M2M | ODevice array with the sensors we have */
sensors = new M2M | ODevi ce[3] ;

/'l sensors[0] is TTL1 is analog input with a potentoneter
sensors[0] = app.get MM | ODevi ceFor Addr ess(M2M _| ODevi ce. TTL1);
if (sensors[0] !'=null) {
i f (debugMode) Logger. debugl n(NAME, "Setting up "+sensors[0].get Devi ceAddress() +
" as analog input with +/- 30 trigger");
/1 set this for anal og input
sensor s[0] . set Anal ogl nput () ;
/'l trigger when changes +/- 30, no nore than once every 10 seconds
sensor s[0] . set Tri gger Val ueChange(30, 30) ;
sensors[0] .set M nTri gger I nterval (10);
} else {
Logger .| og(NAME, "No TTL1 Device specified");

/1 TTL5 is round pushbutton
sensors[1] = app.get MM | ODevi ceFor Addr ess(M2M _| ODevi ce. TTL5) ;
sensors[1] .setDigital I nput();
// 1f low, then new sinulation board.
/1 1f high, then original board (the LED val ue was inverted on this one)
int value = sensors[1].readPinD g();
if (value == 1) {
ol dDenoBoard = true;
i f (debugMode) Logger. debugl n(NAME, "Setting up "+sensors[1].get Devi ceAddress() +
" for the round pushbutton trigger when O (pressed in) - old board");

sensors[1] . set Tri gger Val ueGoesLow(true); /1 trigger when |ow
sensor s[1] . set Tri gger Val ueGoesH gh(f al se);
} else { [// new denp board
i f (debugMode) Logger. debugl n(NAME, "Setting up "+sensors[1].get Devi ceAddress() +
" for the round pushbutton trigger when 1 (pressed in)");

sensors[1] . set Tri gger Val ueGoesLow(fal se); // trigger when high
sensor s[1] . set Tri gger Val ueGoesH gh(true);

}

/1 TTL6 is the toggle switch, notify on both high and | ow
sensors[2] = app.get MM | ODevi ceFor Addr ess(M2M _| ODevi ce. TTL6) ;
i f (debugMode) Logger. debugl n(NAME, "Setting up "+sensors[2].getDevi ceAddress() +

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 38 of 55

AVIDdirector-M2M™ Technical Reference Guide

" for the toggle switch and trigger on either");

sensors[2].setDigital I nput();

/1 have it send a percept reading on either trigger
sensor s[2] . set Tri gger Val ueGoesLow(true);

sensor s[2] . set Tri gger Val ueGoesH gh(true);

/1 TTL2 is the light bulb
| anp = app. get MM | ODevi ceFor Addr ess(M2M_| CDevi ce. TTL2) ;

i f (debughWbde) Logger. debugl n(NAVE, "Setting up "+l anp. get Devi ceAddr ess() +

as anal og output for the |lanp");
| anp. set Anal ogQut put () ;

/1 TTL3 is the Geen LED
greenLed = app. get MM | ODevi ceFor Addr ess(M2M_| ODevi ce. TTL3);

i f (debugMode) Logger. debugl n(NAME, "Setting up "+greenLed. get Devi ceAddress() +

" for the Geen LED');
greenlLed. set Di gi tal Qut put();

/1l TTL4 is the Red LED
redLed = app. get MM | ODevi ceFor Addr ess(M2M_| CDevi ce. TTL4) ;

i f (debugMode) Logger. debugl n(NAME, "Setting up "+redLed. get Devi ceAddress() +

" for the Red LED");
redLed. set D gi tal Qut put ();

/] start this thread running
started = true;
thread = new Thread(this);

/1 Now wait for a signal that it has started
synchronized (this) {
try {
thread.start();
this.wait(30000); // 30 seconds to get going
} catch (InterruptedException e) {
Logger .| og(NAME, "I nt er rupt edException starting Thread");

} else {
Logger .| og(NAMVE, "Deno M2M_et i s not enabl ed");

Y} Il otry
catch (Exception e) {
Logger . | og(NAME, e) ;

return started;
} /] initialize

/**

* This thread nonitors the test box's switches and dials and if sonething has

* changed it displays a nessage on the display and sends a nessage to the
* SensorlLogic portal
*/
public final void run(){
final String NAME = "Deno_MM et.run";
Thread. current Thread() . set Name(" Deno_MeM et ") ;
/1 notify out start nethod that we are running
t hreadRunni ng = true;
synchronized (this) {
this.notifyAll();
}
if (started) {
Logger .| og(NAME, "Thread started");
/1l cd. di spl ayMessage("Mnitoring...");

i nt val ue; /'l currently read value froma sensor
i nt i ghtlntensity; /1 value of the light (0-62)
String per cept Message; /'l Percept reading to Portal
February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 39 of 55

AVIDdirector-M2M™ Technical Reference Guide

bool ean retFl ag; /] return status of a command

bool ean tri gger Response; /1 set true if there is a change of value
i nt ttl1Value = -1, ttl3Value = -1, ttl4Value =-1;

bool ean i sDebug = Logger . i sDebug(); /1 cache the debug val ue

whi | e(t hreadRunni ng && denoMeni et Enabl ed) {

i sDebug = Logger.isDebug(); // update the debug value in case it changed
/'l go through the sensors and send a newreading if it changed
for (int device=0; device < sensors.|ength; device++) {

if (sensors[device] '= null) {
/'l sensors are fast to poll, so do themall the tine
try {

/1 read the value and set it

if (sensors[device].isAnal oglnput()) { // analog input sensor
val ue = sensor s[devi ce]. readPi nAnal og();

} else { /1 digital sensor
val ue = sensors[device].readPinDig();

/1 update the value on the sensor and see if we triggered anything
triggerResponse = sensor s[devi ce]. updat eVal ue(val ue);

/1 handl e any special things for these devices
switch (device) {
case 0: { // Pot
/'l change the Light intensity to O to 62 fromO to 4096
if ((value <= (ttl1lvalue-10)) || (value >= (ttl1Val ue+10))) {
lightintensity = (value / 66); // 0 to 62
| anp. wri t ePi nAnal og(li ghtlntensity);
ttl 1Val ue = val ue;

}

br eak;

case 1: { // Round pushbotton, only signal when pushed down
if (value !'=ttl3Value) {

/'l set the Green LED but invert the value

i f (ol dDempBoard) {
greenLed. witePi nDi g((val ue==0) ?1: 0) ; /1 old denp board

i nverting

} else {

greenLed. witePi nDi g(val ue);

ttl 3Val ue = val ue;

}
br eak;

case 2: { // Switch pushbotton, signal either way
if (value !'=ttl4Value) {
redLed. wri t ePi nDi g(val ue);
ttl 4Val ue = val ue;

}

br eak;

}
} /1 swtch

if (triggerResponse) {
i f (isDebug) Logger.debugl n(NAMVE, sensor s[devi ce]. get Devi ceAddress() +
" value = "+value+" triggered a percept nessage to portal");
/'l send the correct percept for the device
i f (sensors[device].isAnal oglnput())
percept Message =
M2MXML_Messages. cr eat ePer cept Stri ng(sensor s[devi ce] .
get Devi ceAddress(),
val ue, Per cept Request . PERCEPT_TYPE_SI MPLE, null);
el se
percept Message =
M2MXML_Messages. cr eat ePer cept Stri ng(sensor s[devi ce] .

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 40 of 55

AVIDdirector-M2M™ Technical Reference Guide

get Devi ceAddress(),
val ue, Per cept Request . PERCEPT_TYPE BI T, null);
app. sendMessageToPort al (per cept Message) ;

}
catch (I nvalidHardwareQper ati onException ihoe) {
Logger . | og(NAME, sensor s[devi ce] . get Devi ceNane() +
I nval i dHar dwar eOper at i onExcept i on: " +i hoe. get Message());

}
catch (111 egal Har dwar eAddr essExcepti on i hae) {
Logger . | og(NAME, sensor s[devi ce] . get Devi ceNane() +
" Il I egal Har dwar eAddr essExcept i on: " +i hae. get Message());

}
catch (Nul | Poi nt er Exception npe) {
Logger . | og(NAME, sensor s[devi ce] . get Devi ceNane() +
" Nul | Poi nter Exception: " +npe. get Message()) ;

}

catch (Exception ex) {
Logger . | og(NAME, sensor s[devi ce] . get Devi ceNane() +"
Exception: "+ex. get Message()) ;

} else {
/1 null sensor
i f (Logger.isDebuglLevel 2()) Logger. debugl n(NAVE,
"Devi ce#"+devi ce+" is null. Probably an invalid nanme");

} /1 sensor |oop
/1 update every 100 ns

if (threadRunning) AvidUil.waitHereMs(100); // update every 1/10 of a second
} /1 while thread running

thread = null; // rel ease oursel ves
Logger .| og(NAME, "Exi ting thread");
} else {

Logger .| og(NAME, "Not started so cannot run thread. Exiting");

} // run

/**
* WWen a SetConfiguration conmmand i s received, for each configuration item

* this method is called.
* Each M2MLet can override this nmethod to handl e processing the configiruation conmand

changes.

* <p>

* W are |looking for the M2MLET. DEMO ENABLED item changi ng, and setting the denonstration
* paranmeter to this val ue

*

* @aram propertyName The Configuration file property nane

* @aram ol dVal ue The old value of this item This is null if there is no old value

* @aram newal ue The new val ue of this item

*

@ar am segqNum The sequence nunber of this command

* @eturn boolean true if this was processed successfully, false if an error occureed
*/

publ i c bool ean processSet Configurationlten(String propertyName, String ol dVal ue,
String newval ue, String segNum

final String NAMVE = "Denp_MM et . processSet Configurationltent;
bool ean returnStatus = fal se;
/1 The M2M_et nust override this to nean anything. The default is to return true
i f (propertyNane. equal s(CONFI G_FI LE_DEMO MODE)) {
denoMeni et Enabl ed = Avi dWi | . par seBool ean(newal ue) ;
Logger . | og(NAME, "DenoM2M et Enabl e = "+denoM2ni et Enabl ed+" starting Deno node");
/] start the Denp if we didn't when initialized
i f (denoM2ni et Enabl ed && !'started) start(app);
returnStatus = true;
} else {
i f (Logger.isDebug()) Logger.debugl n(NAVE, "Unknown Property "+propertyNane);
/1 other paraneter, return true for now

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 41 of 55

AVIDdirector-M2M™ Technical Reference Guide

returnStatus = true;

}
return returnStatus;

}

/**
* Stops the currently executi ng Deno_MM et.
* This will try to do any cleanup possible
*
*/

public final void stop() {
final String NAME = "Deno_MM et . st op”;
if (app!= null) Logger.!| og(NAVNE, " St oppi ng");
t hreadRunni ng = fal se;
sensors = null;

lamp = null; greenLed = null; redLed = null; sensors = null;
thread = null; // rel ease oursel ves
if (app!= null) Logger.!| og(NAMNE, " St opped");

} /1 stop

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 42 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 5 - M2MXML TM Version 1.0 Specification

See M2MXML Documentation Included.

Appendix 6 — Sample M2MApp.ini Configuration File

The M2MApp’s initial behavior is determined by the configuration loaded via the MMApp. i ni file. This is a Java
properties file that specifies property names and their corresponding values. The Property names have the format
SYSTEM.PROPERTY to gather common properties for a particular item together and also allow similar properties
to be set for multiple devices. Standard SYSTEM names are:

§ AVI DD RECTCR — Properties relating to the AVIDdirector-M2M device hardware. Currently just the modem
type is specified.

8 SYSTEM-— M2MApp properties for the device and framework. This includes control over debug, logging and
system maintenance (Garbage collection).

§ M2M.ET — Properties for the M2Mlet application. It is required that the CLASSNAME property is specified
listing the class to load for our M2Mlet. The M2Mlet may define special properties that it wishes to specify
or load. Calling app. get Confi gur ati onl t emretrieves these parameters and app. set Conf i gur ati onl tem
sets the parameters in the M2MApp.ini file.

§ TTLn and HVCn — These parameters refer to the external TTL and HVC ports. The M2MXML address for
the port, its on-device behavior settings and device parameters are specified here. If the M2MXML portal
changes the on-device behavior then these values are updated so that this latest portal configuration is
loaded each time the device is initialized.

§ MM ODEVI CE — Parameters common to the M2M 1/O Devices, which include the TTL, HVC, Serial2 and
EXT ports. The only parameter specified is POLLTI ME that specifies the time for the polling loop of all the
devices. Each device has a POLL parameter (Y,N) that specifies if it is to be included as a polled device.

8§ SL — SensorLogic portal specified properties. The U D must match the UID specified in the portal for this
device.

Radios and user written 1/O classes are dynamically loaded by providing a keyword for the device (example,
BOOVER3 or GPS) followed by . CLASSNAME (example GPS. CLASSNAVE) and M2MApp will load each Java class file
specified with a property ending in .CLASSNAME. If the class is an instance of

com avi dwi rel ess. AVI Ddi rect or. i odevi ce. | ODevi ce then it is loaded and treated as a IODevice or if is an
instance of the com avi dwi r el ess. r adi 0. ADRadi o class then it will be treated as a Radio. The difference is
IODevice can receive M2MXML messages, send M2MXML messages back to the portal, and can be added to the
main M2M_IODevice polling. A Radio class is associated with a Communicator class to handle M2MXML
messages to and from the portal. Multiple Radio classes may be loaded and M2MApp may dynamically switch
between these radios by calling app. set MMXM_Por t al (Conmuni cat or) . Each IODevice and Radio may retrieve
their own properties and must handle setting the properties when specified via M2MXML: Set Conf i gur ati on
commands.

When M2MApp is initialized, it looks for the file MMMApp. i ni and tries to load it. If there is a problem reading the
file, M2MApp then tries to load the file MMApp. bak, and if that is found, it is copied to MMApp. i ni and an attempt
is made to load that file. If there is an error loading both MMApp. i ni and M2MApp. bak, then the file

MeMApp. def aul t is read and copied to MMApp. i ni . MMMApp. def aul t needs to contain a base set of functionality
for the device to allow it to communicate with the M2MXML portal where it can be setup again. Each time a
configuration property is set in M2MApp, the current M2MApp.ini is first copied to M2MApp.bak and then the
property is set. If there is a loss of power during this operation the device should be able to recover to a known
configuration state.

#M2MAPP. i ni

#

Specify the device type, M2Mor XE
AVI DDl RECTOR. MODEL=M2M

#

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 43 of 55

AVIDdirector-M2M™ Technical Reference Guide

Sensor Logic Portal Device U D nunber for this device
SL. DEVI CE_U D=8C71EA041A5741F48A87B314FF02501A

#

System Settings

SYSTEM DEBUG=0

SYSTEM LOGGE NG=0

SYSTEM OPTI ONS=0

Level bel ow which we do a GC

SYSTEM GC_WATERVARK = 100000

SYSTEM GC_RUN_| NTERVAL=3600

#

#

M2M et application class to |oad

M2MLET. CLASSNAME=com avi dwi r el ess. AVI Ddi r ect or . Deno_M2M et
#

#

M2M On device address overriding the default ones
TTL1. MMXM__ADDRESS=TTL1. AI N

TTL1. 1 OTYPE=AI N

TTL1. PCLLI NG=Y

TTL2. | OTYPE=ACQUT

TTL3. | OTYPE=DOUT

TTLA4. | OTYPE=DOUT

TTL5. MMXM__ADDRESS=TTLS5. DI N

TTL5. 1 OTYPE=DI N

TTL5. PCLLI NG=Y

TTL6. MMXM__ADDRESS=TTL6. DI N

TTL6. | OTYPE=DI N

TTL6. PCLLI NG=Y

#

M2M | O Devi ce common settings

M2M CDEVI CE. POLLTI ME=200

#

#

Booner 3 radio

BOOVER3. CLASSNAVE=com avi dwi r el ess. r adi o. Booner 3
BOOVER3. SERI AL_PORT=seri al 3

BOOVER3. SERI AL_PCRT_BAUDRATE i s not needed - Masc fixed at 9600 baud
BOOVER3. SERI AL_PORT_BAUDRATE=9600

BOOMER3. SLOT=0 Not needed for MM

Maximumtine to send a nessage

BOOVER3. MAX_RETRY_COUNT = 8

Gateway addresses

BOOVER3. MOBI TEX_GATEWAY_ADDRESS=103087

BOOVER3. MOBI TEX_GATEWAY_HPI D=137

#

Nextel 101500 Radio

#1 OL500. CLASSNAME=com avi dwi r el ess. radi 0. | OL500

#1 O1500. SERI AL_PORT=seri al 3

#1 OL500. SERI AL_PORT_BAUDRATE=19200

#1 OL500. SLOT=1

#1 OL500. SERVER_ADDRESS=0. 0. 0.0

#1 OL500. PORTAL_SERVLET=/ servlet/rfid?_SMR =Rfi dMai n. Rfi d
#

#

Qther 10 Devices to |oad

#

#NEMA GPS Receiver to |oad

#GPS. CLASSNAME=com avi dwi r el ess. AVI Ddi rect or . i odevi ce. GPS_NEMA Recei ver
#GPS. SERI AL_PORT=serial 1

#

#BPlI 216 Serial LCD to | oad

#LCD. CLASSNAME=com avi dwi r el ess. AVI Ddi rect or . i odevi ce. BPI 216_Seri al LCD
#LCD. ADDRESS=LCD

#LCD. SERI AL_PORT=serial 1

#

#SIRI T RFI D Reader

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved

Page 44 of 55

AVIDdirector-M2M™ Technical Reference Guide

#SI RI T_READER. CLASSNAME=com avi dwi rel ess. AVI Ddi rect or . i odevi ce. Si ri t RFl DReader
#SI Rl T_READER. M2MXM__ ADDRESS=RFI DTAG

#SI RI T_READER. SERI AL_PORT=seri al 2

#SI Rl T_READER. TAGTYPE=I SO

#SI Rl T_READER. POLLTI ME=200

#SI Rl T_READER. ENABLE=t r ue

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 45 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 7 — Upgrading the M2M Java Firmware

Locate the CD included in the SDK, and then locate the directory “SNAPDev_Files” which contains the files
needed to reload the device. You may also download the files from the AVIDdirector web site where you will find
the latest firmware update. The zip file contains three files with a . snp extension.

You will need to remove the cover of the AVIDdirector-M2M device before attaching the debug pod. Note Remove
the antenna before removing the cover. Be sure to match pin 1 on both devices before powering up the device.
The black line on the ribbon cable should match to pin one on both boards. Attach the Developer pod to your PC for
reprogramming with a standard serial cable. Attach the serial cable to your computer COM Port (you can use a
USB to RS-232 adapter). Verify that the COM Port the serial cable is attached to has a baud rate of 57600.

Execute the SnapDev. exe file located under the SNAP/ bi n directory to start the Snap Development environment.
Then connect with the File | Open Port

Power up the AVIDdirector-M2M device and boot up. As the device

= starts up press the "i" key a couple of times as the startup messages

IE Edit Help begin to be displayed to prevent the M2MApp software from starting

Cpen Port | (this bypasses execution of the / syst eml st art up. i ni file)

Reset F5 To determine what version of the firmware your

device is currently running, once connected enter

aettings. .. the “info” command.

= Alb+F4 From SnapDev choose File | Reset F5 or press F5

— to enter loader mode. You should see a progress : :
I bar on the bottom status line of SnapDev as it = ey
downloads the initial boot loader. When that is done you should see a prompt like: 1 . T

arent

|

SNAP | oader v 0.1.10 (Build date: Cct 17 2004 01:03:31)
$

Note: If you do the File | Reset and you don't see the status line start a process bar on the
bottom, press the reset button on the board just after starting File | Reset.

The AVIDdirector-M2M board has a reset button on the top of the main board. This button can
be used for a hard reset of the device while debugging.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 46 of 55

AVIDdirector-M2M™ Technical Reference Guide

When you are in the SNAP Loader program press "I" (the L key) and it will bring up a directory dialog box.

Select each of the files located in the SnapDev Files directory IN THIS ORDER.

AVI DMPM Baseconfi g_x_x_x.snp (3 Load this one first
AVI DVBM Snapl i b_Xx_Xx_X. snp 3 Load 2™
AVI DMPM _AVI D _Fil es_x. x. X. snp (3 Load last. Contains AVIDdirector-M2M files

X_X_x specifies the current release numbers.

After each load your display should have messages similar to this.

Waiting for file

Cal cul ati ng checksum

Checksum K

Updating file system

Creating directory /avidwrel ess

Creating directory /avidwi rel ess/cl asses

Updating file /systemreboot.ini: 2/2 bytes

Updating file /system group.ini: 40/40 bytes

Updating file /system hostnane.ini: 25/25 bytes

Updating file /systemish.ini: 850/850 bytes

Updating file /system passwd.ini: 108/108 bytes

Updating file /system access.ini: 68/ 68 bytes

Updating file /system snap.ini: 601/601 bytes

Updating file /system boot.ini: 32/32 bytes

Updating file /system startup.ini: 69/69 bytes

Updating file /system boot.ver: 43/43 bytes

Updating file /system cl asses/BackG ound. cl ass: 1626/ 1626 bytes
Updating file /avidw rel ess/ ADVMPM.i b. jar: 140321/140321 bytes

When all 3 files have been loaded press ‘r’ (the R key) to reload the SNAP Java environment.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved

Page 47 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 8 — Reprogramming the PSoC Firmware

The following procedure is used to reprogram the PSoC Firmware.

NOTE: ONLY DO THIS IF ADVISED BY AVIDWIRELESS TECHNICAL SUPPORT. IF THIS FAILS OR IS
INTERRUPTED THEN YOU WILL HAVE TO SEND YOUR DEVICE BACK TO AVIDWIRELESS FOR FACTORY
REPROGRAMMING UNLESS YOU HAVE AN IMSYS DEVELOPER TRACE ADAPTER.

1. Download the PSoC HEX file to AVIDdirector-M2M

Connect the AVIDdirector-M2M debug pod as described in Appendix 7 “Programming the M2M Java Firmware” to
the device and to your PC. Connect a reliabile +12 volt supply to the AVIDdirector-M2M device and enter the Ish
shell that give you a .>’ prompt. At that point enter ‘recv’ to download a file to the AVIDdirector-M2M device.

> recv

Send File 2]x]
Lack if: | ‘=4 PSOC_Files 5 e @k E-

File name: Ipsoc.he:-c Open I
Files of type: [4l Files) - Cancel |

[Open as ;ead-only

Receiving file(s)...Done

> dir

STWT--T-- 1 root r oot 3373 March 2 13: 02 M2MApp. i ni
STWTr--T-- 1 root r oot 3178 March 2 13: 02 M2MApp. bak
STWT--T-- 1 root r oot 3178 March 2 13: 02 M2MApp. def aul t
STWT--T-- 1 root r oot 72538 March 3 13: 38 psoc. hex

2. Run the 'testhw' application to reprogram the firmware.

Ensure your AVIDdirector-M2M device is powered from a reliable 12 volt supply with sufficient amperage. From the
Ish shell run ‘testhw’. This is a general purpose test program that allow direct user control of the M2M 1/O ports and
to display information regarding the AVIDdirector-M2M device. One of its functions is to reprogram the PSoC
firmware.

> test hw

AVI Ddi rect or - MMM Har dwar e APl Tester Ver. 1.30.13, 3/4/05 12:07p

Enter "command" port pin value where "command" is one of:

read, wite, setdin, setdout, setain, setaout [PORT] where

PORT is TTL1-6, HVCl-4, SERI AL2RX/ TX/ RTS/CTS, EXT1-3 or the PSoC port and pin
O her commands are: program reset, led [System Radio], menory, version, quit

Test HWAPI > pr ogram psoc. hex 3 Enter this to reprogramthe PSoC with the hex image
Loadi ng PSoC fil e psoc. hex 72538 bytes

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 48 of 55

AVIDdirector-M2M™ Technical Reference Guide

DO NOT | NTERRUPT progranm ng the device or it may corrupt the PSoC Fl ash and
require sending your unit back to the factory for reprogranmm ng.

During progranm ng the SYSTEM STATUS light will indicate the progress.
It will rapidly blink RED during Flash programm ng and rapi dly blink GREEN when
verifying the programm ng. Wen done, if successful it will blink GREEN twi ce or

i f unsuccessful it blinks the error code using the RED LED three tines.
It will then reboot your device.

Sone Error Codes are:

1 RED blink means the Progranming file did not verify correctly.

2 RED blinks neans the file had a checksumerror init.

If the RED LED blinks 6 or nore tines, your PSoC processor is non functional and you will
have to contact AVIDWrel ess for assistance or return the device.

Are you sure you want to reprogramthe PSoC using file psoc. hex? Answer Y or N
You entered :Y

Pr ogramm ng PSoC using file psoc.hex with 72538 bytes.

You will not see any other nessage until the device reboots.

The SYSTEM Led will begin to quickly flash Red during the programming, and then quickly flash Green
during the verification. The total time should be less than 2 minutes for both operations. If the
reprogramming was successful the SYSTEM Led will blink Green twice and then the unit will reboot. If
there was an error the SYSTEM Led will slowly blink Red. The number of times it blinks is important and
used to indicate the cause of the error. It will blink between 1 to 6 times and then repeat one. It will not
reboot the device if unsuccessful.

3. Device reboots

I msys SNAP restarting @Tue May 3 18:40:21 2005
Readi ng /systenfish.ini: [
Readi ng /systeni snap.ini: [
Serial server: [
JVM st ar t up: [
Setting host nane: [
TCP/ I P start up: [

FTP server: [DI SABLED]
Tel net server: [DI SABLED]
Setting tinezone to: CsT

Readi ng /systenistartup.ini: [SKIPPED

You may run the ‘testhw’ program again and the ‘version’ command to see the version of PSoC firmware
on the device.

> test hw

AVI Ddi rect or - MM Har dwar e APl Tester Ver. 1.31.13, 3/29/05 12:07p

Enter "command" port pin value where "command" is one of:

read, wite, setdin, setdout, setain, setaout [PORT] where

PORT is TTL1-6, HVCl-4, SERI AL2RX/ TX/ RTS/CTS, EXT1-3 or the PSoC port and pin
O her commands are: program reset, led [System Radi o], menory, version, quit

Test HWAPI > ver

AVI Ddi r ect or - MM Har dwar e APl Tester Ver. 1.31.13, 3/29/05 12:07p
MM |1 O Rev. 24.4.8

ADMPMLib Ver. 1.21.7, 2/21/05 8:50p Rev: 31.5.6

PSoC Firnmware Ver. 0104 3 Version of PSoC Firmware
Test HWAPI > qui t

Exi ting Test HAAPI

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 49 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 9 — Model 200 TTL Ports and DB-37
Expansion I/O Connector

The following is a definition of the Model 200's 1/0 Expansion Connector. It brings out the console TTL
(Serial0), RS-232 (Seriall), TTL Serial that was used for the RJ-12 on the Model 100 (Serial2), and
TTL1to TTL18. TTL7 to TTL18 where used for the HVC1 to HVC4 lines on the Model 100.

Currently on Model 200 TTL1-TTL4 and TTL20-TTL23 (8 ports) can be configured for analog input
and 4 of the ports (TTL1, 2, 20 and 21) can be configured for analog output. The inputs can read up
to 5 Volts and give readings of 12 bits per reading. The analog outputs generate 0V to +5V with 6 bit
accuracy.

Pin Connection PSoC Function

1 GND Device Ground

2 RX0 P12 Serial0 Data in (console)

3 TXO0 P1 3 Serial0 Data out (console)

4 DTRO Pull low to reset. Normally pulled high

5 TTL1 PO _2 Analog Input/Out, Digital In/Out

6 TTL2 PO_3 Analog Input/Out, Digital In/Out

7 TTL3 PO 0O Analog Input, Digital In/Out

8 TTL4 PO_1 Analog Input, Digital In/Out

9 TTL5 P20 Digital In/Out, Switch cap input (Analog)
10 TTL6 P21 Digital In/Out, Switch cap input (Analog)
11 TTL7 P2 2 Digital In/Out, Switch cap input (Analog)
12 TTL8 P2_3 Digital In/Out, Switch cap input (Analog)
13 TTL9 P4 0 Digital In/Out

14 TTL10 P4 1 Digital In/Out

15 TTL11 P6_0 Digital In/Out

16 TTL12 P6_1 Digital In/Out

17 TTL13 P6_2 Digital In/Out

18 TTL14 P6_3 Digital In/Out

19 GND Device Ground

20 +5/12 V \?;Iti(;t:ti)rl]e(xi(?##rgﬁrzg};l (inside). Either 5V regulated or line
21 TTL22,CTS2 PO_6 Analog Input, Digital In/Out, Serial2 CTS In
22 TTL20, RX2 PO _4 Analog Input/Out, Digital In/Out, Serial2 RX In

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 50 of 55

AVIDdirector-M2M™ Technical Reference Guide

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

TTL21, TX2
TTL23, RTS2
12C_SCL
I2C_SDA
TTL15
TTL16
TTL17
TTL18
DCD1_232
DSR1_232
RX1 232
RTS1 232
TX1_232
CTS1_232
DTR1_232

=
m
i
(5]
=l

S[alsle])

3|

e

[3]

PO 5
PO_7
P17
P15
P6_4
P6_5
P6_6
P6_7
P3_6
P35
P3_3
P3_1
P30
P3_4
P32

JIl#x]]

e HLE LA,

| WRALL,
CET
LCTEE-TTL2s

[EpE-TT 24
FOTRE-Reset
Ha-TTLa1

TTL3
[2C_50A

TTL4

TILS
| TTL1G,

TLE

TTLi7,

TTL?

Fa

ALt

g

\[elelefafale

TTLE
pFOCOL=-232
T
d —g32
TTLL
Ex1-238

T
FRTS 1 —&
b L L L
I¥1-238

L_ITL13
PCTSE=232
L_TIL14
s0TR1-232
OGHD

-l N

FRTS2=TTL23
IrLe

Analog Input/Out, Digital In/Out, Serial2 TX Out
Analog Input, Digital In/Out, Serial2 RTS Out
I°C Serial Clock, Digital In/Out

I°C Serial Data, Digital In/Out

Digital In/Out

Digital In/Out

Digital In/Out

Digital In/Out

Seriall RS-232 DCD In

Seriall RS-232 DSR In

Seriall RS-232 RX In

Seriall RS-232 RTS Out

Seriall RS-232 TX Out

Seriall RS-232 CTS In

Seriall RS-232 DTR Out

February 5, 2009

©AVIDwireless 2004-2009 All Rights Reserved

Page 51 of 55

AVIDdirector-M2M™ Technical Reference Guide

/0 Expansion board:

The 1/0O Expansion board brings the TTL 1/O ports from the DB37 connector to Phoenix connectors.

.l'?.-.i‘:"l.
AVIDwireless®

AViDdirector MZM

Mosial 7040

Expansian 1,0

Below is a list of features and functionality it makes available:
1) It provides access to TTL ports 1 through 23, Gnd and V+.
2) Access to Serial2 is available through TTL20-TTL23.

3) I12C is also available on J5.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 52 of 55

AVIDdirector-M2M™ Technical Reference Guide

4) The Connectors are marked with the TTL numbers on the board.
5) There is an optional reset switch also available through the I/O Expansion board.

6) The JP1 jumper setting inside the AVIDdirector can allow for +5V regulated voltage or line voltage (+12V) on port
TTL20.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 53 of 55

AVIDdirector-M2M™ Technical Reference Guide

Appendix 10 — AVIDdirector Jumper Settings

The jumper settings on the AVIDdirector main board vary between revisions. Please check your AVIDdirector's
revision letter to correspond the correct jumper settings. The 3rd letter of the serial number indicates the revision.
Example, AOC17QC00014 is a Revision C board.

In the descriptions, Vin refers to the input voltage to the AVIDdirector, which is between 8 to 18 VDC and normally
12 VDC. VRail is the output on pin 12 of the 12-pin Phoenix Connector and pin 20 of the DB-37.

Note: The default setting for Revs C, D, and F are DB-37, pin 20 is Vin. DB-9 pin 9 is +5V.
The settings according to revision letter are:

Rev A: 12-pin Phoenix connector
has VRail on pin 12. Inserting JP1

connects Vin to VRail, which also
drives the High Voltage / Current IEE” Aw
(HVC) outputs. With JP1 removed, cannect Vin i Vrail
the VRail (maximum voltage for the Wémi;
. . coEngct m
TXC was SUPPLIED by VRail pin o Ring Indicakr.
Revs A & B Jumper " _ _ -
L DB-9 pin 9 connects to Ring Indicator
input.
Rev B: 12-pin Phoenix connector. JP1 on 1-2 provides Vin on the Rev B
VRail connection. JP1 2-3 provides +5V on VRail. Removing JP1 Ingari jumpar on 1
allows external VRail to power the HVC (like on Rev B). DB-9 pin 9 1.-.11": """"““I""
provides +5V at 200ma. Inssert pumpar o 2
and 3 for 45V o6
VRl Rasncares
B3 jamper b axdernal
2 VRalio poear B
L | HYC
Rev C: JP1is the DB37 pin 20 jumper Rav C
that supplies the VRail output voltage et jumpar oo i
with maximum current of 0.5A. JP1 1-2 MM e -
connects VRail to Vin (nominally oy 2 a2
12VvDC), JP1 2-3 connects VRail to i
+5V. »2
L) | E | | |

DB-9 pin 9 connects to +5V at 200ma.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 54 of 55

AVIDdirector-M2M™ Technical Reference Guide

Rev D: JP1 is the DB37 pin 20 jumper that
supplies the VRail output voltage with

maximum current of 0.5A. JP1 1-2 g Rev D

connects VRail to Vin (nominally 12VDC), Rl 181 le 3T

JP1 2-3 connects VRail to +5V. g et

4Pz /ID]]IL Rt sBrcricind

. It jumper on

JP2 connect to DB-9 pin 9 to supply .3 46233 fridece

voltage at 0.5A (peak 2A) JP2 1-2 provides et T e

Vin on pin 9. JP2 2-3 provides +5V on pin

9.

Rev F: JP1is the DB37 pin 20 jumper that

supplies the VRail output voltage with i Rev F
maximum current of 2A. JP1 1-2 connects o JP1 s OB3T
VRail to Vin (nominally 12VDC), JP1 2-3 I i 93 2
connects VRail to +5V. bttt el
AT oy
»3 JPZ 23 forVinen
. LT pin 9

JP2 connects to DB-9 pin 9 to supply M & TTTTTTT

voltage at 0.5A (peak 2A) JP2 1-2 provides
Vin on pin 9. JP2 2-3 provides +5V on pin 9.

February 5, 2009 ©AVIDwireless 2004-2009 All Rights Reserved Page 55 of 55

	Table of Contents
	Technical Reference Guide
	AVIDdirector-M2M
	Appendix 1 – AVIDdirector Model 100 (see Appendix 9 for Model 200) Pin and I/O Definitions
	Appendix 2 - AVIDdirector-M2M Digital and Serial I/O Schematics
	Appendix 4 – Sample M2Mlet for Simulation Board
	Appendix 5 - M2MXML TM Version 1.0 Specification
	Appendix 6 – Sample M2MApp.ini Configuration File
	Appendix 7 – Upgrading the M2M Java Firmware
	Appendix 8 – Reprogramming the PSoC Firmware
	Appendix 9 – Model 200 TTL Ports and DB-37 Expansion I/O Connector
	Appendix 10 – AVIDdirector Jumper Settings

